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Nomenclature

AES Auger electron spectroscopy

AFM antiferromagnetic

bcc body-centered cubic

bct body-centered tetragonal

BL bilayer

CTR crystal truncation rod

DFT density functional theory

DW Debye-Waller parameter

EB exchange bias

eV electron volt

EXAFS extended X-ray absorption fine structure

fcc face-centered cubic

FC field-cooling

fct face-centered tetragonal

FM ferromagnetic

GIXRD Grazing incidence X-ray diffraction

GMR giant magnetic resistance

HC coercive field

HEB exchange bias field

HFC Applied magnetic field during field cooling process

IP in-plane

LEED low-energy electron diffraction

LRO long-range order
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MAE magnetic anisotropy energy

MBE molecular beam epitaxy

ML monoatomic layer

MOKE magneto-optic Kerr effect

OP out-of-plane

PMA perpendicular magnetic anisotropy

RT room temperature

S order parameter

SRO short-range order

SRT spin reorientation transition

STM scanning tunneling microscopy

SUV Surface Under Vacuum experimental station of BM-32 beamline

TC Curie temperature

TN Néel temperature

TEY total electron yield

UHV ultra-high vacuum

XANES X-ray absorption near edge structure

XAS X-ray absorption spectroscopy

XMCD X-ray magnetic circular dichroism

XRD X-ray diffraction

XRMS X-ray resonant magnetic scattering

XRR X-ray specular reflectivity
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Introduction

“There is Plenty of Room at the Bottom”, said the talk’s title by the famous physicist

Richard Feynman, more than 50 years ago [1]. In this foresight exercise Feynman incites

the scientific community to endeavor towards the world of small things:

“What would the properties of materials be if we could really arrange the

atoms the way we want them? They would be very interesting to investigate

theoretically. I can’t see exactly what would happen, but I can hardly doubt

that when we have some control of the arrangement of things on a small

scale we will get an enormously greater range of possible properties that

substances can have, and of different things that we can do.” [1]

He allows himself to imagine a way to storage information on a cube with 5 atoms

edge. With a 125 atoms-bit, all the relevant books in world could be stored in a dust

grain! Certainly, the scientific and technological evolution have not gone that far for

the moment, but many exciting achievements have been done since then. The today

widespread field of nanoscience, the science of small objects (1 to 100×10−9 m), extends

through a vast range of knowledge and technology branches, from fundamental physics,

to bio-materials or applications on energy production.

Regarding data storage, of which Feynman was worried about, many developments

have been made in the use of magnetic materials for this purpose. The study of static

and dynamic magnetic phenomena of matter at the nanometric scale, the nanomag-

netism, has brought progress in ultra high density magnetic recording and today’s

technology is capable to ensemble up to 500 GB/in2 of information areal density. Many

technological developments were necessary to achieve such high density, as the use of

perpendicular magnetic anisotropy (PMA) recording media [2] and extremely sensi-

tive reading heads based on giant magnetic resistance (GMR) [3]. The possibilities

of nanomagnetism go beyond the data storage and the idea of using the spin of the

electron instead of its charge as information career, which is a directly consequence of

the discovery of GMR, opens many promising paths to walk through in the new field

of spintronics.

The magnetic coupling at the interface of nanoscale artificial structures gives rise

to unusual properties when compared to bulk. The size reduction enhances the impor-

tance of the magnetic moment distribution at interfaces at the expense of the bulk mag-

netism. This is particularly true in exchange coupled ferromagnetic-antiferromagnetic

(FM/AFM) systems. The magnetic field necessary to switch the magnetization when

an AFM material is in contact with a FM one is markedly increased by the interac-

tion at the interface. Such an interaction can lead, in addition, to an unidirectional

1
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anisotropy known as the exchange bias effect [4]. Despite the use of exchange bias

effect in common technological devices, as in spin valves and magnetic tunnel junctions

[5], a complete picture of its mechanism is not yet evident, since it involves the under-

standing of the FM/AFM interface not only from the structural point of view but also

electronically and magnetically.

The ability of producing magnetic thin films with strong and tunable magnetic

anisotropy represents a big challenge. The ordered alloys represent ideal systems in this

regard. FePt ferromagnetic alloy, for example, provides a huge PMA (10 MJm−3) in

its L10 chemically-ordered phase. Antiferromagnetic materials also may show magnetic

anisotropy, as MnPt alloy in its L10 structure. Influenced both by reduced thickness

and by epitaxial deposition constraints, even more basic systems present a rich variety

of phenomena [6]. One can mention, for instance, the spin reorientation transition for

Fe layers grown on Ag(001) [7] or the huge magnetic anisotropy of FeCo on Rh(001)[8].

The availability of synchrotron sources leads to a wealth of well-established tools

for structural analysis of surfaces and interfaces, in particular grazing incidence X-

ray diffraction (GIXRD) and absorption spectroscopy (XAS) techniques [9]. Element-

selective magnetic probes, as X-ray magnetic circular dichroism (XMCD) and X-ray

resonant magnetic scattering (XRMS), became available and complement structural

and other conventional magnetic probes. Since the AFM/FM interface is buried and

changes in the structural and magnetic properties are small, combining all these tech-

niques is of paramount importance to tackle the description of such systems.

In this context, we have been investigating, from a fundamental point of view, ultra-

thin films presenting both PMA and implications to GMR technology. The possibility

to grow ultra-thin epitaxial films and multilayers by molecular beam epitaxy has been

exploited to synthesize samples that are close to ideal models. In situ characterization

by GIXRD, supported by LEED, STM and AES, assures the control of the structure.

Then, a combination of ex situ characterizations, using synchrotron techniques (XAS,

XMCD) and magneto-optic Kerr effect (MOKE), gives further information on struc-

tural, electronic and magnetic properties.

During this thesis, we were especially interested in thin films with out-of-plane

anisotropy. The main systems studied were ultra-thin layers of chemically-ordered

alloys (FePt and MnPt) and of Fe/Ag(001), eventually coupled to CoO. Our strategy

was to find an appropriate surface and, for each coupled bilayer, study the individual

growth of each element, alloy or oxide. By controlling a variety of parameters such

as surface structure, cleanliness, deposition rate and temperature, we’ve got a pretty

good understanding of the growth process. The systems were not always those we were

looking for but, we obtained well-tailored films and were faced with some quite nice

surprises.

This manuscript is organized as follows. Chapter 1 states some fundamental con-

cepts of magnetism in thin films and surface physics. It contains also a short review of

each system studied. Chapter 2 describes the main experimental techniques. Chapter 3

is dedicated to the study of the metal on metal growth for some (001) surfaces, namely,

Mn, Fe and Pt on Pt(001) and Fe and Pt on Ag(001). The synthesis of MnPt ordered

alloys on Pt(001), investigated by GIXRD, is presented in chapter 4. The structure
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and magnetism of out-of-plane ordered FePt/MnPt heterostructures are the subject of

chapter 5. Chapter 6 concerns the study of CoO/Fe/Ag(001) system. A summary of

the most relevant results, and some prospects, concludes the manuscript.
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Chapter 1

Background

In this chapter, we present some fundamental concepts of thin film magnetism, like

exchange interaction, magnetic anisotropy and specially exchange bias. The develop-

ment given here is based mainly on the textbooks by Stöhr and Siegmann [10], Aharoni

[11] and Guimarães [12]. A brief bibliographic review on the specific systems we are

concerned with is given as a support for the following discussions. We close this chap-

ter by recalling some concepts in surface physics, valuable to the study of growth and

structure of our samples.

1.1 Concepts of thin film magnetism

The ferromagnetic (and antiferromagnetic) ordering of magnetic moments in a material

comes from the strongest among the magnetic interactions, the exchange interaction (of

the order of eV). This is not, however, a direct interaction between magnetic moments.

It arises from the Coulomb interaction between electrons and the symmetrization pos-

tulate for Fermions; one manifestation being the Pauli exclusion principle. Being elec-

trons indistinguishable particles with half-integer spin (s = 1/2) (i.e. Fermions), the

symmetrization postulate asserts that the total wave function (Ψ) of an electron sys-

tem is antisymmetric (as) under the exchange of any electron pair. For a two-electron

system this statement can be written as

Ψas(r1, σ1; r2, σ2) = −Ψas(r2, σ2; r1, σ1) (1.1)

with ri for spatial and σi for spin coordinates. Considering that the Hamiltonian of

the system does not depend on the electron spin, we can separate Ψas in orbital Φ and

spin χ components. This way, there are two possibilities to get an antisymmetric total

wave function, either the spatial part is symmetric and the spin part is antisymmetric

or vice versa. We have either

ΨS
as(r1, σ1; r2, σ2) = Φsym(r1; r2)χS

as(σ1;σ2) (1.2)

where the antisymmetric two-electron spin function is the singlet state
(

S
)

with total

spin quantum number S = 0 and MS = 0,

5
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χS
as(σ1;σ2) =

1√
2

[↑↓ − ↓↑] (1.3)

Or the opposite situation, with

ΨT
as(r1, σ1; r2, σ2) = Φas(r1; r2)χT

sym(σ1;σ2) (1.4)

and the symmetric two-electron spin function is the triplet state
(

T
)

with total spin

quantum number S = 1 and MS = 1, 0, −1,

χT
sym(σ1;σ2) =


↑↑

1√
2
[↑↓ + ↓↑]

↓↓

(1.5)

The spatial function is written as

Φ sym
as

(r1; r2) =
1√
2

[φa(r1)φb(r2)± φb(r1)φa(r2)] (1.6)

where φa and φb are spatial wave functions that solve the Schrödinger equation for the

two-electron system described by some Hamiltonian H. We are not going to suppose

any particular form for H, but only assume that the electrons interact through the

Coulomb repulsion potential1
(

e2

4πε0|r1−r2|2

)
. The energy difference between the singlet

state (S) and the triplet state (T) will be given by2

ES
e−e − ET

e−e = 2J = 2

ˆ ˆ
φa(r1)φb(r2)

e2

4πε0 |r1 − r2|2
φ∗a(r2)φ∗b(r1) dr1dr2 (1.7)

J is called the exchange integral because it reflects the energy associated with a

change of quantum states between the two electrons. The sign of J determines which

spin state has lower energy. If J is positive the triplet state (S = 1) is favored, and

the spins point to the same direction and are aligned parallel (ferromagnetism). For

negative J , the singlet state has lower energy, and the spins are antiparallel (antifer-

romagnetism). In the singlet state the space function is symmetric and the electrons

tend to be close to each other. In the triplet state the space function is antisymmetric

and the electrons tend to avoid each other. Note that, by assumption, the Hamiltonian

does not depend on the spin, so that it is the antisymmetry requirement, expressed in

equations 1.2 and 1.4, the responsible for linking the spatial and spin wave functions.

The exchange interaction is of fundamental importance not only for magnetism but

also for many basic phenomena like the chemical covalent bond or spectral splitting on

atomic energy levels.

1The two electrons may be, for example, bounded to two atoms like in a H2 molecule. Their spatial
wave functions will depend on the particular Hamiltonian of the system. The correlation between them,
however, is assumed to be only of Coulombian nature.

2All energy terms that do not depend on the electron-electron interaction are equal for both singlet
and triplet states and cancel out in the subtraction. The same is valid to the ordinary electrostatic

Coulomb repulsion between the electron densities I =
´ ´
|φa(r1)|2 e2

4πε0|r1−r2|2
|φb(r2)|2 dr1dr2 .
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This simplified treatment aims only to set the basis for the understanding of the

exchange interaction. For a real problem, of a 3d metal crystal for example, the picture

is much more complex and it is very difficult to establish a first-principle theory, like

the molecular orbital theory or the density functional theory, that can handle the prob-

lem. It is common to explore the magnetic properties of materials by means of model

Hamiltonian’s, like the Heisenberg and Hubbard models. The Heisenberg model de-

scribes the exchange interaction by explicitly introducing a spin-spin interaction in the

Hamiltonian

Hexch = −
N∑
i,j

(i6=j)

Jijsi · sj

. The Hubbard model explores the interplay

between two competing energies in the formation of the electronic states in a multi-

atom and multi-electron system, the electrostatic Coulomb energy between electrons,

and the hopping energy of electrons from one atom to the next. The spin enters by

imposing restrictions in accordance with the Pauli principle. The problem of exchange

coupling at FM/AFM interfaces is even more complex, and phenomenological models

are generally the alternative to handle it, as will be addressed in next section.

The above described exchange interaction, that strongly couples neighbor spins

parallel or antiparallel, is isotropic. It is well known, however, that magnetic materials

generally present preferential directions to align magnetic moments, as is the obvious

case of permanent magnets. The magnetic anisotropy is a key parameter in the design

of all magnetic materials, ranging from transformer and electromagnet cores to mag-

netic recording media. It may have various origins, like the shape of the sample, its

crystalline structure, the presence of interfaces or constraints, etc. To these preferential

directions one gives the name of easy-axes or easy-directions, while hard-axes designates

directions avoided by the magnetic moments. The effective anisotropy energy is the

energy necessary to rotate the magnetization from easy to hard directions. When a

sample is broken into magnetic domains, the moments are also preferentially oriented

along easy-directions.

The magnetocrystalline anisotropy is determined by the spin-orbit interaction, that

is one or two orders of magnitude weaker than the exchange interaction. The lattice

crystal field has a direct effect on the electron orbital moments. The contribution to the

magnetism of the electron orbital moments is generally small. However, the electron

spin and orbital moments are coupled through the spin-orbit interaction HSO = ζs · l
(where ζ is the spin-orbit coupling constant with [energy] dimension) and an alignment

of the orbital moment implies an alignment of the spin moment. This magnetocrys-

talline anisotropy is responsible for the strong perpendicular anisotropy observed in the

ordered alloys. Stress at thin films interfaces, caused by lattice mismatch in epitax-

ial growth, also play a role in the coupling of the electronic orbitals with the lattice

crystal field, and equivalently influence the magnetocrystalline anisotropy through the

spin-orbit interaction. To this kind of interface anisotropy one give the name of mag-

netoelastic anisotropy. Magnetostriction, the expansion (or contraction) of a material

as a consequence of being magnetized, also can give rise to magnetoelastic anisotropy

in domain boundaries or in constrained layers.

The exchange bias is also an interface anisotropy, but of exchange nature, not spin-

orbit. It is all but trivial to develop a reliable calculation of the magnetocrystalline
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(including magnetoelastic) anisotropy energy and to predict the easy magnetization

axis. The most common approach is to make simple phenomenological models, that

satisfactorily reproduce the experimental results and have support on the system sym-

metry.

The long range dipolar interaction is at the origin of the shape anisotropy, that for

thin films tends to make the magnetization to lie in the film’s plane. The demagne-

tizing field3 Hd for a homogeneously magnetized thin film is nearly zero for in-plane

magnetization, while it is Hd = −M for out-of-plane magnetization M . The shape

anisotropy energy density for a thin film is then Kd = −µ0M2
S

2 , where µ0 is the vacuum

permeability and MS is the magnetization at saturation. This long range interaction is

also responsible for the creation of magnetic domains.

1.2 Exchange bias

The exchange bias (EB) effect was discovered by Meiklejohn and Bean in 1956 [4]

during the study of fine Co particles covered by a thin oxide layer. Since about fifteen

years ago, this phenomenon has become an integral part of modern magnetism, with

implications in basic research and in numerous device applications (see some reviews

[13, 14, 15]). The EB effect manifests itself by a shift of the hysteresis loop (HEB)

towards the negative or the positive direction with respect to the applied field during

a field cooling process (HFC). Its origin is related to the magnetic coupling across

the common interface shared by a FM and an AFM layer. The coercive field (HC),

the field necessary to switch the magnetization, is markedly increased by the exchange

interaction at the FM/AFM interface. One says that the AFM is a pinning layer for the

FM layer because it induces an extra anisotropy term through the interfacial exchange

coupling. AFM materials that present strong anisotropy exchange coupling have found

important technological application as pinning layers in spin-valve based devices, where

the AFM layer keeps the magnetization of a FM layer in a fixed direction in space, while

another FM layer switches under an applied magnetic field or spin-polarized current.

The basic description of the EB phenomenon was given since the pioneering work

of Meiklejohn and Bean. A qualitative picture of the EB effect is sketched in figure 1.1.

For a given temperature T above the AFM ordering Néel temperature (TN ) and below

the FM layer Curie temperature (TC), the AFM spins are disordered while the FM

are ordered (fig. 1.1-a). A magnetic field HFC is applied in order to saturate the FM

layer in a direction parallel (or perpendicular) to the film surface. After field-cooling

(FC) the AFM/FM bilayer below TN , the AFM spins at the interface couple with the

FM spins (fig. 1.1-b), yielding the energetically stable situation for the coupling at the

interface. If some portion of the AFM spins at the interface are uncompensated or if

there is some canting, a unidirectional anisotropy is created in the process. When the

applied magnetic field H is reversed, the AFM spins at the interface exert a microscopic

torque on the FM spins, tending to keep them in their original direction (fig. 1.1-c).

The field needed to reverse the magnetization will be larger (|HC1| > |HC2|) and the

magnetic hysteresis loop will be shifted by an amount HEB = (HC1 +HC2)/2, due to

3For a magnet, the demagnetizing field is the magnetic field generated by its own magnetization.
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this additional interfacial magnetic energy, ∆σ, that has to be overcome (fig. 1.1-d).

The same FM layer, without being coupled to an AFM one, would have smaller coercive

field and no EB (dashed hysteresis loop in fig. 1.1).

The phenomenological expression of the exchange field is simply given by

HEB = ∆σ/(MFM
S × tFM ) (1.8)

where MFM
S and tFM are the magnetic moment density and the thickness of the FM

layer, respectively. While this basic description of the exchange bias is generally ac-

cepted, the microscopic interfacial interactions that contributes to the interfacial energy

are more controversial. Nevertheless, it is known that the coupling is correlated to the

magnetic anisotropy energy (MAE) of the AFM layer. The expression that relates the

bias field HEB to the AFM is

HEB ∝
√
AAFM ×KAFM (1.9)

where AAFM and KAFM are, respectively, the exchange stiffness and the magnetocrys-

talline anisotropy of the AFM layer [16].

Figure 1.1: Sketch of exchange bias mechanism for an in-plane anisotropy FM/AFM
system with perfectly uncompensated AFM spins at the interface. The exchange bias
field (HEB) and the enhanced coercive field (HC) are indicated at the hysteresis loop.
The dotted line, with smaller HC and no EB, corresponds to the hysteresis for the FM
layer alone, without being coupled to an AFM layer.

Many microscopic models have been proposed for the expression of the total mag-

netic energy and, in particular, for the interface exchange energy [17, 16, 18, 19, 20, 21].

Among the complex phenomena taking place close to the interface, domain-wall for-

mation in the AFM layer, random interface roughness, contribution of compensated

AFM/FM interfaces, extension of the coupling beyond interfacial layers [22] and non-

collinear interface spin configuration are to be considered.
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We recall that - contrary to the schema of figure 1.1 - the AFM interface layer is

not always completely uncompensated (with all AFM spins coupled parallel). Indeed,

in many situations, as for along the c-axis of L10 MnPt discussed later, the spins are

coupled antiferromagnetically, giving a compensated interface. Moreover, the role of

pinned (frozen) and unpinned (rotatable) interfacial uncompensated AFM spins in the

exchange bias has been recently revealed by X-ray photoemission microscopy and X-ray

magnetic linear and circular dichroism [23, 24]. It has been demonstrated that only the

fraction of the AFM spins that are pinned contributes to the EB shift. Furthermore,

a gradual degradation of the EB shift may be observed upon cycling the applied field.

This aging phenomenon is known as training effect [25].

The major part of exchange bias studies have been performed with the magnetiza-

tion parallel to the FM/AFM interface. Studies on systems with perpendicular (out-

of-plane) magnetic anisotropy are rather recent [26, 27, 28] and only few address the

role of spin configuration at the interface [29, 30]. Thin ferromagnetic films with PMA

is a recognized way for increasing magnetic storage density. In addition, magneto opti-

cal effects are enhanced at polar (sensitive to perpendicular magnetization component)

geometry compared to in-plane one [31, 32]. Atomic scale control and characteriza-

tion of the interface structure and morphology is thus essential for the fundamental

understanding of the magnetic interaction at real FM/AFM interfaces.

1.3 Systems of interest

All along this thesis work we were interested in a variety of systems related to PMA

and EB effect. Indeed, many attention was paid to chemically-ordered alloy systems, as

they represent a more direct way towards perpendicular coupling, when one is capable

of tuning their magnetic anisotropy to be out-of-plane. Other materials of interest

included ultra-thin Fe on Ag(001), that shows PMA at room temperature for thickness

around 4 to 6 monoatomic layers (ML). Owing to its matching parameters, CoO is a

well-suited antiferromagnetic material for coupling with Fe. Some additional systems

were investigated. This is the case of FeCo alloy grown on Rh(001) and Ir(001) single

crystal substrates, that presents an extremely large PMA [8] whose relation to the

structural anisotropy and pseudomorphism has not yet been clarified. For these systems

the data analysis is still preliminary and they are not presented in this manuscript.

We address below some general background on the chemically-ordered alloys and

give a brief review on the main issues of each system.

1.3.1 Chemically-ordered magnetic alloys

The interest in ferromagnetic chemically-ordered alloys, such as FePt, FePd, CoPt,

CoPd, FeNi [33, 34, 35, 36], arises from their high magnetocrystalline anisotropy. Anti-

ferromagnetic chemically-ordered alloys, such as MnPt, IrMn and NiMn [37], are among

the most used as pinning layers for spin-valves applications. All these chemically-

ordered alloys present different equilibrium structures, depending on the stoichiometry
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and preparation conditions. Generally the magnetic properties of an ordered alloy are

intrinsically related to its degree of order.

Figure 1.2 shows the unit cells4 of the chemically-ordered L10 and L12 structures5,

as well as that of the disordered A1 structure. The different chemical species appear

as dark and light spheres. The L12 phase is face-centered cubic (fcc) structure with

stoichiometry A0.75B0.25 where the minority atoms occupy the cube corners while the

majority ones occupy the face-centered positions. The most relevant structure in our

studies is the equiatomic L10 one, that presents the best magnetic properties for our

systems, as described in the following sections. This structure is face-centered tetrag-

onal (fct), where the cubic symmetry is broken due to the stacking of alternate planes

of each chemical species along the tetragonal axis (c-axis). We call tetragonality the

difference from unit of the c/a ratio. The A1 phase has a fcc chemically-disordered

structure in which the hatched circles indicate a random occupation of the lattice sites.

Figure 1.2: Unit cell representation for the fct L10, the cubic L12 and the fcc A1
structures. The dark and light spheres represent atoms of different nature, while the
hatched circles in the A1 structure indicate that it is equally probable to have one or
the other atom species in each position of the fcc lattice.

1.3.2 FePt

FePt alloy in the L10 chemically ordered phase has drawn much attention as a can-

didate for ultrahigh density magnetic storage media [38, 33]. Coercive fields up to

10 T have been already reported [33] in L10 FePt single domain particles grown on

a heated MgO(001) substrate. According to its bulk phase diagram, presented in fig-

ure 1.3, a fcc solid solution is observed at high temperatures. Around the FePt3 and

Fe3Pt stoichiometries, ordered alloys are formed in the L12 phase. The alloy close to

4The conventional unit cells, not the primitive ones.
5This notation is known as Strukturbericht notation. They are also called AuCu and AuCu3 struc-

tures, respectively.
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the equiatomic concentration exhibits at 1573 K a disorder-order transformation from

the disordered fcc A1 (high temperature phase) to the L10 phase (low temperature

phase). The lattice parameters6 are apowder
FePt = 3.852 Å and cpowder

FePt = 3.720 Å giving

c/apowder
FePt = 0.966 for powder diffraction data [39]. For a nanocrystalline system [42]

where L10 ordered grains are submitted to stress at their boundaries, the values are

slightly different, ananocryst.
F eP t = 3.860 Å and cnanocryst.

F eP t = 3.713 Å with c/ananocryst. =

0.962. This last case is likely to be more comparable to the kind of sample we ob-

tain by epitaxial growth. The L10 FePt is ferromagnetic below 673 K (see the Curie

temperature, TC, indication in the phase diagram, fig. 1.3) and is one of the hardest

magnetic materials. The uniaxial magnetic anisotropy along the c-axis is predicted to

have an energy density of [43] Ku ∼ 16 × 107 erg/cm3. Reported experimental values

reach Ku ∼ 6.6 to 10 × 107 erg/cm3 [44, 45, 34]. The high uniaxial anisotropy of FePt

results from the large spin-orbit coupling of Pt atoms and the strong hybridization of

Pt 5d band with highly polarized Fe 3d band [43].

Figure 1.3: Fe-Pt binary alloy phase diagram taken from ref. [40].

The magnetic anisotropy depends on the order [46], and therefore it is essential to

establish a preparation procedure that leads to high degree of chemical order. Molecular

beam epitaxy (MBE) coevaporation of Fe and Pt on a Pt(15 nm)/MgO(001) substrate

held at about 820 K is reported to give an order parameter7 of S = 0.9± 0.1 [47]. The

alternate Fe and Pt monoatomic layer deposition [48] reduces the required temperature

to achieve order (S = 0.8 ± 0.1 for Tgrowth = 503 K). The lattice mismatch also

influences the chemical ordering of this alloy. As reported by Ding et al. [49] a maximum

order is obtained for FePt(20 nm)/Cr95Mo5(30 nm)/MgO(001), with 6.33% mismatch

6The primitive in-plane lattice parameter is reported in [39] as a = 2.7235 ± 0.0010 Å and is
multiplied by

√
2 to give the fct parameter (error bars are omitted), which is easier to compare with

other data and coherent with our c/a definition. It is worth noting that the crystal structure of L10

FePt, in Pearson Symbol Code, is tP2 [40] rather than tP4 reported by [41]. All the lattice parameters
given here are at room temperature.

7See equations 2.21 and 2.22 to a definition of the order parameter.
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and c/a = 0.9466. Beyond the influence of chemical order on the anisotropy of FePt, it

has been recently proposed [50] that a variation of the tetragonal c/a ratio can change

the magnetic properties of this alloy. After this density functional theory (DFT) study,

even an antiferromagnetic arrangement could exist for a c/a < 0.948.

In this thesis we study the epitaxial growth of FePt on monocrystalline Pt(001)

(sections 3.1.5 and 5.2). Besides the study of order, directly related to the anisotropy

strength, we are also interested in the influence of the tetragonality on the FePt mag-

netic properties. We investigate the structural aspects of films obtained by two distinct

methods. The first is based on He et al. [51] approach, where these authors have re-

ported that for low Fe coverages on Pt(100), atomic exchange takes place and Fe is

buried under a Pt top layer, even at room temperature (RT). For thickness between 2

to 5 MLs, annealing up to 600 K results in the formation of ordered FePt alloys present-

ing perpendicular magnetic anisotropy. The second one is the alternate monoatomic

layer deposition [48].

1.3.3 MnPt

Figure 1.4: Magnetic phase diagram of the Mn-Pt binary alloy taken from reference [52].
Region II corresponds to the L10 structure with Mn magnetic moments along the c-axis
while region III presents the same structure but with the Mn moments perpendicular
to the c-axis.

We emphasize here some key aspects to understand the exchange coupling in sys-

tems based on the MnPt alloy. Bulk MnPt in the tetragonal L10 chemically ordered

phase is an antiferromagnet with a high ordering temperature (TN = 975 K). Its bulk

lattice parameters are [41] aMnPt = 4.002Å and cMnPt = 3.665Å. Along the plane per-

pendicular to the c-axis (the c-plane) Mn nearest-neighbors are antiferromagnetically

coupled (fig. 1.5). Two configurations are possible depending on the stoichiometry and

temperature, as shown in the magnetic phase diagram [52] in figure 1.4. At RT it is

generally accepted that the equiatomic alloy has the Mn magnetic moments aligned

with the c-axis (region II in fig. 1.4), as described by the schema of figure 1.5-a (type-

A). Along the c-axis, the spins are ferromagnetically aligned. For off-stoichiometric
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alloys the Mn spins may lie in the c-plane (region III in fig. 1.4), with a configuration

as sketched in figure 1.5-b (type-B). In this case, however, it is not determined what is

the preferential direction of the spins within this plane. It has been shown by Hama

et al. [53] for a bulk crystal, that a spin-flip transition takes place from the type-A to

the type-B between 580 and 770 K. This thermal induced transition goes along with an

increase in the tetragonality, when the c/a ratio drops from 0.914 at RT to 0.896 after

the spin-flip transition. This result suggests that lower c/a favors type-B and higher

c/a favors type-A. A recent DFT study [50] has indicated the same dependence on the

tetragonality, however, according to these calculations, the minimum energy is attained

for type-B, while type-A only is set up for c/a ∼ 0.95. It is important to stress that,

in the disordered fcc A1-phase, this alloy is mostly considered to be non-magnetic [54],

although some calculations suggest that a 3Q or 2Q antiferromagnetic structure with

TN below RT could take place [55].

(a) type-A (b) type-B

Figure 1.5: Sketch of two possible magnetic configurations of the antiferromagnetic
MnPt L10 alloy, with (a) spins aligned parallel to the c-axis and (b) spins along the
c-plane.

For the preparation of exchange biased systems the robustness of the pinning de-

pends on a large exchange coupling in the AFM/FM interface, a high TN of the AFM

and on a good resistance to corrosion. MnPt alloy in the L10 phase is one of the best

AFM materials in this sense [37]. It has been used in the production of devices based

on spin valves and tunnel junctions with in-plane anisotropy [56]. In future sensors, the

total spin valve thickness must significantly decrease and the AFM layer would be by far

the thickest one in the device. However, high exchange bias and thermal stability are

difficult to maintain when reducing the thickness. The exchange coupling in MnPt/FM

bilayers is strongly reduced below 20 to 30 nm and vanishes, at RT, when the MnPt

layer is thinner than 6 to 10 nm [57, 58, 59, 60]. Among the possible factors that can

influence this critical thickness (thermal instability [57, 58, 61], finite-size scaling of

TN [62], proximity effect [63]) the degree of chemical order seems to be the key issue

for MnPt films [59, 60]. In the ultra-thin regime (< 10 nm) it is hard to produce well

ordered films by the procedures followed so far. Without order, the film is not AFM

at RT and so, there is no exchange bias. With few exceptions, all experimental studies

were performed on films grown by sputtering and with different degrees of texture and

chemical order.
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Two studies of MBE growth of MnPt alloys on a Pt buffer deposited on MgO(001)

have been reported for films thicker than 10-15 nm [64, 65]. In both cases, the MnPt

layer is composed of two types of partially ordered structural domains whose c-axis

are perpendicular to each other in the surface plane. A MBE MnPt layer grown on a

Si(001) substrate covered by a thick Ag/Pt buffer was shown to give some degree of

L10 order with the c-axis perpendicular to the surface plane [66]. Although this film

presents huge roughness (>100 nm !) and small exchange bias field when coupled with

NiFe (planar magnetic anisotropy) for thickness = 10 nm, the increase in HC persists

down to thickness of 3 nm. The use of MnPt alloy on perpendicular exchange bias

systems [27] has not yet been reported, however it seems a promising candidate if one

is capable to produce high quality L10 films with perpendicular c-axis and couple them

with a FM layer with out-of-plane anisotropy. This is one of the main issues of this

thesis. We will come back to the study of MnPt in the ultra-thin limit in section 4.1.2.

1.3.4 CoO/Fe/Ag(001) bilayer

The CoO/Fe bilayer is a widely studied exchange bias system. Bulk CoO has the

prototypical rock-salt structure above TN : pure Co and O planes alternate along the

[111] direction of the fcc lattice. Below the Néel temperature (TN ≈ 289K), CoO

becomes a type-II AFM. Following the [100] direction of the fcc lattice, the Co spins

(separated by oxygen) are coupled antiparallel. Furthermore, the Co spins are coupled

ferromagnetically within the {111} planes; neighboring planes are then coupled anti-

ferromagnetically. Accompanying the paramagnetic-antiferromagnetic transition, CoO

also undergoes a crystallographic phase change from cubic to monoclinic lattice.

Strain-induced spin orientation has been shown to be a critical issue: the magnitude

and orientation of the magnetic moments strongly depend on the strain induced by the

substrate [67, 68]. The coupling between Fe and Co spins at the interface is a warm

subject [68, 69]. The direction of the anisotropy, either in the FM or in the AFM

layers, and the morphology at the interface are among the fundamental parameters

determining the exchange coupling. Moreover, the role of the Fe oxide layer formed at

the interface is rarely characterized or even mentioned, but is not always negligible.

As concerns the FM Fe layer, ultra-thin Fe/Ag(001) films exhibit a strongly en-

hanced magneto-crystalline anisotropy with an easy axis perpendicular to the surface

plane. This perpendicular anisotropy persists up to about 6 monolayers at room tem-

perature, then a spin reorientation transition (SRT) takes place with the easy axis in

the film plane [70, 7]. Epitaxial Fe/Ag(001) films have been extensively studied, but

accurate determinations of the structural parameters in the ultra-thin regime (< 6 ML)

are scarce. Only a few authors have properly addressed the epitaxy and highlighted

the importance of the substrate quality, deposition rate and temperature and annealing

procedures for ultra-thin films. The influence of these parameters might explain many

contradictory results reported in literature.

Within the scope of this thesis, we intended to shed some light on the interaction

between the AFM and FM layers at an Fe/CoO interface of a well-characterized sample

grown under well-controlled UHV conditions. We coupled several advanced experimen-
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tal techniques (in situ and ex situ MOKE, in situ GIXRD, reflectivity and polarized

XAS) probing structural organization, morphology and magnetism.

1.4 Surface physics concepts

From the above exposed, we see that there is an intrinsic dependence of the magnetic

properties on the specific structure of the systems studied. When coming into the thin

film regime, parameters like roughness, inter-diffusion and mixing of ordered and dis-

ordered phases add new degrees of complexity. The elaboration of well characterized

samples with sharp surface/interfaces is a required stage for the understanding of the

exchange coupling mechanism [71]. A fundamental study of the growth mechanisms of

the various metal on metal systems is an important step toward the control of the struc-

ture, especially in the case of ordered alloys. Growth on atomically flat monocrystalline

surfaces is foreseen to produce such model-systems.

Preparing high quality, atomically controlled ultra-thin films requires special exper-

imental environments. Ultra-high vacuum (UHV) conditions, i.e. pressures in the range

of 10−9 to 10−11 mbar, is one of the most restrictive. The influence of the residual gas

in the vacuum chamber and the impurities on the substrate can alter the structure of

an ultra-thin film: physical defects at the surface can act as nucleation sites for adsor-

bates and perturb homogeneous growth. A substrate cleaned in UHV can maintain its

cleanliness for a longer time without contamination from impurities. Another aspect is

that even under vacuum, evaporated atoms may meet other species at a given distance

(known as the mean free path) while traveling from the evaporator to the substrate.

Because the mean free path is inversely proportional to the pressure, UHV is needed

to maintain a slow and stable deposition rate for building up a structure with atomic

scale control. The use of UHV conditions, together with a collection of techniques

and methods used in surface physics laboratories to achieve an atomic scale control

of surfaces, interfaces and films structures, makes up what is called here the “surface

physics approach” to study magnetic ultra-thin films. Indeed, in a more general picture

the techniques of surface science, going from UHV to electrochemical environments, go

far beyond this. The surface science is a vast branch of knowledge, that gets renewed

importance with the emphasis given today to miniaturization of devices and to new

physical phenomena unrevealed in the nanometric scale. The fundamental concepts of

the physics of surfaces and interfaces are subject of a vast literature, of which we refer

mainly to two recent textbooks, one in English by Ibach [72] and the other in French

by Andrieu and Muller [73]. Here we address briefly a few important notions on surface

physics that are valuable to the problem we are facing.

In a simplified picture, the surface of a crystal can be seen as a truncation of the

bulk infinitely periodic structure along a defined direction, perpendicular to the surface.

The energy necessary to create such a surface, by cleaving of the bulk for example,

corresponds roughly to the energy of the bonds between atomic planes that are broken

in the process. The surface energy density8 γ, expressed in Jm−2, is particular for each

8To be precise, γ defines the work necessary to create a surface. In the system we are dealing with,
this corresponds to the surface free energy density (fSurf ), so that we call it simply surface energy
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material and is anisotropic, depending on the crystallographic orientation of the surface.

Surface atoms have a lower coordination than their counterparts in the bulk and in many

cases the bare surface keeps the same in-plane bulk symmetry but relax the atomic

distances perpendicular to surface, so as to minimize energy towards thermodynamic

equilibrium. However, in a few metals the positions of the atoms in the surface layer

rearrange dramatically to compensate this lower coordination and minimize energy. The

surfaces where the atomic arrangement is different from that which would result from

a simple truncation of the bulk structure are said to be reconstructed. Generally, the

rearrangement involved in such reconstructions tend to produce a more densely packed

surface layer. That is the case of some 5d -transition metals surfaces [74], like the quasi-

hexagonal reconstruction of Pt(001), the first experimentally observed reconstruction

on a clean metallic surface [75]. This reconstruction is explored in details in section

3.1.1.

The study of metal-on-metal growth on single crystal surfaces, although close to an

idealized situation, is far from being straightforward [76]. At the temperatures where

growth experiments are typically carried out, the rates for many atomic scale processes

on the surface, such as adsorption, surface diffusion, chemical bonding, atom exchange,

among others, are too low for global thermodynamic equilibrium to be established.

The film production usually proceeds through nucleation and growth stages and the

resulting morphology is dominated by the effects of kinetic limitations and does not

represent thermodynamic equilibrium. The richness of attainable structures is therefore

immense. Depending on temperature or deposition rate different processes are allowed,

in a complex hierarchy of (quasi-)equilibria. There are three basic modes of crystal

growth in the absence of surface defects and inter-diffusion: the island, the layer-by-

layer and the layer plus island modes. However, more complex growth modes, such

as one-dimensional monoatomic wire growth [77] or self organized clusters [78], can be

achieved by using anisotropic or patterned substrates. In the island, or Volmer-Weber

mode, small clusters are nucleated directly on the substrate surface and then grow into

3D-islands. The layer-by-layer, or Frank-van der Merwe mode, displays the opposite

characteristics and, ideally, one monolayer9 is completed before the next one begins to

grow. The layer plus island, or Stranski-Krastanov, growth mode is an intermediate

case. After forming the first ML, or a few MLs, subsequent layer-by-layer growth is

unfavorable and islands are formed on top of this “intermediate” layer.

Heteroepitaxial growth can be pseudomorphic, also called coherent epitaxy, which

means that the layer grows with an in-plane lattice constant that matches the substrate

one. The misfit between the natural lattice constants of the deposited film af and the

substrate as gives rise to a surface strain of magnitude

εmf =
af − as
as

. (1.10)

density. This is not always the case and generally one has, γ = fSurf −
∑
i

µiΓ
Surf
i , where µi is the

chemical potential of component i and ΓSurfi is the excess density of the component i at the surface.
For a single crystal in vacuum (i = 1), we can choose the Gibbs surface so that ΓSurf = 0.

9One monolayer is defined as the number of atoms in a substrate atomic plane parallel to the
surface, which means 1.3×1015 atoms/cm2 and 1.2×1015 atoms/cm2 for Pt(100) and Ag(100) surfaces,
respectively.



18 1. Background

Assuming isotropic strain and deposited film elastic properties, the elastic energy per

area carried by the film is given by [72]

s̃ =
t

2

Y

1− ν
ε2

mf + ∆s(s)εmf (1.11)

where Y is the Young modulus of the film, ν the Poisson ratio (generally close to

0.3) and t its thickness. The change in the surface stress ∆s(s) is the total change in the

surface stress due to film deposition. Note that the elastic energy scales linearly with

the film thickness, so that relaxation is expected after some critical thickness tc. The

film can relax for instance by the formation of dislocations or by growth of 3D-clusters

giving a layer-plus-island mode.



Chapter 2

Experimental techniques

Surface preparation and characterization techniques are intrinsically based on the in-

teraction of photons, electrons and ions with matter. When these particles interact

with matter many different processes are observed. As a general rule, these processes

are largely dependent on the energy scale involved in the interaction.

The very limited penetration depth of electrons into the material makes the Auger

electron spectroscopy (AES) and the low-energy electron diffraction (LEED) techniques

very sensitive to surfaces. Charged ions, usually Ar accelerated at quite large energies,

are employed to clean surfaces by sputtering. High energy X-ray photons interact

weakly with matter and may penetrate a few hundreds of micrometers into the material.

The surface sensitivity with X-rays comes from a particular geometry where the angle

of incidence is close to the so called critical angle for total reflectivity (θc). At this

particular geometry the penetration depth is reduced to some dozens of nanometer,

improving the surface sensitivity in X-ray diffraction measurements. Many processes

may occur after the photon-matter interaction and we are particularly interested in the

elastic scattering and in the absorption followed by inelastic emission. In this chapter,

we discuss the main techniques used.

2.1 Surface preparation and analysis

To prepare clean and flat single crystal surfaces, noble gas ion sputtering followed by

annealing is the standard procedure used. Bombardment with low energy Ar+ ions

removes superficial atom layers through a knock-off process, where collisions of the ions

with surface atoms remove surface atoms by linear momentum transfer. In our experi-

ments standard ion guns were used with typical working conditions of: energy = 800 eV,

current = 10µA and PAr = 10−6 mbar. The ion sputtering is routinely used to remove

deposited films from the surface. A side effect of the sputtering is that it disorders the

substrate surface. An annealing step is required to flatten the surface. The details of

surface preparation, like the annealing temperature, vary with the substrate and will

be presented for each case studied.

Our films are prepared by the molecular beam epitaxy technique, also called thermal

deposition, where thermally evaporated atoms are deposited onto the substrate from

an effusion cell. A standard resistive effusion cell (Knudsen cell) is used for Mn depo-

19
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sition. Fe, Co and Pt are deposited from electron-beam heating sources. In our case

the growth rate was typically a few minutes per ML. In UHV pressures (10−10 mbar),

metals usually evaporates directly from the solid phase (sublimation). A special case

is Pt, which evaporates very close to the melting point (2040 K). At a temperature of

2020 K the vapor pressure is of 10−4 mbar. The typical evaporation rate from a Pt rod

is of 30 min/ ML. This slow deposition rate should favor the growth in thermodynamical

equilibrium conditions, resulting in one of the three typical situations described previ-

ously: Frank-van der Merve (layer-by-layer), Volmer-Weber and Stransky-Kranstanov,

but indeed the growth at room temperature can be controlled by the kinetics. In the

case of Pt on Pt(111) homoepitaxy, it is well known that room temperature growth

results in quite a rough surface, while almost ideal layer-by-layer growth is obtained at

high temperature [79].

To control the thickness in the ML level two methods are employed. In the first,

the evaporation rate is calibrated with a quartz crystal micro-balance positioned at

the place of the sample, where the amount of material deposited is quantified from the

corresponding shift on the quartz oscillation frequency. In the case of layer-by-layer

growth, periodic oscillations of the scattered X-ray intensity are observed at a well

defined reciprocal space position [80], which are directly related to the growth rate.

Auger electron spectroscopy, is routinely used for surface chemical analysis, with

3 keV primary electron beam. In this technique the secondary electrons emitted after

the interaction of the primary beam with the sample surface are collected and analyzed

in energy, so as to distinguish the Auger electrons. The primary beam ejects electrons

from core energy levels of the atoms close to the surface. In the Auger process after

the core hole is filled by an outer shell electron, the transition energy is transferred to

a second electron, the Auger electron, which is emitted from the atom with a kinetic

energy dependent on the particular electronic transition that originates it (and on

its own binding energy). Since energy levels (and transition energies) are specific to

each atomic element, an analysis of the kinetic energy of emitted electrons can yield

information on the chemical composition of the surface. The surface sensitivity is

a consequence of the small electron mean free path (∼ 1 nm) for the typical Auger

electron energies. AES is used both to check the substrate cleanliness and to compare

the relative composition of the different deposits.

In preliminary experiments of the growth process investigations (chapter 3) we use

low energy electron diffraction and scanning tunneling microscopy (STM) to obtain the

size and symmetry of the surface unit cell and to have clues on the degree of order

and surface morphology. The electron diffraction is a direct consequence of the wave

nature of electrons. In LEED a normal incidence electron beam with energies on the 20

to 500 eV range is elastically backscattered by the crystal surface atoms and generates

a diffraction pattern corresponding to the surface reciprocal lattice. As in AES, the

surface sensitivity comes from the small electron mean free path. The STM is an

instrument for imaging surfaces at an atomic level, based on the quantum tunnel effect.

The tunneling current between an atomically sharp conducting tip and the surface of a

(metallic) sample is a function of the tip position, the applied voltage and local density

of states of the sample. Scanning the tip on the sample surface with subatomic precision
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(obtained by piezoelectric motion stages) makes it possible to attain atomic resolution,

since the tunnel current depends exponentially on the sample-to-tip distance. We have

used the constant current mode for the STM studies presented here, where the tip is

scanned over the surface at a fixed bias voltage while a feedback circuit regulates the

vertical position of the tip in relation to features of the surface in such a way that the

tunnel current is kept constant at some fixed (nA) value. During this procedure the

vertical position of the tip is stored as a function of the lateral coordinates of the tip,

yielding a STM image. Indeed, the STM image represents a complicated convolution of

the electronic states of the tip and the sample, and is not a direct topographical image.

A more complete description of the above techniques may be found in surface physics

books [72, 73] and references therein.

2.2 X-ray scattering and diffraction

When an electromagnetic wave interacts with matter many processes can be observed.

For the materials studied here, we are mainly interested in the photon absorption and

scattering in the X-ray range. The scattering process can be elastic or inelastic, co-

herent or incoherent. After a photon absorption we can observe emission of photons

(fluorescence) or electrons (Auger effect) at specific energies. In this section we are

mainly concerned with the elastic scattering and interference of monochromatic beams

with wavelength λ comparable to the inter-atomic spacing, the X-ray diffraction (XRD).

After an introduction about XRD, the surface sensitive technique of XRD in the grazing

incidence geometry is discussed, followed by a brief description of the specular reflectiv-

ity technique (XRR). The objective is to provide the reader with some essential concepts

needed to follow the arguments made in this thesis. First we recall a few concepts and

definitions of kinematic diffraction theory that will set the basis for the understanding of

GIXRD and XRR. All concepts collected here have been subject of detailed description

in numerous textbooks, reviews and PhD thesis [81, 9, 82, 83, 84, 85].

2.2.1 Introduction to X-ray diffraction

To begin, we will briefly explain some basic terminology. Crystal structures are a

repetitive arrangement of atoms along all three direction in space. These directions are

defined by three lattice vectors a1, a2 and a3, whose modules give the lattice parameters

along the three crystal axes. Reciprocal lattice base vectors b1, b2 and b3 are defined

for the reciprocal space in such a way that

aj .bg = 2πδjg (2.1)

The vectors ki and kf denote respectively the incident and scattered beam wave vectors,

and present the same modulus k = 2π
λ (elastic scattering). The vector q = kf − ki,

called momentum transfer, may be written in terms of the reciprocal space vectors as

q = h1b1 + h2b2 + h3b3 (2.2)
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where the coefficients h1, h2 andh3 are continuous. The angle formed between ki and kf

is the scattering angle 2θ, so that we have q = 4π sin θ
λ . The incident beam is considered

as an unpolarized plane wave with electric field amplitude E0 and intensity I0 =
E2

0c
8π .

The scattered beam is evaluated at a distance R, far from the crystal.

To calculate the X-ray scattered intensity by a crystal, one simply add coherently

all independent contributions coming from each individual electrons of all atoms in the

crystal. For a given atom containing several electrons, the instantaneous value of the

electric field of the scattered beam is given by

εatom =

(
E0e

2

mc2R

)
e2πi[νt−(Rλ )]f (2.3)

where the atomic scattering factor f is the sum of the scattering of each individual

electron. The pre-factor re = e2

mc2
≈ 3 × 10−13 cm (cgs units) comes directly from the

electromagnetic wave scattering by one electron in the dipole approximation (calculated

in appendix B of reference [9]) and is known as the classic electron radius or Thomson

scattering length. e and m are the electron charge and mass and c the speed of light.

Such a small value of re evidences the weakness of the interaction between X-ray and

crystal, which allows the use of the kinematic approximation1. In the treatment given

here, we assume that the X-ray energy2 (of wavelength λ and frequency ν) is always

much larger than any of the absorption edges that can be excited in our material, so that

only elastic scattering is taken into account. The electron distribution is considered to

have spherical symmetry. With this assumptions, the atomic scattering factor of each

atom n with Z electrons can be simply written as:

fn =

Z∑
j=1

∞̂

0

4πr2ρj(r)
sin(qr)

qr
dr (2.4)

where r is the distance from the atom center and ρj(r) is the charge density of electron

j (supposed isotropic).

The atomic scattering factor is the amplitude of the unmodified3 scattering per

atom expressed in electron units (amplitude of a single electron scattering according to

classical theory). For small values of q it approaches Z, the number of electrons in the

atom.

To discuss the X-ray intensity diffracted by a crystal, we suppose that the crystal

is small enough, so that one can neglect absorption and extinction effects. The amount

of scattered intensity is a negligible fraction of the incident beam intensity so that each

crystal atom is subjected to the same incident amplitude. For simplicity we consider a

small crystal with a parallelepiped shape and edges equal to N1a1, N2a2, N3a3 parallel

to the crystal axes a1, a2 and a3. This restriction imposes in fact a finite scattering

1The kinematic approximation assumes that the scattered beam is not scattered a second or third
time before leaving the crystal.

2The numerical relation between wavelength λ in Å and photon energy E in keV is λ[Å] = hc
E =

12.398
E[keV]

.
3No absorption or anisotropy effects.
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volume δV , the shape not being crucial. The position of the atom of type n in the unit

cell with coordinates (m1,m2,m3) is expressed by Rnm = m1a1 +m2a2 +m3a3 + rn.

The instantaneous value of the electric field of the scattered beam far from the small

crystal can be expressed by (chap. 3 of [81]) :

εcrystal =

(
E0e

2

mc2R

)
e(2πi)[νt−(R/λ)]

∑
n

fne
iq.rn

3∏
j=0

Nj−1∑
mj=0

eiq.mjaj

 (2.5)

where the product on j accounts for the three directions in space. The summation over

n involves the atomic positions rn of the different atoms in the unit cell and depends

not only on the atomic scattering of each atom but also on the particular structural

arrangement. This term denoted by Fu is called the unit cell structure factor:

Fu =
∑
n

fne
iq.rn (2.6)

The structure factor plays an important role in X-ray scattering because it contains all

information concerning atomic positions. It represents nothing else than the Fourier

transform of the electron density inside the unit cell.

Each of the sum over mj , that accounts for all unit cells of the crystal with edges

Njaj , may be expressed by :

sj(q.aj) =

Nj−1∑
mj=0

eiq.mjaj =
eiq.Njaj − 1

eiq.aj − 1
(2.7)

The intensity of the scattered beam, given by I = c
8π ε.ε

∗, can be written, observing

equations 2.1 and 2.2, as

I = IeFF
∗

3∏
j=0

(
sin2 (πhj .Nj)

sin2 (πhj)

)
(2.8)

with

Ie = I0
e4

m2c4R2

(
1 + cos2 2θ

2

)
The term in brackets is the polarization factor for the unpolarized plane wave consid-

ered.

One can see that for reasonably large values of Nj the intensity I is negligible for

all values of the continuous variables h1, h2 andh3, except when they are very close to

integers. When one has h1 = h, h2 = k, h3 = l, with integer h, k and l, the many atoms

in the crystal scatter in phase, and we have a maximum of intensity. The function

|s(x)|2 =
sin2 (Njx)

sin2 x
(2.9)

has as maximum values N2
j , so that the intensity maximum is given by

I = IeFuF
∗
uN

2
1N

2
2N

2
3 (2.10)
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The resulting intensity distribution is then a series of δ-functions at each Hhkl = hb1 +

kb2 + lb3 position of the reciprocal space, with maximum value I. This conditions

are know as Laue conditions and are equivalent to the Bragg’s law, λ = 2dhkl sin θ,

where dhkl is the distance between the particular scattering atomic planes. In a similar

statement one can say that when the momentum transfer q (eq. 2.2) is equal to a

reciprocal lattice vector Hhkl = hb1 + kb2 + lb3, a Bragg peak is observed. The

modulus of the reciprocal lattice vector is related to the atomic planes distance by

|Hhkl| = 2π
dhkl

and the integers hkl are known as the Miller index.

The unit cell structure factor for a given hkl reflection can be expressed as :

F hklu =
∑
n

fne
2πi(hxn+kyn+lzn) (2.11)

where xn, yn and zn are numbers between 0 and 1 representing the coordinates of each

unit cell atom n in lattice parameter units, i.e.

rn = xna1 + yna2 + zna3. (2.12)

The atom positions Rnm given above represent only average positions about which atoms

may deviate from or oscillate due to thermal effects or disorder. It can be shown that

the deviations from the ideal positions introduce a decrease in the scattered intensity

that may be taken into account by replacing Fu by :

F
′
u =

∑
n

fne
−Mne2πi(hxn+kyn+lzn) (2.13)

where Mn = Bn (sin θ/λ)2 = Bn
q2

(4π)2
may be different for different atoms. Bn,

called Debye-Waller parameter, does not depend on q, while e−Mn , the Debye-Waller

factor, decreases for higher momentum transfer.

The peaks represented by the function s(x) = sin2(Nx)

sin2 x
in eq. 2.8 have a finite width

proportional to 1/N , so that there is an appreciable intensity in the diffracted beam

at values of q which differ slightly from Hhkl. The maximum intensity measured,

proportional to N2, would depend on the precise alignment of the primary beam, on

its divergence and on small deviations of the angle of incidence due to some mosaicity

in the crystal. A better suited measurable quantity is the integrated intensity.

In order to measure integrated intensities, the crystal is rotated continuously around

the Bragg angle θ at a constant angular velocity ω about an axis parallel to the planes

hkl and normal to the primary beam. The rotation is such that it covers the whole

angular range that gives any contribution to the reflection. The detector slit is set

so wide that all the diffracted radiation from the reflection hkl is recorded. With

such an experimental procedure, one measures the total diffracted energy rather than

intensities, and due to the rotation of the crystal, all small crystallites with some

degree of misorientation will participate to the total diffracted energy at some time of

the rotation.

The total diffracted energy when a small single crystal is rotated at velocity ω

through a Bragg angle turns out to be :
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E =
I0

ω

(
e4

m2c4

)
λ3δV F

′
uF
′∗
u

v2
a

(
1 + cos2 2θ

2 sin 2θ

)
(2.14)

where the factor
(

1+cos2 2θ
2 sin 2θ

)
is the Lorentz-polarization factor for a single crystal and

an unpolarized primary beam, and va = a1 · (a2 × a3) is the unit cell volume. Notice

that the total diffracted energy E scales with the volume δV of the small crystal.

2.3 Grazing incidence X-ray diffraction

The potential of X-rays to provide valuable information about surfaces was first demon-

strated by pioneering experiment by Eisenberger and Marra in 1980 [86]. Since then,

with the increasing accessibility of third-generation synchrotron facilities, a new branch

of X-ray crystallography was developed: the surface X-ray diffraction or grazing inci-

dence X-ray diffraction. Unlike electron diffraction, where multiple scattering has to be

taken into account, the low X-ray scattering cross section allows the diffracted intensity

to be interpreted within the kinematic theory.

In a qualitative manner, we can use Fourier transforms to develop some ideas about

the diffraction by a crystal surface. The diffraction pattern of a given crystal structure

is proportional to the square modulus of the Fourier transform of its electron density

distribution. The convolution theorem states that the Fourier transform of the product

of two functions g and h is equal to the convolution of the Fourier transforms of the

individual functions (F(g · h) = F(g)⊗F(h) ). For an infinite crystal, modeled by an

infinite lattice of δ-functions (the real space Bravais lattice) multiplied by the atomic

electron density ρ(r) (or the unit cell electron density), the Fourier transform corre-

sponds to another infinite lattice of δ-functions (the reciprocal space Bravais lattice)

convoluted with the atomic scattering factor f (or structure factor F for a lattice with

a basis). In the case of a crystal with a surface, we can imagine a similar construction,

but this time with a truncation in a direction z perpendicular to the surface, that we

take into account by multiplying our crystal by a Heaviside step function H(z). The

structure of the crystal is no longer infinitely periodic, as the surface breaks the symme-

try in the z direction. The Fourier transform along this direction cannot be discrete any

longer, and hence its diffraction pattern must be continuous. Through the convolution

theorem we have the result shown in figure 2.1.

The Fourier transform of H(z) is 1
q3

, which gives a 1
(∆q3)2

dependence for the inten-

sity near each of the Bragg points. This smearing of the scattering intensity perpendic-

ular to the surface, that overlaps between Bragg peaks to form continuous rods4, gives

rise to the so-called crystal truncation rods (CTRs)[88].

The origin of the CTR can also be seen by introducing a small damping or absorption

term eγ for each unit cell layer and calculating the diffraction coming from the semi-

infinite crystal inside z ≤ 0. In the z -direction, equation 2.7 gives rise to

4For low index surfaces, at least. If the surface have a large miscut the rods do not connect Bragg
peak, as they are always perpendicular to the surface [87].
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Figure 2.1: Origin of crystal truncation rods, explained qualitatively by the convolution
theorem (taken from ref. [85]).

FCTR(q.a3) =
0∑

m3=−∞
e(iq.a3−γ)m3 =

1

1− eiq.a3−γ (2.15)

In the limit of γ tending to zero, the square modulus of FCTR gives

|FCTR(q3a3)|2 =
1

4 sin2
(

1
2q3a3

)
and the CTR intensity dependence on the out-of-plane momentum transfer q3 is then,

ICTR = IeF
′
uF
′∗
u N

2
1N

2
2

1

4 sin2
(

1
2q3a3

) (2.16)

Nothing has changed about the intensity distribution along the q1 and q2 directions.

It is still strongly peaked around the reciprocal lattice points with negligible intensity

in between for reasonably large values of N1 and N2. In real surfaces, the presence of

steps, for example, have the effect of broaden the in-plane CTR profile. The in-plane

breadth ∆q‖ of the CTR is related to the correlation length L of the surface by [89]

L =
1

∆q‖
(2.17)
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where ∆q‖ is estimated to be the full width at half maximum (FWHM) of a Lorentzian

or a Gaussian or a pseudo-Voigt5 line shape that best fits the measured profile.

The Fourier transform reasoning above gives the correct ∆q3 dependence close to

the Bragg peaks. In the same way, if instead of an absolutely perfect and infinitely sharp

truncation (H(z)) we consider a broader transition due to surface roughness, the CTR

dependence will be steeper than 1
(∆q3)2

. For the simple β-model of statistical roughness

proposed by Robinson [88], where the occupancy of the kind βn, with 0 < β < 1 and n

the surface layer index, we have

Irough = ICTR
(1− β)2

1 + β2 − 2β cos (q3a3)
(2.18)

Up to this point, our crystal surface is just a truncation of a bulk crystal. Now,

if we allow atoms to relax in response to the low coordination number on the surface

(section 1.4) or we consider an adlayer on top of the bulk crystal, the result would be

very different from the idealized bold surface. Indeed, the purpose of GIXRD is exactly

to determine these changes with regard to the known crystal structure of the substrate.

This is done by comparing the experimental value of the integrated intensity at each

hkl reflection with a calculated value. The essential quantity that can be obtained from

the experiment and compared to simulations is the surface structure factor amplitude,

called simply|Fhkl|. Here on, it is convenient to change the nomenclature from momen-

tum transfer q to reciprocal lattice units, where the continuous coefficients are now

labeled as h, k and l, following eq. 2.2.

In this thesis, all the |Fhkl| calculations are done with the help of the ROD program[90,

91]. Fhkl is obtained by the interference of the bulk contribution, and a contribution

of the surface unit cell where all atoms close to the surface whose position or chemical

nature differ from that one of the bulk unit cell are included.

Fhkl = FBulk + FSurf

FBulk = F hklu

1

1− e2πil−γ (2.19)

FSurf =

surf.cell∑
n

fne
−Mne2πi(hxn+kyn+lzn)

The surface unit cell may contain an arbitrary number of atoms with variable inter-

atomic distances and Debye-Waller factors, that are used as fitting parameters to re-

produce a particular set of experimental data.

2.3.1 Integrated intensity in GIXRD

As discussed previously (eq. 2.14) the integrated intensity from an hkl reflection of

a crystal is measured by setting the Bragg conditions and rocking the sample until

5A pseudo-Voigt function is a mixture of a Gaussian function and a Lorentzian function, with a
fitted weight 0 < η < 1 so that, PV = ηL+ (1− η)G.
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the intensity falls down to the background level. In surface X-ray diffraction we are

interested, for a given (hk) CTR, to collect the integrated intensity as function of

the continuous variable l. The rocking scans are then performed to integrate the in-

plane profile of the CTR at a particular value of l. In the integration procedure, a

broad background coming from thermal diffuse scattering is subtracted and only the

sharp contribution coming from the CTR is considered in the numerical integration

procedure used6. Structure factor amplitudes |Fhkl| are then extracted7 by applying

standard correction factors [92] for the z -axis diffractometer geometry of SUV station.

|Fhkl|2 ∝
Irocking

PLrockingCareaCdetCbeamCrod
(2.20)

The polarization correction P takes into account the attenuation factor due to the

angle between the incident and the scattered electric field. The Lorentz correction

Lrocking depends on the way the rod crosses the Ewald sphere during the rocking scan.

The Carea normalize for the area of the surface participating to the diffracted signal.

The CTR is integrated along l, and the measured intensity needs to be normalized by

the integration interval, which depends on the width of the slits. This is the role of

Crod. Finally an important factor for the present work is Cdet, which corrects for the

in-plane acceptance of the detector. Rod shape can be so wide that only a portion is

integrated by the detector either during a rocking scan or a scan in reciprocal space.

This happens for example along rods which include short range order peaks. In this

case the intensity across the rod is measured with a rocking scan and is fitted with a

pseudo-Voigt line shape, which allows an evaluation of the overall scattered intensity

at this l value of the rod.

2.3.2 GIXRD applied to ordered alloys

A quantitative study of the degree of order is of special importance for determining

fundamental properties like the strength and orientation of the magnetic anisotropy.

GIXRD allows the study of the growth and of the chemical order in a few nm-thick

surface alloys. However, for such experiments a high brilliance synchrotron source is

required, that is why the number of studies devoted to this subject is quite limited.

Most order studies by GIXRD performed up to now are focused on the surface layers of

bulk ordered binary alloys, especially with regards to the order-disorder phase transition

[93, 94] and to segregation induced short-range order (SRO) [95, 96].

The study of ordered binary alloys by XRD is active since the first half of XXth

century. A good description of the basic concepts can be found in Warren’s book [81].

Long-range order (LRO) occurs for several binary alloys (as CuAu, Cu3Au, MnPt, FePt

etc.) below a critical temperature. Above this temperature (or in quenched samples)

one can still find some short-range order, which means that one atom can only locally

influence the occupancy of its close-neighbors. We work below the ordering temperature

of the alloys studied, so we are always concerned with LRO. A basic concept that is

6The measured intensity is always normalized by a monitor to take into account variations in the
primary beam intensity.

7The ANA program [91] is used to integrate rocking scans and derive |Fhkl| values.
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worth defining here is the long-range order parameter (p. 209 of [81]). We will call the

two kinds of atoms A and B and represent the two sites by α and β. For the ideal

stoichiometry composition and perfect long-range order, the α-sites are all occupied by

A-atoms and the β-sites are all occupied by B-atoms. We define rα (rβ) as the fraction

of α (β)-sites occupied by the right atom type and wα (wβ) as the fraction of α (β)-sites

occupied by the wrong atom. The long-range order parameter S is defined to be linearly

proportional to (rα + rβ), with S = 0 for a completely random arrangement and S = 1

if the composition is stoichiometry and (rα = rβ = 1). Using these two conditions, one

finds that :

S = rα + rβ − 1 = rα − wβ = rβ − wα (2.21)

Let yα and yβ be the fraction of α and β sites in the ordered structure (yα+yβ = 1),

and xA and xB the atom fraction in the sample (xA+xB = 1). Then yαrα+yβwβ = xA

and yαwα + yβrβ = xB and order parameter can be rewritten as:

S = (rα − xA) /yβ = (rβ − xB) /yα (2.22)

Chemical order in alloys increases the primitive cell size and gives rise to super-

structure reflections. For each Bravais lattice one can derive the conditions for allowed

reflections based on the structure factor. We are particularly interested in the fcc lattice

of Pt and Ag that will be discussed throughout this manuscript. We will also discuss

the L10 chemically ordered fct structure.

In a fcc (or fct) lattice, for every atom with coordinates (xn, yn, zn) (eq. 2.12), there

are three identical atoms with coordinates (xn + 1
2 , yn + 1

2 , zn), (xn + 1
2 , yn, zn + 1

2),

(xn, yn + 1
2 , zn + 1

2). The unit cell structure factor (eq. 2.11) can be expressed by a

sum over these 4 identical atoms with atomic scattering factor f. Choosing (xn, yn, zn)

to be (0,0,0) in the unit cell reference frame:

F hklu = f
[
1 + eπi(h+k) + eπi(h+l) + eπi(k+l)

]
(2.23)

One can readily see that the sum takes the value 4 if hkl are unmixed (all odd or

all even) and the value zero if hkl are mixed:

hkl unmixed : Fhkl = 4f

hkl mixed : Fhkl = 0

So, the fcc structure is recognized by the fact that all mixed reflections are missing.

We will consider now the specific case of the L10 structure, which is the prototypical

case for the MnPt and FePt discussed in this work. In this case we have two α and two

β sites for unit cell: β = 000, 1
2

1
20, ; α = 1

201
2 , 0

1
2

1
2 . The structure factor becomes:

F hklL10 = (rαfA + wαfB)
[
eπi(h+l) + eπi(k+l)

]
+ (rβfB + wβfA)

[
1 + eπi(h+k)

]
(2.24)

We have three kinds of reflections:

hkl unmixed, F hklL10
= 4 (xBfB + xAfA), Fundamental;

h+ k = even and k + l = odd, F hklL10
= 2S (fB − fA), Superstructure;
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h+ k = odd, F hklL10
= 0.

In this manuscript, unless otherwise noted, the fcc (001) substrate structure is

represented by the surface unit cell instead of the conventional cubic one. For a (001)

surface these two unit cells are rotated one from the other by 45° about the surface

normal (see fig. 2.2). The relations between the surface and cubic lattices are: a1
S =

a1
fcc+a2

fcc

2 ; a2
S =

−a1
fcc+a2

fcc

2 ; and a3
S = a3

fcc. In the reciprocal space, the relationship

between the Miller indexes is given by:

hfcc = hS + kS

kfcc = −hS + kS (2.25)

lfcc = lS

Figure 2.2: Surface and fcc unit cells.

Then, considering a pseudomorphic L10 surface alloy with c parallel to a3
fcc, super-

structure (order) peaks are observed along the (10) CTR at lS = 2n
afcc
c (horizontal

hatch-fig. 2.3), between bulk Bragg reflections, while the fundamental (structure) alloy

peaks are close to the substrate Bragg reflections at lS = 2n+ 1 (solid circles-fig. 2.3),

with n integer). The inverse situation in encountered along the (11) CTR, with LRO

peaks at lS = (2n+1)
afcc
c and substrate Bragg peaks at lS = 2n. Pseudomorphic growth

of the alloy with the c-axis parallel to a1
fcc double the surface unit cell size and additional

(2n+1
2

2m+1
2 ) rods are observed. These are not CTR, once the diffracted intensity comes

from the surface alloy only. On the (1/2 1/2) rod, peaks will be observed at lS = 2n
afcc
afct

,

while on the (1̄/2 1/2) rod peaks will be observed at lS = (2n+ 1)
afcc
afct

(�hatch-fig. 2.3).

However, a symmetry equivalent domain rotated by 90° in-plane, i.e. with the c-axis

parallel to a2
fcc, will be also observed (�hatch-fig. 2.3). In the case of a non pseudo-

morphic alloy with in-plane c-axis, rods are observed at (
(2n+1)afcc

2c
(2m+1)afcc

2afct
)

When considering ultra-thin films, an important issue is the effect on the diffraction

of anti-phase domains. Nucleation of ordered domains during the growth, which do not

match each other, can occur resulting in anti-phase domain boundaries. Unlike bulk

alloys, the domain size cannot be increased by long high temperature annealing to avoid



2.3. Grazing incidence X-ray diffraction 31

Figure 2.3: Reciprocal space representation of the structure (solid circles) and order
(hatched circles) peaks from an L10 alloy. The hatch pattern indicates the orienta-
tion of the c-axis of the domain generating each peak, following the correspondence:
[1/2 1/2 0]→ (�); [1/2 1/2 0]→ (�) and [0 0 1]→ (—).

inter-diffusion with the substrate. It can be shown that anti-phase domains influence the

peak intensity and shape, but not the integrated intensity [81]. For bulk materials and

powders the order parameter can be obtained by comparing the integrated intensity

of fundamental and superstructure peaks (with appropriate geometrical corrections)

[97]. This approach is useful also for thin films where one can well distinguish the alloy

diffraction peaks (order and structure) from the substrate ones [47, 98]. This is the

case of many studies of ordered alloy thin films for high magnetic anisotropy purposes,

where usual substrates are for instance, amorphous SiO2, or metallic buffers on top of

a single crystals like MgO or Saphire. The films are usually grown by sputtering and

in some cases by MBE and frequently present an orientation texture with some degree

of epitaxy with the underlying buffer. The approach we have chosen, growth on top of

single crystalline clean metallic surfaces with lattice constants chosen to induce not only

epitaxy, but also pseudomorphic growth, makes it impossible to follow this same method

to obtain the order parameter S (an exception will be in this work PtMn/Ag(001)).

Both the order and the structure peaks are superposed (and interfere) to the bulk CTR,

and we cannot separate them to calculate the alloy structure factor and derive S in the

same way. The elaboration of a method to evaluate properly the order parameter is a

relevant part in this work and will be discussed in detail in chapters 4 and 5.
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2.3.3 Experimental aspects

The in situ GIXRD experiments were performed at the European Synchrotron Ra-

diation Facility (ESRF) BM32 beam line which belong to the french Collaborative

Research Group on InterFaces (CRG-IF). The X-ray source is a bending magnet and

the monochromator is a Si(111) double crystal, with the second crystal bent to give

sagittal focusing on the sample. The vertical focusing is provided by a mirror posi-

tioned after the monochromator, resulting in a spot size of about 0.3 × 0.3 mm2. The

measurements were performed at photon energies between of 19 and 25 keV, with an en-

ergy resolution of about 2 eV. The Surface Under Vacuum (SUV) experimental station

consists of an UHV chamber, mounted on a z-axis type diffractometer, which provides

large angular ranges both for the incident and the emergent beams. Further degrees

of freedom are available to align the sample normal parallel to the azimuthal rotation

axis. The UHV chamber is equipped with several kind of pumps (ion pump, turbo

pump, liquid nitrogen cooled titanium sublimation pump), a grazing reflection high

energy electron diffraction (RHEED) gun, an Auger analyzer, and several evaporation

sources which can be operated during RHEED, Auger and X-ray analysis. The sample

is also prepared in situ by ion bombardment and annealing with an infrared pyrometer

control. A full description is given in ref. [99]. The figure 2.4 shows a schema of the

z-axis diffractometer (a) and a picture of the experimental setup (b).

(a) (b)

Figure 2.4: (a) Schema of the z-axis diffractometer [99]. (b) Picture of the SUV exper-
imental setup.

2.4 X-ray specular reflectivity

X-ray specular reflectivity [100, 9] is a technique widely employed to determine electron

density, thickness and roughness of single layers and multilayers on flat substrates.

This non-destructive technique can be applied to the study of surfaces and interfaces

of thin layers at atomic resolution without any condition on the level of crystallinity.

The XRR technique is based on the coplanar scattering of X-ray radiation around
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reciprocal-lattice point (000). The scattered intensities are measured as a function of

the scattering angle by keeping equal the incident and scattered angles of X-rays with

respect to the sample surface normal (this is the specular condition) (fig.2.5-a). The

XRR profile is the plot of the scattered X-ray intensity against the incidence angle or

against the reciprocal-lattice vector q.

The refractive index in the X-ray energy range for a homogeneous medium can be

written as

n = 1− δ − iβ , (2.26)

with

δ = (reλ
2/2π)

∑
ρi(Zi + f ′i)/Ai (2.27)

and

β = (reλ
2/2π)NA

∑
ρif”i/Ai (2.28)

recalling that re = e2

mc2
. ρi is the mass density of the ith element with atomic weight

Ai and atomic number Zi, f
′ and f” are the real and imaginary anomalous dispersion

factors, respectively and summation is made on all atoms of the unit cell. At the

interface air/surface the direction of the refractive beam can be obtained from Snell’s

Law as cosαi = ncosα′. The grazing angle of incidence for which the angle of refraction

α′ becomes zero, known as the critical angle, can be written as cosθc = n0. In the small

angle approximation the critical angle can be written as θc = (2δ)1/2. The specular

reflectivity, defined as ratio of scattered intensity over the incident intensity is equal to

unity below θc.
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Figure 2.5: (a) Scheme of X-ray reflectivity. (b) X-ray reflectivity profile as function of
the incidence angle. The thickness oscillations are known as Kiessig fringes.

The full reflectivity profile can be calculated using the classical laws of optics for

refraction and reflection at the interfaces. The amplitude of the reflected and transmit-

ted waves are derived imposing boundary conditions to the waves and their derivatives

(Fresnel formalism).

The interference of X-rays reflected from the interfaces, layers and multilayers on

flat substrates, gives rise to oscillations or diffraction effects in the X-ray intensity as

function of the angle of incidence (see fig. 2.5-b). These thickness oscillations are named
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Kiessig fringes. Fringe amplitude depends on surface and interface roughness and the

relative electron densities of the materials [101, 102]. Thicknesses of a single layer,

bilayer or periodic multilayer can be evaluated through the so-called modified Bragg

equation

mλ = 2t(n2 − cos2θm)1/2 (2.29)

where m is the diffraction order, t is the layer thickness (or multilayer period), n is

the (mean) refractive index of the (multi)layer and m is the incidence angle for which

the interference maximum of the order m occurs. Therefore, for simple systems, direct

procedures allow extraction of the required information from the XRR profile without

modeling and fitting. In particular, the film thickness, t, of a single layer sample can be

directly evaluated by the angular positions of the mth fringe maxima by the following

equation, which holds in the small-angle regime:

t =
λ

2(θ2
m − θ2

c )
1/2

m (2.30)

with θc, critical angle of the layer material [100].When the layered structure is complex,

these methods are not suitable and it is necessary to proceed through a modeling

and fitting procedure. The simulations widely used are usually based on the Parratt

recursive formalism of the Fresnel equations [103].

2.4.1 Experimental aspects

All XRR experiments presented in this thesis work were carried out with a Bruker

D8 Discover diffractometer using a line focus from a Cu target X-ray tube. Göbel

multilayer optics was used to select Cu wavelength (1.5418 Å) and to make the beam

quasi-parallel (divergence 5 0.03º ). The beam size at sample position was 50µm in the

incidence plane. Data were collected using a scintillation detector for 2 θ up to 12°, with

an increment of 0.05° and an acquisition time around 30 sec/step. The interpretation

of XRR measurements is carried out by fitting the experimental scans with theoretical

curves using Bruker LEPTOS® software[104].

2.5 X-ray Absorption Spectroscopy

2.5.1 Basic principles

The X-ray absorption spectroscopy (XAS) consists in the excitation of a core electron

via the absorption of a photon of energy ~ω , where ~ is the Planck constant and

ω the photon frequency. The variation of the absorption coefficient is measured as a

function of the incident photon energy. The so-called Beer-Lambert rule expresses the

linear absorption coefficient µ of the sample as a function of sample thickness and the

measured intensities of the incident ( I0 ) and the transmitted beam (IT ):

µ(E) =
1

t
ln

(
I0

IT

)
(2.31)
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Figure 2.6: X-ray absorption spectrum at the Fe K edge.

µdepends on the photon energy, the atomic density and the atomic species in the

sample.

In the case of ultra-thin supported films, the absorption of the substrate does not

allow the direct measure of µ from this equation. In this case the absorption coefficient

is obtained from the fluorescence yield and is proportional to
(
I0
IF

)
, with IF intensity

of the emitted fluorescence.

Depending on the photon energy different physical processes give rise to the struc-

tures observed in an absorption spectrum. Figure 2.6 shows a spectrum collected at the

Fe K edge (1s excitation) for an Fe metal foil. In the region before the edge, the energy

of the incident photons is lower than the ionization energy E0 (around 7112 eV for the

Fe K edge). In transmission measurements the absorption coefficient is due to all other

elements and core states that can be excited and decreases monotonically. In a fluo-

rescence measurement only the decay channel of interest is selected and the absorption

coefficient of the element at the edge is close to zero. This continuous background is

considered as the base line µ0.

The XANES (X-ray absorption near edge structure) [105, 106] range is normally

defined from a few eV before to around 60 eV above the edge. The XANES region

contains information on the electronic structure of the investigated samples and on the

symmetry of the absorbing site. For energies lower but close to E0 the energy may be

sufficient to promote the photo-electron towards its first empty or partially occupied

levels, that are localized levels. This phenomenon yield to the emergence of pre-edge

structures, whose shape and position with respect to the main absorption edge inform

on the oxidation state of the absorbing, its coordination geometry, site symmetry, and

orbital hybridization.

For energies higher than E0 up to around 60 eV above the edge, the photo-electron

is ejected towards states with a low kinetic energy, the excess energy above the binding

threshold. Its mean free path - average distance covered by the electron without energy

losses - is high. In this energy range the structures are dominated by multiple scattering
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processes suffered by photo-electron from its atomic neighbors.The comparison between

the XANES spectrum of a sample and those collected for reference compounds (“finger-

print”analysis) directly gives information on the structural and electronic environments

of the absorbing atoms. However, the full exploration of the richness of the XANES

spectrum needs to resort to ab initio simulations using advanced codes. During this

study we performed some preliminary simulations using FDMNES code[107].

In the energy region, starting from about 60 eV above the edge the core electron is

ejected towards delocalized states of the continuum. Its kinetic energy being large, its

mean free path is short and the structure in this range are mainly due to single scattering

events. The absorption spectrum is composed of a slowly varying function µ1 and an

oscillatory part around µ1. The photo-electron wave is backscattered by the neighbors

of the absorbing element. The absorption cross section is modulated by the interference

between the outgoing and the back-scattered photo-electron waves. As the X-ray energy

increases, the kinetic energy of the photo-electron increases. This results in a decreasing

photo-electron wavelength, and thus, in alternating destructive interference and giving

rise to an interference phenomenon between emerging and backscattering waves. The

absorption spectrum is composed of a slowly varying function µ1 and an oscillatory

part around µ1 that is called the EXAFS function (extended X-ray absorption fine

structure) and contains information on the atomic local structure around the absorber

atom.

2.5.2 EXAFS formalism

The basic theory of XAS has been addressed by many authors ([108, 106, 105]). The

contribution to the X-ray-absorption coefficient µ(E) from a given core-state i at X-ray

energy ~ω can be calculated in terms of initial and final states of the Hamiltonian for

the system using the golden rule,

µ(E) ∝ |〈f |HI | i〉|2 δ(Ef − Ei − ~ω)ρ(Ef ) (2.32)

where |i > and |f > are the wave functions for the initial and final states, Ei + ~ω
is the photo-electron energy, HI is the coupling to the X-ray field, Ei is the (large

negative) energy of the core level, the sum is over unoccupied, final states of energy Ef .

The differences in various theoretical approaches reflect different approximations for

the calculation of these ingredients. In particular, the question of precisely which one-

electron states to use is not unambiguous, and depends on the energy range of interest.

Most practical calculations are based on the reduction of the many-body golden rule

to an one-electron approximation. In addition, the basic theory routinely used in the

quantitative analysis of EXAFS experiment implies the reduction of a dipole coupling

to the X-ray field, that allows writing the absorption cross section as:

µ(E) ∝ |〈f |ε̂ · ~r| i〉|2 δ(Ef − Ei − ~ω)ρ(Ef ) (2.33)
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Using single electron and dipole approximation, assuming a Gaussian radial distri-

bution function around the absorbing atoms and limited structure, the EXAFS function

in the formalism of single scattering of spherical waves can be reduced to a summation

over all i atomic shells (standard EXAFS formula):

χ(k) =
∑
i

NiS
2
0Fi(k)e−2Ri/λ(k)e−2k2σ2

i
sin(2kRi + Φi(k))

kR2
i

(2.34)

with

k: wave vector modulus for the photo-electron, defined as : k =
√

2m
~2 (~ω − E0),

with m as the electron mass

χ(k) = µ(k)−µ1(k)
µ(k)−µ0(k)

Ri : distance to the atoms of the ith atomic shell,

σ2
i : relative mean square deviation of the Ri distance. The term e−2k2σ2

i takes into

account distance fluctuations due to a structural and/or thermal disorder, under the

assumption of small displacements and Gaussian distributions of distances. Includes

thermal (dynamic) and structural (static) disorder

Fi(k), backscattering amplitude function characteristic of the ith neighbors

Φ(k), is a phase function that takes account of the varying potential field along

which the photo-electron moves; it can be expressed as the sum of two potential terms,

Φi(k) = 2δ(k)+ji(k), the former given by the absorber, the latter given by the scatterer

λ(k) mean free path associated to the ejected photo-electron

S2
0 amplitude factor, taking into account the contributions of the inelastic losses

and overall many-body phenomena. It is an average amplitude reduction factor. Its

value is the percent weight of the main excitation channel with respect to all possible

excitation channels, usually 0.8–0.9

In the case of isotropic samples, Ni is simply the number of atoms in the atomic

shell i.

For a non-isotropic structure, the product ~ε · ~r results in an angular dependence

of the EXAFS signal and Ni is an effective multiplicity number given by: Ni =

3
∑

j cos
2θij where θij is the angle between the absorber-scatterer axis and the po-

larization direction.

The linear polarization of synchrotron radiation, coupled with this directional de-

pendence of the photo-absorption process, allows probing the structural features along

specific directions of the crystalline samples (Polarized XAS). In the case of oriented

films, when the polarization vector ~ε lies in the film’s plane (in-plane geometry) cosθij =

0 for the bonds perpendicular to this plane and their contributions are zero. On the

other hand when ~ε is aligned with the normal to the film’s plane (out-of-plane geome-

try), the contribution of the bonds in this plane are zero (cosθij = 0 ).

2.5.3 Experimental aspects of XAS

Metal K edge (Fe: 7112 eV, Mn 6539 eV, Co 7709 eV) XAS spectra were collected in

fluorescence mode at the French CRG BM30b-FAME beamline [109] of the ESRF. The

storage ring is operated at 6 GeV with a 200 mA current. Energy was selected using a
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(a) (b)

Figure 2.7: Schema of linear polarized XAS detection for (a) in-plane and (b) out-of-
plane geometries.

Si(111) double-crystal monochromator with dynamic sagittal focusing, yielding a beam

spot on the sample of 300µm horizontal 200µm vertical and an X-ray photon flux of

1012 photons/s, allowing acquisition of good quality XANES/EXAFS spectra. Silicon

diodes collecting scattered radiation from a Kapton foil were employed for measuring the

intensities of incident and transmitted X-rays. Fluorescence spectra were collected in

the right-angle geometry using a Canberra 30-element solid state germanium detector.

Energy was frequently calibrated using a metal foil. Its K edge energy was set at

7112 eV (Fe), 6539 eV (Mn) or 7709 eV (Co) as the maximum of the first derivative of

the main edge spectrum. Details about the beamline and X-ray setup may be found

in [110, 109]. Measurements were performed with X-ray polarization vector oriented

nearly parallel (in-plane geometry) and nearly perpendicular (out-of-plane geometry)

to the film plane (fig. 2.7). In both geometries the incident angle on the film αi is

chosen to be small (5° to 10°) to maximize the signal coming from the deposited film

and is optimized in order to eliminate the Bragg peaks due to the substrate.

2.5.4 EXAFS Data analysis.

The purpose of EXAFS analysis is to obtain the parameters of the local structure of the

absorbing atom from its experimental cross-section. The experimental EXAFS spec-

tra were treated following standard methods using the ATHENA-ARTEMIS analysis

package[111].

ATHENA code is used for all steps in data processing including conversion of raw

data to spectra, background subtraction, Fourier transforming and plotting. The back-

ground subtraction algorithm determines an empirical background spline based on a

distinction between data and background in terms of Fourier components. Edge-step

normalization of the data is determined by a linear pre-edge subtraction and regression

of a quadratic polynomial beyond the edge. The difference between these two polyno-

mials extrapolated to the edge energy E0 is used as the normalization constant. E0 is

chosen by finding the first large peak in the first derivative of the spectrum.

ARTEMIS is a program for analysis of EXAFS data using theoretical standards

computed by the FEFF program ([112]), using an equation similar to (2.34) to model
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the observed oscillations. The fitting is done either in k space or in R (Fourier transform)

space, with essentially equivalent results. The data are described as a summation of

one or more scattering paths. The parameters that define the scattering (Fi(k), Φ(k),

and λ(k)l(k)) are determined from ab initio calculations included in the code. S2
0 is

determined from the analysis of a reference metal foil. Once these parameters have

been specified, the structurally related parameters (Ni, σi, and Ri) are refined, via

a non-linear least-square fitting procedure. Distance estimates are within 0.02 Å and

errors in coordination numbers are less than 10%. Simultaneous refinement can be

performed for multiple data sets.

2.6 X-ray Magnetic Circular Dichroism

Since the first report in 1987 [113], X-ray magnetic circular dichroism (XMCD) using

synchrotron light has become one of the most important techniques to study local-

ized magnetic moments in thin and multilayer films. XMCD is the difference in X-ray

absorption measured using light with helicity parallel and antiparallel to the magnetiza-

tion direction of the sample. It couples a magnetic probe with all advantages of XAS,

i.e., the atomic and symmetry of electronic states selectivity, localized information,

sub-monolayer detectability. Sum rules correlate the integrated signals of the dichro-

ism spectrum to the experimental values of the spin and orbital magnetic moments.

This provides fundamental insights into the microscopic origin of magnetic properties,

such as anisotropy, magneto-crystalline effects, coupling among different elements.

2.6.1 XMCD sum rules

The X-ray magnetic circular dichroism XMCD sum rules have been introduced by Thole

et al. in 1992 [114] and Carra et al. in 1993 [115]. Thole et al. showed that the integral

over the XMCD signal of a given edge allows the determination of the ground state

expectation values of the orbital moment 〈LZ〉 and Carra et al. introduced a second

sum rule for the effective spin moment
〈
SeffZ

〉
. The sum rules apply to a transition

between two well-defined shells.

We are interested in the transition from a 2p core state to 3d valence states in

our 3d transition-metal systems. As a result of spin-orbit coupling in the 2p state,

the spectrum displays two prominent features, corresponding to the L3 (2p3/2 → 3d )

and L2 (2p1/2 → 3d ) absorption edges. These 3d valence states are assumed to be

separable from other final states. This implies that the L3,2 absorption edges must be

separated from the 2p-4s and other 2p-continuum transitions. In general, it is assumed

that continuum transitions can be described as an edge step followed by a constant

cross section.

We briefly introduce here the main aspects of the XMCD sum rules. The integrated

L3,2 − edges XAS spectrum is proportional to the number of empty 3d states nh,

or (10− n3d), where n3d is the number of 3d electrons in the shell. The absorption

cross section µ (E) is integrated over a certain energy range that covers the complete

L3,2 − edges:
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ˆ
µ(E) ≡

ˆ

L3+L2

(µ+1 + µ0 + µ−1) =
C

5
〈(10− n3d)〉 (2.35)

C is a constant factor including the radial matrix element of the dipole transition.

The integrated circular dichroism spectrum is defined as the absorption of left circular

polarized X-rays µ+1 minus the absorption of right circular polarized, X-rays µ−1. In

case of a 2p-3d transition this yields

ˆ

L3+L2

(µ+1 − µ−1) = − C
10
〈LZ〉 = − C

10

3

2
morb (2.36)

This XMCD sum rule implies that one can directly determine the orbital moment

morb from the difference of positive (µ+1) and negative (µ−1) helicity X-rays. In most

soft X-ray experiments, the absolute absorption cross section is not measured, only a

relative signal is obtained by normalizing the XMCD signal by the absorption edge.

This defines the orbital moment sum rule as

morb = −
´
L3+L2

(µ+1 − µ−1) dω´
µ(E)

4

3
〈(10− n3d)〉 (2.37)

The determination of the effective spin moment is also possible with an additional

sum rule :

meff
spin = −

6
´
L3

(µ+1 − µ−1) dω − 4
´
L3+L2

(µ+1 − µ−1) dω´
µ(E)

〈(10− n3d)〉 (2.38)

However, this effective spin sum rule has some additional complications.

The effective spin moment meff
spin is given as

meff
spin = mspin

(
1 +

7 〈TZ〉
2 〈SZ〉

)
(2.39)

where 〈Tz〉 is the magnetic-dipole coupling, which accounts for the asphericity of the

spin moment distribution. If this sum rule is used to determine the spin moment mspin

one has to assume that 〈Tz〉 is zero or that 〈Tz〉 must be known from other experiments

or theoretically approximated. The effective spin sum rule makes an additional approx-

imation that theL3 and the L2 edges are not mixed and well-separated. Large errors

in the effective spin moment are caused by the mixing of theL3 and the L2 edges. In

our case, we could apply these sum rules to have the effective spin moment at the Fe

L edge but not at the Mn L edge.

The experimental validation of the XMCD sum rules was made by Chen et al., using

simple 3d transition metals [116]. They found that spin moments need to be corrected

by only a few percents in pure Fe and Co elements, and that no correction is needed

for orbital moments. However, it was shown that in the case of the Ni(001) surface,

discrepancies up to 50% may occur [117]. On the other hand, on the same paper it is

shown that in cubic symmetries the magnetic dipole term may be safely neglected. For
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a recent critical analysis on the validity and limitations of the XMCD sum rules see

Piamonteze et al. [118] and references therein.

Anyway, when the spin-orbit coupling is large, as in systems like FePt and MnPt,

the 〈TZ〉 term has to be considered, at least as a possible source of errors [119, 120,

121]. A huge number of researchers applies the sum rules to get information on the

orbital and spin contribution to the total magnetic moments. The point is that the

same systematics must be followed in their application and much care has to be taken

concerning background subtraction and normalization, in order to compare similar

systems among them. This has been done in this thesis to study Fe and FePt systems

at the Fe L3,2 edges (chapter 5).

2.6.2 Experimental aspects of XMCD

Soft X-ray absorption XAS and XMCD experiments at the L2,3 Fe and Mn absorption

edges were performed at the ID08 beamline of the European Synchrotron Radiation

Facility (ESRF, Grenoble, France). The XMCD experiments were carried out under

varying temperature and applied field with total electron yield detection and a 100%

polarization rate. Electron yield mode was employed by measuring the current flowing

from the sample through an electrometer. The left and right circular polarized light

were produced by phasing an APPLE II type undulator. The samples were installed

in a UHV chamber of a cryogenic holder whose temperature can vary from RT down

to about 10 K. Superconducting coils produced a magnetic field up to 6 Tesla along

the direction of the incoming beam. The applied magnetic field orientation on the

sample was changed by rotating the sample about a perpendicular axial rotation inside

the cryostat. To apply a perpendicular magnetic field the sample was normal to the

incident beam; to apply a field in the plane, the beam was aligned at a grazing incidence

of about 5 to 10 degrees to the sample surface.

2.7 MOKE

Many different techniques may be applied to probe the magnetic properties of ultra-

thin magnetic films. Among them, the magneto-optic Kerr effect (MOKE) is a well-

established technique [122, 31] that has been widely used to study continuous layers or

nanostructures with sub-monolayer sensitivity [70, 123, 8, 124]. The MOKE is char-

acterized by a complex rotation of the plane of polarization of the linearly polarized

incident light upon reflection from the surface of a ferromagnetic material. Maybe the

most important advantage of the MOKE technique compared to other techniques, like

SQUID or VSM, is the simplicity of implementation and flexibility of the sample envi-

ronment. Such an apparatus may be easily coupled to a Surface Science set-up in order

to follow, in an UHV environment, the magnetic properties at the different stages of

growth [70, 123, 8, 124, 125, 126].

Magneto-optic effects are usually described in the context of macroscopic dielec-

tric theory [122, 127]. They arise from the antisymmetric, off-diagonal elements in the

dielectric tensor. A microscopic description of the magneto-optic effect concerns the
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different response of the electrons to left- and right-circularly polarized light. The cou-

pling between the electromagnetic field and the electron spin within a magnetic medium

occurs through the change of the wave functions due to the spin-orbit interaction [128].

The MOKE macroscopic description is based on the analysis of the dielectric prop-

erties of a magnetized medium. Linearly polarized light may be expressed as a linear

combination of left- and right-circularly polarized components. When light propagates

in a magnetized medium, there are in general two main processes taking place : first,

the two circularly polarized components are phase-shifted due to their different propa-

gation velocities, yielding a rotation of the polarization plane - this is the conventional

Faraday rotation; second, the different absorption rates of the two modes affect the

ellipticity. A quite general macroscopic formalism has been developed for magnetic

multilayer by Zak et al. [127]. Since most magnetic materials of interest are metals,

which strongly absorb light, it is more convenient from the experimental point of view

to measure the reflected light. Hence, the formalism has been developed for magneto-

optic Kerr effect, even if it can be extended to the Faraday effect. The general method

is to apply Maxwell’s equations to the multilayer structure and to satisfy the bound-

ary conditions at each interface. The Kerr rotation φ′ and ellipticity φ” for s− and

p−polarized light are then connected to the reflection coefficients by :

φs = φ
′
s + i φ”

s =
rps
rss

and φp = φ
′
p + i φ”

p =
rsp
rpp

(2.40)

where s and p correspond to the electric field vector perpendicular to or in the plane

of reflection, respectively. The crossed reflection coefficients are linear functions of the

magnetization.

Amongst several ways of measuring a MOKE signal, we will introduce here one of the

simplest one, which is the one we used to measure the main part of the data presented in

this manuscript. Consider a linear p−polarized light reflected from a sample surface. If

the sample is ferromagnetic then the reflection beam should consist of an s component

(Es) in addition to the dominant p−component (Ep), with Es/Ep = φ
′
p+ i φ”

p being the

Kerr rotation. Experimentally, the measurements can be realized by placing in front of

the photo-detector a linear polarizer at a small angle δ from the p−axis. The intensity

measured by the photo-detector after the polarizer is

I = |Ep sin δ + Es cos δ|2 ≈ |Ep δ + Es| (2.41)

and then becomes

I = |Ep|2
∣∣∣δ + φ

′
+ i φ”

∣∣∣2 ≈ I0

(
1 +

2φ
′

δ

)
(2.42)

with I0 = |Ep|2 δ2 representing the intensity at zero Kerr rotation.

Since both φ′ and φ” are linearly proportional to the magnetization, the measured

intensity as a function of the applied magnetic field yields the magnetic hysteresis loop.

One can easily see that saturation Kerr rotation can be expressed by φ
′
max = δ

4
∆I
I0

,

where ∆I is obtained by reversing the magnetization from saturation.
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The rotation is directly related to the magnetization of the material within the

probed region of the light. If the total optical thickness is much less than the wavelength

of the incident beam, the total Kerr signal is simply the summation over all magnetic

layers in a multilayered film. This summation rule has been verified for many systems

and one can state that up to about 10 nm it works. Light penetrates much more than

that into metals, so, the MOKE technique derives its surface sensitivity, in fact, from

the limited thickness of the deposited magnetic nanostructures.

2.7.1 Experimental aspects of MOKE

A laser, followed by a polarizer, is usually used as a source of polarized light. The de-

tector is a photo-diode. For in situ measurements, the UHV windows usually produce a

birefringence. In such a situation, a quarter-wave plate can be placed before the analyz-

ing polarizer to compensate for the window birefringence. The counterpart is that the

quarter-wave plate introduces a π
2 - phase difference between the s− and p−components,

and the Kerr intensity gives the ellipticity rather than the rotation because φ” replaces

φ
′
. To measure the rotation, a half-wave plate replacing the quarter-wave, might be

used. This is, in fact, the configuration of the apparatus used for most of the data

collected during this work.

The MOKE setup is installed in the ultra-high vacuum (UHV) multi-chamber sys-

tem at the Max Plank Institut of Halle, Germany. This is a collaboration with the

group of Dr. Marek Przybylski, through a LEA - Laboratoire European Associé -

program. The multi-chamber system is equipped with many instruments for synthesis

under UHV conditions. The MOKE apparatus is connected to the synthesis chambers

through an UHV transfer line. The maximum applied field is limited to 5.5 kOe. Two

different MOKE geometries are possible, with an incidence angle of 21° for longitudinal

MOKE (L-MOKE) and with an incidence angle of 69° to the sample normal for polar

MOKE (P-MOKE). The sample can be cooled down close to 5 K.
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Chapter 3

Growth on (001) surfaces

This chapter is dedicated to the metal on metal growth for some (001) surfaces. A

fundamental comprehension of the growth process is an important step towards the

preparation of multilayers and ordered alloys with specific orientation requirements, as

is the case for the PMA systems we are interested. Especial attention is dedicated to

the Pt(001) surface, on which the majority of our samples were prepared. Structural

aspects of the Mn, Fe and Pt growth on Pt(001) are investigated by GIXRD, with

the help of LEED and AES. The growth of Pt, MnPt and Fe on Ag(001) are also

investigated by GIXRD.

3.1 Growth on Pt(001)

The Pt(001) surface is well-suited to the coherent epitaxial growth of MnPt and FePt.

Pt lattice parameter (aPt = 3.924 Å) lies in between the MnPt a and c parameters,

which are, for bulk stoichiometric L10 alloy [41], aMnPt = 4.002 Å (2.0% > aPt),

cMnPt = 3.665 Å (6.6% < aPt). The smaller in-plane mismatch is expected to favor

a perpendicular orientation of the c-axis. In the case of FePt, the values are [42]

aFePt = 3.860 Å (1.6% < aPt), cFePt = 3.713 Å (5.4% < aPt) and the same tendency is

expected.

The Pt(001) surface displays a quasi-hexagonal reconstruction on its topmost layer

that has many consequences on the growth of adlayers. In the following, we start by

an overview of this reconstruction and then we present a study on the growth process

of Mn, Pt and Fe on the clean Pt(001) surface.

3.1.1 Pt(001) surface reconstruction

It is well known that some 5d-transition metal surfaces present surface reconstructions

[74], as is the case of the Pt(001) surface. The topmost layer of Pt reconstructs to

a quasi-hexagonal arrangement while the layer just below keeps the bulk square sym-

metry [129]. A high resolution STM image taken from Borg et al. [130] (fig. 3.1-a)

illustrates the quasi-hexagonal packing (highlighted by dashed lines). In this picture,

one can observe the characteristic corrugation along the [1 0] substrate direction1 and

1[1 1 0] direction in fcc notation

45
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the close-packed rows of atoms running parallel to [0 1], as indicated in the figure.

This corrugation comes from a mismatch between the substrate and the reconstruction

along [1 0], where one have roughly 6 hexagonal rows to each 5 substrate rows, with

a periodicity of ≈ 14 Å. The typical height difference between 4-fold hollow-sites and

on-top sites gives a corrugation amplitude reported to be in the range of 0.4 to 1.2 Å

[129, 131, 132]. From our LEED measurement shown in figure 3.1-b one can recognize

the superimposition of two nearly (5x1) patterns, coming from reconstructed domains

rotated by 90° among each other.

(a) (b)

Figure 3.1: a) Atomic resolution STM image of reconstruction taken from ref. [130]
appended with indication of quasi-hexagonal packing (dashed line) and surface orien-
tation convention (arrows); b) (5x1) LEED pattern of a clean, reconstructed Pt(001)
substrate without miscut, with beam energy of 60 eV.

The hexagonal reconstruction is stable and its surface energy was measured and

theoretically evaluated to be lower than the unreconstructed surface energy by about

0.12 eV per (1× 1) unit cell [133]. The phase transition from (1× 1) to hexagonal has

been theoretically described by a intriguing atomic process that includes the formation

of an intermediary phase with vacancies in the (1× 1) sublayer [134].

A phase diagram of the reconstruction was given by Abernathy et al. [135]. They

showed that between 1820 and 1685 K the hexagonal overlayer has a high-symmetry

direction aligned with a high-symmetry direction of the bulk (direction [0 1] in figs. 3.1-a

and 3.3). We abbreviate this aligned-hexagonal phase by Pt-hex. At 1810 K the surface

is very flat and the Pt-hex domains extends over more than 1500 nm. Above 1820 K the

surface is disordered and rough. When slowly lowering the temperature below 1685 K,

two slightly rotated phases appears while the Pt-hex phase vanishes. At RT these two

phases are rotated by θ = 0.75° and θ = 0.9° relative to the aligned direction: we

call them Pt-hex-0.7° and Pt-hex-0.9 °, respectively. According to these authors, at RT

the domains are smaller than at high temperature, the larger ones being those of the

Pt-hex-0.7° phase with a translational order of about 200 nm (fig. 3.3 presents a sketch

of this phase).
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(a) (b)

Figure 3.2: a) 100 nm× 100 nm STM image of a 1°-miscut surface, showing the recon-
struction rows aligned with the step edges; b) (5x1) LEED pattern of the same surface,
evidencing that only one family of domains are present (beam energy of 169 eV).

The kind of reconstruction one obtain at RT depends strongly on the substrate

preparation and thermal history. For instance, if the sample is heated up to 1000 K

during 5 min and then cooled down to RT, small domains of the unrotated Pt-hex phase

cover the surface with no traces of rotated domains [135]. A miscut of the surface also

affects the reconstruction [136]. In our experiments, we used substrates with different

miscut angles along the [1 0] direction, namely: no miscut, 0.34° and 1°. We observed

that the reconstruction rows have a tendency to align with the step edges along [0 1],

avoiding 90° rotated domains. This can be clearly seen in our STM and LEED pictures

shown in figure 3.2 for the substrate with a 1°-miscut (in the fcc notation, it corresponds

to a (1 1 80) vicinal substrate): only the domains aligned to the steps are observable.

The GIXRD measurements in this surface revealed that these domains are mostly of

the Pt-hex-0.7° phase, while a negligible amount of 90°-rotated domains are also present

but with θ = 1.02º. Indeed, for all miscut angles used the Pt-hex-0.7° domains turn

out to be the largest and most stable ones.

Our sample preparation procedure consisted in cleaning the Pt(001) surface by

several cycles of Ar+ sputtering (typically: PAr = 4× 10−6 mbar, 800 V, 10µA, 40 min

at RT) and annealing (at 1170 K for 5 to 10 min), followed by annealing under oxygen

(at 2 × 10−7 mbar O2 and 970 K for 5 min) to get rid of carbon impurities segregated

from the bulk, then a flash-annealing at 1170 K - for CO desorption - before slowly

cooling down. The cleanness of the surface was checked by AES. After this procedure

the surface used to be flat and covered predominantly by Pt-hex-0.7° domains as large as

about 200 nm. We should say that the hexagonal reconstruction was not always rotated

because this depends also on the thermal history and number of cleaning cycles.

Figure 3.3 resumes the detailed structure of Pt-hex-0.7° in the real and reciprocal

space, with all dimensions taken from ref. [135]. In this scheme one can distinguish

a hexagonal domain (circles) on top of bulk atoms (crosses). In the bottom, the first

and second layers are partially removed to evidence the picture construction. One
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Figure 3.3: Schematic view of the Pt-hex-0.7° phase putting in evidence the the θ =
0.75º rotation angle. White circles represent the top hexagonal layer, while crosses
represent the underling bulk with square symmetry. A possible surface unit cell is
given by vectors as and bs. In the insets the real and reciprocal spaces surface unit cell
vectors are represented for both hexagonal and square layers.

must remember that there are other three symmetry-equivalent Pt-hex-0.7° domains

besides the one represented. The angle between hexagonal and square rows θ = 0.75º is

shown. It corresponds to the angle between (1 0)hex (around (1.21 0) in the reciprocal

space) and the [1 0] directions. One can observe in this picture the nearly on-top

position for the atoms in each end of the white arrows. This corresponds almost to a(
5 −1

1 13

)
reconstruction with a superstructure unit cell represented by as and bs as

indicated. Some STM, LEED and Helium diffraction studies have proposed this kind of

commensurate superstructure unit cell to describe the different reconstruction phases.

However, strictly speaking, the precise GIXRD measurements cited above [135] showed

that the reconstruction is incommensurate in both directions for all its phases. One

can say generally that the Pt hexagonal reconstruction has an orientational epitaxy,

but is incommensurate.

Anyway, this superstructure unit cell is useful to help the comprehension. The angle

between bs and [0 1], ψ = 4.4º, is effectively the angle between the reconstruction lines

and underlying substrate rows. In the reciprocal space inset, the black arc represents

the region of reciprocal space probed during an angular scan of the sample about its

surface normal (rocking scan). Figure 3.4-a shows a rocking scan about the (1 0)hex

rod of the clean reconstructed surface, revealing two symmetric domains rotated by

an angle θ = 0.74º from the [1 0] direction. Taking the inverse of the full width at

half maximum (FWHM) in reciprocal lattice units for two Lorentzian peaks fitting this

rocking curve (not shown), we estimate the correlation length of Pt-hex-0.7° domains at

RT to be about 150± 50 nm, while the crystal presents terraces of about 900± 100 nm.
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From the position of the (1 0)hex and (−1 2)hex rods one can calculate that the

surface reconstruction is 25% denser than the underlying square plane or 8% denser

compared to the Pt(111) bulk close-packed plane [135]. When the reconstructed surface

is exposed to a reacting gas like CO, NO or C2H4 [131] or when a metal, like Ag [137],

Fe [51], Mn [138], Co [139] or Cu [132] is deposited on it, the reconstruction is lifted

to the (1 × 1) bulk-like structure. In this process, also referred to as ”restructuring”

or ”deconstruction”, the 25% excess surface atoms are forced up to become adatoms,

which may interfere with the growth process by forming islands and steps or alloying

with the deposited material, or even acting as a surfactant.

3.1.2 Mn growth on Pt(001)

The very first steps of Mn growth on a Pt-hex-0.7° was studied in situ by GIXRD using

the SUV station of the French CRG BM32 beamline at ESRF with a beam energy of

24 keV. During the growth, the reconstruction rod was followed in real time around the

(1.21 0 0.15) to obtain an estimation of the amount of reconstruction left on the surface

at each step of deposition (fig. 3.4). Complete sets of crystal truncation rods (CTRs -

section 2.3) were measured for some particular coverages. The integrated intensity at

each hkl node was get from rocking scans, from where the broad background coming

from thermal diffuse scattering is subtracted in the numerical integration procedure

used2. Structure factor amplitudes |Fhkl| were then extracted by applying standard

correction factors [92] for the z -axis diffractometer of SUV station (section 2.3.1 gives

more details about the correction factors used). Equivalent rods were measured and

symmetry averaged, the error bars were based on their agreement factor (about 5% for

the CTRs presented in figs. 3.6 and 3.9). Both |Fhkl| derivation and modeling/fitting of

surface parameters were performed using the ANA-ROD package [90, 91]. High purity

Mn was deposited from an effusion cell with an alumina crucible heated at about 1000 K,

the pressure rising up to 5 × 10−10 mbar while operating the source. The evaporation

rate was calibrated with a quartz crystal micro-balance, and cross-checked measuring

the oscillation period of the X-ray scattering intensity in anti-phase (1 1 1) during a

calibration deposition. The X-ray calibration was corrected by a factor 1.05 to take into

account the difference in lattice parameter of Pt and Mn [80]. An average deposition

rate of 0.02 ML/min was established with an error estimated to be smaller than 10%

and used for the sub-monolayer study. For higher coverages, a rate of 0.18 ML/min was

employed. The substrate used in this study had a not-on-purpose 0.34° miscut, checked

afterward in our laboratory diffractometer, almost aligned with the [10] direction. Such

a miscut error causes an asymmetry in the amount of reconstruction along the main

axes, but has no consequences on the growth process. We also performed some auxiliary

STM and LEED measurements, using the facilities at the Institut Néel, to obtain a

qualitative picture of the growth process and of possible ordered alloying formed during

deposition.

The Pt-hex-0.7° reconstruction was followed in different steps of the Mn deposition

by rocking scans around the reciprocal space position (1.21 0 0.15) (fig. 3.4). The

2The measured intensity is always normalized by a monitor to take into account variations in the
primary beam intensity.
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Figure 3.4: Rocking curves around the reconstruction rod (1.21 0 0.15) for the following
surfaces (remaining Pt-hex-0.7° in brackets): a) freshly clean surface (100%); b) just
after 0.35 ML Mn deposition; c) 10 hours after; d) previous layer annealed up to 250°C
for 30 min; e) 1.2 ML Mn deposition on a freshly cleaned substrate; f) 1 ML of Pt on
top of the previous layer. Inset: Same plot in linear scale.

integrated intensity of the clean reconstruction surface, just after the cleaning process,

has been considered as meaning 100% of the surface being reconstructed. However, we

only follow the peak around (1.21 0 0.15), favored by the small miscut, and assume

that the corresponding 90° turned domains behave in the same way. The amount of

reconstruction left after Mn deposition is calculated as the ratio between the integrated

intensity of the rocking scan after and before Mn deposition. This reasoning is analogous

to the integrated intensity for a small crystal (chapter 4 of Warren’s book [81]) that is

proportional to the volume of the crystal, but here applied to a surface.

After RT deposition of a fraction of Mn monolayer (0.35 ML), the intensity of the

reconstruction peaks is significantly attenuated. Indeed, in the freshly deposited sub-

monolayer, Mn atoms deconstructs about 80% of the Pt-hex-0.7° (fig. 3.4-b) and sta-

bilize the (1× 1) surface. This drastic decrease is better seen in the linear scale inset.

Simultaneously, faint c(2 × 2) peaks at half-integer indexes show up. LEED measure-

ments (figure 3.5) for similar Mn coverage and conditions confirm this result. The

presence of c(2 × 2) peaks - from both LEED and GIXRD - indicates that the 25%

excess of Pt atoms comes to the surface and reacts with the Mn adatoms to form a

partially c(2×2) ordered MnPt surface alloy from the very first steps of growth. Similar

features have been seen by LEED for annealed films of 0.6 up to 3 ML of Mn on Pt-hex

[138] and correspond to a MnPt3-like surface alloy.

Ten hours after the 0.35 ML deposition, only 8% of the surface remains reconstructed

(fig. 3.4-c). This further deconstruction may be a consequence of a kinetic process of

the Mn adatoms taking place or of the residual gases, especially with the high density of

surface defects [130] after deposition. A complete set of reflection intensities along inte-

ger CTRs were measured, during an interval between 4 to 10 hours after the deposition.
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Figure 3.5: LEED pattern (beam energy of 105 eV) after 0.4 ML Mn deposition, giving
the c(2× 2) symmetry.

The deconstruction process is faster just after the growth, as the chamber pressure is

higher while the source is turned on, so the CTRs measured should correspond to the

situation of figure 3.4-c, with only about 8% of reconstruction left.
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Figure 3.6: Experimental data with error bars and fitting curves (dashed gray) of CTRs
for 0.35 ML of Mn at RT (top panels) and after annealing at 520 K (bottom panels).

A fitting model composed by three atomic layers with the bulk plane group symme-

try (P4mm) was used to simulate the structure factors derived from measurement. We

give the index 0 to the layer initially covered by the reconstruction, indicating that it

comes from the substrate itself. Other two more adlayers are considered, layer 1 and 2.

The main fitting parameters are the occupancy (θ) of Mn and Pt atoms in each layer,
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varying from 0 to 1, and the distance d between layers. Two distinct Debye-Waller

factors (DW) are also fitted, one for layer 0 and the other for both layers 1 and 2. To

the substrate DW is given the bulk value of 0.31 [140]. In general, the DW is strongly

correlated to the occupancy parameters, as will be discussed below. The quality of the

fit is evaluated by the normalized χ2-value (the smaller the better) and by comparing

the shape of the simulated and experimental structure factors of the CTRs.

We find a strong correlation between the Mn and Pt concentration in the different

layers. In the fitting, there is a tendency to overestimate the Mn content without,

however, any significant improvement on the fitting quality (χ2 slightly decreases in

spent of a drastic change in θMn). We decided then, to rely on the nominal value of

0.35 ML, calibrated by the quartz-balance and by the anti-Bragg scattering oscillations,

and fix the total Mn occupancy. A comparison of the best fit with the experimental

structure factors is displayed in figure 3.6 and a scheme of the corresponding model in

figure 3.7. The fitting details are summarized in table 3.1.

The fit results show just small variations of the inter-layer distance, within reason-

able values. Layer 0 presents no Mn atoms, indicating a negligible inter-diffusion, consis-

tent with the low surface energy of Mn (1.6 Jm−2) [141] compared to Pt one (2.7 Jm−2)

[51]. However, this layer is not completely filled, the Pt occupancy (θ0
Pt = 0.92) indi-

cates that the remaining 8% of the surface is composed by Pt-hex-0.7°, as the hexagonal

domains do not contribute to the diffraction intensity in the integer rods. This result

is in excellent agreement with the value expected from the (1.21 0 0.15) rocking scan

integration (fig. 3.4-c). All Mn atoms are in layer 1 and formation of Mn islands is

avoided.

The total Pt occupancy of layers 1 and 2 (θ1,2
Pt = 0.4) is higher than the expected

value (0.23) from a deconstruction of 92% of the Pt-hex-0.7° layer with 25% excess

atoms. This Pt excess is however, within the fitting error, once there is a correlation

between Pt occupancy and DW. Indeed, the fitted (χ2 = 2.1) DW for layers 1 and 2

(DW = 1.62) seems to be over-estimated,3 as a value of DW = 0.7 gives the expected

value for the Pt occupancy with χ2 = 2.2, only. Many different models were tried:

among others, the most relevant involved 2, 3 or 4 layers, allowing buckling of Mn

and Pt atoms in layer 1 and fixing DW with bulk values. The model described above

is the simplest one found that gives the best fit, based only on physically reasonable

assumptions.

In summary, we obtain both qualitative and quantitatively that the first surface

layer contains an ordered MnPt alloy and that the Pt-hex-0.7° is almost completely

lifted after the 0.35 ML of Mn deposition at room temperature.

The previously described layer was then annealed up to 520 K for 30 min and the

same measurements were performed. According to the rocking scan integration (fig. 3.4-

d) only a residual part, 3%, of the original reconstruction remains; this is as also

observed in the CTRs fitting, where θ0
Pt = 0.96 (table 3.1). The faint c(2 × 2) peaks

are still present with roughly the same intensity as before. The same model as before

was assumed and the CTRs fitting (fig. 3.6 and table 3.1) gives results very similar to

the as-deposited sample, with an even better agreement factor (χ2=1.5). An important

3Bulk values are DWMn = 0.44 and DWPt = 0.31, taken from ref. [140].
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Figure 3.7: Sketch of RT model with indication of fitted inter-layer distances.

outcome from the quantitative analysis is that the Mn diffusion, although existing, is

negligible after annealing at 520 K. The DW values are reasonably small, so that the Pt

occupancy in layer 2 (θ2
Pt = 0.11) and the total amount of Pt in the surface (θ1,2

Pt = 0.4)

indicate that some additional Pt atoms migrate to the surface.

sample: 0.35 ML Mn + annealing at 520 K

layers θ(Pt/Mn) d(Å) DW θ(Pt/Mn) d(Å) DW

2 0.07/0.00 2.12 1.62 0.11/0.00 2.08 0.44

1 0.33/0.35 1.95 1.62 0.29/0.34 1.91 0.44

0 0.92/0.00 1.98 0.50 0.96/0.01 1.96 0.64

Bulk 1/0 1.96 0.31 1/0 1.96 0.31

χ2 2.1 1.5

Table 3.1: Fitting results for 0.35 ML of Mn at RT and annealed at 520 K
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Figure 3.8: Growth-oscillations for Mn RT deposition at specular (0 0 1) position,
evidencing a layer-by-layer growth mode up to at least 6 ML.

The deposition of 1.2 ML of Mn in a freshly cleaned substrate yields a surface

structure that is a quite natural evolution compared to the sub-monolayer case. The

hexagonal peaks are reduced to 2% but are still present (fig. 3.4-e) and similar traces

of MnPt-c(2x2) peaks are observed. The quantitative analysis of the CTRs (fig. 3.9

and table 3.2) yields a first surface layer with θ1
Mn = 0.58 and θ1

Pt = 0.39, which is an

almost complete layer containing non-stoichiometric ordered and/or disordered MnPt

alloy. A second surface layer with essentially the remaining Mn atoms (θ2
Mn = 0.60)
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and negligible inter-diffusion completes the model (table 3.2). In this fit the Debye-

Waller factors were kept constant with the bulk values, as they have a tendency to even

smaller values, what is not reasonable. As a matter of fact, it has been verified up to six

monolayers that, after the initial alloying process, Mn on Pt(001) grows layer-by-layer

at RT, as can be seen by the oscillations at the anti-Bragg specular position (fig. 3.8).

The same behavior was observed at non-specular (111) position, confirming an epitaxial

growth. This observation agrees with the CTR analysis that gives an almost complete

layer 1 and no third surface layer. This result is consistent with LEED observation by

Kim et al. [138] that the hexagonal reconstruction spots turns to bright p(1×1) for RT

Mn deposition up to 3.0 ML.
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Figure 3.9: Experimental data with error bars and fitting curves (dashed gray) of CTRs
for 1.2 ML of Mn (top panels) and 1 Pt/1.2 Mn bi-layer (bottom panels) at RT.

sample: 1.2 ML Mn + 1 ML Pt

layers θ(Pt/Mn) d(Å) θ(Pt/Mn) d(Å)

more - - Pt islands 2.04

2 0.00/0.60 1.91 0.08/0.60 2.00

1 0.39/0.58 1.95 0.39/0.58 1.94

0 0.97/0.03 2.00 0.97/0.03 1.95

Bulk 1/0 1.96 1/0 1.96

DW 0.31/0.44 0.31/0.44

χ2 4.4 11

Table 3.2: Fitting results for 1.2 ML of Mn and for 1.2 ML Mn/1ML Pt at RT
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3.1.3 Pt growth on Mn/Pt(001)

Always at RT, one monolayer of Pt was deposited on the Mn(1.2)/Pt(001) surface,

described just above, and the surface was studied again. Six non-equivalent CTRs

((1 0), (1 1), (2 0), (2 1), (2 2) and (3 0)) were measured, and the fit curves for the first

three CTRs can be compared to the 1.2 ML-Mn ones in figure 3.9 (bottom panels).

After trying different models, the simplest and most consistent one was found to be

similar to the previous model, only with the addition of Pt islands above layer 2. During

the fit, the occupancies for Mn and Pt in layers 0, 1 and for the Mn in layer 2 were

fixed to the values obtained for the 1.2 ML-Mn surface (table 3.2).

The CTR intensity half-way between Bragg peaks, is considerably reduced (fig. 3.9,

bottom panels), as for example at the deep around l = 2 for the (1 0) rod, indicating

an increased roughness (3D Pt growth). The Pt islands are simulated with a beta-like

model [88], where each island layer (with label n=0,1,2,etc.) have an occupancy given

by θn = θ0β
n. From the fitting results we obtain a quite rough surface, with θ0 = 0.17

and β = 0.8. The amount of Pt in the second surface layer is also small (θ2
Pt = 0.08).

A sketch of the final model, where small Pt islands cover the Mn (MnPt) layer, is

shown in figure 3.10, with inter-layer distances indicated (see also table 3.2). The high

roughness of the surface affects the data quality, in a measure that it makes difficult

the background subtraction in anti-phase region. As consequence, quantitative analysis

are compromised (χ2 = 11) and the high value of β or the inter-layer distances within

the islands (2.04 Å, while one could expect to be smaller than the bulk value) cannot

be trusted. The possibility of structural disorder in these islands cannot be neglected,

as the non-specular CTRs are sensitive only to the atoms with the same symmetry as

the substrate. Anyway, this model clearly gives us the important general information

that, at RT, Pt grows in 3D-mode on the Mn(1.2)/Pt(001). Moreover, the hexagonal

reconstruction is washed out (fig. 3.4-f) and no traces of c(2 × 2) are found after Pt

deposition. One has to consider, however, that the large roughness may simply hinder

these features.

Figure 3.10: Sketch of model for 1 Pt/1.2 Mn bi-layer with indication of fitted inter-layer
distances.
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3.1.4 Homoepitaxial Pt growth on Pt(001)

Growth oscillations are barely observable for Pt deposited at RT on Pt-hex-0.7° (open

triangles in figure 3.11), pointing to a rough surface, as in the growth on Mn/Pt(001)

described above. As reported by Linderoth et al. [142], Pt deposition contributes to

lift the reconstruction for coverages higher than 0.07 ML of Pt; below this coverage Pt

nucleates as anisotropic reconstructed islands. We determined, by the same procedure

of integrating the reconstruction peak (see figure 3.4), that 0.65 ML of Pt deconstructs

up to 50% of the surface and 0.8 ML deconstruct about 80%. This property was used

as a first step before starting alternate depositions of Mn and Pt; the aim was to get

rid of the reconstruction and reduce the alloying in the first steps of growth (section

5.1.1). The effect of temperature in the homo-epitaxial Pt growth can be observed in

figure 3.11 (full circles), where clear growth-oscillations show up at 610 K. A systematic

study of temperature dependence of Pt homo-epitaxial growth on the Pt(001) face is

still lacking, but a tendency of layer-by-layer growth with higher temperatures can

be expected. The formation of Pt-islands on the surface (3D growth) at RT is not

surprising and can be directly related to the behavior of homo-epitaxial growth of

Pt on Pt(111) at temperatures near to RT [79]: in this case, a reflection barrier to

jump down step edges is proposed as the responsible for the 3D growth. For higher

temperatures, above 500 K, the thermal energy is large enough so that island adatoms

can jump easily onto the layer below and there is no nucleation until layer completion

(2D growth). A similar reflection barrier was proposed at the island edges of the Pt(001)

plane [143]. Moreover, for Pt(001)-(1× 1) surface obtained by lifting Pt-hex-0.7° using

CO/NO [144], a maximum island size is obtained at 495 K, indicating a higher mobility

of Pt atoms in the surface, not being trapped by the presence of kinks or steps at this

temperature [144].
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Figure 3.11: Growth-oscillations for Pt on Pt(001) at RT (open triangles) and at 610 K
(full circles), around (1 1 1).

From these considerations, we learn that the better path towards a Pt and Mn

alternate stacking is a deposition at elevated temperatures, where Mn presents negli-

gible inter-diffusion into the bulk and Pt grows in a nearly layer-by-layer mode. From
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fig. 3.11, T ≈ 610K seems a good compromise. The initial growth steps presented here

clearly points to the inherent difficulties in obtaining long-range L10 chemically ordered

MnPt structures. Our results indicate that it is not possible to grow a L10 MnPt alloy

on Pt(001) at RT. The fundamental limitation are basically the 3D Pt growth mode

that leads to a rough surface and the formation of an ordered two dimensional MnPt

alloy. This result represents basically the interface that comes out when thicker films

are deposited. The growth of thicker films, presented in the next chapter, will use

favorably these pieces of information.

3.1.5 Fe deposition on Pt(001)

The RT growth of Fe on Pt(001) single crystal have been studied by STM, LEED and

MOKE for coverages up 7 MLs [51]. These authors report that an atomic exchange

process occurs at RT, so that after Fe deposition of 1.2 ML the surface is nearly covered

with one monolayer of Pt (one Fe atom replaces one Pt atom on average), where Pt-hex

reconstructed and unreconstructed regions coexists. For higher coverages the film grows

in a quasi layer-by-layer mode. The magnetic anisotropy of as-deposited films is always

in-plane. Annealing at 600 K switches the easy magnetization axis from in-plane to out-

of-plane for thickness smaller than 5.2 ML. Moreover, a change from higher to lower

PMA was observed at about 3.3 ML and was attributed to a phase transformation from

tetragonal L10 (< 3.3 ML) FePt to L12 (> 3.3 ML) Fe3Pt phases [51]. This structural

aspect was indicated by appearance of a c(2 × 2) LEED pattern for higher thickness,

however, it requires further confirmation.

We have studied qualitatively both Fe RT deposition followed by annealing and the

thermally assisted deposition with the substrate held at different temperatures. The

RT deposition gives no traces of order: there is no c(2× 2) peak and no increase of the

anti-phase intensity in the CTRs either. The annealing of a 5 MLs film at 650 K during

10 h gives rise to L12 domains of about 4 MLs thick and lateral correlation of 30 nm.

These domains are pseudomorphic within 0.3% and have a tetragonality of c/a = 0.96.

The unit cell volume is estimated to be of V = 58 Å3, in close agreement with the unit

cell volume of FePt3 alloy, that is paramagnetic at RT and antiferromagnetic below

160 K [145]. This result indicates that the Fe diffusion into the Pt is more favored

than the Pt diffusion into the Fe layer. A similar result has been observed by TEM in

Fe/Pt multilayer systems [146]. He et al. [51] make the supposition that the c(2 × 2)

pattern observed comes from a ferromagnetic Fe3Pt phase, what explains their magnetic

behavior. Our finding puts in doubt this conclusion, although we cannot wash out the

presence of Fe3Pt by our measurements. An in situ MOKE study of the magnetic

behavior just after GIXRD characterization would be a perfect tool to shed light into

this question.

The thermally assisted deposition shows up to be a better strategy to induce the L10

ordering and no traces of c(2×2) was found to any temperature or coverage investigated.

Different substrate temperatures were tried and in general the higher the temperature,

the better the L10 order. Figure 3.12 shows an l -scan along the (11) CTR of a 3 ML Fe

layer deposited with a substrate temperature of 600 K (the highest used), featuring an
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order peak close to the anti-phase position. The peak width permits to estimate that 2

ordered bilayers are formed. No relaxation is observed, and the layer is pseudomorph.

The peak center position (l ≈ 1.13) gives a tetragonality of c/a = 0.89, suggesting that

the ordered layer is Fe rich, as the bulk equiatomic L10 alloy would give a tetragonality

of 0.92 for constant volume pseudomorphism.
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Figure 3.12: l -scan along the (1 1) CTR for 3 MLs of Fe deposited at 600 K on Pt(001).
The order peak is center and width are indicated.

3.2 Growth on Ag (001)

Ag(001) has a lattice constant aAg = 4.085 Å, which is 2.1% and 10% larger than

aMnPt and cMnPt, respectively. The deposition of MnPt on such a surface is there-

fore expected to yield the epitaxial growth of L10 MnPt with the c-axis perpendic-

ular to the surface plane. Contrary to what happens for the deposition on Pt(001),

the pseudomorphic growth of MnPt on Ag(001) would lead to a more tetragonally-

distorted lattice, i.e. smaller c/a, which could have interesting consequences on the

(antiferro)magnetic properties [50]. A drawback of using silver as substrate is its low

surface energy. Atomic exchange processes were observed for room temperature depo-

sition of rhodium on Ag(001): the Rh/Ag(001) system evolves toward the energetically

favored Ag/Rh/Ag(001) structure [147] showing the surfactant effect of Ag atoms. In-

termixing is also observed for room temperature deposition of Fe on Ag(001), where an

almost pure Fe surface is obtained only after deposition of more than 3 ML [148]. The

Mn/Ag(001) system also shows to be highly unstable at room temperature for thickness

up to 1 ML. Such a 1 ML Mn deposition yields, at room temperature, a two-layer thick

MnAg-c(2× 2) ordered alloy [149]. Moreover, a Ag enrichment and a Mn depletion of

the surface plane was observed on a time scale of about 60 min, leading to unalloyed

Ag islands [150].

We are interested on basically two different systems: the possibility of growing

MnPt ordered alloy with a slightly larger anisotropy and the growth of pure Fe, which

shows perpendicular magnetic anisotropy up to 6 MLs. Up to this thickness, the growth
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aspects and the structure are rather unclear. We have initiated a study of such systems,

but quantitative analysis has not been performed, yet. For the Fe/Ag(001) we will give

only a brief qualitative description. As far as the MnPt system is concerned, it seems

quite clear that starting by Mn deposition is not a well-suited route due to the tendency

of Mn to form the MnAg-c(2×2) alloy. Hence, before growing MnPt, we were led to the

study of a thin buffer layer of Pt on Ag(001). We describe below some results obtained

until now on both systems.

3.2.1 Pt/Ag(001)

To our knowledge, a study of the growth of Pt deposited on Ag(001) has never been

reported. Besides the film structure is not known, surface segregation is expected due

to the low Ag surface energy. The bulk phase diagram of Ag-Pt binary alloy shows a

large degree of immiscibility.

We report here the study by GIXRD of the growth of 1 and 2 Pt ML on Ag(001) at

room temperature. Pt is evaporated from a 2 mm ultra-pure rod using electron beam

heating. The evaporation rate was about 1 ML each 20 min, calibrated measuring the

oscillation in anti-phase position on the specular reflectivity, cross-checked with the

quartz balance rate. The misfit between Ag and Pt is about 4%, however, deposition at

room temperature of about 5 Pt ML result in an almost pseudomorphic film, evidenced

by the Kiessig fringes along the Ag CTRs.

sample: 1 ML Pt/Ag(001) 2 ML Pt/Ag(001)

layers θ(Pt/Ag) d(Å) θ(Pt/Ag) d(Å)

4 0/0.81 1.85±0.04

3 0/0.60 1.82±0.02 0.40/0.60 1.88±0.04

2 0.60/0.40 1.93±0.01 0.90/0.10 1.90±0.03

1 0.40/0.60 2.002±0.005 0.45/0.55 2.01±0.02

Bulk 2.0425 2.0425

DW 0.9±0.1/2.2±0.3 1.1±0.1/1.9±0.3

χ2 1.3 2.3

Table 3.3: Fitting results for 1 ML and 2 ML Pt on Ag(001) at RT

A quantitative structural analysis was performed after 1 ML deposition. A set of

114 (hkl) non-equivalent reflections were measured along the (1 0), (1 1), (2 0), and

(2 1̄) CTR, plus 25 equivalent ones in the P4mm plane group ( (0 1̄), (1 1̄) and (0 2̄)

CTR, the agreement factor being 0.054). The intensity of each reflection was measured

quantitatively through a rocking scan and the amplitudes of the structure factors were

extracted applying the standard corrections (eq. 2.20). Then, we started to model the

surface considering the two border situations, 1 ML of Pt pseudomorphic on Ag(001)

and a Ag/Pt/Ag(001) sandwich. The χ2 factor for the two models are equal to 55

and 22, respectively. Despite the low agreement, the sandwich fits much better the

data. Then a model was tried, with impinging Pt atoms exchanging only partially

with substrate atoms. This resulted in a two-mixed layer, with an incomplete top one

which was assumed to be formed by silver (see fig. 3.13, where Pt is represented by

dark spheres). Besides the Ag occupancy in the top layer and the Pt concentration in
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the next two ones, the first three average inter-layer distances were optimized, as well

as the Debye-Waller of Pt and of Ag in the last two layers, that one of the underlying

layer being kept to the bulk value. The experimental structure factors together with the

best fits are shown in figure 3.14, while the optimized parameter values are reported

in the table 3.3. Note the reduced χ2 value of 1.3. The distance dn represents the

spacing between the n and the n − 1 layer, layer 0 being the last substrate one with

bulk characteristics.

Figure 3.13: Sketch of one Pt ML on Ag(001)
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Figure 3.14: Experimental and fitted structure factors for 1 ML Pt/Ag(001) deposited
at room temperature

As a next step, a second Pt monolayer was added on the previous surface. A set

of structure factor amplitudes were measured on the (1 0) and (1 1) CTRs. Equivalent

reflections were not measured in this case, but the same agreement factor obtained for
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the 1 ML data, measured in the same experimental conditions, was used for the error

bar. The fit was performed considering that only Ag atoms at the surface can exchange

with freshly deposited Pt, and fitting parameters of layer 1 at the interface were then

kept fixed within the error bar. A comparison of the experimental and simulated

structure factors is given in figure 3.15, while the values of the best fit are summarized

in table 3.3. The error bar on the atom occupancy is 0.1 or better. The incomplete top

layer is supposed to be pure silver, but it is quite difficult to find separately occupancy

and composition by GIXRD. It could exist some amount of Pt in the surface, what

would increase the total amount of Pt found in the fit (1 ML and 1.75 ML instead of

the nominal thickness of 1 and 2 ML, respectively).
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Figure 3.15: Experimental and fitted structure factors for 2 ML Pt/Ag(001) deposited
at RT.

It is clear from table 3.3 that Pt deposition on Ag(001) results in a Pt enrichment

in buried layers close to the surface. This is likely the result of atomic exchange where

impinging Pt atoms replace Ag atoms which segregates on top. This Pt enrichment is

also evidenced by the contraction of the inter-layer distances, which decrease below the

Pt d001 one.

3.2.2 MnPt/Pt/Ag(001)

A PtMn film was grown on the Ag substrate. It was shown in the last paragraph

that silver segregate on top of Pt even at room temperature. Looking at the bulk phase

diagrams, it is known that above 1235 K the equilibrium phases of the Ag-Pt system are

a liquid, and an fcc solid solution, with a large degree of immiscibility. The existence of

inter-metallic phases at lower temperatures is controversial. For Ag-Mn, contradictory

results exist in the literature, too. However, substantial Mn solubility in solid Ag has

generally been reported [145].

In this work a temperature of 570 K was chosen for growing PtMn, despite the

fact that Ag segregation is expected. The idea is that silver could act as a surfactant

layer favoring a layer-by-layer growth, possibly without intermixing with the PtMn

alloy. After deposition of a 2 ML Pt buffer layer at room temperature, a nominal 8

PtMn bilayer thick alloy was grown at 570 K by alternated monolayer deposition of
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each element, to mimic the L10 order. An extra Pt layer was deposited on the last

Mn one. The Auger spectroscopy shows large values for the Auger peaks signal ra-

tios Ag(351 eV)/Pt(235 eV) and Ag(351 eV)/Mn(589 eV), confirming the silver surface

segregation.
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Figure 3.16: (PtMn)8Pt3/Ag(001). Intensity measured by l -scans along the (1 0), (1 1)
and (2 0) CTRs.
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Figure 3.17: (PtMn)8Pt3/Ag(001). Intensity measured scanning the momentum trans-
fer modulus parallel to the plane, close to the (1 0) Ag CTR.

Figure 3.16 shows the intensity measured along the (1 0), (1 1) and (2 0) CTRs.

This raw data allows already several considerations. The Kiessig fringes give the film

thickness, as described in chapter 2. A value of 4.0±0.1 nm is obtained, which is a little

bit larger than the nominal thickness of 3.5 nm obtained considering 8 PtMn bilayers

plus 3 Pt MLs at the interface, but the difference is within the typical error bar of the

sources calibration. The very nice Kiessig fringes observed at low l prove that there is

neither inter-diffusion into the silver at the interface nor intermixing over a few layers at

the surface, despite the Ag segregation. The strong decreasing of the fringes amplitude

with increasing momentum transfer is an indication of a loss of pseudomorphism. This

is particularly clear in the comparison between the (1 1) and the (2 0) CTRs. Indeed, a

high resolution scan of the momentum transfer modulus parallel to the surface (radial

scan) is shown in fig. 3.17. A rod characteristic of the deposited film is observed, which

is convoluted with the Ag CTR. It corresponds to a smaller in plane lattice parameter of

the film with respect to the substrate. Fitting the position of the PtMn rods measured
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close to several CTRs, a value afilmMnPt = 4.03± 0.01 Å is found. Due to the correlation

length of the domains parallel to the surface, which determine the rod broadening, and

to the epitaxial relationship with the substrate, a film contribution is observed along

the silver CTRs. However the structure factors cannot be fitted in an easy way, and

only a qualitative analysis was performed. Peak characteristic of the film are observed

at higher l values compared to Bragg peaks. Fitting this peak with a Gaussian, a

value cfilmMnPt = 3.75 ± 0.02 Å is found. Both afilmMnPt and cfilmMnPt are slightly larger than

the corresponding ones for the stoichiometric MnPt bulk alloy, which can be due to a

richer Pt composition originating either by the inter-diffusion with the 3 Pt MLs at the

interface or/and by the incertitude in the source calibration.
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Figure 3.18: (PtMn)8Pt3/Ag(001). Radial scan across the (1.015 1.015 1.07) LRO
peak.

The peaks almost in the middle between Bragg peaks are a signature of the ordered

L10 phase. Neglecting the Debye-Waller term, a rough estimation of the order parame-

ter S is given by S =
√

Isup
Ifun
· fPt(qfun)+fMn(qfun)
fPt(qsup)−fMn(qsup) (see chap. 2). Measuring along the (10)

rod, we have S =
√

I(1 0 2.18)
I(1 0 3.7) ·

fPt(1 0 3.7)+fMn(1 0 3.7)
fPt(1 0 2.18)−fMn(1 0 2.18) = 0.37. This is a relatively high

value. A better long range order can be surely achieved by a more accurate calibration

of the evaporation rates, considering that a deviation from the PtMn stoichiometry

results in a smaller order parameter. Parallel to the plane, the correlation length of

ordered domains is about 6 nm, which is the same of the PtMn film itself. Figure 3.18

shows a radial scan across the (1.015 1.015 1.07) long range order peak. A second peak

appear at (0.508 0.508 1.07) which is the signature of an ordered minority phase. This

can be explained either with the presence of a L12 phase region or with a L10 domain

with in plane c-axis.

In conclusion, deposition on Ag(001) surface at 570 K favors the growth of a PtMn

L10 phase with the c axis perpendicular to the surface, with silver segregation, and a

relatively high order parameter.

3.2.3 Fe/Ag(001)

The first steps of Fe growth on Ag(001) was studied in situ by GIXRD. A beam energy of

22 keV was used. The films were grown at room temperature, to minimize intermixing,

then moderate annealing, up to 470 K, was done to improve the quality of the surface
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and modify morphological aspects. The growth was followed in real time along the

(1 1̄) CTR - to track the perpendicular lattice parameter c, or tetragonal distortion

(c/a) - and in the plane (h, k) at the (1 1̄ 2.7) and (1 1̄ 2.83) positions in reciprocal

space - to confirm (or infirm) the pseudomorphic behavior. Complete sets of CTRs

were measured for some particular coverages. This allows to solve the structure and

get accurate lattice parameters. However, these data have been quite recently acquired

and a complete quantitative analysis has not been done, yet. We present here some

remarkable outcomes that deserve a brief comment.

2.0 2.2 2.4 2.6 2.8 3.0 3.2

5000

10000

15000

20000

25000

co
un

ts
 (a

rb
.u

n.
)

l (r.l.u.)

 8.3 ML
 8 ML
 7 ML
 6 ML
 5 ML
 4 ML
 3 ML
 2 ML
 1 ML
 0 ML

(1 -1)

(a)

0 2 4 6 8 10 12 14

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

c/
a

nominal Fe thickness (ML)

(b)

Figure 3.19: (a) Real time evolution of the (1 1̄) CTR during the Fe deposition. (b)
Tetragonal distortion as function of coverage for two different depositions. Solid line
gives the limit of no distortion; dotted line gives the situation where the volume of the
unit cell is the same as bulk bcc Fe.

Probably, the most interesting property of the Fe/Ag(001) system is the spin re-

orientation transition as function of the thickness and temperature [70]. At room

temperature, the easy axis changes from out-of-plane to in-plane around 6 MLs. By

tracking the in-plane lattice parameter of the deposited layer up to 8, 11 and 14 MLs,

in three different depositions and even after annealing at 470 K, we could eliminate a

possible relaxation of the Fe film as an explanation for the SRT. The Fe films grow

pseudomorphically taking the in-plane lattice parameter of Ag, aAg = 4.0853 Å, or,

in the body-centered cubic lattice of Fe, a = 2.889 Å, larger than the bulk bcc Fe

(aFe = 2.8665 Å) by 0.8%. Interestingly, however, c/a does not become smaller than

one, as it would be expected after pseudomorphic growth at constant volume.

The real time evolution of the (1 1̄) CTR during Fe on Ag(001) deposition for a up-

to-8.3 MLs film is presented in figure 3.19-a. Tracking the position of the peak, running

from about 2.6 to 2.8 in reciprocal lattice units, yields a good average estimation of the

c value. A more accurate quantitative analysis based on a model layer has not been

performed, yet. In figure 3.19-b, we present the estimation of the tetragonal distortion

for two different experiments, namely for the up-to-8 and up-to-14 MLs depositions.

One clearly see that the distortion is larger than unit up to about 10 MLs. Nevertheless,

we must emphasize that the in-plane parameter is that of Ag(001) and, even above

10 MLs where c/a is close to one, the volume of the unit cell is still larger than for bulk

Fe. In figure 3.20 one can observe the evolution of the cell volume at different coverages,



3.2. Growth on Ag (001) 65

0 2 4 6 8 10 12 14
23.5

24.0

24.5

25.0

25.5

26.0

26.5

27.0

ce
ll 

vo
lu

m
e 

(
3 )

nominal Fe thichness (ML)

Figure 3.20: Evolution of the volume of the unit cell for the Fe film as function of the
coverage. The dash lines gives the volume of the bulk Fe bcc.

compared with the bcc Fe bulk cell volume of 23.55 Å3. For very low coverages, the

average cell volume of Fe films is larger by about 14%. It is evident that a more accurate

analysis must be done, in particular in this low-coverage regime, to take into account

the contribution of the first layer spacing and a possible influence of a surfactant Ag

layer.
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Figure 3.21: (1 1̄) CTR before and after annealing the 8.3 MLs Fe film on Ag(001).

One additional comment concerns the annealing at 470 K that is often mentioned

in the literature. This is normally done to improve the morphology by reducing the

surface roughness. Fe and Ag have a high degree of immiscibility and this would also

help to separate a possible presence of Ag on the Fe layer. Schaller et al. [151] used STM

to demonstrate that an initial 4.5 MLs rough surface (σRT ' 0.105 nm) is transformed

into islands with single atomic steps after annealing at 470 K (σ470K ' 0.079 nm). In

addition, they observed that, concomitant with the improvement in morphology, the

in-plane anisotropy turns into out-of-plane.

In figure 3.21 we show the effect of the annealing on the (1 1̄) CTR for the 8.3 MLs

film. The annealing reduce the roughness, as seen from Kiessig oscillations (not shown),

and has the effect of increasing the c lattice parameter, while keeping the pseudomor-

phism (no changes in a lattice parameter). In addition, from Kiessig oscillations (not
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shown) we observe that the initial rough surface is thicker than the nominal value but

goes back close to it after annealing. This is compatible with the idea that the sur-

face is much flatter and some scattered Ag atoms within the layer goes to the surface.

Auger electron spectroscopy showed a increased amount of Ag compared to Fe after

the annealing.

The epitaxial conditions and inter-layer spacing will be precisely determined in a

wide range of coverage, in particular within the SRT region. This will teach us which

parameters are the more relevant for the perpendicular magnetic anisotropy.

To summarize this section, we verified the limit of the pseudomorphic growth and

demonstrated that there is no relaxation of the Fe films up to coverages of 14 MLs, and

even after mild annealing at 470 K. It is known that for constant thickness (4 to 6 ML)

the SRT takes place by moderate heating above room temperature. We have shown

that the structural counterpart is an increasing of the tetragonal distortion and the

appearance of a surfactant layer of Ag.

3.3 Summary

The first steps of metal growth on Pt-hex are strongly affected by the reconstruction.

The substrate reconstruction is lifted locally by metal deposition. We show that for

Mn deposition this lifting leads to an incorporation of platinum excess atoms into the

first layer of the growing film, resulting in a local c(2 × 2) arrangement. Alloying in

the first layer is a drawback of deposition on Pt-hex surface. Such phenomena could

perhaps be reduced by suppressing the reconstruction with exposure to hydrogen, as

happens for Ir(001)-(5× 1) [152].

Homoepitaxial growth of Pt on Pt(001) results in quite a rough surface, as evidenced

by the behavior of the intensity measured in anti-phase condition for the scattering from

next (001) planes. Such an intensity measured versus time during deposition at RT do

not show any oscillations, at the opposite of what is expected for layer-by-layer growth.

An equivalent behavior has been observed for Pt on Pt(111) growth, and is the result

of a potential barrier for adatoms at the steps, which have no enough thermal energy

to jump on a lower terrace. A detailed GIXRD analysis shows that 3D growth also

happens for Pt deposited on the Mn/Pt(001) surface. It was found that almost layer-

by-layer growth is achieved by deposition at about 610 K, temperature at which no

significant Mn diffusion into the Pt bulk is observed. Deposition of Fe on Pt-hex at

600 K results directly in an ordered L10 phase. These findings will be exploited in

growing the alloys described in the next chapter.

At room temperature Fe grows pseudomorphic on Ag(001), up to 14 ML at least.

We show here that the the spin reorientation transition observed at about 6 ML is

probably related at a change in the volume of the unit cell and not to a relaxation of

the lattice parameter parallel to the surface plane.

Finally, an ordered alloy is obtained by alternated Pt and Mn deposition at about

570 K on Ag(001). Silver segregates at the surface, and seems to act as a surfactant for

the layer-by-layer growth. The large substrate lattice constant favors the growth of a

L10 phase with the c-axis perpendicular to the surface.



Chapter 4

GIXRD approach to the study of

order on L10 MnPt films

We present here in situ GIXRD investigations of the synthesis of MnPt alloy with

the purpose of obtaining out-of-plane L10 films in a controlled manner. As described

previously, the L10 structure corresponds to an fct binary alloy with alternate stacking

of atomic planes (of different nature) along the c-axis. To mimic this order, we perform

an alternate deposition of Mn and Pt MLs, as done by Shima et al. [48] for growing

ultra-thin FePt. We often refer to the deposition of two alternate monolayers as a bilayer

(BL). The substrate temperature has shown to play an important role inducing out-of-

plane L10 order [48, 54]. This technique has advantages, from an applied point of view,

in relation of the RT deposition plus annealing. Generally, the required temperatures

to attain order are lower and the process is faster, once the time consuming step of

annealing is eliminated.

The study of the growth and ordering of MnPt alloy on Pt(001) follows two prepa-

ration methods: the alternate deposition at RT with subsequent annealing, and the

thermal alternate deposition. The misfit between substrate and deposited layer is ex-

pected to influence the ordering, the orientation and the lattice distortion of the alloy.

The study of the first steps of growth gives the necessary basis to understand the growth

of thicker films. There is a delicate temperature threshold that one has to play with

to obtain an almost flat surface during growth (layer-by-layer growth) and induce the

desired order, without however destroy the interfaces by diffusion.

The final thickness of our samples attains up to 6 nm, or 30 MLs, what can be

classified as ultra-thin film from a magnetic point of view, but for the GIXRD analysis

this represents thick films. For such a thick film, a greater number of reflections have

to be measured in order to make possible the layer modeling and fitting. The conven-

tional measurement mode turns out to be too time-consuming and we used a faster

data acquisition mode. Corresponding analysis procedures were implemented and are

described.

67
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4.1 GIXRD to ”thick” films

For the first steps of growth presented in chapter 3 the total thickness of the layers

studied quantitatively was limited at most to 4 MLs, less than 1 nm. The CTRs show

smooth variations (fig. 3.6 and 3.9) and the experimental structure-factor amplitudes

(|Fhkl|) are derived from the integrated intensities of the rocking scans at each (h k l)

position (arcs indicated in figure 4.1). The modeling takes into account each surface

layer independently, permitting occupancy and inter-layer spacing to vary without se-

vere constraints. This same approach, however, is not suitable to thicker films (up to

6 nm). When film thickness increases, the complexity to the CTRs also increases. The

first feature is the presence of thickness oscillations (or Kiessig fringes), giving a fast

varying CTR profile (as seen in fig. 4.2, close to Bragg peaks). Then, inter-diffusion,

segregation, roughening and ordering add more degrees of complexity to the layers.

A proper study of these layers demands the acquisition of large number of reflections.

For example, we measure about 10 CTRs with up to 700 reflections per CTR for the

final samples, what gives 7000 reflections. With the usual rocking scan procedure, each

reflection corresponds typically to a 40-points scan (1 second per point), giving a total

time (just for data acquisition) of more than three days. The picture is even worse if

we want to prepare hetero-structures composed by two layers (anti-ferromagnetic and

ferromagnetic) and we intend to study the first one separately, before depositing the

other one. Not only we would spend the double of the time for acquisition, but mainly

the interface would be contaminated by residual gases during this time1. Specially the

FM/AFM interface should be as free from contamination as possible.

Figure 4.1: Reciprocal space sketch showing rocking scans (solid arcs) and stationary
l -scans (dashed line) along a CTR. The scattered intensity is represented by cylinders
and the Bragg peaks by solid spheres.

1In a pressure of 10−10 mbar, we have 1 Langmuir in less than 4 hours
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An alternative data acquisition strategy based on stationary l -scans, which allows

the reduction by approximately one order of magnitude of the time needed to measure

a complete data set, was then used [153, 154]. In this procedure, one stays always on

the crest of the CTR, without rocking the sample, while changing the value of l in

reciprocal space (all sample and detector movements are computer controlled to follow

the desired trajectory in reciprocal space). Instead of taking a full scan, only one point

is measured at each l, which implies a huge time saving. We often use this fast scans

during sample growth or while annealing a sample, to have a quick qualitative picture

of the sample evolution. It was recently shown [154] that l -scans could also reliably be

used to derive |Fhkl|, once some care was taken in the data acquisition. This requires

good quality single crystals. We have developed a systematical measurement and data

treatment procedure based on this approach to study the structure of our films. An

evident drawback of the l -scan is that it is very sensitive to sample misalignment, as one

can easily deviate from the maximum intensity of the CTR. To minimize misalignment

effects, for each CTR, the (h k) positions are carefully optimized at two points (low

l and high l) by repeated sample rocking and detector in-plane scans (respectively, ω

and δ circles in SUV z -axis diffractometer, fig. 2.4-a). The l -scan trajectory is then

determined by the straight line passing through these two optimized points. Indeed,

this kind of alignment is also done for the standard rocking scan procedure, but in that

case it is not so crucial.

The background coming from thermal diffuse scattering, that for rocking scans is

subtracted in the integration procedure, has also to be taken into account in the fast

scans. To estimate the background, we measure an additional l -scan shifted from the

CTR maximum (integer h and k) [154] by rotating the sample by an angle ∼ 3 ×∆ω

from the aligned position to avoid any CTR contribution (∆ω is the angular width

of the CTR measured in a rocking scan). After subtracting the measured background

from the l -scan to obtain the intensity Ilscan, a set of correction factors, similar to

eq. 2.20 are applied to derive the final corrected |Fhkl| values. The geometrical Lorentz

factor that applies to stationary l -scans, given by Llscan = 1/ sinβ,2 is different from

Lrocking. The rod interception correction Crod is not applicable in this geometry [154].

A procedure to automatically apply correction factors for l -scans and extracting |Fhkl|
was developed. We checked the validity of this procedure by comparing with the |Fhkl|
values obtained by the ANA program [91] for rocking scans.

As shown in figure 4.2, with the inclusion of a multiplicative scale factor, these two

methods have a quite good agreement. To determine the multiplicative factor, we have

included in the general procedure developed the measurement of some rocking scans

along all the CTRs (with typically 0.5 r.l.u. between points) that are integrated and

corrected with ANA program and compared to the corrected l -scans. The corrected

|Fhkl| obtained by this procedure allow us to compare consistently data collected by

both methods, as will be necessary in the following when treating ordered alloys. In

figure 4.2, one can remark that for the (2 1) CTR there is a disagreement between the

l -scan and rocking scan |Fhkl| at low l. This is due to misalignment, once in this region

the detector acceptance is very small and consequently, very sensitive to misalignment.

2The β angle is the polar exit angle, commonly called γ in z-axis diffractometer (see fig. 2.4-a).
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The differences observed around anti-phase regions, are intrinsic of the film measured

and will be recalled in next section.
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Figure 4.2: Comparison between |Fhkl| profiles obtained from rocking scans (filled circles
with error bars) and from stationary l -scans (open circles with guideline).

4.1.1 Procedure for quantifying order

The procedure developed for calculating the order parameter for pseudomorphic L10

alloy films with c-axis perpendicular to the surface (SOP ) follows three distinct steps:

structure modeling and fitting; determination of order peak structure factor
∣∣F orderhkl

∣∣;
and simulation of

∣∣F orderhkl

∣∣ from the fitted model. The first step is the structural deter-

mination, that consists in using the |Fhkl| derived from stationary l -scans, as input to

the modeling and fitting with the ROD program. In this quantitative analysis we get

important information on the composition, thickness, inter-layer distances, roughness

and inter-diffusion of the layer. All these structural parameters are independent, at

least directly, from the degree of order. Indeed, this first step plays the same role as the

structure peak measurement in the standard order determination for bulk or relaxed

films (like MnPt on Ag(001) described previously). Generally, the order peaks we ob-

tain are broader than the CTRs or than the fundamental alloy peaks (as will be shown

in the following sections), and sometimes the order peaks are so wide that they are not

even visible in l -scans or a short rocking curve about the CTR. The reason for these

wide order peaks is the small size of the ordered domains. The structural correlation

length, that depends only on the quality of pseudomorphic growth, is found to be larger

than the order correlation length, that depends both on the pseudomorphism and on

the chemical ordering. The strategy used to derive
∣∣F orderhkl

∣∣ from this broad order peaks

is similar to the rocking-scan procedure described in section 2.3.1. A quite large rocking

scan is needed to reach the background and makes possible a proper integration of the

peak intensity. The measured intensity profile in this rocking scan, however, represents

only a slice of the smeared projection of the broad peak in a plane perpendicular to the

[001]-axis. For taking into account all the intensity of the peak for a particular l value

(integration along h and k), the correction for in-plane detector slits acceptance is of

crucial importance. The obtained
∣∣F orderhkl

∣∣ is then simulated using the model fitted in

the first step.
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At this point, we make the assumption that, if the chemical order was uniformly

distributed along the layer, with the same correlation length as the surface itself (instead

of divided in small domains), all the intensity scattered along the broad peak would be

concentrated in the CTR. Based in this reasonable assumption, we model with ROD an

ordered surface unit cell that permits us to vary the degree of order. Keeping fixed all

the structural parameters obtained from the fit, only the degree of order is then adjusted

so as to reach
∣∣F orderhkl

∣∣, with the simulation. The order parameter S is calculated using

equation 2.21, from the occupancies of each layer in the simulated model. This original

procedure will be applied in next sections.

4.1.2 MnPt ordered alloy in the ultra-thin limit

The equiatomic L10 ordered phase is shown to present 1Q antiferromagnetic order, with

optimal characteristics towards application as pinning layer in devices. If disordered,

it is not antiferromagnetic at RT. It is difficult to keep anti-ferromagnetic character as

the thickness is reduced so, in general, reasonably thick layers are studied (> 10 nm).

The reason for this thickness limit is believed to be intrinsically related to the degree

of order [59, 60]. In the ultra-thin regime (< 10 nm) it is hard to produce well ordered

films by the procedures followed so far, as surface/interface effects becomes crucial. Our

fundamental investigation of the epitaxial growth, structure and ordering for ultra-thin

layers (< 3 nm), following different preparation methods, aims to shed light into this

issue.

For thicker films (30 nm) it has been shown that even a RT co-deposition leads

to well ordered alloy (S=0.65) [65, 54]. Films are deposited epitaxially by MBE on a

Pt(45 nm)/Cr(3 nm)/MgO(001) substrate and result on a twinned L10 domain struc-

ture, with in-plane c-axis. Mn and Pt co-deposition with higher substrate temperature

gives rise to the same kind of structure but with better degree of order (S=0.76 at

620 K [54], or S=0.75 to Pt(5 nm)/MnPt(100 nm)/Pt(10 nm)/MgO(001) deposition at

570 K [64]). In this thickness range, the films are almost fully relaxed and the lattice

parameters tends to the bulk ones for well ordered samples.

Only a few works have been reported in the way to produce L10 MnPt with out-

of-plane (OP) c-axis. Fujii at al. [155, 156] have claimed to produce 6 and 8 ML MnPt

film with OP c-axis on Fe(001) substrate by RT coevaporation followed by 500 K an-

nealing, however, the lack of a structural characterization do not permit to confirm

that the layer is effectively ordered. Co-deposition onto a rough multilayered sub-

strate at 570 K is reported to lead to OP c-axis orientation with the final configuration

Pt(5 nm)/NiFe(6 nm)/MnPt(20 nm)/Pt(5 nm)/Ag(130 nm)/Si(001), and a total peak

to peak roughness of ∼ 300 nm [66]. No attempt to quantify the order parameter is

reported, however, this OP ordering is extrapolated to be valid to thinner MnPt films

(3 nm) to explain an increase in the NiFe coercive field at RT (50 Oe) compared to its

usual value.

Alternate mono-atomic layer deposition has been successful used by Borme [54] to

epitaxially grow 30 nm-thick MnPt with OP orientation, on Pt(45 nm)/Cr(3 nm)/MgO(001).

This author found that at RT the alternate deposition leads to a poorly ordered film
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(SOP = 0.04 and SIP = 0.13), but subsequent annealing at 720 K for 2h favor the

OP order (SOP = 0.55), while the in-plane order stays small. Even better result are

observed for thermal deposition, where up to SOP = 0.97 is claimed when the substrate

is held at 720 K during the alternate growth. Also here the layers are thick enough to

relax towards bulk lattice parameters through the emergence of interface defects. One

should note that the error bars in the order parameters determination for the works

cited above, although not often given, tends to be quite high once the MnPt and Pt

buffer peaks are hardly distinguishable in the majority of the cases. We could not find

in literature any work that reports a perpendicular exchange coupling with a MnPt

layer. However, this would be the case if one is able to grow MnPt with OP c-axis

coupled to a film with perpendicular magnetic anisotropy. The compensated interface,

should not be a problem if one considers that surface steps, defects or spin canting, can

lead to exchange coupling in compensated surfaces[71].

Our aim in this study is the understanding of the many parameters governing the

ordering process in the MnPt ultra-thin regime. Special attention is paid to the layer

constraints. A pseudomorphic growth can lead to substantial changes in lattice param-

eters, compared to the bulk values. This turns out to be of fundamental importance,

once it can determine the easy-axis of the L10 MnPt, as was theoretically predicted by

Lu at al. [50]. These authors predict that an increase in the c/a ratio, as should be the

case for OP MnPt on Pt(001) at constant volume, goes in the sense of favoring the spin

orientation along the c-axis.

The ground basis of this study is given in chapter 3, where the first steps of Mn

and Pt growth on Pt(001) are investigated. Here we will focus on the RT alternate

deposition followed by annealing at 770 K and the thermal deposition. The temperature

is kept moderate to avoid inter-diffusion. There are two main structural parameters

that strongly influence the magnetic behavior of the film: the degree of order and the

correlation length of the ordered domains. A major portion of the subsequent discussion

will turn around these parameters, that are carefully derived in the next sections.

4.2 Room temperature deposition and annealing of MnPt

on Pt(001)

4.2.1 Room temperature alternate deposition

We start the study of ordered layers by the preparation of a MnPt alloy at RT on a

Pt(001) substrate with a small (not on purpose) miscut of 0.34° along the (10) direction.

We have grown by alternating deposition of Mn and Pt monolayers a film composed

by 6 BL. After each ML deposited, a fast l -scan along the (1 1) CTR was measured

to give a qualitative idea of the growth mode. Figure 4.3 shows these l -scans for some

intermediary stages (Mn, (PtMn)1, Mn(PtMn)1, (PtMn)2, Mn(PtMn)2) and for the

complete (PtMn)6 layer. The Clean Pt-hex-0.7º surface and the background, measured

along (1.03 1.03), are also represented (gray dash and dot lines, respectively). Looking

at the intensity in the anti-phase region (l ∼ 1), very sensitive to roughness [88], one

observe that after each Mn deposition the surface tends to be smoother but after each
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Pt deposition the surface is rougher. This qualitative observation is in accordance with

the results presented in section 3.1.3 showing the 3D growth mode of Pt on Mn/Pt(001)

at RT.

The final film of 6 PtMn BL is indeed quite rough, as is evident from figure 4.3

(black solid line) once the CTR intensity reaches the same level as the background

scan (gray dots) in the anti-phase region. A rocking scan in the (1 1 1) position, where

one would expect an OP order peak, gives no peak at all. Likewise, no traces of IP

order were found in the (1/2 1/2 0.15) position (not shown). This means that, if there is

some degree of order, it is weak enough to be hidden by the high roughness. One can

observe just below l = 2 well-defined Kiessig oscillations of the complete film. Taking

the inverse of the period of these oscillations, marked with vertical bars, we estimate

the total thickness of the film to be around 15 ML, or 2.9 nm. The small discrepancy

from the nominal value (12 ML) should come from the initial diffusion and alloying of

Mn with the Pt excess atoms from the hexagonal reconstruction and from some source

calibration error within our 10% of precision.
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Figure 4.3: Stationary l -scans intensity along (1 1) CTR during Mn and Pt alternate
growth at RT on a clean Pt-hex-0.7º. The legend indicates each corresponding layer.
Note that, hollow symbols represent Mn terminated and filled symbols Pt terminated
layers. The final (PtMn)6 film is plotted in a black solid line, where vertical bars
highlight the thickness oscillations period. Yet, we added the measured clean surface
and the background along (1.03 1.03), dash and dot gray lines, respectively, to make
clear that the RT deposition yields a rough surface (the intensity in the anti-phase
region comes only from the background in the final film).

4.2.2 Annealing at 770 K

The rough sample was then annealed (following a few steps) from RT up to 770 K,

with temperature calibrated using a pyrometer. During this process, we systematically

measured the (1 1) CTR below l = 2 and we verified the presence of IP order peaks by

rocking scans at (1/2 1/2 0.15). No change was visible up to 570 K, when the intensity
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close (1 1 1) starts to slightly increase (fig. 4.4). About this same temperature, wide

peaks appear in the half-integer position, indicating the presence of small domains with

IP order. Above 670 K we can note a more significant evolution in the (11) l -scan, with

a general increase of the CTR intensity, but with the appearance of a deep around

a small region close to l = 1.03 (upper curve in figure 4.4). The sample was finally

kept at 770 K for about 30 min before turning the heater off. Apart from this localized

deep (that will be discussed later), the scattered intensity in the anti-phase region is

recovered, which is a clear indication that roughness has decreased. Indeed, the surface

presents quite large terraces after annealing, about 700 nm along miscut terraces (0 1)

ant 100 nm along miscut steps (10). We remark that the Kiessig oscillations (see vertical

bars in fig. 4.4) are preserved, what signifies that the layer has kept the same thickness

(2.9 nm) and there is no additional Mn diffusion into the substrate.
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Figure 4.4: l -scans along the (1 1) CTR below l = 2. The corresponding annealing
temperatures are indicated in the legend.

For this annealed sample, a whole set of l -scans (including background) and rocking-

scans was measured, making a total of 9 CTRs (6 nonequivalents). No peak related

to the long-range chemical order of OP oriented domains, expected close to the (1 1 1)

position, shows up in the l -scan along the crest of the CTR. However, as shown in figure

4.5, the (offset) l -scan along (1.03 1.03) yields a broad peak in the anti-phase region

corresponding to small L10 ordered domains with the c-axis oriented perpendicular

to the surface. We determine the l -position and width of these order peaks for each

measured shifted CTR (18 peaks in total) by means of a pseudo-Voigt fit. With this

piece of information we thus obtain the average tetragonal distortion3 of out-of-plane

domains, c/aOP = 0.971 ± 0.004, and its average correlation length4 perpendicular

to the surface, LOP⊥ = 1.67 ± 0.32 nm (approximately 9 ML). The measured c/a is

larger than the bulk L10 MnPt value (c/abulk = 0.916) but is in remarkable agreement

with the expected value for a pseudomorphic layer with constant unit cell volume

(c/aV=const. = 0.971). This result suggests that the layer is pseudomorphic and has the

right stoichiometry.

3For a pseudomorphic layer, the in-plane lattice parameter is the Pt one. The OP lattice parameter
is taken from the inverse of the peak position. For an order peak centered at (113.3) (instead of (113))
the tetragonal distortion is of c/a = 0.91.

4The calculation of correlation length is taken from the inverse of the peak width. See section 2.2.1
for details.
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Figure 4.5: X-ray scattering along the (1 1) CTR for the (MnPt)6 layer as deposited
(gray solid line) and after annealing at 770 K (spheres). The offset scans, along
(1.03 1.03 l), evidence a large peak in the background after annealing.

A large rocking scan along the (111) position reveals a broad peak (fig. 4.6) coming

from the small OP ordered domains with a CTR sharp peak superposed to it. The

lateral correlation length estimated from this broad peak is LOP‖ = 2.5 ± 0.2 nm. At

this point, we are able to comment on the “deep” observed in the CTRs around the

order peak positions (fig. 4.5). In a l -scan (or a short rocking-scan) mainly the sharp

part of the peak is taken into account. However, as illustrated in figure 4.6, the large

rocking-scan can be fitted with a double pseudo-Voigt function, where most of the

integrated intensity comes from the broad order peak of quite small domains. The deep

around the broad peak position in l (fig. 4.5) means that the scattering from the small

domains does not add coherently. They act like a sort of chemical roughness to the

sharp CTR profile. Nevertheless, if one integrates all the scattered intensity (sharp and

broad part), applying the appropriate corrections for each part,5 the resulting
∣∣F orderhkl

∣∣
value corresponds to an order peak, instead of a deep (see highlighted cross in fig. 4.8).

Gathering a reliable data set is the first step before modeling and fitting with ROD

program. We have shown in figure 4.2 that some discrepancies may exist between

|Fhkl| obtained from rocking scans and from l -scans due to misalignment at low l.

The discordant region of the (2 1) rod was removed from the data-set before fitting.

Moreover, the deep region cannot be modeled in ROD, since they come from a peak

broadening effect due to the presence of small domains. Hence, we also remove from

the data-set, points within deeps at anti-phase regions. By this way, we can model

and fit the structural part (not the ordered one) of the layer. However, the model is

constructed in a way that order can be included later on.

A total number of 16 MLs (numbered n = [1 to 16]) composes the best model

achieved: 5 MLs take into account mixing and inter-diffusion, 9 MLs represent the main

part of the film, and 2 MLs at the top allow roughness or segregation. |Fhkl| values with

5The detector acceptance correction take into account the width of the broad an sharp contributions
separately.
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Figure 4.6: Fitting of large rocking scan around (1 1 1) with a double pseudo-Voigt
function. In this particular case, the broad part has a Lorentzian line shape, while the
sharp one is Gaussian.

error bars and the corresponding fitted curves are shown in figure 4.7 for all measured

CTRs. An agreement factor better than 10% was found in the averaging of equivalent

CTRs measured.

In the 5 first MLs, Mn and Pt occupancies are free, only constrained to fill complete

layers (θnMn + θnPt = 1). To reduce the number of fitting parameters, the interlayer

distances are imposed to to vary linearly like, dn = db + n∆d, where the fitted value

∆d = −0.005 Å is the slope with which the interlayer distance decreases. As seen in

table 4.1 the fit gives a gradient of increasing Mn content within the interval n = [1to5],

compatible with an interdiffusion picture. The intermediary part (n = [6 to 14]) is

supposed to be stoichiometric and homogeneous (θnMn = θnPt = 0.5) to the fitting, but

it is constructed following the rules: θnMn = θn+1
Pt and θnMn + θnPt = 1, so that order can

be included later on with only one additional parameter (θ6
Mn). Only one interlayer

distance is considered in the fit, giving the value dn = 1.93 Å, not far from the expected

value from the order peak positions (dOP,IP = cOP,IP/2 = 1.90 ± 0.01 Å). In the 2 last

MLs the occupancies and interlayer distances are let completely free. The fitted values

are summarized in table 4.1. Layer 15 is complete and slightly Mn-rich, while the last

one is almost half-filled only with Pt. The last distance is 3% shorter compared to

the bulk value, what is not surprising to a surface layer, once the presence of dangling

bonds is commonly observed to cause a shrink in the OP lattice parameter [72]. This

surface composition is coherent with a Pt-finished deposition and the small roughness

is expected after a 770 K annealing. To limit the number of parameters, bulk values

are imposed to all DW factors.

Many other models were tried, changing the total number of MLs, considering a

beta-like roughness model, with distinct number of MLs of each part of the film, and

letting free all distances and DW parameters. The model described is the simplest one

(with less free parameters) that reasonably fits the data (fig. 4.7, χ2 = 8) and gives a

proper picture of the layer structure.
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Figure 4.7: Fitting with ROD of |Fhkl| for sample (PtMn)6/Pt(001) annealed at 770 K.
The continuous black lines represents the fit, while the gray symbols with error bars rep-
resent the |Fhkl| obtained with the l -scans procedure. Only the structural contribution
is fitted, once the anti-phase regions are not fitted (gaps in the bottom of CTRs).

As described previously, the fitted model achieved is the first step for estimating

SOP . In the second step, the integration of the large rocking curve at (1 1 1), shown in

figure 4.6, is done both numerically and by the area of the fitted double pseudo-Voigt.

We apply the appropriate corrections (eq. 2.20) to the mean value of the two integrals,

using the fitted FWHM of the large peak to calculate Cdet and derive
∣∣F order1 1 1

∣∣. The

difference between the integration methods is included in the error bars. Another source

of error taken into account is the uncertainty, from the fitting procedure, on the width

of the large peak. The obtained value is then
∣∣F order1 1 1

∣∣ = 8.5± 0.9, represented in figure

4.8 by a cross with error bar. In the model, chemical order can be added within 9 MLs

(or ∼ 1.7 nm). This thickness corresponds to the LOP⊥ value obtained from the peak

width along l. To simulate the chemical order, we fix all parameters of the structural

fitting and adjust the occupancy parameter θ6
Mn within the layer to obtain the value∣∣F order1 1 1

∣∣ = 8.5± 0.9 in the (1 1 1) position.

Figure 4.8 shows the simulated curve passing through the experimental value marked

with a cross, obtained with θ6
Mn = 0.74±0.036. The order parameter within this 9 MLs

is then calculated using equation 2.21 as, S9MLs
OP = θ6

Mn − θ6
Pt = 0.48± 0.06. Then, we

normalize this value by the nominal number of monolayers deposited (12) to give the

general OP parameter SOP = 0.36 ± 0.5. We should recall that this quite large order

parameter comes from a large amount of very small chemically ordered domains with

OP c-axis.

6Recall that θ6Mn = 0.74 is sufficient to determine the other occupancies: θ6Pt = 0.26 ,θ7Pt = 0.74
,θ7Mn = 0.26, etc.
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layers θ(Pt/Mn) d(Å)

16 0.44/0 1.90

15 0.39/0.61 1.95

[6..14] 0.5/0.5 1.93

5 0.55/0.45 1.93

4 0.61/0.39 1.94

3 0.71/0.29 1.94

2 0.83/0.17 1.95

1 0.93/0.07 1.96

Bulk 1/0 1.96

DW bulk: 0.31/0.44

χ2 8

Table 4.1: Fitting results for (PtMn)6/Pt(001) annealed at 770 K.
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Figure 4.8: Simulated CTR to fit
∣∣F order1 1 1

∣∣ = 8.5± 0.9.

The diffracted intensity along the half-integer rods (1/2 1/2) and (3/2 3/2) originates

from L10 domains with IP c-axis.7 As can be seen in figure 4.9-a, the scattering

along the (1/2 1/2) rod yields broad peaks near each integer l value, corresponding

alternately to domains oriented along [1 1] and [1 1̄] (see fig. 2.3 to recall which peak

corresponds to each orientation). From the average position and width of the measured

peaks, assessed with pseudo-Voigt fits (4 peaks in total), we determine the tetragonal

distortion8 and the perpendicular correlation length of the IP oriented domains to be

b/aIP = 0.968 ± 0.006 and LIP⊥ = 1.34 ± 0.14nm. The calculated volume of the unit

cell, considering pseudomorphism, is also constant within 0.3% compared to the bulk

MnPt, as is the case for OP domains. As compared to the OP domains, the in-plane

ones are 2.5 times wider, as seen by the narrower rocking curves (fig. 4.9-b), with

LIP‖ = 6.3± 0.7nm.

7Here, the c-axis denotes the direction of chemical order (Mn/Pt stacking), even if the IP domains
are pseudomorphic with the c-lattice parameter equal to aPt.

8The tetragonal lattice parameter, perpendicular to the surface, is called b, and not c (reserved to
the order direction).
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Figure 4.9: a) X-ray scattering along the (1/2 1/2) CTR (black spheres with connecting
line). The shifted l -scan, along the (1.03 1.03), is shown to compare intensities (gray
dotted line). b) Rocking curve about the (1/2 1/2 2.1) reciprocal space point (indicated
in by a dashed bar in (a)), compared to the (1 1 1) rocking scan, that has the same
momentum transfer modulus|~q|. The abscissa is converted from degrees to transverse
momentum transfer dqRC.

The in-plane order parameter can be indirectly estimated by comparing the struc-

ture factors obtained for the IP and the OP peaks. We apply the appropriate corrections

to the integrated intensity of the (1/2 1/2 2) IP order peak, chosen because it have the

same momentum transfer9 of the (111) reflection, integrated above. Additionally to the

usual corrections for a large rocking curve, a correction to take into account the peak

width in l is considered, giving the final value
∣∣∣F order1/2 1/2 2

∣∣∣ = 6.7±0.3. The ratio
|F order1 1 1 |∣∣∣F order1/2 1/2 2

∣∣∣
gives directly SOP

S
1/2 1/2
IP

, from where we calculate S
1/2 1/2
IP = 0.28±0.05, the order parameter

of the domains with c-axis aligned along [1/2 1/2]. Here we make the assumption, by

symmetry reasons, that both IP variants have the same population. The in-plane order

parameter is then twice that for the one domain type, SIP = 0.57± 0.1, and the total

order parameter, summing IP and OP contributions is finally S = 0.93± 0.15.

The final picture of this layer, obtained by deposition at RT of 6 (MnPt) BLs on

clean reconstructed Pt(001) and annealed up to 770 K for 30 minutes, is a multi-domain

L10 structure with c-axis orientation in the three possible directions, filling almost all

the layer volume. Indeed, from the definition of order parameter given above, it is not

possible to say if S < 1 means that a random disorder is distributed within the ordered

domains (that occupy then all the volume) or if we have perfectly ordered domains with

disordered regions in between them (with volume ratio of 1−S), for example in domain

boundaries. Transmission electron microscopy studies reported in literature for thicker

films [65, 64] and [54, p.41], show that MnPt alloys may form columnar structures with

disordered regions between ordered grains. This gives an indication that the second

picture is most likely valid, but we have no elements to conclude on that. The in-plane

domains are found to be rather small in the direction perpendicular to the surface

9The equivalence of both |~q| values becomes obvious if we write these reflections in cubic notation:
(1 0 2)FCC and (2 0 1)FCC .
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(about half the layer thickness) but with a larger lateral correlation length. From the

investigation of the initial steps of growth presented in last chapter, we saw that in-

plane order is present in the very beginning of Mn growth on Pt-hex-0.7 °, once Mn

atoms reacts with the Pt 25% excess atoms of the reconstruction to form a partially

ordered surface alloy. This initial alloying is likely to work as a seed to the growth of IP

ordered domains. It is a typical interface effect that influence the kind of order obtained

when one explores a thickness range < 3 nm. For thicker layers (30 nm) J. Borme found

that alternate RT deposition and annealing at 720 K leads to a majority of OP order

(SOP = 0.55), with small IP contribution (not quantified in [54]). This suggests that

the volume contribution, induced by the alternate deposition, favors the OP order. In

a constrained layer, as is our case, we expect that the OP domains to be even more

favored, once the elastic energy is smaller for these domains due to the smaller lattice

mismatch with the Pt substrate. The OP domains were shown to be slightly thicker

than the IP ones, however its lateral correlation length is 2.5 times smaller. This

result, is intrinsically related to the high roughness of RT deposited MnPt described

above, mostly influenced by the three-dimensional Pt growth mode. In a rough surface,

many nucleation points can be formed from the local order induced by the alternate

deposition. In the annealing process a great number of nucleation points gives rise to

small ordered domains.

4.2.3 Covering with Fe

This MnPt layer was then covered at RT with 15 Fe MLs (in-plane magnetic anisotropy)

for exchange coupling studies and protected against oxidation with 10 Pt MLs. Ex

situ XRR was performed to check the final thickness and interface roughness of the

sample (figure 4.10). The fit results have a good agreement with the nominal values, as

summarized in table 4.2. It is worth noting the rather small roughness in the MnPt/Fe

interface (<1 Å), configuring a sort of “model interface” to the study of the exchange

coupling.

layer Nominal Fitting results

Thickness (nm) Thickness (nm) Roughness (nm)

Pt 1.96 1.81 0.145

Fe 2.3 2.44 1.095

MnPt 2.28 2.85 0.085

Pt(001) substrate - - 0.335

Table 4.2: Fitting results of XRR measurements compared to nominal values for sample
S0.

4.3 Alternate Mn and Pt deposition at 500 K and anneal-

ing 670 K

We show here the results for a MnPt layer grown by alternate deposition with the

substrate held at a moderate temperature of 500 K then annealed at 670 K. 500 K was
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Figure 4.10: XRR fitting

not sufficient to give a high degree of order, what required an annealing at 670 K. A

quantitative analysis of the order parameter, is not given for this layer, since it presents

an intermediary behavior between the RT deposition plus annealing and the deposition

at 570 K, presented in next chapter.

As a first step of deposition, 2 MLs of Mn are grown on Pt-hex-0.7º already at

500 K, in order to lift the reconstruction and produce a flat surface. The initial alloying

process, as described in chapter 3, gives rise to faint c(2 × 2) peaks. On this 2 Mn

MLs, we perform the alternate deposition of 6 PtMn BLs, finishing with Pt, with the

substrate always held at 500 K. The final thickness, estimated from the period of Kiessig

fringes, corresponds to roughly 8-9 MnPt BLs, or about 3.2 nm. A qualitative picture

can be deduced directly from the l -scans presented in figure 4.11 and from the many

in-plane scans10 measured.

The 500 K deposited film (gray line in fig. 4.11) shows a small roughness, as evi-

denced by the thickness oscillations that persists even in the anti-phase region of the

(1 1) CTR. Only a faint intensity is observable in a large rocking curve along the (111)

reciprocal space position (not shown). This comes from quite small OP partially or-

dered domains (lateral correlation length of about 1.5 nm). An annealing procedure is

required to improve the ordering, as was the case for the RT deposited sample. The an-

nealing at 670 K for 7 hours gives rise to a large peak in the anti-phase region, visible in

the shifted l -scan along (1.02 1.02) (solid black line in fig. 4.11), due the improvement of

OP order. Additionally, the intensity of the whole CTR increases, indicating a decrease

of the layer roughness. From the shifted l -scans we fit the anti-phase large peaks with

pseudo-Voigt functions, to estimate the OP domain height and tetragonal distortion to

10The refereed in-plane scans are rocking curves, already described, and radial scans, where one fix l
and change the modulus of the in-plane momentum transfer.
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Figure 4.11: Comparison of (MnPt)8 layer just after deposition at 500 K (gray line) and
after annealing at 670 K (black circles with guide line). A large peak at the anti-phase
region also shows up in the shifted l -scan (black solid line).

be11, LOP⊥ = 1.37 ± 0.11 nm and c/aOP = 0.960 ± 0.005, respectively. In-plane scans

about the (1 1 1) peak, both rocking and radial (fig. 4.12), give a lateral correlation

length of LOP‖ = 3.7± 0.2 nm. This is only 1.5 times the average width obtained with

the previous RT deposition plus annealing procedure. The peak position in the radial

scan (fig. 4.12) evidences the pseudomorphism of the OP domains with the substrate

(within 0.03%). Taking the c/aOP value and assuming a perfect pseudomorphism, we

calculate a unit cell volume slightly smaller than the bulk value for these domains. This

contraction (of 1% in volume), in the limit of error bars, could be due to an excess of

Mn within the calibration precision.

IP domains are also present, and from the l -scans we obtain LIP⊥ = 1.67± 0.19 nm

and b/aIP = 0.983± 0.006 (from 8 peaks fitted by a pseudo-Voigt function). They have

a smaller lateral correlation length compared to the OP domains, LIP‖ = 2.6± 0.4 nm,

obtained from the average of 4 measured half-integer peaks, taking the inverse of the

FWHM of both rocking scans and radial scans. Figure 4.13 shows a radial scan along

the (1/2 1/2 2.027) position fitted by a pseudo-Voigt function that includes a linear

background. The plot abscissa is normalized by the in-plane momentum transfer of

(1/2 1/2),
|~q‖|∣∣∣~q(1/2 1/2)
‖

∣∣∣ , so that the position of the peak center gives a direct estimation

of the relaxation of the c lattice parameter. The values of FWHM and peak center

in the plot, correspond to the mean value of two measured peaks, (1/2 1/2 2) and

(1/2 1/2 2). The error bars are given by the standard deviation of the the fit, bigger

than the difference between independently fitted values. We observe that the c-lattice

parameter (along the stacking direction), presents some relaxation, being about 1.5%

contracted in relation to the Pt substrate (c/aIP = 0.985± 0.002), but still 5.4% larger

than the bulk value (cbulkMnPt = 3.665 Å). This relaxation is possibly related to the initial

11The calculated values and error bars are obtained from the average and standard deviation for 3
non-equivalent peaks measured.
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Figure 4.12: Fit of a radial scan along the (1 1 1) peak with two pseudo-Voigt lines.
The large peak, coming from the small ordered domains gives η = 1 in the fit, meaning
a Lorentzian line-shape. The narrow part corresponds to the CTR interception, and is
fitted with a Gaussian line-shape (η = 0). The center position of the large peak, shown
in the figure, attests the pseudomorphism of the OP domains (aOPMnPt

∼= aPt). From
the FWHM obtained from the fit (also shown), one can derive the in-plane correlation
length, recalling that h = k so that a

√
2 factor is included, LOP‖ = (FWHM×

√
2)−1×as,

where as = 2.775 Å is the surface lattice parameter.

deposition of two Mn MLs, that could help to relief the substrate constraint. The

radial scans along the (1/2 1/2 1) and (1/2 1/2 1) peaks gives, applying the same fitting

procedure (not plotted), that the a lattice parameter is pseudomorphic within the error

bars, aMnPt/aPtIP = 1.002 ± 0.002. The unit cell volume, calculated with the above a,

b and c lattice parameters, is the same as for the bulk alloy.

Without the modeling and fitting of the CTRs we cannot calculate the absolute

order parameter, but we are still able to estimate the ratio between OP and IP ordered

domain volumes from the structure factor amplitudes of the respective order peaks.

The same reasoning applied for the previous layer (section 4.2) is used here to calculate∣∣F orderhkl

∣∣ from the large rocking scan along (1 1 1) and along half-integer reflections

with the same momentum transfer, (1/2 1/2 2) and (1/2 1/2 2). The calculated ratio is
SOP
SIP

= 0.61 ± 0.12, evidencing that the total volume and correlation length for the IP

and OP domains are not significantly different.

4.4 Summary

We have verified the validity of the stationary l -scan mode for the measurement of

thick layers. Then, a procedure for quantifying by GIXRD measurements the order

parameter of pseudomorphic alloys, was developed. Following this procedure, we have

studied the growth of MnPt alloy on Pt(001) by alternate deposition at two different

substrate temperatures. At RT a rough and disordered layer is obtained, influenced by



84 4. GIXRD approach to the study of order on L10 MnPt films

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
400

500

600

700

800

 

 

co
un

ts
 (a

rb
.u

n.
)

normalized radial momentum transfer - dq
radial

/dq
|| (1/2  1/2  1)

FWHM: 0.150±0.006

1.015±0.002

Figure 4.13: Radial scan along the (1/2 1/2 2) position, giving the relaxation of the
c parameter of IP domains. The abscissa is normalized by the in-plane momentum

transfer corresponding to (1/2 1/2),
|~q‖|∣∣∣~q(1/2 1/2)
‖

∣∣∣ , in order to give a direct estimation of the

relaxation.

the Pt 3D growth mode. Annealing this layer at 770 K smoothens the surface and gives

rise to small L10 ordered domains, without visible Mn diffusion into the bulk. Three

possible c-axis orientation of the L10 domains are observed. The twinned in-plane c-

axis domains are majority (SIP = 0.57± 0.1) and wider (LIP‖ = 6.3± 0.7nm) than the

OP ones (SOP = 0.36± 0.5 and LOP‖ = 2.5± 0.2 nm), giving a ratio SOP
SIP
∼ 0.6.

For a 500 K deposition, the layer roughness is appreciably decreased. However, this

temperature has not yet been sufficient to give a high degree of order. Annealing at

670 K improves the order, with the OP domains slightly wider. It will be shown in next

chapter that further increase in deposition temperature can improve the OP order.



Chapter 5

Perpendicularly exchange

coupled MnPt/FePt alloys

We turn now to the growth, structure and magnetism of coupled FM/AFM layers with

perpendicular anisotropy. We start by presenting the in situ GIXRD investigations

of the synthesis of out-of-plane L10 MnPt and FePt alloys. As described in section

1.3.1 the L10 structure corresponds to an fct binary alloy with alternate stacking of

atomic planes of different nature along the c-axis. To mimic this order, we perform

an alternate growth of Mn(Fe) and Pt MLs. There is a delicate temperature threshold

to obtain an almost flat surface during growth (layer-by-layer growth) and induce the

desired order.

The preparation of MnPt/FePt heterostructures is exposed, with the in situ char-

acterization by GIXRD, and compared to the ex situ characterization by XAS. The

magnetic properties, measured by MOKE and/or XMCD, are discussed and interpreted

in the light of the structural characterizations.

5.1 Pt8/(PtFe)4/(PtMn)8/Pt(001) (Sample S4)

In this first sample, named S4, the AFM layer is composed by 8 MnPt BLs alternately

deposited on a Pt(001) substrate with a 1° miscut along the [1 1 0]fcc axis held at

570 K. This layer was characterized in situ by GIXRD, keeping the same substrate

temperature, before the deposition of 4 FePt BLs (FM layer). After fully in situ GIXRD

characterization at RT, the sample was covered with 8 Pt MLs at 540 K to protect

against oxidation. Further ex situ GIXRD, XRR and XAS completed the structural

characterization. The magnetic properties were studied by MOKE and XMCD.

5.1.1 Alternate Mn and Pt growth at 570 K

The substrate temperature is an important parameter to establish the growth of chem-

ically ordered alloys with the c-axis perpendicular to the surface (see section 4.3). In

the MnPt system, we show (section 3.1.4) that a leading issue is the temperature at

which Pt grows in a layer-by-layer mode on Pt(001) and of Mn/Pt(001) surfaces. From

the anti-phase growth oscillations (fig. 3.11) we see that at for a substrate temperature

85
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of 570 K the Pt grows layer-by-layer, at a deposition rate of 0.04 ML/min (or 25 min

for 1 ML). Higher substrate temperatures are expected to improve the Pt deposition

mode, however, it would lead to diffusion of Mn atoms into the bulk. This compromise

is specially critical for the low Mn growth rate (0.17 ML/min) that favors atoms dif-

fusion into the bulk. To prevent as much as possible this diffusion, the Mn monolayer

was covered immediately by a Pt monolayer, in the deposition procedure. Much higher

temperature, 720 K, was used by Borme [54] to grow a 30 nm film with a rate of 1ML

in 3.8 s (15 ML/min).

Figure 5.1: l -scans along the (1 1) CTR during 573 K alternate deposition. There are
represented the clean surface, 1, 2, 4, 6, and 8 (closed circles) BLs and the background.

At 570 K, about 1 ML of Pt was deposited on the clean reconstructed Pt(001)

surface before the first Mn deposition. Our intention was to minimize the interface

alloying process among Mn and Pt in the earliest process and reduce the formation of

IP domains. Then, the alternate Mn and Pt mono-atomic deposition, emulating the

OP L10 stacking, was repeated 8 times, giving a nominal thickness of 3.05 nm.

Scans were performed during the Pt deposition. From the beginning, weak traces of

c(2× 2) MnPt alloying, seen by rocking scans at (1/2 1/2 0.15), were observed. After

each complete Pt monolayer deposition l -scans along the (1 1) CTR were measured

(fig. 5.1).

The CTR of the first MnPt bi-layer (light gray in fig. 5.1) presents a deep in the

anti-phase region and a general shape that suggests an alloying process (sections 3.1.3)

instead of an ideal MnPt BL. For two BLs, the anti-phase intensity increases, although

still being a local minimum. From 3 BL on, an order peak clearly shows up, and

gets more intense and sharp after each bi-layer growth, as clearly observable in figure

5.2, that is a linear scale zoom of the order peak region. This behavior is remarkably

distinct from the two previous cases, of RT deposition plus annealing at 770 K and of

500 K deposition followed by 670 K annealing. Here, the order peak is visible in the

CTR itself, what suggests a higher degree of OP order (to be quantified later) and some
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Figure 5.2: Order peak growth (linear scale) followed after the deposition of each bi-
layer.

coherence between ordered domains. Note that above 6 BLs the order peak intensity

is higher than for the clean surface.

Figure 5.3: Fitting procedure of order peaks along the (1 1) CTR, illustrating how the
center and width of peaks are determined. On average, the peak shape is closer to a
Gaussian function.

Order peaks of different CTRs are fitted with pseudo-Voigt line shapes, as shown in

figure 5.3. The peak center position and width, averaged among 11 peaks of 8 distinct

CTRs1, gives the characteristic values for the OP domains,c/aOP = 0.960 ± 0.001, or

cOP = 3.768 ± 0.005 Å, and LOP⊥ = 2.92 ± 0.06 nm. The lateral correlation length of

these domains, taken from the fitting of the rocking curves following the procedure

described in section 4.3, is of LOP‖ = 6.6±0.6 nm (4 peak average). Figure 5.4 gives the

1Namely: (1 0), (0 1), (1 0), (0 1), (1 1), (1 1), (0 2) and (2 1).
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fit for the (111) peak as an example. A radial scan at this position gives a value of 0.997

for the large peak center and we can consider that these domains are pseudomorphic,

within our accuracy. All measurements of the MnPt layer were performed with the

substrate held at 570 K, however, the lattice parameter are those calculated to RT,

taking into account the Pt thermal expansion coefficient (8.8× 10−6K−1).

Figure 5.4: Rocking scan along the (1 1 1.04) position with double pseudo-Voigt fitting.
In the inset the sharp and broad components are distinguished with the respective
FWHM and η values displayed.

In-plane domains are also observed, but with lower intensity. A similar analysis of

the peak position and width for l -scans of half integer rods was performed. Figure 5.5

shows the peak fitting with a pseudo-Voigt line-shape (with linear background) for two

peaks along the (1/2 1/2) rod. In the total four peaks are averaged, from the (1/2 1/2) and

(1/2 3/2) l -scans, from where we derive b/aIP = 0.979± 0.003 and LIP⊥ = 2.68± 0.12 nm.

One can remark that in this sample both the IP and OP domains have a perpendicular

correlation length close to the nominal film thickness (3.0 nm). The FWHM of rocking

scans evidences that this IP domains are on average 1.6 times smaller than the OP ones,

LIP‖ = 4.1±0.3 nm. This represents an opposite situation in relation to the first sample

analyzed, RT deposition plus annealing (sample S0), where the IP domains were larger

than the OP ones by 2.5 times. This observation have implications in the magnetic

properties, discussed later.

In figure 5.6 a radial scan along (1/2 1/2 1.019) gives information on the pseudo-

morphism along the a-axis. Once we have only one measured scan, the fitted value,
aIPMnPt
aPt

= (1.0047)−1 = 0.995±0.005, or about 0.5% of contraction, just allows us to say

that this layer is not relaxed beyond the experimental error bars. Indeed, we expect

an expansion of aMnPt rather than a contraction, once its bulk value is larger than

aPt. We will then consider that these domains are pseudomorphic in this direction. No
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measurements were done concerning c-axis relaxation of the IP domains, and we treat

it as pseudomorphic in the simulations below.

Figure 5.5: Pseudo-Voigt fit of l -scan peaks along (1/2 1/2), showing the peaks position
and FWHM.
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Figure 5.6: Pseudo-Voigt fit of radial scan along (1/2 1/2 1.019). The abscissa is normal-

ized by the in-plane momentum transfer corresponding to (1/2 1/2),
|~q‖|∣∣∣~q(1/2 1/2)
‖

∣∣∣ , in order

to give a direct estimation of the relaxation of a lattice parameter in the IP domains.

5.1.2 Modeling the (MnPt)8/Pt(001) structure

A similar reasoning as applied to modeling and fitting the CTRs in section 4.2 is used

for this MnPt layer. First of all, the |Fhkl| data set, to be fitted with ROD, is obtained

by the fast stationary l -scan procedure, always comparing with a few |Fhkl| values
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derived from rocking scans integration to avoid misalignment errors (section 4.1). A

set of 8 CTRs is averaged, with 4 non-equivalents, so that the agreement factor gives the

experimental error bars. The use of fast scans are exceptionally important in this case,

once the measurements are performed in an intermediary step of the deposition, with

the substrate kept at 570 K and with the surface exposed to residual gases (recalling that

this is the interface where FM/AFM magnetic coupling takes place). In contrast with

the previous fitting (section 4.2) we use all measured points in the l -scans, including

the anti-phase region, once the OP ordered domains also contribute to the CTR (order

peaks in fig. 5.1 to 5.3).

Intermediary models revealed useful to give insights onto the film properties, before

converge to the final model used to calculate chemical order. In a model where the

number of layers is a fitting parameter, we get the thickness of the film that matches

the Kiessig fringes. The total layer thickness is fitted to be of 3.26 nm, in agreement with

the nominal thickness (with one inter-mixing layer at the interface with the substrate).

In a similar model, we fix the number of layers, but allows the presence of two distinct

domains with different inter-layer distances. In this way, the χ2 value is consistently

reduced when these domains, of equal weight, have inter-layer distances close to cOP/2

and close to bIP/2. These values were obtained from the above l -scan peak fit procedure

(figs. 5.3 and 5.5).

From these indications, the final model is composed by two parts, where we fix

the different inter-layer distances to the above values, thus reducing the number of

free variables. One part, corresponding to IP domains (dIP = bIP/2 = 1.92 Å) does

not contribute to the intensity at the anti-phase region for the integer CTRs. The

average Mn and Pt occupancy is homogeneously distributed within this domain, so

that they do not contribute to the order peak. The other part, with dOP = cOP/2 =

1.884 Å, is allowed to be ordered, and gives rise to the anti-phase intensity in the

fitted curve, as shown in figure 5.7. These two parts have both 13 ML thickness,

and interfere coherently. At the interface with Pt(001) substrate three inter-diffusion

layers are considered with an imposed linear increase of the inter-layer distance and free

occupancy parameters. The layer 0 have only 11% of Mn, that represents Mn mixing

with the substrate. The other two layers present already some degree of order from

the fit, as the first one is Mn richer (θ1
Mn = 0.43) than the second one (θ1

Mn = 0.31).

At the surface, only Pt atoms are present, with a total occupancy close to unit, but

spread along 2 or 3 atomic planes (roughness with β ∼ 0.5). The surface presents

small steps of about one quarter of ML, coming from the height difference between IP

and OP domains. The Debye-Waller parameters are fixed to bulk values calculated

for measurement temperature (570 K), DW570K
Pt = 0.61 and DW570K

Mn = 0.85, using

equation 3.3.5.1.1-(7) and tables 5.2.2B and 3.3.5.1A of the International Tables of

Crystallography [140]. The final fitting results (χ2 = 7.3) of the layer structure, before

treating the chemical order issue, are summarized in table 5.1.

To properly give a quantitative description of the order parameter of this layer,

large rocking curves along the order peaks have to be taken into account. These peaks

are composed by a broad contribution, coming from the ordered domains, superposed

to the narrow CTR contribution. Besides the (1 1 1.04) peak, already shown in figure
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Figure 5.7: Experimental and fitting of (MnPt)8 layer CTRs.

structure fit order simulation

layers θ(Pt/Mn) d(Å) (IP/OP) θ(Pt/Mn) d(Å) (IP/OP)

18 0.12/0 1.84 fix fix

17 0.23/0 1.84 fix fix

16 0.46/0 1.90 fix fix

[4, 6, ..., 14] 0.55/0.45 1.92/1.88 0.78/0.22 fix

[3, 5, ..., 15] 0.45/0.55 1.92/1.88 0.22/0.78 fix

2 0.69/0.31 1.93 fix fix

1 0.57/0.43 1.94 fix fix

0 0.89/0.11 1.95 fix fix

Bulk 1/0 1.96 fix fix

DW bulk (570 K): 0.61/0.85 fix

χ2 7.3 -

Table 5.1: Result of the fitting for the (MnPt)8

5.4, the (0 1 2.08) peak is also measured (solid black line in figure 5.9). In both cases,

the numerical integration or the area of a fitted two-peaks pseudo-Voigt function give

similar values. We take the mean of the two integrals as the value for each (hkl)

position. The values
∣∣F order0 1 2

∣∣ = 42 ± 3 and
∣∣F order1 1 1

∣∣ = 46 ± 2 are derived by applying

the appropriate corrections (section 4.3). The error bars are obtained by adding to the

integration method difference, the error in the detector acceptance correction coming

from the fit uncertainty of the large peak width. In the simulation, we keep fixed all

structural parameters and change only the Mn and Pt occupancies (table 5.1) in order
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to be as close as possible to the structure factors above, leading to chemical order. The

black solid line in figure 5.8 gives the simulation that gets closer to both peak values.

It gives a general OP order parameter of SOP = 0.50±0.05, averaged to 16 MLs, where

we consider also the layers 1, 2 and 16 in the calculation. To get the error bars of the

order parameter, we simulate the two limiting situations where the curve crosses the

extremities of the
∣∣F orderhkl

∣∣ error bars.
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Figure 5.8: Simulation of order parameter for the two CTRs where we have measured
the large rocking scans.

An indirect quantification of the order parameter for in-plane domains is performed

by comparing the |Fhkl| in the (0 1 2.08) and (1/2 3/2 1.02). This reciprocal space

positions have the same momentum transfer, as can be easily seen if we write them

in the fcc basis, giving (1 1 2)fcc and (2 1 1)fcc, respectively. Rocking scans at these

positions are compared in figure 5.9, where the abscissa is in transverse momentum

transfer units. Applying the appropriate corrections to the integrated intensity and

extracting the square root we get,
|F order102 |∣∣∣F order1/2 3/2 1

∣∣∣ = 2.2. Considering that the 90º turned

symmetric IP domains have the same structure factor, we have to multiply by two the

IP order parameter, to finally obtain, SIP = 0.45 ± 0.05. The order parameter of the

layer is, finally, close to unit: S = SIP + SOP = 0.95± 0.1.
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Figure 5.9: Rocking curve at (0 1 2.08) and (1/2 3/2 1) in transverse momentum
transfer units, comparing equivalent scans

We note that the order parameter for this sample is similar to the one presented

in chapter 4. However, the main difference among these samples is that the volume of

the OP ordered domains is much larger for the present situation (more than 10 times)

than for the RT deposition plus annealing sample.

5.1.3 FePt deposition at 570 K on (MnPt)8/Pt(001)

The alternate FePt growth (4 BLs) on the previous (MnPt)8 layer was performed keep-

ing the substrate temperature at 570 K. The frequency of Kiessig oscillations increase,

but no further attenuation in the CTR is observed (see fig. 5.11), suggesting that pseu-

domorphism persists. Figure 5.10 presents the evolution of the order peak near the

(1 1 1) position after deposition of each FePt BL, as indicated in the label. We observe

both an increase of the order peak and a shift toward higher l values. This additional

contribution, coming from the FePt layer, evidences that this layer also present OP

L10 order. Moreover, rocking curves and l -scans along the half-integer positions are

unchanged in relation to the previous layer, what mean that the FePt layer do not

have IP domains, neither L12 phase is present. This result is expected, once the lattice

mismatch between FePt and Pt (and consequently the pseudomorphic MnPt) favors

the out-of-plane orientation of the c-axis (see section 3.1). No in-plane relaxation was

observed.

After the 4 FePt BLs, 2 Pt ML were immediately grown to protect the surface

during the in situ measurements, done at RT. A complete set of l -scans, as well as

rocking curves around the (0 1 2) order peak, were measured. Figure 5.11 compares the

(01) CTR of this layer with the (MnPt)8 one (a vertical shift is applied for clarity). The

most prominent feature observed is the structure peak around l ∼ 3.3 (indicated by an

arrow), corresponding to the FePt structure peak (0 1 3)FePt. It is not straightforward
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Figure 5.10: l -scans along the (1 1) CTR, for intermediary steps of FePt deposition.

to obtain a precise value of the FePt lattice parameter from this data because of the

superposition with bulk contribution.

Figure 5.11: Comparison of the (0 1) l -scan before and after (shifted by x10 factor)
FePt deposition. The arrow highlights the appearance of the FePt structure peak.

Before going on the quantitative analysis of the in situ measurements, we take a

look at the ex situ GIXRD measurements, where high-order specular reflections were

probed. To allow ex situ measurements, the sample was protected by a 8 ML Pt cap-

layer. Figure 5.12 shows the (0 0) CTR around l = 6 to 8, with the structure peak of

FePt well separated from the Pt-bulk one. Extracting a linear background and fitting a

Gaussian (inset), we get a peak position of l = 6.55±0.01, with a FWHM corresponding

to perpendicular correlation length of 9 to 10 MLs. The apparent double peak observed

indeed is coming from a MnPt Kiessig oscillation that overlaps the FePt structure
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peak. We determine the ratio between the FePt and Pt OP-lattice parameters to be

cFePt/aOP =
(

6.55
6

)−1
= 0.916 ± 0.002 and cFePt = 3.595 Å. This value corresponds,

within the error bar, to the expected value for a pseudomorphic L10 FePt alloy on

Pt(001) with constant unit cell volume (VFePt = 55.32 Å3 [97]). The tetragonality (c/a),

however, is significantly changed compared to the bulk value (a = 3.860 Å, c = 3.713 Å

and c/a = 0.962 [97]). This tetragonality is discussed in more detail for the next sample,

where FePt is directly deposited on the Pt substrate.

Figure 5.12: Specular CTR measurement around the (006) structure peak of FePt.

5.1.4 Modeling the Pt2/(PtFe)4/(MnPt)8/Pt(001) structure

For modeling and fitting the complete Pt2/(PtFe)4/(MnPt)8/Pt(001) film, we use the

|Fhkl| obtained from l -scans of 9 CTRs, being 5 nonequivalents. In the fitting process,

the MnPt layer and the scale factor are kept the same as the previous fit. We use

the FePt inter-layer distance measured ex situ as a fixed input to the fit. The only

fitting parameters are the number of FePt layers and the amount of Pt in the cover

layer. We consider an equiatomic stoichiometry, based on knowledge of the unit cell

volume. The model that best fits the thickness oscillations is composed by 4 FePt BLs

covered by 3 to 4 Pt MLs, including some roughness. The Pt layer in the interface

FePt/Pt contains some Fe. To calculate the order parameter, we use a set of
∣∣F orderhkl

∣∣
derived from rocking curves along the (0 1 2) order peak. In the higher l positions,

corresponding to the FePt layer, the peak is larger, giving a lateral correlation length

for the ordered domains of LFePt‖ = 4.3±0.8 nm, with the structural correlation always

about two orders of magnitude higher (∼ 500 nm). The experimental chemical order

peak is compared to the simulation in figure 5.13, were the ordering is imposed to

both the MnPt and FePt layers, so as to fit the experimental curve in the l position
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corresponding to its lattice parameter. The OP order parameter calculated for FePt

in this simulation is: SFePt = 0.7 ± 0.2. In the experimental curve the two peaks are

not well separated due to the small domain size in all three directions, which tends

to spread the peaks and screen the interference effects. The interference between the

scattering coming from the bulk and from the layer leads to shifts in the peak position

comparable to the expected value from the inter-layer distance. This contributes to the

uncertainty in the order parameter determination.

Figure 5.13: Experimental and simulated |Fhkl| around the (0 1 2) order peak for the
ordered FePt/MnPt/Pt(001) film.

Figure 5.14: Ex situ measurement of the specular CTR for sample S4.

The specular CTR of the sample S4 is presented in figure 5.14 up to l = 7.5. In this

picture the calculated l position for the (00 l) order and structure peaks are represented

by vertical lines for the three kind of domains composing the sample, namely, OP-FePt
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Figure 5.15: Hysteresis loops for Pt8/(PtFe)4/(MnPt)8/Pt(001) at a few selected tem-
peratures 5, 80, 180 and 400 K, compared to 300 K.

(solid line), OP-MnPt (dot) and IP-MnPt (dashed line, only to structure peaks). The

FePt order peaks are barely seen due to the small correlation length of these domains.

However, the structure peak is clearly separated from both MnPt and bulk Pt peak for

high order reflections. No peaks are observed between the FePt and MnPt, indicating

that inter-mixing at the interface is limited.

5.1.5 Magnetic studies by MOKE

The magnetic measurements on the Pt8/(PtFe)4/(MnPt)8/Pt(001) film (sample S4)

were performed using the MOKE facilities installed in the ultra-high vacuum (UHV)

multi-chamber system at the Max Plank Institut of Halle, Germany. As we were in-

terested in perpendicular exchange coupling properties, the measurements were done

only in polar MOKE geometry (with an incidence angle of 69° to the sample normal).

A laser diode of wavelength 670 nm with a beam diameter of about 200 µm were used

as probe. The sample was mounted in the cold-finger holder of a cryostat, between the

poles of an electromagnet whose field was reversing from -3000 to 3000 Oe.

Data reported here comes from two experiments. In the first one, we started by

cooling S4 at an applied field of +3000Oe perpendicular to the surface from RT down to

5 K. Then, we measured the hysteresis loops, looking for exchange bias and the training

effects. The loops presented here are normalized to the maximum rotation. Before

normalization, the maximum Kerr rotation was typically 0.4 mrad at 5 K and 0.6 mrad

at RT. Fluctuations in the absolute Kerr rotation were coming from instabilities in

the optical alignment. In figure 5.15 we present the loops at different temperatures

compared to the one at 300 K. The increase in the coercive field, by one order of

magnitude compared to RT, is largely coming from exchange coupling between FePt

and MnPt, showing that MnPt is indeed AFM. In a second round the conditions were

similar but the field cooling was initiated at 400 K, going down to 5 K. No remarkable

differences were observed among the two rounds.
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Figure 5.16: Training effect after field cooling for Pt8/(PtFe)4/(MnPt)8/Pt(001) : (a)
exchange bias shift and (b) coercivity as function of the number of loops.

After field cooling, we could clearly observe an exchange bias shift ofHEB ≈ −80Oe.

This corresponds to an additional interface energy of ∆σ ≈ 0.015 erg/cm2, with Ms =

1140 emu/cm3 and tFM = 1.6nm for the FePt layer (see eq. 1.8). However, the exchange

bias was not stable and vanished after a few loops (figure 5.16-a). This training effect is

not unexpected since in this system the interfacial AFM spins are, a priori, all compen-

sated. The pinning centers induced during the field cooling are out of equilibrium or

frustrated, and relaxes to a more thermodynamically stable situation. The coercivity,

on the other hand, remained rather stable, within ±20 Oe, around HC ≈ 720Oe (figure

5.16-b).

After training loops at 5 K, the temperature was raised up to 400 K, in a time inter-

val of 16 hours. During this interval, hysteresis loops were collected after temperature

stabilization at different values. A few loops are shown in figure 5.15. The coercive field

as function of temperature shows the typical behavior of an exchange coupled system

(figure 5.17): below the ordering temperature of the AFM material, TN ≈ 310K, the

AFM/FM coupling is more and more stable while temperature decreases, giving rise

to an increase in the coercive field. The reversing field has to overcome the additional

energy coming from the exchange coupling; above TN , the coercivity has a weaker de-

pendence on temperature. The intersection of the two straight lines yields an estimation

of the Néel temperature. We should point out that this is a clear demonstration that

the Néel temperature is around RT for a such thin layer, tMnPt ≈ 3nm. As far as we

know, this is the thinnest MnPt film leading to AFM order at RT. We conclude that

chemical order, in our case very close to one (S ∼ 1), is the key parameter controlling

the AFM order.

5.1.6 Magnetic studies by XMCD

To study the element specific magnetic moments of Mn and Fe on the Pt8/(PtFe)4/(MnPt)8/Pt(001)

film (sample S4), we carried out XMCD measurements at the Mn and Fe L3,2 edges.

The XAS/XMCD experiments were performed on the ID08 beamline at ESRF, with

≈ 100% linear or circular polarizations. All scans were recorded simultaneously in both
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Figure 5.17: Coercivity for raising the temperature for Pt8/(PtFe)4/(MnPt)8/Pt(001)
after field cooling and training. An estimation of the Néel temperature is given by the
intersection of the two straight lines.

total electron yield (TEY) and total fluorescence yield (TFY) modes. The sample was

aligned with the surface normal to the incident beam in order to have the magnetic

field perpendicular to the surface. The maximum magnetic field was ±5T generated by

a split coil superconducting magnet. Here, µ+(µ−) refers to the absorption coefficient

for the photon helicity parallel (antiparallel) to the Fe 3d majority spin direction.

Figure 5.18 shows the raw data XAS spectra (µ+ and µ−) collected in TEY mode

by flipping the circularly polarized light in the photon energy region of the Mn and Fe

L3,2 absorption. The sample temperature was set 10 K after field cooling under the

applied field +3000Oe. The difference ∆µ = (µ+ − µ−) associated to the XMCD is

also presented. At the Mn region, the XMCD is multiplied by 10, to be discernible.

The amount of Mn is two times that of Fe and the transition strength is almost the

same for both elements, however, the intensity measured at the Fe absorption edges is

much higher. This is a consequence of the attenuation of the X-ray beam - less photons

arrive at the buried MnPt layer - and of the limited escape depth of the electrons

produced after the decay process. We are not concerned by absolute comparison of

spectra and we simply normalize each spectrum to unit above the edges.

The XMCD signal at the Fe L3 edge is, as expected, very large: the relative dif-

ference ∆µ
µ = (µ+−µ−)

(µ++µ−)
amounts to 40% at 10 K and +3000Oe. The important point

to note here is that there is a XMCD signal at Mn L edges. The relative difference

is only 1.2% but shows up clearly. To ensure that the difference is not coming from

artifacts, the measurement was done also with the applied field in the opposite direction

−3000Oe; both differences are shown in the inset of figure 5.18, where one can remark

the very good reproducibility in amplitude and shape. Such an XMCD signal implies

that some amount of uncompensated Mn spins are present. Moreover, the Mn XMCD

signal is opposite to Fe, indicating that the Fe and Mn spins are aligned antiparallel to

each other.
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Figure 5.18: Mn and Fe L3,2 XAS spectra (µ+ and µ−) of the
Pt8/(FePt)4/(MnPt)8/Pt(001) sample collected in TEY mode by flipping the
circularly polarized light at an applied magnetic field of +3 kOe and at 10 K.

(a) (b)

Figure 5.19: Element selective hysteresis loops: (a) Fe and (b) Mn L3 edges.
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Another important outcome that can be remarked (inset fig.5.18) is that, when the

magnetic field is reversed, the Mn XMCD is almost completely reversed, meaning that

uncompensated Mn moments are following the Fe ones, so are not pinned (or frozen) by

the AFM layer. The coupling between uncompensated interfacial Mn spins is stronger

with the FM layer than with the AFM one. Element selective hysteresis loops measured

at the maximum of each XMCD signals confirms such an almost completely reversible

behavior (figure 5.19). One notes the mirror figures among the two selective loops.

Even the small exchange bias shift (HEB ≈ −90Oe) can be observed in both curves.

However, if the Fe behavior is completely symmetric by reversal of the applied field

(figure 5.19-a), at the Mn edge one can remark that the XMCD amplitude is not

completely reversed after the first half loop (figure 5.19-b); this vertical shift is small,

about 10%, compared to the noise but, it could be associated to the amount of pinned

Mn spins that are not rotating when Fe spins rotate. These pinned Mn spins, about

10% of the uncompensated spins, are giving rise to the exchange bias shift. This figure

is comparable to that measured at the Co/Ir0.8Mn0.2 interface by Ohldag et al. [24].

The additional interface energy of ∆σ ≈ 0.015 erg/cm3, calculated in the previous

section, assumes that the whole interface is contributing to the exchange bias shift.

However, if one supposes that only uncompensated pinned Mn spins are contributing,

the exchange coupling strength at the MnPt/FePt would be much higher. This is

probably one of the main reasons giving rise to discrepancies when model calculations

are performed.

5.2 Pt6/(PtMn)8/(PtFe)6/Pt(001) (Sample S3)

The FePt alloy in the L10 phase has one of the strongest magnetic anisotropies (see

section 1.3.2). It has been shown by Imada et al. [157] that down to the thinnest limit,

i.e. one Fe ML sandwiched by Pt, the perpendicular magnetic anisotropy persists below

∼ 160 K. Since ferromagnetism is a collective phenomenon, one can expect that the

Curie temperature (TC) of a material is lower in the ultra-thin regime than in the

bulk. These authors found, for FePt prepared by alternate deposition at 503 K, that

TC is above RT for only two BLs and there is a remanent magnetization at RT from

three BLs on. The order parameter, measured for the 10-BLs film, was reported to

be S = 0.6 ± 0.1 and assumed to be similar for the thinner layers. In section 3.1.5,

we discussed the Fe on Pt-hex at different deposition and annealing temperatures and

observed that an atomic site exchange process takes place among Fe (higher surface

energy) and Pt substrate atoms. A STM study [51] showed that up to 1.2 MLs of Fe

deposition on Pt-hex, no evidences of Fe atoms on the surface is found.

5.2.1 FePt deposition at 570 K on Pt(001)

We have prepared a 2 nm-FePt layer by alternate Fe and Pt thermal deposition[48, 157].

The Pt(001)-hex substrate was kept at 570 K and a sample with an excess in Fe,

consisting of [Fe(2 ML)/Pt(1 ML)]3, was deposited. The growth at 570 K was shown

to reinforce the atom exchange process, so that the excess of Fe is expected to be
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compensated by Pt atoms segregating to the surface during growth. The sample was

kept at 570 K during 2 hours after deposition to improve ordering.

The in situ GIXRD measurements presented in this section were performed with a

20 keV beam under a grazing incidence angle of 0.6°, about 2.5 times the critical angle

for total reflection of Pt at this energy (αc = 0.24°)2. Calibration with a quartz crystal

micro-balance, cross-checked by the anti-phase scattering intensity oscillations, gives a

deposition rate of 0.30 and 0.04 ML/min for Fe and Pt, respectively.
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Figure 5.20: X-ray scattering along the (1 0) CTR for the FePt(2 nm) layer before
(upper solid circles) and after (bottom open triangles) being covered by MnPt(3 nm).

After cooling down to RT the 2 nm-FePt layer, a set with the following non-specular

CTRs were measured, (1 0), (0 1), (1 1), (1̄ 1) and (2 0). Figure 5.20 shows the X-ray

scattering along the (1 0 l) CTR (upper curve). The oscillations are preserved up to

high l values. Moreover, no evidence of in-plane relaxation was observed by radial-

scans. Both outcomes confirm a pseudomorphic growth of the layer. The FePt layer

adopts the in-plane lattice parameter of Pt substrate, aPt = 3.924 Å. The strong peak

around l = 2.2 (fig. 5.20) arises from the OP chemically ordered L10 FePt layer. No

traces of L12 or IP L10 phases were found. The tetragonality of the epitaxial FePt

layer is c/a = 0.907 ± 0.002, averaged from the whole set of CTRs (8 peaks in total,

with positions fitted with Gaussian function), giving a value of cFePt = 3.56 Å. Such

strong structural anisotropy has never been reported before for epitaxial L10 FePt thin

films. One should note that FePt L10 alloy has lattice parameters of a = 3.860 Å and

c = 3.713 Å (c/a = 0.96) [97]. This pseudomorphic FePt layer has a tensile strain of

1.7%. The rocking scan along the order peak has the same width as other parts of the

CTR and no broad peak was observed, a behavior distinct of what happens to MnPt on

Pt(001), presented in sections 4.2 and 5.1.1. The FePt surface has terraces estimated

to be larger than 400 nm.

Quantitative analysis of the GIXRD data is done by simulating and fitting the

experimental CTRs. The extraction of the structure factor amplitudes from the l -scans

2Estimated with the X-Ray Database calculation tools of www.cxro.lbl.gov.

http://www.cxro.lbl.gov
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follows the procedure described above (section 4.1). Once FePt domains have the same

lateral correlation length as the surface, the rocking scans integration gives the same

|Fhkl| as obtained by the corrected l -scans. No specific integration of the rocking scan

around the order peak is needed to extrapolate the order and the fitting gives directly

the occupancies from where we calculate the order parameter. As a initial step, the

number of layers are fitted so as to reproduce the thickness oscillations. Here, we keep

fixed the inter-layer distance to the value corresponding to the tetragonality shown

above, and the fit gives 12 to 13 MLs.

layers (n) θ(Pt/Fe) d(Å) DW(Pt/Fe)

12 0.27/0 1.75
11 0.01/0.81 1.75 2.5/3.3
10 0.55/0.45 1.82

9 0.20/0.80 1.76
8 0.54/0.46 1.79

[2, 4, 6] 0.76/0.24 1.78 (fix) 1.46/0.39
[1, 3, 5, 7] 0.14/0.86 1.78 (fix)

0 0.96/0.04 1.94

Bulk 1/0 1.96 0.31/–

χ2 11.4

Table 5.2: Fitting results for the 2 nm-FePt layer.

The best fitting model consists of 13 FePt ML (2.1 nm) and is summarized in table

5.2. The first ML (n = 0) represents the Fe inter-diffusion and have a fitted occupancy

of 0.04 and an inter-layer distance slightly smaller than the bulk Pt. Then, 7 ordered

FePt MLs are considered with the inter-layer distance fixed to the tetragonality value

shown above. The fitting procedure does not allow a precise determination of the layer

stoichiometry. Possible values for the Fe concentration range from 0.5 to 0.65. However,

the sample stoichiometry can be more precisely determined from the unit cell volume

V = 54.802 Å3, calculated from the cFePt and aPt given above. This value is in excellent

agreement with that of ordered Fe55Pt45 nano-crystalline alloy [97] V0.55 = 54.807 Å3.

This stoichiometry was used as input parameter for this 7 MLs region (n = 1 to 7).

From n = 8 up to n = 12 all occupancy and inter-layer distance parameters are let

free and the fit result gives a smaller degree of order. In this upper region, the Fe

concentration is even higher, indicating that the intermediary ordered layer prevents the

migration of Pt atoms to the surface or diffusion of Fe atoms in to the bulk. This effect

is coherent with the transmission electron microscopy observation that bulk diffusion

through the L10 ordered phase is activated only at elevated temperatures [146]. Two

regions with different Debye-Waller parameters are considered, from n = 0 to 9 and

the last 3 MLs. They are let free to vary and the reasonably high values obtained

point to some structural disorder. However, we must be careful on interpreting this

outcome, once the DW is very dependent on data correction mistakes or misalignment

during measurements. The comparison of the fitted curve with the experimental data

is presented in figure 5.21. The order parameter averaged for the whole layer thickness
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is of SFePt = 0.54± 0.05. Just in the region from n = 1 to 7 this order parameter is of

0.62.
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Figure 5.21: Fitted curve (black) compared to the experimental structure factors (gray)
for [Fe(2 ML)/Pt(1 ML)]3 deposited at 570 K.

5.2.2 MnPt deposition at 550 K on (FePt)6/Pt(001)

As a second step of sample deposition, the (FePt)6/Pt(001) film was covered, at 550 K,

by a 3.0 nm-MnPt (8 MnPt BLs) layer. The (1 0) CTR is presented in bottom curve of

in figure 5.20. After deposition of these 8 MnPt BLs, similar features as those reported

in the previous section are observed. c(2x2) order peaks appears in the half-integer

positions, corresponding to small in-plane L10 domains (LIP‖ ∼ 2.8 nm and thickness

close to the total MnPt layer). Shifted l -scans draw out the presence of broad peaks
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coming from small MnPt OP ordered domains. The tetragonality of these domains

is measured to be c/aOP = 0.95 ± 0.01. The radial scan along the (1 1 1.07) position

evidences the presence of the large peak superposed to the intense narrow peak (fig.

5.22). From the fitted peak positions we conclude that, if some relaxation exists for

MnPt OP domains, it is smaller than 0.25%.
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Figure 5.22: Radial scan along the reciprocal space position (1 1 1.07), the maximum
of the order peak. If there is some relaxation in the FePt or MnPt layers it is smaller
them 0.25%, as shown by the center position of each peak.

As a final step, the MnPt layer is covered with 6 MLs of Pt at 550 K to protect

against oxidation in further ex situ studies. This Pt deposition favors the OP MnPt

order, while IP domain intensity remains unchanged. Owing to the high complexity of

the system, we do no attempt to quantitatively treat the order parameter of the MnPt

layer. Figure 5.23 gives only a comparison in linear scale of the order peak close to the

(1 1 1) before and after Pt6/(PtMn)8 deposition, showing that this peak increases by

about 20%. We estimate that the order parameter of this layer is smaller than what

we have obtained for the MnPt deposition directly on Pt(001) substrate at 570 K.
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Figure 5.23: Comparison of the order peak close to (111) before and after the deposition
of Pt6/(PtMn)8. The increase in maximum intensity is of about 20%.
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5.2.3 X-ray Absorption Spectroscopy

We present here the results of hard X-ray absorption spectroscopy concerning the FePt

layer. Local anisotropy is clearly observed in XAS measurements at the Fe K edge. In

the XANES spectra of metallic compounds, the double resonance (A and B in fig. 5.24)

just above the absorption edge is an experimental signature of the structures fcc or L10

and small differences in the relative height of these peaks are associated to variations

in the local chemical order [158, 159].
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Figure 5.24: Polarization dependent XANES at the Fe K edge for X-ray beam polar-
ization along the surface plane (IP) and out-of-plane (OP). Inset: structural anisotropy
seen in the EXAFS oscillations.

The significant difference in these amplitudes for in-plane and out-of-plane XANES

(fig. 5.24) reveal the anisotropy in the local order. In addition the position of the first

EXAFS oscillation (C), around 7145 eV, is slightly shifted toward higher energies for

the IP spectra with respect to the OP one. This shift corresponds to a shortening of

the distance to the first neighbors in the [001] direction. The analysis of the EXAFS

signal (inset in fig. 5.24) gives access to local structural anisotropy. The distance to

the first neighbors is 2.635 ± 0.005Å in the film plane and 2.745 ± 0.005Å along the

[001] direction, giving a c/a ratio value of 0.915± 0.005, in full agreement with the in

situ GIXRD results. Mn K-edge spectra measured at the same conditions showed no

evidences of anisotropy.

5.2.4 Magnetic studies by MOKE

The magnetic measurements on the Pt6/(MnPt)8/(FePt)6/Pt(001) film (sample S3)

were performed using the MOKE facilities installed in the multi-chamber system at the

Max Plank Institut of Halle, Germany. The experimental conditions were similar to



5.2. Pt6/(PtMn)8/(PtFe)6/Pt(001) (Sample S3) 107

Figure 5.25: Hysteresis loops for Pt6/(MnPt)8/(FePt)6/Pt(001) at a few selected tem-
peratures 5, 70, 140 and 390 K, compared to RT.

those reported for sample S4. For this sample coercivity was much stronger and the

field was reversing from -5500 to 5500 Oe.

Data reported here comes also from two magnetic field cooling experiments. The

first one at an applied field of+3000Oe perpendicular to the surface from RT down to

5 K and the second one at +5500Oe from 400 K down to 5 K. Both experiments gave

the same features. The maximum Kerr rotation was typically 0.2 mrad to 0.4 mrad,

however, the loop amplitudes presented here are given in arbitrary units: due to leaks

in the magnetic field, the optics were affected, generating instabilities and deforming

the loops, so that amplitude values were not reliable.

In figure 5.25 we present a few loops at different temperatures, compared to the

one at RT. As for the sample S4, the increase in the coercive field at low temperatures,

when compared to RT, is coming from the exchange coupling between FePt and MnPt.

However, sample S3 displays a much larger coercive field, e.g. HC ≈ 920Oe at RT,

compared to the sample S4 (figure 5.17. At the lowest temperature, the coercive field

increases to HC ≈ 3300Oe. We also observe a bias shift (HEB ≈ 85Oe) followed

by a training effect. But, in this case, after the first loop the system seems to be

already completely relaxed and there is no longer a bias shift (figure 5.26-a). A possible

explanation for these peculiarities may come from the more disordered MnPt AFM

layer and chemical roughness at the interface FM/AFM. Exchange coupling is known

to be enhanced by interface roughness. The FePt layer is thicker in this case (6 BLs),

compared to the previous one (4 BLs), but we do not think that this could be the

source of such an increase in coercivity.

The coercive field as function of temperature is shown in figure 5.27. One can note

that above TN ≈ 195K data can be satisfactorily fitted to a straight line; below that

temperature, the coercivity is increasing faster as temperature decreases. However, the

ordering temperature is less clearly defined. The situation looks as a gradual increase

of the coupling over a large range, which would be more compatible with a distribution

of TN . In this sense, this sample looks more like the sample S0, where the AFM layer
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(a) (b)

Figure 5.26: Training effect after perpendicular magnetic field cooling for
Pt6/(MnPt)8/(FePt)6/Pt(001): (a) exchange bias shift and (b) coercivity as function
of the number of loops.

Figure 5.27: Coercivity as function of temperature for the
Pt6/(MnPt)8/(FePt)6/Pt(001) sample.
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Figure 5.28: Mn and Fe L3,2 XAS spectra (µ+ and µ−) of the
Pt6/(MnPt)8/(FePt)6/Pt(001) sample by flipping the circularly polarized light
at an applied magnetic field of 3 kOe and at 10 K.

was composed by a distribution of nanometric small domains with different ordering

temperature.

5.2.5 Magnetic studies by XMCD

XAS and XMCD experiments were performed on the Pt6/(MnPt)8/(FePt)6/Pt(001)

sample using the ID08 beamline at the ESRF, at the same experimental conditions as

described for the previous sample.

Figure 5.28 shows the raw data XAS spectra (µ+ and µ−) collected in TEY mode

by flipping the circularly polarized light in the photon energy region of the Mn and Fe

L3,2 absorption. The sample temperature was set to 10 K after field cooling under the

applied field +3000Oe. The difference ∆µ = (µ+ − µ−) associated to the XMCD is

presented as well. At the Mn region, the XMCD is multiplied by 10, to be discernible.

In this sample, the Mn signal is stronger than for Fe, contrary to the sample S4,

because Fe atoms are buried under the MnPt layer. The relative dichroic signal ∆µ
µ =

(µ+−µ−)
(µ++µ−)

is still larger at the Fe edge. The XMCD signal amounts to 38.6% at the Fe

L3 edge, while it is only 2.3% at the Mn edge. On the Fe edge the signal is the same

as for sample S4, while on the Mn edge it is a bit larger.

Nevertheless, the two most remarkable differences when comparing the two samples

are the spectral shape and the signal. In the sample S3, the Mn XMCD has the same

sign as that of Fe, which means that they are aligning parallel. Moreover, the spectral

shape (inset figure 5.28) looks quite different from the previous situation. We also noted
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Figure 5.29: Normalized XAS (closed circles) and XMCD (open circles) spectra at the
Fe L2,3 edge of the sample. The integrated XMCD signal is shown by the dashed line.

that the signal at the Mn edge showed no remanence. Our interpretation for all these

differences is that the Mn XMCD signal is not coming from the FePt/MnPt interface

but, probably, from a ferromagnetic phase formed at the upper interface with Pt, e.g.,

Pt3Mn that is ferromagnetic at low temperatures. By the way, the Mn XMCD signal

vanishes at room temperature. We think that, if some uncompensated spins exist at

the FePt/MnPt interface, they are hidden by that ferromagnetic contribution.

The spin and orbital contributions to the total moment of Fe in the FePt layer were

investigated at RT, where the MnPt layer is above its Néel temperature. Figure 5.29

shows the normalized XAS and XMCD spectra at the L2,3 edges. In this experiment,

an applied magnetic field of 1 Tesla ensures nearly 100% saturation of Fe moments.

According to the sum rules, the effective spin (meff
s ) and orbital (ml) magnetic mo-

ments can be obtained by performing adequate integrals of the spectra [116]. The ratio

ml/m
eff
s is proportional to the deviation from zero of the integral of the XMCD signal

(dashed line in fig. 5.29). To obtain absolute values for ml and meff
s the excitations to

3d states must be separated from those to the continuum. A two-step function (dotted

line in fig. 5.29) is usually subtracted from the XAS spectrum. The broad feature at

736 eV corresponds to a resonance of the Pt 4 s electron excitation to the continuum

of states (PtN1 edge). This excitation does not contribute to the XMCD signal, but

affects the normalization and, consequently, the absolute values for ml and meff
s .

We performed here a similar analysis as presented in the literature for FePt systems

[160, 161]. We subtracted a two-step function, took the normalization energy around

730 eV and integrated the 3d states up to that energy. The additional contribution of the

PtN1 edge has also been simulated. The experimental data reduction (background and

normalization) yields an estimated error bar around 15% on ml and meff
s and smaller

than 10% for the ratio. Taking the theoretical number of d holes, nd = 3.705 [162],

we have found ml = 0.29(4)µB and meff
s = 2.6(4)µB. The values given by band

structure calculations areml = 0.072µB andmeff
s = 2.87µB [162]. Antoniak et al. [160]

found an enhanced orbital magnetism in 6 nm FePt nano-particles when chemical order
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is improved by annealing (ml/m
eff
s = 0.093, ml = 0.24µB and meff

s = 2.59µB).

In the case of thin films, the largest orbital contribution is reported for films grown

on a MgO(001) substrate at 620 K (ml/m
eff
s = 0.099, ml = 0.24µB and meff

s =

2.45µB) [161]. These films presented the L10 chemical order with lattice parameters

of a = 3.870 Å and c = 3.714 Å (c/a = 0.96), very close to the bulk FePt values. Our

pseudomorphic film, with a larger tetragonal distortion (c/a = 0.91), shows an even

larger orbital contribution, ml/m
eff
s = 0.116± 0.012. This is the largest experimental

orbital to spin moments ratio found in FePt ordered alloys. We interpret that as coming

from the high degree of chemical order and from the enhanced tetragonal distortion.

5.3 Summary

We presented in this chapter the results on the synthesis of well-ordered MnPt/FePt

heterostructures, with good quality in terms of chemical ordering and presenting inter-

esting magnetic behavior. The synthesis was followed in situ by GIXRD throughout

the different stages of growth and special care has be taken in a deep structural analysis.

We found that when the substrate is at 570 K, Pt grows layer-by-layer, while Mn

has negligible diffusion into bulk. This particular temperature yields ultra-thin layers

with L10 domains. These domains have the c-axis either out-of-plane (majority) and

in-plane (minority and twinned). Subsequently, a tetragonally distorted PtFe layer with

c-axis mostly perpendicular to the surface was grown on that PtMn layer. This bilayer

system provided a well-suited system for perpendicular exchange coupling studies.

The magnetic properties of this sample were studied ex situ by polar MOKE. After

field cooling, increased coercivity and exchange bias were observed. XMCD at the Mn

and Fe L2,3-edges show a coupling perpendicular to the surface between Fe and Mn

magnetic moments and a large amount of uncompensated Mn spins at interface, the

majority of them being rotatable.

We also demonstrated that a highly ordered L10 FePt may be obtained by co-

deposition of Fe in excess over Pt, as far as the substrate is kept at 570 K. This highly

ordered FePt was studied by XAS and XMCD. Sum rules were applied to these XMCD

results and we interpret the enhanced orbital magnetism observed in our film as the

result of the increased tetragonal distortion and the high degree of chemical order.
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Chapter 6

CoO/Fe exchange bias system

grown on Ag(001)

6.1 Introduction

The CoO/Fe bilayer is a widely studied exchange bias system. Many authors used this

system to investigate the behavior of the antiferromagnetic CoO layer, in particular

as function of the thickness. Among many other properties, the decreasing of the

Néel temperature as thickness decreases, the robustness of the coupling, the amount of

pinned and unpinned spins contributing to the bias shift, have been specially studied.

However, in all studies of the CoO interface the Fe layer has the in-plane anisotropy,

the Fe layer is always in the “thick” regime, larger than 6 MLs. Our aim here is to

investigate the CoO/Fe exchange coupling in two different situations: in-plane and

out-of-plane anisotropy of the Fe layer. The choice of the Ag(001) substrate relies on

the fact that in the Fe/Ag(001) a spin reorientation transition occurs at about 6 MLs of

Fe. In a wedge sample with Fe thickness varying from 1 ML to 10 MLs or more, one can

obtain in-plane (thicker part) and out-of-plane (thinner part) anisotropy at the same

sample.

The growth of CoO/Fe-wedge/Ag(001), called sample S6, and the MOKE experi-

ments were performed using the facilities installed in the UHV multi-chamber system at

the Max Plank Institut of Halle, Germany, in collaboration with the group of Dr. Marek

Przybylski. The multi-chamber system is equipped with many instruments for surface

physics experiments: ion gun sputtering, LEED, RHEED, AES, STM and synthesis by

MBE and PLD (pulsed layer deposition). Two different chambers are equipped with

effusion cells for metallic deposition; in one of them, Fe and Co targets are installed,

with a precisely calibrated deposition rate, while in the other, it is possible to deposit

the same metals under oxygen atmosphere. The MOKE apparatus is connected to these

synthesis chambers through an UHV transfer line. Two different MOKE geometries are

possible, with an incidence angle of 21° for longitudinal MOKE (L-MOKE) and with

an incidence angle of 69° to the sample normal for polar MOKE (P-MOKE). Ex situ

X-ray diffraction and absorption studies were conducted at the French CRG BM32 and

FAME beamlines at the ESRF. X-ray reflectivity measurements were performed using

the X-ray facilities at the Institut Néel, CNRS, Grenoble.

113
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Figure 6.1: Nominal Fe thickness versus lateral X -position (mm) along the 8-mm diam-
eter Ag(001) crystal (line); the total Fe deposition span over about 7 mm. Fe (squares)
and CoO (circles) thickness for the CoO/Fe-wedge/Ag(001) sample obtained from X-
ray reflectivity measurements.

6.2 Fe wedge on Ag(001) covered by a Co oxide

The nominal Fe-wedge thickness is shown schematically in figure 6.1 as function of the

position along the [110] direction of the Ag(001) substrate of 8 mm in diameter, i.e.

along the [100] direction of the Fe film. A plateau of a nominal thickness of 15 MLs

was deposited in the first two millimeters. The wedge shape starts with a nominal

thickness of 10 MLs and has a slope of 2 MLs/mm along the [110] direction of the

Ag(001) substrate. The nominal Fe thickness in monolayers (MLs) and/or the lateral

X-position (mm) will be used to label all measurements, even after Co deposition and

oxidation. In MOKE measurements the edge is determined with the laser spot with an

accuracy of ±0.2 mm.

6.2.1 Growth

The Fe-wedge sample was deposited on a clean Ag(100) substrate and then covered

by a cobalt oxide. The Ag(001) substrate was prepared using sputtering-annealing

cycles. The bombarding energy was 800 eV, in a typical pressure of 5.10−6 mbar of Ar,

generating a current of 10µA for 30 min or more. The annealing temperature was set

to 820 K for 30 min. The quality of the substrate was checked by AES and by LEED.

Both Fe and Co layers were deposited at RT by MBE using two effusion cells in the

ultrahigh vacuum chamber with a base pressure better than 5.10−11 mbar and less than

2.10−10 mbar during deposition. The deposition rate for Fe was 1 ML in 2.4 minutes

(0.41 MLs/min), so that the total deposition time for the plateau was 36 min.

The Fe wedge sample was measured at RT in the MOKE chamber, first in the

longitudinal then in the polar geometry. After those MOKE measurements the sample

was annealed in UHV for 5 minutes at 423 K, then checked again by LEED. After
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Figure 6.2: X-ray reflectivity at different positions along the sample wedge. From the
top curve to the bottom one, we pass from the plateau of 15 MLs to the thinnest part.

this mild annealing the LEED spots and the polar MOKE measurements showed no

changes.

After these measurements, one monolayer of Co was deposited at the same UHV

conditions as for Fe. The Co deposition rate was 1 ML in 2.2 minutes (0.45 MLs/min).

Then, in the chamber adapted for reactive deposition under oxygen atmosphere, the

oxide was grown. During this growth, the substrate was kept at 340 K in an O2 atmo-

sphere of 5 × 10−7 mbar. RHEED spots were qualitatively observed: before oxidation

the spots were sharp; after oxidation they became elongated and blurred. About 6 nm

of Co oxide was deposited in a time interval of 25 minutes. Auger lines from Fe and

Ag were no longer visible and LEED showed a square pattern with larger spots a the

same position as before.

After deposition of the CoO layer, the sample was installed again in the MOKE

chamber for detailed in situ magnetic characterization. These experiments are de-

scribed in detail at section 6.4. The final CoO/Fe-wedge/Ag(001) sample was then

removed from the multi-chamber in order to perform additional ex situ studies.

6.2.2 X-ray reflectivity and diffraction

X-ray reflectivity measurements were done on the CoO/Fe-wedge sample using Cu Kα

radiation from a sealed X-ray tube. In figure 6.2 we display the reflectivity curves

at different positions along the wedge (with a vertical shift for clarity). After the

fitting procedure, the Fe and CoO thickness were obtained. The results are included

in figure 6.1. The nominal Fe-wedge profile is represented by a continuous line. From

the reflectivity analysis, one can see that the fitted Fe layer is reduced by about 2 MLs

compared to the nominal film. Above the lateral position of 5 mm (below 4 MLs),

it is difficult to define the metallic Fe layer and the results yield a large dispersion.
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Figure 6.3: (a) l -scan along (0.961 0 l) showing the relaxed CoO diffraction peak. The
inset presents the radial scan along (h 0 0.96). (b) l -scan along the (1 0) CTR, sensible
to the pseudomorphic Fe layer on Ag(001), buried under the CoO film.

These results can be explained with the oxidation of 2 to 3 MLs of Fe in contact with

the CoO film. This Fe oxide contribution cannot be distinguished from the CoO due

to their similar densities; its contribution to the reflectivity is included in what we

call (CoO+FeOx) layer. This (CoO+FeOx) layer is about 7.7 nm-thick over almost all

lateral positions, which is larger by about 1.2 nm compared to the nominal thickness

of the deposited CoO. This could be explained by a deviation in calibration of the

Co source but it may also come from the additional contribution of a few Fe oxide

layers. For X > 5 mm, error bars became larger than the expected thickness for Fe,

due to the rough oxide surface. One can also remark that the CoO thickness decreases

from 7.7 nm down to about 5.5 nm at the border of the sample (X = 6.5 mm). This

reduced deposited layer could be explained by a geometrical effect related to the sample

mounting in the oxidation chamber. The range below 5 MLs (X < 4.5 mm) is better

characterized by X-ray absorption spectroscopy in fluorescence mode, as shown in the

next section.

To verify the epitaxy of the CoO on the Fe-wedge, GIXRD measurements were

performed at the GMT instrument of the French CRG BM32 beamline at the ESRF.

The energy of 25 keV (λ = 0.4959 Å) was used at a grazing incidence of 1°. hkl scans

in the reciprocal space were done to investigate the lattice parameter within the plane

(radial scans) and perpendicular (l -scans) to the sample surface. We observed that the

symmetry and lattice parameters correspond to the growth of a Co oxide with NaCl

structure and CoO stoichiometry. The CoO film grows epitaxially on Fe/Ag(001), but

is not pseudomorphic, as seen by the relaxed peak of figure 6.3-a: its out-of-plane lattice

parameter is c = 4.242 Å, while the in-plane one is a = 4.251 Å (or 3.006 Å in the surface

lattice), i.e., larger than the Ag lattice parameter by ≈ 4%. This unambiguously shows

that the CoO oxide layer is largely relaxed - but not completely (abulkCoO = 4.260 Å)

- to the bulk structure and slightly distorted (c/a ≈ 0.998). Such an anisotropy also

manifests itself in the X-ray absorption spectra and will be discussed further in the next

section. We also observed the peak corresponding to the epitaxial Fe layer buried under
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the CoO. The position of the peak in the reciprocal space (fig. 6.3-b) is compatible with

a pseudomorphic Fe layer.

6.3 X-ray absorption spectroscopy studies

Grazing incidence X-ray absorption spectroscopy (XAS) was performed at the Co and

Fe K edges (Fe 7112 eV and Co 7709 eV) for the in-plane and out-of-plane geometries,

at the French CRG FAME beamline at ESRF. The angle of incidence was set to about

5° for both geometries. The fluorescence photons were collected using a 30-element

Ge-detector aligned perpendicular to the photon beam direction.

Above the Fe K edge the intensity of Fe Kα fluorescence line is proportional to the

total Fe content in the sample. The Fe profile is obtained directly from fluorescence

counts - selecting the Fe Kα fluorescence with the Ge solid state detector - as a function

of the X lateral position for a given energy above the absorption threshold (black dots

in fig. 6.4). To avoid possible effects of the local environment on fluorescence counts,

the profile is checked from the amplitude of the edge jump in background subtracted

XAS spectra collected for different X (open squares in fig. 6.4). The Fe profile is in

good agreement with the nominal one. This experimental profile was used to set up

the origin of the X scale in the XAS experiments. Contrary to XRR measurements,

that are sensitive to contrasts in the total electronic density, XAS is element selective

(only Fe atoms contribute to the selected energy) but probes all Fe atoms, independent

on the oxidation state and on the local density. This explains the differences between

figure 6.1 and figure 6.4.
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Figure 6.4: Iron profile in the sample obtained from the fluorescence count at 7500 eV
(dots). The big open square correspond to the values obtained from the edge jump
for the collected XANES spectra, in the IP geometry. Both measurements have been
normalized to 15 on the plateau, in order to be comparable with the nominal profile
(line).
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6.3.1 Fe K-edge

Figure 6.5 displays the normalized Fe XAS spectra, in the XANES range, collected at

different lateral positions. The XANES for the two positions on the 15 MLs plateau

(X = 1 andX = 1.5) are identical and show the main features of a metallic Fe spectrum:

marked shoulder just above the threshold, reduced main line at the edge, and smooth

features up to 7200 eV. For 2 < X < 5 the XANES features are progressively modified.

The shoulder at the threshold vanishes, giving way to a small well structured pre-edge.

At the same time the main line shifts towards higher energies and increases strongly,

and sharper structures rise above edge. These features characterize an oxidized Fe

state. For X > 5.5 mm (thickness smaller than 4 MLs), the XANES features keep

almost unchanged.
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Figure 6.5: Normalized Fe K edge XANES spectra along the iron wedge (in-plane
geometry). Spectra of different X are vertically shifted and the correspondence is
indicated.

As the total iron thickness still progressively decreases with X, we can assume that

above X = 5 (< 4 MLs), all iron atoms present in the sample are under an oxidized

form. To confirm this point and identify the oxidation form, we compare the XANES

at X = 5.5 (≈3 MLs) to the XANES of reference spectra, for the three main bulk

iron oxides FeO, αFe2O3 and Fe3O4 (fig. 6.6). FeO crystallize in the rock-salt structure

(Fm3m), the same as CoO. The ions Fe2+ have a symmetric octahedral environment of

6 oxygen at a distance of 2.155 Å. αFe2O3 crystallize in the rhombohedral R3c structure.

The coordination shell of the Fe3+ ions is split into 3 oxygen at 1.944 Å and 3 at 2.115 Å.

Fe3O4 crystallize in the spinel structure (Fd3m), one third of the iron atoms are on

the form Fe3+ in tetragonal sites with 4 oxygen neighbors at 1.876 Å, the two other

thirds are split on the forms Fe3+ and Fe2+ in regular octahedral sites with 6 oxygen

neighbors at 2.066 Å. Once the XANES of the reference spectra were not collected in

the same experiments as the XANES of our sample, we do not discard the possibility

of a shift in the energy calibration among them. We adopt then a relative energy scale



6.3. X-ray absorption spectroscopy studies 119

(fig. 6.6) where, for each spectrum, the origin is set at the maximum of the main line

at the threshold (zero of the derivative).
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Figure 6.6: Comparison of the XANES at X = 5.5 (≈3 MLs) to the reference spectra
for the three main bulk iron oxides FeO, αFe2O3 and Fe3O4.

The features of the XANES in the film clearly differ form those of FeO. It does not

show the large dump around 9 eV and it has a higher and more structured pre-edge

than the FeO one (fig. 6.6). The maximum of the first EXAFS oscillation is found at

around 50 eV in the sample and around 45 eV in FeO, what suggests that the average

distance is larger in FeO than in S6. The XANES features can be seen as intermediate

between those of αFe2O3 (similar shoulder around 7 eV) and Fe3O4 (similar pre-edge).

Actually, the best fit of the XANES as linear combination of the two references gives

about 2
3αFe2O3 + 1

3Fe3O4. This result cannot be taken straightforwardly: the local

environment of iron in an ultra-thin film (for less than 4 MLs) is not supposed to be

identical to that in bulk iron oxide. The comparative study only deals with a qualitative

description. This analysis of the XANES features indicate that the iron in the oxide

is not in a FeO-like symmetric environment, and has smaller Fe-O distances. This is

confirmed by the EXAFS range.

Figure 6.7 shows the EXAFS signal (a) and the moduli of the Fourier Transform

(FT) of the k2−weighted experimental spectra (b) for the sample and the three refer-

ences. The EXAFS analysis is restricted to kmax = 11 Å−1 due to the low signal/noise

ratio for the sample at higher k. The Fourier transform of the EXAFS signal gives

a pseudo-radial partial distribution function around the absorbing atom. The height

of peaks depends on the amplitude parameters of the EXAFS equation, while their

position depends on phase parameters. The position of a peak is related to the dis-

tance between absorber and scatterer. Due to the phase function that depends on k

always with a negative slope, the peaks are shifted to lower R values. On the FT we

easily identify in the reference oxides the peak of the coordination shell (Fe-O) and the

peak corresponding to the second neighboring shell of iron atoms (Fe-Fe), as indicated

in figure 6.7-b. The relative amplitude of these two peaks are opposite in Fe2O3 and
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Figure 6.7: Comparison of the (a) EXAFS and (b) FT data at X = 5.5 (≈3 MLs) to
the reference for the three main bulk iron oxides FeO, αFe2O3 and Fe3O4 (in-plane
geometry).

Fe3O4. In both cases, the local environment is distorted and the distribution of the iron

neighbor distances is large. In FeO, where the second shell (Fe-Fe) is very symmetric,

the corresponding amplitude is much higher. We can confirm in the sample a distorted

local environment of iron oxide.

The evolution of the EXAFS spectra and their associated FT with increasing X are

similar in the in-plane (fig. 6.8) and the out-of-plane (fig. 6.9) geometries and confirm

the progressive oxidation of the iron layer.
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Figure 6.8: Evolution of the EXAFS spectra (a) and their associated Fourier Transform
(b) with increasing X for in-plane geometry.



6.3. X-ray absorption spectroscopy studies 121

2 4 6 8 10 12
-1

0

1

2

3

4

5

6

7

 OP

6.5
5.5
4.5
3.5
2.5
1.5
X

 

 

k2
(k

) (
Å

-2
)

wavevector k (Å-1)

(a)

0 2 4 6

0

1

2

3

4  OP

6.5

TF
 [k

2
(k

)]

 

TF
 [k

2
(k

)]

R (Å)

5.5
4.5
3.5
2.5
1.5
X

(b)

Figure 6.9: Evolution of the EXAFS spectra (a) and their associated Fourier Transform
(b) with increasing X for out-of-plane geometry.

We should specially highlight the case of OP measurements with X > 5 mm, cor-

responding to nominal thicknesses lower than 4 MLs. As guessed from the XANES

spectra, the FT peaks corresponding to the oxygen and iron nearest neighbors keep

almost unchanged for X > 5 mm (fig. 6.10). From X = 5.5 (≈3 MLs nominal) to

X = 6.5 (≈1 ML nominal) the decrease of about 15% in the amplitude of the oxygen

peak can be associated to an increase in the disorder, as confirmed by the progressive

splitting of this peak. However at the same time the iron peak keeps almost constant

amplitude. These features are not compatible with a growth layer by layer, where the

number of iron neighbors should progressively increase with the iron coverage. On the

contrary, these results suggest the presence of isolated islands of iron oxide. In addition

the progressive distortion of the coordination shell may be associated to a progressive

increase of iron atoms at the surface of these islands, and then that their size decrease

as X decreases.

On the plateau (15 ML of Fe), the XANES spectra have the main features of the bcc

iron (fig. 6.11). However, we observe a reduction in the shoulder before the edge, the

distortion of the structures close to the edge and important flattening around 7160 eV.

This indicates the presence of oxidized iron also for this position. The oxide content is

evaluated by a simple linear combination between the XANES spectra of bulk bcc iron

and iron oxide film (X = 5.5), that gives around 15% of iron under an oxidized form

on the plateau. This corresponds to 2 ML of iron oxide covering 13 ML of metal iron.

Similar linear combinations of the XANES spectra are used to describe the iron

oxide profile on the sample. This profile is given in figure 6.12. It shows that the oxide

layer is not constant with X : it increases as the coverage decreases. For a nominal iron

thickness of 4 ML, the iron is completely oxidized.

Aiming to quantify the short-range order and its eventual anisotropy in the metal

iron layer, we made a quantitative analysis of the EXAFS measurements with in-plane

and out-of-plane polarizations. We restrict this quantitative EXAFS analysis to the

spectra collected on the 15 ML plateau. For these spectra, the oxide content is about

15%. The amplitude of the back-scattering function has a larger extension in wave-

vector for iron neighbors than for oxygen neighbors (fig. 6.13). In an analysis with a
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Figure 6.11: Fe K edge XANES on the plateau - 15 ML Fe nominal - (solid line)
compared to a reference spectrum of bulk Fe bcc (gray triangles). Even if the main
features are close, there are some differences, specially a flattening in the zone around
7160 eV, that indicates a contribution of iron oxide, where a large droop is observed in
this zone (dashed line).

k0 or k1 weighing, in the k range 3− 12 Å−1, the signal due to the oxygen neighbors is

expected to contribute by less than 5% to the total EXAFS signal. We can reasonably

analyze the EXAFS signal assuming only metallic iron.

In metallic bcc iron (a = b = c) the coordination shell is made of two sub-shells :

8 Fe at R1 = a
√

3
2 and 6 Fe at R

′
1 = a. In an expected body-centered tetragonal (bct)

structure this coordination shell will be further split (c < a) and three sub-shells should

be considered : 8 Fe at R1 =
√

2a2+c2

2 , 2 Fe at R
′
1 = c, and 4 Fe at R”

1 = a (tab. 6.14).
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Figure 6.13: (a) Calculated backscattering amplitudes for an oxide-like coordination
shell formed by 6 oxygen atoms (dashed gray line) and by a bcc like coordination shell
formed by 14 iron atoms (solid line). The hatched area corresponds to the EXAFS
analysis domain (b) Calculated EXAFS signal for the contributions of these shells
weighted by 0.15 for the oxide (dashed gray line) and 0.85 for the metal (solid line).

Assuming perfectly in-plane or out-of-plane polarization of the incident beam and

grazing incidence (αi = 0), the apparent number of neighbors Ni for the ith shell is

given by the expression Ni = 3
∑

j cos
2θij , where θij is the angle between the absorber-

scatterer axis and the polarization direction. For a bct iron structure, the expected

values of N1, at the first neighboring shells, are given in table 6.1. If c = a one should

find R
′
1 = R”

1. If c < a the anisotropy ratio c/a will be given by the ratio R
′
1/R

”
1. Note

that the anisotropic signal (Fe neighbors at distances R
′
1 and R”

1) is superimposed with

the contribution of the 8 Fe neighbors at R1 =
√

2a2+c2

2 .

The EXAFS signal on the plateau (15 ML nominal), are given in figure 6.15-a for the

in-plane and out-of-plane geometries, together with the corresponding k1-weighted FT
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Figure 6.14: Schema showing the three different distances in the coordination shell of
the bct structure.

Subshell In-plane (ε ‖ c) Out-of-plane (ε ⊥ c)
1: (R1 =

√
2a2+c2

2 ) 8 8

1’: (R
′
1 = c) 0 6

1”: (R”
1 = a) 6 0

Table 6.1: Apparent number of neighbors, for in-plane and out-of-plane measurements
in each sub-shell of the first coordination shell.

(fig. 6.15-b). The three peaks observed show nonnegligible anisotropy. This anisotropy

is clearly observed from the moduli of the FT, but the real part of the FT cross the zero

at the same position in R. This indicates that the corresponding EXAFS contributions

should be well matched in phase. The anisotropy observed in the modulus of the FT is

then guessed as essentially due to amplitude terms: lower average number of neighbors

and/or higher disorder in the out of plane measurements. This is not surprising due to

the lower size of the sample in the direction perpendicular to the films.

The quantitative analysis of the coordination shell confirm this outcome (table 6.2).

Within the error bars the cell appears to be cubic, with c = a = 2.87±0.02 Å. A decrease

by about 20% of the number of neighbors strictly out-of-plane (along c) with respect

to those in the (a,b) plane accounts for the reduced thickness of the film.

6.3.2 Co K edge

At the Co K edge, we observe that XAS spectra show a decrease in the amplitude of

the edge jump for the X > 5 mm values (fig. 6.16). This indicates that the CoO layer

subshell R (Å) N σ2(Å2)

1 2.46± 0.02 7.6± 0.5 (expected 8)
1’ (OP) 2.87± 0.02 5.7± 0.5 (expected 6) 0.005± 0.002
1” (IP) 2.86± 0.02 4.5± 0.5 (expected 6)

Table 6.2: Fitting results for the 15 MLs Fe layer. The analysis of the in-plane (out-of-
plane) spectrum gives the structural parameters for 1 and 1” (1 and 1’). The spectra of
both geometries have been fitted together to straighten the robustness of the results.
k range: [4.1-12.1]. R range for first peak selection: [1.85-3.0]. In order to limit the
number of free parameters the disorder factor σ have been imposed identical for the
3 subshells. The amplitude factor, S2

0, has been taken as 0.75, value found from the
analysis of the Fe bcc reference.
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Figure 6.15: IP-OP anisotropy for 15 MLs nominal Fe: (a) EXAFS signal IP and OP;
(b) FT (amplitude and real part) of IP and OP; experimental and fitting FT for IP
(c), and for OP (d).

is reduced at the thin end of the wedge, as suggested by the XRR measurements. It

confirms a shielding effect during the growth of the CoO layer.

The XAS spectra collected at the Co edge show the typical feature of CoO bulk

oxide. The XANES spectra does not show significant evolution with X. We observe a

damping of the EXAFS signal with increasing X, well evidenced by an overall damping

of the moduli of the FT, both for IP and OP geometries (fig. 6.17). This damping

reveals an increase of the average disorder with increasing X and may be correlated to

a growth by islands in the earliest steps of the CoO layer.

For a given X, the XAS spectra shows small but significant anisotropy. The first

EXAFS oscillation is shifted towards lower energies for the OP geometry, indicating a

shorter distance in IP measurements. The quantitative EXAFS analysis confirms this

shortening but the results have a limited precision. The difference found for the IP

and OP cell parameters is about 0.02 Å, just about the error bars. The most striking

difference between IP and OP XANES spectra lies in the pre-edge range (fig. 6.18).

This anisotropy exist for all lateral positions, with an excellent reproducibility.

CoO the pre-edge is assigned to the dipolar transition from Co 1s levels to 4p empty

levels. 4p − 3d hybridization for orbitals of the same Co atom is forbidden due to the

centro-symmetry of the Co sites. However the 4p orbitals, having a large extension,

hybridize with 3d orbitals of the Co neighboring atoms. The structures at the pre-edge

reflect then the 3d partial density of states. To investigate the origin of the anisotropy

in these electronic states, we performed ab initio simulations, using the FDMNES code.
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Figure 6.16: Co profile obtained from the amplitude of the edge jump in background
subtracted XAS spectra collected for different X positions.
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Figure 6.18: Co K-edge XANES for IP (solid line) and OP (dashed line) geometry
(X = 3.5). The insets highlight the main differences between the geometries.

This code uses a mono-electronic approach, perfectly justified for delocalized probed

states with minor interaction between the core-hole. This is the case for the metal K-

edge. Calculations are performed inside a cluster centered around the absorbing atom.

From these atomic positions the code calculates the electronic structure around the ab-

sorbing atoms using the Local Spin Density Approximation. The electronic structure is

solved using the multiple scattering theory within the muffin-tin approximation for the

potential shape. The absorption cross section is then calculated using the polarization

conditions: ε‖[001] and ε‖[100] to simulate respectively OP and IP experiments. This

absorption is then convoluted to a Lorentzian with an energy-dependent width, to take

into account the core and final state lifetimes.

A cluster with CoO structure is build from crystallographic data in the cubic rock-

salt structure (space group Fm3m): a = 4.2667 Å. Once the structure is cubic, there is

no anisotropy in the calculated spectra. The calculated XANES spectrum reproduces

well the experimental features (fig. 6.19-a). The position of the pre-edge peak is slightly

shifted, but its shape and amplitude are very close to that of the IP XANES.

Calculations are then performed with a tetragonal model for CoO, with a = b =

4.2667 Å and c = 4.1867 Å (c/a = 0.98). The calculations with ε‖[100] (IP) and ε‖[001]

(OP) present an anisotropy due to the tetragonal distortion (fig. 6.19-b). However, this

anisotropy, even if larger than the actual one (GIXRD gives c/a = 0.998) has only a very

small effect on the pre-edge structure. The origin of the anisotropy in the electronic

states is not linked to the tetragonal distortion.

We then performed preliminary simulations taking magnetism into account (includ-

ing spin states). We use a very simplified spin distribution: the spin direction is taken

along [100] and the spin orientations alternate antiferromagnetically between planes

z = 0 and z = 1/2. The spin distribution breaks the symmetry of the structure.

The calculated pre-edge show notable anisotropy for ε‖[001] and ε‖[100] (figure 6.20)

However the proposed simplified spin distribution gives an anisotropy contrary to the
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Figure 6.19: (a) Calculated (solid line) and experimental XANES (line+symbols)
for CoO in the rock-salt structure. (b) Calculated spectra for CoO with tetragonal
distortion, IP (solid line) and OP (dashed line) cases.

experiments. These preliminary calculations suggest that the anisotropy experimen-

tally observed in the pre-edge is connected with the magnetic properties of the film,

but the real spin direction and orientations should be taken into account to properly

simulate this effect.

6.4 Magnetic studies by MOKE

The magnetic measurements on the CoO/Fe-wedge/Ag(001) sample were performed

using the MOKE facilities installed in the ultra-high vacuum (UHV) multi-chamber

system at the Max Plank Institut of Halle, Germany. We recall that the wedge shape

has a slope of 2 ML/mm along the [110] direction of the Ag(001) substrate, i.e. along

the [100] direction of the Fe film (fig. 6.1). Longitudinal (with an incidence angle of

21°) and polar (with an incidence angle of 69° to the sample normal) MOKE geometries

were applied to probe the anisotropy and exchange bias characteristics of the sample.

A laser diode of wavelength 670 nm with a beam diameter of about 200µm was used

as probe.

6.4.1 In situ MOKE

The magnetic properties were measured in situ after each step of the sample prepa-

ration. The in situ MOKE measurement involves just a transfer of the sample under

UHV from the preparation chamber to the MOKE chamber. As discussed previously,

Fe films deposited on Ag(001) displays perpendicular magnetic anisotropy and a spin

reorientation transition at RT at a critical film thickness of about 5 to 6 MLs [70].

Above that critical thickness, Fe films show an in-plane fourfold anisotropy, with easy

axis along the [100] or [010] crystallographic directions related to the Fe (or [110] and

[110] along Ag substrate). The Ag substrate used in this experiment is perfectly flat.
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Figure 6.20: (a) Calculated anisotropy pre-edge including magnetism - simplified model.
(b) Experimental pre-edge. The energy scale has been shifted to align the edge struc-
tures. Plain lines: IP, dashed lines: OP.

room temperature measurements on Fe-wedge/Ag(001)

We present here the sequence of longitudinal, along the easy axis of Fe, and polar

MOKE measurements at RT as function of the Fe thickness for the uncovered sample.

The in situ longitudinal MOKE (L-MOKE) data (fig. 6.21-a) yields the expected

linear decrease in the saturation (MS) magnetization as function of Fe thickness. More-

over, the ratio of remanence (MR) over the saturation magnetization (MS), MR/MS ,

which gives the squareness of the hysteresis loop, is about one, down to 6 MLs. The

coercive field (HC) in the plateau of 15 MLs is 17 Oe and within the 6 to 9 MLs range

is 9 Oe. At 5 MLs and below, one can observe that there is no longer an open loop, the

coercivity goes to zero. A few selected in situ polar MOKE (P-MOKE) loops is shown

in figure 6.21-b. One can remark that from 3 to 6 MLs the saturation MS is almost

reached at relatively low applied magnetic fields. In addition, a linear behavior of the

MS as function of the Fe thickness is observed, while coercivity is zero. This behavior

looks like that of an ensemble of uncoupled superparamagnetic particles being aligned

under an applied field. At 6 MLs and above, a small projection of the applied field in

the plane of the sample gives rise to an open loop. This is coming from the in-plane

magnetization that can be easily rotated at relatively very small fields. From these

outcomes, it seems clear that the SRT at RT is taking place within 5 to 6 MLs in our

sample.

The remanence MR and saturation MS magnetization from L-MOKE measurements

as function of thickness are presented in figure 6.22. MS is fitted to a straight line in the

range 6 to 9 MLs and extrapolated for the whole range: MS crosses the zero at about

1 ML meaning that there is one magnetically dead layer of Fe on Ag(001). MR gives the

same figure. The existence and the origin of that dead layer has never been reported

in literature. MOKE measurements alone cannot tell if this dead layer is coming from

the interface with Ag or from the free surface.
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(a) (b)

Figure 6.21: (a) Representative L-MOKE hysteresis loops for the uncovered Fe-wedge
at RT. (b) idem for P-MOKE hysteresis loops: from 3 to 6 MLs, one observe a linear
behavior of the saturation magnetization as function of the thickness; at 6 MLs, one can
still observe the projection of the open loop coming from the in plane magnetization.
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Figure 6.22: Remanence (open circles) and saturation (closed circles) magnetization
from L-MOKE measurements at RT as function of the Fe thickness. A straight line is
fitted from 6 to 9 MLs and extrapolated to zero yields one dead layer. Magnetization at
maximum applied field (open triangles) from P-MOKE measurements at RT as function
of the Fe thickness.
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Figure 6.23: Room temperature L-MOKE loops for the Fe wedge covered by a Co
oxide layer.

The magnetization (or Kerr rotation) at the maximum applied field (3000 Oe) for

P-MOKE in the range of perpendicular anisotropy (up to 5 MLs) as function of the

thickness shows a linear increase (fig. 6.22). The magnetization goes to zero close to

2 MLs, but we cannot argue about dead layers in the P-MOKE geometry because there

is not enough magnetic field to saturate magnetic moments for the thinnest layers.

After the above experiments, the sample was annealed to 423 K for 5 min. to improve

surface quality. The observed LEED spots were strictly the same and the P-MOKE

measurements were checked and showed no changes. Then, the Co oxide layer was

deposited on the Fe-wedge and in situ MOKE measurements were performed again on

the covered sample.

room temperature measurements on CoO/Fe-wedge/Ag(001)

In figure 6.23, we present the sequence of L-MOKE hysteresis loop measurements at RT

as function of the Fe thickness for the CoO-covered sample, just after oxide deposition.

One can observe a similar linear decrease in the saturation magnetization but with

a much larger coercivity (by a factor of ≈10) at all positions when compared to the

uncovered sample (fig. 6.21). The SRT is less marked, as can be noted at 5 MLs by a still

remaining magnetization for zero applied field. In addition, the squareness (MR/MS)

is no longer equal to one at all positions.

The magnetization (MR and MS) from these L-MOKE loops as function of the

thickness are shown in figure 6.24. After oxide deposition, the straight line extrapolation

for the saturation goes to zero close to 2.3 MLs, instead of 1 ML, showing that the dead

layer has increased after oxidation. One can also remark that the loops are less squared

and remanence decreases more quickly as function of thickness. If one extrapolates MR,

the straight line crosses zero at about 4 MLs. It looks like the oxide layer is increasing

as going to the thinnest Fe-wedge side. P-MOKE measurements were tried at RT but

the applied magnetic field was not sufficient to yield any reliable signal.
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Figure 6.24: Remanence (open circles) and saturation (closed circles) magnetization
from L-MOKE data as function of the thickness for the CoO/Fe-wedge/Ag(001) sample.

(a) (b)

Figure 6.25: L-MOKE hysteresis loops measured at (a) 5 K and at (b) 90 K after
magnetic field cooling along the in-plane Fe easy axis (MFC-L) at 0.55 Tesla.

magnetic field cooling and low temperature measurements on CoO/Fe-

wedge/Ag(001)

After RT measurements, we proceeded to magnetic field cooling (MFC) studies at

different temperatures. L-MOKE and P-MOKE hysteresis loops were measured at 5 K

and at 90 K after field cooling under an applied magnetic field of 0.55 Tesla. The cooling

field was applied in-plane along the [100] easy axis of Fe (MFC-L) or perpendicular to

the surface (MFC-P). The L-MOKE measurements are shown in figures 6.25 and 6.26

for the MFC-L and MFC-P, respectively. For the P-MOKE configuration it was not

possible to saturate the sample and the coercivity values were above the maximum

available field. The P-MOKE results will be briefly discussed at the end of this section.

When the magnetic field cooling is applied along the Fe easy axis (MFC-L) all Fe

spins are saturated along this direction. One expects that the Co spins are exchange-

coupled with Fe spins, which should give rise to an increase in coercivity and an
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(a) (b)

Figure 6.26: L-MOKE hysteresis loops measured at (a) 5 K and at (b) 90 K after
magnetic field cooling perpendicular to the surface (MFC-P) at 0.55 Tesla.

exchange-bias shift. Both effects are clearly observed for L-MOKE loops (fig. 6.25-

a) measured at 5 K after the MFC-L at 0.55 Tesla. One can observe the huge increase

in coercivity. For thickness smaller than 6 MLs, the applied magnetic field is not enough

to give any measurable rotation at 5 K. The L-MOKE measurements at 90 K (fig. 6.25-

b) were done after measurements at 5 K, without any other magnetic field cooling. One

can see that the coercivity is still much larger than at RT. Nevertheless, contrary to the

5 K results, there is an open loop for the thickness of 5 MLs. The 4 MLs measurement

yield just a monotonous variation, which has been used as background, to estimate the

saturation. Obviously, using this procedure, the error bar for saturation magnetization

must be quite large. Nevertheless, one note (fig. 6.27-a, square and triangle) that the

overall behavior of MS is quite similar to the one at RT: linear decrease following the

“two dead layers” straight line and rapid decrease around 5 MLs. MR gives, within the

error bars, a similar behavior (fig. 6.27-b). This is not surprising: the magnetization

of the Fe film is preserved, even if more difficult to reverse, when the cooling field is

imposed along one of the easy axis. A contribution to the total magnetization coming

from uncompensated Co spins may exist but would be within our error bars.

Interesting results come out when the cooling field is applied perpendicular to the

surface: MFC-P at 0.55 Tesla (fig. 6.26). Compared to what happens for the MFC-L

at the same conditions, 5 K or 90 K, one can note that there is still a huge increase in

coercivity but the loops are less squared, with reduced magnetization at remanence.

Moreover, at the 6 MLs position, the magnetic field is no longer enough to produce

any detectable rotation. These results are summarized in figure 6.27, where MS and

MR measured by L-MOKE after MFC-L (square and triangle) and MFC-P (stars) are

compared. Data are also compared to behavior at RT (circles). MS and MR are in

good agreement when low-temperature (LT) data for MFC-L is compared to RT data.

However, when the applied field cooling is perpendicular to the surface (MFC-P), MR is

reduced everywhere. One can even note, as for MS , that the SRT seems to be shifted to

higher thickness, as shown by the zero magnetization for 6 MLs. Our interpretation is

that the MFC-P pin a large amount of Co interfacial spins perpendicular to the interface
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Figure 6.27: (a) Saturation and (b) remanent magnetization at low temperatures from
L-MOKE measurements after MFC-L (squares, triangles) and after MFC-P (stars).
Data are compared to behavior at RT (circles).
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Figure 6.28: (a) Coercivity and (b) exchange bias shift for the CoO/Fe-wedge sample for
different temperatures after magnetic field cooling from 315 K to 5 K under 0.55 Tesla.

and those spins, which are exchange coupled to the Fe spins, causes a decrease in the

remanence and shifts onset for spin reorientation transition to higher thickness.

We turn now to the coercivity and exchange bias results coming out from these

in situ MOKE experiments. In figure 6.28, we shown a comparison among all results

for the CoO/Fe-wedge/Ag(001) sample. As discussed above, from the free Fe surface

to the Co oxide covered one, the coercivity values had increased by a factor of 10

(Hc ≈ 80 Oe). At 5 K, after field cooling, we observe that the coercivity has increased

by an additional factor of 40, reaching Hc ≈ 3000 Oe in the range of 6 to 9 MLs and

Hc ≈ 2000 Oe for the 15 MLs. One can remark that the coercivity is larger for smaller

thickness, which is consistent with the fact that the increase is coming from the interface

exchange coupling, and suddenly vanishes at the critical thickness for spin reorientation.

The exchange bias field also displays the expected behavior, increasing as the thickness

decreases, at least for the condition where the field cooling is applied in-plane. At 5 K,

it reaches the largest value of −380 Oe for the 6 MLs position.
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(a) (b)

Figure 6.29: P-MOKE hysteresis loops measured at (a) 5 K and at (b) 90 K after MFC-P
at 0.55 Tesla.

Polar MOKE at 5 K and 90 K after magnetic field cooling

P-MOKE hysteresis loops were measured at 5 K and at 90 K after field cooling under

an applied magnetic field of 0.55 Tesla. Some selected loops are shown in figure 6.29.

At 5 K one can clearly see the limitation imposed by the applied magnetic field: it was

not possible to saturate the sample and the coercivity values were above the maximum

available field. At 90 K, the situation is better, one can observe that the magnetization

raises as function of thickness from 4 to 6 MLs and that some remanence shows up.

Nevertheless, even if a small exchange bias may be present, about -250 Oe at 5 K and

-50 Oe at 90 K, this could come from artifacts, as for instance, a projection from the in-

plane magnetization behavior. The experiment for the perpendicular coupling should

be re conducted under better conditions with higher applied magnetic fields.

6.4.2 Ex situ MOKE

Once all measurements discussed above were performed, the sample was taken out from

the chamber and exposed to the atmosphere. During about five months it was studied

by different X-ray techniques - reflectivity, diffraction, absorption - whose results are

presented in the previous section concerned by structural characterization. After all

these studies, the sample was back to the MOKE apparatus at Halle for additional

magnetic studies. One of the main goals of these new experiments were checking the

condition of the sample and verifying possible aging effects. We report in this section

these results.

In a first experiment, the sample was field cooled from 315 K to 5 K under a magnetic

field of 5.5 kOe applied along the easy axis ([100]) of Fe. In a second experiment, the

sample was simply cooled without any applied field, i.e., a ZFC study. The L-MOKE

hysteresis loops in both experiments were measured after warming the sample at 100

and 200 K. The magnetic field was flipped along the [100] easy axis.

In figure 6.30, we present the remanence for these ex situ measurements compared

to the results for the in situ MFC-L at 90 K. One can see that there is no significant

difference among the in situ 90 K data and those for the ex situ at 100 and 200 K
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Figure 6.30: Remanence as function of thickness from the ex situ L-MOKE data at
100 and 200 K compared to the in situ data at 90 K.
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Figure 6.31: (a) coercivity and (b) exchange bias shift as function of thickness from
the ex situ L-MOKE data at 100 and 200 K compared to the in situ data at 90 K. The
guide for the eyes is kept as in figure 6.28 for the in situ data.

after MFC-L. A straight line extrapolation of the remanence shows that about 5 MLs

are not contributing to remanent magnetization. On the other hand, one can clearly

observe that the remanent magnetization is smaller for the ZFC data when compared

to the others. This is expected because for MFC-L the applied field along the easy axis

stabilizes not only the Fe moments along that direction but also some Co moments,

that remain pinned. In the case of the ZFC experiment, interfacial spins are most

likely frozen in a disordered state. The ZFC experiment is similar, in that sense, to the

MFC-P experiment that pinned some Fe and Co moments away from the easy axis of

Fe.

In figure 6.31 we compare the coercivity and exchange bias shift for the ex situ and in

situ measurements. The results at 100 and 200 K are very consistent with those of the in

situ 90 K experiment in a fresh sample. The coercivity increases as thickness decreases
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Figure 6.32: Interface energy density as function of thickness from the in situ and ex
situ L-MOKE at different temperatures, and for in-plane and out-of-plane field cooling.

and has a maximum around 8 to 9 MLs. At the same temperature, one notes that the

coercivity for the ZFC is smaller, showing that the coupling is less effective to generate

an additional coercivity. The observed exchange bias shift displays a similar behavior,

slightly increasing as thickness decreases. The density of interface energy associated to

the exchange coupling is shown in figure 6.32. The relation HEB = ∆σ/(MFM × tFM )

converts exchange bias field HEB to additional interface energy ∆σ, where the Fe

nominal thickness and MFM = 1750 emu/cm3 for Fe is used.

6.5 Summary

An Fe-wedge sample covered by a Co oxide was successfully synthesized and charac-

terized. The in situ studies revealed many interesting properties. Before covering the

Fe-wedge with CoO, we observed that the spin reorientation transition takes place be-

tween 5 to 6 MLs at RT, as often reported in the literature. In our uncovered sample,

both remanence and saturation magnetization straight line extrapolation points to one

dead layer of Fe. After CoO deposition, sample presents a larger number of dead layers,

2.3 MLs when one extrapolates the saturation magnetization and about 4 MLs when one

extrapolates the remanence. This is a consequence of the formation of an Fe oxide at

the interface with the CoO.

X-ray reflectivity yields a reduced Fe layer, by about 2 MLs, and a thicker CoO

layer compared to the nominal coverages.

X-ray absorption spectroscopy reveals the presence of such an oxide and yields a

detailed description, discarding the existence of the FeO phase, which is antiferromag-

netic at low temperature. A mixture of α− Fe2O3 and Fe3O4 simulates quite well the

spectra. In fact, the most reasonable situation is a decreasing gradient of oxygen into

the Fe layer. At RT, this thin FeOx layer is probably not contributing to remanent

magnetization but can easily respond to an applied magnetic field. This explains why
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one measures about 4 dead MLs at remanence and only 2.3 at saturation. XAS and

MOKE results are entirely compatible in this regard, in particular in the wedge portion

with less than 4 deposited MLs of Fe.

After CoO deposition, the coercive field HC has increased by a factor of 10 at

RT. For the CoO thickness deposited, of about 7 nm, the Néel temperature is around

250 K. As expected, after magnetic field cooling, a huge increase in the coercivity is

observed as a consequence of the exchange coupling of the Fe layer with the oxide

CoO. In addition, one also observes a shift in the hysteresis loop, whose dependence

was studied as function of a few different parameters, as temperature and applied field

cooling orientation. An almost linear dependence of the shift as the thickness decreases

was observed, compatible with an effect that is taking place in the interface.



Chapter 7

Conclusions and prospects

Our motivation was, in this thesis work, to understand the mechanism of exchange cou-

pling at the interface of some AFM/FM bilayer systems. We aimed at a fine control of

the structure and end up with optimized model systems. To synthesize model samples,

our approach was to exploit the ability to grow ultra-thin epitaxial films and multilayers

by molecular beam epitaxy, combined with structural probes available in synchrotron

light sources. The French CRG BM32 beamline at ESRF for in situ grazing incidence

X-ray diffraction (GIXRD) was an invaluable tool for the accomplishment of our aim.

In addition, investigations, on the same samples, of the short-range-order arrangement

and of the local magnetic moments and anisotropy of selected atomic species, using X-

ray absorption spectroscopy (XAS) and Magnetic Circular Dichroism (XMCD), allowed

us to go deeper into the understanding of the combined layers.

We were especially interested in thin ferromagnetic films with perpendicular mag-

netic anisotropy. Many steps were needed, starting by the comprehension of the earliest

steps of growth of the different atomic species on selected surfaces, before the achieve-

ment of model systems. The study of the earliest stages of the metal (Mn, Fe and Pt)

growth on Pt(001) and on Ag(001) single-crystals led to important outcomes for the

elaboration of ordered L10 alloys.

The growth on Pt(001)-hex is strongly affected by the hexagonal reconstruction,

which is lifted locally through metal deposition. When Mn is deposited, we found that

lifting the reconstruction results in an excess of Pt atoms in the first layer of the film,

yielding a surface alloy with local c(2 × 2) arrangement. Lifting the reconstruction

previous to Mn deposition inhibits such alloying. Such deconstruction process was

achieved by depositing Pt at an elevated temperature. The growth of Pt on Pt(001) or

Pt on Mn/Pt(001) at RT resulted in quite a rough surface. On the contrary, an almost

layer-by-layer Pt growth is achieved by deposition at about 600 K. At this temperature,

there is no significant Mn diffusion into the Pt bulk. Deposition of Fe on Pt-hex at

600 K results directly in an out-of-plane ordered L10 phase.

For the Ag(001) substrate, we observed that Fe grows pseudomorphically up to

14 MLs. The spin reorientation transition, taking place at 6 MLs, seems to be related

to a change in the unit cell volume, rather than to a relaxation of the in-plane lat-

tice parameter. For Pt deposition, Ag segregates to the surface. Alternated Pt and

Mn deposition at 570 K, favored by the large Ag lattice constant, and possibly by

139
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the surfactant effect, yields an L10 ordered alloy with out-of-plane orientation. Fu-

ture investigation of such MnPt/Ag(001) layer coupled with a perpendicular magnetic

anisotropy layer, like FePt, sounds interesting.

In terms of data analysis, we developed and validated a procedure for quantifying

the order parameter of pseudomorphic alloys from GIXRD measurements. The faster

acquisition mode based on stationary scan was used to study thick films. A new area

detector, that has just become available at the BM32 beamline, should make this acqui-

sition mode a standard, once the entire diffraction signal, including background, may

be collected in a single exposure.

Based on the knowledge of the earliest stages of growth, we studied the growth of

MnPt and FePt ordered alloys on Pt(001). For MnPt, RT growth leads to a rough and

disordered layer that, when annealed at 770 K, becomes smooth and presents small L10

ordered domains with the c-axis oriented either in-plane and out-of-plane. The best

out-of-plane L10 MnPt film, with coexisting in-plane minority domains, was obtained

for deposition at 570 K. A tetragonally distorted FePt layer with c-axis perpendicular

to the surface was grown on that MnPt layer (still at 570 K). Ex situ polar MOKE

showed that, after field cooling, the coercive field increases and exchange bias shows

up. XMCD at the Mn and Fe L2,3-edges revealed a coupling perpendicular to the

surface between Fe and Mn magnetic moments and a large amount of uncompensated

Mn spins at interface, the majority of them being rotatable.

For this same substrate temperature, we also demonstrated that a highly ordered

L10 FePt may be obtained by a Fe-rich alternate deposition on a clean substrate. This

highly ordered FePt film was studied by XAS and XMCD. Sum rules were applied to

the XMCD results and we interpret the enhanced orbital magnetism observed in our

film as the result of the increased tetragonal distortion and the high degree of chemical

order.

An Fe-wedge sample (0-10 ML) grown on Ag(001) and covered by a Co oxide was

successfully synthesized and characterized. The in situ MOKE investigation on the

uncovered sample revealed that the spin reorientation transition takes place between 5

to 6 MLs at RT and there is one dead layer of Fe. After CoO deposition, the number

of dead layers increases as a consequence of Fe oxidation at the interface with the

CoO. X-ray absorption spectroscopy reveals the characteristics of such oxide, excluding

the presence of antiferromagnetic FeO. At RT, this thin FeOx layer is probably not

contributing to remanent magnetization but can easily respond to an applied magnetic

field. After magnetic field cooling, a huge increase in the coercivity and exchange bias

are observed at low temperatures, as a consequence of the CoO/FeOx/Fe exchange

coupling.

Prospects

• The best out-of-plane L10 MnPt film was obtained for deposition at 570 K. Or-

dered domains with in-plane c-axis orientations (twinned) also coexists, even if the

out-of-plane domains are majority and wider. Lifting the Pt-hex reconstruction

previous to Mn deposition, for instance by exposure to hydrogen, and deposi-
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tion at even higher (∼650 K) temperature would probably further improve the

out-of-plane order.

• Synthesizing L10 ordered alloys of MnPt and FePt on Ag(001) substrate has

been seldom exploited. Our very first experiment on the MnPt on this substrate

indicates that this is a promising way to follow.

• The CoO/Fe and CoO/FePt bilayer systems were not deeply investigated during

this thesis work and deserve more attention. In particular, the CoO epitaxy

depends a lot on the mismatch and on the reactive growth conditions and this way

should be explored to produce oxides with different out-of-plane orientations. For

the CoO/Ag(001), our XAS investigation points to a distorted rocksalt structure

and to an anisotropy in the electronic structure. Nevertheless, when CoO is

deposited on Pt(001) our preliminary results indicate a (111) texture with a in-

plane and out-of-plane distorted unit cell. This will be explored in the future.

• All models developed up to now to describe exchange-bias are based on the im-

plicit assumption that the AFM magnetic moment arrangement at the interface

is not significantly altered by AFM/FM interface exchange coupling. This means

that all uncompensated AFM spins should be pinned by the AFM layer and

participating in the exchange bias field. However, when the AFM/FM interface

exchange is strong enough, some of the interface AFM moments rotate together

with the FM ones, under the external applied field. This effect was observed by

XMCD in one of our samples. It seems of crucial importance for the exchange

bias coupling to investigate the spin configuration at the interface with element

selectivity and atomic layer depth sensitivity.
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Résumé de la thèse en français

Ce travail de thèse se situe dans un contexte d’étude de l’effet du couplage d’échange

dans les couches minces magnétiques avec anisotropie hors du plan. Il déploie un

ensemble de techniques expérimentales qui utilisent le rayonnement synchrotron, pour

étudier l’interaction, au niveau de l’interface, entre un matériau antiferromagnétique

(AFM) et un ferromagnétique (FM), et la relation entre le couplage d’échange et la

structure des couches.

Le premier chapitre introduit les motivations fondamentales et technologiques des

études sur les systèmes magnétiques à couplage d’échange. Sont mis en avant le rôle

essentiel de la qualité des couches et des interfaces et la nécessité d’aller vers des dimen-

sions de plus en plus réduites. Chacun des systèmes étudiés, avec ses problématiques

et intérêts spécifiques, est ensuite décrit. Le chapitre se termine par une présentation

de l’approche fondamentale de la physique de surface.

Le deuxième chapitre présente les différentes techniques expérimentales mises en

oeuvre lors de la synthèse et la caractérisation des surfaces et couches minces. Pour

chacune de ces techniques sont décrits les principes de base et méthodologies d’analyse

qui serviront de support à la présentation des résultats. Un développement tout parti-

culier est donné à la diffraction de surface, technique centrale dans ce travail de thèse,

et au paramètre d’ordre S qui défini l’ordre chimique dans les alliages bimétalliques.

Le troisième chapitre est consacré à l’étude structurale des premières étapes de la

croissance des différents métaux et alliages utilisés dans les couches et bicouches réalisées

sur deux substrats différents, Pt(001) et Ag(001). Le faible désaccord paramétrique

entre la maille fcc du platine et la base de maille quadratique de la phase L10 de

l’alliage bimétallique (MnPt, FePt) favorise la croissance de ces alliages selon leur axe c

et permet d’obtenir ainsi une orientation des moments magnétiques perpendiculaires à

la surface. Cependant la surface propre Pt(001) présente une reconstruction hexagonale

du dernier plan de surface susceptible d’affecter les premières étapes de la croissance

des couches d’alliage. Afin d’optimiser le démarrage de cette croissance, il a été étudié

le processus de déconstruction de la surface pour les différents éléments chimiques en

jeu. La température du substrat s’avère un paramètre crucial pour l’obtention d’un

bon ordre chimique. La croissance sur le substrat Ag(001) qui ne présente pas de

reconstruction s’avère plus simple, mis à part un effet surfactant observé pour tous les

systèmes étudiés. Cet effet peut favoriser une bonne croissance couche-par-couche mais

aussi modifier les propriétés magnétiques du système.

Le quatrième chapitre décrit une méthode de détermination du paramètre d’ordre

chimique de la phase L10 à partir des données de diffraction de surface. Dans le cas de

143



144 7. Conclusions and prospects

couches “épaisses” composées de plus d’une dizaine de monocouches, la stratégie de la

mesure consiste à utiliser des“l -scans”pour décrire les tiges de troncature (CTR) plutôt

que l’approche classique d’une succession de“rocking-scans” aux différentes valeurs de l.

Cette méthodologie réduit le temps d’acquisition de façon très conséquente et s’avère la

seule façon de mesurer les tiges avec une bonne résolution dans des temps raisonnables.

L’information sur la contribution de la diffusion diffuse liée entre autre aux processus

thermiques et au désordre chimique sont pris en compte par des balayages décalés par

rapport aux crêtes des tiges et quelques “rocking-scans” bien choisis. La croissance des

couches MnPt en vue de l’obtention de l’ordre chimique avec l’axe perpendiculaire à

la surface est étudiée dans le cas des dépôts à température ambiante et à 500 K suivi

d’un recuit. Les paramètres d’ordre pour des domaines dans le plan et hors du plan

sont obtenus de façon quantitative.

Le cinquième chapitre présente l’étude détaillée de bicouches MnPt/FePt couplées

par échange. La croissance a été optimisé afin d’obtenir l’ordre chimique L10 avec l’axe

perpendiculaire à la surface. Les conditions optimales, à la fois pour la couche MnPt et

pour celle de FePt, sont obtenues pour un dépôt alterné associé une température aux

alentours de 570 K. Dans ces condition l’ordre chimique dans les couches bimétalliques

approche l’unité. Les études magnétiques réalisées sur ces systèmes mettent en évidence

l’existence d’un couplage d’échange à l’interface, qui se traduit par un décalage du

cycle d’hystérésis et par une forte augmentation du champ coercitif. Les mesures de

dichröısme magnétique montrent aussi clairement le couplage entre les spins du Mn et

du Fe.

Le sixième chapitre décrit l’étude d’un autre système à couplage d’échange, la bi-

couche CoO/Fe déposée sur Ag(001). Les propriétés magnétiques sont étudiées d’abord

sur la couche de Fe/Ag(001) et ensuite après dépôt de l’oxyde de cobalt. Une transition

de spin en fonction de l’épaisseur de la couche est observée autour de 5 à 6 MLs. Après

dépôt du CoO, une couche d’oxyde de fer est formée, ce qui entraine une diminution

de l’aimantation du système. L’augmentation du champ coercitif et l’apparition d’un

décalage d’échange montrent que le système est bien couplé par échange à l’interface.

Le dernier chapitre rappelle les résultats les plus importants de ce travail de thèse

et donne les principales perspectives pour les travaux à venir. A travers le contrôle

d’un certain nombre de paramètres, comme la structure de la surface, la propreté, le

taux et la température de déposition, nous avons acquis une connaissance approfondie

du processus de croissance dans les systèmes MnPt et FePt sur Pt(001) et Pt, MnPt

et Fe sur Ag(001). Ces systèmes ont été étudiés in situ (et ex situ) par la diffraction

de surfaces et ex situ par MOKE, réflectivité et spectroscopie d’absorption de rayons

X. La relation entre le couplage d’échange et la structure des couches est discutée pour

les interfaces MnPt/FePt et CoO/Fe.
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low-dimensional systems: the AuCu- and AuCu3-type ferromagnets,” Journal of

Magnetism and Magnetic Materials, 242-245, 27 – 32, 2002.

[122] Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Review of Sci-

entific Instruments, 71 (3), 1243–1255, 2000.
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Résumé

Nous nous proposons d’étudier l’interaction au niveau de l’interface entre un matériau

antiferromagnétique et un ferromagnétique par un ensemble de techniques expérimen-

tales qui utilisent le rayonnement synchrotron. Nous nous sommes particulièrement

intéressés par l’effet de couplage d’échange dans les couches minces magnétiques avec

anisotropie hors du plan. Les systèmes que nous avons étudiés sont les couches ordon-

nées chimiquement, FePt et MnPt sur Pt(001), et Fe/Ag(001), éventuellement couplée

à CoO. Notre approche consiste à trouver des surfaces adaptées et à étudier, pour

chaque bicouche, la croissance individuelle de chaque élément, alliage ou oxyde. A

travers le contrôle d’un certain nombre des paramètres, comme la structure de la sur-

face, la propreté, le taux et la température de déposition, nous avons obtenus une bonne

connaissance du processus de croissance. Les systèmes obtenus ont été étudiés in situ

par la diffraction de surfaces et ex situ par l’effet Kerr magnéto-optique, le dichröısme

circulaire magnétique de rayons X et la spectroscopie d’absorption de rayons X. La re-

lation entre le couplage d’échange, qui se manifeste par l’augmentation de la coercivité

et par un champ de décalage, et la structure des couches est discutée pour les interfaces

MnPt/FePt and CoO/Fe.

Mots clef: décalage d’échange, alliage ordonnée, MnPt, FePt, Fe/Ag(001), diffraction

de rayon X de surface, absorption de rayon X, MOKE, synchrotron.

Abstract

Our aim is to study the interaction of antiferromagnetic and ferromagnetic materials

with well-defined interface by combining structural, electronic and magnetic techniques

using synchrotron light. Our interest is guided by the exchange bias effect in thin fer-

romagnetic films with perpendicular magnetic anisotropy. The main systems studied

in this work were ultra-thin layers of chemically-ordered alloys of FePt and MnPt on

Pt(001) and of Fe/Ag(001), eventually coupled to CoO. Our strategy was to find an

appropriate surface and, for each coupled bilayer, study the individual growth of each

element, alloy or oxide. By controlling a variety of parameters, such as surface struc-

ture, cleanliness, deposition rate and temperature, we have got a good understanding

of the growth process. The coupled systems obtained were studied in situ by grazing

incidence X-ray diffraction and ex situ by magneto-optic Kerr effect, X-ray magnetic

circular dichroism and X-ray absorption spectroscopy. The relation between the ex-

change coupling, which manifests itself by an increase in coercivity and a bias field,

and the structural characteristics was discussed for the MnPt/FePt and CoO/Fe inter-

faces.

Keywords: exchange bias, ordered alloys, MnPt, FePt, Fe/Ag(001), surface X-ray

diffraction, X-ray absorption, MOKE, synchrotron.
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