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General Introduction 

 

For several decades, silicon-based Metal Oxide Semiconductor field - effect transistor 

(MOSFETs) dominates modern electronics and forms the cornerstone of our new Information 

Age. The continuous dimensional scaling of MOSFETs enables simultaneously better 

performance and lower cost chips, which allows the sustaining prosperity of semiconductor 

industry since the 1970s. However, the scaling also makes the SiO2, which performs 

incredible electrical properties and has been the unique “oxide” in semiconductor industry 

over 40 years, turn out to be necessarily replaced. The year of 2007 marks a milestone of 

silicon-based MOSFETs: the SiO2 gate dielectric has been replaced by hafnium-base high-k 

oxides in the 45nm microprocessor technology produced by leading manufacturers. At the 

beginning of 2010, 32nm technology microprocessor was released using the same 

hafnium-base oxides dielectrics, and identifying other suitable high k oxides dielectrics 

becomes a key issue for future 22nm and sub-22nm technologies. 

 

Meanwhile, oxides are indeed an exciting class of electronic materials. In addition to 

dielectricity, they exhibit a wide range of electronic, magnetic and optical properties: high 

temperature superconductivity, ferroelectricity, piezoelectricity, ferromagneticity, 

multiferrocity, colossal magnetoresistance and non-linear optical effects. Therefore integration 

of oxides (particularly in epitaxial form) with silicon could not only provide an alternative to 

silica as gate dielectric, but also open a pathway to integrate the above mentioned 

functionalities on the same Si basewafer, which could lead to the design and fabrication of 

numerous novel devices such as FeFET (Ferroelectric Field Emission Transistor), MEMS 

(Micro- Electro- Mechanical systems) and FeRAM (Ferroelectric Random Access Memory). 

Moreover, crystalline oxides/silicon system could also be used as templates to integrate 

semiconductors such as III-V, Ge and Si itself with silicon to bridge the gap between 

semiconductor devices (lasers, solar cells …) and mainstream Si-based MOSFETs 

technologies. Indeed, the ability to synthesize and control oxides/Si heterostructures is 

becoming a key issue in the micro- and optoelectronic fields. Molecular Beam Epitaxy (MBE) 

technique, which allows a precise control of the interface, composition and thickness of 

growing structures at the atomic level, is a suitable method to study the epitaxial growth of 



 
General Introduction 

 2 

oxide/Si heterostructures. 

 

In this context, the main objectives of this thesis are (i) to develop a strategy for the 

epitaxial growth of crystalline oxide layers and heterostructures on silicon, and (ii) to 

demonstrate that this strategy is suitable for the monolithic integration, on silicon, of novel 

functionalities based on oxide properties. We have focused our efforts on two key systems, 

namely SrTiO3/Si (001) and Gd2O3/Si (111). Bulk SrTiO3 is used as substrate for a wide range 

of so-called functional oxides having the perovskite ABO3 crystal structure while Gd2O3 is 

considered as one of the most promising crystalline candidates to replace silica as gate oxide 

in advanced CMOS technologies.  

 

This thesis follows the thesises of G. Delhaye, C. Mercking and L. Beccera, carried out at 

INL. The work was performed within the framework of the program “5 Ecoles Centrales” 

between China Scholarship Council (CSC) and Institut des Nanotechnologies de Lyon (INL, 

Ecole Centrale de Lyon). The work has been supported by series of ANR projects: MINOS, 

IMOX, BOTOX, and by the INL technology platform NANOLYON. 

 

This manuscript consists of four chapters. In chapter I, the detail of the scientific 

background is presented, as well as the key points of the study. The motivations for 

developing an epitaxial strategy for oxides on Si are explained, and the researches in this 

domain in the past years are reviewed. 

 

Chapter II focuses on the description of the experimental methods employed during this 

thesis. The oxide-dedicated MBE equipment is presented, as well as the techniques of 

structural and electrical characterizations. 

 

Chapter III will be dedicated to the epitaxial growth and optimization of two oxides/Si 

systems: SrTiO3/Si (001) and Gd2O3/Si (111). The preparation of Si surface will be firstly 

detailed, particularly the Sr-passivation technique of Si (001) surface for growth of SrTiO3. 

For SrTiO3/Si (001), we succeeded in finding the epitaxy widow, including the growth 

temperature and oxygen partial pressure. Then the relaxation process of STO films grown in 

optimal condition is studied. To further optimize the quality of STO films, several strategies 

have been performed: 1) definition of novel Si surface passivation method; 2) two-step 
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growth; 3) multi-step recrystallization growth. The quality of the STO is enhanced finally to a 

substrate-like level. For Gd2O3/Si (111), we optimized the growth condition (growth 

temperature and oxygen partial pressure) and growth procedure. A pheudomorphic 

monocrystalline Gd2O3 thin film is obtained. 

 

The integration of diverse functionalinities with silicon using oxides/Si template depicted 

above will be presented in chapter IV. The electrical characterization results of Gd2O3 will be 

showed and discussed. The quality of the films as-deposited and with PDA will be compared 

in terms of EOTs, leakage current and charges. BaTiO3, Pb(Mg, Nb)-PbTiO3, Pb (Zr, Ti)O3 

and (La, Sr)MnO3 are deposited on SrTiO3/Si(001) template and demonstrate good 

piezoelectric, ferroelectric, ferromagnetic properties respectively. Germanium, as an example 

of semiconductor, is grown on silicon using BaTiO3/SrTiO3/Si (001) and Gd2O3/Si (111) 

respectively. And the quality of Ge epilayer is exhaustively analyzed. The good results on 

these heterostructures indicate that the oxides/silicon system is well controlled and could be 

applied to the heterogeneous integration. 
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I.1) Whither microelectronic industry? 

I.1.1) History and context 

In modern science history, three brilliant scientists will not be forgotten: William 

Shockley, John Bardeen, and Walter Brattain, who, in December 1947, created solid state 

transistor that revolutionized electronic technology and laid the foundation of the 

microelectronic industry.  

 

Later, two other significant milestones were made: Jack Kilby’s Integrated Circuit (IC) in 

1958 followed quickly by Robert Noyce’s planar integrated circuit in1959. In June 1963, 

Frank Wanlass at Fairchild Semiconductor originated and published the idea of 

complementary-MOS (CMOS) and it is in March 1971 that Intel developed the first 

microprocessor “4004”, which opened the way to the integration of higher and higher density 

devices on a single chip, thus providing always faster and cheaper systems. Since then, 

microelectronics transforms continuously and radically human lives through miniaturization, 

automation, computation and robotization and achieves an unparalleled prosperity. Now 

electronics accounted for some 30% of overall industrial investment while in 1960 this figure 

was less than 5%. 

 

Much of the power of the electronic industry comes from the versatility of semiconductor 

devices based on silicon. CMOS technologies make it possible to integrate digital and 

increasingly analogue circuitry in ever-smaller silicon chips. This dimension shrinking trend 

is well described by an empiric law: Moore’s law. This law is named after Intel co-founder 

Gordon E. Moore, who introduced the concept in a 1965 paper: the number of transistors that 

can be placed inexpensively on an integrated circuit will be doubled approximately every two 

years, which was later modified to 18 months.1 

 

Such scaling of transistors dimensions indeed led to tremendous improvements in circuit 

speed and computer performance. However, at the same time, it has also led to the 

exponential growth in the static power consumption of transistors due to quantum mechanical 

tunneling through the ever-thinner SiO2 gate dielectric, which has been a key to the 

performance of MOSFETs. To solve this problem, one solution is to identify and develop 

alternative gate dielectrics and metal gate electrodes. The breakthrough came in 2007: Intel 

release its 45nm Penryn microprocessor using high-k (hafnium based) dielectric oxide and 
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metal gate technology. And in Jan. 2010, Intel demonstrated its 32nm node technology. 

However, even with such numerous novel techniques, the miniaturization will not be limitless. 

According to Intel, the end of Moore’s law would come between 2013 and 2018 with 16 

nanometer manufacturing processes and 5 nanometer gates, where each molecule can be 

individually positioned. Hence, a critical question emerges: Whither microelectronics 

industry? 

 

Figure I.1 Moore’s law and its end 

 

I.1.2) Future evolution of microelectronics industry 

According to the European Nanoelectronics Initiative Advisory Council (ENIAC)2, the 

research domain of silicon-based micro-/nano-electronics industry could be commonly 

classified into three categories (Figure I.2): 

 

1) More Moore (Advanced CMOS), to follow the continuous miniaturization of the 

transistors. Three leads are currently followed in this category. The first one consists in an 

improved exploitation of high dielectric constant oxide insulators (high-k oxides) combined 

with suitable metal gate (adequate work function), in order to reduce the leakage through the 

gate stack while maintaining a convenient capacity. The second strategy consists in increasing 

the charge carrier mobility µ in the conduction channel, which requires using alternative high 
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mobility materials such as Ge/III-V, strained silicon or SiGe alloys. The third lead consists in 

identifying novel architectures of CMOS devices, such as double or triple gates. But this 

method encounters many difficulties in fabrication techniques such as auto-alignment 

between different gates and access resistance.  

 

Figure I.2 The future of microelectronics by ENIAC 

 

2) More than Moore (complementary to CMOS, non-digital functions). Nowadays classical 

CMOS technology turns out to be intrinsically limited. Non-digital functions such as radio 

frequency, analogue circuitry, high voltage switches, mains-operated circuitry such as 

electronic lighting and battery chargers, and the motion sensors and actuators all require a 

mixture of technologies, each optimized to the specific need. ‘More than Moore’ is required to 

meet such challenges to enable implementation of new functionalities, such as mechanics, 

optics, acoustics, etc. 

3) Beyond CMOS. Topics to be investigated range from new materials (organic or inorganic) 

to new principles of operation (by replacing electron by magnetic excitation or by spin), to 

new architectures (e.g. 3 dimensional). Prominent examples for “Beyond CMOS” options are 

new materials for interconnects and transistors like carbo-nano-tubes or nano-wires, switches 

based on the electronic properties of organic molecules, resistive change polymers for 

memories, and new computing and memory architectures to fully exploit the properties of 

these new devices. 

 

The future of nanoelectronics will involve a combination of ‘More Moore’ and ‘More 

than Moore’ with new ‘Heterogeneous Integration’ technologies, particularly exploitation of 
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‘system-on-chip’ devices – involving designing complete electronic systems from mobile 

phones to engine controls on a single chip – or ‘system-in-package’, combining several 

discrete subsystems using different optimized process technologies in a single package.  

In this thesis, our research belongs to ‘Heterogeneous Integration’ including 2 domains 

discussed above: ‘More Moore’, ‘More than Moore’, which will be described in detail in next 

section of Chapter I. 

 

I.2) Monolithic integration of various materials on Si  

I.2.1) High-k oxides 

As will be discussed in the following, future advanced CMOS need high-k oxides3, 4, 

which possess higher dielectric permittivity with respect to traditional SiO2. The dielectric 

permittivity of SiO2 is 3.9. An oxide is typically labeled “high-k” when its permittivity 

exceeds 10, which is for example the case of Al2O3
5, 6. Intensively studied binary oxides such 

as Gd2O3, HfO2, La2O3
7 have a k value around 20. For the perovskite oxides such as SrTiO3 

and BaTiO3, the permittivity can exceed 3008, 9.  

 

I.2.1.1) Scaling and the replacement of SiO2 

Generally, the capacity of a MOS capacitor can be expressed as: 

2

2

0 0r SiO
ox SiO

S S
C

t t
ε ε ε ε= =                                              Equation I-1 

where rε is the relative permittivity of the gate oxide (dielectric constant), 0ε is the 

permittivity of vacuum (=8.85×10-3 fF/µm), S is the gate electrode area, and tox is the gate 

oxide physical thickness. When replacing SiO2 by an high-k oxide, the Equivalent Oxide 

Thickness (EOT) is defined by: 

κ

κ

κ

κ
κ κ

κκ
−

−

−

−
−

×
==⇔=⇔=

High

High
SiO

High

High

SiO

SiO
HighSiO

t
EOTt

tt
CC

9,3
2

2

2
2             Equation I-2 

which means that with a high dielectric constant (ε ) a thick gate dielectric layer gives an 

appropriate capacitance value equal to that of an equivalent thin silicon dioxide film. The 

EOT is always larger than thigh-k. Then, the advantage of employing high-k materials is the 

reduction of the leakage current caused by tunneling effect, as illustrated in Figure I. 3. 
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Figure I. 3 (a) Schema of the equivalent capacity structure. High-k oxide layer presents a 

thicker nature than SiO2 insulator. (b) This difference in terms of thickness allows limiting the 

leakage current through gate by tunnel effect. 

 

I.2.1.2) Criteria of high-k oxides selection 

The dielectric constant is not the only parameter to be taken into account when choosing 

an alternative gate insulator. The materials must meet a set of other criteria. Bandgap is 

another critical point to be considered. A large band offset leads to low leakage current in the 

MOS device. It has to be noted that the permittivity influences bandgap. Robertson et al.10, 11 

reported that a higher k will result in a smaller value of bandgap, as shown in Figure I 4(a). In 

addition, the sufficient large conduction and valence band offsets with respect to Si (>1eV) 

are also required. For example, SrTiO3 (k>300) is eliminated from the candidates for SiO2 

alternative due to its nearly zero conduction band offsets with respect to Si. Figure I. 4(b) 

indicates the band offsets of high-k candidates compared to that of silicon.  

 

Figure I 4 (a) Relationship between the bandgap of oxides and their dielectric constants. (b) 

Band offset calculations for a number of potential high-k gate dielectric materials. 
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For the thin gate dielectrics, the thermodynamic stability on silicon also plays a key role 

since a high temperature (1050°C) annealing process is typically employed in standard CMOS 

process for dopants activation. Hubbard and Schlom12, 13 published a comprehensive study on 

the thermal stability of binary oxide with respect to silicon at 1000K, as shown in Figure I. 5. 

Almost all the binary oxides are thermodynamically unstable at 1000K on silicon. It is the 

same case for the direct integration of the majority of ternary or higher 

multi-component-oxides. They react with Si under equilibrium conditions to form an 

undesirable interfacial layer (silicate or silicide), which will deteriorate electrical properties.  

 

Figure I. 5 Thermodynamically stability of the oxides of elements in contact with Si at 

1000K13. 

 

In most cases, interface quality plays a dominating role in determining overall electrical 

properties. Compared to relatively ideal SiO2/Si interface, (Dit, interface defects density 

~2×1010 cm-2), most high-k dielectrics candidates show Dit ~1011~1012 cm-2 and an additional 

substantial flatband voltage shift VFB of about 300mV 4. In addition, several oxides such as 

ZrO2 and HfO2 have high oxygen diffusivities14, which lead the formation of SiOx in the 

interface. Although sometimes this SiOx/silicate interfacial layer could improve the 

performances such as Dit, mobility and leakage current15, it will severely compromise the 
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capacitance gain from any high-k layers in the gate stack. The total capacity Ctotal of the 

double-oxide-layers system can be expressed by:  

int

1 1 1

total oxC C C
= +                                                              Equation I-3 

where Cox is the capacity of high-k oxides layer and Cint that of the interfacial layer. 

 

The EOT of the system can be thereby expressed by:  

2 2

int

int

High
double layer SiO SiO

High

tt
EOT κ

κ

κ κ
κ κ

−
−

−

  
= × + ×    
   

                                 Equation I-4 

where tint and kint represent respectively the thickness and permittivity of the interfacial layer 

and tHigh-k and kHigh-k represent those of high-k oxides layer. 

 

Another factor must be considered is the film morphology, i.e., amorphous, crystalline or 

polycrystalline. Polycrystalline gate dielectrics may be problematic because grain boundaries 

act as high-leakage paths. Moreover, grain size and orientation changes throughout a 

polycrystalline film can cause significant variations of the dielectric constant, leading to 

irreproducible properties16 . Currently Hf-based oxides insulator used in Intel 32nm 

technology is amorphous. However, due to a tendency to crystallize under high temperature 

process and a relative high concentration of electronic defects in amorphous films limit their 

application for the future nodes17. The crystalline gate dielectrics are thus considered as very 

promising for the future nodes due to their epitaxial nature that allows circumventing the 

recrystallization issue encountered with amorphous oxides, which leads to a tremendous 

augmentation of the leakage current. In addition, using epitaxial growth techniques allows 

subtly monitoring the oxide stoichiometry18. 

 

Last but not least, the high-k dielectrics should not be hygroscopic (i.e. they must be 

stable in contact to air or water). Oxides such SrO and La2O3 are eliminated by this 

criterion19.  

 

I.2.1.3) The choice of crystalline gadolinium oxide 

As discussed above, a set of different criteria must be satisfied by the suitable high-k gate 

dielectrics. An additional criterion has to be considered for a crystalline oxide, namely the 

lattice mismatch with respect to Si. It is defined by: 
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S

SC

a

aa

a

a −
=∆

                                                                Equation I-5 

with ac the lattice parameter of epitaxial layer and as that of Si (aSi=5.431Å). 

Crystallographic 
Structure 

Composition Lattice parameter (Å) 
Bandgap 

(eV) 
Offsets (eV) 

CB - VB 
Dielectric 
constant 

Diamond Si 5.431 1.1 / / 
BaO 5.534 (+1.8%) 4.4 1.8 - 1.5 34 

SrO 5.14 (-5.3%) 5.3 2.0 - 2.2 15 NaCl 

(Ba0.72.Sr0.28)O 5.431 (0%) 4.6 1.8 - 1.5 25 
CeO2 5.411(-0.36%) 3.3 0.2 - 2.0 17 

Fluorite 
ZrO 2 5.148 (-5.2%) 5.8 1.4 - 3.3 22 

SrTiO3 
3.905 

a 2=5.52(+1.7%) 
3.3 -0.14 - 2.4 300 

BaTiO3 
4.01 

a 2= 5.67 (+4%) 
2 -0.1 - 2.3 2200  

LaAlO 3 
3.81 

a 2  =5.39 (-0.7%) 
6.2 1.8 - 3.2 25 

SrHfO3 
4.069 

a 2=5.75 (+5.9%) 
6.5 2.3 - 3.1 19 

Perovskite 

LaScO3 

4.069 

a 2= 5.84 (+7.5%) 
5.9 1.6 - 3.1 24 

Pr2O3 
11.152 

a/2 = 5.57 (+2.7%) 
3.9 1.3 - 2.1 15 

Y2O3 
10.604 

a/2 = 5.302 (-2.4%) 
6 2.3 - 1.6 11 

Gd2O3 
10.813 

a/2 = 5.407 (+0.5%) 
5.3 1.8 - 2.4 24 

Nd2O3 
11.08 

a/2 = 5.54 (+2%) 5.8 2.2 - 2.5 12 

Bixbyite 

La2O3 
11.32 

a/2 = 5.66 (+4.2%) 
5.5 2.3 - 2.6 25 

Spinel γγγγ----Al2O3 
7.91 

2a/3 = 5.27 (-2.9%) 8.8 2.8 - 4.9 10 

Figure I. 6 Table presenting the parameters of potential high-k gate dielectrics candidates for 

future CMOS technology 20,21 

 

Figure I. 6 displays all the lattice parameters of potential high-k gate dielectrics 

candidates. If one considers that the lattice mismatch must be less than 3%, following 

candidates can be considered: BaO, (Ba, Sr)O, CeO2, SrTiO3, LaAlO3, Pr2O3, Y2O3, Gd2O3, 
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Nd2O3 and γ-Al 2O3. Considering that future 22nm and sub-22nm technologies require gate 

dielectrics with its k value at least around 20, Y2O3, Nd2O3 and  γ-Al 2O3 are eliminated. 

BaO, (Ba, Sr)O, CeO2, SrTiO3 and Pr2O3 are failed to satisfy the criteria of band offsets with 

silicon. Crystalline LaAlO3 is also eliminated because its epitaxial growth temperature on Si 

is too high (>700°C) to realize an abrupt interface22. Finally the lanthanide oxide Gd2O3 

appears to be the most promising candidate. It covers all the requirements of the next 

generation of CMOS technology: a high dielectric permittivity, a wide bandgap, large band 

offsets with respect to silicon, thermodynamically stability on Si and a slight lattice mismatch 

with silicon. Even though it is bi-domain when epitaxial grown on Si (001), good EOT results 

have been reported23 and Gd2O3/Si(111) also shows excellent crystallographic and electric 

properties24, both crystallographic and electrical ones. 

 

In fact, amorphous LaAlO3 on Si with a coherent interface is also considered as a 

promising candidate. This is the subject of Sylvain Pelloquin, PhD student at INL. In the 

present thesis, we will focus on the crystalline oxide Gd2O3. 

 

I.2.2) Functional perovskite oxides 

I.2.2.1) Introduction 

Strontium Titanate (SrTiO3), that we discussed in last section, is only one member of the 

large family of the transition metal perovskite oxides, whose structure is shown in Figure I. 7, 

with the A cations at the edges, the B cations in the body-center positions, and the oxygen 

anions sitting at the face-centered positions, forming an octahedron. 

 

Figure I. 7 Schematic diagram of the ABO3 perovskite structure with B06 octahedron. 
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Transition metal perovskites (the B site is occupied by a 3d-transition metal element in 

the ABO3 formula) have been widely and intensively studied in recent years since they exhibit 

a broad range of physical properties such as superconductivity, ferroelectricity, 

piezoelectricity, and (ferro)magnetism, as well as dielectricity as mentioned above25. Figure I. 

8 shows different properties of ABO3 perovskites with different B-cations.  

 

Diverse functional devices are based on these perovskite oxides and normally epitaxially 

grown on SrTiO3 substrates, due to their structure similarity and small variation of lattice 

constants. Future “More than Moore” and “Hetergeneous integration” technologies demand 

more functionalities integrated on the same silicon platform, which could be realized if we 

could integrate a “substrate-like” SrTiO3 film on Si. With a good quality SrTiO3 film on Si, 

the ferroelectricity, piezoelectricity, ferromagnetism can be easily combined on silicon 

platform. In addition, SrTiO3 demonstrates ferroelectricity itself when strained on Si26. 

 

Figure I. 8 The evolution of the properties of 3d-transition metal perovskites with different 

B-cations. 

 

I.2.2.2) Piezoelectricity  

Piezoelectricity is defined by the ability of some materials to generate charge under 

applied stress. It was firstly discovered in 1880 by J. Curie and P. Curie in Rochelle salt 

crystals (sodium potassium tartrate tetrahydrate)27.  
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Figure I. 9 Schematic diagram of the relationship between crystals of different classes; insets 

shows their P (polarization)-E (electrical field) curves. 

 

As shown in Figure I. 9, in the 32 classes crystals grouped by symmetry, 11 classes show 

a center of symmetry (termed centrosymmetric). Such crystals cannot develop polar 

properties. The remaining 21 classes are noncentrosymmetric, and the absence of a center of 

symmetry makes the presence of polar axis (the direction of dipole moment) possible. Among 

those classes, 20 exhibit piezoelectric effect, which is defined as a linear dependence of strain 

with an external electric field. When stress is applied to a piezoelectric material, an electric 

polarization is induced. This is called direct piezoelectric effect, which can be expressed by: 

direct
i ij jP d X=  (i=1,2,3; j=1,2,…,6)                                     Equation I-6 

where P is the stress-induced polarization (in unit of C/cm), d is the piezoelectric tensor, and 

X is the applied stress28. The units of the direct piezoelectric coefficient are µC/N. Inversely 

the converse piezoelectric effect, describes the changes in dimensions of a piezoelectric 

material in response to an applied electric field E: 

converse
j ij ix d E=                                                      Equation I-7 

where x is the strain and E is the applied electric field (V/cm). The units of converse 

piezoelectric coefficients are pm/V. The coefficients connecting the field and strain in the 

converse effect are the same as those connecting the stress and the polarization in the direct 

effect. In general, the piezoelectric coefficient measured in the same direction as the electric 

field is called longitudinal piezoelectric coefficient, whereas the one measured perpendicular 
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to the field is the transverse coefficient and the others the shear coefficients (in tetragonal 

materials). In the piezoelectric film, the piezoelectric coefficient in directions perpendicular 

(d33) is one of the major interests and themes in the studies. 

 

I.2.2.3) Ferroelectricity  

Some years later after the discovery of piezoelectricity, it was found that certain 

piezoelectric materials possess dielectric hysteretic behavior29,30. These type materials were 

classified as ferroelectric. As explained in I.2.2.2 (Figure I. 9), 20 of the 32 classes of crystals 

show piezoelectricity. From these 20 piezoelectric classes, 10 have a unique polar axis and as 

a result they can be spontaneously polarized. Since the phenomenon of polarization is 

temperature dependent, they are called pyroelectrics. When the polarization of a pyroelectric 

material can be reversed upon application of an appropriate electric field, the material is 

called ferroelectric.  

 

The unique characteristic for ferroelectric materials is the existence of a spontaneous 

internal polarization even in absence of an external electric field. Moreover, the spontaneous 

polarization can be switched by applying an external electric field. Above a critical 

temperature (called Curie temperature, TC), spontaneous polarization disappears and 

ferroelectric materials undergo a structural phase transition from a ferroelectric phase to 

paraelectric phase. Taking the prototypical ferroelectric perovskite BaTiO3 for example, it 

shows various crystalline phases under different temperature, as shown in Figure I.10: cubic 

and non-polar above its Curie temperature (120°C), <100> polarized tetragonal at room 

temperature, <110> polarized orthorhombic under 5°C, and <111> polarized rhombohedral 

below 90°C. 

 

Figure I.10 Various crystalline phases of BaTiO3 

<111> polarized 
rhombohedral 

<100> polarized 
tetragonal 

Non-polar 
cubic 

-90°C 5°C 120°C Temperature 

<110> polarized 
orthorhombic 
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Figure I.11 shows the crystal structures of BaTiO3 in their cubic and tetragonal phase31. 

As shown schematically in the figure, when BaTiO3 is cooled down through the Curie 

temperature, it undergoes a phase transition which changes its structure. During the transition 

from the paraelectric phase to the ferroelectric phase the structure becomes tetragonal from 

cubic (Figure I. 11(b) and (c)). The Ba and Ti sub-lattices shift upward/downward relatively to 

the negatively charged oxygens, generating a charge separation in the unit cell, which results 

in a dipole moment and leads to presence of polarization.  

 

Figure I.11 Crystal structures of BaTiO3: (a) cubic paraelectric phase; (b) ferroelectric phase 

with polarization vector pointing upwards and (c) downwards. 

 

In addition, this shift breaks the cubic symmetry into a tetragonal phase and results six 

symmetry-related and crystallographically- equivalent variants, as illustrated in Figure I. 12(a). 

During the transition from the paraelectric phase to ferroelectric phase the polarization can 

arise along any of these six directions. Regions of crystal in which the polarization is oriented 

uniformly are called ferroelectric (polar) domains. The interface between two domains is 

called domain wall. The width of the domain walls of ferroelectric materials was found to be 

very small, only a few nm or less32, which is particularly of interest for memory applications. 

In a tetragonal ferroelectric phase, they are named as c or 180° domain walls in case the 

domains with opposite polarization directions and a or 90° domain walls if the domains’ 

polarization direction is perpendicular, as shown in Figure I. 12 (b).29,33 In a rhombohedral 

phase, the angles between domain walls are 71°, 109°, 180°. 180° domains can be reversed 

with a minimal structural strain but switching of 71°, 90° and 109° domains requires 

significant structural deformation. 
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Figure I. 12 (a) six possible polarization directions of BaTiO3 at room temperature; (b) 

schematic of domain walls: the segments AA0 are 90° domain walls and the segment BB0 is 

180° domain wall. 

 

An important characteristic of ferroelectric materials is the demonstration of the 

ferroelectric hysteresis loop when an external electric field applied on them, as depicted in 

Figure I. 13. The net polarization of an initially unpolarized ferroelectric material is small. 

Thus at first the response of polarization to an external field applied is linear, as described by 

following equation for all the dielectrics: 

i ij jP Eχ=                                                          Equation I-8 

where P is polarization vector, E is applied electric field and χ is the dielectric susceptibility. 

As the field increases, the polarization of the domains with polarization direction opposite to 

the field starts to switch to the direction of the field leading to a non-linear measurement of 

charge intensity. The switching continues until all the domains are align with the electric field 

direction (saturation) and the result of the P measurement returns to be linear. By decreasing 

the field, P decreases linearly according to the equation mentioned above and when the field 

returns to zero, the polarization remains a positive value which is called the remnant 

polarization PR. When a negative electric field of sufficient strength is reached (coercive field 

EC), the nucleation of reversed polarization domains starts. This process can be repeated. 
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Figure I. 13 Typical ferroelectric hysteresis loop; PR is the remnant polarization and EC is the 

coercive field33. 

 

As a ferroelectric material is also piezoelectric, it is possible to determine its piezoelectric 

coefficients. According to converse piezoelectric effect, the strain is linearly proportional to 

the applied electric field when the piezoelectric coefficient is constant. However, polarization 

switching in a piezoelectric subjected to an electric field leads electromechanical hysteresis, 

as shown in Figure I.14(a). Figure I.14(b) demonstrates an ideal case of the piezoelectric 

response and polarization switch under a bipolar electric field: when the polarization direction 

changes, the sign of the strain changes and when it is stable the strain is linear with the field. 

The piezoelectric coefficients can be calculated from the slope of linear regions in the loop. In 

real crystals the strain versus applied field shows a characteristic butterfly shape33 (Figure 

I.14(c)), given by the fact that different polarization orientations are present in the crystal, 

making the curve smoother in accordance with the change in polarization. 

 

Fig. I 14 Schematic description of the converse piezoelectric effect. (a) Polarization hysteresis 

loop; (b) theoretical electromechanical hysteresis, piezoelectric coefficient is determined by 

the slope of the straight lines; (c) actual butterfly loop31. x denotes the uniaxial strain. 
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I.2.2.3) Ferromagnetism 

The strongly correlated nature of electrons in transition metal perovskite and the unpaired 

electrons in the open 3d shells lead to local magnetic moments and complex magnetic 

properties. For instance, if the B site of perovskite ABO3 is occupied by Mn or Co (as in as 

(La, Sr)MnO3), the oxide displays ferromagnetism. Ferromagnetic material is one class of 

magnetic materials. Similarly to the definition of ferroelectricity, ferromagnetic materials 

historically refer to materials exhibiting spontaneous magnetization. However, recently 

different classes of spontaneous magnetization are identified leading to a more precise 

distinguish between ferromagnetic, ferrimagnetic and antiferromagnetic. In particular, in a 

ferromagnetic material all of its magnetic ions add a positive contribution to the net 

magnetization. In the case of antiferromagnetic material, magnetic moments of the aligned 

and anti-aligned ions balance completely so as to have zero net magnetization, despite the 

magnetic ordering. And in a ferrimagnetic material the anti-aligned ions also exist but the 

moments are unequal, i.e. the spontaneous magnetization remains. Figure I. 15 shows the 

ordering of the magnetic dipole in magnetic materials. 

 
Figure I. 15 Ordering of the magnetic dipole in magnetic materials: (a) ferromagnetic; (b) 
antiferromagnetic; (c) ferrimagnetic. 
 

In the ferromagnetic and in all magnetic materials, the macrosopic magnetization M is the 

sum of the magnetic dipole moments of ions per unit volume. The magnetic field can be also 

represented by magnetic induction B (in unit of Wb/m2). Following equation shows the 

relationship between B, H and M (magnetization intensity): 

0 0(1 )B M H H Hµ µ µ χ= + = = +                                      Equation I-9 

where µ  permeability, 0µ permeability in vacuum, H is the applied magnetic field and 

χ =I/H, which is magnetic susceptibility. Similar to ferroelectric materials, ferromagnetic 

materials possess domains, domain walls and Curie temperature. Furthermore, the response of 

B to H exhibits a hysteresis loop. We do not discuss in detail here.  
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In recent years the discovery of Colossal Magnetoresistance (CMR)34,35 attracts intense 

research efforts on ferromagnetic material. An external magnetic field could cause the 

gigantic decrease of the resistivity around the TC of the perovskite manganites CMR 

materials35. 

 

I.2.3) Germanium and III-V semiconductors 

I.2.3.1) Introduction 

As a member of the semiconductor family, although being the mainstream material in the 

industry, silicon does not possess the most excellent properties with respect to germanium and 

III-V materials in terms of mobility and gap type (silicon and Ge are indirect gap 

semiconductors while III-Vs are direct gap), etc., as shown in Figure I. 16. The integration of 

Ge and III-V on silicon with a monolithic platform has been a long term dream for the 

semiconductor industry. The initial motivation of this concept is a simple notion that the best 

physical properties of Ge or III-V semiconductors and devices (modulators, heteroepitaxial 

injection lasers, photodetectors, waveguide, solar cell could be married with the 

characteristics of the silicon manufacturing processes36. Recently, the interest in such 

heterogeneous technology is renewed by the requirements of the new high mobility tunnel to 

in the future CMOS with enhance performance. However, direct epitaxy of high quality Ge 

and III-V semiconductors on silicon has been hindered by materials incompatibilities (i.e. 

lattice mismatch, thermal mismatch and heterovalent interface) and practical processing 

constraints. Based on several results reported in the early 2000’s37,38,39, crystalline oxide/Si 

could serve as a template to bridge the gap between Ge or III-V semiconductors and silicon. 

Due to the strong crystallographic and chemical heterogeneity between III-V or IV-IV 

semiconductors and oxides, the elevated lattice mismatch between these materials is fully 

accommodated by a network of dislocations, confined at the heterointerface, and formed at 

the very early stages of the growth. As a consequence, the semiconductor grows with its bulk 

lattice parameter on the oxide surface and does not contain any threading defect related to any 

plastic relaxation mechanism, as explained in detail in one of our studies at INL40. 
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 Ge Si GaAs InSb InP 

Forbidden band width Eg (eV) 0.66 1.12 1.42 0.17 1.35 

Electronic affinity χ (eV) 4.05 4.0 4.07 4.59 4.38 

Hole mobility µt (cm²/Vs) 1900 450 400 1250 150 

Electron mobility µe (cm²/Vs) 3900 1500 8500 80000 4600 

Lattice constant (nm) 0.565 0.543 0.565 0.648 0.587 

Dielectric constant 16.0 11.9 13.1 17.7 12.4 

Fusion point Tf (°C) 937 1412 1240 527 1060 

Figure I. 16 Characteristics of future alternative tunnel semiconductors and the comparisons 

with Si (according to ref.41) 

 

I.2.3.2) High mobility channels for CMOS 

The significant success of silicon-based microelectronic industry owes to the unique 

properties of the SiO2-Si (SiO2 as native oxide of silicon) system, particularly in terms of 

interface state density Dit and thermodynamic stability. These performances are worse for 

other semiconductors (Ge, GaAs, GaN). However, the introduction of high-k oxides to replace 

silica as the insulate layer makes it possible to reconsider the use of high mobility Ge and 

III-V channel materials as long as suitable surface passivation technique is identified to obtain 

good interface quality between oxide and semiconductor.  

 

Among the main semiconductors shown in Figure I.16, Ge exhibits the highest hole 

mobility and it has actually been demonstrated that compressively-strained Ge p-MOSFETs 

provide 10 times or higher hole mobility against Si p-MOSFETs42. It is confirmed that the 

electron mobility of III-V materials is quite high. In addition, the lattice parameter of Ge 

equals that of GaAs. It is thus possible to consider a stack for future MOS, where a GOI 

substrate or Ge directly grown on Si substrate is used, and where GaAs is locally epitaxially 

grown on Ge, as illustrated in Figure I. 1743. Such a strategy has been studied in the 

framework of the European project Duallogic. 
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Figure I. 17 Perspective of co-integration of Ge pMOS and III-V nMOS on the same Si 
substrate  
 

In order to develop a high speed and low power CMOS technology, there still remains a 

number of challenges to overcome44: 

(1) Engineering high electronic quality Ge films on Si in order to ensure volume production at 

low cost. Ge layers directly grown on Si present an elevated density of threading 

dislocations due to an elevated lattice mismatch. Several epitaxial strategies have been 

developed to reduce this dislocation density and produce so-called Ge/Si virtual 

substrates45. However, Germanium-on-insulator (GOI) structures consisting in thin Ge 

layers on an insulator/Si template appear as highly desirable to obtain better electrostatic 

control of the gate, reduced junction capacitance and lower substrate coupling in radio 

frequency46. Many methods have been proposed to develop GOI layers47, such as Ge 

condensation technique, liquid phase epitaxy and Smart cutTM technology etc. 

(2) Engineering high quality III-V films on Si substrate. While III-V materials could be 

directly epitaxied on Si with methods such as selective epitaxy48 or metamorphic 

growth49, a better solution is using GeSi50,51 or GOI substrates52,53. 

(3) Developping adequate Ge and III-V surface passivation methodology and identify 

appropriate high-k gate dielectrics to combine oxide scaling below 1 nm with good 

electrical quality of the interfaces. Direct deposition of high-k oxides on Ge has showed 

limited electrical quality (high interface state density Dit and prominent leakage current) 

even when the interface is abrupt, as exhibited by the attempts of depositing different 

dielectrics on Ge such as HfO2
54, ZrO2

55, Al2O3
56, LaAlO3

57. Thus the passivation of the 

Ge surface in order to obtain a good electrical characteristics interface between high-k 

oxides and Ge is a critical issue for the Ge MOS technology. Several strategies of Ge 

surface passivation are identified such as nitridation58,59 (GeON), Si-passivation60, sulfur 

passivation61, fluorine treatment62 and ozone oxidation63, etc. Among them, nitridation is 

widely used and develops the electrical qualities of Ge MOS with a minimum 
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Dit=1.8×10-11 cm-2eV-1)56, as shown in Figure I.18. 

 

Figure I. 18 (a) XTEM images of the Au/HfO2 /Ge nitride/Ge MIS structure with HfO2 

film;.(b)C-V characteristics of the MIS structure;(c) Measured frequency dependence of 

Gp/ω  for various gate voltages of the MIS structure, where Gp is equivalent parallel 

conductance andω  is the angular frequency;(d) Dit distribution as a function of the energy 

from the midgap of Ge without and with Forming Gas Annealing(FGA). 

 

I.2.4) Summary 

In this thesis, crystalline gadolinium oxide is studied as one of the most promising high-k 

gate insulator candidates for the future advanced CMOS technology thanks to its excellent 

properties. Furthermore, even though SrTiO3 turns out not a viable high-k gate dielectric due 

to its too small electron injection barrier in the structures prepared so far64, SrTiO3/Si(001) 

system is investigated now as an alternative oxide for high-capacitance trench structures for 

memory applications. Moreover, it also opens a path to integrate numerous functional oxides 

on Si due to their isotype structure- perovskite with SrTiO3. Thereby, the SrTiO3/Si(001) is 

also studied in this thesis. Based on the STO/Si(001) and Gd2O3/Si(111) templates, we can 

integrate various functionalities such as piezo- (ferro-)electricity (BaTiO3 , Pb(Zr,Ti)O3, 

Pb(Mg, Nb)O3-PbTiO3), ferromagnetism ((La,Sr)MnO3), and optoelectronic (germanium) on 

the same silicon substrate. 

 

I.3) State of arts of the systems studied in this thesis 

I.3.1) Gadolinium oxide on silicon (Gd2O3/Si) 
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Gadolinium oxide (Gd2O3), which belongs to the family of rare-earth (RE) metal oxides 

(lanthanide oxides) possesses a cubic bixbyite Mn2O3 (II) structure in which the unit cell 

includes eight unit cells of an incomplete and distorted fluorite structure. Its lattice constant is 

10.814Å, which is almost equal to 2 times of that of silicon (5.431 Å)23. Bulk Gd2O3 presents 

a dielectric constant of 2465, a bandgap of 5.3eV23, conduction and valence band offsets with 

respect to Si of 1.8eV and 2.4eV respectively66.  

 

Thanks to their relatively high dielectric constants (as shown in Figure I.6) and stability 

on Si even at high temperatures12, binary bixbyite lanthanide oxides such as La2O3
67,68, 

Y2O3
69,70, Pr2O3

71,72, CeO2
73,74, become interesting candidates for alternative dielectric and 

have been intensively studied. However, compared to Gd2O3, some of their intrinsic problems 

such as band offsets with Si (Figure I. 6) or strong hygroscopic nature (moisture 

absorption)75,76 restrict their application. The study of Gd2O3 on Si was started by J. Kwo et 

al. at Bell Laboratory in early 2000’s77 ,78 and the group of Osten (Hannover Univ.) 

intensively studies the system Gd2O3/Si since 2006. Similarly to Pr2O3
79, Gd2O3 was found to 

grow with two orthogonal in-plane orientations on Si(001)22, 24,80, as shown in Figure I.19.  

 

(a)                     (b)                    (c) 

Figure I. 19 (a) RHEED pattern of Gd2O3 on Si(001) along Si[110] azimuth; (b) TEM plane 
view of Gd2O3 on Si(001) with the dotted lines showing domain boundaries; (c) A schema 
illustrating two Gd2O3 orientations on Si(001). 
 

The epitaxial relationship between Gd2O3 and Si(001) for these two domains was found 

to be [-110] Gd2O3(110)//[110] Si(001) and [100] Gd2O3(110)//[110] Si(001). Even though 

first transistor based on this system have been presented in 200681 and some good electrical 

properties results have been obtained82, it is found that such bi-domain structure significantly 

increases the leakage current compared to single domain epi-Gd2O3 layers83. Better results are 

obtained for Gd2O3 on Si (111) with a mono-domain pseudomorphic growth76,84. Osten group 

has studied the impact of oxygen supply85, interface86, top electrode87 and post deposition 

Gd2O3[100]  

Gd2O3[110]  
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annealing88 on the structural and electrical properties of the Gd2O3/Si system. Due to the 

highly perfect crystallinity of Gd2O3 on Si(111) and its potential application to the realization 

of Si nanostructures embedded in oxide89, Gd2O3/Si(111) attracts a wide range of basic 

studies.  

 

I.3.2) Strontium titanate and perovskite functional oxides on Silicon 

One of the main difficulties for the monolithic growth of crystalline oxides on silicon is 

related to the contradiction between providing sufficient oxidants to form the desired phase of 

the oxide while avoiding the formation of amorphous silica or silicate at interface. R. A. 

McKee et al. suggested for the first time the possibility of growing a perovskite BaTiO3 on Si 

by investigating the heterostructure BaTiO3/BaO/BaSi2/Si(001)90, the BaSi2 reconstruction 

acting as a “passivation layer” to avoid the formation of SiO2 at the oxide/Si interface. This 

group has also achieved the first epitaxy a crystalline and commensurate STO film on Si, by 

employing a silicide (SrSi2) layer to prevent the formation of amorphous interfacial SiO2 

layer91,92. Since then, several group such as PennState Univ., Motolora, IBM Zurich, and INL 

have investigated the SrTiO3/Si(001) system. In order to prevent the oxidation of the silicon 

surface, particularly at the initial nucleation stage, an interface layer of alkaline earth oxide 

(Ba0.72Sr0.28O or SrO) is indispensable before the deposition of perovskites. The group of 

PennState have systematically studied the transition from alkaline oxide (Ba,Sr)O or SrO to 

perovskite structure93 and it is pointed out that SrO is the best choice as a buffer layer to 

obtain the best lattice matched perovskite layer due a topotactic reaction during the 

transformation. Whereas Ba0.72Sr0.28O represents the best solid solution mixture to create best 

lattice matched alkaline oxide on silicon. In essence the realization of the SrO template 

comprises two step: 1) coverage of the Si surface by Sr and 2) oxidation of the Sr to form a 

SrO template. Motorola extensively studied the Sr/Ba coverage on silicon94 , 95 , 96 and 

developed a Sr mediated deoxidation method to clean and passivate Si surface, which 

becomes the standard procedure to overcome the thermodynamic instability between STO and 

Si. Theoretical works pointed out that a Sr-rich layer would help the epitaxial growth of STO 

and improve the electronic properties of the interface97,98,99,100,101 

 

Using such SrO templates, 2D monocrystalline STO layers can be grown on Si, on 

condition that a number of growth conditions are used: 1) the STO growth temperature must 

be sufficiently high to ensure a crystalline growth, while avoiding the oxidation of silicon by 
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the oxidant; 2) the oxygen partial pressure must be sufficiently high to ensure a complete 

oxidization of the metals while avoiding oxidization of silicon. Many reports of the epitaxy of 

STO on Si fall into a regime of high temperature and excess oxygen leading to an amorphous 

SiO2 layer102,103. Different strategies are identified to meet the paradoxical requirements at the 

same time. X. Hu et al.104 studied the influence of growth temperature to the interface under a 

low oxygen partial pressure (10-8~10-7Torr range). H. Li et al.94,105,106 developed a stepped 

growth method in which an amorphous 1~3 monolayer(ML) STO layer was initially 

deposited at low temperature and under low oxygen partial pressure then recrystallized at high 

temperature without oxygen. By repeating this process until 5~10ML STO, the growth 

continued at high temperature and high oxygen partial pressure.  

Codeposition and layer-by-layer deposition methods were also compared 92,107,108. Since 

Sr and Ti have different oxidation behaviors (Figure I. 20) and it is found that presence of Sr 

promotes titanium oxidation101, the codeposition method is better for the full oxidation of 

STO under the same growth condition. IBM Zurich reported the epitaxy of STO on Si with an 

abrupt interface using (Ba,Sr)O template, in which the influence of the oxygen partial 

pressure at the early stage of the growth was investigated109,110. Due to the critical role of the 

STO/Si heterointerface to achieve a perfect epitaxial STO layer on silicon, it is intensively 

studied both experimentally105,111,112,113,114,115 and theoretically116,117,118. Once a coherent 

STO/Si interface is obtained, the strain relaxation of the grown STO film becomes another 

research focus119,120.  

 

Figure I. 20 Composite graph showing the oxidation behavior of different metal species. 

 

Since lots of high quality perovskite oxides films can be obtained on STO bulk substrate, 
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the STO/Si(001) heterostructure appears ideally suitable for the integration of functional 

perovskite oxides on Si. Barium Titanate (BaTiO3, BTO) is widely studied as a typical 

piezo-(ferro-)electric material and the BTO/Si(001) system was realized by different 

deposition methods such as Molecular Beam Epitaxy94,121,122,123, Pulse Laser Deposition124 

and Radio Frequency Sputtering125,126. Because there has been a significant efforts on the 

epitaxial growth of BTO on STO substrate127,128,129,130, the experience could be easily 

transplanted to the BTO/STO/Si system. Lead zirconate titanate (Pb(Zr,Ti)O3, PZT), which is 

a solid solution of PbZrO3 and PbTiO3, is the most commonly used piezoelectric material for 

various sensors and actuators131. T. Maruyama et al. has attempted to grow PZT layer on 

silicon with the heterostructure SrRuO3/BaTiO3 /ZrO2/Si by a reactive evaporation method132. 

Some groups reported epitaxial growth of PZT on STO/Si template using off-axis 

radio-frequency magnetron sputtering method133,134. Lead magnesium niobate with lead 

titanate (Pb(Mg1/3Nb2/3)O3-PbTiO3, PMN-PT) belongs to relaxor ferroelectrics which have 

been considered as the next generation piezoelectric material recent years. Between PMN-PT 

70/30 and PMN-PT 65/35 compositions, there exists a morphotropic phase boundary (MPB) 

of the system, and compositions near the MPB exhibit excellent dielectric and piezoelectric 

properties, which make them suitable for micro-sensor and micro-actuator applications135. 

They exhibit very high-dielectric permittivity136 and a large piezoelectric response137 when 

correctly biased. Some attempts have been performed to deposit PMN-PT on SrTiO3 or 

SrRuO3 substrate134, 138. Lanthanum Strontium Manganate ((La,Sr)MnO3, LSMO) has broad 

potential magnetic application on magnetic memories, magnetic-field sensors, hard disk read 

heads, infrared devices, and micro-wave active components due to its CMR effect. 

Furthermore, owing to its high electrical conductivity and lattice matching with other isotype 

perovskite materials such as PZT and BTO, it can be used as bottom electrode in ferroelectric 

heterostructures. Direct deposition of LSMO on silicon is difficult. Thus various buffer layers 

such as YBa2Cu3O7/YSZ 139 (Yttria-Stabilised-Zirconia), BTO/CeO2/YSZ 140 , 141 , 142, 

STO/CeO2/YSZ143, BTO/YSZ144 have been introduced to realized the integration of LSMO 

and Si. However, considering the accommodation of both lattice and thermal expansion 

coefficient mismatches of those complex stacks, the STO/Si template is a better choice and 

only very a few works have been reported on LSMO/STO/Si heterostructure145,146.  

 

I.3.3) Germanium on oxides/Si templates 

The success of epitaxy of high quality crystalline oxides on silicon opens a new way to 
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integrate semiconductors on Si. For instance, Osten group succeeded in growing Si/Gd2O3/Si 

nanostructures87,147,148. Several oxides/Si systems such as SrHfO3/Si (001)149, PrO2/Si (111)150, 

SrTiO3/Si (001)151,152,153, (LaxY1-x)2O3/Si(111)154 and Gd2O3/Si (111)155 have been reported 

to be used as a template to integrate Ge or III-V semiconductors, as shown in Figure I.21. It is 

found that Ge (or III-V) grows on oxides initially with a Volmer-Weber 3D growth mode and 

then coalescence occurs to form a 2D complete film. The elevated lattice mismatch between 

Ge (or III-V) and oxides is fully accommodated by a network of dislocations, confined at the 

heterointerface, and formed at the very early stages of the growth. As a consequence, the 

semiconductor grows with its bulk lattice parameter on the oxide surface and does not contain 

any threading defect related to any plastic relaxation mechanism156. Schroeder et al. have 

extensively studied the Ge/Pr2O3/Si (111) system149. Simple geometric considerations indicate 

that two Ge domains should be formed on the Pr2O3 (111) surface. They have shown that 

electrostatic effects at the heterointerface select one of these two domains, leading to a single 

domain Ge growth157. In the end, this group has recently evidenced that microtwins were 

formed in Ge epilayers grown on Pr2O3/Si (111) templates, due to the fact that these layers 

result from the coalescence of initially three-dimensional Ge islands158. 

 

Figure I.21 Integration of Ge on Si using different oxides buffer layers (a)LaYO; (b)Pr2O3; 
(c)SrHfO3. 
 

I.3.3) State of art and strategy at INL 

For several years, INL has explored the integration of oxides on silicon and has acquired 

high international level expertise in this domain. The key technology of epitaxy of different 

oxides on silicon has been mastered: SrO, Al2O3, Gd2O3, LaAlO3, LaAlO3/Al 2O3/Si, 
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LaAlO3/SrTiO3/Si, Gd2O3/Al2O3/Si.24,159,160,161 The system (Sr,Ba)TiO3/Si is studied but need 

further developing to obtain a perfect crystalline “substrate-like” STO on Si with a 

commensurate registry.  

 

In a short-term view, the objectives of epitaxial growth oxides on silicon could be 

summarized as follows:  

(1) To identify a suitable alternative high-k dielectric for future 22nm and sub-22nm CMOS 

technology; 

(2) Integration of diverse functional oxides on Si by using crystalline oxides/Si templates to 

meet the demand of future “Heterogeneous integration” technology; 

(3) Integration Ge and III-V semiconductors (including 2D layer and new structures such as 

nanowire) on Si with crystalline oxides buffer layers. 

In a long-term view, based on the realized heterostructures, we can not only foresee the 

possibility of fabricating various functional devices or high mobility CMOS, but also of a 

monolithic integration on silicon, as shown in Figure I.22 

 

Figure I. 22 Strategy and perspectives of monolithic integration in INL 
 

I.4) Motivations and goals of this thesis 

As stated in I.1), this thesis is in the context of “More Moore”, “More than Moore” and 

“Heterogeneous Integration”. The objectives can be classified as follows: 

(1) The investigation of Gd2O3/Si system as a dielectric alternative for future sub-22nm 

CMOS. The study will focus on the impact of different growth or post deposition 
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conditions such as oxidant type, growth temperature and annealing to its electrical 

properties. 

(2) Development of fundamental issues related to the epitaxy of STO on Si using Molecular 

Beam Epitaxy. The interface structure, crystallographic quality and surface morphology 

will all be considered to find a optimize growth strategy which leads to a “substrate-like” 

STO film on Si. 

(3) Exploration of integration of diverse functionalities on silicon. Attention will be paid on 

the integration of dielectric, piezoelectric, ferroelectric, ferromagnetic materials and 

germanium on Si using STO or Gd2O3 as buffer layers. A number of epitaxy related 

issues will be investigated and their properties characteristics will also be demonstrated. 
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II.1) Introduction 

 In this chapter, we will present the physical principles of epitaxy and different methods 

employed for the oxides growth. We will also introduce different in-situ and ex-situ 

characterization methods, especially the electrical characterization method. 

 

II.2) Physical principles of epitaxial growth 

II.2.1) Atomic process of growth on surfaces  

Epitaxial growth refers to the method of depositing thin layers of the required material on 

a suitably oriented crystalline substrate. Molecular beam epitaxy (MBE) is an 

ultra-high-vacuum (UHV) technique for growth from the vapor phase of the elements which 

are deposited on a substrate whose temperature is lower than that of the vapor-solid 

equilibrium phase of the elements involved. In these conditions, a condensation process 

therefore takes place on the surface. From a kinetic point of view, the physicochemical 

interactions between adatoms of vapor phase and substrate plays a dominating role in the 

growth mechanism, as illustrated in Figure II.11. 

 
Figure II. 1 Physicochemical interactions between adatoms of vapor phase and substrate 

 

Chemisorption (chemical absorption), in which the electronic structure of bonding atoms 

or molecules is changed and covalent or ionic bonds form, fixes the adatoms on the surface. 

The attractive forces are the type occurring in the appropriate chemical bond. In this case, the 

thermal energy is too small that the mobility of the adatoms is not sufficient to construct a 

crystal quality. The necessary energy to transfer chemisorption to physisorption is Ed.  

Physisorption (physical absorption) is a process in which the electronic structure of the 

atom or molecule is barely perturbed upon adsorption. The fundamental interacting force of 
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physisorption is caused by Van der Waals force (~10-100 meV), which is so weak that the 

adatoms can diffuse easily on the surface permitting the organization of crystal. However, 

when the thermal energy is too high and larger than Ea, the adatoms desorbs from the surface 

and re-evaporates. Once the thermal energy falls in the range of Ed<E<Ea, the adatoms can 

move rapidly on the surface without evaporation. They migrate on the surface by jumping 

from one site to another and then combine together to form metastable nucleis, which are 

unstable, i.e. they diffuse on the surface. Until the nucleis reach a critical size, which 

corresponds to the required atom number to obtain a stable collection, they will enlarge and 

the incorporation starts between them and finally a complete layer forms. This whole atom 

process of nucleation and growth is depicted in Figure II. 2.  

 
Figure II. 2 Atom process of the nucleation during the epitaxial growth 

 

From this conceptual picture one can identify several basic parameter related to the 

kinetic growth. The first is the adsorption residence time τ , which is determined by the 

adsorption energy, Ea, and is conventionally written as:  

1 exp( / )a aE kTτ ν− = −                                               Equation II-1 

where aν  the atomic vibration frequency, of order 1-10 THz; k the Boltzman constant and T 

the surface temperature. The adsorption residence time corresponds to a short time that 

adatoms stay on the surface, before their re-evaporation. When the kT is sufficient high, the 

adatoms jump from one place to another over the surface and they migrate with the diffusion 

coefficient D, which defines the average surface covered by atoms per time unit. D is given 

by: 
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2( / 4)exp( / )d dD a E kTν= −                                           Equation II-2 

where Ed is the diffusion energy, frequency vd is slightly less than va and a is the jumping 

distance, equal to the surface lattice parameter 0.2~0.5nm. 

D τi  is the area covered by an adatom during its diffusion on the surface. The diffusion 

lengthλ , which is the distance traveled by an adatom during its adsorption residence time τ , 

can be represented by the Einstein relation: 

2 Dλ τ=                                                        Equation II -3 
 

II.2.2) Surface, interface energy and growth modes 

It is widely accepted that three possible modes of crystal growth on surfaces may be 

distinguished, as shown in Figure II. 3. 

 
(a)                          (b)                        (c) 

Figure II. 3 Different modes of crystal growth on surfaces: (a) Frank-Van der Merve (2D 

layer-by-layer); Stranski-Krastanov (layer plus island); (c) Volmer-Weber (3D islands) 

- Layer-by-layer or Frank-Van der Merve mode. The atoms are more strongly bound to the 

substrate than to each other, the first atoms to condense form a complete monolayer on the 

surface, which becomes covered with a somewhat less tightly bound second layer. 

- Layer plus island, or Stranski-Krastanov mode. After forming the first few monolayers, 

subsequent layer growth is unfavorable and islands are formed on top of this 

“intermediate” layer (called wetting layer). 

- Island, or Volmer-Weber mode. The atoms of the deposit are more strongly bound to each 

other than to the substrate. Small clusters are nucleated directly on the substrate surface 

and then grow into islands of the condensed phased.  

 

Surface thermodynamics has been used to describe these modes1,2. The condensation 

process of the adatoms on substrate surface leads to the formation of 3D islands (a contact 

angle θ with the substrate) or 2D islands (cylindrical platelets, the height of which is a 

monolayer) on the substrate surface, as shown in Figure II. 4.  
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Figure II. 4 Geometry of (a) 3D islands and (b) 2D cylindrical platelet on substrate surface 

 

These islands present a material/substrate interface and a free surface of the epitaxial 

material. The condensation is thus drived by a competition of the energetic gain of the 

formation of the solid materials (volume aspect ) and the cost related to the formation of the 

interface and the free surface of deposited materials (surface aspect). Furthermore, in case of a 

strained material that elastically deforms, a volume cost corresponding to the stored elastic 

energy in the islands has to be considered. The condensation free enthalpy can be therefore 

written as follows: 

( ) ( )v AB B AB i iG V E S Sµ γ γ γ∆ = − ∆ + − +i i i                               Equation II -4 

where V the island volume; µ∆  the chemical potential difference by unit of volume of the 

island; Ev is the elastic energy stored in the deposited material per unit of volume; SAB and Si 

the island/substrate interface and the free surface of the island respectively; ABγ  the interface 

energy and Bγ , iγ  are the surface energies of substrate and island respectively. This equation 

can be rewritten as: 

( 1) ( )AB ic BV L S S
G α α
µ

= − + +
∆
∆

i i                                         Equation II -5 

where L= iγ
µ∆

 is the homogenous in length, v
c

E
α

µ
=

∆
 and AB B

B
i

α γ γ
γ
−=  are non- 

dimensional. This equation illustrates the competition: 

- between the volume cost to form the islands and the chemical potential difference (cα ). If 

cα >1, the free enthalpy is always positive and no condensation occurs, i.e. there is no 

epitaxial growth; If cα <1, the condensation could take place and there exists a critic volume 

Vc less than which the islands are instable, i.e. no stable island exist whose volume is less than 

Vc. 

- between the gain (or cost) to replace the substrate surface by materials/substrate interface 

and the cost to form the island surface (Bα ). According to the theory of Dupré3, the 
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relationship between Bα  and the contact angle θ is cos Bθ α= − . Wetting increases when 

Bα  decreases.  

If Bα <-1, i.e. i ABγ γ+ < Bγ , the growth is two-dimensional. This inequality is the 

so-called Bauer criterion: when the sum of the material surface energy and interface energy is 

less than substrate surface energy, the growth mode is 2D layer-by-layer (Frank-Van der 

Merve, Figure II. 3(a)) or layer plus island (Stranski- Krastanov, Figure II. 3(b)); 

If -1< Bα <1, which refers that i ABγ γ+ > Bγ  or 0°<θ<180°, the growth follows the 3D 

island mode (Volmer-Weber, Figure II. 3(c)). 

If Bα >1, the energy cost to replace the substrate surface by material/substrate interface is 

greater than the material surface energy and the germination will not occur (no epitaxy). 

 

II.2.3) Heteroepitaxy: elastic deformation and relaxation modes 

In this section we will discuss the influence of the lattice mismatch between the epitaxial 

material and the substrate on the heteroepitaxy process. Since the epitaxial material generally 

possesses a different lattice constant with respect to the substrate in heteroepitaxy, the lattice 

mismatch (misfit) is defined as: 

m s

s

a aa

a a
ε −∆= =                                                  Equation II -6 

with am and as are lattice constants of the epitaxial material and the substrate, respectively. In 

particular, in cases that the lattice mismatch is normally very large (this is the case for some 

oxides/Si shatems), indirect epitaixial relationships can be obtained, as shown in Figure II. 5. 

These indirect epitaxial relationships must be considered in Equation-6. To accommodate the 

Si lattice, x lattice of the oxide is deposited on Si. Therefore the effective lattice mismatch can 

be identified: 

m s
eff

s

x a a

a
ε −= i

                                                   Equation II -7 

 

Figure II. 5 Schema of different relationship between epitaxial material and substrate 
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In the following, standard cube-on-cube growth is considered. At the initial stage of the 

growth, the substrate imposes its lattice constant to the in-plane lattice constant of epitaxial 

material at the interface due to its much greater thickness, i.e. a//=as. Thus the material lattice 

deforms elastically (as shown in Figure II. 6):  

 

Figure II. 6 Elastic deformation of the epitaxial material lattice on the substrate 

 

If as<am, the lattice is compressively strained with a//=as and the perpendicular lattice 

constant a⊥ increases; If as>am, the lattice undergoes tensile strain, a⊥ decreases. The 

quadratic deformation of the epitaxial material can be deduced by elastic theory. For the 

cube-on-cube system, the Poisson’s ratio ν  describing the tetragonal distortion is given by: 

//

2

1

νε ε
ν⊥ = −

−
 ⇔  //2

1
m m

m m

a a a a

a a

ν
ν

⊥ − −= −
−

                            Equation II -8 

 

Poisson’s ratio ν  is commonly close to 0.33 for many materials which demonstrate that 

the volume of the material lattice tends to remain constant during the deformation. Moreover, 

ν is related to the elastic modulus tensor (Cij) of the material: 

12

11 12

C

C C
ν =

+
                                                      Equation II-9 

Hereby we have: 

//12

11

2m m

m m

a a a aC

a C a
⊥ − −= −   // sa a=→   11

11 122
m s s

s s

a a a aC

a C C a
⊥− −=

+
       Equation II -10 

 

The deformation of the epitaxial material leads to an accumulation of elastic energy Ev in 

the film. The stored energy Ev increases increasing the film thickness according to 

Equation-11: 

2
//

1
2

1vE G h
νε
ν

+=
−

                                                 Equation II -11 

where G the shear modulus with G=(C11-C12)/2; //ε lattice mismatch; h the thickness of 
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epi-layer. 

 

Therefore a critical thickness (or volume for a 3D growth mode) hc exists, above which 

the heterostructure becomes instable due to the accumulated elastic energy Ev. They tend to 

relax to their own bulk lattice constant through a strain relaxation process, plastically or 

elastically (Figure II. 7). 

 

(a) pseudomorphic growth        (b) plastic relaxat        (c) elastic relaxation 

Figure II. 7 Illustration of the relaxation mechanism of the epitaxial film on the substrate 

 

-  Plastic relaxation (Figure II. 7 (b)). When the film thickness is less than hc the growth 

remains pseudomorphic. Once it exceeds the critical thickness hc, the plastic stress 

relaxation leads to the generation of the misfit dislocations in the film. The dislocation 

can be classified with edge dislocation, screw dislocation and mixed dislocation etc. Their 

formation is generally accomplished by the dislocation motion, i.e. gliding4 and these 

defects degrade the film quality (presence of dangle bonds). For a two-dimensional 

moderately strained film, the critical thickness can be estimated by the Matthews 

Blakeslee model5 : 

2(1 cos ( ))
ln

8 cos( )
c

c

hb v
h

m b

α
π λ

 −  =   
  

i
i

i
                                  Equation II -12 

where v  Poisson ratio, b the Burgers vector of the dislocations, α the angle between the 

Burgers vector and the projection of dislocation line in interface plane and λ  the angle 

between the Burgers vector and the in-plane direction of the interface. It shows the critical 

thickness decreases rapidly when the lattice mismatch increases.  

 

-  Elastic relaxation. The plastic relaxation can be preceded by elastic relaxation. In these 
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cases islands are formed when the film thickness exceeds a critical 2D-3D transition 

thickness h2D-3D (hc), allowing releasing the elastic energy stored in the film, of the 

expense of an increase of the surface energy of the system. It corresponds to the grow 

mode “Stranski- Krastanov”. The h2D-3D can be expressed as: 

30

2 3 3 2

1

(1 )
i i

D D

g f
h

a r R

γ γ
ε−

 −=  − 

i i
i

i
                                      Equation II -13 

where 0
iγ  the surface energy of the growing 2D film; iγ the average energy of the facets 

of the formed islands; 
1

Yε
ν

=
−

,Y and v are Young’s modulus and Poisson ratio 

respectively; r lattice mismatch; R is the relaxation of the free surface (often complex), 

2/3
ig S V−= i  and 2/3

ABf S V−= i (refer to Equation II-4) 

 

For a strain epitaxial film, if the h2D-3D is less than plastic hc, the Stranski- Krastanov 

growth will be observed. If the growth continues exceeding the plastic critical thickness hc, 

the islands will relax plastically by forming misfit dislocations.  

 

Another possible way to obtain a two-dimensional film without threading defects from 

initially three-dimensional island should be considered. When the germ forms islands on the 

substrate surface with a network of dislocations at the interface, they are stable because they 

grow with their own lattice constant. In case that all the germ present the same initial 

crystallographic orientation and no defect forms when they coalesces, a bidimensional 

epitaxial layer without threading defects can be attained. This possible process is important 

for the integration of semiconductor and oxides (Chapter IV). 

 

According to the considerations above, the misfit dislocation is a significant type of 

defects in the epitaxial film. In fact, several other defects influence the quality of the epilayer. 

Figure II. 8 exhibits different possible characteristics turned out by epitaxial films. 

Particularly for the epitaxy of oxides, the oxygen vacancies consist of another important 

origin of the defects. The objective of epitaxy is to find an optimal strategy to avoid these 

defects in order to achieve a high quality epitaxial film. 
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(a) peudomorphic growth      (b) misorientation       (c) dislocation content 

 

(d) mosaic spread             (b) curvature            (c) inhomogeneity 

Figure II. 8 Different characteristics of the eptitaxial film. 

 
II.3) Experimental techniques 

II.3.1) Molecular Beam Epitaxy 

II.3.1.1) Introduction 

Since the technique of Molecular Beam Epitaxy (MBE) was first successful used by A. Y. 

Cho and J. R. Arthur in the late 1960s to fabricate GaAs epilayers6,7, it has been developed to 

a versatile tool for growing thin epitaxial structures made of semiconductors, metal or 

insulators. In comparison to all other epitaxial growth techniques, MBE has several unique 

advantages: 

 

-  Being realized in Ultra High Vacuum (p≤10-9Torr or 1.33×10-7Pa), MBE ensures the high 

purity of the deposit material. This vacuum condition enables the beam of the mass flow 

to move toward the substrate with a large mean free path. Given that the residual gas 

pressure routinely achieved in MBE systems is 10-10~10-11Torr and the mean free path can 

be calculated by:  

24
22

3.11 10
2

Bk T T
L

pdpdπ
−= = ×                                   Equation II -14 

with d the molecular diameter, kB the Boltzmann constant (1.38×10-23JK-1), the mean free 

path of the material in MBE chamber can reach 106 meter whereas the distance between 

the outlet orifices of the beam sources and the substrate approximately equals 0.2m. 

-  The composition of the grown epilayer and its doping level depend on the evaporation 

rates of the appropriate sources. In MBE, the typical growth rate is 1 monolayer/s (for 

oxides MBE, even lower 1~2 monolayer/min), which is low enough to ensure surface 
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migration of the impinging species on the growing surface, leading to a very smooth 

surface of the grown film. 

-  Thanks to the UHV environment, MBE can be controlled in situ by surface sensitive 

diagnostic methods such as reflection high energy electron (RHEED), ellipsometry, X-ray 

photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Scanning 

electron microscopy (SEM). These powerful facilities for control and analysis eliminate 

much of the guesswork in MBE, and enable the fabrication of sophisticated device 

structures. 

 

For the study in this thesis, MBE introduces several particular virtues to the epitaxy of 

oxides on silicon. The first advantage results from the UHV environment. For the application 

of high-k and functional devices, an abrupt interface between oxides and silicon without silica 

or silicate is very important. The preparation of the silicon substrate in UHV environment can 

assure a clean, atomic smooth silicon surface. The second virtue is connected with the low 

enough growth rate and subtly control of oxygen. Due to the sensitivity of silicon surface to 

the oxygen, a grow rate of 1 monolayer/min allows us precisely control the introduction 

moment of oxygen and its partial pressure to effectively prevent the formation of the silica or 

silicate at the interface simultaneously ensure oxidizing completely the metal elements. The 

next virtue concerns its intrinsic physical characteristics during the whole growth process. 

Compared to Atomic Layer Deposition (ALD) or Metal Organic Chemical Vapor Deposition 

(MOCVD), it is not necessary for MBE to prepare the precursors in advance. The last but no 

least, the stoichiometry, crystalline quality and the surface morphology of the oxides can be 

in-situ monitored precisely by RHEED. 

 

Figure II. 9 shows the comparison of different methods of oxides deposition. 

 
 Conformity Purity Defects Thickness Surface 
Sputtering   ■■   
Metal deposition+Oxydation      
MOCVD      
ALD      
MBE ■■     

Figure II. 9 Comparison of different oxides deposition methods8. 

( = advantage; ■= inconvenience) 
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II.3.1.2) Description of epitaxy reactor for oxides  

During this thesis, all the samples were realized in a Riber 2300 reactor adapted to the 

fabrication of oxides, silicon and germanium. The main building blocks of this machine are 

schematically presented in Figure II. 10, with their principal functions indicated. This system 

consists three principal blocks: sample introduction stage, interstage substrate transfer system 

and MBE chamber.  

 

- The sample introduction stage allows a single sample holder of 2 inch diameter substrate 

to be rapidly loaded or unloaded from the MBE machine. The introduction chamber is 

equipped with a turbomolecular pump that permits it maintaining a vacuum of 10-6~10-7 

Torr. A outgasing furnace is also available in the introduction chamber allowing the 

thermal treatment of the samples.  

- Once the substrate is ready in the introduction chamber, it can be transported to the 

transfer chamber, where the vacuum is of the order of 10-9 Torr (ionic pumping). Using a 

transfer cane, we can convey substrates from the transfer chamber to the MBE growth 

chamber through an isolation gate valve. Furthermore, separate viewports at each process 

stage allow complete visual access for manipulation.  

- In the MBE growth chamber, an ionic pump, a turbomolecular pump, a liquid nitrogen 

cooling system and a titanium sublimation pump are employed to achieve a vacuum down 

to 1×10-10 Torr. Before the introduction of oxygen in the chamber, the ionic pump is 

turned off and the turbo pump which is more resistant to oxygen is started on work. Here 

are located all the elements which enable well controlled epitaxial growth. These are beam 

sources (Knudsen effusion cells) with their individual shutters, the electron gun, a 

substrate manipulator with heating and continuous rotation facilities, and phosphor screen 

of the RHEED system, and the pressure control unit (ion gauge and mass spectrometer). 
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Figure II. 10 Illustration of the main block building of oxide MBE reactor 

Effusion cells have a direct impact on the quality of the films grown by MBE (i.e. 

morphology, purity, composition, uniformity, etc.). In our reactor, we use Knudsen-type 

effusion cells made of PBN (Pyrolytic Boron Nitride, a refractory material). Standard cells 

(temperature up to 1500°C) are used for Ba (barium), Sr (strontium), Ge (germanium) and Al 

(aluminium) and high temperature cells (temperature up to 2000°C) for La (lanthanum) and Ti 

(titanium). Associated with each cell is a separate refractory metal shutter. The shutters are 

sited to interrupt the beams between the sources and substrate and to effectively completely 

shield the substrate from each individual beam when closed. 

 
An electron gun is also available in our reactor. We have four crucibles in our electron 

gun filled with LaAlO3, Al2O3, Gd2O3 and Si respectively. When it works, a stream of 

electrons is accelerated through a field of typically 5~10 kV and focused onto the target 

surface. Upon impingement, most of the kinetic energy of the electrons is converted into heat 

and temperatures exceeding 3000°C to evaporate the materials in the crucible. In case of the 

oxides growth using e-beam gun, an introduction of oxygen is necessary to completely 

oxidize the metal element because the oxides might partly decompose during the evaporation. 

Moreover, due the instability of the growth rate using electron gun, it is indispensable to use 

mass spectrometry or Quartz Crystal Microbalance (QCM) for the real time control of the 

evaporation. 
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The manipulator (2 inch) includes a tantalum heater protected by a PBN slab allowing the 

homogeneity of the heat transition and preventing the deterioration of the filament under an 

oxygen rich growth environment. The substrate can be heated up to 950°C which is high 

enough to completely clean SrTiO3 and silicon substrate surfaces. The temperature is 

measured using a thermocouple (converting heat to electronic signal) and a pyrometer 

(measuring the thermal radiation, accurate when temperature is higher than 500°C). The 

substrate holder is made of molybdenum that is very effective to exchange the heat with 

substrates. During the growth, the manipulator rotates with a constant angular velocity around 

the axis perpendicular to the surface of substrate to enhance the uniformity of the epilayer. 

 

The RHEED system is sited to in-situ monitor the structure of the growing film on the 

substrate. A high energy beam of electrons of 30 keV is incident on the substrate at a glancing 

angle 1°~3°. Therefore the penetration of the beam into the surface is restricted to the 

outermost few atomic layers, i.e. RHEED reveals the surface structure information of the film. 

However, it is still a powerful tool to monitor in real time the information such as the 

crystallization quality, the growth mode, the surface reconstruction and the growth rate. A 

detailed introduction of RHEED can be found in Appendix A.  

 

The partial pressure of the elements fluxes are measured by a Bayard-Alpert ionization 

gauge. The species arriving on the gauge are ionized and then collected in form of electronic 

current. Combined with the RHEED pattern that allows distinguishing different reconstruction 

features of (Sr, Ba)TiO3 (Sr/Ba rich or Ti rich), the measured fluxes help us to determine the 

stoichiometry of the ternary oxides grown by Knudsen effusion cells. Besides the RHEED 

intensity oscillation, the QCM is also employed to determine the growth rate, especially for 

the materials grown by electron gun. It measures a mass per unit area by measuring the 

change in frequency of a quartz crystal resonator. The resonance is disturbed by the addition 

or removal of a small mass due to oxide growth/decay or film deposition at the surface of the 

acoustic resonator. 

 

Oxygen is introduced into the reactor via a pressure-regulated plasma chamber, which 

permits us to precisely control the oxygen partial pressure in the chamber, particularly at the 

first stage of the oxides growth. Both atomic and molecular oxygen can be used. The atomic 

oxygen is produced by a Radio Frequency plasma generator with its frequency of 13.56MHz 
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and power output of 600W. 

 

II.3.1.3) Ex-situ characterization methods 

The objective of this thesis is to grow “perfect” crystalline oxides on Si substrate and 

heterostructures based on oxides/Si template. Therefore we are mainly concerned with the 

properties of the thin film such as the smoothness of the surface, crystalline perfection of the 

film, structural parameters of the interface and electrical properties of the thin films. Different 

ex-situ characterization tools are employed to reveal the information of these properties. 

 

Atomic Force Microscopy (AFM) is one of the most widely used tools for imaging, 

measuring, and manipulating matter at the nanoscale. It belongs to the Scanning Probe 

Microscopy (SPM) family whose principle consists in a near field probe imaging a surface by 

lateral scanning. It can measure a wide range of surface properties on any kind of material, 

ranging from topography to surface potential, from electrical or magnetic properties. AFM 

can work with different modes such as tapping mode or contact mode. Based on the contact 

mode, conductive AFM (C-AFM) which allows the characterization of the conductivity 

variations across medium- to low- conducting and semiconducting materials, and 

piezoresponse force microscopy (PFM) which permits nondestructive local measurement of 

the polarization at nanoscale are developed to meet relative research necessities. The AFM 

instruments used in this thesis are Veeco CP II and Veeco dimension 3100. More detailed 

introductions of AFM can be found in Appendix B. 

 

X-ray Diffraction (XRD) is a method of investigating the fine structure of material. X-ray 

can be used to produce the diffraction pattern because their wavelength λ is typically the same 

order of magnitude (1~100Å) as the spacing d between planes in the crystal. Following the 

well-know Bragg’s law, the X-ray diffraction results from an electromagnetic wave (the X-ray) 

impinging on a regular array of scatterers (the repeating arrangement of atoms within the 

crystal). Our Rigaku diffractometer in INL permits us performing diverse measurements on 

the samples, such as rocking curve (RC) measurements (out-of-plane and in-plane), reciprocal 

space mapping (RSM) measurements, X-ray reflection (XRR) and pole figure measurements. 

For more detailed introductions of XRD, see Appendix C. 

 

X-ray Photoelectron Spectroscopy (XPS) is a method that measures the elemental 
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composition, empirical formula, chemical state and electronic state of the elements existing 

within a material. The principle of this method is as following: in a UHV condition, 

irradiating a material with a beam of X-rays while simultaneously measuring the kinetic 

energy and number of electrons that escape from the top 1~10nm of the material analyzed. 

XPS analysis helps us obtain the physico-chemical information of thin film and the interface. 

With respect to XPS, X-ray PhotoElectron Emission Microscopy (XPEEM) allows conserving 

the spatial origin of the photoelectrons thanks to electron optics which collect, focus and 

enlarges the photoelectric signal.  

 

Transmission Electron Microscopy (TEM) is based on the diffraction of electrons when 

they pass through a very thin sample. Electron diffraction from a crystalline lattice can be 

described as a kinematic scattering process that meets the wave reinforcement and 

interference conditions given in the Bragg equation. An image is formed from the interaction 

of the electrons transmitted through the specimen. The image is magnified and focused onto 

an imaging device, such as a fluorescent screen, or to be detected by a sensor such as a CCD 

camera. Derived from TEM, High resolution TEM (HRTEM) which bases on the phase 

contrast due to the phase modulation of the electron waves by the periodic crystal lattice 

allows the imaging of the crystallographic structure of a sample at an atomic scale. A TEM 

can also be modified to a Scanning TEM (STEM), with which the electrons pass through the 

specimen, however, the electron optics focus the beam into a narrow spot which is scanned 

over the sample in a raster. By using a STEM and a high-angle detector, it is possible to form 

atomic resolution images where the contrast is directly related to the atomic number. 

High-angle annular dark-field imaging (HAADF) is a method of mapping samples in STEM. 

Based on dominant Z-contrast for distinction of different materials, HAADF images are 

realized by collecting scattered electrons with an annular dark-field detector in STEM 

 

InfraRed spectroscopy (IR) can be used to identify compounds and investigate sample 

composition, by exploiting the fact that molecules absorb specific frequencies. These 

absorptions are resonant frequencies, i.e. the frequency of the absorbed radiation matches the 

frequency of the bond or group that vibrates. The energies are determined by the shape of the 

molecular potential energy surfaces, the masses of the atoms, and the associated vibronic 

coupling. 
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Rutherford backscattering spectrometry (RBS) is used to determine composition of 

epitaxial films especially the stoichiometry of the oxides, by analyzing energy loss of light 

ions (H+, He+) at high energies (0.5~5MeV) during their passage through the film. 

 

II.3.2) Electrical characterization methods 

II.3.2.1) Post Deposition Annealing (PDA): tubular furnace and RTA  

One of the main objectives is to obtain small EOT values and simultaneously low leakage 

current by exploring the system of high k oxide (Gd2O3) on silicon substrate. In order to study 

the thermal stability of the Metal Insulator Semiconductor (MIS) structure as well as to 

observe the influence of PDA on the dielectric properties of the samples tested, the 

pre-metallization annealings were performed. All these annealing treatments were carried out 

after the samples taken out from epitaxy chamber exposed to air, while before the 

metallization of the oxides/Si system to avoid the possible problems resulting from the 

interdiffusion between dielectric oxides and metal gates. Two PDA have been performed on 

the MIS structures. 

 

The first PDA type concerns the utilization of a carbolite horizontal tubular furnace with 

a maximum operating temperature of 1200°C. It is composed of a cylindrical tube and a pure 

sintered alumina nacelle. Three arrivals gas are connected to the furnace: oxygen, nitrogen 

and forming gas (mixed with 96% N2 and 4% H2). Due to the small internal diameter of the 

tube and in order to prevent weakening it, the ramp rate to increase the temperature is only 

6°C/min. This low ramping time is one of the drawbacks of this furnace. Particularly, the 

temperature decreases slowly after one turns off the furnace, which strongly extends the 

annealing time. For instance, an annealing at 300°C for 5 minutes will become an annealing 

during which the temperature remains 250~300°C for 30minutes. 

 

The second furnace in service for PDA is a RTA (Rapid Thermal Annealing) furnace. The 

furnace (Jipelec Jet Star 100SR Processor) allows attaining ~1000°C during several seconds 

(100°C/s). The standard procedure is as follows:  

1) putting samples in the chamber under vacuum; then introducing the desired gas desired 

(oxygen, nitrogen or argon are available) into the chamber; 

2) launching the annealing process while conducting a continuous sweep under the selected 

gas; 
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3) the temperature is dropped by draining the gas used for the annealing 

The annealing duration of RTA is much shorter than the tubular furnace and makes very 

rapid “spike” annealing type similar to that used in industry, particularly for the dopant 

activation. 

 

II.3.2.2) The choice of substrates and gate metals 

The Metal-Oxide-Semiconductor capacity is the most useful device to characterize the 

electrical properties of the dielectric materials and the interface quality between the silicon 

substrate and the oxides gate insulator. Once the oxides/Si samples are elaborated in the MBE 

chamber and undergone post growth thermal treatments, they are metallized to fabricate MOS 

capacity in the clean room environment of INL. 

 

The silicon substrates used are (001) and (111) oriented, and doped by boron (type P). 

The dopage concentration ranges from 1016 to 1018 cm-3, corresponding to resistances ranging 

from 1Ω·cm to 0.01Ω·cm. For the high-k application, the dopage of the substrate should not 

be too elevated (≤1016 cm-3) so that the inversion phenomenon of the MOS structure is not 

hindered. A too high dopage makes the Fermi level of the silicon too close to the valence band, 

impeding the minority porters to participate the depletion and inversion of the capacity. In 

contrary, for the application as a template of functional oxides, a high dopage concentration is 

necessary to facilitate the characterization of the polarization of the piezo- (ferro-)electric 

films on the top.  

 

The gate metal has an important impact on the capacities properties. The metals 

employed in the microelectronic industry include metal alloys such as TiN9 or TaN10, or 

FUSI (Fully SIlicide11) such as NiSi12. A low temperature solution was developed at INL to 

prevent the impact of gate metals fabrication to the electrical behaviors of the dielectric 

oxides. Following the work of L. Becerra13, the top gate metal selected in this thesis is Au/Ni. 

In fact, different attempts were carried out on the metals such as aluminum, gold or nickel. 

Figure II. 11 presents the C-V and I-V measurements with these gate metals. 
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As shown in Figure II. 11 (a), the MOS with aluminium electrode demonstrates an 

abnormal behavior. The C-V curve ascends up in the inversion regime, which should not 

appear given that the measurement is performed at a high frequency 1MHz. The similar 

phenomenon also appears for I-V measurement that presents an increase when the voltage 

exceeds 3V. The rising up of I-V curve can be explained by low intensity saturation current 

caused by the lack of available minority porters. The irregular behavior is probably connected 

with the fixed charge or incorporated impurities in aluminium.  

 

The capacitor with gold electrode demonstrates better results (Figure II. 11 (b)). The C-V 

curve shows no rising up in the inversion regime and the I-V saturates for the positive bias 

voltages. At low frequency (not shown), the C-V curve increases in the inversion regime 

because of the generation of the porters. In addition, different from aluminium, the gold does 

not oxidize in the air. 

 

Finally we decided to choose the bi-layer electrode with a 400nm-gold on top of 

5nm-nickel. The results obtained are comparable with those obtained without nickel (Figure II. 

11 (c)). The capacity measured in accumulation is about 69pF for a 95×95µm size surface, 

which is exactly consistence with the theoretical capacity of a 5nm-SiO2 film (62pF), 

considering the approximation of our measurements. However, being aware that the gold is 
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Figure II. 11 C-V (1MHz) and I-V 
measurement performed on gate 
metal (95×95µm)/5nm SiO2/p-Si 
(001). (a) Aluminium electrode 
(400nm); (b) gold electrode 
(350nm); (c) Au(400nm)/Ni(5nm). 
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not adapted to the industrial integration given that this metal cannot endure high temperature 

(poor coherence, diffusion, formation of droplets), all the metal gates of the MOS devices 

studied in this thesis are composed by a stack of Au/Ni.  

 

II.3.2.3) Fabrication of MOS capacities by lift-off method 

The method “lift-off” is employed to deposit the metal gate Au/Ni onto oxides/Si samples. 

This method uses only lithography without direct etching procedure that might have 

undesirable effects on the insulator layers. The lift-off process is described as following: 

- cleaning the oxides surface rapidly with deionized water and drying with N2. 

- deposition of an adhesion promoter which facilitates the adhesion of the photoresist with 

the oxides surface using a turnplate.  

- deposition of photoresist AZ 5214 at a velocity of 5500 round/min for 30s. 

- pre-baking on the heated plate at 110°C for 1 minute to drive off excess solvents and to 

promote the polymerization of the photoresist. 

- Exposition for 1.4 seconds through a metal mask (called “capa”) constituted by the square 

motifs with side lengths from 95µm to 580µm. The instrument used is a Karl Süss MJB3 

UV300 SUSS with an exposition wave length of 300nm. 

- baking at 110°C for 1 minute in order to reverse the photoresist. 

- exposition of the whole plate for 10 second. 

- developing the photoresist by agitating the samples in the acetone for 1 minute then 

rinsing in deionized water. 

- post-baking at 110°C for 1 minute to harden the photoresist and eliminate excess solvents. 

- introduction the samples masked by photoresist to a Leybold evaporation chamber under 

vacuum condition.  

- deposition of 3nm nickel and 250nm gold successively under vacuum of ~10-6 Torr. The 

metal material are placed in nacelles in graduated form and heated by the law of Joule 

until the evaporation. The growth rate is monitored by a QCM. The metal layers cover the 

remaining resist as well as parts of the sample that were cleaned of the resist in the 

previous developing step. 

- lift-off is accomplished by immersing the samples in the acetone. The photoresist is 

washed out together with the metals covering on it and only the metals in the “hole” have 

the direct contact with the oxides surface. Thus the pattern of the metal electrodes is the 

same as that of the mask. 



 
Chapter II: Epitaxy and characterization principles and methodologies 

 68 

The main procedures of lift-off method are illustrated in Figure II. 12. 

 

Figure II. 12 The principle processes of lift-off method: (a) sample with photoresist AZ5214; 

(b) exposing and developed;(c)deposition of metals and (d) lift-off. 

 

Finally, the Au/Ni electrodes form the same pattern as the mask used, as shown in Figure 

II. 13. 

 

Figure II. 13 Images photoed by optic microscope (zoom ×26 at left and ×52 at right) of an 

oxides/Si sample metalized by Au/Ni and the squares shows the pattern of the metal 

electrodes. 

 
II.3.2.4) C-V and I-V measurements 

In this section we will describe the C-V and I-V measurements for Metal-Oxide 

-Semiconductor (MOS) structures in detail. The electrical characterization of both the 

dielectric and ferroelectric oxides films are realized by this method. 
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Figure II. 14 Schematic drawing of electrical characterization for MOS devices. 

 

Figure II. 14 illustrates the principle of electrical measurements for MOS devices. The 

bottom electrode is realized by painting silver at the back of Si substrate. A Karl Suss manual 

probe station equipped with a HP 4284A impedance meter and a HP 4156B pA-meter is used 

for C-V and I-V measurements. This station is placed in a Faraday cage in order to 

accomplish the measurement in obscurity and prevent at most outside disturbances. It is 

however possible to light up the sample to help the generation of minority porters. The station 

is placed on a vibration-proof table.  

 

 All measurements are performed at room temperature and on the different sizes of 

electrode to prevent the errors that might result from area scaling. However, it should be noted 

that even for the smallest electrode area size used in this study (100×100µm2) are sufficient 

large, compared to the thicknesses of oxide films (less than 50nm), to neglect the effect of 

electric field broadening at electrode edges.  

 

C-V measurement were performed at f=10kHz~1MHz, sweeping from inversion to 

accumulation and back. I-V measurement were performed firstly from zero to positive and 

then from zero to negative bias voltage till breakdown.  

 
Figure II. 15 shows the actual equivalent circuit (at left) for C-V measurements. Due to 

the probe-electrode contact, silicon-back electrode (silver) and resistance of bulk silicon, a 

series resistance Rs has to be considered. The impedance meter ANGILENT HP 4284A 

provides parameters of two equivalent models namely the series model (Cms, Rms) and the 

parallel model (Cmp, Rmp) for this circuit, as shown in Figure II. 14 at right. Depending on the 
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gate voltage applied to capacity, this apparatus can deliver different pairs of specific values of 

the electrical circuit14: Cms, Rms, Cmp-Gmp (Gmp is the conductance measured in parallel mode), 

Cmp-D ( D is the dissipation factor), etc ... In this work, all the couples measured will be 

Cms-Rms and Cmp-Gmp. 

 
Figure II. 15 Actual circuit for C-V measurement considering series resistance Rs and 

equivalent parallel and series models provided by HP4284A.Rmp and Rms are the leakage or 

loss resistance in the dielectric layer. 

 

II.3.2.5) Determination of EOT of high-k dielectrics using TCV program 

Figure II. 16 shows typical C-V measurement curves both at low and high frequencies. 

 
Figure II. 16 Typical C-V curves depending on the applied bias voltage, measured at both low 

and high frequencies. 

 

When the bias voltage Vg is performed on the grid of MOS structure, three modes could 

be produced depending on the voltage values. The first is accumulation regime, where 

Vg<VFB (flatband voltage). In this regime the majority porters in the Si substrate, i.e. the holes, 

are attracted towards to the oxides/Si interface and form an accumulation layer by the 
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electrical effect. The second is depletion regime (Vg>VFB), where the holes are repelled from 

the surface of the silicon to the volume of the substrate by the positive charge applied to the 

grid. Last one is inversion regime (Vg>>0), where all the holes are deserted at the Si surface 

therefore the minority porters electron becomes the majority porters at the Si surface leading 

to the inversion of the substrate type at the surface. 

 

In this thesis, all the EOT values of the high-k dielectrics are extracted by using a 

homemade (at INL) TCV simulation program, which is developed by Christophe Busseret, 

Nicolas Baboux, Carole Plossu et Alain Poncet15 , 16. The TCV program permits the 

reconstruction of the C-V curves based on the experimental data by using the parameters such 

as substrate type, doping concentration, working function of silicon and metal electrode, 

effective mass of the oxide, fixed charge Q and Dit etc.  

 

In a MOS device, the capacity measured is actually a sum of three terms corresponding 

three series capacities: 

1 1 1 1

oxide grid substrateC C C C
= + +                                          Equation II -15 

In terms of thickness, it can be represented by the relation17: 

CET=EOT+tgrid+tsubstrate                                             Equation II -16 

where CET (Capacitive Equivalent Thickness) is the total thickness corresponding to the 

measured capacity; tgrid (0.5Å for metals) is the depleted zone of the grid; and tsubstrate results 

from the 2 dimensional electron gas which is formed at the dielectric/Si interface (appearance 

of discrete energy levels)18 but not strictly confined at the interface and therefore generates a 

complementary thickness approximately several angstroms. (Figure II. 17 (a)) 

 

For the samples with thick dielectric films, the tgrid and tsubstrate can be generally neglected 

and we have CET=EOT. However, if one’s objective is to obtain very low EOT values that 

require thin oxide films, the differences between CET and EOT has to be considered. TCV is 

a program allowing fitting the experimental C-V measurements taking count in quantum 

effect which appears for the thin dielectric films. It permits extracting directly the EOT values. 

(Figure II. 17 (b)) 
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Figure II. 17 (a) Band diagram illustrating the distinction between CET and EOT; (b) 

Principle of EOT determination using TCV simulation program. 

 

II.3.2.6) Determination of other crucial parameters for high-k dielectric 

Different from the MOS with SiO2 layers, the electrical measurements of the MOS 

structures with high-k dielectric layers requires some specific attentions. Except for EOT, 

some other crucial parameters can be extracted from the C-V measurements: 

- Flatband voltage (VFB) 

- Interface and oxide charges 

 

- VFB determination.  

In the MOS structure, the electrons migrate from the metal with higher Fermi level (small 

work function) to the semi-conductor substrate with lower Fermi level (large work function) 

through the interface, to align the Fermi levels in different materials, which leads to the 

curvature of the energy bands. If the applied voltage exactly compensates the difference of the 

work function between metal and semiconductor, the curvature of the energy bands will 

disappear. This applied voltage is called flat band voltage VFB. For a ideal MOS system, VFB 

can be represented as: 

FB m s msV φ φ φ= − =                                                 Equation II -17 

To extract VFB from the experimental data, (1/C2)=f(V) can be traced. In the depletion 

regime, it is possible to fit part of this curve with a straight line. The intersection of this line 

with the horizontal axis gives the value of VFB, in consistent with the equation: 

( )2 2

1 2
FB

A sc

V V
C qN Sε

= −                                           Equation II -18 

The calculation of the slope of the line can also obtain the doping concentration NA of the 
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substrate, since the dielectric constant scε  of the semiconductor and the electrode size S are 

known.  

However, this method is only valid for the ideal condition, i.e. the sample has very few 

defects. In fact the existence of the defects is unavoidable. Different types of charges localize 

at different position of the MOS structure and have different effect on the C-V behavior of the 

device. As shown in Figure II. 18, four types of charges can be identified in a MOS structure: 

interface trapped charges (Qit), fixed oxide charges (Qf), oxide trapped charges (Qot) and 

mobile oxide charges (Qm). VFB can be influenced by these charges. Thus Eq. II-17 can be 

modified by19: 

( )f m ot it s
FB ms

Q Q Q Q
V

C C C C

φφ γ γ γ= − − − −                               Equation II -19 

where sφ  the surface potential, γ  the charge distribution factor.  

The VFB can be calculated by this equation if the amount of charges in oxide and at the 

interface and msφ are known.  For the electrode Au/Ni used in this study, nickel is the metal 

in direct contact with the dielectric. The msφ  is theoretically very close to -0.5V (taking the 

work function of Ni is 4.5eV and the Si doping is 1016cm-3). In practical, the C-V curve is 

stretched out due to Qit and shifted from the theoretical curve by due to Qf and Qm. The VFB 

determination methods in the literatures have major difficulties for high-k dielectrics because 

of high leakage current, high Dit and high oxide charges. Therefore in this thesis, TCV 

simulation program is used to facilitate the extraction of VFB. 

 

Figure II. 18 Different types of charges existing in the MOS structure and their effects to the 

C-V behavior of the device. 

 

Mobile 
ionic  
charges 

VFB shift 

Oxide 
trapped 
charges 

hysteresis 

Fixed oxide 
charges 

VFB shift 

Interface 
trapped 
charges 

C-V distortion  
(stretch out) 



 
Chapter II: Epitaxy and characterization principles and methodologies 

 74 

- Dit determination. 

Interface trapped charges can be described by the interface state density Dit, which is one 

of the major problems of high-k dielectrics CMOS compared to SiO2 based MOS that 

possesses a much lower Dit. Interface trapped charges are caused by structural defects, defects 

resulting from oxidation, impurities at interface and radiation effects (or any other effect that 

causes bond breaking at silicon interface)20. Neglecting the leakage current and the series 

resistance, the interface state density can be obtained by: 

max

2.5
( )p

it

G
D

q ω
=                                                 Equation II -20 

and 
222

2

)( mpoxmp

oxmpP

CCG

CGG

−+
⋅⋅

=
ω

ω
ω

                                   Equation II -21 

where (Gp/ω)max represents the maximum of the plot (Gp/ω)=f(ω) for a selected voltage; ω the 

angular frequency (ω=2πf) and Cox the oxide capacity at the accumulation regime, calculated 

by a method Dual Frequency Correction (DFCR), which is proposed by Yang and Hu21. 

If the measurement is performed at high frequency, the interface states will not have 

adequate time to response the change of applied voltage. In order to extract the interface state 

density, it is necessary to perform the measurement at high and low frequency. DFCR method 

permits correcting the C-V measurements to achieve more precise EOTs. 

 

- Qot determination. 

Oxide trapped charges (Qot) are distributed throughout the oxide. Qot is defined by the 

shift of flatband voltage, which can be represented as19: 

( ) ( 0) ot
FB FB ot FB ot

Q
V V Q V Q

C
γ∆ = − = = −                                Equation II -22 

Assuming that the VFB shift is only caused by Qot and γ =1, FBV∆  is then: 

03.9
ot ot

FB

Q Q
V EOT

C Sε
∆ = − = −                                        Equation II -23 

Therefore Qot can be determined by the slop of the plot of FBV∆  versus EOT and the 

change in C-V hysteresis ( FBV∆ ) can be used to compare the results from the measurement of 

different layer thicknesses. 
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II.3.2.7) Determination of parameters for MFIS structure 

The ferroelectric layer in the MFIS (Metal Ferroelectric Insulator 

Semiconductor) structure adds a memory function to the MOS capacitor. The regions 

of operation described previously are the same, since they refer to the condition 

of the semiconductor. Due to the hysteretic nature of the ferroelectric, both 

Capacitance-Voltage (C-V) and Conductance-Voltage (G-V) curves also demonstrate 

hysteretic as shown in Figure II. 19. The width of the hysteresis loop is referred 

to as "memory window" and can have a maximum value C0 (for the saturated 

hysteresis), which can be represented as: 

0
0

r SC
d

ε ε=                                                       Equation II -24 

where ε0 dielectric constant in vacuum ( 8.85×10-12F/m); εr the relative dielectric constant of 

the ferroelectric film; S the electrode area and d the film thickness.  

 

Thus the εr of the ferroelectric film can be roughly estimated (considering the SiO2 

insulator layer is normally quite thin). In addition, an index to the amount of polarization 

is the memory window. 
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Figure II. 19 C-V curve (left, inset shows the MFIS structure) and G-V curve (right) of MFIS 

capacitor 

 

II.4) Conclusion 

In this chapter, we discussed briefly the physical principles of epitaxial growth. We also 

introduced the growth and characterization methodologies of the crystalline oxide thin films 

on Si substrate. In particular, the electrical characterization method as well as the extraction of 
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different parameter for high-k dielectrics has been explained.  
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III.1) Introduction 

We will discuss the epitaxial growth of two crystalline oxides-SrTiO3 and Gd2O3 on Si 

substrate. Epitaxy of these oxides requires a clean and atomic flat silicon surface. We thus 

first compare different pre-growth treatment for Si substrate. In particular, for the epitaxial 

growth of perovskite SrTiO3 on Si, we present the Sr-assisted method of the Si surface 

preparation. 

 

Then we will present the direct growth of crystalline SrTiO3 on Si (001) substrate with no 

amorphous interfacial layer. The optimal strategy of the direct growth of SrTiO3 on Si will be 

identified and the SrTiO3 thin film grown at optimal condition will be characterized in detail, 

including the early stage of the growth and the strain relaxation process of the film. 

 

In order to achieve the “substrate-like” SrTiO3 films on Si substrate, different optimized 

strategies will be compared and we will that show a substrate-like quality SrTiO3 film on Si 

(001) can be obtained. 

 

Finally the epitaxial growth of Gd2O3 on Si substrate will be discussed. We will focus on 

Gd2O3 thin film grown on Si (111), because this system leads to very good oxide structural 

quality. The influence of oxygen pressure and growth temperature will be discussed and we 

will show that monocrystalline Gd2O3 can be grown on Si (111) with a sharp interface. 

 

III.2) Preparation of silicon surface 

A clean, smooth and atomic level flat Si substrate surface is a fundamental requirement 

for the high quality epitaxial growth of the thin film. In this section, we will introduce the 

preparation of silicon surface before the epitaxy of oxides films. 

 

III.2.1) Chemical treatment of Si substrate 

The most common used treatment of Si substrate before epitaxy consists in a diluted HF 

etching process12. HF selectively etches SiO2 without attacking the Si substrate surface. 

Typically, HF is diluted in de-ionized (DI) water to slow down the etch rate, with dilution 

ratios ranging from 1:1 H2O: HF to 100:1 H2O:HF. For particular critical etching, HF might 

be diluted with ammonium fluoride (NH4F) to promote more uniform liquid coverage on the 

silicon surface, which is then called Buffered Oxide Etch (BOE). At INL, we use the 
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commercial (Honeywell) AF 7:1 modified BOE (15% NH4F and 5.2%HF), the etching rate of 

which is 70nm/min. In order to identify an optimal preparation method of silicon substrate, 

we study the Si surface prepared at different conditions, using in-situ RHEED and ex-situ 

AFM. Four chemical treatments are described in Figure III. 1. All chemicals used are of 

electronic grade. The resistivity of the distilled, de-ionized water is 18MΩ.cm.  

Method Details 

(a) No HF treatment 
Degreasing (ultrasonic cleaning for 10min in ethanol) → 

nitrogen gas flow 1min 

(b) BOE treatment alone 
BOE dip 10s → DI-water rinse 30s → nitrogen gas flow 

1min 

(c) BOE plus UV ozone 

treatment 

Ultraviolet ozone cleaning 20min→BOE dip 30s → DI-water 

rinse 90s → nitrogen gas flow 1min → Ultraviolet ozone 

cleaning 2min 

(d) Standard industrial 

treatment 

Degreasing (ultrasonic cleaning for 5min in trichloroethylene, 

acetone and ethanol respectively)→ diluted HF solution 

(1HF:25H2O) dip 30s→ DI-water rinse 1min→ diluted sulfuric 

acid (1 H2SO4: 1H2O2) dip10min→ DI-water rinse 5min→ 

diluted hydrochloric acid (3HCL: 1H2O: 1H2O2) dip 10min → 

DI-water rinse 5min→diluted HF solution (1HF:25H2O) dip 30s

→  DI-water rinse 1min →  nitrogen gas flow 1min→ 

Ultraviolet ozone cleaning 2min 

Figure III. 1 List of chemical treatment tested 

 

Once the chemical treatments are finished, the Si substrate is introduced into our RIBER 

2300 MBE chamber and annealed in UHV condition. The base pressure in the chamber is 

2×10-10 Torr and it raises up to 2~3×10-9 Torr during annealing. The annealing temperature 

which is monitored by both thermocouple and infrared pyrometer is increased from 300°C to 

~950°C in 100°C, 4~5min steps and is stabilized at 950°C for 30 minutes. During this step, 

possible residual carbon impurities on surface may react with Si to form silicon carbide 

(β-SiC) nanoparticles, leading to the observation of a set of characteristic spots on the 

RHEED pattern. This reaction typically occurs for temperatures larger than 750°C~800°C. 
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Ex-situ AFM has also been employed to observe the substrate surfaces. Figure III. 2 presents 

the RHEED patterns after annealing and AFM results of the Si (001) substrates treated by 

different treatments.  

Methods RHEED along Si[110] AFM (1×1µm2) 

(a) No HF treatment 

  

(b) BOE treatment alone 

  

(c) BOE plus UV ozone 

treatment 

  

(d) Standard industrial 

treatment 

  

Figure III. 2 RHEED patterns along Si [110] azimuth and 1×1µm2 AFM images of Si(001) 

substrates treated by different preparation methods. 

 

According to the RHEED patterns along Si [110] azimuth, all the Si (001) substrates 

present a (2×1) reconstructed surface after the annealing in UHV, which corresponds to silica 

(SiO2) free surfaces. As for many semiconductor surface reconstructions, this (2×1) 

reconstruction allows reducing the surface energy by forming surface chemical bonds3. The 

RMS=0.12nm 

RMS=0.09nm 

RMS=0.34nm 

RMS=0.40nm 
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surface energies of the ideal (1×1) and (2×1) reconstructed surfaces are 2.58J/m2 and 1.51J/m2 

respectively4. In the case of the Si (001) surface, surface atoms form dimmers along the [110] 

rows, leading to periodicity doubling along the [110] direction5,6. Figure III. 3 (a), (b) shows 

the models of the ideal (1×1) and (2×1) reconstructed Si (001) surface, top view (upper) and 

side view (below). Figure III. 3 (c) shows a STM image of (2×1) reconstructed Si (001) 

surface7, in which two different colors correspond to two terraces: the dimmer orientation 

rotates of 90° from one terrace to the neighboring one.  

      

(a)                   (b)                        (c) 

Figure III. 3 Si (001) reconstruction models: (a) Ideal (1×1) surface, (b) (2×1) reconstructed 

surface, top view (upper) and side view (below).The larger spheres represent the atoms at the 

first layer, in which the more yellow ones indicate the atoms buckled up4. And (c) STM image 

of (2×1) reconstructed surface including two terraces7. 

 

On the RHEED patterns of Figure III.2, spots related to the formation of β-SiC (circled 

by dotted line) next to the Si streak lines are observed for the silicon surfaces treated using the 

“no HF” and “BOE alone” methods. For the “no HF” treatment, the presence of β-SiC is 

related to the reaction of carbon impurities initially present at the Si/SiO2 interface or at the 

SiO2 surface with silicon during high temperature annealing. For “BOE alone” method, we 

find that the relative intensity of the spots corresponding to SiC is stronger than that observed 

for the “no HF” treatment. This suggests that additional carbon is absorbed on the bare Si 

surface during the transfer to the epitaxial chamber after chemical treatment. HF treatment is 

known as passivating the Si surface by saturating dangling bonds (formation of Si-H or Si-OH 

bonds)8. In our case, this passivation is not perfect, resulting in adsorption of carbonic 

impurities, which are very difficult to be desorbed9. Figure III. 4 shows a model of the “BOE 

alone”-treated silicon surface and possible chemisorption sites for carbonic impurities.  

On the other hand, for the Si surface treated by “BOE plus UV ozone” and “Standard 
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industrial” methods, the implementation of a UV ozone process after BOE treatment has been 

found to effectively decrease the carbonic impurities: the RHEED show clear, ordered 

patterns without any β-SiC spot. In addition, the presence of Kikuchi lines indicates a clean, 

smooth surface. The UV ozone process (2min) removes the carbonic impurities in form of 

Si-O-C or Si-C and converts the terminated surface into a ~1nm SiO2 layer that protects Si 

surface during transfer to the reactor. 

 

The AFM images of Figure III.2 confirm the good quality of the surfaces treated by 

method (c) and (d). We can clearly observe the atomic steps of silicon and their RMS values 

are as low as 0.09 nm and 0.12nm respectively. The “BOE plus UV ozone” treatment which is 

much easier to perform than standard industrial treatment leads to a clean and atomic flat 

surface with an even smaller RMS. In contrast, the Si surfaces treated by method (a) and (b) 

have relative high RMS values and there is no presence of atomic steps. SiC nanoparticles are 

clearly observed in these images, the density of which is the highest for treatment (b), thus 

confirming the RHEED analysis.  

 

Figure III. 4 Model of “BOE alone”-treated silicon surface. Arrows indicate the 

chemisorption sites for the carbonic impurities (Ref.8). 

 

In case of (111)-oriented silicon substrate, the Si surface treated by the method “BOE 

plus UV ozone” following with the annealing at ~1000°C also demonstrates good quality, as 

revealed by RHEED and AFM characterizations (Figure III. 5). 
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RHEED along Si[110] RHEED along Si[211] AFM (1×1µm2) 

   

Figure III. 5 RHEED patterns and 1×1 µm2 AFM image of Si (111) substrate treated by “BOE 

plus UV ozone” methods. 

 

The RHEED pattern exhibits clear, well ordered streak lines of silicon without any β-SiC 

spots. The presence of Kikuchi lines indicate a very smooth surface and Laue zones are 

obseved. Si presents a (7×7) reconstructed surface, which reversibly turn to a (1×1) 

unreconstructed surface below about 850°C.3. The surface energies of (1×1) and (7×7) Si 

surfaces are 2.23 J/m2 and 1.42 J/m2 respectively. The (7×7) reconstruction is described in 

Figure III. 6. 

      

  (a)                             (b) 

Figure III. 6 (a) Top view (upper) and side view (below) of (7×7) reconstructed Si (111) 

surface model; (b) Experimental STM image (Ref.10). 

 

The Si (001) and Si (111) surfaces treated by “BOE plus UV ozone” consist of the 

starting point of all the subsequent oxides epitaxial growth on silicon substrates.  

 

III.2.2) Strontium passivated Si (001) surface 

A great challenge of the growth of oxides on Si substrate is to manage completely 

RMS=0.35nm 
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oxidizing the metal elements of the oxides without forming silica or silicates at the oxide/Si 

interface. For this purpose, we use a strontium-assisted passivation method developed by 

Motorola11 to clean, passivate the silicon surface and ultimately obtain a template with a 

Sr/Si (2×1) surface reconstruction that allows the epitaxial growth of SrTiO3 on Si (001). The 

detailed process of is shown in Figure III. 7. 

  

(a) Sr deposition 

(b) Sr promoted SiO desorption and 
SiO2/Si interface reaction: 

2 2SiO Si SiO+ → ↑  and 

2SiO SiO O e+ −→ ↑ + +  

 
 

(c) Pit formation was suppressed by Sr 
passivation. SiO2 decomposition 

continues. 

2SiO SiO O e+ −→ ↑ + +  

(d) Cleaned Sr terminated Si(001) 
surface 

Figure III. 7 Mechanism of deoxidation using strontium (Ref.11). 

 

After the preparation with “BOE plus UV ozone” method, the silicon surface is covered 

by ~1nm-thick silica. Then a small amount (2ML) Sr is deposited on the SiO2-Si surface in 

UHV at 600°C followed by an annealing at 750°C for 30min. During the annealing process, 

Sr or SrO acts as a catalyst to promote the decomposition of SiO2: 

2 ( ) ( ) ( )SiO Sr SrO SiO g O Sr SrO+ → + +  

 

Once the SiO2 is removed and Si surface is exposed to the vacuum, the Sr diffuses into 

the void and passivates the Si surface. This process results in an oxygen- and carbon- free, 

atomically smooth surface and leaves 1/6~1/3 ML Sr on the silicon surface, which can be 

characterized by a Si surface observed at 600°C, as shown in Figure III. 8. The ×2, ×3 and ×6 

feature of the RHEED pattern along Si[110] orientation corresponds to a mixture of (3×2) and 

c(6×2) phases of Sr/Si system.  
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Figure III. 8 Reconstruction of Si surface covered by 1/6~1/3 ML Sr 

 

Adding strontium on this at 600°C modifies the reconstruction, which turns to a ×2 

feature along Si [110] direction, corresponding to 1/2 ML Sr-coverage on the silicon surface 

(Figure III. 9). After exposition to oxygen for 1min at approximately 400°C, this (2×1) phase 

surface remains stable and forms a half monolayer SrO on silicon surface, ultimately serving 

as a template for the subsequent growth of SrTiO3 on Si(001). Figure III. 10 shows the model 

of 1/2 ML Sr covered Si surface and the experimental STM image. 

 

Figure III. 9 RHEED patterns of Si surface covered by 1/2 ML Sr, which lead to a ×2 

reconstruction along [110] direction. 

 
Figure III. 10 Top view (left upper) and side view (left below) of the model of Si surface 

covered by 1/2 ML Sr and a STM image (Ref.12) (right) 
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III.3) Epitaxial growth “window” of SrTiO 3/Si (001) 

III.3.1) Introduction 

Strontium Titanate (SrTiO3, STO) possesses a perovskite-type structure (Pm3m) and the 

lattice mismatch between STO (aSTO=3.905Å) and Si (aSi= 5.431 Å) is fairly small (1.69%) 

with STO unit cell rotated 45° around Si surface [001] axis, as shown in Figure III. 11(a). The 

surface energy of SrO-terminated STO and the STO-Si interface energy are 0.801 J/m2 and 

0.574 J/m2 (Ref.13). Considering that the Si surface energy is 1.7 J/m2 (Ref.13), we obtain 

Si STO interfaceγ γ γ> + , i.e. STO wets the Si surface13. Therefore the epitaxial growth of 2D STO 

layer on Si is theoretically possible. Furthermore, STO is predicted to be thermodynamically 

stable on Si up to 1000K14. Figure III. 11(b) shows a model of the epitaxial growth of STO on 

Sr-passivated Si surface (covered with 1/2 ML SrO layer) that we discussed in last section.  

 

Figure III. 11 The model of (a) Epitaxy relationship between STO and Si (001) substrate; (b) 

epitaxial growth of STO on 1/2 ML SrO covered Si substrate. 

 

STO presents a high dielectric constant of 300, a band gap of 3.3eV and its conductive 

and valence bandoffsets with respect to Si are -0.14eV and 2.4eV. STO is paraelectric at room 

temperature and becomes ferroelectric at -238°C. At approximately -168°C, STO undergoes a 

transition from cubic phase to tetragonal phase15, with a small distortion value c/a=1.0005 and 

this transition is related to the rotation of the oxygen octahedrons16. 

 

In this section, we will firstly introduce the homoepitaxy of STO. This work has been 

well developed at INL by G. Delhaye. We will show how STO/STO homoepitaxy allows 

fixing the oxide stoichiometry and determining the growth rate. In the second and third part, 

we will study the influences of growth temperature and oxygen partial pressure to the STO/Si 

system and identify the optimal growth condition. Then we will discuss the strain relaxation 
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process, particularly at the early stages of the growth, of the STO film grown under optimal 

condition. 

 

III.3.2) Homoepitaxy of SrTiO3 

III. 3.2.1) Preparation of the STO substrate  

A SrTiO3 (001) surface has two possible terminations: SrO and TiO2, since the crystal 

consists of an alternating stack of these two atomic planes. Calculations predict different 

surface energies for the two possible terminations: 0.801 J/m2 for SrO and 2.127 J/m2 for TiO2 

respectively17,18. In order to achieve a perfect, i.e. well-defined surface on an atomic scale, as 

well as a single terminated surface, the cleaning method developed by Kawasaki et al.19 is 

generally employed, which consists in a treatment of the SrTiO3 substrates with an NH4F 

buffered HF solution (BHF) with pH 4.5 leading to a uniform TiO2-terminated surface. Some 

detailed researches20,21 demonstrates that this TiO2 termination on the surface is incomplete, 

whose fraction was estimated to be 88±2%. In INL, we use a chemical treatment including a 

short dip (30s) in the commercial BOE solution introduced in III. 2. 1), following with a rinse 

in DI water for 10 seconds. Then the substrate is introduced into the epitaxy chamber for an 

annealing at 650°C under an O2 partial pressure of 1×10-6Torr for 1 hour, allowing 

minimizing the formation of oxygen vacancies in the material21 and the carbonic pollution22 

on the surface. Ex-situ AFM measurement has been performed for the STO substrate after 

chemical and thermal treatments, revealing its surface morphology, as shown in Figure III. 12.  

  

(a)                  (b)                 (c) 
Figure III. 12 (a)Model of the TiO2-terminated STO surface; (b)experimental 2µm×2µm AFM 

image showing a step-terrace structure of STO surface and (c) the vertical profile of the line 

marked in (b),exhibiting the height of the step is 0.4nm, i.e. a unit cell of STO.  

 

The AFM image exhibits a flat and well-defined STO surface with a step-terrace structure 

and the step height equals to 0.4nm corresponding to one unit cell STO. The TiO2-terminated 
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terrace edges meander along the two crystallographic axes [100] and [010]23. The RMS of the 

STO surface is 0.29nm. Figure III. 13 shows the RHEED patterns of STO substrate before 

homoepitaxial growth. We can observe that the streak lines are well-defined with clear 

Kikuchi lines, which demonstrates a flat and good crystal quality surface. The half-order 

fractional streaks appear along both [100] and [010] directions, demonstrating a two domain 

(2×1)+(1×2) surface reconstruction, which corresponds to a TiO2 or TiOx (x is slightly smaller 

than 2) terminated STO surface. This is due to the creation and organization of the oxygen 

vacancies during the annealing process. In essence, for different treatment methods and 

annealing temperatures STO surface exhibits different reconstruction phases. In addition to 

the above-mentioned (1×1) and (2×1)+(1×2) reconstructions, several other reconstructions are 

also reported24,25,26,27,28,29,30,31,32,33,34,35,36, such as (2×1), c(4×2), c(4×4), (4×4) c(6×2), (6×2), 

(√5×√5)-R26.6°, (√13×√13)-R33.7°. Generally, the higher order (larger primary unit cell) 

reconstruction usually requires higher annealing temperature and thus higher density of the 

bulk oxygen vacancy37. 

 

Figure III. 13 RHEED patterns of the STO substrate after the chemical treatment and 

annealing process. The arrows shows ×2 reconstruction along [100] and [010] directions. 

 

III. 3.2.2) Epitaxial growth of STO on STO substrate 

The configuration of our MBE chamber allows depositing STO by two methods: 

co-deposition (sending all the elements Sr, Ti and O simultaneously) and layer-by-layer 

deposition (growing alternatively the SrO plane and TiO2 plane). Because the presence of Sr 

promotes titanium oxidation (see I.3.2), codeposition method is used in this study. This 

method has been studied38 by Gabriel Delhaye during his PhD thesis and the results lead to 

the optimal growth condition of the homoepitaxy of STO as following: 

(1) Growth temperature: between 450°C~750°C 

Homoepitaxy can be performed between 250°C to 750°C and all the RHEED patterns 

show a streak-feature revealing monocrystalline epitaxial growth. This means the 

crystallization temperature of STO is as low as 250°C. Nevertheless, when the temperature is 
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lower than 450°C, the Bragg spots gradually cover the streak lines from the beginning of the 

growth, exhibiting the appearance of 3D structure leading to more rough surfaces. 

(2) Oxygen partial pressure: 5×10-7 Torr~1×10-5 Torr 

As shown in Figure I. 20 (chapter I), in order to completely oxidize the metals of 

strontium and titan, the oxygen partial pressure should be 1×10-7 Torr and 1×10-6 Torr 

respectively. Although the presence of Sr in codeposition method will make the oxidization of 

Ti easier, the PO2 should be higher than 5×10-7 Torr. In addition, due to the configuration of 

our MBE chamber, PO2 is technically limited to 1×10-5 Torr. In this range of oxygen pressure, 

there is no significant variation of RHEED patterns. 

(3) The growth rate: 1~3 ML/min 

Too high growth rates lead to amorphous STO growth due to limited adatom surface 

diffusion. In our case, because of the intrinsic characteristic of Ti evaporation cell, the growth 

rate is limited between 1~3 ML/min. The variations of RHEED patterns for these two growth 

rate demonstrate no evident difference. 

 

In this optimal growth condition, a high quality, two-dimensional monocrystalline STO 

could be homoepitaxial grown on STO substrate. Sr/Ti stoichiometry can be finely tuned 

during homoepitaxy by monitoring RHEED reconstructions (Ref. 38): a ×2 reconstruction is 

observed along the [100] STO azimuth when the surface is Ti-rich, while a ×2 reconstruction 

is observed along the [110] STO azimuth when the surface is Sr-rich. (Figure III. 14). By 

adjusting the Sr and Ti fluxes, ×1 reconstructions are achieved for both [100] and [110] 

azimuths, which represents a good stoichiometry of STO film. Furthermore, the growth rate 

could be measured by recording the intensity oscillation of the specular spot. 

 

Figure III. 14 RHEED pattern of (a) TiO2-rich and (b) SrO-rich STO film surface. 

 

III.3.3) SrTiO 3/Si (001): growth temperature dependence  

Generally speaking, in order to achieve a two-dimensional growth for an epitaxial system 

with small lattice mismatch, two conditions have to be satisfied: 1) thermodynamically, the 



 
Chapter III: Epitaxial growth of crystalline oxides on Si: SrTiO3 and Gd2O3 

 93 

epitaxial film has to wet the substrate, which is the case of SrTiO3/Si system as discussed in 

section III.3.1; 2) kinetically, the growth temperature has to be sufficient to confer to adatoms 

sufficient surface mobility to build the growing crystal. Too low temperatures lead to 

amorphous layers. Particularly for the epitaxial growth of oxides on Si substrate, due to the 

presence of oxygen and to the reactivity of Si with this element39, two additional conditions 

have to be considered: 1) the growth temperature has to be not too high to avoid reactions 

between the oxide and Si; 2) the chemical potential of oxidants, i.e. oxygen (molecular or 

atomic) pressure has to be limited to prevent the oxidation of Si surface but high enough to 

form the required phase of the oxide (oxidization of the metallic atoms of the oxide lattice, 

but not of the Si surface). 

 

Abovementioned analysis suggests that an epitaxial growth “window” concerning the 

suitable growth temperature and the oxygen partial pressure exist for the heteroepitaxy of 

SrTiO3 on Si (001) substrate. In this section, we discuss the temperature dependence of 

STO/Si system.  

 

In order to protect the Si surface from oxidatizing and achieve the required oxygen 

stoichiometry, a strategy including the meticulous oxygen control has been used, as illustrated 

in Figure III. 15. The Si surface is clean and highly-ordered covered with 1/2 ML-thick Sr 

after Sr-assisted deoxidization process. The oxygen with PO2=2×10-8 is introduced to the MBE 

reactor via a pressure-regulated plasma chamber by controlling a needle valve to form 1/2ML 

SrO as a template for the STO growth. For the initial 2ML STO, the Sr and Ti are codeposited 

under an ambience of PO2=5×10-8 Torr, which is raised up to 2×10-7 Torr~1×10-6 Torr for the 

subsequent Sr and Ti atom fluxes. 

 
Figure III. 15 The sequent oxygen control strategy of STO epitaxy 
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With this sequent oxygen control strategy, STO thin films are deposited on silicon 

substrate at different temperatures from 340°C~500°C. The characteristics such as RHEED, 

TEM, XRD and IR are employed to study the crystallization, surface of the film and the 

interface between STO and silicon. 

 

III.3.3.1) RHEED  

Two series of 4nm-thick and 45nm-thick STO films are grown on Si (001) substrate, at 

different temperatures. Figure III. 16 shows the final RHEED patterns of these samples along 

STO [100] azimuth. 

340°C 360°C 420°C 450°C 500°C 
4nm 

     
45nm 

     

Figure III.16 Variation of RHEED patterns of STO film (4nm and 45nm) grown at different 

temperatures. 

 

We firstly discuss the 4nm-thick samples. Apparently, the growth of STO film on silicon 

demonstrates strong temperature dependence. For the two extreme temperatures (340°C and 

500°C), the RHEED patterns exhibit both streak lines and diffuse halo, suggesting the 

coexistence of crystalline and amorphous phases. These similar RHEED patterns result from 

different mechanism: a too low temperature (340°C) leads to partially amorphous STO layer 

due to the limited mobility of the surface adatoms (see II.2.1); while a too high temperature 

(500°C) induces a reaction between the deposited film and the underlying substrate, leading to 

the formation of an amorphous silicate interface.  

 

For the samples grown between 360°C and 450°C, all the RHEED patterns displays a 
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clear, well-defined streak line feature, suggesting the two-dimensional single crystalline 

quality of STO films. One has to notice here that RHEED only provides information on the 

first few monolayers below the surface of the growing film.  

 

As the film thicknesses increase to 45nm, the RHEED patterns of samples grown at 

360°C~450°C displays a feature of streaks line covered by Bragg spots,  suggesting the 

increase of the surface roughness and the 3D growth mode of the films. This behavior is 

consistent with the STO homoepitaxy for which the optimal temperature is 550°C (see III. 

3.2.2)38. At too low temperature, intensity oscillation of the specular spot on RHEED is 

rapidly damped due to limited adatom mobility. The RHEED pattern of the sample grown at 

500°C displays Debye-Scherrer rings indicating the polycrystalline growth. It is surprisingly 

that the sample grown at 340°C undergoes a transition from an amorphous-crystalline mixture 

phase to single crystalline phase as the film thickness increases (~20ML, not shown here) and 

simultaneously follows a 3D growth mode (spotty feature on RHEED).  

 

III.3.3.2) TEM  

The 4nm-thick samples grown at 360°C and 450°C were examined by TEM, (Figure III. 

17 (a) and (b)) The sample grown at 360°C presents a good structural quality and an 

atomically abrupt interface with silicon. In contrast, a ~1.2nm-thick amorphous silicate layer 

is formed at the interface between STO grown at 450°C and the Si substrate, as already 

described elsewhere40,41. According to these results, 360°C appears as the optimal temperature 

for growing high quality STO/Si layers with an abrupt heteorinterface.  

 
Figure III. 17 High-resolution TEM cross-sectional view of STO/Si(001) grown at (a)360°C 

and (b) 450°C, with the Si directions denoted inset. 

 

Figure III. 18 shows the diffraction pattern corresponding to Figure III. 17(a). The crystal 

orientation of STO with respect to Si can be deduced from this figure and as expected, the 
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epitaxy relationship is defined as [110] STO (001)//[100] Si (001). 

 
Figure III. 18 High resolution TEM diffraction pattern of the STO/Si(001) sample grown at 

360°C. 

 

III.3.3.3) XRD 

To further investigate the structural quality of the STO films grown at different 

temperature, 45nm-thick samples have been characterized by high-resolution X-ray 

diffraction. Figure III. 19 displays the 2θ-ω scans recorded around the STO 002 out-of-plane 

Bragg reflection for the samples grown at 340°C 360°C, 420°C and 500°C respectively. The 

sharp, intense peak at 2θ=69.13° is the Si 004 Bragg reflection. The STO samples grown at 

340°C, 360°C and 420°C present good crystalline quality with the STO 002 peaks appearing 

at 2θ=46.29°, 46.34° and 46.27° respectively. However, for the 500°C sample the STO 002 

peak intensity is much less than that of the other samples, due to lower crystal quality. These 

results are consistent with the RHEED observation. The out-of-plane lattice parameters 

extracted from Figure III. 19 for the sample of 340°C, 360°C and 420°C are 3.919±0.002Å, 

3.915±0.002Å and 3.921±0.002Å respectively. These will be discussed below. 
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Figure III. 19 High resolution X-ray diffraction measurements around STO (002) diffraction 

condition for the STO/Si samples grown at different temperatures. 

 

In-plane diffraction was also used to characterize the samples. Figure III. 20 shows the 

corresponding data (in linear scale) collected around the in-plane STO 200 Bragg reflections. 

For the sample grown at 500°C, we observe a sharp, intense peak at 2θχ=47.30° 

corresponding to the 220 diffraction of the underlying silicon substrate and no STO 200 

reflection is observed. In agreement with out-of-plane measurement results, this suggests a 

poor STO structural quality for this sample. For the other three samples, the STO 200 peaks 

are much more intense than the Si 220 peaks revealing a good STO structural quality. The 

in-plane lattice parameter extracted for the samples grown at 340°C, 360°C and 420°C are 

3.931±0.01Å, 3.933±0.01Å and 3.945±0.01Å respectively. 
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Figure III. 20 High resolution XRD data collected around in-plane STO (200) Bragg 

diffraction condition for the STO/Si samples grown at different temperatures. 

 

Both of in-plane and out-of-plane lattice parameters are larger than that of bulk STO 

(3.905Å). We attribute this anomalous behavior to a combined influence of thermal expansion 

and defects existing in the STO epitaxial films. Let us assume the STO films entirely relax to 

their bulk in-plane lattice constant at growth temperature (340°C, 360°C and 400°C), which 

can be calculated by: 

[ ]// 0 1 ( 20)GT
G STOa a T α= × + − ×                                        Equation III-1 

where TG the growth temperature, //
GTa the in-plane lattice parameter at the growth 

temperature, a0 the bulk STO lattice constant (3.905Å) and αSTO the thermal expansion 

coefficient of STO (9×10-6K-1) 42. Because the underlying silicon substrate imposes a 

clamping effect to the STO film, the STO will obey the thermal expansion coefficient of Si 

when cooled to room temperature (20°C). The in-plane STO lattice parameters can thus be 

written as: 

[ ]20
// // 1 (20 )C GT

G Sia a T α° = × + − ×                                       Equation III-2 

where αSi the thermal expansion coefficient of Si (2.5×10-6K-1)42.  

 

The theoretical in-plane lattice parameters of STO grown at 340°C, 360°C and 400°C are 

3.913Å, 3.914Å and 3.915Å respectively. These values are larger than abulk, indicating that 
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differential thermal expansion leads to tensile strain in the STO layers at room temperature. 

According to the elasticity theory, the relationship between in-plane and out-of-plane lattice 

parameters is given by: 

0 12

0 11

2
a a C

a C
⊥ − = − · // 0

0

a a

a

−
                                                  Equation III-3 

where C12 and C11 are the macroscopic elastic constants of STO43 with C12=3.175×10-12 

dynes/cm2 and C11=3.175×10-12 dynes/cm2. And γ=C12/(C11+C12) is called Poisson’s ratio that 

describes the tetragonal distortion of the film due to the strain. The a⊥ predicted by elastic 

theory as well as all the theoretical and experiment data are listed in Figure III. 21.  

 

Comparing the experimental and calculation data in Figure III. 21, we find that both STO 

grown at 340°C, 360°C and 420°C present the same a⊥/a// values as that of fully relaxed STO 

layers, which tends to indicates that these layers are fully relaxed on Si at the growth 

temperature. However, both in-plane and out-of-plane lattice parameters are larger than those 

predicted by thermal expansion and elastic theory (considering the experimental errors). The 

experimental unit cell volumes (V=a//
2·a⊥) obtained are larger than the calculated ones. It is 

probably related to the presence of defects in the STO film such as misfit dislocations and 

oxygen vacancies, which could increase the lattice constant44, 45, 46. The volume of a vacancy 

in ionic solids is in general larger than the atomic volume of the missing ion47. It has to be 

noted that we observe weak temperature dependence for the lattice parameters of 45nm single 

crystalline STO films due to the relative large thickness and the interface conditions play no 

longer a critical role for the structure quality of the STO layers. 

Temperature 340°C 360°C 420°C 
a⊥(±0.002Å) 3.919 Å 3.915 Å 3.921 Å 
a// (±0.01Å) 3.931 Å 3.933 Å 3.945 Å 

a⊥/a// 0.9969 0.9954 0.9937 
Experiment 

Data 
Unit cell Volume (Å3) 60.56 60.56 61.02 

a⊥(Å) 3.900 3.899 3.898 
a// (Å) 3.913 3.914 3.915 
a⊥/a//  0.9967 0.9963 0.9958 

Calculation results 
(if STO is entirely 

relaxed on Si) 
Unit cell Volume (Å3) 59.72 59.72 59.74 

Figure III. 21 Experimental and theoretical data of STO lattice parameters 

 

III.3.3.4) IR (work of W. Peng, collaboration with SOLEIL) 

The Infrared transmission measurements were performed at AILES infrared beamline, 
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Synchrotron SOLEIL, on the samples discussed in the previous sections. The high brightness 

of the synchrotron radiation allows obtaining significant IR signal on our thin STO layers. 

The IR spectra were recorded under vacuum using a Bruker E55 Fourier transform 

spectrometer with resolution of 1cm-1 and a bolometer to cover the 20~600cm-1 spectral 

region . Figure III. 22 (a) and (b) show the IR transmission spectra of the STO/Si samples 

grown at 340°C~500°C with thicknesses of 4nm and 45nm, respectively. The absorbance was 

calculated using the transmission through a Si (001) substrate as a reference. 

 

In Figure III. 22 (a) (4nm-thick samples), the spectrum of STO grown at 360°C clearly 

shows transverse optical (TO) modes at 155 cm-1 (TO1), 199 cm-1 (TO2) and 555 cm-1 (TO4). 

Compared to equivalent phonons observed in ceramics48, the peak positions of thin layers are 

shifted to higher energy (see Figure III. 22 (c)), supporting a mismatch induced stressed 

structure. As the epitaxial temperature increases from 360°C to 420°C, these phonon modes 

shift to lower frequency, indicating an increase of the interatomic bond length. It demonstrates 

that the STO film grown at higher temperature (420°C) is less strained (i.e. less tetragonally 

deformed) than that grown at 360°C on silicon substrate. In addition, the intensities of the TO1, 

TO2 and TO4 modes corresponding to the 420°C sample are weaker than those of the 360°C 

sample, indicating larger crystalline disorder in the layer grown at 420°C.. In the spectra 

corresponding to the STO layers grown at 340°C, 450°C and 500°C the STO phonon modes 

are not visible, which indicates that the well ordered STO portion dramatically decreases in 

these thin films. Meanwhile, several interface modes at 260cm-1 ~ 480cm-1 are present in all 

spectra except for the 360°C grown sample, which is in good agreement with the our RHEED 

and TEM results (no interface layer formed at 360°C). These interface modes can be 

attributed to the formation of the amorphous silicate interfacial layer49,50. 

 

Interestingly, for the spectrum of the 360°C sample, three extra modes appear at 25 cm-1, 

58cm-1 and 81cm-1 respectively. These low energy modes can be induced either by the 

formation of tetragonal STO phases or by the stabilization of the soft mode48,51. It is well 

known that the bulk STO crystal undergoes a phase transition from the cubic 3Pm m 

perovskite structure (at room temperature) to tetragonal phase with I4/mcm symmetry52 when 

T is below 105 K. This transition involves the rotation of TiO6 octahedra53. According to 

previous IR reflectivity study on STO ceramics48 as a function of temperature, TO1 mode 

position shows a progressive shift from 93 cm-1 at room temperature to 15 cm-1 at 15 K (see 
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Figure III. 22 (c)). In the case of thin films, it is widely reported that the biaxial strain 

imposed by underlying substrates can induce the cubic-tetragonal phase transition thus 

ferroelectricity in STO epitaxial films54,55. For the STO/Si system with a lattice mismatch of 

1.7%, our IR results suggest that different tetragonal structures (as demonstrated by the 

various TO modes) are present in the STO film commensurately grown on silicon. Evidently, 

the vibrational modes can be a great guide in determining the precise structure of thin layers. 

The interpretation however, is hampered by the complexity of the spectra. ab initio periodic 

method are underway to predict the vibrational spectra of both SrTiO3 bulk and thin layer 

which will allow verifying the assignment of these low energy modes. 

 

In Figure III. 22 (b) from 45nm-thick samples, the TO1, TO2 and TO4 modes appear in the 

spectra of all the temperatures due to the much larger film thickness. However, the TO1 peak 

in spectrum 500°C is quite broadened, which is very likely caused by the eventually 

polycrystalline film feature. Compared to the 4nm-thick thin films, the TO1 modes of 360°C 

and 420°C spectra of 45nm-thick STO layers are evidently shifted to lower energy (see Figure 

III. 22 (c)) which attests the relaxation of the STO films as the thickness increases, thus 

confirming our XRD results (previous section). Comparing the TO1 modes taken from spectra 

340°C, 360°C and 420°C, one can observe that TO1 mode of spectrum 420°C shifts to lower 

frequency with respect to those of 340°C and 360°C, indicating the STO layer grown at 

420°C is more relaxed than those grown at 340°C and 360°C, consistently with our XRD 

measurements (Figure III. 21). Furthermore, there is no significant difference in the interface 

mode region for all the spectra of different temperatures, which reveals that the STO 

component takes a majority portion in the epitaxial film and the signals of the interface mode 

become much weaker comparing with those in 4nm-thick films. These results are in good 

agreement with prior RHEED and XRD measurements. 
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Bulk (15 K)  Tetragonal 15 42 172 548 

Bulk (100 K)  Tetragonal 46 / 173 548 

Bulk (300 K)  Cubic 93 / 176 548 
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Tetragonal & 
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155   81 
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cubic 135 / 193 542 
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Cubic 142 / 185 540 
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Cubic 108 / 185 540 

(c) 
Figure III. 22 Infrared transmission spectra of epitaxial STO films on Si grown at different 

temperatures (a)4nm-thick films and (b)45nm-thick films. Squares, circles and triangles 

denote the transverse optic modes of TO1, TO2 and TO4 respectively. (c) IR active TO modes of 

STO. All numbers are in cm-1. Bulk STO data are determined by infrared reflectivity (Ref.48). 

 

III.3.3.5) Influence of initial oxygen partial pressure  

The oxygen partial pressure, in particular at the early stage of the growth, is another 

parameter to achieve a coherent interface between STO film and Si substrate. Therefore a 

series of 9ML-thick STO/Si(001) samples grown at the optimal temperature 360°C under 

different oxygen partial pressures at the initial growth stage (0~3ML) have been investigated 

using XPS. Figure III. 23 (a)~(c) display the experimental scans and the fit of the Si 2p core 

levels of the STO/Si samples grown under initial oxygen partial pressure of 2×10-8Torr, 
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5×10-8Torr and 8×10-8Torr. As a reference, spectrum (d) was recorded from a Si substrate with 

its native SiO2 layer on the surface. In this spectrum, the Si 2p peak is centered at around 

99.3eV and the SiO2 peak is located at about 103.2eV, consistently with literature data41. For 

the spectrum (a), taken from the sample grown under PO2=2×10-8Torr, the peak centered 

around 101.7eV which can be assigned to Si+, Si2+ or Si3+ species56 indicates the formation of 

a silicate at the interface. In spectrum (b), recorded for the STO/Si sample grown under 

PO2=5×10-8Torr, the signal arises principally from the silicon substrate with only a relatively 

weak peak centered at approximately 101.2eV indicating the presence of Si-O-Sr bonds at the 

interface56. This indicates that the STO/Si interface is abrupt at the atomic scale, which is in 

good agreement with the present TEM analysis (Figure III. 17(a)). Spectrum (c) is taken from 

the sample grown under PO2=8×10-8Torr. The experimental data can be fitted using two 

components corresponding to SiOx species. The peak centered at around 101.7eV suggests the 

formation of silicate phase while the other one centered at 103.3eV, which is much more 

intense, indicates the formation of SiO2 at the interface.  

 

These results clearly demonstrate that the oxygen partial pressure plays a critical role for 

the interface reaction during the first growth stage. Decreasing the oxygen pressure results in 

a pronounced intensity of silicate (or silicide), which is consistent with the study of 

STO/(Ba,Sr)O/Si system performed by G. J. Norga et al. (Ref.57). In Ref.57, both SrSiO3 and 

TiSix interfacial layers form when the oxygen pressure is less than the optimal value 

7×10-8Torr. Meanwhile, increasing the oxygen pressure leads to the oxidation of the silicon 

surface. The optimized oxygen partial pressure during the initial growth stage is 5×10-8Torr 

for the STO/0.5ML-SrO/Si(001) system.  
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Figure III. 23 The XPS scans in the Si 2p region of 9ML-thick STO/Si(001) samples grown 

under different initial oxygen partial pressure (a) 2×10-8Torr, (b) 5×10-8Torr (c) 8×10-8Torr 

and a reference spectrum of Si substrate with native SiO2 on the surface. 

 

According to the analysis above, we can thus obtain the epitaxy window of STO/Si 

system, as sketched in Figure III. 24. Both of the too elevated and too low growth 

temperatures lead to amorphous interfacial layer between STO and silicon and the optimal 

temperature is around 360°C. At the optimal temperature, too high or too low initial oxygen 

partial pressures (for the first 2ML~4ML STO) result in the formation of amorphous 

interfacial layer and the optimal oxygen partial pressure is 5×10-8Torr. In contrary, a higher 

oxygen pressure 5×10-7Torr~1×10-6Torr is required for the following growth to achieve the 

good stoichiometry of SrTiO3. Compared to the optimal growth conditions of STO/STO 

homoepitaxy that are ~550°C and 1×10-6Torr, the optimal growth conditions of heterosystem 

STO/Si fall in a regime of relative low temperature and low initial oxygen partial pressure. 
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Figure III. 24 Diagram of STO/Si(001) system PO2-T. 

 

III.3.4) SrTiO 3 film grown under optimal conditions 

In the previous section, we discussed the impacts of growth temperature and initial 

oxygen partial pressure on the heteroepitaxy of STO on Si (001). Optimized material quality 

and abrupt interface if obtained at T = 360°C with an initial O2 partial pressure of 5×10-8Torr 

for the first 2ML of STO. In this section, we will analyze the structural properties of STO 

films grown under the optimal growth conditions in further details. 

 

III.3.4.1) Two-phased STO, strain relaxation 

The XRD out of plane 2θ-ω scans recorded around the STO 002 reflection for five 

samples with the thicknesses of 10ML, 14ML, 24ML, 42ML and 118ML are displayed in 

Figure III. 25 (a) (in reciprocal space units: q = 1/d where d is the distance in the real space 

along the growth axis). The spectra of the four thinner samples (10, 14, 24 and 42 ML) 

present Pendellösung fringes attesting for the good crystallinity and flatness of the STO layers. 

The main diffraction peak progressively shifts towards large q values increasing the STO 

thickness beyond 14 ML, indicating a decrease of the STO out of plane lattice parameter. At 

118 ML, Pendellösung fringes are no longer detected due to a degradation of the STO quality 
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associated to plastic relaxation (see below).  

 

Figure III. 25 (a): 2θ-ω scans of the STO 002 reflection for 10, 14, 24, 42 and 118 ML thick 

STO/Si layers. Grey, dark cyan and red-dashed lines: fit of the peaks. q = 1/d is the 

interatomic distance in the growth direction. (b) Zooms in linear scale on the Pendellösung 

fringes of the spectra of (a). ∆q is the offset with respect to the center of the cardinal sinus 

contribution. (c): Reciprocal space map of the STO 002 reflection, and 2θ-ω profile of the 

map for ω= 0. 

 

Interestingly, the Pendellösung fringes are not symmetric for the 10, 14, 24 and 42 ML 

samples. The XRD spectra cannot be fitted using a simple cardinal sinus function, and a 
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shoulder peak at low q value must be added, as shown in Figure III. 25 (b). A good agreement 

between experimental data and fitted curves is obtained by using a sum of a cardinal sinus 

(for the main diffraction peak and the Pendellösung fringes) and a Gaussian function (for the 

low q shoulder). Such a dissymmetry of the diffraction spectrum can result from geometric 

effects (strong mosaicity of the STO layer, possible misalignment between the STO layer and 

the Si substrate). To test this hypothesis, a reciprocal space map of the STO 002 reflection of 

the 24 ML thick sample was recorded using a Ge 200 two bounces analyzer on the diffracted 

beam (Figure III. 25 (c)). This allows strongly reducing the detection acceptance angle, thus 

removing possible parasitic diffraction due to geometric effects. The profile extracted for the 

reciprocal space map of Figure III. 25 (c) at ω= 0 is also dissymmetric, indicating that this 

dissymmetry is related to the presence in the layers of two different STO domains having two 

different out of plane parameters (designated as c in the following). The 002 STO peak of the 

118 ML thick sample can also clearly be decomposed into two components, as shown in 

Figure III. 25 (a). 

 

In-plane diffraction was used to record the 2θχ-φ spectra corresponding to the 110 STO 

reflections. The 2θχ angle in in-plane configuration is equivalent to the 2θ angle in the 

out-of-plane configuration, so that in-plane 2θχ-φ scans are equivalent to 2θ-ω out-of-plane 

scans. 110 STO reflections are particularly interesting because 100 Si reflections, that are 

theoretically located in the same angular region, are forbidden due to diffraction selection 

rules. Diffraction from STO only is thus collected around the 110 STO reflections. A 

deconvolution into two Gaussian peaks was required to fit these 2θχ-φ scans, as shown in 

Figure III. 26. The bimodal character of the diffraction peaks is clear for the 10, 14 and 24 ML 

samples, and becomes less clear for larger thicknesses. However, even for the 42 and 118 ML 

thick layers, a better fit was obtained using two Gaussian peaks rather than one.  
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Figure III. 26 In-plane 2θχ-φ scans of the STO 110 reflections for 10, 14, 24, 42 and 118 ML 

thick STO/Si layers. Dark-grey, blue and red-dashed lines: fit of the peaks. q = 1/d is the 

interatomic distance in the growth plane. 

 

Figure III. 27 Evolution of the in-plane (a) and out-of-plane (c) STO lattice parameters as a 

function of the STO thickness in ML, as deduced from XRD experiments. Grey and dark lines 

correspond to the evolution of c and a, respectively for the cubic STO phase, and dark cyan 

and blue lines correspond to the evolution of c and a, respectively for the tetragonal t-STO 

phase. Red-dashed lines : calculated values for c and a for fully strained and fully relaxed 
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cubic STO, taking into account the influence of the Si substrate on the thermal expansion of 

STO during the temperature ramping down step after growth. 

 

This analysis indicates that the STO layers contain two STO domains having two 

different in-plane lattice parameters (designated as a in the following) and two different 

out-of-plane lattice parameters c. The lattice parameter values extracted from in- and 

out-of-plane XRD experiments are plotted in Figure III. 27. In this figure, the red dash-dotted 

lines represent the values calculated for in- and out-of-plane lattice parameters of fully 

strained and fully relaxed (bulk) cubic Pm3m STO. The calculation is based on the elastic 

theory considering thermal expansion effect, as discussed in detail in previous section III. 

3.3.3. As a consequence, thin STO layers grown on Si substrates undergo additional thermal 

deformation after epitaxy, when the temperature is ramped from the growth temperature 

(360°C) down to room temperature (20°C). As described in Ref.58 for the GaAs/Si system, 

the in-plane lattice parameter of STO is submitted to the Si thermal expansion coefficient, 

while the effective STO out-of-plane thermal expansion coefficient depends on the thermal 

expansion coefficients of Si and STO as well as on STO elastic constants, and rates 

1.315×10-5 °C-1. This anisotropic contraction leads to built-in tensile strain at room 

temperature in STO thin layers relaxed on Si at growth temperature (for such relaxed layers, a 

is larger than c). The dark and light gray experimental curves in Figure III. 27 labeled 

“cub-STO a” and “cub-STO c”, respectively correspond to the same STO domain: for 

thicknesses lower than 24 ML, the corresponding experimental values for a and c correspond 

to the calculated values for “standard” STO crystallizing in the cubic Pm3m perovskite 

structure and fully strained on the Si substrate. For this STO phase, designated as cub-STO in 

the following, plastic relaxation starts between 24 and 42 ML, leading to a decrease of c and 

an increase of a. For the 118 ML, the experimental values of a and c matches that calculated 

for bulk cubic Pm3m STO (on condition that differential thermal expansion is taken into 

account), showing that the cub-STO phase is fully plastically relaxed for this thickness. 

According to these experimental results, the critical thickness for plastic relaxation of STO on 

Si is between 24 and 42 ML. 

 

The remaining set of lattice parameters (blue and dark cyan curves in Figure III. 27 

labeled t-STO a and t-STO c, respectively) correspond to a second STO phase, designated as 

t-STO in the following. Obviously, this t-STO phase does not correspond to cubic Pm3m STO: 
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the associated c values for the 10, 14 and 24 ML thick STO layers are around 4.1 Å, which is 

much larger than the expected c value for cubic STO even strained on Si, and the associated a 

values does neither match that expected for cubic STO strained on Si, nor that expected for 

bulk cubic Pm3m STO. It corresponds to a tetragonal STO phase, the origin of which will be 

discussed in further details in the next section. The tetragonality (c/a-1) as a function of the 

deposited STO thickness and the evolution of c as a function of a are plotted for both 

cub-STO and t-STO phases in Figure III. 28. For the cub-STO phase, the tetragonality 

corresponds to that expected for cubic Pm3m STO strained on Si for thicknesses below 24 

ML, and tends toward that expected for fully relaxed STO for larger thicknesses. Moreover, 

the evolution of c as a function of a matches that expected from linear elasticity for cubic 

Pm3m STO (black dash-dotted line in Figure III. 28 (b)). For the t-STO phase, the 

tetragonality is around 0.06 for thicknesses below 24 ML, and tends toward that expected for 

fully relaxed cubic STO for larger thicknesses. For this t-STO phase, the evolution of c as a 

function of a presents two regimes: for thicknesses below 24 ML, the experimental points are 

aligned along a line that can be easily fitted (dark gray dash-dotted line in Figure III. 28 (b)) 

using a Poisson-type relationship of the form: 

)aa(
C

C
2ac b

11

12
b −××−=   

where ab, C12 and C11 are the bulk lattice parameter and elastic constants of the t-STO phase, 

respectively. The fit in Figure III. 28 (b) leads to ab ~ 4.0 Å and C12/C11 ~0.46, which strongly 

differs from the values for cubic Pm3m STO (ab = 3.905 Å and C12/C11 = 0.323). Interestingly, 

for the 42 and 118 ML thick STO layers, the evolution of c as a function of a for the t-STO 

phase deviates from that predicted by Poisson relationship and tends towards that measured 

for the cub-STO phase. This evolution, as well as that of the tetragonality, suggests that the 

t-STO phase undergoes a progressive tetragonal to cubic phase transition for deposited 

thicknesses larger than 24 ML, which corresponds to the thickness above which the plastic 

relaxation of the cub-STO phase starts.   
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Figure III. 28 (a) : Evolution of the tetragonality (c/a-1) as a function of the STO thickness for 

the cub-STO phase (dark grey) and the t-STO phase (dark cyan). Red-dashed lines: calculated 

tetragonalities for fully strained and fully relaxed cubic STO, taking into account the 

influence of the Si substrate on the thermal expansion of STO during the temperature ramping 

down step after growth. (b): evolution of c (out-of-plane lattice parameter) as a function of a 

(in-plane lattice parameter) as a function of the STO thickness for the cub-STO phase (dark 

grey) and the t-STO phase (dark cyan). Dark-grey dash-dotted line: elasticity theory 

prediction for cubic STO (elastic parameters indicated on the graph). Dark cyan dash-dotted 

line: fit on the three smallest thicknesses for the t-STO phase (fit parameters indicated on the 

graph). 

 

In order to further precise the experimental results detailed above, the 10 ML thick 

STO/Si sample was studied by high-resolution TEM (Figure III. 29). A high-resolution 
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cross-sectional view of this sample is displayed in Figure III. 29 (a). The STO layer is flat and 

its interface with Si is abrupt at the atomic scale. The image contrast in the STO region 

presents clear heterogeneities, attesting for slight crystallographic disorder. More precisely, 

well defined bright zones (as zone 1 in Figure III. 29 (a)) coexist with darker zones (as zone 

2). The electron diffraction pattern corresponding to the image of Figure III. 29 (a) is 

displayed in Figure III. 29 (b). In the in-plane (horizontal) direction, the Si 220 and STO 200 

diffraction spots are superimposed, as expected from the indirect epitaxial relationship 

between STO and Si. In the growth (vertical) direction, the STO 002 diffraction spot appears 

clearly. Interestingly, this diffraction spot is doubled, indicating that the STO presents two 

distinct c parameters. The values of these c parameters, as extracted from the diffraction 

pattern are 3.95 ± 3×10-2 Å and 4.10 ± 2×10-2 Å for the bright external spot and the less bright 

internal spot, respectively. These values match that measured by X-ray diffraction for the 

c-parameters of the strained cub-STO and the t-STO phases in the 10 ML thick sample, 

respectively. The Fourier transform of the image of Figure III. 29 (a) is displayed in Figure III. 

29 (d). In this Fourier transform image, the in-plane STO 200 diffraction spot is no longer 

masked by the Si 220 diffraction spot, and both reflections can be distinguished, as shown by 

the zoom in the corresponding region (Figure III. 29 (e)). The two diffraction spots 

correspond to a values of 3.845 ± 8×10-3 Å and 3.899 ± 8×10-3 Å. The smallest of these values 

correspond to the Si 110 interatomic distance and to the a value for strained cub-STO, while 

the largest corresponds to the a value measured by XRD for the t-STO phase. This TEM 

analysis thus confirms the presence of the two STO phases in the 10 ML thick samples, and 

also confirms the a and c values measured by XRD. 
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Figure III. 29 (a) High-resolution TEM cross-sectional view of the 10 ML thick STO/Si layer. 

(b) : corresponding electronic diffraction pattern. (c) Zoom around 002 Si and 002 STO out of 

plane reflections (squared zone in (b)). (d) : Fourier-transform of the image of Figure 29(a), 

and (e), zoom around the 002 in-plane reflections (squared zone in (d)). 

 

III.3.4.2) Formation of the two STO phases 

Further information can be extracted from the analysis of the TEM image of Figure III. 

29 (a): the Fourier-transform images corresponding to zone 1 and 2 are displayed in Figure III. 

30. The horizontal line profiles recorded along the <200> axis in these Fourier transform 

images are compared in this figure. This graph shows that STO has not the same in-plane 

lattice parameter in zone 1 and in zone 2. In zone 1 (bright zone in Figure III. 29 (a)), the a 

value extracted from the Fourier-transform image of Figure III. 30 is 3.85 ± 1.5×10-2 Å, which 

is close to that expected for STO strained on Si (3.840 Å). In zone 2 (darker zone in Figure III. 

29 (b)), the a value for STO is 3.90 ± 1.5×10-2 Å, very close to that measured by XRD for the 

t-STO in-plane lattice parameter in this sample, namely 3.89 ± 2×10-2 Å. This analysis allows 

concluding that bright zones in Figure III. 29 (a) correspond to coherently strained cubic 

Pm3m STO, while darker zones in Figure III. 29 (a) correspond to tetragonal STO.  
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Figure III. 30 Fourier transform images of zone 1 and 2 in Figure III. 29 (a), and associated 

profiles along the [200] in-plane axis. Insets of the graph: zooms around the STO -200 and 

STO 200 reflections. 

 

According to Figure III. 29 (a), the extension of these STO domains is of the order of ten 

or a few tens nanometers. They are separated by vertical boundaries, leading to a (quite 

disturbed) columnar like morphology. Both STO domains are present in approximately same 

proportions in the 10 ML sample, according to Figure III. 29 (a). Both STO phases are very 

similar from a chemical point of view, so that the difference in the TEM contrast between the 
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STO domains cannot be interpreted as resulting from chemical effects. Tetragonal STO 

domains are darker because they are slightly misoriented with respect to the Si substrate 

(mosaicity), oppositely to perfectly oriented coherent cubic STO domains. This mosaicity also 

leads to a quite low contribution of the t-STO phase in the heavily angularly resolved 

out-of-plane XRD spectra of Figure III. 25. Oppositely, the in-plane experiments summarized 

in Figure III. 26 have been carried out using a much lower angular resolution. In these 

in-plane spectra, the relative intensities of the peaks corresponding to cubic and tetragonal 

STO is much more representative of the volumic proportion of these domains in the samples.  

 

The t-STO phase thus presents a more pronounced mosaicity than the well ordered 

coherent cub-STO phase. The coexistence of a well ordered and a more disordered STO phase 

appears clearly in the ω-scans of the STO 002 reflection plotted in Figure III. 31. Up to 24 

ML, i.e. as long as the cub-STO phase remains coherently strained on Si, these ω-scans 

present a sharp central contribution corresponding to a well ordered STO phase, and a much 

broader contribution corresponding to STO with strong mosaicity. According to the TEM 

analysis described above, the well ordered STO phase leading to the sharp central 

contribution in the ω-scans correspond to coherently strained cub-STO (bright zone 1 in 

Figure III. 29 (a)), while the broader contributions in the ω-scans (due to stronger mosaicity) 

correspond to the more disorder t-STO phase (dark zone 2 in Figure III. 29 (a)). Very similar 

results as that displayed in Figure III. 31 have been published in Ref.59. In this article, the 

authors attribute the sharp portion of the STO 002 ω-scans to the presence of coherently 

strained STO, which is consistent with our analysis. Oppositely, in Ref.59, the origin of the 

broader contribution (which is reported by the authors for STO thicknesses as low as 5 ML) is 

not clearly discussed and is attributed to a relaxed portion of the STO layer. According to our 

experimental results, the plastic relaxation critical thickness for the cub-STO/Si systems 

exceeds 24 ML, which excludes the presence of a STO relaxed portion in 5 ML thick layers. 

The disordered STO portion in thin layers (up to 24 ML) corresponds to the t-STO phase, as 

clearly shown by our experimental results. Above 24 ML, plastic relaxation of the cub-STO 

phase occurs, leading to the disappearance of sharp contribution in the ω-scans of Figure III. 

31: plastically relaxed cub-STO presents a strong mosaicity due to the presence of threading 

defects associated to plastic relaxation. 
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Figure III. 31 ω-scans of the STO 002 reflections for 10, 14, 24, 42 and 118 ML thick STO/Si 

layers. 

 

The evolution of the RHEED pattern at the early stages of STO growth is presented in 

Figure III. 32 (a). Pattern (i) corresponds to the (2×1)-reconstructed Si surface before growth, 

while patterns (ii), (iii) and (iv) were recorded after the growth of 0.8, 2 and 5 ML, 

respectively. The contrast of the diffraction lines in pattern (ii) is low, due to the presence of a 

relatively bright background. This indicates that STO is initially partly amorphous, as 

described in Ref.60. The amorphous part of STO then recrystallizes, leading to brighter 

diffraction line contrast in patterns (ii), (iii) and (iv).  
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Figure III. 32 (a) RHEED patterns recorded along the Si [110] azimuth before STO growth (i), 

and after 50 (ii), 110 (iii) and 250 s (iv) of STO growth. (b) : red circles : evolution of the 

RHEED contrast (ratio between the diffraction line intensity and the background intensity) as 

a function of the deposition time. The points arrowed (i), (ii), (iii) and (iv) correspond to the 

RHEED patterns of (a). black squares : evolution of the STO in-plane lattice parameter, as 

deduced from the spacing between STO diffraction lines, a a function of the deposition time. 

Dark cyan lines: in-plane lattice parameters for fully strained cub-STO and for t-STO at 

360°C, as deduced from XRD and TEM measurements and taking into account the influence 

of the Si substrate on the thermal expansion of STO during the temperature ramping down 

step after growth. 

 

The evolution of the RHEED diffraction line contrast and of the STO in-plane lattice 
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parameter a (as deduced form the spacing of the RHEED diffraction lines) are plotted in 

Figure III. 32 (b). The diffraction line contrast was measured by normalizing the diffracted 

intensity with respect to the background intensity (recorded between 2 diffraction lines). It 

decreases as compared to that measured for the substrate during the first ~0.8 ML STO (zone 

1 in Figure III. 32(a)), and re-increases between 0.8 and ~2 ML. Intensity oscillations are then 

observed, indicating the onset of a two-dimensional layer-by-layer growth mode after ~2 ML. 

The evolution of the RHEED contrast between 0.8 and 2 ML is driven by the proportion of 

amorphous STO in the growing layer : the RHEED contrast decreases between 0 and 0.8 ML 

(zone 1) due to the increase of the background intensity, and increases above 2 ML (zone 2) 

due to a decrease of the background intensity. Beyond 2ML, the background intensity remains 

constant and the evolution of the RHEED intensity is mostly driven by the variation of the 

diffraction line intensity. This shows that amorphous STO is formed on the surface 

simultaneously with crystalline STO up to 0.8 ML, and that the amorphous STO part 

recrystallizes between 0.8 and 2 ML. Interestingly, the evolution of the STO in-plane lattice 

parameter a is correlated to that of STO crystallinity. Between 0 and 0.8 ML, a increases from 

the Si value (3.843 Å along the 110 azimuth at the growth temperature to approximately 3.9 Å. 

This value is very close to that measured by XRD and TEM for the in-plane lattice parameter 

of the t-STO phase (~3.903 ± 8×10-3 Å at the growth temperature if one considers that the 

in-plane lattice parameter of t-STO is submitted to the thermal expansion coefficient of Si 

during the temperature ramp-down after growth). This shows that the initially crystalline part 

of STO is the t-STO phase. Between 0.8 and 2 ML, when the amorphous STO part 

recrystallizes, it starts contributing to RHEED diffraction. In this region (zone 2) the STO 

in-plane lattice parameter decreases and reaches ~3.865 Å at 2ML. This shows that the 

in-plane lattice parameter of recrystallized STO is smaller than that of the initially crystalline 

t-STO phase. Considering the TEM and XRD results detailed above, the recrystallized (and 

initially amorphous) STO portion correspond to the coherently strained cub-STO phase. Due 

to its limited resolution, RHEED does not allow discriminating both STO lattice parameters: 

beyond 0.8 ML, when both STO phases coexist under their crystalline form in the deposited 

layer, the lattice parameter measured by RHEED is an average lattice parameter resulting 

from the contribution of both these phases. Above 2 ML, when the initially amorphous phase 

is fully recrystallized, the surface lattice parameter starts oscillating. These surface lattice 

parameter oscillations are characteristic for the growth of a coherently strained material61. The 

simultaneity between lattice parameter oscillation start and full recrystallization of the 
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initially amorphous STO phase further confirms that the initially amorphous STO phase 

recrystallizes into the coherently strained cub-STO phase between 0.8 and 2 ML. The 

formation of a coherently strained material by recrystallization of its amorphous phase on a 

substrate may a priori sound anti-intuitive. However, as mentioned in the introduction, the 

formation of coherently strained STO on Si by recrystallization of amorphous STO has 

already been reported earlier by several groups40,42,62, and is a standard technique for 

fabricating STO on Si (so-called “kinetically controlled” STO growth). 

 

III.3.4.3) Discussion on the origin of the t-STO phase 

At room temperature or even at its growth temperature on Si (360°C), the stable bulk 

STO phase is the cubic Pm3m phase. Bulk STO undergoes an extensively studied 

antiferrodistorsive phase transition at ~105 K, and is ferroelectric with a tetragonal I4/mcm 

structure below this temperature.63 This phase transition leads to a rotation of the TiO6 

octahedrons of the perovskite structure.64 It is associated to an increase of the tetragonality 

(c/a-1) of the STO lattice which turns form 0 above 105 K to a few 10-4 at 50K65,66. Pressure 

has been shown to strongly modify the critical temperature of this transition for bulk STO67, 

and strain related to mismatched epitaxial growth is also known as impacting the 

transition68,69,70. A Tc as high as 293K has thus been reported for a thin STO/DyScO3 epitaxial 

layer.71 However, the tetragonality reported in the studies mentioned above never exceeds 

10-3, and is much smaller than that reported here (between 5×10-2 and 7×10-2 for t-STO, when 

the total STO thickness is below 24 ML).  

 

For the STO/Si(001) systems, Aguirre-Tostado et al.72 have reported tetragonality values 

of 1.5×10-3 for STO thicknesses up to 40 Å, while Woicik et al73 have reported a value of  

was found to be fully strained on Si, i.e. to present exactly the same in-plane lattice parameter 

as that of Si. In both cases also, the formation of a tetragonal STO phase was attributed to the 

simultaneous influence of the strain and of an internal polarization related to the presence of 

interface defects (such as oxygen vacancies) and surface adsorbates. Finally, in both cases, 

STO was described as single-phased.  

 

It is likely that similar effects are at the origin of the formation of the t-STO phase in our 

samples, even if our experimental results significantly differ from that reported in Ref. 72 

and.73 In our samples, grown by direct deposition of partly crystalline STO (as in the low 
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temperature step of the kinetically-limited method), two STO phases coexist. The t-STO 

phase, while not commensurate to Si (it presents a larger in-plane lattice parameter as that of 

Si) is crystalline as soon as growth begins while the cub-STO phase results from the 

spontaneous crystallization of initially amorphous STO. Moreover, the t-STO phase is clearly 

present for STO thicknesses up to 24 ML (~96 Å), which is much larger than the maximal 

thicknesses of 40 and 20 Å reported in Ref. 72 and 73, respectively. In our growth conditions, 

the amount of oxygen provided at the early stages of the growth is insufficient to fully oxidize 

the entire material. In this O-poor environment, O segregation effects (enhanced by the 

presence of an elevated concentration of O vacancies) are liable to take place, leading to an 

inhomogeneous repartition of the O atoms (and O vacancies) at the very beginning of the 

growth that may be at the origin of the formation of the two STO phases. In the end, the fact 

that the t-STO phase is not coherent with the Si substrate (which indicate that it is not fully 

strained on Si) while the cub-STO phase is fully strained on Si indicates that epitaxial strain 

does not play a major role in the formation of a t-STO phase. 

 

III.3.4.4) THz IR evidence of the two-phased STO and relaxation 

The samples discussed in the previous section were also studied by IR measurements, on 

the SOLEIL AILES beamline in collaboration with Prof. P. Roy. The results of the 14, 24, and 

118 ML thick samples are plotted in Figure III. 33. For these samples, all the TO modes (TO1, 

TO2 and TO4) shift to lower energies when the film thickness increases from 14ML to 114ML, 

which corresponds to the plastic relaxation of the cubic STO phase. For the 14ML film 

several extra TO modes (including soft modes) are observed appear in the THz range (20~100 

cm-1) which shows that cubic STO phase, as well as unpolarized and polarized tetragonal 

(ferroelectric, corresponding to soft modes) STO phases coexist in the film. For the 24ML 

STO film, a single extra TO mode (non soft mode) remains indicating that the tetragonal 

phase portion STO decreases (no polarized phase) but still can be detected. However, when 

the film thickness reaches 118ML, no extra TO mode exists suggesting the STO film is 

entirely relaxed. These results are in good agreement with our XRD analysis: a tetragonal 

STO portion exists in the films up to at least 24 ML, and disappears for larger thicknesses. 

Moreover, this analysis allows concluding that two tetragonal STO phases (namely polarized 

and unpolarized) coexist in the 14ML-thick films. 
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Figure III. 33 Evolution of the IR transmission spectra of STO films grown under optimized 

condition as the film thickness increases. 

 

III.3.4.5) Evolution of the surface morphology of the STO film 

In this section, we investigate the evolution of the surface morphology as the STO film 

thickness increases. Figure III. 34 shows the RHEED patterns and corresponding AFM 

1×1µm images of STO films with different thicknesses (this sample series is the same as that 

discussed in the previous sections). These experiments highlight the effects of plastic 

relaxation of STO morphology: below 42 ML, the films are flat. Roughness then increases 

above 24 ML (critical thickness for plastic relaxation according to our XRD experiments), due 

to the onset of plastic relaxation and related formation of defects in the STO layers. 

14ML 24ML 42ML 118ML 

    

    
Figure III. 34 Evolution of the surface morphology of the STO films as the thickness increases: 

RHEED patterns (upper) and AFM 1×1µm images (below, inset shows the RMS values) 
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III.3.5) Summary 

Our experimental results give some clarifying elements on the STO/Si interface, 

morphology, STO crystallinity and strain relaxation process. According to our analysis, the 

STO growth shows temperature and oxygen partial pressure dependence. The optimized 

epitaxy window is 360°C and initial PO2=5×10-8Torr. For the STO films grown under the 

optimized condition, STO is two-phased. A cubic STO phase is formed by recrystallization of 

initially amorphous STO. This STO phase is coherently strained on Si and obeys elasticity 

laws (with the elastic constants of bulk cubic Pm3m STO) up to 24 ML. Above this thickness, 

plastic relaxation starts leading to fully relaxed STO at 118 ML. The tetragonal t-STO phase is 

crystalline as soon as growth begins and remains tetragonal (with a tetragonality of 5×10-2 to 

6×10-2) up to at least 24 ML. Further increase of STO thickness leads to a progressive 

reduction of the tetragonality of the t-STO phase that tends to 0 for large STO thicknesses. 

Despite the apparent simultaneity between plastic relaxation of the strained cub-STO phase 

and diminution of the tetragonality of the t-STO phase (which requires further experimental 

confirmation, by studying STO/Si layers with intermediate thicknesses), epitaxial strain is not 

likely to be the main driving force for the formation of the t-STO phase: O vacancies 

associated with O segregation at the early stages of the growth are more likely at the origin of 

this phenomenon. Improving the STO structural quality requires:  

-further understanding and control of the origin of the formation of these two phases, in 

order to obtain single phased STO 

-increasing the STO growth temperature: at 360°C, STO is initially partly amorphous. 

The optimal growth temperature for STO/STO homoepitaxy is 550°C. 

 

III.4) Towards substrate-like quality SrTiO 3 thin films on Si (001) 

III.4.1) Alternative strategies of Si surface passivation 

One of the principal objectives of this thesis consists in the development of perfect STO 

epitaxial film on silicon substrate and the comprehension of the issues related to system 

thermodynamics, oxidation kinetics and knowledge of interfacial structures. In order to 

improve the crystalline and surface quality of the STO film epitaxially grown on silicon 

substrate, we discuss in this section several different Si passivation strategies and their 

influence on the STO structural quality.  
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III.4.1.1) Silicate (Sr2SiO4) buffer layer 

Since R. C. McKee et al74,75,76 firstly pointed out the crucial role of Sr termination layers 

in the preparation of crystalline oxide-semicondutor heterostructures, the growth of alkaline 

earth oxides (SrO, (Ba,Sr)O) on silicon were intensely studied, particularly during the first 

stages of their growth on Si. Y. Liang77 et al reported an investigation of a two-dimensional 

silicate-like layer (Sr2SiO4) on Si (001) surface. This layer remains stable at high temperature 

~450°C in oxygen rich environment with oxygen partial pressure up to 5×10-7 Torr hence can 

possibly be used as an interfacial template for the subsequent growth of single-crystalline 

perovskites. We have further studied78 the structural and chemical behavior of the crystalline 

Sr2SiO4 layer and it is found that this silicate decomposes to SrSiO3 at higher temperature 

600°C due to internal reactions and/or by reaction with the substrate. 

 

In this thesis, we examine firstly the growth of STO on 2D silicate layer reported by Y. 

Liang (Ref. 77). This process consists in forming the silicate and subsequently growing STO 

at around 550°C. The process details and the RHEED patterns obtained along Si[110] azimuth 

at each step are shown in Figure III. 35. After treatment by BOE plus UV ozone (III.2.1), the 

silicon surface is covered by ~1nm thick SiO2 layer. An annealing at 950°C for 1 hour is 

performed to obtain a clean (2×1) reconstructed Si surface. Strontium is then added to the 

silicon surface from 1/3ML (×3 reconstruction) to 1/2ML (×2 reconstruction) at 600°C. The 

substrate temperature is then ramped down to 160°C and the 1/2ML Sr is oxidized under 

oxygen partial pressure of 5×10-8Torr. A 2D single crystalline Sr2SiO4 layer is formed by 

increasing the temperature to 550°C, which is revealed by a clear, well-define RHEED pattern 

with Kikuchi lines. STO is deposited on this silicate buffer layer at 550°C with oxygen partial 

pressure 5×10-7Torr. We observe that the STO film remains amorphous until 4ML and exhibits 

both crystalline and amorphous phases when the thickness is 20ML, which suggests the 

possible reaction between the deposited STO and Si substrate and the formation of amorphous 

interfacial layer. Therefore the 1/2ML silicate layer cannot passivate silicon surface at high 

temperature and high oxygen partial pressure.  

 

It is very likely that the 1/2 ML silicate layer is too thin to prevent the interfacial reaction. 

According to the results of Ref. 38, the Sr2SiO4 layer is formed during the epitaxial growth of 

SrO on silicon substrate when the growth temperature is higher than 500°C, and remains 

single crystalline and 2D up to 6ML. We have thus investigated the growth of this silicate as a 
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function of the growth temperature. 

  

Figure III. 35 Growth processes of STO/SrSiO4/Si(001) system. The RHEED patterns are all 

taken along Si[110] azimuth. 

 

10ML silicate layers are deposited at 500°C~750°C with a Sr flux of 9×10-9Torr and 

oxygen partial pressure of 1×10-8Torr (optimized condition of SrO epitaxy, see Ref. 38). 

Figure III. 36 shows the RHEED patterns along Si [110] azimuth of the 10ML-silicate on 

silicon substrate. At 500°C, the RHEED displays only diffuse halo suggesting a completely 

amorphous feature of the deposited layer. It has to be noted that the growth always begins 

from a crystalline phase but the portion of amorphous phase continuously increases and 

covers the entire surface at the end of the growth. As the temperature increases to above 

650°C, the crystalline phase (streak lines) can still be observed for the 10ML film. 

Nevertheless, at the extreme temperature 750°C the growth mode turns into three dimensional 

one.  
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500°C  550°C 600°C  

   
650°C 700°C  750°C  

   

Figure III. 36 RHEED pattern along Si [110] azimuth of 10ML silicate layers at different 

temperatures 

 

Based on these observations we conclude that the initial 2D single crystalline silicate 

layers cannot be grown on Si at any temperature. It is not surprising because neither the two 

Sr2SiO4 phases (α and β) structurally matches silicon79, considering that Sr2SiO4-α has an 

orthorhombic (group space N°62 Pmnb) phase with a=5.682Å, b=7.090 Å, c=9.773 and 

Sr2SiO4-β possesses a monoclinic (group space N°14 P121/n1) phase with a=5.663Å, b=7.084 

Å, c=9.767 Å80. Therefore the initial crystalline silicate layer is likely a pseudomorphic phase 

and stable only within few monolayers.  

 

We examine the quality of STO films grown on 2ML-thick silicate buffer layers at 

550°C~650°C. Figure III. 37 exhibits the evolutions of RHEED patterns along Si[110] 

azimuth for the STO growth on silicate/Si (001) template. We observe that 2ML silicate layers 

grown at 550 °C show clear streak lines attesting the single crystalline feature. The RHEED 

pattern of 10ML-STO grown at the same temperature displays clear, streak lines feature 

suggesting single crystalline growth. However, the initial 5ML STO shows partly amorphous 

feature revealing the formation of interfacial layer. For higher temperatures, the RHEED 

patterns show coexistence of streaks and the diffuse halo suggesting both crystalline and 

amorphous phases. The RHEED patterns of STO films deposited on these silicate layers 

demonstrate spots and Debye-Sherrer rings suggesting 3D and polycrystalline growth modes. 
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2ML silicate 
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Figure III. 37 RHEED patterns along Si [110] azimuth of the STO growth on silicate/Si(001) 

template at different temperatures.  
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Figure III. 38 Evolutions of (a) RHEED intensity of the specular spot and of (b) the silicate 

lattice parameter (deduced from RHEED diffraction line spacing) 

 

Figure III. 38 (a) and (b) respectively shows the evolutions of RHEED intensity of the 

10ML 10ML 
10ML 5ML 
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specular spot and of the silicate lattice parameter during the silicate growth at 550°C. The 

RHEED intensity undergoes a continuous decline during the growth and the oscillations show 

that 3ML-thick silicate film is deposited. The ap remains constant and equals to that of the 

silicon substrate value (3.845Å at the growth temperature 550°C) suggesting a pseudomorphic 

growth of silicate film on Si. 

 

The crystallographic quality of a 60ML-thick STO/2ML-silicate/Si sample grown at 

550°C was examined by XRD 2θ-ω measurement, as shown in Figure III. 39. The intense 

sharp peak locating at 2θ=69.13° corresponds to the Si 004 reflection. The Si 002 peak 

(2θ=32.95°) that should be extinct also appears probably due to the interdiffusion of the atoms 

at the silicate/Si interface. The STO (001), (002) and (004) peaks appear at 2θ=22.75°, 46.56° 

and 104.44°, exhibiting good quality of single-crystalline STO film, in good agreement with 

the RHEED observations.  
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Figure III. 39 XRD 2θ-ω scan of the STO film grown on silicate/Si(001) template at optimized 

growth condition. 

 

Compared to the STO grown on Sr-passivated Si surface at ≥500°C, which is 

polycrystalline, the 2D single-crystalline STO film can be epitaxially grown on silicate/Si(001) 

template at 550°C. Nevertheless, an amorphous interfacial layer forms at the interface and the 

STO recrystallizes after 5ML. 

 

III.4.1.2) (Ba,Sr)O-passivated Si(001) 

In addition to SrO, the binary oxide BaO was also been envisaged and explored as a 
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buffer layer for the heteroepitaxy of perovskite oxides on silicon81,82. In particular, the mixed 

compound (Ba1-x,Srx)O attracts intense researches83,84,85 due to the possibility to tune its 

lattice parameter between that of BaO(5.534Å) and that of SrO(5.140Å). According to the 

Vegard Law86, the compound (Ba0.72Sr0.28)O adopts the same lattice parameter as that of 

silicon (5.431 Å) at room temperature. Hence lattice-matched epitaxy could be envisaged 

between (Ba0.72Sr0.28)O and Si and also between (Ba1-x,Srx)O and STO by progressively 

changing the alloy composition. 

 

The growth condition of the mixture (Ba0.72Sr0.28)O has been detailed investigated in the 

thesis of G. Delhaye38 at INL. The optimized growth condition of (Ba0.72Sr0.28)O can be 

summarized as following:  

(1) Low growth temperature (60°C). At such low temperature, the mobility of the metal 

species is limited leading to a homogeneous mixed compound in case of 

co-deposition.   

(2) Oxygen partial pressure of 1×10-8Torr. This critical oxygen partial pressure 

guarantees the complete oxidation of the metal species while prevents the formation 

of the phases of BaO2 and SrO2. 

(3) The stoichiometry of the mixture (Ba0.72Sr0.28)O is determined by the measurement of 

Quartz Crystal Microbalance. 

 

RHEED patterns along Si[110] and Si[100] of a 19ML (Ba0.72Sr0.28)O film are shown in 

Figure III. 40. The high contrast, well-ordered streak lines exhibit good single crystalline 

quality of the layer. In addition, the epitaxial relationship between (Ba0.72Sr0.28)O and Si can 

be defined as [100] (Ba0.72Sr0.28)O (001)//[100]Si(001). 

 

Figure III. 40 RHEED patterns of (a)1/2MLSr covered Si surface, (b)(Ba,Sr)O[110] surface 

along Si[110]direction and (c) (Ba,Sr)O[100] along Si[100]direction. 

 

Figure III. 41 (a) shows the evolution of the RHEED intensity of the specular spot during 
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the growth of the (Ba0.72Sr0.28)O sample grown under optimized condition. The plotting 

displays oscillation at the beginning of the growth suggesting layer-by-layer growth mode, 

which transforms to 3D growth revealed by the disappearance of the oscillations. The 

evolution of the lattice parameter of (Ba0.72Sr0.28)O is plotted in Figure III. 41 (b): it oscillates 

in phase opposition with respect to the RHEED intensity. This behavior corresponds to the 

non-tetragonal deformation of the (Ba0.72Sr0.28)O takes place at the free edges of the 

two-dimensional islands formed during the layer-by-layer growth, as explained in III 3.5. The 

lattice parameter of (Ba0.72Sr0.28)O remains similar to that of silicon, indicating that good 

lattice-matched (Ba0.72Sr0.28)O epitaxial film has been grown on Si(001). 
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Figure III. 41 Evolution of the intensity of the RHEED diffraction lines (a), and of the 

(Ba0.72Sr0.28)O lattice parameter (b) (as deduced form RHEED diffraction line spacing). 

 

In order to investigate the stability of (Ba0.72Sr0.28)O thin film on silicon substrate, the 

interface of the as-deposited 5ML sample and a sample annealed at 380°C for 10min under 

UHV are probed by XPS87. Figure III. 42 shows the XPS spectra of Si 2s of the two samples. 

An high energy shoulder appears on the the Si 2s peak after the annealing of 380°C, which 

corresponds to the presence of silicate and silica at the interface. These results demonstrate 

that the (Ba,Sr)O layer is thermodynamically instable on silicon even at such low temperature 

of 380°C, which make (Ba,Sr)O not suitable as a passivation layer on silicon for the 

subsequent STO growth at relative high temperatures (550°C). 
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Figure III. 42 XPS Si 2s spectra87 of the as-deposited sample and the sample annealed at 

380°C for 10min under UHV. 

 

III.4.1.3) Summary 

In this section, we have examined two other passivation methods in addition to 1/2 

ML-SrO to achieve the commensurately epitaxial growth of STO on silicon without the 

recrystallization process. However, none of these two techniques effectively passivate silicon 

surface at the relative high temperature 550°C, the optimal growth temperature for STO 

homoepitaxy. Other strategies should be identified to attain this objective. 

 

III.4.2) “2 steps” growth approach 

Given that the strategies discussed above could not be used to passivate silicon surface at 

high temperature, a “2 steps” growth approach has been explored in this thesis. It is detailed 

in this section. The STO epitaxial film grown under the optimal condition identified in III. 3 

(360°C and initial oxygen partial pressure of 5×10-8Torr) is firstly annealed under UHV at 

550°C to be used as a buffer layer (first step). Further STO epitaxy is then performed at 

550°C, and under an oxygen partial pressure of 5×10-7~1×10-6Torr. This process is illustrated 

in Figure III. 43. 

 
Figure III. 43 Illustration of “2 steps”approach of epitaxial growth of STO. Left panel shows 

step 1 of the STO growth under optimized condition and right panel displays step 2 of an 
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annealing and the epitaxy at high temperature and high oxygen partial pressure. 

 

III.4.2.1) Influence of STO buffer layer thickness: crystallinity 

As discussed in the following, the “2 steps” approach is a compromise between STO 

structural quality (crystallinity, defects) and interface abruptness. The STO grown at the first 

step presents an abrupt interface with silicon and is expected to act as a buffer layer role to 

prevent Si from oxidization at high temperature and under high oxygen partial pressure. 

Because the oxygen might diffuse through the STO buffer layer to the STO/Si interface and 

lead to the formation of silica amorphous layer, we investigate the influence of STO buffer 

layer thickness to the quality of the samples.  

 

A series of 45nm-thick STO/Si samples (grown at 550°C under 5×10-7 Torr of oxygen 

except for the STO buffer) with 2ML, 5ML and 10ML STO buffer layer (grown at 360°C) 

have been fabricated. The evolutions of the RHEED patterns recorded along the Si[110] 

azimuth are shown in Figure III. 44. 

 

As shown in the figure, all the films are grown on flat, 1/2ML-SrO covered silicon 

substrates. At the first step, STO was deposited under optimal conditions defined in the 

section III. 3. The 2ML STO buffer exhibits both amorphous and crystalline phases, while the 

5ML and 10ML thick STO buffers present improved crystallinity due to recrystallization at 

360°C (see section III. 3.4.2). For 2ML STO, after annealed at 550°C under UHV, it is 

obvious that the diffuse halo vanishes and the RHEED pattern shows clear streak lines 

features, suggesting good crystallinity of the STO layer. For 5ML and 10ML samples, the 

streak lines displays higher contrast and better defined feature after annealing treatment. In 

the end of the growth, all the samples exhibit well-defined streak lines feature with a “×2” 

reconstruction RHEED patterns, suggesting high quality single-crystalline TiO2-terminated 

STO epitaxial layers. 
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Si surface 
(1/2ML-SrO covered) 

   

STO-1 step  
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Figure III. 44 RHEED patterns along Si [110] azimuth of “2 steps” STO films with different 

buffer STO thicknesses. 

 

HRXRD measurements were performed to further study the crystalline quality of the 

45nm STO layers. Figure III. 45 shows the typical 2θ-ω scans and ω scans (rocking curves) 

recorded the around STO 002 reflections for the different samples.. The 2θ-ω scans of the 

three samples exhibit the similar feature. The STO 002 peak centered at 2θ=46.58°, 

corresponding to an out-of-plane lattice parameter a⊥=3.896Å, indicates that the STO films 

are fully relaxed on the silicon substrate, considering the thermal expansion mismatch (see 

III.3.3.3). STO 003 peaks arising at 2θ=72.3° can also be observed for the samples with 5ML 

buffer and 10ML buffer, indicating high quality crystallinity of these films. The rocking 

curves however show that increasing the buffer layer thickness to 10 ML reduces the 

mosaicity of the STO film. It is very likely that thicker buffer layers result in better interface 

quality thus better crystallinity.  
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Figure III. 45 X-ray 2θ-ω scans in log scale (left panel) and ω rocking curve scans around 

STO (002) in linear scale of (right panel) for a series of STO films “2 steps” 

 

III.4.2.2) Interface and surface quality 

The “2 steps” samples have also been examined by HRTEM measurements to clarify both 

crystallization and interface qualities. Figure III. 46 (a) and (b) shows the HAADF-STEM and 

HRTEM cross-sectional view images of the 2ML-buffer sample respectively. 

 

Figure III. 46 (a) HAADF-STEM and (b) HRTEM cross-sectional view images of 2ML-buffer 

sample.  

 

From the TEM images we can clearly observe that an approximately 2nm SiO2 
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amorphous layer forms at the interface. In addition, surprisingly, this 2nm-SiO2 amorphous 

does not disappear as the buffer thickness increases to 5ML and 10ML (not shown here). 

According to an earlier study (Ref. 42), the silica layer forms at the second step of the growth, 

i.e. the oxygen (PO2=5×10-7~1×10-6Torr) diffuses through the grown STO layer to the silicon 

surface at such high temperature (550°C). Regarding to the STO layer quality, the highly 

uniform contrast displayed by the images verify a good crystallinity of the STO epitaxial film. 

We can clearly observe the strontium and titan atoms in the HAADF-STEM images. 

 

The surface morphology of the “2 steps” samples are also explored by AFM non-contact 

measurement. They all demonstrate an atomically flat surface. Figure III. 47 shows a 

4µm×4µm AFM image of 2ML-buffer sample, with the RMS of 0.11nm. 

 

Figure III. 47 4µm×4µm AFM image of 2ML-buffer “2 steps” STO/Si(001) sample. 

 

III.4.3) Strategy of multi-step recrystallization growth  

H. Li et al. in 2003 reported a kinetically controlled sequential deposition method for the 

STO/Si system with an abrupt interface62. This method consist of an initial deposition of 

amorphous 2ML STO at low temperature (200°C) and low oxygen partial pressure 

(1~5×10-8Torr) then annealing at 600°C and UHV, following with the repeat of this process 

till 10ML STO is obtained. They announced that this 10ML STO could maintain its integrity 

for subsequent further STO growth at high temperature (550°C) and high oxygen partial 

pressure (≥1×10-7Torr). Therefore we investigate this method in this section. 

 

Figure III. 48 shows the evolution of the RHEED patterns of the STO films at each step. 

After annealing at 550°C under UHV , well-defined steak lines RHEED pattern can be 

observed for the originally amorphous 2ML STO. By repeating the recrystallization process, 

10ML high quality single crystalline STO layer is obtained. Based on this 10ML buffer STO 
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layer, 105ML STO film is subsequently deposited at 550°C and oxygen partial pressure of 

1×10-6Torr. The final film shows the similar RHEED pattern as those grown using “2 steps” 

method, indicating a high quality single crystalline TiO2-terminated STO film. 

 

Figure III. 48 Evolution of RHEED patterns (upper) for each step of STO deposition using 

kinetically controlled sequential method in Ref 62. 

 

XRD 2θ-ω measurements were performed on this 45nm-thick sample, as shown in Figure 

III. 49 (a). The STO 002 peak appears at 2θ=46.60° (with a FWHM=0.22°), in the same 

position as that observed for STO grown by the “2 steps” method, which suggests STO is 

totally relaxed. The corresponding rocking curve ω (Figure III. 49 (b)) presents a FWHM of 

0.14°, which attests for the excellent structural quality of the STO layer.  

 

Considering the finite thickness of the STO sample (~45nm), the FWHM of 2θB/2 of 

perfect crystallite can be estimated by Scherrer formula: 

0.89

cos B

t
B

λ
θ

=  

where t the crystallite thickness, λ the X-ray wavelength (1.54059Å), B full width at half max 

(FWHM) and θB the Bragg angle (rad). Comparing the FWHM of calculation value (0.18°) 

and experimental one, a “substrate-like” STO epi-layer is obtained on Si(001) substrate. The 

surface morphology of this STO layer is characterized by AFM (4µm×4µm), which shows 

atomically flat quality with RMS=0.16nm, as is demonstrated in Figure III. 50.  
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Figure III. 49 (a) Typical 2θ-ω scans in log scale (a) and ω rocking curve scans around STO 

(002) in linear scale of (b) “recrystallized” STO films 

 

Figure III. 50 4µm×4µm AFM image of “recrystallinzed” STO/Si(001) sample 

 

Figure III. 51 (a) and (b) show the TEM cross-sectional images of the recrystallized 

10ML thick STO buffer layer (taken from Ref.62) and of our final 45nm-STO film. The 

10ML recrystallized STO buffer presents an abrupt interface with Si and the subsequent 

growth of STO at 550°C and O2 partial pressure of 1×10-6Torr lead to the formation of a 

~2nm-thick amorphous SiO2 layer at the interface. This behavior is similar to that of the 

STO/Si sample grown by “2 steps” method. Oxygen diffuses through the growing film 

resulting in the formation of interfacial SiO2.  
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Figure III. 51 TEM cross-sectional images of (a) 10ML-recrystallized STO buffer (Ref. 62) 

and (b) ~45nm-thick final STO epi-layer grown at 550°C and PO2=1×10-6Torr. 

 

III.4.4) Conclusion 

In this section, several strategies are compared to optimize STO structural quality while 

maintaining an acceptable interface structure between STO and Si. Neither the silicate nor 

(Ba,Sr)O layer could play the passivation role therefore “2 steps” and “recrystallization” 

methods were developed and a “substrate-like” STO epi-layer has been obtained. Although a 

~2nm-thick SiO2 interfacial layer forms even for the 10ML-thick buffer samples due the 

diffusion of the oxygen, we succeeded in strongly improving the STO structural quality.  

 

Figure III. 52 shows the X-ray reciprocal space maps (RSM) around both STO (002) 

(symmetric) and STO (103) (asymmetric) Bragg reflections, for the ~45nm samples grown 

under the optimal conditions for low temperature (360°C and PO2=5×10-8Torr then 

1×10-6Torr) and by “2 steps” and “recrystallization” methods. This figure clearly shows how 

we have improved STO structural quality. Except for the sample grown by “recrystallization” 

method which displays intense and circle spots in the RSM maps, all the other samples shows 

ellipse diffuse spots feature in the maps, which suggest the high mosaicity of these STO 

samples. Comparing the “recrystallization” sample with the “360°C” sample, the FWHM of 

the rocking curve in ω of STO (002) is improved from 1.4° to 0.14°, which obviously shows 

that the crystalline quality of the STO film is significantly developed owing to our 

optimization for the growth condition. 
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Figure III. 52 Reciprocal space maps along STO (002) and STO(103) Bragg conditions of 

STO epitaxial films fabricated by different growth strategies. Intensities from low to high: 

blue, green, yellow, red. 

 

III.5) Epitaxial growth of Gd 2O3 on Si (111) 

III.5.1) Introduction 

Gadolinium oxide (Gd2O3) which belongs to the rare earth oxides family presents a cubic 

bixbyite Mn2O3 (II) structure (group space Ia 3) in which the unit cell includes eight unit cells 

of an incomplete and distorted fluorite structure, as shown in Figure III. 53 (a). As mentioned 

in I.3.1, it is identified as a promising candidate for the future high-k gate dielectric due to its 

several outstanding properties: (1) high dielectric constant; (2) thermodynamic stability on Si; 
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(3) lattice-match growth when 2 unit cells of Gd2O3 deposited on one Si unit cell (lattice 

mismatch 0.44%) and (4) high bandgap of 5.3eV and large conduction and valence band 

offset of 1.8eV and 2.4 eV respectively with respect to Si, as shown in Figure III. 53 (b). 

Particularly, compared to the Gd2O3 films with bidomain structure on Si(001) substrate, the 

Gd2O3 films on Si(111) exhibits highly perfect crystallinity which turns out quite appealing 

for its potential application to the realization of monolithic integration of functional oxides 

and semiconductors on the silicon substrate. We will focus on the study of Gd2O3/Si(111) 

system in this section, including elucidate the growth condition and the structural quality of 

the Gd2O3 epitaxial films. 

   

Figure III. 53 (a) Lattice structure of Gd2O3 and (b) schematic band alignment for Gd2O3/Si 

heterostructure 

 

III.5.2) Influence of the growth temperature 

The Gd2O3 films studied in this section were prepared using electron beam evaporation of 

commercial granular Gd2O3 target on p-type Si (111) substrates (1015 cm-3 dopant 

concentration). The film deposition started from an atomically flat silicon surface (see III.3.1). 

Similarly to the SrTiO3 growth, the O2 partial pressure is precisely controlled in the range of 

UHV (~5×10-10Torr) during the first stage to avoid any interface parasitic phase formation. 

The growth rate is 2~3Å/min, monitored by the QCM. After 2 monolayers growth of Gd2O3, 

the O2 pressure was ramping up to 1×10-6Torr in order to insure the oxygen stoichiometry in 

the oxide film. 

 

A series of ~5nm-thick Gd2O3 films were deposited at different temperatures ranging 

from 650°C~750°C. Figure III. 54 shows the RHEED patterns (along Si [1-10] azimuth) and 

the corresponding AFM images (1µm×1µm) The RHEED images of the 680°C and 700°C 

samples exhibit streaky lines, indicating good crystallinity of the films. A ×4 surface 
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reconstruction can be observed for the sample deposited at 700°C, likely due to the presence 

and organization oxygen vacancies at the film surface.. Compared to those grown at 680°C or 

700°C, the films grown at extreme temperatures (650°C and 700°C) are partially amorphous 

feature (diffuse halo between the diffraction streaks). At 750°C, the 7×7 reconstruction of Si 

remains through the whole growth process, which could be attributed to an important 

desorption of Gd2O3 at such a high temperature. AFM images show that the Gd2O3 layers 

deposited between 650°C and 700°C have a surface of good quality with an RMS of less than 

1nm.  

650°C 680°C 700°C 720°C 750°C 

     

     

Figure III. 54 RHEED pattern along Si[1-10] azimuth and AFM images of Gd2O3 films gorwn 

on Si (111) at respectively 650°C, 680°C, 700°C, 720°C and 750°C. 

 

III.5.3) Influence of oxygen partial pressure (Thesis of C. Merckling) 

A crucial parameter to succeed in high quality growth without any interface layer 

formation is the oxygen partial pressure. A high enough oxygen chemical potential is needed 

to avoid the silicidation of the Si surface, which will lead to a Volmer–Weber growth of 

Gd2O3 because of its wetting behavior on Si surface88. Figure III. 55 shows the RHEED 

patterns (along Si[1-10] and Si[-211] respectively) of the Gd2O3 film grown at 700°C without 

the introduction of oxygen (~5×10-10Torr), in which the spotty feature reveals clearly the 

three-dimensional growth mode. The AFM image shows a higher RMS with respect to the 

sample grown within O2 ambient indicating higher surface roughness. On the other hand, too 

high oxygen pressure, particularly at the initial stage, might oxidize the Si surface leading to a 

formation of interfacial SiOx phase. 
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Figure III. 55 RHEED patterns of the Gd2O3 film grown in UHV along (a)[1-10] azimuth and 

(b)[-211] azimuth; And 1µm×1µm AFM image with RMS of 0.97nm. 

 

Figure III. 56 (a), (b) and (c) show the TEM cross-sectional images of Gd2O3/Si(111) 

grown at 700°C with different oxygen partial pressures. It is apparent that the silicide (GdxSiy) 

inclusions can be observed along the interface for the Gd2O3/Si sample (a) grown in UHV. 

Oppositely, the introduction of too high oxygen partial pressure at the very beginning of the 

growth (b) leads to a silicate (GdxSiyOz) interfacial layer. With our meticulate oxygen control 

including first 2ML film grown in UHV and subsequently under PO2=1×10-6Torr, the 

interface (c) is found to be abrupt at atomic scale. The epitaxial relationship between Gd2O3 

and Si (111): [-110]Gd2O3(111)//[1-10]Si(111), with one Gd2O3 unit cell on two Si unit cells, 

as shown in Figure III.56 (d). The oxide layer is rotated by 180°C around the [111] axis with 

respect to the underlying silicon substrate. 

    

     

Figure III. 56 HRTEM cross-sectional images of Gd2O3/Si(111) samples grown under (a) 

UHV; (b)PO2=1×10-6Torr and (c)UHV for first 2ML and then PO2=1×10-6Torr. (d) illustration 

of epitaxial relationship between Gd2O3 and underlying Si (111). 
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According to the analysis above, we can therefore obtain the epitaxy window of Gd2O3 

on the silicon substrate. The PO2-Temperature diagram can be illustrated in Figure III.57.  

 

Figure III. 57 PO2-T diagram of Gd2O3/Si(111) system 

 

III.5.4) Evaluation of structural quality by XRD 

The structural quality of the Gd2O3/Si(111) samples was investigated by high-resolution 

X-ray diffraction. Figure III. 58 shows a 2θ-ω scan around the Si (111) Bragg reflection as 

well as the fitting data of a 6.7nm-thick Gd2O3/Si (111) sample grown at 700°C. The intense 

and sharp peak observed at 2θ=28.44° corresponds to the Si 111 substrate reflection. 

According to the fitting curve, the Gd2O3 222 peak is located at 2θ=28.87° with a Full Width 

at Half Maximum (FWHM, ∆(2θ)) ~1.2°. Pendellösung fringes appear at both shoulders of 

the Gd2O3 peak, indicating a high uniformity, flatness and crystal quality of the Gd2O3 film. 

The out-of-plane lattice parameter of this 6.7nm-thick Gd2O3 can be extracted from 

2θ=28.87°:10.704Å, indicating that Gd2O3 is under tensile strain (pseudomorphic growth on 

Si).  
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Figure III. 58 X-ray 2θ-ω scan and the fitting data around the Si (111) reflection of a 

6.7nm-thick Gd2O3 layer grown on Si (111). 

 

III.5.5) Conclusion 

In summary, we identified the optimal growth condition of Gd2O3 growth on Si (111) 

substrate and the Gd2O3 epitaxial film present high crystalline quality as well as an abrupt 

interface with respect to silicon. The relationship between Gd2O3 and Si is defined as [-110] 

Gd2O3 (111)//[1-10]Si(111), with one Gd2O3 unit cell on two Si unit cells. The growth remains 

pseudomorphic for a 6.7nm-thick layer. 
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IV.1) Introduction 

The integration of epitaxial functional oxides and semiconductors on silicon opens the 

opportunities for the integration of novel memory, sensing, electric, optical signal processing 

and photonic elements on microelectronic platforms.  

 

Firstly, the high-κ oxides themselves could serve as the gate dielectric of the future 22nm 

and sub-22nm CMOS nodes by replacing traditional SiO2 gate dielectrics. 

 

Secondly, Field-Effect Transistor (FET) devices with increased speed and functionality 

(FeFET, spinFET, MottFET) can be realized by replacing conventional SiO2 gate dielectric 

with functional oxides. Smart sensors such as highly sensitive bio-chemical sensors can be 

developed, which based on static strain-free membranes and cantilevers made of high 

performance piezoelectric oxide films. Other devices such as integrated 

micro-electromechanical systems (MEMS) and ferroelectric random access memories 

(FeRAM) can also be envisaged. 

 

Thirdly, the integration of Ge on Si via oxide buffer layers might circumvent the 

difficulty of direct Epitaxy due to the large lattice mismatch which leads to extended defects 

in the Ge layer. Thus devices such as modulators, heteroepitaxial injection lasers, 

photodetectors, waveguide and solar cell based on the good physical properties of Ge (or 

III-V semiconductors) could be married with the characteristics of the silicon manufacturing 

processes. Higher mobility tunnel could also be realized for the future CMOS with Ge layer 

on oxides/Si template. 

 

IV.2) Dielectrics  

IV.2.1) A promising candidate: Gd2O3 

We have discussed in prior chapters the unparalleled properties of crystalline Gd2O3 as an 

alternative gate dielectric for the future CMOS technique. With the purpose of further 

clarifying the choice of Gd2O3 in this work, we compare Gd2O3 with other candidates in terms 

of EOT and leakage current. The direct tunneling current of the MOS structure can be 

calculated by the following equation1: 
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The values demonstrated in the following table are then injected in this equation and 

Figure IV. 1 displays the results obtained with a gate voltage Vox of 1.5V. 

 SiO2 Al2O3 LaAlO3  HfO2 Gd2O3 

ΦB (/Si) (eV) 3,1 2,8 1,8 1,5 1,8 

κ 3,9 10 20 24 20 

m* 0,5 0,35 0,3 0,17 0,29 

5 4 3 2 1 0
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Figure IV. 1 Current densities calculated as a function of equivalent thickness of SiO2 (gate 

voltage of 1.5V) for different dielectric candidates (Ref. 2). 

 

We can observe that the curves of LaAlO3 and Gd2O3 are almost superposed and towards 

to the lowest leakage current. Although all these high-κ oxides possess much lower leakage 

currents than SiO2, Gd2O3 is the most promising in terms of scaling among the candidates 

illustrated in Figure IV. 1. Another promising candidate LaAlO3 (in amorphous phase) has 

been previously studied at INL. At an EOT value of 1nm, the leakage current of Gd2O3 is 6 

decade less than HfO2, which thus attests the choice of Gd2O3 as the possible high-κ gate 

dielectric for sub-22nm nodes.  



 
Chapter IV: Integration of versatile functionalities on Si based on oxide/Si system 

 155 

IV.2.2) Electrical characterization of as-deposited Gd2O3/Si(111) samples 

In this section, we will focus on the dielectric characterization of the Gd2O3/Si(111) 

samples. The growth parameters and the structural quality of the samples are presented in 

III.5. In order to evaluate the real potential of the deposition technique, we firstly study the as 

deposited samples without any PDA process. A MOS structure of Au/Ni/Gd2O3/Si(111) was 

fabricated by lift-off method and a Karl Suss manual probe station equipped with a HP 4284A 

impedance meter and a HP 4156B pA-meter is used for C-V and I-V measurements, as 

introduced in detail in the section II.3.2. 

 

IV.2.2.1) Influence of growth temperature 

A series of ~3nm Gd2O3/Si(111) samples were fabricated at different temperatures in 

order to investigate the influence of growth temperature to the electrical properties. Figure IV. 

2(a) shows the typical experimental C-V curves measured at a frequency of 100 kHz for 

Gd2O3 thin films grown on Si(111) at 650°C, 680°C and 700°C. For the sample grown at 

720°C, the leakage current density was too high to measure any C-V characteristics. As 

discussed in the previous chapter, at 750°C, the temperature is too high for Gd2O3 absorption 

onto Si surface. For the investigated film thickness, quantum mechanical effects are no more 

negligible. In this case, capacitance equivalent thickness (CET) which can be calculated 

directly is bigger than EOT. The EOT was therefore extracted by fitting the experimental C-V 

data with realistic quantum simulations. Figure IV. 2(b) shows a fitting example for the 

sample grown at 700°C. For the ~3 nm-thick films grown at 650°C, 680°C and 700 °C, the 

EOT values extracted are respectively equal to 0.90, 1.15 and 0.73 nm. The sample deposited 

at 700°C turns out to have the best EOT. For the layers grown at 650°C, 680°C and 700°C, 

their dielectric constants are respectively 13, 11 and 12 which are less than the bulk value 20 

but very close to the results obtained for the Gd2O3 thin films in the literature3,4. For the 

samples presented in the present work with Au/Ni top electrode, the theoretical flatband 

voltage VFB is -0.5V. The positive shift of the VFB for all the C-V curves suggests the presence 

of charge traps in the oxide film and the interface.  

 

Figure IV. 3 shows J-V characteristics of the Gd2O3/Si(111) MOS capacitors grown at 

different temperatures. At |Vg -VFB| = 1 V, the leakage current through the sample deposited 

grown at 700°C is 1.1×10-1 A/cm2, which satisfies the ITRS recommendations for the 32 nm 

node (J<10+2A/cm2)5. 
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Figure IV. 2 (a) Room temperature C-V curves (f=100kHz) obtained for Gd2O3/Si (111) MOS 

capacitors grown at different temperatures; (b)TCV fitting of the C-V curve of the sample 

grown at 700°C. The EOT value extracted is 0.73nm. 
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Figure IV. 3 Room temperature J-V curves of Gd2O3/Si (111) MOS capacitors grown at 

different temperatures. 

 

IV.2.2.2) Influence of deposited film thickness 

Au/Ni/Gd2O3/Si (111) MOS structures with different oxides physical thicknesses were 

characterized and their EOT values as a function of the physical thicknesses are plotted in 

Figure IV. 4 (a). From the slope of the plot, the dielectric constant of the Gd2O3 films grown 

on p-type Si (111) was κ=12, which is calculated by: 

2

2 3 2 3

3.9SiO
high Gd O Gd O

high

EOT t t
EOTκ

κ

κ
κ

κ−
−

= ⇒ =                              Equation IV-3 

Tunneling AFM (TUNA) is employed to investigate the leakage current in the Gd2O3 

dielectric films (performed by Waël Hourani at INL, INSA.). Similar to Conductive AFM 
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(C-AFM), TUNA is a secondary imaging mode derived from contact AFM, which 

characterizes ultra-low currents (<1 pA) through the thickness of thin films. The gate voltage 

is applied on the samples (negative on the substrate and positive on the point) with a ramp of 

0~-10V and 0.5V/sec. The current limit is -80pA. The results are shown in Figure IV. 4 (b). 

We can observe that the threshold voltage to breakdown the insulator layer increases from 5V 

to 7.6V as the film thickness increases from 2.7nm to 6.2nm. It is reasonable since the EOT of 

the high-κ oxide layer (thus its capacity) enhances with the increase of the film thickness. 
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Figure IV. 4 (a) Evolution of the EOTs of the Gd2O3 films as a function of the physical 

thickness; (b) TUNA I-V curves of Gd2O3/Si MOS structure with different dielectric film 

thickness, inset illustrates the principle of TUNA. 

 

IV.2.2.3) Leakage current and frequency measurement 

The leakage current through a MOS capacitor can be modeled by a resistance R in 

parallel with capacity. An ideal insulator owes quite low leakage current thus the R can be 

regarded as infinite. However, in practice the dielectrics always contain defects leading to the 

leakage current which affects the C-V characterization of MOS capacitor. 

 

Experimentally, the frequency of the measurement influences the C-V characterization. A 

too low frequency will inevitably lead to an immediate deterioration of the C-V 

characterization, as shown in Figure IV. 5. These problems are attributed to the excessive 

leakage current, as we will discuss in the following. 

The MOS capacity can be simply modeled as below: 

Cp: Gate dielectric capacity 

Rp: dielectric leak resistance 

Rs: Series resistance (substrate, contact dots) 
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In order to determine these three parameters, it is necessary to establish a relationship 

between this model and the measured parameters in parallel mode: 

 

We can obtain that  

2 2 2 2

2 2

(1 )

(1 )
s p s p

mp
p s p s p

R G R C
R

G R G R C

ω
ω

+ +
=

+ +
                                        Equation IV-4 

and 
2 2 2 2(1 )

p
mp

s p s p

C
C

R G R Cω
=

+ +
                                     Equation IV-5 

 

According to the equations, the Cmp and Rmp are dependent with the measurement 

frequency.  

When 0ω → ⇒ mp s pR R R→ +  and 

2

p
mp p

s p

R
C C

R R

 
→   + 

 

When mp sR Rω → ∞⇒ →  and 0mpC →  

 

Figure IV. 5 shows the Cmp-Vg and Rmp-Vg curves of different frequencies obtained from 

a 2.8nm-thick Gd2O3/Si(111) sample. The variation of Cmp can be clearly observed as a 

function of the frequency. We can observe platforms in the accumulation regime for all the 

Cmp-V curves. The platform level decreases from 2.12µF/cm2 to 1.27µF/cm2 as the frequency 

increases from 10kHz to 1MHz, indicating a non-negligible series resistance Rs.  

 

The approximation value of Rs can be obtained from the Rmp-Vg curves because Rmp tends 

toward to Rs with the high frequency limitation. The saturation at high frequency can be 

obviously observed in Figure IV. 5 and Rs≈1422Ω. 

 

n order to determine Rp, we consider the quasi-static I=f(Vg) measurement performed on 

the same sample. By applying the Ohm’s law to the measurement, we obtain the variation of 

the total resistance, i.e. Rs+Rp, as a function of the gate voltage. Knowing Rs, the variation of 

Rp=f(Vg) can then deduced from the variation of Rs+Rp=f(Vg).  
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Figure IV. 5 Cmp-Rmp obtained from the measurement of different frequencies in parallel mode 

on a Gd2O3/Si(111) sample. 

 

The leakage current measured for VG-VFB=-1V is used as parameter to compare the 

Gd2O3/Si samples with silicon oxide having the same EOT. Jleakage v.s. EOT is illustrated in 

Figure IV. 6. Obviously the Gd2O3/Si samples have a leakage current density which is several 

orders of magnitude smaller than SiO2 at the same EOTs6. 

0.5 1.0 1.5 2.0 2.5 3.0
10-5

10-4

10-3

10-2

10-1

100
Leakage current @ VG-VFB=-1V

SiO2 direct

 tunneling [Ref. 5]

 
 

J l
ea

ka
ge

(A
/c

m
2 )

EOT (nm)  

Figure IV. 6 Leakage current density v.s. EOT of Gd2O3 compared with SiO2. 

 

IV.2.2.4) Determination of defects in the films 

Although we have obtained good EOT value with low leakage current, the electrical 

quality of the Gd2O3/Si(111) samples is not perfect, several bulk and interface defects exist: 

interfaces trapped charges Dit, fixed and mobile charges. These defects present themselves by 

the distortion of the C-V curves including hysteresis and VFB shift, etc. The methods to 

determine these crucial parameters were introduced in II.3.2.5 and we will analyze the 



 
Chapter IV: Integration of versatile functionalities on Si based on oxide/Si system 

 
 

160 

Gd2O3/Si system in detail. 

 

According to Equation 20 (Chapter II), we have: 

0.4( / )p
it

G
D

qA

ω
=                                                   Equation IV-6 

Where Gp is the peak conductance in the parallel C-V measurement (f=10kHz) 

configuration, A is the top electrode area and q is the elementary charge. 

 

Figure IV. 7 illustrates the G-V curves obtained based on the data for f=10kHz 

represented in Figure IV. 5. Considering the electrode area is 100×100 µm2, the Dit value of 

the 2.8nm-thick Gd2O3/Si(111) sample can be deduced: 2.58×10+11eV-1·cm-2. And the Dit of 

the sample with EOT=0.73nm is 3.28×10+11eV-1·cm-2.  
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Figure IV. 7 G-V plot of a 2.8nm-thick Gd2O3 showing the Gp that is used for Dit calculation. 

 

The C-V and I-V sweeps show hysteresis due to the oxide trapped charges Qot in the 

Gd2O3 film. Figure IV. 8 (a) (b) show the hysteresis feature of the C-V and I-V sweeps 

respectively for the Gd2O3/Si(111) sample with EOT=0.73nm. Figure IV. 8 (c) shows the VFB 

shift (due to fixed oxide charges) of the same sample with the reference of simulation data. 
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Therefore different optimizing methods were carried out in order to decrease the defect 

density in the oxides films thus develop their electrical performances. We will focus on the 

impacts of these strategies on the Gd2O3/Si samples. 

 

IV.2.3) Influence of the oxidant type 

The majority defects in the oxide films fabricated by MBE are oxygen vacancies thereby 

atomic oxygen with higher oxidizing potential is used during the film growth in order to 

improve the stoechiometry. The influence of the oxygen types on the electrical properties of 

the samples was explored by TUNA measurements (performed by Waël Hourani, INL-INSA). 

Figure IV. 9 (a) shows the I-V measurements in range of 0~-10V(0.5V/sec) for the 

Gd2O3/Si(111) samples grown in molecular and atomic oxygen ambiences respectively. For 

the films grown under O2 and atomic oxygen with the same physical film thickness 2.7nm, 

the threshold voltage of the latter (6V) is higher than the former (5V), indicating the sample 

grown under atomic oxygen possesses better dielectric quality. As the sample thickness 

decreases to 1.1nm (atomic oxygen ambience), the Vth also decreases to 5.1V. The impact of 

atomic oxygen can be presented more directly by TUNA current maps. Figure IV. 9 (b) and (c) 

shows the 1µm×1µm TUNA current maps of a 6.2nm-thick sample grown under O2 ambience 

Figure IV. 8 (a) C-V and (b)I-V 

curves of Gd2O3/Si(111) sample 

(EOT=0.73nm) with hysteresis 

feature; (c) C-V experiment and 

TCV simulation curves illustrating 

flat band voltage shift.  
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and a 2.7nm-thick sample grown under atomic oxygen ambience respectively. For the sample 

grown under O2 with an applied voltage of -7.2V and a current scale of 5.0pA 

(bright)~-20pA(dark), intense leakage current spots can be observed in the map. However, for 

the sample grown under atomic oxygen with an applied voltage of -6.4V and a current scale 

of 5.0pA (bright)~-10pA(dark), only randomly distributed leakage current spots are visible 

demonstrating better dielectric property. In addition, it has to be noted that the Gd2O3 layer 

grown under atomic oxygen is much thinner than that grown under O2 (2.7nm v.s. 6.2nm), 

which further suggests the positive impact of atomic oxygen growth ambience on the 

dielectric property of the Gd2O3 layer. 
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IV.2.4) Influence of post deposition annealing  

Post Deposition Annealing (PDA) in different conditions, including a PDA in a tubular 

furnace and a Rapid Thermal Annealing (RTA) under different gas atmosphere were 

performed for the samples grown at 700°C to improve their electrical quality and investigate 

their structural stability. 

 

(a) 

(b) (c) 

Figure IV. 9 (a) TUNA I-V curves of 

Gd2O3/Si(111) samples grown under 

molecular and atomic oxygen ambience; 

1µm×1µm TUNA current maps of 

Gd2O3/Si(111) samples grown under (b) 

O2 and (c) atomic oxygen ambience. 
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IV.2.4.1) Annealing in a tubular furnace 

Figure IV. 10 (a) shows the forward and reverse bias sweeps (at 100 kHz) for a 

2.3nm-thick Gd2O3 film, both as-deposited sample and that annealed at 200°C under O2 

atmosphere for 30 minutes in a tubular furnace. A clockwise loop (∆ V=0.1V) can be 

observed for the measurement of as-deposited sample, indicating electrical charge 

phenomenon depending on the applied voltage7 which is probably caused by oxygen 

vacancies. The flat band voltage (VFB) extracted from the C-V curve of as-deposited sample is 

-0.3V, which is much larger than the theoretical VFB (-0.5V) of the Ni gate MOS capacitors 

without any oxide charge. The positive shift (∆ VFB=0.2V) between the theoretical and 

experimental VFB values reveals a large amount of negative charges in the dielectric films and 

at the interface. The measurement of the annealed sample displays a significant decrease of 

the hysteresis (∆ V=0V) and the ∆ VFB (0V), indicating that this PDA method under O2 

atmosphere effectively decreased the charge density of the as-deposited layer and developed 

the interface states at the Gd2O3/Si interface. It is very likely that the oxygen vacancies are 

refilled during the annealing process. At the same time, the EOT is only slightly disturbed, 

given that the EOT of the PDA sample is 0.9nm which is a little larger than that of 

as-deposited one (0.73nm). Figure 5 (b) shows the J-V measurements. At |Vg-VFB|=1V, the 

leakage current density of as-deposited and PDA samples are 1.02×10-1A/cm2 and 

4.04×100A/cm2
 respectively, both of which are consistent with the recommendation of ITRS 

for 32nm node. 
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Figure IV. 10 (a) C-V measurements at f=100 kHz for the as-deposited Gd2O3 film grown at 

700°C and the same sample treated by a 200°C PDA process under O2 in a tubular furnace. 

(b)corresponding J-V measurements. 
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IV.2.4.2) Annealing in a RTA furnace 

As Rapid Thermal Annealing (RTA) is the most used method in the treatment of high-κ 

materials, we have tried different RTA processes on our Gd2O3 films, 400°C RTA under 

nitrogen, forming gas (96%N2/ 4%H2) and O2 atmospheres have also been performed on a 

2.54 nm Gd2O3 film (EOT=0.82nm) grown at 700°C under atomic oxygen ambience. The 

treatment includes an increase of temperature at the rate of 100°C/min and the temperature is 

maintained at 400°C for 1 second with a subsequent cooling with an introduction of the 

considered gas during the annealing. 

 

Figure IV. 11 (a) shows the C-V curves measured at 100 kHz for as-deposited and RTA 

samples in N2, forming gas, O2 ambiences respectively. As-deposited sample shows EOT of 

0.82nm with a hysteresis loop of ∆ V=0.25V and a VFB=-0.3V (∆ VFB=0.2V). Different gas 

ambiences present different impacts on the annealed samples. The annealing in O2 ambience 

yields a almost similar EOT value (0.86nm) compared to as-deposited one (0.82nm), while 

effectively reduce the charges in the film: the hysteresis loop and VFB of the O2-annealed 

sample are reduced to ∆ V=0.1V and ∆ VFB=-0.1V respectively.  The annealing under N2 

and forming gas atmosphere result in increased EOT values (1.8nm and 1.4nm) but 

effectively decrease the hysteresis (∆ V=0V and 0.1V) and ∆ VFB (-0.25V and -0.2V). 

The J-V measurements are shown in Figure IV. 11(b). At |Vg-VFB|=1V, the leakage 

current density of the as-deposited, N2-annealed, forming-gas-annealed and O2-annealed 

samples are 1.11×10-2A/cm2, 6.03×10-1A/cm2, 1.62×100A/cm2
 and 4.78×10-1A/cm2 

respectively. The RTA samples demonstrate stable J-V performance with respective to the 

as-deposited sample. 
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Figure IV. 11 (a) C-V measurements at f=100 kHz for the as-deposited and RTA under N2, 

forming gas and O2 Gd2O3 films and (b) corresponding J-V measurements. 
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IV.2.5) Influence of the substrate orientation 

In order to investigate the influence of the substrate orientation on the electrical 

properties of Gd2O3, a 2.5nm-thick Gd2O3 film is deposited on Si(001) substrate to compare 

with that on Si (111) substrate. Figure IV. 12 (a) shows the C-V characteristics of Gd2O3 films 

on Si(001) and Si(111) substrate. The physical film thicknesses are 2.5nm and 2.7nm 

respectively. Compared to that of Gd2O3/Si(111) that displays a typical capacity behavior, the 

C-V curve of Gd2O3/Si(001) sample exhibits an abnormal large depletion region following a 

quick breakdown of the capacity, which might be explained by the comparison of their J-V 

characteristics: as shown in Figure IV. 12 (b), the leakage current density of Gd2O3/Si(001) 

sample is larger by 1~2 orders of magnitude than that of Gd2O3/Si(111) sample. This result is 

probably due to the presence of the grains between the two orthogonal in-plane orientations of 

Gd2O3 on Si (001) (see Ref. 8), the joints of which can serve as the channels of the leakage 

current. 
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Figure IV. 12 (a) C-V measurements at f=100 kHz for the Gd2O3 films on Si(001) and Si(111); 

(b) corresponding J-V measurements. 

 

IV.2.6) Conclusion 

The crystalline Gd2O3 thin films on Si substrate demonstrate good dielectric properties. 

With this high-κ oxide, low ETO values (0.73nm in this work) can be obtained with a leakage 

current value consistent with the ITRS recommendations (J<300 A/cm2 for a 7Å EOT of the 

16nm node in the category of “low operating power technology requirements”). Gd2O3 has 

been proved to be one of the most promising candidates for gate dielectric materials of future 

22nm and sub-22nm MOSFET technique. 
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The electrical properties of the as-deposited samples are far from perfect and require 

further optimization. Different strategies are performed to develop the performance of 

Gd2O3/Si MOS structure. The employment of the atomic oxygen during the growth could 

effectively decrease the leakage current in the Gd2O3 layers. Both PDA by tubular furnace and 

RTA improve the dielectric qualities of the samples. In particular, the RTA under O2 

atmosphere can effectively reduce the charge density in the dielectric films while retain 

almost the same EOT value of the sample, thus turns itself to be a good PDA treatment for the 

Gd2O3/Si samples. Figure IV. 13 shows the best performances Jg=f(EOT) of Gd2O3 films in 

the literature, in which the results of this work are also demonstrated. It is evident that the 

above-mentioned results are at the cutting edge of the state of the art of world. 
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Figure IV. 13 International state of art of Gd2O3/Si system for Vg=+/-1V. The green triangles 

note the results obtained in this thesis. 

 

IV.3) Piezo-(Ferro -) electrics 

Piezo-(Ferro-)electrics is one of the most important properties of the alkaline earth 

titanates, which possess the same perovskite structure. A ferroelectric is generally defined as a 

material whose intrinsic lattice polarization P can be reversed through the application of an 

external electric field E that is greater than the coercive field Ec. All ferroelectrics are 

piezoelectric. Not all materials with electrical hysteresis are ferroelectric: as discussed in last 

section, dielectric films have an extrinsic hysteresis due to mobile charged defects. And p-n 

junctions can also exhibit hysteresis. 
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In order to demonstrate our SrTiO3/Si(001) can be used as a template for functional oxide 

integration on silicon, we investigated the electrical properties of four perovskite oxides on 

the SrTiO3/Si(001) template: SrTiO3, BaTiO3, Pb(Mg, Nb)-PbTiO3, Pb (Zr, Ti)O3 using 

different film deposition processes: MBE, sol-gel, laser-MBE. 

 

IV.3.1) SrTiO3 

Bulk cubic crystal SrTiO3 does not show any ferroelectricity. However, the biaxial strain 

imposed by the underlying substrate on the coherently epitaxial SrTiO3 films might induce 

cubic to tetragonal phase transition leading to ferroelectricity. In fact, several recent works 

have reported this strain induced or enhanced ferroelectricity in the epitaxial thin films9,10,11. 

Thanks to the commensurate epitaxy of SrTiO3 on Si, as demonstrated in Chapter III, the 

ferroelectricity is thus envisaged in our SrTiO3 thin film. We performed I-V measurements on 

the Au/Ni/STO/p-Si structure in order to explore its electrical behavior.  

 

Figure IV. 14 displays the typical I-V behaviors at 300K of STO/p-Si heterostructure 

grown at 360°C with respectively thicknesses of 4ML and 10ML. The Au/Ni electrode area is 

100µm×100µm. According to the results of Chapter III, the interface between STO and Si is 

coherent and the STO is principally strained on Si substrate with such thin thicknesses. 

Surprisingly, the STO/p-Si structure shows well-rectified I-V characteristic of p-n diode 

instead of ferroelectric one. We attribute this behavior to the oxygen vacancies in the STO 

film. In fact, electrical properties of STO can be changed from insulator to n-type 

semiconductor by reducing it to SrTiO3-x
12,13,14 or doping impurity ions15,16. STO thin films 

prepared by vacuum processes usually contain oxygen vacancies which can form positive 

space charge under high electric fields by detrapping electrons. Then STO films will possess 

characteristics of the n-type semiconductors.  

 

Let us look at the I-V curves in the Figure IV. 14. The p-Si/n-SrTiO3-x heterojunctions 

with 4ML and 10ML demonstrate similar striking rectifications. Under forward bias (positive 

pole dc voltage applied on the p-Si), the current is initially quite small (1.6µA and 2.0µA at 

0.3V for 4ML and 10ML STO respectively) and begins to increase very quickly after the 

voltage exceeds 0.35V. However, it remains very small even under large reverse bias. At 

V=-2V, the current of 4ML and 10ML STO/Si junctions are -2.8×10-4µA and -6.1µA 

respectively. 
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Figure IV. 14 Typical I–V characteristic of p-Si/n-SrTiO3−x junctions diode at 300 K. 

 

The observed phenomena can be explained by considering the band structure of the 

p-Si/n-SrTiO3-x heterojunction17, as shown in Figure IV. 15. Values of work function 

[χ(Si)=4.05eV and χ(STO)=3.9eV] and band gap [Eg(Si)=1.12eV and Eg(STO)=3.3eV] were 

taken to construct the band structure. The band offset of conduction band at n-SrTiO3-x/p-Si 

interface is Ec=χ(STO)- χ(Si)=-0.15eV and that of valance band is Ev=[χ(STO)- 

χ(Si)]+[Eg(STO)- Eg(Si)]=2.03eV. An energy barrier is formed at the interface of STO/Si. 

Under forward bias condition (a positive pole of dc voltage applied on the p-Si), the applied 

voltage reduces the energy barrier and electrons in the conduction band of n-SrTiO3-x may 

inject into that of p-Si. By using an iterative method to solve the Poisson equation and 

Boltzmann formulas self-consistently18, the energy barrier height can be obtained as 0.4eV, 

which is comparable to the threshold voltage (0.35V) under the forward bias voltage.  

 

Figure IV. 15 Schematic band structure for p-Si/n-SrTiO3−x heterojunction. 

 
One question remains: why cannot we observe ferroelectric behavior? One can suppose 
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that the too high leakage current avoid measuring any hysteresis loops. Indeed the 

polarization switch current is less than 100pA while the leakage current of the STO/Si 

heterostructure is about 1mA. 

 
IV.3.2) BaTiO3 

Barium titanate (BaTiO3, BTO) is a classical ferroelectric material which was extensively 

investigated in bulk form in the past19. Recently the BTO thin films have also attracted 

numerous study not only because of its simple chemical composition and remarkable 

properties (high dielectric constant, non-linear optical properties and positive/negative 

temperature coefficient effects), but also due to its lead-free and environmental-friendly 

characteristics, which have become increasingly important from a long term point of view20. 

It is a tetragonal ferroelectric at room temperature with a=3.989Å and c=4.029Å and a Curie 

temperature of 393K.  

 

IV.3.2.1) BaTiO3/Nb-doped STO (001) 

To well investigate the heteroepitaxy of BTO on Nb-STO, the Nb doped STO substrates 

are firstly used before the deposition of BTO on STO/Si templates. The conductive Nb:STO 

wafers (10mm×10mm, 0.5wt%, provided by MaTeck) have the similar crystal structure with 

pure STO but can be served as an bottom electrode, i.e. they are electrically conducting. 

 

It has been reported that the ferroelectric performance of BTO films are highly influenced 

by the film thickness due to the size effect and stressing21,22 or the oxygen pressure due to the 

generation of oxygen vacancies23,24. Therefore a series of BTO films with the thickness 

ranging from 4nm to 50nm under various oxygen partial pressures from 1×10-6Torr to 

1×10-5Torr are deposited on Nb-doped STO substrate to investigate their influences on the 

structural and electrical properties of BTO.  

 

Before the growth of BTO, the Nb-doped STO substrate is prepared with the same 

method as explained in III. 3.2.1. Figure IV. 16 displays the RHEED patterns along both 

BTO[100] and [110] azimuths of a 50nm BTO film grown at 620°C and PO2=1×10-6Torr on 

the Nb-doped STO substrate. The growth temperature of the heteroepitaxy of BTO on STO 

was optimized by a previous thesis at INL (G. Delhaye, 2007), which ranges from 550°C to 

650°C. Clear, well-defined streak lines can be observed indicating a single crystalline BTO 

layer with good quality. Both [100] and [110] directions show 1×1 reconstruction during the 
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whole growth process, suggesting good stoichiometry of Ba and Ti. If the Ti/Ba ratio is 

different from 1, special reconstructions appear on the RHEED pattern. 

       

Figure IV. 16 RHEED patterns along BTO[100] and BTO[110] azimuths of 

50nm-BTO/Nb-STO sample grown at 620°C and PO2=1×10-6Torr. 
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Figure IV. 17 Evolutions of (a) the intensity of the RHEED specular spot and (b) the in-plane 

parameter of the growing BTO film. 

 

The intensity variation of the RHEED specular spot observed during the epitaxial growth 

of BTO film is shown in Figure IV.17 (a). The intensity variation has an oscillatory behavior 

which indicates a 2D layer-by-layer growth mode. The growth rate can be estimated to be 

0.01ML/s by analyzing the oscillation.  

The evolution of the BTO in-plane lattice parameter is plotted by recording the distance 

between the streak lines along [110] direction, as shown in Figure IV.17 (b).  It also exhibits 

oscillatory behavior due to the evolution of the deformation of 2D islands during the growth. 

BTO[110] BTO[100] 
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Considering the lattice mismatch between BTO and STO is +2.2%, the minimum of the a// 

corresponds to the moment when one whole layer is complete while the maximum represents 

the half complete layer, which is in contrary with the intensity oscillation.  

 

The oscillations persist up to approximately 16ML (6.4nm) and then disappear, which 

indicates a transition from 2D to 3D growth mode. This result shows a critical thickness of 

6.4nm for BTO epitaxial layer on STO substrate. The critical thickness of BTO/STO system 

can be theoretically calculated following the formulation of Matthew and Blakeslee: 

2(1 cos )
ln 1

2 (1 )cos
c

c

h b
h

b f

ν α
π ν λ

   − = +     +    
i                                          Equation IV-7 

where hc is the critical thickness, b is a 2 , f is 2ε (ε is lattice mismatch between BTO and 

STO, 2.2%), ν is the Poisson ratio, α is the angle between dislocation line and its Burgers 

vector and λ is the angle between the slip direction and that direction in the film plane which 

is perpendicular to the line of intersection of the slip plane and the interface.  

 

In this BTO/STO system, the main type of the misfit dislocations are interfacial edge 

dislocations with Burgers vector b=a<100>25,26. The critical thicknesses calculated range form 

2.4 to 11nm27 due to the different dislocation slip systems used in the calculations. And the 

results obtained experimentally by other groups using XRD25,28, RHEED27 and HRTEM26 also 

range from 2nm to 10nm, which generally depend on the growth conditions. Our result is in 

good agreement with previous work. 

 

The crystalline qualities of the BTO films with different thicknesses are examined ex-situ 

by HRXRD measurements. Figure IV. 18(a) shows an instance for a 50.7nm-thick BTO/STO 

sample. In the typical 2θ/ω scan we can observe sharp, intense BTO 00l peaks appear at the 

left side of the STO 00l peaks, indicating the c-oriented BTO film on STO substrate. The 

Pendellösung fringes demonstrate highly uniform feature of the BTO film. The inset shows a 

rocking curve in ω around BTO(002) Bragg condition with a FWHM=0.09° confirming the 

good crystalline quality of the BTO epitaxial film. The BTO film thicknesses were determined 

by XRR measurement. Figure IV. 18 (b) shows the reflectivity curve and the fitting for the 

50.7nm sample. It can be observed that the curve is quite well fitted by the Rigaku software 

and the corresponding fitting parameters are listed in the inset table. Two BTO layers are 

found: one 10.8nm layer close to substrate (commensurate layer) and one 39.9nm layer on the 
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surface (partial relaxed layer). Moreover, the oscillations of the measured reflectivity curve 

and the good fit of the simulation curve suggest an uniform growth along the surface normal 

direction. The AFM image (1µm×1µm) displays an atomic flat surface of the sample, as 

shown in Figure IV. 18 (c). 
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Figure IV. 18 (a)Room temperature 2θ/ω scan of a 50.7nm BTO/STO sample. Inset shows 

rocking curve in ω around BTO (002) Bragg condition with a FWHM=0.09°. (b) XRR 

measurement (simulation and experimental data, inset shows the information of layers) and (c) 

1µm×1µm AFM image (RMS=0.17nm) for the same sample. 

 

From the 2θ/ω scan around BTO (002) reflection the out-of-line BTO lattice parameter 

can be extracted and the in-plane lattice parameters can be obtained form the BTO (202) 

measurements (not shown). The evolution of the lattice parameters (c and a) of the BTO films 
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as a function of thickness is plotted in Figure IV. 19 (a). The in-plane lattice parameters are 

equal to the STO lattice constant when the thickness is less than 10nm, indicating the 

pseudomorphic growth of BTO film. This behavior well consists with our RHEED 

observations and prior reports. Once the thickness exceeds 10nm, the BTO film plastically 

relaxes on STO substrate by forming misfit dislocations and with the thickness of 50nm it is 

almost completely relaxed on STO.  

 

Figure IV. 19 (b) compares the evolution of c/a ratio and unit cell volume of BTO film 

with those of bulk one (noted by dashed lines). For the coherent epitaxial BTO layers (less 

than 10nm), the c/a ratios are much larger than the bulk one resulted from the enhancement of 

the tetragonality of the BTO cells according to Poisson’s elastic law. And their unit cell 

volumes are less than the bulk one. As the film thickness increases, the BTO film 

progressively relaxes thus the c/a ratio continues to decrease and is very close to bulk one for 

50nm-thick film. The unit cell volume of BTO. In addition, the volumes of the relaxed BTO 

films are larger than the bulk one. 
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Figure IV. 19 Evolution of (a) lattice parameters c and a; (b) c/a ratio and unit cell volume of 

BTO epitaxial film as a function of thickness. 

 

In essence, the lattice parameters of BTO unit cells are determined by two mismatch 

effects: lattice mismatch and thermal expansion mismatch. The lattice mismatch between 

BTO and STO is +2.2%. Let us now discuss the thermal expansion mismatch effect. During 

the cooling process from the growth temperature (620°C) to room temperature (20°C), both 

BTO epitaxial film and STO substrate are contracted due to the thermal expansion effect. 

Meanwhile BTO also undergoes the cube-tetragonal transition during this cooling process. 

According to D. Taylor et al.29, the thermal expansion coefficients of BTO and STO are 
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1.7×10-5 and 9×10-6 respectively. In the case that BTO is pseudomorphically grown on STO 

substrate (less than 10nm), the in-plane lattice parameter of BTO will always equal to that of 

STO (3.905Å) and under the other extreme condition that the BTO is totally relaxed on STO, 

during the growth process BTO follows its own thermal expansion coefficient but it will 

follow the STO thermal expansion coefficient instead during the cooling process due to the 

clamping effect imposed by underlying STO substrate. Hence the in-plane lattice parameter of 

the entirely relaxed BTO can be calculated as 4.008 Å, which confirms that 50nm-thick film 

(a=3.990 Å) is almost entirely relaxed.  

 

Evidently, the abovementioned relaxation mechanism related to lattice mismatch and 

thermal expansion mismatch can quite well explain the evolution of the lattice parameter of 

BTO. However, it cannot fully explain the fact that the unit volumes of partial relaxed BTO 

are larger than the bulk one. We attribute this anomalous enlargement of the unit cell volume 

to the oxygen vacancies existing in the BTO films. The similar behavior has been reported for 

PbTiO3
30 and BaTiO3 prepared by Laser-MBE31. According to the discussion about PbTiO3

30, 

the +2 charged oxygen vacancy (2
OV + ) is energetically more favorable along the c axis than in 

the (a-b) plane. In this case, subject to the Coulombic interaction, the nearest two Ti4+ and 

four Pb2+ neighbor cations of a 2
OV +  defect are displaced away from the 2OV +  while the 

nearest eight O2- neighbor anions are attracted towards it. The displacements of Ti4+ and Pb2+ 

cations are along c axis and a axis, respectively. The magnitude of the displacements from 

ideal tetragonal positions of Ti, O, and Pb atoms are, respectively, 0.021, 0.004, and 0.016 nm. 

Resulting from these displacements, the unit cell volume of PbTiO3 is enlarged. The BaTiO3 

possesses similar perovskite structure with PbTiO3 thus the enlargement of the lattice volume 

can be explained in the same way. 

 

In order to reduce the oxygen vacancies in the BTO epitaxial films, the plasma induced 

atomic oxygen has been used during the growth and different oxygen partial pressures are 

employed to investigate its impact on BTO films. Figure IV. 20 shows the 2θ/ω scans around 

the BTO (002) Bragg condition for the BTO/STO samples (45nm~50nm) grown under 

different oxygen conditions. From curve (a) to (e), the oxygen conditions are molecular 

oxygen 1×10-6Torr plus atomic oxygen 8×10-6Torr annealing (650°C, 1hour), atomic oxygen 

1×10-6Torr plus atomic oxygen 8×10-6Torr annealing (650°C, 1hour), atomic oxygen 

1×10-6Torr, atomic oxygen 5×10-6Torr and molecular oxygen 1×10-6Torr respectively. The 



 
Chapter IV: Integration of versatile functionalities on Si based on oxide/Si system 

 175 

intense sharp peak located at 2θ=47.3° is the STO(002) reflection. For the BTO grown in 

molecular oxygen ambience (a) and (e), only one BTO (002) peak arises at the left side of the 

STO peak, revealing good crystalline c-axis oriented BTO lattices. However, for the BTO 

films grown in atomic oxygen ambience (b), (c) and (d), two BTO (002) peaks appear 

together indicating both c-axis and a-axis oriented BTO lattices. The c/a domains structure 

forms during the cubic-tetragonal phase transition during the cooling process when the 

temperature decreases to less than 120°C. Therefore the alignment of the BTO lattices in 

atomic oxygen ambience is not as highly-ordered as that in molecular oxygen ambience. The 

90° domains in these c/a-axis oriented films might decrease the piezoelectricity of the BTO 

film 32 thus should be avoided. We choose the condition (a) as the optimized oxygen condition, 

i.e. growth under molecular oxygen 1×10-6Torr following by an annealing under atomic 

oxygen 8×10-6Torr (1hour). Figure IV. 21 displays the reciprocal space maps around both 

STO (002) and STO (103) Bragg conditions. The more intense spots represent the STO 

reflections. According to the RSM measurement around BTO 103 reflection, the 50nm BTO 

film is partially relaxed on STO substrate. 
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Figure IV. 20 Typical 2θ/ω scans around BTO (002) reflection for ~50nm BTO/STO (001) 

samples grown in different oxygen ambiences. 
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Figure IV. 21 Reciprocal space maps around STO 002 (left panel) and STO 103 (right panel) 

Bragg conditions. Intensities from low to high: blue, green, yellow, red. 

 

The Au/Ni/BTO/Nb-STO structure is fabricated using the BTO/STO samples grown in 

molecular (O2) and atomic (O) oxygen ambiences (both are in-situ post-annealed under 

atomic oxygen atmosphere) respectively. Au/Ni and Nb-STO are respectively used as top and 

bottom electrodes. 

 

The I-V characteristics realized on a 100×100µm2 electrode of the two samples are shown 

in Figure IV. 22 (a). It is surprisingly that the sample grown in O2 ambience which is c-axis 

oriented shows a rectifying behavior with a threshold voltage Vth=-0.7V. This result reveals 

that the oxygen vacancies in the BTO film grown in O2 ambience are non-negligible although 

an in-situ PDA in atomic oxygen ambience was subsequently performed. The oxygen 

vacancies in the film lead to a p-BTO/n-STO (Nb doped) junction structure, which shows a 

rectification characteristic. The current remains very small even under large reverse bias. At 

V=2V, the current is 2.7µA.  

 

In contrary, the sample grown in O ambience which possesses both c-axis and a-axis 

oriented BTO shows hysteresis characteristic for dc voltage loop ranging from 

-2→0→2→0→-2V, exhibiting the ferroelectric switch (butterfly behavior). In the inset the 

current is plotted in logarithmic scale, where the I-V characteristic is found symmetric for 

positive and negative bias. Figure IV. 22 (b) shows the corresponding C-V curve for the 

sample grown in O ambience. The hysteresis of the curve for a voltage loop of 

-3→0→3→0→-3V confirms the ferroelectric quality of the BTO film and the two peaks at 

V=0.2V and V=-0.8V reveal the polarization reverses of the ferroelectric BTO film. 
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Furthermore, as the positive bias increases the capacitance tends to a constant C0 which can be 

described as: 

0
0

r SC
d

ε ε=                                                                  Equation IV-8 

where ε0 dielectric constant in vacuum ( 8.85×10-12F/m); εr the relative dielectric constant of 

BTO; S the electrode area(100×100µm2) and d the BTO film thickness (50nm). Considering 

that C0 is equal to 2.6×10-10F (at V=2.8V) the εr of BTO film can be estimated as 147. 
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Figure IV. 22 (a) Typical I-V characteristics of the BTO/Nb-STO samples grown in molecular 

and atomic oxygen ambiences, inset shows log scale of the O-ambience I-V curve; and (b) 

corresponding C-V characteristic at f=1MHz for the sample grown in atomic oxygen 

ambience. The electrode area is 100µm×100µm. 

 

Several ex-situ PDA treatments are performed on the BTO films grown in O2 ambience in 

purpose of refilling the oxygen vacancies and inducing ferroelectrics of the film. The RTA 

annealing in O2 atmosphere at 400°C is firstly examined, which turns out to affect very 

slightly the electrical properties of the BTO film. The annealing in a PLD chamber at 600°C 

under oxygen partial pressure of 100 Pa is then attempted.  

 

In this thesis, BTO thin films are principally prepared by MBE at INL while Pulsed Laser 

Deposition (PLD) is also employed for the comparison. The growth of BTO films by PLD 

was carried out at IEF, Paris-Sud University, in Orsay. We perform the deposition using a KrF 

excimer laser (λ = 248 nm) at 620°C and PO2=120mTorr. Laser energy was set up to 200 mJ to 

have a maximum fluence of 3 J/cm2 on the target. The electrical properties of BTO sample 

grown in O2 ambience (sample a), annealed (in PLD chamber) BTO sample grown in O2 
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ambience (sample b), BTO sample grown in O ambience (sample c) and BTO sample by PLD 

(sample d) are investigated and compared by Piezoresponse Force Microscopy (PFM, 

performed by Prof. Brice Gautier, INL-INSA). For the BaO-terminated ferroelectric BTO 

with a tetragonal structure, the ferroelectric distortion lies along the c axis, with P- 

polarization giving a net negative surface fixed charge, as illustrated in Figure IV.23 left panel 

(upper). The mechanism of PFM is also illustrated in Figure IV.23 left panel (lower). 

10µm×10µm polarized ferroelectric domains have been written by the conductive point of 

PFM (+10V) in d.c. (writing) mode on the samples (a), (b), (c) and (d). Then a voltage of 

-10V is applied on 5µm×5µm areas in the center of the polarized domains. The right panel of 

Figure IV. 23 shows the typical amplitude signals observed in the a.c. (reading) mode (V=1V), 

in which all the samples show electrical contrast. However, it can be seen that the poling 

region of sample (a) is not stable. The contrast at the bottom of the square poling region 

disappears during the subsequent reading process which only takes 2~5min. Therefore the 

electrical contrast in PFM image of sample a is induced probably by the charges in the film 

instead of the ferroelectricity of the BTO film, which is in good agreement with our macro 

electrical characteristic results. For the other three samples, the poling regions are stable and 

can be re-detected even after 3 hours (not shown here). Moreover, it is thought that the film 

has undergone a phase transition to a single ferroelectric domain with a P- imprint at room 

temperature, which is confirmed by the PFM writing because it was easier for P+ followed by 

P- poling, showing that the film has actually a P- imprint. 

 

Figure IV. 23 Left panel: Ferroelectric distortion for a BaO-terminated unit cell (upper) and 

schematic of PFM measurement (lower). Right panel: PFM amplitude contrast images of 

sample (a), (b), (c) and (d) respectively. 



 
Chapter IV: Integration of versatile functionalities on Si based on oxide/Si system 

 179 

In conclusion, we demonstrate that high quality monocrystalline c-axis oriented BTO film 

can be deposited on STO substrate. The oxygen vacancies in the BTO film play a critical role 

to influence its electrical property. In order to obtain a ferroelectric BTO film it is necessary to 

use the atomic oxygen during the growth. Moreover, both of the BTO films ex-situ annealed 

at PO2=100Pa and fabricated by PLD under PO2=3Pa exhibit good ferroelectric characteristics.  

 

IV.3.2.2) BaTiO3/SrTiO3/Si(001) 

The experiences of the growth and characterization of BTO/STO system can be easily 

transplanted to the BTO/STO/Si heterostructure. A 45nm-thick BTO film is epitaxially grown 

at 620°C following an annealing at 650°C in atomic oxygen ambience on 5nm-STO/Si(001) 

template fabricated using “recrystallization” process. Figure IV. 24 displays the RHEED 

patterns of Si substrate, STO film and annealed BTO film along Si[110] (STO[100]) azimuth. 

The BTO film shows good crystalline quality with a 2×2 reconstruction indicating a 

TiO2-terminated surface after the in-stiu annealing. The 1µm×1µm AFM image of the final 

BTO film with RMS=0.32nm demonstrate a atomic flat BTO surface. 

 

Figure IV. 24 RHEED patterns of Si substrate, STO film and annealed BTO film along Si[110] 

azimuth and a 1×1µm2 AFM image of the BTO film with RMS=0.32nm. 

 

The crystallinity of the BTO layer is explored by HRXRD. Figure IV. 25 shows a typical 

2θ/ω scan around BTO (002) Bragg condition for the BTO/STO/Si(001) sample. The epitaxial 

relationship between BTO, STO and Si substrate is as expected: [100]BTO(001) // 

[100]STO(001) // [110]Si(001). The BTO epi-layer exhibits good crystalline quality. The 

FWHM of the rocking curve in ω of BTO (002) peak is only 0.7°. 
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Figure IV. 25 Typical 2θ/ω scans around BTO (002) reflection for a 45nm-BTO/ 5nm-STO/Si 

(001) sample. Inset shows rocking curve in ω around BTO (002) Bragg condition with a 

FWHM=0.7°. 

 

To further investigate the structural quality of BTO film on STO/Si template, the RSM 

maps around STO (002) and (103) are performed respectively, as shown in Figure IV. 26. The 

left panel shows the mapping around STO(002) reflection. Compared to its counterpart of 

BTO/STO(001) (Figure IV. 21), it can be found that both STO (a=3.905Å) and BTO 

(a=3.989Å) film are under compressive strain on Si substrate (a/√2=3.840Å). From the RSM 

image around STO 103 reflection, two maxima of the BTO reflection can be distinguished. 

One part has the same in-plane parameter with STO film and the other is more relaxed on the 

STO/Si template.  

  

Figure IV. 26 Reciprocal space maps around STO 002 (left panel) and STO 103 (right panel) 

reflections. Intensities from low to high: blue, green, yellow, red. 
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Figure IV. 27 shows a cross-sectional view of the BTO/STO/Si (001) heterostructure with 

a 20nm-thick STO grown using the same process. A ~5nm-thick SiO2 interfacial layer is 

formed due to the oxidation of the Si surface induced by the oxygen diffusion at 620°C 

through the growing layer. The STO and BTO films are single crystalline on Si (001). 

However, different domains exist and are twisted with each other, leading to the mosaicity of 

the layers. 

 

Figure IV. 27 TEM cross-sectional view of a BTO/STO/SiO2/Si(001) heterostructure. 

 

The electrical properties of the BTO film on STO/Si template is then probed by the 

fabrication and characterization of Au/Ni/BTO/STO/SiO2/Si MFIS (Metal Ferroelectric 

Insulator Semiconductor) capacitor. Ferroelectric memory field effect transistors (FeFET) with 

a MFIS structure have emerged as promising nonvolatile memory devices due to their attractive 

properties such as nondestructive readout operation, low power consumption and high 

switching speed. 
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Figure IV. 28 (a) Typical I-V characteristics of the BTO/STO/Si(001) samples of as-deposited 

one and O2-RTA annealed one; (b) corresponding C-V characteristic at f=1MHz for the 

samples. The electrode area is 100µm×100µm. 
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The Si substrate is p-type (B doped) with the doping density 1018 cm-3. Both the 

as-deposited sample and the RTA annealed sample (in O2 atmosphere) show dielectric I-V and 

C-V properties, as shown in Figure IV. 28 (a) and (b) respectively. The slight hysteresis loop 

in the C-V curve of the as-deposited sample is related to the charges in the films. 

 

The above-mentioned results demonstrate that the BTO grown in atomic oxygen 

ambience by MBE is not ferroelectric, although in-situ and ex-situ PDA were also performed. 

We attribute this phenomenon to the low oxygen partial pressure during the growth. Due to 

the UHV working environment of MBE, the maximum oxygen partial pressure is ~5×10-5 

Torr, which is considerably less than that in a PLD chamber (which can reach 100Pa). Hence 

additional BTO film is deposited on the BTO/STO/Si sample in order to compare its electrical 

properties with the BTO film deposited by MBE. 50nm-thick BTO epitaxial layer is deposited 

in PLD chamber at 610°C and 120mTorr O2 partial pressure and cooled under 300Torr O2 

ambience. Figure IV. 29 shows I-V and C-V (G-V) characteristics realized at f=1MHz on a 

100µm×100µm electrode area of Au/Ni/BTO/STO/SiO2/Si MFIS structure. Evidently, both 

I-V and C-V curves exhibit hysteresis loops suggesting the ferroelectric behavior. In addition, 

The C-V curve shows a memory window of 0.75V for the ferroelectric memory application. 

And the εr of BTO/STO/SiO2 heterostructure is roughly estimated as 32, considering that C0 is 

equal to 5.6×10-11F (at V=7V). This low value of the relative dielectric constant can be 

explained by the existence of a serie of 3 capacities (BTO, STO, SiO2). 
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Figure IV. 29 (a) I-V characteristic and (b) C-V (G-V) characteristics (at f=1MHz) on a 

100µm×100µm electrode area for the BTO MFIS capacitor. 

 

In conclusion, high quality single crystalline BTO films have been integrated on the 

STO/Si(001) template using MBE and PLD. The BTO/STO/Si epitaxial film grown by MBE 
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shows dielectric characteristic, which is probably due to the oxygen vacancy defects existing 

in the film. Good ferroelectric hysteresis loops can be obtained on the MFIS capacitor of BTO 

deposited by PLD technique under much higher oxygen partial pressure during the growth.  

 

IV.3.3) Pb(Mg1/3 Nb2/3)-PbTiO3 

Lead Magnesium Niobate-Lead Titanate Pb(Mg1/3Nb2/3)O3 - PbTiO3 (PMN-PT) attracts 

numerous studies in recent years as one representative of the relaxor ferroelectrics. Relaxor 

ferroelectrics is a particular group of ferroelectric materials, the dielectric constant maximum 

of which does not correspond to transition from non-polar phase to a ferroelectric polar phase. 

In addition several other particular features make relaxor ferroelectrics distinct from others: 

frequency dispersion of the dielectric maximum, slim-loop hysteresis behavior near Tmax and 

the optical isotropy at the temperatures below the dielectric maximum when there is no 

external field33. The relaxor ferroelectrics exhibit very high-dielectric permittivity34 and a 

large piezoelectric response35 when correctly biased. There are potential applications such as 

capacitors36 and in MEMS-type devices37.  

The major difficulties currently limiting PMN-PT are related to the processing of the 

material itself instead of the aspects of integration. The results shown here focus on issues 

related to silicon integration and the ferroelectric properties. 

 

26nm-thick PMN-PT film was epitaxially grown on a 1.5nm-STO/Si(001) template using 

PLD at Orsay, Paris-Sud University (thanks to Valérie Pillard and Philippe Lecoeur). We 

performed the deposition using a KrF excimer laser (λ = 248 nm) at 600°C and PO2=170mTorr. 

Laser energy was set up to 240mJ. During the post-growth cooling down process, the oxygen 

pressure was increased to 300Torr. It should be noted that the growth conditions are too 

aggressive to maintain the integrity of the abrupt SrTiO3/silicon interface. However, they are 

below the threshold required to disturb the quality of the SrTiO3 layer (which has been shown 

to occur at temperatures over 800°C)38.  

 

The crystallography of the PMN-PT film was checked by HRXRD. The left panel of 

Figure IV. 30 shows the typical 2θ/ω scan around Si(004) Bragg condition, in which intense 

sharp PMN-PT 00L peaks appear together with the Si(004) reflection, which reveals the good 

crystallinity of the PMN-PT epitaxial film and a PMN-PT(001)/STO(001) /Si(001) epitaxy 

relationship. A combination of phi scans under Si (404) and PMN-PT (202) Bragg conditions 
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is shown in the right panel of figure IV. 30. Thus the epitaxial relationship between the 

epitaxial films and Si substrate can be described as: [110] PMN-PT (001) // [110] STO (001) 

// [100] Si (001).  
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Figure IV. 30 (Left) Typical 2θ/ω scan around Si(004) Bragg condition; (right) phi scans with 

the Si(404) and PMN-PT (202) Bragg conditions, which reveals the epitaxy relationship 

between PMN-PT and Si substrate: [110] PMN-PT (001) // [100] Si (001) 

 

The MFIS capacitor of Au/Ni/PMN-PT/STO/Si is fabricated and characterized, as 

demonstrated in figure IV. 31. The C-V curve show hysteresis loops indicating the 

ferroelectric behavior. The measurement is performed at f=1MHz on a 100µm×100µm 

electrode area. The C-V curve shows a memory window of 1.0V. And the εr of PMN-PT film 

is roughly estimated as 48.0, considering that C0 is equal to 8.5×10-11F (at V=5V) 

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

1.0V

 

 

 Capacitance

Vg(V)

C
ap

ac
ita

nc
e 

(µ
F

/c
m

2 )

 

Figure IV. 31 C-V characteristics at f=1MHz on a 100µm×100µm electrode area for the 

PMN-PT MFIS capacitor. 
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Due the bad conductivity of silicon in comparison of a metal, it was not possible to 

determine the d33 piezoelectric coefficient using PFM method. New heterostructure will be 

prepared by introducing a SrRuO3 conductive bottom electrode between the STO buffer layer 

and the PMN-PT in order to obtain a perfect electrode for ground.  

 

IV.3.4) Pb (Zr0.52Ti0.48)O3/SrTiO 3/Si(001) 

Lead zirconate titanate, PbZr1-xTixO3 (PZT), is a solid solution of PbTiO3 and PbZrO3 

compounds. PbTiO3 has a Curie temperature of 490 °C, at which it undergoes a first-order 

phase transition from cubic paraelectric phase to tetragonal ferroelectric. PbZr1-xTixO3 

ceramics with composition (x=0.45~0.5) close to the morphotrophic phase boundary (MPB) 

are the most commonly used piezoelectric material for various sensors and actuators39 due to 

the exaltation of physical properties around the MPB. The motivation of investigating the 

heterostructure described in this section stem from integrating ferroelectric thin films with 

CMOS technology to make high density nonvolatile memories. 

 

80nm-thick Pb (Zr0.52Ti0.48)O3 film is deposited on 20nm-STO/Si(001) template by 

sol-gel method (at LETI, Grenoble, thanks to Gwenaël LE RHUN). The process is listed in 

detail as in Figure IV. 32. 

 

Figure IV. 32 Sol-gel process of PZT deposition on STO/Si (001) 

 

STO/Si 50 mm wafer 

Spin coating sol gel               
1000 rpm, 1500 rpm/s, 20 s 

Spin coater 

Drying 120°C / 5 min  
Hotplate 

Calcination 350°C/150 s 
Hotplate 

Cristallisation on ¼ wafer 650°C / 
60 s / O2 

RTA furnace 
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The PZT shows high quality, c-axis oriented single crystallinity on Si substrate. Figure IV. 

33 exhibits the typical 2θ/ω scan around Si (004) Bragg condition on the PZT/STO/Si (001) 

sample (left panel). It can be seen obviously that PZT 00L peaks appear at the right side of 

STO 00l peaks. In addition, the φ scans around the Si (404) and PZT (202) Bragg conditions 

reveal the epitaxial relationship between PZT and Si substrate: [110] PZT (001) // [100] Si 

(001). The FWHM of the rocking curve in ω of PZT (002) peak (not shown here) is ~0.9°. 
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Figure IV. 33 (Left) Typical 2θ/ω scan around Si(004) Bragg condition; (right) phi scans with 

the Si(404) and PZT (202) Bragg conditions, which reveals the epitaxial relationship between 

PZT and Si substrate: [110] PZT (001) // [100] Si (001) 

 

The reciprocal space maps around STO 002 and 103 reflections are carried out in order to 

further investigate the crystallinity of the PZT film on STO/Si(001) template, as shown in 

figure IV. 34. It can be observed that PZT is partially relaxed on the template. 

  

Figure IV. 34 Reciprocal space maps around STO 002 (left panel) and STO 103 (right panel) 

Bragg conditions. Intensities from low to high: blue, green, yellow, red. 
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The MFIS capacitor of Au/Ni/PZT/STO/Si is then fabricated and characterized, as 

demonstrated in figure IV. 35. Both the I-V and C-V curves show hysteresis loops indicating 

the ferroelectric property. The measurement is performed at f=1MHz on a 100µm×100µm 

electrode area. The C-V curve shows a memory window of 2.6V. And the εr of PZT film is 

roughly estimated as 27.1, considering that C0 is equal to 8.5×10-11F (at V=-7V) 
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Figure IV. 35 (a) Typical I-V characteristics of the PZT/STO/Si(001) sample; (b) 

corresponding C-V characteristic at f=1MHz for the sample grown in atomic oxygen 

ambience. The electrode area is 100µm×100µm. 

 

IV.4) Ferromagnetism: La2/3Sr1/3MnO3/SrTiO3/Si(001)  

Perovskite manganites [(RE)1-x(AE)xMnO3, where RE and AE are rare earth and alkaline 

earth respectively] form an interesting class of compounds where the interplay between 

metal-insulator and ferromagnetic transitions results in a variety of fascinating properties such 

as colossal magnetoresistance (CMR)40,41. The origin of ferromagnetism in these materials is 

the double exchange interaction42 which leads to a strong correlation between magnetization 

and charge transport properties. Recent years they have received considerable research 

interests43 ,44 ,45 , 46 owing to their unique properties leading to potential applications in 

magnetic, magnetoelectronic, photonic devices, infrared detector, as well as spintronic 

technology. La2/3Sr1/3MnO3 (LSMO) is one of the perovskite manganites which show a 

colossal magnetoresistance and is expected to have a spin polarization close to 100% half 

metal. In addition, its Curie Temperature (TC) is above 300K (namely 360 K), thus potentially 

leading to devices operated at room temperature.  

 

The integration of CMR manganites on the semiconducting materials (such as on Si) can 

lead to potential device applications that utilize both information processing and data storage 
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in the same device. However, the direct integration of such materials remains a challenging 

work due to large substrate (aSi=5.431Å) and film lattice mismatch (aLSMO=3.8~3.9 Å), 

mechanical and chemical disaccords arising from the structural dissimilarities. The STO 

epitaxial film could serve as a good buffer layer to integrate LSMO film on Si substrate.  

 

30nm-thick La2/3Sr1/3MnO3 film is epitaxially grown on a 1.6nm-STO/Si(001) template 

by PLD at 600°C and 120mTorr O2 partial pressure following with a cooling process in O2 

atmosphere of 300mTorr. The 2θ/ω scan around Si 004 reflection exhibits that intense sharp 

LSMO 00l peaks appear along with Si (004) peak (Figure IV. 36), suggesting a high quality 

single crystalline LSMO film on the substrate. The phi scans reveals the epitaxial relationship 

between the heterostructure: [110] LSMO (001) // [110] STO (001) // [100] Si (001). 
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Figure IV. 36 (Left) Typical 2θ/ω scan around Si(004) Bragg condition; (right) phi scans with 

the Si(404) and LSMO (202) Bragg conditions. 

 

Figure IV. 37 shows a 500nm×500nm AFM image of the LSMO film on the STO/Si 

pseudo-substrate, which indicates its atomic flat surface with RMS=1.15nm. Despite the 

difference of thermal dilatation coefficients between silicon and LSMO, the film has no crack 

after cooling, which confirms the good crystalline quality of the CMR layer. 

 

Rocking curve measurements give information on the spread of the c-axis distribution 

relatively to the substrate normal. A FWHM of about 0.5° is obtained (not shown here). This 

value is significantly lower than the one measured for LSMO films deposited on complex 

buffer stacks such as Bi4Ti3O12/CeO2/yttria-stabilised-zirconia buffered Si(001) substrates 

(FWHM of 1.2°)47.  
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Figure IV. 38 displays a Conductive AFM (C-AFM) measurement for the LSMO/STO/Si 

structure. The hysteresis characteristic of the I-V curve between Si and LSMO electrode (left 

panel) apparently shows a the directional resistance switching according to the polarity of the 

applied voltage, which is a Resistance Random Access Memory (ReRAM) behavior. Figure 

IV 38 right panel shows the current map (500nm×500nm) of the LSMO film. Further 

investigations are needed to understand the origin of such behavior, charge trapping effect at 

interface, or ReRAM effect in (La,Ca)MnO3 CMR film48. 

 

Figure IV. 37 AFM image (500nm×500nm) of 30nm LSMO epitaxial film on STO/Si(001) 

template. 

     

Figure IV. 38 (Left) I-V curve of the LSMO/STO/Si heterostructure and (right) 500nm×500nm 

current map of the LSMO film. 

 

The resistance variation as a function of the temperature (R-T) is also investigated, as 

shown in Figure IV. 39. The R-T measurements show a metal-insulator transition temperature 

higher than room temperature, with a resistivity of 1 mΩ.cm at room temperature. The 

resistivity at 0K, 0.3 mΩ.cm, is similar to the one measured for LSMO films grown on bulk 

SrTiO3 substrate49, which means that the density of bulk defects within the 2 films are close. 

The LSMO film frown on STO/Si template has same crystallographic and electrical properties 
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than a film deposited on STO bulk substrate. 
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Figure IV. 39 Resistance variation of the LSMO film as a function of the temperature. 

 

The Magneto-Optic Kerr Effet (MOKE) at room temperature (figure IV. 40, left panel) 

exhibits the ferromagnetic characteristic of LSMO film on Si substrate. Furthermore, a 

LSMO-STO auto-supported structure that free from the silicon substrate can be realized using 

the classic silicon etching technique, as shown in the right panel of Figure IV. 40. 

 

Figure IV. 40 (Left) MOKE measurement of LSMO film and (right) fabrication of the 

LSMO-STO auto-supported structure. 

 

IV.5) Optoelectronics: Germanium  

Due to its high hole mobility, Ge appears as an interesting channel material alternative to 

Si for high-frequency p-MOSFETs. Ge/Si crystalline templates could also be used as 

templates for the integration of III-V based heterostructures on standard industrial Si wafer 

thanks to the negligible lattice mismatch between Ge and GaAs (~0.12%). Fabricating such 
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heterostructures could allow combining high-performance micro- and optoelectronic 

functionalities on the same silicon basewafer. The direct epitaxy of Ge on Si is challenging: 

the lattice mismatch between these two materials is about 4.1%, so that threading dislocations 

are generated in the growing material once the deposited thickness exceeds a critical 

thickness50 of a few monolayers. Many strategies have been developed to overcome this 

difficulty, and the crystalline oxides could serve as a buffer layer for the integration of Ge 

epitaxial film on Si substrate. In this section, we study the integration of Ge on silicon using 

the crystalline oxides/Si templates.  

 

IV.5.1) Ge/BaTiO3/SrTiO 3/Si(001) 

Due to the quasi-zero lattice mismatch between Ge (aGe/√2=4.00Å) and BaTiO3 (3.99 Å) 

0.2%, the BTO becomes an interesting buffer layer to for the Ge integration on Si (001).  

 

IV.5.1.1) Growth temperature impact 

70ML Ge was grown at a rate of 0.03ML/s in a temperature range between 300°C to 

600°C on the BTO film which demonstrates a 2×2 reconstruction after a post growth 

annealing at 650°C for 30min. The RHEED patterns of Ge layer grown at 300°C , 400°C and 

600°C along BTO [100] azimuth are displayed in Figure IV. 41 (a), (b) and (c). It can be seen 

evidently that the growth of Ge on epitaxial BTO film is indeed of three-dimensional 

Volmer-Weber-type, suggesting that Ge can not wet the BTO surface, i.e. γGe>γBTO+γinterface. A 

prior TEM study (Figure IV. 41 (d)) of INL on the Ge nanocrystal (NC) on BTO/STO/Si 

indicates that Ge NC presents large contact angles (sometimes higher than 90°C) and round 

profile, attesting a large interfacial energy51. The Ge growth also presents strong temperature 

dependence: at temperature less than 300°C the Ge is always polycrystalline and at higher 

temperatures it is predominantly 100 and 211 oriented, as noted in Figure IV. 41 (b). It should 

be noted that at the very beginning of the growth at all the temperatures, Ge nanodots shows 

multi-oriented and 100 and 211 quickly (after 5~10 minutes) become the dominated 

orientations suggesting they are more favorable than other orientations. However, further 

deposition of Ge did not change the three-dimensional growth mode but only enhance the 

augmentation of the Ge crystal size. 
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Figure IV. 41  RHEED patterns along BTO[100] azimuth of Ge layers on BTO epitaxial film 

grown at (a) 300°C, (b) 400°C and (c) 600°C; And (d) a TEM cross-sectional view of the 

Ge/BTO/STO/Si heterostructure46.  

 

IV.5.1.2) Surface impact  

The crystalline orientation of Ge layer grown on a BTO surface results from a 

compromise between a minimization of the lattice mismatch (and hence of the interface 

energy) and a minimization of the surface energy of Ge platelets that are formed before the 

formation of round-shaped NC51. Considering the quite small lattice mismatch between BTO 

[100] and Ge [100], the surface energy has the determinant influence in the growth of Ge on 

BTO. Indeed, it has already been widely reported that surface energy plays an important role 

for the Stranski-Krastanov growth of strained islands for II-VI semiconductors52 and for 

nitrides53.  

 

We deposited 70ML Ge layers at 400°C on different reconstructed BTO surface in order 

to investigate their impact on the Ge orientations. Figure IV. 42 exhibits the RHEED patterns 

along BTO[100] azimuth of the Ge layers on Ba-rich, Ti-rich and mixed BTO surfaces. On 

the Ba-rich BTO surface (left panel) corresponding to a ×2 reconstruction along [110] 

azimuth and ×1 along [100], the Ge appears to be polycrystalline. Oppositely, on the Ti-rich 

(corresponding to a ×2 reconstruction along [100] azimuth and ×1 along [110]) and mixed 

(both are ×1 along [100] and [110]) surfaces, the Ge layers turn out to be predominantly 100 

and 211 oriented. The similar behavior is observed for other semiconductors growth on oxides, 

such as InP/STO system54.  
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Figure IV. 42 RHEED patterns along BTO [100] azimuth of Ge layers on different 

reconstructed BTO surfaces. 

 

The objective of this work is to grow a Ge epitaxial layer on the BTO/STO/Si(001) 

template. However, no complete Ge epi-layer is obtained on the BTO film. For the InP 

epi-layers realized on STO/Si template (thesis of Jun Cheng, INL 2010), a two-step growth 

step was employed: high temperature (~500°C), high growth rate (1µm/min) to form single 

oriented islands (seeds) and low temperature, low growth rate to promote homogeneous 

coverage of the oxide. Compared with InP/STO system, the Ge epitaxial film deposition on 

BTO is limited by our Ge growth rate. Due to the too low Ge growth rate (1.2nm/min) we 

could attain using our MBE Knudsen cell, the single oriented (100 oriented) islands cannot be 

realized in a short time thus subsequent growth leads to the simultaneously size augmentation 

of both oriented islands (100 and 211). 

 

IV.5.2) Ge/Gd2O3/Si(111) 

IV.5.2.1) Accommodation and growth mode 

Figure IV. 43 shows the evolution of the RHEED pattern (recorded along one of the 

Gd2O3 <110> azimuths) during Ge growth. Before Ge growth starts, the Gd2O3 surface 

(Figure IV. 43 (a)) presents well-defined streaky lines and a clear ×4 reconstruction, indicating 

the good crystal and surface quality of the oxide template. Once Ge growth begins, the pattern 

turns spotty (Figure IV. 43 (b)) indicating an initial three-dimensional growth in the 

Volmer-Weber mode. At this stage of the growth, the RHEED pattern is very similar to that 
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observed in Ref.55 during the growth of Ge on PrO2/Si (111) templates, or even to that 

observed during the growth of InP on Gd2O3/Si (111) templates7. As explained in Ref.55, this 

pattern results from the superimposition of the (111)-oriented Ge Bragg peaks and of the 

diffraction of uncovered oxide regions. After the deposition of 40 nm of Ge, the RHEED 

pattern starts exhibiting diffraction lines, indicating that the initially formed Ge islands 

coalesce to form a two-dimensional layer. In Figure IV. 43 (c), a clear ×2 reconstruction of the 

Ge surface can be observed. At the end of the growth (Figure IV. 43 (d)), the RHEED pattern 

presents bright streaky lines resulting from the diffraction of a flat and well crystallized Ge 

epilayer. The Ge surface presents a (3×3) reconstruction, already observed for Ge(111) 

surfaces, possibly with the impurity of carbon or gadolinium56.  

 

Figure IV. 43 Evolution of the RHEED patterns as a function of Ge thickness. The arrows in 

(c), (d) highlight the Ge surface reconstructions. 

 

The evolution of the out-of-plane Ge 444 interatomic distance during the early stages of 

the growth was measured by recording the evolution of distance between the 000 transmitted 

spot and the 444 Ge reflection spot on the RHEED pattern (as indicated in Figure IV. 43(b)). 

The result is displayed in Figure IV. 44. The RHEED camera length was calibrated assuming 

that the Si substrate presents the bulk Si lattice parameter. The Ge 444 interatomic distance 

remains constant and equals to its value in bulk Ge (≈0.82 Å) during Ge growth. In particular, 

Ge takes its bulk lattice parameter as soon as it can be measured by RHEED. This behavior 

has already been observed for several semiconductor/oxide systems57 , 58. For standard 

mismatched IV-IV or III-V systems, the growing material takes the in-plane lattice parameter 
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of the substrate at the early stages of the growth, and undergoes a plastic relaxation process 

during which it progressively recovers its bulk lattice parameter at the expense of the 

formation of threading dislocations. In contrast here, Ge takes its bulk lattice parameter as 

soon as growth begins. The lattice mismatch between Ge and Gd2O3 is fully accommodated 

by forming interface dislocations confined at the heterointerface, as described in Ref. 57 for 

the InP/Gd2O3 system or in Ref. 58 for the InP/SrTiO3 system. 

 
Figure IV. 44 Evolution of the 444 interatomic distance during the early stages of the Ge 

growth. d444 remains constant (~0.82Å) and equals to its value of bulk Ge. 

 

IV.5.2.2) Epitaxial relationship and evidence for twin formation in the Ge layer 

X-Ray pole figures were recorded on the sample. For that purpose, the X-ray incident 

beam was point focused onto a 10mm2 area using a poly-capillary lens and crossed slits. A Ge 

111 pole figure is shown in Figure IV. 45 (a). On this figure, the radial scale corresponds to 

the polar angle (ψ), while the azimuthal incidence (φ) varies along the perimeter. The 2θ angle 

was fixed at 27.28° which corresponds to the Ge 111 Bragg angle. Thus, all the visible 

reflections on the pole figure correspond to the diffraction of planes with interplanar distances 

close to Ge {111} planes. The coordinates of these reflections allow orientating the different 

Ge variants with respect to each other in the real space. Additionally, for each reflection in the 

pole figure of Figure IV. 45 (a), defined by its polar and azimuthal angles, rocking curves 

where recorded in order to scan the reciprocal space, measure the lattice parameters, and thus 

detect the different layers of the heterostructure, namely the Si substrate, the Gd2O3 template 

and the Ge layer and determine their relative orientations. Some of these rocking curves are 

plotted in Figure IV. 46. Using these rocking curves, the pole figure of figure IV. 45 (a) has 



 
Chapter IV: Integration of versatile functionalities on Si based on oxide/Si system 

 
 

196 

been fully indexed.  

   

Figure IV. 45 (a) X-ray pole figure recorded near the 111 Si reflections on the sample of 

Ge/Gd2O3/Si (111). (b) Sketch of the twinning sequence for one of the Ge {111} plane family. 

 

The spot in the center labeled (111) (symmetric conditions) indicates that Ge is 

(111)-oriented (same out-of-plane orientation as the Si substrate). The three-fold symmetric 

reflections located at ψ = 70° and φ = 60°, 180° and 300° and labeled a(-111), a(1-11) and 

a(11-1) correspond to the main variant of the Ge crystal, designated as variant a. The other 

reflections in the pole figure correspond to the presence of twinned Ge variants in the layer. 

The set of low-intensity three-fold symmetric reflections at ψ = 70° and φ = 0°, 120° and 240° 

(labeled b(-111), b(1-11) and b(11-1)) indicate the presence of a second Ge variant in the layer 

(labeled variant b), twisted of 60° around the Ge (111) vertical direction with respect to 

variant a. This variant b corresponds to the presence of the twinning with respect to the 

Ge(111) surface. The mirror planes of these microtwins are the (-111), (1-11) and (11-1) Ge 

inclined planes respectively.  Simple geometric considerations allow concluding that the 

other reflections in the pole figure result from the presence of twins in the Ge layer. The 

reflections marked by red, green and blue dotted circles correspond to the twinning of the 

Ge(111) surface plane relatively to the Ge (1-11), (11-1) and (-111) inclined plane, 

respectively. This twinning sequence is sketched in the figure IV. 45 (b) for the Ge (1-11) 

plane. On this figure, the trace of the (111) and (1-11) Ge planes are plotted in the (10-1) Ge 

plane. In this plane, the symmetric of the Ge (111) plane with respect to the trace of the Ge 

(1-11) planes (mirror plane) is labeled (1-11)*. It forms an angle of 39° with respect to the Ge 
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(111) planes. These planes, corresponding to the twin of the Ge (111) planes with respect to 

the Ge (1-11) planes lead to the observation of a Ge 111 reflection in the pole figure, at ψ = 

39° and φ = 0°. This reflection is marked with a dotted red circle and labeled a*(1-11) in 

figure IV. 45 (a). Similarly, a*(11-1) and a*(-111) correspond to the twinning of the Ge(111) 

surface plane relatively to the (11-1) and (-111) Ge planes. The other secondary reflections 

located at ψ = 56° correspond to the twinning of the Ge (1-11), (11-1) and (-111) inclined 

plane relatively to each other. Such twins have already been observed by Schroeder et al. 

during the growth of Ge on Pr2O3
59. Their formation has been interpreted as occurring during 

the coalescence of the initially formed Ge islands, due to the presence of facets at the surface 

of these islands.  

 

The ω-2θ rocking curves recorded around the Ge 111, a11-1, b11-1 and a1-11* 

reflections of the pole figure of Figure IV. 45 (a) are plotted in Figure IV. 46. The rocking 

curve recorded around the Ge 111 symmetric reflection presents two well resolved peaks 

centered at ω = 13.65° (Ge 111 reflection) and ω = 14.25° (Si 111 reflection). This confirms 

that the Ge layer presents the same (111) out of plane orientation as that of the Si substrate. 

The rocking curves recorded around the Ge a11-1 reflection also present two peaks 

corresponding to a Ge 111 and a Si 111 reflection, respectively. This indicates that the 

in-plane orientation of the Ge variant a is the same as that of the Si substrate. The rocking 

curves recorded around the Ge b11-1 (Ge variant b) presents a significantly different shape: 

the intensity of the Ge 111 peak is 1700 times smaller than that of variant a. Since all the 

peaks correspond to reflections with the same 111 structure factor and with the same 

geometrical angle ψ, the diffracted intensities can be directly compared to quantify the 

proportion of the two variants. This indicates that 0.06 % of the Ge layer is twisted of 60° 

around the (111) vertical direction with respect to the Si substrate. The Si 111 reflection is not 

detected on this rocking curve, as expected for a single crystalline and single domain substrate. 

The peak centered at ω = 14.38° is a 111 reflection of the Gd2O3 layer. The Gd2O3 lattice is 

rotated of 60° around the (111) vertical direction with respect to the Si substrate, as already 

shown in Ref 60 and 61. In the end, the rocking curve recorded around the secondary a1-11* 

Ge reflection s at ψ=36° and 59° only presents a Ge 111 reflection, showing that only the Ge 

crystal is twinned with respect to {111} asymmetric planes. Since the geometrical angles 

differ, the quantification of these secondary twinned variants is not possible. Nevertheless, the 

intensity in these rocking curves is several orders lower than the intensity of the rocking 
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curves collected at ψ=70° for the main variant a. This qualitatively indicates that only a few 

part of the Ge material is twinned with respect to {111} asymmetric planes.  
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Figure IV. 46 Rocking curves corresponding to the spots in the X-ray pole figure Figure IV. 

45(a). 

 

The results discussed in this section allow determining the relative orientations of the 

layers in Ge/Gd2O3/Si heterostructure (Figure IV. 47). The epitaxial relationship between Ge, 

Gd2O3 and Si can be defined as [1-10]Ge (111)//[-110]Gd2O3 (111)//[1-10]Si (111). Only 

0.06% of the Ge material is twisted around the (111) vertical direction with respect to the 

main Ge variant, and a very few part of the Ge material is twinned with respect to asymmetric 

(111) planes. 

 

Figure IV. 47 Schematics of the Ge/Gd2O3/Si stack, cross-section view (left) and top view 

(right). 
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In conclusion, we have demonstrated that crystalline Gd2O3/Si (111) templates could be 

used for the integration of Ge on silicon. Germanium grows in the Volmer-Weber mode and 

takes its lattice parameter as soon as growth begins, as already observed for several highly 

dissimilar semiconductor/oxide systems. 0.06% of the Ge material is twisted of 60° around 

the vertical (111) direction, and a few part of the Ge material is twinned with respect to the 

{111} asymmetric planes. 

 

IV.6) Conclusion 

Based on the oxides/Si heterostructures, various functionalities have been integrated on 

the same silicon substrate.  

 

The outstanding dielectric quality of Gd2O3 epitaxial film on silicon is in good agreement 

with the recommendation of the ITRS for the sub-22nm nodes technology, which make Gd2O3 

as a competitive candidate for the high-κ gate insulator alternative. The PDA treatments can 

effectively improve the quality of the Gd2O3 films.  

 

The STO coherently grown on silicon shows a good rectifying characteristic at room 

temperature. The STO/Si system can serve as a template to integrate ferroelectric films such 

as BTO on silicon. The oxygen defects in the BTO films tremendously influence both their 

structural and electrical properties, due to which the BTO film grown by MBE method does 

not exhibit ferroelectricity but rectification characteristic. A ferroelectric BTO epitaxial layer 

is obtained on silicon substrate by combining the MBE and PLD (much higher oxygen partial 

pressure can be achieved in the chamber) deposition methods. 

 

Using PLD or sol-gel methods, ferroelectric epitaxial films such as PMN-PT and PZT are 

obtained on STO/Si template. The MFIS structures demonstrate good device quality for the 

application of the FeRAM application.  

 

Ferromagnetic LSMO layer is also integrated on silicon substrate using STO buffer layer. 

The MFIS structure based on room temperature superconductive LSMO epitaxial layer shows 

good I-V characteristic that can be used for ReRAM application. Furthermore, a LSMO-STO 

auto-supported structure that free from the silicon substrate is realized using the classic silicon 

etching technique. 
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Germanium crystalline films are also integrated on silicon using oxides/Si template for 

the optoelectronic application. Ge shows nonocrystal feature on BTO/STO/Si surface due to 

the limit growth rate determined by our MBE configuration. A high quality single crystalline 

Ge epitaxial layer is realized on Gd2O3/Si (111) template with quite few twinned parts.  

 

Finally, we have demonstrated that our crystalline oxide/Si templates can be successfully 

used for the integration of functional materials on silicon. 
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General conclusion and perspectives 

 
 

The oxides materials cover all spectrums of the functional properties: dielectricity, 

semiconductivity, metallicity superconductivity, non-linear optics, acoustics, piezoelectricity, 

ferroelectricity, ferromagnetism, etc. 

 

Si-based CMOS technology forms the corner stone of our modern information age. With 

the continuous scaling of the CMOS feature size, the silica that once was the “standard” oxide 

in microelectronic industry need imperatively replacing by high-k oxides. Crystalline 

gadolinium oxide turns out to be one of the most promising candidates since it satisfies all the 

desired requirements for the high-k gate dielectrics selection. 

 

Meanwhile, future “More than Moore” and “Heterogeneous integration” technologies 

demand more functionalities integrated on the same silicon platform. 

 

In this context, the work completed in this thesis presents the critical aspects towards 

understanding the growth strategies as well as integration and application issues of 

heteroepitaxy of crystalline oxides on silicon substrate using Molecular Beam Epitaxy. 

Substrate-like high quality crystalline SrTiO3 and Gd2O3 epitaxial layers were realized on Si 

and the integration of various functionalinities based on these oxide/Si templates were 

demonstrated. 

 

The SrTiO3 films growth at different temperatures with a subtle control of oxidant 

pressure, particularly at the early stages, was investigated by considering both of the kinetic 

and thermodynamic aspects. The epitaxy “window” exploited for the commensurate growth 

of SrTiO3 on Si (001) by MBE falls into the regime of the middle temperature and low initial 

oxidant pressure: ~360°C and initial oxygen partial pressure ~5×10-8Torr. All the structural 

analysis performed using diverse characterization methods including RHEED, XRD, TEM 

and T-Hz IR point out that STO films exhibit two-phased structure: a cubic STO phase formed 

by recrystallization of initially amorphous STO and a tetragonal t-STO phase, which is 
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already crystalline when the growth begins. The critical thickness for plastic relaxation of 

strained STO exceeds 24 ML. The origin of the anomalous tetragonality (thus ferroelectricity) 

in thin STO/Si layers is attributed to O segregation effects (enhanced by the presence of an 

elevated concentration of O vacancies) at the early stages of the growth.  

 

In order to improve the quality of STO layer grown on silicon substrate, the Si surface 

passivation engineering has been studied. However, possible alternative passivation strategies 

such as using Sr2SiO4 or (Ba,Sr)O layers turn out not feasible for the coherent growth of high 

quality STO on Si(001).  

 

The epitaxy of substrate-like STO films has also been explored by comparing several 

kinetic control deposition processes. In the “2-step” method, the STO film quality shows 

strong dependence on the buffer STO layer thickness grown in our optimized growth window. 

As this thickness increases, the STO film demonstrates better crystalline quality. The 

“recrystallization” method leads to a highly crystallized substrate-like STO/Si layer with a 

FWHM of 0.14° (for the 50nm-thick film) and an atomic flat surface. The thin SiO2 interface 

layer can be attributed to the oxygen diffusion through the buffer layer at the high growth 

temperature of 550°C.  

 

The electrical properties of the STO layer were also investigated. Our STO films 

(deposited on p-type silicon) shows n-type semiconductor behavior due to the oxygen 

vacancies in the layers and the metal/STO/Si structure thus possesses rectifying 

current-voltage characteristics.  

 

The second oxide/Si system intensively studied in this thesis was Gd2O3/Si(111). The 

optimal growth conditions (from both structural and electrical points of view) were defined. 

The Gd2O3 epitaxial film thus presents high crystalline quality as well as an abrupt interface 

with respect to silicon and the growth remains pseudomorphic for a 6.7nm-thick layer. The 

EOT value of the as-deposited Gd2O3 is possible to reach 0.73nm. Various strategies have 

been used to improve the electrical characteristics of the as-deposited sample. The 

employment of the atomic oxygen during the growth could effectively decrease the leakage 

current in the Gd2O3 layers. PDA by tubular furnace and RTA can develop the dielectric 

behavior of the samples. Particularly, the RTA under O2 atmosphere can effectively reduce the 
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charge density in the dielectric films while retain almost the same EOT value of the sample. 

The ability of STO and Gd2O3 to act as a platform for the integration of different 

functional oxides as well as germanium on silicon has been demonstrated: 

····Piezo-(ferro-)electricity. The epitaxial growth of high quality monocrystalline c-axis 

oriented BTO on STO/Si (001) using both MBE and PLD methods has been investigated. The 

oxygen defects in the BTO films play a key role for both the structural and electrical 

properties. The BTO film grown by MBE (finite oxidant pressure) does not exhibit 

ferroelectricity but rectification characteristic. A ferroelectric BTO epitaxial layer is obtained 

on silicon substrate by combining the MBE and PLD deposition methods. Ferroelectric thin 

films PMN-PT and PZT on STO/Si (001) fabricated by PLD and sol-gel methods respectively 

were also studied and the corresponding MFIS structures exhibit good memory function for 

FeRAM application. 

····Ferromagnetism. The integration of half-metal LSMO on STO/Si (001) template using 

PLD has been demonstrated. The LSMO layer shows room temperature ferromagnetism and 

the LSMO-STO-Si heterostructure shows good rectifying current-voltage characteristics that 

can be used for ReRAM application. A silicon-substrate-free LSMO-STO suspended structure 

was also realized. 

····Optoelectronics. The epitaxial growth of germanium on BTO/STO/Si (001) and 

Gd2O3/Si (111) templates were studied. Nanostructures Ge crystallized on BTO/STO/Si 

surface due to the limit growth rate of our MBE configuration. A high quality single 

crystalline Ge epitaxial layer was realized on Gd2O3/Si (111) template with quite few twin 

defects by the coalescence of the initial dislocation-free 3D islands. 

 

Based on the results in this thesis, different perspectives can be envisaged in this research 

field: 

····High-κ gate dielectric CMOS device 

Considering the fabulous electrical characteristics presented by the Gd2O3/Si MOS 

structure, a research on its CMOS process compatibility in MOSFET transistor is envisaged. 

The possible functional n-MOSFET with epitaxial high-κ Gd2O3 gate dielectrics and with 

Au/Ni electrode is illustrated in figure C. 1.  
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Figure C. 23 Schematic of the p-MOSFET with high-k Gd2O3 gate dielectric. 

····Ferroelectric FET device 

 The ferroelectric PZT films on STO/Si show good electrical quality. However, 

complementary studies are needed to further understand the structural (e.g. strain relaxation 

process) and piezoelectric properties (e.g. the measurement of d33). These studies are onset in 

the context of the thesis of Shi YIN at INL and LETI (Grenoble). The investigation of PZT on 

Si is finally towards to the FeFET device application as shown in Figure C. 2 

 

Figure C. 24 Schematic of PZT based FeFET device. 

 

The expertise obtained from the growth of crystalline ferroelectric oxides on silicon 

substrate can also be extended to other substrate such as germanium. This conception 

combines the advantages of FeFET and Ge-based high mobility devices and shows promising 

application for the future monolithic integration technology. We demonstrate our first results 

(figure C. 3) showing that high quality single crystalline BaTiO3 epitaxial films can be grown 

on Ge/Si pseudo-substrate, using a Ba-assisted Ge surface passivation and kinetic control 

“2-step” growth methods. 
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Figure C. 25 Epitaxial growth of crystalline BaTiO3 layer on Ge/Si pseudo-substrate. 

    

····Oxide nanoelectronics on silicon  

Based on the STO/Si (001) and Gd2O3/Si(111) templates, the integration of new 

functional oxides on silicon will be an interesting research new area. The investigation of 

several other functional oxides is ongoing and we demonstrate some interesting first results.  

 

Interfaces between the insulating oxides SrTiO3 and LaAlO3 gained a lot of interest in 

recent years due to the fact that when LAO is grown on TiO2-terminated STO, a conductive 

quasi-two dimensional electron gas (2DEG) exists at the interface. This unique property of 

LAO/STO can be integrated on Si by growing LAO epitaxial film on STO/Si (001) template, 

as shown in figure C. 4. 

   

Figure C. 26 RHEED patterns of LAO and TiO2-terminated STO films along STO(001) 

azimuth and TEM cross-sectional view of LAO/STO/SiO2/Si(001) heterostructure.  

 

Spinel half-metal ferrite CoFe2O4 (CFO) has been intensively investigated for its wide 

range of applications such as magnetorestrictive sensors, microwave devices, biomolecular 
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drug delivery and electronic devices, due to its large magnetocrystalline anisotropy, chemical 

stability and unique nonlinear spin-wave properties. It has also been considered as an 

important component for multiferroic multilayers or composites. Figure C. 5 demonstrates the 

first results of integration of CFO by sputtering on Si substrate (collaboration with ICMAB, 

Barcelona, Spain) using an oxide buffer layer. It was found that CFO shows polycrystallinity 

and 3D growth mode on Gd2O3/Si(111) and STO/Si (001) templates respectively. However, 

high quality single crystalline CFO films on Si can be envisaged by optimizing the treatment 

of the template surface and the growth strategy. As we demonstrated that Metal/STO/Si and 

Metal/Gd2O3/Si junctions show Shottky-type behavior, spin-polarized carries injection in 

silicon through a tunneling contact can be expected. 

 

Figure C. 27 Integration of CFO magnetic films on oxide/Si templates. 

 

Vanadium dioxide (VO2) has a tetragonal P4/ncc structure at room temperature. It shows 

an abrupt and reversible change in its optical and electrical (metal-insulator transition) 

properties when the temperature is raised beyond a critical point of ~68°C. Films made from 

this material have a potential to be used in energy efficient "smart" windows with 

temperature-dependent throughput of solar radiation. We demonstrate the metal-insulator 

transition by IR spectroscopy (thanks to W. Peng at synchrotron SOLEIL) for VO2 films 

grown on our Gd2O3/Si(111) template, as shown in Figure C. 6 (collaboration with Prof. 

Yanagida, Osaka University, Japan). 

. 

Two characteristic peak (270cm-1 and 323 cm-1) disappear (increase of the temperature) 

or appear (decrease of the temperature) around 65°C, which corresponds to the phase 

transition of the VO2 film on Gd2O3/Si(111).  
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Figure C. 28 IR spectra of VO2 film on Gd2O3/Si(111) of increasing temperature (left) and 

decreasing (right)respectively. 

    

····Integration of nanowires on oxide/Si platform 

Since the discovery of the carbon nanotube (CNT), the scientific interests of discovery 

various nanostructures have been raised. One-dimensional (1D) structures including 

nanowires, nanobelts and nanowires are supposed to have potential applications to 

nanoelectronics and optoelectronics, owing to their novel physical properties. The nanowires 

can also possibly be integration on Si via the oxide buffers. 

Magnesium oxide (MgO) is a typical wide-band-gap insulator, having found many 

applications as catalysis, additives in refractory, paint and superconductor products. We 

demonstrate first results of the integration of MgO nanowires on Gd2O3/Si (111) template, as 

shown in Figure C. 7 (collaboration with Prof. Yanagida, Osaka University, Japan). 

  

Figure C. 29 Schematic (left) and SEM image (right) of the integration of MgO nanowires on 

Si (111) substrate via Gd2O3 buffer layer. 

 

Khalid NAJI (a parallel thesis at INL) has demonstrated that III-V semiconductor (such 

as InP) nanowires can be grown on the STO (001) substrate using Vapor-Liquid-Solid (VLS) 

method. The integration of InP nanowires on Si(001) via STO buffer thus can be expected.  
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Figure C. 30 The integration of InP nanowires on STO/Si(001) template 
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Appendix A   RHEED 

 

Reflection High-energy Electron Diffraction (RHEED) is a non-destructive technique to 

check the crystalline structure of the substrate/film surface. This powerful in-situ 

characterization technique gives important information about the films or surfaces grown with 

MBE. We will briefly introduce the principle and fundamentals of RHEED as well as the 

information that can be extracted from this technique.  

 

A. 1 Principle 

Figure AA.1 illustrates the typical design for a RHEED experiment. A beam of electrons 

accelerated by a high tension of 25~30kV is glanced across a surface at low angle (1°~3°). 

The diffraction pattern then formed on a phosphor screen reflects the surface atomic 

arrangement. Indeed the component of the electron momentum normal to the surface is very 

small and the penetration of the beam into the surface is low, being restricted to the outermost 

few atomic layers, i.e. RHEED gather information only from the surface layer of the sample.  

 

Figure AA.31 Schematic of the experimental principle of RHEED. 
 

A. 2 Fundamentals of Electron Diffraction 

To understand the physical origin of the electron diffraction on the screen we firstly recall 
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the two conceptions: reciprocal lattice and Ewald’s sphere.  

The crystalline solids are composed a set of identical mesh containing a certain number of 

atoms called lattice. An infinite three dimensional lattice can be defined by its primitive 

vectors ( 1 2 3, ,a a a
�� ��� ���

) thus each atom can be represented by a unique vector 1 2 3R ua va wa= + +
�� �� ��� ���

 

with u, v and w are integers. The reciprocal lattice is determined by generating the three 

reciprocal primitive vectors, through the formulas as following: 

*
2 3
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2
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Therefore the vectors of the reciprocal lattice can be written as: 
* * *

1 2 3G ha ka la= + +
�� �� ��� ���

 

with h, k and l integers. And there exists the relationship between G
��

 and R
��

 that belong to 

the real lattice: 1iG Re =
��� ��
i .  

The diffraction condition (Laue condition) is thus defined by: 

* * *'
1 2 3( )k k G ha ka la− = = + +

�� � �� �� ��� ���
.  

In a single crystal, the distance between the consecutive parallel and equidistant reticular 

planes is represented by:  

2
hkld

G

π= ��  

where h, k, l Miller index designating the orientation of a plane (h, k, l) or a direction [h, k, l].  

 

In the case of RHEED diffraction, the penetration of the incident electron beam inside the 

sample is only several monolayers due to the small grazing angle. The electrons are then 

diffracted only by the surface atoms. These surface atoms occupy the nodes of a two 

dimensional network, marked by the translation vectors // 1 2R ua va= +
��� �� ���

. The Laue condition 

thereby can be deduced to
* *'

//// 1 2( )k k G ha ka− = = +
�� � �� �� ���

, where h and k are integers. The vectors 

//G
��

 form a two dimensional network thereby no restriction exists for the normal 

componentG⊥

��
. The vectors '

//( )k k−
�� �

 form a group of rods perpendicular to the surface that 

result from the elongation of the reciprocal lattice spots parallel to the normal direction of the 

sample. This group of rods is the reciprocal lattice defined by the vectors //R R=
�� ��

. 
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If no energy is gained or lost in the diffraction process (it is elastic), i.e. 'k k= =
�� �

2π / λ. 

The Ewald’s sphere with a radius of 2π / λ can be constructed to find the crystallographic 

properties of the sample surface, the principle of which is illustrated in figure AA.2. The 

diffraction pattern corresponds to the intersections of the reciprocal rods with the Ewald’s 

sphere.  

 

 

Figure AA.32 Schematic of the principle of RHEED. 

 
A. 3 Information obtained from RHEED 

 Figure AA.3 shows a RHEED pattern of a Si (111) surface. According to the analysis of 

this RHEED image, the following information can be obtained: 

1) crystallinity;  

2) growth mode; 

3) surface reconstruction; 
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4) growth rate; 

5) strain relaxation process. 

 

Figure AA.33 An example of RHEED pattern. 

 
A.3.1 Crystallinity 

The crystallinity of the growing film can be observed by RHEED, as shown in figure 

AA.4.  

 

Figure AA.34 The crystallinity of the material observed by RHEED. 
 

For the amorphous materials possessing no order in long distance, RHEED pattern shows 

a half-circle diffuse halo that is the projection of the Ewald’s Sphere. The streak-line feature 

of the RHEED pattern suggests single crystallinity of the film (or substrate). The streak lines 

are the projection of the intersection of the reciprocal rods and Ewald’s Sphere. The 

poly-crystalline material, which possesses multi crystalline orientations, displays the 

Debye-Scherrer rings on the RHEED pattern.  

 

A.3.2 Growth mode 

The RHEED pattern can also be used to analyze the growth mode of the crystalline film, 

as shown in Figure AA.5. When the film is two dimensional with a flat surface, RHEED 

pattern shows a clear, well-defined steak line feature. The steaks are quite fine accompanied 
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with some oblique lines - Kikuchi lines - which only appear for a good quality and flat 

crystalline films. If the surface of the material is rough, RHEED shows the wider steak lines 

with non-uniformed intensity. For the 3D growth mode, RHEED displays a spotty feature.  

 

Figure AA.35 The growth mode observed by RHEED pattern. 
 
A.3.3 Surface reconstruction 

For a crystal terminated along a given plane, the equilibrium positions of the atoms near 

the surface will be changed due to the alteration of the force determined by all other atoms in 

the bulk. Then the surface reconstruction occurs. From the RHEED pattern, we can analyze 

the surface reconstruction by observe the fractional streaks (Figure AA.3). 

 

A.3.4 Growth rate 

 In the 2D layer-by-layer growth mode, one can observe the intensity oscillation of the 

specular spot (Figure AA.6), which is induced by the periodic variation of the surface 

morphology during the growth of the 2D islands. The intensity of the specular spot displays a 

dependence of the surface reflectivity which is a function of the inverse of the roughness. The 

minimum is reached when the surface is half-covered (roughness maximum). Then the 

roughness decreases again and the reflectivity increases leading to another maximum of the 

intensity. We thus obtain de growth time for a monolayer film, i.e. the growth rate.  

 

Figure AA.36 Variation of the intensity of the specular spot of RHEED as a function of the 

coverage of the surface.  
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A.3.5 Strain relaxation process 

The RHEED pattern allows recording the variation of the in-plane lattice parameter a// by 

measuring the interdistance of the diffraction streak lines, which is inversely proportional to 

the lattice parameter of the crystalline film lattice. For the 2D layer-by-layer growth, we can 

study the strain relaxation process by plotting a// as a function of the film thickness. Before 

the relaxation occurs, the plotting will also oscillate, as shown in Figure AA.7.  

 

Figure AA.37 Observation of the oscillation of the a// as a function of the film thickness. 

 
In case that asub>afilm, the film will tensile strained on the substrate, which imposes 

clamping effect to the film. When the surface is half-covered, although the lattice parameter 

of the 2D islands at the bottom will follow that of the substrate, the top of the lattices are free 

of strain effect, thus a minimum of a// is obtained. Once one monolayer is formed on the 

substrate, a// increases again to the value of asub. If the oscillation disappears, the 2D growth 

mode changes to 3D and the film starts to relax.  
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Appendix B   AFM 

 

As one of the most widely used Scanning Probing Microscopy (SPM) tools, Atomic 

Force Microscopy (AFM) technology possesses several unique advantages: (1) no limitation 

of the sample material (compared to Scanning Tunneling Microscopy); (2) capability to 

measure a wide range of surface properties including topography, surface potential, electrical 

and magnetic properties; and (3) it can be performed in diverse environment such in air, water 

etc. Its resolution in the Z direction is of the order of sub-nanometer, while the lateral is 

limited by the tip radius of curvature, in the order of few tens of nanometers. 

 

B. 1 Principle 

The work principle of AFM is illustrated in Figure AB.1.  

 

Figure AB.1 Principle of AFM tool 

 

An AFM consists of an extremely sharp tip mounted or integrated on the end of a flexible 

cantilever. Upon proximity to a surface, the cantilever reacts to the forces between the tip and 

the investigated surface. Van der Waals force is the dominated atomic force in the interaction. 

By monitoring the deflection of the cantilever with a feedback loop, the downwards or 

upwards movement of the probe give the topography of the scanned surface. The deflection of 

the cantilever is measured by an optical lever mode: a laser light form a solid diode is 

reflected on the backside of the cantilever and then collected by a photodetector, which 
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consists of closely spaced photodiodes. Angular displacement of the cantilever leads to one 

photodiode collecting more light than the other photodiode, producing an output signal. Thus 

the detector keeps tracking the deflection of the cantilever. The use of a quadrupole 

photodiode allows separating vertical and lateral contributions of the signal: 

Vertical: (A+B)-(C+D) 

Lateral: (A+C)-(B+D) 

 

B. 2 Operation modes 

B.2.1 Contact mode 

In the contact mode, the probe is brought towards the surface by extending the Z scanner. 

When the tip enters in contact with the surface the cantilever starts bending. The extension of the 

Z scanner stops when the cantilever deflection reaches the predetermined setpoint, corresponding 

to a chosen contact force. Scanning over the surface features causes the cantilever deflection to 

change. The feedback loop regulates the vertical Z scanner position in a way to maintain the 

deflection constant to the setpoint. The recorded Z scanner movement gives the topography.  

 

The advantages of the contact mode are: 

- High scan speed; 

- Only AFM technique that can reach atomic resolution; 

- More effective on rough surface with extreme changes in vertical topography. 

And disadvantages: 

- Lateral forces can distort features in the image; 

- Forces normal to the tip-sample interaction can be high in air due to capillary forces 

from the adsorbate layer; 

- Lateral forces and high normal forces can result in reduced spatial resolution and 

damage of soft samples. 

 

B.2.2 Non-contact mode 

Non-contact mode is the most widely employed AFM mode. It operates by scanning the 

probe across the sample surface, while the cantilever is oscillated by a piezo-actuator. 

Operation can take place in ambient and liquid environments. In the first case the cantilever 

oscillates at or near its resonance frequency with amplitude ranging typically from 10nm to 

100nm. In a liquid, the oscillation need not be at the cantilever resonance. The tip slightly 

“taps” on the sample surface during scanning, contacting the surface at the bottom of its 
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swing. Variations in the tip-surface average distance make the oscillation amplitude to change. 

The feedback loop monitors the RMS of the oscillation, acquired by the photodetector and 

keeps it constant at the setpoint value by vertical movements of the scanner. Its vertical 

position at each (x, y) data point is stored to form the topographic image of the sample 

surface. 

  With respect to contact mode AFM, non contact-AFM has some advantages: 

- Higher lateral resolution on most samples (1nm to 5nm) 

- Lower forces and less damage to soft samples imaged in air 

  - Lateral forces virtually eliminated. 

     And one disadvantage: 

  - A little bit slower scan speed than contact mode.  

 

B. 3 Techniques derived from Contact mode AFM 

Some techniques derived from the contact mode AFM are widely used to characterize the 

electrical properties of the film. 

 

B. 3.1 Conductive AFM 

Conductive AFM (C-AFM) allows the characterization of the conductivity variations 

across conducting and semiconducting materials. The sample is scanned with the tip in 

contact with the surface at a contact force kept constant by the feedback loop. A DC bias is 

applied to the tip while the sample is grounded. A linear amplifier senses the current flowing 

through the sample, with detectable current range of 10pA~1µA. For the current 

measurements ranging from 100fA to 100pA (adaptable for the measurement of the tunneling 

current in the oxide thin film), the Tunneling AFM (TUNA) can be employed. 

 

B. 3.2 Piezoresponse Force Microscopy (PFM) 

PFM is based on the converse piezoelectric effect. Using the AFM tip as top electrode, an 

electric field is imposed over the investigated sample, which is usually grown on a bottom 

electrode. A ferro-(piezo-)electric material changes its sizes in response to the applied field. 

By changing the vibration orientation of the tip, both in-plane and out-of-plane 

piezoelectricity of the film surface can be measured.  

 

When the tip is in contact with the surface and the local piezoelectric response of the 
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sample is detected as the first harmonic component of the tip deflection, the phase φ, of the 

electromechanical response of the surface yields information on the polarization direction 

below the tip. For P- domains (polarization vector oriented normal to the surface and pointing 

downward), the application of a positive tip bias results in the expansion of the sample, and 

surface oscillations are in phase with the tip voltage, φ = 0. For P+ domains, the response is 

opposite and φ = 180°.  

 

Lateral PFM is a technique where the in-plane component of polarization is detected as 

lateral motion of the cantilever due to bias-induced surface shearing. The in-plane component 

of the polarization can be observed by following the lateral deflection of the AFM cantilever, 

and applying this technique can help to reconstruct the three-dimensional distribution of 

polarization within domains of ferroelectric single crystals. It is possible to apply this method 

in order to differentiate 90° and 180° domain switching in BaTiO3 or PbTiO3 thin films.  

 

Provided that the vertical and lateral PFM signals are properly calibrated, the complete 

electromechanical response vector can be determined, an approach referred to as vector PFM. 

Finally, electromechanical response can be probed as a function of dc bias of the tip, providing 

information on polarization switching in ferroelectrics, as well as more complex 

electrochemical and electrocapillary processes. 
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Appendix C   XRD 

 
X-Ray Diffraction (XRD) is a technique widely applied for the characterization of crystalline 

materials. In this technique, interaction of X-rays with the sample creates secondary diffracted 

beams of X-rays related to interplanar spacings in the crystalline sample according to Bragg’s 

Law. 

 
C. 1 Principle 

 Figure AC.1 shows the principle of the XRD-Bragg’s law. When parallel X-rays strike a 

pair of parallel lattice planes, every atom within the planes acts as a scattering centre and 

emits a secondary wave. All of the secondary waves combine to form a reflected wave. The 

same occurs on the parallel lattice planes for only very little of the X-ray wave is absorbed 

within the lattice plane distance: d. For a certain angle (Bragg angle), the amplification 

condition (phase difference equals to a whole multiple of wavelengths, ∆λ = nλ) is satisfied.  

 

Figure AC.1 Bragg’s law 

 

Under amplification conditions, parallel, coherent X-ray light (rays 1, 2) falls on a crystal 

with a lattice plane distanced d and is scattered below the angle θ (rays 1', 2'). The proportion 

of the beam that is scattered on the second plane has a phase difference of |ACB| to the 

proportion of the beam that was scattered at the first plane. Following the definition of sine: 

|AC|=d sinθ. The phase difference |ACB| is twice of that, so |ACB| = 2d sinθ. The 

amplification condition is fulfilled when the phase difference is a whole multiple of the 

wavelength λ, so |ACB| = nλ. Thus we obtain Bragg’s law: 2d sinθ= nλ (n=1, 2, 3…) 

 

Figure AC.2 shows a typical setup of a four-circle diffractometer.  
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Figure AC. 2 Four-circle diffractometer. 

 
C. 2 X-ray reflectivity measurement 

X-ray reflectivity is one of the methods used to analyze thin film thickness, density and 

roughness. In this method, x-ray beams strike the sample surface at a glancing angle. 

Reflected x-ray intensity is measured while varying the angle of incidence. Analysis of the 

resulting profile enables analysis of the structural parameters of the sample thin film. Figure 

AC.3 shows the relationship between the reflectivity profile and structure parameters (density, 

film thickness, roughness). 

 
Figure AC.3 Relationship between the reflectivity profile and structure parameters.  

 

C. 3 Rocking curve measurement 

Rocking curve measurement is an x-ray technique to analyze the alignment of crystal 

lattices. It assesses changes in diffracted x-ray intensity when a sample is rocked over a range 

of omega values. It is based on a given hkl reflection from a thin film, and provides the spatial 

distribution the lattice orientation, called mozaicity. To accomplish a rocking curve 

measurement, the detector is set to the 2θ value of the targeted reflection. The receiving optics 
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slits are set comparatively wide in order to measure the changes in intensity when the omega 

axis is scanned. Figure AC.4 shows the operation principle and the information obtained from 

the rocking curve scan. 

 

Figure AC. 4 (a) Rocking curve measurement diagram and (b) relationship between 

measurement results and structural parameters. 

 

C. 4 Reciprocal Space Mapping Measurement (RSM) 

The Reciprocal Space Mapping (RSM) measurement is used to analyze the orientation of 

the substrate crystal phase as it related to the lattice plane of the epitaxial thin film. A RSM 

measurement acquires a two-dimensional intensity distribution by performing a series of 2θ/ω 

scans at stepped values of ω. All diffraction peaks occurring in this scanned area are indicated 

by increased intensity in the map. Measuring such 2D intensity distributions enables us to 

analyze peak distributions. We can determine which predominates: peaks spreading in the ω 

direction (spatial distribution of lattice) or peaks spreading in the 2θ/ω direction (dispersion of 

the lattice constant), as shown in Figure AC.5.  

 

Figure AC.5 Factors causing spread in the peak distribution: (a) Mosaic spread and (b) 

Spread due to lattice distortion. 



 
Appendix 

 

 228 

C. 5 Pole Figure Measurement 

Pole figure measurement is a method to analyze the preferred orientation type, directional 

relationships and degree of orientation in the sample. It is performed using a constant 

diffraction angle and the sample is rotated in all directions. A semi-spherical pole figure is 

scanned by rotating the sample through two preferred orientation axes: alpha (tilt) and beta 

(in-plane rotation). For a four-axis goniometer, alpha and beta correspond to the chi and phi 

axes respectively. Figure AC.6 illustrates the pole figure measurement.  

 

Figure AC.6 Pole Figure measurement  
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Epitaxy of crystalline oxides for functional materials 
integration on silicon 

 
Abstract 

 
Oxides form a class of material which covers almost all the spectra of functionalities: 

dielectricity, semiconductivity, metallicity superconductivity, non-linear optics, acoustics, 
piezoelectricity, ferroelectricity, ferromagnetism…In this thesis, crystalline oxides have been 
integrated on the workhorse of the semiconductor industry, the silicon, by Molecular Beam 
Epitaxy (MBE). 

 
The first great interest of the epitaxial growth of crystalline oxides on silicon consists in 

the application of “high-k” dielectric for future sub-22nm CMOS technology. Gadolinium 
oxide was explored in detail as a promising candidate of the alternative of SiO2. The 
pseudomorphic epitaxial growth of Gd2O3 on Si (111) was realized by identifying the optimal 
growth conditions. The Gd2O3 films show good dielectric properties and particularly an EOT 
of 0.73nm with a leakage current consistent with the requirements of ITRS for the sub-22nm 
nodes. In addition, the dielectric behavior of Gd2O3 thin films was further improved by 
performing PDA treatments. 

 
The second research interest on crystalline oxide/Si platform results from its potential 

application for the “More than Moore” and “Heterogeneous integration” technologies. The 
SrTiO3/Si (001) was intensively studied as a paradigm of the integration of oxides on 
semiconductors. The crystallinity, interface and surface qualities and relaxation process of the 
STO films on silicon grown at the optimal conditions were investigated and analyzed. Several 
optimized growth processes were carried out and compared. Finally a “substrate-like” STO 
thin film was obtained on the silicon substrate with good crystallinity and atomic flat surface. 

 
Based on the Gd2O3/Si and SrTiO3/Si templates, diverse functionalities were integrated 

on the silicon substrate, such as ferro-(piezo-)electricity (BaTiO3, PZT and PMN-PT), 
ferromagnetism (LSMO) and optoelectronics (Ge). These functional materials epitaxially 
grown on Si can be widely used for storage memories, lasers and solar cells, etc. 
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Epitaxie d’oxydes cristallins pour l'intégration de 
matériaux fonctionnels sur silicium 

 
Résumé 

 
Les oxydes forment une classe de matériaux qui couvrent un vaste spectre de 

fonctionnalités: diélectricité, semiconductivité, métallicité, supraconductivité, optique non 
linéaire, acoustique, piézoélectricité, ferroélectricité, ferromagnétisme… Dans cette thèse 
nous avons réalisé l’intégration d’oxydes sous forme de couches minces cristallines sur 
silicium, en utilisant l’épitaxie par jets moléculaires (EJM). 

Le premier objectif de la croissance d’oxydes cristallins sur silicium est de réaliser des 
isolateurs de grille à forte constante diélectrique pour les technologies CMOS avancées 
« sub-22nm ». L’utilisation de l’oxyde de gadolinium (Gd2O3) a été explorée en détail comme 
un candidat très prometteur pour remplacer l’oxyde de grille traditionnelle qu’est la silice 
(SiO2). La croissance épitaxiale de Gd2O3 sur le substrat Si (111) a été réalisée en identifiant 
les conditions de croissance optimale pour obtenir de bonnes propriétés diélectriques avec 
notamment l’obtention d’une valeur d’EOT de 0,73nm et des courants de fuite compatibles 
avec les spécifications de l’ITRS pour les nœuds « sub-22nm ». En outre, les propriétés 
diélectriques de Gd2O3 ont pu être améliorées en effectuant des recuits post-dépôts. 
 L’autre intérêt d’avoir un empilement d’oxydes cristallins sur silicium repose sur leurs 
applications potentielles dans les technologies « Plus que Moore » ainsi que pour l’ 
« Intégrations hétérogènes». Le système SrTiO3/Si (001) a été étudié comme un système 
modèle de l'intégration des oxydes sur semi-conducteur. La cristallinité, la qualité de 
l'interface oxyde-semiconducteur, l’état de surface et le processus de relaxation de STO 
déposé sur silicium ont été examinés et analysés, permettant de déterminer des conditions de 
croissance optimales. Plusieurs processus de croissance ont été réalisés et comparées. 
Finalement, une couche mince de STO de même qualité qu’un substrat massif a pu être 
obtenue sur silicium avec une bonne cristallinité et une surface atomiquement lisse.  
 A partir des empilements de Gd2O3/Si et SrTiO3/Si, il a été possible d’intégrer sur 
silicium des oxydes possédant des fonctionnalités variées comme la ferro-(piézo-)électricité 
(BaTiO3, PZT et PMN-PT), le ferromagnétisme (LSMO) et l’optoélectronique (Ge). Ces 
couches minces fonctionnelles sur Si peuvent être alors  largement utilisées pour des 
applications de stockage mémoire, les lasers et les cellules solaires, etc. 
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