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Introduction

L’origine de ce travail de thése est une affaire de couloir traversé dans un sens
puis dans l'autre. Le bureau de Pierre Simonnet et le mien se font face au pre-
mier étage d’un batiment de la faculté des sciences, séparés par un simple couloir.
Métaphoriquement, ce couloir peut se voir comme une frontiére qui sépare ici les ma-
thématiques de I'informatique et de la physique tant du point de vue de la recherche
que de celui de 'enseignement. C’est Pierre qui le premier franchi le Rubicon, venant
dans mon bureau avec des objets que je ne connaissais pas encore - langages de mots
finis, de mots infinis, automates finis - et deux ou trois problémes techniques que
d’assez sommaires outils d’arithmétique sur Z, de théorie des groupes ou d’algebre

linéaire permirent de résoudre.

C’est ensuite moi qui I’ai rejoint de 'autre coté du couloir en m’investissant
dans I'enseignement des mathématiques pour l'informatique pour les filieres NTIC.
A cette occasion j’ai pu apprendre et enseigner différents aspects du théoréme de
Kleene, la déterminisation des automates, la minimisation des automates, 1’algo-
rithme de Berry-Sethi et aussi appréhender d’autres domaines ot mathématiques
et informatique restent intimement liées comme la cryptographie ou les codes dé-
tecteurs et correcteurs d’erreurs. Cette aventure d’enseignement nous a permis de
jeter les bases de ce que serait ce travail, résolument transversal et ne perdant pas
le lien avec I’enseignement. Actuellement a I'université de Corse un étudiant de pre-
miére année n’entend pas parler de relations sur les ensembles sans graphes et en
seconde année les exemples classiques des fonctions de Lebesgue-Scheffer-Sierpinski
et de Péano sont vus et implémentés dans le langage de progammation de calcul for-
mel Maple au moyen de transducteurs en utilisant la représentation des réels dans

diverses bases.

Dans ce mémoire nous avons voulu étudier les notions de continuité, fonctions
premiére classe (limites simples de suites fonctions continues), fonctions de deuxiéme
classe (limites simples de suites de fonctions de premiére classe) chéres au mathéma-
ticien dans le cadre des fonctions définissables par automates qui devrait intéresser

I'informaticien.



0.1. Langages rationnels

0.1 Langages rationnels

Sur les langages rationnels, que dit le théoréme de Kleene?

Un langage est rationnel si et seulement si il est reconnu par un automate fini.

Exemple 1. Soit L le langage ne pas avoir deur b consécutifs et finir par b sur
Ualphabet {a,b}. Une expression rationnelle de L est (a + ba)*b et L est reconnu par

Uautomate (minimal) de la figure 0.1.

F1G. 0.1 — Automate reconnaissant le langage (a + ba)*b

Nous connaissons plusieurs algorithmes permettant de passer de l'automate A au

langage L C A* et inversement. Deux parmi eux nous intéressent particuliérement.

Le premier, I’algorithme de Mac Naughton Yamada permet de passer de I’auto-
mate a l'expression rationnelle en considérant les XISZ), I’ensemble des mots de A*
qui permettent de passer de I'état p a I’état ¢ en ne transitant que par des états < k.
Dans P(A*) I'ensemble des parties de A* muni d’une structure de semi-anneau avec

le ou (+) et la concaténation (.) on a la relation de récurrence suivante:

k1) _ yo(k (k) (k) Ty
ng,q ) = ng,q) + Xp,k+1' <Xk+1,k+1) 'Xk+1,q
Le langage reconnu par 'automate étant L = Zie”eF Xi(j}) ou [ est I'ensemble
des états initiaux, F' 'ensemble des états finaux et n le nombre d’états de ’automate.
Cet algorithme fait partie de la méme famille que ceux de Roy Warshall ou celui
de Floyd Warshall. En fait c’est le méme algorithme, il suffit de changer de semi

anneau !

L’algorithme de Roy Warshall permet de calculer la cloture transitive d’une re-
lation binaire R sur un ensemble E en se placant dans le semi-anneau des matrices
Booléennes. On considére les matrices S*) d’adjacence des relations: i est en rela-

tion avec j si il existe un chemin dans le graphe de R liant 7 & j en ne transitant
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que par des sommets < k. On a la récurrence suivante :

k+1 k k k
Si(,j )= Sz'(,j) + Si(,k)-f—l'Sl(c-i—)l,j

Si n est le cardinal de E, la matrice S est alors la matrice d’adjacence de la

cloture transitive de R.

L’algorithme de Floyd Warshall s’intéresse lui au probléme du plus court chemin
(ou de cout minimal) dans un graphe. On se place ici dans le semi-anneau des
matrices & coefficients dans N = N U oo muni des lois min et +. S est la matrice
dont les coefficients Sg;) représentent le cotit minimal d’un chemin allant de 7 a j en
ne transitant que par des sommets < k. On a la récurrence suivante :

(k+1) _ (k) (k) (k)
Si; =~ =min (Sm. Sigker T 5k+1,j>
Et la matrice S™ ot n est le nombre de sommet du graphe est la matrice des

plus courts chemins.

Intéressons nous maintenant & une méthode qui permet de passer du langage
a 'automate. Considérons un langage rationnel L. C A*, I’ensemble des quotients
a gauche {u™'Llu € A*} est un ensemble fini avec u 'L = {v € A*|uv € L}.
La relation (uv) 'L = v~ !'(u"'L) permet de déterminer aisément les u 'L et de
construire un automate qui reconnait L et dont les états ne sont autres que les
u~'L: cet automate est I'automate minimal qui reconnait L. Nous verrons bientot
que cette stratégie peut étre employée dans le cadre d'un alphabet a une lettre et
en changeant juste de semi-anneau pour passer de la série rationnelle & la fraction

rationnelle.

Remarque 1. Si cette méthode s’avére efficace et élégante sur des exemples simples,
elle n’est pas du tout opérationnelle dans le cas général puisque 'on a besoin de sa-
voir si deux expressions rationnelles définissent le méme langage. Et c’est justement
grdace a l'automate minimal que ['on sait répondre o cette question! Or ce passage
de 'expression rationnelle a un automate qui la reconnait est trés intéressant pour
le programmeur systéme. La commande awk du systéme UNIX permet de filtrer les
lignes d’un fichier a ’aide d’une expression rationnelle. L’algorithme de Berry-Sethi
constitue une bonne méthode, efficace et opérationnelle permettant de passer de l’ex-

pression rationnelle a l'automate (non déterministe) qui reconnait le langage.

Ces digressions voulaient montrer que dans les deux sens le théoréme de Kleene

a un contenu algorithmique fort et utile pour l'informaticien. Mais aussi que si
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I’on regarde un graphe par le biais de sa matrice d’adjacence tout ceci n’est que
de I'algébre linéaire avec des matrices a coefficients dans des semi-anneaux et cela

pourrait bien intéresser I’enseignant de mathématiques.

0.2 Seéries rationnelles

Le théoréme de Schiitzenberger étend le résultat de Kleene aux séries ration-

nelles :
Une série est K rationnelle si et seulement si elle est K reconnaissable.

Ce théoréeme dit en substance que ce qui a été prouvé par Kleene dans le semi-anneau

de Boole reste vrai dans n’importe quel semi-anneau K.

Afin d’illustrer notre propos dans le cas d’un alphabet a une lettre A = {z}, du
semi-anneau qui sera un corps (R) et dans un réflexe pavlovien, regardons le cas de

la série suivante:
—+o0
S(z) = g F,z2"
n=0

ol F, désigne le n®™¢ terme de la suite de Fibonacci avec Fy = 0 et F} = 1.

0.2.1 De la série a la fraction

Regardons les quotient a gauche de S':

S(z) = ;:i%Fnz”
2718(z) = ;:S)Fnﬂz" _ @
(22)71S(2) = I Fpper = SETHAAY)

Comme F, 5 — F,;1 — F,, =0, on en déduit:

(22)719(2) — 271S(2) — S(2) =0
Et par suite: S(z) = ﬁ = (2 + 2%)*z.

Comme la relation de récurrence linéaire que nous avons utilisée pour décrire la
rationalité de S est la plus courte, le polynome caractéristique de la matrice associé
A cette représentation linéaire est égal au polynome minimal, ici P,(2) = 22 — 2z — 1.
La fraction obtenue est normalisée (irréductible) et le quotient Q(z) =1 — 2z — 2? de

celle ci est le polynome réciproque de P, : Q(z) = 22Py, (%)
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Remarque 2. Il est amusant de constater que si sur les langages rationnels [’étude
des quotients a gauche nous avait permis de passer de [’expression rationnelle a
lautomate, ici on passe de la relation de récurrence (matrice, automate & poids) a

la fraction rationnelle (expression rationnelle).

Remarque 3. Ici c’est le point de départ qui pose probleme. Nous ne sommes pas
simplement partis d’une série reconnaissable. Nous sommes partis d’une série re-
connaissable en connaissant déja la relation de récurrence linéaire qui lie ses coef-
ficients ou ce qui est équivalent en connaissant une représentation linéaire de cette
série. Etant donné une série formelle, comment savoir si elle est reconnaissable et
comment trouver une représentation linéaire de celle-ci ? On sait qu’une série for-
melle sur K, S € K((A)) est K reconnaissable si et seulement si il existe un K
sous-module gauche M de K((A)) de type fini, stable par les opérations de quotient
a gauche qui contienne S. A partir de ce sous module, on sait construire une repré-
sentation linéaire de la série. Un moyen de construire M est d’étudier les quotients
& gauche z71S, z € A* et de considérer le sous module engendré par ces quotients.
Savoir si ce sous-module est de type fini nous raméne exactement sur le probléme

évoqué a la remarque 1 dans le cas du semi-anneau de Boole.

0.2.2 De la fraction a la série

Regardons toujours sur cet exemple un moyen retrouver la relation de récurrence
et de retrouver ainsi la série rationnelle et un automate a poids qui la reconnait.

On cherche donc la récurrence linéaire qui lie les coefficients de la série S(z) =

+oo

nep @n2" de telle sorte que:

S(z) = ——

1 —2— 22

De cette équation, on déduit immédiatement :

+oo
ap + (a1 — ag)z + Z(an — Uy —ay2)2" =0

n=2
apg = 0
D’ou a; = 1
Ap, = Qp_1+ap_2 VYVn>2

Il s’en suit pour tout n que a, = (1 0) G é) ((1)) Ce qui permet de construire
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l'automate a poids de la figure 0.2. Ici, la matrice étant a coefficients dans {0,1},

tous les poids valent 1.

F1G. 0.2 — Suite de fibonacci

Remarque 4. Les graphes des automates des figures 0.2 et 0.1 sont identiques. Dans
le premier on l’intéresse a un probléme de reconnaissance et dans le second au nombre
I.(w) w alasérie), o, Card(L(A") 2".
Cet exemple est générique, pour tout langage rationnel L la série inzo Card(L(A") z

de chemins : on est passé de la série ), 4.

n

est N-rationnelle et peut donc s’écrire sous forme de fraction rationnelle. C’est pour
cette raison et a la suite de Marcel Paul Schiitzenberger que l’école francaise de théo-
rie des automates a adopté la terminologie de langages rationnels plutot que celle

utilisée par les anglo-saxons de langages réguliers.

0.3 Fonctions rationnelles

Une fonction F' : A* — B* est dite rationnelle si son graphe est une partie ra-
tionnelle de A* x B*. La fonctionnalité est une propriété décidable sur les relations

rationnelles de A* x B*.

Pour poursuivre I'introduction des notions qui seront développées plus tard, nous

continuons & illustrer notre propos avec un exemple qui utilise la suite de Fibonacci.

Exemple 2. Considérons ’application suivante :
vi:{0,1}% — N

n
u E w; F,_;  avec n la longueur du mot u
i=0

Ou (Fy)nen est la suite de Fibonacci avec Foy =1 et Fy = 2.

Rappelons que vp est surjective et non injective : tout entier posséde une repré-

sentation en base de Fibonacci qui peut ne pas étre unique en raison de la relation
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de récurrence F,. o = F,11 + F,.
v(1011) = v¢(1100) = v(10000) = 8

Soit L, = {u € {0,1}7| ug = 1 et vp(u) = n}. Pour tout n de N, L, est un
sous ensemble fini de {0,1}" qui posséde un mazimum pour ’ordre lexicographique.
Le transducteur di a Marcel Paul Schiitzenberger défini sur 0{0,1}* de la figure 0.3
réalise la fonction dite de normalisation qui fournit ce maximum lexicographique.
L’image de cette fonction est évidemment (04 10)*(1 + €) (I’ensemble des mots qui
n‘ont pas deuz 1 consécutifs). Sur l’entrée, l'automate est non déterministe et non

ambigu.

0/0,1/1

Fi1G. 0.3 — Normalisation en base de fibonacci

Une idée assez naturelle est de vouloir étendre de telles fonctions aux mots infinis,
ici de passer de la représentation des entiers en base de Fibonacci a la représenta-
tion des réel en base du nombre d’or. Si on fait opérer le transducteur de la figure
0.3 sur les mots infinis de 0{0,1}* avec une condition de Biichi, il reste non am-
bigu sur I'entrée mais jusqu’ou doit on lire le mot a avant de pouvoir connaitre les
premiére lettres de son image? Assez loin et méme plus si 'on considére les suites
((01)"10%)pen ou ((01)"1%),,¢n, une retenue pouvant se propager depuis 'infini. Cette
fonction a encore pour image I’ensemble des mots qui n’ont pas deux 1 consécutifs,
pour autant il ne s’agit plus d’une fonction de normalisation : il suffit de considérer
les mots (01)¥ et 10¢, invariants par la fonction et qui représentent le méme réel (é)
si ’on interpréte ceux-ci en base du nombre d’or ¢.

10



0.4. Fonctions w-rationnelles

Toute fonction rationnelle sur les mots finis peut se décomposer en une appli-
cation sous-séquentielle gauche suivie d’une sous-séquentielle droite. D’un point de
vue topologique étendre aux mots infinis une application sous-séquentielle gauche
fournit une application lipschitzienne alors que la méme intention sur une applica-
tion sous-séquentielle droite suggére la discontinuité. C’est ce qui se passe ici avec
cette retenue qui peut se propager depuis I'infini. On trouvera de nombreuses infor-
mations sur les relations rationnelles et les fonctions rationnelles dans les livres de

Jean Berstel et de Jacques Sakarovitch.

L’objet principal de ce travail de thése a été d’étudier la complexité topologique
de telles fonctions, d’établir des résultats de décidabilité sur celle-ci et éventuellement
d’étendre ces résultats a certaines fonctions d’une variable réelles en utilisant la

représentation de ceux-ci en base Pisot.

0.4 Fonctions w-rationnelles

L’ensemble A muni de la topologie produit de celle de A (topologie discréte)

est un espace métrisable. La distance usuelle utilisée d est la suivante :

dla,f) = 1/2™ avec n=min{i € w | (i) # B(i)} si a # [
dla,f) = Osia=0

La famille (uA“),ca+ constitue une base d’ouverts fermés pour cette topologie.
L’espace (A“,d) est un espace polonais ce qui permet d’utiliser des résultats d’ana-

lyse classique tels le théoréme de Baire.

Une relation R C A¥ x B“ est w-rationnelle si elle est reconnaissable par un
automate de Biichi asynchrone, c’est a dire dont les transitions sont étiquetées par
des couples de mots. La complexité topologique de ces relations a été étudiée par
Olivier Finkel. Il montre qu’il existe des relations w-rationnelles qui sont analytiques
complétes. Il en découle des résultats d’indécidabilités tels: on ne peut décider si une
relation w-rationnelle est Borel, ouverte, 39... Toutefois, comme 1’a montré Francoise
Gire, la fonctionnalité est décidable. Dans le cas synchrone c’est a dire quand la re-
lation est reconnue par un automate de Biichi dont les transitions sont étiquetées
par des couples de lettres, les relations restent boréliennes (combinaisons booléennes
de X9).

11
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Si on s’intéresse a la complexité topologique des fonctions w-rationnelles, le cadre
est celui de la hiérarchie des boréliens et des classes de Baire. On remarque tout
d’abord que ces fonctions sont au plus de classe 2 (lemme 2.15). Christophe Prieur
a montré que le probléme de la continuité est décidable: il s’agit d’une conséquence
du théoréme du graphe fermé et du fait que 'on peut calculer de maniére effective
I’adhérence topologique d’une relation w-rationnelle. Il reste donc a savoir si étre
de classe 1 est décidable ou non. Nous avons pu répondre par laffirmative (théo-
réme 1.18) dans le cas synchrone en utilisant un résultat de Sierpinski sur les sur
et sous-graphes dont nous donnons une démonstration dans notre contexte (propo-
sition 1.17). Nous avons voulu illustrer notre propos en étendant aux mot infinis le
transducteur sous-séquentiel droit implémentant 1’algorithme de Booth qui minimise
le nombre de 1 dans la représentation des entiers en base d’Avizienis. La technique

de Booth est bien connu de la communauté de I'arithmétique des ordinateurs.

L’ensemble des points de continuité d’une fonction est toujours ITy. Dans le cas
synchrone cet ensemble reconnaissable par un automate de Biichi déterministe (pro-
position 1.15). Si de plus la fonction est de classe 1 cet ensemble est un IT) dense
(théoréme 1.10). Une fonction de classe 2 peut n’avoir aucun point de continuité
(penser a la fonction caractéristique de Q). Un résultat de Baire dit qu'une fonction
f n’est pas de classe 1 si et seulement si il existe un fermé F' non vide tel que la
restriction de f a F n’ait aucun point de continuité. Nous prouvons une version

automate de ce théoréme (corollaire 2.33):

Une fonction w rationnelle n’est pas de classe 1 si et seulement si il existe un
fermé F non vide reconnaissable par un automate de Biichi tel que la restriction de

f a F n’ait aucun point de continuité.

La démonstration de ce dernier résultat repose sur la dérivation de Hausdorff
qui s’arréte au bout d'un nombre fini d’étapes sur les langages w-rationnels. Il serait
plaisant que le vieux théoréme de Baire caractérisant les fonctions de premiére classe

puisse avoir une application concréte en arithmétique des ordinateurs.
Récemment Olivier Carton et Olivier Finkel ont montré que la nulle part conti-

nuité était indécidable pour les fonctions w-rationnelles. Ceci suggére que le probléme

de savoir si une fonction w-rationnelle est de premiére classe est aussi indécidable.
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0.5. Représentation des réels en base 6

Enfin nous nous sommes intéressés aux orbites périodiques des fonctions définis-
sables en base Pisot par des transducteurs synchrones au travers du théoréme de Sar-
kovski (théoréme 3.7). Contrairement aux cas précédents ce résultat sur les fonctions
réelles ne s’étend pas directement aux cas des fonctions w-rationnelles: I'existence
d’un point périodique d’ordre m n’implique pas nécessairement l’existence de points
périodiques d’ordre inférieurs dans l'ordre de Sarkovski comme l'illustre I'exemple
3. La raison est que le théoréme de Sarkovski est un résultat de connexité alors que
(A¥.d) n’est pas connexe. Ce théoréme nous permet toutefois d’obtenir un résultat
de décidabilité dans le cadre de fonctions réelles que 'on peut définir & partir de

fonctions w rationnelles synchrones et qui font I’objet de la section suivante.

Exemple 3. La fonction définie sur 3“ grace au transducteur de la figure 0.4 n'a
que des points périodique de période 3 et aucun d’autre période alors que 3 est le

mazimum dans 'ordre de Sarkovsk:.

0/1,1/2,2/0

F1G. 0.4 — Tout point est périodique de période 3

0.5 Représentation des réels en base 6

Nous avons voulu étendre les résultat de décidabilité obtenus a certaines fonctions
réelles. Pour cela on utilise la représentation des réels en base . Soit 6 un réel >1,
un alphabet symétrique A = {k,...,0,...,k} et uy la fonction continue surjective

définie par:

po: A — [Me(%wgaéw(kw)]

a(n
& = Zn209n+1

La fonction py étant continue, pour tout mot o 'ensemble j1, ' (pg({a})) est fermeé
et I’on peut construire une fonction de sélection (de normalisation) qui a tout a as-
socie le maximum lexicographique de ;' (9({})). Cette fonction est de premiére

classe.
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0.5. Représentation des réels en base 6

Christiane Frougny a démontré que cette fonction de normalisation est définis-

sable dans S1S dans le cas ou 6 est un nombre de Pisot tel le nombre d’or.

On considére alors des fonctions f w-rationnelles synchrones telles que le dia-

gramme suivant commute :

A¥ 1, A¥

al s

(10 (k<) 1o (k)] —— [0 (k*) 110 (k)]

Nous appuyant sur les travaux de Christiane Frougny nous avons pu obtenir

quelques résultats de décidabilité sur la fonction F.

Tout d’abord en utilisant une fonction de normalisation on obtient une version
décidable du théoréme de Sarkovski (proposition 3.8). Puis grace a des arguments de
compacité on obtient aussi des résultats de décidabilité pour la continuité (proposi-
tion 1.24), résultat d’abord prouvé de fagon combinatoire par Christian Choffrut et
étre de classe 1 (proposition 1.25).

Remarque 5. Ce dernier résultat n’est pas dénué d’intérét pédagogique puisque les
premiers exemples de "vraies" fonctions de classe 1 (limites simples et non uniformes
de suites de fonctions continues) que l'on expose a nos étudiants sont souvent affaires
de bosses glissantes et rentrent complétement dans ce cadre. Considérons pour nous

en convaincre la suite (Fy,)nen définie sur [0,1] par:

f2ra Ve <12
F"(x)_{ 1 Vo >1/2"

Pour tout n, F,, peut étre réalisée en base 2 grace a la fonction w-rationnelle f,

et présentée dans la figure 0.5
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0.5. Représentation des réels en base 6

0/1,1/1

0/0,1/1

FiG. 0.5 - La fonction f, en base 2

Pour conclure cette présentation des résultats obtenus, nous pouvons évoquer les
interrogations qui subsistent dans le cas asynchrone (la décidabilité d’étre de classe
1), des questions relatives a la dérivabilité dans le cas synchrone (I’ensemble des
points de dérivabilité est-il reconnaissable dans le cadre des fonctions définissables
par automate en base Pisot?) et enfin la construction d’un projet pédagogique avec
I’espoir d’une cohérence plus grande entre I’enseignement des mathématiques et de

I'informatique dans un cursus de licence scientifique.

Pour finir, puisque nous avons parlé du théoréme de Kleene-Schiitzenberger relatif

aux séries K-reconnaissables, voici une question de Pierre Simonnet :
Quelle est la complexité topologique des supports de séries R-rationnelles ?

Une série formelle S € K((A)) est dite K-reconnaissable s’il existe un entier
n > 1, un morphisme de monoides p : A* — K™ " et deux vecteurs A € K" et

X € K™ tels que pour tout mot w:
(Saw) = Aa(w)y

Le triplet (\,u,v) est alors appelé une représentation linéaire de S et n sa dimension.
Le support d’une série S est 'ensemble des mots w tels que (S,w) # 0. Il est
assez facile de voir que ’ensemble des parties de A* qui sont support de séries

R-rationnelles est un ensemble analytique. Notons que si cet ensemble était un ana-

lytique non borélien cela fournirait une réponse positive mais non constructive au
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0.5. Représentation des réels en base 6

probléme suivant :

Existe-t-il un langage qui soit le support d’une série R-rationnelle sans étre le

support d’une série Q-rationnelle ¢ (Salomaa et Soittola, 1978)
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Chapitre 1

Automata, Borel functions and real
numbers in Pisot base

Benoit Cagnard, Pierre Simonnet.

Theoretical Informatics and Application 41 1 (2007) 27-44.
Abstract

This note is about functions f : AY — B“ whose graph is recognized by a Biichi
finite automaton on the product alphabet A x B. These functions are Baire class 2 in
the Baire hierarchy of Borel functions and it is decidable whether such function are
continuous or not. In 1920 W. Sierpinski showed that a function f: R — R is Baire
class 1 if and only if both the overgraph and the undergraph of f are F,. We show
that such characterization is also true for functions on infinite words if we replace
the real ordering by the lexicographical ordering on B“. From this we deduce that it
is decidable whether such function are of Baire class 1 or not. We extend this result

to real functions definable by automata in Pisot base.

key words: Borel set, Borel function, automata, sequential machine.
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1.1. Introduction

1.1 Introduction

Usually, numbers are represented in a positional number system, with a real base
0 > 1 and digits from the alphabet A = Z([0,0]. So real numbers are considered
as infinite words on A with the most significant digit on the left. Then, very of-
ten in computer arithmetic a carry propagates from right to left. In [6, 17| on-line
algorithms are proposed to compute arithmetic expressions from left to right. In
general, on-the-fly algorithms process data in a serial manner from the most signi-
ficant to the least significant digit. These algorithms however use several registers,
each of them representing a correct prefix of the result, corresponding to an assumed
value of the carry. In [6, 17| is presented a theoretical framework which allows to
easily obtain on the fly algorithms whenever it is possible. C. Frougny [12] shows
that a function is on the fly computable if and only if it is computable by a right
subsequential finite state machine. The idea to read from left to right in a right
subsequential finite state machine suggests non-determinism. Moreover, working on
infinite words rather than finite words suggests discontinuity. A natural hierarchy
exists on discontinuous Borel functions, the Baire classes of functions. A function
f belongs to class 0 if it is continuous. A function f belongs to class 1 if it is the
pointwiselimit of a sequence of functions of class 0. A function f belongs to class 2 if
it is the pointwiselimit of a sequence of functions of class 1, and so on. The present
work studies from a topological point of view functions f : AY — B whose graph is
recognized by a Biichi finite automaton on the product alphabet A x B. Topology
and automata on infinite words have been heavily studied. It is easy to see that
our functions are of Baire class 2, we prove that we can decide if they are of Baire
class 1. We also prove this same result when numbers are represented with a Pisot
base. A Pisot number is an algebraic integer # a which is real and strictly exceeds
1, but such that its conjugate elements are all strictly less than 1 in absolute value.
For example, The natural integers greater than 2 and the golden ratio are Pisot
numbers. This extend the applicability of our result to the domain of real numbers.
Our proof uses an old result of Sierpinski on Baire class 1 functions and decidability
results of Landweber. The set of points of continuity of a function f on an infinite
word is always a countable intersection of open sets which is dense whenever f is
of Baire class 1. We expect that our approach will shed new light on the discussion
in the field of on-the-fly algorithms. For this reason we present a detailled study of
the Booth canonical recoding on infinite words. This function is an example of a

discontinuous first class function.
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1.2. Infinite words on a finite alphabet

The paper is organized as follows. First in sections 2, 3, 4 we present some
necessary definitions and properties from automata theory and descriptive set theory.
In section 5 we prove our decidability result on infinite words. In section 6 we study
the Booth canonical recoding. In section 7 we prove our decidability result in the
case where our functions define functions on real numbers represented with a Pisot
base. In the conclusion we advance our impressions on the asynchronous case, that is
to say the case of functions whose graph is recognized by a Biichi automaton which
transitions are labeled by couples of words (u,v) € A* x B* instead of couples of
letters (a,b) € A x B.

1.2 Infinite words on a finite alphabet

We note w the set of natural numbers. Let A be a finite alphabet and < a linear
order on A. All alphabets that we consider will have at least two letters. We denote
a the smallest element (first letter) of A and z the greatest element. A finite word u
on the alphabet A is a finite sequence of elements of A, u = u(0)u(1) - --u(n) where
all the u(i)’s are in A. The set of finite words on A will be denoted A*. The length
(number of letters) of a word u will be noted |u|. A particular word is the empty
word €, |e] = 0. The set AT is A* — {e}. With concatenation, A* is a monoid with
unit element e. There is a natural order on A*: the lexicographical ordering, still
denoted by <.

Lemma 1.1. Let n be in w, we note A" the set of words v € A* with |u| = n.

(i) For all n € w — {0}, every word u € A"™ different of a" have an immediate
predecessor in A™ noted u, for the lexicographical ordering.

(i) For all n € w — {0}, every word u € A" different of 2™ have an immediate

successor in A" noted u for the lexicographical ordering.

Proof: By induction on n the length of w. If u = vl with v € A" ! and [ € A then:
iflAaorz:u=v(l—1)andu=wv(l+1),
ifl=a:u=vzandu=v(a+1),

ifl=z2:u=wv(z—1) and u = va. O

An infinite word « on the alphabet A is an infinite sequence of elements of A,
a=a(0)a(l)---a(n)---. The set of infinite words on the alphabet A will be noted
A“. We note a[n] the finite word formed with the n first letters of the infinite word
a, af0] =€, af[l] = a(0). The set A¥, viewed as a product of infinitely many copies

of A with the discrete topology, is a metrizable space. It is equipped with the usual
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1.3. Automata on infinite words

distance d defined as follows. Let o, € AY,

dla,f) = 1/2" withn=min{i € w | (i) # (i)} if a #
dla,f) = 0if a=p
The collection (uA“),c 4+ is a basis of clopen sets for this topology. Recall that (A“,d)

is a compact metric space. The set A“ is ordered by the lexicographical ordering <.

1.3 Automata on infinite words

For all this section, see [20)].

Definition 1.2. A Biichi (nondeterministic) automaton A is a 5-tuple: A =<
AQ, I T F >, where A is a finite alphabet, Q) is a finite set of states, I C @ 1s
the set of initial states, T C Q) x A x Q) is the set of transitions and F' C () the set
of final states.

A path ¢ of label o in A is an infinite word ¢ = ¢(0)c(1)---¢(n)--- € (@ x A x Q)¥
so that ¥Yn € w, ¢(n) is of the form (5(n),a(n),f(n+1)) with 5(0) € I and c(n) € T.

c=0 == 0 =5 By

Let us note Infinity(c) the set of states which appears infinitely many times in c.
An accepting path ¢ is a path so that Infinity(c) (T # 0. An accepted word a is
a word such that exists an accepting path ¢ of label oo. We say that the word « is
recognized by A for the Biichi condition.

The set of words recognized by a Biichi automaton A is noted L“(A).

Let us denote by P(Q) the power set of ). Notice that T can be viewed as a
partial function § : @ x A — P(Q) where d(p,a) = {q € Q | (p,a,q) € T'}. By defining
6(p,ub) = U,es(pu) 9(q,0) and d(p,e) = {p}, d can be extended to a partial function
§:Q x A* = P(Q).

Ezample 1. Let A be the Biichi automaton on alphabet A = {0,1} x{0,1}, with states
Q = {1,2,3,4,5}, initial states I = {1,3,4}, final states F' = {1,3,5} and transitions

T = {(1,(0,0),1),(1,(1,1),2),(2,(0,0),1),(2,(1,1),2),
(3,(1,1),3),(4,(0,0),4),(4,(1,1),4),(4,(0,1),5),(5,(1,0),5) }

The graphical representation of A is given in Figure 3.4, the initial (resp. fi-

nal) states are represented using an ingoing (resp. outgoing) unlabeled arrow. This
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1.3. Automata on infinite words

automaton recognizes the graph of the function S : {0,1}¥ — {0,1}* defined by
S(a) = a if o has an infinite number of zeroes, S(1¥) = 1¢ and for all u € {0,1}*,
S(u01¥) = ul0¥. Let po : {0,1}¥ — [0,1] defined by po(a) = > 2, ;(j)l One can
easily verify that for all « € {0,1}*, S(«) is the mazimum lexicographic of the binary

representations of pa(c). S is known as normalization in base 2.

0/0 1/1
1/1
0/0

1/1

1/1 1/0

e

o
N
[

Fic. 1.1 — Normalization in base 2

Definition 1.3. A Muller automaton A is a 5-tuple: A =< A,Q,I,T.F >, where
A is a finite alphabet, Q) is a finite set of states, I C @ is the set of initial states,
T C Q x AxQ is the set of transitions and F C P(Q). The difference between
Biichi automata and Muller automata is the acceptance condition.
An infinite word o € A% is recognized by A if there is an infinite path ¢ of label o
so that Infinity(c) € F.

An automaton is called deterministic if it has an unique initial state and for each
state p and each letter a there exists at most one transition (p,a,q) € T In this case
the partial transition function § can be can be viewed as § : @ x A — . For all

infinite word « there exist, then, at most one path ¢ of label a.

Consider the following logical language : the set V' of the variables, its elements
noted by x, y, z... , a constant symbol 0 and a unary function s (as successor). We

define the set of the terms 7 by:

i) A variable is a term.
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1.4. Borel hierarchy

ii) 0 is a term.
iii) if ¢t € 7 then s(t) € 7.

Let P (as parts) another set of variables, this variables are noted X, Y, Z...
and two binary predicates =, €. The atomic formulae are of the form ¢t = ' with
(t,VyeT?orte X witht €T and X € P.

Definition 1.4. A formula of S1S is defined as following :

i) An atomic formula is in S1S.

ii) If ¢ € S1S then —¢, Vxp, Jxp, VX, AX ) are in S1S, withx € V, X € P
iii) If ¢ and i) are in S1S then ¢ N, ¢V, ¢ = ), ¢ < ¢ are in S1S.

The interpretation of these formulae is the following: the variables of V are
interpreted as natural numbers, the symbol 0 as 0 € w, the symbol s as the successor
function in w, the variables of P as subsets of w and the predicates symbols as =
and € in w. If each integer is assimilated to a singleton and each subset of w to
an infinite word on the {0,1} alphabet, then a S1S formula ¢(X;,Xs,...,A},), with
X1,&s,..., X, free variables defines the w-language Ly C 2N x ... 2N of the n-tuple of

AR

n
characteristic words satisfying ¢.

An w-language L is said definable in S1S' if there exists a formula ¢ in S15 so that
L = L.
Recall the following result :
Theorem 1.5. for all w-language L, the following assertions are equivalent :
i) L= cic, 4B} with A;, B; rational sets of finite words.
ii) L = L*(A) with A nondeterministic Biichi automaton.
iii) L = L“(A) with A deterministic Muller automaton.
iv) L is definable in S15S.
We call Rec(A“) the family of such languages.

1.4 Borel hierarchy

For all this section, see [16, 20]. Borel sets of a topological space X are the sets
obtained from open sets using complementation and countable unions. When X is
metrizable we can define the hierarchy of Borel sets of finite rank, using the classical
notation of Addison [16]:

Definition 1.6. Let X be a metrizable space, for n € w—{0}, we define by induction
the classes X°(X), TI°(X) and A?(X) :
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1.4. Borel hierarchy

2Y(X) = G(X) the class of open sets of X
IM°(X) = {AY | Ac 2%(X)}, where AV refers to the complement of A.
20 1 (X) = {Und,, | A, € I (X),m € w}
AL (X) = X)(X) NI (X)
We must have a metrizable space since in a metrizable space the closed sets are
I1).
In particular, we have:
IT! is the class of closed sets.
39 = F, is the class of countable unions of closed sets.

IT) = G5 is the class of countable intersections of open sets.

One can prove that: X2 UTI? C ASLH.

This gives us the following picture where any class is contained in every class to
the right of it :

o0 ) P »0
A A A Ay
1T} IT, IT; IT,

The Borel hierarchy is also defined for transfinite levels [16], but we shall not
need them in the present study.
For all n € w the classes 3°(X), IT°(X), AY(X) are closed by finite union and
intersection, moreover XY (X) is closed by countable union, IT°(X) is closed by
countable intersection and AC(X) is closed by complement.

When X is an uncountable metric complete space, the Borel hierarchy is strict.
In what follows X will be A“ or [a,b] with a and b real numbers.
Definition 1.7. The definition of Baire classes for functions is recursive.
Let X, Y be metrizable spaces and a function f: X — Y.

i) f is Baire class 0 if f is continuous.
ii) ¥n € w, f is Baire class (n+1) if f is the pointwise limit of a sequence of Baire
class n functions.

The Lebesgue, Hausdorff, Banach Theorem makes the connexion with the Borel
hierarchy, see [16]:
Theorem 1.8. Let X, Y be metrizable spaces with Y separable. Then for all n > 2,
f: X =Y is Baire class n iff for all open V€Y, f~1(V) € ), (X).
Remark 1. Note that this result hold for n = 1 if in addition X is separable and
either X = A or else Y = R.
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1.5. We can decide if a function definable in S1S is Baire class 1

Denote cont(f) the set of points of continuity of f. We have the classical following
Proposition, see [16]:
Proposition 1.9. Let X, Y, be metrizable spaces and f : X — Y, then cont(f) is
IT5.

The following result due to Baire shows that Baire class 1 functions have many
continuity points, see [16]:
Theorem 1.10. Let X, Y, be metrizable spaces with Y separable and f : X — Y
be Baire class 1. Then cont(f) is a dense I19 set.

It is well known that the graph of a continuous functions is closed. The following
result is classical, see [9] for example.
Lemma 1.11. Let X, Y, be metrizable spaces with Y compact and f : X — Y. f
15 continuous iff its graph is closed.
Lemma 1.12. Let X, Y, be metrizable spaces with Y separable and f: X — Y. If
f is Baire class n then its graph is TIO_ (X).
Proof: We give the proof in the case X = A“, Y = B“. First notice that if f(a) =
then Vu € B*, (B € uB¥ = f(a) € uB¥) and if f(«a) # [ then Ju € B* such that
B € uBY and f(a) ¢ uB“. Thus:

(a,8) € graph(f) & f(a) = < [Vu € Y*(B € uB” = f(a) € uB")]

As f is Baire class n, {a € A°|f(a) € uB“} is in A}, (A*) and

{8 € B*|p € uB“} is in AY(B*). Thus for all fixed u € B*,

{(a,8) € A® x B | (B € uB® = f(a) € uB®)} isin A)_ (A% x B¥) and

{(a,8) € A» x B | Yu € B*(3 € uB* = f(a) € uB®)}isin IIL, (A x B®). O

1.5 We can decide if a function definable in S1S 1s
Baire class 1

Definition 1.13. Let A, B be finite alphabets, a function f : AY — B“ is definable
in S1S if its graph is defined by a formula in S1S.

Thanks to Theorem 1.5 f : AY — B“ is definable in S1S if its graph is recognized
by a Biichi automaton on the product alphabet A x B.

Recall that f is Baire class n if f~1(U) € B0,
(uB“)uep~ is a basis of clopen sets, this condition is equivalent to:

for every open set U € B“. As

Vu € B*, f'uB¥)e A, (1)
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1.5. We can decide if a function definable in S1S is Baire class 1

It is easy to see that sets recognizable by Muller automata are Ag, in fact they
are boolean combination of 9.
Proposition 1.14. Let A, B be finite alphabets and f : AY — B“ be a function
definable in S1S. Then f is Baire class 2.
Proof: We need only to remark that if U is recognizable by a Muller automaton
then f~1(U) is recognizable. O
At last, let us recall a result of Landweber [15]:
Proposition 1.15. If L € Rec(A¥) and I1) then L is recognizable by a deterministic
Biichi automaton.
Moreover one can decide for L € Rec(A¥) if it is XY (resp. IIY) for i = 1, 2.
Let f be definable in S15, it is easy to see that cont(f) is still definable in S15.
So by Proposition 1.9 and Proposition 1.15 cont(f) is recognizable by a deterministic
Biichi automaton. Moreover if it is Baire class 1 then by Lemma 1.12 its graph is
recognizable by a deterministic Biichi automaton.
Definition 1.16. Let f : A — B“ be a function where B* is lexicographically
ordered. The overgraph and the undergraph of f are respectively :

G1(f) = {(f) e A x B | fa) <} (2)
Gl () = {(a,f) e A" x B* [ f(a) > B} (3)

W. Sierpinski [25] has shown that a function f : R — R is Baire class 1 if and only
if the overgraph and the undergraph of f are X3. We show that this characterization
is also true for functions on infinite words if we replace the real ordering by the
lexicographical ordering on B“.

Proposition 1.17. Let A and B be two finite alphabets, then f : AY — B“ is Baire
class 1 iff the overgraph and the undergraph of f are in £Y(A x B).

Proof:

(=)

Let (a,0) € A¥ x B*. The word f(«) is lexicographically less than 3 iff there exists
n € w such that f(«a)[n] = B[n], i.e., they have the same prefix of length n, and
f(a)(n) < B(n). Let u = f(a)[n+ 1] € BT, then f(«) € uB“. So:

G1(H=J ' wB)x (J vBY

u€BT v>u,|v|=|ul
As X9(X) is closed by countable unions then the overgraph of f is X3.
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1.6. An example of non-continuous Baire class 1 function : the canonical Booth
function

(<)
Let uw € BT, we denote by a the minimum and z the maximum of B.

We first consider the case where u is not of the form a™ or 2z . We have:
0 €euBY < (> uz” and B < ua®

a€ fH(uB®) & f(a) > uz* and f(a) < ua”

Then f~'(uB¥) ={a € B* | f(a) >uz*}({a € B | f(a) < ua*}

But {a € B¥; f(a) > uz*} (respectively {a € B¥ | f(a) < ua®}) is X3 as section of
the undergraph (respectively overgraph ) of f and this proves the result.

In the case where u = a™, the proof is the same with f~!(uB*) = {a € B¥ | f(a) <
ua“}. And for u = 2", f~H(uB¥) = {a € B* | f(a) > uz*} O
Remark 2. Note that the notion of Baire class 1 is purely topological so it is in-
dependant of the order on B. So to be Y for the overgraph and the undergraph is
independent of the choice of the order on B.

Theorem 1.18. We can decide if a function f: AY — B* so that

Graph(f) ={(a,B) € AY x B* | f(a) = (8} is definable in S1S is Baire class 1.
Proof: Fix an order on B. The lexicographical ordering on B“ is definable in S15.
We have:

(.08) € G| (f) & 3y € B” ((ay) € Graph(f) N B <7)

Then the overgraph and the undergraph of f are definable in S$15. Using Proposition

1.15, we can decide if f is Baire class 1. OJ

1.6 An example of non-continuous Baire class 1 func-
tion : the canonical Booth function

In [12], C. Frougny shows that a function can be on-the-fly computed iff it is
a right subsequential function. She gives as example the Booth canonical recoding,
see also [19] for applications to multiplication. In this section, we extend the Booth
canonical recoding on infinite words, prove that it is a non-continuous Baire class 1
function and give its set of continuity points.

We recall the definition of a right subsequential function.
Definition 1.19. A right subsequential machine with input alphabet A and output
alphabet B, M = (Q,A x B*T}i,s) is a directed graph labeled by elements of A x B*
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1.6. An example of non-continuous Baire class 1 function : the canonical Booth
function

where Q) is the set of states, i € @Q is the initial state, T € Q X (A X B*) x Q is
the set of labeled transitions and s : () — B* is the terminal function. The machine
must satisfy the following property: it is input deterministic, i.e., if p oft, q and
pﬂr, then g =1 and w =v. A word uw = ay---a, € A* has v € B* for image by

M if there exists a path in M starting in the initial state @

. an/Vn n—1/Vn—1 ap /vo
1 ...qn

with v; € B* and such that v = $(qny1)v0 - Up.
A function f : A* — B* is right subsequential if there exists a right subsequential
machine M such that if u € A* andv € B*, v = f(u) iff v is the image of u by M.
On finite words, the Booth canonical recoding is the function that maps any
binary representation onto an equivalent Avizienis [1| one with the minimum number
of non-zero digits: ¢ : {0,1}* — A* with A = {1,0,1} where T means —1, see [19].
It can be obtained by a least significant digit first (LSDF) algorithm by replacing
each block of the form 017, with n > 2, by 10"~'1. The following right subsequential

machine realizes the Booth canonical recoding [12].

1/0 0/0

F1G. 1.2 — Right subsequential Booth canonical recoding

We will now extend the Booth canonical recoding on infinite words « which
satisfy a(0) = 0 by ¢ : 0{0,1}* — A“. First note that on finite words, the pattern
00 in the input blocks a possible carry. So for a € 0{0,1}* if o contains an infinity of
blocks 00 it is natural to extend Booth canonical recoding on « using the algorithm

on each finite consecutive word of « starting by 00.

Example 2. An infinite number of 00.
©(01100101100010100011100---) = ¢(011) ©(001011)  ©(000111) - - -

= 101 010101 001001 - - -
©(0101(01010011011)) = (0101)  ((0101) ©(0011011))«
= 0101 (0101 0100101)«

If the number of 00 in « is finite we must be careful because a carry can come from
the infinity. This case depends of the number of 11 contained in «. If this number is
finite : let n be the greatest integer such that a(n—2)a(n—1) = 11 (n = 0 if no block
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11 appears in «) then we can extend ¢ on « by ¢(a) = ¢(an])a(n)a(n +1)---
Example 3. A finite number of 00 and finite number of 11.

A((01)) = (01)°

©(01001011(0101001)*) = 01010101(0101001)«

At last, if in « the number of 00 is finite and the number of 11 is infinite then
a carry come from the infinity and propagate up to the last 00. Let then n be the
greatest integer such that a(n—1)a(n) = 00 (n = 0 if no 00 hold in «). Therefore we
can extend ¢ on a by p(a) = p(an)1Y(a(n+1)a(n+2)---) with ¢ : {0,1}¥ — A
the sequential function defined by ¥(0) =1 and (1) = 0.
Example 4. A finite number of 00 and infinite number of 11.

©(01¥) = 10¢

©(01100(101011)*) = 10101(010100)~

With this construction, we obtain a function ¢ : 0{0,1}* — A“ which still maps
any binary representation onto an equivalent Avizienis one.

The graph of ¢ is realized by the Biichi automaton A of figure 1.3.

Fi1Gc. 1.3 — Booth Biichi automata

The essential difference with the finite case is that the carry can come from the
infinity and this suggests discontinuity. A block of the form 11 launchs or propagates

the carry and a block the form 00 stops the carry. So have a finite or an infinite
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number of such blocks will be important in the study of the regularity of .
Proposition 1.20. The function ¢ : 0{0,1}* — A is a non continuous Baire class
1 function.
Proof: It is easy to see ¢ as the pointwise limit of a sequence of continuous function
but it is more interesting to determine the topological complexity of ¢=*(V) for
V e {vA¥|v € A*} basis of clopen sets of A“.
1. Let a« € ¢ ' (v1A¥) with |v|] = n. It means that §(0,(aln],v)) # 0 and
Useso.afnl0) 5(q,(a(n),1)) # 0. So there is two possibilities for a(n): a(n)
is a 0 which propagates a carry (transition from state 4 to 3 or 5 to 3) or

a(n) is a 1 which releases a carry (transition from state 4 to 2 or 5 to 2). Let
I ={ue{0,1} |ul=mn,o0(0,(u,0))({4,5} # 0}, I is finite, and:

e (w1A*) = | J(u0(10)'11{0,1}* | ] w1(01)*00{0,1}* | Ju1(01)*)
uel
So ' (vIA¥) is a non open AS({0,1}*). Then ¢ is not continuous.

2. Let a € o 1(v0A*) with |v] = n. The two possibilities for a(n) are: a(n)
is a 0 which does not propagate a carry (transition from state 1 to 1 or 2
to 1) or a(n) is a 1 which propagate a carry (transition from state 3 to 4,
4 to 5 or5tob) Let J = {u € {0,1}*| [|u] = n, 6(0,(u,0)){1,2} # 0},
K ={ue{0,1}*] |u] =n, 6(0,(u,v))({3,:4,5} # 0}, J and K are finite, and:

e (v0A4°) = | J(u0(10)70{0,1}*  J u0(10)* ) | J w1(01)*1{0,1}*

ucJ ucK
So 1 (v0A¥) is a non open AJ({0,1}¥).
3. Let a € ¢! (v1A¥) with |v] = n. The two possibilities for a(n) are: a(n) is a 0
which stops a carry (transition from state 1 to 3) or a(n) is a 1 which does not

propagate a carry (transition from state 1 to 2). Let L = {u € {0,1}*| |u| = n,
0(0,(u,v)) = {1}}, I is finite, and:

o' (w1A4°) = | J(u0(10)11{0,1}* | ) ui(01)*00{0,1}* | ] ul(01)* )

uel

So ' (v1A¥) is a non open AJ({0,1}¥).
Then for all open set V € A%, ¢~!(V) is £ and ¢ is Baire class 1. O
Consider now the continuity points of . It is easy to see that ¢ is not continuous
in (01)“: ¢((01)~) = (01), (01)"1% converges to (01)* and »((01)"1¥) = 1(01)"~10~.
Proposition 1.21. The set of points of non continuity of ¢ is {u(01)*| v € 0{0,1}*}.
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Proof: The function ¢ is not continuous in « iff there exist an open set V' € A“
so that a € o ' (V)\Int(¢~*(V)). In the proof of the previous result, we have the
complete description of ¢~1(V') for a basis of open sets and such « are the words of
the form «(01)~. O

Remark 3. Note that cont(p) is quite a dense Gs set.

Another example of function definable in S1.S, Baire class 1 but not continuous,

is given by the normalization (example 23) in Pisot numeration systems [13].

1.7 The case of the real numbers

In this section we consider a numeration system for real numbers with Pisot
base. A real 6 is a Pisot number if it is an algebraic integer strictly exceeds 1, but

such that its conjugate elements are all strictly less than 1 in absolute value. For

1+5
2

numbers. Real numbers are represented in Pisot base with alphabet A C Z[)[0,6].

example, The natural integers greater than 2 and the golden ratio are Pisot

Then define an evaluation function pg:

pe : AY — [0,1]

a(n)
o = EnZO Tl

Let us recall that uy is a continuous surjection on [0,1].
C. Frougny proved that M = {(a,3) € A¥ x A“|ug(a) = pe(B)} and
N ={(o,0) € A x A°|pug(r) < po(B)} are definable in S1S [11] see also [3].
A Function f: AY — B¥ is consistent with ug, and ug, (where 6; and 6, are two

Pisot numbers) if there exists F' such that the following diagram commutes:

Ao L, pe

Hoq J{ J{M@Q

0,1 —=— [0,1]

From now on, we consider functions f : AY — A“ definable in S1S which are

consistent with pg.

In the case that the base # is a natural integer, one can find historical examples
of such continuous F' in Chapter X1 of S.Eilenberg [5]. In 1890 Giuseppe Peano

published an example of a continuous function
H :[0,1] — [0,1] x [0,1]
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which is surjective, the so-called square-filling curve. We have H = (F,G) with

F :[0,1] — [0,1], G : [0,1] — [0,1]. The function F' (resp G) can be defined by a
consistent function f : 9¥ — 3“ from base 9 to base 3. The function f is realized
by a left sequential letter to letter transducer, hence f is definable in S1S. Other
examples in the same spirit can be find in the works of Waclaw Sierpinski, Bernard
Bolzano, Ludwig Scheeffer, Georg Cantor. The reader interested in history should
see the book of A. Edgar [4] and the beautiful article of B. Maurey and J.P. Tacchi
[18] about the Devil’s staircase of Ludwig Scheeffer presented in Figures 1.4, 1.5.

0/0 0/0
1/1
1/0

2/1 2/0

F1G. 1.4 — Automaton of the Devil staircase

0.8+ r

061 /

0.4+ /

0.24 A

X

Fi1G. 1.5 — Graphical approximation of the Devil staircase

In the following example, we give an example of a non continuous function F
definable in S15 and Pisot Basis. One can see examples of some historical functions
of the analysis like jumps function that we have seen in [18].

Example 5. Here we present a simple example of a jump function F definable in

S1S. The graph of F' is obtained in the following way. First we take the symetric
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of the graph of the Dewvil staircase about the line y = x. This is not the graph of
a function, so we choose for each x the greatest y such that (x,y) belongs to this
relation. As the Dewvil staircase has constant values equal to u/2" withn € w*, u € w
and 0 < u < 2" outside the Cantor set, our function F is discontinuous in u/2" with
n € w, u€Ew, 0 <u<2" and jump by steps of 1/3"™ with n € w*. We choose for
F(u/2") the upper bound of the interval : for example with x = 1/2, F(x) € [1/3,2/3]
and we choose F(1/2) =2/3. So the function F is right continuous on [0,1].

The function f : {0,1}* — {0,1,2}* given by the non deterministic automaton of
Figure 1.6 is consistent with ps and ps. Note that discontinuity is given by non
determinism. Here the set of discontinuity is (0 + 1)*01¥. It is easy to see that f is
Baire class 1.

Then the function F : [0,1] — [0,1] obtained in the following commutative diagram

18 the expected one, see Figure 1.7.

{01} —L f0,1,2}¢

e | s

0,1 — [0,1]

0/0 1/2
1/2
0/0

1/2

0/0 1/2

1/2

F1G. 1.6 — Automaton of a jump function

For simplify we suppose that for the input and the output, numbers are represen-
ted in the same base. Note that if f is definable in S15, and if € is a Pisot number
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0.8

0.6+

0.4+

0.2+

X

Fi1G. 1.7 — Graphical approximation of the jump function F

then one can decide if f is consistent. This can be expressed by a closed S15 formula
and S1S is decidable [2]. For more details, we refer the reader to [3].

As f is Baire class 2, the topological complexity of such F' is Baire class 2. To
see this we can use the following Theorem of Saint Raymond [16, 23|.

Theorem 1.22. Let X, Y be compact metrizable spaces, Z a separable metrizable
space, a continuous surjection g : X — Y and a Baire class n function f: X — Z
with n € w, then there exists a Baire class 1 function s : Y — X so that gos = Idy
and f o s is Baire class n.

Corollary 1.23. For f and F' defined in the previous diagram, if f is Baire classe
n then F' is Baire class n too.

Proof: Take X = A, Y = [0,1] and Z = A“. By Theorem ?? there exists a selector
s:[0,1] — A“ so that f o s is Baire class n. Then F' = ugo f o s is Baire class n too.
O

Our aim is to extend the results of decidability to the function F.

C. Choffrut, H. Pelibossian and P. Simonnet [3] have shown that the continuity
of the function F'is decidable with an algorithmic proof. We give a topological proof
of this result and then show that we can also decide if F' is Baire class 1.
Proposition 1.24. Let F : [0,1] — [0,1] in a base 6 with 6 a Pisot number so that

there exist a function f . AY — A which verifies :

1. Graph(f) is definable in S1S.
2. Vo € A% = pig(f(a)) = F(po(r)).

Then we can decide if F' is continuous.
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Proof: The function F is continuous iff its graph is closed. So let us prove that we
can decide if Graph(F) is closed. Let pu be defined by :

p:AY x AY — [0,1] x [0,1]
(,0) = (uo(),p0(5))

Note H = = (Graph(F)) = {(a,8) € A° x A | F(ug(a)) = pna(8)} = {(a,3) €
AY x AY | pe(f(a)) = pe(B)}. As 6 is a Pisot number and f definable in S15, H is
definable in S15.

If Graph(F) is closed, as p is continuous, H is closed too. Conversely, if H is closed,
as A is compact and p is continuous and surjective, Graph(F) = p(pu=' (Graph(F))) =
w(H) is compact. Then F' is continuous iff H is closed. The set H is recognizable

by automaton so by Proposition 1.15 we can decide if F' is continuous. O]

Proposition 1.25. Let F': [0,1] — [0,1] such that there exists a function f: AY —
A® which verifies :

1. Graph(f) is definable in S1S.
2 Vo € A% u(f(0)) = Flu().

Then we can decide if F' is Baire class one.

Proof: For the proof we use an old result of W. Sierpinski :

a function ' : R — R is Baire class 1 iff its overgraph and its undergraph are 39
[25].

Let H = p'(G 1 (F)) = {(a,8) € A° x A* | F((@)) < io(B)} we have
H={(a,p) € A x A | po(f()) < po(B)}. As 0 is a Pisot number and f definable
in S1S, H is definable in S15.

By the same argument as in Proposition 1.24, it is easy to verify that G T (F) is X

iff H is 39. To see this, note that as p is surjective

GT1(F)=pp (G (F))=mn(H)

As p is continuous if G T (F) is X9 then H is X. Conversely if H is 39, as A¥ x A
is compact, then H is K, (countable union of compact sets) and G 1 (F) = p(H)
is K, as a continuous image of a K, set.

As H is recognizable by automaton, by Proposition 1.15 we can decide if F' is

Baire class 1. O
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1.8 Conclusion

Let us talk about the asynchronuous case. An w-rational relation is a relation
whose graph is recognized by a Biichi automaton, and for which transitions are
labeled by couples of words (u,v) € A*x B* instead of couples of letters (a,b) € AxB.
They were first studied by F. Gire and M. Nivat, see [10, 7, 8]. Frangoise Gire has
shown that the problem of functionality is decidable for an w-rational relation. Recall
that a set is analytic (37 in the notation of Addison see [16]) if it is the continuous
image of a Borel set. It is well known that Borel sets are analytics sets but that
there exist analytics sets which are not Borel [16]. It is easy to see that w-rational
relations are analytic sets. Recently O. Finkel has shown that there exist an w-
rational relation which is not Borel [7]. From this he deduces many undecidability
results [8]. It is easy to see that an w-rational function is of Baire class 2. Recently,
C. Prieur |21, 22] has generalized the decidability of continuity to the w-rational
functions. Moreover the overgraph (resp. undergraph) of an w-rational function is
an w-rational relation. Unfortunately O. Finkel has shown the following Theorem :
the problem of knowing if an w-rational relation is 3V (resp. II?) for i = 1 and 2
is undecidable [8]. In addition, from O. Carton (personal communication) we have
the following result: the problem of knowing if an w-rational function is totally
discontinuous is undecidable. So we think that Baire class 1 is undecidable for the
w-rational functions.

For ending we consider finite words. The following Theorem of Elgot Mezei, see
[24] is well known: a rational relation which is a graph of a function f with f(e) =€
is the composition of a left sequential function and a right sequential function. A
left sequential machine gives continuous function when we read infinite words. But
a right sequential machine can give a function of Baire class 2. We think that there
exists a right subsequential function such that its on-the-fly extension on infinite
words is not Baire class 1. Can we interpret points of continuity, as points that need
only one register in an on the fly algorithm? Finally note that the Booth canonical
recoding is an w-rational relation with bounded delay, and all w-rational relations
with bounded delay can be synchronized [10], this is what we have done.

The authors would like to thank Serge Grigorieff for very hepful comments on
a preliminary version of this paper. We thank also Pierre Delfini and Alain Hert-
zog for historical remarks. We would like to thank also the anonymous referees for

suggestions which greatly improved the manuscript.
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Chapitre 2

Baire and automata

Pierre Simonnet, Benoit Cagnard.

Discrete Mathematics and Theoretical Computer Science vol. 9:2 (2007) 255-296.
Abstract

In his thesis Baire defined functions of Baire class 1. A function f is of Baire
class 1 if it is the pointwise limit of a sequence of continuous functions. Baire proves
the following theorem. A function f is not of class 1 if and only if there exists a
closed nonempty set I’ such that the restriction of f to F' has no point of continuity.
We prove the automaton version of this theorem. An w-rational function is not of
class 1 if and only if there exists a closed nonempty set F' recognized by a Biichi
automaton such that the restriction of f to F' has no point of continuity. This gives us
the opportunity for a discussion on Hausdorff’s analysis of A}, ordinals, transfinite

induction and some applications of computer science.

key words: Automata, Borel functions, w-regular sets, coanalytic sets
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2.1 Introduction

We would like to dedicate this work to the memory of Pierre Dugac, who was a
great historian of Mathematics, and the French specialist of Baire’s work.

In his thesis Baire introduced the hierarchy of Baire classes of functions. A func-
tion f belongs to class 0 if it is continuous. A function f belongs to class 1 if it is
the pointwise limit of a sequence of functions of class 0. A function f belongs to
class 2 if it is the pointwise limit of a sequence of functions of class 1, and so on.
The present work concerns functions f : A — B* which are w-rational (A* and BY
sets of infinite words on finite alphabets A and B). We study these objects from a
topological point of view. Let us describe the work done on w-rational relations.

Acceptance of infinite words by finite automata was first considered in the sixties
by Biichi in order to study decidability of the monadic second order of one successor
over the integers [14]. Since this paper the w-regular languages have been intensively
studied especially because the topological space of infinite words with the usual
prefix distance has very interesting properties [69, 95, 92].

Rational relations on finite words are relations computable by finite automata
with two tapes. They were first studied by Rabin and Scott [74]. A number of their
properties were established by Elgot and Mezei [30]. The Decomposition Theorem
characterizing functional rational transductions is one of them. A sequential function
is a function whose graph is a rational relation with a condition of determinism on the
input. A right (resp. left) sequential function reads words from right to left (resp. left
to right). A functional rational transduction f satisfying f(e) = ¢ is a composition of
a left sequential function and of a right sequential function [29, 12, 78]. The extension
of rational relations to infinite words, called w-rational relations, were first studied
in |7, 56, 13, 40|. w-rational relations are relations computable by a finite automaton
with two tapes with a Biichi acceptance condition (and a condition to avoid A* x B*,
A¥ x B* and A* x B“). In [41] Gire shows that functionality is decidable for a w-
rational relation. In [37] Sakarovitch and Frougny show that w-rational relations of
A¥ x B“ with bounded delay are exactly the w-regular languages on the product
alphabet A x B. In addition, they prove some undecidability results on w-rational
relations which can be deduced from corresponding undecidability results on rational
relations over finite words. The reader should also see |55, 24] for other properties
and references.

It is only in [31, 32| that the topological complexity of w-rational relations is

really investigated. Links between descriptive set theory and automata theory are

39



2.1. Introduction

not new. They go back to Biichi and Landweber’s work [54, 18, 100]. Biichi talks
very early about analytic set and games [16]. In [107] Wagner and Staiger shows
that a subset of A“ (A finite) is recognize by a nondeterministic turing machine
with Miiller conditions if and only if it is an effective analytic set, that is to say a ¥}
set (see Rogers |75] and Moschovakis [65] for a definition of the class ¥1). In Staiger
papers [88, 89, 90, 91, 92| one can have a good overview of the subject. We give here
a short account of Finkel’s recent work.

Descriptive set theory is the study of definable sets in Polish spaces. A Polish
space is a topological space P which is separable (it has a countable dense subset)
and have a compatible metric d such that (P,d) is complete. Compact metric spaces
are Polish(2¥ the Cantor space, [0,1]). Complete separable metric spaces are Polish
(R, C, C[0,1]). The most important Polish space is the Baire space w®, that is the
space of infinite sequence of integers. The family of Borel sets, of a polish space P,
is the smallest family of subsets of P which contains open sets and is closed under
complements and countable unions. A set E of a polish space P is an analytic set
if it is a continuous image of the Baire space w“. Another equivalent definition say
that E is an analytic set if it is the projection of a Borel set ¥ C w“ x P on P. It is
easy to construct analytic sets. Let L C A*, and let L* be the monoid generated by
L. Replace star operation * by w operation, then L* is an analytic set. If L is finite
L¥ is compact. If L is not finite L is countable, so we can enumerate elements of
L = {ug,uy, ... Uy,...}. Define an application ¢ : w — A* by ¢(n) = u,. Extend
¢ in monoid morphism ¢ : w* — A*. Next extend ¢ in continuous application
¢ : w¥ — A“. Since the graph of ¢ is closed, then L“ is analytic as projection
of a closed set. In 1988 Louveau showed that there exists an L such that L“ is
not Borel. Unfortunately, he only proved the existence of a such L, he didn’t give
effectively such a L. His work remains unpublished. An analytic complete set is an
analytic set so that any other analytic set can be obtained by continuous inverse
image of it. In 2000, Finkel showed that a very simple context free language L is
such that L¥ is analytic complete [33]. Finally in 2001, Finkel showed that one can
define an w-rational relation R such that R is analytic complete (in particular R
is not Borel) [31]. From this, and using the Post correspondance problem, Finkel
discovered new undecidability results about w-rational relations and gave another
proof of the undecidability results of Sakarovitch and Frougny [32].

In this paper an w-rational function is an (everywhere defined) application f :

A¥ — B“ whose graph is an w-rational relation. The w-rational functions are of
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Baire class 2. Baire proves the following theorem.

Theorem 2.1. A function [ is not of class 1 if and only if there exists a closed

nonempty set F' such that the restriction of f to F has no point of continuity.
We prove the automaton version of this theorem.

Theorem 2.2. An w-rational function is not of class 1 if and only if there exists a
closed nonempty set ' recognized by a Biichi automaton such that the restriction of

f to F has no point of continuity.

The original proof of Baire uses transfinite induction [5, 25]. The proof presented
in [53, 47| is Hausdorft’s proof; we will give a detailed proof of it. The characteriza-
tion theorem of Baire appears as a corollary of the analysis of A} sets in an uncoun-
table complete separable metric space. A A set is a set which is both F,(countable
union of closed sets) and Gj (countable intersection of open sets). The analysis of
A sets uses a transfinite derivation over closed sets which is of the same kind of
Cantor’s derivation. Recall that Cantor discovered countable ordinals iterating in a
transfinite way the operation of elimination of the isolated points of a closed set of
reals (see Kechris Louveau [48]).

In fact our theorem is just a remark: when we restrict Hausdorff’s derivation
to w-regular sets, it stops the derivation at an integer (a greatest fixpoint). This
was remarked by the first author in 1986, who, in addition, showed a connection
between an old separation theorem and work of Arnold and Nivat [4] about theory
of parallelism.

Hausdorff’s result is a first step in the study of Wadge’s classes of Borel sets
[105]. Wadge’s degrees of Borel sets are essentially well ordered and the type order
of the hierarchy is an old uncountable ordinal studied first by Veblen [102]. It is
usual to present Wadge’s degrees with games [103|. The restriction of the Wadge’s
hierarchy to w-regular sets gives Wagner’s hierarchy [106]. This is easily seen with
Biichi Landweber’s result on games such that the winning set is an w-regular set
[18, 100]. The type order of Wagner’s hierarchy is the countable ordinal w*. Our
proof is of the same type of combinatorial proofs appearing in Wagner’s paper [106].

This separation result can be extended to all Wagner classes [83, 84|, this is easy
using well known things from descriptive set theory and Biichi Landweber’s result
on game [18]. On this subject one can also study the work of Barua [6]. These results
are also automata analogue of effective results of Louveau [60] which give classical
results in the plane [76, 62].

For more on Wagner’s hierarchy, we refer the reader to the works of Kaminski
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[46], Carton and Perrin [22|, Wagner [106], Selivanov [79], Staiger [92, 93|. It turns
out that the topological invariants for Wagner’s classes can be described with the
algebra of finite monoids, see Carton and Perrin [22], Wilke [109] and Perrin and
Pin [69]. For more on Wadge’s hierarchy we refer the reader to the papers of Wadge
[103, 105], the book of Kechris|47], and works from Louveau [60], Saint Raymond|77],
Duparc [27]| , Finkel [35] , Ressayre [26].

For recent problems in theory of parallelism one can see [11].

Now we return to Elgot Mezei’s decomposition theorem. A left sequential machine
which reads infinite words is a continuous function. The idea to read from left to
right in a right sequential finite state machine suggests non determinism. Moreover,
if we work on infinite words rather than finite words, this suggests discontinuity and
the Baire hierarchy. If an w-rational function is not of Baire class 1, one can find a
rational tree (tree with a finite number of subtrees) whose set of infinite branches is
a Perfect set P (closed set without isolated points [53]) and the restriction of f to
P has no point of continuity. This may be interesting, even for finite words.

If the graph of f : AY — B¥ is recognized by a Biichi automaton on the product
alphabet A x B we say that f is a synchronous function. Recently we have shown
that one can decide if a synchronous function is Baire class 1 [20]. Our proof is
topological and it is an easy corollary of Sierpinski [81] and Landweber [54]. In the
present paper we would like to obtain some missing links with works by Beal, Carton,
Choffrut, Frougny, Michel, Prieur, Sakarovitch. They have given more algorithmic
proofs [23, 24, 9, 38, 39, 70, 71, 8, 21|. Talks with Finkel and Carton have given us the
impression that for an w-rational function, being of Baire class 1 is an undecidable
property. We hope that our presentation will be useful for computer scientists. For
example, it may help to understand recent results of Duparc [28] and Lecomte [57].

This paper is organized as follows. In sections 2, 3, 4, 5 we present some defini-
tions and properties from automata theory and descriptive set theory. In section 6
we present an example which may be useful to understand the result of Baire. In
section 7, we present the difference hierarchy and we give a detailed proof of Haus-
dorft’s result in section 8. In section 9, we give the proof of Baire’s result. In section
10, we prove the automaton version of Baire’s result. In section 11, we present brie-
fly the Wadge’s game and separation games; we think that this sheds light about
results of sections 8 and 10. Finally, we start the discussion about relations between
Hausdorff’s analysis of A} sets, ordinals, transfinite induction and applications of

computer science.
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2.2. Automata on infinite words

2.2 Automata on infinite words

2.2.1 infinite words

For the concepts introduced in this section we refer the reader to |7, 29, 69, 92, 95].
Let w be the set of natural numbers (the first infinite ordinal). Complement of a set
E will be noted E. Let A be a finite alphabet or countable alphabet (A = w). All
alphabets that we consider will have at least two letters. A finite word u over the
alphabet A is a finite sequence of elements of A. The set of finite words on A will be
called A*. The length (number of letters) of a word u will be noted |u|. A particular
word is the empty word ¢, |¢| = 0. As usual AT = A* — {e}. With concatenation, A*
is a monoid with unit element e.

An infinite word « over alphabet A is an infinite sequence of elements of A:

a = a(0)a(l)...a(n).... The set of infinite words on the alphabet A will be noted
A“. We note «a[n] the finite word formed with the n first letters of the infinite word
a, a[0] =€, a[l] = «(0). The set A, viewed as a product of infinitely many copies
of A with the discrete topology, is a metrizable space:

i) {1/2” with n = min{i € w | a(i) # ()} %f a3

0 if a=0

The collection (uA“),ca+ is a countable basis of clopen sets for this topology.
Recall that if A is finite then (A“,d) is a compact metric space. If A = w, then
(w¥,d) is a complete metric space, known as the Baire space, which is not compact.
The prefix ordering is called <. A finite word u € A* is a prefix of the finite word
v € A* (resp infinite word o € A¥) if there exists a finite word w € A* (resp infinite
word # € A¥) so that v = w.w (resp a = u.3).

2.2.2 Automata on infinite words

Definition 2.3. A Biichi automaton A is a 5-tuple: A = (A,Q,I,T,F), where A
is a finite alphabet, ) is a finite set of states, I C @ 1is the set of initial states,
T CQ x AxQ is the set of transitions and F' C () the set of final states.

An infinite word o € A is recognized by A if there is § € Q¥ such that :
B0)el,Vnew, (B(n),an),f(n+1)) €T and f(n) € F for infinitely many n.
The set of words recognized by a Biichi automaton A is noted L“(A).

Remark 4. Instead of Biichi automaton one can say automaton with Biichi’s accep-

tation.

T can be viewed as a partial function § : @ x A — P(Q) where (p,a) =
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{¢ € Q| (p,a,q) € T}. Function § can be extended to § : @ x A* — P(Q) by
d(pua) = 0(d(p,u),a) where u is a finite word and a a letter and &(p,e) = p.

An infinite path cin A is an infinite word ¢ = ¢(0)c(1)...c(n)... € (QxAxQ)* such
that Vn € w, ¢(n) € T. For each n, ¢(n) is of the form c¢(n) = (5(n),a(n),5(n + 1)).
This will be denoted by the following graphical notation of path.

(0) o(2)

= B0) 2% g1y 2 gr2) 22,

The infinite word o € A¥, o = a(0)a(1)...a(n)..., is the label of the path c.
Let us note Infinity(c) as the set of states which appears infinitely many times in c.
A path ¢ is said to be successful if 3(0) € I and Infinity(c) () F # (). Note that an
infinite word « is recognized by A if there is a successful path ¢ in A of label a.

An automaton is called deterministic if it has a unique initial state and for each
state p and each letter a there exists at most one transition (p,a,q) € T'. Consequently
the transition partial function ¢ can be can be viewed as ¢ : ) X A — . Function
0 can be extended to § : Q x A* — @ by d(p,ua) = 0(d(p,u),a), where u is a finite
word and a a letter and 0(p,e) = p. Then for all infinite word « there exists at most
one path ¢ of label a.

Ezample 6. Let A be the deterministic Biichi’s automaton on alphabet A = {0,1},
with states Q@ = {0,1}, initial states I = {0}, final states F' = {1} and transitions
T = {(0,0,0),(0,1,1),(1,0,1),(1,1,1)}

Figure 2.1 gives the representation of A. This automaton recognizes the set

O ={a €2 Im a(m) =1}.

If we takes F' = {0} then this automaton recognizes the complement of O:

0 = {a € 2| ¥m a(m) = 0}.

0 0,1

SORGE

Fi1G. 2.1 — The open set

Ezample 7. Let B be the deterministic Biichi automaton on alphabet A = {0,1},
with states Q@ = {0,1}, initial states I = {0}, final states F' = {1} and transitions
T = {(0,0,0),(0,1,1),(1,0,0),(1,1,1)}

Figure 2.2 gives the representation of B. Let Q = {a € 2¥| Im Vn > m a(n) =

0}. This automaton recognizes the complement of Q :
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Q={a€2¥|¥Ym 3In>m aln) =1}.

0 1
8@@
0

F1G. 2.2 — The set reset automaton, a deterministic Bichi automaton which reco-
gnizes the G set homeomorphic to Baire space w®”

Example 8. Let C be the non deterministic Biichi’s automaton on alphabet A =
{0,1}, with states @ = {0,1,2}, initial states I = {0,1}, final states F' = {0,2} and
transitions T = {(0,0,0),(1,0,1),(1,1,1),(1,1,2),(2,0,2)}

Figure 2.3 gives the representation of C. Let Q = {« € 2¥| Im ¥Yn > m «a(n) = 0},

Q is a countable dense subset of 2¥ The automaton C recognizes Q.

0

Jol

0,1 0

FiG. 2.3 — A non deterministic automaton which recognizes the countable dense set
Q={a €2’ ImV¥n>ma(n) =0}

Definition 2.4. A Muller automaton A is a 5-tuple: A = (A,Q,I,T,F), where A
is a finite alphabet, Q) is a finite set of states, I C @) s the set of initial states,
T CQxAxQ is the set of transitions and F C P(Q).

An infinite word o € A% is recognized by A if there is an infinite path ¢ of label o
so that Infinity(c) € F.

Example 9. Let again B be the deterministic automaton of example 7 and take F =
{{0}}. Then this automaton recognizes Q.
If we take F = {{1},{0,1}} then this automaton recognizes Q.
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2.2.3 S1S: the monadic second order theory of one successor

We now define the terms, atomic formulas, and formulas of S1.5 the monadic
theory of one successor. Let V be a set of variables, its elements noted by z, vy, z... ,
the constant symbol 0 and a unary function symbol s (as successor). We define the
set of the terms 7 by:

i) A variable is a term.
ii) 0 is a term.
iii) if ¢ € 7 then s(t) € 7.

Let P be another set of variables. Its variables are noted X, ), Z... and two
predicate symbols =, €. Atomic formulas are of the form ¢t = ¢’ or t € X where
(t,') € T? and X € P.

Definition 2.5. A formula of S1S is defined as follows :

i) An atomic formula is in S18S.

ii) If » € S1S then —¢, Vxp, xp and VX ¢, IX ¢ are in S1S, wherex € V, X € P.
iii) If ¢ and 1) are in S1S, then ¢ N, ¢V, ¢ =1 and ¢ < 1 are in S18S.

The interpretation of these formulas is the following: the variables of V are
interpreted as natural numbers, symbol 0 as 0 € w, symbol s as the successor
function in w, the variables of P as subsets of w and the predicate symbols as
equality relation and membership relation in w. If each integer is assimilated to
a singleton and each subset of w to an infinite word over alphabet {0,1}, then a

S1S formula ¢(X1,As,...,X,), with X},X,,..., &, free variables defines an w-language
Ly 2V x ... 2%
—_——

An w—langﬁage L is said definable in S1S if there exists a formula ¢ in S15 such

2.2.4 w-regular sets

Recall the following result [14, 69, 100]:
Theorem 2.6. for all w-language L, the following assertions are equivalent :
i) L= cic, AiBf where A;, B; are reqular sets and n € w — {0}.
ii) L = L¥(A), where A is a non deterministic Biichi automaton.
iii) L = L¥(A), where A is a deterministic Muller automaton.

iv) L is definable in S1S.
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The family of languages which verify the equivalent conditions of the preceding
theorem are usually call the w-regular sets. We denote by Rec(A“) the class of w-
regular sets on alphabet A. Following Louveau 1987, we denote by Auto the family
of w-regular sets. w-regular sets are denoted by w-regular expression [69].

Example 10.
ac0«&dInam)=1

An w-reqular expression for @ is 0*1(0 + 1)*
ae€0QeVma(m)=0
An w-regular expression for Q is 0¥
acQ&ImVn>ma(n) =0
An w-regular expression for Q is (0 + 1)*0
ac€QeVmIn>ma(n) =1

An w-reqular expression for Q is (0*1)«

2.3  w-rational relations

In this section, we introduce w-rational relations which extend the notion of
w-langages (see [37, 40, 41, 56|).
Definition 2.7. A Biichi transducer T is a 6-tuple: T = (A,B,Q,1, T F), where A
and B are finite alphabets, Q) is a finite set of states, I C @ 1is the set of initial
states, T' C Q) x A* x B* x Q) is the finite set of transitions and F C () the set of
final states.

An (infinite) path ¢ in 7 is an infinite word ¢ = ¢(0)c(1)...c(n)... € (Q x A* x
B* x Q))¥ such that Vn € w ¢(n) € T.

So for each n, c(n) is of the form c¢(n) = (gn,Un,Vn,qns1), With u, € A* and

v, € B* This will be denoted by the following graphical notation of path:

uo,vo ui,v1 u2,v2
C=qo q1 q2

Let a = uguy...uy... and B = vovy...0, ..., (a,3) is the label of the path ¢. A
path ¢ is said to be successful if o € I and Infinity(c) () F # 0, where Infinity(c) is
still the set of states which appears infinitely many times in c¢. Let a € A* U A“ and
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B € B*U B“, (a,3) is recognized by 7T if there is a successful path ¢ in 7 of label
(a.0).

Remark 5. A path c of label (a,3) is called admissible if o and [ are both infinite
words. In [37] it is shown that for every finite Biichi transducer T, it is possible to
construct another one T’ so that every successful path in T’ is admissible and the
paths that are both successful and admissible are the same in T and T'. In the sequel
of this paper all the labels (c,3) will be in AY x B¥.

An w-rational relation is a subset of A“ x B“ which is recognizable by a Biichi’s
transducer. An w-rational function f : AY — B“ is a function whose graph is an w-
rational relation. Recall that a left sequential function f : A* — B* is a function that
can be realized by a deterministic automaton with output (sequential transducer).
A left sequential function can be extended immediately to f : AY — B“ U B*. If
the image of f is in B then this is an example of continuous w-rational function.
This is the case when the deterministic automaton with output realizing f output
one letter when he read a letter. We call 1-sequential functions these functions and

these functions will be used as strategy for player 2 later.

Ezample 11. Let T be the Biichi transducer with A = B = {0,1}, states Q =
{1,2,3,4,5}, initial states I = {1,3,4}, final states F' = {1,3,5} and transitions

T = {(1,(0,0),1),(1,(1,1),2),(2,(0,0),1),(2,(1,1),2),
(3,(1,1),3),(4,(0,0),4),(4,(1,1),4),(4,(0,1),5),(5,(1,0),5) }

Figure 3.4 gives the representation of T. This automaton recognizes the graph of
function S : 2¥ — 2% defined by S(a) = « if a has infinitely many 0’s, S(1¥) = 1¢
and S(u01¥) = wl0¥ for all u € 2*. Let pup : 2¥ — [0,1] defined by po(a) =

Yoo ;(f)l . One can easily check that S() is the lezicographic mazimum of the binary

representations of pe(«) for all o € 2¥. S is known as normalization in base 2. In

fact for any Pisot number 0, normalisation in base 0 is an w-rationnal function( see
Frougny [39]).

2.4 Borel sets in Polish spaces

For all of the topological concepts introduced in this section we refer the reader
to [53, 47, 69, 87].
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0/0 1/1
1/1
0/0

1/1

1/1 1/0

e

o
~
o

Fic. 2.4 — Normalization in base 2

2.4.1 Ordinals

For a short and comprehensive presentation of ordinals we refer the reader to
Srivastava [87]. We say that two sets E and F have the same cardinal if there is a
bijection from E to F. We say that two well-ordered sets £ and F' have the same
ordinal if there is an order-preserving bijection from E to F'. To each well-ordered set
W we can associate a particular well-ordered set ¢(1W) called the type of W which is
the ordinal associate to W. Results in the theory of ordinals use the axiom of choice
and axiom of remplacement.

It is common in set theory to identify an ordinal with the set of its predecessors,
ie, o ={f | B < a} and to identify the finite ordinals with the natural numbers.
Here are the first ordinals 0, 1 = {0}, 2 ={0,1},3={0,1,2}...n={0,1,... ,n— 1}
The successor of an ordinal « is the least ordinal > «. An ordinal is successor if it
is the successor of some ordinal, and it is limit if it is not 0 or successor.

The first infinite ordinal is w = {0,1,2,...,n,n + 1,...}, it is a limit ordinal, its

successor isw+ 1 ={0,1,2,...nn+1,... w}
Next we have w +2,..., w+n, .. ,w+w=w.2,..., W3, .., WN, .., Ww=w
n w
c W w®

An ordinal is countable if its cardinal is countable. All ordinals we have seen

are small countable ordinals. Let w; be the set of countable ordinals, one can show
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that w; is an uncountable well-ordered set and that its cardinality is lower or equal

to 2. The Continuum hypothesis says that the cardinality of w; is equal to 2.

2.4.2 The Borel hierarchy

Borel subsets of a topological space X are obtained from open sets using comple-
mentation and countable unions. When X is metrizable we can define the hierarchy

of Borel sets of finite rank:

Definition 2.8. Let X be a metrizable space, for n € w—{0}, we define by induction
classes 30 (X), TI2(X) and A% (X) :
2)(X) = G(X) the class of open sets of X
I (X) ={A | Ac 2%X)}, where A is the complement of A.
501 (X) = {UnAn | Ay € TI(X)m € )
A(X) = E0(X) N I (X)
In particular, we have:
IT is the class of closed sets.
Y = [, is the class of countable unions of closed sets.

19 = G; is the class of countable intersections of open sets.

One can prove that: X0 UTI) C AY
This gives us the following picture where any class is contained in every class to
the right of it:

A A A A,
1! I1) I3 I’

n

The Borel hierarchy is also defined for transfinite levels £ < wy, but we shall not
need them in the present study.
For all n € w the classes X2(X), TI?(X), A?(X) are closed under finite unions and
intersections, moreover 3 (X) is closed under countable unions, IT° (X) closed under
countable intersections and AY(X) closed under complement. All these classes are
closed by inverse image by continuous functions.
Ezample 12. The set Q is open but is not closed, i.e., @ € £V and O ¢ II.

We will see that the set Q is F, but is not G5, i.e., Q € 39 and Q ¢ IIY.

Sets which are recognized by deterministic Biichi automaton are Gs. One can see

this easily as a deterministic automaton gives a continuous function f : AY — QY.
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Replace ¢ ¢ F by 0 and q € F by 1. The set recognized by a deterministic Biichi
automaton is the inverse image of(@ by a continuous function.

Sets which are recognized by deterministic Miiller automaton are boolean combi-
nations of sets which are recognized by deterministic Biichi automaton, so they are

boolean combinations of TI5 sets hence AS.

2.4.3 Polish spaces

A Polish space P is a separable topological space which admits a compatible
metric d such as (P,d) is complete. A closed subset of a Polish space is Polish. An
open subset of a Polish space is Polish. A (G5 subset of a Polish space is Polish. This
is not true for F,,. Recall the Baire theorem :

Theorem 2.9. Let X be a complete space, the intersection of countably many dense
open sets in X is dense.

This is equivalent to say that in a complete space X, the union of countably
many closed sets of empty interior has empty interior.

Lemma 2.10. The set Q with the relative topology induced by the one of R is not
Polish.

Proof: (Saint Raymond) We have:

Q= J{a}
new

a countable union of closed sets. Suppose Q was Polish then by the preceding theorem
there must be an n such that {¢,} has an nonempty interior, otherwise Q would
have an empty interior, hence will be empty. But every {¢,} has an empty interior
because Q is dense in itself. Hence Q can’t be Polish. O

In fact by Baire’s theorem, every countable dense subset of a Polish space is not
Polish. As a (G5 subset of a Polish space is Polish, every countable dense subset of a
Polish space is not Gj.

Remark 6. It is well known (for a descriptive set theorist) that every Polish space is
homeomorphic to a Gs set in a compact metric space. For example the Baire space
w® is homeomorphic to Q = {a € 2* | Vm,3In > m, a(n) = 1}. To see this, define
an application ¢ : w — 2* by o(n) = 0"1. Notice that p(w) = 0*1 is a regular
prefic code. Extend ¢ in monoid morphism ¢ : w* — 2%, p(w*) = (0*1)*. Next
extend @ in continuous one to one application called again ¢ : w* — 2. We have
o(w®) = (0°1)* = Q. The set of infinite subsets of w is homeomorphic to Baire space

ww
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When P is an uncountable Polish space, Borel hierarchy is strict. In the sequel
P will be A¥ or A¥ x B“ or |a,b] with a and b reals.

2.4.4 Analytic sets and coanalytic sets

There exists another hierarchy beyond the Borel one, called the projective hie-
rarchy, which is obtained from the Borel hierarchy by successive applications of
operations of projection and complementation. We need just the first level of this
hierarchy. Let B C P x w* , we will call projp(B) the projection of B onto P , that
is, projp(B) = {a € P/3p € w* (a,() € B}.

A set C' C P is called analytic if there is a Borel set B C P x w* such that
C = projp(B). A set C' C P is coanalytic if its complement is analytic. The class
of analytic sets in P (resp. coanalytic) is called X1 (P) (resp. II3(P)). Borel sets are
analytic and coanalytic sets. The famous theorem of Suslin says that in Polish space
P, if B C P is analytic and coanalytic then B is Borel.

Existence of analytic sets which are not Borel is a kind of myth for descriptive
set theorists. In 1905 Lebesgue said that the projection of Borel set in the plane was
a Borel set. This was false as Suslin discovered in 1917. He called a projection of
Borel set an analytic set. Here is the French evidence of Sierpinski [82]: “Par hasard
j’étais présent au moment ot Michel Suslin communiqua & M. Lusin sa remarque et
lui donna le manuscrit de son premier travail”. Biichi commented the equivalence of
theorem 2.6 :“What looks like an analytic set (set recognized by a nondeterministic
Biichi automaton) is in fact Borel set (a set recognized by a deterministic Miiller

automaton is a A set)” [16]. An w-rational relation is an analytic set of A% x BY.

2.4.5 Complete sets

Recall the notion of completeness with regard to reduction by continuous func-
tions. Let I' be a class of sets in P Polish We call C' C P I'-complete if C' € T" and for
any B € T there exists a continuous function f: P — P, such that B = f~(C).

Finding some simple examples of complete sets is an old tradition in descriptive
set theory which goes back to Hurewicz [45] (see Louveau and Saint Raymond [62],
Kechris [47]). It turns out that some simple combinatorial examples of complete sets

are recognized by automata.

Ezample 13. We will see that O = {a € 2¥ | Im a(m) = 1} is X9-complete, hence
0 ={a €2¥|Ym a(m) = 0} is IIS-complete.
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We will see that the set Q = {a € 2¥ | Im VYn > m a(n) = 0} is X9-complete,
hence Q = {a € 2 | Ym 3n > m a(n) = 1} is II5-complete. In fact a countable
dense subset of [0,1] is X5-complete Hurewicz [45], and this true in all uncountable
Polish space.

Here is some well known examples of coanalytic-complete sets:

The set WO, as Well Order, that is the set of E C w X w such that E 1is the
graph of Well ordered linear order, is II1-complete, Lusin Sierpinski (1923).

The set K(Q) of compact sets of [0,1] which are included in Q C R , is TI}-
complete, Hurewicz [45].

The set DIFF of differentiable functions in C[0,1] is II;-complete, Mazurkie-
vicz(1933).

The set WF of well founded trees, that is trees on w which have no infinite
branches is T} -complete.

The set NDIFF of continuous functions on [0,1] which are nowhere differentiable
functions in C[0,1] is II;-complete, Mauldin(1979).

Finkel showed in [31] that there exists an w-rational relation which is 3{-complete.

Wadge has proved ! ?:
For any n, C' C w* is X2-complete (resp. IT9-complete) set iff C' € LI\IIY (resp.
C e II%\x9).
Definition 2.11. Let L. C A* we define Lim(L) = {a € A¥ | Vn € w, Im >
n such that a[m] € L}.

The following lemma is classical(see [54], [56], [90]).
Lemma 2.12. Let M C A* then M is II3 if and only if there exists L C A* so that
M = Lim(L).
Ezample 14. Q = {a € 2¢ | Vm 3n > m a(n) = 1} is I13 because Q = Lim(L) with
L a regular set denoted by the regular expression (04 1)*1.

Q is not equal to Lim(L) because Q is not Gs.

This lemma is equivalent to the following. The set Q = {a € 2¢ | ¥m,3In >
m, a(n) = 1} is a II complete set [83], [93]. In fact we have more: this set is

strategically complete [62]. We will see it in the game section.

1. Jean Saint Raymond has proved, that this valid for any uncountable Polish space.
2. See [47] page 205 for a discussion of the statement:
Let C C w®, if C € II}\X1 then C is IIi-complete.
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2.5 Baire’s classes

Definition 2.13. Definition of Baire’s classes for functions is recursive.
Let X, Y be metrizable spaces and f: X — 'Y be a function.

i) f is of Baire class 0 if f is continuous.

ii) f is of Baire class (n+ 1) if f is the pointwise limit of a sequence of Baire class

n functions for each integer n > 0.
The Lebesgue, Hausdorff, Banach theorem makes the connexion with the Borel

hierarchy :
Theorem 2.14. Let X, Y be metrizable spaces with 'Y separable. Then for alln > 2,
f: X — Y is of Baire class n iff for all open V include in Y, f~1(V) is in £, ,(X).
Remark 7. Note that this result holds for n = 1 if in addition X is separable and
either X = AY or Y =R.
Remark 8. If Y = B, as {uB“|u € B*} is a countable basis of clopen sets, it is
equivalent to prove that f : X — Y s of Baire class n iff for all finite word u,
fHuB®) is in A),(X).
Lemma 2.15. An w-rational function is of Baire class 2.

Proof: We have to shows that for all finite word u, f~!(uB*) is in AJ. But
J 7 (uB®) = proj e (graph(f) N (A x uB*))

We see that A“ x uB“ is in Rec((A x B)¥). The family of w-rational relation of
A¥x B“ is closed by intersection with an w-regular set of (Ax B)* and if R C AYx B¥
is an w-rational relation then proja«(R) is an w-regular set of A“. We have seen that
an w-regular set is a boolean combination of ITj sets, hence is a A} set. O
Ezample 15. The characteristic function of Q C R, 1g s a classical example of
Baire class two function which is not of Baire class one [5, 25]. The function 1g
is the pointwise limit of the sequence (fu)men where fo(x) = lim,, .o cos*™(n!nx).
So 1g s of Baire class two. If 1g was a Baire class one function, then the inverse
image of an open set by 1g will be a Eg(R) set, hence the inverse image of a closed
set by 1g will be a TIY(R) set. But as 1@)1({1}) = Q is not II3(R), because Q is a
countable dense subset, so 1g is not of Baire class one.

Let X and Y be metrizable spaces with Y compact, and f: X — Y, it is well
known that f is continuous if and only if its graph is closed.

Proposition 2.16. Let f : AY — B“ be a function of Baire class n, then its graph
is TIY, | (A“ x BY).

n+1
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Proof: First notice that if f(a) = § then Yu € B*, (f € uB* = f(a) € uB*) and
if f(a) # (B then Ju € B* such that § € uB“ and f(«) ¢ uB“. Thus:

(a,8) € graph(f) & f(a) = < [Vu € Y*(F € uB” = f(a) € uB")]

As f is of Baire class n, for any word u in B*, {a € A°|f(a) € uB*}isin A} (A¥)
and {3 € B*|3 € uB“} is in AY(B*). Thus for all fixed u € B*, {(a,3) € A¥ x
BY| (B €uB” = f(a) € uB®)}isin A}, (A% x B*) and {(a,3) € A® x B* | Vu €

B*(B € uB* = f(a) € uB¥)} is in II), | (A¥ x BY). O

When A and B are finite alphabets we have:

Proposition 2.17. Let f be a function f: AY — B“.

If graph(f) € AY(A“ x B¥) then f is of Baire class 1.

Proof: If graph(f) € AJ(A* x B¥) then for all open U C B“, graph(f) N (A% x
U) € AYAY x B¥). As A and B“ are compact spaces, graph(f) N (A“ x U) is
K, (countable unions of compact sets) and then f~!(U) is K, as the continuous
projection of graph(f) N (A* x U) on A“. O

Let cont(f) denote the set of points of continuity of a function f.
Proposition 2.18. Let X and Y be separable metric spaces and f : X — Y. Then
cont(f) is TI9(X).
Proof: We define the oscillation of f at « by:

oscs(a) = inf{diam(f(U))|U open containing o}

where diam(FE) is diameter of a set E.

It is easy to see that oscs(a) = 0 iff f is continuous at a.

Let X, ={a € X | oscs(a) < €} we show that it is an open set.
Let o be in X..

(oscs(a) <€) = (3U open containing « so that diam(f(U)) < ¢).

Then
VB € U oscp(B) < diam(f(U)) < e.

And X, is open.
So cont(f) = {a € X | oscp(a) = 0} = Nyso X1y is TIH(X). O
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2.6 An example

In this section we give an example of a function f such that graph(f) is definable
in S1S hence is of Baire class 2. One can easily see that graph(f) € II3 and the
set of points of continuity of f is a dense open set (hence dense II9). However, f is
not of Baire class 1. This example was constructed in 1996 by Tison and the first
author and was unpublished. The idea of A. Louveau (1996), is the following: take
the characteristic function of the Cantor set on the interval [0,1]. The function is
continuous on the complement of the triadic Cantor set, which is a dense open set.
Since the graph of f is AJ set, it follows from proposition 2.17 that f is of Baire
class 1. So we have to modify our function on the Cantor set to succeed. Now we
will work on space 3 = {0,1,2}*. The Cantor set is (0 + 2)“

a€ (0+2)” < Vn(a(n) =0V a(n) =2)

and its complement is the dense open set (0 +2)*1(0 + 1+ 2)~

a€(04+2)1(0+1+2) < Ina(n) =1

First define ¢ : {0,1}* — {0,1}* by:
g(a) = a, if @ € (0*1)¥ (« has infinitely many 1’s).

If « € (0+1)*10 (o has a non zero finite number of 1’s) replace each letter of «

by 0 except the last 1 which remains the same, this gives g(0*10% ...10%*10%) =
Ok0+k1+...+kp+p10w.

Finally if o = 0%, g(0¥) = 1¢.

Figure 2.5 shows a deterministic Biichi automaton which recognizes graph(g). This
implies that graph(g) € TI5. We will see that g has no point of continuity and is not

of Baire class 1.
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0 0/0 +1/0

F1G. 2.5 — a totally discontinuous synchronous function

Let’s see that ¢ has no point of continuity.

If a has infinitely many 1’s, o = 0% 10*10%1...10% ..., where for each p , k, > 0,
sequence a, = 0010%110%21...10%10% tends to .

But g(0%10*110%21...10%10%) = Qkothit-Fhntn]( and sequence g(a,,) converges
to 0%.

Suppose now that o has a non zero finite number of 1’s, o = 0%010% ... 10*10v
with p > 0. Sequence a,, = 0%10% ...10%10"10% tends to a. We have g(a) =
QRotkitthptp 0w g(0F010%1 ... 10%210710%) = Qkothit-thptpintligw and sequence
g(av,) converges to 0%.

If o = 0¥, « is limit of the sequence a,, = 0"10“. g(0¥) = 1¢, ¢(0"10¥) = 0”10 and
the sequence g(a,) converges to 0.

One can also see that ¢g71(011(0 + 1)¥) = 011(0*1)~, which is TI3 but not 9. So g

is not of Baire class one.
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Now we can define our function f : {0,1,2}* — {0,2}* by:

fla)=0¥if « € (04+2)*1(0 4+ 1 4+ 2)*( « has at least one 1)

f(a) =aif @ € (02)* (« has no 1 and infinitely many 2’s)

fla) =0"20% if @ € (0+2)*20* (o has no 1 and a non zero finite number of 2’s)
and satisfies, a € (0 + 2)"20%

fla) =2¥if a = 0“.

One can see in figure 2.6 that graph(f) is recognized by a deterministic Biichi
automaton. This implies that graph(g) € TI9.

F1G. 2.6 — a dense open set of points of continuity

Notice that f is not of Baire class 1 because f~(022 (0+ 2)«) = 022(0*2)* which is
19 but not 39. Moreover f is continuous on a dense open set because it is constant
on the dense open set (0 + 2)*1(0 + 1 + 2)“. It is easy to see that f has no point
of continuity on (0 + 2)“. The proof is similar to that concerning g, we just have to
replace 1 by 2.

In his thesis (1899) Baire has proved that a function is of Baire class 1 if and only

if for every non empty closed set F' the restriction of this function to F' has a point
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of continuity. Our example is w-rational function which is not of Baire class 1 and we
have found an w-regular closed set F' = (0 + 2)“ such that restriction of f to F' has
no point of continuity. We will see that our example is generic. If f is an w-rational
function which is not Baire class 1, then there exists a closed F', recognized by a
Biichi automaton, such that restriction of f to F' has no point of continuity.

The next sections will be devoted to the classical proof of Baire’s result.

2.7 Differences hierarchy

In this section, we introduce the class of differences. Let £ be an ordinal. Any &
can be written in a unique way £ = A +n with A a limit ordinal or 0 and n € w.
Parity of £ is by definition that of n.

Definition 2.19. Let X be a set, £ an ordinal and < B, : n < § > an increasing

sequence of subsets of X:

De(< B, :n<&>)={rxe X|In <& xe B, and if ny = inf({n|x € B,})
the parity of & and of ny are differents }

Then :

D1(< By >) =B,
D2(< BQ,Bl >) :Bl\BO
D3(< Bo,Bl,Bg >) :(BQ\Bl) U BO

D,(< B, :n€w>)=Uye, (Bant1\Ban)
Dw+1(< B, :n<w >) :(Bw\ Unew Bn) U (Un€w<32n+2\32n+1>> U By

Let I' be a family of subsets of X, D¢(I") will be the family of all D¢(< B, : n <
£ >) where < B, : n < £ > is an increasing sequence of length £ of elements of I'.

In the sequel we will be particularly interested in the classes D¢(3)) and their dual
classes D¢(29) = {B | B € D¢(X!)}, where ¢ is a countable ordinal.

Ezample 16. Let O = {a € 2¥ | Iny,3Ing, ... Ing,ng < ng < ... < np,a(ng) =
alng) = ... = a(ng) = 1} with k > 0, Oy is an w-regular open set. We have
an increasing sequence of dense open sets O, C O,_1 C O,_9...05 C O1 and
Dy (< O, ...,01 >) is a D, (2%) which in fact is a D, (X9)-complete set. Figure 2.7

gives a deterministic Biichi automaton which recognizes (O1\O2) U Os.
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FIG. 2.7 — A deterministic Biichi automaton which recognizes a Ds(X3)-complete
set.

Example 17. Let G, be the following sequence of decreasing dense G sets:
G1=((0+1)*1)¥ = (0*1)¥ o € G & « has an infinite numbers of 1.
Gy = ((0+1)*11)¥ a € Gy < « has an infinite numbers of 11.

Gs = ((04+ 1)*111)¥ o € G3 < « has an infinite numbers of 111.

G, = (04 1)*1")* a € G,, & « has an infinite numbers of 1"

Taking the complement of these sets we obtain an increasing sequence
Fhckhc...F,1CF,

of meager F, sets, D,(< Fi,...,F, >) is a D,(39) which in fact is a D,(X3)-
complete set. Figure 2.8 gives a deterministic Miiller automaton which recognizes
(F5\F2) U Fy, with F = {{0},{0,1,2}}.

The loops accessible from the initial state are

L ={{0},{0,1},{0,1,2},{0,1,2,3},{3}}, these are essential loops of the automaton
[106]. Classify these essential loops in

L, ={{0},{0,1,2}} and L_ = {{0,1}.,{0,1,2,3},{3}}. We have the inclusion

{0} c {0,1} c {0,1,2} c {0,1,2,3}, that is to say {+} C {-} C {+} C {-}.
But we have not some {—} C {+} C {—} C {+} inclusion. These are the + chain
and — chain of Wagner.

It is well known that in an uncountable Polish space hierarchy of Dg(Eg), £ <wi,
n < wy is strict (see [47] ).
Lemma 2.20. Inclusion D¢(X)) C A} holds, for all countable ordinal €.
Proof: First note that D¢(2)) C Dey1(27). So, we have only to prove that De (X)) C
35, This is clear since differences B;\ B, of open sets are X9 and X is closed under

countable unions. O
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FIG. 2.8 — A deterministic Miiller automaton which recognizes a Ds(X5)-complete
set.

2.8 Haussdorff’s derivation

Recall that A“ has a countable basis for the topology. Thus we can extract
countable covering from each open covering. As a consequence, if w; is the first
non countable ordinal, and if (Fg)e<,, is a decreasing sequence of closed sets, it is
stationary from a certain rank on, i.e., 3n < w; such that F; = F,, V¢ > n. For more
details we refer to [47].

We now define Hausdorff’s derivation (see [53]).

Definition 2.21. Let M and N be two subsets of A“. Sequence of closed sets (F¢)e<u,

s defined by transfinite induction.

F, = A”
Feyin = FenMNF.NN
F\ = NearFe, if Xis a limit ordinal

The sequence (F¢)e<,, is a decreasing sequence of closed sets, so we know that
there exists a smaller n < w; such that F,, = F;, "M N F, N N.
Lemma 2.22. Let F' be a closed set. Then FF = FNM N FNN if and only if
F=FNM=FNN.
Proof: Indeed, if F= FNMNF NN then F C FN M. Moreover FNM C F and
FNM C F since F is closed. 0J
Lemma 2.23. F), is the largest closed set such that ' =FNMNFNN.
Proof: Let F' be a closed set such that F' = FN M N FNN. We will show that
F C F, by transfinite induction.
We have F' C Fy.
If F C Fethen FNM C FenNM,so F=FNMCcCF:.NM.
Similarly ' = FNN C Fe NN thus FC FeNMNF: NN = Feyg.
If X is a limit ordinal, and if V§ < A\, F' C F¢ V§ < A then F C NecrFe = Fi. O
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We define the following sequences (Me)e<w, and (Ng)ecy, :

MO — M NO - N
M£+1 == MgﬂNg N£+1 - NgﬁMg
My = NecxMe Ny = NeaaNg if \ is a limit ordinal.

Lemma 2.24. V{ < wy, Mg = M N Fe and N = N N Fe. In particular, if n is
the smallest countable ordinal such that F,, = F,, "M = F, N N, then n is also the

smallest countable ordinal such that E = Vn

Proof: We argue again by a transfinite induction.
For n = 0 we have My = M = M N A = M N Fy, and also Ny = N N Fy.
IfMg :MmFg and Ng :NmFg, then

Mey1=McNNe=MNFNNNF;=MnNF,NMNFNNNF.
So
M£+1:MQF£QF£+1 :MﬂF£+1
For A limit, if M = M N Fy for £ < A, then:

O

Lemma 2.25. Let M and N be two Hg subsets of AY and I, the largest closed set
such that

F,=F,NMNF,NN

Then F, # 0 = M NN # (. In particular F,, =0 if M and N are two disjoint I13.
Proof: Sets M,, = MNF,, N, = NNF, are Hg sets. So, by lemma 2.12, there exists
UC A* et V C A* so that: Lim(U) = M, and Lim(V) = N,,.

If F, # 0, as F,, = M, = E, we can find oy € M, and u; € U such that v, is a
prefix of a;. Since every open ball containing o; meets N,,, we can find 8, € N, so
that u; is a prefix of 3;. But N,, = Lim(V'), thus we can find v; € V such that v;
is a prefix of #; and u; is a strict prefix of v;. Finally since every ball containing 3,
meet M, we can find oy € M, so that v, is a prefix of o, and since M, = Lim(U)
we can find uy € U prefix of ay so that vy is a strict prefix of us. Then u; < v; < us.

Iterating this process, we construct two sequences (u;), (v;) such that
U <V < U <V <o < U <V < Ujg1 < Vjg1 < .e
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Note o = lim(w;) = lim(v;), a € Lim(U) = M,, C M and a € Lim(V) = N,, C N.
U
Theorem 2.26. (Hausdorff) Let M and N be two disjoint TI3 subsets of A“. Then :
(i) There exists ( < wy and a set in D(X)) which separates M from N.
(ii) In particular, AY = Uy, De(EY).
Proof: Let P: = Fy\M N F, Re = Fy\N N F;. We have:

Fe\Fgi1 = F\(MNFNNOF) = (F\M N Fe) U (F\N N F) = PeU Re.
Let n be the smallest ordinal such that F; = F, ;. We have:
A% = (Ugan(Fe\Fern)) U Fyy.
By lemma 2.25, as M and N are two disjoint II3, F}, = (), thus
AY = (UgenPe) U ((Ug<n Le).

Moreover, V¢ < wy, Pe = F\M N Fy C F\(M N Fy) = F\M C A“\ M.

So as Ugeyy Pe C A\M we have M C A“\(Ug<y, Pe) hence M C Ug, Re.

Also (Ug<y Re) C A“\N, ie., (Ugey Re) NN = 0.

So Ug<, R separates M from N. As it is a countable union of disjoint Dy(IT]) sets
it is easy to see that Ug, Re is in D¢(2)) for some ¢ < w.

If M isin AY, set N = M. M and N are disjoint IT sets and there exists ¢ < w; and
aset in D¢ (X)) which separates M from N. Thus M is in D¢(329). So we have proved
that A) C Ugo,, De(X)) and the opposite inclusion has been proved in lemma 2.20.
O

Corollary 2.27. Let M and N be two subsets of A and let F,, be the biggest closed
set so that F,y = F;, "M = F, "N N. Then M and N can be separated by a A set iff
F,=10.

Proof: In the proof of theorem 2.26 we showed that if Hausdorff’s derivation stops
to the empty set then A/ and N are separated by a AY. Conversely, if M and N
are separated by a D¢(X7) set C for some ¢ < w;, we can operate the Hausdorff

derivation on C' and C. As C and C are disjoint IT) sets this derivation goes on to
the empty set, as the derivation on M and . O

Our proof is directly extracted from Kuratowski [53] and documents of Louveau.
The result is true in uncountable Polish spaces. Our originality comes from lemma

2.25; this is in such a form that the first author discovered this problem [4]. One can
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see how automata can be used to analyse problems of parallelism in [11]. Instead of
lemma 2.25, a descriptive set theorist would use there Baire’s theorem : a countable
intersection of dense open set is dense. If M and N are two disjoints ITJ and if F
is a non empty closed set such that F' = FNM N F NN, then F is complete as a
closed set in complete space A“. Sets FFN M and FFN N are G in F, so they cannot

be both dense since they are disjoint.

2.9 Baire’s theorem

Definition 2.28. A set E is called nowhere dense if its closure E has an empty
interior. A set E is called meager if it is included in a countable union of nowhere
dense sets.

Baire’s theorem asserts that in a polish space [69] a countable intersection of
dense open sets is still dense or equivalently that a countable union of nowhere
dense closed sets has empty interior. We have seen that for any function f, the set
of discontinuity points of f is in £3(X) set. In the case of a Baire class 1 function,
we have more.

Proposition 2.29. Let X and Y be two separable metric spaces and f : X —Y a
Baire class 1 function. The set of discontinuity points of f is a meager set in £5(X).
Proof: Let (V.X) (resp (VY')) be a countable basis of X (resp Y). A point a € X is
a discontinuity point of f if there exists n such that f(a) € V.Y and f(V.X) € V.Y
for each m, i.e. o € f~1(VY) but not in its interior int(f~*(VY')). Thus the set of
discontinuity points of f is Upe, fH(V.V)\int(f~1(V,Y')). As f is Baire class 1, all
these sets are X9(X) and have empty interior: they are all meager and a countable
union of meager sets is still meager. 0
Theorem 2.30. Let P be a Polish space, Y a separable metric space and f : P — Y.
The following statements are equivalent :

(i) f is Baire class 1.

(ii) For all nonempty closed set F' C P, the restriction fip of f to F has a point

of continuity.

Proof: (i) = (i7)
Set F'is a closed set of a Polish space so F'is Polish too. Since f is Baire class 1, so
is fir, thus, by proposition 2.29, its discontinuity points form a meager subset of I,

hence by Baire category theorem, cannot be equal to F.

(12) = (4)
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Suppose that f is not Baire class 1. There exists an open subset U of Y such that
f7HU) ¢ 3(X). As Y is a metric space, U can be writen as a countable union of
closed sets U = U,,>0H,,. Let H be the complement of U in Y. Suppose that for each
n there exists A, € A) which separates f~'(H,) from f~'(H). Then:

fﬁl(U> = Un20f71<Hn) = UnEOAn

and f~1(U) will be 39.

So there exists an n such that f~'(H,) and f~'(H) can’t be separated by a AJ set.
We now apply Hausdorff’s derivation on f~1(H,) and f~!(H). Let F be the biggest
closed set such that F' = Fn f~1(H,) = FN f~Y(H). By corollary 2.27, F' is not
empty and we will show that f has no point of continuity in F.

Let o € cont(fjp). If f(o) ¢ H, as H is closed we can find an open set B, in F
containing « such that f(B,)NH = (. This contradicts density of f~'(H) in F thus
f(a) € H. By the same argument f(«) € H,, but H N H,, = 0. So fjr has no point

of continuity. O

Ezample 18. We have seen that the characteristic function of Q C R, 1g is of Baire
class two. Using the previous theorem we can see that 1g is not Baire class one since

1t’s nowhere continuous.

2.10 Application to automata theory

Lemma 2.31. Let M and N be two languages in Rec(A¥). Then Hausdorff’s deri-

vation on M and N stops in a finite number of steps, i.e.

dn € w such that F,, = F, "M = F, N N.

Proof: Let A (Resp. B) be a deterministic Miiller automaton which recognizes
M (Resp. N). Construct the cartesian product A x B, this is also a deterministic
automaton. Compute the essential loops of the product and classify them in L4, Lz,
where L4 (Resp. Lg) is the set of essential loops such that projection on states of
A (Resp. B) is a positive essential loop of A (Resp. B), see example 17. Note that
Ly, Lg are disjoint if and only if M and N are disjoint. Let « in M, then there
exists a essential loop F' which recognizes «, and one can see that o in M is in the
closure of NV if and only if a loop of Lz is accessible from the loop F' in L 4. Process
as follows: eliminate from L4 (Resp. Lg) loops from which every loop in L (Resp.

L4) is inaccessible, and iterate the work. As there is a finite number of loops, the
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process will stop in a finite number of steps. At the end, if L 4 and Lg are not empty,
then from every loop in L4 (Resp. Lg) you can access to some loop in Lg (Resp.
Ly). O
FExample 19. Let Qg the subset of 2¥ of infinite words with finite even number of 1
and Q the subset of 2% of infinite words with finite odd number of 1. This two sets
are dense, X5-complete sets. The Hausdorff’s derivation stops after one iteration as
Fo=2Yand F; = Qy(2¥ = Q2% = 2¥ = Fp.

Corollary 2.32. One can decide if two langages in Rec(A*) are separated by a AS

set. Moreover if they are separated by a Ag set, they are separated by an w-reqular
A set, i.e., a finite difference of w-regular open sets.

Proof: Let M and N two languages in Rec(A“). Using corollary 2.27, M and N
are separated by a AY set iff Hausdorff’s derivation stop to the empty set, and by
lemma 2.31 it comes in a finite number of steps.

By closure property of w-regular sets, the F}, which appear in Hausdorft’s derivation
are w-regular and emptyness problem is decidable for w-regular sets. 0
Corollary 2.33. Let f : AY — BY be an w-rational function. If f is not Baire
class 1 then there exists a nonempty closed set F' which is recognizable by a Biichi
automaton such that f restricted to F' has no point of continuity.

Proof: If f is not Baire class 1 then there exists v € B* such that f~!(uB“) ¢
AY(X). So there exists v € B* with |u| = |v| such that f~'(uB*) and f~'(vBY)
cannot be separated by a AJ(X) set. Thus, as in the proof of theorem 2.30, the
Hausdorff derivation on f~!(uB“) and f~!(vB“) produces, in finite time, a closed
set F'such that fjp has no point of continuity. As f~!(uB*) and f~!(vB¥) are reco-
gnizable by a Biichi automaton so is F' by closure properties of the family Rec(A%).
O

2.11 Games

For this section we refer the reader to Hurewicz [45], Lusin [64], Sierpinski [82],
Biichi [18], Landweber [54], Trakhtenbrot Barzdin [100], Wadge [103, 104, 105], Saint
Raymond [76, 77|, Lindner Staiger [56], Wagner [106], Moschovakis [65], Louveau [58,
59, 60], Kechris Louveau [48|, Kechris Louveau Woodin [50], Louveau Saint Raymond
[62], Staiger [90], Barua [6], Weirauch [108], Staiger Weirauch [93], Simonnet [83, 84],
Hertling Weirauch [44], Kechris [47], Selivanov [79], Srivastava [87], Carton Perrin
[22], Duparc [27], Duparc Finkel Ressayre [26], Perrin Pin [69].
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2.11.1 Biichi, Landweber and Martin

Games are useful in descriptive set theory. They allow to give alternative proofs

of some theorems like Cantor Bendixon theorem and Wadge theorem :

For any n , C' C w* is X%-complete (resp. II2-complete) set iff C € Z2\IIY (resp.
C e II9\X9).
Definition 2.34. A game in AY x B“ between two players I and I can be defined
as follows:

Player I plays «(0) € A, then player 11 plays 5(0) € B, I plays a(1) € A, and
so on. The result of the game is the couple of infinite words (a,3) of A¥ x B¥.

Let G be a subset of A x B“. Player I] wins the game if («,53) is in G.
Definition 2.35. We have :

— A strategy for player I is an application ¢ : B* — A. Intuitively I plays
following ¢ :
a(0) = ¢(e), (1) = ¢(5(0)), a(2) = ¢(6(0)5(1)), ete.
The application ¢ can be extended on infinite words in a continuous application
(1-lipschitz) 1) : AY — B“ by

o(3) = 0(€)9(5(0)p(5(0)3(1)) - .. p(B(0)3(1) ... B(n)) . ..
— A strateqy for player II is an application v : AT — B. Intuitively II plays
following 9 :
B(0) = ¢(a(0)), B(1) = P(a(0)a(l)), 5(2) = P(a(0)a(l)a(2)), etc.

The application 1 can be extended on infinite words in a continuous application
(1-lipschitz) 1 : AY — B“ by:

(a) = P(a(0))(a(0)a(1)) ... P(a(0)a(l) ... afn)). ..

A strategy ¢ for player [ is a winning strategy if for any 5 in B“ (¢(3),3) is not
in G. A strategy 1 for player /] is a winning strategy if for any « in A“ (o, (a)) is
in G.

Definition 2.36. A game is called determined if one of the two players has a winning
strategqy.

It is well known that Borel’s games are determined : Martin theorem [47]. Some-

times the proofs using games can be adapted to automata theory thanks to Biichi
Landweber’s theorem [7, 69, 84, 85|

Theorem 2.37. (Biichi Landweber 1969) If the set G is an w — regular subset of

AY x B¥, one of the players have a winning automaton strateqy : either player I has
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a winning strategy ¢ such that the tree ¢ is a rational tree, or either player II has
a winning strategqy v which is a 1-sequential function. There is an algorithm which,
given an w—regular set G, (1) determines which player has a winning strategy, and
(2) constructs a winning automaton strateqy. In particular if one of the players has

a winning strategy, he also has a winning automaton strategy [100, 18].

2.11.2 Wadge Game

Let X C A¥ Y C A¥, in the Wadge game G(X.Y) player II wins iff (o €
X & [ €Y), that is to say the winning set for ITis G = (X x Y)|J(X x }}) A
winning strategy for II gives a continuous function (a Lipschitz map) ¢ such that
0 1(Y) = X. A winning strategy for I gives a continuous function (a Lipschitz map)
v such that w_l(X') =Y. If X and Y are Borel, Wadge game is determined so we
have the dichotomy: either there exists ¢ continuous such that ¢~ '(Y) = X either
there exists 1 continuous such that ¢v~1(X) =Y.

2.11.3 'Wadge’s hierarchy, Wagner’s Hierarchy, Louveau’s hie-
rarchy

Let X C A“, Wadge has defined the class of Wadge of X by :

X]w ={Y C A” | Jp : AY — A“ continuous Y = o ' (X)}

The notation W on the right gives in French: W A Droite. WADge has given a
complete description of all Wadge classes of Borel set. We have [O]y = 39, [Qly =
39, Let ' be a class of Wadge then I' = {X | X € T'} is the class dual to I, and
AT) =TNI,if T =T then I is a selfdual class and if I' # T then I is a nonselfdual
class. The classes 22, Hg, D,,(Eg), £ < wy, n < w; are examples of nonselfdual
Wadge classes of Borel sets.

Let X C Rec(A“), Wagner has defined the class of Wagner of X by:

wlX]={Y C AY | 3p : AY — A¥ sequential Y = ¢ '(X)}

The notation W on the left gives in French: W A Gauche. WAGner has given a
complete description of all Wagner classes of Rec(A*). One can also defined selfdual
and non selfdual Wagner classes. Wagner proves (in fact maybe he didn’t know
Wadge at this time) that Wagde’s hierarchy restricted to w-regular set is Wagner’s
hierarchy: I'yy N Auto =y, ['. The first normal form’s theorems of this type for

w-regular sets are from Landweber [54] :
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An w-regular set X which is open is the inverse image of @ by a 1-sequential
function. An w-regular set X which is closed is the inverse image of O by a 1-
sequential function or equivalently X is the set of infinite branches of a rational
tree of A*. From this one can deduce that synchronous continuous functions are
exactly the sequential functions with bounded delay, Trakhtenbrot [99, 100|. If an
w-rational function is not of Baire class 1, one can find a rational tree (tree with a
finite number of subtrees) whose set of infinite branches is a Perfect set P (closed set

without isolated points [53]) and the restriction of f to P has no point of continuity.

An w-regular set which is F is the inverse image of Q by a 1-sequential function.
An w-regular set X which is Gy is the inverse image of Q by a 1-sequential function,
or equivalently X is recognized by a deterministic Biichi automaton, X = Lim(L)
with L a regular set. If f is synchronous then Cont(f) is definable in S1S so one

can’t constructs a deterministic Biichi automaton which recognizes Cont(f).

In February 1987 Louveau used the following formalism to denote Landweber’s

theorems. Call
SV(Auto) = {X C 4¥ | X = ¢ 10),p : A — 2¥ 1 — sequential}
S (Auto) = {X C A4° | X = ¢ HQ),p : A — 2¥ 1 — sequential}

we have
2N Auto = X{(Auto)

29N Auto = ¥)(Auto)

If an w-rational function is not of Baire class 1, one can find a Perfect set P
which is TI{(Auto) such that the restriction of f to P has no point of continuity. If
f is synchronous then Cont(f) is I13(Auto).

Louveau was working in effective set theory (see Moschovakis [65]). He has defined
a hierarchy of effective Borel sets of w“, the Al sets of w*. Louveau proves that
Wagde’s hierarchy restricted to Al sets is Louveau’s hierarchy. His theorem gives

for example [59, 60]:

ZINA]=X(4A)
35N A; = 5(A)
3, NA = T5(A)

where one of the equivalent definitions of X9(A{), X9(A}) is

(A ={X Cw’| X = 1 (0),p:w’ — 2 ¢ strategy Aj}
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YH(AD) ={X Cw’| X =9 1 (Q),p:w’ — 2 ¢ strategy A1}

And the same definition for 32 (Al) with a very simple set in 2" recognized by a
finite automaton which reads words of length w” (see Biichi [15], Shelah [80], Bedon
[10], Choffrut Grigoriev [24] for finite automata reading transfinite words). From this
effective results Louveau deduces classical results in the plane: If X C w“ x w“ is a
Borel set with X0 sections then X is a countable union of Borel sets in w* x w*
with TI? sections. The first example of this kind of results is the case of Borel sets in
the plane with countable sections studied by Lusin [64]. This result was extended by
Novikov, Arsenin and Kunugui to the case of Borel sets in the plane with compact
sections or K, sections (see Sierpinski [82], Saint Raymond [77], Louveau Saint
Raymond [62|, Kechris [47], Srivastava [87]).

2.11.4 O and Q

For all Wadge classes of Borel sets I', Wadge gives an example of a I"-complete
set in w“. As remarked by Professor Jean Saint Raymond “il suffit de le faire pour
les ouverts.” We will do it for open sets and F, sets.

Let T be a tree of A*, we denote by [T'] the set of the infinite branches of T':

[T] ={a € A¥, Vn € w aln] € T}.

Proposition 2.38. Let F' be a subset of A¥. The set F' is closed iff there exists a
tree T of A* so that F = [T].

Proof: (=) If F is closed, we define T'= {u € A* Ja € F In € w a|n] = u}. Then
[T)=F =F.

(<) It is clear that [T7] is always a closed set. O
Definition 2.39. A set C of X0 is called X2 (A®)-strategically complete if for any
set X of X2 (A¥), player I has a winning strategy in the game G(X,C) : II wins iff
(aeX s pfel)(G=(XxC)UKX xO)).

Proposition 2.40. The set O = {a € 2¥ | 3m a(m) = 1} is X (A¥)-strategically
complete.

Proof: Let U be in X9(A“). The complement of U is closed, so by proposition 2.38,
there exists a tree T so that 7 = U. The winning strategy ¢ : A* — {0,1} for IT is

the following :
0 fueT
olu) = {1 if ug T
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O
In fact using Martin theorem and Wadge game every open non closed set is
»0(A¥)-strategically complete. And using Biichi Landweber theorem we have %) N
Auto = XY(Auto).
Proposition 2.41. The set Q = {a € 2* | Im Vn > m a(n) = 0} is Y A¥)-
strategically complete.
Proof: Let U be in X9(A“). Then there exists a family (F,),c,, of closed sets so that
U = U,e., Fn- By proposition 2.38, for any integer n, there exists a tree T, so that
F, = [T,]. The winning strategy ¢ : AT — {0,1} for I is given by the following

induction :

0 ifueT,
olu) = {1 ifugT,andn—n+1

Let (a,p(a)) be a result of the game.

— If @ is in U, there exists n so that « is in F,, = [T},]. Then for all m in w, a[m)]
is in T},. So there exists mq so that for all m > mg, ¢(a[m]) = 0 and ¢(«a) is
in Q: I wins.

— If @ is not in U then for all n and m in w, there exists m > m so that «a[m)]
is not in T, i.e. the sequence of finite words (a|m|)nec, leaves any tree T), in
finite time. Then ¢(a) has an infinite number of 1, so ¢(a) is not in Q and 17
wins.

U

In fact using Martin theorem and Wadge game every F, set which is not a G

set is X9(A¥)-strategically complete. And using Biichi Landweber theorem we have
9N Auto = X3(Auto).

2.11.5 Separation games

In October 1984 Louveau was presenting joint work of his and Saint Raymond
in the seminary of theory of effective borel sets. The title of the talk was “Jeux de
Mistigri (Mistigri Games)”. This was a sort of Wadge game, a separation game. Let

Y and Z be two analytic disjoint subsets of w®.

In a first Game Player IT wins the gameiff (@« €c 0 = f € Yanda € O = € Z).
A winning strategy for IT gives a continuous function (a Lipschitz map) ¢ such that

0 1(Y) = Q. A winning strategy for I gives a continuous function (a Lipschitz map)
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¢ such that: (YY) C O, ¢(Z) C O. That is to say ¥ *(O) separate Y from Z. Tt is
easy to see that there is a closed set which separates Y from Z if and only if player I
has a winning strategy in the first separation game. If Y and Z are w-regular sets one
can deduce from Biichi Landweber’s theorem that one can decide if two w-regular
disjoint sets are separated by a closed set. Moreover if they are separated by a closed

set, they are separated by a II9(Auto).

In a second game, Player II wins the game iff (@ € Q = f €Y anda e Q= 3 ¢
Z). A winning strategy for II gives a continuous function (a Lipschitz map) ¢ such
that ¢ 1(Y) = Q. A winning strategy for I gives a continuous function (a Lipschitz
map) 1) such that: (V) C Q, ¥(Z) € Q. That is to say 1»~'(Q) separate Y from
Z. It is easy to see that there is a IT) set which separates Y from Z if and only if
player I has a winning strategy in the first separation game. If Y and Z are w-regular
sets, one can deduce from Biichi Landweber’s theorem that one can decide if two
w-regular disjoint sets are separated by a IIS set. Moreover if they are separated by
a Hg set, they are separated by a II3(Auto), that is to say, they are separated by a

set recognized by deterministic Biichi automaton.

Note that these theorems hold for all classes of Wagner’s hierarchy which is of
type order the ordinal of w“. These results where presented to Louveau in 1987
and appear in [84, 85]. R. Barua solves the case of the D, (39) classes with a proof

without games [6].

Separation games appear in Van Wesep [101|. The game where Player 1T wins
if@eQ=pcYandac Q= € Z)is used in Kechris Louveau Woodin
[50, 48, 47] to give new proof of the old Hurewicz’s theorem [45]:

Any II; set X in a compact metrizable space £ which is not IT) contains a closed
subset homeomorphic to Q. In fact, one can also construct a homeomorphic copy F
of 2¥ inside E such that F'N X is (through the homemorphism) identified with Q.
The set Q is a Hurewicz-witness for non IT3-ness, Q is a Hurewicz-test. And we have
the w-regular case. If an w-regular set X is not IIJ then every deterministic Muller
automaton which recognizes X contains a chain {+} C {—}. This was generalized

to all Wagner classes by Wagner [106].

Effective results of Louveau were first proved in [59]. Let X} (resp. II}) be the
class of effective analytic sets (resp. coanalytic sets) and Al = II} N X1 be the class
effective Borel sets (boldface=classical, ligthface=effective see Moschovakis [65]). Let

Y and Z be two disjoint X! subsets of w*”. Louveau has shown that if there is a X"
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which separates Y from Z then there is a X2 (A}) which separates Y from Z. From
this he deduced X2 NA! = %0(Al) and by relativisation the theorem on Borel sets of
the plane with X sections. He used the good properties of the Gandy Harrington’s
topology of w*, the topology generated by the 31 subsets of w*. Then in [60] Louveau
has extended this separation theorem to all effective Wadge classes. In [62| Louveau
and Saint Raymond use separation games to give another proof of these results [62].
They use the basic strategic theorem: if G C w* X w¥, the winning set for II, is a
¥ set then if player II has a strategy then he have a Al strategy. They also give an

Hurewicz’s theorems for all Wadge classes.

2.11.6 Steel’s game and separation by A) sets

Let Qp, the subset of 2“ of infinite words with finite even number of 1 and Q,
the subset of 2¥ of infinite words with finite odd number of 1. We have seen that Qg
and Q; are not separate by a AJ set.

Let X and Y be disjoint sets. In the Steel’s game, player II wins the game iff
(€Y =p0€Qy)and (€ Z =€ Q) and (5 € QyJQ1)).

Proposition 2.42. If the sets Y and Z are borel sets, then player II has a winning
strategy iff there is a AY set which separates Y from Z.

Proof: A winning strategy for II gives a continuous function (a Lipschitz map) ¢ :
AY — Qo JQq such that o(Y) C Qg and ¢(Z) C Q. This implies that o~ 1(Qg) =
¢ 1(Q,) is a AY set which separates Y from Z.

A winning strategy for I gives a continuous function (a Lipschitz map) ¢ : 2¥ —
A“ such that: ¥(Qy) C Z, ¥(Q,) C Y. If C is a A} set which separates Y from Z
then ¢~ (C) is a AY set which separates Q, from @, and this is not possible.

So if C'is a AJ set which separates Y from Z, by Borel determinacy II has a winning
strategy. 0
Corollary 2.43. One can decide if two languages in Rec(A*) are separated by a A
set. Moreover if they are separated by a A set, they are separated by an w-reqular
A set, i.e., a finite difference of w-reqular open sets.

Proof: If Y and Z are w-regular sets then the Steel’s game is w-regular. So by
the Biichi Landweber’s theorem, we can decide if player II has a winning strategy.
Moreover if player II has a winning strategy he has a sequential letter to letter
strategy . This implies that ¢(Qg) = ¢(Q) is an w-regular AJ set which separates
Y from Z. O
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2.11.7 Mistigri Color

Van Wesep and Steel Games [101, 94| were used to study structural properties
of Wadge classes of Borel sets like separation property. A Wadge class I' has the
separation property if for any pair X, Y of disjoints sets in I' there exists Z in
A(T") which separate X from Y. In fact for each pair of nonselfdual I, Wadgeclass
of Borel sets then exactly one of the classes has the separation property. And if
I' doesn’t have the separation property then one can find a simple pair X, Y of
disjoints sets in I" such that X can’t be separated from Y by a set in A(I"). Another
very interesting property is the norm property, in [63| Louveau and Saint Raymond
study norm property of Borel Wadge classes. The classes X2, Dn(Zg), £ <wp,n <uwi,
and II; have the norm property, and the D,(X%(Auto)), D, (X(Auto)) have the
norm property [83|. If a class T' has a norm property then I' has the reduction
property [63] that is to say for all X, Y in I" one can find X', Y’ in T" such that
XUY = X'UY” and X'NY”’ = (. Moreover if T has the reduction property then I has
the separation property. For example we have seen that the classes II9, TIJ(Auto)
have the separation property; in fact this is true because the classes 23, ¥9(Auto)
have the reduction property. The reduction property of classes Eg is used to prove

the Lebesgue, Hausdorff, Banach’s theorem :

Theorem 2.44. Let X, Y be metrizable spaces with Y separable. Then for all ¢ > 2,
f: X — Y is of Baire class € iff for all open V include in Y, f~1(V) is in E?+§(X).
Remark 9. Note another time that this result holds for n = 1 if in addition X is
separable and either X = AY orY = R.

The proof use finite valued Borel functions, finite Borel partition. We know four
descriptions of Borel Wadge classes:
The one of Wadge(Descriptive Set Theorist) [104] is useful for a Computer Scientist
(DST: Hello this set is I'-complete and we give you a proof of that. Do you know
countable choice and fundamental sequences? CS: Thank you, I will try to find some
device to recognize this I'-complete set. Is this the simplest one? What is countable
choice? Do I use it? Do you think I can recognize this I'-complete set with a Muller
tree automaton? DST: what is a Muller tree automaton?).
The one of Louveau [60] is useful to study structural properties of classes, Selivanov
[79] uses this description and describes the topological invariants of Wagner classes
by finite trees.
The one of Saint Raymond [77| uses Borel functions of class £ (£ < wy). This des-

cription has the advantage to extend immediately to the case of finite Borel coloring
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of A% (Wadge case is Black and White, X C A, X, = X, X; = X, A = X, U X)).
The one of Duparc |27] follows the Cantor normal form of ordinals. This description
has been used by Finkel [33, 35| to study the order type of the Wadge hierarchy

restricted to w-context-free languages.

In [77] it is quoted that games used by Van Wesep, Steel, Louveau Saint Raymond
are particular case of elementary games with winning set G = U} X, x Y;, where
the X;, Y; are Borel subsets of A¥. Let (Xo,...,X,) and (Yp,...,Y,,) be two Borel
partitions of A¥. Define the game G(Xy,...,X,; Yo, ...,Y,) where I plays «, II plays
(G and where I wins the game if Vi, a € X; = Y;. This game enable us to compare
finite Borel partitions. This gives for all n the Wadge n + 1 colors hierarchy. If the
X;, Y; are Auto this gives for all n the Wagner n + 1 colors hierarchy. Then you can
use Biichi Landweber and this certainly has to do with the algebra of finite monoids
(see Carton Michel [21], Carton Perrin [22|, Perrin Pin [69], Wilk [109]).

In [44] Hertling and Weihrauch study discontinuity of finite valued Borel func-
tions, for understanding degeneracy in computational geometry. Here is their abs-
tract: “We introduce levels of discontinuity and prove that they correspond to the
number of tests in "continuous computation trees". We illustrate the concept of level
by various simple examples from computational geometry. For a finer comparison
of kinds of discontinuity we introduce a continuous reducibility relation for finite
valued functions. We show that each of the resulting degrees (of finite level) can be
characterized by a finite set of finite trees which describes the type of discontinuity of
its functions. The ordering of the degrees is decidable in the tree sets and each level
consists only of finitely many degrees”. The description of Saint Raymond may have
very interesting applications in computational geometry. We conclude this section
with an example of Hertling Weirauch [44]. Let f : {0,1}¥ — {2,3,7} defined by

7 fa=0
fla) = 3 if a€0*1¥
2 else

This is a Baire class 1 function.
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2.12 Conclusion

2.12.1 II; sets and w;, the boundedness theorem of Lusin

There is a lot of to say about the story of transfinite. For example Borel did
not believe in wy (“cette totalité illégitime”), Lusin seems to refuse the Third Middle
excluded for projective sets. It is well known that Baire, Borel, Lebesgue, did not
believe in the axiom of choice. Zermelo has proven with the axiom of choice that
you can put a well order on every set. Sierpinski believed in the axiom choice, but
has shown which theorems need the axiom of choice. In general, there is no need of
axiom of choice when you dispose of a well order. Do you believe in w;? Do we need
countable ordinals in computer science? It is an old result of Lusin and Sierpinski
that WO (as Well Order), the code of countable ordinals, is The Example of a coa-
nalytic set. It is a coanalytic complete set. The first examples of coanalytic-complete
sets in analysis are due to Hurewicz [45, 47, 83|. These are the set K(Q) of compacts
subsets of the rationals of the interval [0,1] and the set K|, of countable compacts
subsets of the interval [0,1]. Consider the stupid game in 2% x 2* where Player I wins
the game if @« € Q and g € 2. Player I has a simple automaton strategy: always
play 0. Call, by analogy with K(Q), KQ the set of winning strategies of player I,
this set is II} and extending ¢ : w* — 2* of remark 6 in ¢ : 2" — 22" one has
that o' (KQ) = WF, hence KQ is a IT}-complete set. This was first observed by
Niwinski in 1986 [67]. This set is recognized by a deterministic Muller infinite tree
automaton. In fact a set is recognized by deterministic Muller infinite tree automa-
ton if and only if it is the set of winning strategies of player I in an w-regular game,
and a set is recognized by a nondeterministic Muller infinite tree automaton if it is
the projection of a set recognized by a deterministic Muller infinite tree automaton.
Infinite tree automaton where used by Rabin |[72] to show the decidability of the mo-
nadic second order theory of the tree 2*, S25. Rabin shows that a set is recognized
by a nondeterministic Muller infinite tree automaton if and only if it is definable in
S52S. Note that it is quite clear when you read the first pages of Rabin that the set
K(Q) of compacts subsets of Q = {a € 2*| Im VYn > m a(n) = 0} is definable in
525 and we know since Hurewicz that this set is II}-complete (see [45, 48, 50, 47]).
Rabin shows by transfinite induction on countable ordinals that if a set is recognized
by a nondeterministic Muller infinite tree automaton then its complements is also
recognized by a nondeterministic Muller infinite tree automaton. The complement

of KQ is recognized by a nondeterministic Biichi infinite tree automaton but KQ
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is not recognized by a nondeterministic Biichi infinite tree automaton (otherwise
KQ will be Borel, see also Rabin [73] for a combinatorial proof of that, the paper
of Rabin [73] is a kind of Suslin Kleene Automata theorem [83]). Finkel codes the
complement of KQ to obtain an w-context free set which is analytic complete. This
led to undecidability results:

The problem of knowing whether an w-context free languages is Borel is un-
decidable, the problem of knowing whether an w-context free languages is Eg is
undecidable. w-context free languages are ¥1. And one can play separation games
where Player II wins the game iff (@« € 0 = f € Y and o € O = § € Z) (Resp.
Player II wins the game iff (@« € Q = €Y anda € Q = € Z)) with Y and Z
w-context free languages. Probably these games are undecidable, probably one can’t
decide if two w-context free languages are separated by a Eg set. But Louveau’s
theorem is true if they are separated by a 22 set ( £ < wi), then they are separated
by a ¥2(A]) set.

Later on, Finkel, with the same kind of coding, obtained an w-rational relation
which is analytic complete. This gave other undecidability results: The problem
of knowing whether an w-rational relation is Borel is undecidable, the problem of
knowing whether an w-rational relation is 22 is undecidable. Finally we can remark
that simple models of asynchronous parallelism on infinite words gives analytic com-
plete sets [36]. Note that Kuratowski shows how to eliminate transfinite numbers
in mathematical proofs [52]. He takes as examples the Cantor Bendixon theorem
and the derivation of Hausdorff. For example, in games, ordinals are hidden in the
construction of strategies. One can say: don’t hide countable ordinals and you will
see some true coanalytic sets. This has to do with the boundedness theorem of Lusin
[64, 65, 47]. If a set X is a coanalytic set then for all @ € X one can associate a
countable ordinal ¢(«). And X is borel if and only if there exists £ < w; such that
for all @ € X, ¢(a) < & Note that Lusin don’t think that such a procedure can
be effective to decide if a II] set is a true (not Borel) II] set, and the undecidabi-
lity results of Finkel shows that he was right. We think that countable ordinals are

inherently hidden in models of parallelism, verification and X M L.

2.12.2 Hausdorff and automata

We have seen Hausdorfl’s theorem

A = Ugew, De(29)
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and we have seen that in the w-regular case we have [106]
AN Auto = U, D, (XY (Auto))
in the case of effective Borel sets we have [60]
AN A} = Ugeuen De(E1(A1))

where w{X is the Church Kleene ordinal, the least nonrecursive ordinal. Let us give

another example of the utility of Hausdorff’s derivation. In [57| Lecomte studies from
a descriptive set theory point of view L“, the w-power of L. C A*. Lecomte answers to
questions ask by Staiger in [92]. Among the very interesting results of Lecomte, there
is a surprising fact which links combinatorics on words and the Hausdorff derivation.
Let Go :={L C A* | Ju € A*Fv € A*, L¥ = {u,v}*}. Set G, is the set of languages
such that their w-powers are generated by two words. The set of languages 24" is a
compact metric space, and one can ask the question of the topological complexity

of G,. Lecomte’s result is the following
Theorem 2.45. G, is a D, (X%) which is not D, (X?).

This is an example of a concrete D,,(£9) coming from the real world. In his proof
Lecomte uses Hausdorff’s derivation and the default theorem (see Bruyére [19]). In
the same context, another result of Duparc [28] is relevant. The order type of the
difference hierarchy of open set restricted to deterministic w-context free languages
is w®. The order type of difference hierarchy of open set restricted to one counter
language is at least w* [33]. It seems that Finkel shows in [35] that the order type of
difference hierarchy of open set restricted to w-context free languages is at least w{'%
and that the Wadge hierarchy of Borel sets restricted to w-context free languages
has the same order type that Louveau’s hierarchy. In a paper of the sixties [86],
Skurczynski finds examples of sets of trees in 22" which are X° complete and he
remarks that they are recognized by Muller tree automata. An examination of these
examples and a careful reading of the construction of Dg(X7)-strategically com-
plete in [62] shows that you can define with tree automata a set which is D, (XY)
complete for all n € w [83]. The same construction gives sets recognized by non-
deterministic Muller infinite tree automaton which are Dy n(X°) complete and sets
recognized by nondeterministic Muller tree automaton which are D, (II}) complete
[83]. In particular the family of sets recognized by nondeterministic Muller infinite
tree automaton is not the boolean algebra generated by the family of sets recogni-

zed by nondeterministic Biichi tree automaton. This last statement was first proved
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by Hafer [43]. Finite automata read also transfinite words (see Biichi [15], Shelah
[80], Bedon [10], Choffrut Grigoriev [24]), what are the degrees of the difference
hierarchy of open set restricted to sets of words of length w™ recognized by finite

automata? What are the degrees of the difference hierarchy of open set restricted
to sets definable in S2S57

2.12.3 Game quantifier and tree automata

Descriptive set theory is the study of definable sets in Polish spaces and will we
be very happy to know the exact topological complexity of sets definable in 525.
Does the good hierarchies of sets definable in S2.5 are the restrictions of the good old
hierarchies of descriptive set theory? Let Y € w* xw* xw*, Y, = {(8,7) | (o,5,y) €
Y}, and let T" be a class of Wadge Borel sets in w* x w* x w®, define the class oI’

as follows: In the game Y,, player I constructs 3 and player II constructs ~. I wins

the game if (a,5,y) € Y.

A set X C w¥ is in OT if there exists Y € I' such that a € X < I has winning
strategy in the game Y.

o) ={(X Ccw | eV € v xw’xw’ ae€ X < Jp:w —
w, Yy (a,p(7)7) €Y}

These classes are very interesting because if I' has the norm property then O(T")
has the norm property (see Moschovakis [65]). Determination of the games in '
implies that (O(T)) = O(I). For example :

The projection of an open set is open, so if Z C w* x w* is IT{ (Resp. I19), then
V3, Z is TIY (Resp. I1Y). By the Tarski Kuratowski algorithm we have D(IT}) = X}
so, by determination of closed games in w* x w*, D(Z?) — II!. Another way to see
this is to use the basis strategic theorem (see Kechris [47], Moschovakis [65]): If
the winning set for I, is a 3{ set then if player I has a strategy then he have a Al
strategy, if Y is open then if player I has a strategy in the game Y, then he have
a Af(a) strategy, that is T can choose ¢ in a borel way from a € X, ¢ is borel in
« and the class IT; is closed by substitution by Borel function. The class O(X9) is
a quite complicate object linked to inductive definitions (see Moschovakis [65] ). It
easy to see that sets definable in S2 are in the classes O(D,(X9)) (see Gurevitch
Harrington [42]). But we are working in compacts spaces and the continuous image
of a compact space is compact. The projection of a K, is a K, set soif Z C 2 x 2% is
IT9 (Resp. T19), then V3, Z is Iy (Resp. I19). Let o(T)(2¥) = {(X € 2¥ x2¥ | Y €
Y e2x2x 2% o€ X < Jp: 2" — 2, Vy (a,0(7),y) € Y}, by the Tarski
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Kuratowski algorithm we have O(IT3)(2¥) = %](2¥) so, by determination of closed
games in 2¥ x 2¥, D(X9)(2¢¥) = I1}(2*). From the existence of I1{ set of w* which do
not contain a Al point, one can deduce that there exists IIY game in w* such that
the closed Player wins the game but have no A} strategy (see Moschovakis [65]).
And from the existence of TI9 set of 2* which do not contain a A} point, one can
deduce that there exists II3 game in 2 such that the II Player wins the game but
have no Al strategy (see [97]). A direct computation of the complexity of O(X9)(2*)
by the Tarski Kuratowski algorithm gives a 33 set, that is to say a projection of a
coanalytic set. In a X9(2¥ x 2¥) game, if the X9 player has a winning strategy does
he has a Al strategy? If Y C 2% x 2¥ x 2¢ is X9 and if @ € X « I has winning
strategy in the game Y, does I can choose ¢ in a borel way from o € X ? There
exists another old hierarchy in Aj the hierarchy of C of Selivanowski starting from
3] sets we alternate complement and Suslin scheme (see Kuratowski [52]), it turns
out that the hierarchy of Selivanowski is the hierarchy of the O(D¢(XY)) for € < w;
(see Moschovakis [65], Louveau [61]).
Does there is a a difference between the classes O(Dy(39))(w*) and D(Dy(X9))(2¢)?

Does the hierarchies of game quantifier has to do with set definable in S2S. One can

see presentation of Niwinski [68| to have an account of recent work and problems in

S28.

2.12.4 Baire class 1 functions

In conclusion, let us say that other properties of w-rational function which are
Baire class 1 can be derived from work by Kechris and Louveau [49]. One can find
concrete examples of w-rational Baire class 1 functions in [38, 39, 51, 66] and one
can even define Baire class 1 functions on real numbers by using representation of
real numbers in Pisot Basis [20].

Finally we remark that Baire has introduced semi continuity, oscillation and the
space w.

The bibliography is big but still incomplete. We have certainly forgotten some
work, especially work of Schupp on alternating automata and work on fixed point
theory of Arnold, Niwinski, Kozen, Bradfield, Walukiewicz, Wilke.

2.12.5 Acknowledgements
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Chapitre 3

Sarkovski and automata

Benoit Cagnard, Christian Morelli, Pierre Simonnet.

Journées Montoises d’Informatique Théorique 2006.
Abstract

The Sarkovski theorem is about cardinality of orbits of continuous functions f :
R — R. There exists an order , >, on non zero integers, the Sarkovski order so
that if a continuous functions f : R — R has a periodic orbit of cardinality n and
n>m then f has a periodic orbit of cardinality m. First we note that the Sarkovski
order is computable by finite automaton on finite words if we represent the integers
in base 2. Then we make the connection with functions which graph is computable
by synchronous finite automaton on infinite words. When the numeration system
is in Pisot base, we know that for such functions one can decide if they represent
continuous functions on reals. In this case, one can decide if they have periodic orbits
of cardinality n for all n. In particular, one can decide if they have orbits of every
cardinality n € N*. Furthermore, with this functions one can construct example of
functions with periodic orbit of a fixed cardinality m and none periodic orbit of

cardinality m with n > m in the Sarkovski order.

key words: Automata, Sarkovski theorem, periodic orbit, Pisot number.

89



3.1. Introduction

3.1 Introduction

In the 90’s, lots of physicians books about chaos were published , see for example
[1], [8], [15]. A mutual particularity of this books is to introduce symbolic dynamic
especially with automata as graphs. This article can be read as a complement of this
books where we introduce the notions of Biichi automata, decidability, and functions

definable by finite automata.

3.2 automata on infinite words

In this section, we recall few definitions and classical results on automata on
infinite words. For more details, see [2], [9], [16].
We note w the set of natural numbers, A a finite alphabet with more than tow
letters. A finite word u on the alphabet A is a finite sequence of elements of A. We
note A* the set of finite words on A. The length (number of letters) of the word u
is denoted |u|. A particular word is the empty word €, || = 0. With concatenation,

A* is a monoid with unit element e.

An infinite word « on alphabet A is an infinite sequence of elements of A:
a = a(0)a(l)...a(n).... The set of infinite words on A will be noted A“. We note
aln| the finite word formed with the n first letters of the infinite word «, «[0] = e,
a[l] = a(0).
Definition 3.1. A Biichi (nondeterministic) automaton A is a 5-tuple: A =<
AQ,IT,F >, where A is a finite alphabet, Q is a finite set of states, I C @ is
the set of initial states, T C QQ x A x Q is the set of transitions and F C () the set
of final states.
A path ¢ of label o in A is an infinite word ¢ = ¢(0)c(1)---¢(n)--- € (@ x A x Q)¥
so that Vn € w, ¢(n) is of the form (B(n),a(n),B(n+1)) with 3(0) € I and ¢(n) € T.

Czﬁoﬂﬁlgﬁzg---

Let us note Infinity(c) the set of states which appears infinitely many times in c.
An accepting path ¢ is a path so that Infinity(c) (T # 0. An accepted word a is
a word such that exists an accepting path ¢ of label oo. We say that the word « is
recognized by A for the Biichi condition.

The set of words recognized by a Biichi automaton A is noted L“(A).
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3.2. automata on infinite words

Definition 3.2. A Muller automaton A is a 5-tuple: A =< A,Q,I,T.F >, where
A is a finite alphabet, Q) is a finite set of states, I C @ is the set of initial states,
T C Q x AxQ is the set of transitions and F C P(Q). The difference between
Biichi automata and Muller automata is the acceptance condition.
An infinite word o € A% is recognized by A if there is an infinite path c of label o
so that Infinity(c) € F.

An automaton is called deterministic if it has an unique initial state and for each
state p and each letter a there exists at most one transition (p,a,q) € T. In this case,

for all word « there exists at most one path ¢ of label .

Now, we define the terms, atomic formula and formula of S1S the first of order
monadic logic of one successor. Let V a set of variables, its elements noted by x, vy,
z... , a constant symbol 0 and a unary function s (as successor). We define the set
of the terms 7 by:

i) A variable is a term.
ii) 0 is a term.
iii) if ¢ € 7 then s(t) € 7.
Let P (as parts) another set of variables, this variables are noted X, ), Z...

and two binary predicates =, €. The atomic formulae are of the form ¢t = ¢’ with
(t,yeT?ort e X witht €T and X € P.

Definition 3.3. A formula of S1S is defined as following :

i) An atomic formula is in S1S.

ii) If ¢ € S1S then —¢, Vxp, Jxp, VX, AX ) are in S1S, withx € V, X € P
iii) If ¢ and 1 are in S1S then ¢ N, ¢V, ¢ = ), ¢ < ¢ are in S1S.

The interpretation of these formulae is the following: the variables of V are
interpreted as natural numbers, the symbol 0 as 0 € w, the symbol s as the successor
function in w, the variables of P as subsets of w and the predicates symbols as =
and € in w. If each integer is assimilated to a singleton and each subset of w to
an infinite word on the {0,1} alphabet, then a S1S formula ¢(X;,Xs,...,A},), with
X1,&s,..., X, free variables defines the w-language Ly C 2N x .. 2N of the n-tuple of

AR

n
characteristic words satisfying ¢.

An w-language L is said definable in S1S if there exists a formula ¢ in S15 so that
L =L,.
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3.3. w-rational relations

Recall the following result :
Theorem 3.4. for all w-language L, the following assertions are equivalent :
i) L= cic, 4B} with A;, B; rational sets of finite words.
ii) L = L*(A) with A nondeterministic Biichi automaton.
iii) L = L¥(A) with A deterministic Muller automaton.
i) L is definable in S1S.
We call Rec(A“) the family of such languages.

It is easy to deduce from the precedent theorem the decidability of S1S. This
result has been shown by Biichi in 1962 [4].

3.3 w-rational relations

In this section, we briefly introduce w-rational relations (see [11]).

Definition 3.5. A Biichi transducer T is a 6-tuple: T =< A,B,Q.1,T,F >, where
A and B are finite alphabets, Q) is a finite set of states, I C @ is the set of initial
states, T C () x A* x B* x Q) is the set of transitions and F' C @ is the set of final
states.

A path ¢ of label (a,0) € (A* U A¥) x (B* U B¥) is an infinite word ¢ =
c(0)c(1)...c(n)... € (@ x A* x B* x @Q)¥ so that ¥n € w, ¢(n) is of the form
(GnsUn,Un,Gns1) With go € I and ¢(n) € T.

uo,vo ui,v1 u2,v2
C=qo q1 q2

with ¢; € Q, (u;,v;) € A* X B* et a = uguqus . .., = vovivy . ..
Infinity(c) is ever the set of states which appears infinitely many times in c. A path
c of label (a,() is an accepting path if («,3) is recognized by 7, that means that
Infinity(c) N F # 0.
Remark 10. A path c of label (a,(3) is allowable if o and ( are booth infinite words.
In [11] it is shown that for any Biichi transducer T it is possible to construct another
one T’ so that every path in T is allowable and the accepting paths in T and T are
the same. I the sequel all couples (a,3) will be in AY x B“.

An w-rational is a subset of AY x B“ recognizable by a Biichi transducer. An

w-rational function f : A — B“ is a function which graph is an w-rational relation.
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3.4. The Sarkovski theorem

An w-rational function f : AY — B“ is definable in S15 if there exists a synchronous

Biichi transducer (letter to letter) which recognize its graph.

Remark 11. We sometimes use non-synchronous transducers. In fact this transducers

are bounded delay and one can synchronize them [11].

3.4 The Sarkovski theorem

In this section, we are interest in fixed points of iterations of a function f : F —
E. If x is a point of £ we call orbit of = the set O, = |, .n{f" (%)}
Definition 3.6. Let f : E — E be a function, a point x € E 1is periodic with period
neN if ff(z)=x andVi=1,--- n—1, fi(z) # z.
In this case O, = {x,f(z),f*(x), -+ ,f"(x)} has ezactly cardinality n.
A point x € E is eventually periodic with period n if there exists p € N* so that
fP(x) is periodic of period n for f.
Remark 12. : A point x is eventually periodic iff its orbit is finite.

The Sarkovski order is defined as follows :

3 > 5 > 7T D> 2n+1 > 2n+3 D
> 23 > 25 > 27 p>--o> 22n+1) > 22n+3) >---
o> 223 > 225 > 227 o> 22(2n41) > 22(2n+3) >
> 223 > 225 > 257 o> 22(2n+1) > 2)(2n+43) >
> 20l 2 e 23 22 > 2 > L

First there are the even integers different of 1 in increasing order, then 2 times
the even integers different of in increasing orderl, then 22 times the even integers
different of 1 in increasing order and so on. And at least there are the powers of 2

in decreasing order.
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3.4. The Sarkovski theorem

Fia. 3.1 — Sarkovski order in base 2

This order is computable by the automaton of finite words on figure 3.8 where
integer are represented in base 2. This right-left automaton read couple of words with
same length in {0,1}*. If (u,v) is the couple of words which represent the couple of
integers (m,n) to compare, ending a lecture in the automaton in a "+" state (2, 3,
6 et 9) means that m > n, in a "-" state (1, 4, 7 et 8) means that n > m and in a
"—=" gtate (0, 5 et 10) means that m = n.

Ezxample 20. If (m,n) = (8,5), on a 8 =< 1000 >3 et 5 =< 101 >5=< 0101 >,. As
8 is represented by a 4 letters word, we choose to represent 5 the 4 letters word 0101.

Then we read the couple (1000,0101) in the automaton. We begin by weak weight
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3.5. The case of w-rational functions

bits :
02532532040y
The state 4 is a "-" state, that means 5> 8 in the Sarkovski order.

Theorem 3.7. Sarkovski Let be f : R — R a continuous function. If f has a
periodic point of period n, then for all k € N* so that n >k, f has at least one
periodic point of period k.

3.5 The case of w-rational functions

Consider a numeration system in Pisot base, i.e # is a Pisot number, A C
Z(\[—k,k] where k is a fixed integer and the function py defined by :

Recall that pg is a continuous surjection on [7=,7%=].

In the examples, we use sometimes non-symmetric alphabets A = {0,--- k}.

For now on, we consider functions f : AY — A“ which graph is definable in S1S
consistent with py, i.e. functions with graph definable in S15 so that the following

diagram commutes :

Aw Aw
uel lﬂe
_ F _

It is evident that if « is a periodic point of f with period n, then x = py(a) is a
periodic point of F' with period k& and k divide n. See example 21 as illustration.
On the over hand, if x is a periodic point of F, all « € A% so taht z = ug(«) is not
necessary periodic: if py'({x}) is finite, such « is eventually periodic for f and if
pty*({x}) is infinite the orbit of o can be infinite (example 22).

Example 21. Consider the function f defined on 2“ represented by the Biichi trans-

ducer on figure 3.2. We obtain the following commutative diagram.

f

2% —— ¢

2 | [

0,1 — [0,1]

r —— 1—=x
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3.5. The case of w-rational functions

The point 10“ is a periodic point of f with period 2 and us(10¥) = % 18 the single

fixed point of F, i.e. a periodic point F' with period 1.

0/1,1/0

&

Fic. 3.2 — Inversion in base 2

Ezample 22. In this example, we represent reals in the Aviezinis base A = {1,0,1}.
Consider the function f defined on A“ represented by the Biichi transducer on

figure 3.3. We obtain the following commutative diagram.

ae L pe

2 | [

—1,1] —% [—1,1]

i —_— T

We have :

F((10)%) = 11(10)*,f*((10)*) = (11)*(10)*, - -~ ,f"((10)*) = (AD)"(10)*, - -

The point (10)* is not periodic for f and ps((10)*) = % is evidently a fized point of
Id.

We have the same conclusion for all words of the form u(10)* or u(10)* with u € A*.
Then we obtain a set of non periodic point of f, dense in A¥ such that all images

by pe are periodic.

Fiag. 3.3 -

This difference between periodic point of f and periodic point of F' can be explain
by the multiplicity of the representations of some real numbers in base 6. To twist

this problem, one can normalize the function f. We compose f with a normalization
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3.5. The case of w-rational functions

function S. Indeeed, C. Frougny proved that £ = {(a,) € A“ x A¥|us(a) = pe(5)}
is definable in S1S [12], furthermore see [7]. And we know how to construct a w-
rational function, definable in 515, S which realize this normalization. For all word
a, S(a) is maximum lexicographic of {8 € AY | ug(a) = pup(5)}. The case of the
base 2 is presented in the following example:

Example 23. In figure 3.4 we give the representation of a function S : 2¥ — 2¥
defined by S(a) = « if a has infinite number of 0, S(1¥) = 1% and S(u01*) = w10

for all uw € 2*. We obtain the following commutative diagram :

e | [

0,1 —4 [0,1]

r ——
It is easy to see that S(«) is the mazimum lexicographique de la représentation

binaire de ps(ar) for all « € 2¢. S est appelée la normalisation en base 2.

By composition of the function f of the example 21 with S then we have :

ow  Sof . ow

e | |

0,1 —— [0,1]

r —— 1l—=x
So:
f(01%) = 10, £2(01¥) = 01, f*(01¢) = 10, - - -
So f(01¥) = 10¥ (S o £)*(01¥) = 10¥,(S o £)*(01¥) = 10%, - - -
The point 01% is eventually periodic for S o f with 1. We find again the same period
as the period of 3 = p2(01%) for F.
There is no problem to generalize the result of this example. Then, if 2 = pg()

is a periodic point of I’ with period n, « is a periodic or eventually periodic point

of S o f with period n.
Every period of F' can be find with S o f. We deduce the following result :
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3.5. The case of w-rational functions

0/0 1/1
1/1
0/0
1/1
1/1 1/0
()
0/0

Fic. 3.4 — Normalization in base 2

Proposition 3.8. Let F: [% -E-] — [=£ K| be a function so that there exists a
function f : AY — A“ which verify :
1. The graph of f is definable in S1S.

2. Vo € A% = pig(f(a)) = F(po(ar)).
For all n wn N* one can decide if F' has periodic point with period n.

Indeed, write the existence of an orbite with cardinality n for F' is a closed
formula of S15 which is décidable.
Then one can decide if a such function F' has a periodic point with period 3. Using
the Sarkovski theorem one can decide if F' has orbits with any cardinality n € N*.

We also know that period 3 implies chaos [13].
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3.5. The case of w-rational functions

0.84

0.6

0.4+

0.24

0 0.2 0.4 06 0.8 1

FiG. 3.5 — Ezample of function defined on [0,1] with a 5-periodic point and none
3-periodic point

1/

0.6+

0.4+

0.24

0 02 0.4 06 0.8 1

F1G. 3.6 — Ezample of function defined on [0,1] with a 7-periodic point and none
5-periodic point
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3.5. The case of w-rational functions

0.8+

0.6

0.4+

0.24

0 02 0.4 06 08 1

Fi1G. 3.7 — Example of function defined on [0,1] with a 10-periodic point and none
6-periodic point

The Sarkovski order induce a strict hierarchy on continuous functions on R, for
all n there exists a continuous function F': R — R with a n-periodic point and none
m-periodic point for all m > n. In [8] R. Devaney give some examples of such func-
tions and an algorithm to construct it. This functions defined on [0,1] are piecewise
affine with rational slopes on intervals with rational extremities. We present some
cases in figures 3.5, 3.6, 3.7.

As multiplication by integers in integer base is definable in S1S (right subsequen-
tial) [12]|, we must note that all this functions can also be represented by functions

definable in S1S5 with a commutative diagram.
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Résumé

L’objet de cette thése est ’étude de la complexité topologique de fonctions omega-
rationnelles : fonctions de mots infinis dont le graphe est reconnaissable par automate fini.
Le cadre de notre étude est celui de la hiérarchie des boréliens et des classes de Baire.
On remarque tout d’abord que ces fonctions sont au plus de classe 2. Christophe Prieur a
montré que le probléme de la continuité est décidable. Nous avons montré qu’étre de classe
1 est aussi décidable dans le cas synchrone en adaptant un résultat de Sierpinski portant
sur les sur et sous-graphes a notre contexte.

Notre attention s’est ensuite portée aux points de continuité de telles fonctions. Un
résultat de Baire dit qu’une fonction n’est pas de classe 1 si et seulement si il existe un
fermé non vide sur lequel la fonction n’admet aucun point de continuité. Nous prouvons
une version automate de ce théoréme: Une fonction omega-rationnelle n’est pas de classe
1 si et seulement si il existe un fermé non vide reconnaissable par un automate de Biichi
tel que la restriction de la fonction a ce fermé n’ait aucun point de continuité. Ce résultat
est prouvé en utilisant la dérivation de Hausdorff qui s’arréte au bout d’'un nombre fini
d’étapes sur les langages omega-rationnels

Ce travail s’est conclu par ’étude des orbites des fonctions réelles définissables en base
Pisot par des transducteurs synchrones. L’ordre de Sarkovski permet de classifier les ordres
des orbites périodiques des fonction réelles continues. Le résultat principal obtenu est la
décidabilité pour tout entier n de I’existence d’orbites périodiques de cardinalité n et par
suite de toute cardinalité inférieure dans 1'ordre de Sarkovski.

Mots-Clefs: Automates, relations omega-rationnelles,.ensembles boréliens, ensembles
analytiques, fonctions boréliennes, théoréme de Baire, théoréme de Sarkovski, nombres de
Pisot.

Abstract

This work is about the topological complexity of omega rational functions: functions of
infinite words which graph is recognizable by finite automaton. The natural environment
of our study is the borelian hierarchy and the Baire classes. First note that omega rational
functions are Baire class 2. Christophe Prieur shows that continuity is decidable. We prove
that being Baire class 1 is decidable in the synchronous case. For this we use and adapt a
result of Sierpinski about over and under graph.

Then we study the set of continuity points of such functions. A result of Baire claim that
a function is not Baire class one if and only if there exists a non empty closed set such that
the restriction of the function on this set has no continuity point. We prove an automaton
version of this result: an omega function is not Baire class one if and only if one can find
a non empty closed set recognizable by Biichi automaton such that the restriction of the
function on this set has no continuity point. For this we use the Haussdorff’s derivation
which stops in finite time on omega rational languages.

This work is closed by the study of orbits of real functions definable is Pisot base by
synchronous transductors. Using the Sarkovski’s order, one can classify the order of periodic
orbits of continuous functions. The principal result is to be decidable for all integer n to
have periodic orbits of cardinality equal to n and then any less cardinality in the Sarkovski’s
order.

Key words: Automata, omega-rational functions, borel set, analytic sets, borel func-
tions, Baire’s theorem, Sarkovski’s theorem, Pisot numbers.



