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Résumé

Dans cette thése, nous utilisons et contribuons & la théorie des produits de matrices aléa-
toires afin d’étudier des propriétés génériques des éléments et des sous-groupes des groupes
linéaires. Notre premier résultat donne une version probabiliste de I'alternative de Tits : nous
montrons que si M,, et M/ sont deux marches aléatoires indépendantes sur un groupe linéaire
de type fini non virtuellement résoluble alors presque stirement les deux marches finiront par
engendrer un sous-groupe libre non abélien a deux générateurs. Cela répond par I'affirmative &
une question de Guivarc’h [Gui90] et de Gilman, Miasnikov et Osin [GMO10]. Plus précisément,
nous montrons que la probabilité que M, et M, n’engendrent pas un sous-groupe libre décroit
exponentiellement vite vers zéro. Notre outil principal est la théorie des produits de matrices
aléatoires. Durant la preuve, nous établissons de nouveaux théorémes limites dans cette théorie,
d’une part en généralisant des résultats connus dans le cadre des produits de matrices & valeurs
dans les corps archimédiens a tout corps local, d’autre part en donnant des résultats qui sont
nouveaux méme sur R. Par exemple, nous montrons que sous des hypothéses naturelles sur la
marche aléatoire, les composantes suivant K de M, dans la décomposition K AK deviennent
asymptotiquement indépendantes avec vitesse exponentielle. Dans la deuxiéme partie de la
thése, nous utilisons ces résultats pour étudier la transience des sous-variétés algébriques des
groupes algébriques. Un de nos résultats peut étre formulé comme suit : soit I' un groupe non
élémentaire de SLo(R), 1 une probabilité adaptée sur I' ayant un moment exponentiel, alors
pour toute sous-variété algébrique propre V de SLy(R), la probabilité que la marche aléatoire
appartienne & )V décroit exponentiellement vite vers zéro. Par conséquent, la sous-variété al-
gébrique V est transiente pour la marche aléatoire. Nous généralisons cet énoncé au cas ou
la marche aléatoire est adaptée sur un groupe Zariski dense des points réels d'un groupe al-
gébrique défini et déployé sur R. Ces résultats sont & comparer avec des travaux récents de
Kowalski [Kow(8] et de Rivin [Riv08]|, [Riv10].

Mots-clefs : Marches aléatoires, produits de matrices aléatoires, théorie des groupes, théorie
des probabilités, alternative de Tits.

APPLICATION OF RANDOM WALKS TO THE STUDY OF SUBGROUPS OF LINEAR
GROUPS

Abstract

In this thesis, we use and contribute to the theory of random matrix products in order to
study generic properties of elements and subgroups of linear groups. Our first result gives a
probabilistic version of the Tits alternative : we show that two independent random walks M,
and M on a non virtually solvable finitely generated linear group will eventually generate a non
abelian free subgroup. This answers a question of Guivarc’h [Gui90| and Gilman, Miasnikov
and Osin [GMO10]. We show in fact that the probability that M, and M, do not generate
a free subgroup decreases exponentially fast to zero. Our methods rely deeply on random
matrix products theory. During the proof we give some new limit theorems concerning this
theory, some of them will be the generalization of known results for matrices taking value
in archimedean fields to arbitrary local fields, others will be new even over R. For example,
we show that under natural assumptions on the random walk, the K-parts of M, in the
KAK decomposition become asymptotically independent with exponential speed. Next, we
use these properties to study the transience of algebraic subvarieties in algebraic groups. One
of our results can be formulated as follows: let I' be a non elementary subgroup of SLs(R),
1 a probability measure with an exponential moment whose support generates I', then for
every proper algebraic subvariety V of SLo(R), the probability that the random walk lies in
V decreases exponentially fast to zero. This shows that every proper algebraic subvariety is
transient for the random walk. We generalize this result to the case where the support of the



probability measure generates a Zariski dense subgroup of the real points of an algebraic group
defined and split over R. These results share common flavor with recent works of Kowalski
[Kow08| and Rivin |[Riv08], [Riv10].

Keywords: random walks, random matrix product, group theory, probability theory, Tits
alternative.
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Chapitre 1

Introduction

Cette thése s’inscrit dans le cadre des applications de la théorie des produits de
matrices aléatoires aux sous-groupes des groupes linéaires. Notre but est d’utiliser une
approche probabiliste (les marches aléatoires) afin de comprendre le comportement des
éléments génériques des groupes linéaires (i.e. des sous-groupes de G L, (K), K un corps).
Les questions de généricité¢ dans les groupes ont suscité plusieurs travaux de recherche :
en théorie probabiliste des groupes finis, citons par exemple [ET65)|, [ET67al, [ET67h],
[ET68]|, [ET70], [ET71], [Dix69], [Dial8], [Bab89|, |[LS96], [Shad9], [SC04]; en théorie
combinatoire des groupes [Gro93|, [Gro03], [Cha95], [AO96], [Arz97], [Arz98|, [KMSS03],
[Z1k03]. Citons aussi les travaux récents de Kowalski [Kow08], Rivin [Riv08], [Riv09],
|IRiv10] et Gilman, Miasnikov et Osin [GMO10]. Outre I'intérét de telles études en théorie
des groupes, elles jouent un role important en cryptanalyse moderne (voir par exemple
[AAGI9] et [MUOS]).

La thése est structurée ainsi :

1. L’introduction présente la problématique et énonce les résultats importants de la
thése.

2. Le Chapitre [2 reprend pour l'essentiel 1’ article "Random subgroups of linear
groups are free" [Aoua] accepté pour publication & Duke Mathematical Journal.
Pour cette raison ce chapitre est rédigé en Anglais.

3. Le Chapitre [3] reprend pour I'essentiel un autre article "Transience of algebraic
varieties in algebraic groups and application to generic Zariski density" [Aoub].

4. Le Chapitre {| traite les produits de matrices aléatoires sur un groupe algébrique
réductif défini sur un corps local.

Commencons par rappeler le cadre des marches aléatoires sur les groupes et par
préciser dans quel sens une propriété donnée sera considérée comme générique.
Soit T' un groupe discret, p une probabilité sur T, {X,;n > 1} une suite de variables
aléatoires de loi p définies sur un espace probabilisé (€2, F, P)ﬂ Pour tout n € N*, nous
définissons le n®™¢ rang de la marche aléatoire par

1. Par exemple, nous pouvons prendre pour € 'ensemble des trajectoires, Q = TN, P = y®N et F la
tribu produit.
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La loi de M,, est la n®™¢ convolée pu™ de p ott ™ = ™1 % ju et v+ p est la mesure image
de la probabilité v ® u par Papplication I' — ' : (x,y) — xv.

Si I' est de type fini, nous pouvons considérer une partie génératrice finie symétrique S
et une probabilité ayant S comme support, alors la marche aléatoire {M,;n > 1} n’est
autre que la marche aléatoire sur le graphe de Cayleyﬂ de T

Soit (P) une propriété sur I' (par exemple I' = SL3(Z), V une sous-variété algébrique
propre de SL3(R) et (P) = "ne pas appartenir a V"). Nous voulons voir si un élément
au hasard dans I' vérifie (P). Pour cela, nous étudions la probabilité

pn = P (M, ne vérifie pas (P))

Une facon de voir que (P) est générique est de dire que p, converge vers 0 quand n
tend vers l'infini. Une assertion plus forte, du type p, converge exponentiellement vite
vers zéro, implique par le lemme de Borel-Cantelli que pour presque toute trajectoire
{M,;n > 1}, il existe un rang ny a partir duquel M,, verifie (P). C’est dans ce sens que
nous dirons qu'un élément au hasard dans I' vérifie (P).

Divers auteurs ont adopté ce point de vue et se sont intéressés a des questions sem-
blables, en particulier Kowalski [Kow08] et Rivin |[Riv08| qui démontrent entre autres
qu’une matrice "au hasard" dans SL,(Z) a son polyndéme caractéristique irréductible.
Kowalski montre dans [Kow08| que la probabilité p, décroit exponentiellement vite vers
zéro et Rivin montre dans [Riv09| que la borne de décroissance exponentielle est effective.
Les techniques utilisées par ces auteurs relévent essentiellement du crible arithmétique
et des arguments de marches aléatoires sur les groupes finis dont le trou spectral et la
propriete 7 (voir |ZL]) .

Dans cette thése, le groupe I est linéaire, ¢’est-a-dire un sous-groupe de G L4(K) pour
d > 2 et K est un corps quelconque. Ainsi, M, n’est autre qu’un produit de matrices
aléatoires définies sur K. Pour étudier les produits de matrices aléatoires sur un corps
quelconque, on peut souvent se ramener a étudier les produits de matrices aléatoires
SUr un corps localﬂ Cette théorie débute dans les années 1960-1970 avec Furstenberg,
Kesten [FK60], [Fur63| et est poursuivie dans les années 1970-1990 par I’école francaise :
Bougerol, Guivarc’h, Le Page et Raugi [Gui80|, [L.P82], [BL85], [GR85, [GR36], [Bous6,
|[Bou&7|, [LP&9], [Guid0|, [Rau97|, [GuiO8| et russe [GM89|, [GGI6].
Elle étudie entre autres le comportement de M,, en norme, en direction, dans les dé-
compositions de Cartan et d’Iwasawa. Ses applications sont diverses : a I’étude des opé-
rateurs de Schrodinger [BLS85|, a I'étude des équations stochatisques [Kes73|, [LP83],
|Bou87],[dSGLP04], [Gui06], & la classification des mesures stationnaires sur les espaces
homogeénes [BQO9], a la démographie [Coh79], a 1’étude des fractions continues [BAGO1],
en dynamique holomorphe [DD], aux graphes expanseurs [BG09|, a I'étude des sous-
groupes des groupes linéaires [Gui90).

Cette thése fait partie de la derniére catégorie. Outre les résultats que nous obtenons
concernant les questions de généricité dans les groupes linéaires, nous démontrons de

2. Le graphe de Cayley de I' pour la partie génératrice S est le graphe ayant pour sommets les
éléements de I' et tel que x € ' est relié & y € T si et seulement si 27y € S.
3. R, C, une extension finie de Q, ou le corps des séries formelles de Laurent sur un corps fini.
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nouveaux théorémes limites concernant la théorie des produits de matrices aléatoires.

Les questions de généricité qui nous intéresseront tout au long de la thése sont les
suivantes.

— Nous donnons dans le Chapitre 2| une version probabiliste de Ialternative de Tits.
Soit K un corps, d > 2, I" un sous-groupe de type fini de GL4(K) non virtuellement
résoluble. Nous nous interesserons a un raffinement de aternative de Tits|Tit72],
i.e. savoir si deux elements génériques de I' engendrent un sous-groupe libre a deux
générateurs.

Pour cela nous considérons deux marches aléatoires indépendentes M,, et M) sur
I', et nous intéressons a la décroissance exponentielle de la probabilité

P({M,, M) non libre)

De plus, est-ce que le sous-groupe (M, M) est quasi-isométriquement (voir Défi-
nition plongé dans I'?

— Dans le Chapitre [3| nous considérons un groupe I" Zariski dense dans le groupe des
points réels d’'un groupe algébrique semi-simple G défini sur R. Soit V une variété
algébrique propre de G. Intuitivement, on s’attend qu’un élément générique de I"
n’appartient pas a V. A-t-on la décroissance exponentielle de la probabilité

P(M, €V) ?

Par Borel-Cantelli, si tel est le cas, alors V est transiente pour la marche aléatoire.

— Soient G comme dans le point précédent, I'y, I's deux sous-groupes Zariski denses
dans le groupe G des points réels de G. Nous nous intéresserons, toujours dans
le Chapitre [3] a savoir si un élément générique de I'y et un élément générique
de I'y engendrent un sous-groupe Zariski dense. Pour cela, cela nous considérons
deux marches aléatoires M,, et M/ respectivement sur I'; et I'y et nous estimons
la probabilité

P((M,, M) n’engendrent pas un sous-groupe Zariski dense)

Nous exposerons les résultats obtenus dans les Sections et de cette intro-
duction en expliquant le lien qui existe entre les trois points précédents. Les preuves
se trouvent dans les Chapitres [2| et 3| Les méthodes que nous utilisons sont totalement
différentes de celles employées par Kowalski et Rivin (voir ci-dessus).

Citons briévement les questions qui nous intéresseront concernant la théorie des
produits de matrices aléatoires.

— En théorie des produits de matrices aléatoires, est toujours mis en contraste le
comportement de M, et de sa matrice transposée (dans la base canonique) M}.
Quand K est un corps local, alors sous des hypothéses naturelles sur la mesure de
probabilité, nous montrons que M, et M} sont avec probabilité exponentiellement
proche de 1 des éléments proximaux. Leurs points attractifs respectifs vy, et
vyt Seront exprimés en termes de la décomposition de Cartan. Nous nous posons
la question de savoir si vy, et vy sont asymptotiquement indépendants avec
vitesse exponentielle et de voir aussi s’ils convergent a la méme vitesse. Une telle
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information permet d’obtenir une convergence exponentielle et une indépendance
asymptotique des composantes suivant K dans la décomposition K AK de M,,.

— Les principaux théorémes limites des produits de matrices aléatoires sont établis
dans le cadre des corps archimédiens. Nous étudierons leur extension a tout corps
local.

L’exposition de ces résultats est réservée a la Section de cette introduction et les

preuves aux Chapitres [2| (Section et

1.1 Une version probabiliste de 1’alternative de Tits

Le premier résultat de cette thése concerne une version probabiliste de 'alternative
de Tits et répond par laffirmative & une question de Guivarc’h [Gui90, §2.10] et de
Gilman, Miasnikov, Osin [GMO10, Problem 7.2|. Rappelons tout d’abord, I’énoncé de
la célébre alternative de Tits :

Theorem 1.1.1. [Tit72] Soit K un corps, d > 2, I' un sous-groupe de type fini de
GL4(K) non virtuellement résolublelﬂ. Alors T' contient un sous-groupe libre non abélien
a deux générateurs.

Question naturelle : deux éléments au hasard du groupe I' engendrent-ils un
sous-groupe libre? Un des résultats que nous démontrerons au chapitre |2 est ’énoncé
suivant :

Théoréme 1.1.2. Soit K un corps, d > 2, T un sous-groupe de GL4(K) de
type fini non virtuellement résoluble, S une partie génératrice finie symétrique de TP|, u
une mesure de probabilité sur S, {M,,n € N*} et {M] ,n € N*} deuzx marches aléatoires
indépendantes. Alors il existe p €]0, 1] tel que pour tout n assez grand :

P((M,, M) libre et quasi-isométriquement plongé dans T') > 1 — p"

En particulier, presque sirement, pour n assez grand, le groupe engendré par M, et M)
est libre non abélien el quasi-isométriguement plongé dans I'.

1.1.1 Historique du probléme, motivations et applications
Un théoréme de Guivarc’h

Dans [Gui90], Guivarc’h a démontré le théoréme suivant :

Théoréme 1.1.3. [Gui90, Théoréme 3] Soit T' un groupe linéaire de type fini non virtuel-
lement résoluble, 11 une probabilité supportée sur une partie génératrice finie symétrique,
{Mp,n € N*} et {M! n € N*} deux marches aléatoires indépendantes. Alors presque
strement, il existe des sous-suites aléatoires d’entiers {ng,k € N}, {n'y,k € N}, des

4. T est virtuellement résoluble s’il admet un sous-groupe d’indice fini qui soit résoluble
5. Cette condition peut étre raffinée par : g a un moment exponentiel et le plus petit semi-groupe
contenant le support de p est un groupe. Voir le Chapitre [2 pour les détails.
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entiers py et pj. non nuls tel que pour k assez grand, le groupe engendré par M, P* et
M;L;Cp;ﬂ est libre

Ce théoréme constitue déja une amélioration, et en fait une preuve probabiliste, de
Ialternative de Tits. La preuve de Guivarc’h ne donne aucune indication sur les sous-
suites aléatoires {ny;k € N} et {n};k € N} puisque leur existence est démontrée via
le théoréme de récurrence de Poincarré [Gui90, Lemme 2|. Dans le méme article, Gui-
varc’h demande si les estimées fines des produits de matrices aléatoires ne suffisent pas
a démontrer que presque sirement, le groupe engendré par M, et M/ est libre pour n
assez grand, c’est-a-dire si on peut se passer des sous-suites {ny; k € N} et {n};k € N}
et des entiers pj, et p;. Le Théoréme répond par l'affirmative a cette question.

Les travaux de Gilman, Miasnikov, Osin et les applications en cryptanlyse
moderne

Dans un travail récent [GMOI10], Gilman, Miasnikov et Osin ont démontré un théo-
réme analogue au Théoréme [1.1.2| pour les groupes hyperboliques. Leur théoréme peut
étre énoncé comme suit :

Théoréme 1.1.4. [GMOI10, Théoréme 2.1] Soit T' un groupe hyperbolique non élémen-
taz’reﬂ Soit p une mesure de probabilité supportée sur une partie génératrice finie sy-
métrique et {M,;n > 1}, {M!;n > 1} deuz marches aléatoires indépendentes. Alors il
existe p €)0, 1] tel que pour tout n assez grand :

P((M,, M) libre et quasi-isométriquement plongé dans T') > 1 — p"

On dit que le groupe I' a la propriété F'B (free basis : pour la liberté du sous-groupe
(M, M!)) et QI (le sous-groupe (M,, M) est quasi-isométriquement plongé) si ces
propriétés ont lieu avec probabilité tendant vers 1 de facon exponentielle.

Dans [GMO10, Problem 7.2|, les auteurs demandent si les propriétés F'B et QI sont
vérifiées pour le groupe SLy(Z), d > 3 qui n’est pas hyperbolique. Notre Théoréme m
répond par laffirmative a cette question et étend les propriétés F'B et QI a tout groupe
linéaire non virtuellement résoluble.

D’aprés les articles [MUQ7] et [MUQS], les propriétés F'B et QI sont importantes en

cryptanalyse moderne et peuvent étre utilisées pour faire une attaque sur le cryptosys-
teme AAG [AAG99).

Application en dynamique holomorphe
Des idées proches de celles développées dans le chapitre [2| ont été appliquées par
Bertrand Deroin et Romain Dujardin dans [DD] pour introduire la notion de courant

6. Un groupe hyperbolique est dit élémentaire s’il contient un sous-groupe d’indice fini cyclique.
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de bifurcation dans le cadre d’une famille holomorphe de représentations d’un groupe
de type fini I" de PSLy(C).

1.2 Transience des variétés algébriques

Dans la seconde partie de la thése, nous nous intéressons a la transience des sous-
variétés algébriques propres dans les groupes algébriques semi-simples. Dans cette sec-
tion, nous travaillons dans le corps des nombres réels.

Soit G un groupe algébrique défini sur R, G le groupe de ses points réels et I' un sous-
groupe Zariski dense de GG. Considérons une mesure de probabilité adaptée[] sur I et
Y une variété algébrique propre de G.

Questions :

— Est-il vrai que la variété V est transiente pour la marche aléatoire {M,;n > 1}
associée, c’est a dire que presque strement la marche aléatoire ne visite JV qu’un
nombre fini de fois ?

— La probabilité P(M,, € V) décroit-elle exponentiellement vite vers zéro ?

— Si P est un polyndéme non constant défini sur I’algébre des fonctions polynomiales
sur G, peut-on estimer |P(M,)|?

1.2.1 Motivations et historique

Premiére motivation : le Théoréme de Kesten. Ce dernier implique que la probabilité
de retour a l'identité dans I' décroit exponentiellement vite. Il est donc naturel de se
poser la question de la décroissance d’autres parties plus grandes du groupe. Dans le
cas particulier des sous-groupes, une vaste littérature existe : par exemple [Bek90] et
en particulier [DIHGCS99, Theorem 51] ot est prouvé que la probabilité que la marche
aléatoire sur I' retourne a un sous-groupe H décroit exponentiellement vite si et seule-
ment si le graphe de Scheirer de I'/H est non moyennable. Dans cette thése, nous nous
intéresserons a la probabilité de retour dans les sous-variétés algébriques.

Deuxiéme motivation : les graphes expanseurs (voir par exemple [BGOS|, [BG09|,
IBG10], [Var]). Dans [BG10], les auteurs montrent qu’il existe une infinité de nombres
premiers p de densité un, telle que la famille des graphes de Cayley de SLo(Z/pZ)
forme une famille d’expanseurs. Une étape cruciale de la preuve est de montrer que la
probabilité de retour d’une marche aléatoire sur SLy(Z/pZ) en un sous-groupe décroit
exponentiellement vite et uniformément en les sous-groupes. De plus, dans [BG09, Co-
rollary 1.1.], I'énoncé suivant est démontré : considérons le groupe I' = SLy(Z) (d > 2)
et S une partie symétrique finie de I' qui engendre un sous-groupe Zariski dense, u la
probabilité uniforme sur S, {M,;n > 1} la marche aléatoire associée, alors pour toute
variété algébrique propre V de SLy(C), la probabilité P(M,, € V) décroit exponentielle-
ment vite vers zéro.

Il est donc intéressant de pouvoir généraliser de tels résultats a tout groupe Zariski dense

7. i.e. tel que le groupe engendré par le support de p soit I’
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de SL4(R) et de pouvoir trouver une approche probabiliste évitant ainsi les réductions
modulo p et les arguments de combinatoire additive qu’utilisent Bourgain et Gamburd.

Troisiéme motivation : raffiner le Théoréme [I.1.2] Soit G un groupe algébrique semi-
simple défini sur R, G le groupe de ses points réels, I' un groupe Zariski dense dans G,
p une probabilité adaptée sur I', {M,;n > 1} et {M/;n > 1} deux marches aléatoires
indépendantes. D’aprés le Théoréme [1.1.2] presque stirement, le groupe engendré par
M, et M/ est libre (sous conditions naturelles sur p). En nous basant sur 1'énoncé
de Dalternative de Tits [Tit72], il est naturel de se demander si ce groupe est Zariski
dense. Comme nous le verrons dans le Chapitre |3 cette question est intimement liée &
la probabilité de retour d’'une marche aléatoire sur I' x I' & une sous-variété algébrique
propre de G x G.

1.2.2 Reésultats et applications

Nous obtenons entre autres les théorémes suivants :

Théoréme 1.2.1. Soit 1 une probabilité sur SLy(R) dont le support engendre
un groupe non élémentairefl Nous supposons aussi que j1 a un moment ezponentiell}. Si

{M,,n > 0} est la marche aléatoire associée, alors pour toute variété algébrique propre
V de SLy(R),

limsup [P(M, € V)}% <1

n—-+o0o

Plus précisément, si P est un polynome non constant en les entrées des matrices de
SLy(R), il existe X > 0 tel que :

1
—log |P(M,)| — A
n

n—-+o00
La derniére convergence est au sens presque sire. De plus, une inégalité de grandes
déviations est valide : pour tout € > 0, il existe p(e) €]0,1[ tel que pour tout n assez
grand :

P (I3 toelP(04)] = 2 ) < pter (11)

Dans le cadre plus général d’un groupe algébrique déployé sur R, nous obtenons le
résultat suivant :

Théoréme 1.2.2. Soient G un groupe algébrique semi-simple défini et déployé
sur REL G le groupe de ses points réels et I un sous-groupe Zariski dense de G. Alors

pour toute variété algébrique propre V de G, il existe une mesure de probabilité p adaptée
sur I' (voir la Remarque suivante) telle que :

limsup [P(M, € V)ﬁ <1 (1.2)

n—-+o00

8. i.e. non virtuellement résoluble ou aussi Zariski dense.
9. 1 a un moment exponentiel s’il existe 7 > 0 tel que [ ||g||"du(g) < oo, ou ||.|| est une norme
quelconque sur End(R?).
10. Par exemple, G = SLy, d > 2.
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Une inégalité de grandes déviations similaire @ est aussi valable.

Remarque 1.2.3. Pour qu’une mesure de probabilité u adaptée sur I' ayant un moment
exponentiel vérifie ['inégalité , il faut que le vecteur de Lyapunov associé (voir Dé-
finition soit suffisamment générique, i.e. évite un certain nombre d’hyperplans
déterminés par la variété V.

Concernant le groupe G = SLg nous obtenons le théoréme suivant :

Théoréme 1.2.4. Soit d > 2, T' un sous-groupe Zariski dense de SLy4(R), p
une mesure de probabilité adaptée sur I' ayant un moment exponentiel. Alors pour toute
variété algébrique propre V de RY et pour tout x € R\ {0},

lim sup []P’(Mnx € V)rl <1

n—-+0o

Concernant la transience des sous-groupes algébriques, nous obtenons le résultat
suivant :

Théoréme 1.2.5. Soit G un groupe algébrique semi-simple défini sur R, G le
groupe de ses points réels supposé sans facteurs compacts, I' un groupe Zariski dense
de G et i une mesure de probabilité adaptée sur I' ayant un moment exponentiel. Alors
pour tout sous-groupe algébrique H propre de G défini sur R,

lim sup [P (S, € H(R))]Z <1

n——4oo

Application a la généricité de la Zariski densité

Rivin [Rival s’est intéressé a la question suivante : considérons le groupe SL4(Z)
et prenons g € SLy(7Z). Est-il vrai que si h est pris “au hasard” dans SL4(Z) alors le
groupe (g, h) engendré par g et h est Zariski dense dans SL4(R)? Formellement, voici
le résultat obtenu par Rivin

Théoréme 1.2.6. [Riva, Corollary 2.11] Soit G = SLq et I' = SLy(Z), d > 2. Soient
la mesure de probabilité uniforme sur une partie génératrice finie symétrique de I' et
{M,,n > 1} la marche aléatoire associée. Alors il existe g € I', une constante c(g) €]0,1]
tels que

P({g, M,,)soit Zariski dense) > 1 — c(g)"

Il est délicat de passer du groupe engendré par une matrice fixe et une marche aléa-
toire donné par le théoréme précédent au groupe engendré par deux marches aléatoires.
Dans cette direction, nous obtenons, en utilisant le Théoréme le résultat suivant.
Celui ci compléte le Théoréme et répond partiellement a la derniére question posée
dans la section des motivations :
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Théoréme 1.2.7. Soit G un groupe algébrique semi-simple défini et déployé sur
R, G le groupe de ses points réels, I'1, 'y deux groupes Zariski denses de GE. Alors il
existe deur mesures de probabilité iy et o respectivement sur I'y et I'y telles que

P((M; ., Ms,,) est Zariski dense et libre) > 1 — "

ot ¢ €)0, 1 et {My,;n > 0} et {My,,,n > 0} sont deux marches aléatoires indépendantes
associées respectivement a 11 €t [s.

Remarque 1.2.8. Ce résultat est partiel. Nous conjecturons que le théoréme précédent
est vrai pour toutes mesures de probabilité p, et ps ayant un moment exponentiel. Cepen-
dant les techniques de produits de matrices aleatoires ne semblent pas suffisantes pour
traiter toutes les mesures et que probablement un rafinement des techniques de crible
arithmétique [Kow08] permetira de montrer cela.

1.3 Produits de matrices aléatoires sur un corps local

Dans le chapitre nous donnons les principaux résultats obtenus concernant la
théorie des produits de matrices aléatoires. Ils ont été dans I'intégralité obtenus dans le
chapitre 2] mais dans un contexte un peu moins général : grosso modo les resultats du
Chapitre [2| concernent les groupes semisimples déployés seulement, et le cas general est
traité dans le Chapitre [d] Certains sont des généralisations de résultats connus dans le
cadre du corps des nombres réels a tout corps local et d’autres sont nouveaux méme sur
R. Ces résultats sont des points clés pour la preuve du Théoréme et des résultats
cités dans la Section Dans cette section, nous donnons quelques résultats de la
deuxiéme catégorie.

Notons cependant que dans le Chapitre 2| nous traitons un corps local quelconque et
dans le Chapitre [4| nous nous restreignons pour des raisons techniques aux corps locaux
de caractéristique zéro.

Une bonne référence pour les produits de matrices aléatoires sur R ou C est le livre de
Bougerol et La Croix [BL8&5].

1.3.1 Historique

Toutes nos variables aléatoires sont définies sur un espace probabilisé (Q, F,P). Le
symbole p.s. signifie presque stirement et £ désigne I’espérence par rapport a la proba-
bilité P.

Soient d un entier > 2, p une mesure de probabilité sur GL4(R), {X;;¢ > 1} une
suite de variables aléatoires indépendantes de loi p. Soit I', le plus petit semi-groupe
fermé de G L4(R) contenant le support de u. Pour tout n € N*, notons

S, =X, X,

11. En particulier, le théoréme est applicable pour G = SLq, I'y = T'y = SL4(Z)
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Considérons la base canonique (e1,--- ,e4) de RY. Pour g € GL4(R), g* désigne la
transposée de g dans cette base. Rappelons la décomposition d’Twasawa dans GLg(R) :

GL4(R) = KAN

avec K le groupe orthogonal, A le groupe des matrices diagonales a coefficients stricte-
ment positifs et N le groupe des matrices triangulaires supérieures avec 1 sur la diago-
nale. Notons pour tout n € N*, S, = K, A, N,, la décomposition d’Iwasawa de S, dans

GL4(R).

Nous notons P(R?) I'espace projectif de R et [z] la projection de z € R?\ {0} dans
P(RY). Notons 6(, ) la distance de Fubini-Study sur P(R?) :

_ Mz Ayl

= el ¢ el e PR

o([z], ly])

Définition 1.3.1. Soit I' un sous-semi-groupe de GL4(R). On dit que T est fortement
wrréductible si et seulement si ' ne fize pas une réunion finie d’espace vectoriels propres.
1l est dit prozimal s’il contient un élément proximal, c¢’est-a-dire une matrize ayant une
valeur propre unique de module mazrimal.

Guivarc’h avait démontré le théoréme suivant :

Théoréme 1.3.2. [Gui90, Théoréme 6’| Si i a un moment exponentiel et I, agit de
facon fortement irréductible et prozimale, alors Nlej; converge p.s. vers une variable
aléatoire T'. De plus la vitesse de convergence est exponentielle dans le sens suivant : il
existe € > 0, p €]0, 1] tel que pour tout n assez grand :

E(|Nper = T[) < p"

De plus, il montre que K, [e1] et Nie; sont asymptotiquement indépendants dans le
sens suivant :

Lemme 1.3.3. [Gui90, Lemme 8/l existe des variables aléatoires indépendantes Z et T

sur P(R?), des constantes C,e >, p €]0,1[ tels que pour toute fonction ¢ e-holdérienne
sur X = P(R?) x R%, on ait :

[E (o(Kaler], Nier) — E(6(2,)) | < Cligl|p"

ol
_ gy 19(0) — 00yl

ot d est la distance naturelle sur X induite par 0.
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1.3.2 Nos résultats

Une partie de la thése est réservée a prouver les énoncés analogues aux Théoréme
et Lemme pour la décomposition de Cartan au lieu de la décomposition
d’Iwasawa et dans le cadre d’un corps local arbitraire.

Considérons donc un corps local k de caractéristique zéro, d > 2, 1 une mesure de
probabilité sur G'Lq(k). Notons comme ci-dessus I', le plus petit semi-groupe fermé de
G L4(k) contenant le support de p.

Considérons la base canonique (ey, -+ , eq) de k% et rappelons la décomposition KAK
ou de Cartan correspodante.
Pour k = R ou C, on considére la norme euclidienne (resp. hermitienne) sur k4. Soit K =
Oq(R) (resp. U,(C) ) le groupe orthogonal (resp. unitaire), A = {diag(ay,...,aq); a; >
0Vi=1,..,d}, At ={diag(ay,...,aq) € A;a; > ... > ag > 0}. Alors on a la décomposi-
tion suivante : GLg4(k) = KATK. Cela résulte de la décomposition polaire classique et
de la théorie de réduction des matrices symétriques définies positives.

Quand k est non archimédien, on note {2, ’anneau des entiers et 7 une uniformisante (gé-
nérateur de I'idéal maximal de ). Soient K = GL4(), A = {diag(z™,...,7"); n; €
ZNi =1,..,d} et AT = {diag(m™,...,7") € A; ny < ... < ng}. Sil'on considére la
norme suivante sur V' : ||z|| = Maz{|z;|;i = 1,...,d}, x € V, on peut prouver que K est
le groupe des isométries de V. Avec ces notations, la décomposition suivante est valable :
GL4(k) = KATK. Cela résulte du théoréme des facteurs invariants (voir par exemple
[CRO6, Théoréme 16.6 page 94])[

La décomposition de g € GLy4(k) dans le produit K AK n’est pas unique, cependant
nous pouvons en fixer une de fagon que la section G — K AK soit mesurable (dans le cas
archimédien, il s’agit de diagonaliser une matrice symétrique définie positive de fagon
mesurable, il suffit d’appliquer I'algorithme du rang et dans le cas non archimédien, il
s’agit d’opérations élémentaires sur les matrices (voir [CR06, Théoréme 16.6 page 94| ou
I'exemple ci-dessous pour le cas de GL3(Q,)). Notons S,, = K, A,U, la décomposition
qui correspond a S,,.

12. A titre d’exemple, illustrons cette décomposition pour G = GL2(Q)p), p étant un nombre
premier. Dans ce cas K = GLy(Z,) et on peut prendre p comme uniformisante et donc At =
{diag(p™,p™);n1 < ny € Z}. Démontrons alors la décomposition de Cartan. Soit g = < il 51 >

2 Y2
1
1 0
que soit xy soit o est de plus petite valuation parmi {x1,z2,y1,y2}. Quitte & multiplier & gauche
par a, on peut supposer que x; de plus petite valuation. En multipliant g & gauche par la matrice

une matrice de G. Quitte & multiplier g & droite par la matrice a = ( € K, on peut supposer

1 0 . .
1 € K, on obtient une matrice du type | . 7! ) avec v(x1) < v(yh). Par une opéra-
—zozy 1 0

I 0
0w
des unités p-adiques de Z,, (formé des éléments de valeur absolue 1).

tion similaire, on se raméne & . Finalement, on utilise que @, = pZZ[f ol Z, est le groupe
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Soit P(k?) I'espace projectif de k% muni de la distance de Fubini-Study §(, -).
L’analogue du Théoréme pour la décomposition KAK est I'assertion suivante :

Théoréme 1.3.4. (2.4.33, |2.4.38, [3.5.15, 4.1.1) [Convergence exponentielle dans la
décomposition KAK] St 1 a un moment exponentiel et I',, agit de fagon fortement irré-
ductible et proximale, il existe une variable aléatoire Z sur P(k%) de loi ['unique mesure
de probabilité ,ut—invariante sur P(k%), une fonction p : R —|0, 1] telle que pour tout
€ > 0 et toult n assez grand, on ail :

E (5(U[er], 2)%) < ple)" (13)
En particulier, Ulle1] converge p.s. vers Z.

Remarque 1.3.5. Quand nous considérons la marche aléatoire sur les k-points d’un

groupe réductif défini sur k, nous obtenons un résultat analogue pour la décomposition
KAK de M, dans le groupe en question (voir le Théoréme et le Chapitre [{]).

Remarque 1.3.6. Pour k = R et k = C, la convergence p.s. dans le théoréme précé-
dent était déja connue (voir par exemple [BL8S, Proposition 3.2 page 51]). Par contre,

[’estimée est nouvelle.

Remarque 1.3.7. Dans le cas k = R, nous donnons deuz preuves du Théoréme[1.3.4)
La premiére démonstration (Théoréme marche pour tout corps local, la deuziéme
(Théoreme est spécifique auz corps archimédiens et utilise le produit scalaire.

L’analogue du Lemme [1.3.3| pour la décomposition de Cartan est le résultat suivant :

Théoréme 1.3.8. (2.4.56, |2.4.59, |4.1.2)[Indépendance asymptotique dans la décompo-
sition KAK] Avec les mémes hypotheses que le Théoréme les variables K,[eq] et
Ulle1] sont asymptotiquement indépendantes dans le sens suivant. Il existe des variables
aléatoires indépendantes Z et T sur P(k?) de lois respectives ['unique mesure de proba-
bilité pu-invariante sur P(k?) (resp. ut-invariante) vérifiant : pour tout € > 0, pour toute
fonction e-holdérienne ¢ sur X = P(k?) x P(k%), il existe p(e) €]0,1[ tel que pour n
assez grand :

B (8(Kler], Uler]) — E(0(Z,T)) | < lI6lep(e)”

|o((al. D181 )
ST ) (T "

ot [[pfle = Sup
[l ol o))

La preuve passe par prouver le résultat suivant concernant la convergence exponen-
tielle des directions M,[z], z € k% \ {0}.

Theorem 1.3.9. [Convergence exponentielle en direction] Avec les mémes hy-

pothéses que le Théoréeme il existe une variable aléatoire Z sur P(k?) de loi 'unique
mesure de probabilité p-invariante sur P(k?) vérifiant : pour tout € > 0, il existe une
constante p(€) €]0, 1] telle que pour tout n assez grand :

E (6(Mn[z], 2)°) < ple)"

En particulier, pour tout [z] € P(k%), M,[x] converge p.s. vers Z

13. loi de X}
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Remarque 1.3.10. Pourk =R et k = C, la convergence p.s. dans le théoréme précédent
était déja connue (voir par exemple [BL8Y, Théoréme 3.1 page 160]). Cependant, la
vitesse de convergence est nouvelle.

Finalement, une analyse de la partie A de la marche aléatoire M, dans la décompo-
sition K AK est aussi faite dans le Chapitre
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Chapitre 2

Les sous-groupes génériques des
groupes linéaires sont libres

RANDOM SUBGROUPS OF LINEAR GROUPS ARE FREE
Abstract

We show that on an arbitrary finitely generated non virtually solvable linear group, any
two independent random walks will eventually generate a free subgroup. In fact, this will hold
for an exponential number of independent random walks.

Keywords: Tits alternative, random matrix products, random walks, group theory, probabil-
ity theory.
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2.1 Introduction

The Tits alternative [Tit72] says that every finitely generated linear group which is
not virtually solvable contains a free group on two generators. A question that arises
immediately is to see if this property is “generic” in the sense that two “random” elements
(in a suitable sense) on such groups generate or not a free subgroup. In recent works
of Rivin - |Riv08| - and Kowalski - [Kow08|- where groups coming from an arithmetic
setting are considered, similar situations occur : a random element is shown to verify a
property P with high probability, for example, a random matrix in one of the classical
groups GL(n,Z), SL(n,Z) or Sp(n,Z) has irreducible characteristic polynomial and has
the full symmetric group S,, as Galois group. In our case we take two elements at random
and the property P will be “ generate a free subgroup ”. The method of the authors
cited above relies deeply on arithmetic sieving techniques. In this paper, we consider an
arbitrary finitely generated linear group, that is a subgroup of GL,(K) for some field
K, and we use an entirely different set of techniques, namely random matrix products
theory.

Let us explain what we mean by choosing two elements “at random” : a random ele-
ment will be the realization of the random walk associated to some probability measure
on the group. Formally speaking, if 4 is a probability measure on a discrete group T,
we denote by I',, the smallest semigroup containing the support of 1 ; we consider a se-
quence {X,,;n > 0} of independent random variables on I" with the same law 1, defined
on a probability space (€, F, IP) The n'* step of the random walk M, is defined by
M, = X;---X,,. We will also consider the reversed random walk : S, = X,,--- X;.

The main purpose of this paper is to show the following statement, which answers a
question of Guivarc’h [Gui90, §2.10] :

Theorem 2.1.1. Let K be a field, V' a finite dimensional vector space over K, I' a
finitely generated non virtually solvable subgroup of GL(V') equipped with two probability
measures [ and (' having an exponential moment and such that I')y = I')y = T'. Let
(M) nens, (M])nen be the independent random walks associated respectively to u and
p'. Then almost surely, for n large enough, the subgroup (M,, M) generated by M, and
M) is free (non abelian) and quasi isometrically (QI) embedded in I'. More precisely,

there exists p €)0, 1] such that for all large n,

P ((M,, M) is free and QI embedded in T) > 1 — p" (2.1)

For the definition of the QI embedding, see Definition [2.5.6] The conditions of Theo-
rem are fulfilled when the support of p (resp. 1) is a finite symmetric generating
set, say S (resp. S’) of I'. In this case, M, (resp. M/ ) is a random walk on the Cayley
graph associated to S (resp. S’). In other terms, if we consider the word metric, the
theorem says that the probability that two “random” elements in the ball of radius n do
not generate a free subgroup is decreasing exponentially fast to zero; “random” here is
to be understood with respect to n'® convolution power of u (resp. i/). In this statement
we could have taken S,, instead of M,,.

1. For example one can take Q = I'N, P = ;®N the probability measure for which the coordinates
w; are independent with law p and F the o-algebra generated by the coordinate maps w;.
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Let o be a probability measure on I'. Define a countable family of independent
random walks (M, ;)ien+, @ € N*. From the proof of Theorem we will deduce the
following stronger statement :

Corollary 2.1.2. There exists C' > 0 such that a.s., for all large n,
My, My |eap(cn)] generate a free group on l, = |exp(Cn)| generators

In a recent preprint Gilman, Miasnikov and Osin considered the same problem for
hyperbolic groups and proved in [GMO10, Theorem 2.1] a theorem entirely analogous
to our Theorem in that setting. Namely, let I' be a non-elementary hyperbolic
group, S a symmetric generating set, p the uniform probability measure on S, (M, )nen+,
(M])nen+ two independent random walks associated to p, then there exists p €]0, 1] such
that :

P ((M,, M) is free and QI embedded in ') > 1 — p"

In [GMOI10, Problem 7.2|, the authors asked if the same holds for the group SL4(Z),
d > 3, which is well-known not to be hyperbolic. Our Theorem deals with an
arbitrary finitely generated non virtually solvable linear group and in particular answers
positively the question for SL4(Z).

The proof of Gilman, Miasnikov and Osin shows many similarities with ours : they
show that generic elements of a hyperbolic group are in ping-pong position with respect
to the Gromov boundary, while we show that generic elements of a linear group are in
ping-pong position with respect to some projective linear representation. Our techniques
however are fairly distinct from theirs : apart from combining geometric and algebraic
ingredients, we also rely heavily on ergodic theory and in particular on the theory of
random matrix products.

Other related results can be found in the recent paper of Rivin |[Riv10]. He proved
the following (see [Riv10}, Corollary 2.11]) : let g € SL4(Z), pu the symmetric probability
measure on a finite symmetric generating set, {M,,n € N*} the corresponding random
walk, then for every g € I, there exist p(g) €]0, 1] such that for all large n,

P({(g, M,,) is Zariski dense ) > 1 — p"

This says that heuristically if & is random in I', then the subgroup (g, h) is Zariski dense.
Using this theorem, he proved (see |[Riv10, Theorem 4.2|) that a generic subgroup H of
the outer automorphism group of the free group Fy on d generators contains a subgroup
whose image under the natural map to GL4(Z) is a non-abelian free group F' and that
and a generic element of H is hyperbolic.

Rivin’s method uses expanding properties of the finite quotients of arithmetic groups
mod p and the fast equidistribution of random walks on these finite groups.

As explained above, our main result shares a common flavor with the works by Rivin
[Riv08], [Riv10] and Kowalski [Kow08|, in the sense that random elements in a finitely
generated group are shown to verify a generic property with high probability. Use of
the theory of random matrix products allows us to treat arbitrary finitely generated
linear groups while the arithmetic sieving techniques in [Riv08],[RivI0] and [Kow08| use
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reduction modulo prime numbers and deal with subgroups of arithmetic groups G(Z),
where G is an algebraic group. However what we loose is the effectiveness : in [Riv09],
Rivin proved that the bounds he obtains in [Riv08| are effective while ours are not.
Indeed, our method uses the Guivarch-Raugi theorem on the separation of the first two
Lyapunov exponents A\; and Ay and the known bounds on A; — Ay rely on the ergodic
theorem and are thus non effective.

Remark 2.1.3. In Guivarch’s proof of the Tits alternative in [Gui90] he showed that
Sh,, €t S;lk can be turned into ping-pong players (see Section for a definition of

these terms) in a suitable linear representation for some subsequences ny, n, which were
obtained as certain return times thanks to Poincaré recurrence. There is a substantial
difficulty wn passing from some subsequence to the version we give in our main theorem.
This situation is not dissimilar to the difficulty encountered in [BGOJ] where ping-pong
players were gotten from a precise control of the KAK decomposition, in contrast with
Tits’ original argument which exhibited ping-pong players as high powers of prorimal
elements.

Remark 2.1.4. A closely related theorem was announced by Cowling and Dorofaeff
[CDY9%, Theorem 5,1] who gave a sketch of the proof, similar to the one we are presenting
here.

In the proof, we will use the theory of random matrix products over an arbitrary local
field (i.e. R, C, a p-adic field, or a field of Laurent series over a finite field). Unlike the case
of real and complex matrices, where good accounts on the theory exist in the literature
(|GR&5],|BLS85], [Lia04], etc...), when the local field is non-archimedean, then the current
literature (JGui89|, [Gui08]) does not cover all the limit theorems one expects. So, in
this paper, we will develop most of the theory from scratch in the context of general
local fields, without distinguishing between the archimedean and non-archimedean cases.
Sometimes our statements will be just an adaptation of results known over the reals to
arbitrary local fields while in some other places, they are new even over R. This is the case
for Theorem [2.4.33| which shows the exponential convergence of the K-components of the
KAK decomposition, and for Theorems [2.4.36] and [2.4.39) which prove the asymptotic
independence of the directional components of the KAK decomposition. Such result
are analogs for the Cartan decomposition of earlier results of Guivarch for the Iwasawa
decomposition, which can be found in [Gui90|. We refer the reader to Section [2.4] for the
statements of these results. Let us only state here one of them regarding the asymptotic
independence in the KAK decomposition.

Theorem 2.1.5 (Asymptotic independence in KAK with exponential rate). Let k be
a local field, G a k-algebraic group assumed to be semi-simple and k-split, (p,V) an
wrreducible k-rational representation of G. Consider a probability measure p on G =
G(k) with an exponential moment (see Definition such that '), is Zariski dense
in G and p(T',) is contracting. Let {X,;n > 1} be independent random variables with
the same law p, S, = X,, - -+ X3 the associated random walk. Denote by S, = K, AU, a
KAK decomposition of S, in G (see Section [2.4.3). Denote by ey € V (resp. e} € V*)
a highest weight vector for the action of A on V wia p (resp. p* the contragredient
representation). Then the random variables K,le;] and U, ' - [et] are asymptotically
independent in the following sense. There exist independent random variables Z and T
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on P(V) (resp. P(V*)) with law the unique p-invariant (resp. p~'-invariant) probability
measure on P(V') (resp. P(V*)) such that the following holds. For every e > 0, there is
some p = p(€) €]0, 1] such that for every e-Holder function ¢ on P(V) x P(V*) and all
large enough n, we have :

E (¢(Kuler], Uyt - [61]) —E((2,T)) | < p"[[6]]c

Here we have used the following notation : V* is the dual space of V, P(V') (resp.
P(V*)) is the projective space of V' (resp. V*) and G acts on V* by the formula :
g f(x) = f(g7'z) for every g € G, f € V*, x € V. We have denoted by pu~! the law of
X! and by ||¢||. the Holder constant of ¢ :

B |¢([z], [']) — &[], [v'])]
|8l]e = SUp[m]y[y]Jm’],[y’} §([=], [W)) + o([2], [v])°

where ¢ is the standard angle metric (i.e. Fubini-Study metric) on P(V) and P(V*).
A similar statement for the KAK decomposition of p(S,) in SL(V) (see section
holds : in this case, G need not be assumed Zariski connected any longer (see Theorem
2.4.39). In Chapter [4] we prove the above result the above result holds without assu-
ming that the Zariski closure of I', is semi-simple and A-split, but assuming instead
proximality and strong irreducibility.

2.1.1 Outline of the paper

In Section [2.2] we split the proof of our main theorem, i.e. Theorem into two
parts : an arithmetic part (Theorem and a probabilistic part (Theorem [2.2.11)).
In our work, the probabilistic part replaces the dynamical part of the original proof of
the Tits alternative. The arithmetic one is a variant of a classical lemma of Tits [Tit72]
Lemma 4.1] proved by Margulis and Soifer [MS81]. The probabilistic one will be shown
in Section 2.5 using the results of Section [2.4]

In Section [2.3] we recall a classical method, known as ping-pong, to show that a pair
of linear automorphisms generate a free group.

Section is the core of the paper and constitutes a self-contained treatment of
the basics of random matrix theory over local fields. It can be read independently of
the rest of the paper. To our knowledge, apart from |[Gui89|, this is the first time that
this subject is treated over non-archimedean fields. Over R or C, this theory is well
developed, starting with Furstenberg and Kesten in the 60’s and later the French school
in the 70’s and 80’s : Bougerol, Le Page, Raugi and in particular Guivarc’h, whose work
especially in [Gui90] and [GR85| inspired us a lot.

One of our main goals in this section is to give limit theorems for the random walk
M, in three aspects : its norm, its action on projective space and its components in the
Cartan decomposition. Our main results in this section are the following :
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— Theorem [2.4.16|shows the exponential convergence in direction of the random walk
M,,. Namely, under the usual assumptions, for every point [z] on the projective
space, M, [x]| converges exponentially fast to a random variable Z on the projective
space.

— Theorem and more precisely its proof shows the exponential decay of the
probability that M, [z] lies in a given hyperplane, uniformly over the hyperplane.
We deduce that the unique p-invariant measure has some regularity.

— Theorem shows that the K-components of the random walk M, in the
Cartan decomposition converge exponentially fast.

— Theorem proves that the K-components of the random walk M, in the
Cartan decomposition become independent asymptotically.

Theorem is a weaker version of a well-known statement over R or C. Its proof
can be found in Bougerol’s book and is due to Guivarc’h [Gui90, Theorem 7’|. We will
verify that it holds over an arbitrary local field. Theorems and on
the other hand are new even over R (on R or C only the exponential rate is new). They
also hold over an arbitrary local field, and so does everything we do in Secion [2.4.2]
The analog of Theorem for the orthogonal and unipotent parts of the Iwasawa
decomposition was proven over R by Guivarch in [Gui90, Lemma 8|.

Our proof of Theorems is not an mere translation of the standard proof of
this statement over the reals. Rather we take a different and more direct route via our
key cocycle lemma, Lemma [2.4.12] a result giving control on the growth of cocyles in
an abstract context. This lemma is itself an extension of a result of Le Page (see the
proof of [LP82l Theorem 1|) which was key in his proof of the spectral gap on Holder
functions on projective space (|[LP82, Proposition 4]).

Another key ingredient and intermediate step is our Proposition [2.4.14] which says
that, under the usual assumptions, for every given non zero vector x, with high proba-
bility the ratio ||M,z||/||M,|| is not too small. This fact can be interpreted as a weak
form of Le Page’s large deviation theorem in GL,(R).

Our proof of Theorem [2.4.33]is based on this approach as well and makes key use of
the cocyle lemma, Lemma [2.4.12| and of Proposition [2.4.14] Theorem [2.4.16| is also an
important ingredient in the proof of [2.4.33| Finally the proof of Theorem [2.4.36|combines
all of the above.

We note that two Cartan decompositions will be considered in Section the one
coming from the ambient SLy(k) and the one attached to the (semi-simple) algebraic
group in which the group generated by the random walk is Zariski dense. Our limit
theorems will be proved in the two cases. In fact the results for the Cartan decomposition
in SLg(k), which are our main interest, will be deduced from the analogous results in the
algebraic group. These statements will be deduced from a delicate study of the Iwasawa
decomposition in the algebraic group (Theorem [2.4.28)). If this Zariski closure is not
Zariski connected, further technicalities arise. They will be dealt with in Section [2.4.5]
using standard Markov chains and stopping times techniques.

Finally, we note that our proofs rely deeply on the pointwise ergodic theorem via
our cocycle lemma, Lemma [2.4.12

Section [2.5] is devoted to the proof of Theorem [2.2.11] i.e. the probabilistic part of
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our main result, using the results of Section [2.4]

Acknowledgments This work is part of the author’s Ph.D. thesis at Université Paris-
Sud, Orsay. I sincerely thank my supervisor Emmanuel Breuillard for pointing me out
this question, for his great availability, his guidance through my Ph.D. thesis and many
remarks on an anterior version of this paper. I'm also grateful to Yves Guivarc’h whose
work inspires me a lot.

2.2 Preliminary reductions

In this section we reduce the proof of Theorem to its probabilistic part, i.e.
Theorem [2.2.11] below.

2.2.1 Notation and terminology

All random variables will be defined on a probability space (€2, F,P). E refers to the
expectation with respect to P. The symbol “a.s.” refers to almost surely. Let us recall
the definition of a random walk on a group :

Definition 2.2.1 (Random walks on groups). Let I" be a discrete group, v a probability
measure on I, (X;)ien+ a family of independent random variables on T' with the same
law . For each n, we define the n'* step of the following random walks by :

Mn:Xan ; Sn:XnXl

The product being the group law of I'. We denote by I',, the smallest semigroup containing
the support of .

Remark 2.2.2. For our main Theorem there will be no difference taking the
natural (M,) or the reversed random walk (S,) as explained in the Remark[2.2.6 below.
Note however that the asymptotic behavior of the two walks is not the same in general.

When T is a finitely generated group, I' is a metric space for the word length dis-
tance : for each symmetric generating set S containing 1, define : lg(g) = Min{r;g =
S1cc Sy S €SVi=1,--- 1}

The following defines then a distance on I' : ds(g,¢') = ls(¢"'g) g,¢' € T.

Definition 2.2.3 (Exponential moment on finitely generated groups). Let p be a pro-
bability measure on a finitely generated group I'. Let S be as above. We say that i has
an exponential moment if there exists T > 0 such that :

/ exp (vls(g)) du(g) < o

It is immediate that having exponential moment is independent of the choice of the
generating set defining lg.

Let us recall our main result in this paper :
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Theorem Let K be a field, V a finite dimensional vector space over K, I a finitely ge-
nerated non virtually solvable subgroup of GL(V') equipped with two probability measures
p and (' having an exponential moment and such that I, = ')y = T'. Let (M,)nen-,
(M) pens be two independent random walks associated respectively to p and p'. Then
almost surely, for n large enough, the group (M,, M!) generated by M, and M) is free
(non abelian). More precisely,

1
lim sup — log P ((M,,, M) is not free) <0 (2.2)
n

n—oo

Remark 2.2.4. The assumptions on u (resp. p') of the theorem are clearly fulfilled if
the support of p (resp. p') is a finite, symmetric generating set of T

Remark 2.2.5. The bound implies that there exists p €]0, 1] such that for n large
enough,

P ((M,,, M) }is not free) < p" (2.3)

By the Borel-Cantelli lemma, it suffices to prove the first assertion of the theorem. Hence
wn the rest of the paper, we will focus on showing .

Remark 2.2.6. There is no difference taking (M, )nen+ or the reversed random walk in
Theorem [2.1.1} In fact, the increments are independent and have the same law which
implies that (X4, ---,X,) has the same law as (X, -+, X1) for every integer n, hence
18 unchanged if we replaced M, by S,.

2.2.2 Outline of the proof of Theorem 2.1.1

A local field (i.e. a commutative locally compact field) is isomorphic either to R or
C (archimedean case) or a finite extension of the p-adic field Q, for some prime p in
characteristic zero or to the field of formal Laurent series L((T')) over a finite field L.
When £ is archimedean, we denote by | - | the Euclidean absolute value. When £ is not
archimedean, we denote by (), its discrete valuation ring, m a generator of its unique
maximal ideal, g the degree of its residual field, v(-) a discrete valuation and consider
the following ultrametric norm : | - | = ¢~*0).

When we consider a finitely generated linear group I, i.e. I' C GLy4(K) for some
d > 2 and a finitely generated field K, we can benefit from other nice metrics than
the word metric : for each local field k£ containing K, I' can be considered as a metric
space with the topology of Endy(k) induced on I'. This justifies the two parts of our
proof : the arithmetic part (Theorem which consists in finding a suitable local
field containing K and the probabilistic one (Theorem consisting in using limit
theorems for random walks on linear groups over local field. Theorem will be
borrowed from [MS81] and Theorem [2.2.11]is the main part of this paper. Before stating
them and showing how they provide a proof of Theorem [2.1.1] we give some basic
definitions :
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Definition 2.2.7. (Strong irreducibility and contraction properties)

e Strong irreducibility : let K be a field, V a vector space over K and I' a subgroup
of GL(V'). The action of I' on V is said to be strongly irreducible if I' does not fix a
finite union of proper subspaces of V.. This is equivalent to saying that I' contains no
subgroup of finite index that acts reducibly on V. In particular, if the Zariski closure T is
connected then irreducibility and strong irreducibility are equivalent (because the identity
component of T is contained in any algebraic subgroup of finite index - [Hum75]-). We
note that this notion is “algebraic” in the sense that I' is strongly irreducible if and only
if T is.

e Contraction for local fields : Let (k,|-|) be a local field, V a vector space over
k and I' a subgroup of GL(V'). We choose any norm || - || on End(V'). We say that a
sequence ('Yn)neN C I'N s contracting, if r,y, converges, via a subsequence, to a rank one
endomorphism for every (or equivalently one) suitable normalization (ry,)nen of k such
that ||rp || = 1. It is equivalent to say that the projective transformation [y,] € PGL(V)
contracts P(V') into a point, outside a hyperplane. Note that in the archimedean case,
this 1s just saying that ﬁ converges to a rank one endomorphism.

A representation p of I' is said to be contracting if the group p(I') contains a contracting
sequence.

The following classical lemma gives a more practical method to verify contraction.
It will be useful to us in Section 2.4.5

Lemma 2.2.8 (Contraction and proximality). An element v € GL(V) is said to be
proximal if and only if it has a unique eigenvalue of maximal modulus. If I contains a
proximal element then it is contracting. If T' acts irreducibly on V and is contracting
then it contains a prozimal element.

Proof. 1f v € T is proximal, then its maximal eigenvalue A\ belongs to the field k and the
corresponding eigendirection is defined on k. The latter has a v-invariant supplementary

hyperplane defined on k. Consequently, in a suitable basis, v is of the form : ( E)\ ]\04 )

By the spectral radius formula, we deduce that sequence {7";n € N} is contracting.
Conversely, consider sequences {7y,;n € N} in I', {r,;n € N} in k such that r,v,
converges to a rank one endomorphism h. h is proximal if and only if Im(h) ¢ Ker(h).
Suppose first that h is proximal and notice that {g € End(V); g is proximal} is open
(for the topology on End(V) induced by that of the local field k) ; hence for sufficient
large n, r,7, is proximal, a fortiori ~, and we are done. If h fails to be proximal, or
equivalently I'm(h) C Ker(h), we claim that one can still find g € T" such that gh is
proximal ; this would end the proof since by the same reasoning g+, would be proximal
for large n. Let us prove the claim : denote by kxy the image of h and notice that
V = Vect{gxo;g € I'} because the action of I on V is irreducible. Consequently, there
exists g € I' such that gz ¢ Ker(h). But gxg = Im(gh) and Ker(h) = Ker(gh);
whence gh is proximal.

]

Definition 2.2.9 (Exponential local moment on linear groups). Let k be a local field,
d an integer > 2, ' be a subgroup of SLq(k), || - || a norm on Endy(k), 1 a probability
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measure on I'. We say that i has an exponential local moment if for some T > 0,

[ lallrdutg) < o<

Remark 2.2.10 (Interpretation). The definition above can be reformulated as fol-
lows : there exists T > 0 such that [exp(tlog|lg|l)du(g) < oo or equivalently
[ exp(rdx (7, 1a))du(g) < oo where X = SLy(k)/K is the symmetric space associated

to SLq(k) (see Sectionfor definition of K ), dx (g1, 92) = log||g; 'g1|| is a distance
on X, 1y is the identity matriz of order d.

Now we are able to state the two results. In the following theorem, for a measure
on SL4(k), '), denotes the smallest closed semigroup containing the support of p.

Theorem 2.2.11 (Probabilistic part). Let k be a local field, d > 2, u, 1/ two probability
measures on SLy(k) having an exponential local moment and such that I'), and T,
be strongly irreducible and contracting subgroups. We assume their Zariski closure to
be k-split and their connected component semi-simple. We denote by (My)nen+ (resp.
(M) nen ) the random walks associated to u (resp. (' ). Then a.s. for all n large enough,
the group (M, M) generated by M, and M) is free. More precisely,

1
limsup — log P ((M,,, M))is not free) < 0 (2.4)
n

n—oo

Remark 2.2.12. The assumptions F_u semi-simple and k-split can be dropped : '), being
strongly vrreducible, the Zariski connected component ofF_u 15 immediately reductive and
everything we will do in Section for semi-simple groups is applicable to reductive
groups. The assumption k-split will be used to simplify the Cartan and Iwasawa decom-
positions in Sections|2.4.4] and|2.4.5, however similar decompositions hold in the general
case. To keep the exposition as simple as possible we kept these conditions. However, in
Chapter[J] we will consider the general case.

Remark 2.2.13. {w € Q; (M, (w), M, (w)) is not free} is measurable because it is the
countable union of inverse images of Zariski closed subsets of G x G', where G (resp.
G') is the Zariski closure of I'), (resp. I',s).

If V is a vector space over a field £ and I' a group, we say that a representation
p: ' — GL(V) is absolutely (strongly) irreducible if it remains (strongly) irreducible
on V ®y k' for every algebraic extension &’ of k.

Theorem 2.2.14 (Arithmetic part). [MS81, Theorem 2] Let K be a finitely generated
field, G an algebraic group over K such that the Zariski connected component G° is not
solvable, I" be a K-Zariski dense subgroup. Then there exists a local field k containing K,
a vector space V over k and a k-algebraic absolutely strongly irreducible representation
p: G — SL(V) such that p(I') is contracting and the Zariski component of p(G) is a
semi-simple group.

Remark 2.2.15. A classical lemma of Tits -[Tit72]- says (or at least implies) the same
as Theorem except that p is a representation of a finite index subgroup of G. This
18 insufficient for us because the random walk lives in all of I'. However, when G s Zariski
connected the above theorem and the aforementioned lemma of Tits are exactly the same.
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We note that the proof of Theorem[2.2.1]] by Margulis and Soifer depends heavily on the
classification of semi-simple algebraic groups through their Dynkin diagram. A more
conceptual proof can be found in [BGO| except that the representation p takes value in
PGL(V), and this is not enough for our purposes.

End of the proof of Theorem modulo Theorem [2.2.11

We will only prove here the freeness of the group generated by M,, and M/, i.e. equa-~
tion (2.1)) without the QI embedding part which will be proved at the end of the article.
Let I' = T', = I'y. Since I' is finitely generated, we can replace K with the field ge-
nerated over its prime field by the matrix coefficients of the (finitely many) genera-
tors of I'. Let G be the Zariski closure of I'. Then, we can apply Theorem It
gives a local field k, a k-rational absolutely strongly irreducible representation (p, V)
of G such that the Zariski-connected component of H = p(G) is semi-simple and
p(I') is contracting. Passing to a finite extension of k if necessary, H can be assu-
med k-split; p remains absolutely strongly irreducible. We are now in the situation of
Theorem : we have a probability measure p(u) (image of p under p) on some
SLq(k) such that I',,) is strongly irreducible and contracting (because it contains p(I")
which is Zariski dense). Moreover, the connected component of its Zariski closure H
is semi-simple and k-split. To apply Theorem we only have to check that p(u)
has an exponential local moment knowing that p has an exponential moment. Indeed,
if g = M9 .59 ¢ Supp(p) is a minimal expression of ¢ in terms of the genera-

tors of a symmetric finite generating set S of T', then Is(g) = |n1(g)| + -+ + |n-(9)|
whence |[|p(g)|] < [Maz{log||p(s)]] V log|lp(s™)||;s € S}}lS(g). Consequently, if
E (exp(rls(X1))) is finite, then for some 7/ > 0, E (||p(X1)||”) is also finite. We can
now apply Theorem . a.s., for n large enough, (p(M,), p(M?)) is free, a fortiori
(M, M) is also free. This ends the proof.

2.3 Generating free subgroups in linear groups

In Theorem we must show that M, and M/ generate a free group. Below
we use the classical ping-pong method to obtain two generators of a free subgroup.
For a detailed description of these ping-pong techniques one can refer to [BG03| for a
self-contained exposition or to the original article of Tits [Tit72].

2.3.1 The ping-pong method

Let k be a local field, V' a vector space over k, P(V) its projective space, § the
Fubini-Study distance on P(V') defined by :

where [z] is the projection of z € V'\ {0} on P(V).
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— Let € €]0,1[. A projective transformation [g] € PSL(V) is called e-contracting if
there exists a point v, € P(V), called an attracting point of [g], and a projective
hyperplane Hy, called a repelling hyperplane of [g], such that [¢g] maps the com-
plement of the e-neighborhood of H, C P(V) into the e-ball around v,. We say
that [g] is e-very contracting if both [g] and [g™!] are e-contracting.

— [g] is called (r,¢e)- proximal (r > 2e¢ > 0) if it is e-contracting with respect to
some attracting point v, € P(V) and some repelling hyperplane H,, such that
d(vg; Hy) > 7. The transformation [g] is called (r,€)-very proximal if both [g]
and [g]|~! are (r, €)-proximal.

— A pair of projective transformations a,b € PSL(V) is called a ping-pong pair if
both a and b are (7, €)-very proximal, with respect to some r > 2¢ > 0, and if the
attracting points of @ and a™' (resp. of b and b™!) are at least r-apart from the
repelling hyperplanes of b and b=! (resp. of a and a™'). More generally, a m-tuple
of projective transformations aq,--- ,a,, is called a ping-pong m-tuple if all a;’s
are (r,e)-very proximal (for some r > 2¢ > 0) and the attracting points of a; and
ai_1 are at least r-apart from the repelling hyperplanes of a; and aj_l, for any ¢ # 7.

The following useful lemma is an easy exercise :

Lemma 2.3.1 (Ping-pong lemma). If a,b € PSL(V') form a ping-pong pair then the
subgroup (a, by generated by a and b is free. More generally if a1, -+ , a,, is a ping-pong
m-tuple then (ai, -+ ,an) is free.

2.3.2 The Cartan decomposition

Let d > 2,V =k and (e, - ,eq) its canonical basis.
The attracting points and repelling hyperplanes are not unique. In this article, they will
be defined via the Cartan decomposition in SL(V)P] Let’s recall it.

When k& = R or C, consider the usual Euclidean (resp. Hermitian) norm on k? and
the canonical basis (e, - ,eq). Let K = SO4(k) (resp. SU,(C) ) be the orthogonal
(resp. unitary) group, A = {diag(ay,--- ,aq); a; > 0 Vi = 1,--- d; H?Zl a; = 1},
AT ={diag(a, -+ ,aq) € A;a1 > -+ > ag > 0}. In this setting, the Cartan decomposi-
tion holds : SLy(k) = KATK. This is the classical polar decomposition.

When k is non archimedean, denote
K = SLy(%) and A = {diag(z™,--- ,7™); n; € ZYi = 1,---,d; 3, n; = 0};
AT = A{diag(m™,--- ;7") € A; ny < --- < ng}. If we consider the Max norm on V' :
l|lz|| = Max{|z;|;i = 1,---,d}, = € V, then one can show that K is the group of

isometries of V. With these notations, the Cartan decomposition is : SLy(k) = KATK.
This decomposition can be seen as an application of the well-known Invariant Factor
Theorem for Matrices (see for example [CR06, Theorem 16.6 page 94| and the example
of Section of the introduction for the case SL2(Q,)). One can also see it as a par-
ticular case of the Cartan decomposition for algebraic groups (see Section .

2. A similar decomposition holds for GL(V'), see Section for example.
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In both cases, given g in SLy(k) its components in the K AK decomposition are not
uniquely defined (only the component in A is ). Nevertheless, we can always fix once and
for all a privileged way to construct K AK in SL4(k). Therefore, for g € SLy(k), we de-
note by g = k(g)a(g)u(g) “its” KAK decomposition with a(g) = diag (a1(g),- -, aq(g))-
Till the end of the paper, we write

vy = k(g)[e] and H, = [Span(u(g) ‘ez, -+ ,u(g)‘eq)]. The following lemma taken

from [BGO3| shows that a large ratio between a;(g) and ay(g) implies contraction. Then
v, can be taken as an attracting point and H, as a repelling hyperplane.

Lemma 2.3.2. [BGOJ] Let ¢ > 0. If \Zf—ggg] < €2, then |g] is e-contracting. Moreover,

one can take vy to be the attracting point and H, to be the repelling hyperplane.

Proof. v, = [k(g)er] and H, = [Span{u(g) ez, -+, u(g)es)]. Let z € V such
that d(z,H,) > e. We want to prove that d(g[z],v,) < e. Notice that H, =
Ker (u(g)~™' - €i(-)). Hence W > €. But,
gz AN E(g)ell _ [lalg)ulg)z A el
d<g[$]7vg) - =
[lg=l] [la(g)u(g)z|

Since |ay(g)] = --- = |aa(g)l; [la(g)u(g)z A er]| < laz(g)][|z[|- Moreover, [|a(g)u(g)z|| =
lax(g)] [u(g)~" - €1 (x)]. Hence,

dlgla).vg) < 2L Lo

~ laa(g)| o(z, Hy)

2.4 Random matrix products in local fields

e In this section, d is an integer > 2 and k a local field. We set V = k<,

e When p is a probability on a group G, we consider both random walks M, =
X;---X, and S, = X;--- X, as defined in Section I',, is the smallest closed semi-
group containing the support of u.

2.4.1 Introduction

Our aim in this section is to establish the basics of the theory of random matrix
products over local fields. The section is structured as follows.

In Section we generalize the first principles and tools of random matrix theory
to all local fields. In particular we establish the exponential convergence in direction
(Theorem [2.4.16]) and the exponential decay of the probability of hitting a hyperplane
(Theorem [2.4.18)). A key ingredient in the proofs is our cocycle lemma, Lemma
which is a rather general statement giving control on the size of a cocycle in an abstract
context. Another important tool will be Proposition [2.4.14] which compares the size of
the norm of the random walk with the size of the random walk applied to any fixed
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vector. It can be viewed as a weak form of Le Page’s large deviations theorem (|[LP82]
Theorem 7]) in the context of local fields. Making use of these two ingredients, we then
compare the A-component of the random walk in the Iwasawa decomposition with the
A-component in the Cartan decomposition (Proposition [2.4.27).

In Section [2.4.3] we review some basic facts about algebraic groups, absolutely irre-
ducible linear representations of semi-simple algebraic groups over local fields and their
classification through the highest weight theory.

In Section 2.4.4] and Section we establish limit theorems for the components
of the Cartan decomposition of the random walk. The main results are Theorem
(exponential contraction of the A-component), Theorem (exponential conver-
gence of the K-components) and Theorem (asymptotic independence of the K-
components). Our method consists in investigating the Iwasawa decomposition first by
proving the exponential contraction of the A-component of the Iwasawa decomposition
(Theorem [2.4.28). In fact, in order to study the Cartan decomposition in the ambient
SLy(k), we will first look at the behavior of the Cartan decomposition of the random
walk inside the semi-simple algebraic group which is the Zariski closure of the group
generated by the random walk, and then compare the two decompositions (Corollary
2.4.32). The case when the Zariski closure is connected is easier and is dealt with in
Section while the general case is handled in Section [2.4.5]

2.4.2 Convergence in direction
Generalization of well-known results in an non archimedean setting

This section does not require any prior knowledge on algebraic groups.

Let B = (e1, -+ ,eq4) be the canonical basis of V = k% By canonical norm, we mean
either the standard Euclidean (or Hermitian) norm when k is archimedean or the Max
norm, ||z|| = Max{|z;|;i =1,---,d} for every x € V, when k is non archimedean.

Recall that by Section there exist a compact subgroup K acting by isometries on
V, a subgroup A consisting of diagonal matrices such that : SL,(k) = KATK (Cartan
decomposition). For g € SL4(k), we denote by g = k(a)a(g)u(g) a privileged decompo-
sition of ¢ in this product.

We denote by V* the dual of V' and (ej,--- ,ej) the canonical basis of V* dual to
(e1,- -+ ,eq). We consider the canonical norm induced on V*. Recall that SL,4(k) acts on
V* by g- f(z) = f(g ') for every g € SLy(k), f € V*, x € V. The projective space
of V' is denoted by P(V) and the projection of a non zero vector € V by [z]. The
norm on V (resp. V*) induces a distance on P(V') sometimes called the Fubini-Study
distance :

o([=], [y]) = el [yl € P(V)

A similar formula holds for V*. If H is a hyperplane of V', f € V* such that H = Ker(f),

then
@l
ol B = 7y SV
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Consider a probability measure 1 on SL4(k). No assumptions will be made on the
Zariski closure of I',. Recall that M, = X;---X,, and S, = X, ---X;. The KAK
decomposition of S,, will be simply denoted by : S, = K, A,U,.

Definition 2.4.1. If G is a group acting on a topological space X, u (resp. v) a pro-
bability measure on G (resp. X ), v is said to be p-invariant if v = v, which means
that for every borel function on X, [[ f(g-x)du(g)dv(z) = [ f(x)dv(z).

Definition 2.4.2 (Lyapunov exponents). Suppose that [log||g|ldu(g) < oo (i.e. exis-
tence of a moment of order one ). The Lyapunov exponents relative to pu are defined
recursively by :

M4+ A = lim—E(1 ~ lim—1
v A= lim (log || A\ Sall) im ogl A\ Sall

The limit on the left hand side is an easy application of the subadditive lemma. The
one on the right hand side is an almost sure limit and its existence is guaranteed by the
subadditive ergodic theorem of Kingman [Kin73].

Definition 2.4.3 (Index of a semigroup). For any semigroup I' of GL(V'), we define its
index as the least integer p such that there exist sequences {M,;n > 0} in T, {r,;n > 0}
in k such that ||r,M,|| = 1, for which r,M, converges to a rank p matriz. We say that
' is contracting when the index is one. (Note that in the archimedean case, one can just
look at the quantity %}

We begin by a fundamental lemma in this theory due to Furstenberg.

Lemma 2.4.4. [Fur63] Let G be a topological semigroup acting on a 2™ countable locally
compact space X. Consider a sequence {X,,n > 1} of independent random elements of
G with a common distribution p defined on (2, A,P). We denote A = o 27" 1"
If v is a p-invariant probability measure on X then there exists a random probability
measure v, on X such that for P ® A-almost every (w,g), the sequences of probability
measures X1(w) -+ X, (w)g v converge weakly to v, as n goes to infinity.

Using Lemmal2.4.4] Guivarc’h and Raugi proved in their fundamental work in [GR&5]
the following crucial two theorems in the archimedean setting. For a nice exposition of
these results (over R or C) one can see Chapter III of the book of Philippe Bougerol and
Jean Lacroix [BL85]. We claim that these theorems hold in an arbitrary local field. For
the reader’s convenience, we will check this for the first theorem and assume it for the

second one since the proof is just cutting and pasting their original proof (for example
one can see pages 64-65 of [BL8]).

Theorem 2.4.5. Suppose that I, is strongly irreducible. Then, for p=index(T',,), there
exists a random subspace V(w) of V' of dimension p such that : a.s. for every (r,)nen €
EN st ||roM,|| = 1, every limit point of v, M, is a rank p matriz with image V (w).
Moreover for every f € V*,

P(flvw =0) =0

When I, is contracting, p = 1 and there exists a unique p-invariant probability measure
on the projective space P(k?) and a.s., M,(w)v converges weakly to 07,y where Z is a
random variable on P(k%) with law v.
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Theorem 2.4.6. Suppose that [log||g||du(g) < oo. Under the same assumptions as in
the previous theorem, Ai > As.

Proof of Theorem[2.4.5 A general lemma of Furstenberg (see for example [BL85|, Pro-
position 2.3 page 49) says that every p-invariant probability measure on P (V) is proper,
i.e. does not charge any projective hyperplane. Now, fix a p-invariant probability mea-
sure on P(V) and an event w € 2. Choose {r,;n > 1} in k such that ||r,M,(w)|| =1
and a limit point A(w) along a subsequence (ny)gen of {7, M,;n > 1}. Hence for every
x € V such that = € Ker(A(w)), My, (w) - [x] converges to A(w) - [z]. Since v is proper,
we deduce that M, (w)gv converges weakly towards A(w)gv for every g € SLy(k). On
the other hand, by Lemma[2.4.4] there exists a random probability measure v, on P(V)
(whose expectation is v) such that M, (w)gr converges weakly towards v, for A-almost
every g € SLy(k), where X is a probability measure supported on I', U {I;}. By unique-
ness of convergence in weak topology, A(w)gv = v, for A-almost every g € SLy(k). But
{9 € SL4(k); A(w)gv = 1, } is closed and the support of X is I', U {/;}, hence

Aw)gr =v, VYgeT,U{l;} (2.5)

Let V(w) be the linear span of {z € V;[z] € Supp(v,)}. applied to g = I
shows that the image of A(w) is exactly V' (w). Therefore, the image of A(w) is indeed
independent from the subsequence taken. It is left to show that its dimension is exactly
the index p of I',. By definition of the index, the rank of A(w) is at least p. The index
of I', being p, there exists {h,;n > 1} in '), {s,;n > 1} in k such that s,h, converges
to an endomorphism A of rank p. shows that :

Aw)gh,v =1, Vgel,;n>1
We claim that one can find g € I, such that :
A(w)ghv = v,

This would end the proof because the dimension of V(w) would be less or equal to the
range of h, which is p. It suffices to show that there exists g € I', such that v{z €
V; A(w)ghz = 0} = 0, because in this case for v-almost every [z] € P(V), A(w)gh,[x]
would converge to A(w)gh[z] so that v, = A(w)gh,v would converge to A(w)ghv. If on
the contrary, for every g € I',, v{z € V; A(w)ghx = 0} > 0, then by the aforementioned
property of v,

Aw)ghr =0 Yz eV

Hence {gz;9 € I';;x € Im(h)} would be contained in the kernel of A(w). Since it is
' -invariant, this contradicts the irreducibility assumption on I',. We have then proved
that V(w) is a p-dimensional subspace of V' and is the image of every limit point of

rnM,, where ||r,M,|| = 1. By Lemma v = [ v, dP(w). Therefore,

P(flvw) =0) = P(f(y) =0Vy € Supp(w,))

< E (/ T ¢(y)=0 dw({y]))

= v(Ker(f))
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Since v is proper, this is equal to zero.

Finally, if ', is contracting, then p = 1 by definition and [V (w)] is reduced to a point
Z(w) € P(V). Since, by Lemma v = [ 6z dP(w), we deduce that the distribution
of Z is v and hence v is unique. O

Corollary 2.4.7 (Convergence in KAK). Suppose that I, acts strongly irreducibly on V.
Then the subspace (k(M,)ey,- - ,k(My,)e,) converges a.s. to a random subspace V(w) of
dimension p = index(T,). Similarly, the same holds for the subspace (U, ' -ey* -+ Ut
ey*). Moreover, a.s. lim,,_. % =0 and Inf, Z’I’E%:; > 0. The latter two assertions
hold for S,,.

Remark 2.4.8. It is clear that we can replace U ' - ef,--- U, - e with Uley,- -+ ,Ule,
where Ul is the transpose of the matriz U,. However, we prefer to work with the action
on the dual vector space because it will give us more freedom later on.

Proof. Let ay(M,),- - ,aq(M,) be the diagonal components of a(M,,). Since K acts by
isometries on V', |ai(M,)| = ||M,]||. Hence, for p=index (I',), Theorem gives a
p-dimensional (random) subspace V (w) which is the range of every limit point of —M=—

. onal @0h)-
Fix a realization w, we have :

Mn(w)
a1 (Mp(w))

= w)) dia —ad(M"(w)) U w
= k(M) diag (1, 24 (o )

Each component in this equation lies in a compact set. If A(w), Kyo(w), Us(w),
as(w), -+, ag(w) are limit points of k(M (w)), w(M,(w)), 22 ... 2a) " ghen

> ai(n)’ ai(n)

Aw) = Ko(w)diag (1,- - ,0u(w)) Uss ()

Since A(w) is almost surely of range p, almost surely, a,1(w) = -+ = ag(w) = 0 and
as(w), - -+, ap(w) are non zero elements of [0, 1] when k is archimedean and of €2, when
k is non archimedean ; proving the last assertion of the corollary.

Since the image of A(w) is V(w),

V(w) C Span{K(w)ey, - -+, Koo(w)e,)

By equality of dimension, we deduce that the two subspaces above are almost surely
equal. As this holds for any convergent subsequence, we have the convergence a.s. of the
subspace (k(M,)ei,- -, k(M,)e,) towards V(w).

Now notice that I', acts strongly irreducibly on V' if and only if I',-1 acts strongly
irreducibly on V*. Moreover, I', has the same index as I',-1 viewed as a subgroup of
SL(V*) (it is just formed by the transposed matrices of I',). Hence the same proof as
above holds by looking at S;' = X;'--- X! acting on V*- instead of M, = X;--- X,

acting on V. O]

Proposition 2.4.9. IfI',, acts strongly irreducibly on V', then for any sequence {x,;n >
0} in V' converging to a non zero vector :

a.s in fren >0 (2.6)
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Proof. Let S,, = K, A,U, be a KAK decomposition and (z,).en & sequence in V' conver-
ging to some x # 0.

When k is archimedean : To keep the exposition as simple as possible, we will
work here with the transpose matrices instead of working on the dual vector space : for

g € SLy(k), g* will denote its transpose (resp. conjugate transpose) matrix when k£ = R
(resp. k = C).

HS"‘%”W HAnUnanQ 24—1 ai(n)2| < Upxp,e; > |2 ap(n) T 2
B - = > an* %
152 [ An[* ai(n)? — \ai(n) zz:;| <ol = |

By Corollary [2.4.7] a.s. in f,en+ ZJEZ% > 0.
We claim that as.

p
Infoene Y | <, Ute;>]* > 0 (2.7)

i=1

Indeed, by Corollary [2.4.7, the subspace (Uey,---,Ufe;) converges a.s. to
a subspace V(w). Let Ilyy be the orthogonal projection on V(w). Hence
Pl < Urei,zn > P25 |y ()| |*. By Theorem [2.4.5: P (IIy(,)(z) = 0) = 0. The

claim is proved.

When £ is non archimedean,

Ietll s Maa(laU; )] = 1)
> Maa{(U; )l i = 1)
Again, by Corollary [2.4.7, in f,en- IZI;EZ;; > 0 and it suffices to show that, a.s,
Infoen- Max{|U ' -ef(z,)|; i=1,--+,p} >0 (2.8)
Indeed, let V(w) be the limiting subspace of (U, -ef,--- U, " - ¢€}) and Uy a limit
point of U,. Max{|U;*-ef(x,)|; i = 1,--- ,p} converges then a.s., via a subsequence,

to Maz{|(Us)™"-e)(z)]; i =1, -+ ,p}. The following claim shows that this is in fact

independent from the subsequence and equals Sup{'ﬂ(fn)‘; f € V(w)}, which is a.s.

positive because by Theorem P(f(z)=0VfeV(w))=0.

Claim : Let V' be a vector space of dimension d > 2 with basis (eq, - - - ,e4), E a subspace
of the dual V* of dimension p < d, B = (f1,---, f,) a basis of the dual E. We suppose
that B is in the orbit of (ef, - - -, e5) under the natural action of K = SLy(€2) on (V*).
In other words, assume that there exists g € K such that f; = ge; foreveryi=1,--- ,p.
Then for every non zero vector x € V' ,n

. x .
ma{{f()i = 1.+ .} = Sup{ Tl £ € £°)
Proof of the claim : let f € E*; f =>"" A f;, \; € k. Since | - | is ultrametric,
|f(x)] < Maz{|\|,i =1,--- ,p}Mazx{|fi(x)|;i = 1,--- ,p}. But, f; = gef with g € K
which implies that ¢~ f = Y7 A} so that ||f|| = ||g" ' f|| = Max{|\;];i=1,--- ,p}.
Hence |f(z)| < |[f[| Maz{|fi(x)[;i =1,--- p}. O
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Corollary 2.4.10. Suppose that [log(||g||)du(g) < co. For any sequence {x,;n > 0}
converging to a non zero vector x of V ;

S,
ISually

[|z]] 7 neo

1 1
—logl[Suaall == A5 Supeenyioy ~E(log

Proof. The convergence on the left hand side is an immediate application of last propo-
sition and the definition of the Lyapunov exponent. For the right hand side, by compact-
ness of P(V), it suffices to show that for any sequence {x,;n > 0} in the unit sphere
converging to a non zero vector z of V : tE(log |[S,zy||) _ A1. By independence
and equidistribution of the increments and by the inequality ||g|| > 1 true for every
g € SLa(k) we get : 1| log||Spzy|| | < 237 log || X;||. By the moment assumption on
1, we can apply the strong law of large numbers which shows that the right hand side of
the latter quantity converges in L! and is consequently uniformly integrable. A fortiori,
{11og||Snn|[;n > 0} is uniformly integrable. Since it converges in probability (by the
law of large numbers), we deduce that it converges in L!. O]

A cocycle lemma - Application 1 : “weak” large deviations

Definition 2.4.11. Let G be a topological semigroup acting on a topological space X.
We assume the map (g, z) — g-x to be continuous. A continuous map G x X —= R is
said to be an additive cocycle if s(g192,x) = $(g1, g2 - ) + s(go, ) for any g1, g2 € G,
r € B.

Lemma 2.4.12 (Cocycle lemma). Let G be a topological semigroup acting on a to-
pological space X, s a cocycle on G X X, v a probability measure on G satisfying for
r(g) = supzex|s(g,x)| : there exists T > 0 such that

E (exp(tr(X1))) < oo (2.9)

o If
1
lim ESUPmGX E(S(Smx)) < 07

n—o0

then there exist A > 0, €9 > 0, ng € N* such that for every 0 < e < ¢y andn > ng :
Suprex E[ exp| € (s(Sp,)) | } < (1T —eA)”

o If
1
lim ESupxeX E(s(Sp,z)) =0,

n—oo

then for all v > 0, there exist e(y) > 0, n(y) € N* such that for every 0 < e < €(y) and
n>n(y),
Suprex E[ expl e (s(Sn,2)) ] ] < (1+ey)™

Remark 2.4.13. The limit lim,,_, %Supxex E(s(Sn,x)) always ezists by sub-additivity
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Proof. Let € > 0 and Q,, = Supyex E|exple (s(Sn,x))]|. @, being sub-multiplicative,

for every p,

1 1
limsup —log @, < —log @,
p

n—oo n

Using the inequality
2

erp(a) < 1+a+ Seap(lel) 1z € R
we get for 7' = 3,0 < e < 7,
2

1 1
lim sup " log Qn < ]—?log <1 + €§preXE(3<Sp: *T))/ + 26_7_/E(637p (Tr(Sp)) ))

n—oo

TV
ap

Let C' = E(exp (7(r(X1)))) < oo. The cocycle property implies that r(gig2) < 7(g1) +
r(g2) for every g1, 92 € G, whence E(exp (7(r(S,))) ) < CP. Hence, for every integer p,

1 1 2
limsup —log @, < —log |1+ e€a, + < ov (2.10)
p 27’

n—oo N
The following inequality being true for every z € [—1; 0] :

(1+2)r <1+

TR

(2.10) becomes : for every integer p,

1 2 cr
limsup —log @,, <log (1 + e 4 E——) (2.11)
nooo M P 27" p
e Suppose first that 2 converges to A’ < 0 as p goes to infinity. The quantity a,

p
being subadditive, % converges to inf, <2, hence inf, %” =~ < 0. Then, for some py,

ap, < 0. Put A = —;% > 0. Apply 1) with p = py and choose € > 0 small enough

suchthat:%%%—e2 CW < _Ne = 0<e<

27'po

!
—T apo
cro

e Suppose that % converges to zero as p goes to infinity.
Fix v > 0. Since lim%’ = 0, for p > p(v) large enough, %p < 1. Fix such p. For
e < €(7y) small enough, 62% < e3. Tt suffices now to apply (2.11). O

Applicationl : “Weak large deviations”

In the real and complex cases, Le Page [LP82| proved a large deviation inequality for

the quantities 1 log ||S,|| and £ log ||S,z||, for any non zero vector x of V. By Proposition

2.4.10[these quantities converge towards the first Lyapunov exponent A\;. More precisely,
for every € > 0, there exist p = p(e€) €]0, 1[ and ng = ng(e) such that for n > n,

1 1
P(|=log||Sal| = M| =€) <p" 5 P(|=log|[Suz|| = M| =€) < p" (2.12)
n n
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In particular, for some new p = p(e) €]0, 1],
|

15| )
P > exp(ne) | < p" 2.13
(i = eovio) 213

This bound will be important for us later. Verifying Le Page proof when k is ultrametric
is straightforward although somewhat lengthy. Alternatively we will directly show ([2.13))
using our cocycle Lemma [2.4.12] Moreover our bound will be uniform in z ranging over
the unit sphere in V.

Proposition 2.4.14 (Weak large deviations). Suppose that p has an exponential local
moment and that I, is strongly irreducible. Then for every v > 0, there exist () > 0
and n(y) € N* such that for 0 < e < €(y) and n > n(y) :

||S |\ n
In particular, for every e > 0,
. S o
lim sup [Supxev; lalj=1 P (\“S yj‘h > e:tp(ne)) } <0 (2.15)

Proof. Let - > 0. First we prove that for € < €(y) and n > n(vy),
[Shzl]]|y]]
[1Snyl ]|

Indeed, s(g, ([z], [y])) = log Him””yn defines an additive cocyle on T'), x (P(V) x P(V)),
for the natural action of I', on P(V) x P(V). It suffices now to verify the hypotheses
of Lemma (2.4.12). Since for every g € SLq(k), |97 < llgl|*™t, E (exp(r r(X1))) <
E([X|7|XHT) < E(|X1]|7?). This is finite for 7 small enough because p has an
exponential local moment. The condition of Lemma is then fulfilled. Tt

suffices now to show that
Tim Suppy ) E (s(Sn, ([2], [v]))) = 0

(< 0 suffices in fact). Since P(V)) x P(V) is compact, it suffices to show that for any
convergent sequences (x,,) and (y,) in the sphere of radius one :

o1
Jlim —[E(log ||Span||) — E(log [[Saynl[)] =0
This is true since by (the proof of ) Corollary [2.4.10):

1 1
lim ~E(log|[Suzall) = lim ~E(log||Suyal) = X (217)

Notice that ||g|| = max{ngzH i = 1,---,d} for every ¢ € GL(V). Hence,
Supp E[(—”ﬁgﬂﬁ”) | =7 Supy, E[(—”Slfl’;lw‘llm”) |. Applying (2.16) shows (2.14).
Finally, we prove (2.15) : let € > 0, v > 0 to be chosen in terms of . By (2.14) and

the Markov inequality there exist €(y) > 0,n(y) > 0 such that for 0 < ¢ < €(v) and
n>n(y) :

[EA ) : ( [EAI ) , ,
P > exp(ne) | <exp(—nec)E| | ———— < exp(—nee ) (1 + vye)"
(i 2 eonn0) < exptoncdyB (i) 1< cam(mee(1 +9¢)

Since exp(—nee’) = exp(ee’)™ < m, it suffices to choose v = . O
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Application 2 : exponential convergence in direction

Proposition 2.4.15. Suppose that v has an exponential local moment and that I',, is
strongly irreducible and contracting. Then there exist X > 0, ¢g > 0, ng € N* such that
for0<e<e andn >mng :

Proof. Let X = P(V)) x P(V) \ diagonal and s the application on I';, x X defined by :

5(9?([I]7 [y])) = log (Sg— :

It is easy to verify that s is an additive cocycle on I', x X for the natural action of T,
on X. It suffices now to check the hypotheses of Lemma [2.4.12

log % < 2d log||g||- Since u has an exponential local moment, 1} of Lemma

2.4.12] is valid. It is left to check that we are in the first case of the lemma, i.e.
lim nSup( il wex E(s(Sh, (z,y))) < 0.

By definition of the distance 0, we have for every g € SLy(k), :x,[y]) e X,

L 1 2SNy
—Sup(a)hex B (s(S, (2,9))) < —Sup( ppexE (log M) +

|z Ayl

2 lal
—Sup, E(l
n ) (Og ISl

2 z %
< .

By definition of the Lyapunov exponent,

2
~E(log| /\ Sull) — A1+

By (the proof of ) Corollary [2.4.10}

_Sup[x leP(V) E <log H!S|' !H) Y:O )\1

Hence,

1
lim —Sup(ayhex E(s(Sn, (2,9))) —> Az =M

n—oo

Under the contraction and strong irreducibility assumptions on I',, this is negative by
Theorem 0

We deduce the following
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Theorem 2.4.16 (Exponential convergence in direction). With the same notations and
assumptions as in the previous proposition, there exists a random variable Zy (resp. Zy)
on P(V) - with law v (resp. v*), the unique p-invariant probability measure on P(V)
(resp. p~t-invariant on P(V*)) such that for some A > 0 and every € > 0 :

Supaierw) E (M, [x], 2))%) < (1 - A" (2.10)

Supipepve E (65, [f], Z2)7) < (1= Ae)" (2.20)

In particular, for every [x] € P(V) (resp. [f] € P(V*)), M,[z] (resp. S;*-[f]) converges
almost surely towards Zy (resp. Zs).

Proof. 1t suffices to prove (2.19)). Indeed, (2.20)) is the consequence of the fact that the
action of '), on V' is strongly irreducible and contracting if and only if the action of I'),—1

on V* is. Moreover, if (2.19) and (2.20)) hold then M, [z] (resp. S;' - [f]) converges a.s.
towards Z; (resp. Z2) by an easy application of the Markov inequality.

Let Z be the random variable on P(V') obtained in Theorem [2.4.5| Let A > 0, € > 0
small enough and n > ng given by the previous proposition. Fix k > n, [y], [z] € P(V).
The triangle inequality gives :

E(0(Mn[z], 2)°) < E (0(Mn[z], My[y])') + E (0(My[y], 2)) (2.21)

(1)

Since Mily] = M,X,1--- Xkly], we condition by the o-algebra generated by
(Xpns1, -+, Xg) and obtain by independence of the increments :

1) = / ai(7) E (6(M,[a], M, o))
< Suppap) B(6(Ma[a], My[0])7) < (1 — Ae)” (2.22)

Inserting in gives for every [y] € P(V), k>n > ng :
SupE(0(Mn[z], Z2)°) < (1= Ae)" + E(3(Myly], 2)°)

Let v be the unique p-invariant probability measure on P(V) (see Theorem [2.4.5)).
Integrating with respect to dr([y]) the two members of the previous inequality and
applying Fubini theorem, we get for every kK > n > ng :

SupE(G(Myla], 2)) < (1 - Ae)" + E ( [ ot 2y d(Mmqy])) (2.23)

Again by Theorem [2.4.5] a.s. Myv converges weakly towards the Dirac measure 6 when
k goes to infinity. For w fixed and every 0 < e <1, ( -, Z(w)) is a continuous function
on P(V). Hence, [d([y],Z)° d(Myv)(ly]) converges a.s. to 6(Z,Z)° = 0 when k goes
to infinity. By the dominated convergence theorem, E ([ 6([y], Z2)° d(Myv)([y])) P 0.

We conclude by letting & go to infinity in (2.23)). Since € — (-,) is decreasing, the
corollary is true for every e > 0. O]
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Weak version of the regularity of invariant measure

An important result in the theory of random matrix products is the regularity of the
invariant measure v, under contraction and strong irreducibility assumptions :

Theorem 2.4.17. [Gui90] k = R. Consider the same assumptions as in Proposition
then there exists o > 0 such that :

Sup{ /5‘“([$],H)dy([x])§ H hyperplanes of V} < oo

In particular, if Z is a random variable on P(V') with law v, then for every e > 0 :

Sup{ P(6(Z,H) <€); H hyperplane of V} < Ce* (2.24)

(2.24) gives in particular for k =R : for every 0 < ¢ < 1:

1
n

limsup [Sup{P (6(Z, [H]) < t"); H hyperplanes of V}]" <1

n—oo

The latter assertion will be important for us. Proving Theorem in an arbitrary
local field can be done along the same lines as Guivarch’s proof over the reals. We will
refrain from including the details of this proof here, since we will not need the full force
of Instead we give a direct proof of the last assertion, using our “weak large

deviation” - Proposition [2.4.14]

Theorem 2.4.18. Consider the same assumptions as in Proposition [2.4.18 Let Z be
a random variable with law v, the unique p-invariant probability measure. Then, for all
t €]0,1],

limsup [Sup{P (6(Z,[H]) <t"); H hyperplanes of V}}% <1

n—oo

Before proving the theorem, we begin with an easy but crucial lemma.

Lemma 2.4.19. There exists a constant C(k) such that for every f € V*, a.s. there
eaists i = i(n,w) € {1,--- .d} such that : | [(Me)| = C(R)|[M; - f]

Proof. When k in archimedean, a.s. [|[M, - f[|? = S0 |M; '+ f(e;)|?. Take C(k) = \/Lg.
When k£ in non archimedean, the norm on V* is ultrametric. Hence, a.s. ||M, ! - f|| =
Mazx{|M; ' f(e;)|; i=1,--- ,d}. The lemma is then valid for C(k) = 1. O

Proof of Theorem [2.4.18 Let H be a hyperplane of V', f € V* such that H = Ker(f).
One can suppose ||f|| = 1. Let A; be the event “{||f(M,e;)|| > C(k)||M,;* - f||}". By
the previous lemma, P(UL, A;) = 1. Hence,

P(5(Z,[H)) <" 1) (2.25)

g
>
N
=
A
=
A

(]~
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By Theorem [2.4.16 there exists p; €]0, 1] such that for all large n :

Supiepv) E(0(My[z], Z)) < pt
This implies by the Markov inequality that for every py €|p, 1[ and for all large n :

P (8(My[a], Z) > pf) < <Z;> . Vo e V\ {0} (2.26)

On each event A;, we apply inequality (2.26) for x = e;. Inserting this in (2.25) and
using the triangle inequality, we get :

P(5(Z,[H]) < ") < ZIP [H]) < ph 1% 1) + d(%)” (2.27)
2
On the event A;,

|f (Mye:)| 1M, £l

0(Myled, [H]) = > O(k)—~—m (2.28)
|| Mei| || Meil|
Inserting (2.28) in ([2.27) gives :
d
M-Sl Pt p1
P(6(2,[H]) < t") < P( | a(Phyn
; || Mei| C (k) p2
The following assertion clearly ends the proof : for any a €]0, 1],
lim sup [P(u <a )}% <1 (2.29)
n—o0 || M|

uniformly in f € V* of norm one and € V of norm one. Indeed, the action of I',1
on V* is strongly irreducible and contracting. Hence we can apply Proposition
by replacing S, = X,,--- X; with M1 = X;1--- X', V with V*. If p* denotes the
contragredient representation of G on V*, then for any a €]0, 1],

M
timsup [P S <

uniformly in z and f. Since p*(M, ') is just the transpose matrix of M, ||M,z|| <
M) = ||p* (M, 1)]|. Then (2.29) is valid uniformly in z and f.

)]%<1

]

2.4.3 Preliminaries on algebraic groups

Till the end of the paper, k is a local field, G is a k-algebraic group, G = G(k) are
the k-points of G. We will assume G to be k-split and its connected component
semi-simple. However G itself is not assumed Zariski-connected unless explicitly men-
tioned. In general if H is a k-algebraic group, H will denote its group of k-points. The
word “connected” will refer to the Zariski topology.

In this section, G is connected. For references, one can see [Tit71] for the description
of irreducible representations, [BT72|, [BT84] or [Mac71] for the Cartan and the Iwasawa
decomposition.
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Decompositions in algebraic groups

Let A be a maximal k-torus of G, X(A) be the group of k-rational characters of A, A
be the system of roots of GG restricted to A, which consists of the common eigenvalues of
A in the adjoint representation. We fix an order on A and denote by AT the system of
positive roots, IT the system of simple roots (roots than cannot be obtained as product
of two positive roots) and define A" = {a € A; |a(a)] > 1; Ya € At}. There exists a
maximal compact subgroup K of G such that

G =KATK Cartan or KAK decomposition

We denote by g be the Lie algebra of G over k and define, for every o € A, g, = {x €
g; Ad(a) -z = a(a)xr Va € A}. Let N be the unique connected subgroup of G whose Lie
algebra is G,ea+fq ; it is @ maximal unipotent connected subgroup. Then the following
decomposition, called Iwasawa or KAN decomposition, holds :

G = KAN Iwasawa or KAN decomposition

Rational Representations of algebraic groups
In the previous paragraph, we used only the adjoint representation of G. More ge-
nerally, if (p, V') is a k-rational irreducible representation of G, x € X(A) is called a
weight of p if it is a common eigenvalue of A under p. We denote by V) the weight space
associated to x which is V, = {& € V;p(a)r = x(a)x V a € A}. Then V = @ exa)Vy-
The representation p is characterized by a particular weight x, called highest weight
which has the following properties :
e every weight x of p different from y, is of the form : x = 0

Xp
acell

— > Where n, € N for
every simple root a.
e Every x € V, is fixed by the subgroup N.

Let ©, = {a € II; x,/a is a weight of p}.

Proposition 2.4.20. [Tit71]/For every a € 11, let w, be the fundamental weight asso-
ciated to . Then the k-rational irreducible representation (pa, V) of G whose highest
weight is w,, (called fundamental representation) has a highest weight space of dimension
one and satisfies ©,, = {a}.

Every k-rational irreducible representation p of G can be obtained as a sub-
representation of tensor products of fundamental representations and x, is of the form
[Ioen wie, with s, € N. We record below a basic fact about root systems (|[Bou68, §1.9
et 1.10]).

Proposition 2.4.21. Every root o € A is of the form : o = H,Bel‘[ wg", with ng € Z,
for every 3 € IL.

Good norm

Let p be a k-rational irreducible representation of G. We wish to find a special basis
and norm of V such that p(G) = p(K)p(AT)p(K) (resp. p(G) = p(K)p(A)p(N) ) is the
restriction of a Cartan (resp. Iwasawa) decomposition of SL(V'), i.e. K acts by isometries
on V, A acts by diagonal matrices with p(A") C {diag(a1,--- ,aq);|a1| > |a;| Vi # 1},
p(N) fixes the first vector of the basis.
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To do that we begin with standard definitions borrowed from Quint [Qui02b|. Let V be
a k-vector space. When k is R (resp. C), we say that a norm on V' is good if and only
if it is induced by a Euclidian scalar product (resp. Hermitian scalar product). Now if
V' is endowed with a good norm, a direct sum V' = V; & V, is good if and only if it is
orthogonal with respect to the scalar product. When £ is non archimedean, we say that
a norm on V' is good if and only if it is ultrametric, i.e., ||[v + w|| < Max{||v||;||w||}
Vo, w € V. A direct sum V = V) & V5 is good if and only if for every v = v + vy, with
v €V, v eV, |[o|] = Maz{[[vr]], [[va][}-

Now let (p,V) be k-rational irreducible representation of G and V = &,V its
decomposition into weight spaces. We write G = K AK its Cartan decomposition.

Theorem 2.4.22. [[Mos73, §2.6] for k archimedean, [Qui02d, Theorem 6.1] for k non
archimedean]

When k = R (resp. C), there exists a scalar product (resp. Hermitian scalar product)
on V such p(K) acts by isometries on Vand p(A) is symmetric (resp. Hermitian). The
direct sum V = @,V, is good and a € A induces on each V,, a homothety of ratio x(a).
When K 1is non archimedean, there exists a K-invariant ultrametric norm on V' such
that the V. ’s are in good direct sum. The action of a € A on V, is by homothety of ratio

x(a)

Such a norm is said to be (p, A, K)-good.

Corollary 2.4.23. Let (p,V') be a k-rational representation of G, x, its highest weight.
Then there ezists a good norm || - || on V' such that

o)l =[x, (alg))| ;9€ G

And for every x, € V,, \ {0},

HP(Q)SUpH _ |Xp <;@/)> | g e

1|
where a(g) (resp. c;@) is the At (resp. A) - component of g in the Cartan (resp.
Twasawa) decomposition.

Fubiny-Study norm :

Consider a good norm on V' and a good direct sum : V = V; & V5. Then, there exists
a good norm on A*V such that the direct sum A Vi @ (Vi A Va) @ A° Va is good. This
induces the Fubini-Study distance ¢ on the projective space P(V) :

o([«], [y]) = ;2] [yl € P(V)

An example : SL,(k) (|[PR94])
Here we consider G = SLq. A maximal k-torus is A = {diag(as,--- ,aq); [, a; = 1}
and AT = {diag(ay, -+ ,aq) € A; |as| > -+ > |aq|}-
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To simplify notations, for ¢« = 1,--- ,d, we denote by A; the following rational cha-
racter of A : (A1,---,Ag) — A;. Simple roots are A\;/A\i1, ¢ = 1,--+ ,d — 1. Positive
roots are \;/A;, 1 < i < j < d. The fundamental weight associated to o; = \;j/Aip1
is w; = A;---\; and the representation p,, of Proposition is just A"V. The
expression of simple roots in terms of fundamental weights is :

1 2.1 . i
o =W wit Wy t=1,---,d

Let K = SO4(R) (resp. K = SU4(C)) when k =R (resp. k = C) and K = SLy(%)
when k is non archimedean. We denote by N the subgroup of upper triangular matrices

with 1 on the diagonal. Then the Cartan decomposition is G = K AT K and the Twasawa
decomposition : G = KAN. As seen in Section we can also take the following other

choice for A™ : AT = {diag(ay, - ,aq); a; €]J0;+00[; a1 > -+ > ag > 0; H?Zl a; = 1}
when k = R or C and A* = {diag(z™,--- ,7"); ny < --- < ng; S0 n; = 0} when
k is non archimedean. Let B = (e1,--- ,e4) be the canonical basis on V and || - || the

canonical norm on V' (see Section , then it is clear that K acts by isometries on
V = k% Consequently, B is in a good direct sum and || - || is (A, K)-good.

2.4.4 Estimates in the Cartan decomposition - the connected
case

In this section G is assumed Zariski-connected. Recall that G is also assumed
semi-simple and k-split.

Let 1 be a probability measure on G = G(k) and p a k-rational irreducible repre-
sentation of G. We assume I',, to be Zariski dense. Recall that by [Bor91l Proposition
18.3] G is Zariski dense in G.

Our aim in this section is to give estimates of the Cartan decomposition in p(G) of the
random walks p(M,,), p(S,) using their Iwasawa decomposition.

Let x, be the highest weight for V', and r the number of non zero weights of V.
We set x1 = Xp» X2, s xi (1 € {2,---,r}) the weights adjacent to xi, i.e., such that
Xi = X1 or there is a € O, such that x; = x1/a. We consider a (p, A, K)-good norm on
V (for the basis of weights) given by Theorem of the preliminaries.

Fix a Cartan (resp. Iwasawa) decomposition such that the sections G — KAK
and G — KAN be measurable. For ¢ € G, we denote by g = k(g)a(g)u(g) (resp.

—_—

g = k(g)a(g)n(g)) its Cartan (resp. Iwasawa) decomposition in G = KATK = KAN.
When it comes to the random walk S, = X,,--- X, we simply write S, = K,A,U,
(resp. S, = K,A,N,) for the KAK (resp. KAN) decomposition of S, in G and set

—~ P

p(An) = diag(ai(n),- - aa(n)) ; p(An) = diag(ai(n),- -+, aq(n)).

It is known that G is isomorphic to a closed subgroup of GL,(k) for some r > 2 -
[Hum75|. Let i be such an isomorphism. (When G is simple and of adjoint type, one can
take the adjoint representation).
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Definition 2.4.24 (Exponential moment for algebraic groups). If p is a probability
measure on G, we say that p has an exponential local moment if i(p) (image of p under
i) has an exponential local moment (see Definition[2.2.9).

The following lemma explains why this is a well defined notion, i.e. the existence of
exponential moment is independent of the embedding “7”.

Lemma 2.4.25. Let G C SL(V) be the k-points of a semi-simple algebraic group and
p a finite dimensional k-algebraic representation of G. If v has an exponential local
moment then the image of p under p has also an exponential local moment.

Proof. Each matrix coefficient (p(g));; of p(g), for g € G, is a fixed polynomial in terms
of the matrix coefficients of g. Since for the canonical norm, ||g|| > 1 for every g € G,
we see that there exists C' > 0 such that [|p(g)|| < ||g|| for every g € G. This suffices
to show the lemma. O]

Comparison between (the A-components of) the Cartan and Iwasawa de-
compositions.

Estimating the asymptotic behavior of the components of .S,, in the KAK decompo-
sition will be crucial for us. We will derive these estimations from their analogs for the
KAN decomposition. The following proposition explains why it is legal to do so :

Proposition 2.4.26 (Comparison between KAK and KAN ). Almost surely there exists

a compact subset C of G such that for every n € N¥, An;l\;fl belongs to C'. In particular,
there exists a compact subset D of GL(V') such that p(A,)p(A,)~" belongs to D.

Proof. Since the kernel of the adjoint representation is finite, it suffices to show that
—~ 1

there exists a compact subset E of GL(g) such that Ad(A,)Ad(A, )

a(An)

a(An) "

for every a € II. Indeed, we decompose a into fundamental weights : o = Hﬁen wﬁﬁ ;

ng € Z. Hence,
ald) _ 11 (w(f&)) (2.30)
Bell

belongs to F.

This is equivalent to show that almost surely is in a random compact subset of k

a(4,) ws(An)

By Theorem [2.4.22 for each § € II, there exists a representation (pg, V3) of G whose
highest weight is wg and highest weight space is a line, say k x3. Fix a (pg, A, K)-good
norm on Vj. Corollary [2.4.23| applied to the representation pg gives then :

—~

los(Sll = lwa(An)] 5 LeetSzall Gy,

|||
Then becomes then
A S, "
) I1 M (2.31)

a(An) jen IEz
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It suffices to control the terms where ng > 0. Since G is Zariski-connected, pg is in fact
strongly irreducible. By Zariski density, pg(I',) also. Hence we can apply Proposition
2.4.9 :

[p5(Sn)l
s SuPnent Y o) <
|zl
This is what we want to show. O

A version of the latter proposition “in expectation” will be needed.

Proposition 2.4.27 (Comparison between KAK and KAN in expectation). Assume
that p has an exponential local moment (Definition|2.4.24|). For every v > 0, there exist
€(y) > 0 and n(y) € N* such that for 0 < e < e(y), n > n(y) and every a € 11 :

E (‘ ZE%; r) <(l+ey)" ; E (‘agj:) F) < (1T+ey)” (2.32)

Moreover,
E(|lp(An)p(An ) < (1+€y)" (2.33)

Proof. Let € > 0 and o € II. Let (31, -+, s be an order of the simple roots appearing
in identity (2.31]). Holder inequality (for s maps) applied to the same identity gives :

esng,

a(Ay) e - IZAEHI
(12 ) < [T [t 252 )

=1 2

1
s

Terms with ng, < 0 are less or equal to one. Hence, it suffices to control the terms
where ng, > 0. Fix such i € {1,--- ,s} and let v > 0. By Lemma , the image of
i under pg, has an exponential local moment. Moreover, as explained in the previous
proposition, G being Zariski-connected, pg, is strongly irreducible. Consequently, we can

esngi
apply Proposition [2.4.14] which shows that IE[ %) ] < (1 4 ~e)". Hence

llzg, Il

E <‘%‘6 < (1 + ve)™. In the same way, we show the inequality on the right hand
side of (2.32)
In particular, for every non zero weight x of (p,V) different from yx,,

E([X(An)/x(ﬁvn)]E) < (1 + ve)™. Indeed, this follows from the expression y =
X1/ [laen @ with s, € N and the Holder inequality applied to (2.32)). For x = x,, a

similar inequality holds because xp(An)/Xp(;lvn) = ||Sull/||Snz|| for some (p, A, K)-good
norm and every x € V,,. This proves (2.33). O

The following theorem shows that the ratio between the first two components in the
Iwasawa decomposition is exponentially small.

Theorem 2.4.28 (Exponential contraction in K AN). Assume that o has an exponential
local moment and that p(T',,) is contracting. Then there exists X > 0, such that for every
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e > 0 small enough and all n large enough :

a;(n) ,
E(] ) <@ =X)" 5 i=2,---.,d
al(n)

We recall that :4; is the A-component of S,, in the Iwasawa decomposition of S, in G

P

and that a1 (n),--- ,aq(n) are the diagonal components of p(;i;) in the basis of weights.

Remark 2.4.29. When k = R, no contraction assumption is needed. Indeed, by a
theorem of Goldsheid-Margulis [GM89], a strongly irreducible semigroup I' of GL4(R) is
contracting if and only if its Zariski closure is. Hence p(I'),) is contracting if and only
if p(G) is. But G is R-split, hence the highest weight space of p is a line, thus p is
contracting.

Before proving the proposition, we state a standard lemma in this theory :

Lemma 2.4.30. [Dek82] Let G be a group, X be a G-space, (X,)nen+ @ sequence of
independent elements of G with distribution p and s an additive cocycle on G x X.
Suppose that v is a ,u—invam'ant probability measure on X such that :

1. [[s%(g,z)du(g)dv(z) < co where y* = sup(0,y) for every y € R.
2. ForP® V—almost every (w, ), 1111[17HOO s(Xp(w) - Xq(w), z) = +o0.
Then s is in L*(P®v) and [[ s(g,z)du(g)dv(z) >0

Proof of Theorem [2.4.28. Without loss of generality, one can suppose 2 = GN = {w =
(w;)ien+;w; € G}, P the probability measure for which the coordinates w; are inde-
pendent with law p and F the o-algebra generated by the coordinate maps w;.

Since p is contracting, V,, is a line. Indeed, if {n,;n € N} is a sequence in G such
that {p(n,);n € N} is contracting then it is easy to see that {p(a(n,));n € N} is
also contracting. V), is then a one dimensional subspace. Therefore, for some o € ©,,

©2) — _L_ and in general for i € {2,--- ,d}, %% is of the form 1/ [0 3me(A,)
a1(n) a(An) a1(n) °

with ms € N for every [ € II. By Holder inequality, it suffices to treat the case where

ai(n)/al( )= 1/a( ) for some « 6 @ As in Proposition [2.4.26] we decompose a into
fundamental weights : a = [];_ lwﬁ , Wlth s € N*, ng, € Z for every ¢ = 1 -, 8. We
denote (pg,, V3,) the fundamental representatlon associated to wpg,. Using (2.31)) of the
same proposition, we get for every i =1,--- s a (pg,, A, K)-good norm on V; such that :

E (lai( ) ([H 1P, (S x@”} 6%) §SupxexE[e$p(—€8(Sn,l‘))]

ai(n) ||s,|

where X = [[;_; P(Vj,) and s is the cocycle defined on G x X by :

s(g, ([z1], - Z” longgl )sz||

To apply Lemma [2.4.12] we must verify that for some 7 > 0,

E (exp(rsupacx |s(X1, 7)) < o0 (2.34)
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and !
lim ESupxeX E(—s(S,,x)) <0 (2.35)

By Lemma [2.4.25] there exists 7 > 0 such that for every i = 1,--- . s, E (||pg,(X1)|]7) <
oo. Holder inequality applied recursively ends the proof of (2.34). Now we concentrate
on proving (12.35)). Since P(Vp,) is compact for every ¢ = 1,--- s, it suffices to show

that for all sequences {z1,;n > 0}, -+, {z5,;n > 0} converging to non zero elements
of Vg, -+, V3, -
1 g [1p5,(Sn)Tim]|
lim —s (S, wlyo L [Ten])) = lim = E(1 - ’ >0
Jim 25 S (sl o ) = i 25 (1o 2250

Fix such sequences {1,,;n > 0},---, {zs,;n > 0}. By Corollary the limit above
exists and is independent of the sequences taken. Indeed, it is equal to the sum of the
corresponding Lyapunov exponents. Denote by L this limit. Fix a u-invariant probability
measure v on X, which exists by compactness of X. Again by Corollary

[|ps; (Sn(w)) il

|||

1 1o
L= lim —s(S,(w),z) = lim — ]
im —s (S,(w),2) = lim nznﬁ og

n—oo N

Consider the dynamical system E = () x X, the distribution n = P ® v on FE, the shift
0:FE— FE, ((90,..), ) — ((g1,.--..), go - ©). Since v is p-invariant, n is f-invariant.
We extend the definition domain of s from G x X to GN x X by setting s(w, z) := s(go, 7)
if w = (go,....). Since p has an exponential moment, s € L;(n). In consequence,
we can apply the ergodic theorem (see [Bre68, Theorem 6.21]) which shows that
LS o s 06w, x) converges for n-almost every (w,z) to a random variable Y whose ex-
pectation is [[ s(g, z)du(g)dv(z). Since s is a cocycle, s(Sp(w),z) =D 1" 500 (w,x).
Hence,

lim s (S,ha) =Y E,(Y) = [[ s(ga)dutg)av(a)

n—oo M

But we have shown above that Y is almost surely constant,because it is the sum of the
corresponding Lyapunov exponents, and that it equal to L. Hence,

L= [[ sta.0putg)avta)

L is positive if conditions (1) and (2) of Lemma [2.4.30|are fulfilled. Since p has a moment
of order one, condition (1) is readily satisfied.
Condition (2) : we must verify that for P ® v-almost all (w, x),

— + 00 (2.36)

|
n—oo

$(Su(w).x) = 3y, log 122 ﬁi(ﬁ»

i=1 i

By Proposition the P ® v-almost everywhere behavior at infinity of s (S, (w), x) is
the same as the P-almost everywhere behavior of :

Znﬁi lOngﬁq(Sn)” = log }Q(An)‘
i=1

The last equality follows from the expression of « in terms of the fundamental weights
and from Corollary [2.4.23| Hence, we reduced the problem to proving that |a(A,)| =

n—oo

for P ® v - almost all (w, z)
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+oo for every o € ©,,.
p(I',) is strongly irreducible because I, is Zariski dense in G, p is an irreducible repre-
sentation of G and G is connected. Since by the hypothesis p(I',) is contracting, we can

apply Theorem [2.4.5] :
|| - || being (p, A, K)-good norm, |a;(n)| = ||p(Sy,)||. Hence a.s. every limit point of Z(li(")

n)
ax) | aa(n)
ai(n)’ > ai(n)

every weight x # x, of V, |x,(A4,) / x(A,)| tends a.s. to infinity. From the expression
of x in terms of x,, this is equivalent to say that for every a € ©,, |a(4,)| tends to
infinity.

is a rank one matrix. In particular, converge a.s. to zero. Equivalently, for

]

The following theorem shows that the ratio between the first two components in the
Cartan decomposition is exponentially small.

Theorem 2.4.31 (Exponential contraction in K AK'). With the same hypotheses as in
Theorem there exists A > 0 such that for all e >0 :

timsup (B2 [0]F <1-ae ;=2 d

n— oo ay (n)

Proof. Let i € {2,--- ,d}. Since |a; (p(a))| < |a1 (p(a)) ]| for every a € AT, it suffices to
show the theorem for all ¢ > 0 small enough. Write

a;(n) _ a;(n) 9 ai(n) " a;(n)

a afn) @) a(n)

Fix v > 0. By Propositions [2.4.27 and [2.4.28| and Holder inequality, we have for some
A >0, every 0 < e < Min{e(v); 35} and n > n(y) :

E<|%

We have used the inequality (14 x)” < 1+ rz true for every x > —1 and r €0, 1] and

the inequality (z +y)? < 2(2? + y?) true for every x,y € R. It suffices to choose v = @

for instance. O

ol
ol
wl=

) < (14 37€)3(14376)3(1 —3Xe)3 < (14+7€)*(1—Xe) < 2(14+7%)(1 — Xe)

We will see in Section that in order to work with non Zariski-connected algebraic

groups, it is convenient to work with the Cartan decomposition of the ambient group
SLy(k) (see Section [2.3.2)). The following corollary will be useful. It is the analog of
Theorem [2.4.31| for the KAK decomposition in SLy(k) (rather than in G).
Corollary 2.4.32 (Ratio in the A-component for the KAK decomposition of SLy(k)).
For g € SLy(k), we denote by g = k(g)a(g)u(g) an arbitrary but fired Car-
tan decomposition of g in SLq(k) as described in Section . We write a(g) =
diag (al(g), . ,ad(g)> in the canonical basis of k. With this notations and with the
same assumptions as in Theorem we have for some A > 0 and every € > 0,

hmsup[E(}Mr)}igl—’ye : i=2--.,d
oo ax (p(Sn))
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Proof. To simplify notations we omit p, so that GG is seen as a linear algebraic subgroup
of SLy(k). Let S,, = K, A, U, be the Cartan decomposition of .S,, in G (Section [2.4.3)

and S, = I/(\n;gﬁ\n its Cartan decomposition in SLy(k) (Section . Recall that A,, is

a diagonal matrix diag (a1(n), - ,aq(n)) in the basis of weights while A,, is a diagonal
matrix diag <a1(n), e ,ad(n)> in the canonical basis of k%. We will use the canonical

basis and norm of k% (Section [2.4.2)).
Theorem [2.4.31| shows that for some A > 0, every € > 0 and all large n,

E<|“"(")|€)g(1—ye)" S =2 .d (2.37)

ax(n)

Since K, K belong to compact subgroups in both decomp081t10ns there exist C’l, Cs >
0 such that for every n : Cyl[A,|| < [|An]] < Ci[A,]] and CQH/\ A,ll < H/\ A, || <
CLll A Anll.

By the definition of the KAK decomposition in SLy(k), we have a.s. H;l;H = ]ml
and || \® ZI:LH = |ay(n)az(n)|. For KAK in G, there exists a constant C3 > 0 such that :
C%]al(nﬂ < ||A4.|] < Cslai(n)| and for P-almost every w there exists i(w) € {2,--- 1}
such that :

Cigml(n)% )| < ||/\A )< Cylar(n)aie ()]

Hence

() _ e (IA Sl 7 _pr (A Al ey S (n)
= (122r) -mi (i) 1 -mi () 1 < o S (i3

By ([2.37)), this is less or equal than constant x (1 —~e)". Since |c@| > |@| for ¢ > 2
and every g € SLy(k), the proof is complete. O]

Exponential convergence and asymptotic independence in KAK

We recall that the norm on V' we are working with is (p, A, K')-good (it is the one
given by Theorem . We recall also that the direct sum V' = @, V) is good. When
k is archimedean, this norm is induced by a scalar product so that we can choose an
orthonormal basis in each V,. Let (eq,--- ,e4) be the corresponding basis of V', e; is in
particular a highest weight vector. Then, the norm on V becomes ||z|]> = 320, |z,
T = 25:1 x;e; € V. When £ is non archimedean, one can choose a basis in each V, such

that the norm induced becomes the Max norm. If (e, - - -, e4) is the corresponding basis
of V, then ||z|| = Max{||z;||;i=1,--- ,d} for every z =) _._ x;e; € V.

Let p* : G — GL(V*) be the contragredient representation of G on V*, that is
p*(9)(f)(@) = f(plgHa) forevery g € G, feV*, x€V.Forge Gand feV* g-f
will simply refer to p*(g)(f). Consider the norm operator on V*, it is easy to see that it
is (p*, A, K)-good. As explained in the preliminaries, || - || induces a distance 4(-,-) on
the projective space P(V'). The same holds for P(V*).

")
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Finally we recall the following notations : M, = X;---X,, S, = X,,---X; where
X;;1 > 1 are independent random variables of law ;. The KAK decomposition of S, in G
is denoted by S,, = K,,A,U,, with K,,,U,, € K and A,, € AT (we have fixed a privileged
way to construct the Cartan decomposition). We write p(A,) = diag (a1(n),--- ,aq(n))
in the basis of weights. When it comes to the random walk {M,;n € N*} we simply
write M,, = k(M,)a(M,)u(M,) its KAK decomposition.

Theorem 2.4.33 (Exponential convergence in KAK). Suppose that i has an exponential
local moment and that p(I',) is contracting. Denote by x, a highest weight vector (ey for
example), then for all e >0 :

1
n

<1 limsup [E(3(U, " - [7}], Z2)°)]

n

3=

limsup [E(6(k(M,)[z,], Z1))] <1

n—oo n—oo

where Zy (resp. Zs) is a random variable on P(V') (resp. P(V*)) with law v (resp.
v*) -the unique p (resp. p=') -invariant probability measure.

Remark 2.4.34. From the previous theorem, we deduce by applying the Borel Cantell:
lemma that k(M,)[z,] converges almost surely while K, [z,] = k(S,)[z,] converges only

in law. This can also be directly derived from Corollary[2.4.7}

Remark 2.4.35. When k =R, we give in Chapter[3 another proof of Theorem[2.4.33
See Theorem [3.5.15.

Proof of Theorem [2.4.33. For simplicity, we write S,,, K,,,A,,U,, instead of p(S,), p(4,),
p(Uy,). By the canonical identification between V' and (V*)*, (e})” will refer to e;. Let
Z € P(V*) be the almost sure limit of S, ' - [f], for every [f] € P(V*), obtained by
Theorem . Since for every i = 1,--- ,d, A} - € = a;(n)e} and S,, = K, AU, we
have for every f € V* of norm one, such that ey (K, ' f) # 0,

d
Syt f = ) an) Ut -ef + ) O(ai(n)

a1 S 1 a(n)
U= S e a2 Cam)

[z],[y] € P(V*). Hence

B
S
<

! 152" f1l 5 g1 ~ o1 %(m)
o [1]’Z)§|61(K;1-f>|< oG] 5 L1220 D)

U 2) < ey (5(55 112+ 3 024 \>> (239

(Kt f ~ wn)
Let C(k) = \/LE (resp. C'(k) = 1) when k is archimedean (resp. non archimedean). The
choice of the norm on V implies that a.s. there exists i = i(n,w) € {1,--- ,d}, such that

le1 (Kt - ef)| > C(k). Indeed, in the non archimedean case, 1 = ||K,, - e1|| = Maz{| K, -
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er(e})];i=1,---,d}. Hence for some random i = i(n,w), |e; (K"
and in the archimedean case, 1 = ||K,-e1|| = S0, | K, - ex(e)]?
Hence one can write for every ¢ > 0 :

)| = [Keer (e)] = 1
=YL e (el

d
E@U," - [e7], 2)") < ZE (5(Un_1 [e1], 2)"; ]1|el(K51-e;)\2C(k)> (2.39)
=1

)| > C(k)”, we apply (2.38) with
c>

In (2.39), for every i = 1,--- ,d, on the event “|e; (K, ! (k)
C’(k:) and (x+y) <a° 4y

e
f = e;. Since € > 0 can be taken smaller than one, C’(k)
for every z,y € R,. We get then :

EWWVWJWSﬁazEW$”mzﬁ+4LZWW@ﬁ (2.40)

Theorem [2.4.31| shows that : E(| '“("))\ ) is sub-exponential for i = 2,---  d.

Theorem [2.4.16[shows that for every i = 1,--- ,d, E(§(S,.[e}], Z)¢) is sub-exponential.

In the same way, we show the exponential convergence of k(M,,)[z,)]. O

We have shown that U, *-[2}] converges a.s. and K,[z,] in law. In the following theo-
rem, we show that these two variables become independent at infinity, with exponential
“speed”. This is Theorem from the introduction. We recall its statement.

Theorem 2.4.36 (Asymptotic independence in the KAK decomposition). With the
same assumptions as in Theorem there erist independent random variables
Z € P(V*) and T € P(V) such that for every e > 0, every e-holder (real) function ¢ on
P(V*) x P(V) and all large n :

E (6([U, " - 23], [Kaz,))) —E($(Z,T)) | < lIgllep(e)”

where

6]l = Sty e \ﬂwuﬂ><ﬂM[D

o([=], [yD)" + o([2], [y

Proof. Let ¢ > 0. The analog of Theorem [2.4.33|for U, - [x%] does not hold for K, [z,]
because it converges only in law. However, we have the following nice estimate : for some
p(€) €]0,1[ and all n large enough :

E[ (Kn[xp] CR(X X J)[a;p])j < ple)" (2.41)

Indeed, by independence (X, .-, X,,) has the same law as (X,,,---, X;) for every n €
N*. Therefore, for every n € N* :

B3 (Kaley] s k(X0 X3 l]) ] = B[ (W) fe,] s k(Mo 310)[,]) ]

It suffices now to apply twice the first convergence of Theorem [2.4.33| and the triangle
inequality.
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Now let ¢ be an e-holder function on P(V*) x P(V), (X! )nen increments with law
p independent from (X,,)nen. We similarly write M) = X7 --- X].
Let Z = limU[x,] and T = lim k(M})[z,] (a.s. limits given by Theorem [2.4.33). The
random variables 7" and Z are in particular independent. We write :

E (¢(U," - 23], Knlz,])) —E($(Z,T)) = Ay + Ao+ Az + Ay

where

Ao = E (U - [12). Kale,))) — B (6(U3 - 53], kG, - X))
A3 =E (Cb(Uf%lJ ) [1’;], k( é—LgJ) [w])) —E (¢(Zv k(Mé—L%J)[IPD

n
2

Ay=E <¢(Z, k(M) pm])) —E(¢(Z,T))

In A, we have replaced k(X - -+ X|z41) with k(M | . ) because, on the one hand
2

they have the same law and on the other hand, the processes k(X - Xz ;) and U}z
that appear in the last term of the right hand side of A, are independent.

e By Theorem [2.4.33] there exist p1(€), pa(€) €]0, 1] such that : |Ay| < ||@|]c p1(e)™ +
16lle pr(e)2 5 |As] X[l pr(€)2  and [Af ={[@]| pa(e)?.

o By (2.41), Ay < [|¢][e ps(e)".

2.4.5 Estimates in the Cartan decomposition - the non-
connected case

Recall that k is a local field, G a k-algebraic group, G its k-points which we assume
to be k-split. We denote by G its Zariski-connected component which we assume to be
semi-simple and by GV its k-points. Finally, p is a k-rational representation of G into
some SLy(k). We write V = k% and P(V) the projective space.

In other terms, we consider the same situation as in Section [2.4.3] except that G is no
longer assumed connected, a fortiori p(G). The KAK and KAN decompositions
do not necessarily hold for the algebraic groups G, p(G) but are valid for G° or p(G°).
However, one can still use the KAK decomposition of the ambient group SL(V).

We use then the notations and conventions of Section regarding the Cartan decom-
position in SLgq. We consider the canonical basis (eq, - - - , e4) and canonical norm on V' =
k? (see Section 2.4.2)). For each g € SLy(k), we denote by g = k(g)a(g)u(g) an arbitrary
but fixed Cartan decomposition in SL4(k) and write a(g) = diag (a1(g), -, aa(g))-
We consider a probability measure p on G such that I', is Zariski dense in G. As usual,
we denote by S, = X, --- X; the right random walk.
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The aim of this section is to prove that the main results of Section hold for
the Cartan decomposition in SLg4(k) rather than merely in G. Our first task will be
to prove the following theorem, which is the analog of Theorem for the KAK
decomposition in SLy(k).

Theorem 2.4.37. Assume that the representation p|go is irreducible. Let p be a pro-
bability measure on G having an exponential local moment (see Definition |2.4.24)) and
such that p(I',) is contracting. Then for every e > 0,

o (mlE) )
iy [& (|72 5517) 17 <

n—oo

Our next task will be to adapt the proof of Theorem (exponential convergence
in the KAK decomposition) and Theorem (asymptotic independence in the KAK
decomposition) to the Cartan decomposition of SL4(k). This can be done easily using
Theorem Indeed it will be sufficient to replace x,, highest weight of p, with e;
(which is the highest weight for the natural representation of SLg(k) on k%) and KAK
in G with KAK in SLy(k). By writing the Cartan decomposition of p(S,) in SL4(k) as
p(S,) = K, AU, we obtain :

Theorem 2.4.38. With the same assumptions as in Theorem there exist random
variables Z, € P(V') and Zy € P(V*) such that

lim sup [E(8(k(M,)[e], Z1))] " <1 ;5 limsup [E(6(U, " - [eﬂ,ZQ)E)]% <1

n—oo n—oo

3=

Theorem 2.4.39. With the same hypotheses as in Theorem there exists inde-
pendent random variables Z € P(V*) and T € P(V), p €]0,1[, ng > 0 such that, for
every € > 0, every e-holder (real) function ¢ on P(V*) x P(V), every n > ng we have :

E (6([U;" - 1], [Kned])) = E(&(Z,7)) | < [16]lep"

where

_ [o([z], [2']) — ¢(ly], [v'])]
D]l = Suppay, o)y, ] (1], )< + o(['], [y])*

Before proving Theorem [2.4.37] we give some easy but important facts.

Definition 2.4.40. Let 7 = inf{n € N*; S, € G°} i.e. the first time the random walk
(Sp)nen= hits GU. Recursively, for everyn €N, 7(n + 1) = inf{k > 7(n); S € G°}

For every n € N*, 7(n) is a.s. finite. Indeed, by the Markov property it suffices to
show that 7 is almost surely finite : let 7 be the projection G — G/G°, 7 is then the
first time the finite states Markov chain 7(S,,) -it is in fact a random walk because G°
is normal in G - returns to identity.
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Lemma 2.4.41. If p is a probability measure on G with an exponential local moment
(see Definition |2.4.24|), then the distribution n of S, also has an exponential local mo-
ment.

Proof. We identify G with a closed subgroup of GL,.(k). For every a > 0 :

E (1S = > E(ISkI"; L) <> VE(ISkP) VB(r = k) (2.42)

keN* keN*

where we used the Cauchy-Schwartz inequality on the right hand side. Since p has
an exponential moment, there exists oy > 0 such that : 1 < E(]|X;]]**) = C < .
Tmpose a < ag. Since 2 — z o is convex, the Jensen inequality gives : E(||X;|[>*) <

]E(HXlHMU)% = (% . The norm being sub-multiplicative, we have by independence :
E(]|Sk|[2%) < [E(]|X:][22)]" for every k € N*. Hence

E(||Sel*) < (C70)** 1 ke N (2.43)

On the other hand, recall that 7 is the first time the finite states Markov chain 7(S,)
returns to identity. The Perron-Frobenius theorem implies that 7(S,,) becomes equidis-
tributed exponentially fast so that P(7 > k) is exponentially decaying. In particular,
there exists a constant A > 0 such that

P(r = k) < exp(—Ak) (2.44)

Combining (2.42)), (2.43]) and (2.44) gives with D = Co

E(||S-]]*) < Y D2 exp(—Ak/2)

keN*

It suffices to choose a > 0 small enough such that the latter sum is finite (o < @

works). O

Corollary 2.4.42. Suppose that p has an exponential local moment, p|go is irreducible
and p(I',) is contracting. Then for every e > 0,

Jim sup [JE ( | ZAor s (e(8-)) b ) ]’1‘ <1

n—oo ar (p(Srm))

Proof. The variables {7(i + 1) — 7(i); ¢ > 1} are independent and have the same law
7 = 7(1). Hence, the process (Sf(n))neN* has the same law as the usual right random
walk on G° associated to the probability measure 7.

e First we show that I, is Zariski dense in G°. We claim that T';, = T',NG°. Indeed, recall
that T, is the smallest closed semigroup (for the natural topology of Endy(k) induced
by that of k) in G° containing the support of 7. Hence, M € T, if and only if for every
neighborhood O of M in G° P(3n € N*; S, (,) € O) > 0. On the other hand, G° is open
in G because G/G" is finite. Thus, M € I, N G if and only if for every neighborhood
O of M in G° P(3n € N*; S, € O) > 0 or equivalently P(3n € N*; S;(,) € O) > 0. This
shows indeed that I, = T', N G°.
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Since T',, is Zariski-dense in G and G° is Zariski-open in G, we deduce that T, is Zariski
dense in GV.

e Next, we show that p(I';)) is contracting. Indeed, by Lemma [2.2.8) p(I',,) has a proximal
element, say p(y) with v € I',, then p(C/ET = p(416/6%) is also proximal with [C/C"]
in I, NG° =T,. Hence p(T',) is proximal whence, again by Lemma , contracting.
In consequence, we are in the following situation : G is the group of k-points of a connec-
ted algebraic group and n is a probability measure on G° such that the semigroup T,
is Zariski dense in G°. Moreover, by Lemma 1 has an exponential local moment.
Finally p|co is an irreducible representation of G° such that p|go(T,)) is contracting. An
appeal to Corollary ends the proof. ]

Lemma 2.4.43. Let { = E(7).

(i) The Lyapunov exponent associated to the random walk p(Srn)) (or in other terms
to the distribution p(n)) is €A1, where \i is the first Lyapunov exponent associated to
p(Sn)-

(11) For every e > 0, there exist p(e) €]0, 1], n(e) € N* such that for n > n(e) :

B\ r(n) — ] > ) < ple)"

Proof. The stopping time 7(n) is the sum of the independent, 7-distributed random

variables {7(i+1)—7(i);i > 1}. By the usual strong law of large numbers, a.s. lim 7% =

¢, so that, %log |S-my)l] = W X @ converges almost surely towards A;£. Item (ii) is
an application of a classical large deviation inequality for i.i.d sequences : Lemma [2.4.44]
below. To apply the latter, we should check that for some & > 0, E (exp(éT)) < oo.
Indeed, by (2.44), there exists £ > 0 such that for every y € Ry : P(7 > y) < exp(—£y).

Hence, for every ¢t > 0, write :

E (exp(tt)) = /0 TP (eap(tr) > x) dr =1+ /1 TP (T > 10gt($)) dx

< 1+ /100 exp(—flOgt($)) dx

The latter is finite as soon as t < &. [

The following lemma is classical in the theory of large deviations and is a particular
case of the well-known Cramer Theorem. One can see [Str84], Lemma 3.4 Chapter 3 for
example.

Lemma 2.4.44 (Large deviations theorem for i.i.d. sequences). Let (X, )nen be a se-
quence of independent, identically distributed real random variables. If for some & > 0,
E (exp(£]X1|)) < oo, there exists a positive function ¢ on R* such that for every e >0 :

P (& S X - E(X)| > ) < eop (~n6(0))

Moreover,  one  can  take  ¢(¢) = Supocice{te — Y(t)}  where
b(t) = log (E[eap (1(X, — E(X1)))]).
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Proof of Theorem[2.4.37. To simplify notations we omit p, so that G in seen as a sub-
group of SLy(k). Let N € N*, € > 0,0 < ¢ < to be chosen in terms of €. By definition
of the KAK decomposition in SL4(k), what we want to prove is that for all € > 0 small

enough
2 €
limsupE[ (M) } <1

N—oo |[Sn|[?

Let n = [, so that for N > Ny(¢') = l(ljel), n(l—¢) < N < n(l+¢). We wish to
have 7(n) and N in the same interval with high probability.

Let A, be the event “{7(n) € [n(l — ¢);n(l + ¢)]}”. By Lemma there exists
p(€') €]0, 1] such that P(A4,) > 1 — p(¢’)". We have then :

IAZSwIT LAZ S
]E[( ||SN||2 ) } < E( ||S ||2 ]lAn> ‘f‘P(Q\An) < E( ]lAn>+,0( )

N J/
-

()

The first inequality is due to the fact that ”‘/‘\;NS‘]‘QF < 1.Since n > N/(I+€) > N/2l,

N
p(eHn < <p(e’)i> . Hence it suffices to estimate (I).

2 2 -1 71 €
X Xoomas Seem)|[€ A (Xnga e Xy Sro)l
() <E (H/\ ( . e )>H ]11\/>T(n);14">—*_IE ( " s Inernya,

HXN T XT(R)+1ST(TL)|’2€ ||X]?[}|_1 T 7—(11 ST(n)H2
(F) (IH)
(I1I) is treated similarly as (I). Since || A’ gl| < |lg]|?; L < lg7l5 g~ M <

g
l|g||4~t for every g € SLq(k), we have :

A Sl
() <E <(||XN|| s Xy ) W D Ivzrmya,

2 4de H/\2ST(n)H2E
(IN?* < E((IXn] - 1 Xyt D™ 5 Insrmy; a,) E Sronl* (2.45)

3 e 1A Seon >
= S E(UXnl X D™ 5 Lo, Loes) E (W
kZO TN

n(l+€)

S E((Xn]]- [ X)) E (%) (2.46)

k=n(l—¢")
n(l+€')

> [ (||XI|4d5)] E(W) (2.47)

k=n(l—¢")

IN

IN

The bound ([2.45)) is obtained by the Cauchy-Schwartz inequality, (2.46]) follows from
the fact that on the event A,,, 7(n) € [n(l — €);n(l + €)]. Finally (2.47) is due to the
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sub-multiplicativity of the norm and the independence of Xy, -+, Xpi1.
Since p has an exponential local moment, for ¢ small enough, 1 < E (HXl\

C(¢) < o0. Morcover, n(l —¢) < N < n(l +¢), hence 30700 ) [ () ] <

2ne'C(€)? < C(e)*, for n > n(€') large enough. Hence,

2
, Sem |
IIQSCGSneE H/\ 7(n)
(112 < (o <—||57<n>||46

‘4de) —_

Finally, by Corollary [2.4.42] there exists p(e) €]0, 1] such that for all n large enough :

IA" Sl _ o ((92(2(Sre) 26 o
E( 17| ) - (‘al(P(ST(m))} ) =

1

Choose 0 < € < ;f%(g((?))) so that for p = C(€)*“ p(e) €]0,1], (I1)> < p" < (p2)N. O

2.5 Proof of Theorem 2.2.11]

In this section, we complete the proof of Theorem [2.2.11 and Corollary For
simplicity will assume that the subgroups I', and I in the statement of Theorem [2.2.11
are equal.

Now let 12 be a probability measure on SL,4(k) such that I, is a strongly irreducible
and contracting closed subgroup. We denote by G' the k-Zariski closure of I'), in SL4(k),
which we assume to be k-split and its Zariski-connected component semi-simple. We
can apply the results of the previous Section with this G and p the natural action
of G on V = k% We use the same notation and conventions as in Section regarding
attracting points and repelling hyperplanes.

We will show that

1
limsup — log P (({S,, S, )do not form a ping-pong pair) < 0. (2.48)

n—oo n

Applying lemma this will end the proof of Theorem [2.2.11} It will follow from the
following two propositions.

Proposition 2.5.1. There exists € €]0, 1] such that for every r €]e, 1] :

1
limsup — log P (S,,, S! are not (¢*,7")- very prozimal) < 0
n

n—oo

Proposition 2.5.2. For every t €]0,1[;

1
limsup — log P (6(vg, +1, Hg £1) < ") <0
n n

n—oo
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Proof of Proposition [2.5.1] : it will follow from Proposition [2.5.3] and Lemma
2.5.4] First, we recall Lemma [2.3.2] which says that a large ratio between the first two
diagonal components in the K AK decomposition implies contraction. More precisely,
let € > 0. If |Zf—8| < €2, then [g] is e-contracting. Moreover, one can take v, = [k(g)e1]
to be the attracting point and H,, the projective hyperplane spanned by u~!(g)e; for
1=2,---,d, to be the repelling hyperplane.

We deduce the following proposition :

Proposition 2.5.3. There ezists ¢y €]0, 1[ such that for every € €leg, 1],

1
limsup — log P (S,, and S,, are not €"- very contracting) < 0
n

n—oo

Proof. Tt suffices to consider S,,,S;, and S;I,S;fl separately and show the corollary
without the word “very”.
e For the random walk (S,,) Theorem [2.4.37| shows that there exists ¢; €]0, 1] such that

for all large n we have E <‘ ngzg |) < €.

By the Markov inequality, for every € €]ey, 1],

By Lemma for every e €]y/e1, 1] we have P(S,, is not €"- contracting) < (%4)".

e For the random walk (S, ') : The assumption I', is a group implies that I',-» =T, =T
so that the action of I' -1 on V' is strongly irreducible and contracting. In consequence,
we can apply the same reasoning as the previous paragraph by replacing p with p=1.
This gives €5 €]0, 1] such that for every € €]/€s, 1[, P(S,,! is not €”- contracting) is sub-
exponential.

Similarly if we denote by €3, €4 the quantities relative to S), and S{l_l, then it suffices to
choose €g = Max{\/e;i=1,--- 4}

O

Recall that for g € SLy(k), v, = k(g)er and H, = [Span(u(g)'es, -+ ,u(g)eq)].

Lemma 2.5.4. For every t €]0, 1],

1
limsup —log P (d(vs,, Hs,) < t") <0
n

n—oo

The same holds for S,~t, S and S{fl.

Proof. Consider the random walk (S,,)nen+. Let t €]0, 1[. Recall that if H = Kerf, f €
V* then for any non zero vector z of V, §([z], [H]) = L& Since Hg, = Ker(U;!-¢}),

I IFATTIE
we must show that for every t €]0, 1],

1
limsup — log P(||U,; " - €j(Kpel)|| < t") <0 (2.49)
n

n—0o0o
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e For every € > 0, let 9. be the function defined on R by ¢.(z) = 1 on [—¢, €] ; affine
on [—2¢; —e[U]e, 2¢] and zero otherwise, for every z € R.
One can easily verify that v, is 1-Lipschitz.
Note also that
]l[—e,e} < ¢e < ]]-[—25726] (250)

e Let n be the function on P(V) x P(V*) defined by n([z], [f]) = 0 ([z], Ker(f)) =
|/ ()]

IFAE I
V{fe consider the following metric on P(V) x P(V*) : d (([«], [f]), ([y], [9])) = o([z], [y]) +

5(1f), [g]) for every [z, [y] € P(V) and [f],[g] € P(V")

Let C(k) = /2 when k is archimedean and C(k) = 1 when k is non archimedean.
We claim that 7 is C(k)-Lipschitz. Indeed, let [z],[y] € P(V), [f],[9] € P(V*). By
Lemma below there exist suitable representatives z,y € V., f,g € V* in the unit
sphere such that ||z — y|| < C(k)d([z], [y]) and ||f — g|| < C(k)d([f],[g]). But by the
triangle inequality, |n([z], [f]) — n([yl. [9)| < If(2) — gl < [If — gll + |lz — ol <
C(k) (6([f1, [g]) + o([z], [91))-

Define for € > 0, ¢ = ¥, o 1. By the previous remarks, ¢, is - Lipschitz.

Theorem gives a p €]0, 1] and independent random variables Z € V and T € V*
such that for every Lipschitz function ¢ on P(V') x P(V*), and n large enough

k)

E (6([Kner], [U, - €l])) —E(&(2,T)) | < ll¢l| p" (2.51)

where ||¢|| is the Lipschitz constant of ¢ as it was defined in Theorem [2.4.39

Now we prove (2.49). For any ¢ €]0, 1]

P(|U, " - ei(Kner)[| < ") < E (¢ ([Kner], [Un ™ - €]])) (2.52)
< E(6(Z,T)) + lowll " (253
T(2)] n P
< IP’(“THHZH < 2t )+C’(/<:)tn (2.54)
< Sup{P (§(Z,[H]) < 2t"); H hyperplane of V'} + C’(k)':—n
(2.55)

The bound (2.53) follows from (2.51)), while (2.52)) and (2.54) use (2.50). Finally to get
(2.55) we used the independence of Z and T.

By Theorem [2.4.18] is sub-exponential and the lemma is proved if t > p, a fortiori
for every t €]0,1[. ', being a group, the action of I' ;-1 on V is strongly irreducible and
contracting, hence the same proof as above holds for S, '. The roles of S,, and S/, are
interchangeable. O

Lemma 2.5.5. Let C(k) = /2 when k is archimedean and C(k) = 1 when k is not.
Then for any [z, [y] € P(V'), there exist representatives in the unit sphere such that

0([=], [y]) < lle —yll < C(k)é([x], [y])

(In particular, in the non archimedean case these are equalities). The same holds for
V.
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Proof. Let x and y be representatives of norm one of [z] and [y]. When k& = C, denote
by < -,- > the canonical scalar product on k% Then 6([z],[y])? = 1 —| < z,y >
?=(1- Re(< z,y >)) (1 + Re(< z,y >)). One can choose x and y in such a way that
< z,y >€ R and Re(< x,y >) > 0. The identity ||z — y||* =2 (1 — Re(< z,y >)) ends
the proof. The case k = R is similar.

When £ is non archimedean, recall that by definition : 6([z], [y]) = Max{|z;y; —x;yi|; 1 #
j}. The norm being ultrametric, for any 4, j, |z;y; — 2y = |y (@ — i) + vi(y; — ;)] <
||z — y||. Hence 6([z], [y]) < ||x — yl||. For the other inequality, we distinguish two cases :
e Suppose that there is an index m such that x,, and y,, are of norm one (i.e. in }).
By rescaling if necessary x and y, one can suppose that x,, = y,, = 1. Without loss
of generality we can assume that m = 1. Hence, §([z], [y]) > Max{|x; — yi|; i > 2} =
o =yl

e Suppose that there is no index m such that x,, and y,, are of norm one. Let iq (resp.
Jo) be an index such that z;, (resp. y;, ) is invertible : such indices exist because z
and y are on the unit sphere. iy # jo and neither z;, nor y;, is of norm one. Hence,

|xioyj0 - yioxjo| =1 and 5([5E], [?/]) =1= ||:E - y||
O

Proof of Proposition[2.5.3, Lett > 0. On the one hand for every given n S,, and M, have
the same law and on the other hand (X3, -+, X,,) and (X{,---, X)) are independent,
hence

IP’((S(US",HS;Lﬂ) Stn) = P((S (/{:(M Vel Hs,ﬂ)

<) (2.56)
< Sup(B (5 (k(M,)[e:]. H) < 1"

); H hyperplane of W2.57)

By Theorem [2.4.38| and the Markov inequality, there exist pi, po €]0, 1], a random va-
riable Z in P(V') such that :

P (0(k(Mn)ler], Z) = p1) < p3 (2.58)

(2.57), (2.58)) and the triangle inequality give :
P (d([vs,], [Hs,]) < t") < Sup{P(6(Z,[H]) <t" + py); H hyperplane of V'} + pj

Theorem shows that the latter is exponentially small. We may of course exchange
the roles of S,, and S/. When we consider S, ! instead of S, the same estimates hold.
Indeed, as explained in the proof of Proposition , I',-1 acts strongly irreducibly on
V' and contains a contracting sequence. O]

Proof of Corollary[2.1.2. let | € N* and (M, 1)nen+s -+ (My1)nen+ be | independent ran-
dom walks associated to u. Propositions 2.5.1| and [2.5.2 give €, 7, p €]0, 1], no € N* such
that for every n > ng and 4,j € {1,---,{}, P(A,,;) < p" and P(B,,;;) < p", where
A, ; is the event “M,,; and M, ; are not (1", €")-very proximal” and B,,; ; is the union
of the 4 events : the attracting point of ,Mniz1 is at most e"-apart from the repelling
hyperplane of Mff]l Hence for every [ € N* and n > ny :

P(M,, 1, -+, M,,; do not form a ping-pong [-tuple) < ZIP’(AM) +P(B;;) <Il(l—1)p"

i<j
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Fix n > ng and let o' €lp, 1, I, = Lp%nj The previous estimate shows that if
(M1 kens, -+ (M, Jken+ are [, independent and identically distributed random walks,
then the probability

P(M,1,- -+, M,,, do not form a ping-pong [l,-tuple) decreases exponentially fast. [

QI embedding of the free group (M, M)

Definition 2.5.6 (QI embedding). Let I be a finitely generated group, dr the word me-
tric for a finite symmetric generating set. A subgroup H is said to be quasi isometrically
(QI) embedded in T, if there exists a constant C such that for any h € H,

where 1 is the neutral element and dy is the word metric in H for a certain finite
generating set.

End of the proof of Theorem [2.1.1. We will prove the QI embedding part of equation
([2.1). Let F be a symmetric generating set of I' and H,, = (M, M}). The word metric
dr in I" will be considered with respect to F' while the word metric dy, in H, will
be considered with respect to the generating set {M,, M/, M,,™, M’ ~'}. Let (p,V) be
the representation of I' given by Theorem [2.2.14] d its dimension and denote A =
Mazx{||p(s)||,s € F}. By proposition there exists ¢ €0, 1[ such that the ping-
pong players a,, = p(M,,), b, = p(M]) and their inverse act on the complement of their
repelling neighborhood by transformations that contract distances by a factor at least
€". By taking n large enough, we can assume that ¢" < %. Hence if h = w(ay,,b,) is a
reduced word w of length dg, (1, h) in the free group (M, M), then p(h) will act on some
open subset of the projective space P(V') by contracting distances by a factor at least
(4)%# M I particular, Lip (p(h)) > A%(h s where Lip (p(h)) is the bi-Lipschitz
constant of p(h) acting on P(V), Lip(p(h)) = Sup{(%)il, z,y € P(V)},
d being the Fubini-Study distance on P(V'). On the other hand, for any g € SL4(k),

Lip(g) < [lg|*". Indeed, for every z,y € P(V), B2 < || A?g|| [lg7![]* < ||g][**

because || A? gl < [[g]|* and ||g~"|| < ||g]|*"* for every g € SLa(k). Hence, Lip (p(h)) <
A2dxdr(Lh) This shows that, dg, (1,h) < 2d x dp(1,h). O

Definition 2.5.7. Let I' be a finitely generated group, F' a finite symmetric genera-
ting set, H a subgroup of I', S a finite symmetric generating set of S. We define the
compression factor of H by

h
C(T,F,H,5)=In fheHﬁ
|h|

where |h|r = dr(1,h) and |h|g = hi]{\)_ﬂnb_ (|biy |0+ -+ |bs,

over all representations of h in the form b;, ---b;, with b;; € S, 1 < j <,

r) and the minimum is taken

Remark 2.5.8. We use the same notations as the proof before Definition [2.5.7. In the
paper of Gilman, Miasnikov and Osin, the authors showed in [GMO10, Theorem 2.1 (2)]
that the compression factor C,, of the subgroup H, is bounded below by a (non random)
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constant independent of n. Let us prove that the same holds in our case. We suppose
in this remark that the support of the probability measure p is the finite symmetric
generating set F of . By the previous proof, we have a.s., for any h € H,, ()" 1) <
Lip (p(h)) < A2dPr - But since (M,,, M!) is free (for n big enough),

\hlg, < Max{|M,|r, | M. o, My e, MY x dy, (1,h) < ndg, (1,h). We conclude

— log(e)
that C,, > SdTos(A)

2.6 Open problems and questions

— It would be interesting to give an effective bound of the exponential decay of the
probability that two random walks do not generate a free subgroup (Theorem
2.1.1).

— A problem related to the first one : give an effective lower bound of the difference of
the top two Lyapunov exponents A\; — Ay when strong irreducibility and proximality
hold.

— Let T" be a finitely generated linear group which is not virtually solvable. Fix a
finite symmetric generating set S. Denote by B,, the ball of radius n for the word
metric and u, the uniform probability measure on B,,. Is is true that there exist
¢ €]0, 1 such that for all large n :

pnd(z,y) € T% (2, y) is free} > 1 — "

In other terms, does Theorem hold when one replaces the n'* convolution
power p" of p with the uniform probability measure pu,, 7



Chapitre 3

Transience des sous-variétés
algébriques des groupes algébriques et
application a la généricité de la Zariski
densité

TRANSIENCE OF ALGEBRAIC VARIETIES IN ALGEBRAIC GROUPS AND APPLICATION
TO GENERIC ZARISKI DENSITY

Abstract

We study the transience of algebraic varieties in linear groups. In particular, we show
that a “non elementary” random walk in SLo(R) escapes exponentially fast from every proper
algebraic subvariety. We also treat the case where the random walk is on the real points of a
semi-simple split algebraic group and show such a result for a wide family of random walks.
As an application, we prove that generic subgroups (in some sense) of linear groups are Zariski
dense.

Keywords: Transience, algebraic varieties, Zariski density, random matrix products, random
walks, probability of return.
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CHAPITRE 3. TRANSIENCE DES SOUS-VARIETES ALGEBRIQUES DES GROUPES
ALGEBRIQUES ET APPLICATION A LA GENERICITE DE LA ZARISKI DENSITE 77

3.1 Introduction

One of the essential results in probability theory on groups is Kesten’s theorem
[Kesh9| : the probability of return to identity of a random walk on a group I' decreases
exponentially fast if and only if I' is non amenable. A natural question is to extend this
to other subsets : for which subsets does the random walk escape with exponential rate ?
Many authors has studied the case where the subset is a subgroup of I' : see for example
|[Eym72|, [Bek90] and in particular [DIHGCS99, Theorem 51| where it is shown that the
probability that a random walk on I' returns to a subgroup H decreases exponentially
fast to zero if and only if the Scheirer graph of I'/H is non amenable.

In this note we look at random walks on Zariski dense subgroups of algebraic groups
(such as SLy(R)) and we look at the escape from proper algebraic subvarieties. Such
questions have an interest in their own right since they allow us to study the delicate
behavior of the random walk but they have also been recently involved in other do-
mains such as the theory of expander graphs. We are referring here among others to
the works of Bourgain and Gamburd [BGO08],[BG09], Breuillard and Gamburd [BGI10]
and Varju [Var]. In [BG10] for instance it is shown that there is an infinite set of primes
p of density one, such that the family of all Cayley graphs of SLs(Z/pZ) is a family
of expanders. A crucial part of the proof is to take a random walk on SLs(Z/pZ) and
to show that the probability of remaining in a subgroup decreases exponentially fast to
zero and uniformly. In [BG09, Corollary 1.1.] the following statement was established :
consider a finitely generated subgroup of SL4(Z) (d > 2) which is Zariski dense, the
uniform probability measure on a finite symmetric generating set and (S,)nen the as-
sociated random walk, then for every proper algebraic variety V of SL4(C), P(S, € V)
decreases exponentially fast to zero.

Kowalski [Kow08| and Rivin [Riv08] were interested in similar questions : for example
they were able to estimate the probability that a random walk in SL4(Z) lies in the set
of matrices with reducible characteristic polynomial. The techniques used by Kowalski
and Rivin are arithmetic sieving ones.

In this article, we develop a more probabilistic approach allowing us to deal with
random walks on arbitrary Zariski dense subgroups of semi-simple algebraic groups.
In the particular case of SLy(R), we obtain (see Theorem that a random walk
whose measure generates a non-elementary subgroup escapes with probability tending
to one exponentially fast from every algebraic variety. Our method relies on the theory
of random matrix products developed in the 60’s by Kesten and Furstenberg and in the
70’s-80’s by the French school : in particular Bougerol, Guivarc’h, Le Page and Raugi.

We also apply our techniques to generic Zariski density. Let I'y and I's be two Zariski
dense subgroups of SL,;(R) (d > 2). We prove in Theorem that one can exhibit a
probability measure on each of the subgroups such that two independent random walks
will eventually generate a Zariski dense subgroup. We have proved in Chapter [2| that
the latter subgroup is also free. This gives consequently a “probabilistic” version of the
Tits alternative [Tit72].

All the random variables will be defined on a probability space (£, F,P), the symbol
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E will refer to the expectation with respect to P and “a.s.” to almost surely. If " is a
topological group, p a probability measure on I', we define a sequence of independent
random variables {X,,;n > 0} with the same law p. We denote for every n € N* by
S, =X, --- X; the n'" step of the random walk.

First let us present the result we obtain for SLy(R). We will say that a probability
measure g on SLs(R) is non elementary if the group generated by its support is non
elementary, i.e. Zariski dense in SLy(R) or equivalently not virtually solvable.

Theorem 3.1.1. Let p be a non elementary probability measure on SLy(R) having an
exponential moment (see Section for a definition of this notion). Then for every
proper algebraic subvariety V of SLy(R),

3=

limsup [P(S, € V)]

n—oo

<1

In particular, every proper algebraic subvariety is transient, that is a.s. S, leaves V after
some time.

More precisely, if P is a non constant polynomial equation in the entries of the 2 x 2
matrices of SLy(R), then there exists A > 0 such that :

1 a.s.

n—oo

A large deviation inequality holds as well : for every e >0 :

lim sup []P’ (!%log |P(S,)| — A| > e) F <1 (3.1)

n—oo

Theorem [3.1.1]is in fact a particular case of a more general statement : Theorem [3.1.2]
below. If GG is the group of real points of an algebraic group G, m a Cartan projection
(see Section , it a probability measure on GG, then the Kingman subadditive ergodic
theorem allows us to define a vector Liap(u) (see Definition / Proposition in the
Weyl chamber of G which is the almost sure limit of m(S,) .

Theorem 3.1.2. Let G be a semi-simple algebraic group defined and split over R[]
G = G(R) its group of real points, I' a Zariski dense subgroup of G,V a proper algebraic
subvariety of G defined over R, p a probability on G with an exponential moment (see
Section such that its support generates I'. Then, there exists a finite union of
hyperplanes Hy,--- , H, in the Weyl chamber (see Section depending only on V
such that if Liap(p) & Hy U---U H, then,

3=

limsup [P(S,, € V)]

n—oo

<1 (3.2)

Probability measures, whose support generates ', satisfying the condition Liap(p) ¢
HyU--- H, exist (See Lemma . A large deviation inequality similar to holds
as well.

1. For example, G = SLy4, d > 2.
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Theorem [3.1.2] clearly implies Theorem : indeed, everything we want to show is
that the Lyapunov exponent associated to u (see Definition [3.5.4)) is non zero (positive).
This is ensured by Furstenberg’s theorem [Fur63).

Remark 3.1.3. The number A that appears in Theorem [3.1.1] or[3.1.3, should be seen
as a generalization of the classical Lyapunov exponent (see Definition . In fact, it
will be the Lyapunov exponent relative to the probability measure p(u) where p is some
rational representation of G.

Remark 3.1.4. Our method doesn’t allow us to estimate P(S, € V) when Liap(u)
belongs to the finite union of hyperplanes H; defined by the variety V. Example 2 of
Section illustrates this.

Let us justify why we will look at the escape from algebraic subvarieties and not from
C" submanifolds for instance. Kac and Vinberg proved in [VK67] (see also [Ben04]) that
there exist discrete Zariski dense subgroups of SL3(R) preserving a C' (but not alge-
braic) manifold on the projective plane (in fact, such manifolds are obtained as the
boundary of a divisible convex in P%(R)). Let I be such a group, C such a manifold
and V = {x € R*\ {0};[z] € C} U {0} where [z] denotes the projection of x # 0 on
P?(R). Note that V is differentiable outside 0. Then, for every z € V, every n € N,
P(S,z € V) = 1. By way of contrast, we show in the following statement that for proper
algebraic subvarieties the latter quantity decreases exponentially fast to zero.

Theorem 3.1.5. Let I be a Zariski dense subgroup of SLy(R) (d > 2), p a probability
measure with an exponential moment whose support generates I'. Then for every proper
algebraic subvariety V of R%, every non zero vector x of R we have :

limsup [P(S,z € V)}% <1

n—oo

As discussed at the beginning of the introduction, it is interesting to study the
transience of proper subgroups. It follows from Varju’s paper (see [Var, Propositions
8 and 9]) that if E is a simple algebraic group defined over R, G the direct product
of r copies of E (with » € N*), I a Zariski dense subgroup of G = G(R), then there
exists a symmetric probability measure 1 on I' whose support generates I" such that the
probability that the associated random walk escapes from a proper algebraic subgroup
decreases exponentially fast to zero.

We will show that this in fact holds for all probability measures with an exponen-
tial moment whose support generates I' and for every semi-simple algebraic group G,
namely :

Theorem 3.1.6. Let G be a semi-simple algebraic group defined over R, G its group
of real points assumed without compact factors, I' a Zariski dense subgroup of G and
a probability measure with an exponential moment whose support generates I'. Then for
every proper algebraic subgroup H of G,

limsup [P(S, € H)}'17 <1

n—oo

where H 1s the group of real points of H.
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The bound obtained by Varju is uniform over the subgroups. Unfortunately our
bound in Theorem is not.

Our estimates will be applied to show that Zariski density in linear groups is generic
in the following sense :

Theorem 3.1.7. Let G be the group of real points of a semi-simple algebraic group
split over R. Let I'1, 'y be two Zariski dense subgroups of G. Then there exist probability
measures 1 and ps with an exponential moment whose support generate respectively I'y
and 'y such that for some ¢ €]0,1[ and all large n,

P((S1n, Son) is Zariski dense and free) > 1 — c"

where {San;n > 0} and {Sa,,n > 0} are two independent random walks on I'y (resp.
['y) associated respectively to py and ps on Ty (resp. T's). This implies that almost surely,
for n big enough, the subgroup (S1,,S2n) is Zariski dense and free.

See Section [3.7] for the comparison of these results with Rivin’s in [Rival.

Remark 3.1.8. The fact that {w € Q; (M, (w), M, (w)) is Zariski dense} is measurable
will follow from Lemma|5.7.7,

3.1.1 Outline of the paper

In order to prove Theorem [3.1.2| (or [3.1.5] [3.1.6)), one can clearly suppose that V is
a proper hypersurface (i.e. the common zeroes of one polynomial equation). We will do
so in all the paper.

In Section [3.2] we provide two examples to explain the general idea of the proofs.

Section is purely algebraic. To every proper algebraic hypersurface V of G we
associate a rational real representation p of G such that g € V is equivalent to : the
matrix coefficients of p(g) satisfy a linear condition “(L)”. Thus we have “linearized”
our variety. This can be seen as a generalization of the well-known Chevalley theorem
(Theorem concerning the particular case of subgroups.

In Section we recall standard facts about semi-simple algebraic groups and their
rational representations.

In Section we give some additional results to the theory of random matrix pro-
ducts. They will be used in Section [3.6in order to show that p(S,,) may verify (L) only
with a probability decreasing exponentially in n.

We consider a random walk on a Zariski dense subgroup I' of the real points of a semi-
simple algebraic group. First we define the Lyapunov vector, which is the normalized
Cartan projection of the random walk. We recall in Theorem that it belongs to
the interior of the Weyl chamber. In lemma we show that for every finite union
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of hyperplanes in the Weyl chamber, one can always find a probability measure whose
support generates I' such that the Lyapunov vector does not belong to this union (this
is the condition stated in Theorem |3.1.2)).

Next, we will be interested in the behavior of the components of the random walk
in the Cartan decomposition. In Theorems [3.5.13| and [3.5.15 we give new and shorter
proof of the exponential convergence in the K AK decomposition we obtained in Chapter
2l Unlike Chapter [2] when we were working on an arbitrary local field, we will take
advantage during the proofs of the fact that our matrices are real valued.

Theorem shows the exponential decay of the ratio between the first two A-
components of the random walk in the KAK decomposition. This is a version in expec-
tation of the fact that the Lyapunov vector belongs to the interior of the Weyl chamber.
The proof will follow easily from a large deviations theorem of Le Page in GL4(R). We
note that we proved a similar result in Chapter [2| but with different techniques, the
reason is that a large deviation result in an arbitrary local field is not present in the
literature.

Theorem [3.5.15] establishes the exponential convergence of the K-parts.

In Section we prove our mains results : Theorems |3.1.2] |3.1.5| and |3.1.6] The
key is Theorem which computes the probability that a random walk on a linear
algebraic group verifies a linear condition on the matrix coefficients. No irreducibility
assumptions are made, a genericity condition on the geometry of the Lyapunov vector
is however needed.

Finally in Section we apply Theorem to prove Theorem [3.1.7, We compare
our results with Rivin’s in [Rival.

Acknowledgments I sincerely thank Emmanuel Breuillard and Yves Guivarc’h for
fruitful discussions, remarks and advices. I thank also Igor Rivin for his interest and his
comments.

3.2 Examples

In this section, we give examples to illustrate the ideas and methods we will use in
the next section to prove our main results.

3.2.1 Example 1

This example illustrates Theorem [3.1.5]
Let I be Zariski dense subgroup of SL3(R) (SL3(Z) for example). Consider a probability
measure g on SL3(R) with an exponential moment (see Section whose support
generates ['. For example, if I" is finitely generated, choose a probability measure whose
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support is a finite symmetric generating set. Let S, = -+ X7 be the associated

X, -
random walk. We write S,, in the canonical basis of M;3(R) :

a, b, cy,
Sn - dn €n fn

We propose to see if the following probability decreases exponentially fast to zero :

Prn = P(ai — ape, + 2a,d, — ayb, — b,d, =0)

In other words if V is the proper algebraic hypersurface of SL3(R) defined by V =
a b c

{| 4 e f | €T;a®—ae+ 2ad — ab — bd = 0}, then we are interested in estimating
g h 1

P(S, € V).

Step 1 : Linearization of the algebraic hypersurface V.

Let E be the vector space of homogenous polynomials on three variables X,Y, Z of
degree 2. The group SL3(R) acts on E by the formula : g- P(X,Y, Z) = P (¢"(X,Y, Z))
where ¢' is the transposed matrix of g when g is expressed in the canonical basis. Let us
write down this representation. We will consider the basis {X? Y? 72 XY, XZ XY}
of E.

SLy(R) -~ GL(E) ~ GLg(R)

a’> b ab ac bc
d?  e?  f? de df ef
g> h® 2 gh gl hi

2ad 2be 2cf ae+bd af+cd bf+ec
2ag 2bh 2ci ah+4+gb ai+cg bi+ch
2dg 2eh 2fi dh+eg di+gf ei+hf

Q@ Q.
>0 o
S O

In what follows we identify £ with R® by sending {X? Y? XY, XZ YZ} to the
canonical basis {e;;i = 1,--- ,6}. Then it is clear that

V ={g € SLs(R); p(g)(er — es) € H}

where H is the hyperplane in E defined by H = {z = (2;)%_, € R 2y + x4 = 0}.

We say that we have linearized the hypersurface V. This method generalizes easily and
yields Lemma [3.3.2| which holds for arbitrary hypersurfaces.

Note that, for x = e; — ey,

Pn =P (p(Sn)r € H)

Random matrix products in GLg(R)
We have now a probability measure p(u), image of p under p, on GLg(R) with an
exponential moment. The smallest closed group G,y containing the support of p(u) is a
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Zariski dense subgroup of p(SL3(R)). One can verify that p is in fact SL3(R)-irreducible.
Since SL3(R) is Zariski connected, we deduce that G, is a strongly irreducible (De-
finition subgroup of GLg(R). Moreover, the group p(SL3(R)) contains clearly
a proximal element, then by Goldsheid-Margulis theorem [GMS89] (see Theorem [3.5.3]
for the statement), the same applies for G ). We can now apply Theorem and
Theorem which imply that :

1
lim sup - logP (p(S,)z € H) <0 (3.3)

uniformly on z € R%\ {0}. This is what we wanted to prove.
Recall that one of the main ingredients of the proof of (3.3) is the separation of the top
two Lyapunov exponents of the probability measure p(u) (see Definition [2.4.2)).

Remark 3.2.1. This method does not give an estimate of the growth of Q(S,) where @
is the polynomial that defines V. We will see in the next section (Theorem how
such quantities can be estimated.

3.2.2 Example 2

This example illustrates situations in which we are unable to obtain the exponential
decrease of the probability of lying in a subvariety for all probability measures (see the
statement of Theorem [3.1.2).

Asin Example 1, consider a probability measure on SL3(R) with an exponential moment
whose support generates a Zariski dense subgroup of SL3(R). Say that we would like to
estimate the following probability :

n = P(anen — bpd, + 2e, = 0)

Let S be the following hypersurface of SL3(R) : § = {ae — bd + 2¢ = 0} so that
¢n = P(S, € S). Consider the natural action of SLs(R) on F' = A\’ R? @ R?. Denote by
7 this representation and write n = 1;@®n,. We fix the basis (ejAeq, e1/Ae3, ea\es, €1, o, €3)
of F. Formally, we have :

SLs(R) - GL(F) ~ GLg(R)

aec—bd af —cd bf—ec 0 0 0

0 b e ah—gb at—gc bi—hc 0 0 O
i e | _ dh—eg di—gf ei—hf 0 0 O
g h i 0 0 0 a b c
0 0 0 d e f

0 0 0 g h 1

Thus
S ={g9€ SL3(R);n(g)xr € H}

where z = e; A ey + ey and H = {z € R% x; + 225 = 0}. Hence, we have linearized our
variety S as in Example 1. The difference between these two examples is that the repre-
sentation 7 is no longer irreducible (1; and 7, are its irreducible sub-representations).
Hence we cannot use Theorem 2.4.18 or Theorem [2.4.16
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However, we will see in the proof of Theorem [3.6.1] that we are able to solve the problem
if the top Lyapunov exponents of 7, (u) and ny(u) are distinct.

Let us calculate them. If A;, Ay are top two Lyapunov exponents of p (see Definition
in Chapter [2), then the top Lyapunov exponent of 7;(x) is A; + Ay and the one
corresponding to 7y(p) is clearly A;. So the problem occurs when Ay = 0. This can hap-
pen for example when p is a symmetric probability measure (i.e. the law of X is the
same as X; ').

However, we can still find a probability measure whose support generates I' such that
A2 # 0, see Lemma [3.5.12

3.3 Linearization of algebraic varieties

Let G be a semi-simple algebraic group defined on R, G its group of real points.

The goal of this section is to linearize every algebraic hypersurface of G. More
precisely, for every proper algebraic hypersurface V defined over R, we associate a finite
dimensional rational real representation (p, V) of G, a linear form L of End(V) such
that V = {g € G; L (p(g9)) = 0}. In fact, we will find a representation (p,V) of G, a
line D in V, a hyperplane H in V defined over R such that V = {g € G;¢9-D C H}
(see Lemma . This has to be seen as a generalization of the well-known Chevalley
theorem for subgroups (see Theorem [3.3.3)).

Definition 3.3.1 (Matrix coefficients). If (V,p) a finite dimensional representation of
G, (-,) a scalar product on 'V, we call {p(g)v,w) for v,w € V a matriz coefficient and
we denote by C(p) the span of the matriz coefficients of the representation p, thus a
function f € C(p) can be written L o p where L is a linear form on the vector space

End(V).

Let py,--- , p. be independent R-rational irreducible representations of G. Any f; €
C(p1), -, fr € C(p,) are linearly independent provided that the representation p; are
pairwise non-isomorphic (see the proof of the Lemma below). The set of elements
of G where such a linear dependance is realized defines clearly an algebraic hypersurface
of G. The following lemma says also that each algebraic hypersurface can be realized in
this way.

Lemma 3.3.2. For every algebraic hypersurface V of G defined over R, there exist a
representation (p, V) of G, a line D in V, a hyperplane H of V defined over R such
that V = {g € G;g- D C H}. In particular, there exist a representation (p,V) of
G whose irreducible sub-representations, say py,--- ,p,., occur only once, f| €
C(p1), -+, fr € C(p;) such that :

V(R) = {g € G; Z filg) =0} (3.4)

V s proper if and only if at least one of the f;’s is non zero.
This is equivalent to say that there exists A € End(Vy) @ - -- @& End(V;) such that :

V(R) ={g € G; Tr(p(g)A) = 0}
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with V proper if and only if there exists 1 = 1,--- ,r such that the restriction of A to 'V
is non zero. Here Tr(M) denotes the trace of the endomorphism M.

Proof. Let R[G] be the algebra of functions on G, G acting on R[G] by right transla-
tions : g - f(x) = f(xg) Vg,x € G, P the generator of the ideal vanishing on V (which
is of rank one since V is a hypersurface). Then g € V <= ¢g- P(1) = 0. Consider the
sub-representation V' = Vect(g - P,g € G). By [Hum75, Chapter 8, Proposition 8.6], V'
is a finite dimensional R-rational representation of G. When V is proper, the subspace
H ={f € V;f(1) =0} is a hyperplane defined over R so that g € V <— ¢g- P € H
and the first part of lemma is proved. G being semi-simple, we decompose (p, V') into
irreducible sub-representations : V' = @!_,V;. Decomposing P in the Vs gives easily
(3.4) with the only difference that the V/s are not necessarily pairwise non isomorphic.

Suppose for instance that V; ~ V5. In this case, there exists an invertible matrix M
such that pa(g) = Mp1(g)M~" for every g € G. Let f; = L; o p; where L; is a suitable
linear form on End(V;) for i = 1,2. Then f, = /LVQOpl where E; is the linear form defined
on End(V;) by Ly(h) = Ly(MhM=Y), h € End(V;). Consequently, f, can be seen in
C(p1) so that fi + fo € C(p1) and V4 can be dropped. By updating r if necessary, we
obtain . At least one of the f;’s is non zero, otherwise V would be G.

e For the converse, we will show that if py,--- , p, are pairwise non isomorphic repre-
sentations of G, then any (f1,---, f,) € C(p1) X --- x C(p,) are linearly independent.
A simple argument using the Peter-Weyl theorem will immediately give the result for
compact groups and a unitary trick will allow us to conclude.

If G were a compact Lie group, the proof would be a consequence of Peter-Weyl theo-
rem for representations of compact groups (see for example [Kna86|) : let > be the
collection of all irreducible representations of G pairwise non isomorphic, L?(G) the
set of all square integrable functions with respect to the Haar measure on G, then
{Vdim(p)pij; p € >3 1 < 4,5 < dim(p)} forms an orthonormal basis of L*(G),
where p; ; denotes the function on G defined by p; ;(g) = (p(e;), e;) for a certain basis
{e1, -+, €dim(p)} of the representation. We deduce immediately the linear independence
of any fi,---, f., where f; € C(p;) for each i.

Now we return to the general case. If !, \;fi(g) = 0 for all g € G = G(R) then by
Zariski density, the same holds for all g € G(C). We decompose the p;’s into G(C)-
irreducible representations. For sake of simplicity, we keep the notation f;’s to denote
the new matrix coefficients that follow from this decomposition. The Lie algebra g of
G(C) has a compact real form g, (i.e. go @z C = g). To gy corresponds a subgroup Gy
of G(C) which is compact and Zariski sense in G(C). Hence an irreducible real represen-
tation of G(C) is Gg-irreducible. We conclude using the previous paragraph concerning
Peter-Weyl theorem for compact groups. O

3.3.1 The particular case of subgroups

Let G be an algebraic group. The linearization of proper subgroups of G is Cheval-
ley’s theorem :

Theorem 3.3.3 (Chevalley). [Hum73] Let H be a proper subgroup of G, then there exist
a rational representation (p, V') of G, a line D in 'V such that H = {g € G;g-D = D}.



86 PRELIMINARIES ON ALGEBRAIC GROUPS

In the particular case where the subgroup H is reductive, that is contains no proper
connected unipotent subgroups, we have the following stronger statement :

Proposition 3.3.4. [Bor91]/ Let H be a proper reductive subgroup of G, then there
exists a rational real representation (p,V) of G, a non zero vector x of V' such that
H={geG;g -z ==z}

The converse is true and is a theorem of Matsushima [Mat60] (see also [Arz08§] for a
recent proof).

3.4 Preliminaries on algebraic groups

3.4.1 The Cartan decomposition

Let G be a semi-simple algebraic group defined over R, GG its group of real points, A
be a maximal R-split torus of G, X(A) be the group of R-rational characters of A, A
be the system of roots of G restricted to A, AT the system of positive roots (for a fixed
order) and II the system of simple roots (roots than cannot be obtained as product of
two positive roots).
We consider the natural order on X(A) : x; > x2 if and only if there exist non negative
integers {nq; o € I} with at least one non zero nq such that & =[] o™
Finally define A° = {a € A;x(a) €]0; +00[ Vx € X(A)} and set

At ={ae€ A°; ala) > 1; Ya € 11}
Then there exists a compact K of G such that
G =KA"K Cartan or KAK decomposition

(see [Hel0I1, Chapter 9, Theorem 1.1])

We denote by a the Lie algebra of A. The exponential map is a bijection between
A and a. A Weyl chamber is at. We denote by m the corresponding Cartan projection
m:G— at.

3.4.2 Rational representations of algebraic groups

A reference for this section is [Hum'75| and [Tit71]. If (p,V') is an R-rational re-
presentation of G then x € X(A) is called a weight of p if it is a common eigen-
value of A under p. We denote by V) the weight space associated to x which is
Vi = {x € Vipla)r = x(a)r V¥ a € A}. The following holds : V = @, cxa)Vy. Ir-
reducible representations p are characterized by a particular weight x, called highest
weight which has the following property : every weight x of p different from yx, is of the
form y = T X”a"a, where n, € N for every simple root a. The V,’s are not necessa-
rily of dimension 1. When G is R-split, V,  is one dimensional. Recall that an element
v € GL4(R) is called proximal if it has a unique eigenvalue of maximal modulus. A
representation p of a group I' is said to be proximal if the group p(I') has a proximal
element. Thus, we obtain
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Lemma 3.4.1. FEvery R-rational irreducible representation of an R-split semi-simple
algebraic group is proximal

Let ©, = {a € II; x,/ais a weight of p}.

Proposition 3.4.2. [Tit71] For every o € 11, let w, be the fundamental weight asso-
ciated to . Then, there exists an R-rational representation (pa, Vo) of G whose highest
weight is a power of w, and whose highest weight space V., is one-dimensional. Moreo-

ver, ©,, = {a}

We record below a basic fact about root systems ([Bou68]).

Proposition 3.4.3. Fvery root o € A is of the form : a = ngn wgﬁ, with ng € Z, for
every 3 € IL.

Mostow theorem [Mos73l §2.6] Let G = KAK be the Cartan decomposition of G,
(p, V) an irreducible rational real representation of G. There exists a scalar product on
V' for which the elements of p(K) are orthogonal and those of p(A) are symmetric. In
particular, the weight spaces are orthogonal with respect to it. The norm on V' induced
by this scalar product is qualified by “good”.

3.4.3 Standard Parabolic subgroups and their representations

A reference for this section is [BT65] §4].
For every subset 6 C II, denote Ay = {a € A;a(a) = 1IVa € 0} and let Ly be its
centralizer in G. Denote by g the Lie algebra of G and for every a € A denote by
U, the unique closed unipotent subgroup of G with Lie algebra : u, = g, ® gon Where
gia = {X € g; Ad(a)(X) = a(a)'X Va € A}.
Let [0] C A be the set of roots which can be written as integral combination of roots of
0. Denote by Uy the unipotent closed subgroup of G whose Lie algebra is

w= P w
aeAF\([D]NAT)
We set
Py =LyU,

This is the standard parabolic subgroup associated to 6. Its Lie algebra is

Po=3D @ Uy

aceAtUI[f]
where 3 is the Lie algebra of Z, the centralizer of A in G. Notice that Py = G.

The following lemma will be useful to us for the proof of Theorem [3.1.6

Lemma 3.4.4. Let (p,V) be a rational irreducible representation of G and consider
0 C II. The line generated by every non zero vector x in the highest weight space of V'
is fized by Py if B & O, for every B € 0. In particular, the line generated by any highest
weight vector x,, of the representation (pa,Vs) defined in Proposition 18 fized by
the standard parabolic Py whenever o & 6.
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Proof. Let x, be the highest weight of p. We look at the action of the Lie algebra g on
V. It is clear that g_5-v € V,,_p for every v € V, and g € IL. If 3 ¢ ©,, then x, —
is not a weight of p and hence V) _g = 0. The last part of the lemma is just recalling
that the representation p, defined in Proposition satisfies ©,, = {a} O

3.5 Random matrix products - convergence in the
Cartan decomposition

We will use in this section standard results in the theory of random matrix products.
A nice reference is the book of Bougerol and La Croix [BLS85].

3.5.1 Preliminaries

In the following, G = G(R) is the group of real points of a semi-simple connected
algebraic group, I' a Zariski dense subgroup of GG, i a probability measure whose sup-
port generates I', (p, V') an irreducible R-rational representation of G and yx,, its highest
weight. Let {X,,;n € N*} be independent random variables on I' with the same law pu
and S, = X,, - - - Xj the associated random walk . Fix a Cartan decomposition of GG such
that the section G — K AK be measurable and denote for every n € N*, S, = K,,A,U,
the corresponding decomposition of S,. If # is a probability measure on GL4(R), we
denote by Gy the smallest closed subgroup containing the support of 6.

We consider the basis of weights of V' and the “good norm” given by Mostow theo-
rem (Paragraph [3.4.2). It induces a K-invariant norm on A*V and hence a K-invariant
distance J(+,-) on the projective space P(V), called Fubini-Study distance, defined by :

3([x], [y]) = 12t 2], [y] € P(V).

R
We fix an orthonormal basis on each weight space V,, and for an element g € End(V),

g' will be the transpose matrix of g in this basis.

G is isomorphic to a Zariski closed subgroup of SL4(R) for some d € N* (see
[Hum75]). Let ¢ be such an isomorphism. We say way that u has a moment of order
one (resp. an exponential moment) if for some (or equivalently any) norm on End(R?),
Jlog||i(9)||dpu(g) < oo (resp. for some 7 > 0, [|]i(g)||"du(g) < o). Lemma below
shows that is indeed a well defined notion, i.e. the existence of a moment of order one
or an exponential moment is independent of the embedding.

Lemma 3.5.1. Let G C SL(V) be the R-points of a semi-simple algebraic group G and
p a finite dimensional R-algebraic representation of G. If  has a moment of order one
(resp. an exponential moment) then the image of u under p has also a moment of order
one (resp. exponential moment).

Proof. Each matrix coefficient (p(g));; of p(g), for g € G, is a fixed polynomial in terms
of the matrix coefficients of ¢. Since for the canonical norm, ||g|| > 1 for every g € G,
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we see that there exists C' > 0 such that ||p(g)|| < ||g||¢ for every g € G. This suffices
to show the lemma. O

Let us recall some definitions and well-known results.

Definition 3.5.2. A subgroup I' of GL4(R) is called strongly irreducible if and only if
the identity component of its Zariski closure does not fix a proper subspace. It is called
proximal if it contains a proximal element (see Section .

The key result which prevents our results from being generalized to an arbitrary
local field is Goldsheid-Margulis theorem we recall here

Theorem 3.5.3. [GM89] Let d > 2. A strongly irreducible subgroup of GL4(R) is
prozimal iof and only iof its Zariski closure is.

3.5.2 Geometry of the Lyapunov vector

First, let us recall the definition of the Lyapunov exponent.

Definition /Proposition 3.5.4 (Lyapunov exponent). If u is a probability measure on
GL4(R), || - || @ matricial norm on End(V'), S, = X,,--- Xi the corresponding random
walk, then the Lyapunov ezponent L, is L, = lim E(log||S,||) which ezists by simple
application of the subadditive lemma.

When p have a moment of order one, the following a.s. limit holds L, = lim + log ||S,||.
It can be proved via the Kingman subadditive ergodic theorem [Kin'73)].

A useful result will be the following

Proposition 3.5.5. [BL85, Corollary / page 53] Let 6 be a probability measure on
G L4(R) with a moment of order one and such that Gg := (Supp(0)) is strongly irredu-
cible. Then for every sequence {x,;n > 0} of vectors in R converging to some non zero
vector v € RY, Llog||Spa,|| 7%0 Ly.

Remark 3.5.6. We have checked in Corollary of Chapter[9 that the almost sure
limit of the previous Proposition holds in an arbitrary local field.

Remark 3.5.7. In [BL83], the condition is made on the smallest closed sub-semi-group
[y containing the support of 8. There is no difference taking 'y or G because they have
the same Zariski closure. Hence if one is strongly irreducible than the other satisfies
the same property. This remark applies also for later applications when proximality is
envolved (see for example the statement of Theorem . This is due to Goldsheid-
Margulis theorem (Theorem m which is special to the field of real numbers.

Definition/Proposition 3.5.8 (Lyapunov vector). Suppose that p has a moment of
order one. Then the Lyapunov vector is the constant vector in the Weyl chamber a* of
G (see Section defined as the following a.s. limit :

1 a.s .
—m(Sy) — Liap(p)

n n—00

where m is the Cartan projection (Section [3.4.1)).
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Proof. Let a € II. Express « in terms of the fundamental weights (Proposition [3.4.3)),
a = Hﬁel‘[ wgﬂ where ng € Z for every 3 € II. For every 3 € II, consider the rational
real irreducible representation (pg, V) given by Proposition and a good norm on
Vs (Paragraph [3.4.2). By the definition of pg, there exists an integer lg such that for

every n € N* ||pg(S,)|| = wlBB(An). Hence,

1 1
Llog a) = 3012 Liog lla(sil (35)
Bell
By Definition/Proposition [3.5.4 lim Llog a(A,) = w Zﬁen 7 (v)- Thus Liap(p) is
well defined. O

Theorem 3.5.9. [GR8H] Suppose that u has a moment of order one. Then the Lyapunov
vector Liap(u) belongs to the interior of the Weyl chamber a*, i.e. o (Liap(p)) > 0
Vo € I1.

Remark 3.5.10. When the local field in not R, the Lyapunov vector does not necessarily
belong to the interior of at. The reason is that Goldsheid-Margulis theorem (Theorem
is valid only over the real field.

For the reader’s convenience, we include a proof of Theorem [3.5.9

Proof. The techniques we use are very similar to the proof of Theorem [2.4.28 Without
loss of generality, one can suppose 2 = G = {w = (w;)ien+; w; € G}, P the probability
measure for which the coordinates w; are independent with law p and F the o-algebra
generated by the coordinate maps w;.

We want to show that for every o € II, [ := lim % log a(A,) > 0. By equation , [is
the following constant : [ =3, ?—5 Ly Let X = [[gc P(Vs), s the application on
G x X defined by :

T " Jog 1ps(g)zsl|

5 (g, ([zp])per,) = Sl ||z g]

It is immediate that s is an additive cocycle on G x X for the natural action of G on
X. Since X is compact, one can choose a p-invariant measure v on X.

Consider the dynamical system E =  x X, the distribution n» = P ® v on E, the
shift 0 : £ — E, ((go, -+ ),x) — ((g1,-*+), g0 x). Since v is p-invariant, 7 is 6-
invariant. We extend the definition domain of s from G x X to G x X by setting
s(w, z) :== s(go, z) if w = (go, - - - ). Since p has a moment of order one, Lemmal[3.5.1|shows
that the same holds for the image probability measure pg(u) for every § € II. Hence
s € Li(n). In consequence, we can apply the ergodic theorem (see [Bre68, Theorem 6.21])
which shows that 17" s o0 6(w, x) converges for n-almost every (w,z) to a random
variable Y whose expectation is [[ s(g, z)du(g)dv(z). Since s is a cocycle, s (S, (w),z) =
o800 (w,x). Hence,

lim s (S,@ha) =Y By(Y) = [[ s(ga)dutg)av(a)

n—oo M,

But using Proposition [3.5.5] we see that a.s. Y = so that
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1= [ sto.0)dutg)iv(z)

By lemma(3.5.11|below, [ is positive if for n-almost every (w, x), s(S,(w),z) — +o0.

Again by Proposition [3.5.5] for n-almost every (w, z), s(S,(w), z) has the same behavior
at infinity as the P-almost everywhere behavior of

T log lns(S,)] = log a4,

Belly

In consequence, it suffices to show that «(A4,) 2%, +00. Indeed, the representation p,
n—oo

is strongly irreducible because G is Zariski connected. By Zariski density of I', the same
holds for p,(T'). Moreover, by Goldsheid-Margulis Theorem (Theorem [3.5.3 m , pa(T) is

also proximal. By |[BL85, Theorem 3.1 page 50|, a.s. every limit point of Hp” SH)II is a rank
one matrix. Hence, if po(A,) = diag (a1(n),--- ,aq(n)), then a.s. as(n)/a;(n) converges
a.s. to zero. But ©,, = {a} so that a(4,) = a1(n)/az(n) — +oo. O

Lemma 3.5.11. [Dek82] Let G be a group, X be a G-space, (Xp)nen+ a sequence of
independent elements of G with distribution p and s an additive cocycle on G x X.
Suppose that v z's a p-invariant probability measure on X such that :

() [f 5 (g, 2)dulg)dv(z) < o0

(ii) For P® v- almost every (w, yc) lim,HOO s (Xp(w) - Xq(w),z) = +oo.

Then s is in LY(P®v) and [[ s(g,x)dp(g)dv(z) > 0

The following lemma describes the geometry of the Lyapunov vector inside the Weyl
chamber.

Lemma 3.5.12. Let I' be a Zariski dense subgroup of G. Then for every finite union F
of hyperplanes in a (see Section for the definition of a), there exist a probability
measure [ on I' with an exponential moment whose support generates I' and whose
Lyapunov vector Liap(u) is not included in F. In consequence, if (Vi,p1),-+, (Vi py)
are pairwise non isomorphic irreducible representations of G, then one can exhibit a
probability measure 1 whose support generates T, a permutation o of {1,--- ,r} such

that Ly, ) >+ > L,y (See Deﬁmtzonm)

Po(1)

Proof. We recall the definition of the Jordan projection. Every element g € G has a
decomposition : ¢ = gegng, with g, elliptic (i.e. included in a compact subgroup), g
hyperbolic (i.e. conjugated to an element a(g) in A™) and g, unipotent commuting with
gn- The Jordan projection j : G — a% is defined by A(g) = log a(g).

Y. Benoist proved in [Ben97] that the smallest cone Ir in a™ containing j(I') has a non
empty interior. Moreover, he showed in [BenQ0] that j(I") fills completely I in the sense
that every open cone in [p contains an infinite elements of j(I'). We deduce that j(I')
cannot be supported on any finite union of hyperplanes in a.

Let now F' be such a finite union of hyperplanes, g € I' such that j(g) ¢ F. The spectral
radius formula shows that %m(g") — j(g) € F where m is the Cartan projection (Sec-

tion . This is equivalent to say that the Dirac probability measure p = d, supported
on {g} satisfies Liap(u) & F.
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Let us perturb p on I', that this define a sequence of probability measure p, with an
exponential moment whose support generates I" such that u, converge weakly to i , for
example p, = (1 — 1/n)u + n/n where n is a probability measure with an exponential
moment whose support generates I'. It is easy to see (see for example [BL85, Corollary
7.3, page 72-73|) that the Lyapunov vector depends continuously on the probability
measure so that Liap(u,) converge to Liap(u). Hence, for n big enough, p, is a proba-
bility measure on I' with Liap(u,) € F.

Now we prove the last part of the lemma. Let py,--- , p,. be r rational real irreducible
representations of G and denote by x,, the highest weight of p;. Recall that the set II of
simple roots is a basis of the space X (A) of the rational characters of A. Hence for every
i =1,---r, there exist real numbers {n;,;a € II} with at least one non zero number
such that :

log x,, = Z n; olog o

aell

For every ¢ < j, denote by H, ; the following hyperplane of a :

H;;j={r € Z ni o loga(r) = Z njaloga(z)}

acll acll

Set F' = U,;H; ;. Applying the first of the lemma shows that there exists a probability
measure on I with an exponential moment such that Liap(u) € F. This ends the proof
because for every i =1,--- 7,

1
Ly =i log x,,(42)

3.5.3 Estimates in the A-part

The following theorem gives an estimates in the A-part of the Cartan decomposition
of the random walk. It can be proved by the same techniques of Chapter [2| (see Theorem
2.4.31]) where the theory of random matrix products is treated over an arbitrary local
field. However, since we are working here in R, we will use another route and apply the
large deviation theorem of Le Page [LP82] in GL4(R) we recall below. First, let us state
our result :

Theorem 3.5.13. [Ratio in the A-component| Suppose that p has an exponential mo-
ment then for every e > 0 and every non zero weight x of p distinct from x,,

s (B[

" <1 (3.6)

Moreover, if p1, pa are two irreducible rational real representations of G such that

Ly ) > Lpyw (Definition , then for every e >0 :

lim sup [E[(2222n) (4n) )]

n—o0 Xp1 (An)

1
n

<1 (3.7)
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Before giving the proof, we recall Le Page large deviation theorem in GL4(R) :

Theorem 3.5.14. [LP82][Large deviations in GL4(R)]/

Let p be a probability on GL4(R) having an exponential moment and such that G,
1s strongly irreducible. Let S, = X, --- X1 be the corresponding random walk. Then for

every € > 0,
1
>)]F <1

A similar estimate holds for tlog||S,x|| for every non zero vector x € R%.

1
lim sup [IP) <|Elog |[Snll = Ly

n—oo

Proof of Theorem [3.5.15 For every § € II, a similar large deviation inequality as in
Theorem holds for the quantity +log||ps(S,)|| because pg is strongly irreducible
and pg(p) has an exponential moment by Lemma Hence by equation a large
deviation inequality holds for %log a(Ay) for every a € ©. Since x,/x = [[ e " for
non-negative integers {n,;a € I}, we get for A = =3 1 ng lim, . % log a(A,) and
for every € > 0,

limsup [P (‘%log ;;(i’;)) S e) ]" <1 (3.8)

By Theorem [3.5.9, A < 0. Hence, by relation (3.8)), there exists pi, po €]0, 1] such

that for all large n : P (% > ,0?) < ph. Since x(a) < x,(a) for every a € AT, we get

for every € > 0, E[ <%> } < p{" + p5. This shows 1)
(3.7)

By the same large deviation techniques, one can show O]

3.5.4 Estimates in the K-parts

Recall that we fix a measurable section of the Cartan decomposition G — K AK and
the corresponding decomposition of the random walk S, is denoted by S,, = K,,A,U,.
Our next task is to prove the following theorem which gives the convergence in the
K-parts of the Cartan decomposition of the random walk.

This result was proved in Chapter [2] (Theorem [2.4.33). We give here another proof
special to archimedean fields.

Theorem 3.5.15. [Ezponential convergence of the K-components| Suppose that p has
an exponential moment and p is prozimal. Let v, be a highest weight vector. Then there
exists a random variable Z on the projective space P(V') such that for every e >0 :

1
limsup [E (U, [v,],2)) ] <1
Here, for M € GL(V), we have denoted by M" the transpose matriz of M with respect
to the basis of weights. We recall that 0 is the Fubini-Study distance (see the beginning of
Section . A similar estimate holds if we replace U, with k(X; ---X,,) where k(g)
s the K-component of g € G for the fired KAK decomposition in G.

Proof. Our proof is inspired by Goldsheid and Margulis proof of Oseledets theorem
ILP82]. We recall that by Mostow theorem, there exists a scalar product (-) on V' such
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that the weight spaces are orthogonal and K acts by isometries and that we choose an
orthonormal basis in each weight space so that p(K)p(K)" is the trivial group.

For every n € N*, every non zero weight x, we denote by @, (n) the orthogonal projection
on the space U, 'V, = p(U,)"V,. In particular Q,,(n) is the projection on the line RU,,*-
v,, where v, is a highest weight vector (it is one-dimensional because p is proximal). We
will show that for every e > 0 small enough :

i sup [E(]1Qy, () — @y, (n+ D[] * < 1 (3.9
This ends the proof because if  and y are two non zero vectors of V' and @), and @, are
the orthogonal projections on the lines Rz and Ry, then ||Q, — Q|| > 36([z], [y]), so
that would imply by the Markov property that {U, '+ [v,]; n > 0} is a.s. a Cauchy
series in the projective space P(V'). Hence it converges to some variable Z. By Fatou
lemma and the triangular inequality, we get for some ¢ = t(e) €]0,1[ and all large n :
E(6(Z,U; " [v,)°) <liminf,, oo E (06U, - [0,), Ut - [v,])7) < 8™
Now we prove . For every n € N*, ZX @, is the identity operator, where the sum is
over all the non zero weights of (p, V). Moreover, two orthogonal projections commute,
hence : [|Qy, (1) = Qu, (0 + DIl = 3, 11Qs, (1 + DRy ()| +1Qy, (1)Qy (1 + 1)
Fix a weight x # x,. First we show that E(||Qy,(n 4+ 1)Q,(n)]|°) is sub-exponential for
every € > 0 small enough. This is equivalent to prove that there exists n €]0,1[ such
that for all large n :

E([ s Qg+ D@ ) <o
€Uy LV, ||z |=1

Let z € U, ' -V, of norm one and y, = @y, (n + 1)(z), i.e. the orthogonal projection of

z on the line U, - V,,. Now we evaluate ||S,1 - z|| in two different ways. On the one

hand,

1Sn1 - 2l = [[ X1 - 2] < [[p(Xng) [ [[Sn - 2] = [[p(Xng2)|] x(An) (3.10)

On the other hand, (S,11 - (£ — Yn), Snt1 - Yn) = (( — Yn), Shi1Sn+1 - Yn) = 0 because
r—y, LU -V, and if y, = U, - z, for some z, € V,, then S!S, 1 -y, =
UTL_ilA%L—{-lU’ﬂ—f—lU;il ©Zp = sz(AnH)yn € Un_+11 - Vi, Hence

1Sns1-2l] = VI[Snt1 - Yal > + 1St - (2 = )2 = [[Sns1-9nll = Xo(Ani1) [yal| (3.11)
Combining (3.10)) and (3.11]) gives :

X(An
wp QD@ = ol < (X))
xeUy LVl |=1 Xp( n—i—l)

But for every p € N*, ||p(S,)|| = x(A4,) (because the norm on V is K-invariant). Hence,
(4n)
< ||p(Xnz1)||*

|| ( +1)H Xp(An)

(3.12)
Last inequality is due to the relation |[g7!|| < |[|g||*"! true for every g € SLg(k).
By Lemma the probability measure p(u) has an exponential moment so that

A,
sip 1@+ D@ = lall < [10CKms) O] X(( ))
zeUy L Vyllz)|=1 p\4in
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there exists C' > 1 such that for all € > 0 small enough E(||p(X,41)]]) < C. By
Theorem (3.5.13] for every € > 0 small enough, some 7n(e) €]0, 1] and all n large enough :

E[ (%) ] < n(e)™. Tt suffices to apply Cauchy-Schwartz inequality to (3.12)) to

obtain the sub-exponential behavior of E (]|Qy, (n)Q,(n + 1)[|).

To bound E(||Qy,(n)Qy(n + 1)||°) we apply the same reasoning as above : we fix
z € Vi(n+ 1) of norm one and denote by y, its projection on U, "' -V, . Then, we
evaluate ||S,, - z|| in two ways :

150 - @]l = IX5 i1 S - 2l < [1o(X o)l X(An)

150 - 2ll = V11Sn - (2 = ya) 12+ 11S0 - yal > 2 1180 - yall = [lyallx,(An)

The end of the proof is the same as above. For the law of Z, see the following remark. []

Remark 3.5.16. [Identification of the limit] By the Markov inequality and the Borel-
Cantelli lemma, Theorem shows that U, '[v,] converges towards some random

variable Z. In fact, the law of Z is the unique p(p)'-invariant probability measure on
P(V) (see for example [BL85, Proposition 3.2 page 50]).

Finally, we quote two useful results from Chapter 2]

Theorem 3.5.17 (Asymptotic independence of the K-components). With the same
assumptions as in Theorem[3.5.15, there exist independent random variables Z and
T with respective laws the unique p(p)t (resp. p(u))- invariant probability measure on
P(V') such that for every e > 0, every e-holder (real) function ¢ on P(V) x P(V) and
all large n we have :

E (&[0 - vl [Kn - 0])) —E(&(Z,T)) | < l@llep(e)"

| o[, l2') (18], 1)
S D (@ W D*

where  ||¢||le = Sup

[2].[yl,[2"],[y']

Remark 3.5.18. This is Theorem [2.4.36] from Chapter[q with the only difference that
the Zariski closure of I, was assumed split over R. Here, this condition can be dropped
for the following reasons. In Chapter [3 we were working with a semi-simple algebraic
group G defined over a local field k. The condition k-split was imposed in order to have
the Cartan decomposition for the k-points G of G in the form : G = KAK ( which is
not the case in general, see C'hapter. However, when k = R, the Cartan decomposition
can be taken G = KAK in both cases, split and not split.

Theorem 3.5.19 (Exponential convergence in direction). With the same notations and
assumptions as in Theorem Jor every t €]0,1[, there exists p(t) €]0,1[ such that
for all large n :

Sup Sup IP’<5 (S, - [a], H) < t") < p(t)" (3.13)

H hyperplane in R¢ [z]eP(V)

Remark 3.5.20. This is obtained by combining Theorems|2.4.16l and|[2.4.18 of Chapter
2
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3.6 Proof of the main theorems

The proof of the main theorems we presented in the introduction is based on the
following

Theorem 3.6.1. Let G be a semi-simple algebraic group defined over R, G its group
of real points, let (p,V') be a rational real representation of G such that its irreducible
sub-representations (p1, V1), -+, (pr, V;) are pairwise non isomorphic and let finally A €
End(V1) ® --- @ End(V,) such that its projection on End(Vy) is non zero. Consider a
probability measure p on G with an exponential moment and such that G, = (Supp(p))
is Zariski dense in G. Denote by {Sn;n > 0} the corresponding random walk. Assume
that :

1. py is proximal.

2. Lpy(uy > Lpipy » © =2, ,7 (see Definition m)

Then for every € > 0 there exists p(e) €0, 1] such that for all large n :

B[ Log [T (p($:)4)| ~ Lyug] > ) < plo)"

In particular, Tr (p(S,)A) vanishes only with a probability decreasing exponentially fast

to zero, and Llog|Tr (p(S,)A) | converges a.s. towards L, ().

Assumption 1 in Theorem is fulfilled whenever G is R-split (see Lemma [3.4.1)).
We provide two sufficient conditions for assumption 2 to hold : a probabilistic one and
a determinist (algebraic) one.

Remark 3.6.2 (A probabilistic sufficient conditions for assumption 2). Lemma
proves that assumption 2 is fulfilled whenever the Lyapunov vector Liap(p) does not
belong to a finite union of hyperplanes in the Weyl chamber a™ .

Remark 3.6.3 (An algebraic sufficient conditions for assumption 2). Let x; be the
highest weight of Vi, i = 1,-+- ,r. A necessary condition for 2 to hold is that x1/x; =
[Locr @™ for some non negative integers {ny; o € I} with at least one non zero n,.
This s easily checked using the fact that the Lyapunov vector is in the interior of the

weyl chamber (Theorem[3.5.9).

See the applications of this remark in the proof of Theorem |[3.1.

Proof. Without loss of generality, we can assume r = 2. Let d = dim(V'), p = dim(V}),
By = (v1,---,v,) (resp. By = (vp41,---,vq)) a basis of Vi (resp. Va) consisting of
weight vectors. We impose vy to be a highest weight. This gives a basis B = (B, Bs)
of V. The scalar products on V7 and V5 given by Theorem induce naturally a
scalar product on V for which V; and V5, are orthogonal. In the basis B, p(4,) =
diag(pi(An), p2(An)) = diag(ai(n), -+ ,aq(n)) with ai(n) = xp,(4,) and ay1(n) =
Xp2(An) (notations of Section [B.4)). Let W, be the set of non zero weights of (V;, p;),
t=1,2. A simple computation gives :
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Tr(p(Sn)A) = Tr(p(K,)p(An)p(Un)A) = Tr(p(An)p(Un) Ap(Ky))
d

= 3w (p(Ka)vi, A p(Un)'vy)

=1

where S,, = K,,A,,U,, is the Cartan decomposition of S,, (see Section [3.4.1]). Since p; is
proximal, as(n) = x(A,) for some weight x € W, distinct from x,. Then,

Tr(p(sn)A)zxm(An>[<K Vo, AU 0p)+ Y O (Xm ) Z O(xm

X#Xp1 €EWpy

Le Page large deviations theorem (Theorem (3.5.14) shows that for every € > 0 and
some p €0, 1] :

P (exp(nLp, ) — ne) < xp (Ay) < exp(nly, ) +ne)) >1—p"

Next we show that for every x # x,, € W,, and x € W,, and every € > 0 :

A\ 1
lim sup []E(X( )> ]" <1
n—00 Xp(An)

Indeed, for x # x, € W,,, this follows from Theorem [3.5.13 and the fact that p; is
proximal. For x € W,,, this follows also from Theorem [3.5.13| and assumption 2.

Hence, by the Markov property, there exist €1,€e; €]0, 1] such that for all n large
enough : IP’( )
projection of A on V] and to the representation (pq, V1) ends the proof. m

) < €f). The following proposition applied to the (non trivial)

Proposition 3.6.4. Let G be a semi-simple algebraic group defined over R, G its group
of real points, I' a Zariski dense subgroup of G, (p, V') an irreducible rational real repre-
sentation of G, pu a probability measure with an exponential moment and whose support
generates U'. If p is proxzimal, then for any non zero endomorphism A € End(V) :

1
n

limsup [P (|(K, - vy, AU, - v,)| <) " < 1

n—oo

where v, is a highest weight vector.

Before giving the proof, we recall the following remarkable theorem of Guivarc’h :

Theorem 3.6.5. [Gui90] Let o be a probability measure on GLq(R) having an expo-
nential moment and such that G, is strongly irreducible and prozimal. Denote by v the
unique p-invariant probability measure on the projective space P(RY) . Then there exists
a >0 (small enough) such that :

sul [ - ) v R0 <o

In particular, if Z is a random variable with law v, there exists a constant C > 0 such
that :

Sup{P(|{Z, |TH>| <) veRN\{0}} < Ce

5)
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Proof of Proposition[3.6.4 This proof is very similar to the proof of Lemma [2.5.4] of
Chapter [2|

— Let 7 the function defined on P(V) x P(V) — R by n([z], [y]) = |{(x, Ay)| where x
and y are two representative of [z] and [y| in the sphere of radius one. The function
n is lipshitz with lipshitz constant < Max{1,||A||}.

— For every a > 0, let ¢, be the function defined on R by ¢,(x) =1 if 2 € [—a;al;
affine on [—2a; —a[Ula, 2a] and zero otherwise. One can easily verify that 1, is
lipshitz with constant equal to %

Note also that
T—aa < Yo < 12424 (3.14)

Define for a > 0, ¢, = 9, o . By the previous remarks, ¢, is lipshitz with lipshitz
constant : ||| < M

By Theorem [3.5.17] there exist independent random variables Z and T in P(V) such
that for any ¢ €]0, 1[, we have :

By - 05y AU 0) S17) < E (60 (Ko - o), [U - 0,) (3.15)
< E(¢n(Z,T)) + [|dem]|p" (3.16)
< P(;<Z,AT>\gztn)+Max{1,|yAH}% (3.17)

In the last line, we confused between Z and 7" in P(V') and some representative in

the unit sphere. The bounds (3.15)) and (3.17)) follow from ({3.14).

To prove our proposition, we can clearly suppose t €]p, 1[. It suffices then to show that
P(|(Z, AT)| < 2t") is sub-exponential. The law of T is the unique p(p)*-invariant proba-
bility measure v on P(V') (Theorem [3.5.17). Moreover, a general lemma of Furstenberg
(see for example [BL85, Proposition 2.3 page 49|) shows that v is proper. Hence, a.s.
AT # 0. Moreover, we claim that following the stronger statement holds : there exist
C,a > 0 such that for every ¢ €]0,1[ and n € N* :

P(||AT|| < ") < C¢™ (3.18)

Indeed, A being a non zero endomorphism, there exist a non zero vector of norm one,

vg such that Afvy # 0. Then by Theorem [3.6.5]

POIATI| < #7) < B(AT. )] < %) < B((T, A £ 27) < Cgne
Vo

Hence for every t' €]t, 1],

N AT "

AT C
< Pz =\ <20t/t) ) + ——¢™
(16 ! < 200°) +
< Sup{P(46(Z,[H]) <2(t/t')"); H hyperplane of V} + Ct'"™"

The last line is by independence of Z and T. Theorem [3.6.5] shows that it decreases
exponentially fast to zero. n

As an application, we give the
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Proof of Theorem[3.1.4. Lemma[3.3.2]allows us to be in the situation of Theorem [3.6.1]
i.e., we have a representation (p, V') whose irreducible sub-representations p1,-- - , p, are
pairwise non isomorphic, a endomorphism A € End(V;)®- - -® End(V,.) whose restriction
to each End(V;) non zero such that V = {g € G;Tr(gA) = 0}. Lemma allows us
to distinguish a representation, say p;, whose Lyapunov exponent is the biggest. Lemma
shows that this representation is proximal. It suffices to apply Theorem O

Proof of Theorem[3.1.5, For every k € N, let Sym*(R?) be the vector space of homoge-
nous polynomials on d variables of degree k. The group SL4(R) acts on Sym*(R?)
by the formula : ¢.P(Xy,---,Xy) = P(¢g7'(Xy, -, Xyq)) for every g € SLy4(R),
P € Sym*(R%). A known fact (see for example [FH91]) is that the action of SLy(R) on
Symk(R?) is irreducible for every k € N.

Consider now a proper algebraic hypersurface VY of RY defined over R, a non zero vector
x of R and denote V = {g € SL4(R); gz € V}. Let now P be the polynomial that de-
fines V, k its degree. The polynomial P can be seen as a vector in V = ®F_,Sym'(RY).
Let p; be the action of SLy(R) on Sym‘(RY). If P; denotes projection of P on Sym‘(R?),
then “gz € V & P(gr) =0 & Y[ filg™") = 0" where fi(g) = pi(9)(P)(z) € C(p;)
(see Definition . Moreover, the highest weight of Sym(R?) is strictly bigger (for
the natural order on X (A) defined in Section than the one of Sym‘!(R?), the
ratio being the highest weight of the natural representation of SLg(R) on R% We can
then apply Remark and Theorem to the probability measure p=?. O]

An application of the results of Section independent from Theorem is the

Proof of Theorem[3.1.6. If the identity component HY of H is reductive, then by Pro-
position there exists a rational representation (p,V’) of G such that the reduc-
tive group HY fixes a non zero vector z of V. By decomposing p into irreducible sub-
representations, one can assume (p, V') to be irreducible. If hq,--- | h, denote the cosets
of the finite group H/H", then we can write

(S, € 1) < SRS o =) < 3B (ISl = 1)

i=1 IEdl

Since G has no compact factors, p(G) is non compact. In particular, p(G),) is not
contained in a compact subgroup of SL(V') because compact subgroups of SL(V)
are algebraic and p(G),) is Zariski dense in p(G). Hence we can apply Furstenberg
theorem ([Fur63|) which shows that L,y > 0 (see Definition [3.5.4). Applying Le
Page large deviations theorem (Theorem shows that for every ¢ = 1,--- 7,
P ([|Sn - (B ' - 2)|| < exp(nLy,/2)) decreases exponentially fast to zero.

If HY is not reductive, then it contains a unipotent Zariski connected R-subgroup U
which is normal in H°. Hence H® C N(U), where N(U) is the normalizer of U in G. By
IBT71, Corollary 3.9], there is an R-parabolic subgroup P of G such that N(U) C P.
By [BT65, Proposition 5.14|, P is conjugated to one of the standard parabolic subgroups
Py, 6 C II described in Section [3.4.3] Hence, by Lemma|[3.4.4] P, fixes the line generated
by the highest weight x, of (pa, V,) for every a & 6. Fix such a. Hence,

H° C {g€ G%g-[z.] = [za]}
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As in the previous paragraph, denote by hy,- - , h, the cosets of the finite group H/H®.
Hence,

P(S, € H) < Z]P)<pa(sn)[hi_lxa] = [2a]) (3.19)

i=1
The representation p, is G-irreducible hence by connectedness, strongly irreducible.
Moreover, it is proximal because ©,, = {a}, its highest weight space is a line and
G has no compact factors. By Golsheid-Margulis theorem (Theorem , pa(I) is
proximal. Hence we can apply Theorem |3.5.19 which proves the exponential decay of

the probability [3.19] O]

3.7 Application to generic Zariski density and to free
subgroups of linear groups

3.7.1 Statement of the results and commentaries

Let G be a semi-simple algebraic group defined over R and G its group of real points.

Question 3.7.1. Let I' be a Zariski dense subgroup of G. Is it true that two “random”
elements in I' generate a Zariski dense subgroup of G.

A motivation for this question is the following

Question 3.7.2. By the Tits alternative [Tit72], any Zariski dense subgroup T' of G
contains a Zariski dense free subgroup on two gemerators. A natural question is to see
if this property is generic. In Theorem of Chapter |9, we proved that two “random”
elements in I' generate a free subgroup. The question that arises immediately is to see if
the latter subgroup is Zariski dense.

In recent works of Rivin [Rival, he showed the following :

Theorem 3.7.3. [Rivd, Corollary 2.11] Let G = SLq and I' = SL4(Z) for some d >
3. Consider the uniform probability measure on a finite symmetric generating set and
denote by {S,,n > 0} the associated random walk. Then, for any g € ', there ezists a
constant c(g) €]0, 1] such that

P({g, Sn)is Zariski dense) > 1 — c(g)"

Moreover, c(g) is effective.

Passing from the “1.5 random subgroup” in Theorem to the subgroup generated
by two random elements is delicate since the constant ¢(g) depends among others things
on the norm of g.

Using our Theorem [3.1.2] we will prove the following
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Theorem 3.7.4. Let G be the group of real points of a semi-simple algebraic group
defined and split over R. Let I'1,I'y be two Zariski dense subgroups of G. Then there
exists probability measures i and ps respectively on I'y and 'y with an exponential
moment such that for some c €]0, 1] and all large n,

P((S1.n, Son) is Zariski dense and free) > 1 — "

where {Sa.n,;n > 0} and {S2,,n > 0} are two independent random walks on T’y (resp. T'y)
associated respectively to py and ps. This implies that almost surely, for n big enough,
the subgroup (S1,,S2,) 15 Zariski dense and free.

When G = SLs,, a stronger statement holds. It will follow immediately from the
Theorem of Chapter

Theorem 3.7.5. Let ',y be two Zariski dense subgroups of SLs(R). Then for any
probability measures py and py with an exponential moment whose support generates
respectively I'y and Ty, there ezists ¢ €]0, 1] such that

P((S1n, Son) is Zariski dense) > 1 — "

Remark 3.7.6. Let us compare Theorem [3.7.4] with Rivin’s Theorem[3.7.3 The advan-
tage of our method s that it allows us to consider two elements at random and not a
“1.5 random subgroup”, which is crucial to solve Question[3.7.3. Furthermore, we do not
necessarily consider arithmetic groups, neither finitely generated groups : any Zariski
dense subgroup I' works. In addition to that, the statement shows that Zariski density
1s generic for a pair of random elements taken in two groups I'y and 'y not necessarily
equal.

However, the big inconvenient is that our constants are not effective unlike Rivin’s. Our
resull can be applied to prove the “1.5 random subgroup” but is less interesting than Ri-
vin results since we don’t know if the uniform probability measure on a finite symmetric
generating of SLq(Z) works.

For d =2, Theorem 18 more satisfying; there is no restrictions neither on py nor

M-

3.7.2 Proofs

Proof of Theorem[3.7.5. A subgroup of SLy(R) is Zariski dense if and only it is not
virtually solvable. In particular, a free subgroup of SLy(R) is always Zariski dense. But
in Theorem [2.2.11 we proved that with the same assumptions as in Theorem [3.7.5]
P((S1., S2.n) is not free) decreases exponentially fast.

]

Proof of Theorem[3.7.4 The key point is the following

Lemma 3.7.7. [Bre08, Lemma 6.8] Let k be a field of characteristic zero, G be a semi-
simple group defined over k, G = G(k). Then there exists a proper algebraic variety W
of G x G defined over k such that any pair of elements x,y € G generate a Zariski
dense subgroup unless (z,y) € W(k).
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By Lemma there exist a rational real representation (p,V) of G x G, an
endomorphism A € End(Vy) @ --- @ End(V;) such that

W={(g,h) € G xG; Tr(p(g,h)A) =0} (3.20)

Let py,-- -, pr the irreducible sub-representations of p. Since I'; x I'y is Zariski dense in
G x G, the proof of Lemma [3.5.12] shows that there exist two probability measures p;
and ps respectively on I'; and T'y, a permutation o of {1,--- 7} such that Lipoisy (1 0p2) >
Ly iiiry(ueps) fori=1,--- ,r. Let T,, be the random walk (51, 52,) on I't X I' (i.e. the
one corresponding to the probability measure p; ® p2.) By Lemma and identity

(3.20),
P((Sy.1,Sn2) is not Zariski dense in G) < IP’(TT (p(T)A) = O) (3.21)

Theorem shows that the latter quantity decreases exponentially fast to zero. [J

3.8 Open problems and questions

— It is interesting to see if the probabilistic methods we used can generalize Theorem
B.1.2] More precisely, if u is a probability measure with an exponential moment
and whose support generates a Zariski dense subgroup of the real points of a semi-
simple algebraic group G, is it true that for every proper algebraic subvariety V
of G,

3=

limsup [P(S, € V)|" <1

where S,, the random walk associated to u.
— The same question for Theorem m (i.e. replace there exists by for all, and do
not assume the semi-simple algebraic group G R-split.)



Chapitre 4

Produits de matrices aléatoires sur les
groupes réductifs

4.1 Introduction

Let k be alocal field of characteristic zero, d > 2, 1 a probability measure on G Ly(k),
I', the smallest closed sub-semigroup containing the support of 1 and consider the as-
sociated random walk. In this chapter, we show under natural assumptions on I',, the
exponential convergence of the K-parts of the random walk in the Cartan decomposi-
tion and their asymptotic independence. In Chapter I, we have proved the same results
(Theorems [2.4.38| and [2.4.39) with the following additional assumption : the Zariski
closure of I', is a semi-simple algebraic group defined and split over k. Our aim in this
section is to remove this condition and to replace it by the more natural one : I', is
strongly irreducible. This implies that the identity component of the Zariski closure G
of I, is a reductive algebraic groupﬂ.
The proofs are very similar in spirit, the differences that occur are mostly technical.
For example, the Cartan decomposition of G = G(k), the group of k-points of G, reads
G = KZK where Z = Z(k) and Z is the centralizer of A in G and no longer G = KAK,
as in the k-split case.

We recall that {X,,;n > 1} is a sequence of independent random variables with law
1 and we denote for every n € N*, S, = X,,--- X; and M,, = X, --- X,,. Our main goal
in this chapter is to prove the following two statements :

Theorem 4.1.1 (Exponential convergence in the Cartan decomposition). Let k be
a local field of characteristic zero, d > 2, p a probability measure on GLg(k) having
an exponential moment (Definition and such that T, is strongly irreducible and

1. A reductive algebraic k-group is an algebraic group defined over k which does not contain a
Zariski connected normal unipotent algebraic k-subgroup. For every algebraic k-group E we donte by
E its k-points. Let us prove that I, C GL(V) is strongly irreducible implies that G = ﬁo is reductive.
Indeed, if it is not the case, then G° contains a non trivial connected unipotent algebraic subgroup N.
Notice that its k-points N is non trivial, because in characteristic zero N is Zariski dense in N (see
[Bor91l, Corollary 18.3]). The subgroup N being unipotent, it fixes a non zero vector z € V. Since N is
normal, it induces the identity on the vector space V' = Span{g - x,g € G°}. By irreducibility of G°,
V' = V. This contradicts the fact that N is non trivial.

103
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contracting (see Definition . Denote by (eq,- -+ ,eq) the canonical basis of k%. Let
S, = K, AU, be a Cartan decomposition of S, in GL4(k) (See Section . Then,
Ullei] converges almost surely toward a variable Z in the projective space P(k%) with
law the unique ut-invariant probability measure on P(k?) (see Theorem with an
exponential speed, that is for every e >0 :

1 e
limsup—log E (6(U}[e1], Z)°) < 0
n

n—oo

— llznyl]

where § is the Fubini-Study distance on the projective space : 6([x], [y]) = EE [z], [y] €

P(k?). Recall that, for g € GLy(k), g* is the transposed matriz of g when expressed in
the canonical basis and p' is the law of Xi.

Theorem 4.1.2 (Asymptotic independence in the Cartan decomposition). With the
same assumptions as in Theorem[4. 1.1}, there exist independent random variables Z and
T with law the unique the unique p' (resp. p)-invariant probability measure on P(k?)
such that for every e > 0, every e-Holder function on P(k%) x P(k%),

|E (¢o(Kuler], Unled])) — E(6(Z,T)) | < l|@llep(e)"

|o(le). ')~ 8((). 1)
Sl ) (T "

where ||dlle =  Sup
[=],[y],[z'],[y']

The proof will rely on a careful study of random walks on reductive algebraic groups
and their decomposition in the Cartan decomposition.
The analog of these results for the Iwasawa decomposition are known over the real field.
They were proved by Yves Guivarc’h in [Gui90].

In Section we recall main results obtained in Chapter I concerning random ma-
trix products theory and we indicate that they hold in a slightly more general context.

In Section [4.3] we recall important facts about reductive algebraic groups.

In Section [4.4] we consider a reductive algebraic group G defined over a local field
k, G its group of k-points and a random walk on a Zariski dense subgroup of G. We
study carefully the components of the Cartan decomposition of the random walk and
we prove Theorems |4.1.1| and [4.1.2 above.

4.2 Notation and summary of prior results from Sec-
tion

In this section, we recall some results we obtained in Chapitre |2l when working with
random walks on subgroups of SL,(k) (k being a local field). We claim that their ge-
neralization to subgroups of GLg4(k) is straightforward. We will refrain from including
all the details of the proofs, and will content ourselves with precise statements of the
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results.

Let k be a local field, d > 2, p a probability measure on GL4(k), I', the smallest
close sub-semi-group of GLy(k) containing the support of p.

Definition 4.2.1. We say that p has a moment of order one (resp. an exponential
moment) if [1(g)du(g) < oo (resp. [exp(7l(g))du(g) < oo for some T > 0), where
l(g) =log" (Ilgll) V1og™ (llg~!|I) and 2™ = Sup(x,0) for every x € R.

4.2.1 Norm estimates

Proposition 4.2.2. (Proposition If '), is strongly irreducible, then for any se-
quence {x,;n > 0} in k% converging to a non zero vector :

a.s infneN*W > 0 (41)

A version in expectation is the following proposition :

Proposition 4.2.3. (Proposition |2.4.14)[Weak large deviations| Suppose that v has an
exponential moment and that '), is strongly irreducible. Then for every v > 0, there

exist €(7) > 0 and n(vy) € N* such that for 0 < e < e(y) and n > n(y) :

[Snll e n
In particular, for every e > 0,
. Sn %
lim sup [Supxekd; =1 P (‘“S J‘ > exp(ne)) } <0 (4.3)

4.2.2 Convergence in direction

Theorem 4.2.4. (Theorem [2.4.16)[Exponential convergence in direction] Assume that
Iy us strongly irreducible and proximal, then there exists a random variable Z on the
projective space P(k?) with law the unique u-invariant probability measure on P(k?)
such that for some A > 0 and every e > 0 :

Supepay B (6(My[2], Z2)7) < (1 — Ae)”

where § is the Fubini-Study distance on P(k?). In particular, for every [x] € P(k%),
M, [x] converges almost surely towards Z.

The key lemma used to prove Proposition [£.2.3] and Theorem is the following
result, which generalizes a lemma of Le Page :
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Lemma 4.2.5. (Lemma/[2.4.13)[Cocycle lemma] Let G be a topological semigroup acting
on a topological space X, s a cocycle on G x X, i.e. s is continuous and s(gh,z) =
s(g,h-x)+s(h,z) for every g,h € G and x € X, pu a probability measure on G satisfying
for r(g) = supzex|s(g,x)| : there exists T > 0 such that

E (exp(tr(X1))) < oo (4.4)

o If
1

lim L Supyex E(s(S,.2)) <0,
n

n—oo

then there exist X > 0, €9 > 0, ng € N* such that for every 0 < e < €y and n > ng :
Suprex E[ exp| € (s(Sp,)) | } < (1 —eX)

o If
1
lim = Suprex E(5(Sn,z)) =0,

n—oo

then for all v > 0, there exist €(y) > 0, n(y) € N* such that for every 0 < e < €(y) and

n>n(y),
Supsex B[ exp| e (s(Sn,2)) ] ] < (1+ey)"

4.3 Reductive algebraic groups defined over local
fields

In this section, we recall some well-known facts about reductive groups over local
fields and their linear representations.

Let k£ be a local field : either R or C or a finite extension of @, for a prime p or a
field of Laurent series over a finite field.
If £k =R or C, we consider the standard absolute value and set ¢ = e, the base of the
natural logarithm, and v(z) = —log |z| for every z € k.
When £ is non archimedean, we denote by € its discrete valuation ring, 7 a generator
of its unique maximal ideal, g the degree of its residual field, v(.) a discrete valuation
and consider the following ultrametric norm : |.| = ¢~*).

Let G be a a connected reductive algebraic k-group, G its group of k-points. We
fix a maximal k-split torus A and denote by Z its centralizer in G and Z its group of
k-points. For every algebraic k-group H, we denote by X (H) the group of k-rational
characters of H. By definition, the k-rank of G is the rank of the free abelian group
X (A). The homomorphism of restriction identifies X (Z) with a finite index subgroup
of X(A). We denote by E* the R-vector space R ®z X(A) and E its dual. For every
X € X(A), we denote by x* the linear form induced on E. For every z € Z, there exists
a unique vector v(z) € E such that for every x € X(Z),

X" (v(2)) = —v (x(2))
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Let A be the system of roots of G restricted to A, which consists of the common
eigenvalues of A in the adjoint representation. We fix an order on A and denote by A™T
the system of positive roots, II the system of simple roots. We set £+ = {x € F;a"(z) >
0 Vo € 1} the Weyl chamber and its interior EtT = {x € E;a"(x) > 0 Vo € 11}. We
set

Zt =v Y EY)

Reference for the above : Bruhat and Tits [BT72|, [BT84]. See also nice exposition
in Quint [Qui02a], [Qui02b].

4.3.1 Decompositions in reductive algebraic groups

With these notation, there exists a maximal compact K of G such that

G =KZ"K Cartan decomposition

Let g be the Lie algebra of G over k and define for every o € A, g, = {z €
g; Ad(a)(x) = a(a)r Ya € A}. Let N be the unique connected subgroup of G whose Lie
algebra is G,ea+ e ; it is @ maximal unipotent connected subgroup. Then the following
decomposition, called Iwasawa decomposition, holds :

G =KZN lwasawa decomposition

4.3.2 Representations of reductive algebraic groups

From now on, abusing notation, we will not differentiate between x and Y.

A weight x of a linear k-representation (p, V') is a k-rational character of A which
is a common eigenvalue of the elements of A under p. The corresponding weight space
Vy is defined by : V, = {z € V;p(a)r = x(a)r Ya € A}. An irreducible k-rational
representation (p, V') of G is characterized by a highest weight x, such that every weight
X 7 X, can be written : x = X, — >, o Where n, is a non negative integer. We set

0, ={a ell; x, — ais a weight of (p,V)}

Let (p,V) be an irreducible k-rational representation of G. We have V = @, V,
where the sum is over all weights of V. According to [Qui02al, Theorem 6.1|, there exists
a norm ||.|| on V' which is preserved by p(K), and such that, for every z € p(z) is a
similitude on each V, with ratio @) e % = ) for every z € Zand z € Vi

Moreover the direct sum V) is good (see Section [2.4.3). Such a norm on V is called a
“good norm”. As a consequence, we obtain :

Lemma 4.3.1. For every g € G, we set g = k(g)z(g)u(g) its Cartan decomposition

and g = k(g)z(g)n(g) its Twasawa decomposition. Let (p,V') be an irreducible k-rational
representation of G and denote by x, its highest weight. Then there exists a norm on
V' such that
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lp(g)l] = gt

and

—_—

)zl _ o(Gln) ., o v,

|||

4.3.3 A useful lemma

We will need to express every k-rational character xy of A in terms of highest weights
of irreducible linear representations of G. The following lemma will be useful to us.

Lemma 4.3.2. The Z-module generated by the highest weights of irreducible represen-
tations of G is of finite index in X(A). In particular, there exists x1,--- ,Xr highest
weights of irreducible k-rational representations py,--- , p, such that every x € X(A)
can be written :

Proof. Let Z(G) be the center of G, D(G) its derived group. Denote Xz = {x €
X(A);x(a) =1Va € Z(G)} and Xpe) = {x € X(A);x(a) =1Va € D(G) N A}
First, notice that Xz is isomorphic to X(A;) and Xp(q) is isomorphic to X (Aj)
where A; is the maximal k-split torus of the semi-simple algebraic group G/Z(G) and
As is the maximal k-split torus of the k-torus G/D(G). Since G/Z(QG) is semi-simple,
there exists a Q-basis (even a Z-basis) of X (A1) consisting of highest weights of G/Z(G)
(consider the fundamental weights, see Proposition 2.4.21]), hence of G. Moreover, every
weight of X(Aj) comes from a highest weight of a one-dimensional representation of
G, which factors through D(G). Hence the Z-module generated by the highest weights
of irreducible representations of G contains the Z-module Xzg) + Xp(g) which is of
index in X (A) because it is the sum of two Z-submodules of the Z-module X (A) whose
intersection is finite and such that the sum of their ranks equals the rank of X (A) (see
[BT65, Proposition 4.27 |). O

4.4 Random walks on reductive algebraic groups

In this section, k is a local field, G is a connected reductive algebraic group defined
over k, G its group of k-points, ;1 a probability measure on G such that I', (the smallest
closed semi-group containing the support of u) is Zariski dense. Consider an irreducible
k-rational representation (p,V) of G. We use the notation of Section [£.3] Notice that
since G is Zariski dense in G (see [Bor91, Corollary 18.3]), then p is G-irreducible. Fix
a measurable section G — KZ1K (resp. G — KZN)) of the Cartan decomposition
(resp. Iwasawa decomposition) of G. The Cartan decomposition of S, will be denoted

by S, = K, Z,U, and its Iwasawa decomposition by S, = f(:;Z;Nn
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4.4.1 The Lyapunov vector

In this section, we define the Lyapunov vector Liap(u). It is an element of the Weyl
chamber £ and is the limiting process of the well normalized Cartan projection of the
random walk S,,.

Theorem 4.4.1 (Lyapunov vector). There exists a constant vector Liap(p) in the Weyl
chamber E* such that the following limit exists

1
lim —v(Z,) = Liap(p)

n—-+oon,

Moreover, when k =R, Liap(p) € ETF, i.e. a.s. lim 2o (v(Z,)) > 0 for every a € 11.

Proof. For the existence of Liap(u), it suffices to show that a.s. for every y € X(A),
1x (v(Z,)) has a non random limit as n goes to infinity. Indeed, by Lemma , we
can write y = >.._, n;x; where n; € Q and y; is a highest weight. Hence, without loss
of generality we can assume that y is a highest weight of an irreducible representation
(p,V) of G. By Lemma [1.3.1]

X (V(Zn)) _ log,[lp(Sn)l

The last expression has a limit as n goes to infinity by Kingman’s ergodic subadditive
theorem [Kin73]. Notice that when x € Xp(g) (see the proof of Lemma [4.3.2), the
existence of this limit follows from the law of large numbers.

The proof that Liap(p) € ETT whenever & = R is one of the main results of [GR85]
and we have checked it in Theorem of Chapter [3| O

4.4.2 Limit theorems in the Z-component of the Cartan and
Iwasawa decompositions.

Let ¢ be an algebraic embedding of G inside GL, defined over k.

Definition 4.4.2 (Exponential moment for algebraic groups). If v is a probability mea-
sure on G, we say that p has an exponential moment if i(n) (image of p under i) has

an exponential moment (see Definition .

The following lemma explains why this is a well defined notion, i.e. the existence of
exponential moment is independent of the embedding “7”.

Lemma 4.4.3. Let G C GL(V) be the k-points of a k-algebraic group G and p a finite
dimensional k-algebraic representation of G. If i has an exponential moment then the
wmage of p under p has also an exponential moment.

Proof. Each matrix coefficient (p(g));; of p(g), for g € G, is a fixed polynomial in terms
of the matrix coefficients of g. Hence, one can easily verify that there exists C, D > 0
such that ||p(¢*h)|] < ||g=H|¢ + D for every g € G. This suffices to show the lemma. [
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Proposition 4.4.4 (Comparison betwen Cartan and Iwasawa decomposition). Assume
that p has an exponential moment. Then there exists random compact subsets E and F

—_1 —
of G such that a.s. for n big enough, Z,Z, € E, Z,Z, ' € F.

Proof. Since G can be embedded in some GLg, it is equivalent to prove that for every

k-rational representation (p,V) of G, p(Z,)p(Z,) and p(Z,)p(Z,)"" belong a.s. to
some random subset of G. Let (p, V') be such a representation. By decomposing it into
irreducible sub-representations (this is possible because we are in characteristic zero),
we can assume that p is irreducible. The vector space V' is the direct sum of the weight
spaces V,. Moreover, this direct sum is good and for every z € Z, p(z) induces on each
V, a similitude of ratio ¢¥(*) (notice that Z fixes every weight space V). Hence, for
every non zero weight y of V, every z € V, :

~-1
p(Zn)p(Zn )] _  xw(Za)—x(v(Z2))
|||

By Lemma X = Y.,y niX; where n; € Q and x; is a highest weight of an
irreducible k-rational representation (p;, V;). Hence,

Hp(Z ) TL IH anz Xz(V n Xz( (Zn)):|

|||

By Lemma |4.3.1| we have :

1p(Z)p(Zn o] [ps(S)l|
1] ‘H< mn)

|pi(S

where z; is a highest weight vector of p; of norm one. Since G is Zariski connected, every
representation p; is strongly irreducible. Then, the last expression is a.s. bounded by
Proposition [4.2.2] O

Proposition 4.4.5 (Comparison between Cartan and Iwasawa in expectation). Assume

that 1 has an exponential moment (Definition . Let x € X(A) and set n = £1.
Then, for every v > 0, there ezist () > 0 and n(y) € N* such that for 0 < e < €(7),

n>n(y),
E [q%x(V(Zn)—V(ZNn))] < (1 + 67)” (45)

Proof. Let € > 0 and x € X(A). Express x in terms of highest weights : x = 7 nixi
where s € N* and for every i =1, ..., 5, n; € Q and Y; is a highest weight of an irreducible
k-rational representation (p;,V;). Then, by Lemma [4.3.1) we have a.s. : ||p:(S,)|| =
q"x:((Zn)) and % = q”"Xi(”(Z")) where x; is a highest weight vector of p;. In
consequence, 2

s <[ (1) |

=1 [l
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By the Holder inequality,

E[qex(( ~v(Zn) ]

| N

H E (Hm >||> )
[lp: (Sn)z:]|
i=1 [

Terms with n; < 0 are less or equal to one. Hence, it suffices to control the terms
where n; > 0. Fix such i € {1,...,s}. By Lemma the image of p under p; has
an exponential moment. Moreover, as explained in the proof of the previous proposi-
tion, G being Zariski-connected, p; is strongly irreducible. Consequently, we can apply
Proposition which shows what we want. O

The following theorem shows that the ratio between the first two components in the
Iwasawa decomposition is exponentially small.

Theorem 4.4.6 (Exponential contraction in K AN). Assume that p is a probability on
G with an exponential moment. Then for every simple root o such that a € O, (see
Section for some irreducible k-rational representation p of G such that p(T',,) is
contracting, the following holds : there exists A > 0, such that for every ¢ > 0 small
enough and all n large enough :

E[q*a(l’(i’l))] < (1= Xe)" (4.6)

Remark 4.4.7. When k = R, inequality 1s true for every o € Il. Indeed, by
Proposition [3.4.3, for every a € 11, there exists an irreducible k-rational representation
pa of G whose highest weight is a line and such that ©,, = {a}. By Zariski density of
I',, and Goldsheid-Margulis theorem (see Theorem , pa(L'),) is contracting.

Proof. Let a € ©, and decompose « into highest weights : o =>"7  n;x; , with n; € Q
for every i = 1, ..., s and y; a highest weight of some irreducible k-rational representation
(pi, Vi) as we may according to Lemma By Lemma [4.3.1] for every i = 1,...,s,
there exists a (p;, A, K)-good norm on V; such that :

Xi (V(Z)) = log, W

where z; is a highest weight vector of p;. Hence,
E(Q‘”(”@))) < Supyex E (q57)

where X = [[;_; P(V;) and s is the cocycle defined on G x X by :

S

5 (g’ ([xl]’ ) [xs])) = an 1qu %

We are now in the same setting as in the proof of Theorem [2.4.28] Applying verbatim
the proof of Theorem [2.4.28] we see that it is enough to show that :

a(W(Z,)) =2 400 Ya €O,

n—oo
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Consider the canonical Cartan decomposition of p(S,) in GL4(k) (See Section [1.3.2]

or 2.3.2)). Let aj(n), -+ ,aq(n) be the diagonal components. Since by the hypothesis

p(I',) is contracting, we have by Theorem [2.4.5| that a.s. every limit point of Z(li(n"g is

a rank one matrix. In particular, Z?EZ;, - Zf(z) converge a.s. to zero. Hence, W
tends a.s. to zero as n goes to infinity. But the set of highest weights of the irreducible
sub-representations of A”V is exactly {2x, — 3;3 € ©,}. Since ||p(Z,)|| = g%,

| /\2 p(Z)|| = Max{q®e=P¥(Z)). 3 € T}, we have

Max{qP"Z%). 3 c0,} 2% 0

n—oo

In particular, a (v(Z,)) <% oo. O

n—oo

The following theorem shows that the ratio between the first two components in the
Cartan decomposition is exponentially small.

Theorem 4.4.8 (Exponential contraction in KAK). With the same hypotheses as in
Theorem [{.4.0, there exists A > 0 such that for all e > 0 :

E[q_ea@(zn))} <(1=X)" 5 €6,

Proof. We write
q—EOé(V(Zn)) _ q—ea(y(zvn)) > qe [a(V(ZNn))—a(V(Z"))]

Fix v > 0. By Proposition Theorem and Cauchy-Schwartz inequality,
there exists A > 0, ¢(y) > 0, such that for every 0 < € < ¢(7y) and all large n :

E[q D] < (1 - 2X6)7 % (14 27e)?
It suffices to choose v (in terms of A) small enough. O

Corollary 4.4.9 (Ratio in the A-component for the KAK decomposition of GL4(k)).
For g € SL4(k), we denote by g = k(g)a(g)u(g) an arbitrary but fired Cartan de-
composition of g in GL4(k) as described in Section [1.8.9 or|2.3.4 . We write a(g) =
diag (ai(g), ..., aq(g)) in the canonical basis of k. With this notation and with the same
assumptions as in Theorem[{.4.6, we have for some X\ > 0 and every e > 0 small enough,

lim sup [E <|Zi(p—(§z)>)‘e>]"§l—fye Vi=2,..d

n—oo

Proof. We write the Cartan decomposition of p(S,) in both decompositions : the
one associated to the algebraic group G and the canonical one in GL4(k) : p(S,) =

P(Kn)p(Zn)p(Un) = k(Sn)a(Sn)u(Sn).
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We use the canonical norm on k%. We have |a; (p(S,)) | < |as (p(S,)) | fori =3, ..., d,
lag(n)ay(n)| = || \® Sa|| and that p(K,), p(Uy), k(S,), u(S,) belong to compact groups
of GL4(k). Hence there exists a constant C' > 0 such that :

i (p(5n)) e A a(SII* A" p(Za)lI
(I Gs) SE( G5 > SCE( AR ) (47

The representation /\2 V' may not be G-irreducible. However, the only possible hi-
ghest weights of its irreducible sub—representationsﬂ are the {2x, —a; o € ©,}. Combi-
ning this fact, the fact that Z,, acts by similitude on the weight spaces of V' and /\2 V,

and inequality (4.7]) gives :

a; (p(Sn)) (e —ea(v(Zn))
= (o) < 2 Bl

By Theorem this decreases exponentially fast to zero for every ¢ > 0 small
enough.

]

Proof of Theorems[/.1.1 and|[/.1.2. We follow verbatim the proof of Theorems [2.4.38
and [2.4.39| given in Chapter [2| using Corollary instead of Corollary [2.4.32] [

2. We are in characteristic zero, hence the action of G on /\2 V' is completely reducible
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