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Chapter 1

Introduction

Physiological rhythms are esential in living beings, such as the circadian rhythm (Moore-Ede et al,

1982), which is endogeneous and has been found in various biological system, the heart as single

and double cirulatory system in various species (Phibbs, 2007), the neural α−rhythm during relaxed

wakefulness (Niedermeyer and Lopes da Silva, 2004) in mammals or the sleep cycles (Siegel, 2002)

found in many species, from many reptiles and fish to all mammals. Moreover, most neurological

disorders are accompanied by rhythmic activity, as observed in epilepsy (Fisher et al, 2005) or ob-

seved as motor tremors in Parkinson disease (Deuschl et al, 2001) and multiple sclerosis (Koch et al,

2007). All these rhythms are endogeneous, i.e. self-sustained, and not directly induced my external

stimuli. Healthy subjects also may exhibit such endogeneous neural oscillatory activity, e.g. during

mental tasks (Harmony et al, 1996; Michels et al, 2010).

In addition to these input-independent oscillations, stimulus-triggered neural oscillations are al-

ways present due to the omnipresence of sensory stimuli in every days life. For instance, visual

flickers may induce visual hallucinations (Billock and Tsou, 2007) of spatial rotations of ∼ 1.5Hz

and the smell of an odour induces neural oscillation in the mammalian olfactory bulb (Cenier et al,

2009) in the β−(12−20Hz) and γ−band (20−60Hz).

A further important effect of external stimuli is the modification of endogeneous neural oscillations

by external stimuli. In fact, this modification is the most prominent effect since the brain is known

to exhibit always-present on-going activity (Sadaghiani et al, 2010; Deco et al, 2011). Since the

neural rhythms in neurological disorders are prominent symptoms, one aim in clinical medicine is

the removal of such rhythms by stimulation. Recent corresponding experimental techniques have

shown successfully the clinical application of electromagnetic brain stimulation, such as the Deep

Brain Stimulation (Kringelbach et al, 2007) for the treatment of Parkinson disease and Transcranial

Magnetic Stimulation in multiple sclerosis (Cruz-Martinez et al, 2000).

In addition to the external stimulations, drugs also affect neural oscillations and are applied, e.g. in

the medical treatment of the multiple sclerosis (Coles et al, 2008) and in general anaesthesia during
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8 CHAPTER 1. INTRODUCTION

surgery (Orser, 2007). In this context, the drugs change the properties of the neurons, their con-

nections to each other and hence their interplay and modify the oscillatory activity in the neuron

population. Consequently, the understanding of the drug effects on the neuron elements and how the

changed dynamics in single neurons affect the global activity of the neural population is essential

for the understanding of the neural rhythms observed and the development of improved drugs.

To give an example, the combination of a drug treatment and the application of external stimuli

can be found in everydays hospital practice during operation. General anaesthesia is an indispensable

tool during operation and has been optimized during over a century of medical research. Although

todays general anaesthesia works well in most cases, it depends strongly on the healthy situation

of the patient, the patients medical history and physical condition such as the body-wheight index.

In spite of the knowledge of suitable medical procedures for each of such parameter, there are still

unknown components such as the body reaction of the patient on certain anaesthetics. Moreover,

in about one of thousand cases patients become conscious during operation and even sometimes are

able to move, cf. the nice article of Orser (2007). These cases are very dangerous and result from

badly adapted anaesthesia procedures for the individual patient. They also originate from the miss-

ing understanding of the underlying neural processes during anaesthesia. For instance, during the

operation the medical team typically monitors the heart rhythms and/or the EEG of the patient and

adapt the anaesthetic drug concentration constantly to control the depth of anaesthesia. Although

this procedure is well-established, it is mainly based on the experience of the anaesthesist, while

the effect of the drug action on the neural system and so on the EEG or the heart rate is still poorly

understood. The improved knowledge on these actions would yield the development of more op-

timized medical protocols involving novel drugs and novel procedures of their administrations. To

achieve this goal, it is necessary to perform model studies linking the miscroscopic action of drugs

on neural receptors to the macroscopic EEG on the scalp. The present work illustrates this link by a

set of detailed projects in section 3.3.

Most of the neural oscillations observed experimentally result from the coherent activity of many

neurons, i.e. of a neural population. Consequently, to understand the origin of neural oscillations of

neural population activity, their response to external stimulations and maybe their sensitivity to drug

medication, it is necessary to study in detail

• single neuron activity to understandbetter the action of drugs to neuron membranes and recep-

tors,

• neural populations to understand how the single neuron activity affects the population activity

and how the populations generate the oscillations and

• the measured neural activity to reveal dynamical features and link these to the dynamics of

neural populations.

Hence, the understanding of observed neural oscillations stipulates theoretical models that traverse

the multiple scales in neural structures. This is the major aim of the present work.
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The subsequent chapter illustrates previous basic contributions to the analytical and numerical

study of neural populations on a mesoscopic spatial scale. An additional study of experimental

data on the macroscopic scale complements the theoretical work. These contributions investigate

the neural dynamics on a mesoscopic and a macroscopic scale, while no link is moade between the

two description levels. Chapter 3 aim to establish this link. At first, it outlines future work on two

oscillatory neural systems driven by external stimuli to reveal a general mechanism how external

stimuli may modify or generate oscillations and neural populations. Then the subsequent section

explains in detail the investigation on the effect of drugs on EEG-oscillations in general anaesthesia.

This combination of models for three different neural systems aims to reveal common principles

for oscillation generation in the systems and hopefully gives a clear picture on the origin of neural

oscillations.
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Chapter 2

Contributions

The chapter reports on the previous contributions on the spatio-temporal dynamics in neural fields

and the multivariate data analysis of brain signals. The first section introduces the notion of a neural

field and its mathematical complexity followed by section 2.2 discussing the linear and nonlinear

response to external stimuli. The latter section provides important mathematical tools, which are

the basis for the future research described in chapter 3. Finally, the last section presents previously

developed data analysis methods and their application to experimental brain signals providing the

essential basis for future work on real data.

2.1 Neural Fields and their properties

The studies of neural population activity in theory and experiment have been triggered mainly by

the work of Richard Caton (1875) and Hans Berger (1927), who detected as the first electric activity

on the animal and human scalp and are supposed to be the founders of EEG (Haas, 2003). This

macroscopic activity is measured by electrodes with a size of few centimeters and thus results from

the activity of a large number of neurons, i.e. a population of neurons. This population activity can

also be measured by other techniques, such as non-invasive magnetoencephalography (Cohen, 1972)

or the invasive dye-imaging techniques (Baker et al, 2005). In cognitive experiments, detailed inves-

tigations of the measured population activity reveal that the neural activity is rather robust towards

repetitions of experimental trials in certain time intervals and hence is supposed to reflect specific

stages of neural information processing. In other words, research of the last decades indicate that

cognitive tasks are processed by the brain on the level of neural populations and not of single neu-

rons (Nunez, 2000; Nunez and Srinivasan, 2006).

The mamallian brain exhibits different sensory brain areas which are responsible for specific

functions. For instance, visual stimuli are processed by the visual cortices, which decompose the
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incoming signal into different features, such as shape, color or orientation. The sensory areas rep-

resent large neural populations and exhibit physiological sub-structures specific for each area and

task. Consequently, the study of neural populations may yield deeper insights into the neural infor-

mation processing. To investigate the neural information flow theoretically, it is essential to consider

a population model taking into account both the physiological properties of single neurons and their

interactions. Since the physiological topology of real neuronal networks is rather unknown, difficult

to extract and very complex, it is reasonable to focus on an abstract model. The current work studies

a neural field model that considers neural populations on a mesoscopic spatial level on a typical

spatial scale of hundreds of micrometers. Such a mesoscopic model permits to bridge the various

spatial scales in the brain, from the microscopic scale of single neurons at a of scale 1̃0µm to the

macrocopic scale of centimeters, i.e. the size of scalp electrodes.

A good mesoscopic model has to simplify microscopic properties of neurons, but takes into account

their major features (Hutt, 2009). Moreover, it has to consider physiological features to represent a

good model for macroscopic activity. The choice of these features depends on the experiments to be

modelled. For instance, macroscopic EEG is considered to be indepedent of the time between spikes

of single neurons, but rather depends on the mean population firing rate in a short interval (Nunez,

2000; Nunez and Srinivasan, 2006; Hutt and Atay, 2005; Wright and Kydd, 1992). Hence, it is

sufficient to consider mean population firing rates and neglect inter-spike intervals of single neu-

rons. Moreover, neural fields do not consider explicitly the spatially extended dendritic branches,

the spatial distribution of single synapses on the branch and their dynamics in space and time, but

just assumes an effective temporal response function. This simplification is a strong approximation

but which can be relaxed, see e.g. the work of Coombes et al (2003). In addition, some versions of

neural fields, e.g. the one considered below, consider the spatial topography of axonal connections

and allow the study of quite general spatial interactions.

The subsequent section derives briefly the evolution equation of an integral neural field model,

followed by the motivation to include axonal transmission delays. Then section 2.1.3 shows the

relation of the integral model to partial differential equation models. Finally the last section discusses

the numerical simulation of the integral model in one and two spatial dimensions.

2.1.1 Derivation of the basic evolution equation

The neural field model considers the neural population as a recurrent network of densely packed

neurons and assumes small spatial patches of a diameter of few millimeters, see the original work

of (Wilson and Cowan, 1972). These patches are motivated by experimental findings of macroscopic

functional units in primary sensory areas, such as visual cortex or auditory cortex, that have a colum-

nar structure. Such patches are called macro-columns or neuronal pools and represent ensembles of

interacting neurons, which evolve coherently over time.

More detailed, the model may be seen as a recurrent network with wheighted axonal connections
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from all nodes to all other nodes and it neglects the spatial extention of dendrites. The chemical

synapses on dendrites generate evoked postsynaptic potentials (PSP) according to V (t) = h(t)H(t)

with

h1(t) =
1

τs

e−t/τs H(t) or h2(t) =
1

τ2 − τ1

(

e−t/τ1 − e−t/τ2

)

H(t) (2.1)

and the Heaviside function H(t). According to this approach, the response functions of single

synapses on an incoming spike represents a good approximation for the synaptic response in the

neural populations Freeman (1975). The spatial distribution of synapses, their corresponding propa-

gation delays on the dendritic tree and their different time scales are lumped in this effective formu-

lation.

The effective membrane potential at the soma in single neurons is a sum of PSPs propagated

along the dendritic tree and finds its equivalent in neural populations. It is called V̄ in the following

and represents the average effective membrane potential in the population, while the average is

taken over the small spatial patch and a short time window of few milliseconds. Recall that the

neuron generates an action potential (AP), i.e. a propagating spike, when its effective membrane

potential exceeds the spike threshold of the neuron. In an ensemble of neurons, there is a distribution

of firing thresholds and the average firing activity is computed as the weighted integral over this

firing threshold distribution Hutt and Atay (2005); Amit (1989). Since the typical distribution of

firing thresholds is unimodal, i.e. has a single maximum, the average firing activity has a sigmoidal

shape Hutt and Atay (2005); Amit (1989)

f (x, t) = SmS (V̄ (x, t))

with the sigmoid function S and the maximum population firing rate Sm. Since S transfers membrane

potentials to firing rates, S is also called the transfer function and may be modeled by the logistic

function S(V̄ ) = 1/(1 + exp(−d(V̄ − V̄th)) with the mean firing threshold V̄th and the constant d

which is related to the variance of the underlying threshold distribution.

To close the circle of model elements, let us consider the axonal connections between neurons

which link the neuron somata to dendritic structures of terminal neurons at distant spatial locations.

By virtue of the short- and long-ranged axonal connections in neural systems, the corresponding

spatial interactions are nonlocal in space. The neural field model under study considers the probabil-

ity density of axonal connections between spatial patches, i.e. between two spatial locations x and

y. Hence, the population firing rate activity P̄ that arrives at synapses before they are converted to

PSPs read

P̄(x, t) = α

∫

Ω
K(x,y) f [V̄ (y, t)] dy (2.2)

where Ω denotes the spatial domain of the field, α is the global synaptic gain and the kernel K(x,y)

denotes the probability density of axonal connections from neurons at spatial location y to synapses
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at x. Moreover the model (2.2) assume a single neuron type, e.g. pyramidal cell or interneuron, and

considers a constant transfer function f over the space.

Moreover, in some brain areas (Hellwig, 2000) it is reasonable to assume that the probability

density of axonal connections is identical at each spatial location and, hence, the connection proba-

bility density just depends on the distance between two spatial locations. Considering this homogen-

ity assumption and all elements described above, the evolution of the average effective membrane

potential in the population obeys

L̂V̄ (x, t) = α

∫

Ω
K(d(x,y))S [V̄ (y, t)] dy+ I(x, t) (2.3)

with the distance function d(x,y) = |x− y| and the temporal differential operator L̂ = L̂(∂/∂ t). For

instance, we find

L̂ = τs∂/∂ t +1 and L̂ = τ1τ2∂ 2/∂ t2 +(τ1 + τ2)∂/∂ t +1

for the synaptic response functions h1 and h2 in (2.1), respectively. In addition Eq. (2.4) considers

an external input I(x, t) which may represent an external stimulation or may reflects neural activity

originating from other neural populations.

2.1.2 Axonal transmission delay

The model (2.3) considers axonal spatial connections, which are instantaneous in time. However, it

takes the time d/c for a spike to travel from one location to another at distance d due to the finite

transmission speed c along axonal fibres. Consequently, the transmission along axons deserves some

more attention.

Axons are fibres and may be observed in bundles, i.e. a pack of parallel axonal fibers, or as tree-like

axonal branches showing a rather random structure. Moreover, axons may be wrapped by neuroglia

cells which maintain the neurons in a mechanical stable condition, see Fig. 2.1. Some neuroglia

cells form the so-called myelin sheath around the fibres. These cells are called oligodendrocytes

in the central nervous system and Schwann cells in the peripheral nervous system. The myelin

sheath is built by the neuroglia cells and covers the axons while leaving gaps, the so-called nodes of

Ranvier. It represents several layers of lipids and proteins and affects the signal propagation along

axons: the thicker the myelin sheath the faster the spike propagation in the axon. Interestingly,

axonal connections in a single brain area, i.e. short-range intra-area connections, are not myelinated

whereas most long axonal connections between brain areas are myelinated. This difference in the

myelination level results to different axonal conduction speeds in intra- and inter-area connections.

Moreover it is important to note that the resulting interaction delay between neurons may be similar

in both intra-area and inter-area connections due to the different spatial length of the axons though

the axonal speeds are different. For instance, intra-area connections exhibit conduction speeds of

about 0.1− 1m/s while inter-area connections show conduction speeds of about 1− 10m/s and
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Figure 2.1: Myelination of axonal fibres. a) The myelin sheath wraps around the axon in regular

sections, but leaves small gaps unwrapped. These gaps are called nodes of Ranvier. b) The myelin

sheath is built by oligodendrocytes, which are neuroglia cells and stabilize the axonal fibre.

rarely up to 100m/s. Assuming the reasonable axonal lengths of 500µm and 5mm in intra-area

and inter-area connections, respectively, the corresponding interaction delay is 5ms in both axonal

connection types (Braitenberg and Schütz, 1998; Koch, 1999). This delay is similar to the time

scales of chemical synapses indicating a considerable effect of axonal delays on the dynamics of

neural networks.

Moreover, there are various types of delayed axonal connections in the brain. Figure 2.2 illus-

trates two major cases. The intra-area connections represent a spatial distribution of axonal fibres

whose delays are proportional to the distance |x−y| between two spatial locations x and y in the spa-

tial area under study. Such transmission delays are natural in spatial systems, and they are also called

propagation delays since the interaction between two elements takes a certain time proportional to

their distance. In contrast, the feedback connections exhibit a spatial distribution of connections be-

tween two spatial locations, while the corresponding delay is constant. For instance, delayed feed-

back loops from the cortex via the thalamus may be modeled by such connections while neglecting

the thalamus dynamics.

Summarizing, the transmission delays depend on the distance |x− y| between spatial locations x

and y and is given by |x− y|/c for transmission speeds c while the feedback delay is constant, say

τ . In the presence of a single axonal transmission speed and a single feedback delay, the evolution

equation is extended to (Atay and Hutt, 2005; Hutt et al, 2003a)

L̂V̄ (x, t) = α

∫

Ω
K(d(x,y))S

[

V̄

(

y, t − d(x,y)

c

)]

dy

β

∫

Ω
F(d(x,y))S [V̄ (y, t − τ)] dy+ I(x, t) . (2.4)

Here, F(x) is the probability density of feedback connections and β is the global synaptic gain of

such connections.
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Figure 2.2: Illustration of two connection topologies under study.

Most studies of equations of the type (2.4) consider a one-dimensional spatial domain implying

periodic boundary conditions, i.e. the domain is a circle. Such boundary conditions stipulate the

periodicity of spatial distances and, hence, the kernel function K(x−y). More specifically let L = |Ω|
be the length of the circle, then the distance d(x,y) between two points x, y on the circle is not unique

and may be larger or smaller than L/2. Since periodic boundary conditions are reasonable in abstract

models only, such as in models of visual orientation tuning (Somers et al, 1995; Wennekers, 2001), it

is necessary to define the distance function d(x,y) additionally. It is reasonable to assume the shortest

distance between two points and hence the distance function reads d(x,y) = L/2− |L/2− |x− y||
according to rules in circular statistics (Mardia and Jupp, 1999).

Moreover, there is experimental evidence, that the transmission speed and the feedback delays

obeys a distribution (Girard et al, 2001; Bringuier et al, 1999). Then the evolution equation of the

neural population is of the type

L̂V̄ (x, t) = α

∫ ∞

0
g(c)

∫

Ω
K(x− y)S

[

V̄

(

y, t − |x− y|
c

)]

dy dc

+β

∫ ∞

0
f (τ)

∫

Ω
F(x− y)S [V̄ (y, t − τ)] dy dτ + I(x, t) . (2.5)

with the distribution functions g(c) and f (τ) of the axonal transmission speed and the feedback

delays, respectively (Hutt and Atay, 2006; Atay and Hutt, 2006).

2.1.3 Relation to partial differential equations

The spatial interactions in neural populations based on the axonal branching system is non-local in

nature, i.e. the probability of connections may be larger at distant locations than at closer locations.

Such so-called patchy connections are found e.g. in certain layers in the human Bressloff (2001);

Swindale (1996) and monkey visual cortex (Horton and Hubel, 1981; Lund et al, 2003) and monkey
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prefrontal cortex (Levitt et al, 1993; Gutkin et al, 2000). Moreover, other cortical layers may exhibit

more local connections, where the largest probability of connections is at close locations (Hellwig,

2000). The integral differential equation (IDE), i. e. Eq. (2.3) or (2.5), considers both local and

global topographies natuarally by the corresponding choice of the kernels. In recent years, equivalent

formulations in terms of partial differential equations (PDE) have attracted much attention (Coombes

et al, 2007; Liley et al, 1999; Coombes, 2010; Laing and Troy, 2003; Owen et al, 2007). To illustrate

the bridge between the two model types, let us assume a one-dimensional infinite spatial domain and

re-write the integral term as (Hutt, 2007; Hutt and Atay, 2005)

∫ ∞

−∞
K(x− y)S[V (y)] dy =

∞

∑
n=1

(−1)n

n!
Kn

∂ n

∂xn
S[V (x)] (2.6)

with the kernel moments

Kn =
∫ ∞

−∞
xnK(x)dx .

For instance, let us assume a symmetric exponential decreasing probability density function of ax-

onal connections K(x) = exp(−|x|/σ), as has been found experimentally (Hellwig, 2000). Here σ

represents the spatial range. Then the density function enjoys the moments Kn = n!σn,n even, and

Kn = 0,n odd. Assuming a linear transfer function for simplicity S[V (x)] = V (x) in addition, the

integral in Eq. (2.6) reads (Hutt, 2007; Hutt and Atay, 2005)

∫ ∞

−∞
K(x− y)V (y) dy =

∞

∑
n=1

σ2n ∂ 2n

∂x2n
V (x)

≈ V (x)+σ2 ∂ 2V (x)

∂x2
.

In the last step, the infinite series has been truncated after the second term, which is a valid approxi-

mation for small interaction ranges σ , see (Hutt, 2007) for a more general discussion. We observe

that the integral includes a diffusion term for a short spatial interactions.

More generally, PDEs represent inverted IDEs in the sense that the differential operator in the

PDE is the inverse of the integral operator in the IDE (Coombes et al, 2007), i.e.

U(x) =
∫ ∞

−∞
K(x− y)S[V (y)] dy = ÎS[V (x)]

↔ Î−1U(x) = D̂U(x) = S[V (x)]

with the partial derivatve operator D̂ = D̂( ∂
∂x

). Although this is a strong relation between the IDE

and the PDE, it is important to point out that the inverse Î−1 = D̂ does not exist for all spatial kernels

K(x,y). Since the spatial kernel is easy to choose for all axonal topologies, the IDE formulation

appears a natural model choice and exists for all spatial kernels. The sections below show several

properties of the IDEs and illustrate analytical tools to extract dynamical features of this integral

model.



18 CHAPTER 2. CONTRIBUTIONS

2.1.4 Numerical simulation of IDEs

After having introduced the evolution equation and its relation to more general neural field models, it

is necessary to discuss the numerical simulation of the IDE (2.4). Some numerical studies of the neu-

ral field PDE-model have applied the standard scheme for numerical simulations of PDEs (Coombes

et al, 2007), while the numerical integration scheme for the IDE is much more complex, especially

in higher dimensions. This complexity results mainly from the numerical effort to store the mem-

ory of delayed activity at each spatial location. This storage is memory intensive, especially if a

good spatial resolution is requested. Moreover, numerical methods for PDEs assume a spatial grid

and consider few neighbours at each spatial element, while the IDE-methods have to take into ac-

count all elements on the grid. Hence the numerical computation of spatial interactions is more

time-consuming in IDEs than in PDEs.

To attack this problem, few numerical schemes exist for the transmission delay case. Since

the numerical computation of the space integral deserves most attention, the subsequent paragraphs

discuss computation schemes of the integral. All described methods assume periodic boundary con-

ditions and consider an explicit numerical scheme for the time integration of the evolution equation,

such as the Euler-forward scheme or the Runge-Kutta scheme of fourth order.

At first, let us discuss the integration schemes in one spatial dimension on a regular spatial grid with

number of intervals N. All methods store the delayed field activity up to a maximum delay of L/c.

1. The simplest approaches is the rectangular summing rule (Atay and Hutt, 2005). The error

of this sum is proportional to the second derivative of the integrand and (L/N)2. Hence the

integral is well approximated for a large number of intervals N, smooth activity V (x, t) and

smooth kernels K(x). This method fails in the presence of highly irregular activity, such as

noise.

2. A more advanced algorithm divides the integration region into subintervals, and on each iter-

ation the subinterval with the largest estimated error is bisected. Each interval is integrated

according to the 61-point GaussKronrod rules (Hutt and Atay, 2005) considering the suitable

stored delay terms. It improves the computation of irregular activity compared to the rectan-

gular rule.

3. Another method takes into account the boundary conditions specifically. To this end, the

discussion of periodic boundary conditions in sub-section 2.1.2 allows to write the integral in
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Eq. (2.4) as (Hutt et al, 2003a)

∫

Ω
K(d(x,y))S

[

V (y, t − d(x,y)

c
)

]

dy

=
∫ L

0
(A(x− y, t − y/c)+A(x+ y, t − y/c))K(u) du

=
∫ L

0
G(x,y, t)K(y) dy (2.7)

(2.8)

with the functional A(x, t) = S [V (x, t)]. Introducing a regular spatial discretization with yn =

n∆y, n = 1, . . . ,N and large N, G(x,y, t) approximates to

G(x,y, t) ≈ G(x,yn, t)+
G(x,yn+1, t)−G(x,yn, t)

∆y
(y− yn) , yn ≤ y ≤ yn+1 .

Inserting this result into (2.7) yields a good approximation scheme for smooth field functionals

A(x, t).

4. More advanced integration rules take into account the kernel properties. The VEGAS algo-

rithm is a Monte-Carlo integration algorithm in combination with importance sampling (Lep-

age, 1978; Gough, 2003). The algorithm samples points from a probability function to be

integrated, i.e. the integrand in our problem. Hence the sample points are concentrated in the

regions that make the largest contribution to the integral. In the simulations, a certain number

of sampling calls are applied for a single Monte-Carlo integration, which is repeated several

times. Essentially the average of the gained results is considered Atay and Hutt (2006). This

method is much more accurate than the latter ones and less sensitive to irregular activity.

To extend the study of neural fields to two spatial dimensions, one may implement some of

the previous methods in two spatial dimensions, see e.g. the work of Faye and Faugeras (2010).

However, such methods are not numerically efficient. The additional difficulty in two dimensions

compared to one spatial dimension results from the larger number of calculations N4 in methods 1, 2

and 3 compared to the number of computations N2 in 1D and the much larger number of necessary

samples in method 4. To cope with this problem, one may take a close look onto Eq. (2.4) and

recognizes that the integral is a convolution for an infinite transmission speed c. Since convolutions

may be treated efficiently in numerics, e.g. by the application of a Fast Fourier Transform, it is

desirable to re-write the integral in a convolution form. In fact, this can be done according to (Hutt

and Rougier, 2010)

∫

Ω
K(|x−y|)S

[

V

(

y, t − |x−y|
c

)]

d2y

=
∫

Ω

∫ τmax

0
L(|x−y|, t − τ)S [V (y,τ)] dτ d2y , (2.9)
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where Ω denotes the two-dimensional domain, τmax represents the maximum delay in the field

and the new space-time kernel function L is defined as L(x, t) = K(x)δ (|x|/c− τ) with the delta-

distribution δ (·). The double integral in Eq. (2.9) is a convolution in space and an integral in time

both connected by the space-time kernel function L. Figure 2.3 illustrates that L represents a su-

perposition of delay rings and each ring has the radius cτ . The re-formulation of the integral as a

Figure 2.3: Illustration of the space-time kernel L(x, t) introduced in Eq. (2.9). For a certain kernel

function K (left panel), L exhibit rings of radius vτ if v is the transmission speed. The kernel function

L is a linear superposition of such rings. Figure is provided by N. Rougier.

convolution according to (2.9) allows to implement numerically a Fast Fourier Transform and speeds

up the computation dramatically. An equivalent method has been mentioned briefly in the work of

Coombes et al (2003) and Venkov (2009) for one-dimensional neural fields. Figure 2.4 shows the

response of a two-dimensional neural field involving transmission delays to a local stimulus.

Figure 2.4: Breathers in two dimensions evoked by an anisotropic local input in the presence of a

finite transmission speed (Hutt and Rougier, 2010).
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Synchronous and asynchronous computation

The numerical methods above are explicit in time and are synchronous in space in the sense that the

update of each spatial element xi at a certain time point tk is based on the other elements in the field

x j at the same time point. Moreover, most neural field studies aim to compute numerical solutions

to compare their results to analytical solutions or choose an optimal numerical algorithm to ensure

the accordance of numerical results to solutions of the equation under study.

In contrast to such synchronous methods, one may update a single element xi chosen randomly

at time tk considering the other elements x j and then proceed to the next update. This procedure

is well-known in the theory of cellular automata (Fates, 2008), in computational biology (Stark

and Hughes, 2000) and ecology (Dieckmann et al, 2000). Moreover, the asynchronous procedure

knows two variants: (i) either all elements are chosen randomly from the spatial domain without

choosing an element twice or (ii) the choice of elements is unrestricted (Rougier and Hutt, 2010;

Taouali et al, 2009). The first method variant (i) is called asynchronous uniform and the latter asyn-

chronous non-uniform. In two studies (Rougier and Hutt, 2010; Taouali et al, 2009), we find that the

asynchronous computation scheme introduces random fluctuations to the system and, hence, yields

spatio-temporal phenomena different to synchronous effects. For instance, in synchronous compu-

tation identical stimulus bumps at different spatial locations induce two activity bumps in neural

fields, while the asynchronous method may result to an activity bump at a single location (Rougier

and Hutt, 2010) subjected to the time discretization step. Moreover the stability condition of fixed

points is identical to the condition in synchronous computation and reducing the time discretiza-

tion step let the asynchronous computation approach the synchronous computation. Consequently,

asynchronous computation represents a random variant of numerical algorithms.

2.2 Linear response theory in neural fields

After introducing neural fields in the previous section, this section presents analytical and numerical

results on neural fields involving transmission delay and/or feedback delay. The methods applied

represent basic analytical tools to study other similar or more complex networks. At first, stationary

solutions and their linear stability are studied revealing various types of emerging spatio-temporal

patterns at the stability threshold. Then the following paragraphs discuss more generally the linear

response theory in neural fields. Finally, two applications to real neural systems illustrate the power

of the analytical tools.

The following sections consider a single transmission speed and a single feedback delay only,

but most analytical studies have been done for distributed transmission speeds and distributed delays

as well. This focus on the non-distributed case is reasonable since the speed and delay distributions

do not introduce effects different to the ones found for single speed and delay. Moreover, all studies

assume a one-dimensional spatial domain Ω and periodic boundary conditions and the distance



22 CHAPTER 2. CONTRIBUTIONS

function is d(x,y) = |x − y| which represents the shortest distance between two points, cf. sub-

section 2.1.2.

2.2.1 The stationary state and its stability in the absence of noise

For constant external inputs I(x, t) = I0, Eq.(2.4) has a constant stationary state V0 determined by the

implicit equation L(0)V0 = (α +β )S(V0)+ I0, cf. (Hutt and Atay, 2005). Hence the stationary state

depends on the external input I0 which may serve as the control parameter of the system.

Considering small deviations u(x, t) = V̄ (x, t)−V0 from the stationary state, the linear evolution

equation reads

L̂u(x, t) = s′α
∫

Ω
K(|x− y|)u

(

y, t − |x− y|
c

)

dy

s′β
∫

Ω
F(|x− y|)u(y, t − τ) dy . (2.10)

with the nonlinear gain s′ = δS[V ]/δV,V = V0.

Transmission delay is equivalent to distributed delays

An equivalent expression to (2.10) may be achieved by the spatial Fourier transform of u(x, t) leading

to an equation of the type

L̂ũ(k, t) =
∫ ∞

0
n(k,τ ′)ũ(k, t − τ ′) dτ ′ +m(k)ũ(k, t − τ) . (2.11)

with the Fourier transform ũ(k, t) of u(x, t), the time-dependent kernel function n(k, t) and the time-

independent function m(k) which are proportional to the Fourier transforms of the corresponding

kernels. Equation (2.11) reveals that transmission delays in location space are equivalent to dis-

tributed delays in Fourier space, while the delay distribution is defined by the wavenumber and the

spatial kernel K (Hutt and Frank, 2005; Hutt and Atay, 2007). In contrast, feedback delays remain

unchanged.

The wave ansatz u(x, t) = u0eikx+λ t with wavenumber k ∈ R and Lyapunov exponent λ inserted

into (2.10) yields an implicit characteristic equation (Hutt and Atay, 2005; Atay and Hutt, 2005;

Hutt and Atay, 2006; Atay and Hutt, 2006; Hutt, 2007, 2008b; Hutt and Atay, 2007; Hutt and Frank,

2005) of the type

L(λ ) = s′
∫

Ω
αK(z)e−ikz−λ |z|/c +βF(z)e−ikz−λτ dz . (2.12)

for general spatial homogeneous kernels K and F . Here again the transmission delay contribution is

|z/c|, i.e. space-dependent, while the feedback delay τ remains unchanged.
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Asymptotic stability for general transmission speeds and delays

The system loses stability if Re(λ ) = 0. For instance, λ = iω, ω 6= 0 reflects an oscillatory instability

which does not emerge under certain conditions. Assuming distributed transmission speeds, then the

mean transmission delay reads

τp =
∫ ∞

0

g(c)

c
dc

︸ ︷︷ ︸

1/c̄

∫

Ω
|xK(x)| dx

︸ ︷︷ ︸

ξ

with the mean inverse of the transmission speed 1/c̄ and the mean interaction range ξ . Then the

following theorem holds:

Theorem 1. Suppose that the synaptic response function is bi-exponential and hence L(λ ) = λ 2 +

γλ +ρ, γ,ρ > 0. If

ατp +β

∫ ∞

0
τ f (τ)dτ < γ,

then Eq. (2.10) does not have oscillatory solutions of the type u(x, t) = u0 exp(iωt + ikx).

See (Hutt and Atay, 2006) for the proof.

The importance of kernel Fourier moments for the instability threshold

For large transmission speeds and small feedback delays, this characteristic equation may be ap-

proximated to (Atay and Hutt, 2006)

L(λ ) = s′
N

∑
n=0

(−1)nλ n

n!

(
1

cn
K̂n(k)+ τnF̂(k)

)

(2.13)

with the kernel Fourier moments

K̂n(k) =
∫

Ω
|x|nK(x)e−ikx dx (2.14)

introduced first in (Atay and Hutt, 2005). Since the kernels represent probability density functions,

K̂n(0) for n even are the statistical moments of order n of the spatial interaction characterizing the

axonal spatial spread. Moreover, K̂0(k) is the spatial Fourier transform. The term F̂(k) is the Fourier

transform of the feedback kernel F(x). For distributed transmission speeds and delays, the corre-

sponding charactertistic equation resembles Eq. (2.13) by replacing 1/cn by
∫

g(c)/cndc and τn by
∫

f (τ)τndτ .

To gain some more insight into the stability and the possible types of instabilities at the stability

threshold, let us consider the case N = 2. Then one distinguishes the case of stationary instabilities

with λ = 0, such as spatially-periodic non-oscillating patterns, and oscillatory instabilities with λ =
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Figure 2.5: Schematic diagram of the competition between stationary and oscillatory bifurcations

for vanishing feedback. The curves φ1(k) = s′K̂0(k)/ρ and φ2(k) = −s′K̂1(k)/γc are motivated in

the text. As the bifurcation parameter α is increased from zero, the horizontal line 1/α becomes

tangent to one of the curves. The tangency with φ1 is equivalent to a stationary bifurcation, while the

tangency with φ2 is equivalent to an oscillatory bifurcation. Since these tangencies depend only on

the maxima of the curves, located at the wave numbers k1 and k2, respectively, the type of bifurcation

is determined by the maximum between φ1(k1) and φ2(k2), see the work of Atay and Hutt (2006) for

more details.

iω and angle frequency ω , e.g. traveling and standing waves. Assuming a bi-exponential synaptic

response function of the type h2 in Eq. (2.1), the polynom L(λ ) is of the type λ 2 + γλ + ρ with

constants γ, ρ > 0 and the corresponding instability criteria read

ρ/s′ = αK̂0(kc)+β F̂(kc) (stationary instability)

γ/s′ = −α

c
K̂1(kc)−βτF̂(kc) (oscillatory instability) .

Figure 2.5 illustrates the criterion in the absence of feedback, i.e. β = 0: the instability with the

largest maximum value is selected first while increasing the synaptic gain s′. This is a rule-of-

thumb for spatio-temporal instabilities (Atay and Hutt, 2005, 2006). Since s′ depends strongly on

the external stimulus I0, the change of the external stimulus, e.g. an externally injected current, may

evoke spatio-temporal instabilities.
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2.2.2 The stability in the presence of external stimuli

Now let us discuss the effect of random fluctuations on the dynamics of neural populations. Several

previous studies showed that randomness may be beneficial to the information processing in the

brain (Masuda et al, 2007; Doiron et al, 2003; Longtin et al, 1991; Destexhe and Contreras, 2006).

The origin of spontaneous fluctuations in the living brain, i.e. fluctuations unrelated to external

stimuli, is poorly understood though there is evidence for stochastic ion channel dynamics in the

cell membrane and spontaneous activity failure in synapses Koch (1999). The latter two examples

of fluctuations represent random changes of neuron properties over space and time. Since most

of these properties are formulated mathematically as variables multiplied to the activity variable in

the model, the spontaneous random fluctuations yield so-called multiplicative noise. Besides these

spontaneous or internal fluctuations one may consider external fluctuations, which may originate

from other neural populations or from external stimuli (Masuda et al, 2007; Doiron et al, 2003). The

following paragraphs consider the stability of a stationary state involving this type of fluctuations.

At first let us neglect delay effects which are discussed in the last paragraphs.

In the previous section 2.2.1, we have determined the stationary state constant in space and

time and studied the Lyapunov exponent of the linearized problem about the stationary state. At

a first glance this approach does not apply here since the system is time-dependent for all times

due to the external random fluctuations. Hence the question arises how one can define a stationary

state in this case. At first let us recall the definition of stability. Several definitions of stability

exist Kozin (1969), such as asymptotic stability considered in the previous section or the mean-

square stability: if the deviation about a system state is u(x, t) and 〈|u(x, t)|2〉 < δ holds for a δ > 0,

then this system state is called mean-square stable. If in addition limt→∞〈|u(x, t)|2〉 → 0, then the

state is called asymptotically mean-square stable. Hence, in simple words, a system state may be

called stable if the system evolves in a small neighborhood of this state. Consequently the stable

state might be equivalent to the deterministic stable stationary state V0 and the system evolves in a

small neighborhood about V0 due to the external random fluctuations.

In the beginning let us neglect delays and consider, for simplicity reasons, the single-exponential

synaptic response function h1 in (2.1), i.e. L̂ = ∂/∂ t +1 leading to the evolution equation

∂V (x, t)

∂ t
= −V (x, t)+α

∫

Ω
K(x− y)S [V (y, t)] dy+ I(x, t) . (2.15)

In contrast to the previous section, now the external input I(x, t) is the sum of a constant input I0 and

random Gaussian fluctuations ξ (x, t), i.e., I(x, t) = I0 + ξ (x, t) with 〈ξ (x, t)〉 = 0 where 〈·〉 denotes

the ensemble average. The subsequent paragraphs assume Gaussian-distributed random fluctuations

〈ξ (x, t)ξ (x′, t ′)〉 = Qδ (x− x′)δ (t − t ′) (2.16)

which are uncorrelated in space and time and have the variance Q.
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Further presuming the fluctuation variance Q being small may yield small deviations from the

stationary state u(x, t) = V (x, t)−V0 ≪V0 and we obtain

∂u(x, t)

∂ t
= −u(x, t)+ s′α

∫

Ω
K(x− y)u(y, t)dy+ξ (x, t) (2.17)

with s′ = δS/δV computed at V = V0. In the following sections, s′ serves as the control parameter.

Theorem 2. If the Lyapunov exponents {λn} of the deterministic part in equation (2.17), i.e. ξ (x, t)=

0, are bounded to the left hand side of the complex axis, i.e. Re(λn) < 0 ∀n, then ∃δ > 0 such that

〈|u2(x, t)|〉 < δ and the stationary state V0 is mean-square stable.

See (Hutt, 2010) for the proof.

Now let us consider the presence of transmission delays. The criteria for stability of delayed

stochastic systems has been established in previous studies, e.g. by Gushchin and Kuechler (2000).

The extention to transmission and feedback delay also holds:

Theorem 3. The stationary state V0 of Eq. (2.4) subjected the stochastic input I(x, t) = I0 + ξ (x, t)

is mean-square stable, i.e. ∃δ > 0 such that 〈|u2(x, t)|〉 < δ , u(x, t) = V (x, t)−V0, if the Lyapunov

exponents {λn} of Eq. (2.10) are bounded to the left complex plane.

See (Hutt and Atay, 2007; Hutt and Frank, 2005) for the elements of the proof.

We conclude that the linear mean-square stability of small deviations about the (determinis-

tic) stationary state V0 of Eq. (2.4) in the presence of external additive fluctuations is given by the

Lyapunov exponents deretmined from the deterministic case. This result allows to study the charac-

teristics of the small deviations as shown in the next section discussing the linear response. However,

further results on the non-linear response (section 2.3.1) elucidates that larger deviations show dif-

ferent characteristics then linear deviations.

2.2.3 General response theory

Considering small deviations u(x, t) about the stationary state V0 and small external stimuli the linear

evolution equation reads

∂u(x, t)

∂ t
= −u(x, t)+ s′α

∫

Ω
K(x− y)u

(

y, t − |x− y|
c

)

dy

+s′β
∫

Ω
F(x− y)u(y, t − τ)dy+ξ (x, t) . (2.18)

By virtue of the finiteness of the domain and the periodic boundary conditions, the membrane po-

tential may be expanded into a discrete Fourier series with the corresponding Fourier projections
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un(t) ∈ C , un = u−n yielding

dũm(t)

dt
=

∫ ∞

0
Nm(τ ′)ũm(t − τ ′) dτ ′ +M(k)ũm(t − τ)+ ξ̃m(t) , −∞ < m < ∞.

(2.19)

similar to Eq. (2.11) with corresponding kernel functions N,M. The terms ξ̃m are proportional to the

Fourier transform of the external stimulus ξ (x, t).

Then linear response theory gives the general solution of (2.19) by

ũm(t) = ũm,h(t)+
∫ ∞

−∞
dt ′ Gm(t − t ′)ξ̃m(t ′) . (2.20)

Here um,h(t) represents the homogeneous solution of (2.19) and Gm(t) is the Greens function of the

Fourier mode m. Applying standard techniques in linear response theory finally leads to

Gm(t) =
1

2π

∫ ∞

−∞
dω

e−iωt

−iω − ∫ ∞
0 Nm(τ ′)eiωτ ′dτ ′−Mmeiωτ

. (2.21)

This integrand can be computed, e.g. by the application of the residue theorem as shown in (Hutt and

Atay, 2007). The denominator of the integrand is the characteristic equation defining the stability

conditions as outlined in section 2.2.1.

The response function

To illustrate the response of the system to an external spatio-temporal stimulation, Figure 2.6 shows

the response (2.20) to a block stimulation ξ̃m(t) = H(t)−H(T − t) of duration T . Here the system

under consideration exhibits a finite axonal transmission speed, non-local intra-area connections and

no nonlocal feedback. The response depends on the wave number k = kn of the spatial Fourier

mode n of the external stimuli. The plot shows the systems strongest response to spatially constant

inputs (k = 0), which decays most slowly, while inputs with larger spatial frequency evoke weaker

responses and are damped much faster. The shape of the response cure is fully determined by

the kernel Fourier moments defined in section 2.2.1, the finite transmission speed and the synaptic

response function (2.1).

The correlation function and power spectrum

The solution of (2.18) reads

u(x, t) = ũh(x, t)

+
1√
Ω

∫ t

0

∞

∑
n=−∞

mn

∑
l=1

eλl,n(t−t ′)ξ̃n(t
′)rl,neiknx dt ′ , (2.22)
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Figure 2.6: An example for the response function (2.20) to an external block stimulus of finite

length (Hutt and Atay, 2007).

assuming the initial time t = 0, rl,n(k) are constants defined by the residues at the lth root Ωl,n of the

integrand denominator in (2.21), λl,n = iΩl,n and mn is the number of roots of mode n. Now, for sim-

plicity, the external stimulus ξ (x, t) is chosen to Gaussian uncorrelated random fluctuations. Then

their Fourier transform are also Gaussian and satisfy
〈

ξ̃m(t)
〉

= 0,
〈

ξ̃ ∗
n (t)ξ̃m(t ′)

〉

= Qδm,nδ (t −δ ′)

with the noise variance Q. This leads to the auto-correlation function C(x,τ) = 〈u∗(x, t)u(x, t − τ)〉
at spatial location x and the corresponding power spectrum S2(ν) with frequency ν (Hutt and Frank,

2005):

C(x,τ) = Q
∞

∑
n=−∞

mn

∑
l=1

Pnle
λ ∗

l,n|τ| , Pnl = −
mn

∑
k=1

r∗l,nrk,n

λ ∗
l,n +λk,n

S2(ν) =
Q

√

π/2

∞

∑
n=−∞

mn

∑
l=1

Pnl

λ ∗
l,n

λ ∗2
l,n +4π2ν2

These results show that both the auto-correlation function and the power spectrum represent linear

superpositions of single contributions, that reflect the responses of single Fourier modes (sum over n)

involving several different time scales (sum over l). This is the typical signature of linear responses.

The contributions of the Fourier modes are weighted by the factor Pnl . In this context, it is interesting
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to note that this superposition of time scales facilitates so-called 1/ f α -power spectra widely found in

spatially-extended systems (Dutta and Horn, 1981). This 1/ f α -power behavior has also been found

theoretically close to spatio-temporal instability in neural fields (Hutt and Frank, 2005). Moreover,

it is interesting to note that at large frequencies ν → ∞ the system shows the signature of Brownian

motion or, equivalently, normal diffusion with S2(ν) → ∑n,l cn,l/ν2 with a constant factor cn,l .

The previous sections considered the evolution equation (2.4) to illustrate how to extract informa-

tion on its spatio-temporal dynamics in principle. The subsequent paragraphs focus on the analytical

treatment of neural fields reflecting physiological neural structures and illustrates the application of

the methods presented in the previous sections. Since most experimental studies report on measured

neural activity by the plot of its power spectrum, the subsequent theoretical studies present theoreti-

cal results on the power spectrum of neural field activity. The first example application considers the

power spectrum of the membrane potential in weakly-electric fish subjected to spatially-correlated

external noise. The subsequent example application shows first results on the stability of station-

ary solutions in cortical areas during general anesthesia, followed by the power spectrum study of

fluctuations about this state reflecting EEG-activity.

2.2.4 Application: Induction of oscillations in certain frequency bands by ex-

ternal stimuli

From experiments, it is known that neural populations oscillate in certain frequency bands depen-

dent on the experimental conditions. Such frequency bands allow a classification of underlying

neural processes and permit an interpretation of stages of information processing. Especially, the

switches between activated frequency bands have attracted some attention since they might reveal

underlying interactions between different neuron populations. For instance, Buonviso et al (2003)

showed that the respiratory cycle in rats switches the rhythms in the olfactory system between the

β− (∼ 15Hz) and the γ− (∼ 40Hz) band in the presence of odours. This switch may be caused by

the different input strength and different input patterns during inhalation and expiration. The under-

lying mechanism of this switch is unknown.

Another example are frequency activations subjected to external input signals in certain weakly-

electric fish, such as the Apteronotus leptorhynchus. Such species live in muddy water and emit

weak electric waves at their tales. Such waves are received on the skin of the emitting fish and are

amplitude modulated by objects in the surrounding. The corresponding electro-receptors on the skin

of the fish generate spiking activity sent to the primary sensory area called the electric line lobe

(ELL), see (Berman and Maler, 1999). The ELL projects to other neural structures, of which some

project back to the ELL with a certain time delay. Previous in-vivo studies (Doiron et al, 2003) on the

spike activity in the ELL demonstrated that the inter-spike interval distribution of neurons in the ELL

depend strongly on the spatial correlation of random fluctuations generated experimentally on the

fish skin: while stimulating the skin receptors by spatially uncorrelated noise one observes a 100Hz-
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rhythm, while the stimulation by strongly correlated spatial noise adds a firing pattern of a frequency

of ∼ 35Hz. It was also shown experimentally in the work of Doiron et al (2003), that the induced

additional rhythm vanishes after blocking a specific delayed global feedback pathway. Hence, the

spatial correlation of external stimulation tunes the oscillation frequencies in the system (Chacron

et al, 2005; Masuda et al, 2007; Lindner et al, 2005) by the delayed feedback.

Taking this phenomenon as an example for the induction of frequency bands, the question arises

how the spatial range of the feedback from the ELL via other areas correlates to the spatial corre-

lation of the external stimulation and how the feedback delay affect the induced frequency. To this

end, a previous work (Hutt et al, 2008b) developed a neural field model involving the intra-area and

feedback topology of the primary sensory sytem to study the power spectrum of neural population

activity in the ELL, cf. Fig. 2.7. The spatio-temporal input I(x, t) drives the ELL via excitatory

synapses. The ELL projects topologically to the area Np via axonal connections with spatial con-

nectivity kernel Kne(x), and the area Np projects back topologically with the axonal connectivity

kernel Ken(x). This topology reflects the physiological structure in weakly-electric fish while the

topographic connections resemble the concept of receptive fields, e.g. known from the mammalian

visual system. The axons from the ELL to the Np terminate at excitatory synapses and the axons

from Np to ELL terminate at inhibitory synapses. The axonal delay along the ELL-Np and Np-ELL

connection is τ1 and τ2, respectively Moreover, neurons in the ELL and Np do not exhibit intra-area

Figure 2.7: Topology of the network of neural fields reflecting the physiological structure of the

primary feedback system in weakly-electric fish (Berman and Maler, 1999).
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connections, but just communicate indirectly via the axonal feedback. Essentially, the evolution

equation of the two neural fields read (Hutt et al, 2008b)

τin

∂E(x, t)

∂ t
= −E(x, t)−gin

∫

Ωn

Ken(x− y)Sn [N(y, t − τ2)]dy+ I(x, t)

(2.23)

τex

∂N(x, t)

∂ t
= −N(x, t)+gex

∫

Ωe

Kne(x− y)Se [E(y, t − τ1)]dy

with the membrane potential in the ELL (E) and the Np (N), the time constants of excitatory and

inhibitory synapses τex and τin, resp. Moreover,ge, gi are the corresponding synaptic gains and Se

and Si represent the transfer functions of neurons in the ELL (e) and Np (i), respectively. In addition

Ωe and Ωi denote the one-dimensional spatial domains of the ELL and the Np, respectively.

After linearization about a stationary state constant in space and time, cf. section 2.2.2, linear

deviations about the stationary state may be expressed by the deviations in the ELL u(x, t) which

obey the single time-dependent integral-differential equation

L̂u(x, t) = − g

τexτin

∫

Ωe

F(x− y)u(y, t − τd) dy+ I(x, t) .

Here, g = (δSe)/δE)(δSn/δN)gexgin, the total axonal delay is τd = τ1 +τ2, the temporal operator is

defined to L̂ = ∂ 2/∂ t2 +(1/τex +1/τin)∂/∂ t +1/τexτin and the effective connectivity kernel reads

F(x− y) =
∫

Ωn

Ken(x− z)Kne(z− y) dz .

This effective feedback kernel is the convolution of the receptive field kernels in the system and

resembles the effective kernel in optical systems involving several lenses. Finally let us assume

spatially correlated random input fluctuations with 〈I(x, t)〉= 0, 〈I(x, t)I(y,T )〉= Qδ (t−T )C(x−y)

with the spatial coorelation function C(x) = σN (0,σ2
i ) and the effective feedback kernel F(z) =

N (0,σ2
f ), where N denotes the Gaussian normal distribution. Then the power spectrum reads (Hutt

et al, 2008b)

S2(ν) = Q

∫ ∞

−∞

Ĉ0(l)

A(ν)+B(ν)F̂0(l)+DF̂2
0 (l)

with the constant D, the functions A(ν),B(ν) dependent of the frequency ν and the kernel Fourier

moments of Oth order Ĉ0(l), F̂0(l) dependent of the dimensionless wavenumber l (recall the defini-

tion of the kernel Fourier moments given in section 2.2.1). The specific choice of C(x) guarantees

that the input intensity
〈
I2(x, t)

〉
is independent of the spatial correlation variance σ2

i in accordance

to the experimental setup in the work of Doiron et al (2003). Explicitely, it is F̂0 = exp(−η2l2/2)

implying the relation of the spatial range of the feedback and the input correlation η = σ f /σi.

Figure 2.8 shows the power spectrum for two values of η and reveals an induced power peak

at about 40Hz for η = 1/40, i.e. a much larger spatial input correlation than feedback correlation.
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Figure 2.8: Power spectrum P(ν) = S2(ν) of u(x, t) subjected to the parameter η . Taken from (Hutt

et al, 2008b).

This result shows good qualitative accordance to the experimental finding in (Doiron et al, 2003).

Moreover, it extends previous studies on the effect of spatial correlations in feedback systems, e.g.

(Chacron et al, 2005; Masuda et al, 2007; Lindner et al, 2005), by considering the receptive field

concept.

To learn more on the underlying mechanism, let us investigate further the borders of the activated

frequency band. Detailed analytical calculations reveal, that the power spectrum is split in several

frequency bands νm < (1+2m)/4τd < νm+1, m ∈ Z0 and the borders depend on the effective delay

τd and the synaptic time constants τex, τin. The frequency bands of activation (deactivation) of

oscillations are given by m = 0,2, . . . (m = 1,3, . . .). Hence, long-range spatial correlations induce

oscillation frequencies about 1/4τd , 5/4τd , . . .. For instance, assuming the reasonable physiological

time delay τd = 6ms, the lowest activated frequency band occurs at ∼ 42Hz, i.e. in the γ-frequency

band.

The latter findings allow the interpretation, that the external stimulus selects internal oscillation

modes present in the feedback system. The selection parameter is the spatial correlation of the noisy

input. This activation mechanism is found in much simpler physical systems, like the guitar. There,

the strings allow for many oscillation modes and a certain grip and tapping of the strings fixates and

activates a certain oscillation mode, i.e. generating the tone. This mechanism may serve as a general

model in spatially extended neural feedback systems showing the induction of certain frequency

bands subjected to different experimental conditions.
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2.2.5 Application: Model for EEG in general anaesthesia

General anaesthesia during surgery is a constant part of everydays hospital practice. It ensures that

the patient is immobile during the operation, does not feel any pain during surgery (analgesia), loses

consciousness or awareness (hypnosis) and does not remember subconsiously any details (amnesia).

To guarantee the emergence of the latter elements, today the anaesthesist controls the state of the

patient by observing the brain potential on the scalp of the patient during the surgery, i.e. the EEG.

For instance, a prominent EEG-marker of the loss of consciousness is the spectral change of the

EEG: the EEG of the aware subject exhibits strong α−activity, i.e. oscillations about 10Hz, whereas

the unconscious subject shows a drop of the major frequency in the EEG to the δ− or θ− band,

i.e. 2− 8Hz. For certain anaesthetics, there is even an increase of the most prominent frequency

to the β−band, i.e. 12− 20Hz, while increasing the anaesthetic concentration before the neuronal

oscillations drop to the low frequencies. This spectral change is called biphasic. Several so-called

EEG-monitors have been developed to extract a number from the EEG power spectrum to indicate

the state of consciousness of the subject by that index. If the index remains in a certain value range,

the surgery proceeds.

Although the spectral properties of the EEG under general anesthesia is important during surgery,

it is poorly understood why the EEG spectrum changes from high frequencies to low frequencies

while increasing the anaesthetic concentration. This section proposes a neural field model to explain

the EEG power spectrum change with varying anaesthetic concentration.

Several previous studies of neural populations have investigated the effect of anaesthetics on

the EEG and most have applied a PDE-model to describe the neural field activity (Steyn-Ross and

Steyn-Ross, 1999; Bojak and Liley, 2005; Molaee-Ardekani et al, 2007). A recent work (Hutt and

Schimansky-Geier, 2008; Hutt and Longtin, 2009) considered excitatory and inhibitory synapses,

pyramidal (excitatory) neurons and interneurons (inhibitory neurons), axonal connections, finite ax-

onal transmission delay and external random input and introduced a system of integral-differential

equations

L̂e (Ve(x, t)−Vr) =

ae

∫

Ω
KE(x− y)SE

[

Ve(y, t −
|x− y|

c
)−Vi(y, t −

|x− y|
c

)−ΘE

]

dy+ I(x, t)

(2.24)

L̂i(p)(Vi(x, t)−Vr) =

ai f (p)ω2
0 (p)

∫

Ω
KI(x− y)SI

[

Ve(y, t −
|x− y|

c
)−Vi(y, t −

|x− y|
c

)−ΘI

]

dy .

These equations define the spatio-temporal evolution of the post-synaptic potential of excitatory and

inhibitory synapses Ve(x, t) and Vi(x, t), respectively. The parameter Vr denotes the resting potential

of the neurons and the external I(x, t) represents the random fluctuations from other brain areas.

Moreover the parameter p reflects the concentration of the anaesthetics in the neuron population.
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Assuming the application of the anaesthetic propofol, increasing the anaesthetic concentration, i.e.

increasing the value of p (Hutt and Longtin, 2009), increases the decay phase of the synaptic re-

sponse function h of inhibitory GABAergic synapses, cf. Eq. (2.1). Figure 2.9 illustrates the effect

of p on the response function. Moreover, the prologation of the response decay phase affects the

Figure 2.9: Effect of the model parameter p on the synaptic response function of GABAergic

synapses. Taken from (Hutt and Longtin, 2009).

charge transfer in the inhibiory synapses by the factor f (p). Considering experimental data, in good

approximation this factor is f (p) = r−r/(r−1)(rp)rp/(rp−1) ≈ p, r ≈ 8.5. The initial value p = 1

represents the case of zero concentration of propofol and p > 1 reflects non-zero propofol concen-

tration.

To gain the power spectrum of the population activity, at first it is necessary to compute the

constant stationary state V̄− and its stability. First analytical studies of the stationary solutions show

that it is sufficient to consider the effective stationary membrane potential V̄− = V̄e − V̄i with the

stationary states V̄e, V̄i. The study of V̄− reveals two cases subjected to system parameters (Hutt and

Schimansky-Geier, 2008; Hutt and Longtin, 2009). In the so-called triple solution case increasing

p renders the system bi-stable for some values of p, while the single solution case exhibits a single
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Figure 2.10: Stationary states V̄− of Eqs. (2.24 and the corresponding population firing rates SE , SI

for the triple solution case (a) and the single solution case (b). Taken from (Hutt and Longtin, 2009)

stationary solution for all p. Figure 2.10 shows the stationary states V̄− and the corresponding firing

rate functions SE and SI for excitatory and inhibitory neurons, respectively, in both solution cases.

The triple solution case (panels (a)) exhibits a single stationary state for small and large values of

p and shows three stationary solutions for medium values. Stability studies reveal that the centre

branch of the three solutions is unstable, and the top and bottom branch are stable for wavenumbers

k = 0, i.e. these states do not lose stability via spatially constant instabilities. The single stationary

solution shown in Figure 2.10(b) is stable in its constant mode k = 0. It is interesting to note, that

the top and bottom branch in (a) and the single solution in (b) may lose stability for k 6= 0 in a

non-ocillatory manner and for all k in an oscillatory manner.

Now considering small deviations about the stationary state, specifying the excitatory external

input Γ(x, t), and taking into account the equivalence of the temporal differential operators L̂e,i and
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the temporal integral kernels he,i(t) by L̂e,ihe,i(t) = δ (t), Eqs. (2.24) read

ue(x, t) = aeδE

∫ t

−∞
dτhe(t − τ) (2.25)

×
∫

Ω
dyKe(x− y)

(

ue(y,τ −
|x− y|

c
)−ui(y,τ −

|x− y|
c

)

)

+Γ(x, t)

ui(x, t) = aiδI f ω2
0

∫ t

−∞
dτhi(t − τ)

×
∫

Ω
dyKi(x− y)

(

ue(y,τ −
|x− y|

c
)−ui(y,τ −

|x− y|
c

)

)

(2.26)

with the nonlinear gains δE,I = δSE,I/δV computed at the stationary state. The variables ue(x, t) =

Ve(x, t)−V̄e and ui(x, t) = Vi(x, t)−V̄i denote the deviations from the stationary states V̄e and V̄i and

depend linearly on the evoked currents in the membrane, that are present in the dendritic tree and its

surrounding. These evoked currents propagate along the dendritic branch towards and away from the

trigger zone at the neuron soma and essentially generate the electric activity on the scalp measured

as EEG signals. The external input at excitatory synapses reads

Γ(x, t) =
∫ t

−∞
dτhe(t − τ)ξ (x,τ) (2.27)

with the synaptic response function he(t) and the random fluctuations ξ (x, t) uncorrelated in space

and time, i.e. 〈ξ (x, t)〉 = 0, 〈ξ (x, t)ξ (y, t ′)〉 = Qδ (x− y)δ (t −δ ′). Then the power spectrum reads

S2(ν) =
Q√
2π

|G̃(ν)|2|h̄e(ν)|2 (2.28)

with the fluctuation strength Q and the Fourier transform of the Greens function

G̃(ν) =
1√
2π

(

1−
∞

∑
n=0

Ln(ν) (−2πiν)n

)−1

(2.29)

Ln(ν) =
1

n!

(

−1

c

)n ∫ ∞

0
dt
(
aeδEhe(t)K̂

n
e −aiδI f (p)4π2ν2

0 hi(t)K̂
n
i

)
e2πiνt ,

K̂n =
∫

Ω
dzK(z)|z|n , h̄e(ω) =

∫ ∞

0
dthe(t)e

iωt .

Equation (2.28) represents the power spectrum of the EEG measured on the scalp. The advantage of

this detailed mathematical formulation is the possibility of an analytical study of the power spectrum

behavior. This study has been performed in a recent work (Hutt and Longtin, 2009) and conditions

for the occurence of the bi-phasic spectrum have been derived analytically. Considering these con-

ditions, it is possible to extract parameter sets leading to the bi-phasic power spectrum shown in

Fig. 2.11. The figure confirms that the two equations (2.24) represents a sufficient model to repro-

duce bi-phasic power spectra subjected to anaesthetic concentrations.
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Figure 2.11: Bi-phasic power spectra (a) in the triple solution case on the top branch and (b) the

single solution case. The frequencies bands are defined in the intervals [0.1Hz;4Hz] (δ -band),

[4Hz;8Hz] (θ -band), [8Hz;12Hz] (α-band) and [12Hz;20Hz] (β−band). Modified from (Hutt and

Longtin, 2009).

2.3 Non-linear response in neural fields

After the linear study of small deviations about a stationary state, the present section focusses on

larger deviations from the stationary state and considers the nonlinear dynamics of neural fields. At

first, the subsequent paragraphs discuss the effects of additive noise on the stability of a stationary

state in a neural field. Then traveling fronts are discussed, which link globally two stationary states

to a moving object.

2.3.1 Additive noise tunes the stability of stationary states

The theory of linear response assumes that the external input is small and evokes small deviations

about the stationary state. Moreover the theory implies that the input does not modify the stationary

state or its stability, i.e. adding a small input to the system just induces fluctuations about the station-

ary state. These assumptions raise the question what happens if the external input is not small and

the deviations about the stationary state are large and nonlinear interactions may come into play, i.e.

the response of the system is non-linear. Much work has been devoted to the investigations to such

nonlinear effects. For instance, Tuckwell (2008b,a) showed how the nonlinear FitzHugh-Nagumo

system responds to external noise and quantified the contributions of nonlinear interactions to the

statistical moments of the activity. Most previous studies assume that the stationary state remains

the same and its stability is not changed. However, there is an exception: it is well-known that

parametric driving affects the stability of systems. Specifically, the stochastic variation of a system

parameter is known to induce instabilities by rendering the stability conditions dependent on the
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noise strength (Horsthemke and Lefever, 1984).

In contrast to the standard view, the present section shows that additive external fluctuations may

change the stability of the stationary state of nonlinear systems close to the instability point. Con-

sequently additive noise may affect the firing characteristics in neural models, in addition to the

contribution of nonlinear interactions. In order to illustrate the nonlinear behaviour near the bi-

furcation point, the subsequent paragraphs discuss the Turing instability in neural fields neglecting

transmission and feedback delays.

Expanding Eq. (2.15) to cubic nonlinear order in V about V0 and introducing the variable ξ (x, t)=

I(x, t)− I0 yields

∂u(x, t)

∂ t
=
∫

Ω
dyK1(x− y) u(y, t)+K2(x− y) u2(y, t)+K3(x− y) u3(y, t)+ξ (x, t)

(2.30)

with K1(x) =−δ (x)+s′αK(x),K2(x) = s′′αK(x)/2,K3(x) = s′′′αK(x)/3!, cf. (Hutt and Atay, 2005;

Hutt et al, 2008a). The constants s′′ and s′′′ are the functional derivatives of S of second and third

order, respectively, computed at the stationary state V = V0. The following discussion considers

external random fluctuations uncorrelated in time and constant in space, i.e. ξ (x, t) = ξ0(t). Such

random fluctuations are called global fluctuations in the following. This rather artificial specific

choice simplifies the mathematical analysis, while it still illustrates the importance of additive noise

on the stability of a stationary state. First extensions of this choice to more general spatially corre-

lated noise show additional effects (not shown).

Now expanding u into its Fourier series yields the infinite set of stochastic differential equations

dun(t) = αnun(t)+βn ∑
l

ul(t)un−l(t)+ γn ∑
l,m

ul(t)um(t)un−l−m(t)

+ηδn,0dW (t) , −∞ < n < ∞ (2.31)

with the Fourier transform un(t) of u(x, t) and the constants αn = K̃1(kn) ∈ ℜ, βn = K̃2(kn)/
√

|Ω| ∈
ℜ, γn = K̃3(kn)/|Ω| ∈ ℜ. The terms K̃l(kn) denote the Fourier transform of the kernel function Kl(x)

and dW (t) represents the differential of a Brownian process with 〈dW (t)〉 = 0, 〈dW (t)dW (T )〉 =

2δ (t −T )dtdT with the fluctuation strength η . In addition, kn is the wave number of Fourier mode

n.

Re-calling the stability study in sections 2.2.1, 2.2.2 and assuming that the constant stationary

state V0 is stable for a certain control parameter, i.e, αn < 0 ∀n, the change of the control parameter

may render the stationary state unstable. Then the maximum value of αn crosses the imaginary axis

for certain critical wave numbers kc, while other non-critical αn 6=c 6= 0 with α0,αc ≫ α2c, α3c, . . ..

Hence, near the instability threshold the system exhibits a Turing instability with wave number kc if

αc => 0.

If the system evolves on the threshold, i.e., αc = 0 and αi < 0, i 6= c, the stochastic center man-

ifold theorem applies (Boxler, 1989; Xu and Roberts, 1996) and the stable modes ui6=c depend on
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time and uc, i.e., ui(t) = ui(uc, t) = gi(uc, t). For large times, this relation allows to compute the

functions gi(uc, t) and, hence, the dynamics of the stable modes ui6=c(t). Inserting gi into the differ-

ential equation of uc yields a one-dimensional differential equation for the dynamics whose solution

gives the functions gi.

Summarizing this reasoning, the stable modes obey the dynamics of the critical modes on the center

manifold just around the stability threshold, while they evolve faster than the critical modes. In phys-

ical terms, the slow critical modes enslave the fast stable modes, which in turn obey the dynamics of

the critical modes. This dependence is also called the slaving principle and the circular dependence

is known as the circular causality (Schoener and Haken, 1986; Haken, 2004).

Moreover, gi(uc, t) depend on the external fluctuations and may introduce multiplicative noise

terms into the differential equations of uc. Consequently, additive noise in the evolution equation

of stable modes may introduce multiplicative noise into the critical modes close to the stability

threshold and, hence, trigger noise-induced phase transitions as outlined above.

Now, assuming an order of scales with uc ∼ O(ε1/2),αc ∼ O(ε), η ∼ O(ε) and αn 6=c,βn,γn ∼
O(1) (Hutt and Atay, 2005; Hutt et al, 2008a; Hutt, 2010, 2008a; Hutt et al, 2007), and considering

terms up to O(ε5/2), the system (2.31) may be approximated to

duc =
(
αc +bu0uc +2γcu3

c +3γcucu2
0

)
dt (2.32)

du0 =
(
α0u0 +4β0u2

c +β0u2
0 +2γ0u0u2

c

)
dt +ηdW (t) . (2.33)

To obtain some insight into the possible solutions of Eq. (2.32), (2.33), let us neglect the random

fluctuations for the moment. Then the analysis of (2.32), (2.33) reveals a stable solution uc = 0 for

αc < 0 and a stable solution uc = ±
√

αc/a for αc > 0 with a = 2γc −8β0βc/α0 −8β2cβc/α2c > 0.

The positivity of the constant a guarantes that the linearly unstable solutions for αc > 0 remain

bounded. This instability type is called a pitchfork bifurcation.

Now considering the external fluctuations, the stochastic center manifold analysis (Hutt et al,

2008a; Hutt, 2010) yields the final Fokker-Planck equation for the critical mode uc

∂P(uc, t)

∂ t
= − ∂

∂uc

[

(αc −αth(η))uc +Cu3
c +Du5

c

]

P(uc, t) (2.34)

with

αth(η) = η2

(
β0b

α2
0

−3
γc

|α0|

)

(2.35)

and the constants C,D. The term P(uc, t) denotes the probability density of the critical mode uc.

Since no diffusion term is present in Eq. (2.34), the order parameter uc obeys the deterministic

equation

u̇c = (αc −αth (η))uc +Cu3
c +Du5

c , (2.36)
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where αc −αth defines the new stability threshold, which now depends on the fluctuation strength

η and thus reflects noise-induced transitions. Equation (2.36) reveals that the noise retards (ad-

vances) the emergence of the instability with increasing αc for αth > 0 (αth < 0) and thus stabilizes

(destabilizes) the neural field Hutt et al (2008a).

Figure 2.12: Spatio-temporal solutions of the extended Swift-Hohenberg equation subjected to ad-

ditive global fluctuations (Hutt, 2008a). (a) Turing instability without additive noise, i.e. κ = 0,

which is destroyed in the presence of fluctuations (κ = 0.1). (b) No Turing instability in the ab-

sence of external fluctuations (κ = 0) but Turng instability in the presence of the global fluctuations

(κ = 0.1).

Consequently, additive global fluctuations change the stability of the stationary state dependent

on the system parameters (Hutt and Atay, 2005; Hutt et al, 2008a; Hutt, 2010, 2008a; Hutt et al,

2007). Since the neural field equation generalizes pattern forming systems, as discussed in sec-

tion 2.1.3, this effect can be observed in other systems as well, e.g. which are described by partial

differential equations. Figure 2.12 shows the space-time activity of a stochastic Turing instability

in the absence and presence of global fluctuations in a systems described by the extended Swift-

Hohenberg equation (Hutt, 2008a; Hutt et al, 2007). The Turing instability may be destroyed or

induced by the additive global fluctuations dependent on the system parameters.

Concluding, additive global fluctuations change the stability of the neural population via specific

nonlinear coupling schemes and thus affect the neural processing. This finding reveals that the linear
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response theory in section 2.2.3 may be valid only if the noise level η is very small and, hence, the

possible stability shift by αth is negligible.

2.3.2 Traveling fronts

Neural structures are complex systems, in the sense that it involves several interacting subunits on a

microscopic scale (neurons) building mesoscopic structures or units reflecting the major dynamics

of the subunits (neuronal populations). Mesoscopic units represent coarse-grained models taking

into account some microscopic features while neglecting others. The most important question in

this context is the definition of the major microscopic property elements that should be taken into

account. For instance, neural fields take into account that neurons are excitable systems, i.e. become

active for specific inputs. This excitability results from the intrinsic activity threshold of neurons.

Hence excitable systems are nonlinear. Moreover, it can be shown easily that neural fields share

this property (Hutt, 2009): an external spatially localized input exceeding a certain size may induce

traveling fronts. Consequently neural fields may respond nonlinearly to external stimuli by travelling

fronts. To learn more about this nonlinear action, previous studies have investigated the uniqueness

and existence of travelling fronts in the presenence of distributed transmission speeds and distributed

feedback delays (Atay and Hutt, 2006). These results hold for spatially homogeneous populations.

Moreover, the question arises whether traveling fronts exist in spatially inhomogeneous neural fields,

which are more realistic models of neural structures. Such inhomogeneous neural fields relax the

condition that the spatial connectivity just depends on the distance and is identical at all spatial

locations. Some previous studied have investigated the spatio-temporal dynamics in such neural

fields, e.g. by Qubbaj and Jirsa (2009) and Bressloff (2001). Schmidt et al (2009) show the nonlinear

analysis of such fronts and derive conditions for front propagation and front propagation failure.

Figure 2.13 illustrates the propagation of such a front in a neural field perturbed by spatially periodic

inhomogeneities.

2.4 Multivariate signal analysis

The previous sections show in detail the analysis of mathematical models describing the spatio-

temporal activity of neural populations. The motivation of such models is based on experimental

findings. For instance, the neural field model introduced in section 2.1 was originally motivated by

intracranially measured activity in cortical structures (Wilson and Cowan, 1972). Early experimen-

tal studies on the orientation tuning of neurons in the visual system exhibited certain visual stimuli

constant in time (Hubel and Wiesel, 1963; Ben-Yishai et al, 1995). The gained experimental results

were stationary over time and motivated the investigation of stationary solutions of theoretical mod-

els, such as neural fields. Moreover, the most important experimental quantity extracted was the

stationary amplitude of the neural activity.
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Figure 2.13: Space-time evolution of a traveling front in a neural field involving a spatially periodic

inhomogeneity. Taken from (Schmidt et al, 2009).

Today most experimental setups exhibit a stimulus changing over time, which then yields non-

stationary neural activity. Hence todays most experimental data, such as the electroencephalogram

(EEG) or the Local Field Potentials (LFP), shows activity which is transient in time and space. Novel

concepts such as the instantaneous synchronization (Pikovsky et al, 2001; Lachaux et al, 1999) or

chaotic itinerancy (Kay, 2003; Breakspear and Friston, 2001; Freeman, 2003) formalizes the tran-

sient behaviour and propose analysis techniques to quantify signal features, such as time-dependent

amplitudes or phases. In turn the transient experimental data stipulates the study of non-stationary

dynamics in theoretical models. The subsequent paragraphs discuss briefly recent advances in the

analysis of multivariate brain signals and illustrate the corresponding problems.

In neuropsychological experiments, the subject may perform a cognitive task which generates

so-called evoked potentials in the EEG. Such potentials are amplitude peaks which occurr at several

electrodes. One says that the activity in the electrodes is synchronized in the amplitude, i.e. one

observes signal components with an increase and decrease of amplitude in most of the time series.

Typically, such potentials emerge as prominent signal features after the time-locked average of sev-

eral time series over different trials (Hutt, 2004; Hutt and Riedel, 2003). Another feature in brain

signals are transient oscillations common in time series of different electrodes. These oscillations
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exhibit certain frequencies with transient amplitude increases and/or transient phase relations.

Figure 2.14: The panel shows the gloal phase synchronization index (MPS) in a selected time win-

dow for a single trial in a visuo-motor experiment with monkeys (Hutt and Munk, 2006). The

horizontal and vertical axis gives the time and the frequency, respectively. The vertical white lines

indicate the time onset of a motor responses (R1 and R2) and the time onset of a visual stimulus

(S2). We observe strong synchronization in the γ-band close to the motor response onset and the

visual stimulus onset. Figure taken from the work of Hutt and Munk (2006).

The phase relations are typically studied between single pairs and have been shown to play an

important role in the interaction between brain areas (Castelo-Branco et al, 1998; Engel et al, 1991).

In addition, phase synchronization is supposed to explain how the brain binds together different fea-

tures of sensory input to a single representation (Singer and Gray, 1995; Singer, 1999). By virtue of

the oscillatory properties of phase-synchronized signals, one may lose the phase information of sig-

nals while averaging over trials as for evoked potentials. Consequently it is necessary to extract the

phase synchronization in single trials and compute statistical measures based on the results gained

from single trials. Such an analysis is feasable by clustering of the experimental data. Previous de-

tailed clustering studies (Hutt et al, 2003b; Hutt and Munk, 2006, 2009) have taken into account all

electrodes in the dataset to compute a corresponding synchronization quantity. Figure 2.14 shows the
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global phase synchronization in a single trial during an invasive visuo-motor experiment in monkeys

and we observe strong phase synchronization close to stimulus onset and offsets.

Although the results obtained allow for first interpretations of the neural processing, the gained

synchronization quantity reflects the synchronization in the data very well only if most electrodes

are synchronized, i.e. in the case of global synchronization.

Figure 2.15: Detected subnetwork in Local Field Potentials obtaned experimentally from monkeys,

cf.Fig. 2.14. The dots denote electrodes positioned in different brain areas (dashed circles). As one

first result, the partial synchronization method detected a prominent subnetwork of two channels in

the visual cortex (green), while the remaining electrodes (red) are independent from this subnetwork

but do not show any substructure itsself. The green subnetwork occurs in early times in the trials

under investigation and evolves in the γ− frequency band. Figure taken from (Rio et al, 2011).

However, a more realistic situation exhibits just few electrodes of synchronized activity, while

the other electrodes are silent or show random fluctuations. In this case, the global synchronization

quantity does not reflect well the real synchronization pattern. To put it differently: the global

analysis assumes a single synchronized network, whereas in the presence of multiple synchronized

sub-networks interacting with each other single sub-networks may be synchronized independently.

Hence in the latter case the system may not show global synchronization, but rather so-called partial

synchronization in a subset of elements.

To detect such sub-networks, i.e. partial synchronization, it is necessary to re-consider the no-

tion of synchronization. Re-call that synchronization means, in general sense, common behaviour of
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certain elements. A recent work considers oscillations at specific frequencies and the synchronized

elements are their corresponding amplitudes. Moreover, the common behavior, i.e. the classifier

for synchronization, is the increase and decrease of amplitudes similar to the evoked potentials dis-

cussed above. To analyse a multi-variate time series such as EEG in practice, at first the method

developed extracts the amplitudes of single time series at each time point in narrow frequency bands

by a continuous wavelet transformation. Then, at each time point and in each frequency band, the

multivariate data reduces to a set of amplitude values embedded in a space whose dimension coin-

cides with the number of time series. A subsequent clustering technique applied to the amplitude

values detects subsets of time series which reflect the underlying sub-networks (Rio et al, 2011).

Figure 2.15 illustrates the clustering result extracted from the LFPs of Fig. 2.14. Summarizing, the

latter method detects sub-networks which (i) exhibit global synchronization in a set of time series

and (ii) which oscillate in a not too wide frequency band.
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Chapter 3

Research perspective

The latter chapter discusses previous studies on spatio-temporal dynamics in neural populations and

multivariate analysis techniques of experimental data. These studies apply to rather general models

and general experimental data extracting a diverse range of different properties and phenomena. For

instance, the investigations of neural fields considered both stationary patterns and traveling waves

oscillating with a single frequency. Moreover, the neural population model describes the neural

activity on a single mesoscopic scale. In contrast, future work will focus on oscillatory systems

which exhibit a broad spectrum of oscillation frequencies. Moreover, the work will study in detail

how the power spectrum of such systems depends on internal system parameters or the properties

of external inputs. The work will also consider the properties of neural activity on different spatial

scales. This multi-scale approach is essential for the understanding of macroscopic oscillations.

The following section discusses oscillations of neural populations in the primary sensory area

of weakly electric fish. These oscillations are subjected to the correlation structure of the external

input. Then section 3.2 considers neural population oscillations in the olfactory bulb in mammals,

which depend strongly on the odour applied and which are tuned by the breathing cycle. Both

latter systems, i.e. the sensory system in weakly-electric fish and the olfactory system in mammals,

involve delayed feedback loops and external inputs. Since delayed feedback loops are present in

most neural structures, the understanding of the underlying mechanism in these systems will indicate

a more general coding concept in neural structures. The last section will discuss the dynamics of

neural populations in the human cortex during general anaesthesia. Since anaesthetics affect synaptic

receptors at the microscopic level and modifies the electroencephalogram on the macroscopic level,

the development of a successfull model stipulates the study on each description level in between.

The results from the first two sections may provide deeper insight in the human feedback system.

47
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3.1 Generation of oscillations in weakly-electric fish

As described in section 2.2.4, the network oscillations in the primary sensory area of weakly-electric

fish (ELL) depend strongly on the spatial correlation of the spatio-temporal random input. Experi-

mental studies (Doiron et al, 2003, 2004) extracted the histogram of the inter-spike interval (ISI) of

single neurons in the ELL. Since the neurons in the ELL are not connected to each other, this ISI

histogram also reflects the population firing activity of the neurons. If the incoming random input is

spatially uncorrelated, then the ISI histogram shows a single maximum at about 5ms. However, if

the spatial correlation of the input increases, then an additional maximum in the histogram occurs at

about 25ms.

Figure 3.1: Strong spatial correlations of external noisy inputs generates in-vivo spike rhythms in

the primary sensory area of weakly-electric fish. Top row: spatially localized random stimuli on

the skin of the fish (left cartoon) leads to spiking activity in the ELL with a single peak in the

inter-spike-interval (ISI) histogram and a long histogram tail (right panel). Bottom row: globally

correlated random stimuli (left cartoon) generates an additional spiking rhythm with a peak in the

corresponding ISI histogram at larger ISIs (right panel). Figure modified from Doiron et al (2003).

Hence, the increased spatial correlation of the input is responsible for the additional oscillation

rhythm. The same experimental studies also show that this additional oscillation occurs only in the

presence of an internal delayed feedback in the sensory system. Previous theoretical studies based

on spiking neurons were able to reproduce the generation of the additional rhythm. However, these

studies do not take into account the spatial connectivity structure in the primary sensory system

which is supposed to play an important role in the decoding of incoming sensory signals. Future
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work will study the generation of the additional oscillation rhythm by explaining the ISI histogram

by a nonlinear neural field model involving the axonal connection topology. This analysis examines

the population firing rate in the ELL and extends the previous study discussed in section 2.2.4 which

just takes the experimental results as a motivation for a studies of membrane potentials.

The work aims to reproduce the ISI histogram. Since the ISI histogram reflects the population firing

statistics (the neurons in the ELL are not coupled), it represents the inverse population firing rate

which in turn is modeled by the nonlinear transfer function in neural fields. The corresponding

model is given by the two equations (2.23) and the ISI in the ELL is given by 1/Se. A first analysis

step will consider constant connectivity kernels, i.e. neglects spatial effects, and stationary states will

be studied. Then a nonlinear analysis utilizing the moment expansion technique (see e.g. (Valenti

et al, 2006)) may allow to extract the effect of spatial input correlations onto the dynamics of the

system. Computing the distribution of values of the nonlinear transfer function Se = 1/ISI, cf. (2.23),

will give the ISI histogram subjected to the input correlation. This nonlinear study extends the linear

approach as described in section 2.2.4 that does not study ISI histograms in particular. The study

proposed will indicate whether neural fields may also allow to reproduce ISI histograms besides the

study of membrane potentials, what is not explored until now. In addition, the study will reveal the

mechanism how external inputs generates oscillations in the ELL. This knowledge will be valuable

for the next study.

3.2 Frequency switch in the mammalian olfactory system

The spatio-temporal dynamics in the olfactory system has attracted much attention in recent decades,

from both experimental (Wehr and Laurent, 1996; Sachse and Galizia, 2002; Friedrich and Laurent,

2001; Buonviso et al, 2003) and theoretical (Rabinovich et al, 2008; Freeman, 2000) perspectives.

Most of the previous studies investigated the response of the neural population to an odour stimulus

of finite temporal duration. Recent in-vivo studies have investigated the oscillatory dynamics in the

mammalian olfactory bulb during the breathing cycle (Buonviso et al, 2003; Cenier et al, 2009) in

the constant presence of an odour. It has been shown experimentally by measurements of Local Field

Potentials in the olfactory bulb, that the change between inhalation and expiration during breathing

induces switches between oscillation frequencies in the beta-band (12−20Hz) and the gamma-band

(20−60Hz), cf. 3.2.

To understand this switch, it is necessary to consider more closely the physiology of the olfac-

tory bulb, cf. Fig. 3.3. The odour activates the olfactory receptors which send their activity to the

glomerulus projecting onto the olfactory bulb. The glomerulus is a complex of densely-packed neu-

rons exhibiting mainly dendro-dendritic connections. The respiratory cycle oscillates in the delta-

band (∼ 2Hz) and modulates the glomerulus activity, which then in turn modulates the stimulation

of the bulb and the involved bulb cells.

Future work will aim to reproduce the experimental data by a detailed study of the neural popu-
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Figure 3.2: The Local Field Potentials measured in the olfgactory bulb in rats during a respiratory

cycle in the presence of an odour. A) The measured raw signal exhibits the slow breathing rhythm

with a frequency of 1.6Hz (two breathing periods in inset) and the overlayed oscillatory beta- and

gamma-rhythms. B) The scalogram shows clearly the switch between beta- and gamma activity

during a respiratory cycle. C) The instantaneous energy of the beta-(encoded in red) and gamma-

oscillations (encoded in violet). Figure modified from Buonviso et al (2003).

lation activity in the olfactory bulb. To this end, the work will develop a neural field model involv-

ing the detailed physiological properties of the synapses, neurons and connections in the olfactory

bulb. The mathematical study will focus on the linear response of the population activity subjected

to changing stimulus properties. The changes of the stimulus result from the respiration which may

change the spatial correlation of the bulb input from the glomerulus or the stimulus amplitude similar

to the weakly-electric fish in the previous section. Moreover, the study will consider the knowledge

gained previously from the linear and nonlinear studies in weakly electric fish. The reproduction of

the corresponding change in the power spectrum, i.e. the change of amplitudes of the the oscillation

frequencies in the LFP, will elucidate either another different mechanism of oscillation frequency

tuning in neural systems, or affirm one of the previous results in the weakly-electric fish. If the

modifications of the power spectrum may be explained by the same mechanism in both the ELL and

the olfactory bulb, the common mechanism would represent a basic principle in neural oscillation

tuning and, more generally, control of neural information flow in neural structures.
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Figure 3.3: The topography of the mammalian olfactory bulb. An applied odour activates receptor

neurons (not shown), which stimulate the glomerulus. The neurons in the glomerulus projects to

the mitral cells (pyramidal cells). These cells project to the granular cells (interneurons), in turn

inhibiting the mitral cells via synaptic complexes. The additional feedback from the mitral cells

to the granular cells via the olfactory cortex is inhibitory but indirect, i.e. the mitral cells project

to the cortex which projects back to the granular cells. This feedback is assumed to be delayed

but more details on the physiology and function are not known until today. The arrows in the figure

denote functional connections with excitatory (red-colored) and inhibitory (green-coloured) synaptic

connections. The blue feedback connection is delayed and excitatory, but indirect passing through

the cortex.
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3.3 Frequency tuning during general anaesthesia

General anaesthesia (GA) is an important tool in today’s hospital surgery. The anaesthesist in the

hospital administers the anaesthetic drug before and during surgery to prevent the patient to wake

up during surgery (loss of consciousness or awareness), that the patient does not feel any pain (anal-

gesia), does not move (immobility) and does not remember any details (amnesia). It is known that

these different features of GA probably originate from different locations in the brain and body.

For instance, analgesia results mainly from a block of neurons in the spinal cord, while amnesia is

supposed to originate in the prefrontal cortex. One of the most important features in GA is the loss

of consciousness (LOC), i.e. the lack of awareness to external stimuli. This loss of consciousness

marks the so-called end point of anaesthetic drug administration and hence defines the maximum

anaesthetic drug concentration. Since some patients may be sensitive to a too high dose of anaes-

thetics, this end point is very important in anaesthesia practice.

Although general anaesthesia works well in most operations, cases have been reported in which,

e.g., patients have woken up and have observed surgeons, but without feeling pain or being able

to move. Such a partial return from the anaesthesized state may be dangerous for the patient, but

are far from being understood. Moreover, today the choice of the anaesthetics and its concentration

applied is based on medical experience, but the on-site concentration of the anaesthetic in the neural

structures is not known and under constant discussion in clinical research. Hence the molecular

effect of the anaesthetics at the neural receptor sides has attracted much research activity in the

recent decades, and is well understood. However, it is not understood how the microscopic effect at

receptors affect the mental state of the patient, the end point of drug concentration increase and, e.g.

the LOC.

To monitor the optimal anaesthetics concentration, modern anaesthesia methods may obtain ex-

perimentally the brain signals on the patients scalp during surgery, i.e. the EEG. The power spectrum

of the EEG allows to estimate the end point of the drug administration. Consequently, the under-

standing of the power spectrum is one of the most important aims in general anaesthesia. The

increase of the anaesthetic drug concentration induces a characteristic change of the power spectrum

in the measured EEG. Typically, this change of power spectrum emerges as follows: during the in-

crease of the anaesthetics concentration the power in the theta-, alpha-, beta- and gamma frequency

band (4−60Hz) decreases. In the same time, the patient loses consciousness. Hence, the anaesthetic

concentration tunes the major oscillation frequency of the EEG and controls the loss of conscious-

ness. When subjects return to consciousness, the power changes are reversed. In addition, some

studies show that the anaesthetic concentration at the LOC and the return of consciousness (ROC) is

different, which indicates a hysteresis in the system. This hysteresis hypothesis is still under debate,

see Project 4 below.

To this end, it is necessary to understand how microscopic effects at receptor sites affect the

electric activity on the scalp. As a working hypothesis, future studies will consider cortical structures
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only, since their activity is known to represent the electromagnetic source of the EEG. The cortical

structures respond to the incoming activity from subcortical structures. Such structures may be part

of the ascending arousal system (Magoun, 1952) including the brain stem and the hippocampus. The

thalamus also drives the cortex as a gateway of sensory inputs. However, research in the close future

will consider the subcortical activity as an external input to cortical systems for simplicity, while

extensions to detailed subcortical models is always necessary.

The cortex is a complex structure involving several layers of sub-populations. Hence this model

approach of an externally driven network of sub-networks, i.e. layers, resembles the studies on

weakly-electric fish and the mammalian olfactory bulb. Consequently, the extracted knowledge on

the induction of frequencies from both previous studies may be helpful in the context of GA.

Figure 3.4: Project structure of the future work studying the multi-scale topology of the brain. The

encircled numbers denote the Projects outlined in the subsequent sections. Project 1 to 6 investigate

theoretical models on a certain description level or build the bridge from descriptions on smaller

spatial scales to models on larger scales. Project 7 considers experimental EEG-data and aims to

deduce conditions on underlying networks of neural populations.

Figure 3.4 illustrates the various modeling steps. Future work will develop mathematical models



54 CHAPTER 3. RESEARCH PERSPECTIVE

describing the effect of anasthetics on receptor dynamics, which affect the dendritic activity of a

single neuron, see Project 1. The next step considers the results of anaesthetics on the dendritic

activity and develops neural population models assuming population rate coding (Project 2) and

time-coding aspects (Project 3). The resulting population rate model describes the dynamics in a

certain cortical layer. Project 4 studies in detail this rate model subjected to the anaesthetic effects on

the receptors in single neurons. Moreover, in Project 5 the work will study the network dynamics of

interacting neural populations in two spatial dimensions taking into account the spatial interactions

of cortial layers. To understand the experimental data and compare it to the theoretical results finally,

it will be necessary to study in some detail the electromagnetic generation of EEG based on the

neural population activity. This modeling approach is described in Project 6. Essentially, Project 7

considers the multivariate data analysis of experimental EEG data and aims to extract signal features

form the data, that may reflect underlying neural population dynamics.
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Project 1: Analysis of dendritic activity subject to the anaesthetic action of

propofol on GABAA-receptors

Cortical dendrites exhibit various receptor types. For instance, synaptic receptors are located close

to synaptic bulbs which emit neurotransmitters and activate the close receptors. Single incoming ac-

tion potentials may activate the synaptic bulb to emit neuro transmitters and hence activate the close

receptors to generate a so-called phasic response potential in the cell membrane. The rate of neuro-

transmitter emmision depends on the activation of the synaptic bulb by incoming action potentials. If

the rate of incoming action potentials are high, many neurotransmitters are spilled over the location

of the synapse and not all transmitters may bind to the corresponding close synaptic receptors. The

left over neurotransmitters diffuse into the synaptic surrounding and may activate other receptors of

close-by synapses. The cloud of neurotranmitters also may hit extra-synaptic receptors which are

not located close to synapses (Kopanitsa, 1997). Since such extra-synaptic receptors are de-located

from synapses, they do not respond directly to incoming action potentials but respond rather by a

tonic activation caused by an ambient neurotransmitter level, e.g. resulting from the increased con-

centration of neurotransmitters in the surrounding.

This tonic activation at extra-synaptic receptors may also originate from anaesthetic agents. For in-

stance, some anaesthetics open ion channels of GABAA receptors and induce a permament current

through the membrane at the receptor location. This tonic activation changes the membrane conduc-

tivity close to the receptor and hence modifies the propagation of currents on the dendrite. Previous

experimental studies (Farrant and Nusser, 2005) have shown that this tonic activation induced by

anaesthetics strongly affects the sedation effect in general anaesthesia (Orser, 2006).

The project will focus on the mathematical modeling of the effect of anaesthetics on the cur-

rent propagation on passive dendritic trees. The anaesthetics will be specified to propofol, which

is widely-used in hospital practice. Moreover propofol affects solely inhibitory synaptic and extra-

synaptic GABAA receptors. Since the tonic activation at extra-synaptic synapses increases the mem-

brane conductivity and shifts the reversal potential towards the resting potential of the neurons mem-

brane, the total effect of propofol is similar to shunting inhibition. Recall that shunting inhibition

assumes an identical reversal potential of the inhibitory receptor and the membrane resting potential,

whereas the tonic inhibition just let the reversal potential approach the resting potential. The work

will study analytically and numerically the passive cable equation for dendrites (Mel, 1994; Tuck-

well, 1988; Timofeeva et al, 2008) involving excitatory receptor dynamics and inhibitory synaptic

and extra-synaptic dynamics. More detailed, after a first analytical study of the passive activity

spread of excitatory (EPSP) phasic post-synaptic potentials and in the presence of tonic inhibition

(IPSP) each generated at different locations, the work will study analytically the correction term

to the sum of EPSPs and IPSP depending on the tonic inhibition. This correction term is known

to depend nonlinearly of the EPSP and the IPSP (Tuckwell, 1988) for identical receptor rever-

sal potentials and resting potentials. Previous studies on shunting inhibition either simplified the



56 CHAPTER 3. RESEARCH PERSPECTIVE

synaptic response function to a Dirac-function or a Heaviside function or performed extensive nu-

merical studies. In contrast, the proposed work will apply analytical techniques considering more

realistic synaptic response functions, such as exponential decaying functions or the alpha-function,

cf. Eq.(2.1).

Figure 3.5: Tonic inhibition affects the firing rate in granular cells in rat cerebellum slices subjected

to the excitatory stimulation. (a) Four independent 50Hz Poisson trains of transient excitatory synap-

tic conductance (Gexc) for control conditions and during 1nS tonic shunting inhibition. (b) Output

firing rate-input frequency relationships for synaptic excitation for control (closed circles) and dur-

ing tonic inhibition (open circles). The results reveal a divisive effect of tonic shunting. (c) Injection

of a step of 1nS tonic excitatory conductance (Gexc) for control and with 1nS of tonic inhibition. (d)

Output firing rate as a function of tonic excitatory conductance amplitude for control (closed circles)

and with tonic inhibition (open circles). The results reveal a subtractive effect of tonic shunting.

Taken from (Mitchell and Silver, 2003)

Moreover, the study will take into account the spatial distribution of the receptors on the den-

dritic tree gaining a realistic model of the anaesthetic effect on activity on spatially extended den-

drites. This spatial distribution depends on the dendritic branching structure and the physiological

properties of the corresponding branches rendering the analytical treatment rather complex for gen-
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eral dendritic trees. To my best knowledge, this study has not been done before and it will give

some insights how to extract the effects of anaesthetics on dendritic activity in general. To test the

theoretical results, we will try to obtain experimental data on the spatial distribution of synaptic and

extra-synaptic receptors. This would give us the possibility to achieve more realistic results. Finally,

the last analysis step is a numerical simulation of the dendritic activity considering realistic synaptic

structures. This simulation will be performed by the application of standard software tools, such as

NEURON (Carnevale and Hines, 2006) or BRIAN (Goodman and Brette, 2009).

The result of this study will yield analytical expressions for the anaesthetic action on the neuron

firing activity, e.g. quantified by the firing rate and the nonlinear gain. It is known that shunting

inhibition has a divisive effect on the subthreshold amplitude of excitatory post-synaptic potentials,

i.e. changes the slope of the rate-amplitude curve (Carandini and Heeger, 1994), or a aubtractive

effect on the firing rate by shifting the transfer function by a constant value (Holt and Koch, 1997).

Moreover, the study of Mitchell and Silver (2003) on tonic inhibition points out that divisive and

subtractive effects on the firing rate depend on the statistical properties of the applied excitatory

synaptic stimulation, cf. Fig. 3.5. Since the tonic anaesthetic inhibition shifts the reversal potential

towards the resting potential but may not reach it, the result may not be identical to the shunting

inhibition case, but similar. Hence, the major quantities under study will be the resulting firing rate

and its nonlinear gain subjected to the anaesthetic concentration.
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Project 2: Novel population rate-model based on anaesthetic action on single

neurons

The achievement of Project 1 is the understanding how anaesthetic action affects the firing activity

of a single neuron. Now considering a population of neurons, the question arises how the anaesthetic

effect on a single neuron translates into the neural population activity. This neural population de-

scribes the activity in a specific cortical layer of neurons receiving inputs from other cortical layers

and/or non-cortical structures.

In this project, we will assume population firing rates, i.e. neglect the time-coding of single

neurons, and assume the embedding of the network in a two-dimensional spatial domain. The as-

sumption of population coding is reasonable for sensory inputs in primamry sensory areas, such

as the primary motor cortex (Georgopoulos et al, 1992) and the primary visual cortex (Hubel and

Wiesel, 1963). The work will follow a mean-field approach according to a previous study (Hutt and

Atay, 2005). This approach considers the ensemble (population) firing rate of a neural population

in a very short time window, i.e. the number of spikes emitted in the population in a time window

of few milliseconds. It takes into account the probability distribution of membrane potentials at the

soma in each neuron and the distribution of firing thresholds in the neuron population. The resulting

model does not consider the transfer function of single neurons, but just the distribution of the firing

thresholds. Moreover, the approach involves the response of neurons to incoming spiking activity

by a single synaptic response function for each single receptor type (excitatory or inhibitory recep-

tors). It also neglects more specific receptor effects, such as shunting inhibition, which however may

play an important role in the neural information processing. In addition to the properties of single

neurons, the model involves the spatial distribution of axonal fibers and the corresponding axonal

transmission delay, but neglects the spatial extension of dendritic structures.

To improve this standard model and consider more specific dynamics of the dendritic activity and

the firing dynamics, the new model will additionally take into account the probability distribution

of single neuron parameters, such as the firing threshold and the slope of the nonlinear gain. Since

these single neuron properties depend of the anaesthetic action on inhibitory synapes, the new neural

population model involves the anaesthetic action. The extension will be possible by a new analytical

derivation of the model equations now considering the dependence of the firing threshold and the

nonlinear gain of the anaesthetic action. Consequently the new model will represent a population

firing rate model considering effects similar to shunting inhibition.

The novel single-layer population model is spatially extended and might exhibit axonal trans-

mission delays between neurons. Since the major task is the understanding of the cortical activity,

we will consider realistic spatial extensions of single cortical areas and certain cortical layers. Good

candidates for such cortical brain regions are the mesial parietal cortex, the posterior cingulate cortex

and the precuneus which play in an important role in the loss of consciousness (Kaisti et al, 2002;

Alkire et al, 2008). If the spatial dimensions suggest a too small transmission delay, the population
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model will not include them. Moreover, the real spatial distribution of axonal connections in cortical

layers will be investigated. The work will involve these distributions in accordance to experimental

findings to gain a realistic population model.

To validate the resulting population model, extended numerical simulations of both the network

of single neurons and the neural population model will be performed and compared. To this end, it

will be necessary to find, or develop, an abstract single neuron model which allows to reproduce the

firing dynamics subjected to specific choices of inhibitory reversal potentials and their distribution,

i.e. with the specific firing rate and nonlinear gain statistics derived previously. With the help of this

model, it will be possible to simulate a network of single neurons and compute the population firing

rate in this network.

After the successfull derivation of the population model, it will be necessary to investigate its

dynamical dynamics. To this end, at first we will determine the stationary state of the system and

study the spatio-temporal oscillatory dynamics subjected to the anaesthetic action about this state.

The work will achieve this goal by a detailed analysis of the linear response as presented in sec-

tion 2.2. This analysis allows to compute the power spectrum of the linear activity. This is one of the

major tasks in the project, since the work aims to extract the change of the power spectrum subjected

to changing microscopic receptor dynamics. A comparison of the gained power spectrum results

to previous studies (Hutt and Longtin, 2009) and experimental data will be elusive concerning the

novel systems properties. The results will reveal the importance of shunting inhibition effects on the

spatio-temporal dynamics of the neural population. Moreover, the analysis will apply the oscillation

activation schemes found in sections 3.1, 3.2 and investigate whether they may explain the frequency

shift found in EEG during GA.

Since external additive random fluctuations may affect the stability of the system as shown in sec-

tion 2.3.1, the work will also investigate the nonlinear response of the system to external random

fluctuations. This study will be demanding due to the expected increased complexity of the model.

However it is necessary to gain a full picture of the possible dynamical effects of the anaesthetics.
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Project 3: Novel population time-coding model based on a single neuron model

The previous project aims to derive a novel population model based on the neural firing rates of

single neurons while neglecting the timing of single spikes emitted by the single neurons. However,

some neural structures decode incoming activity according to the neural inter-spike interval and

utilize temporal coding, such as in retinal ganglion cells (Van Rullen and Thorpe, 2001). A large

number of studies in the recent decades have elucidated the importance of temporal coding (Deco

et al, 2008; Van Rullen et al, 2005). Especially the dynamical adaption of synaptic strength found in

many systems (Markram et al, 1997; Bi and Poo, 1998) have been studied successfully in networks,

see e.g. (Siri et al, 2008; Cessac et al, 2009). An additional coding mechanism is the time-coding in

populations, that has been found in motor cortex as a additional coding variant (Fetz, 1997; Riehle

et al, 1997). Consequently, an extension of the population rate model in Project 2 to a population

time-coding model renders the population model more realistic.

To achieve this goal, the project will investigate the Lighthouse model developed recently by

Haken (Haken, 2002). This hybrid model of networks considers the generation of spikes in a single

neuron k based on an instantaneous firing rate function S by introducing an abstract phase φk which

obeys

dφk(t)

dt
= S

[

∑
m

ckmψm(t)+ pext,k(t)−θ

]

.

The phase rotates with the speed of the firing rate function and the neuron fires if the phase obeys

φkmod2π = 0. In addition, the variables ψm denote the dendritic current induced at synapse m on the

dendritic dendrite of neuron k wheighted by the factor ckm. The function pext,k denotes an external

driving current and θ is the firing threshold.

Assuming an exponential synaptic response function, the dendritic currents obey

dψm(t)

dt
= −γψm(t)+∑

k

amkPk(t)

with the synaptic response decay rate γ , the incoming pulse train Pk(t) from neuron k and the

wheights amk. The pulse train is given by the sum of Dirac-functions

Pk(t) =
∞

∑
n=−∞

φ̇k(t)δ (φk(t)−φk(tn))

with φk(tn) = 2πn and φ̇ = dφ/dt. In contrast to some other spiking neuron model, the Lighthouse

model involves the output firing rate of neurons while taking into account dendritic activity and

synaptic responses subjected to incoming spikes. In the context of the present task, the former

aspect allows to take into account the anaesthetic action since the shunting inhibition-like effect of

anaesthetics defines the output firing rate of the neuron. Hence, Project 1 delivers the firing rate

function of the Lighthouse model. Moreover, the axonal connectivity matrix with elements amk
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in a network of Lighthouse neurons may be chosen according to connectivity structures found in

experiments. Moreover, The original work of Haken does not embedd the neurons in a metric space.

Future work will take into account the spatial embedding corresponding to a recent study of Chow

and Coombes (Chow and Coombes, 2006). The spatial connection topology will also decide whether

it is necessary to include axonal transmission delays in the model or not.

Summarizing, the work will take into account the anaesthetic action of propofol and aims to map the

corresponding effects to model elements, such as the firing rate function S, in the Lighhouse model.

The analysis steps investigate both the interspike-interval dynamics (ISI) and the dendritic current

dynamics (Local Field Potentials), since typical experiments extract these quantities. The study will

investigate the oscillatory activity of a network of such neurons in the linear regime subjected to the

action of propofol. A comparison of the gained results, the results from Project 2, previous results

in a population rate-coding model (Hutt and Longtin, 2009) and experimental data will elucidate the

importance of the time coding aspects.
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Project 4: Nonlinear analysis of neural fields subjected to external inputs

After the development of neural population models in Projects 2 and 3, this project will study these

models in the nonlinear domain in the presence of external input.

Since the neural origin of loss of consciousness (LOC) during under anaesthesia is not under-

stood, various cortical population rate models have been developed to gain further insight into the

underlying neural mechanism (Bojak and Liley, 2005; Steyn-Ross and Steyn-Ross, 1999; Hutt and

Longtin, 2009). Some models claim that linear interactions in the system are sufficient to explain

the change of the EEG-power (Bojak and Liley, 2005). Such models explain the power spectrum

change, but do not give explanations of the LOC and return to consciousness (ROC) and do not

consider the hysteresis aspect. Another theoretical model (Steyn-Ross and Steyn-Ross, 1999; Steyn-

Ross et al, 2004) claim that the LOC and the ROC represent non-linear stochastic phase transitions

of first order, which explain the hysteresis and the EEG-power spectrum change by the critical fluc-

tuations occurring close to phase transitions, cf. Fig. 3.6. In addition this theory explains the LOC

by the jump from an active population to a population with almost vanishing neural activity. Conse-

quently this model suggests that unconsciousness represents low neural activity. This approach gives

a nice and clear explanation of the loss of consciousness (loss of consciousness = loss of neural ac-

tivity). However, the mathematical description of this model is linear though the phase transition is

a strongly non-linear effect.

Since the evidence for a nonlinear effect at LOC is strong, future studies will investigate the

phase transition hypothesis by a detailed nonlinear mathematical treatment of the population models

in Project 2 and 3. This study will include the anaesthetic effect represented by a specific parameter

reflecting the anaesthetic concentration. This parameter will serve as a control parameter in the

system, i.e. at a critical control parameter value the phase transition occurs. Moreover, the model

describes the activity of a single layer in the cortex and will assume external deterministic and

random inputs from other brain areas. The deterministic input may originate from the thalamus, that

typically exhibits regular tonic or bursting behaviour which may be interpreted as periodic or quasi-

periodic in time and unspecific in space. The random inputs are supposed to reflect uncorrelated

input in space and time from other cortical or sub-cortical areas. Essentially, the project will study

the nonlinear dynamics of the system showing jumps between two stationary states driven by the

external noise and the deterministic driving.

The project will answer the question whether the jumps between the two stationary states in the

neural population activity are the origin of the characteristic power spectrum change under anaes-

thesia. The theoretical results will give analytical expressions for the expected nonlinear power

spectrum and thus predicts the measured activity, see the detailed description of the mathematical

tools below. In a final step, the work will perform a final search for physiological parameters to

reproduce experimental EEG-power spectra. Only if reasonable physiological parameters have been

found, then the phase transition theory holds. In contrast, if the study does not find reasonable
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Figure 3.6: Sketch of the phase transition approach. Before the administration of the anaesthetics,

the neural population exhibits high activity (point A) and the subject is awake. Now increasing the

anaesthetics concentration let the system move on the top branch of high activity up to point B.

For larger anaesthetics concentration no state exists anymore at high neural activity and the activity

drops to a much lower activity level (loss of consciousness at point C), where it remains for further

concentration increase. After the administration of the anaesthetics stopped, the subjects body ca-

tabolizes the drug and the anaesthetics concentration decreases at a low neural activity level up to

point D. Since a further concentration decrease yields no state at low activity, the activity jumps back

to the upper branch of high activity (return of consciousness) and the subject awakes.

physiological parameters that allow to reproduce the experimental power spectrum, the anaesthetic

effect is no purely cortical effect and it is necessary to involve the anaesthetic effect of subcortical

structures as well.

Since the neural population rate model may be viewed as a template for a more general pattern

forming system, the non-linear analysis of the model may be applicable to other systems as well. In

general terms, the mathematical study makes it necessary to develop novel mathematical techniques

to investigate stochastic effects in delayed and non-delayed spatially extended systems that are driven

by external stochastic and periodic forces. Expected effects are coherence resonance neglecting

external periodic driving and stochastic resonance involving external periodic driving.

a) Local nonlinear analysis

As a first analysis step and to reveal possible nonlinear effects of the system dynamics, the work

will assume small deviations about a single stationary state but taking into account higher nonlinear

terms of the small deviations, e.g. of quadratic or cubic order. Previous studies (cf. section 2.3.1 and

Bloemker (2007)) have shown that additive external inputs may modify the stability of stationary
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states subjected to the input strength. Hence the first analysis step will investigate the nonlinear

power spectrum of the system subjected to the anaesthetic concentration.

To this end, at first the population model neglects axonal transmission delays. This is a reason-

able approximation if the spatial spread of the population is small enough. For instance, the action

potential propagation along an axonal fibre of length 1mm with the typical speed of 0.5m/s may

yield a delay of 2ms, which may be negligible compared to synaptic response times of several tens

of milliseconds. Moreover, initially we may analyse the system assuming a constant spatial interac-

tion kernel. This choice renders the dynamics of the system space-independent. A recently deveoped

analytical perturbation approach (Tuckwell, 2008b,a) allows to compute the nonlinear power spec-

trum of the system. A comparison of this nonlinear power spectrum to the linear power spectrum

(cf. section 2.2.3) and experimental findings will indicate whether it is sufficient to include the small

nonlinear corrections to explain the experimental effects. Then analytical investigations for non-

constant spatial kernels will reveal additional spatio-temporal dynamics resulting into corrections

of the nonlinear power spectrum, cf. section 2.2.3. After the non-delayed study, we will extend the

perturbation approach introduced in Tuckwell (2008b,a) for the non-delayed case to the transmission

delays. This case may occur if the brain region under study is rather large or contains long-range ax-

onal interactions, e.g. cortico-cortical connections of typical length of 10mm, with small propagation

speeds, e.g. of 2m/s. Since the largest contributions to the power spectrum are close to instability

points, future work will investigate the non-linear power spectrum close to instabilities of the linear

system. To this end, a time-dependent center manifold theory for delayed systems will be developed

close to instability points to derive an equivalent evolution equation without delays., see (Lefebvre

et al, 2011) for a first successfull example. This non-delayed equation permits to extract the non-

linear power spectrum corresponding to the non-delayed case described above. The comparison of

the gained result to the non-delayed case will reveal the importance of the transmission delay for the

explanation of the experimental data.

b) Global nonlinear analysis

The previous analysis assumes that the system remains close to a stationary state and the exter-

nal stimulation is not strong enough to repel the activity from the vicinity of the stationary state.

However, strong enough stimulation by the external fluctuations or the deterministic driving input

may induce jumps of the system between the stationary states. Then the corresponding mathemat-

ical treatment becomes much more complicated and it is not sufficient anymore to treat nonlinear

terms in lower orders. Different mathematical methods are necessary to apply. The work will utilize

the methods developed in the context of stochastic resonance (Gammaitoni et al, 1998). In gen-

eral terms, the problem considered in stochastic resonance is the statistical description of stochastic

jumps between stationary states while the system is driven by a deterministic force. The transition

rates between simple stationary states may be computed analytically which allows for the calcula-

tion of spectral quantities, such as the power spectrum of the activity, the signal-to-noise ratio of the
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activity and the distribution of the residence time in the vicinity of a certain stationary state. These

quantities are also interesting in the context of neural cortical activity, since they may be accessible

experimentally (Wilson et al, 2010). Though stochastic resonance has been studied mathematically

in detail in low-dimensional systems for decades, its study in spatially extended systems is less de-

veloped (Gammaitoni et al, 1998). Moreover, only few studies, e.g. (Tsimring and Pikovsky, 2001),

consider delays in the system and to our best knowledge no study investigates stochastic resonance

in spatially-extended systems involving transmission delay. The future work will try to develop

methods to treat jumps between stationary jumps in neural populations. To this end, a first ex-

tensive literature study on spatial systems will reveal the already developed mathemetical tools for

stochastic resonance. These methods may be applied to the non-delayed neural population model

at first, before its extention to the delay case along the lines of previous work on low-dimensional

systems (Tsimring and Pikovsky, 2001). Such studies will yield analytical expressions, e.g. for the

power spectrum, which may be compared to experimental data.
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Project 5: Cortical layer network of neural populations

The previous projects investigated a single neural population. Such a population may exist in a single

cortical layer in a single brain area. However, the cortex exhibits 6 different layers in each brain area

and these layers are strongly interconnected to each other, cf. Fig. 3.7.

Figure 3.7: Example for the cortical layer structure: intrinsic connections in visual area V4 in

macaque monkeys. a) The photomicrograph shows a biocytin injection into layer 5 revealing single

pyramidal cells (in layers 2,3,5 and 6) and connecting fibres between different layers. Horizontally

spreading fibers are seen predominantly in layers 3 and 5. Scale bar has a length of 100µm. b)

Diagram of intrinsic pyramidal neuron projections suggested on the basis of patterns of biocytin

labeling. Taken from (Yoshioka et al, 1992).

Moreover, different brain areas are connected by cortico-cortical axonal paths linking specific

layers in the brain areas. Hence, to come closer to a realistic cortical structure, an improved model

includes a network of connected layers and a network of such networks. Recent mathematical studies

have been able to derive stability conditions for such a model (Faugeras et al, 2009). Since the study

of such a complex model is very difficult, at first the work will try to infer analytically the multi-layer

network dynamics from the single-layer model and apply the same analysis steps to this network

model as in the single-layer model. To this end, at first a linear stability analysis will be performed.

It is expected that standard techniques may be sufficient to study the corresonding linear network

dynamics. Additional analysis steps, such as the nonlinear investigations as in Project 4, will make

necessary the development of new mathematical tools.

To learn more about the spatio-temporal dynamics of the multi-layer model, it will be necessary

to integrate numerically the evolution equations. Since the cortical layers are two-dimensional sheets

in a good approximation, the project will extend the simulation techniques mentioned in section 2.1.4

for scalar models to vector models. The new techniques have to be optimised with respect to speed

and memory allocation due to the complexity of the model.
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Project 6: Linking neural populations and EEG by an electromagnetic forward

solution

The neuronal activity in cortical layers is the neural source of the EEG (Nunez and Srinivasan,

2006; Niedermeyer and Lopes da Silva, 2004). To explain the EEG based on neuronal population

activity in the cortical layers, the work will compute the electromagnetic forward solution, i.e. the

electric activity on the scalp dependent on the neural population activity in the cortex. The following

paragraphs explain the theory, the corresponding difficulties and ways to solve the problems.

Action potentials (AP) propagate along axonal trees and terminate at synapses. The work will

consider chemical synapses, though electric synapses, i.e. gap junctions, may also play a role in

neural processing. The APs induce ion currents at synapses and the laws of electromagnetism tells

us that the current flow in or out of the cell at the synapse induces a closed current loop (Nunez and

Srinivasan, 2006). In more physical terms, the synaptic response to an AP generates a current field

that extends spatially in the vicinity of the synapse, see Fig. 3.8.

Figure 3.8: An incoming AP induces a PSP in the membrane that represents a current source j with

a closed current loop. The sketch gives an example of an inhibitory synapses where the induced

current points out of the membrane.

Moreover synapses populate densely the dendritic tree of a single neuron. For instance, experi-

mental studies in rats (Megias et al, 2001) revealed that a single pyramidal cell in the hippocampus

receives inputs from ∼ 30.000 excitatory and ∼ 1700 inhibiory synapses in average. Considering all

synapses and the corresponding currents, it is in principle possible to compute the resulting current

field in good approximation as a linear superposition of the current fields of the individual synapses.

However, the synapse positions are difficult to detect and the geometry of the dendritic branches

and thus the spatial orientation of the current source and sinks is rather complex. Consequently in
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practice it is almost impossible to compute the exact synaptic current field close to a single neuron.

Physiological experiments may apply electrodes directly to the membrane of a single neuron and

measure the trans-membrane potential or may apply the electrodes to the tissue outside the neurons

and extract the extracellular potential, the so-called Local Field Potentials (LFP). Now let us assume

that we know the exact synaptic current field close to a neuron. Then the laws of electromagnetism

gives us the related electric potential. In the absence of free charges, the current field ~J(x, t) at spatial

location x and time t has no source or sink and thus its divergence vanishes, i.e.

~∇~J = 0 (3.1)

where ~∇ represents the three-dimensional differential vector operator ~∇ = (∂/∂x,∂/∂y,∂/∂ z). As-

suming a purely resistive linear medium, the current field may involve ohmic currents σ~E propor-

tional to the electric field ~E and currents originating from sources ~Js, i.e.

~J(x, t) = σ(x)~E(x, t)+ ~Js(x, t) . (3.2)

Here σ(x) is the spatially dependent conductivity tensor. Inserting Eq. (3.2) into Eq. (3.1) and

applying the relation of ~E to the electric potential ~E = −~∇Φ, we find

~∇
[

σ(x)~∇Φ(x, t)
]

= −s(x, t) , s(x, t) = −~∇~Js(x, t) (3.3)

with the electric potential Φ(x, t). The term~s(x, t) may be interpreted as the volume current source

density of the electric potential Φ that is generated by the induced synaptic currents ~Js(x, t). Con-

sequently the solution Φ(x, t) of Eq. (3.3) is the electric potential outside a single neuron and

Φ(x, t)−Φ(xr, t) represents the LFP measured in the neural tissue at spatial location x with the

reference electrode at xr.

Now let us discuss the link to the experimental EEG. It represents electric activity on the scalp

and is found experimentally to be strongly correlated to the brain activity (Regan, 1989). Figure 3.9

shows a dataset of experimental EEG measurements and illustrates the spatial distribution of activity

and its temporal evolution. Detailed studies in the last decades on the origin of the EEG revealed that

it originates from the top layer of the brain (Jirsa et al, 2002; Nunez and Srinivasan, 2006), i.e. the

neo-cortex. The EEG electrodes on the scalp have a diameter of about ∼ 1cm and detect the potential

difference between them and a reference electrode. In addition re-calling the small spatial scale of

neural activity sources (∼ 1mm and below), their spatial extention in the neural tissue and their

underlying complexity, the EEG electrodes detect the activity of a large number of neural sources

and thus it appears very difficult to explain the origin of the EEG by single sources. Nevertheless

the concept of neural dipols represent a promising approach to model EEG.

Neural dipols reflect the mean-field activity of neurons in spatial patches, i.e. small spatial

volumes. This mean-field activity results from the network interaction of the single neurons. Corre-

sponding to the paragraphs above, where we have introduced the current sources~s in a single neuron,
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Figure 3.9: Example of an EEG measurement taken during a visualization task experiment (Her-

rmann et al, 1999). At t = 0ms, a visual stimulus has been applied. The maps show the electric

potential difference on the scalp seen from above, where the nose is on the top side and the back of

the head is on the bottom side. The potential difference is taken between various spatial locations

on the scalp and a fixed base electrode, e.g. the ear or the nose. The data shown has been obtained

with 64 electrodes distributd over the head, the activity is interpolated between the spatial locations

of electrodes and the measured electric activity has been averaged over subjects and experimental

trials. The lower scale gives the encoding of the measured voltage.

here we consider a mesoscopic current dipol moment per unit volume P(~x, t) of the spatial patch at

spatial location~x

P(~x, t) =
1

W

∫

W
~ws(~x,~w, t)d3w, (3.4)

see Fig. 3.10. In this formulation, s(~x,~w, t) represents the volume current source density in Eq. (3.3)

Figure 3.10: The spatial patch at location x is the integration volume d3w to compute the mesoscopic

current dipol moment ~P, see Eq. 3.4. The dots represent the current sources which define the current

sourc density s(~x,~w, t) in Eq. (3.4).

at location ~w in the volume element, which is located at ~x. The volume element has the size of a

macro-column, i.e. a side length of about 1mm or smaller. To compute the potential on the scalp

from the current source density s, the standard theory of electromagnetism tells us to expand the

potential into an infinite series of multipoles and compute all multipole moments (Jackson, 1998).

Since it is very difficult to compute all multipoles, re-call that the electrodes on the scalp are far

from the neural sources in the neo-cortex compared to the size of the spatial patches. Consequently

high-order multipoles of the neural sources do not contribute much to the potential on the scalp and

it is sufficient to consider the few lowest orders in the multipole expansion. Considering just the
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lowest current multipole, i.e. the current dipol (3.4), the potential on the scalp reads

Φscal p(~r, t) =
∫

neo−cortex

~G(~r,~x)~P(~x, t) d3x. (3.5)

This model assumes the brain as a volume conductor and the Greens function G(~r,~x) takes into

account the electric and magnetic properties and the geometry of the brain, including the neural

tissue, the skull and the scalp. It is important to mention that the potential Φscal p in Eq. (3.4) is not

the same as in Eq. (3.3), which is the intracranial potential in the neural tissue.

Moreover, the integral equation (3.5) may also be formulated as the Poisson equation (Gramfort

et al, 2010; Kybic et al, 2005)

~∇
[

σ(x)~∇Φscal p(x, t)
]

= ~∇~Jp(x, t). (3.6)

Here, ~Jp is the spatial density distribution of current dipols. Most previous studies investigating

electromagnetic forward solutions choose a distribution of current dipols. However, most studies do

not discuss how this dipol distribution is related to the population activity in certain layers, though

this relation is crucial to understand the resulting EEG (Niedermeyer and Lopes da Silva, 2004).

For instance, the experimental data in Fig. 3.9 shows occipitally a changing polarity between 80ms

and 120ms, the so-called components P1 and N1, respectively. This change in polarity may be

modeled by a localized dipol distribution inverting the orientation during the sequence from P1

to N1. However, physiologically this polarity change originates from the activation of synapses

in different cortical layers (Niedermeyer and Lopes da Silva, 2004). Hence, a closer look to the

physiological structure is necessary to link neural population activity and the potential on the scalp

much better.

To illustrate further the relation of synaptic activity and the EEG, recall that the neo-cortex has 6

inter-connected horizontal layers of neurons and each layer exhibits a specific connection structure.

In the subsequent simple example, we assume a spatial patch where the upper and lower layers

contain excitatory and inhibitory synapses only, respectively, and the magnitude of the extracellular

current in the top and bottom layers is I. Moreover, the extracellular current I is treated to be

proprtional to the neural population activity considered in the Projects 2 - 5. Then the current source

density is proportional to I, i.e. s(~x,~w, t)∼±I. Moreover the resulting extracellular current density ~J

and the current dipol moment ~P ∼−~J are directed along the axis of the patch in opposite directions,

see Fig. 3.11. This simplified example illustrates well how the neural population activity generates

the current dipol moment ~P and, consequently, how to determine the electric potential on the scalp

by Eq. (3.5). Hence, it is important to know the locations of excitatory and inhibitory synapses in

the different layers to compute the corresponding scalp potential.

The major task of the project is the link of the physiological structure, the corresponding neural

population activity and the EEG. To this end, the project will consider the population model de-

veloped in Project 5, derive a dipol distribution based on the physiological and functional structure
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Figure 3.11: Illustrative example for a spatial patch containing neurons with excitatory (on top) and

inhibitory (on bottom) synapses. The resulting extracellular current density ~J(x, t) is directed along

the axis of the patch and in opposite direction to the current dipol moment ~P(x, t). The variables

V̄e(x, t) and V̄i(x, t) represent the averaged membrane potentials of excitatory and inhibitory synapses,

respectively, and are proprtional to the extracellular synaptic currents.

of the cortex and map it to a dipol distribution generating the EEG. The specific cortical area un-

der study may be the parietal cortex, cf. Project 2. Moreover, the electromagnetic foward solution

will be computed by the application of the already developed software tool OPENMEEG developed

at INRIA in Sophia-Antipolis (Gramfort et al, 2010). This tool computes the EEG based on an

ensemble of current dipoles.
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Project 7: Multivariate analysis of EEG obtained during general anaesthesia

In all projects given above, the work includes the comparison of the theoretical results to experi-

mental data obtained during general anaesthesia. This comparison stipulates the frequency analysis

of experimental data1. For instance, the analysis of single electrode EEG activity in the context of

GA includes the computation of the power spectrum or the bi-spectral indices (Miller et al, 2004).

Moreover, the frequency analysis of multi-electrode EEG promises to provide deeper insights into

neural dynamics during anaesthesia (Johnson et al, 2003; Gugino et al, 2001; John and Prichep,

2005; John et al, 2001).

Figure 3.12: Example EEG activity under propfol/fentanil anaesthesia. The spatial maps color-

encode the Z-score transformed absolute power of oscillations within the delta-(1.5−3.5Hz), theta-

(3.5− 7.5Hz), alpha-(7.5− 12.5Hz) and beta-(12.5− 25Hz) band averaged over 16 subjects. The

rows show the EEG activity for anaesthetic concentrations at baseline level, light sedation (denoted

as 2 PRE-LOC), deeper sedation (denoted as 1 PRE-LOC) and at the loss of consciousness (denoted

as LOC). Figure modified from (Gugino et al, 2001).

Figure 3.12 shows averaged EEG during propofol anaesthesia at different stages of conscious-

ness. We observe a spatio-temporal change of electric activity on the scalp, which is specific for

1Experimental data will be provided, .e.g. by the University of Auckland, New Zealand, and the Medical Faculty in

Strasbourg, France.
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each frequency band. For instance, oscillations in the alpha-band are stronger in the frontal areas

than in the occipital areas after loss of consciousness. These results illustrate that the spatial actitvity

distribution in EEG may play a role in the understanding of GA. Moreover future multivariate data

analysis should consider the spatio-temporal dynamics of EEG-patterns in specific frequency bands

separately. This analysis would reveal a sudden jump of the activity shown in Fig. 3.12 in the delta-

band close to the loss of consciousness supporting the hypothesis of phase transition, cf. Project

4.

To gain deeper insight into the spatio-temporal dynamics of the underlying neural populations,

an additional dynamic approach may shed some light on the data from another side. Let us consider

the EEG-data with N electrodes, call it ~s(t) ∈ RN and decompose it into a finite sum of spatial

patterns~vi ∈ RN , i = 1 . . .N evolving in time with amplitude ai(t), i.e.

~s(t) =
N

∑
i=1

ai(t)~vi .

The fit of the temporal dynamics, i.e of {ai(t)}, to ordinary differential equations synchronous to

the projection on spatial modes has been successfull in the analysis of EEG during petit-mal epilep-

sie (Friedrich and Uhl, 1996), in event-related potentials (Uhl et al, 1998), early evoked poten-

tials (Hutt and Riedel, 2003) and in the souce localization of neural generators (Uhl et al, 2001).

Figure 3.13 illustrates the separation in spatial modes and temporal amplitudes applied to evoked

Figure 3.13: Optimal decomposition of the component P30 in 32-channel middle-latent auditory

evoked potentials (averaged EEG) by synchronous fit of dynamical system. a) Optimal projection

onto two spatial modes ~v1, ~v2 and their corresponding amplitudes a1(t), a2(t). The reconstructed

signal represents the solution of fitted ordinary differential equations fit to the projected signal. The

fit to the original data is ∼ 92%. b) Trajectories of the determined dynamical system reveal the

underlying topology of the fitted dynamical system. Figures modified from (Hutt and Riedel, 2003).

potentials. It also presents the topology of the dynamical system fitted to the amplitudes. This anal-
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Figure 3.14: Illustration of the drift reconstruction of a stochastic process from simulated

data (Gradisek et al, 2000). a) Stochastic time series (x1(t),x2(t))
t in two dimensions obeying a

stochastic van der Pol oscillator model. b) Reconstructed drift coefficient ~D(1)(x1,x2) shown as

vector field which gives the topology similar to Fig. 3.13b) and two deterministic trajectories gained

from the reconstructed topology by forward simulation. Figure modified from (Gradisek et al, 2000).

ysis technique, called Dynamical Systems Based Modeling (DSBM), works well for data with high

signal-to-noise ratios.

Since, however, experimental data obtained during anaesthesia exhibit a high level of noise and

a rather low signal-to-noise ratio, future work will extend the DSBM by fitting stochastic differential

equations to the amplitudes {ai(t)}. To this end, the time series of the spatial modes ai(t) will

be considered as stochastic processes and the novel method computes the corresponding drift and

diffusion coefficients (Siegert et al, 1998; Siefert et al, 2003)

D
(1)
i (~x, t) = lim

τ
〈ai(t + τ)− xi〉~a(t)=~x

D
(2)
i j (~x, t) = lim

τ
〈(ai(t + τ)− xi)(X j(t + τ)− x j)〉~a(t)=~x

where~a(t) is the multivariate stochastic projection amplitude. The drift coefficient ~D(1)(x, t) reflects

the topology of the underlying stochastic processes, whereas the diffusion coefficient matrix D2(x, t)

indicates the level of noise in the data. Figure 3.14 illustrates the extration of the drift coefficient

from stochastic data.

In the framework of EEG-analysis, the spatial modes of the EEG interact dynamically with

each other according to the extracted topology, i.e. the drift, and the noise intensity. Now, such

interactions are assumed to reflect interacting subnetworks in the neural population that generates the

EEG. Consequently, the spatial EEG-maps may be interpreted to correspond to spatial subnetworks
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in the neural population and the dynamical EEG-topology and noise intensity reflects the dynamics

of underlying neural interactions, i.e. the dynamical topology of interacting subnetworks. This link

of neural subnetworks to EEG-patterns is supported by the linear electromagnetic relation of neural

source amplitude to electric activity on the scalp, cf. Project 6. Moreover the extracted topology

of the EEG indicates functional interactions of subnetworks and constrains the neural population

dynamics to specific interactions.

Summarizing, this inverse approach yields information on interacting subnetworks in neural pop-

ulations and their functional interactions. This information represents a contraint which, in turn, may

yield conditions for physiological parameters and may reject certain theoretical dynamical phenom-

ena in neural populations.



76 CHAPTER 3. RESEARCH PERSPECTIVE

Further perspectives

The previous Projects 1 to 7 represent just the backbone of a more general future work in general

anaesthesia. The described projects may be extended in several ways. Project 1 focusses on the in-

traveneous anaesthetic propofol, whereas medical procedures administer other anaesthetics as well,

such as the volatiles and nitrous oxides. Moreover, todays general anaesthesia administer a combi-

nation of several drugs to guarantee the single anaesthetic actions. For instance, frequently propofol

is applied in combination with remifentanil to guarantee both the the hypnotic and analgesic action.

Hence future studies shall treat this combination in theoretical models as well according to Project

1, 2, 3 and 5.

The nonlinear analysis in Project 4 assumes a single cortical population driven by external stim-

uli, though the cortex is embedded in a delayed recurrent network of brain structures. More extended

studies will consider the delayed cortico-thalamic connections, the thalamic activity and the delayed

thalamo-cortical feedback. In addition, this closed loop is driven by other sub-cortical structures,

such as the ascending arousal system. Since the most prominent activities of the thalamus are tonic

spiking and bursting in single neurons, the first novel challenge will be the development of a popu-

lation model taking into account these single neuron activity types in a population model.
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Personal details

affiliation: Charge de Recherche Premiere Classe (CR1), INRIA Nancy Grand Est, Team

CORTEX, 615 rue du Jardin Botanique, 54602 Villers-les-Nancy Cedex

email: axel.hutt@loria.fr

homepage: http://www.loria.fr/˜huttaxel/

Academic Qualifications

1991-1997 Study of Physics at the University of Stuttgart, Germany

1997 Diploma in Physics

1997-2000 PhD-project at the Max Planck Institute of Cognitive Neuroscience in Leipzig,

Germany

2000 Research Associate at the Max Planck Institute of Cognitive Neuroscience in

Leipzig, Germany

PhD in Physics at the University of Stuttgart, Germany

2001-2002 Schloessmann Fellow at the Max Planck Institute for Mathematics in the Sciences

in Leipzig, Germany

2002 Visiting Postdoc position at the Faculty of Human Movement Sciences, Vrije

Universiteit Amsterdam, Netherlands (3 months)

2002-2004 Postdoctoral position at the Weierstrass Institute for Applied Analysis and

Stochastics in Berlin, Germany

2004-2007 Wissenschaftlicher Assistent at the Department of Physics, Humboldt University

Berlin, Germany

2006-2007 Research Associate at the Department of Physics at University of Ottawa, Canada

(sabbatical)

2007- Chargé de Recherche (CR1) at INRIA Nancy

Active Cooperations outside the own group − Theoretical

• Dr. Evelyn Buckwar, Heriot-Watts University Edinburgh, UK: numerics of stochastic delay

differential equations in neural systems

• Prof. André Longtin, Department of Physics, University of Ottawa, Ottawa, Canada: neural

populations subject to delay and noise

• Prof. Linghai Zhang, Department of Mathematics, Lehigh University, Bethlehem, USA: ef-

fects of distributed axonal transmission speeds in neural systems
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Active Cooperations outside the own group − Experimental

• Dr. Matthias Munk, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany:

data analysis and synchronization in Local Field Potentials

• Prof. Torsten Schubert, Department of Psychology, Ludwigs-Maximillians University

Muenchen, Germany: modeling of priming effects in psychophysical experiments

• Prof. Jamie Sleigh, University of Auckland, New Zealand: analysis of EEG obtained experi-

mentally during anaesthesia

Grants and Awards:

1999 Summer School Fellowship in Cognitive Neuroscience, Dartmouth College, USA

2000 Schloessmann Postdoc Fellowship of the Max Planck Society, Germany (2 years)

2008 British Royal Society Incoming Visitor Grant

INRIA-Explorateur Grant

CORDI PhD-project grant (3 years)

2009-2010 International project CNRS Neuroinformatique with Chile. Topic: Neural

correlations in the retina

2011-2015 ERC Starting Grant. Topic: Mathematical modeling of anaesthesia (MATHANA)

Reviewer and editorial activities

Journals Physical Review Letters (since 2000), Visual Cognition (2000), Physical Review

E (since 2002), Neurocomputing (2005), SIAM J. Applied Mathematics (since

2005).

Since 2006: SIAM J. Applied Dynamical Systems, Europhysics Letters, Physica

D, Physics Letters A, Computer Methods and Programs in Biomedicine.

Since 2007 - 2008: New J. of Physics, Biological Cybernetics, J. of Biological

Physics, PloS Computational Biology, J. Physics A.

Since 2009 - 2010: Physica A, Journal Mathematical Biology, Neuroimage,

Frontiers in Computational Neuroscience, Cognitive Neurodynamics,

Nonlinearity, European Journal of Physics.

Conference Neurocomp 2010, BMIC 2011

Societies The Netherlands Organization for Scientific Research - NWO, Marsden Fund

New Zealand

Editor Review Editor for Frontiers in Chronobioneurology and Sleep Medicine (since

2010)
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Teaching experience at universities

1993-1997 Tutor of lecture excercises in Theoretical Physics, Experimental Physics,

Mathematics, and experimental laboratory at University of Stuttgart

1998-2001 Tutor of lecture excercises in Theoretical Physics at University of Leipzig

2003-2006 Tutor of lecture excercises in Experimental and Theoretical Physics at the

Humboldt University Berlin

2005 Single lectures in basic courses in Experimental and Theoretical Physics at the

Humboldt University Berlin

Full lecture course Dynamics in neural systems for physicists at the Humboldt

University Berlin (winter semester 2005/2006)

Workshop organization

1998 Assistant organizer of the international workshop Analysis of Neurophysiological Brain

Functioning at the Max Planck Institute of Cognitive Neuroscience in Leipzig

2005 Co-organizer of a minisymposium on Spatio-Temporal Dissipative Structures Induced

by Non-Local Interactions at the SIAM Conference of Applications on Dynamical

Systems in Snowbird, USA

Assistant organizer of the international conference 100 years of Brownian Motion in

Erice, Italy funded by the European Science Foundation

2007 Organizer of the workshop Modeling of anesthesia and sleep by neuronal networks at

the Computational Neuroscience Meeting (CNS) in Toronto, Canada

2009 Organizer of the workshop Anesthesia and Sleep: recent theoretical and experimental

aspects at the Computational Neuroscience Meeting (CNS) in Berlin, Germany

Memberships

1998- Member of German Physical Society

2011- Member of Federation of European Neuroscience Societies (FENS)

2010-2014 Elected member of the Board of Directors, Organisation for Computational

Neuroscience (CNS)
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Supervision of students

Undergraduates

• 1993-2006: Leader of lecture tutorials accompanying the lecture courses in Experimental

Physics, Theoretical Physics and Mathematics at University of Stuttgart, University of Leipzig,

Humboldt University Berlin

• 2002-2004: Supervision of student in the software implementation of interface between Mat-

lab, R and C++ at Weierstrass Institute for Applied Analysis and Stochastics Berlin.

• 2004-2006: Supervision of students in the development of software packages for stochastic

differential equation solvers (programming language: C/C++) at the Department of Physics at

Humboldt University Berlin.

• 2008: Supervision of internship students from Rumania (6 months) at INRIA Nancy.

• 2009: Supervision of student from IUT Nancy to implement a Graphical User Interface in

PYTHON at INRIA Nancy.

• 2009: Supervision of internship student from Canada (3 months) at INRIA Nancy.

• 2010: Supervision of internship student from Mexica (6 months) at INRIA Nancy

Diploma students

• 2006: At Department of Physics, Humboldt Universitaet Berlin, Michael RADING has worked

on the pattern formation in non-locally interacting neural populations (Diploma in Physics, 1

year)
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• 2006: At Department of Physics, Humboldt University Berlin, Helmut SCHMIDT has worked

on fronts and bumps in heterogeneous neural populations (Diploma in Physics, 1 year). Work

resulted in publication: H.Schmidt, A.Hutt and L.Schimansky-Geier, Wave fronts in inhomo-

geneous neural field models, Physica D 238 (14), 1101-1112 (2009)

Master students

• 2009: Wahiba TAOUALI has studied at the Ecole Nationale Superieur des Mines de Nancy

and has worked at INRIA Nancy on her Master 2 with the topic Modeling of Neurons’ popu-

lations of the Deep Superior Colliculus : Control of Saccadic Eye Movements.

• 2009: Maximilien COLANGE has studied at the Ecole Nationale Superieur (ENS) Cachan

and has worked at INRIA Nancy on his Master 1 with the topic Dynamical neural model in

general anesthesia.

• Feb.-June 2011: Remie BOES studies Mathematics at University Henri-Poincaré Nancy and

works at INRIA Nancy on his Master 1 with the topic Importance of extra-synaptic receptors

on anaesthetic action on dendrites.

PhD-students

• 2008-2011: At INRIA Nancy and University Henri-Poincare Nancy, Maxime RIO is working

on The detection of multivariate synchronization in experimental brain signals.

• 2011-2014: At the Humboldt University Berlin, the University Henri-Poincare Nancy and

INRIA Nancy (co-tutelle), Christian WEBER is working on Stochastic nonlinear dynamics in

neural fields with application to general anaesthesia.
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Summary of PhD-project

Motivation

The PhD-thesis has the title Analysis and Modelling of Spatio-temporal Signals and shows results

on studies of event-related potentials in experimental encephalographic data (EEG) obtained dur-

ing cognitive experiments. Such potentials are amplitude modulations in multivariate EEG-signals

occurring synchronously in a subset of signals in a certain time window. Moreover, the evoked po-

tentials occur always for identical experimental conditions and hence represent markers in cognitive

experiments. They play an important role in experimental neuropsychology applying EEG. To learn

more about such multivariate signal features, the task of the PhD work was to extract mathemati-

cal models for single evoked potentials. Such models were low-dimensional ordinary differential

equations.

Methods

By virtue of the high dimension and the temporally transient nature of experimental EEG-data, the

work identified two major problems: to model the evoked potentials, (i) at first it was necessary

to detect the time windows of their occurrence and (ii) the multivariate signal had to be projected

optimally in these time windows to a low-dimensional multivariate signal. These tasks have been

solved as follows:

• (i) A clustering technique was developed to detect the time windows of the evoked potentials.

This technique extracted a cluster quality measure based on the standard un-supervised cluster

technique K-Means, which reflected the (time-dependent) probability for an evoked potential.

This approach considered all time series in the multivariate EEG-signal.
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• (ii) Knowing these time windows, an extended Principal Component Analysis has been de-

veloped to project the EEG-signal optimally to a low-dimensional space and, synchronously,

determine ordinary differential equation systems for the projected signals. Since this projec-

tion technique is described in analytical terms, it is fast and more efficient than previously

developed tools.

Results

The clustering method has been applied to artificial and few experimental datasets and extracted suc-

cessfully evoked potentials in time-windows in good accordance to previous results. The detection

method has worked very well even for rather noisy signals. Moreover, low-dimensional differential

equations have been extracted for some EEG-signals.
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