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Abstract

Nonlinear optics concerns the modifications of the optical properties of a material in-
duced by the propagation of light. Since its beginnings, fifty years ago, it has already found
applications in almost any field of science. In micro and nano-photonics, nonlinear phenomena
are at the heart of both fascinating fundamental physics and interesting potential applications:
they give a handle to tailor and control the flow of light within a sub-wavelength spatial scale.
Indeed, the nonlinear effects can be enhanced in systems allowing tight light confinement and
low optical loses. Good candidates for this are the Photonic Crystal (PhC) nanocavities, which
have been extensively studied in recent years. Among the great diversity of nonlinear processes
in optics, nonlinear dynamical phenomena such as bistability and excitability have recently re-
ceived considerable attention. While bistability is well known as a building block for all-optical
memories, switching and logic gates, excitability has been demonstrated in optics about fifteen
years ago: coming from neuroscience, it is the mechanism underlying action potential firing in
neurons. In this work, we have studied bistable, self-pulsing and excitable regimes in InP-based
PhC nanocavities. In order to achieve efficient light coupling into the nanocavities, we have
developed an evanescent coupling technique using tapered optical microfibers. As a result, we
have demonstrated for the first time excitability in a PhC nanocavity. In addition, we have
accomplished the first step towards nonlinear dynamics in arrays of coupled cavities by demon-
strating optical linear coupling between adjacent nanocavitites. This was achieved using far field
measurements of photoluminescence. A set of coupled nonlinear resonators opens the door to a
rich family of nonlinear dynamical phenomena based on spontaneous symmetry breaking. We
have theoretically demonstrated this phenomenon in two evanescently coupled cavities. The first
experimental studies on this regime were carried out, which establish a basis for a future demon-
stration of spontaneous symmetry breaking in arrays of nonlinear coupled PhC nanocavities.

Key words Nonlinear dynamics, InP-based Photonic crystal, Coupled cavities, Ex-
citability, Bistability, Self-pulsing, Symmetry breaking.






Dynamique Non-linéaire en Nano-cavités a

Cristal Photonique en Semiconducteur III-V

Résumé

L’optique non linéaire traite les modifications des propriétés optiques d’un matériau in-
duites par la propagation de la lumiére. Depuis ses débuts, il y a cinquante ans, des nombreuses
applications ont été démontrées dans presque tous les domaines de la science. Dans le domaine
de la micro et nano-photonique, les phénoménes non linéaires sont a la fois au cur d’une physique
fondamentale fascinante et des applications intéressantes: ils permettent d’adapter et de con-
troler le flux de lumiére & une échelle spatiale inferieure a la longueur d’onde. En effet, les effets
non linéaires peuvent étre amplifiés dans des systémes qui confinent la lumiére dans des espaces
restreints et avec de faibles pertes optiques. Des bons candidats pour ce confinement sont les
nanocavités a cristaux photoniques (CPs), qui ont été largement étudiées ces derniéres années.
Parmi la grande diversité des processus non linéaires en optique, les phénomeénes dynamiques
tels que la bistabilité et 'excitabilité font I'objet de nombreuses études. La bistabilité est bien
connue pour ces applications potentielles pour les mémoires et les commutateurs optiques et
pour les portes logiques. Une réponse excitable typique est celle subjacente dans le déclanche-
ment du potentiel d’action dans les neurones. En optique, I'excitabilité a été observée il y a
une quinzaine d’années. Dans ce travail, nous avons étudié¢ les régimes bistables, auto-oscillants
et excitables dans des nanocavités semiconductrices III-V a CP. Afin de coupler efficacement la
lumieére dans les nanocavités, nous avons développé une technique de couplage par onde évanes-
cente en utilisant une microfibre optique étirée. Grace a cette technique, nous avons démontré
pour la premiére fois I’excitabilité dans une nanocavité a CP. En paralléle, nous avons accompli
la premiére étape vers la dynamique non linéaire dans un réseau de cavités couplées en démon-
trant le couplage optique linéaire entre nanocavitités adjacentes. Ceci a été réalisé en utilisant
de mesures de photoluminescence en champ lointain. Un ensemble de résonateurs non linéaires
couplés ouvre la voie & une famille de phénoménes dynamiques non linéaires trés riches, basés
sur la rupture spontanée de symétrie. Nous avons démontré théoriquement ce phénoméne dans
deux cavités couplées par onde évanescente. Les premiéres études expérimentales de ce régime
ont été menées, établissant ainsi les bases pour une future démonstration de la rupture spontanée
de symétrie dans un réseau de nanocavités non linéaires couplées.

Mots Clés Dynamique non-linéaire, Cristal Photonique, Cavités couplées, Bistabilité,
Excitabilité, Oscillations auto-entretenues, Rupture de symétrie.
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Chapter 1

Introduction to nonlinear systems

The aim of this thesis is the study of nonlinear phenomena in I1I-V photonic crystal semiconduc-
tor nanocavities. We shall provide some background for a better understanding of this reading.
"What is a nonlinear system?", "Which kind of behavior can it show?", "What is a photonic
crystal nanocavity and why using it to study nonlinear effects?". In this chapter we try to answer
these questions.

We will give some theoretical bases of nonlinear dynamics in systems described by one
or two variables. These concepts will be useful for the interpretation of nonlinear regimes such
as bistability, excitability and self-sustained oscillations. The particularities of such regimes
in optical systems are discussed in the second part of this chapter, where an introduction to
nonlinearities in optics is presented. Then, we will see that nonlinearities can be enhanced in
nanocavities and good candidates for this are the photonic crystals. Indeed, we introduce the
photonic crystal principles and the different ways to confine light, ending the section with an
overview of the methods to couple light into the nanocavities, an important and non trivial
problem. Finally, we develop a model for the intracavity energy, the carrier dynamics and
temperature variation in a generic cavity filled with III-V semiconductor material. This model
allows to capture, in a single set of simple equations, a large family of nonlinear dynamical
behaviors at the heart of this thesis.

1.1 Introduction to nonlinear dynamics

"Nonlinear dynamics concerns the study of systems whose time evolution equations are nonlin-
ear. What is the fuss over nonlinearity? The basic idea is the following: If a parameter that
describes a linear system, such as the spring constant k, is changed, then the frequency and the
amplitude of the resulting oscillations will change, but the qualitative nature of the behavior (sim-
ple harmonic oscillations in this example) remains the same. In fact, by appropriately rescaling
our length and time azes, we can make the behavior for any value of k look just like that for
some other value of k. As we shall see, for nonlinear systems, a small change in a parame-
ter can lead to sudden and dramatic changes in both the qualitative and quantitative behavior
of the system. For one wvalue, the behavior might be periodic, for another wvalue only slightly
different from the first, the behavior might be completely aperiodic" [1]. We should point out
that almost all real systems are nonlinear at least to some extent, from population biology to
laser physics passing through planetary systems and turbulence, among others. Hence, the kind
of behaviors we will discuss in this chapter can be considered to be somewhat universal in nature.



In this section we give a short introduction to nonlinear dynamics as a general description
tool for the dynamics of complex systems. Different qualitative behaviors present in systems with
different kinds of nonlinearities, as well as the tools to extract such behaviors from the equations
are discussed. This theoretical background on nonlinear dynamics will be implemented in the
next sections focusing on particular optical systems.

Nonlinear dynamics is the study of the time evolution of a system that is governed by
nonlinear equations of motion. This is usually represented in two ways: by differential equations
or iterated maps. Differential equations describe the evolution of the system in continuous time
while iterated maps do so in discrete time. In this section we will focus on differential equations,
in particular, on ordinary differential equations (ODE).

Nonlinearities in a system can make the equations difficult to solve analytically. Then,
geometrical methods, which allow a qualitative description of the system behavior, become a
suitable approach. As an example, let us consider a system described by:

i1 = fi(z1,22)
Ty = fo(wy, ) (L)

with @19 = dx12/dt. Suppose we know a solution to eq. 1.1, (x1(t),z2(t)), for a certain initial
condition. If we construct an abstract space with cordinates (x1,x2), then, the solution corre-
sponds to a point moving along a curve in this space, fig. 1.1.

X2

). xo() | —

(x1(0), x2(0))

Figure 1.1: Phase space showing a trajectory for the system described by eq. 1.1.

The curve in fig. 1.1 is called trajectory and the space where it is plotted is called the
phase space [2]. This space is completely full of trajectories since each point in the phase space
is a possible initial condition for the system. Generally, the problem is addressed in the opposite
way: given the differential equation we find the trajectories in the phase space.

Differential equations are classified according to the number of variables (n) or degrees
of freedom needed to characterize the state of the system, which can be seen as the dimension
of the phase space. Then, eq. 1.1 is a set of ODEs with a 2D phase space since the system is
described by two variables (1 and z2). Table 1.1 summarizes the different behaviors we can find



n—1 n=2 n> 3 n»3

Exponential growth | linear oscillators Electrical engineering | Coupled harmonic
Linear RC circuit RLC circuit Civil engineering oscillators

Radioactive decay 2-body problem Solid-state physics,...

Fixed points Pendulum Strange attractors Coupled nonlinear
Nonlinear Bifurcations Anharmonic oscillator | (Lorentz) oscillator

Overdamped systems | Limit cycles Chemical kinetics Neuronal network

Biological oscillators Fractals,...

Table 1.1: Characteristic behavior found in system described by different numbers of variables

(n).

in linear and nonlinear ODEs of different dimensions [2|. As expected, the higher n is, the more
complex the system can be.

1.1.1 Systems described by a single variable

In order to show the advantages of geometrical analysis over an analytical approach in nonlinear
systems, let us consider a simple example: a pendulum, where the dynamics of the angular
coordinate 6 is governed by the equation

b +~6 + %52'71(9) = 0. (1.2)
In the case of an overdamped pendulum (v >> 1), eq. 1.2 reads
0 = —asin(0) (1.3)
with @ = g/L~. Eq. 1.3 can be solved analytically and yields
. lln‘cosec(ﬁo) + cot(6p) | (1.4)

a  cosec(8) + cot(0)

This result is exact but quite hard to interpret. In contrast, a graphical analysis is much easier
as shown in fig. 1.2. Fig. 1.2 shows the phase space of the system in eq. 1.2: § is a point in phase
space and its time evolution is described by the vector field f(6) = asinf, which dictates the
velocity vector (9) at each 0. The arrows in fig. 1.2 indicate the sign of the velocity; arrows to
the right means § > 0 and to the left § < 0. For an initial condition of f(t = 0) = a the velocity
is positive then the system evolves to higher 6; close to 8 = 0 the velocity tends to zero and the
system converges to 8(t — oo) = 0. On the other hand, if 6(¢t = 0) = b the velocity is negative
and the system also converges to 6(t — oo) = 0. Then, we say that § = 0 is a stable fixed point
(6f). In general, all points that satisfy 6 = 0 are called fixed points and we can define two kinds
of them: stable (e.g. 67 = 0), which satisfy #(t — oo) = ¢, and unstable (e.g. 8y = 7), which
satisfy 0(t — —o0) = 0.

The stability of the fixed points can be found graphically as in fig. 1.2 or mathematically

by linearizing the system around the fixed point. Let us consider the general case @ = f(x). If
xy is a fixed point of this eq., the linearization around x s is given by

i = fa)+ D), (- 2p)+ 00 (15)

3



Figure 1.2: Phase space of the system in eq. 1.3 showing the fixed points and its stability. The
arrows show the sign of the velocity.

f(x¢) = 0 because x; is a fixed point. Neglecting the higher order we have
o

b=, —2p) (1.6)

The solution to eq. 1.6 is an exponential function whose behavior is given by the eigen-

d
value A = d—f\x ;- For A > 0 the solution grows exponentially (then z moves away from the fixed
x

point meaning that x s is unstable) and for A < 0 it decays exponentially (then = converge to the
fixed point meaning that xy is stable). If A = 0 the higher orders of eq. 1.5 can not be neglected
and a nonlinear analysis is needed.

We can thus say that fixed points dominate the dynamics in systems described by a single
variable, in the sense that the trajectories can either approach or move away from a fixed point.
Indeed, such behavior is all we can find in a 1D phase space. The reason is that trajectories are
forced to increase or decrease monotonically or remain constant.

Now, an important question to be addressed is whether trajectories in the phase space
can be qualitatively changed by varying some parameters of the system. The variation of a
parameter can cause a change in the stability or the apparition/annihilation of a fixed point.
This qualitatively changes the dynamics of the system: these changes are called bifurcations.

Types of bifurcations
In the following we present the most common types of bifurcations in 1D phase space.

Saddle-node bifurcation

A saddle-node is a bifurcation in which two fixed points of a dynamical system collide and
annihilate each other. The prototypical example, or "normal form" in the jargon of Nonlinear
Dynamics, is given by:

&= p— (1.7)
where p is a parameter that can be positive, negative or zero. For p < 0 there are no fixed points;
for 1 > 0 the system has two fixed points (z; = #,/z) and for i = 0 they coalesce. Furthermore,

4



for p > 0 one of the fixed point is stable while the other is unstable. Fig. 1.3 shows the value and
stability of fixed points as a function of the parameter, which is called the bifurcation diagram.
The bifurcation takes place at p = 0, since the vector field for p > 0 and p < 0, and hence the
possible trajectories in phase space, are qualitatively different. This bifurcation underlies
optical bistability, which is one of the subjects of study of this thesis.

Figure 1.3: Bifurcation diagram for the saddle-node bifurcation (eq. 1.7).

Transcritical bifurcation

The transcritical bifurcation occurs when the parameters do not affect the independent term of
the equation but the linear term. Then a fixed point exists for all values of a parameter and
is never destroyed. However, it can interchange its stability with another fixed point as the
parameter is varied. The normal form reads:

i = px — (1.8)

Eq. 1.8 accounts for a fixed point at * = p and another one at = 0 that coalesce for p = 0.
For i1 < 0 the fixed point at z = 0 is stable and the one at x = p unstable. However, when p > 0
the situation is reversed, fig. 1.4.

Figure 1.4: Bifurcation diagram for the transcritical bifurcation (eq. 1.8).

An example of this type of bifurcation is observed in a solid-state laser [3, 2]. The sys-
tem consists in a collection of "laser-active" atoms embedded in a solid state matrix, bounded



by partially reflecting mirrors at either end. An external pump is used to excite these atoms.
For low injected power, each atom oscillates independently and emits out of phase, then the
system behaves as a lamp. However, as the pump is increased (above a certain thershold) the
atoms begin to oscillate in phase. Then, laser emission takes place.

A simple model to describe this behavior was developed by Haken [3]. The dynamical
variable is the number of photons (n(t)) in the laser field and its dynamics is given by

n = gain — loss = GnN — kn (1.9)

The gain term comes from the stimulated emission, in which photons stimulate excited
atoms to emit additional photons. This process is proportional to the number of photons (n)
and excited atoms (N(t)). The parameter G is the gain coefficient and the losses account for
photons lost through the mirrors forming the optical cavity. k is a constant rate (k > 0) and is
the inverse of the photon lifetime inside the resonator.

Once an atom has emitted a photon it returns to its fundamental state; indeed, there
is a relation between N and n. If, in the absence of laser effect, the pump produces Ny excited
atoms, then the laser effect decrease this number as:

N(t) = No — an (1.10)

with a > 0 corresponding to the rate of atoms that return to their fundamental state. Replacing
eq. 1.10 in eq. 1.9, this reads

n = (GNy — k)n — (aG)n? (1.11)

Note the equivalence between eq. 1.11 and eq. 1.8, meaning that the system presents a trans-
critical bifurcation, although in this case only n > 0 has a physical meaning. For Ny < k/G the
system has a stable fixed point at n; = 0 meaning that it behaves as a lamp, fig. 1.5. A bifurca-
tion occurs at Ng = k/G where ny = 0 changes its stability. Finally, for Ny > k/G a stable fixed
point appears at ny = (GNy — k)/aG > 0 that corresponds to a laser effect. Ny = k/G, the
value at which the laser action appears, is called the laser threshold in this simple representation.

laser

lamp

k/G N,

Figure 1.5: Bifurcation diagram for a solid-state laser described by eq. 1.11.

Pitchfork bifurcation



The pitchfork bifurcation is common in systems having a symmetry. In this kind of
bifurcation a fixed point changes its stability and gives birth to two other fixed points, which
"inherit" the original stability of the first. The normal form of this bifurcation is:

&= pr+ad (1.12)

Note that eq. 1.12 remains invariant under x — —z transformations.

Taking the minus sign in eq. 1.12, for ;1 < 0 there is one stable fixed point at = 0. For
p > 0 there are three, zy = 4, /u which are stable and x = 0 is unstable, fig. 1.6.a. This type
of behavior is called supercritical pitchfork.

(a) (b)

Figure 1.6: Bifurcation diagram of a (a) supercritical and (b) subcritical pitchfork bifurcation (eq.
1.12).

Taking the plus sign in eq. 1.12, we obtain the opposite behavior. For p < 0 there are
three fixed points, vy = +,/—p which are unstable and = 0 that is stable, fig. 1.6.b. And
for ;o > 0 there is one unstable fixed point at = 0. This type of behavior is called subcritical
pitchfork.

Both super and subcritical pitchfork bifurcations are at the origin of the spon-
taneous symmetry breaking in coupled (optical) cavity systems. This phenomenon
is studied in detail in the last part of this manuscript.

The pitchfork bifurcation is related to systems having a symmetry. However, the symme-
try is just a mathematical approximation of real systems. Then, in order to model a real system,
we need to add a perturbation (h) to eq. 1.12. This perturbation leads to a disconnection of
the pitchfork bifurcation into two branches. An upper piece that consists entirely of stable fixed
points and a lower branch that presents stable and unstable fixed points. Changing p from
negative to positive values the lower branch can only be reached by adding a perturbation in the
phase space of the system.

1.1.2 Systems described by two variables

We have seen that systems described by a single variable have restricted behaviors, i.e. the
variable either evolve monotonically or it remains constant. In higher dimensional phase spaces,
a wider range of dynamical behaviors becomes possible.



Classification of fixed points

As we have seen in the previous paragraphs, the nonlinear dynamical approach to analyze the
stability of fixed points is based on the local properties (i.e. in the vicinity of the fixed point) of
the vector field. For this, the vector field is linearized.

Recall that the general way to model the dynamics of a system in a 2D phase space is:

i1 = fi(z1,22)

Zy = fo(x1,22) (1.13)

We can linearize eq. 1.13 around a fixed point (xy = (21, 22¢)) in the following way:

.0 0
¥ = oh |2, 21 + on |z ;2 + O(z?)

0z 0z (1.14)
. 0f Ofs O(22 '
x2 8—;1:1‘3” 1+ 8—332‘:”332 + O(2%)

and simplify this expression by writing & = Ax 4+ O(2?), where 4 and x are vectors and A is the
matrix with the partial derivatives (Jacobian matrix). If the matrix A is diagonalizable (det(A) #
0) we can transform the problem into two uncoupled one-dimensional linear problems, where the
time evolution in each transformed coordinate is determined by the associated eigenvalue. Let
us now consider the eigenvalues (A; and Ag) of A:

M —TA+A=0 (1.15)
with 7 the trace of A (7 = A1 + A2) and A the determinant (A = A\; X Az). Then
T+ V712 —4A
Aijp = ———5—— (1.16)

In the following we will detail all possible situations. In the general case, the real part
of both eigenvalues is different form zero (Re(A1/2) # 0). We call the fixed point a node if both
eigenvalues are real; in particular, stable node if they are both negative and repulsor if they are
both positive. If one eigenvalue is positive and the other one negative we call the fixed point a
saddle point. Finally, when the eigenvalues are complex (then A\; = A}), we call it a focus. There
are two types of focus: spiralling inward if Re(A;) < 0 and spiralling outward if Re(A;) > 0.
In the special case in which Re()/2) = 0 we call the fixed point a center. There are other
classifications but it is not our purpose on being exhaustive and we will only consider these ones.
Fig. 1.7 shows the features of each bi-dimensional fixed point.

Analyzing the determinant (A) and the trace (7) of the matrix A we can determine the
type and the stability of a fixed point. If A < 0 the eigenvalues are real and have opposite signs,
then the fixed point is a saddle, fig. 1.8. On the other hand, for A > 0, the eigenvalues are either
real with the same sign (nodes) or complex conjugated (spirals). Nodes satisfy 72 —4A > 0 while
spirals 72 — 4A < 0. When 7 < 0, both eigenvalues have negative real parts, so the fixed point
is stable. On the contrary, for 7 > 0 it is unstable and for 7 = 0 the fixed point is a center. If
A =0, then the fixed point is not an isolated point, there is either a whole line of fixed points,
or a whole plane if A = 0.

Let us now consider an example to clarify these points. The most studied example of this
type of system is the pendulum, whose equation of motion is eq. 1.2. In the absence of damping
and external driving, the dynamics of the pendulum is given by

é+%sm9:0 (1.17)
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Figure 1.7: Types of singularities in systems described by two variables.
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Figure 1.8: Summary of the types of singularities and their stability as a function of the trace
(1) and the determinant (A) of the Jacobian matriz.

where 6 is the angle with the downward vertical, g is the acceleration due to gravity and L the
pendulum length. Introducing w = y/g/L and 7 = wt, and writing the system in form of two
coupled first order ODEs we have

f=v

U = —sinb

(1.18)

with v the dimensionless angular velocity. The fixed points are Xy = (0¢,v¢) = (km,0) with k
an integer. Since the vector field is periodic we will focus on X7; = (0,0) and X9 = (m,0).
Linearizing eq. 1.18 around X and taking the eigenvalues of A we find that Re(A;/2) = 0, then
the fixed point is a center. Considering Xy o, the eigenvalues of A are real and one is positive
and the other negative, then the fixed point is a saddle. Fig. 1.9 shows the phase portrait in
the vicinity of the fixed point. Applying energy conservation considerations we can join the
trajectories between the fixed points. From fig. 1.9, if the state of the system is near the origin
it performs small oscillations around this point whereas if the system starts at Xy o the slightest
perturbation causes the pendulum to move away from this point.
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Figure 1.9: Phase portrait in the vicinity of the fized points of eq. 1.17 which describes the
kinetics of a pendulum.

Bifurcations in systems described by two variables

The bifurcations we have discussed so far for systems described by a single variable have an
analogue in 2D (and in larger dimensions). Actually, nothing different happens by adding further
dimensions to the problem. The interesting dynamics is confined to the subspace where the
bifurcation takes place. Such subspace is called the "center manifold". However, there are
bifurcations that only appear for dimensions higher than one, such as the Hopf bifurcation.

Hopf bifurcation

The Hopf bifurcation occurs when a fixed point looses stability as a pair of complex
conjugate eigenvalues crosses the imaginary axis of the complex plane as a parameter is varied.

The normal form of this type of bifurcation is given by the equations:

p = pp+ Re(a)p®
ot Im(a)s? (1.19)

where p and ¢ are cylindrical coordinates describing trajectories in phase space.

There are three parameters in eq. 1.19: p which controls the stability of the fixed point
(0,0), w that gives the frequency of infinitesimal oscillations and Im(«) which controls the de-
pendence of frequency on amplitude for larger amplitude oscillations. Considering Re(a) = —1
we observe that, as the parameter p is varied from negative to positive values, the stable focus
at (0,0) changes to an unstable focus and a stable periodic orbit with p = /i appears, see fig.
1.10. This orbit (fig. 1.10 dashed line) is called a limit cycle. The limit cycle is an isolated closed
trajectory, where the term "isolated" means that neighboring trajectories are not closed, rather
they are spirals either towards or away from the limit cycle.

Self-sustained oscillations: The van der Pol oscillator

In nonlinear dynamical systems, oscillations usually take place through a Hopf bifurcation. In
general, the normal form given by eq. 1.19 is only valid very close to the bifurcation point
(1 ~ 0). Beyond, higher order nonlinearities play an important role and the limit cycle becomes
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Figure 1.10: Phase portrait of a Hopf bifurcation (eq. 1.19).

nonlinear itself. In the following we illustrate this through a typical solution of the so-called van
der Pol oscillator. The van der Pol oscillator is given by the equation

F4+p—Di+xr=0 (1.20)

where ;1 > 0 is a parameter. This equation looks like a simple harmonic oscillator but with a
nonlinear damping term p(z? — 1)i. Here we will consider the case of strong coupling p >> 1.
We can rewrite eq. 1.20 as:

&= ply — F(z)]
S (1.21)
y=——x
i
with . . »
F(z) = §$3 —x, Y= x—i—+(m) (1.22)

It is useful to analyze the nullclines of the system, which are manifolds such that # = 0
or y = 0. The first nullcline, & = 0, is the y = F(x) curve, and the second one, § = 0, is the y
axis of the phase space. If the initial condition (point A in fig. 1.11.a) is not too close to the
cubic nullcline, the condition g >> 1 leads to |&| >> |y|; besides, in the first stage (from A to
B), |#| > 0. Indeed, the trajectory is practically horizontal and it approaches the nullcline. Close
to the nullcline (point B in fig. 1.11.a), y — F'(z) << 1 then |#| ~ |y| and the trajectory crosses
the nullcline vertically and eventually moves along it slowly until it reaches the kink at point C,
and it jumps sideways again with a fast and almost horizontal trajectory. This is followed by a
slow movement along the nullcline until the next jump point (point D in fig. 1.11.a) is reached.
This movement continues periodically: we approach a limit cycle.

This analysis shows that the limit cycle has two different time scales, governed by pu
and 1/p. These time scales are revealed in the time trace of x, fig. 1.11.b, obtained through
numerical integration of eq. 1.21 with g = 20 and (zo,y0) = (1,1). From fig. 1.11.b we observe
a periodic motion: we say that the system exhibits self-sustained oscillations, meaning that it
oscillates even in the absence of periodic forcing. Several systems in nature present this kind of
behavior: the heart beating, the periodic firing of a pacemaker neuron, daily rhythms in human
body temperature and hormone secretion, among others. We will study these oscillations
in an optical system: an optical cavity.

Excitability: The forced van der Pol oscillator

Suppose the van der Pol oscillator is biased by a constant force, then eq. 1.20 takes the form

P+pa?-i+z=a (1.23)
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Figure 1.11: (a) Nullclines of eq. 1.21 in the phase space. The line with the arrows represents
an example of a possible trajectory. (b) Time trace for u = 20 and (xo,yo) = (1,1).

Y

Following the same procedure as before, eq. 1.23 can be written as

&= ply — F(z)]
—r+a (1.24)

0

with F'(z) and y as in eq. 1.22. The fixed points are given by the intersection of nullclines (see fig.
1.12) that yields x5 = (a, F(a)). Linearizing the system around the fixed point, we obtain the
determinant and the trace of the Jacobian matrix, A = 1 and 7 = —u(a® — 1) respectively. From
fig. 1.8 we have that the fixed point is unstable if —1 < a < 1 and stable otherwise. Furthermore,
72 — 45 = p%(a® — 1) — 4 will be positive for sufficiently large values of |a| (Ja] > a.), implying
that the fixed point will be a node. For p >> 1 and —1 < a < 1 we have a case analogue the
the one described in the previous paragraphs. However, for |a| > a. the fixed point is stable,
with no limit cycles, as the trajectory approaches the cubic nullcline, it moves slowly along it
and towards the fixed point, fig. 1.12. If a slight perturbation kicks the state of the system away
from the fixed point, then, the system jumps to the negative branch of the cubic function, moves
along the nullcline, jumps again when it reaches the maximum and finally moves slowly towards
the fixed point. This type of behavior is called excitability. An excitable system is characterized
by two properties: it has a unique, globally attracting rest state, and a large enough stimulus
can send the system on a long excursion through phase space before it returns to the quiescent
state.

Types of excitability

In the previous paragraph we have introduced the concept of excitable system, which is of central
importance to this thesis. Here we will discuss excitability in more detail.

Excitability is a regime well known in biology since it underlies spiking behavior in many
biological systems such as neurons and cardiac tissue. Excitability can also be found in chem-
istry, namely in the Belousov-Zhabotinsky reaction, and in physics from the driven mechanical
pendulum to lasers and amplifiers [4]. Excitability is usually defined in a phenomenological way
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Figure 1.12: Nullclines of eq. 1.24 in the phase space. The line with the arrows represent an
example of a possible excitable trajectory. The small arrows show the velocity vector direction at
each point of the phase space.

[5]: a small perturbation from the single stable fixed point can result in a large and long lasting
excursion away from the fixed point before the system comes back to equilibrium. Furthermore,
as an external parameter is changed, the global attractor in the form of the stationary point
bifurcates into a stable periodic orbit, and the excitability behavior undergoes oscillatory dy-
namics, as discussed in the previous paragraphs. There are three qualitatively different types of
excitability, called type I, II and III, which are distinguished by the distinct bifurcations leading
to the oscillatory dynamics [6]. This is manifested in different properties of the frequency of the
emergent oscillations [7].

Type I excitability arises from an attractor (stable node) close to a saddle-node in an
attractive invariant circle, as sketched in fig. 1.13.a (left), as in the Terman—Wang model of
neuronal excitability [8]. The fact that the attractor and the saddle point are close together
means that the system is close to a saddle-node bifurcation on a limit cycle. A perturbation that
makes the system cross the saddle point leads to a large amplitude excursion around the invariant
circle. This corresponds to a single pulse in the time trace as depicted in fig 1.13.a (right). Type
IT excitability is due to an S-shape slow nullcline in slow-fast systems (as the biased van der Pol
oscillator discussed previously), as sketched in fig. 1.13.b (left). This type of excitability is found
in the FitzHugh-Nagumo model of neuron spiking [4, 9]. A sufficiently large perturbation brings
the system from the attractor (black dot) to the white dot, then the system makes a quick jump
to the right branch of the nullcline, follows it before it jumps back to the left branch of the null-
cline reaching then the steady state. This leads to square-shaped pulses as shown in fig. 1.13.b
(right). Note that in both types of excitability the amplitude of the excursion is independent
of the perturbation, because the invariant circle and the slow nullcline determine the maximum
of the pulse. The phase portrait of a type III excitability is depicted in fig 1.13.c (left). The
off solution (y=0) is an attractor (black dot) but a perturbation can push the system above the
stable nullcline to the white dot. From there the system produces a single pulse and then relaxes
slowly following the slow nullcline to the attractor. The pulse of this type of excitability is shorter
than in fig. 1.13.a-b (right) [10]. This type of excitability was observed in laser with saturable
absorber [10]. In this work we will focus on type II excitability as will see in chapter 6.
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Figure 1.13: Phase portrait (left) and time traces (right) for the type I (a), type II (b) and type IIT
(c) excitability. The black dot denotes the fized points and the white dot is the initial condition.
The plots are inspired by [10]

Once the system has reacted to an external perturbation with an excitable pulse, a second
response can not be initiated immediately. Instead, a finite time, known as the refractory period,
must elapse before another excitable pulse is generated from a second stimulus. This refractory
period has been extensively studied in biology, e.g. in neuronal systems, where it has been shown
to lye in the ms range [11]. In optics, the refractory times can be much shorter, typically from
sub-ns to millisecond timescale. Such fast dynamics makes time-resolved measurements quite
challenging in optics. In chapter 6 we will see how this quantity can be measured in an optical
(photonic crystal) excitable nanocavity.

In this section we have described some fundamentals on nonlinear dynamical systems.
The methods used to solve nonlinear equations and the different behaviors that can be obtained
were discussed. In the next section we will apply these tools to a particular kind of systems: the
nonlinear optical systems.

1.2 Nonlinear optics in III-V semiconductor

Nonlinear optics is the branch of optics that accounts for phenomena in which the properties of
light propagation in a medium depend on light intensity. This can be described by a nonlinear
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dependency of the dielectric polarization of the material on the electric field. Nonlinear optical
phenomena are typically observed for high light intensities.

In most cases, the physical origin of the nonlinear polarization relies on the microscopic
characteristics of the material in which light is propagating. Due to the great diversity of micro-
scopic properties of matter, many different nonlinear processes can be expected.

In this section we will focus on a particular class of nonlinear properties: third order
nonlinearity. Specifically, we will consider third order nonlinear effects due to charge carriers
in active ITI-V semiconductor nanostructures induced by one photon absorption process. Such
carrier density leads to both absorption and refractive index change.

This section is organized as follows: we begin with an introduction to nonlinear optics
and active materials. We continue with the description of particular nonlinear regimes: optical
bistability, excitability and self-sustained oscillations. Finally, we will introduce an important
regime in coupled nonlinear cavities: the spontaneous symmetry breaking.

1.2.1 Principles of nonlinear optics

In classical optics, the linear response of a medium to an oscillating electric field of amplitude
E(w) is characterized by the macroscopic polarization (P):

P(w) = ¢px(w)E(w) (1.25)

where x(w), the linear electric susceptibility, is a scalar or tensor function which describes the
macroscopic optical properties of the material. This can be written as x = € — 1, with € the
relative dielectric permittivity. We can also adopt a microscopic point of view considering the
material as an ensemble of charged particles: electrons and ions. When an electromagnetic field
is applied to this system the positive and negative charges move in opposite directions following
the field. In a metal, these charges are free carriers subjected to an oscillating driving force. In
dielectric materials, however, electric charges do not flow through the material, but only slightly
shift from their average equilibrium positions inducing a dielectric polarization. Under the action
of an electric field with frequency w the charges will react as dipoles oscillating at a frequency w.
As the electron mass is much smaller than the ion mass we can consider that only the electrons
oscillate. A good classical representation of this is the oscillation of a mass attached to a spring.

Within this framework, the nonlinear regime can be thought of as a situation where the
spring is brought to the stretching limit (high injected intensities). Then the electron displace-
ment (and hence the polarization) is no longer linear with the injected field. Therefore, a model
of an anharmonic oscillator needs to be implemented. The material polarization (P) can thus be
expanded in a Taylor series of the incident field E as:

P=¢xVE+xPE2+ O E3 + ] (1.26)
In this expression x(!) corresponds to the linear susceptibility while @, x®), ..., to the nonlin-

ear susceptibilities. The real part of the susceptibility is related to the refractive index of the
material and the imaginary part to the optical absorption.

The processes governed by the second term in eq. 1.26 are called second order nonlinear
processes. This type of nonlinearity gives rise to the mixing of frequencies. Among the most
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important second order nonlinear phenomena we find the second harmonic generation, sum fre-
quency generation, optical parametric amplification, spontaneous parametric down conversion
[12]. All these are examples of what is known as parametric processes. Even though these pro-
cesses are not strictly associated to second order non linearities, they have been shown to be
largely predominant with second order nonlinearities rather than higher orders. Most impor-
tantly, in parametric processes the energy of the incident wave is not transferred to the material
through absorption.

The nonlinear effects associated to the third term in eq. 1.26 are called third order non-
linear processes. This type of nonlinearity gives rise to several interesting phenomena, among
which, we can distinguish those for which the energy of the incident field, in resonance with
material spectral transitions, leads to energy transfer between light and matter. Then, the en-
ergy of the field is stored in the material for a period that depends on the excitation dynamics
and the carrier relaxation time. This type of non linearities induces a change in the absorption
coefficient and refractive index with the incident field. In this work we will focus on this type
of nonlinearities. Note that semiconductor materials are meanly characterized by the existence
of a band gap for the electronic transitions, i.e. a region where there is not available electronic
state. This region separates the last electronic occupied band, called valence band, from the
first non occupied band, called conduction band. Compare to insulator materials, this band gap
is sufficiently small in energy so that an optical external field can easily promote an electron
from the valence to the conduction band. As a consequence, intrinsic or absorptive nonlinear
responses can be achieved, simply by setting the excitation energy within or higher the band gap
energy. This is schematic in fig. 1.14. Note that this electronic dispersion diagram corresponds
to a direct semiconductor, which is the case of III-V considered here, and it is oversimplify.
Namely, only two bands are represented and the dispersion relation is parabolic. Nevertheless,
this description is sufficient to all the situation experimentally encountered in this work.

: Conduction
Band
k

—>
Valence
Band

Figure 1.14: Scheme of the energy of the excitation in a parametric process (PN) and in a
absorptive-based process (ABN). For the first the energy of the incident field is not absorbed by
the material while in the second one an energy transfer takes place.

In the following paragraphs we turn our attention to the properties of absorption and
dispersion in semiconductors. We will see that it is possible to control these parameters by
changing the carrier density through optical excitation.

1.2.2 Absorption and nonlinear refractive index in III-V semiconductors

When a semiconductor is excited with an incident field, as long as the incoming energy is higher
than the semiconductor gap (Eg), electrons are promoted from the valence to the conduction
bands leaving an equal number of "holes" in the former. As a consequence, the absorption and
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refractive index are modified, within the electron-hole recombination lifetime. In steady state,
since the carrier density is a function of the electromagnetic field intensity, we can write, at first
order in |E|?,

n = ng + na| E?| (1.27)

with ng the linear refractive index and ns the nonlinear refractive index, which is proportional
to x® and gives the rate at which the refractive index increases or decreases with increasing
optical intensity [12]. Different types of nonlinearities may induce a nonlinear refractive index
change effects in semiconductors. Two well known effects can be distinguished: the Drude ef-
fect, when a photogenerated electron-hole plasma modifies the refractive index and this change
is proportional to the carrier density [13]; and band filling effect, which produces a decrease of
the absorption through photoexcited carrier generation. If two pulses are sent to the sample,
a strong (pump) pulse followed by a weak (probe) pulse, the occupation of the conduction and
valence bands generated by a pump pulse induces a decrease in the absorption probability of the
probe [14]. This change in the absorption induces a refractive index modification.

The detailed calculation of the refractive index and the absorption in a general case
is quite cumbersome. In order to simplify the problem, a first assumption is to consider a
direct gap semiconductor described by parabolic bands. In this case the susceptibility can be
calculated using descriptive tools such as the joint density of states (p;(E)), i.e. the density of
two level systems optically coupled by a photon of energy F. In this model, the semiconductor
is represented as a continuous sum of two-level systems, of homogeneous broadening v = (T3)~*,
weighted by the occupation function of electrons (f.) and holes (f). Then we can express the
susceptibility (x(w) = xr(w) + ixi(w)) as:

(w—u)

o) = 4 [ oy )1~ ) = e (1.25)
o o ro / . W) — W Y
6w = A [Tl ()1 = £l = Bl S (1.29)

with A a proportionality constant characteristic of the material. The occupation functions in-
troduce the nonlinear mechanisms through the dependency of carrier density with the field.
Xr describes the refractive index which can be translated into a third order term in the sus-
ceptibility, Xg)f- The induced polarization can thus be expressed with a cubic dependence
of the electric field and the total refractive index with a linear dependence of the intensity.

On the other hand, the imaginary part of the susceptibility (x;) describes the absorption.

In situations of quasi-equilibrium, f.(w) and f(w) can be described by the Fermi-Dirac

distribution:
ohw—Er

F@ = p

with T the lattice temperature, Er the Fermi level and K the Boltzmann constant. In most
cases h/Ty << kpTF (i.e. v — 0), then, the Lorentzian distribution of eqs. 1.28 and 1.29 can
be considered as a Dirac distribution, leading to an expression for the absorption of the form:

+1)7! (1.30)

a(w) = ao(W)[1 = fe(w) = fa(w)] (1.31)

with «q the absorption coefficient of the material in absence of excitation. Note that a/aq gives
direct access to the population factors f. and f.
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The information about the nonlinear refractive index in energy windows close to the
spectral gap of a semiconductor is of major interest for devices such as nonlinear Fabry-Perot
resonators. The direct measurement of this magnitude requires interferometric methods of high
accuracy. However, the experimental measurement of the absorption spectra is easier and the
refractive index can be deduced from it by means of the Kramers-Kronig transformation:

An(w) = < /OOO o B (1.32)

Application of bulk semiconductors to nonlinear optical devices is limited since their non-
linear properties are restricted within fixed energy intervals, mainly determined by the band gap
energy. Therefore, materials whose absorption properties can be adjusted to a certain spectral
range, depending on the application, are highly desirable. In the following we describe this kind
of materials.

Absorption and refractive index change in active materials

Active nanostructured materials, such as quantum dots, wires and wells, allow the modification
of the spectral range where the absorption and refractive index change takes place. We will see
that specific properties as the energy gap can be tailored by changing the size of these structures.

The quantum wells (QW) are semiconductors were the charge carriers are confined within
a plane (2D) in the space. In quantum wires (QR) confinement takes place in a line and in QDs
the carriers are confined in the three dimensions (0D), fig. 1.15. This confinement is achieved
by introducing an energy barrier for the electrons.

Bulk Quantum Well Quantum Wire Quantum Dot
(a) (b) (c) ()
i
(L

p(m) p(w) p(w) p(m)

w (O3] (]

Figure 1.15: Active region (top) and density of states (bottom) for confinement in no dimensions
(i.e., bulk material) (a), in one dimension (i.e., quantum well) (b), in two dimensions (i.e.,
quantum wire) (c) and in three dimensions (i.e., quantum dot) (d).

For example, the quantum dots can be formed by introducing a nanometric "box", i.e.
a well in the three dimensions, of a semiconductor with low bandgap in a semiconductor with
higher bandgap. For well sizes of the order or smaller than the electronic De Broglie wavelength,
i. e. ~ 120 nm in ITI-V semiconductors, the strong spatial confinement of the carrier inside the
dots yields to a discretization of the energy levels. Moreover, this discretization depends on the
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QD size. Provided that the difference in the energy bandgaps of the QD and the bulk is higher
than the thermal energy, the carrier are trapped in the dots. For these reasons the QDs are also
called artificial atoms.

The spatial confinement and the discretization of the energy levels in the QDs make them
interesting as an active material in semiconductor lasers. They can give rise to a decrease of
the laser threshold, low sensitivity to temperature, an increase of the gain and a decrease of the
frequency chirp. Some of these structures are nowadays extensively used in technology. They are
used in quantum information processing, as single-electron transistors, in diode lasers, amplifiers
and biological sensors, among others.

In this work we are interested in InAs/InP III-V semiconductors QDs. The advantages of
these nanostructures is their emission at the telecommunication wavelengths (1-2 pm). We will
use this type of QDs in photoluminescence measurements, since its broad emission (~ 150 nm)
and low density (~ 10'%¢m=3) allow to easily detect the photonic crystal cavity modes, as we
will see in chapter 3. Let us now consider QW structures that are at the center of our nonlinear
studies.

Quantum Wells

The quantum wells can be formed by introducing a very thin (< 120 nm) 2D layer of
a semiconductor with low bandgap surrounded by a semiconductor with higher bandgap (fig.
1.15.b). The boundary conditions in this layer determine the wave functions of carriers, hence,
the potential energies. Because these wave functions depend on the quantum well dimensions,
the energies allowed in the well are tunable by adjusting the well dimension, which yields a
change of the bandgap energy. The effects of quantum confinement (discrete energy spectrum)
take place when the quantum well thickness becomes comparable to the De Broglie wavelength
of carriers (generally electrons and holes), leading to discrete energy levels, fig. 1.16. The lateral
confinement in the QW produces a restriction of the carrier movement in this direction, giving
rise to the discrete energy spectrum. However, carriers are free to move in the parallel direction
leading to a dense distribution of states in the parallel plane.
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Figure 1.16: Discrete energy levels in a QW semiconductor. I and III correspond to the high
bandgap semiconductor (the barrier) and II to the low one (the well). The quantum confined
carrier energies are E.1 or E.2 for electrons and Enl, Ep2 for holes. The wave functions of
carriers at these allowed energies are standing waves.

QWs structures are extensively used in technology. One of the most common applications
of these systems is laser diodes, including red lasers for DVDs and laser pointers, infra-red lasers
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in fiber optical transmitters, blue lasers, among others.

Let us now study the absorption spectra and the refractive index change in this kind of
structures. Experimental measurements of o and An (through Kramers-Kronig tranformation)
as a function of energy for different injected intensities in multiple GaAs quantum wells were
carried out by Koch et al. [15], fig. 1.17. The exponential tail below the band gap (dashed line in
fig. 1.17.a) in the absorption vs energy plot is called the Urbach tail. This tail can be attributed
to transitions between band tails below the band edges. Such tails can result from disorder of
the perfect crystal, e.g. from defects or doping and the fluctuation of electronic energy bands
due to lattice vibrations [16].
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Figure 1.17: Nonlinear absorption spectra (a) and refractive index change (b) of multiple quantum
wells for (from 1 to 6 and a to e, respectively) increasing excitation powers. The refractive index
change was deduced from the measurements of the absorption by Kramers-Kronig transformation.
Images from [15]

Note the decrease of the absorption with the incident power regardless the energy. This
can be seen in eq. 1.31 when f.+ f; < 1 and it is called the absorption saturation. Note also that,
for the higher injected power (fig. 1.17.a.6), the absorption is negative for a range of energies,
i.e. optical gain. This is obtained when f. + f;, > 1 in eq. 1.31. We observe in fig. 1.17.b that
the variation of the refractive index can be positive or negative depending on the wavelength.
Furthermore, its value is strongly dependent on the excitation energy.

In this work we will take advantage of this change in the refractive index to spectrally
shift the modes of photonic crystal cavities.

1.2.3 Nonlinear dynamical processes in optical resonators

The optical properties of nonlinear materials can be varied by changing the intensity of the inci-
dent light. Therefore, if light is confined in small volumes inside the material, field enhancement
inside this volume is achieved, thus the material properties can be changed with lower excita-
tion powers. This light confinement can be achieved in optical resonators or cavities. As an
example, micro and nano-photonic devices give a handle to tailor and control the flow of light
within a sub-wavelength spatial scale. Indeed, the nonlinear effects can be enhanced in systems
allowing tight light confinement and low optical losses. Among all the nonlinear phenomena
that can be observed in optical resonators, optical bistability has been extensively investigated
in the last decades, mostly due to its potential for optical memories and switching. In optical
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bistability the system presents two possibles output signals for an equal injection. By definition,
bistability only deals with static regimes and one dynamical variable, but it is often the pre-
cursor of exciting dynamical regimes, which can be found in several natural systems including
neurons, cardiac tissues and chemical reactions. Dynamical nonliearities allow rich and complex
non-stationary phenomena such as excitability and self-sustained oscillations. In self-sustained
oscillation regime the nonlinear system reacts emitting a periodical signal while excited with a
CW beam. In the excitable regime the system develops all-or-non calibrated optical responses
to a small perturbation.

In the following we give some insights about these three particular nonlinear behaviors:
bistability, excitability and self-pulsing regime in optical cavities.

Optical bistability

Optical bistability is the simplest and more robust paradigm for the realization of all-optical
transistors and memories. Two ingredients are needed in order to obtain bistable operation in
an optical system: a resonance capable of localizing the light intensity in the spectral domain,
and a nonlinear property that changes the spectral response as a function of the light intensity.
Under certain conditions for the injection of a nearly resonant beam, two stable states for the
transmission /reflection through the device can coexist, in the sense that either one output level
or another can take place for the same input parameters. This type of phenomenon has been
theoretically demonstrated for the first time in optics by Szoke [17] and experimentally by [18].
The optical bistability has been studied in several works due to its possible application to infor-
mation processing. Although, the phenomenon is not inherent to optical system, actually it is a
common behavior in electronic systems.

Optical bistability typically occurs in nonlinear optical resonators. Depending on the
physics behind the resonator different mathematical representations can be adopted to describe
the system, e.g. the equations that govern the optical field in a cavity via the Maxwell Bloch
equations. In order to theoretically describe the optical bistability in an optical resonator, let
us consider the following system: a cavity filled with a nonlinear material of index n = ng + nol
optically injected though a waveguide, fig. 1.18.

Figure 1.18: Sketch of a cavity coupled to a waveguide. The field is injected through the left port
(f). The cavity is filled with a third order nonlinear medium with n = ng + nal.

The system in fig. 1.18 can be described by a Coupled Mode Theory (CMT) formalism
[19, 20| which will be detailed in section 2.2.
In this framework, the field amplitude inside the cavity (a) is described by [20]:

da ) 1

= = lilwo = dw) = —Ja+df (1.33)
where we have considered an injection only through the left port. wg is the cavity resonance
frequency, 7 the photon lifetime, f the injected field and d = jexp(j$/2)/+/T, where the phase
¢ depends on the structure. dw accounts for the nonlinear resonance frequency shift:
Jal?

ow ==+
“ P07'2

(1.34)
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where Py is the characteristic nonlinear power of the cavity [21]. The term dw can be seen as a
correction of the cavity resonance frequency due to the intensity inside the cavity and accounts for
the nonlinear refractive index. The sign in eq. 1.34 gives the sign of the nonlinear resonance shift.
We choose dw = —|a|?/Py7?, i.e. nonlinear blue-shift, without loss of generality. Considering
a = a(t)exp(jwint) the steady states of eq. 1.33 are given by:
0= [j(5+ L ei0/2
=[j(6 + =—) = 1]a+ je&??/*/1f (1.35)
PoT
where § = 7(wg — wip) is the detuning of the optical injection with respect to the resonance. The
squared modulus of eq. 1.35 becomes:

TPy, = [6% + A% + 264 + 1]A (1.36)

where A = |a|?/Py7 and Pj, = |f|®>. The transmitted power (Pp,; = |t|?) is related to the
intracavity energy (A) through P, = |a|?/7 = AP,. Then, eq. 1.36 yields

Pout _ Pin/PO
By 1+ (Poyut/ Py + 0)?

(1.37)

Eq. 1.37 contains a cubic dependence of P, as a function of P,,;. Indeed, the curve has either
zero or two critical (i.e. zero derivative) points depending on §. Py does not affect the shape of
the curve, it becomes a rescaling factor. The bistable regime corresponds to the case where the
curve has two critical points, which requires a detuning higher than |0] > V3. In addition, since
P, is positive by definition, § < —v/3. From eq. 1.36, the transmission 7 as a function of the
Py, has the feature of fig. 1.19, provided [d] > /3.

Pout/PO

Figure 1.19: Transmitted power as a function of the injected signal showing the typical feature of
a bistable optical system. The solid line corresponds to the stable states while the dashed line to
the unstable states. The arrows show the sense of the hysteresis cycle. The solid line corresponds
to: Piy, = Poy; the bistability threshold can be approzimated as the intersection between this line
and the curve (grey dot).

From fig. 1.19, if the system is injected with an increasing power, the transmitted signal
(Poyt) remains low until P, is increased beyond some critical value (P,,) then P, increases.
The transmission remains high even if Py, is decreased until another critical value (Pjoyn) is
reached and the system jumps to the lower branch. Such hysteresis cycle is usually considered
as the experimental evidence of optical bistability. A magnitude that characterizes a bistable
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system is the bistability threshold, which is defined as the minimum power for which the system
presents two possible states (Pjyyn in this case). This value can be estimated as the input power
needed for 100% transmission [21], which corresponds to the intersection of the curve given by
eq. 1.37 with the line P;, = Py, see fig. 1.19, giving [21]:

Pin,in = Pold] (1.38)

Note that if the system is injected with powers such as Pyoyn < Pin < Py, the system present
two stable fixed points and one unstable fixed point in between. Besides, the range of power for
which the multistability takes place is given by two saddle node bifurcations.

The bistability can be observed in the spectral domain as a bending of the cavity reso-
nance. From eq. 1.36 the detuning () as a function of the transmitted signal for a fixed injected
power (different from zero) is given by:

Pout:t Pi

§=— i
PO Pout

-1 (1.39)

For an injected power in the range of the bistable regime, the cavity resonance bends to
higher or lower wavelengths depending on the sign of the nonlinearity (in this case the resonance
bends to the blue), see fig. 1.20. If the detuning is lower than a certain value (6, in fig. 1.20)
the system response remains on the tail of the resonance. Beyond 6, the transmission suddenly
jumps to the upper branch and remains high even if § decreases, until another critical value,
ddown, 1s reached and the system jumps back to the tail of the resonance. Note that both dy,
and 0gown depend on the injected power.

down

Déptuning, 3

Figure 1.20: Resonance bending. Transmitted signal as a function of the detuning for a fized
injected power in the range of the bistable regime (see fig. 5.1).

From the experimental point of view, optical bistability has been extensively studied
in the last decades due to its potential application to optical memories. In particular, it has
been investigated in detail in Fabry-Perot etalons [22, 23], monolithic vertical cavities [24, 25],
micropillars [26] and microdisks [27]. Fig. 1.21 shows the hysteresis cycles in GaAs/AlGaAs
multiple quantum well microresonator pillars [24].

In fig. 1.21 the threshold power is less than 70 W while the threshold in the unetched

structure was of the order of 1 mW [26]. This reduction of the threshold power is due to the
lateral confinement. According to [28, 21| the threshold scales as V/Q?, with V the optical
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Figure 1.21: (a) Scanning electron micrograph of 4 pum-diameter microresonators. (b) Oscillo-
scope traces showing a wide hysteresis loop in a micropillar. Image from [26].

mode volume and @ its quality factor. For example, in [27] Si microdisks with high Q (Q ~
3 x 10°) and small volumes (V ~ 40(\/ng;)3) bistability thresholds as low as 60 uW have been
observed. As a general rule, optical cavities with high quality factors and small volumes are
needed in order to reduce the bistability threshold. Such reduction is crucial for the applications
to information processing. Excellent candidates for obtaining high quality factors and small
volumes are photonic crystal nanocavities, as we will see in section 1.3.

Self-sustained oscillations and excitability

By definition, bistability only deals with static regimes. The dynamical nature of nonlinearities
in active resonators allows, in principle, rich and complex non-stationary phenomena. In partic-
ular we will focus on two interesting regimes: excitability and self-sustained oscillations.

As it has been previously discussed, the excitable and spiking (or self-sustained oscilla-
tions) regimes are nonlinear dynamical processes that involve variables with different time scales:
a fast one, responsible for the firing of the excitable pulse, and a slow one, that determines the
full recovery to the quiescent state. Usually, in semiconductors, the fast variable is given by
the carrier recombination time and the slow one by the thermal relaxation in the material. In
standard resonators, as the one used in [29], the time scale for thermal relaxation is of the order
of a ms. In microphotonic resonators such as microdisks or photonic crystals, the thermal re-
laxation time becomes much faster, due to the small dimensions playing a role in heat diffusion.
In [27], self-induced optical modulation of the transmission through a high quality factor (Q)
microdisk was reported; the thermal recovery time was of the order of us. Furthermore, stud-
ies on optomechanical oscillations driven by radiation pressure have also shown two time-scale
self-sustained oscillations in ultrahigh Q microtorus [30]. More generally, the world of micropho-
tonic devices concerns high and ultrahigh Q resonators [31] which, under light injection, enhance
carrier absorption and radiation pressure thus involving ubiquitous thermal or mechanical dy-
namical effects, respectively.

In the previous section we have studied the excitable and the self-sustained oscillation
regime in general systems. In optics, such behaviors are manifested as optical output pulses
that depend on the input power. When a constant input signal leads to a time-varying output
signal we have self-sustained oscillations. On the other hand, if a constant input signal plus an
optical perturbation (shorter than the oscillation period) triggers an optical pulse, provided the
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perturbation energy is above a certain value, and if the output pulse shape is independent of the
perturbation, we have excitability.

Excitability offers interesting prospects for applications in all-optical circuits, such as
clock recovery and pulse reshaping [32]. The self-pulsing behavior in a network of resonators is
potentially interesting for an optical realization of reservoir computing [33|. A photonic imple-
mentation of a reservoir computing offers the promise of massively parallel information processing
with low power and high speed [34, 35, 36].

Self-oscillation regimes are well known in optics. For instance, passive Q-switching and
mode-locking lasers are classical self-oscillating phenomena. In recent years, self-pulsing regimes
were studied in semiconductor materials in |37, 38] and experimentally observed in lasers with
optical feedback [39], in lasers with saturable absorber [40], in etalons [41] and in microdisks [27].
More recently, opto-mechanical oscillations were observed in micro-torus [30].

Unlike bistability and self-sustained oscillations, well known in optics, few works have
investigated excitability in optical systems. In particular, some experimental demonstration of
excitability in nonlinear optical cavities have been carried out in the last fifteen years. These
studies concerned semiconductors lasers with optical feedback [42, 43, 44, 45|, gas and solid state
lasers with saturable absorber [46, 47|, thermo-optical pulsation in broad-area semiconductor
amplifiers [29, 48], as well as semiconductors ring lasers [49, 50| and optically injected QD lasers
[51]. As an example let us consider a semiconductor laser with optical feedback [42]. The ex-
citable regime is observed while feeding the system with a fixed pump current close to the laser
threshold and adding to the pumping current pulses whose amplitude and width can be varied.
For perturbation amplitudes less than 2.6 mA no output pulses are observed, fig. 1.22.a. How-
ever, for perturbations higher than 3 mA an excitable response is obtained 1.22.b, showing the
existence of a threshold.
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Figure 1.22: Ezcitability in a laser with optical feedback. Intensity of the system when a small
amplitude perturbation is added to the pumping current; amplitude of the pulse: 2.6 mA (a) and
3 mA (b). Images from [42].

Excitability in optics has received considerable attention because of its prospects for
applications in optoelectronic devices, primarily for optical switching, clock recovery, pulse re-
shaping (a dispersed input pulse can trigger a large "clean" output pulse), tunable pulses, and
for generating a coherent resonance output pulse in communication networks [32]. However, for
many of such applications low threshold and ultrafast excitability and self-pulsing are needed in
systems that allow integration and miniaturization. We will see in section 1.3 that good candi-
dates to achieve these requirements are the photonic crystal nanocavities.

The regimes studied so far involved a single optical system. In the following we will
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introduce an interesting phenomenon arising from the coupling of two (or more) nonlinear optical
resonators.

1.2.4 Coupled resonators

Several works have studied the coupling between resonators in different configurations: in "pho-
tonic molecules" [52, 53, 54, 55, 56|, microdisks [57, 58, 59, 60], microspheres [61] and micropillars
[62]. As an example, let us consider the coupling of GalnAsP microdisks studied by Baba et
al. [57]. Figs. 1.23.a and b show the system under study and the mode splitting: note that
the modes split into a bonding and antibonding mode. The spectral distance between these two
modes decreases with the microdisk separation, fig. 1.23.c. This mode split, indeed, depends on
the coupling strength as we will analyze in detail in chapter 7.
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Figure 1.23: (a) Scanning electron images of twin microdisks. (b) Lasing spectra. Inset figures
are magnetic field profiles of bonding and antibonding states of the eleventh order whispering
gallery mode. (c¢) Mode split (AX) vs interdisk spacing (d) characteristic of twin disks. The dots
and the line are measurement and calculated results, respectively. Images from [57]

In this paragraph we have introduced the coupling between optical resonators, in the
following we will introduce a key and elusive phenomenon in coupled nonlinear resonators.

Nonlinear coupled resonators: Spontaneous symmetry breaking

Coupling sets of nonlinear resonators opens up the possibility of spatio-temporal control of light.
The phenomenon underlying the family of rich nonlinear dynamical behaviors in such coupled
system is called spontaneous symmetry breaking. This phenomenon is the process by which a
symmetrical system, under symmetrical excitation ends up in an asymmetric state, while linearly,
the intensity inside each resonator would be equal. This behavior opens up a whole new range of
applications such as photonic reservoir computing [36], slow light engineering [63], and all-optical
flip-flop operation [64]. Imagine we have a system of two cavities with right-left symmetry. If the
system is linear, the original symmetry is preserved. Since both modes are excited with the same
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strength, a superposition of equal inputs from left and right results in equal outputs to the left
and right. In the nonlinear case, this excitation shifts the resonance frequencies of the modes.
Because of the coupling of cavity intensities through the middle channel, it is possible that the
symmetric situation is no longer stable at a certain input power. Therefore, the system will drift
to a situation where one cavity is more excited than the other, and thus, an asymmetric state
arises.

Maes et al. [64]| have predicted, both analytically and through numerical simulations,
this kind of behavior in two coupled nonlinear cavities with a symmetric excitation through two
ports, fig. 1.24.

Figure 1.24: (a) Sketch of two coupled cavities coupled to the outside by two ports. Image from

[64]

Instantaneous Kerr nonlinearity is used, where the index depends on the intensity of the
local field. Using coupled-mode theory (CMT, see section 2.2) they presented a simple analytical
description of the processes. Fig. 1.25 shows the output power (trough the left or right ports)
as a function of the input power. Note that there is a range of incident powers for which the
output powers through the left and right ports are not equal. This means that the symmetric
solution has become unstable and the system has switched to an asymmetric state. Indeed, we
have spontaneous symmetry breaking. Note that the symmetry breaking arises and ends with a
pitchfork bifurcation.

BB,

Lt

4 L
Fowor Fou

i R
P o P,

out

o 1 2 s 4 8
Pyl B =P,/ F

Figure 1.25: Qutput power versus input power. Stable and unstable states are shown with solid and
dashed lines, respectively. Dots show rigorous simulation results. Note that for a range of injected
powers, the symmetric solution becomes unstable and the system switches to an asymmetric state.
Image from [64]

In this thesis we propose the experimental demonstration of spontaneous symmetry break-
ing on the bases of two evanescently coupled InP-based photonic crystal cavities, symmetrically
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excited through a microfiber. We will come back to this in Part III.

We have mentioned that photonic crystals are good candidates for light confinement in
small volumes and with high quality factors. In the next section we give a short introduction
to photonic crystals, with particular emphasis in light confinement in small volumes and light
input coupling methods.

1.3 Photonic crystals

Light confinement in high quality factor resonators or cavities leads to enhanced nonlinearities,
i.e. stronger refractive index changes. Hence, lower bistability, excitability and self-sustained
oscillations thresholds can be obtained. The light confinement in a dielectric or semiconductor
medium can be obtained by two different phenomena: the total internal reflection mechanism or
the interferences in a medium with a periodicity in the refractive index.

1.3.1 Mechanisms of light confinement
Total internal reflection

A simple way to confine light in a dielectric or semiconductor is by means of refraction index
contrast between two materials. Let us consider two layers with refractive indices n; and nq, such
that n; < ng, fig. 1.26.a. If the incident light propagates through the material with ny, total inter-
nal reflection can be achieved provided the angle of incidence is higher than 6;,, > arcsin(ni/ns).
This is the confinement mechanism in regular optical fibers but also in microdisks (fig. 1.26.b)
and microspheres where the materials of higher and lower index can be, for example, III-V semi-
conductor or Si and air, respectively. Using this phenomenon we can confine light in 1, 2 and 3
directions of space leading to waveguides or cavities.

(a) (b)

Figure 1.26: Light confinement in a layer (a) and in a microdisk (b). The confinement is given
by total internal reflection on the interface of two media with different refractive index.

Confinement by interference

Another way to confine light is via light interference of a wave propagating in a periodic medium,
like a photonic crystal (PhC). PhC are dielectric materials with a periodic structure of the
refractive index in a scale of the order of the wavelength. This periodicity affects the propagation
of light in the same way as a atomic periodic potential in a crystal affects the motion of electrons,
by defining allowed and forbidden electronic energy bands. In particular, structures with photonic
bandgaps that prevent the light to propagate in certain directions with certain frequencies can

28



be realized. The periodicity can be in 1 direction (i.e. 1D PhC), 2 directions (2D PhC) or 3
directions (3D PhC). In the following we describe the origin of this confinement.

1.3.2 Band structure in photonic crystals

The physics of light propagation in periodic media is contained in the dispersion relation. For
simplicity let us first consider a 1D photonic crystal, a Bragg mirror. The structure is given by
layers of index m; and thickness d; and layers with no and do. Then, the structure period is
dy + dy. If for a certain wavelength the phase shift is such that nijd; = naods = A\g/4, destructive
interference takes place between the reflected and transmitted waves at each interface. Hence,
the structure behaves as a mirror for a wave of wavelength g, which is the central wavelength
of the forbidden band of propagation. Indeed, there exists a whole range of frequencies that
cannot propagate in the system, called the photonic bandgap. This bandgap can be seen in
the dispersion relation or band diagram of the structure, where the frequencies are plotted as
a function of the wave vector (w(k)). As for electron standing Bloch waves in a crystal, the
band diagram represents the allowed frequencies (bands) and forbidden frequencies (bandgaps)
for an optical Bloch wave propagating in the periodic medium. It contains information of the
dispersion characteristics w(k) of the photonic crystal. Fig. 1.28 shows the band diagram for
the case n; = ng (left) and for n; = 3.6 and ng = 1 (right). Note the photonic bandgap in the
latter.

Figure 1.27: Scheme of the multiple reflections on the successive interfaces of a structure with a
periodicity in the refractive index (Bragg mirror).

Total reflectivity in more dimensions can be obtained by adding a periodicity in the other
directions. As a result, 2D or 3D photonic crystals can be realized. These structures also show
photonic bandgaps, which lead to a range of wavelengths that cannot propagate in the structure.
Using this concept we can make an analogy with the band theory for the electrons in a crys-
tal. The periodic variation of the refractive index resembles the periodic potential in a crystal.
Therefore, we can use the same formalism for the propagation equation due to the wave nature
of the photons and electrons.

Writing the Maxwell equation for a periodic system (e(r) = e(r+ R), with € the gelectric
function), the eigenmodes of the PhC (hy) are Bloch modes characterized by a vector k as

Hi(r) = ™ u(r) (1.40)

where ug(r) is a periodic function: ug(r) = ug(r + R) for all lattice vectors R [65]. Note the
system is invariant under the transformation & — k + m27/a (with m an integer). Indeed,
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Figure 1.28:  Photonic band structure for a propagation perpendicular to the structure for (a)
ny = ng and (b) ny = 3.6 and ny = 1. Note that for different refractive index the degeneracy at
the crossing points is lifted, giving rise to photonic bandgaps.

in order to fully describe the physics of propagation we can restrict ourselves to the interval
—m/a < k < w/a: this region in k space is called the Brillouin zone.

Let us now consider a particular case of a PhC: a 2D photonic crystal with triangular
lattice, fig. 1.29.a. The periodicity is given by air holes (n=1) embedded in a high refractive
index material. The key to understanding photonic crystals in two dimensions is to realize that
the fields in 2D can be divided into two polarizations by symmetry: Transverse-electric (TE)
modes where the magnetic field is normal to the plane and the electric field lies on the plane, and
transverse-magnetic (TM) modes where the magnetic field is in the plane and the electric field is
normal to the latter. The band structure for the TE and TM modes can be completely different,
fig. 1.29.b. In particular, it may occur that a photonic bandgap exists for one polarization while
no bandgap exists for the other one. Frequency bands for which propagation is forbidden both
for TE and TM modes are called total bandgaps.

Air holes

Wave vector

(a) (b)

Figure 1.29: (a) 2D Photonic crystal of triangular lattice. The periodicity is given by air holes
of radius r in a material with dielectric constant e = 10.89. (b) Band diagram for the structure
in (a). The solid lines represent the TE modes while the dashed lines the TM modes. The inset
shows the Brillowin zone.
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The triangular lattice is usually chosen over the square one because the bandgap is wider
in the first case and leads to more flexibility to get a complete cavity effect with better confine-
ment.

2D PhC have two drawbacks: firstly, the confinement cannot be achieved in the normal
direction, and secondly, they are difficult to fabricate due to the high aspect ratio-etching process
needed to obtain 2D cylinders. Nowadays, almost all the 2D PhC are 2D photonic crystal slabs.
In such structures the confinement in the direction perpendicular to the slab can be achieved
by total internal reflection. However, confinement is not prefect: photons incident with angles
smaller than the total internal reflection critical angle can escape from the structure and couple
to the continuum of radiation modes.

In this thesis we are interested in a particular type of 2D slab: the 2D PhC suspended
membrane. Here the lateral confinement is given by the PhC periodicity and the vertical con-
finement through guided modes in the suspended membrane.

1.3.3 Photonic crystal cavities

The photonic bandgap can be used to confine light in reduced volumes. Imagine we include a
defect in a PhC for instance by removing some holes in the lattice: if this defect has the appro-
priate size to support a mode surrounded by the photonic band gap, then the light gets trapped
into this defect. As a result, an optical cavity is realized. These cavities can have very small
volumes and high quality factors (Q), where Q represents the rate of energy loss relative to the
stored energy of the oscillator. It is given by Q = 7w/2 = w/Aw, with 7 the photon lifetime
inside the cavity, w the cavity resonance frequency, and Aw the resonance width.

Photonic crystal nanocavities can be formed by removing and/or modifying one or more
holes (i.e. by changing the hole size or the refractive index) in an otherwise perfectly periodic
lattice. Such a breaking in the periodicity of the lattice introduces new energy levels within
the photonic band gap. Here we will present two kinds of cavities: defect cavities and double
heterostructure cavities.

Defect photonic crystal cavities

The simplest defect cavity in a bi-dimensional photonic crystal consists of removing one hole 66|
in a perfect triangular lattice of holes. This cavity is called H1. However, these typically have
quality factors of a few hundreds, which exclude them as good candidates for nonlinear optics.

In recent years, a considerable amount of effort has been devoted to improve PhC cavity
design in terms of both Q factors and mode volumes. In particular, it has been shown that given
a defect cavity, the quality factor of the structure can be improved by shifting the position of the
nearby holes or increasing/decreasing their size. This is the case of the L3 modified cavity in a
suspended PhC membrane. Such cavities are given by three missing holes in a line of a triangular
periodic lattice, fig. 1.30.a. Noda et al. [67] have demonstrated that a slight shift of the two
holes closing the cavity increases the cavity quality factor by almost one order of magnitude,
fig. 1.30.b. Sauvan et al. [68, 69] have given a successful interpretation of this phenomenon.
The elements that affect the quality factor of a cavity are: an increase of the reflectivity of the
surrounding "mirrors" of the cavity by shifting the holes positions which better adapt the mode
profile in the cavity to that of the mirrors; and a decrease of the group velocity of the cavity
modes. Thanks to this shift, high quality factors (Q) in this kind of cavities were achieved,
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e.g. @ ~ 10* in GaAs and @ ~ 45000 in Si. We have implemented this kind of cavities in InP
suspended membranes for nonlinear studies.
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Figure 1.30: (a) Sketch of a L3 cavity with a lattice constant a, where the two holes closing the
cavity are shifted away a distance d. Image from [67]. (b) Quality factor of the L3 cavity as a
function of the holes shift, d. Squares correspond to the experimental results in [67] while the line
and the circles correspond to the numerical results from [69]. Image from [69].

0.2

Double heterostructure cavity

Extended defects in a photonic crystal, i.e. a whole missing line of holes or a line with smaller
holes, lead to optical waveguides. Examples of this confinement are W1 waveguides (fig. 1.31.a),
where the guide is formed by removing a row of holes in the I' — K direction from an otherwise
perfect triangular lattice. Light that propagates in the waveguide with a frequency within the
band gap of the crystal is confined into the defect and can be directed along it. The introduction
of this defect results in a frequency band for light propagation lying inside the PhC band gap,
fig. 1.31.b.

0.35 7
Lattice constant, a = i
= - Waveguide
gz 080 / made
% '
Light line-_ «
T
= 0250 ) 1
= L L
0 01 g2 03 04 05

Wavevector (2m/a)

(b)

Figure 1.31:  (a) Sketch of a W1 guide, i.e. a whole missing line of holes. (b) Band diagram
of this structure. The PhC bandgap takes place inside the white region. Note that a band of the
waveguide lies within this bandgap. Images from [70].

The position of the guided-mode band, fig. 1.31.b, depends on the PhC period and hole
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diameter. Changing such parameters allows fine tuning of the guided mode frequency. Moreover,
this allows the realization of optical cavities within the waveguide. These are called double het-
erostructure cavities. Noda et al. [70] proposed one type of double heterostructure cavity, where
the cavity is formed by a local increase (over two periods) of the longitudinal lattice period (from
a to a’) along the waveguide, fig. 1.32.a. As a result, an inner waveguide with lattice period a’ is
sandwiched between two outer waveguides with lattice constant a. In the case a’ > a, the inner
waveguide mode is red-shifted respect to the outer waveguides mode. Therefore, light is confined
in the former, fig. 1.32.b. We will call this kind of cavity Noda-type cavity. We have also used
these cavities, to a lesser extent, for our studies.

In these cavities, due to the close similarities between the inner and outer waveguides,
the reflectivity of the mirrors, formed by the outer waveguide, is almost ~ 99.99%. Besides, the
cavity mode has low group velocity (due to the flatness of the dispersion curve, fig. 1.31.b). As
a result, high quality factors can typically be obtained with these cavities. Quality factors of
the order of 108 in Si were achieved [70] while in ITI-V semiconductors (in absence of 1-photon
absorption) cavities with @ ~ 10° were realized in GaAs [71, 72].
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Figure 1.32:  (a) Sketch of a Noda-type cavity given by an inner waveguide (II) with lattice
constant a’ and outer wavequides (I) with lattice constant a. (b) Representation of the optical
confinement in this kind of structure. Photons of a specific energy can only exist in the inner
waveguide (II). Images from [70]

1.3.4 Coupled PhC cavities

Coupling of microcavities allowing energy transfer introduces new grounds for the development of
fast lasers [73], delay [54] and non-linear [74] optical lines, bistability-based ultrafast generators,
switchable lasers |75], optical memories |76, 77| and other elements of future integrated photonics
circuits. Generally, coupling results in a frequency splitting and, in some circumstances, in a
splitting of the modal loss.

The coupling between PhC cavities has been investigated in several works [52, 53, 54, 55,
78, 56]. In particular, Notomi et al. [78] have experimentally demonstrated the coupling between
cavities in a large (N>100) array of PhC nanocavities. Moreover, the ultrahigh value of Q and
small size has enabled them to achieve slow light pulse propagation with a group velocity well
below 0.01c and a long group delay.

The coupling in L3 PhC cavities was studied in [56] where the mode splitting and the
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quality factors splitting is studied in detail. Fig. 1.33 shows this splitting as a function of the
distance between cavities (a) for four different geometries. We observe that the mode at higher
energy can be symmetric (also called bonding) or antisymmetric (anti-bonding) depending on the
geometry and the separation. Note also that the splitting not only depends on the separation but
also on the geometry. We will see later that this splitting is associated to the coupling strength.
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Figure 1.33: Theoretical plots of the energies and quality factors of the split fundamental modes
of parallel L3 cavities coupled along lines defined relative to those of the cavities. Green lines
represent bonding (B) states, red lines represent anti-bonding (AB) states. Images from [56]

The study of the mode splitting builds confidence in the evanescent coupling between
cavities. A systematic study of the cavities coupling was carried out by Vignolini et al. [79]
where the anticrossing of modes was observed. Fig. 1.34.a shows a schematic image of the sam-
ple. This kinds of cavities (individually) presents two main modes spatially extended along the
two orthogonal direction x and y, and they have different polarization properties. In order to
control the coupling between the modes of the two PhC cavities, one of the cavities is injected
with a solution that allows to modify its modes: the cavity modes shift with the evaporation of
this solution. This evaporation is induced by heating the sample through the photoluminescence
setup. Fig. 1.34.b shows the spectral position of the first four modes (P1, P2, P3 and P4) of the
coupled system as a function of the exposure time at high excitation density. P1 and P2 (P3 and
P4) arise from the coupling between the fundamental (first excited) modes of each cavity. After
500 min of exposure time, an anticrossing between the two first modes (P1 and P2) is observed
with a minimum splitting of 17 nm. After an exposure time of 1300 min an anticrossing between
P2 and P3 is observed. These anticrossings of modes are clear evidence of the coupling between
cavities.

In Chapter 8 the coupling between PhC cavities is investigated using another approach:
the phase coherence between the cavities fields.

1.3.5 Light coupling methods

We have seen that cavities with high quality factors and small volumes are possible in photonic
crystal devices. However, due to their small volumes and complex radiation patterns compared
to either standard optical fiber modes or free-space diffraction-limited optical beams, the efficient
coupling of light into PhC devices is quite challenging. Different approaches can be implemented
to achieve this coupling. The most usual one is the integration of optical waveguides into the
PhC, fig. 1.35, [80, 81, 82]. This is an interesting approach since it allows integration, miniatur-
ization and repeatability, among others. However, it presents some drawbacks such us injection,
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Figure 1.34: (a) Schematic image of the studied sample. On the upper cavity, the implementation
of the tuning techniques is also schematically drawn, where the turquoise (white) dots represent
the water infiltration and the yellow highlighted area (brighter) represent the laser spot. (b)
Spectral position of the first four modes of the system as a function of the exposure time for: (R)
P1, (e) P2, (A) P3, and (V) Pj. In the inset the splitting of P1 and P2 is reported as a function
of the exposure time. The anticrossing corresponds to a minimum splitting at 500 min. Images

from [79].

propagation and absorption losses in the waveguides.

Input Output
waveguide waveguide

nanocavity

Figure 1.35: Photonic crystal cavity coupled by an integrated waveguide. Image from [82].

Another interesting approach is the evanescent coupling from PhC cavities to tapered
optical fibers, [80, 83, 84, 85]. This coupling is obtained as far as the spatial overlap of the
cavity mode and the microfiber mode is different from zero. Evanescent coupling between a
tapered fiber and a PhC waveguide or cavity (fig. 1.36) is well adapted to on-chip input and
output coupling using silica optical fibers. This evanescent coupling technique is also suitable
for adaptation to planar lightwave circuit technology, allowing for the interfacing between fiber
optics and PhCs in a mechanically robust and scalable way.

Braclay et al. [83] and Hwang et al. [85] have studied the coupling characteristics be-

tween a cavity and a tapered fiber as a function of different parameters. In particular, the
coupling efficiency as a function of the gap between the fiber and the cavity [85] through FDTD
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Figure 1.36: (a) Coupling geometry between a PhC waveguide and a tapered fiber. Inset: SEM
image of the PhC. (b) Picture of the tapered fiber. Images from [85].

numerical simulations was investigated, with the efficiency defined as the intensity collected by
the fiber (in both senses) over the intensity inside the cavity. Fig. 1.37 shows this coupling
efficiency (n) and the loaded quality factor (Qjoadeq) as a function of the gap; the filled circles
correspond to simulations with an ideal cavity while the open circles to simulations using a SEM
image of the PhC cavity. The Qjoadeq corresponds to the quality factor obtained trough the
resonance measured with the tapered fiber and 1 corresponds to the ratio between the signal
collected through the fiber and the total intracavity power. Note that the maximum coupling
efficiency is given for a gap different form zero (gap=100 nm): a maximum of n ~ 80% was
theoretically achieved. Moreover, experimental studies were also carried out in [85] where cou-
pling efficiencies of n ~ 70% were reported, using specific cavity design in order to maximize
the efficiency. Such high coupling efficiencies allow the application of this system to single pho-
ton generators and to efficiently probe structures with high absorption coefficients, among others.
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Figure 1.37: Fiber coupling efficiency (squares) and total quality factor (circles) as functions of
distance between the cavity and the fiber. The open symbols are results from numerical simulations
using a SEM image of the sample, while the filled symbols corresponds to the ideal cavity structure.
Image from [85].

In this thesis we have implemented this coupling system to address the nonlinear behavior
of photonic crystal nanocavities, as we will see in chapter 3.

1.3.6 Optical bistability and excitability in PhC: State of the art

Only few works were devoted to the understanding and implementation of nonlinear dynamics in
nanoresonators. They have mainly dealt with optical bistability of thermal origin since thermal
effects are usually dominant against ultrafast nonlinearities. Notomi et al. [82, 86] have studied
the all-optical bistable switching operation in Si PhC nanocavities. Fig. 1.38.a shows the output
signal as a function of the input power for different detuning. Note the similarities with fig. 1.19.
A power threshold of ~ 40 uW was found, which is one order of magnitude smaller than the
threshold for microresonators and vertical cavities discussed in section 1.2. Electronic nonlinear-
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ities in nanoresonators are more difficult to achieve due to technological issues and due to their
fast time scales (ps-ns scale). Nonetheless, some works have recently demonstrated bistability of
electronic origin in PhC nanocavities [87, 88]. Kim et al. [87] have also studied optical bistability
in InP PhC nanocavities (fig. 1.38.b), with the particularity of using a microfiber to couple light
in and out of the cavity. They have also found a bistability threshold, measured in the vicinity
of the cavity, of ~ 37 uW. These results confirm that the bistable threshold can be reduced in
PhC optical cavities.
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Figure 1.38: Bistability in PhC nanocavities. Output signal as a function of the input signal,
showing bistability, for different detunings 6 = (XNin, — Ao)/vy (with ino the injected/resonance
wavelength and v the HWHM of the resonance) for (a) a St PhC cavity coupled through waveg-
uides (showing thermal bistability) and (b) InP PhC nanocavity coupled by a microfiber (showing
electronic bistability).

Regarding excitability in 2D PhC resonators, Yacomotti et al. [89] have demonstrated
self-sustained oscillations and type II excitability in Bloch mode resonators in InP PhC. The
system under study was an extended resonator that exhibits a flat band edge at the I' point.
As a result, light can be coupled resonantly into this low group velocity Bloch mode when it
is injected normal to the PhC surface, fig. 1.39.a. Injecting the system with a near-resonant
constant signal and measuring the reflected signal, self sustained oscillations were observed, fig.
1.39.a. Decreasing the injected signal under the spiking threshold and adding a perturbation to
this configuration (an incoherent pump sent by the surface) an excitable regime was obtained,
fig. 1.39.b. Note the similarities between fig. 1.39.a and the time trace for the van der Pol
oscillator (fig. 1.11.b). The excitability is manifested in fig 1.39.b as an all-or-none optical re-
sponse. For perturbation energies lower than U,=1.6 pJ no output pulse is observed. However,
for perturbation energies higher than 1.9 pJ an excitable pulse of 300-ns-width is observed in the
reflected signal.

Excitability and self-pulsing, already observed in extended resonators [89], have never
been reported in PhC nanocavities. In such a case, self-pulsing and excitable threshold are
expected to be considerably reduced. One of the main goals of this thesis is the experimental
demonstration of such regimes in PhC nanocavities (chapter 6).

In the following section we derive an original and simple model that accounts for nonlinear

behaviors of a PhC cavity that incorporates an active medium and which is coupled to the
external continuum through a generic optical waveguide.
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Figure 1.39: Ezcitability in a PhC band-edge Bloch mode. (a) Sketch of the 2D PhC. (b) Self-
sustained oscillations regime in a InP Bloch mode resonator, for a detuning of d = —5.65 and an
injected power of 5.1 mW. (c¢) Ezcitable behavior for a detuning of 6 = —5.75 and a perturbation
energy of Up,=1.6 pJ (label A), 1.9 pJ (label B), and 2.5 pJ (label C). Images from [89].

1.4 Dynamical model equations for active III-V optical cavities.

As it has already been discussed in section 1.2, optical bistability involves a single nonlinear ef-
fect, either electronic or thermal, while thermo-optical excitability and self-sustained oscillations
involve both of them. In this section we develop a model to capture the main features of such
phenomena in a single set of equations, namely amplitude equations of the electromagnetic field
in a cavity filled with an active (III-V semiconductor) medium. We will focus on the experi-
mental device, given by a suspended membrane with a PhC nanocavity coupled to the external
continuum by a microfiber, where the suspended membrane contains a layer of active material
(i.e. QWs). The equations accounting for all those phenomena must describe the time evolution
of three main coupled variables: the electromagnetic field, the charge carrier density inside the
active material and the temperature. For the first, a coupled mode theory (CMT) formalism is
used. The basic ideas of such formulation are given in section 2.2 where the linear equations of
the time evolution of the electromagnetic field inside a cavity are deduced. Let us stress that
such equations remain valid for generic optical cavities filled with active III-V semiconductor
media.

1.4.1 Field amplitude equation

The intracavity field amplitude (a) in CMT with two nonlinear terms, one given by electronic
effects and another given by thermal effects, normalized such that |a|? is the intracavity energy,
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is governed by the following equation

Lo+ df (1.41)

T

Z—j = [j(wo + Awe + Awp)
with wg the cavity resonance in the absence of any nonlinear effect; Aw, /4, the nonlinear frequency
shift of the cavity resonance given by electronic or thermal effects, respectively; d is the coupling
coefficient from the outside and f the injected field. 1/7 = 1/7. 4+ 1/7rqq4 + 1/74, where 7. is the
coupling time; 7,4 the radiative losses time and 7, the absorption time. The absorption is given
by active semiconductor nanostrustures, in particular we consider QWs. Then, we can relate
To to the absorption («), dependent on the frequency and charge carrier density (N), and the

confinement factor (I') as:

1 cla(w,N) (1.42)

Ta 2ng,
where ng, is the group velocity in the dielectric (here semiconductor) slab and ¢ the speed of

light. The confinement factor (I') is defined as the fraction of the propagating wave that is seen
by the active medium, which extends from = = 0 to = w, in the following way 90|

R B@)Pda

> 1 E(x)?da (1.43)

This value can be approximated as the ratio of the active medium thickness to the whole structure
thickness (I' ~ w/D), with w and D the active material and structure thickness, respectively.
Moreover, we can define the small signal (unsaturated) absorption, ag, as

1 _do (1.44)

Tao 2ng,

It is straightforward to relate the material permittivity to the complex refractive index.
Its real part is given by both the slab effective refractive index (ns) and the change in the
refractive index given by the active medium (An.), while its imaginary part is related to the
extinction coefficient (k) in the following way

€ = (ns + TAne + jTk)? (1.45)

Considering that x = a\/47 and neglecting O(I'?) terms we obtain

2T, 2t ,
€ = —
ngA © ns)\xe

/

An, = 2¢ (1.47)

 2n,

o =

(1.46)

where . and x/” are the real and imaginary parts of the material susceptibility, respectively,
which depend on the frequency (w) and the carrier density (N). Assuming y.(w, N) = xe(wo, V)
and expanding x”(wp, N) to first order in N around the carrier density in transparency (equal
number of electrons in the conduction than in the valence band) Ny, eq. 1.46 yields

a:ao(l—%) (1.48)

Furthermore, egs. 1.46 and 1.47 can be related to the Henry factor, which is the ratio of the real
to the imaginary parts of the differential susceptibility, namely:
ox’ |
arr IN=Ng
ap = gi\f,,i (1.49)
N 1NN
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In order to derive an expression forAn., let us consider a linear approximation of the
slab effective index close to wy:

ns = ng + Ang(Aw) (1.50)
with A
w, ¢
Ang(Aw) = —(— — 1.51
() = S = o) (151)

being v, the group velocity in the slab, ng = ng(wp) and Ang the refractive index change due to
the mode dispersion in the slab. Using n = ng+T'An, (eq. 1.45), the total refractive index change
associated to a frequency shift Aw, is An = Ang(Awe)+T'An,. Considering An/ny ~ —Aw, /wy,
eqs. 1.46 to 1.51 lead to

Y A
Bwe = (=) (1.52)

Eq. 1.52 shows a linear dependence of the frequency shift with the carrier density.

1.4.2 Dynamical equation for carrier density

Now we focus on carrier dynamics. A simple model to describe the time evolution of the 3D
carrier density N is a rate equation. The variation of the number of carriers in the QWs is
given by the recombination process and the excitation of carriers by the intracavity field and/or
an incoherent pump rate (R). Two main recombination processes can be taken into account:
a nonradiative recombination process with a time constant 7,,,, and a radiative recombination
process or bimolecular recombination at a rate BN, B being the bimolecular recombination
coefficient, which is expected to play an important role for high carrier densities [91]. The carrier
excitation by the intracavity field is proportional to the density of photons inside the cavity (.5),
then the rate equation for N(t) is given by [92, 93|

dN N
T — BN? —vy,0S(N — N;) + R (1.53)

with o ~ ag/N;. We can express S as a function of the intracavity energy as:

1

= |a|? (1.54)

where V4, is the cavity volume. Defining the saturation energy (|asq|?) as

Veavhv ~ Veavhv Ny

‘asat|2 = = (155)
VgoTnr0  VgoTnrQ
Eq. 1.53 leads to
AN 1 §
— = —[-N - Br,,N* - il (N —Ne)|+ R (1.56)
dt Tnr |a8(1t‘2

Let us compute the steady states of N. Considering low carrier densities (i.e. we neglect
the bimolecular recombination and saturation) and no incoherent pump, the steady state (Ng)
yields

Nst |a‘2
~
N |asat‘2

(1.57)
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meaning that the carrier density is proportional to the intracavity energy. Replacing eq. 1.57
into eq. 1.52 we have

2
Awe = aH(‘“' ) (1.58)

‘asat‘

In addition to a linear shift of the cav1ty frequency, eq. 1.58 accounts for nonlinear
frequency shift. Note that the shift of the cavity resonance frequency driven by charge carriers
becomes proportional to the intracavity energy.

1.4.3 Thermal relaxation dynamics

Finally, we consider the thermal loading of the material inside the cavity. We will assume that
the dynamics of the temperature increase, say at the center of the cavity, with respect to the
substrate temperature is governed by the following equation:
dAT -1
cdt T,
where ATy denotes the steady state of the temperature change and 74, the thermal relaxation
time. Separating contributions from incoherent pump and intracavity power, ATy reads

(AT — ATy) (1.59)

AT, = 1 (npumpppumpTdis,pump + PabsTdis,ca'u) (1.60)

pCyp

where p is the density, C, the specific heat capacity in the pumping region, 7,um, is the fraction

of the incident power absorbed, 74 is the heat dissipation time and P, = 2|al?/7,, is the

absorbed power (neglecting saturation), as we will see in chapter 2. Note that eq. 1.59 models

temperature free relaxation in the material as an exponential process, which will be justified in

chapter 4. Considering resonant injection only, we can write ATy as a function of the intracavity
energy |a|? as

V;mmp Veaw

dT
AT, — 2G4 1.61
where
AT’ _ TaoTdis cavVyo (1.62)

AU~ pCypVian
is the temperature increase as a result of the intracavity energy increase. Thus, eq. 1.59 becomes
dAT dr
(AT—\F
dt T h

Finally, the thermally induced frequency shift Awy;, can be written in terms of the tem-
perature variation AT in the following way:

=) (1.63)

A
Meh @0 40 e (1.64)
Ngo Ngo dar

Awth = —Wwyo

Let us now turn to steady states. The stationary thermally-induced frequency shift (eq
1.64) then reads
_ wo dn dT| 2
Ngo dT dU

meaning that the nonlinear term in eq. 1.41, driven by thermal loading, is proportional to the
intracavity energy, similar to eq. 1.58. However, we stress two differences: i) the relaxation
dynamics, governed by 74, is much slower compared to electronic induced nonlinearities, and ii)
the opposite sign of the nonlinear effects, namely thermal red-shift and electronic blue-shift.

Awth = (165)
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1.4.4 Three-variable model for an active cavity

Writing eq. 1.41, 1.56 and 1.63 together we have the set of equations that describes the nonlinear
dynamics of the system:

da . 1
x- [j(wo + Awe + Awy,) — =]a + df
T
dN 1 |al?
== T—M[—N — BrpyN? — L (N—-N)]+R (1.66)
dAT -1 dT
—— = — (AT — —la]?
i arl)

with \asat|2 = Veahv /oTpvg, and dT/dU = T'agTais cavVgo/ PCp Vean and

ag, N
Aw, = 22y
w Tao(évt )
wo an
Aw; = ———AT(t .
= T (t) (1.67)
[
Ta_Tao Ny

In the case of having only thermal nonlinear effects and considering the steady states of the full
system, eq. 1.66 yields

——)—1la+drf (1.68)

where Ug 11, = ng, (dU/dT") /2Q(dn/dT) is the characteristic intracavity energy for thermal bistable

threshold. Note that, since dU/dT" o Viqy, Upth X Veay/Q. Besides, the intrinsic bistability

P(thermal)
intrinsic,thr

o Vean/Q?, as pointed out in section 1.2.3.

threshold, i.e. the power coupled into the cavity at threshold (

(thermal)
intrinsic,thr

), is proportional to

P(thermal)

S UO,th/T7 thus, intrinsic,thr

On the other hand, considering only electronic nonlinear effects and the full steady states,

eq. 1.66 becomes
0=[its + 12
J UO,e

)—lla+drf (1.69)

where Up ¢ = 74, |asat|? /g is the characteristic intracavity energy for electronic bistable thresh-
old. Note that we have approximated 7, ~ 7, in eq. 1.69 provided ay >> 1, which is the case
in III-V semiconductors for injected wavelengths in the Urbach tail. As in the case of thermal

bistability, since Uy, o V/Q, Pﬁf%sic,thr X Vean/ Q.

Considering an L3-type cavity in an InP suspended membrane with QW as active medium,
we can estimate the intrinsic bistability threshold both for thermal and electronic origin. The
constants needed for this calculation are obtained from the literature values and from the experi-
ences that will be shown all along this manuscript. Table 1.2 resumes all these constants. Using

these values, we have obtained intrinsic bistability thresholds of the order of Rﬁ?ﬁ;@fghr ~ 2

uW and Plgifff% sic.thr ~ 3 wW, for the thermal and electronic thresholds, respectively. Note that
both values are of the same order of magnitude. Moreover, they are three orders of magnitude

smaller than typical thresholds reported in monolithic vertical cavities [24]| and ring resonator
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Vear ~ 0.08 p3[95] pCp=15Jem 3K 1
g, ~ 3 I'=0.2"
(dn/dT)/n~ 0.63 x 10~*K~1[96] Q=3750"
ag = 66cm Tdis,cav ~ 186 1ns[97]
Tnr ~ 200 ps|91] A= 1.55 um
apg =10 T~ 6 ps

Table 1.2: Table summarizing all the constants involved in the calculation of the bistability thresh-
old both of thermal and electronic origin. *See chapter 5.

devices [94].

Note that eq. 1.68 and eq. 1.69 are analogous to the bistability equation developed in
section 1.2 (eq. 1.33).

In addition, from this set of equation we can calculate the nonlinear refractive index (eq.
1.27). From An/ng ~ —Awe/wy and eq. 1.52, considering the steady states of the carrier density
(eq. 1.57), An yields
o o
W0oTag ‘asat‘

1) (1.70)

Considering an uniform slab (i.e. neglecting distributed feedback effects) for simplicity, we can
write |a|? = (Veaw2/vg)1. Now using eqs. 1.44 and 1.55 for 7,, and |asa|?, respectively, eq. 1.70
reads

adag it

An =nol ~ —T SmheN, ]

(1.71)
According to the table 1.2, eq. 1.71 gives no ~ —3.5 x 1071%m?/W. This value is six orders
of magnitude higher than the nonlinear refractive index in silica (SiOs : ng ~ 3 x 10~ %em? /W
[98]). The marked difference between this two values is a clear evidence of the advantages of
single photon absorption in ITI-V semiconductors over intrinsic Kerr effects.

The set of equations (eq. 1.66) allows us to study nonlinear dynamical regimes of our
system such as bistability, self-pulsing and excitability. Moreover, it contains the characteristic
time scales of each process, such as the thermal relaxation time (74,) and the nonradiative
recombination time (7,,). We will return to this set of equations along this manuscript and we
will apply it to the particular cases studied during this thesis.

1.5 Conclusion

The bases of nonlinear dynamics in systems described by one and two variables were presented
at the beginning of this chapter. By simple graphical methods we have deduced the behavior of
systems with complex differential equations, such as the van der Pol oscillator with and without
bias. Through these examples we have introduced important concepts for the understanding of
this thesis, like the self-sustained oscillation regime and the excitable regime.

Some key concepts about nonlinear optical systems were introduced in section 1.2, in
particular the parametric processes and the dynamical processes, although we focus on the lat-
ter. Dynamical processes allow interesting phenomena such as bistability and excitability. The
first one has been extensively studied in the last four decades, partly for its potential application

43



to optical memories. The second one has been investigated in optical systems only recently. In
particular it has never been reported in optical nanocavities, which motivated us to study in
detail this regime in PhC nanocavities.

A model that involves the intracavity energy, the carrier density and the temperature was
proposed in order to predict a large family of nonlinear dynamical behaviors in a PhC suspended
membrane filled with an active medium. This model includes, in a simple set of equations, the
dynamics of qualitatively different behaviors such as bistability (which involves a single nonlinear
variable) and excitability (which involves two nonlinear variables). These equations will allow us
to get physical insight into the different regimes observed along this thesis in PhC nanocavities.
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Part 1

Tapered fiber-assisted coupling into a
nanocavity: Description,
characterization and application.
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This thesis aims to study nonlinear dynamical behaviors in 2D photonic crystal nano-
cavities. For this, the type of cavity and the method to couple light inside this cavity needs to be
established. In the first chapter, we investigate the adequate type of cavity to obtain nonlinear
behaviors and the coupling method: evanescent coupling via a tapered fiber. A theoretical model
and numerical simulations are carried out in order to characterize and study the parameters that
optimize this coupling.

A detailed characterization of the sample is given in the second chapter. Images and pho-
toluminescence spectra are shown. Details of the tapered fiber fabrication and the positioning
system are given. A detailed characterization of the coupling method can be found at the end
of this chapter.

In the last chapter we apply this coupling method to measure important characteristic
times of the sample. First, we determine the characteristic thermal relaxation time of the pho-
tonic crystal membrane. Next, a pump and probe technique is applied to measure the carrier
recombination time. Both magnitudes will be useful in the following part for understanding
non-linear dynamical regimes in active photonic crystal nanocavities.
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Chapter 2

Theoretical and numerical calculations

Photonic crystals allow high degrees of freedom when designing an optical nanocavity. Much
progress has been recently accomplished in realizing high quality factors and ultra small volume
nanocavities. Among them, several cavity designs have been shown to be performant and robust,
such as heterostructure cavities, HO and L3 cavities. Cavities based on L3 configuration turn
out to be adequate geometries for our porposes since high Q, small volumes and straightforward
sets of evanescently coupled cavities can be realized. In the first part of this section we discuss
some characteristics of these cavities, such as near and far field spatial distributions and quality
factors obtained by FDTD simulations.

A mayor challenge in the context of nonlinear optics in nanocavities concerns efficient
input light coupling methods. Several approaches can be adopted to achieve this, the usual
one relying on integrated waveguides. Although this is an attractive option it presents some
drawbacks such us the reduction of the coupling efficiency due to injection losses and material
absorption. For this reason, we chose an alternative road: to couple light inside the cavity by
evanescent waves via a tapered fiber. Therefore, the first question that emerges is how efficient
this coupling can be. To answer this, in this section we develop a coupled mode theory formalism
to characterize and quantify the coupling strength. In order to test this theory, numerical
simulations are carried out for a simplified version of the cavity-fiber system. The results of
such study are also discussed in this chapter.

2.1 FDTD simulations of a L3 Photonic Crystal cavity

Among all the different types of PhC cavities that can be studied, we have mostly worked with
L3 type cavity, although we will see in chapter 8 some studies over heterostructure cavities. The
L3 cavities allows high Q factor and they are well suited to be evanescently coupled through a ta-
pered fiber. In order to characterise these cavities, FDTD (finite-difference-time-domain method)
numerical simulations [99] of the system shown in fig. 2.1 have been carried out!. This method
consists in computing the time-dependent Maxwell’s equations (in partial differential form) in
a discretized mesh using central-difference approximations to the space and time partial deriva-
tives. The resulting finite-difference equations are solved as follows: the electric field vector in a
volume of space are solved at a given instant in time; then the magnetic field vector components
in the same spatial volume are solved at the next instant in time; and the process is repeated
until the desired transient or steady-state electromagnetic field behavior is fully evolved [100]. In
order to use the FDTD method, the spatial grid (spatial resolution) and the material (air, metal

'This simulations were developed in collaboration with Timothy Karle, post-doc in our group.
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or dielectric), with the corresponding refractive index, in each of those points must be established.

X
Z (?
y
Figure 2.1: Scheme of the L3 cavity simulated in FDTD. The parameters are: a=435 nm, r=0.3a.

In the following, we simulate a modified L3 cavity in a PhC membrane, i.e. a L3 cavity
with the two end holes shifted away a given distance. We have carried out simulations with a
spatial resolution of a/20 = 21.75 nm in x and z-directions, av/3/2 = 20.9 nm in y-direction, and
a material refractive index of 3.3. The PhC period and hole radius are a=435 nm and r=0.3a,
respectively, where the two holes closing the cavity are shifted away 0.15a, and the dimensions of
the sample are 12.2 pym x 8.3 um. In order to exploit the symmetries of the system, the integra-
tion volume corresponds to one eight of the complete structure (grey zone in fig. 2.1). Then, the
electromagnetic field is extended to the rest of the structure with the boundary conditions for the
electric field depicted in fig. 2.2. The total integration time was 1 ps. The output of the FDTD
simulation is used as the input data into a harmonic inversion algorithm (Harminv) [101, 102] in
order to extract central frequencies and decay times, the latter being used to calculate quality
factors. The system is excited with an electric dipole polarized in the y-direction laying in the
center of the cavity.

Figure 2.2: Scheme of the boundary conditions for the electric field used in the FDTD simulations.

For the system in fig. 2.1, the resonant mode is found at 1.598 pum with a quality
factor of ~ 23000. For this mode, the electric and magnetic fields polarization (in x, y and z-
direction) in near field (at the center of the membrane) have been recorded (fig 2.3). We observe
the electromagnetic field concentrated in the cavity region and the principal component of the
electromagnetic field in the y-axis, corresponding to an almost linearly polarized mode in the
y-direction.

The far field emission profile in k-space is shown in fig. 2.4 calculated as the spatial
Fourier transform of electromagnetic field monitors located at twice the membrane thickness (2a
from the slab surface) in z-direction. We observe two lobes at ~ 70° meaning that the emission
of the cavity mode is not perpendicular to the surface but with a strong angle. For this reason,
a resonant signal injected perpendicular to the surface do not couple to the cavity mode. Indeed
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Figure 2.3: Field spatial distribution at the membrane center for the system depicted in fig. 2.1.

a different method to coupled light inside the cavity is likely to be implemented.

-1 -05 0.5

0
k,J(21uN)

Figure 2.4: Far field emission profile for the system depicted in fig 2.1 calculated as the Fourier
transform of the field stored on a monitor positioned at twice the lattice period (~ 0.9 pm from
the membrane surface).

2.2 Coupling between a cavity and a fiber

The goal of this section is to describe the light confinement in an optical resonator coupled to
the outside through an optical microfiber. Such a device can be directly modelled by means
of e.g. FDTD methods [99], but such technique can be very time and memory-consuming in
this case since the integration zone becomes much larger, both in the propagation direction
and in z-direction, than the integration zone used for the configuration of fig. 2.1. In order
to get physical insight into the different parameters, a simple theoretical framework is highly
desirable. A good candidate is the well-known Coupled Mode Theory (CMT). The basic idea
of coupled-mode theory is to decompose all propagating light into a linear superposition of the
known modes of the uncoupled device (in our case the cavity and waveguide separated away),
and then to calculate the coupling strength in presence of some coupling mechanism (cavity-
waveguide evanescent coupling in our case). This requires, in principle, a strong approximation:
the coupling does not change the intrinsic modes. This assumption remains valid as long as the
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coupling strength is weak. However, even for strong coupling conditions, the intrinsic modes
might be renormalized to take into account changes due to the coupling. The CMT is often
technically and conceptually much more convenient than, e.g., recalculating the propagation
modes for the actual situation in which light propagates in the full device.

In the following the coupling of a PhC cavity to a microfiber is described on the basis
of the temporal coupled mode formalism developed by Fan et al. in [19]. The transmitted and
reflected signals of one single-mode cavity coupled to the outside by two ports will be calculated,
fig. 2.5. We first consider that the losses are only given by these two ports. From fig. 2.5 the
injected/output fields are given by S;;,_ and Sy, ,_, for the left and right port respectively, d
corresponding to the coupling from the cavity to the ports and x from the ports to the cavity.

Tapered /,
fiber/s

(a)
Figure 2.5: (a) System of interest: PhC nanocavity evanescently coupled to the outside by a

tapered fiber. (b) Simplify scheme of the system in (a), a cavity coupled to the outside by two
ports.

In the following we apply the Dirac notation used in [19], where the kets represent column
vectors. We will consider a general case where the coupling to each port can be different: ry /o
and d /o correspond to the coupling to the left/right port. This generalization will be useful in
part II where several cavities and ports will be studied. Let us start by writing the dynamic
equation for the field amplitude (a) inside the cavity:

da

= (iwo — 1/7)a+ ((s])ls+) (2.1)

The first term in eq. 2.1 gives the resonance frequency wy; the second one accounts for the photon
lifetime inside the cavity (7) and the third represents the optical injection (]S4)) multiplied by
the coupling constant (|x)).

The output signals depend on the injected field and on the field inside the cavity that couples to

the ports, in the following way:
l5-) = Clsy) + ald) 2.2)

where C'is the (unitary) matrix for the direct process, meaning the incoming field can be directly
coupled to the ports, and

0= (1) stsh = (52 Yoty = (1) s = o (23)

where dy/, is the coupling strength between the cavities and the left/right port. Replacing
a(t) — da'(t)e?t and f(t) — fe™?, the steady state is given by:

o sP)lse) o)

Jw—wp) +1/71
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In the following we recall Fan considerations (conservation of energy and time reversal
symmetry) for determining relations among parameters, such us k, d and C. For an external
input |Sy) the scattering matrix, defined as S|s;) = |s_), is given by:

|d) (k]*

S=C ,
+j(w—w0)+1/7'

(2.5)

where we have used eq. 2.4. Since S must be symmetric because of time-reversal symmetry, we

have
|d){k|" = [r)(d]" (2.6)

meaning that the coefficients are not independent and must satisfy diks = dak;.

e Conservation of energy. Instead of exciting the cavity externally lets now consider the
system in the absence of external input (|s;) = 0) and with finite amplitude inside the
cavity at t = 0, so the energy (U = |a|?) yields:

au

— = =2laf’/r = ~(s_|s_) = ~[a]*(dld) (2.7)

Hence
(d|d)y =2/T (2.8)

It is a common assumption to consider identical ports (d; = d2 = d) which, in the case of
the microfiber, means that the photon inside the cavity has equal probability to couple to
the right and to the left side of the fiber:

(dd) = 2[d (2.9)

d = V17 (2.10)

This means that the coupling constant is related to the photon lifetime inside the cavity,
as expected.

e Time reversal. The time reversal transformation, i.e. ¢ — —t, for the exponential decay
process has the following solution

__ UsP)ls)
aR_j(w—wo)+1/T (2.11)

The time reversal situation can be represented as feeding the resonator with exponentially
growing waves at complex frequency w = wo — j(1/7), with amplitudes at t = 0 equal to
[s—)* (i.e. |s4) = [s—)*) and taking the complex conjugate, namely

o URDlse)  (Rls)*  (Gmld)a)” 1)

GrR=0 = jlw—wo)+1/7 2/t 27

Therefore
(kld) = 2/7 = ((k]d))" (2.13)

This, together with eq. 2.6 and eq. 2.8, leads to the following important result
W) = |d) (2.14)

meaning that the port-cavity coupling constants are equal to the cavity-port ones, as expected.
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Moreover, since no output signal comes out while exciting with time-reversed excitation
|s—)* we have

0= C|s_)* + a*|d) = a*C|d)* + a*|d) (2.15)

This leads to
Cld)* = —|d) (2.16)

Eq. 2.16 allows to demonstrate that the scattering matrix given by eq. 2.5 is unitary, which
ensures self-consistency.

Finally, we consider intrinsic (radiative and/or absorption) losses with photon lifetime
7p. In this case:

1 1 1
=4 (2.17)
T T, 7o
where
1 1 1
— = + — (2.18)

70 Trad Ta

with 7,44/, the radiative/absorption time. The intrinsic losses can be considered as carried by an
external port (so the theory remains unchanged) or as an "energy sink" (without considering extra
ports). We chose this latter approach since it is independent of the nature of losses (radiative or
due to absorption). In doing this, the scattering matrix (eq. 2.5) is no longer unitary because
the incoming and outgoing power through ports are not equal, i.e. (sy|sy) # (s_|s_). The
difference is given by the radiated or absorbed power

Ploss = (s s1) — (s_]s_) (2.19)
Using eq. 2.5 we have
(s_|s_) = (s+]s+) + [al*(d) + 2Re[(d|C )a’] (2.20)

Multiplying both sides of eq. 2.16 by C" to the left, and applying ™ to both sides we get
(d|C = —(d|*, so the last term in eq. 2.20 becomes

2Re[(d|C]s:)a"] = —2Re[((d]")]s)a’] (2.21)
— —2Re[((x]")]s1)a’] (2.22)
= —2Rela|*(j(w — wo) + 1/7)] (2.23)
—2lal?*/T (2.24)
As a result, eq. 2.19 becomes
Plos = 2|a‘2/7'0 (2.25)

showing that the dissipated (i.e. radiated and/or absorbed) power is twice the energy per intrinsic
photon lifetime as expected. This justifies the formula for the absorbed power used in section 1.4.

Including the intrinsic losses in eq. 2.5, the scattering matrix becomes

|d) ("

S—cC
e o) + 1+ 1/

(2.26)
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In order to write down the full expression of the coefficients d and k, the direct process has
to be defined. We analyse the particular case of a cavity coupled by a tapered fiber, therefore
evanescent coupling. The direct process can be described by the following unitary matrix:

_( 0 eap(j9)
o= (L0, 9 oo

where ¢ is the accumulated phase through the fiber. C, given by eq. 2.27, relates S;_ with Soy
and So_ with Si4, see fig. 2.5.

Considering d = exp(jpq)/\/T., eq. 2.16 leads to cos(¢/2 — ¢4) = 0. This condition is
satisfied with ¢4 = ¢/2 + /2 which gives [20]

d=j exp(jo/2)/VT. (2.28)

In the following we consider the injection through the left port only (|.S+) = (f,0)) which
accounts for the experimental conditions (see section 3.2). Using eq. 2.28 in eq. 2.26 we calculate
the normalized transmission (T = |so_|?/f2) and the reflection (R = |s;_|?/f?) signal as

T — (144A2Q3)Q?
C2Q0Qc + Q2 + Q3(1 +4A2Q2)
R Q4
Q2 +2Q0Q. + Q2 + 4A2Q3 Q2

where A = (w — wp)/wo, Qo = Towo/2 and Q. = T.wo/2 (the intrinsic and coupling quality
factors, respectively) [103].

(2.29)

(2.30)

To fix ideas, let us study three particular cases of egs. 2.29 and 2.30. Fig. 2.6.a shows
the transmitted and reflected signal for an overcoupled cavity (i.e. when the intrinsic losses can
be neglected, Qo >> @.). We observe a 100% contrast in the transmission dip. Fig. 2.6.b shows
a more realistic situation where the two quality factors are of the same order of magnitude, in
particular, we consider critical coupling, i.e. Qo9 = Q.. Note that the resonance contrast in
transmission is ~ 75% meaning that this configuration, where the coupling losses equals the
intrinsic ones, is still suitable to probe the cavity resonance. Note that R+ T # 1, which is due
to the dissipation losses. In the particular case where 0y << @, the undercoupled case, the
resonance contrast significantly decreases, fig. 2.6.c, and the cavity can no longer be efficiently
probed with the microfiber.

We can conclude from fig. 2.6 that the resonance contrast depends on the relation
between Qg and (.. This resonant contrast is of great interest since it quantifies the coupling
efficiency. In order to obtain the resonance contrast we calculate from eq. 2.29 the ratio of the
"in resonance" (§ = 0) transmitted power (P;) to the input power (P, = |f|?) as follows:

P, 1 1
T(6=0)=—=L = = - (2.31)
) 0
Pin (1+ @)2 (14 —)2

Te

[

-
Eq. 2.31 shows that the resonance contrast is given by the ratio 0

C
It is important to point out that a real tapered fiber has losses between the fiber input and cavity
position and between the cavity position and the fiber output, fig. 2.7. The powers at the fiber
input and output can be related to the power near the cavity as:

Py = inpute_alLl (232)
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Figure 2.6:  Transmitted (black line) and reflected signal (green line) for a cavity coupled to
the outside by two ports and excited through one of them. Three particular cases are studied:
overcoupled cavity (Qo = 50000 and Q. = 500)(a), for Qo = Q. = 5000 (b) and undercoupled
cavity (Qo = 500 and Q. = 50000)(c).

Py output = Pre” 2?2 (2.33)
where L is the fiber length and o/, are the input Joutput distributed losses in the fiber.

We can also relate the injected power (P;, ) with the power off-resonance measured in
transmission as:
Poff,output = Pine_a2L2 (2.34)

Taking the ratio of eqs. 2.33 and 2.34 we have

Pt,output _ E (2'35)
P of f,output P;
Eq. 2.35 means that the ratio of the "in resonance" transmitted power to the input power in
the vicinity of the cavity is equal to the ratio of the powers measured at the fiber end: the
transmitted signal in and off resonance, respectively.
We then define the coupling efficiency (n) as the probability that a photon inside the cavity
couples to the fiber (in either direction, hence p. o< 1/7.) with respect to the photon emission
probability throughout all the coupling channels (g0 < 1/7. + 1/79), namely
Ne = @c/@tot = ! Te 1Q (236)
14+ — c
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Figure 2.7: Scheme of the distributed losses in the microfiber.

Then, we can write the coupling quality factor as a function of the coupling efficiency as

Qc= Qo(% —1) (2.37)

The particular case studied in fig. 2.6. a, b and c¢ corresponds to % =100, 1 and 0.01, which

(&
gives n =0.97, 0.5 and 0.01, respectively. We point out that a strong coupling 7. < 79 gives
Ne — 1, meaning that the lower Q./Qp is, the higher the coupling efficiency will be.

2.3 Numerical simulations

As we have previously seen, efficient coupling between a cavity and a tapered fiber can be ob-
tained provided Q. is of the order of (or much smaller than) Q. In order to test the CMT model
developed in the previous paragraphs in a more realistic system, CAMFR (Cavity Modelling
Framework) [104, 105] simulations of a cavity and a waveguide are carried out. This method
is based on a principle called eigenmode expansion. Rather than working in time domain as in
FDTD method, the structure is divided in a number of "slabs" where the refractive index profile
is uniform in the z-direction. Instead of specifying the fields explicitly at a number of grid points,
the fields in each layer are written as a sum of the local eigenmodes of that particular layer. This
leads to a much more compact representation of the field and therefore shorter computation
times. Moreover, contrary to spatial discretisation, the calculation time of a layer is independent
of the length of that layer. Also, periodicity or quasi-periodicity is exploited in a more powerful
way.

This method requires a discrete set of modes in each slab. In order to achieve this, the
structure under study is typically enclosed in a metal box. Unfortunately, this can create para-
sitic reflections: radiation that would otherwise travel freely towards infinity is now completely
reflected at the metal boundaries, returns to the structure, and disturbs the simulation results.
In order to overcome this problem, CAMFR makes use of advanced boundary conditions, the
most prominent of which are perfectly matched layers (PMLs). These layers can be thought
as layers with a real refractive index, but with a complex thickness. This complex thickness
provides reflectionless absorption of the incident field, regardless the incidence angle, wavelength
or polarisation. The use of these advanced boundary conditions not only improves the accuracy
of the model, but also speeds up the computation time, as the simulation boundaries can now
be placed much closer to the structure [106]. In our simulations PML boundary conditions sep-
arated from the structure by 5 pm have been used.

Since the system must have at least one invariant direction for a simplest implementa-
tion of the CAMFR code, the system has to be 2D. For this reason we simulate a 1D periodic
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waveguide (wg), fig 2.8 in dark grey, as a simplified version of the PhC structure. The parameter
€ is chosen so as to respect the same filling factor as the PhC in fig. 2.1, then ¢ = wd/8. The
field propagation is in the x-direction and the system is invariant in the z-direction.

y2 pm  [1Tpm a a ¢ a 1um
Air

/_//////////ﬁy*f/////////

Figure 2.8: Sketch of the 2D system, representing the cavity and fiber, simulated with CAMFR.
The parameter values are: a=400 nm, a’=420 nm, ¢p=240 nm, € = 7¢/8=94 nm , L=250 nm.
The red curve corresponds to the spatial profile of the injected field .

The WG shown in fig. 2.8 (in dark grey) corresponds to the PhC while the fiber is
modelled by a simple uniform slab, invariant both along the x and z-directions, fig. 2.8 in light
grey. The fiber is represented by a SiOy (n=1.5) layer of thickness w and separated away from
the WG (n=3) a distance called gap. The two PML layers are 2 pum over the SiOy and under
the WG. Those spaces are filled with air. The cavity is a 1D heterostructure composed by an
inner periodic WG (period a’) and two outer periodic WGs (period a). Light confinement into
the inner WG is obtained by a 20 nm-increasing a’ with respect to a. The length of the inner
WG is chosen to be 6 periods. The outer WGs constitute the cavity mirrors whose length has
been set to 10 periods. We explore the coupling efficiency and the coupling quality factor for
different fiber thickness (w) and air gap.

We first compute the solutions of the system without the fiber. In order to obtain the
cavity modes, the band diagrams for the inner WG (red dots) and for the outer WG (black
dots) are calculated, fig. 2.9.a. This gives a range of wavelengths for the cavity mode (1.290
um < X <1.355 um), these wavelengths lying from the inner to the outher band edges. Then,
the transmitted and reflected signal are computed within this wavelength range. For this, the
injected field is set as the fundamental mode of the unstructured WG (fig.2.8 without the fiber).
The transmitted and reflected signal in that mode are shown in fig. 2.9.b (black and red lines,
respectively). We observe a resonance at A = 1.3295 pum with a quality factor of Q@ = 73888.
This wavelength is pointed out in the band diagram with a green circle (fig. 2.9.a). Note that
this lies within the mirror band gap. Injecting the system resonantly (A = 1.3295 um) we plot
the field spatial distribution in figs. 2.9.c and d. The intensity confinement in the cavity region
can be observed.

Let us now consider the whole structure. We start calculating the band diagram of the in-

ner WG (red dots) and the outer WG (black dots) in presence of the SiOs layer, fig. 2.10.a, which
gives a range of wavelengths for the cavity mode (1.32 pm < A <1.395 pm). The horizontal lines
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Figure 2.9: (a) Band diagram for the periodic structure with a=400 nm in black dots and a’=420
nm red dots. Pointed out with a green circle we show the cavity mode position. (b) Transmitted
and reflected normalized signals for the structure in fig. 2.8 without the fiber. The resonance
is centered at N = 1.3296 pum with a quality factor of Qo = 73888. (c¢) Field distribution in
the structure for an injected signal in the fundamental mode at X\ = 1.3295 um. (d) Idem in
logarithmic scale.

in fig. 2.10.a show the position of the band gap of the inner and outer WGs (green and blue line,
respectively) without the "fiber". Note that due to the presence of the fiber the band diagram
shifts to longer wavelengths. Again, in order to study the transmitted and reflected signals, the
injected field must be defined. The injection is launched through the fiber and it is set to the
fundamental mode of the former |¥q fiper). The transmitted and reflected signals through the
fiber are computed by projecting the transmitted and reflected fields on ¥ fiper). Total powers
in reflection and transmission have also been computed. These signals contain information of
the total energy crossing the right and left sides of the structure (fig. 2.8). Fig. 2.10.b shows
the reflected and transmitted signal through the fiber (blue and green line, respectively) and the
total ones (red and black lines, respectively) for w = 1.5 ym and gap = 0. A mode at A = 1.364
pm is observed with a Qoqdeq = 520. The position of the resonance wavelength in the band
diagram is pointed out with a green circle (fig. 2.10.a). Note the difference between Qjpq4eq and
Qo: this means Q. << Qo since 1/Qoaded = 1/Qo + 1/Q.. From fig. 2.10.b we obtain that
almost 50% of the total transmitted and reflected energy in resonance is not coupled through the
fiber. The energy transfer between the fiber and the cavity is shown in fig. 2.10.c and d where
we plot the field distribution in the structure for a resonant injection (A = 1.364 pum). Note the
absence of transmitted signal meaning the coupling is efficient.

Two different fiber thicknesses are studied in fig. 2.11.a, w = 0.8 pm and w = 1.5 um,
where the coupling efficiency (n) is calculated according to eqs. 2.31 end 2.36. We observe that
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Figure 2.10: (a) Band diagram for the periodic structure, this time in presence of the fiber, with
a=400 nm (black dots) and a’=420 nm (red dots). The cavity mode position is highlighted with a
green circle. The horizontal lines show the position of the band gap of the inner and outer WG's
(fig. 2.9.a) without the fiber, green and blue line, respectively. (b) Reflected and transmitted
normalized signals through the fiber, blue and green line, respectively, and over all the system
modes, red and black line, respectively. The cavity mode is at A = 1.364 um and the resonance
quality factor is Q = 520. (c) Field distribution in the structure while injecting through the fiber
resonantly with the cavity mode (A = 1.364 um). (d) Idem in logarithmic scale.

the maximum 7 for w = 0.8 um is attained for a cavity-fiber distance different from zero, as
it has also been found in [85]. Nevertheless, we find that for a wider fiber (w = 1.5 um) the
maximum 7 is achieved when cavity and fiber are in contact. Importantly, even if the efficiency
is reduced with the fiber thickness, a maximum coupling of ~ 70% can still be achieved with
w=1.5 pym.

The coupling efficiency for different w when the cavity and the fiber are in contact
(gap=0) are investigated in fig. 2.11.b. Although 7 decreases with w, an efficiency of ~ 20% can
be achieved with a thickness of 3 um. We will see in section 3.2.2 that this thickness corresponds
to the experimental conditions. Let us stress that, since 7. depends on the particular geometry of
the cavity, we can expect differences when dealing with L3 cavities instead of 1D-heterostructures.

Fig. 2.12 shows the loaded quality factor (black dots) as a function of the air gap for

w = 1.5 um, directly calculated from the resonance width, Qoaded = A/AN. The coupling quality
factor (Q.) is given by eq. 2.37:

Qc= anoaded (238)
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Figure 2.11: (a) Coupling efficiency as a function of the cavity-fiber distance (gap) for two
different fiber thickness (w): (M) w = 0.8 ym and ( ®) w =15 um. (b) Coupling efficiency as
a function of the fiber thickness while the cavity and the fiber are in contact (gap=0). The solid
lines are guides to the eye.
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Figure 2.12: (a) Loaded (Qioaded) and coupling (Q.) quality factors as a function of the air-gap
forw = 1.5 um, in red and black dots, respectively. The solid lines are guides to the eye.

We observe an increase of Qoadeq and Q. with the air gap, associated, as expected, to
the coupling efficiency decrease with the fiber-WG separation (fig. 2.11.a). In addition, we have
found that the cavity Q-factor Q..q¢ (which,in this case, is equal to Qo since no absorption is
considered) obtained from eq. 2.37 is lower than the one without the fiber (Q,q.q < 74000), and
depends on the gap distance. We interpret this as additional fiber-induced losses in the cavity.
This show that, in general, Q.4 can be lower than the intrinsic cavity Q-factor.

In conclusion, these simulations show that the intrinsic parameters of the cavity, wg and @44,
may change due to the presence of the fiber. Thus, given a fiber-cavity configuration, with a
certain coupling efficiency, the relevant parameters Q,.q and Q. should be computed from eqs.
2.37 and 2.38; Qqq cannot be determined from independent measurements without the fiber.
Besides, the coupling efficiency as a function of different parameters of the system was studied.
We have found that even for a fiber thickness of 3 um a coupling efficiency of ~ 20% is achieved;
we will see in following chapter that this configuration approaches the experimental conditions.
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2.4 Conclusion

The main characteristics of a L3 cavity such as the mode position, the quality factor and the
emission profile in near and far fields were obtained by means of FDTD simulations. Such sim-
ulations provided target design parameters for the fabrication of L3 cavities. Intrinsic quality
factors of ~ 23000 have been obtained for resonant cavity modes aroun 1.5 pwm. Such high
quality factors are compatible with efficient light coupling using a microfiber.

A theoretical model based on coupled mode theory was developed to characterize the cou-
pling between a microfiber and a cavity. We have found that the coupling efficiency (7) depends
on the taper-cavity coupling time (7.) and the cavity photon lifetime (79) as n = 1/(1 + 7./70).
In addition, the ratio 7./79 can be easily related to the transmission through the taper at the
cavity resonance (T) as: T = 1/(1 + 79/7.)?. These results will be useful in the next chapter to
quantify the coupling efficiency.

The simple formulas derived with CMT were tested with numerical simulations of a
1D-heterostructure cavity coupled to a 1D Si0O, waveguide modelling the optical microfiber.
We found that the presence of the fiber may alter the cavity intrinsic parameters such as the
quality factor and the resonance wavelength. The fiber characteristics necessary to obtain efficient
coupling conditions were studied. We found that even for a fiber thickness of 3 pym, when the fiber
and the cavity are in contact, a coupling efficiency of ~ 20% can be achieved. Remarkably, we will
see in the next chapter that this value is in good agreement with the value found experimentally
for the coupling efficiency of light into a L3 PhC nanocavity using a tapered optical fiber.
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Chapter 3

A PhC cavity evanescently coupled to a
tapered fiber

According to the results in chapter 2, efficient coupling between a microfiber and a cavity is
possible provided the coupling quality factor is lower than the intrinsic quality factor. In this
chapter we establish the experimental conditions for this to occur. In the first section we present,
describe and characterise the sample. In the second section, we describe the fabrication and the
nano-positioning system of the tapered fiber used to couple the cavity. Finally, we characterize
the coupling efficiency.

3.1 Sample description

As it was mentioned in chapter 1, 2D photonic crystal nanocavities allow high qualities factors
(up to 100 in the state of the art) meaning that they are, in principle, well adapted for evanescent
coupling. In the following section we present a detailed description of a typical 2D PhC sample
studied during this thesis.

3.1.1 Photonic crystal L3 cavity

The samples are 10 pum x 50 pum triangular lattice photonic crystals (PhC) of air holes in an InP
suspended membrane , with a nanocavity in the center (fig. 3.1). The nanocavity is a modified
L3 (three missing holes over a line of the PhC), where the two holes closing the cavity are shifted
away by 0.15a. Noda et al. [67] have demonstrated that this shift increases the cavity quality
factor of almost one order of magnitude.

As discussed in chapter 1, the QDs present high inhomogeneous broadening emission
which allows to probe cavity modes in all this spectral range. This is one of the reasons that
motivated the choice of QQDs as the active material in the initial studies. In addition, as it has been
mentioned in chapter 1, the absorption coefficient, which can lead to a reduction of the intrinsic
quality factor, is lower in QDs than in QW materials allowing a higher coupling efficiency and thus
an easier characterization of the coupling between the cavity and the fiber. The suspended InP
membrane (262 nm-thick) thus incorporates a central single layer of self-assembled InAsP/InP
quantum dots (QDs), fig. 3.2.a, whose density is 1.5 x 10'°ecm =2 and whose luminescence at 300
K is centered around 1.55 pm (fig. 3.2.b) with a 195-nm inhomogeneous broadening [107]. The
membrane thickness (A/2n) is such that the field maxima (@1550 nm) is located at the center of
the membrane, where the active material is found. The whole structure, incorporating a GalnAs
sacrificial layer under the InP, is grown by metalorganic vapour phase epitaxy (MOCVD). The
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Figure 3.1: MEB (electron beam microscopy) image of a modified L3 cavity (triangular lattice
with period a=465 nm, holes radius=120 nm). The two holes closing the cavity are shifted away
by 0.15a.

air layer between the InP membrane and the substrate has a thickness of ~ 1.16 um. The
QD luminescence cannot be obtained by means of photoluminescence measurements directly
from the sample since the luminescence produced by the surrounding GalnAs completely masks
the InAsP emission. Therefore, the photoluminiscence has been measured in a sample without
InGaAs underneath (fig. 3.2), where the QDs were grown under the same procedure [108].
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Figure 3.2: Sketch of the photonic crystal-membrane sample. b) QDs photoluminescence spectrum
[108].

3.1.2 Sample fabrication

This section contains a summary of the fabrication steps. The samples were fabricated at the
LPN clean room by Remy Braive and Isabel Sagnes. More details about the fabrication are given
in [109].

The first step is the metalorganic vapour phase epitaxy (MOCVD) of the whole struc-
ture. This starts by the growth of an InGaAs sacrificial layer of 1.16 pum over an InP buffer,
followed by an InP layer, which will form the suspended membrane. In the center of the latter
the InAsP /InP quantum dots are grown and subsequently encapsulated with the InP. The InAsP
layer (~ 2—3 nm thickness) under the QDs is called the wetting layer (WL). The membrane total
thickness is ~260 nm and it corresponds to A/2n.¢s whit ners the effective refractive index cal-
culated as the weighted average of the refractive index of air and material. For details about the
membrane thickness impact in the cavities modes and their emission diagram please refer to [110].
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The second step is the fabrication of an etching mask in order to define the geometrical
parameters of the 2D PhC. This mask is made of a 300 nm thickness layer of Si3 Ny deposed at
300°C by PECVD (Plasma Enhanced Chemical Vapor Deposition) over the InP. The SiN is then
covered by 450 nm of an electro-sensitive resin (PMMA, Polymethyl Methacrylate). The sample
is positioned in an e-beam writer (LEICA EBPG 5000+) which allows to focus an electron beam
over the resin following the structure design, with 2.5 nm precision. Then, using an appropriate
chemical solution the isolated regions are dissolved.

After the resin isolation, the design is transferred into the nitride layer by a dry etching
using a CPP-RIE (Capacitively Coupled Plasma-Reactive Ion Etching) which allows a directional
etching. Then the motif is transferred to the semiconductor by a ICP-RIE (Inductively Coupled
Plasma-Reactive Ton Etching). During this stage the InP memebrane is drilled by cylindrical
air-holes (few hundreds nm depth) down to the InGaAs sacrificial layer.

Finally, in order to obtain the suspended membrane, the sacrificial layer is etched out in
a wet atmosphere. Specifically, a HoSOy4 : HoOs : HoO chemical solution is able to penetrate
into the sample trough the holes eventually dissolving the InGaAs.

3.1.3 Photoluminescence
Set up description

The experimental set up used to measure the photoluminescence spectrum of the QD samples
is shown in fig. 3.3'. The photoemission of the active material (QDs) is used to identify the
cavity mode under incoherent pumping @532 nm, with a CW, frequency doubled Nd:YAG laser.
Indeed, the resonant mode filters the broadband luminescence giving a spectral narrow peak.
The pump is focused onto the cavity by a large work-distance microscope objective ("Mitutuyo’,
M plan Apo NIR, X20, f{=100 mm, NA = 0.4). The emission is collected by the same objec-
tive and send to either a CCD camera ('Pulnix’, TM-6EX) in order to visualize the sample, or
to a spectrograph/monochromator ("Princeton Instruments’, Acton SP2500i, with a 600 g/mm
grating 1.6 pm blaze and Ni cooled camera). After passing trough the spectrometer the signal
is sent to an InGaAs 1D array spectroscopy camera ('Princeton Instruments’, OMA V| spectral
range 0.7 pm-1.6 pm, resolution FWHM: 0.315 nm).

Sample characterization

A typical spectrum of a L3 cavity sample is shown in fig. 3.4.a for a pump power of 41 W . The
PhC period and hole radius are a=445 nm and r=120 nm, respectively, giving a mode center
at 1452 nm. The Q factor obtained from the FWHM of the cavity resonance gives 4800. It is
important to point out that the measurement of the quality factor @ = A/AX by means of pho-
toluminescence spectra has two limitations: one instrumental, since the FWHM of the emission
peak is limited by the monochromator resolution; and one inherent to the system due to the
material absorption, which leads to pump power dependent quality factors. Therefore, the Q
measured for low pumping powers has to be considered as a lower bound limit approximation of
the intrinsic quality factor.

!The QD photoluminescence was carried out in collaboration with Richard Hostein and Alexios Berveratos
from LPN-PEQ group.
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Figure 3.3: Ezperimental set up sketch to obtain the photoluminescence spectrum of the sam-
ple. The sample is excited with o CW Nd:YAG laser (@532 nm) and the emission is sent to a
spectrograph,/camera.

In order to study the laser effect, measurements of the collected intensity and the central
wavelength of the resonance as a function of the injected power are performed, fig 3.4.b and ¢
respectively. For lasers with a /5 factor lower than 1 (= emission in the cavity mode/the whole
emission), we expect a S-shaped curve for the emitted power. We also expect a change in the
resonance wavelength as a function of the injected power in the following way: for an injected
power under the laser threshold, a blue shift should be observed given by band filling effects (the
carrier density increase changes the refractive index shifting the resonance to the blue, see section
4.2). Above the threshold, in turn, a red shift should be observed due to the membrane heating.
Further increase of the pump power may induce a mechanical deformation of the membrane with
a subsequent increase of optical losses and eventually complete destruction of the membrane.
Since we did not observe neither a S-shape in fig.3.4.b nor a minimum in the wavelength shift
in fig.3.4.c three posibilities can be considered: i) the system behaves as a laser with strong /3
factor (8 ~ 1)[111]; ii) the threshold is at a lower power and we do not have enough sensitivity
to observe it; iii) the sample does not show a laser effect. The usual method to identify laser
emission is performing a second order correlation function of the emitted photons, which is out
of the scope of this thesis. Though, let us stress the fact that laser emission in not a necessary
condition for the existence of bistability or excitability, which are the phenomena sought in this
work.

3.2 Tapered fiber assisted coupling

Among all the systems that can be used to couple light into the photonic crystal cavity, we
chose the tapered fiber approach since it avoids insertion, propagation and absorption losses in
a waveguide while it allows easily probing several cavities on a chip.

However, this coupling method requires a device allowing to control the taper position
and movement with high precision (sub-pm resolution) and stability. We have implemented this
technique for the first time at the LPN.
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Figure 3.4: (a) Photoluminescence spectrum of a L3 cavity (fig. 3.1.a) for 41 uW of pump power
and 0.1 s of integration time. The mode is at X = 1452 nm and the resonance quality factor is
Q ~ 4800, limited by resolution. (b) Output intensity integral as a function of the pump power.
Both azes are in logarithmic scale. (c) Resonance central wavelength as a function of the pump
power.

3.2.1 Tapered fiber fabrication and characterization

The first tapered fibers we used were commercial ones?. According to the literature [85, 112]
the shape of the fiber is important to avoid losses in the bulk material, i.e. outside the PhC
membrane. The first shape we tested was a loop, shown in fig 3.5.a. This configuration showed
serious problems of instability, see fig. 3.5.b. The distance between the fiber and the sample
cannot be controlled with precision at short distances since, closer than a certain value, the fiber
sticks onto the sample. Thus, the fact of "attaching" and "detaching" the fiber from the sample
made the loop change. As a next trial, an U-shape where the fiber was fixed on a small glass
bar was tested, shown in fig 3.5.c.

This configuration was used to make the first characterization of the coupling between
the fiber and the QD sample. At that time it became clear that the most efficient way to con-
verge to a performant microfiber design was to get involved into the fabrication process ourselves,
while taking benefit from the know how of a research team already involved in taper fabrica-

2A french company "LASEQ" has fabricated customized tapered fibers on the basis of our specifications (size,
shape and losses).
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tion. For this reason, we started a collaboration with Laurent Bigot at the Laboratory PhLAM
(Laboratoire de Physique des Lasers, Atomes et Molecules) in Lille. I participate, under his
supervision, to the fabrication of the tapered fiber. Trying to reproduce old mounting techniques
from LASEO, we noticed that fixing the taper onto a 5 mm-width bar was quite difficult. Finally
we arrived to the most suitable configuration: the U-shape fixed on a microscope slide, fig. 3.6.a.

Figure 3.5: (a) Image of the first tapered fiber we have tried: a loop shape. (b) Image of the same
fiber coiled with itself. (c) Second type of fiber: an U-shape onto a 5 mm-wide bar.

The fabrication consists firstly in removing the plastic jacket, exposing the 125 pum
cladding, of a standard single-mode telecommunication fiber in a region of the order of 3 cm.
After this, the fiber is fixed at both extremities and a gaz burner is positioned 1 mm under the
naked fiber, fig. 3.6.b. The two fixed points pull out the fiber at 50 pm/seg for 175 seconds until
arriving to a minimum diameter between 1 and 3 gm. Once the fiber is tapered down it is bent
in the narrow part forming an U-shape and then it is sticked on a microscope slide using UV glue
in such a way that the thin curved segment (between 0.5-1 cm) is freely standing in air, see fig.
3.6.c. We have found that such length of the free standing segment achieves a good compromise
between mechanical stability and physical constraints in the set-up. In addition, the curvature
of the fiber at the stretched segment reduces the optical coupling to the substrate outside the
photonic crystal membrane, thus decreasing optical losses [85]. Finally, two APC fiber pigtails
were soldered at each fiber end.

The next step is the characterization of the taper. Losses are measured by means of a
@1550 nm CW source. We have set the specifications for the maximal optical losses in the taper
fiber to 10 dB. The fabricated tapers typically have between 3 db and 7 db. It is important to
point out that the taper thickness also plays a dramatic role. We have found that for thickness
lower than 1.5 pm-diameter the fiber becomes extremely unstable and fragile (losses rapidly
increase with the use). On the other hand, for diameters larger than 4 pum, we verified that the
evanescent tail out of the fiber is reduced and the coupling becomes inefficient. The tapers used
during this work have diameters between 1.5 and 3 pm (fig. 3.6.a inset). It has been observed
a degradation of the fiber (quantified by the losses) with the use: in general, the tapered fiber
lifetime is ~ 3 months. The causes of degradation are, among others, the humidity and micro-
fissures caused by the repeated contact with the sample (as discussed in the next paragraph).
The fibers are fabricated in Lille and sent to Marcoussis by the post in an adequate package.
Even though they seem very fragile, no taper has been broken down during the delivery.
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Figure 3.6: (a) Image of the tapered fiber: final mounting. Inset: 50x microscope image of the
thinner part of the fiber. (b) Sketch of the tapered fiber fabrication characteristics and (c) sketch
of the mounting.

3.2.2 Coupling efficiency

The microscope slide with the tapered fiber is fixed in a 3-axes stage with two PZT-driven axes
(x-z), fig. 3.7. The piezoelectric is used to locate the fiber exactly over the cavity. Besides,
the sample is also mounted over a PZT-driven axes that allows to move it in the x-y directions.
Hwang et al. [85] have demonstrated that the maximal coupling efficiency is obtained for a
PhC-taper vertical gap of 0.1 ym. However, fiber-sample distances as short as 0.1 um cannot
be fixed in our system since the fiber systematically sticks on the sample surface, most probably
due to electrostatic forces originated by charges accumulated in the fiber. Nevertheless, we have
chosen to work with the taper in contact with the cavity. The contact configuration ensures
robustness to the system and reproducibility. Therefore, the fact that the taper is "stuck" to the
sample by electrostatic forces guaranties the system stability during measurements. A picture of
the whole sample is shown in fig. 3.8.a where each tiny square corresponds to a PhC and the red
curved line to the tapered fiber. Fig. 3.8.b shows a picture of the PhC with the fiber positioned
over de PhC cavity. In order to reduce mechanical vibrations of the taper due to air currents
and decrease thermal fluctuations and humidity, the whole device (sample plus tapered fiber) is
covered with an acrylic box.

To characterize the coupling efficiency we have used a 80 MHz repetition rate, 120 fs-
duration pulsed probe beam from an OPO, optical parametric oscillator (’Opal’, Spectra physics).
The 30 nm-broad signal is centred at the cavity resonance wavelength and sent through a 50%
coupler, to a fibered polarization controller and then through the tapered fiber, fig. 3.9. The
polarization angle is changed by means of the polarization controller to optimize the optical cou-
pling. The coupler splits the beam into two branches with equal intensity that allows measuring
both the transmitted and the reflected signals. Both signals are sent to an optical spectrum anal-
yser (OSA). Fig. 3.10 shows the transmitted and reflected intensity from an L3 cavity (a=465
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Figure 3.7: (a) Set up to place the fiber over the PhC. A 3-axes stage (Nanomax) is used to
precisely set the position of the fiber over the cavity.

(b)

Figure 3.8: (a) Image of the whole sample and the tapered fiber. (b) Picture of the PhC membrane
with the fiber positioned above the cavity.

nm and r—=120 nm) coupled by the tapered fiber. The resonance is centered at A = 1491.8 nm
and the loaded quality factor is Qjoadea ~ 2400. Note that the features of the experimental curves
are in good agreement with the theoretical ones (fig. 2.6).

Using egs. 2.31 and 2.36, we calculate the coupling efficiency (n) from fig. 3.10. The mea-
sured transmitted power in resonance is P output = 5.7 nW and off resonance is Pyt outpur ~11
nW, giving 1. = 28% and a coupling quality factor of Q. ~ 8500, from eqs. 2.36 and 2.37,
respectively. This value is in good agreement with the value found in section 2.3 by means of
CAMFR simulations for a fiber 3 pum-thick which approximately corresponds to the diameter of
the tapered fiber used here. This relative high coupling efficiency is of great interest in many
applications, like efficient single photon sources, or light extraction of cavity based nano-lasers.

It is worth mentioning that the fiber, once tepered down, is not longer monomode meaning
that a beating in the transmitted signal of the fiber is likely to be observed. COMSOL simulations
were carried out? in order to obtain the modes of a standard (SMF28) fiber adiabatically tapered

3This simulations were done in collaboration with Nadia Belabas, LPN-PHOTONIQ, and Jean-Marie Moison,
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Figure 3.9: Set up used to the characterise the coupling between the tapered fiber and the nanocav-
ity. A MEB image of the L3 cavity is shown.
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Figure 3.10: Simultaneous transmitted and reflected signal. The thick arrow indicates the off
resonance transmitted power used to estimate the coupling efficiency (see text).

down to 3 pm. A fundamental mode with an effective refractive index (ness) of nesr=1.4 and a
first excited mode with n.f;=1.34 were found. This gives a beating in the signal with a period
of: AN = N?/(AnL) = 3.7nm, with An = ngrro — nepra = 0.06, A = 1.49 pm and L=1 cm.
However, this beating is not observed in fig. 3.10 most probably due to a low contrast of the
beating.

3.3 Conclusion

A Photonic crystal L3 nanocavity has been designed and fabricated. We estimated the intrin-
sic quality factor of at least 4800 (limited by the resolution of the spectrograph) by means of
photoluminescence measurements. This gives us, according to the results of chapter 2, an estima-
tion of the upper bound for the coupling quality factor (Q.) necessary to obtain efficient coupling.

A fabrication process to taper down a commercial fiber was developed at the PhLAM
laboratory. By this process, we succeed in fabricating tapered fibers with diameters between 1.5-
3 pum and optical losess lower than 7db. Different mounting schemes of this fiber were studied,
out of which the most adequate one was the U-shape mounted on a microscope slide. The fiber
is first bent in the thinner part forming an U-shape and subsequently fixed onto a microscope
slide. Besides, a positioning system with sub-um resolution and high stability was designed and

LPN-PEQ-PHOTONIQ group.
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assembled in order to locate the tapered fiber over the cavity with high precision.

The coupling between the cavity and the fiber was measured injecting a broad-band (~ 30
nm) signal through the fiber and measuring the transmitted /reflected signal. This broad signal
was filtered by the cavity mode giving the cavity resonance. Applying this method, coupling
efficiencies of ~ 28% were achieved, which means that almost a third of the signal injected
through the fiber is being coupled inside the cavity. This high coupling efficiency is of great
interest in many applications, like efficient single photon sources, or light extraction of cavity
based nano-lasers. In particular, in the next chapter, we will use this coupling scheme to obtain
characteristic thermal and electronic times of the nanocavity in actives regimes.
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Chapter 4

Application of the tapered fiber:
measurement of relaxation times in
active materials

The carriers excitation through an incoherent pump in active nanostructures can change the
optical properties of the structure, and hence the intrinsic properties of the cavity, such as the
cavity resonance frequency. Indeed, an optical pump allows to externally tuning the resonance
wavelength. This phenomenon is interesting in the context of all-optical switching devices. In this
chapter we apply the coupling method via a tapered fiber described before, to measure different
characteristic times of the sample. In particular the thermal relaxation time in a PhC membrane
and the characteristic electronic times are investigated. These measurements are based on the
refractive index change, having a thermal or electronic origin, due to an incoherent pump. Both
magnitudes will be of great interest in the following part where dynamical nonlinear regimes are
studied.

4.1 Measurements of the characteristic thermal relaxation time

As it has been mentioned in chapter 1, photon emission and/or carrier induced nonlinearities
are obtained through the excitation of electrons in semiconductor conduction bands or states.
Electron and hole nonradiative recombination processes play a fundamental role in the relax-
ation of excited electronic populations. These are mediated by phonons which become a heat
source. While heating turns out to be an unwanted effect in most photonic devices because of
detrimental thermal loading (specially in photonic crystal suspended membranes), it can also be
used as a mechanism for fast switching (up to 10 MHz-bandwidth) as long as the dimensions
of optical cavities are small enough [113, 114, 27]. Moreover, in the context of novel nonlinear
dynamical mechanisms relying on multiple time-scale processes, it has been demonstrated that
the so-called thermo-optical excitable dynamics may lead to repetition rates as high as 1 GHz [89].

For all those situations, an insight into dynamics of heat dissipation is of central impor-
tance since it provides information about the characteristic time scales to take into account when
pumping the sample in order to avoid heating up the material, i.e. by modulating the optical
pump faster than the thermal relaxation time. In particular, quasi cw light injection for nonlinear
operation or laser emission often requires the pump pulse to be longer than the carrier recombina-
tion lifetime, but shorter than the thermal time, as it has been implemented for instance in [115].
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In the case of self-induced heating phenomena in micro and nano optical cavities (e.g.,
when the heat is produced by optical excitation of the resonant mode in the cavity) the charac-
teristic heat dissipation times strongly depend on the cavity size. As it has been pointed out in
[114], these scale with the characteristic cavity length, i.e. small cavities dissipate heat faster.
The equilibrium temperature, in turn, scales with the inverse cavity length, mainly due to the
reduced heat capacity of small cavities. Fast thermal processes are thus compatible with high
thermal loading, showing the importance of thermal measurements in small cavities, such as
photonic crystal nanocavities.

From the experimental point of view, while thermal loading can be estimated through
measurements of thermally induced refractive index change, the thermal relaxation times cannot
be obtained straightforwardly; this has been done so far through parameter fitting from nonlin-
ear dynamical models [114, 27, 89]. This requires a complex set of equations coupling several
variables, therefore, the fitted relaxation time becomes model-dependent. To avoid this, we have
developed a novel method to directly measure the thermal relaxation time of a photonic crystal
nanocavity, based on reflectivity measurements of a CW probe beam within the tapered fiber-
assisted optical coupling scheme [97]|. This measure allowed us to test the ability of the tapered
fiber to extract interesting information of the system dynamics.

4.1.1 Experiment set up

The cavity is probed via the tapered fiber with the coupling characteristics mentioned in section
3.2 (n. = 28%), fig. 3.10. The CW probe power injected into the taper is set to a low level
(< 1 mW) in order to prevent any self-induced thermal or electronic effects (the system shows
nonlinear thermo-optical effects for injected powers higher than 1 mW, section 5.1). In order
to produce heat, the cavity is optically pumped by the surface using a modulated CW beam
at 800 nm focused down to a 3.2 um—diameter spot (@1/e? of the intensity) by a long work-
ing distance microscope objective ("Mitutoyo’, M Plan Apo NIR, X50, =170 mm, NA = 0.42),
fig. 4.1. This wavelength is mainly absorbed in the InP (bandgap wavelength ~900 nm @300 K).
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ety 50% coupler ﬂflber Modulation
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Figure 4.1: Set up used to measure the thermal relazation of a photonic crystal nanocavity.
Non-radiative carrier relaxation processes are the central mechanisms producing heat in
the membrane. Thermal effects increase the refractive index, shifting the resonance to longer
wavelengths. Fig.4.2 shows the resonance spectrum for a pump power of 165 uW (on the sample)

in red line and without pump in black line, measured as in section 3.2.2.

Thermal dynamics is measured as follows. The wavelength of a tunable laser ("Net Test’,
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Figure 4.2: Reflectivity spectrum of the cavity resonance without pump (black line), and with 165
uW pump (red line).

Tunics Plus S, 1430 nm-1530 nm) is set at a given detuning A)g with respect to the resonance of
the unpumped cavity (AXg = Ac — Ay, where A, is the wavelength at the center of the resonance
and ), the probe wavelength), probing the cavity-induced reflection. Heating up the cavity
results in a thermally induced wavelength shift, producing a change in the reflected intensity
of the probe light. A high sensitivity fiber coupled avalanche photodiode (APD, 'New Focus’,
model 1647) with a 15 kHz-1.1 GHz-bandwidth was used to temporally resolve the change of the
reflected signal. Traces are recorded on a 400 MHz -bandwidth, 5 Gs/s, oscilloscope (’Lecroy’,
WaveRunner 44Xi). Upon 10 ps width-50 us period square pump pulse excitation, the reflected
signal exhibited either a drop-out followed by a recovery for Ay > 0 (i.e. blue detuning), or
intensity peaks for Alg < 0 (red detuning). Both situations are directly related to the thermal
dynamics of the resonance towards the equilibrium states. For a nearly resonant probe (A = 0,
fig. 4.3.a), the signal decreased in the presence of the pump beam due to thermally-induced shift
of the resonance. For red detuning, instead, the resonance "passes through" the injection wave-
length leading to a maximum of intensity in the heating process, followed by a maximum in the
cooling process (figs. 4.3.b-d).

In order to extract the characteristic thermal time from the time evolution of the reflected
probe, the spectral shape of the resonance must be taken into account. The resonance can be
fitted with a Lorentzian function. Considering the time dependence of the center of the resonance
Ac(t), which contains the refractive index dependence with temperature, the time-dependent
reflectivity R(t) is thus modelled as R(t) = 1/[1 + (A — Ap)?/(7/2)?], where 7 is the FWHM
of the resonance. The resonance width v is measured from the reflectivity signals as a function
of the detuning. Since the APD detector cuts-off DC components, the reflected signal level was
measured with respect to the signal drop out when the probe signal is turned off in fig 4.3.a-d.
From fig. 4.4, the resonance width gives v = 0.33 nm, corresponding to a quality factor of
Qioaded = 4520. The increase of the Qougeq With respect to the one found in section 3.2.2 may
be given to a decreased absorption due to the higher spectral power density used in this case
compared to previous (broad-band) fs measurements. Let us stress that from the Qoqdeq and the
coupling efficiency (1) we can obtain the intrinsic quality factor (Q,.q), neglecting the absorption
(ie. Qo = Qrad), as: Qrad = 1/(1 — 1)Qioaded, Which gives Q,qq = 6300. The time dependent
wavelength shift becomes:

ANE) = Ae(t) = Ny = £[R(1) ™ = 1]1/2/2 (4.1)

where the two roots indicate blue or red shift of the probe with respect to the cavity resonance.
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Figure 4.3: Time evolution of the reflected square modulated (red line above) CW probe for
different detunings. a) Adg = 0; b) AXg = —0.08 nm; ¢) ANy = —0.21 nm; d) Alg = —0.33
nm. e)-h) Thermal dynamics obtained from (a)-(d), taking into account the lorentzian shape of
the resonance. The arrow in (c) indicates a small amplitude short peak corresponding to electronic
blue-shift dynamics before the slow thermal dynamics takes place.
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Figure 4.4: Cavity resonance measure by means of the reflectivity decrease while switching off the
signal. Fitted by a Lorentzian function. From the fitting, the resonance width gives 0.33 nm.

It is worth to point out that the kinetics of the center of the resonance also contains
an ultrafast process related to carrier-induced index variation. As we will see in section 4.2,
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such processes decrease the refractive index blue-shifting the resonance in a time shorter than
1 ns, eventually being followed by a thermally driven red-shift. Therefore, they lead to short
downward peaks for red detuning, and short upward peaks for blue detuning. Let us stress that
such effects remain small in our measurements (see arrow in fig. 4.3.c).

From eq. 4.1, the time dependent detuning, A\(t), is plotted in fig. 4.3.e-h, for the
heating and cooling process. The slight noise in the signal at AX ~ 0 is due to the disconti-
nuity of the two roots in the inverse of the lorentzian function. From those curves we obtain
the characteristic time as the time for which the detuning decays 1/e of |[AX(0) — AX(oc0)], the
difference between the initial detuning and its stationary value. The cooling and heating times
for different detuning are similar, fig. 4.3.e-h. Considering that the characteristic times do not
depend on the initial detuning, the average of the measured values for different detuning yields
to 7. = 0.940.2 us and 7, = 1.0£ 0.2 us for the cooling and heating processes, respectively. We
then conclude that there is no significant difference between these two times, provided the system
is probed with a weak signal. Fig. 4.3.e shows that for the zero-detuning case the cooling time is
about a factor 2 smaller compared to the other cases. For zero-detuning, indeed, the reflectivity
time trace for the cooling process is mainly affected by the spectral tail at the blue side of the
resonance, which is slightly different to the tail at the red side (see the slight asymmetry of the
resonance in fig. 4.2), which may explain the substantial deviation for this situation. In spite
of this, we stress the fact that our technique allows one to directly measure the dynamics of
temperature in a nanocavity.

The characteristic times found (~ 1 ps) are in good agreement with the thermal dis-
sipation time we have found using an alternative technique [116], so-called transient thermo-
reflectance imaging, which allows to investigate the spatial heat distribution with sub ps time
resolution and sub pm spatial resolution!. Thermoreflectance methods rely on the relation be-
tween the temperature variation AT and the reflectivity variation ARp of materials which, in
first approximation, follows AR = (dRr/dT)AT, where dRy/dT is a constant which depends
on the material. By means of a pump and probe technique and a CCD camera, images of the
sample are taken for different pump-probe delay (7). Fig. 4.5 shows the relative reflectivity
changes (deconvolved with the normalized intensity of probe pulses) as a function of the delay
(7). The value of the relative reflectivity change is a spatial average on a 10 um side square.
The images are shown for 7 equal to 30, 130, 500 and 1000 ns. Fitting the relative reflectivity
changes by the convolution of an exponential ATyexp(—t/79)with Inprope (measured with a fast
photodiode)[116], we found a thermal dissipation time of ~ 1 ps. This measurement is in good
agreement with our results and gives additional information about the spatial thermal distribu-
tion.

4.1.2 Discussion

The thermal dissipation time we have measured in the previous paragraphs, namely the dynam-
ical relaxation process of the temperature in a PhC slab, characterizes a transient phenomenon
towards the thermal equilibrium state. Classically, this is well described by the heat equation.
Therefore, in order to obtain an analytical expression for the relaxation time (73,), the time
dependent solutions of the heat equation are studied. This equation reads:

oT /ot = Q(r) + av?T (4.2)

!Time resolved thermo-reflectance measurements have been done in collaboration with Virginie Moreau, Gilles
Tessier and Yannick De Wilde at the Institute Langevin.
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Figure 4.5: (a) Relative reflectivity change as a function of the delay (1) when the pump is focused
on the PhC membrane. Images of the relative reflectivity change are plotted for: T = 30 ns, 130
ns, 500 ns and 1000 ns. (b) Heat spot width as a function of the delay.

where « is the thermal diffusivity, Q(r) is the heat source (per unit volume) symmetric under
reflections + — —z and y — —y, and T is the temperature increase with respect to the substrate
temperature. The time dependent solutions are taken for a 2D rectangular membrane of size
2L, x 2Ly, fig. 4.6.

Figure 4.6: Rectangular geometry for the calculation of transient dynamics in a 2D membrane.

We set the following simplified boundary conditions: T(x=Lx)=T(y=Ly)=0 and 0T /0z|,—¢ =
0T /0y|y—o = 0 for symmetrical solutions. The general solution is a superposition of a particular
(stationary) solution T (r) and the homogeneous solution, T'(r,t) = Ts(r) + Tp(r,t). It can be
easily showed that 7}, can be expanded in Fourier series,

o0

Ty (r,t) = Z Apme= 7 cos (kynx)cos(kymy) (4.3)

n,m=0

with kpn = (20 + 1)7/2L,, kyn = (2n 4 1)7/2Ly and opm/a = k2, + k., The amplitudes App,

can be obtained from the initial conditions. In the case of the heating process (Q(r) # 0) the

initial condition is 71 (r,t = 0) = 0 meaning T}EH) (r,t =0) = —Ts(f) (r), and the coefficients

A are calculated as the Fourier transform of —Ts(tH )(r). Thus, the Fourier modes relax with
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characteristic times given by

Tthnm = 1/Opm = 1/a(k, + ki) = AL2 LY Jom®[(2m + 1)° L2 + (2n + 1)°L7] (4.4)
Note that higher order modes are dissipated faster. Therefore, we can expect the relaxation
dynamics to be driven by the lowest order mode, provided it is efficiently excited. In our case,
since Ly >> Ly, Tin00 & 4L2 /an?; taking a = 0.372 cm?/s [117] then 74, 00 ~ 300 ns, meaning
that the smallest length governs the relaxation process. In addition, eq. 4.3 also accounts for
cooling processes, whose dynamics is denoted by 7(¢) (r,t). In such a case the heat source is

turned off (Q(r)=0) hence Ts(tc) (r) = 0 and the initial condition reads 7 (r,t = 0) = TS(tH) (r).
Therefore A) = —Aﬁﬁ), hence T (r, t) = —[TW) (r,t) — Ts(tH) (r)], which shows that the relax-

ation dynamics of the cooling process is the same as for the heating process.

The estimated relaxation time (7) is about a factor 3 below the measured relaxation
time. The discrepancy between these two values may be due to the strong approximations used
in our simple model, in particular the temperature being fixed to the substrate temperature at
the end of the membrane (perfect heat sink at L, and L,). Full 3D-finite element numerical
simulations, as in [118], should be carried out in order to better account for thermal dynamics
in this system.

4.2 Measurements of the carrier recombination time

Nonlinear effects of thermal origin were investigated in the preceding section. Here we will study
relaxation times related to electronic refractive index change. This will give us information about
the characteristic carrier recombination times in the nanostructures with possible applications
in ultrafast optical switching.

All-optical ultrafast switches with chip-integration compatibility and efficient coupling
to the external environment are at the heart of high-speed communications. Optical switches
based on 2D PhC have already been proposed and investigated in III-V semiconductor-based
materials in several configurations, including surface-resonant Bloch modes of a non defective
2D PhC, waveguides and cavities [119, 81, 91, 115]. Recently, fast switching capabilities of a
PhC nanocavity were investigated using an evanescent coupling through a tapered fiber. A ~ 2
ns, ON—OFF switching time was demonstrated [120]. The performance and resolution were
limited by the pulse duration and the detection bandwidth respectively. Indeed, the carrier
induced nonlinear response is expected to allow ON—OFF switching times shorter than 2 ns at
least by one order of magnitude [91]. In this section we present pump and probe measurements
with 100 femtosecond time-resolution for all-fibered and surface pumping configurations [121].
As mentioned in sec. 3.2 our system contains three different semiconductors structures, all of
them potentially contributing to index changes as a function of injected carriers: the (3-D) InP
slab, a (2-D) wetting layer and a (0-D) QDs . The wavelength corresponding to their electronic
bandgaps (Agqp) are 0.92, 1.1 and 1.55 pm, respectively. The contribution of each semiconductor
structure to carrier-induced nonlinear effects at the probe wavelength is discussed at the end of
this section.

4.2.1 Pump and probe measurements

In order to achieve sub-ps time resolution compatible with electronically-induced active phe-
nomena, a femtosecond pump and probe technique is implemented. Probe pulses (signal) with
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120 fs-duration and 80 MHz-repetition rate are generated by an optical parametric oscillator at
around 1490 nm. The probe power is kept below 250 nW at the input of the taper to avoid any
nonlinear effect induced by the signal. As in section 3.2.2, using this broadband pulses (~ 30
nm-broad) to probe the nanocavity mode, we measure an optical resonance centered at 1491.5
nm with a FWHM of 0.6 nm corresponding to loaded quality factor of Qjoqdeq = 2400.

The active regime is achieved by optically injecting carriers using a 80 MHz-repetition
rate, 100 fs-pulse duration Ti:Sa pump source. Pump pulses, emitted at A = 810 nm, are ab-
sorbed in the InP (Agqp ~ 0.92 pm) inducing a carrier population that first relax to the wetting
layer bang-edges (Agap ~ 1.1 pm), fig. 4.7. As it has been shown elsewhere [91], this carrier
density decreases the refractive index and induces the blue shift of the optical mode. In addi-
tion, a slow thermal effect also takes place with a time scale of the order of 1 us, as described
in section 4.1. Therefore, only the averaged thermal loading can be revealed by our measure-
ments which, in turn, can fully resolve the ultrafast changes associated to the carrier dynamics.
This was accomplished by analyzing the probe reflectivity /transmission intensity as a function
of the delay between the pump and the probe pulses. Time delays are obtained by increasing
or decreasing the probe path by means of a computer-controlled translation stage. The de-
lay step is 7 fs and the maximum positive delay that can be reached is 1.3 ns. Both signals,
reflected and transmitted, are measured with an optical spectrum analyser (OSA). In all the
experiments the probe is sent through the tapered fiber, as describe in section 3.2.2, while two
configurations were studied to pump the sample: surface pumping and through the tapered fiber.

Pump
Et P Apymp=810nm
InGaAs Probe
InAsP AProbe=1 -5“m
hUPump>EgapInP

Figure 4.7: Scheme of the energy levels of the different materials in the sample compared with
the pump and probe energies.

Surface pumping configuration

In a first set of experiments the free space propagating pump beam is sent to the 2D PhC by
the surface, as described in fig 4.8. The pump beam is focused down via a 50x, long working
distance (17 mm), microscope objective to a diameter of 3.2 um (@Q1/e? of the intensity) shining
the structure normally to the 2D PhC periodicity (red circle in fig. 4.8).

As the pump power is increased to 0.98 mW, a 3 nm red shift of the resonance is ob-
served for negative or long positive delays (> 1 ns). This red shift, associated to thermal effects,
becomes a thermal offset for the linear regime. In the following, all electronically induced shifts
are measured from this offset. Such blue shifts are only observed for positives delays within the
picosecond to nanosecond time scale, which confirms its electronic origin [91, 120].
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Figure 4.8: Experimental setup for surface pump. A translation stage (non shown), allows to
change the pump/probe delay.

Fig. 4.9 shows the transmitted signal spectra with a pump power of 0.98 mW for different
pump-probe delays. A maximum blue shift of 7 nm is obtained near pump-probe coincidence.
This is consistent with the fact that the electronic density and the associated blue shift can be
assumed to increase within a time of the order of the carrier relaxation time to the conduction
and valence band edges (~ 1 ps). As the time delay is increased, the blue shift decreases due
to carrier recombination. Clearly, the decrease of the blue shift as pump and probe delay is
increased is related to the carrier recombination time for a given pump power.

In order to further analyse this temporal behavior and its dependence on the pump
power, we measure the spectral shift AX as a function of the pump-probe delay for different
pumping powers (fig. 4.10.a). The observed rise time is of the order of 4 ps (except for the
smallest power). As it was shown in ref. [122], this time is related to the photon lifetime in
the cavity (~ 2 ps). A decrease of the total recovery time from ~ 90 £ 20 ps to ~ 30 = 5 ps
(measured at 1/e of the maximum) is observed as the pump power is increased from 0.3 mW
to 1 mW (4.10.b). Note that both the blue shift and the ps time scale are clear signatures of
the electronic nature of the nonlinear effect. Furthermore, the decrease of the recovery time
with the pump power can be related to nonlinear terms in the carrier recombination process,
such as bimolecular recombination [91], which will be discussed in detail at the end of this section.

Before describing the all fibered case, where the pump and the probe are injected via the
tapered fiber, let us consider one interesting application of such ultrafast behavior: the all-optical
control and switch of a CW signal. In order to implement such configuration, 490 pW —pump
pulses are injected from the free space on the surface while a CW probe is coupled through the
taper. The probe is modulated with 10 MHz repetition rate, with pulse duration of 90 ns and
mean power of 235 uW. The modulation is applied to measure the signal contrast. Time traces
are measured using a 15 kHz-1.1 GHz-bandwidth avalanche photodiode (APD). The mechanism
underlying the control of the signal is simple and can be easily understood from the previous
experiments. The resonance shift created by the pump pulse induces a change on the transmit-
ted signal which can be switched on and off by means of the control (pump) pulses. Fig. 4.11.a
shows the time trace of the transmitted signal for two different wavelengths. The periodicity of
12.5 ns corresponds to the pump repetition rate. Clearly, in the presence of the pump pulses
the transmitted signal drops or increases depending on whether the probe wavelength is blue or
red-shifted with respect to the cavity resonance, respectively. This is summarized in fig. 4.11.b,
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Figure 4.10: (a) Resonance shift as a function of the delay time for different pump powers, 0.28
mW(e), 0.42 mW(V), 0.54mW (A), 0.67 mW(e) and 0.98 mW(R). The rise time is ~ 4 ps,
except for the smallest power where it is ~ 7 ps. (b) Dependence of the decay time (At at 1/e)
with the pump power.

which shows the variation of the transmitted peak amplitude (A), calculated from fig.4.11.a as:
A=100(a — b)/b, as a function of the probe wavelength (black line) superimposed to the reso-
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nance spectrum (red line) measured in the absence of pump pulses. A contrast as high as 20% is
achieved as the probe is slightly shifted but close to the minimum of the resonance (fig. 4.11.b).
This is a factor ~ 2 smaller than the contrast of the resonance in transmission calculated from
fig. 4.11.b red line, which can be attributed to the limited bandwidth of the APD, resulting in
a time convolution of the actual signal with the impulse response of the detector.
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Figure 4.11: (a) Time resolved transmission, resolution 1 ns, for AX(Ainj — Ares) = —0.5 nm

(black line) and AX = 0 (red line), each peak corresponds to the arrival of one pump pulse
(At ~ 12.5 ns). (b) Transmitted amplitude spectrum in % with respect to the background signal
(W) and cavity resonance (dash line).

Fibered pump

One of the usual drawbacks of 2D PhC devices is to cross the bridge between the high efficient
microscopic active devices and the macroscopic word. For this reason, we studied here the elec-
tronic characteristic time and the switching capabilities in an all fibered configuration.

In this experiment both the 100 fs-long 810 nm pump pulses and the 120 fs-long 1490
nm signal pulses are sent through the tapered fiber to the cavity, fig. 4.12. The pump power at
the input of the fiber is fixed to ~ 2.5 mW, whereas the probe is kept below 250 pW to avoid
probe-induced nonlinearities. Note that these values are measured at the input of the fiber and
the actual pump and signal powers near the cavity are lowered due to both contact and prop-
agation losses in the taper. From such losses we can estimate the power near the cavity (FPy)
as Py, = 0.26P;,put, where Py, is the injected power at the input of the fiber. Both signals,
pump and probe, propagate through 7 m of fiber until reaching the cavity.

The reflected signal spectrum is represented in fig. 4.13.a for different pump-probe de-
lays. A maximum blue shift of 0.9 nm is obtained for the pump-probe coincidence. The linear
resonance in this case is at 1494.3 nm. Although it is difficult to evaluate the actual pump
intensity acting in the nanocavity region, an order of magnitude can be estimated from a com-
parison between the pumping powers in the two configurations (free-space and fiber-coupled)
giving the same blue shift. Indeed, the blue shift achieved in the fibered pumping configuration
(~ 1 nm) is close to the one obtained in the surface-pumping configuration for a pump power of
0.28 mW (fig. 4.10.a, (¢). Therefore, the pumping level in the fibered configuration is equivalent
to ~ 0.28 mW shining the surface. As the InP coefficient of absorption at 810 nm is ~ 33% and
considering the cavity surface with respect to the excitation surface, the absorbed pump power in
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Figure 4.12: Ezperimental setup for fibered pump. Using a translation stage, the pump pulses are
delayed with respect to the probe pulses before being sent to the tapered fiber.
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the cavity region is reduced to ~ 10 uW, which is of the same order of magnitude as in ref. [120].
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Figure 4.13: All fibered configuration. (a) Reflectivity intensity for different pump and probe
delays: a. At = =21 ps, b. At =21 ps, c. At =100 ps, d. At =170 ps, e. At =277 ps, with
a vertical offset, resolution 0.05 nm. The pump power was 2,5 mW at the input of the fiber. (b)
Resonance shift as a function of pump-probe delays for all-fibered configuration (decay time at
1/e =166 ps and rise time 20 ps).

We now consider the dynamics of the resonance wavelength shift in the fibered configu-
ration. Fig. 4.13.b shows the time dependence of the blue shift in the experimental conditions of
fig. 4.13.a. The rise time (switch ON) is ~ 20 ps and the decay time (switch OFF) is ~ 170415
ps. These times are in the picosecond time scale and are still attributed to the carrier induced
refractive index change as previously. However, they are longer compared to the ones measured
in the surface-pump configuration. In both cases the signal is fiber coupled and there is no
measurable effect associated to its intensity. Therefore, the increased ON and OFF times must
be related to a linear and/or nonlinear dispersion associated to the propagation of the pump
pulses in the fiber and the taper. In order to verify this hypothesis we further investigate the
origin of the increase of the ON/OFF characteristic times as follows. First, we implement an
autocorrelation measurement of the pump pulses at the output of the 7 m fiber-taper setup.
Although their initial, free space, duration is ~ 100 fs, we find that pump pulses of 3 mW are
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stretched to ~ 7 ps (fig. 4.14.a) after propagating through the fiber. This duration does not sig-
nificantly change for all the pump pulse energies considered in the switching configuration. Next,
we implement a surface pumping configuration with 7 ps-pump pulse duration in the following
way: the pump pulses are temporally broaden to ~ 7 ps by taking benefit from the chromatic
dispersion after propagating through a 7 m-long fiber and eventually sent to the sample in the
same surface-pumping conditions of fig. 4.8. The measured rise and decay times are now ~ 20
ps and ~ 115 + 20 ps respectively [fig. 4.14.b (e)]. The rise time is close to the one measured
in the all-fiber coupling configuration, whereas the decay time overlaps with the one obtained in
the femtosecond surface pumping experiment for the same blue shift: (90 £ 20) ps. This builds
confidence on the fact that the stretching of the pump pulses is at the origin of the increase of
the ON responses. Indeed, by contrast with the 100-fs pump pulse in the surface-pumping con-
figuration, which is shorter than all times scales of the system leading to free carrier relaxation,
the 7-ps duration pump pulse is longer compared to the photon lifetime and approaches the fast
carrier recombination time. The 20-ps rise time can thus be understood as resulting from the
longer pumping pulse driving the system. However, the increase of the decay time in the fibered
pump configuration with respect to surface pumping is more intriguing and could be related to
a lower carrier density within the WL when pumping through the fiber, as discussed in the next
paragraphs.

(a)

(b)
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Figure 4.14: (a) Autocorrelation measurement of pump pulses: free space propagation (blue line)
and after 7 m of fiber-taper (black line). (b) Resonance shift as a function of pump-probe de-
lays for all-fibered configuration (M) (decay time at 1/e = 166 ps and rise time 20 ps) and for
surface pumping with 7 ps-pump pulses duration (e) (decay and rise times: 150 ps and 20 ps,
respectively).

4.2.2 Discussion

The aim of this paragraph is to clarify the origin of the dynamics of the ON and OFF responses
resulting from the femtosecond pump and probe experiments described above. For this porpose
we use a simple and intuitive description based in the set of equation deduced in section 1.4.
Since the pump-induced effects shift the resonance to the blue side of the spectrum, the leading
nonlinear process is the decrease of the refractive index. Therefore, the active phenomena in play
are mainly of electronic origin, i.e. they come from carrier-induced effects, which turn out to be
dominant against (fast) red-shift processes, such as intrinsic Kerr effects. The injected carrier
density in the surface pump experiment per unit power within the PhC slab, as deduced from
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the experimental conditions, is typically

N.
Np = %D = TagL/hvyA ~ 10" em ™ 2mW ! (4.5)

where T' is the pulse period of the femtosecond pulse-train, L is the membrane thickness, hv,
is the pump photon energy, A is the surface of the pumped region (A = 772, with r=1.6 pum)
and qp is the linear absorption coefficient at the pump wavelength (gL ~ —In(0.67) ~ 0.4 2,
using that the fraction of the incident power absorbed at 800 nm is ~ 33% [123]). This density
corresponds to an overall 3D density of N3p = Nap/d ~ 10'® ¢m ™3 injected carriers for P ~ 0.3
mW. Considering that the carrier diffusion in the InP is essentially governed by holes Dy =5
em? /s [117], carriers are thus able to reach the wetting layer (WL) in ~ (100 nm)?/Dj, ~ 20
ps; therefore only a fraction of the total carriers accounting for fast carriers will be eventually
captured inside the WL in a time shorter than 20 ps. Such a fraction will be considered as a
fitting parameter in our analysis.

We now analyse the contribution of each semiconductor layer or structure to carrier-
induced nonlinear effects. For probe photon energies (hv) close enough to the bandgap energies
(approximately (Eq — hv)/E, < 0.15 for a III-V semiconductor), it has been shown that index
change is dominated by band-filling effects [124], which is indeed the case of the QDs in our
system. On the other hand, for very low photon energies with respect to the electronic bandgaps,
hv << Ey, as it is the case of the InP, Drude effects are dominant. In the case of the wetting
layer (WL) we can expect both band filling and Drude effects contributing to the decrease of
refractive index (see section 1.2).

The refractive index change due to Drude effects for carrier densities close to transparency
values (Ny ~ 10'8 em™3) can be estimated as large as An/n ~ 0.001 [124], leading to wavelength
shifts of about AX ~ I'AAn/n < 1 nm. Band-filling effects produce larger refractive index
changes for a carrier density Ny, both in bulk materials and in quantum wells (QWs). For
instance in InAsP/InP QWs we have previously observed An/n ~ 0.01 for carrier densities close
to QW transparency (Nop ~ 10'2 e¢m=2) [91, 115]. In the case of quantum dots, however, the
maximum carrier density that can be injected equals the QD density, Ngp ~ 10'%cm=2. Taking
into account that this remains at least two orders of magnitude below the carrier density in
the WL, we can therefore conclude that refractive index change in the QDs, even if all the QD
levels are occupied, can be neglected with respect to index change induced by carriers in the WL.
From now on we thus consider that the nonlinear carrier-induced effects are produced by a carrier
density confined within the WL. Furthermore, we assume that the refractive index change, hence
the wavelength shift, can be considered to be a linear function of the carrier density, as usual:

AN = AAyN (4.6)

where AAy is taken constant and N is the 3D carrier density. Therefore, the dynamics of the
wavelength shift, AA(¢), is considered proportional to the carrier dynamics, N(t).

We then study the carrier dynamics governing the observed time dependence of the
wavelength shift (fig. 4.9.a). According to eq. 1.56 there are two components in the carrier
dynamics, the recombination processes and the intracavity energy. Since in our experiments the
probe power is kept low, we can neglect the contribution of the intracavity energy in front of the
recombination processes. Therefore, two main recombination processes can be taken into account:
a nonradiative recombination process with a time constant 7,,, and a radiative recombination

2This expression is expected to hold for low pumping powers
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process or bimolecular recombination at a rate BN, B being the bimolecular recombination
coefficient, which is expected to play an important role especially for high carrier densities [91].
The corresponding rate equation for N(t) is

dN —N

dt T,

We solve eq. 4.7 analytically for femtosecond pumping. In such a case, carriers relax
freely from an initial carrier density N (¢ = toy) = Ny injected by the femtosecond pumping
pulse centered at t = tp, which has already been described as a kick-like pumping process
[89, 93]. Defining At =t — to4, the solution of eq. 4.7 reads

NoefAt/TnT

N(At) =
(A =17 NoTnr B(1 — e=At/7ur)

(4.8)

The decay time 7y /. defined as the time for the decay of the carrier density at 1/e of the
initial value, N(At = 7y/.) = No/e, can be readily found from eq. 4.8:

e+ Notpnr B

4.9
1+ No7pB ( )

Ti/e = Tnrln(

Note that in the limit BNy << () "' we obtain 7 /e = Tnr, meaning that for small bimolecular
recombination rates, the nonradiative decay time is dominant.

Egs. 4.8 and 4.9 can be re-written in terms of the (experimentally measured) initial
wavelength shift (A)g) by evaluating eq. 4.6 at ¢t = o4, which gives Ny = AXg/AAy. Using
this, we have fitted eq. 4.8 to the experimental data in fig. 4.9.a with the fitting parameters E,
A)g and 7., where B= B/AMy . We notice that for the highest pump power, P=0.98 mW, the
dynamics of AX almost superimpose to that for P=0.67 mW, meaning that carrier saturation is
playing an important role and therefore no additional information can be obtained from the data
corresponding to P=0.98 mW. The excellent quality of the fits can be observed in fig. 4.15.a.
We average out the parameter values resulting from fitting the four curves in fig. 4.9.a using
a weighted average procedure. Normalized weights are defined assuming an ensemble of four
independent measurements with weights w; as usual, w; = (e? > 1/e?)~!, where ¢; is the stan-
dard deviation of the i-th fitted value. The weighted average gives (E) = (6.74+1) ns~inm™!
and (7,,) = (0.12 & 0.03) ns, where the errors are given by the weighted standard deviation.
The obtained nonradiative recombination time in this system is of the same order of magnitude
as in previous measurements of 2D PhC samples with InAsP/InP QWs [91]. The accuracy of
these two fitted parameters can be tested by comparing the experimental decay times to those
obtained using eq. 4.9. This is shown in fig. 4.15.b. It can be observed that the dependency of
the decay times on the initial carrier density is well reproduced by eq. 4.9 with the two averaged
parameters (B) and (7).

In order to relate <§> to the physical coefficient B, Ay has to be found. With this aim
we first calculate the injected carrier density in the WL as a function of (small) pump power
(P), Nowr = (f/d)N,P, where f is the probability of carrier capture in the WL after diffusion
and d is the WL thickness (d=0.6 nm). Next we relate the wavelength shift to the pump power
for small P, A\g ~ (3.2 nm/mW)P. As a result, A\y ~ (d/f) x 1.3 x 10~ nm em?. Using
an already reported value for the bimolecular recombination coefficient in InP-based materials,
B ~ 3 x 10710 e¢m3/s [93], the fraction of the total carrier population within the WL becomes
f ~ 0.02. Considering that the remaining (1 — f) carriers are within the InP, the ratio of the

87



N (10%cm>
1,5 qu 4,6)

- , 0,0 6,2 7,7
8+ “_\ t=t0+(maX|mum ’UT 120 d d
o= Wwavelength shift) o = 1/e-decay time
— 6r ® 100+ model solution
£ g 80+ i
C 4l
= >
> S 60f ]
2r % 40} ]
1
) Q
0 C ‘ A u.: k! L -l 20 I . , I I I i
10 100 0 2 4 6 10
Time (ps) AL (M)

(a) (b)

Figure 4.15: (a) Resonance shift as a function of the delay time (in logarithmic scale) for different
pump powers, 0.28 mW(4#), 0.42 mW(V), 0.54mW (A), 0.67 mW (e) and 0.98 mW(R) fitted
(solid line) using eq. 4.8, see text. The fitted parameters are: T,, = (0.38 £ 0.15) ns and
B = (6.6 £0.3) ns~nm~! for P=0.67 mW;r,,, = (0.13 £ 0.03) ns and B = (7+1) ns ‘nm™!
for P=0.54 mW; Ty = (0.11 £ 0.02) ns and B = (14 £ 2) ns~'nm="! for P=0.42 mW; 7, =
(0.17+£0.1) ns and B = (14 £ 2) ns~nm = for P=0.28 mW. (b) Dependence of the decay time
(At at 1/e) with the pump power. Solid line: model solution for the decay time from eq. 4.9,
using the weighted average of the fitted parameters in (a), namely (E) = 6.74 ns"'nm™! and
(Tnr) = 0.117 ns.

density in the InP to that in the WL is No rpp/Nowr ~ d(1 — f)/Lf ~ 0.1, meaning that
even for such small fraction f, the carrier density in the WL is one order of magnitude larger
than the density in the bulk. This justifies our early assumption that the main contribution of
carrier-induced effects comes from the WL. In addition, we point out that the small fraction of
the carrier density trapped within the WL in the observation time scale could be explained as a
result of the rather small diffusion time of holes across the membrane, estimated above as ~ 20 ps.

As pointed out in sec. 4.2.1, in the case of the fibered pump configuration, the observed
relaxation time of an initial wavelength shift of A\g ~ 1 nm is ~ 170 ps, whereas that for the
same A)g in the surface configuration is ~ 90 ps. This could be explained under the hypothesis
of a lower carrier density inside the WL in the fibered pump configuration, which might be related
to a different pumped volume in this case with respect to free space pumping. Indeed, carriers are
mostly injected close to the membrane surface in contact with the taper rather than throughout
the whole membrane thickness as in the free space illumination. We can thus expect a smaller
fraction of carriers being captured by the WL, and therefore a weaker bimolecular recombination
effect leading to a slower decay time. The fact that a smaller carrier density in the WL for the
fiber-pumping configuration gives the same A\ as in the surface pumping configuration could
be explained as an additional blue shift induced by the remaining (1-f) carriers in the InP.

It is worth pointing out that radiative recombination governs carrier dynamics for the
highest pumping powers used in this work. In particular, they are responsible for the shortest
times that have been observed, that is, on the order of 30 ps, corresponding to the largest carrier
densities. Also, since carrier saturation effects appear for P > 0.7 mW, it can be inferred that
for the shortest observed time of 30 ps, a material limit is attained for ultrafast carrier-induced
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switching processes in this class of systems. Notice that the shorter relaxation times observed
here are of the same order of magnitude as those recently reported in resonantly pumped HO
cavities where carrier diffusion plays a main role in carrier relaxation due to small optical volume
of the HO cavity [125].

4.3 Conclusion

In order to test the performance of our taper-cavity-system, we have first developed a method to
directly measure the thermal relaxation time of the nanocavity. This technique relies on reflectiv-
ity measurements of a CW probe beam coupled to the cavity through a tapered fiber, becoming
sensitive to the thermally induced increase of the refractive index within the cavity. We applied
this method to an InP-based nanocavity on a suspended membrane. Wavelength shifts up to 0.3
nm for 165 uW pumping power @800 nm were observed. The obtained values for the character-
istic thermal times are close to 1 us, more than a factor 3 compared to a rough estimation of the
relaxation time of the fundamental mode in a rectangular 2D membrane, showing the relevance
of the experimental measurements.

In a second experiment, time resolved pump and probe measurements with femtosecond
resolution have been performed in order to investigate the electronic characteristic time of the
system. The signal was evanescently coupled through the taper fibered, and the pump was either
sent by the surface or through the tapered fiber. The optical pump provides ON/OFF switching
of the transmitted or reflected signals with time features associated to the electronically induced
refractive index change. In the surface pump configuration switching ON and OFF times of 4
and 30 ps, respectively, were measured. In the case of fiber-coupled pump pulses configuration,
an all-fibered stable operation was achieved at the expense of increased ON and OFF switching
times up to 20 ps and 170 ps, respectively. These values are still shorter by one order of mag-
nitude than the previously reported ON/OFF switching times [120]. Through fitting the decay
time of the nonlinear effect by means of rate equations for the carrier density we have explained
the origin of the shortest overall switching times (35 ps) as a result of radiative carrier recom-
bination inside the wetting layer. Moreover, we have shown that the increase of the rise time in
the all-fibered configuration is a consequence of pump-pulse dispersion in the fiber. This could
be pre-compensated at the input of the tapered fiber in order to retrieve the characteristic times
measured in the surface pumping configuration, that is ON times as short as 4 ps. In addition
to the switching capabilities, this kind of photonic crystal cavities with embedded quantum dots
could be used as lasers sources with ultrafast tunability of the laser mode, taking benefit from
the large carrier-induced nonlinear effects in the wetting layer described in section 4.2.

This electronic time together with the thermal relaxation time will be of major importance
for the nonlinear dynamical studies discussed in the next part. These times are the characteristic
lifetimes of the nonlinar phenomena we will see in the next chapters. In the following studies the
refractive index change, thermal and/or electronic, is no longer given by an incoherent pump;
instead, it will be induced by the intracavity energy.
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Part 11

NonLinear dynamics in photonic
crystal cavities
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In the previous part we have described, characterized and optimized a mechanism to effi-
ciently couple light into a photonic crystal nanocavity. Using this mechanism nonlinear e-ffects of
thermal and electronic origin were measured. These effects are given by refractive index changes
shifting the resonance mode (to the red in the case of thermal effects and to the blue for electronic
effects) due to an incoherent pump. In this part we will study the nonlinear effects given by a
resonant injection with the photonic mode. Therefore, we focus on nonlinear dynamical regimes
leaded by self-induced effects.

In the first chapter we study the nonlinear dynamical regimes ruled by a single material
variable: thermal or electronic. In the first part of the chapter we explore the thermo-optical
bistability; this regime is achieved provided the thermal nonlinear effects overcome the electronic
ones. In the second part, we investigate the electronic bistability. In this case, thermal effects
are avoided and only electronic nonlinearities are involved.

The nonlinear dynamical regime governed by two variables is studied in the second chap-
ter. Both thermal and electronic effects are combined in order to obtain interesting phenomena
such as self-sustained oscillations and excitability regime. Finally, the refractory time of the ex-
citable cavity is measured. These studies represent the first reported demonstration of electronic
excitability in a photonic crystal nanocavity.
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Chapter 5

Nonlinear dynamical regimes involving
a single dynamical variable: Optical
bistability

In this chapter we will consider a particular class of dynamical effect, associated to the existence
of an unique dynamical variable. Indeed, as long as the photon lifetime in the cavity is much
shorter compared to the time scale of the material variable (i.e. carrier density or temperature)
the former can be adiabatically eliminated leading to 1D phase spaces. Specially, we will focus
on optical bistability (OB). OB is a key phenomenon in the road of all optical signal processing,
in particular for optical memories. Two ingredients are needed in order to obtain bistable oper-
ation in an optical system: a resonance capable of localizing the light intensity in the spectral
domain, and a nonlinear effect that changes the spectral response as a function of the injected
intensity. Under certain conditions for the injection of a nearly resonant beam, two stable states
for the transmission /reflection through the device can coexist. In the first section of this chapter
we study the bistability given by thermal effects and in the second section by electronic effects,
where thermallly-induced nonlinearities are avoided.

We have introduced the OB in section 1.2, where the constitutive equations have been
detailed and the main behaviors have been discussed. We summarize here some key elements that
are essential to set up and understand the experimental demonstration. The bistable regime in
an optical device corresponds to the system showing two stable states of transmission /reflection,
high and low, for a single input light intensity. In order to quantify this phenomenon, let us
consider the steady states of the system (see section 1.2):

Pout _ Pm/PO
P() 1+ (Pout/PO + (5)2

(5.1)

where P,,+ and P;, are the steady states of the transmitted and input power, respectively. Py
is the "characteristic power of the cavity" and 0 = 7(wp — wiy) is the detuning of the optical
injection (wj,) with respect to the resonance (wp). The bistable regime corresponds to the case
where two critical points exist, which requires a detuning of || > v/3. For negative nonlineari-
ties, the positive sign in 5.1 holds and § < —/3, whereas for positive nonlinearities the negative
sign must be consider and § > —+/3. Under these conditions, a typical P, (P;,) from eq. 5.1
is presented in fig. 5.1. Therefore, in order to obtain the bistable operation the system should
be injected differently depending on the type of nonlinearity involved: with wavelengths on the
red side of the resonance for thermal OB or on the blue side for electronic OB, fig. 5.2. We will
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consider both situations in the following sections.

Pout/PO

Figure 5.1: Typical feature of a bistable optical system. The continuous line corresponds to the
stable states while the dashed line to the unstable states. The arrows show the sense of the

hysteresis cycle.
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Figure 5.2: Scheme of the injection wavelengths needed to obtain the thermal (red arrow) or
electronic (blue arrow) bistability.

The main change in these sections with respect to Part I is the near resonant pumping.
The off resonant or incoherent pumping implemented in Part I produced a rigid shift of the cavity
resonance. In the case of a resonant pumping, there is an interplay between the nonlinear shift
and the enhancement of the intensity inside the cavity. The shift becomes stronger at the max-
imum of the electromagnetic field enhancement, corresponding at the cavity central frequency,
and it is smaller at the resonance wings. As a result, the incident field induces a bending of the

cavity resonance.

The thermal and electronic origin of the OB behavior will be identified by the dynamics
of the switch between the upper and the lower states: slow with us characteristic time for ther-
mal OB and fast in the ps to ns scale for electronic OB.

Experimentally, this kind of behavior can be shown through a simple set up. The system

is excited with firstly increasing and then decreasing power and the reflected /transmitted signal
is collected. Under these conditions the system exhibits what we call the hysteresis cycle (black

96



arrows in fig. 5.1), which clearly shows the range of powers where the system presents two stable
states for the same injected power.

5.1 Thermo-optical bistability

Thermo-optical bistability was studied in the sample described in section 3.2, under continuous
wave (CW) excitation. The coupling into the resonance and the extraction of the signal are
achieved via a tapered fiber as described in section 3.2.2. The OB phenomenon [82, 112| can
be obtained through self-induced red shift of the resonance upon (large enough) CW injection
from a single beam. The thermally-induced refractive index increase takes place for a nearly
optically resonant CW injection, in the absence of any incoherent pump. In such a case, bistable
operation can be expected provided that: i) the injection wavelength is red shifted with respect
to the resonance; ii) the detuning between the injection beam and the cold resonance is larger
(in modulus) than ~ v/3v/2, where « is the FWHM of the resonance; iii) the injection power
exceeds a given threshold. As long as the nonlinearity comes from a thermo-optical effect, the
switching times should be related to the characteristic thermal relaxation time obtained before.

5.1.1 Set up description and results

In order to demonstrate the thermo-optical bistability through the hysteresis cycle, the output
power as a function of input power for different detunings is investigated. Importantly, the power
sweep in such measurements must be quasi-stationary, i.e. the duration of the power ramp must
be much longer than the thermal relaxation time (> 1 us according to section 4.1). Therefore,
the CW input beam generated by a tunable laser ("Net Test’, Tunics Plus S, 1430 nm-1530 nm)
is modulated at 10 kHz, fig. 5.3. The modulation is obtained by feeding the laser through a
low frequency modulation interface with a 10 kHz, 0-3.8 V| triangular signal, while keeping its
current at 130 mA. Under this configuration the maximum power sent to the tapered fiber is
4.7 mW. In such conditions, the input modulation and the optical transmitted signal through
the fiber are simultaneously measured as a function of time, the latter using a 3.5 GHz DC-
coupled photoreceiver (DC-PD,'New Focus’, model 1592). Both signals are registered in a 400
MHz-bandwidth, 5 Gs/s, oscilloscope (’Lecroy’, WaveRunner 44Xi).

\
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Figure 5.3: Scheme of the experimental set up used to study the thermo-optical bistability.
In order to determine the wavelength range for bistability operation we first characterize

the cavity resonance using the experimental configuration described in section 3.2.2 where the
use of 100 fs-duration OPO pulses allow to spectrally probe the cavity resonance through the
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tapered fiber. The resonance spectrum is shown in fig. 5.4.a where the arrows indicate the
spectral range explored in the thermo-optical bistability experiments.

Thermo-optical bistability was observed for injected powers greater than ~ 1 mW. The
input and transmitted signals for a detuning of A\ = Ao — A\ij = —0.56 nm, where g is the
linear cavity resonance and \;y; the injected wavelength, are shown in fig. 5.4.b. The transmit-
ted power in fig. 5.4.b reveals the thermo-optical bistable behavior. This is further highlighted
in fig.5.4.c where the transmitted power as a function of the input power is plotted, showing the
hysteresis cycle.
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Figure 5.4: (a) Reflectivity spectrum of the linear cavity resonance, and the wavelength range for
the CW ingection. (b) Time traces of input (blue line) and transmitted output (black line) powers
for a detuning of ANg = —0.56 nm; durations of the switch processes are 1.8 us and 4 us for the
on/off switching, respectively. (c) Hysteresis cycles showing the bistable behavior (AXg = —0.56
nm,).

Hysteresis loops are observed for |[AA| > 0.35 nm. Fig. 5.5 shows the transmitted versus
the input powers for different detunings. The loop size increases for larger detuning-values, up
to |JAA| ~ 0.72 nm where the maximum injection power remains below the bistability threshold.
Note that the hysteresis cycle of fig. 5.4.c has the opposite direction than the cycle in fig. 5.1
due to the fact that the resonance in transmission is downwards (spectral dip). As discussed in
section 1.2 (eq. 1.39), this sign of the nonlinearity yields to a bending of the resonance, towards
higher wavelengths.

Switching on and off times have been measured as the time the system takes to shift
from the higher to the lower value of the transmitted signal (heating up) and vice versa (cooling
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down), respectively. The switch on time is 1.8 us, whether the switch off time is 4 us. Both
are of the order of the 1 pus thermal characteristic time obtained with the pump and probe set
up (see section 4.1), as expected. Though, the difference between switch on and off times is less
intuitive. We discuss the origin of such difference in the following paragraphs.
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Figure 5.5: Hysteresis cycles showing the bistable behavior. Detuning values with respect to the
cavity resonance are, from Ag to Ag: -0.11, -0.27, - 0.36, -0.46, -0.52, -0.56, -0.6, -0.64, -0.66,
-0.68 and -0.72 nm. The input power is measured at the tapered fiber input.

5.1.2 Theoretical model

The difference between switch-on and switch-off times can be explained from simple consider-
ations of dynamic thermo-optical nonlinearities. For this, we will apply the set of equations
deduced in chapter 1.4 to the experimental conditions.

The dynamical equation for the intracavity energy (a) is given by eq. 1.41. However,
according to the experiments, the contribution of electronic nonlinearities con be neglected.
Then, eq. 1.41 yields
1

Ja +df (5.2)

T

da .
pri [i(wo + Awp)

Replacing a — a'(t)e™int t =/ /7 and f — f'(t)e™in! eq. 5.3 yields

da .
—r = [i6(t) = Ja+ rdf (5.3)
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where 0(t) = 7(wo + Awy, — win) = do + TAwy, and d = j exp(j¢/2)/\/T.. Since the dynamics
of a(t) is much faster than thermal processes, its dynamical equation can be adiabatically elimi-
nated. Moreover, we can relate the intracavity energy to the reflected power as |a(t)|? = P,(t)7e.
Then, the stationary states of eq. 5.3 are given by

n* P

P(t) = T16(t)2 (5.4)

which simply describes the Lorentzian shape of the resonance.

Considering the differential equation for the temperature dynamics (eq. 1.63) and the
relation between Awy, and the temperature change (eq. 1.64), we obtain the equation for the
dynamics of the resonance shift:

P(t)

(6(¢) —do + ?0) (5.5)

a1
dt_Tth

with 73, the characteristic relaxation time obtained in section 4.1 and Py = Up 4, /7. the outcou-
pled characteristic thermal power, see section 1.4, given by

- Mgy P Cchav
2Qloaded (dn/dt)TcFaonisvgo

F (5.6)

with 7gis cav the time scale for heat dissipation, which is approximated by Tgis cqn ~ 186 ns [97].
dn/dT can be taken from the tabulated values of the refractive index change per unit tempera-
ture as dn/dT = nr (np/n ~ 0.63 1071K ! Q300K for InP [96]).

The steady-states solutions of eqs. 5.4 and 5.5 can be graphically found by intersecting
solutions of dd/dt = 0 from eq. 5.4 and eq. 5.5, fig. 5.6. Two stable states d;4 and J_g coexist
provided that &y > v/3, and P, > Py, where Py, is the bistability threshold. The threshold
in reflection can be approximated by P, ~ Py|do|, fig. 5.6, which yields to a threshold for the

injected power in the vicinity of the cavity of sti];f;) ~ Py|dg|/n? according to CMT. Py = 9.8
uW is obtained as in section 1.4 (see caption in fig. 5.6) and Jj is obtained from the hysteresis

cycle in fig. 5.5, considering A\¢, dp = 2.2 (using v = 0.33 from section 4.1). This leads to
P(theo)

m.thr = 210 uW  which is in good agreement with the value found experimentally for this

detuning Pf;i% =260 pW (using that P;, = 0.263Pjppu¢, see caption in fig. 5.6).

Steady state relaxation dynamics can be obtained through the linearization of eq. 5.5
in the vicinity of the fixed points (see eq. 1.5 in the introduction), i.e. by setting § = &g +
Aexp(—t/7+) in eq. 5.5. The eigenvalues 7+ can be readily obtained:

_ _ 1 dP
T =T 1+ Fo%‘éi] (5.7)

Since P(t) has slopes with opposite signs at the two stable steady states (see fig. 5.6) cor-
responding to the switch on/off processes, namely positive (negative) slope for 65, (d,), therefore
T4 < 7T, consistent with the experimental observation of switch-on times shorter than switch-off
times. With the parameters of fig. 5.6 we obtain 7_ /7, ~ 8.5. Experimentally, the ratio of
switch-on to switch-off times was ~ 2.2, which contains the information of the full i.e. nonlinear
relaxation dynamics, whereas the calculated 7_ /74 only accounts for the linear relaxation close
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Figure 5.6: Phase space for bistability conditions. Blue, green and red lines: stationary solutions
of the reflected power (P) as a function of the normalized wavelength shift (5) for: bistable
conditions (Pipput = 2 mW, blue) switch on conditions (Piypy = 2.6 mW, green) and switch
off conditions (Pippy = 1.2 mW, red). Black line: stationary solutions of §. The intersections

of the black line with the curves give the steady states: 5;(_) 18 the stable state for the switch
on (off) process. The direction of the dynamical flow is indicated by the arrows. The opposite
slopes of dP/do at the fixed points mathematically explain the difference in relazation times
(see text). The parameters are: Py = 9.8 uW, calculated with V, = 0.08 pum?, 7y = 186 ns,
I' = 0.015, Qroadea = 4520, pCp = 1.5 Jem 3K ™1, §y = 3.4 and a=33 ecm™! (fitted parameter);
and Py, = 0.263Pjput, with Pippye the injected power into the fiber.

to the steady states. We point out that the predicted difference in switching times given by
eq. 5.7 is generic in bistable systems and can be expected to hold even for fast nonlinearities.
Moreover, even in the absence of bistability, a high power input may affect the thermal dynamics
in the way described by eq. 5.7 leading to a dependence of the thermal relaxation times to the
equilibrium state dg. Unlike linear thermal dissipation regimes, studied in section 4.1, in the
nonlinear regime heating and cooling processes may have different relaxation times provided the
injected power is close to the characteristic power .

5.2 Electronic bistability

Interesting nonlinear behaviors have been obtained for the sample depicted in fig. 3.2, such
as, thermo-optical bistability and ultrafast optical switches provided by electronically-induced
nonlinear effects. However, nonlinear dynamical mechanisms from an electronic origin, such as
electronic bistability or excitability, were not observed in this sample. The absence of electron-
ically driven nonlinear dynamical regimes can be attributed to a low absorption of the sample
(the maximum absorption of the QDs is ~ 10 em™!) together with the low confinement factor
in QDs. In Yacomotti et al. [115] a nonlinear dynamical regime was observed in a sample with
quantum wells (QWs) as active material. We can estimate the absorption («) in their condition
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through the quality factors with (Qpineqa;) and without (Qqq) absorption, Qinear = 1763 and
Qrad = 3775, respectively. From section 1.4, 1/Qrineat = 1/Qrad + 1/Qa, With Qq = w,/2, the
absorption quality factor, and 7,, = 2/v4,a0l". Considering I' = 0.2, the absorption in [115]
allowing to achieve low-threshold electronic bistability was o ~ 200 em~!. Therefore, in order
to obtain nonlinear dynamical regimes, the absorption needs to be increased at least one order
of magnitude. In order to fulfill this requirement, samples with QW as active medium were
fabricated taking benefit of the QW absorption, ranging from a few hundred of em™! to 5000

em ™1, and the larger T factors.

The following part of this section first describes the main characteristics of such 2D PhC
using QW as active medium. Then, we present the experimental demonstration of all-optical
electronic bistability. The origin of this bistability is shown to be the fast electronic nonlinear
index change.

5.2.1 Quantum Well samples

The geometrical parameters of the sample remain almost unchanged respect to the ones de-
scribed in chapter 3; the main difference resides in the use of QWs as active material. The cavity
is a L3-type cavity, where the two holes closing the cavity are shifted away by 0.15a. The PhC
period and hole radius are a=450 nm and r=120 nm, respectively. In this case, the suspended
InP membrane (265 nm-thick, A/2n), grown by metalorganic vapour phase epitaxy (MOCVD),
incorporates four central layers of InGaAs/InGaAsP QWs, fig. 5.7.a, each layer with a thickness
of ~ 13.5 nm and ~ 16 nm for the well and the barrier, respectively. The QWs luminescence
at 300 K, measured over an unetched region, close to the PhC, is centered at ~ 1.51 um (fig.
5.7.b) with a spectral broadening of 75 nm. The membrane thickness (A/2n) is such that the
field maximum (@1550 nm) is located at the center of the membrane, matching the location of
the active material. A Si0y sacrificial layer underneath is bonded on a S% substrate through a
BCB layer [126]. A 1 pm air spacer, obtained after etching the sacrificial layer, lies between the
InP membrane and the substrate.
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Figure 5.7: (a) Qw sample scheme. (b) QWs photoluminescence spectrum.

Sample fabrication

This section contains a summary of the fabrication steps. The samples were fabricated in the
LPN clean room by Yacine Halioua, Frabice Raineri, Isabel Sagnes and Remy Braive. More
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details about the fabrication process are given in [126].

The first step is the metalorganic vapour phase epitaxy (MOCVD) of the InP structure.
This starts by the growth of an InGaAs etch stop over an InP substrate, followed by an InP layer,
which will form the suspended membrane. In its center, four InGaAsP /InGaAs QWs are grown.
The membrane total thickness is ~ 265 nm and it corresponds to A/2n.s¢ with n. sy the effective
refractive index calculated as the weighted average of the refractive index of air and material.
Finally, a 1 pum-thick sacrificial layer of Si09 is deposited over the InP active membrane. This
structure is positioned (upside down) over a Si substrate coated with a benzocyclobutene (BCB)
layer used for the bonding, see fig. 5.8. In order to polymerize the BCB and finalize the bonding,
a hard bake is performed in a nitrogen atmosphere for 2h at 300°.

InGaAs Efch
InP substrate
= stop

InP active
membrane

Figure 5.8: (a) Sketch of the structure before the etching processes.

Once hard baked, the InP substrate is removed by HCI wet etch. The InGaAs etch stop
is removed using H2SOy : H2O5 : HoO (3:1:1) leaving on top the InP layer with the QWs. The
procedure to etch the holes is the one described in section 3.1.2. Once the InP active membrane
is etched, the SiOs layer is removed under the PhC by HF wet etching in order to obtain the
suspended membrane. Residual HF resting on the sample is removed by a supercritical drying
technique.

Photoluminescence characterization

We first characterize photoluminiscence spectrum of the sample with QWs for different excitation
intensities. The experimental set up, shown in fig. 5.9, is similar to the one described in sec.
3.1.3. The sample is pumped with a @810 nm, 80 MHz-repetition rate, 100 fs-pulse duration
Ti:Sa source. The emission is collected with a 50x microscope objective ("Mitutoyo’, M Plan
Apo NIR, X50, f =170 mm, NA = 0.42) and sent to a spectrometer, see sec. 3.1.3.

A typical spectrum of the L3-type cavity described above is shown in fig. 5.10.a, for a
pump power of 15 uW. A mode centered at 1565 nm is observed. The quality factor obtained
from the FWHM of the cavity resonance gives ) ~ 1700. As it has been discussed in section
3.1.3, the measured of the intrinsic quality factor has an inherent limitation due to the material
absorption/gain, which leads to pump-dependent Q factors. In addition, both the limited spec-
tral resolution and chirp effects from short-pulse photoluminescence results in broadening of the
cavity peak. Therefore, the ) measurement from the FWHM for lower powers should be con-
sider as a lower bound of the intrinsic quality factor. Indeed, we will see in the next paragraphs
that injecting the system resonantly a quality factor of Qoageq ~ 3752 is found. Measurements
of the collected intensity (M) and the resonance central wavelength ( ®) as a function of the
injected power are shown in fig 5.10.b. The overall behavior is similar to the one found for the
QDs sample, sec. 3.1.3: an S-shape in fig. 5.10.b (black dots) is not observed and the FWHM
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Figure 5.9: (a) Sketch of the set up used to characterize the QWs sample.

shows only an increase with the injected power. Therefore, there is no clear laser threshold-like
behavior. As in the case of QD (sec. 3.1.3), three possible interpretations could be proposed: i)
the system behaves as a high g factor (8 ~ 1) laser [111]; ii) the threshold is at a power lower
than those explored and we do not have enough sensitivity to measure it; iii) the sample does not
show any laser effect. The usual method to identify laser emission is performing a second order
correlation function, which is out of the scope of this thesis. However, it is important to point
out that measurements carried out over a L3-type cavity in a QW PhC of same characteristics
but a resonance centered at 1550 nm showed a possible laser threshold at 12 uW fig. 5.10.c. As
this resonance wavelength is closer to the QW maximum emission than the sample in fig. 5.10.a,
we conclude that the lack of lasing effect comes from the strong detuning of the cavity mode
with respect to the gain maximum. However, it is important to point out that laser emission is
not a necessary condition for the existence of nonlinear dynamical regimes such as the bistability
or the excitability, which are the effects sought in this work.

5.2.2 Bistability measurements

We have demonstrated in the previous section a thermo-optical bistability with switching times
in the ps scale. These time scales are quite slow for fast information processing applications. In
contrast, electronic nonlinearities allow faster switching, limited by the carrier lifetime which is
in the ps to ns scale. Thus, an important task is to isolate electronically induced OB from the
thermal effects.

Preliminary experiments to obtain the electronic bistable regime

In order to determine the wavelength range where the bistability can be achieved, let us begin
with a detailed characterization of the linear resonance, meaning the resonance in the absence
of gain and avoiding spectral broadening due to chirp effects. As previously, this is performed
by coupling into the cavity, via the tapered fiber, a 30nm-broadband signal with a central wave-
length of 1570 nm (as described in section 3.2.2). The reflected signal is collected and sent to an
optical spectrum analyser (OSA). Fig 5.11.a shows the measured cavity resonance. The mode
is centered at A =1571.4 nm and its FWHM of 0.42 nm corresponds to a loaded quality factor
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Figure 5.10: (a) Photoluminescence spectrum of a LS-type cavity (fig. 5.9.a) for a pump power
of 15 uW and 0.5 s of integration time. The mode is centered at A =1565 nm and the resonance
width is 1.7 nm (for this injected power). The PhC period and radius are: a=450 nm and r=120
nm, respectively. (b) Output intensity integral as a function of the pump power (B), both azes
are in logarithmic scale. Resonance width as a function of the injected power ( ®). (c) Idem as
(b) for a mode centered at X\ =1565 nm. The PhC period is: a=445 nm.

of Qioaded = 3752. Note that the mode is red-shifted of about 6.4 nm with respect to fig. 5.10,
which is due to the electronic nonlinear effects induced by the pump in the latter. The arrows in
fig. 5.11.a show the spectral range of wavelength detunings used in the following experiment. As
the injected power is increased, the resonance blue shifts and develops an asymmetric profile. A
blue shift of 1.3 nm is obtained for an injected power of 214 W, black line in fig. 5.11.b. This is
~ 3 times the FWHM of the linear resonance (fig. 5.11.a). The asymmetry of the resonance is a
first hint of the electronic character of the response. After eq. 5.1 we can predict that a bistable
operation should occur for optical injection blue-shifted by more than v/3v/2, with ~ the linear
resonance width (FWHM).

In order to further study the resonance asymmetry with the injected power, additional
spectral measurements were carried out in the CW regime!. They allow discriminating the
origin of the nonlinearity, i.e. thermal or electronic. Indeed, since a thermal effect increases
the refractive index, a thermal bistability produces a bending of the resonance to the "red".

!These measurements were done in collaboration with Patricio Grinberg, Samir Haddadi and Kamel Benche-
ickh.
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Figure 5.11: (a) Reflected signal for a probe power of 95 uW. Arrows Aa to Ay indicate the
wawvelength range for the bistability experiment. The resonance is centered at A = 1571.4 nm and
the quality factor is Q@ = 3752. (b) Reflectivity spectrum of the system resonance for different
probe powers: 214 pW (black line), 160 uW (red line) and 95 pW (blue line). Note the resonance
blue-shifts as the probe power is increased. All the powers are measured at the input of the tapered
fiber.

Conversely, electronic nonlinearities decrease the refractive index bending the resonance to the
"blue". Highly sensitive spectral measures were carried out to study these features.

The cavity is injected through the tapered fiber with a CW signal from a tunable laser,
fig. 5.12. Before injection, the laser output is modulated with a AOM (acousto-optic modulator)
driven at 10 MHz, 47 KHz repetition rate, 0-400 mV signal. This short-pulse-low duty cycle
modulation minimizes the thermal loading. In order to increase the reflected signal detected
with the APD, a Lock-in amplifier is used (’Stanford Research System’, Model SR830 DSP).
The lock-in and the tunable laser are driven through a GPIB interface using a Labview ('Na-
tional instruments’, 8.0) code.

4 T ™\
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Figure 5.12: Set up used to study the resonance bend with the injected power. Modulation period
and pulse duration are: T=21 us and t=100 ns, respectively.

Fig. 5.13 shows the linear resonance (upper trace) obtained as in fig. 5.11 and the output
signal as a function of the injected wavelength obtained from the modulated CW signal with a
peak power of 0.5 mW. Note the strong asymmetry of the resonance, in particular the abrupt
switch at the blue side that clearly demonstrates that the resonance bends to the blue. This
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further confirms the electronic origin of the nonlinear behavior.
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Figure 5.13: Upper trace: Linear resonance obtained using the 30 nm-broadband resonant signal
(as in fig.5.11), resolution: 0.05 nm. Lower trace: Resonance obtained by means of a CW modu-
lated signal and a Lock-in detection. Peak power=0.5 mW, integration time: 300 ms, resolution:
b pm. Note the resonance asymmetry and the abrupt switch at the blue side of the resonance.

Using this technique the transmitted signal was also measured. The particular interest in
the transmission signal is the measurement of the coupling efficiency. Injecting the system with
powers higher than ~200 yW (peak power) the resonance in transmission is asymmetric, fig.
5.14.a, indicating a bistable regime. As the injected power is decreased the resonance develops a
symmetric profile (fig. 5.14.b). In this case the power is below the OB threshold and the linear
resonance is obtained. From this transmitted signal we estimate a coupling efficiency (7), from
egs. 2.31 and 2.36, of n ~ 7%. This value is four times lower than the efficiency found in section
3.2.2(~ 28%). This decrease of the efficiency is attributed to both the QW absorption and the
reduced coupling rate, i.e., increased ). respect to the system in section 3.2.2. Indeed, Q. can be
calculated from Qjoaded and 1 as Q. = Qioaded/n which gives Q. = 53600. This value is almost
one order of magnitude higher than the Q. found for the QD sample. In general, Q). depends
on the tapered fiber characteristics, on the fiber-cavity distance and on the cavity geometry. In
this case the only difference respect to the QD sample is the tapered-fiber (the measurements
in the QD and QW samples were developed with different tapered fibers). Therefore, the fiber
used with the QW sample is less performant than the fiber used with the QD sample.

It is worth mentioning that the absorption quality factor can be calculated from the
quality factor found in fig. 5.11.a, Qoaded = 3752. For this, we will consider the intrinsic
quality factor found in section 4.1, @Q,.q = 6300, as an approximated value for the intrinsic @
in this sample. According to section 1.4, we can estimate the absorption quality factor (Q,), as
1/Qioaded = 1/Qrad + 1/Qa +1/Qc = 1/(1 — 1)Qraq + 1/Qq. From this, we obtain @, = 9760,
which can be used to calculate to 7, giving 7, = 0.15 ps. The latter can be related to the
absorption according to eq. 1.44, leading to o = 66 cm~!. This value is lower than the calculated
for Yacomotti et al. [115], most probably because in our case the cavity resonance is further away
from the maximum of absorption of the QWs than in [115]. Let us stress that in the case of
fig. 5.11.a the cavity quality factor is not limited by the presence of the fiber (due to the low
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Figure 5.14: (a) Transmitted signal as a function of wavelength for an injected peak power of 600
uW. Note the asymmetry of the resonance. (b) Idem for a lower injected power (peak power=100
uW ). Note the symmetry of the resonance, meaning that the injection is under the bistability
threshold. A coupling efficiency of ~ 7% is obtained from this curve.
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coupling efficiency), i.e. Qo ~ Qoaded; instead, it is the QW absorption that lowers the quality
factor with respect to the intrinsic one by about a factor of 2.

Experimental set up to study electronic bistability

In order to obtain a clear signature of the OB operation the system is injected trough the tapered
fiber with a CW nearly resonant signal modulated by a triangular amplitude modulation, fig.
5.15. This is done by sending the output of a tunable laser ('Yenista Optcis’, Tunics Reference
T100-ER, 1490 nm-1650 nm) to an optical amplifier ("Keopsys’, model KPS-BT2) followed by an
acousto-optic modulator (AOM, "AA optoelectronic’, MT 160). The optical amplifier is added
since the AOM introduces ~10 db losses. The modulation is obtained by feeding the AOM with
triangular pulses of 4 MHz, 40 KHz repetition rate, 0—400 mV signal. Under this configuration
the maximum power sent to the tapered fiber is 3.2 mW. This short-pulse-low duty cycle mod-
ulation is applied in order to minimize thermal effects that evolve in a us scale (see sec. 4.1).
In turn, they are quasi-stationary for the electronic time scale whose relaxation time is of the
order of 200 ps (see sec. 4.2). The input and reflected signals collected through the tapered fiber
are both measured as a function of time, by means of a 3.5 GHz DC-coupled photodiode and a
15 kHz-1.1 GHz bandwidth avalanche photodiode (APD, 'New focus’, model 1647), respectively.
These signals are registered in a 13 GHz-bandwidth oscilloscope ('Lecroy’, WaveMaster 813Zi).

Demonstration of the electronic bistable regime

The time traces of the injected and reflected signals are presented in fig. 5.16. The triangular
profile of the injected signal is shown in the upper trace (black line). The reflected signals for
detunings A = \g — \;, = 1.5, 1.7 and 1.9 nm, respectively, where \g is the central wavelength
of the linear resonance (Ao =1571.4 nm) are represented in blue, red and green lines, respec-
tively. The bistable behavior is highlighted in fig.5.16.b where the reflected power is plotted
as a function of the input power for a detuning of 1.7 nm (red curve in fig. 5.16.a), showing
the hysteresis cycle. Note the sense of the loop, anticlockwise, which corresponds to a purely
electronic bistability from a resonant upwards peak, as it is the case of the cavity mode measured
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Figure 5.15: Scheme of the experimental set up used to study electronic bistability. Modulation
period and pulse duration are: T=25 us and t=250 ns, respectively.

in reflection. It is important to point out that thermal effects, if not completely avoided, can
reverse the cycling sense of the hysteresis loop.
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Figure 5.16: (a) Time traces of input (black line) and reflected (blue, red and green line) signals
for detunings of AXNg =1.5, 1.7 and 1.9 nm, respectively. (b) Hysteresis cycles showing bistable
behavior (AXg =1.7 nm). The arrows show the sense of the cycle.

Fig. 5.17 shows the reflected signal as a function of the input power for different detun-
ings. Hysteresis loops are observed for detuning values between 1.9 and 0.4 nm. The loop size
increases for larger A\, up to AX ~1.9 nm; over this value no bistability is observed. The switch-
ing time is measured as the time widths between the minimum and the maximum of the switch
processes and gives ~6 ns for both switch on and off times. This value is 3 orders of magnitude
faster than the switch in the thermo-optical bistability, which is an additional evidence of the
electronic origin of the OB. Indeed, the switching time is limited here by the carrier recombina-
tion time. In a PhC this time is faster than the one associated to the bulk recombination time
[127, 128], which is ~ 2 ns [117]. This acceleration of the recombination process is attributed
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to the increased surface recombination states in photonic crystal lattices. The etched sidewalls
increase the overall surface area of the structure and decrease the carrier lifetime [129]. Thus,
the recombination time in the structure is < 2 ns. In section 4.2, nonradiative recombinations
times in the wetting layer of ~ 120 ps were found; even though it is not the same material and
geometry it gives an order of magnitude for the recombination time. Besides, this time can also
be estimated from [115] as ~ 200 ps, which corresponds to the same material but a different
lattice and mode distribution.

B 4 [— Aj
2| e My
% A r _an Ag
o 3l - }____ 7“F_
8 | %
2
e~ D
A = °
- — C
(0)) ]
o | F 2
-] 7‘5
o 1+t {- g b
e
S — =
- )\’-
A
0 |§- ] .‘-:| \ ] 1
0 1 2 3

Input Power (mW)

Figure 5.17: Hysteresis cycles showing bistable behavior. Detuning-values with respect to the
cavity resonance are, from Agq to A\y: 1.9, 1.8, 1.7, 1.5, 1.8, 1.1, 0.9, 0.7 and 0.4 nm. The input
power is measured at the tapered fiber input. The durations of the switch processes is ~ 6 ns for
the on and off switches.

The minimum detuning for which the bistability is observed is AA =0.4 nm, fig. 5.17.
According to the theory the bistability can be observed for detunings larger (in modulus) than
V3, with the detuning defined as § = (wo — win)/(7/2). Using Qioaded = 3752, Ao = 1571.4
nm (from fig. 5.11.b) and Ajp; = 1571 nm, 6 ~ 1.83 which is close to the minimum detuning
necessary to the bistable behavior.

The incident powers were measured at the input of the tapered fiber. The actual inten-
sity arriving to the cavity for a given injected power is difficult to determine. However, we can
estimate this intensity by means of the tapered fiber losses. Thus, the power in the vicinity of
the cavity is estimated as: Pj, ~ 0.57Pj,,y, meaning that the bistability threshold from fig.
5.17 (Pinjected,thr = 0.3 mW) is close to Py, ¢n, ~ 170 pW. This is a rough estimation since it as-
sumes that the losses are uniformly distributed along the fiber. From this value we can estimate
the intrinsic threshold (independent of the coupling method), i.e. the power actually coupled
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into the cavity, as the power in the vicinity (P;,) multiplied by the coupling efficiency (7).
Then, the intrinsic threshold power Pj,trinsic,thr 18 given by Pitrinsic.thr = NPin thr ~ 12pW.

This value is what we will consider as the bistability threshold. This value can be compared
P‘(theo)

with the theoretical one (P, .~ . .,

th . L . . .
Zgltzogm cinr ~ Uoeldo|/T, where Up is the characteristic intracavity energy, described in sec-

tion 1.4, and 6y = 0.4 nm/(0.42 nm/2) = 1.9, according to the experimental results. Thus,
(theo)
intrinsic,thr

) obtained from coupled mode theory and eq. 1.38 as

~ 8 uW in good agreement with the experimental results.

The intrinsic bistability threshold found (~ 12uW), in good agreement with the value
found by Kim et al. [87], is at least one order of magnitude smaller than the threshold of optical
bistability in monolithic vertical cavities [24] and ring resonator devices [94]. This is due to a
strong reduction of the mode volume in a PhC cavity. Indeed, according to [28, 21] the threshold
scales as V/Q?, with V the mode volume of the structure and Q its quality factor. Similar
thresholds were obtained in Si PhC cavities by Notomi et al.[82]. In this case the mode volume
was of the same order of magnitude while the quality factor was @) ~ 33400. The fact that
our threshold compares well with the one found in [82] for Q factors ten times higher, is clearly
related to the higher nonlinearity associated to the single photon absorption in contrast to the
two-photon absorption in Si, as discussed in section 1.4. In other words, even when the quality
factor is degraded by absorption, low threshold can still be achieved taking advantage of the
large nonlinear coefficients in III-V semiconductors.

5.3 Conclusion

Optical bistability of two different physical origins were studied. In both cases the dynamics of
the system is governed by a single dynamical variable. The dynamical variables studied here
were: a slow variable given by the temperature change inside the cavity and a fast one given by
carrier recombination in QWs.

Thermal dynamics has been investigated within a thermo-optical bistable regime. A
bistable behavior has been observed for injected power higher than ~1 mW. The theoretical and
experimental bistability threshold estimated and measured, respectively, at different points of the
system are shown in table 5.1, i.e. input power (Pjppy¢); power in the vicinity of the cavity (FP;p);
and intrinsic threshold (Pj,irinsic, the power that is coupled into the cavity). Switch-on/off times
of 2 us and 4 ps respectively (from the hot to the cold states) were measured. As expected, both
are related to the 1 us characteristic time measured in the linear regime. By means of a simple
nonlinear dynamical representation we explained the origin of the difference in time between the
switch-on and off processes. This difference can be mathematically explained by the opposite
slopes of dP/dj at the fixed points.

Fast optical bistability was observed in samples with QWs as active material. Low power
threshold, P;, ~ 12 uW, and fast switching times, ¢t ~ 6 ns, were found. Since this time is three
orders of magnitudes lower than the characteristic thermal time and the nonlinear refractive index
is negative, we conclude that the nonlinear effects leading to bistable behavior is electronic.
This was demonstrated through spectral measurements, where a bending of the resonance to
the blue-side was observed. Looking at the resonance contrast in transmission we obtained a
coupling efficiency of n ~ 7%. Table 5.1 summarizes the theoretical/experimental threshold
power estimated /measured at different points of the system. Note the similarities between the
theoretical and experimental threshold. It is worth mentioning that, whereas for the theoretical

111



Pi”PUt P; Pintrinsic

Thermal Theoretical |00|Uo/(1)=210 W | |00|Uy/T7=67 pW
Experimental | 1 mW 260 uW 83 uW

. Theoretical |00|Uo/(t1)=114 puW | [60|Uo/7=8 uW
Electronic - erimental | 300 v 170 oW 12 W

Table 5.1: Table summarizing the theoretical and experimental bistability threshold (of thermal
and electronic origin) measured or estimated at different points in the system: power measured
at the fiber input(Pinpyt), power in the vicinity of the cavity (Py,) and power that is coupled into
the cavity (Pintrinsic)- |00| for thermal and electronic bistability are: 2.2 and 1.9, respectively.

thresholds of thermal origin one of the parameters arises from a fit («) in the case of electronic
effects all the parameters were obtained from the experimental data. The bistability threshold
found, Ppirinsic,thr = 12 pW, which is of the same order of magnitude that the threshold reported
in [87], is at least one order of magnitude smaller than the threshold of optical bistability in
monolithic vertical cavities[24] and ring resonator devices [94] mainly due to the small V/Q?
ratios in PhCs.
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Chapter 6

Nonlinear dynamical regimes involving
both thermal and electronic dynamical
variables

In the previous chapter we have investigated optical bistability originated either by thermal or
electronic nonlinearities. A particular effort was devoted to isolate eletronic nonlinear response
from the ubiquitous thermal effects. In this chapter, we investigate nonlinear dynamical regimes
governed by the combination of thermal and electronic nonlinear effects. We will show that
this combination can produce either self sustained oscillations or excitable responses, depending
on the excitation conditions. Both regimes can be understood as the result of the interplay or
competition between the effects of the two nonlinear dynamical variables. These behaviors are
of interest in the context of optical information processing and all-optical devices.

6.1 Self-sustained oscillations

Self-sustained oscillations studied here are the consequence of the competition of two nonlinear
responses of opposite sign and distinct time scales. In our case this competition is given by the
positive and slow thermal nonlinearity and the negative and fast electronic nonlinearity.

Let us first analyse the origin of the self sustained oscillations from the OB cycles demon-
strated in the previous chapter. If the system is injected with powers above the bistability thresh-
old then a possible state of the system is in the upper branch of the hysteresis cycle. In this
state, heating is enhanced, shifting the hysteresis cycle to higher injection powers. Therefore, a
jump to the low reflectivity state is likely to occur, with a subsequent cooling. Hence, a jump
back to the high reflectivity state takes place, giving rise to a periodic signal where the period is
leaded by thermal effects. These self-pulsing oscillations were theoretically studied in detail by
Yacomotti et al. [89] in the framework of the nonlinear dynamics of the field inside a resonator
coupled to both electronic and thermal variables. The model proposed in [89] contains the slowly
varying amplitude of the electromagnetic field (E) and carrier density (N). An example of the
self-sustained oscillations is presented in fig 6.1.a. The oscillating regime can be seen in the phase
portrait as an unstable fixed point solution and a stable limit cycle, fig. 6.1.b. Note the different
times scales: the period, governed by the thermal time scale, and the rising and falling edges
governed by the electronic time scale.
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Figure 6.1: Solutions to the model proposed in [89]. (a) Time trace and (b) phase portrait for
the reflected signal. & denotes the detuning. x-azxis unit in the time traces plot is 7, = 0.84 us.

6.1.1 Self-sustained oscillations demonstration

In the previous chapter, thermal effects were avoided by the introduction of a slow modulation
to the CW injection signal. This modulation prevents any accumulation of the excitation at the
scale of thermal dynamics. In order to investigate the interplay of electronic and thermal dynam-
ics, the modulation is now switched off in the set-up sketched in fig. 5.15, section 5.2. Injecting
the cavity via the tapered fiber with a power above the threshold of the OB, the self-sustained
oscillations presented in fig. 6.2 are observed, where the reflected signal as a function of time is
plotted for different detunings. A shrinking of the pulse as the detuning increased is observed.
The pulse duration is related to the initial position on the upper branch of the hysteresis cycle
and its distance to the bistability threshold. As this position changes with the detuning, the
pulse duration also changes.

Fig. 6.3 shows a zoom of a single pulse of Ap in fig. 6.2 where the rise time and the
pulse duration are depicted. Note that the pulse duration is in the time scale of the thermal
processes (see section 4.1) while the rise time is of the order of the switching times found for
the electronic bistability (see sec. 5.2.2). These times confirm the fact that in the self-sustained
oscillations regime two dynamical variables are involved: thermal and electronic nonlinear effects.

Interesting enough, the presence of self-pulsing dynamics as the one observed here allows
to predict the existence of excitability. Indeed, as far as the system is injected below the oscil-
latory threshold, pulses are no longer self-sustained. Instead, they can be triggered by adding a
small external perturbation, as we will see in the next paragraphs.

6.2 Excitable regime

Excitability is a nonlinear dynamical mechanism underlying pulse-like responses to small per-
turbations in systems possessing one stable state. An excitable system reacts to an external
perturbation in the form of all-or-none pulse responses, depending on whether the perturbation
is above or below a certain threshold. In 2D PhC the excitable response can be considered as an
action potential neuron-like ultrafast response. Excitable systems can switch from self-sustained
oscillations to an excitable behavior as one control parameter is varied. In our case this control
parameter is the injected power. In this section we present an experimental demonstration of
excitable response in a 2D PhC nanocavity.
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Figure 6.2: Self-sustained oscillations. Reflected signals as a function of time for different de-

tunings, from Agq to Ag: 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2 and 1.1 nm. The inpul power, measured
at the tapered fiber input, is 3.2 mW.
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Figure 6.3: Pulse isolated from a train of self-sustained oscillations for a detuning of 1.7 nm and
3.2 mW of injected power.

6.2.1 General remarks

The type II excitability can be explained, as in the case of self-sustained oscillations, by consid-
ering slow thermal effects and fast electronic ones. Given the system in a stationary state, if a
perturbation kicks it from the low to the high reflectivity branch of the hysteresis cycle, then
heating is enhanced, shifting the hysteresis cycle to higher injection powers. Therefore, a jump
back to the high reflectivity state is possible, with a subsequent cooling, giving rise to a closed
dynamical cycle at the origin of a upwards pulse.

This dynamics was modeled in [89], for a Bloch-mode PhC (for which the response in
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transmission and reflection are inverted with respect to our configuration). Fig. 6.4 shows the
results in the phase portrait (fig. 6.4.a) and time traces (fig. 6.4.b). The excitability can be
distinguished in the phase portrait as a stable fixed point and a trajectory that starts in a small
neighborhood of the equilibrium state, leaves this region, and then returns to the quiescent state,
fig. 6.4.a. Fig. 6.4.b shows the time traces for two different detunings showing the dependence
of the pulse duration with the detuning.

]
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. 06_4
time (\(th )
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Figure 6.4: Solution to the model proposed in [89]. (a) Phase portraits and (b) time traces of the
reflected power. § denotes the detuning. x-azis unit in the time traces plot is T, = 0.84 us.

6.2.2 Set up description

The experimental set up implemented to study the excitable behavior is shown in fig. 6.5. The
system is injected through the fiber with a CW signal as previously. The injected power is
kept below the threshold of self-sustained oscillations and an incoherent perturbation is sent by
the surface. This perturbation induces the excitable response by kicking the system from the
stable state. The perturbation beam is generated at 808 nm by a CW diode laser ("Thorlabs’,
L808P200). This is focused down via a 50x microscope objective to a diameter of ~ 4 um
(@1/e? of the intensity) illuminating the structure normally to the 2D PhC periodicity. The
perturbation signal is modulated by means of a free-space AOM ("AA optoelectronic’, MT350).
The modulation is obtained by feeding the AOM with triangular pulses of 7.7 MHz, 40 KHz
repetition rate, 0-1 V signal. This modulation is set in such a way that perturbation durations
are shorter than the self-sustained oscillation period. The peak power attaining the sample is
varied from 0 to 400 uW by changing the diode current.

6.2.3 Excitable response

For testing the excitable regime, the system is prepared with a detuning of A\ = 1.5 nm. For
this detuning the self-sustained oscillations threshold is 2.9 mW. Therefore, the signal power is
set to 2.6 mW, at which the stable state corresponds to a low reflected power. We perturb this
state by injecting the incoherent pump pulse by the surface. Fig. 6.6 shows the reflected signal
as a function of time (lower trace). For perturbation powers lower than 1 pW, no output pulse
is observed (black line). As the perturbation power is increased up to 20 puW a 2-us-duration
reflected pulse is observed (red line). The pulse characteristics remain essentially invariant for a
further increase of the perturbation (fig. 6.6). The existence of a threshold and the invariance
of the output pulse for different injected powers are strong evidences of the excitable nature of
the reflected signal. This constitutes the first ever reported demonstration of excitable pulses in
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Figure 6.5: Sketch of the set up used to study the excitable regime. Period and duration of the
perturbation pulses are: T=25 us and t=130 ns, respectively.

an optical nanocavity.

As discussed in chapter 1 two main families of excitable regime are identified. In class
IT excitability the response is driven by the coexistence of a fast and slow times scales. From
fig. 6.6, the pulse duration is ~ 2 us and the rise time of the pulse is ~ 2 ns. Moreover, in
the transition between excitability and self-sustained oscillations the pulses have a finite period,
showing that the oscillations arise from a Hopf bifurcation as in Type II excitability. Instead, in
Type I excitability, the oscillations arise from a saddle node bifurcation, thus, the pulses do not
show a periodicity in the transition and they are sensitive to noise. Then, the optical response
shows a slow and a fast dynamics which builds confidence on class II excitability.

Perturbation
Ve

10 20 30
Time (us)

Output Signal (arb units)

Figure 6.6: Fzcitable responses (bottom traces) to 130ns-width, 40-KHz-repetition rate pulse
perturbations (top trace) for different perturbation powers: 1 pW (black line), 20 uW (red line),
35 pW (blue line) and 46 uW (green line). The injected signal power is set at 2.6 mW and the
detuning is A\ = 1.5 nm.

Fig. 6.7 shows the excitable response for different detunings. In all the cases the signal in-
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tensity is kept below the self-sustained oscillations threshold by a factor 1.8 and the perturbation
power is set above the largest excitability threshold, at 80 uWW. We observe, as it was discussed
for the self-sustained oscillations regime, a shrinking of the excitable pulse with the detuning.
Besides, we can distinguish two behaviors: a fast and a slow, quasi-stationary, response. The
fast and well contrasted response occurs for both high detunings and injected powers (fig 6.7,
A, Ap and A¢). An ultrafast pulse-like response can be interesting for applications in optoelec-
tronic devices, such as optical switching, pulse reshaping [32] and in the context of excitable logic
gates [130]. Slow, quasi-CW bistability but less contrasted pulses occur for low both detunings
and injected signals (fig 6.7, Ar). This quasi-steady-state bistability can be interesting for the
applications of this system to long optical memories or sensors.
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Figure 6.7: FEzcitable responses (bottom traces) for different detunings. The injected power is
set a factor 1.8 below the self-sustained oscillations threshold. The detunings and the injected
powers, from Aa to A\, are: 1.8 nm and 2.9 mW , 1.7 and 2.5 mW, 1.6 and 2.2 mW, 1.5 and
1.8 mW, 1.4 and 1.6 mW, 1.8 and 1.3 mW, 1.2 and 1.2 mW, 1.1 and 0.9 mW, and I nm and
0.8 mW, respectively. The top trace corresponds to the perturbation signal (peak power=80 puW).

The optical pulses found in excitability measurements, as well as the pulses found in
self-sustained oscillations, show a particular shape: an overshoot before the trailing edge. This
shape is quite intriguing and could be the consequence of a quite different situation, e.g. a
change in the pulse shape can be given by a particular type of hysteresis cycle such as optical
bistability of Fano-like resonances [131]. These are often found in PhCs as the consequence of
the coupling between a resonant mode and a quasi-continuum of radiative modes. Nevertheless,
as the hysteresis cycles found in the bistability measurements show the regular S-shape, this par-
ticular pulses shape must have another origin. In order to gain more insight into this unexpected
shape, additional bistability measurements, as depicted in section 5.2.2, are developed for longer
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durations of the signal modulation. Fig. 6.8.a and b show the output signal (lower trace) and
the input power (upper trace) as a function of time for two different modulation times: 11 us
and 10 ps with 1 ps time-out, respectively. A small upper peak at the end of the bistable pulse
is observed in fig. 6.8.a and by adding a time-out this peak becomes more evident, fig. 6.8.b.
Note the similarities between the shape of the bistable pulse (fig. 6.8.b) and the excitable pulse
(fig. 6.6). The fact that the peak develops within constant injection time windows, and with us
time scales points to their thermal origin.
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Figure 6.8:  Bistability measurements for a longer signal modulation with constant injection
intervals: (a) 11 us and (b) 10 ps with 1 ps of time-out. Reflection signal (lower trace) and
input signal (upper trace) as a function of time for a detuning of ANy = 1.6 nm. Note the
similarities between the shape of the bistable pulse and the excitable pulse (fig. 6.6) specially the
curve in (b).

As discussed in chapter 1, another important characteristic of the excitable phenomenon
is the existence of a "dead time" between two successive events, called refractory time (7). This
time is defined as the time it takes for an excitable system to be ready for a second stimulus once
it returns to its resting state. In order to experimentally investigate this refractory time, two per-
turbation pulses are sent to the sample and the optical response is observed as a function of the
delay between these two pulses. Fig. 6.9.a-d show the reflected signal and the perturbation signal
as a function of time for three or four different delays and for detunings: AX = 1.2,1.1,1,0.9
nm, respectively. We observe a clear dependence of the refractory times with the detuning: the
higher the detuning, the shorter the refractory time. The obtained times are: ¢, ~ 2 us for
AX=1.2nm, t, ~ 3 us for AN = 1.1 nm, ¢, ~ 4 ps for AX=1nm and ¢, ~ 6 us for AX=0.9
nm.

Fig. 6.10 shows the linear dependence of the refractory time with the excitable pulse
duration (red line in fig. 6.10). Further theoretical work is necessary to understand this linear
dependence. The refractory time has been studied in detail in biology for neurons (where it
is in the ms range). To the best of our knowledge, this is the first time it is systematically
investigated in a photonic system. This information can be relevant for applications of excitable
optical system to all optical devices.
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Figure 6.9:  OQutput signal and perturbation signal (lower and upper trace in each plot) as a
function of time for different delays between perturbation pulses and for (a) AN = 1.2 nm, (b)
AN =1.1 nm, (¢) AN =1 nm and (d) AN = 0.9 nm. The refractory times are: (a) t, ~ 2 s,
(b) t, ~3 us, (c) t, ~4 us and (d) t, ~ 6 us.
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Figure 6.10:  Refractory time from fig. 6.9 as a function of the excitable pulse duration. Red
line: linear fit (y=a+bz, with a = (0,5+0,3)1/us and b= (1£0,1) us).

6.3 Conclusion
Self-sustained oscillations were experimentally demonstrated injecting a L3 PhC, containing QWs

as active medium, with a CW signal above a certain threshold. A dependence of the pulse
durations with the detuning was found, as it was already observed in [89] for a Bloch mode.
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We have obtained an excitable regime by injecting, through the tapered fiber, a CW signal with
a power below the self-sustained oscillation threshold, while an incoherent perturbation was sent
by the surface. A dependence of the excitable pulse duration with the detuning was observed. In
particular, a transition from quasi steady state bistbility to excitability was identified. Studies of
the refractory time were carried out and a linear relation between this time and the duration of
the excitable pulse was found. To our knowledge, this is the first time it is studied in a photonic
system. The excitability and self-pulsing studies constitute the first ever reported demonstration
of excitable pulses in a PhC nanocavity. The excitable and self-sustained oscillations behavior
of the 2D PhC nanocavities can be of great interest in the development of photonic reservoir
computing and all-optical circuits, such us clock recovery and pulse reshaping.
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Part 111

Nonlinear behaviors in evanescently
coupled cavities

123






In the previous part we have obtained interesting nonlinear dynamical behaviors in L3
PhC cavities, such as electronic and thermal optical bistability, self-pulsing regimes and elec-
tronic excitability. In this part, we will focus on nonlinear dynamics in coupled cavities. In the
first chapter, the evanescent coupling between PhC cavities is numerically investigated by means
of FDTD simulations. Moreover, a theoretical model based on a coupled mode theory formalism
is carried out in order to address the spontaneous symmetry breaking in nonlinear evanescently
coupled cavities. In particular, the symmetry breaking in our experimental conditions is inves-
tigated.

In the second chapter, preliminary experimental studies on the coupling between two
adjacent cavities etched in the same PhC are carried out by means of photoluminescence mea-
surements. Conclusive studies of the coupling are developed through images of the near and far
field emission profiles.

In the last chapter, we report on nonlinear dynamical measurements in two coupled L3
cavities. Bistable, self-sustained oscillations and excitable regimes are investigated. We finish this
chapter by applying the theoretical formalism developed in the first chapter to the experimental
conditions.
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Chapter 7

Theoretical and numerical calculations
of coupled cavities

Nonlinear coupled resonators can lead to interesting nonlinear behaviors such us symmetry break-
ing or pulse transmission in chains of excitable cavities. Symmetry breaking in all-optical de-
vices attracts considerable attention due to its potential application to all-optical flip-flops. This
phenomenon arises from the coupling of two identical nonlinear resonators under symmetrical
excitation. When the incident field exceeds a certain value, the symmetric solution may no longer
be stable and the system comes to a situation where the intensity inside each resonator is dif-
ferent. As a result, a non-symmetric state takes place, while linearly, the modes are completely
delocalized in such a way that the intensity inside each resonator remains equal.

Once the symmetry breaking is achieved, e.g. more intensity in the right cavity than in
the left one, a simple perturbation can switch the steady state to confine the intensity into the
left cavity, giving rise to an optical flip-flop.

In previous works the symmetry breaking in cavitites with Kerr nonlinearity has been
theoretically demonstrated by equally exciting both cavities from two separated ports [64], fig.
7.1. This system is interesting but quite difficult to reproduce experimentally since the excita-
tion must be completely symmetric (in amplitude and phase). For this reason, in this section,
we address symmetry breaking in two coupled cavities symmetrically excited through one single
port. Such configuration is expected to considerably simplify the conditions for an experimental
realization.

In the first part of this chapter we study the spatial field distribution of two linear coupled
cavities by means of FDTD numerical simulations. In the second part the coupling between
the two cavities and the external continuum is investigated through a Coupled Mode Theory
(CMT) formalism. Finally, the parameters are adjusted in order to investigate the spontaneous
symmetry breaking in two particular configurations, one of them accounting for the experimental
conditions.

7.1 FDTD numerical simulations of two L3 coupled cavities

In order to study the evanescent coupling between cavities in a PhC, FDTD numerical simula-
tions of two L3 cavities were carried out!. The method is the one discussed in section 2.1. The

'These calculations were done in collaboration with Timothy Karle, post-doc in our group.
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Figure 7.1: (a) Sketch of the coupled cavities structure. (b) The PhC device, with a 4 period-
long connecting WG. The electric field distribution is superimposed to illustrate the defect modes.
Image from [64].

simulated structure (see fig. 7.2) corresponds to two modified L3 cavities separated away by
three rows of holes in the I' — M direction.

Figure 7.2: Scheme of the two L& cavities simulated in FDTD. The parameters are: a=435nm,
r=0.3a for the period and holes radius, respectively.

The simulation has a spatial resolution of a/20 = 21.75 nm in x and z-directions,
V3a/36 ~ 20.9 um in y-direction, and a material refractive index of 3.3. The PhC period
and hole radius are a=435 nm and r=0.3a, respectively; and the two holes closing the cavity are
shifted away 0.15a. The dimensions of the sample are 28 periods (12.2 pum) in x-direction and
19 periods in y-direction (8.3 pum). The integration volume, shown in fig. 7.2 (grey area extends
over half of the space in the z-direction), takes benefit from the symmetry of the structure . The
electromagnetic field, calculated in this zone, is subsequently extended to the whole structure
with the boundary conditions for the electric field shown in fig. 7.3. Fig. 7.3.a and b show the
symmetry conditions of the y-polarization for the simulation of the symmetric and antisymmetric
modes, respectively. The boundary conditions for the x-polarization are deduced from the latter.
The system is excited with an electric dipole polarized in the y-direction located in the center of
one of the cavities.

As a result of these simulations, two resonant modes were obtained, one at 1.596 pm with

a quality factor of 18000 and the other one at 1.6 um with @ = 35000. This resonance splitting
results from the evanescent coupling between the cavities. The first mode corresponds to the
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Figure 7.3: Scheme of the boundary conditions for the electric field used in the FDTD simulations,
for the y-polarization to simulate the symmetric (a) and antisymmetric mode (b), respectively.

symmetric one while the second to the antisymmetric mode. The symmetry of the first mode
(A=1.596 pm) is shown in fig. 7.4.a. Note that the energy is confined in the cavities region, as
expected, and the principal component of the electric field is polarized in the y-direction. It is
important to point out that the symmetric mode is at higher energy than the antisymmetric one,
contrary to the case of classic resonators such as micropillars and microrings. This will play an
important role in the following.

The far field emission profile in k-space for the symmetric mode is shown in fig. 7.4.b,
calculated as the spatial Fourier transform of the electromagnetic field monitored at twice the
membrane thickness (~ 0.9 ym from the membrane surface) in z-direction. We observe two lobes
at ~ 70°. Note the emission profile is similar to the one found in section 2.1 (fig. 2.4) for a single
cavity.

On the other hand, the mode centered at 1.6 pum reveals an antisymmetric spatial distri-
bution of the field in the membrane, see fig. 7.5.a.

The emission profile of the antisymmetric mode in the far field has four lobes at ~ 70°,
fig. 7.5.b. While the far field emission of the symmetric mode is hard to distinguish from the
one of a single cavity, the emission of the antisymmetric mode is qualitatively different. The
minimum of intensity at k, = 0 arises from the destructive interference between the emission of
each cavity since they are in anti-phase. This difference can be used to experimentally check the
coupling between cavities, see chapter 8.

It is important to point out that the symmetric and antisymmetric modes only exist for
the particular case where the two cavities are equivalent (i.e. equal resonance frequency and
quality factor). Nevertheless, in a general case, where an asymmetry between the cavities takes
place, the two modes of the system still present the same phase difference between the cavities
as the symmetric (¢ = 0) and antisymmetric mode (¢ = 7). These modes, for the general case,
are usually called bonding (¢ = 0) and antibonding (¢ = 7). We will return to this in section 8.4.

Typically, in coupled systems, the symmetric mode has less energy than the antisym-
metric one, as the simple case of two masses coupled by a spring: the symmetric mode is the
fundamental one. However, this is not imposed by any fundamental principle. According to the
numerical simulations for two L3 cavities separated away in the I' — M direction the situation is
the opposite one. In order to better understand this result, 2D FDTD numerical simulations of
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Figure 7.4: (a) Spatial field distribution for the symmetric mode (A = 1.596 pum) at the membrane
center. (b) Far field emission profile of the symmetric mode calculated as the Fourier transform of
the field stored on a monitor positioned at twice the lattice period (~ 0.9 um from the membrane
surface). Note the similarities with the emission profile of a single cavity (fig. 2.4)
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Figure 7.5: (a) Spatial field distribution at the membrane center for the antisymmetric mode
(A =1.6 um). (b) Far field emission profile of the antisymmetric mode calculated as the Fourier
transform of the field stored on a monitor positioned at twice the lattice period (~ 0.9 pm from

the membrane surface).
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two W1 waveguides separated away by three rows of holes in the I' — M direction were carried
out. Fig. 7.6 shows the band diagram of the coupled W1s. Note that there is a range of k where
the splitting of modes is important and for which the symmetric mode is at lower wavelength
than the antisymmetric one. In the case of cavities, since the mode is spatially confined, the
(discrete) translation invariance is broken and the mode becomes confined at around k ~ 0.4.
It can be observed that, for such k-value, the symmetric mode has higher energy than the anti-
symmetric one. For longer cavities, the central k-vector is expected to approach the edge of the
Brillouin zone (k = 0.5): in such case, the situation would be reversed. It is worth mentioning
that in general, according to [56] (fig. 1.33) the sign of the coupling, which determines the mode
at higher energy, can be exchanged by changing the coupling configuration. This represents an
advantage of PhC over other systems, such as microdisks or micropillars: the geometry can be
chosen to tailor not only the coupling strength but also the coupling sign.

a'A

0.31
03 50.°

029
Symmetric

8

028 ) oo

Ooo§§9@8

027 Antisymmetric— 1

0 01 02 03 04 05
k(2ra)

Figure 7.6: Band diagram for two coupled W1 waveguides separated away by three rows of holes.
Note there is a range of k where the splitting of modes is important and for which the symmetric
mode 1s at lower wavelength than the antisymmetric one. The green region shows the mode
confinement in k for a L3 cavity. The PhC period and radius are: 430 nm and 0.34a, respectively.

7.2 Evanescently coupled linear cavities

Once the mutual coupling of PhC cavities has been numerically addressed, we investigate the
coupling to the outside. In the following, we consider two evanescently coupled linear cavities
coupled to the external continuum through n individual ports and m common ports (fig. 7.8.a).
Each cavity has a coupling time to the ports 7.

The dynamical equations for this system are [132]:

da )
= = (% —Da+ KT|sy) (7.1)

|s_) = Cls4) + Da (7.2)
where a is the resonant field inside the cavities, a = (a1, a2). € is a matrix with the resonant
frequencies (wp) of the cavities and the evanescent coupling efficiency (k) between them and I'

contains the losses. K and D are the coupling matrix from the ports to the cavities and vice
versa. Using the same considerations as in section 2.2, it can be demonstrated that K = D.
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Figure 7.7: Scheme of two coupled cavities coupled to the outside by n individual ports and m
common ports.

Taking the cavity modes as the basis we can express 2, ' and D as:

Q= ( ‘20 u’jo ) (7.3)

(4 47) ™

d, 0
d, 0
d1 d1
D= : (7.5)
Ay
0 d
0 d,

where d and d' are the coupling strengths between the cavities and the common or individual
ports, respectively.

Considering H = j — I', the modes of the system are given by the eigenvectors of
H. From eqs. 7.3 and 7.4, H is hermitian, then the eigenvectors form an orthogonal basis.
Moreover, since the system is symmetric under reflection upon the x-axis, the eigenmodes are
the symmetric and the antisymmetric ones. The wave amplitudes of the eigenmodes (cg and c4
for the symmetric and antisymmetric modes respectively) oscillate with complex frequencies

Q54 =wsa+1i/Ts.a (7.6)

where wg 4 and 1/7g 4 are given by:
ws A =wytkK (7.7)
/rsa=1/TF~ (7.8)

Using DYD = 2I' [132], as in eq. 2.8, we obtain the relation between d, d’, 7 and + given
by:
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> ldi® = —2y (7.9)
=1

n m 2
DI+ ldif* =~ (7.10)
=1 1=1

In order to further simplify the calculations, we consider that the coupling strength of
the individual/common ports are equal (d} = ... =d), =d'/ di = ... = d,, = d). Egs. 7.9 and
7.10 then read

mld|* = —2v (7.11)

2
n|d'|* +ml|d)?* = = (7.12)
T

Eq. 7.12 relates the modulus of d and d’ with v and 7. To relate the phases of d and
d" with the system parameters, the matrix C' must be defined. In eq. (7.2), C corresponds to
the direct process, meaning the direct incoming field coupling to the ports. The direct process
can either be resonant or given by evanescent coupling. These processes can be described by the
followings unitary matrices C, and C,, respectively:

A0 .. .. . ... ... .0
0

s

: eId :

oI
s

: .0

0 Y | BPYA

0 e 0 0
i 0

0 0 ... &9 :

Ce=| : - : (7.14)

e ... 0 0

0 ejd)l

0 ... ... .. ... 0 €Y .. 0

where ¢ and ¢’ represent the phases, which depend on the properties of the ports. Applying eq.
2.16 (CD* = —D) to egs. 7.5 and 7.14 and writing d as d = |d|exp(joq), d' = |d'|exp(jopq) we
obtain:

e2ta = —ei¥': 2ta = _¢i® (7.15)
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Eq. 7.15 leads to ¢g = ¢/2 4+ w/2. Then d = j|dlexp(jp/2).
This formalism has allowed us to find out the relation between different parameters in a system
of linear coupled cavities. We will apply these results in the following section to the study of
nonlinear coupled cavities.

7.3 Evanescently coupled nonlinear cavities

Here we consider two evanescently coupled nonlinear cavities coupled to the outside as in fig. 7.7.
The dynamical equations are given by the set of equations deduced in section 1.4. Considering
only an electronic nonlinear effect and adiabatically eliminating the differential equation for
carrier density for simplicity (i.e. taking the steady states solution of eq. 1.56, section 1.4) , the
dynamic equation for the intracavity energy is given by adding a nonlinear term to eq. 7.1 (see
eq. 1.69 in section 1.4). Thus,

d(ILQ

aq.9|? 1 .
o ﬂ) lai2 + (jk +7v)ag1 + df (7.16)

= [j(wo + To.e -

with Upe = Tq, \asat|2 /apT the characteristic intracavity energy for electronic bistable threshold,
d = jldlexp(j¢/2) and |f|? is the injected power through one common port. As previously
discussed, given the negative sign of the nonlinearity, the intensity blue-shifts the resonance.
Considering aj o(t) = d/(t)e?™t, f(t) = fe/*! and ¢’ = t/7 in Eq. (7.16) the steady states are
given by [64]:

—7df =j(0 + A) — 1)a} + (j7k + 77)d) (7.17)
—7df = j(6 + B) — 1)ah + (j7k + 7y)a} (7.18)
_ _ |C‘1‘2 . |Cl2|2 . . .
where 6 = 7(wg — w), A = —— and B = ——. Equating the right sides of eqs. (7.17) and

0,e 0,e
(7.18) and taking squared modulus, eqs. 7.17 and 7.18 give:

(A—B)[B*+ (A420)B+ A2 + 2AA + A* + (1 +717)*] =0 (7.19)

Here
A=6—7Kk=7(wa —wo) (7.20)

From Eq. (7.19) it is easy to show that a non-symmetric solution (A # B) is possible if [A| >
V3(1 4+ 77) with A lying between the values —2/3A & 2/3,/A2 — 3(1 + 7)2. Moreover, since
A must be positive by definition, A must be negative, thus A < —v/3(1 + 7), which implies,
according to eqs. 7.20 and 7.8, that 74(wa — wy) < —v/3. Surprisingly, this corresponds to the
condition for bistability of the antisymmetric mode.

In the following we apply these results to two particular cases well suited for an experimental
demonstration.

7.3.1 First case of study: Two cavities coupled to the external continuum by
three ports

In these paragraphs we will consider the particular case where the cavities are coupled by three
ports: two individual ports and a common one. It has already been demonstrated that sponta-
neous symmetry breaking takes place for two nonlinear PhC cavities coupled through a waveguide
(see section 1.2.3). We will see that our particular case contains the system dynamics studied
in [64], in the sense that parameters in [64] can be mapped to the parameters of our theory.
Therefore, the solutions of [64] are formally equivalent to some set of solutions of eq. 7.16. Fig.
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7.8.a shows a sketch of the system. Note that the coupling strength from one cavity to the left
and right ports is considered to be the same. In this configuration n=1 and m=1; replacing these
in eqs. 7.11 and 7.12, and further assuming |d| = |d’| by construction, leads to:

-1
= 21
T= 5 (7.21)
2 1
> = = (7.22)
T

d
@)= (e
=0 s
b o ! a=0.43 pm
— d 0342 2
5 :

(a) (b)

Figure 7.8: (a) Scheme of two coupled cavities coupled to the outside by two individual ports and
one common port. (b) PC device compatible with (a).

Replacing eq. 7.21 in the expression for 1/75 4 (eq. 7.8) we obtain 1/7¢ = 3/27 and
1/74 = 1/27, so the antisymmetric mode has reduced losses with respect to the single cavity
whereas the symmetric one has increased losses. Regarding {g/4, we obtain that for positives
values of k: , < wy < Q5. FDTD numerical simulations of section 7.1 have shown that this is
the case of two evanescently coupled L3 cavities separated away in the I' — M direction by three
rows of holes, fig. 7.8.b.

Replacing eqs. 7.21 and 7.22 in eq. 7.19, we obtain:
(A—B)[B*+ (A+20)B+ A? + 20AA+ A* +1/4] =0 (7.23)

Note that eq. 7.23 is analogue to eq. 6 in [64] provided A = A’. This allows us to identify
Tk = tg(¢/2)/2 where ¢ represents the phase that depends on the waveguide length and the
PhC reflection properties in [64], fig. 7.1.b. Let us stress that this analogy is only obtained for
the system of fig. 7.8, where v = —1/27, since « changes for different system architectures. This
means that the system in [64] can be mapped to a subset of solutions of a system of evanescently
coupled cavities.

Replacing eqs. 7.21 and 7.22 in eqs. 7.17 and 7.18, taking squared modulus and combin-
ing both, we obtain the energy inside the cavities (A or B) as a function of the injected power
(Pin, = | f|?/ Py, with Py = Ug¢/(7%|d|*) = Up /7). This is represented in fig. 7.9 for different de-
tunings and 7« = 0.8. This value corresponds to a resonance splitting of 0.8 times the resonance
width. Fig. 7.9.a shows the energy inside the cavities vs the injected power for a detuning of
d = —0.2. Note that the symmetric solution (orange line) becomes unstable for a certain input
power and a stable non-symmetric solution appears (black line). This non-symmetric solution
can be observed in the temporal simulations of fig. 7.9.b where the time trace of the energy
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inside the cavities for 6 = —0.2 and an injected power of P;,/Py = 2.5 are plotted. The initial
condition is set at the symmetric state A;, = 0.65 and, in order to achieve the breaking, a slight
perturbation in the initial condition of the energy inside one of the cavities is added. Note that in
fig. 7.9.b the system relaxes to the stationary sates A; and Ao in fig. 7.9.a. For higher detuning
(6=-3) the curve becomes more complex and several steady states are possible for a single input
power, fig. 7.9.c. This multi-stability is shown in fig. 7.9.d where the time trace for § = —3,
P;,/Py = 12.7 and an initial condition of A;, = 3.41 is plotted. In fig. 7.9.d, at ¢/7 = 120 a
perturbation was added to the energy inside each cavity in order to make the system jump to
the other stable branch. Let us stress that a large perturbation is needed in order to kick the
system to the other branch. This means that the basin of attraction seems to be larger for the
medium branches (A; and Aj) than for the external branches (A} and Af).
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Figure 7.9: Spontaneous symmetry breaking in two evanescent coupled cavities. (a) Energy inside
the cavities as a function of the injected power for a detuning of 6 = —0.2 and a coupling efficiency
of Tk = 0.8, showing two pitchfork bifurcations. The symmetric and non-symmetric solutions
are shown in orange and black lines, respectively. Stable (unstable) states are shown with solid
(dashed) lines. (b) Time traces of the energy inside the cavities for 6 = —0.2, injected power of
P;,,/Py = 2.5 and initial conditions of Aip = By, = 0.65 plus a slight perturbation in one of the
cavities. Note that the system relazes to the stationary sates Ay and Ag in (a). (c) Idem as (a)
for a detuning of 6 = —3 and Tk = 0.8, showing multi-stability. d) Idem as (b) for § = —3,
Py /Py = 12.7 and A;, = 3.41. At t/7 = 120 a perturbation was added in order to make the
system jump to the other stable branch (A} and A}).

In order to highlight the symmetry breaking, hysteresis cycles are calculated for the pa-
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rameters in fig. 7.9. Fig. 7.10 shows the transmitted signals f; and fo (blue and red line,
respectively) as a function of the injected power. For low detuning (0 = —0.2), cycles are not
observed (fig. 7.10.a), although, for higher detuning (6 = —3) a complex hysteresis cycle is
obtained revealing multi-stability.
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Figure 7.10: Hysteresis cycles for the parameters in fig. 7.9. Transmitted signals (|f1|* in blue
line and |f2)? in red line) as a function of the input signal. The parameters values are: (a)
0 =—02 and 7k = 0.8 and (b) 6 = —3 and 7k = 0.8. The black arrows in (b) point out the

cycle sense.

The breaking of symmetry can also be seen in the spectral domain. The nonlinear spec-
tral response is studied by analyzing the energy inside the cavities versus the detuning. For a
very low injected power (P;,/Py = 0.1), fig. 7.11 (green line), the linear regime takes place. The
resonance is centred at 6 = —0.8, which corresponds to the frequency of the symmetric mode.
This can be expected since, as both cavities are injected with the same amplitude and phase,
the only mode that can be excited in the linear regime is the symmetric one.

Increasing the injected power (P;,/Py = 4) the nonlinearity becomes stronger and the
symmetric resonance blue-shifts and bends (fig. 7.11, orange line). Moreover, the spontaneous
symmetry breaking is observed in fig. 7.11 (black line). Note the minimum detuning for which
the breaking takes place satisfies the condition found in the previous section: A < —v/3(1 +77).
From fig. 7.11, the range of detunings for which the symmetry breaking exists become clear.

Phase Diagram

In order to obtain the set of parameters that give rise to the symmetry breaking, the phase
diagram of the system in eq. 7.16 was studied. The space of parameters P;, /Py and 7k of fig.
7.12.a shows the different bifurcations for the non-symmetric stable states (-saddle node (SN), -
saddle repulsor (SR), -supercritical pitchfork (P), - subcritical pitchfork (SP)) and for the sym-
metric one (-saddle node (SNS), -saddle repulsor (SRS)). For different values of 7x (at constant
A), the Py, /Py at which a bifurcation occurs are plotted. Several regions can be distinguished.
For strong coupling, 7 2 0.95 (I zone in fig. 7.12.a), we observe symmetry breaking resulting
from two pitchfork bifurcations (fig. 7.12.b). It is important to point out that the symmetry
breaking threshold increases with the coupling strength. If 0 < 75 < 1 (II zone in fig. 7.12.a)
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Detuning

Figure 7.11: Energy inside the cavities as a function of the detuning. For P;,/Py = 0.1 there
is only one solution (symmetric) shown in green line. For an injected power of: Pj,/Py = 4,
the symmetric and non-symmetric solution are shown in orange and black lines, respectively. In
all the cases Tk = 0.8. The green curve was multiplied by 80 in order to be shown in the same
vertical scale.

the symmetry breaking arises from a subcritical pitchfork bifurcation and the range of P, /P
for which it exists is reduced (fig. 7.12.c). Finally, if 7k < 0 the non-symmetric stable states
coexist with bistability of the symmetric stable states (III zone in fig. 7.12.d). Within regime III,
the saddle node bifurcation delimiting the existence of non-symmetric states occurs at smaller
P,/ Py values than the subcritical pitchfork bifurcation of the symmetric state. Therefore, non-
symmetric states do not emerge from the symmetric state spontaneously, i. e. they are unlikely
to be observed from hysteresis cycles in which F;, is progressively increased.

Indeed, symmetry breaking can be obtained in the system of fig. 7.8.a depending on
the coupling strength. For strong coupling, the breaking of symmetry arises from two pitchfork
bifurcations and a large range of P;, /Py for which this regime exists is observed.

The results in fig. 7.12 correspond to a particular configuration. Let us also address the
limit 7y = 0 for which the symmetric and antisymmetric mode has equal losses. This represents
the case of systems with "purely imaginary" coupling, such as micropillars. Fig. 7.13 shows the
phase diagram for 7y = 0. As in fig. 7.12, three different regions can be distinguished: I) for
strong coupling the symmetry breaking arises from a pitchfork bifurcation and the range of P;,
for which it takes place is large; II) the symmetry breaking arises from a saddle node bifurcation
and the P, range for which it takes place is reduced; III) the stable states of the non-symmetric
mode coexist with stable states of the symmetric mode, thus, they are unlikely to be observed
from hysteresis cycles. From this result, we can conclude that symmetry breaking in a system
with electronic (negative) nonlinearity, which blue-shifts the resonance wavelength, can only be
obtained for positive couplings (i.e. wg > wy). Moreover, eq. 7.16 is invariant under the trans-
formation 7k — —7k, § — —d and the change of the nonlinearity sign, Awny — —Awpnyr,. Thus,
according to fig. 7.13, with a positive nonlinearity the symmetry breaking can only be obtained
for negative coupling coefficient (i.e. wg < wa).

139



AorB

11
5 .
w=-0.5
4l
- Vv dans
s Y’ m SN
. g _ 3t ‘@SR
- ..‘ : ‘.. i 0 .“ "0- -,
I <C
1/) N
ok SN , o
2 4 6 8
P./P
n 0
()
Figure 7.12: (a) Phase diagram for a system with v = —0.5. The bifurcations of the non-

symmetric states are: -saddle node (SN), -saddle-repulsor (SR), -supercritical pitchfork (P), -
subcritical pitchfork (SP). For the symmetric one: -saddle node (SNS), -saddle-repulsor (SRS).
(b) Intensity inside the cavities as a function of the injected power. The symmetric and non-
symmetric solution are shown in orange and black lines, respectively. Stable (unstable) states are
shown with solid (dashed) line. Tk =1. (¢) Tk = 0.3. (d) Tk = —0.3. In all the cases A = —3.
The bifurcation points are highlighted with open circles. The horizontal lines in (a) indicate the
values of Tk used in (b), (c) and (d).

7.3.2 Second case of study: the experimental configuration

In the following we apply the theory developed in section 7.3 to the experimental configuration:
a cavity coupled to the outside by a microfiber, fig. 7.14.a. This is a special case since, if no
intrinsic losses are considered, m=2 and n=0 yielding to v = —1/7 (from eq. 7.12). This means,
from eq. 7.8, that the antisymmetric mode has no losses (74 = 0). Therefore, this mode does
not decay, which is unphysical. In order to add leaky ports to the antisymmetric mode, intrinsic
losses as both individual and a common ports must be taken into account, fig. 7.14.b. The ra-
diative common port accounts for the far field overlap of the radiative emission of the two cavities.

According to fig. 7.14.b, two common ports represent the fiber, with a coupling strength
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Figure 7.13: Phase diagram for a system with v = 0 and A = —3. The bifurcations of the non-
symmetric states are: -saddle node (SN), -saddle-repulsor (SR), -supercritical pitchfork (P), -
subcritical pitchfork (SP). For the symmetric one: -saddle node (SNS), -saddle-repulsor (SRS).
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Figure 7.14: Scheme of the coupling between two cavities and the tapered fiber without (a) and
with (b) intrinsic losses. In (b) each cavity is coupled to the external continuum by three common
ports: the fiber (d) and radiative losses (d’) and one individual port (the intrinsic losses, d”).

d, an additional port accounts for overlapping leakage from each cavity, with a coupling strength
d', and two individual ports, with coupling strength d”, that represent the non-overlapping
radiative losses of each cavity. The value of v can be obtained considering first an undercoupled
regime between the cavities and the fiber (7. — 00), then, from eq. 7.8 we obtain:

1,1 1 WA wg
o 2(7'A Ts) 4Q4  4Qs (7:24)
Considering the results of the simulation in section 7.1, w4, = 1176.916 THz, wg, = 1180.102
THz, Q 4, = 35000, Qs, = 18000 and the results of the simulation for a single cavity (Qo = 23000
and wo=1178.562 THz, section 2.1) which are used to estimate 7 ~ 39 ps, we get 7y = —0.3.
If now we add the fiber (7, # o0), egs. 7.11 and 7.12 yield v = 79— 1/7.. The experimen-
tal fiber-coupling conditions of section 5.2 correspond to the undercoupling regime, n ~ 0.07,
which gives Qp/Q. ~ 0.08. Therefore we can approximate v & .

Replacing in eq. 7.19 the value found for 77y and keeping 7k = —0.8, we obtain the energy
inside the cavities (A or B) as a function of the injected power for 6 = —3, fig. 7.15.a. Note
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that the main features are similar to the ones shown in fig. 7.9.c meaning that the symmetry
breaking is not significantly affected by . Fig. 7.15.b shows the time traces for an injected
power of P;,/Py = 9. Similarly to the previous case (section 7.3.1), the system decays to the
stationary sates A; and As in fig. 7.15.a.
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Figure 7.15:  (a) Energy inside the cavities as a function of the injected power for a detuning
of 6 = =3; 7k = 0.8 and 7y = —0.3. The symmetric and non-symmetric solutions are shown in
orange and black lines, respectively. Stable (unstable) states are shown with solid (dashed) lines.
(b) Time trace for an injected power of Py, /Py =9; Tk = 0.8 and 7y = —0.3.

In this configuration the measurable magnitude is no longer the energy in each cavity,
but the output power given by the reflected (|r|?) and transmitted (|¢t|?) signals in the fiber.
These are given by:

|S_) = C,|S+) 4+ Da (7.25)
where
”
t
IS.)y =1 t) (7.26)
t/
2
t//
0 €€ 0 0 0
e 0 0 0 0
Co=1| 0 (7.27)
0
d d
d d
D=| d d (7.28)
d" 0
O dl/

The expression of C takes into account that the signal can only be injected through the fiber
(as it is the case of cavities coupled trough a tapered fiber). Considering |S;) = (f,0,0,0,0)
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(injection through the right side of the fiber) we obtain:

B _IrP_ Jataf

7.29
P() P() P()T ( )

where we used d = ie/?/2/,/7. Fig. 7.16 shows the hysteresis cycle measured in reflection (re-
flected signal as a function of the injected power). Note the difference with respect to bistable
hysteresis cycles for a single cavity (fig. 5.17 in section 5.2). In particular, a change in slope of
R(P;,) takes place when the system bifurcates from the symmetrical to non-symmetrical states.
This shows, in principle, that the existence of spontaneous symmetry breaking can be detected
from the features of the hysteresis cycle.

20

R/P0

Figure 7.16: Hysteresis cycle with the parameters in fig. 7.15. Reflected signal (R=|r|?, from
fig. 7.14.b) as a function of the input signal. The symmetry breaking can be detected from a

dramatic change in the slope.

7.4 Conclusion

The evanescent coupling between two L3 cavities separated by three rows of holes was determined
by FDTD numerical simulations. Two resonant modes were found, separated away by ~ 4 nm,
with different quality factors: Qg = 18000 and @4 = 35000. This corresponds to lower losses
for the antisymmetric mode with respect to the symmetric one, which can be expected from the
destructive/constructive interferences taking place for each mode.

A linear model based on a Coupled Mode Theory formalism was carried out in order
to characterize the coupling between the cavities and the external ports. From this model the
relation between the different parameters (7, v, k and d) of the system was found. These results
were used to develop a nonlinear model to study the symmetry breaking. We found that the
spontaneous symmetry breaking can be achieved in a system where the two evanescently cavities
are symmetrically excited by a single port. This result is important from an experimental point
of view since, we believe, a demonstration of the symmetry breaking in this configuration is
more viable than other configurations studied so far [64]. Indeed the possibility of symmetrically
injecting the system through a single port substantially simplifies the experimental conditions.
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This theoretical formalism was implemented to our experimental case: two cavities cou-
pled to the outside via a tapered fiber. Spontaneous symmetry breaking was also found in this
configuration. Therefore, choosing the appropriate parameters, the symmetry breaking might be
achieved in our set up. In chapter 9 we will seek this phenomenon experimentally.
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Chapter 8

Evanescent coupling between cavities

In the previous chapter we have shown, though FDTD numerical simulations, that evanescent
coupling can be achieved between adjacent cavities in a PhC. Moreover, we used a coupled mode
theory formalism to investigate the nonlinear regime of the coupled cavities and found that inter-
esting nonlinear behaviors such as spontaneous symmetry breaking can be reached. We further
demonstrated that these regimes are accessible within our experimental conditions, namely, two
cavities coupled through a tapered fiber. Among the few works devoted to understanding optical
coupling in PhC cavities, there is, to our knowledge, only one clear experimental demonstration
by means of anti-crossing measurements of the mode splitting [79]. Here we tackle this problem
using an alternative approach: the measurements of the relative phase coherence of the cavity
fields.

The purpose of the present Chapter is to provide clear experimental evidence of the
linear coupling between the cavities, as it was theoretically predicted in the previous one. These
studies include spectral and spatial analysis, the latter both in the near and far fields. In
order to simplify the access to the coupling parameters we first investigate cavities including
QDs as the active medium. Indeed, the inhomogeneous broadening of the emission associated
to the QD distribution allows to easily detect the cavity modes. Preliminary tests involving
statistical studies of the spectral position of modes in samples with two cavities were carried
out through photoluminescence experiments. Even though such studies are not conclusive for
demonstrating optical coupling, they allow to build confidence on the observed mode splitting as
a signature of coupling. In a second part we focus on L3 cavities including QW as active medium,
that, following the results of Part II, are better suited for the nonlinear dynamical operation.
Over these samples, near and far field emission profiles were investigated. These measurements
constitute unequivocal evidence of evanescent coupling between the cavities.

8.1 Preliminary statistical studies of the coupling between cavi-
ties

The coupling between two adjacent identical cavities should manifest itself by the splitting of
the initial mode into the symmetric and the antisymmetric ones. This splitting can be revealed
via photoluminescence measurements. However, in general, technological imperfections may
introduce a difference between the geometries of the cavities. This would end up with a two-
peak photoluminescence spectrum which does not necessarily correspond to mode splitting. In
a first series of experiments we have investigated the mode separation as a function of the PhC
hole diameters and the distances between cavities. Here we present studies over L3 coupled
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cavities and Noda-type adjacent cavities both including QDs as the active medium, since the
inhomogeneously broadened emission of QDs allows to easily detect the position of the cavity
modes.

8.1.1 Spectral studies of the emission of two L3 cavities

Samples analogous to the one described in section 3.1 including two adjacent L3 cavities etched
in the same PhC were fabricated, fig. 8.1. The cavities are separated away by three rows of holes
in the I' — M direction. In order to characterize these samples, photoluminescence spectra were
measured. The cavities are pumped @532 nm with a CW, frequency doubled Nd:YAG laser and
the emission is collected with a 20x microscope objective and send to a spectrometer/camera
detection system, see sec. 3.1.3. A typical result is presented in Fig. 2.1. b where two resonances,
labelled A~ and A~ are clearly visible.

900+ Y
600+

300+

1490 1500 1510
Wavelength (nm)
(b)

Figure 8.1: (a) MEB image of two L8 cavities in the same PhC separated away by three rows of
holes in the I' — M direction. (b) Photoluminescence spectrum for a pump power of 23 pW and
an integration time of 0.1s.

o

Intensity (arb units)

The spectral separation between peaks (A~ — A<) is measured for 29 different PhCs con-
taining two L3 cavities separated away be three rows of holes. For all the samples the lattice
period, a=455nm, is kept constant, whereas the diameter is varied from 77 nm to 100 nm. Fig
8.2 shows the peak separation (A~ — A.) for the whole set of samples. The average value gives
As — Ac = 5.1 £ 0.7 nm, in agreement with the FDTD numerical simulations of sec. 7.1 which
gave AN ~ 4 nm. The small deviation from the average value (~ 14%) can be attributed to
technological imperfections. The averaged distance between peaks, in turn, is most probably
related to physical reasons: the mode splitting originated from the evanescent coupling. Then,
according to section 7.1, A« may correspond to the symmetric mode (Ag) and A\~ with the anti-
symmetric one (A4). We will return to this discussion in section 8.4.

8.1.2 Spectral studies of the emission of two coupled cavities as a function
of their separation

We now study the dependence of this splitting with the cavities separation. For this, we used
Noda-type cavities (described in section 1.3). These were chosen for this study since the dis-
tance between cavities can be changed in a more "continuous" way compared to L3 cavities
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Figure 8.2: Spectral distance between the modes of two L3 cavities in the same PhC as a function
of the holes radius. The cavities are separated away by three rows of holes in the I' — M direction.
The PhC period remains constant and equal to 455 nm.

coupled in the I' — M direction. Indeed, Noda-type symmetrically coupled cavities can be ob-
tained with p=1,2,..,N periods in between, while the number of holes between two L3 coupled
cavities must be odd. A MEB image of a typical Noda-type cavity is presented in fig. 8.3.
The PhC has a waveguide (W1) in the center and the cavities are given by a 20 nm-increase
of the lattice period in the direction of the W1, along two periods, fig. 8.3. The barrier, given
by the number of periods (p) between cavities, was varied from 2 to 20 (2, 3, 4, 5 and 20 periods).

‘Noda'cayities *

Figure 8.3: MEB image of two Noda-20 cavities in the same wavequide separated away by three
periods (p=3) of the photonic crystal. The cavity is obtained by a 20-nm increase of the lattice
period.

We proceed to the systematic measurement of the photoluminescence spectra for the
different cavity separations. Typical results are shown in fig. 8.4.a. The Ay — A- wavelength
splitting as a function of p is represented in fig. 8.4.b. Each point is the average of 4 sample
measurements. For p=20 the cavities are separated by ~ 9 pum and we can consider that they are
no longer coupled. Therefore, we can attribute the measured splitting to imperfections, always
present in PhC fabricated with state of the art technologies. The evolution of A\ as a function of
p between 2 and 5, can, in turn, be univoquely ascribed to the evolution of the coupling with the
barrier thickness, in good agreement with eq. 7.7. These data are well fitted by a linear curve,
which corresponds to consider a linear dependency of the coupling strength with the distance
between cavities.
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Figure 8.4: (a) Photoluminescence spectrum of two Noda-20 cavities. The number of periods of
separation and the consequent wavelength splitting (AXs_) are: A. p=20, AXs_. =5.8 nm,
B. p=5, AAs_=1.8 nm, C. p=4, As_=2.5 nm, D. p=3, AAs_-=8.1 nm and E. p=2,
AXs_o=6 nm. (b) Peak distance (AXs_-) as a function of the number of periods (p) between
cavities. The value shown for each p corresponds to the average over four samples.

8.2 Choosing the most appropriate type of cavity

In the previous paragraphs we have seen that Noda-20 cavities most probably show a splitting of
the modes, which can be related to the evanescent coupling between cavities, and this splitting
can be easily changed with the barrier thickness. Unfortunately, coupling tests with the tapered
fiber have shown that the coupling is harder to achieve in this configuration since the angle
between the fiber and the waveguide becomes critical. The tapered fiber needs to be parallel to
the whole waveguide (which is 50 pm-long) while in the case of L3 cavities the fiber only needs
to be parallel to the cavity (~ 1.5 pm-long).

In general, L3-type cavities (fig. 8.1) are much easier to couple with the tapered fiber
compared to Noda-type cavities. Moreover, they are separated away in the direction perpendic-
ular to the fiber, which is a necessary condition to guarantee a symmetric injection, mandatory
for symmetry breaking experiments. For all these reasons, we have chosen this configuration to
work with. Samples with two L3 cavities separated away by three and five rows of holes were
fabricated. In the following we give a detailed characterization of these samples.

8.3 Photoluminescence of two cavities

The samples are analogue to the ones described in section 5.7 but, in this case, two L3 cavities
are etched in the same PhC. As mentioned before, we incorporate 4 QWs as the active medium
in order to increase the nonlinear response. Two different barrier thickness were studied: i) two
L3 cavities separated away by three rows of holes in the I' — M direction and ii) five rows of
holes. The I' — M direction corresponds to the direction perpendicular to the long axis of the
cavity. MEB images of these two cases, i and ii, are shown in fig. 8.5.a and b, respectively.

The first natural characterisation of the samples are photoluminescence measurements,

as presented in the previous sections. For this, the cavities are pumped with a @810 nm, 80
MHz-repetition rate, 100 fs-pulse duration Ti:Sa source. The emission is collected with a 50
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(a) (b)

Figure 8.5: MEB images of samples with two L3 cavities separated away by three (a) and five (b)
rows of holes in the I' — M direction. The period and hole radius are: a=450 nm and r=120 nm.

x microscope objective and sent to a spectrometer, see sec. 3.1.3. Fig. 8.6.a and b show the
spectrum obtained for the cavities separated away by 3 and 5 rows of holes, respectively. For a
separation of three periods ( fig. 8.6.b) we observe two peaks (A< and A< ) whose spectral separa-
tion is about 4 nm, in good agreement with the numerical simulations of section 7.1. Increasing
the period number (p=>5) only one peak is observed, meaning that either the coupling is weak,
then the distance between the modes is smaller than the resonance width; or the cavities are not
coupled at all. We will continue this discussion in the following sections.
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Figure 8.6: Photoluminescence spectrum of two L3 cavities separated away by three (a) and five
(b) rows of holes, fig. 8.5.a and b. The injected power and integration time are: 30 uW and 0.2
s; 9 uW and 0.5 s, respectively.

It is worth mentioning that PhCs with two L3 cavities separated away by one row of holes
have also been fabricated and characterized. Photoluminescence measurements of this system
show a mode splitting of ~ 70 nm. This splitting is more than 140 times the FWHM of the
cavity resonance and can be the signature of a very strong coupling regime, for which we cannot
longer consider the coupling as a perturbation of each cavity. Therefore, the two cavities become
a single one with a particular geometry. For this reason, in the following we will focus on the
cavities separated by 3 and 5 rows of holes.

Measurements of the output intensity and the resonance width as a function of the pump
power were carried out (not shown), in order to study the laser effect in i) and ii) (figs. 8.5.a
and b, respectively). In the case of the cavities separated away three rows of holes, curves with
similar features than in fig. 5.10 were obtained for both modes. Indeed, we arrive to the same
three possibilities discussed in section 5.7. On the contrary, for the cavities separated away by
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five rows of holes, a S-shape in the curve input vs output power and a decrease followed by an
increase of the resonance width with the injected power were observed. Indeed, there is the pos-
sibility that the system shows a laser effect with a threshold at 8.5 pW. Second order correlation
function should be performed in order to confirm this hypothesis.

The microfiber allows a nice method to further investigate the optical coupling between
the cavities. In particular, the collection of the photoluminescence using the tapered fiber should
be sensitive to the phase difference between the cavity fields. As it has been discussed in section
7.3, if the taper is positioned in the middle of the cavities, the anti-symmetric mode cannot be
coupled through the fiber due to destructive interference. In order to test this experimentally,
measurements of the coupling of photoluminescence of the A and A~ modes through the fiber
were carried out for the sample with 3-holes barrier. The cavities are pumped by the surface
and the fiber is positioned between them. The emission signal is simultaneously collected in free
space and sent to the spectrometer and through the tapered fiber and sent to an optical spectrum
analyser (OSA). Fig. 8.7.a and b show the two spectra. We observe a difference in the relative
heights of the peaks in fig. 8.7.a and b. We stress that this difference was systematically ob-
served, provided the fiber is positioned in the middle of the cavities. This result provides further
evidence on the fact that the mode at higher wavelengths corresponds to the antisymmetric mode.
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Figure 8.7: Spectrum of the two L3 cavities separated away by 3 rows of holes measured in
free space (a) and through the tapered fiber (b). Note the decrease of the relative height of the
second peak in (b) respect to (a), consistent with the fact that the second mode corresponds to
the antisymmetric mode. The pump power is 41 uW , the integration time in (a) is 0.5 s and the
resolution in (b) is 0.05 nm.

8.4 Emission profile of the coupled cavities

While building confidence in an optical coupling scenario, the previous experimental tests cannot
be consider as experimental demonstration of mode coupling by themselves. Here we will seek
a clear signature of mode coupling through the direct measurement of the symmetric and anti-
symmetric far field mode profiles. We will take advantage of the qualitative differences between
the emission profile of the symmetric and antisymmetric modes to determine the existence of
coupling between the cavities. According to the simulations of section 7.1, the emission angle
is strong (~ 70°). Therefore, in order to collect the intensity emitted by the sample, an objec-
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tive with a high numerical aperture (NA) is used: a x160, NA=0.94, objective with 0.2 mm of
working distance, which focuses the pump beam down to 1.5 um. This microscope objective
allows to collect angles up to 72°. The sample is pumped by the surface with the @ 810 nm,
100-fs pump duration, Ti:Sa laser. The emission is collected through the same optics and sent
to a spectrometer and to an InGaAs CCD (’Sensor Unlimited’, SU320), as sketched in fig. 8.8.
Focusing down the signal emitted by the sample over the InGaAs camera the near field emission
is obtained, while the far field emission is given by the image of the back focal plane of the
objective (which is located near the back pupil of the objective). In the experimental set up we
obtain the far field images by adding a lens behind the objective (fl in fig. 8.8). This lens is
located at a distance f1, which corresponds to its focal distance, of the back focal plane of the
objective.

8 ~
Spectrograph/
Camera
—
|
f2
/ f2
99% @1550 nm 10% @1550 nm r > fl
fl
- X160
! NA0.95
Sample
. p y

Figure 8.8: Sketch of the device used to measure the near and far field emission profiles of the
samples by either removing or adding f1. f1 = f2 =250 mm.

8.4.1 Emission profile of a single cavity

Let us start by characterizing the emission of a single cavity. The measured far field emission
of the sample and the calculated far field using the FDTD (see section 2.1) are shown in fig.
8.9.a and b, respectively. The white line corresponds to the light cone (emission at 90°) while
the dashed white line corresponds to the maximum angle collected in our set up (~ 72°). Note
that part of the main lobes (fig. 8.9.b) are cut by the NA of the objective. In spite of this, two
lobes in the vertical direction can be distinguished, in very good agreement with the numerical
results. Fig. 8.9.c and d show the near field emission and the photoluminescence spectrum,
respectively. The dashed white line in fig. 8.9.c represents the cavity position and it allows
to check that the near field emission is located at the cavity center. Finally, fig. 8.9.e shows
the near field emission found by the FDTD simulations. Only the principal component of the
electromagnetic field is represented: the electric field polarized in the y-direction (E,). It is
worth mentioning that, as the objective presents a high numerical aperture and a short working
distance, the position of the focus becomes very sensitive. For this reason, it is very difficult
to track the actual near field profile, which is highly dependent on the distance to the focal
plane. In the following, although we will present the near field measurements, we will focus our
attention on the far field measurements. They are much less sensitive to the alignment with re-
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spect to the focal plane, and contain the information about the relative phase of the cavity fields.
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Figure 8.9: Ezperimental (a) and numerical (b) (provided by FDTD simulations) far field emis-
ston profiles of a single L3 cavity. The white line in both figures corresponds to an emission at
90° while the dashed white line corresponds to the mazimum angle collected in our set up (~ 72°).
(c)-(d) Experimental near field emission and photoluminescence spectrum (for an injected power
of 38 uW and 0.2 s of integration time). (e) Numerical near field profile of a single L3 cavity.

The bright point in the center of the image in fig. 8.9.a corresponds to the luminescence
of the QW that is not being filtered by the cavity mode, since it is observed even when pumping
outside of the cavity region. This emission propagates as a plane wave which corresponds to the
origin of the Fourier space.

8.4.2 Near and Far Field images of two L3 cavities separated away by 3 rows
of holes

Three different situations associated to the pumping conditions can be tested in the case of two
cavities separated away by three rows of holes (fig. 8.5.b): I) pumping the "left" cavity, II)
pumping in the middle, III) pumping the "right" cavity, as sketched in fig. 8.10. In situations I
and III a single peak is observed, while for II, two peaks separated away by 4 nm are obtained,
fig. 8.10.

Fig. 8.11.a and b show the far field emission for I and III, respectively. Note the similar-
ities with the far field emission of a single cavity. Furthermore, the near field emission in both
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Figure 8.10: Photoluminescence spectrum acquired for different pump localization (inset) for two
L8 cavities separated away by three rows of holes. The dashed line denotes the cut off wavelength
of a bandpass filter used to characterize the emission of each mode separately.

situations shows that the intensity is more concentrated in one of the cavities than in the other
one. Fig. 8.11.d shows the corresponding spectra, in black and red lines, for situations I and
II1, respectively. We observe a slight difference in the central wavelength. However, the actual
spectral separation is hard to establish since the resonance wavelength depends on the intensity,
hence on the focus. The fact that only one peak in the spectrum is observed shows that only
one mode is effectively being excited. In the following section we will come back to this discussion.

On the other hand, when the two cavities are pumped in between, two modes are ob-
served with an spectral separation of 4 nm (fig. 8.10.IT). In these conditions we placed a band-
pass filter before the spectrograph and the InGaAs CCD in order to selectively detect one of
the two modes. Fig. 8.12.a shows the far field emission of the mode at lower wavelength;
we will call this mode A.. According to the numerical simulations of section 7.1, this mode
should be the symmetric one. Fig. 8.12.b shows the far field emission of the symmetric mode
calculated by FDTD simulations. Fig. 8.12.c and d show the near field and the photolumi-
nescence spectrum of this mode. Note that both cavities are "turned on", in agreement with
the near field found in the simulations of the symmetric mode (fig. 8.12.e). We attribute
the differences in the features on figs. 8.12.c and e to the focal issues already mentioned.
We note some similarities between the far field of Ao and the one of the symmetric mode,
8.12.a and b, respectively. However, since both the far field emission of the symmetric mode and
of a single cavity present two lobes, it is difficult to qualitatively distinguish between these two
cases. The spectral separation between modes (~ 4 nm) is in good agreement with the value
found trough numerical simulations for the separation between the symmetric and antisymmet-
ric modes of coupled cavities. This strongly suggest that the symmetric mode is the one being
excited.

Selecting only the mode at higher wavelengths (A<, see fig. 8.6.b), we observe a quali-
tatively different far field emission. Fig. 8.13.a and b show the far field emission of A5 and the
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Figure 8.11: (a)-(b) Ezperimental far field emission profile of two L3 cavities separated away by
three rows of holes when pumping the left and right cavity, respectively. (c) Experimental near
field emission while pumping the left cavity. (d) Photoluminescence spectrum (for an injected
power of 24 uW and 0.2 s of integration time) when pumping the left (black line) and right (red
line) cavity. (e) Experimental near field emission when pumping the right cavity.

one of the anti-symmetric mode obtained by FDTD simulations. Note the excellent agreement
between these two images. Fig. 8.13.c and d show the near field and the photoluminescence
spectrum of this mode. Note that both cavities are emitting, in agreement with the simulations
of the anti-symmetric mode (fig. 8.12.e). Indeed, looking at fig. 8.13.a and c¢ and consider-
ing the fact that A\~ is at higher wavelengths, we conclude that this mode corresponds to the
anti-symmetric mode of two coupled cavities. The fingerprints of optical coupling are clearly
contained in the far field of the antisymmetric mode.

8.4.3 Near and far field images of two L3 cavities separated away by 5 rows
of holes

In the case of two cavities separated away by 5 rows of holes, as in the previous case, we can test
three different situations: I) pumping the "left" cavity, IT) pumping in the middle, III) pumping
the "right" cavity, as sketched in fig. 8.14. In I and III a single peak is observed, while for II
two overlapping peaks are obtained, fig. 8.14.

Fig. 8.15.a and b show the far field emission for I and III, respectively. The near field
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Figure 8.12: Experimental far field emission profiles of two L3 cavities separated by 3 rows of
holes when pumping in the middle and collecting only the emission of the mode at lower wave-
length (A<, fig. 8.6.a). (b) Numerical (provided by FDTD simulations) far field emission of the
symmetric mode of coupled cavities. (c)-(d) Experimental near field emission and photolumines-
cence spectrum. (for an injected power of 100 uW and 0.2 s of integration time). (e) Numerical
calculations of the near field of the symmetric mode.
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Figure 8.13: Experimental far field emission profile of two L3 cavities separated by 3 rows of
holes when pumping in the middle and collecting only the emission of the mode at higher wave-
length (As, fig. 8.6.a). (b) Numerical (provided by FDTD simulations) far field emission of the
antisymmetric mode of coupled cavities. (c)-(d) Experimental near field emission and photolumi-
nescence spectrum (for an injected power of 47 uW and 0.2 s of integration time). (e) Numerical
calculations of the near field of the antisymmetric mode.
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Figure 8.14: Photoluminescence spectrum for different pump localizations (inset) for two L3
cavities separated away by five rows of holes. Note that also in this case two modes are observed
i 1L

emission for I and III is plotted in figs. 8.15.c and e, respectively, while fig. 8.15.d shows the
spectra of both configurations (I in black line and IIT in red line). The overlap of the both
resonances is clearly observed. As in the case of fig. 8.11, only one mode is being excited. In
the following section we will discuss the origin of the suppression of the second mode when the
pump beams excites only one cavity.

Pumping the system in the center, at high powers, two modes are observed separated
away by ~ 1 nm, see fig. 8.14.I1. The spectral separation between them is shorter than their
width which makes them difficult to collect separately. Even more, the spectrum oscillates be-
tween these two modes constantly: a mode competition takes place. The emission profile also
oscillates between two different patterns. Fig. 8.16.a shows the far field emission while maxi-
mizing the signal of the mode at lower wavelengths. In order to compare this result with the
theory, FDTD numerical simulations as the ones depicted in section 8.11 were carried out for
two L3 cavities separated away by 5 rows of holes. This simulation shows the symmetric mode
centered at \g = 1599.3 nm with a quality factor of Qg = 23300 and the antisymmetric mode
center at A4 = 1600 nm with @4 = 28000. Fig. 8.16.b shows the far field emission found in
this simulation for the symmetric mode. Note the similarities between fig. 8.16.a and b. The
experimental near field of this mode is plotted in fig. 8.16.c: both cavities are "turned on",
in agreement with the near field found in the simulations (fig. 8.16.d). All these observations
indicate that the A.-mode indeed corresponds to the symmetric one. We will return to this
discussion in the next section.

Furthermore, the far field emission obtained by maximizing the signal of the mode at
higher wavelengths, fig. 8.17.a, is in good agreement with the far field found in the numerical
simulations for the antisymmetric mode, fig. 8.17.b. In addition, the near field emission, fig.
8.17.c, shows the intensity delocalized in both cavities as in the numerical simulations, fig. 8.17.e.
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Figure 8.15: (a)-(b) Ezperimental far field emission profile of two L3 cavities separated away by
five rows of holes when pumping the left and right cavity, respectively. (c) Experimental near field
emission while pumping the left cavity. (d) Photoluminescence spectrum (for an injected power
of 47 uW and 0.2 s of integration time) when pumping the left (black line) and right (red line)
cavity. (e) Experimental near field emission when pumping the right cavity.
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Figure 8.16: (a) Ezperimental far field emission profile of two L8 cavities separated by 5 rows of
holes when pumping in the middle and maximizing the emission of the mode at lower wavelength.
(b) Numerical (provided by FDTD simulations) far field emission of the symmetric mode of
coupled cavities. (c)-(d) Ezperimental near field emission and photoluminescence spectrum (for
an injected power of 140 uW and 0.2 s of integration time). (e) Numerical calculations of the
near field of the symmetric mode.
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The excellent agreement between figs. 8.17.a and b and the fact that this mode is red-shifted re-
spect to the cavity mode ( fig. 8.17.d) lead us to conclude that this As-mode indeed corresponds
to the antisymmetric mode of the coupled cavity system.
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Figure 8.17: (a) Experimental far field emission profile of two L3 cavity separated by 5 rows of
holes when pumping in the middle and maximizing the emission of the mode at higher wavelength.
(b) Numerical (provided by FDTD simulations) far field emission of the antisymmetric mode of
coupled cavities. (c)-(d) Experimental near field emission and photoluminescence spectrum (for
an injected power of 140 uW and 0.2 s of integration time). (e) Numerical calculations of the
near field of the antisymmetric mode.

8.4.4 Discussion

In the previous paragraphs the near and far field emissions of two L3 cavities in a same photonic
crystal separated away by three (p=3) or five (p=>5) rows of holes were measured. In order to
compare the images found through numerical simulations and the experimental ones, we have
measured the FWHM of the lobes observed in the images. For this, we measured the intensity
profile along a circle concentric with the image, whose radius corresponds to the maximum of
intensity of the lobe. Fig. 8.18.a and b show the measurement of the lobe width.

Table 8.1 summarizes the theoretical and experimental lobe widths for the different pump
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Figure 8.18: (a) Image of the far field emission profile for a single cavity found through FDTD
numerical simulations. The yellow line corresponds to the circle for which the intensity profile
was obtained in order to measured the lobe width. (b) Intensity profile corresponding to the yellow
line in (a).

configurations. The difference between the lobe width of the theoretical and experimental image
for a single cavity may be due to the numerical aperture of the objective which cuts the lobes
in the latter. For coupled cavities, let us first focus on the A.-mode. In the experimental case,
for p=3, no significant differences are observed between the lobes width while pumping the left,
the right cavity, and in the middle. This would indicate that, in all these cases, the same mode
is being observed. Moreover, this lobe width is smaller than the width of the lobe of a single
cavity and it is in good agreement with the theoretical width of the symmetric mode. This
indicates that it would correspond to the bonding mode in nonidentical coupled cavities due to
the asymmetrical pumping; we will return to this discussion in the following paragraphs. How-
ever, in the experimental case for p=5, a strong difference between the case where the pump is
centered in one of the cavities and the case where it is centered in the middle is observed. Even
more, in the first case the lobe width is close to the one found for a single cavity. Hence, the
bonding mode is only observed when the pump is centered between the cavities for p=>5, and this
turns out to be the symmetric mode. Let us stress the agreement between the theoretical and
experimental values, both for p=3 and p=>5, in the centered pumping configurations. For p=5,
even stronger similarities are observed for the A~-mode. The difference between the lobes width
in the theoretical and experimental images for p=3, in the case of the antisymmetric mode, may
be due to the numerical aperture of the objective. As the two cavities are closer for p=3 than
for p=5, the angular separation between the two maxima in the y-direction becomes larger, and
thus, the NA becomes more critical.

In order to understand the absence of the A~-mode when the pump in centered over one
cavity, the impact of an asymmetry between the cavities induced by the pump was investigated.
First of all, pumping one of the cavities reduces its absorption inducing a difference in the quality
factor with respect to the other one. However, we have estimated that this absorption-saturation
effect induces a change in the quality factors of about a factor 2; and we have verified that this dif-
ference does not significantly affect the coupling. On the other hand, we have also observed that
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M | A | A A

L3 single Theoretical | 0.9
Experimental | 0.7
Theoretical 05104
L3 Coupled p=3 -5 ental 06 | 05 0502
Theoretical 0.310.3
L3 Coupled p=5 7 ental 08 | 07 [03]03

Table 8.1: Comparison between the lobe widths of the theoretical and experimental far field emis-
sion profile images, in units of k/(2w/\), for the different samples and pump configurations. the
agreement theoretical /experimental is very good in all the cases except: the experimental width of
As -mode for p=3, which may be due to a cut off effect of the NA; and the lobe widths of A--mode,
which indicates that the energy is mostly localized in one cavity.

the pump induces a frequency blue-shift. This shift may be important, according to the results
of chapter 5: the linear resonance obtained with the tapered fiber is systematically red-shifted of
about ~ 6 nm with respect to the resonance measured in photoluminescence experiments. This
shift leads to a difference in the resonance frequency of each cavity. This difference may not be as
high as ~ 6 nm when pumping one of the cavities, since some of the carriers excited by the pump
reach the second cavity by diffusion, but it may still be important. In order to study the cou-
pling between the cavities when such difference is induced, the frequencies of the hybrid modes
and their amplitudes were calculated as a function of the frequency difference between the cavi-
ties. Within this aim, we have computed the eigenvalues and eigenvectors of the following system:

da1 . .
o = (itwy — 1)ay + 7yas + iTkay (5.1)
% = (iTwe — 1)ag + 7ya1 + iTkay

Two eigenmodes are obtained from eq. 8.1: a mode for which the phase difference between
the cavities is zero, usually called bonding (with wavelength Ag), and one with a phase difference
of 7, called anti-bonding (with wavelength ;). These modes become the syummetric (A\g = Ag)
and antisymmetric (Ar = A4) as far as the system is symmetric, i.e. A} = A\y. Fig. 8.19.a shows
Ar and Ag as a function of the difference of the resonance wavelengths for p=3. For this situation
we set the parameters 7« = 10 and 7y = —0.3 as it will be deduced in the next chapter. Let us
assume that only the cavity 2 is pumped, hence a1(t = 0) = 0 and as(t = 0) = 1 and A2 < Ay
due to the pumping induced blue-shift. We define the energy in each cavity as:

)
ELQ :/ \a172|2dt (8.2)
0
and
< al(t) > — Cov—o>eiﬂot +C7T’U—ﬂ->€iﬂﬂt (83)
as(t)

where U—O;r> is the bonding (anti-bonding) eigenvector. The energy transfer (E;/E2) between the
second cavity and the first one, and the ratio of the bonding (Cp) to the anti-bonding (Cr)
modes are plotted in fig. 8.19.b as a function of the Ao — A;. In the case A\ — Aa=4 nm, less
than half of the intensity is being transferred and the bonding mode is excited a factor 5 more
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than the anti-bonding mode. This may be the reason why we observed more intensity in one of
the cavities and, in the spectrum, only the bonding mode is being observed.
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Figure 8.19: (a) Wavelength of the bonding (\o) and anti-bonding (Ar) mode as a function of the
difference between the resonance wavelength of each cavity (A1 — Xa) for p=3. (b) Energy transfer

between the excited cavity (Eo) and the other one (Ey) and ratio of the amplitudes of the bonging
and anti-bonging modes as a function of A\ — As.

The wavelength of the bonding (Ao) and anti-bonding (A;) modes are plotted in fig. 8.20
as a function of the difference of the resonance wavelengths for p=>5 (which gives 7k = 2.5 and
7y = —0.014 as we will see in the next chapter). We observed that for A\; — Aa=4 nm Ay and A\,
approach the values of the resonance wavelengths of each cavity, meaning the energy is strongly
localized in one of the cavities. This is shown in fig. 8.20 where the energy transfer (E;/Es)
between the second cavity (the one excited) and the first one, and the ratio of amplitudes of the
bonding and anti-bonding modes are plotted as a function of A\; — Ay, For Ay — Aos=4 nm only 3%
of the energy is being transferred from the excited cavity to the other and the bonding mode is
excited 50 times more than the anti-bonding one. This is the reason why the anti-bonding mode
is not observed when only one cavity is pumped. Indeed, since the energy is highly concentrated
in one of the cavities the far field emission profile is essentially equivalent to the one of a single
cavity.

8.5 Conclusion

The evanescent coupling between cavities has been studied in different systems using different
methods. Through statistical analysis of the resonance position in two L3 cavities separated away
by three rows of holes in the I' — M direction, we found an averaged (for different hole radius)
mode splitting of ~ 5 nm which is a first, but not conclusive, evidence of coupling. Studies on the
photoluminescence spectrum of Noda-type cavities separated away by 2, 3, 4, 5 and 20 periods
showed the dependence of the mode splitting with the barrier thickness, in good agreement with
the theory. This provides further evidence pointing to splitted modes rather than non-interacting
cavities.

We decided to work with L3-types cavities separated away by three and five rows, mainly
because they are easier to inject through the tapered fiber. By means of photoluminescence
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Figure 8.20: (a) Wavelength of the symmetric (Ag) and antisymmetric (Aa) mode as a function
of the difference between the resonance wavelength of each cavity (A1 — X2) for p=5. (b) Energy
transfer between the cavity (E3) that is excited and the other (Ey) and ratio of the amplitudes of
the bonging and anti-bonging modes as a function of Ay — Ao.

measurements, we observed, for p=3 and around A ~ 1565 nm, two modes separated by ~ 4
nm. Experiments of photoluminescence collected with the tapered fiber have shown a difference
in the relative height of the modes measured in free space and through the tapered fiber. The
amplitude of the second peak was systematically smaller than that of the first one. This is
expected for the antisymmetric mode, since, as the fields in each cavity are in anti-phase they
cannot couple to the same port (in the case of the fiber located in the middle of the cavities).
This is a further result allowing to build confidence on the evanescently coupled cavities scenario.

In order to provide a clear experimental signature of coupling, near and far field emis-
sion profiles were measured using an InGaAs CCD and a high NA objective. Far field emission
profiles of a single cavity were studied and an excellent agreement between experimental and
simulated results has been obtained. Analyzing the far field emission, when pumping in the
middle of the cavities, two modes are observed separated away by 4 nm. Collecting only the
mode at higher wavelength, the far field emission profile presents a minimum of intensity in the
center (k, = 0), in good agreement with the far field emission pattern of two cavities emitting
with a phase different of w. Therefore, we conclude that this mode corresponds to the antisym-
metric mode of coupled cavities. This constitutes concluding evidence of evanescent coupling.
Different analysis were implemented in order to study the origin of the mode observed when the
pump is centered in one of the cavities: i) the comparison of the width of the lobes observed
in the experimental and simulated images; and ii) the analysis of the eigenvalues and eigenvec-
tors of the system in presence of a difference in the resonance frequency of each cavity. We
have found that, when pumping one of the cavities, a pump-induced blue shift externally breaks
the symmetry, making the bonding mode significantly more excited than the anti-bonding one.
Moreover, this asymmetry leads to a strong localization of the energy in the cavity that is being
pumped. In conclusion, when the pump is centered in one of the cavities, the dominating mode
is the bonding one. This effect is particularly enhanced in the case of p=5: the coupling becomes
negligible and the excited mode almost corresponds to the one of the cavity that is being excited.

The analysis of the near and far field emission profile to determine the coupling between
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resonators is commonly used in optics. However, this type of analysis has never been reported in
PhC cavities, perhaps due to collection issues. To our knowledge, the results presented, together
with previous anticrossing measurements [79], are the only conclusive demonstrations of optical
coupling in PhC cavities.

In the following chapter we apply our system to the study of nonlinear dynamics in PhC
coupled nanocavities.
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Chapter 9

Towards experimental demonstration of
spontaneous symmetry breaking

In this section we present nonlinear dynamical measurements performed in the samples of coupled
cavities described in section 8.6. Systematic studies are carried out only for the cavities separated
away by 3 rows of holes. In this case, modes are clearly splitted allowing us to study the optical
response for injection wavelengths near each resonance. In the last part of this chapter, we relate
the experimental results to the the theory developed in section 7.2.

9.1 Nonlinear dynamics in two L3 cavities separated away by five
rows of holes

In order to study the spontaneous symmetry breaking in evanescently coupled cavities, the
hysteresis cycles are studied since, according to section 7.3.2 they can be distinguished from
bistability of a single cavity.

In the case of cavities separated away by five rows of holes, measurements of nonlinear
dynamical regimes give behaviors comparable to the ones found in chapter 6, section 6, for a
single cavity. It is worth mentioning that, since the cavities are separated away ~ 2.4 pum, which
is approximately the fiber width, simultaneously coupling both cavities with the fiber is quite
difficult. Moreover, a symmetrical injection is not guaranteed. Even though, placing the fiber
above one of the cavities, one mode is observed. For this mode we observed bistability, excitability
and self-pulsing regimes but without any evidence of symmetry breaking. Most probably, this
may be due to the fact that the injection is not symmetric in this case.

9.2 Nonlinear dynamics in two L3 cavities separated away by
three rows of holes

Here we look for the spontaneous symmetry breaking in the evanescently coupled cavities of fig.
8.5.a. Nonlinear dynamical mechanisms such as bistability, self-sustained oscillations and ex-
citability are studied. Special attention is focussed on hysteresis cycles which are the observable
that may contain fingerprints of symmetry breaking.

Let us start by characterizing the linear resonances, meaning the spectral features in
the absence of absorption saturation and/or refractive index nonlinear effects. The cavities are
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injected through the tapered fiber using a 30 nm-broadband resonant signal (as described in
section 3.2.2). The reflected signal is collected and sent to an optical spectrum analyzer (OSA).
According to the discussion of section 8.3, the fiber must be positioned asymmetrically with
respect to the cavities in order to excite the antisymmetric mode of the system. Fig. 9.1.a and
b show the spectra when the fiber is placed between the cavities and closer to one of them,
respectively; as a consequence, A (the symmetric mode, A = Ag) is observed in fig. 9.1.a and
As (the antisymmetric mode, A\s = A4) is observed in fig. 9.1.b. We observe \g centered at
As = 1567.5 nm with a loaded quality factor of Qg oadeq = 4236 and the antisymmetric one
center at Ay = 1571.5 nm with QA joaded = 5069. As expected, the antisymmetric mode has
a higher quality factor. The arrows in fig. 9.1 correspond to the spectral range of wavelength
detuning used in the next experiments (section 9.2.1). This detuning range satisfies the condition
to obtain symmetry breaking which is, according to section 7.3, 74(wa — wo) < —V/3.
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Figure 9.1: (a) Reflectivity spectrum of (a) As and (b) the antisymmetric modes of the system.
The modes in (a) and (b) are centered at g = 1567.5 nm with Qs joaded = 4236 and Ay = 1571.5
nm with Q 4 joadea = 5069, respectively. Injected power—=107 pW and resolution—= 0.05 nm. The
arrows correspond to the spectral range of wavelength detuning used in CW experiments of section
9.2.1.

9.2.1 Nonlinear dynamical response at low wavelengths

In the following we investigate the nonlinear dynamical regimes of the system for injected wave-
lengths near the first (i.e. symmetric) mode, fig. 9.1.a. In order to study the bistable regime the
system is injected through the tapered fiber with a modulated CW signal. The modulation is
given by triangular pulses of 4 MHz, 40 KHz repetition rate. The experimental set up is the one
described in section 5.2.2. Fast optical bistability is observed for injection powers greater than
~ 0.2 mW. The input (black line) and reflected signal (blue, red and green line) for detunings
(AX = Ao — Ainj) between 1.2 nm and 1.5 nm are shown in fig. 9.2.a. The bistable behavior is
highlighted in fig.9.2.b where the reflected power is plotted as a function of the input power for
a detuning of 1.4 nm (red curve in fig. 9.2.a), showing the hysteresis cycle.

Hysteresis loops are observed for detuning values between 1.5 and 0.4 nm. Fig. 9.3
shows the reflected signal as a function of the input power for different detunings. The loop size
increases for larger detuning-values, up to A\ ~1.5 nm; over this value no bistability is observed
for the range of power used here. The switching time is measured as the time widths between
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Figure 9.2: (a) Time traces of input (black line) and reflected (blue, red and green line) signals
for a detuning of AN =1.2, 1.4 and 1.5 nm, respectively. (b) Hysteresis cycles showing bistable
behavior (AN =1.4 nm). The arrows indicate the sense of the cycle.

the minimum and the maximum of the switch processes and gives ~4 ns for the switch on and off
times, meaning that the effect leading the bistability is electronic. Note the similarities between
these curves and the ones found in section 5.2.2 (fig. 5.17): no evidence of symmetry breaking
is observed in these measurements.
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Figure 9.3: Hysteresis cycles showing bistable behavior. Detuning-values with respect to the cavity
resonance are, from Ny to A\p: 1.5, 1.4, 1.3, 1.2, 1, 0.8, 0.6 and 0.4 nm. The input power is
measured at the tapered fiber input. The duration of the switch processes is ~ 4 ns for the on and
off switches.

In the following, self sustained oscillations and excitability are studied. Turning off the
signal modulation and injecting the system with a CW beam above the bistability threshold,
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self-sustained oscillations are obtained. Fig. 9.4 shows the reflected signals as function of time
for different detunings. Note the similarities with the oscillations found for a single cavity (fig.
6.2).

(@]
o

H
o

o
T
1

10 20 30
Time (us)

Output signal (arb units)

o

Figure 9.4: Self-sustained oscillations. Reflected signals as a function of time for different detun-
ings, from A\g to A\p: 1.8, 1.2, 1.1, 1, 0.9 and 0.8 nm. The input power, measured at the tapered
fiber input, is 2.5 mW.

Let us now focus on excitability. In the case that both cavities are excitable, the response
to a perturbation of one of the cavities may act as a perturbation for the second cavity. Indeed,
two excitable pulses may be observed, provided the response time is longer than the pulse itself;
otherwise, larger pulses could be obtained. In the experiments, an excitable regime was also
observed decreasing the injected power under the bistability threshold and adding an incoherent
perturbation by the surface as described in section 6.2. Fig. 9.5 shows the reflected signal as
a function of time for a detuning of 1.3 nm. For perturbation powers lower than 4 pWW, no
output pulse is observed. However, for higher powers an excitable pulse in the reflected signal is
obtained. Once again, no qualitative difference is observed with respect to the excitable pulses
of a single cavity (fig. 6.6).

It is worth mentioning that in this case, where the fiber is positioned symmetrically
respect to the cavities as in the case studied in section 7.3.2, we have also studied the system
response under injected wavelengths close to the antisymmetric mode. This is because, according
to the results of section 7.3, the symmetry breaking is achieved for detunings that satisfy the
bistability condition of the antisymmetric mode 74(wa — wgp) < —v/3. However, no evidence of
symmetry breaking was found.

In summary, even when a hybrid mode is likely to be excited in this case, the behavior of
the system in figs. 9.3, 9.4 and 9.5 cannot be distinguished from that of a single cavity. Moreover,
features of the hysteresis cycle as the ones predicted by the CMT model (see section 7.2) have
not been observed. Therefore, no evidence of spontaneous symmetry breaking was obtained. In
conclusion, the bistable, self-pulsing and excitable regimes experimentally observed correspond
to non-linear dynamical scenarios involving the symmetric mode of the coupled-cavity system.
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Figure 9.5: Fzcitable responses (bottom traces) to 130ns-width, 40-KHz-repetition rate pulse
perturbations (top trace) for different perturbation powers: 4 pW (black line), 60 uW (red line),
80 pW  (blue line) and 100 pW (green line). The injected signal power is set at 0.8 mW and the
detuning is A\ = 1.3 nm.

9.2.2 Nonlinear dynamical response at high wavelengths

In the following we repeat the experiments described in the previous paragraphs for injected
wavelengths near the wavelength of the antisymmetric mode (the wavelength range shown in fig.
9.1.b). In this case, the fiber is positioned closer to one of the cavities in order to excite the
antisymmetric mode.

A fast optical bistable regime is observed for injection powers greater than ~ 0.7 mW.
Fig. 9.6.a shows the input (black line) and reflected signal (blue, red and green line) for detunings
(AX = Xg — Ainj) between 0.6 nm and 1.1 nm. The bistable behavior is highlighted in fig.9.6.b
where the reflected power it is plotted as a function of the input power for a detuning of 1.1 nm
(green curve in fig. 9.6.a), showing the hysteresis cycle.
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Figure 9.6: (a) Time traces of input (black line) and reflected (blue, red and green line) signals
for a detuning of AXg =0.6, 1 and 1.1 nm, respectively. (b) Hysteresis cycles showing bistable
behavior (AXg =1.1 nm). The arrows indicate the sense of the cycle.
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Hysteresis loops are observed for detunings between 0.3 and 1.2 nm. Fig. 9.7 shows the
reflected signal as a function of the input power for different detunings. The switching times
are ~7 ns for the switch on and off times, consistent with electronic effects leading to optical
bistability. Also in this case, the curves are similar to the ones found for a single cavity.
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Figure 9.7: Hysteresis cycles showing bistable behavior. Detuning-values with respect to the cavity
resonance are, from Ay to N;: 1.2, 1.1, 1, 0.9, 0.7, 0.5, 0.4 and 0.3 nm. The input power is
measured at the tapered fiber input. The durations of the switch processes is ~ 7 ns for the on
and off switches.

Self-sustained oscillations are also observed for detunings between 0.8 and 1.1 nm, fig.
9.8. The shape of the pulses is similar to the one found in fig. 6.2.

All the aformentioned results show that, injecting the system with wavelengths near
the mode at lower and higher wavelengths, no evidence of spontaneous symmetry breaking is
obtained. In the following section we discuss possible reasons for the absence of this phenomenon.

9.3 Discussion

In order to further understand the experimental results, we adjust the parameters of the theory
developed in section 7.2 to match the experimental conditions, for the structures shown in fig.
8.5 coupled through a microfiber.

9.3.1 L3 cavities separated away by three rows of holes

Let us begin with the L3 cavities separated away by three rows of holes. In order to apply
the formalism to the experimental case, we need to obtain the values of 77, 7k and J from the
experimental results. 7k can be found from the wavelength splitting. Considering Ao = Ag, this
splitting is ~ 4 nm (see fig. 8.6.b). Then 7« is given by (according to eq. 7.7):
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Figure 9.8: Self-sustained oscillations. Reflected signals as a function of time for different detun-
g, from Ay to A\g: 1.1, 1, 0.9 and 0.8 nm. The input power, measured at the fiber taper input,
18 4.8 mW.

rr= @5 =) | s = An) (9.1)
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where AXpy gy corresponds to the resonance width, which in the experimental case is ~ 0.4
nm. Hence, 7k ~ 10.

Regarding 77, as we have seen in section 7.3, it can be obtained from the difference in the
quality factor of the symmetric and antisymmetric modes (eq. 7.24). Therefore, we measure these
quality factors from the resonance spectra in figs. 9.1.a and b, respectively, giving Qg = 4236 and
Q4 = 5069. T is estimated from the quality factor of the single L3 cavity (section 5.7) as 7 ~ 6
ps. This leads to 7y = —0.3, in good agreement with the value of 7 calculated through the
FDTD numerical simulations of section 7.1. Considering one of the detuning values used in the
experiment of fig. 9.3 (AX = 1.1 nm) we calculate  as: § = 7(wg —w) = 7(wg — win, — k) = —15,
yielding to A = § — 7k = —25. Fig. 9.9.a shows the energy inside each cavity as a function of
the injected signal. Note that the symmetry breaking threshold is a factor 30 higher than the
threshold found for 7« = 0.8 (fig. 7.9). Experimentally, however, the injected powers are kept
low in order to avoid damaging the sample. Fig. 9.9.b shows a zoom of the area depicted in red
in fig. 9.9.a. We observe a bistable regime for the symmetric mode with a threshold 10 times
lower than the symmetry breaking threshold, meaning that, with the injected powers used in
this experiment, we can only see the bistability of the symmetric mode.

In order to get better insight into the experimental hysteresis cycles found in fig. 9.3,
calculations of the reflected signal as a function of the injected power are carried out. Using eq.
7.29 we plot, in fig. 9.10, the hysteresis cycle for the parameters of fig. 9.9. The hysteresis cycle
corresponding to bistability of the symmetric mode is observed. In addition, fast oscillations are
observed close to the pitchfork bifurcation since no stable fixed point exists for Py,/Py 2 100
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Figure 9.9: (a) Intracavity energy as a function of the injected power for Tx = 10, 7y = —0.3
and §—=-15. The symmetric and non-symmetric solutions are shown in orange and black lines,
respectively. Stable (unstable) states are shown with solid (dashed) line. (b) Zoom of the region
depicted by the red circle in (a).

(fig. 9.9.b). Note the similarities with the experimental curves shown in fig. 9.2. We can con-
clude that for high 7k values, i.e. very strong coupling between cavities, the symmetry breaking
may only take place for injected powers as high as ~ 10 times the bistability threshold of the
symmetric mode.
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Figure 9.10: Theoretical hysteresis cycle. Reflected signal as a function of the injected power for
Tk = 10, 7y = —0.3 and d=-15. Note the fast oscillations for Py, /Py 2 100, which take place
after the pitchfork bifurcation leading to symmetry breaking.

For larger detunings with respect to the low wavelength mode, AX = 1.8 nm, which gives
0=-19 (A = —29), the energy inside the cavities as a function of the injected signal becomes
more complex, fig. 9.11.a. For injected power ratios higher than 23, almost all the fixed points
are unstable, probably due to secondary (Hopf) bifurcations. Fig. 9.11.b shows the time trace
for an injected power of P;,/Py=>50: note that the signals oscillate in antiphase meaning there is
ultrafast exchange of energy between the cavities. Remarkably, deterministic caos seems to take
place in this signal. Therefore, by changing some parameters, the system may show a chaotic
behavior, such as the Lorenz attractor reported in [133], or periodic or quasi-periodic oscillations,
such as Josephson oscillations, which are expected to occur in coupled Bose-Einstein condensates
such as polariton systems [134]. The oscillations of fig. 9.11.b were not observed experimentally,
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most probably due to the limited bandwidth of the detector.
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Figure 9.11: (a) Intracavity energy as a function of the injected power for Tx = 10, 7y = —0.3
and 0=-19. The symmetric and non-symmetric solutions are shown in orange and black lines,
respectively. Stable (unstable) states are shown with solid (dashed) line. (b) Time traces of the

energy inside the cavities for an injected power of Py, /Py = 50 and initial conditions for the
mtracavity energy of Ay = 11.

In order to compare this case with the one studied in section 7.3.1, let us consider lower
detunings, say, in such a way that A = —3 as in fig. 7.13; hence 6 = 7. Since 7k = 10, this
case corresponds to region I in fig. 7.13. Even though fig. 7.13 was obtained for 7y = 0 we
have verified that the latter does not qualitatively change the phase diagram of the system. Fig.
9.12 shows the intracavity energy of each cavity as a function of the injected signal. Note that
the symmetry breaking threshold is ~ 300, as expected from fig. 7.13. This may be the rea-
son why, even for injected wavelengths near the antisymmetric mode, no evidence of symmetry
breaking was observed.
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Figure 9.12: (a) Intracavity energy as a function of the injected power for Tx = 10, 7y = —0.3
and 6=7 (A = =3 as in fig. 7.12.a). The symmetric and non-symmetric solutions are shown in

orange and black lines, respectively. Stable (unstable) states are shown with solid (dashed) line.

In the case of injected wavelengths close to Ag of section 9.2.2, recall that the fiber is
shifted from the geometrical center of the cavities in order to observe the antisymmetric mode.
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Therefore, the theory developed in section 7.3 cannot be applied since the injection is considered
symmetric, for which the antisymmetric mode cannot be excited in the linear regime. Therefore,
in the present case, no spontaneous symmetry breaking is expected since the symmetry is already
broken: only nonlinear dynamical behaviors of the antisymmetric state are observed.

9.3.2 L3 cavities separated away by five rows of holes

We proceed as before to understand the experimental results found for the cavities separated
away by five rows of holes. In this case, the resonant modes overlap, as discussed in section 8.3
and they cannot be isolated; hence, we cannot obtain the value of v from the difference in the
quality factors of the symmetric and antisymmetric modes. For this reason, we will consider the
results of the numerical simulations (see section 8.4.3) since we have seen, in the case p=3, that
the value found for 77 from the experience and from the simulations are in good agreement. The
numerical simulations give Qg = 23300 and Q) 4 = 28000 yielding to 7y = —0.014.

The spectral separation between the symmetric and antisymmetric modes can be ap-
proximated by ~ 1 nm, according to section 8.4.3, giving 7k = 2.5. In order to compare this
case with fig. 7.13, let us consider § = —0.5 which gives A = —3. Fig. 9.13.a shows the en-
ergy inside the cavities as a function of the input power. This case corresponds to region I in
fig. 7.13, where the symmetry breaking arises from a pitchfork bifurcations. More importantly,
the symmetry breaking can be distinguished in the reflected signal vs input signal plot as the
absence of hysteresis cycles and a marked change in the slope of the curve at P, /Py ~ 10 as
shown in fig. 9.13.b. Moreover, this change in the slope becomes more evident as the detuning is
increased. Fig. 9.13.c shows the intracavity energy for each cavity as a function of the injected
signal for 7k = 2.5, 7v = —0.014 and 6 = —3. Note that the features of the curve become
more complex. In this case, the symmetry breaking can be distinguished by a marked change
in the slope followed by a hysteresis cycle as shown in fig. 9.13.d. Also note that the change
in the slope is obtained for reasonable injected powers, i.e. 10 times the characteristic power
(Py). Therefore this configuration is the most suitable for obtaining the spontaneous symmetry
breaking. Experimentally, a major difficulty arises from the large separation of the cavities: the
fiber-assisted coupling method appears to be no longer efficient in this case.

9.4 Conclusions

Nonlinear dynamical regimes were studied in evanescently coupled cavities. Bistable, self-pulsing
and excitable operation were observed in two L3 cavities separated away by three and five rows
of holes in the I' — M direction. Unfortunately, no evidence of spontaneous symmetry breaking
was observed.

Through these experimental results we have obtained the necessary parameters to adjust
the nonlinear model developed in chapter 7 to the experimental conditions. We have found that,
in the case of the cavities separated away by three rows of holes (p=3), the detuning values
chosen in the experiment, i.e. blue detuning with respect to the symmetric mode, lead to ultra-
fast oscillating dynamics. Even if these regimes can take place in our system, they would not
have been revealed in our measurements due to experimental limitations. In addition, within
symmetrical excitation conditions, injecting the system at lower § (i.e. near the antisymmetric
mode), symmetry breaking threshold about 120 times higher than the characteristic power P
are obtained, i.e. about 70 times higher than the onset of bistability (Ppser ~ v/3Fp). Therefore,
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Figure 9.13: (a) Energy inside each cavity as a function of the injected power for Tk = 2.5,
7y = —0.014 and § = —0.5 (A = —3). The symmetric and non-symmetric solution are shown in
orange and black lines, respectively. Stable (unstable) states are shown with solid (dashed) line. (b)
Hysteresis cycle. Reflected signal as a function of the injected power for Tk = 2.5, 7y = —0.014
and 6 = —0.5. (c¢) Idem as (a) for § = =3 (A = —5.5). (d) Idem as (b) for 6 = —3. Note the
symmetry breaking can be distinguished from a change in the slop of the curve (d) followed by an
hysteresis cycle.

with the power levels used in our experiments (low in order to avoid damaging the sample) no
symmetry breaking can be obtained. Though, in the case p=>5, the cavities are less coupled and
the theory predicts that the symmetry breaking takes place for injected powers compatible with
the experimental conditions, i.e. of about 6 times the onset of bistability. Moreover, according
to the theory, the symmetry breaking can be distinguished from slope discontinuities in the hys-
teresis cycle.

Still, L3 cavities separated away by 5 rows of holes have a main drawback: the distance
between the cavities, which is of the same order than the tapered fiber thickness, prevent to
efficiently coupled the cavities. A method to decrease the cavity distance without increasing the
coupling strength is highly desirable; we will return to this subject in the Prospects.

In conclusion, thanks to these studies, all the ingredients needed to obtain symmetry
breaking in coupled PhC nanocavities in a near future have been determined.
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Chapter 10

Conclusions and Prospects

10.1 Conclusions

Nonlinear optics is being increasingly studied since its beginning fifty years ago. Among all
the nonlinear phenomena that can be observed in optical systems, optical bistability have been
extensively investigated in the last decades, mostly due to its potential for optical memories and
switching. In optical bistability the system allows two possibles output signals for an equal injec-
tion. By definition, bistability only deals with static regimes and one dynamical variable, but it
is often the precursor of exciting dynamical regimes, which can be encountered in several natural
systems including neurons, cardiac tissues and chemical reactions. Dynamical nonliearities allow
rich and complex non-stationary phenomena such as excitability and self-sustained oscillations.
In a self-sustained oscillations regime the nonlinear system reacts emitting a periodical signal
while excited with a CW beam. In the excitable regime the system develops all-or-none cali-
brated optical responses to a small perturbation. In both cases the nonlinear dynamics arises
from the competition between the evolution of two dynamical variables with different time scales.

It is well known that nonlinear effects can be enhanced in optical resonators. During the
past decade, small size optical resonators came to maturity, thanks to an enormous amount of
work both technological and numerical to anticipate and engineer their optical properties. Among
them, 2D PhC nanocavities share the advantage of attaining small mode volumes < (A3/n)3,
high quality factors up to 105 and the potential of being connected in complex architectures by
clever PhC designs.

Only few works were devoted to the understanding and implementation of nonlinear dy-
namics in nanoresonators. They have mostly focussed on optical bistability of thermal origin,
mainly because thermal effects in ultra-small cavities are usually dominant against ultra-fast non-
linearities. Electronic nonlinearities in nanoresonators are more difficult to achieve and observe
due to both technological issues and small signals in play with fast time scales (ps-ns scale). Even
tough, some works have recently demonstrated bistability of electronic origin in PhC nanocavities
[87, 88]. However, more complex dynamical nonlinear scenarios are quasi unexplored in 2D PhC.
In particular, excitability and self-pulsing regimes in PhC nanocavities have never been reported.

The main objective of this PhD thesis was to explore, for the first time, self-sustained
oscillations and excitability in photonic crystal nanocavities. We achieved such nonlinear dy-
namical regimes by introducing a competition between the electronic and thermal dynamics in
suspended membrane 2D PhC nanocavities with QWs as active media.

Due to the complexity of the possible scenarios, a first effort was devoted to develop a
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model able to capture the combined effect of the cavity and the nonlinear responses. For this,
we have developed an original coupled mode approach that includes the intracavity energy, the
carrier dynamics and temperature variation in a generic cavity filled with III-V semiconductor
material. This model allows the study of different regimes in optical resonators such as bistability
(which involves at least a single nonlinear variable) and excitability (which involves at least two
nonlinear variables).

In a second step we have experimentally investigated the role of each dynamical variable
separately. Although thermal and electronic effects have been widely studied, they are strongly
dependent on the particularities of the 2D PhC design and technology. Therefore, measurements
of the thermal relaxation times in a L3 cavity with QDs as active medium were carried out.
Through an innovative technique, exploiting the reflected signal change due to an incoherent
pump, a thermal relaxation time of the order of 1 us was obtained in good agreement with
thermo-reflectance measurements developed in [116]. On the other hand, through a pump and
probe technique we have measured the electronic recombination time. Times of the order of
30 ps were found. This short time is associated to bimolecular recombination processes in the
wetting layer. These times are the time scales of the regimes sought in this work: bistability,
excitability and self-pulsing.

Coupling high light intensity levels inside nanocavities for nonlinear dynamical studies
is a challenging task: efficient input coupling methods are required. With this aim, we have
developed a tapered fiber approach to efficiently inject light into the cavity mode. The coupling
method consists in evanescent coupling between the tapered fiber and the nanocavity. Coupling
efficiencies of the order of 28% in samples with QDs as active materials and 7% in samples with
QW were achieved. Even with 7% coupling efficiencies we have been able to study nonlinear
dynamical regimes in PhC nanocavities for input powers in the fiber of less than 1 mW.

Bistable regimes governed by thermal or electronic effects were studied. In particular, a
fast bistable switching of electronic origin was obtained in samples with QWs as active media.
Bistable thresholds as low as ~ 10 uW coupled into the cavity were measured, in good agreement
with the values reported by Notomi et al. [82] and Kim et al. [87].

We capitalized on these results in order to investigate nonlinear dynamical responses asso-
ciated to the competition between electronic and thermal nonlinear variables. Namely, nonlinear
dynamical regimes involving both thermal and electronic nonlinear effects were investigated. We
have experimentally demonstrated self-pulsing and excitable behavior in this sample. These re-
sults represent the first ever reported demonstration of excitability and self-sustained oscillations
in photonic crystal nanocavities, which might open a door to future applications of this cavities
to all optical devices.

A second objective of this PhD thesis was to explore the conditions to obtain symmetry
breaking in coupled nonlinear nanocavities. Symmetry breaking is a fundamental phenomenon
that has never been demonstrated in PhC resonators. This phenomenon is characterized by a
non-symmetric response of the cavities under a symmetrical injection. We first developed an
analytical model based on coupled mode theory (CMT). Through this model, we have obtained
that symmetry breaking takes place for a wide range of input powers, in cavities coupled to the
external continuum by three ports and, more importantly, in the experimental configuration:
two cavities coupled to the outside by a tapered fiber.

In order to study this phenomenon experimentally, different types of coupled cavities were
fabricated and investigated. For L3 adjacent cavities, we have obtained conclusive evidence of
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evanescent coupling through far field emission profile images. To our knowledge, this is the first
reported study of the coupling between cavities in PhC by means of near and far field emission
profile images. Moreover, it is the first conclusive evidence of the existence of a phase coherence
between the fields inside each cavity. This theoretical and experimental results set the basis for
the demonstration of symmetry breaking in a near future.

10.2 Prospects

During this PHD thesis the conditions for the experimental demonstration of spontaneous sym-
metry breaking were determined from theoretical and experimental studies. Unfortunately, the
final experimental demonstration was elusive, mainly due to the lack of time to optimize the
cavity coupling conditions. Simulations and experiments have shown that the most likely prob-
lem is the coupling strength : too strong for cavities separated by 3 rows of holes and, for those
separated by 5 rows of holes, the fiber-assisted coupling method may be poorly adapted due
to the increase of the fiber-cavity distance; symmetrical injection into the system may not be
guaranteed in such a case. We think that symmetry breaking will be demonstrated in a near
future thanks to an improved control of the coupling strength. One possible way of controlling
this coupling is to change the diameter of the holes between the cavities. Therefore, a short
term prospect is the systematic study, through numerical simulations, of the mode splitting as a
function of the size of holes in the barrier between the cavities.

The tapered fiber coupling method, used in this work, allowed demonstrating both self-
sustained oscillations and excitability in the 2D PhC nanocavities. However, this method presents
some drawbacks, such as the impossibility to excite the two cavities simultaneously while de-
tecting separately their emissions. This becomes important for the symmetry breaking measure-
ments, for which the symmetric excitation of the cavities is mandatory and the detection of the
state of each cavity can give an insight on the localization of light. Besides, in order to study the
coupling between cavities, it may be interesting to inject one of the cavities and study the transfer
of energy between them by collecting the output signal from the other one. Another drawback
of this coupling method is the threshold increase of nonlinear behaviors due to the relatively low
coupling efficiency. Therefore, a mid-term prospect is the implementation of a recently proposed
method that would replace the tapered fiber coupling system, as explain below.

Due to the strong solid angle of the emission diagram of L3 nanocavities, their in-
put/output coupling by the surface is quite inefficient even when a high numerical aperture
objective is used. This is the reason why the coupling via a tapered fiber was implemented.
Several works have studied the "beam-shaping" in PhC devices [135, 136, 137], in particular,
recent works have investigated high-Q photonic crystal nanocavities with a tailored radiation
pattern [138, 139, 140]. This type of cavities allow to collect 80% of the radiated power by optics
having a numerical aperture of 0.6. Such maximization of the in- and out-coupling efficiency
into a narrow emission cone is obtained by properly modifying the holes around the cavity. The
basic idea, called band-folding technique, is illustrated in fig. 10.1a. and b. The near field of
an optimized PhC cavity is distributed as close as possible to the border of the Brillouin zone
(BZ) (ky = m/a). If a period 2a is superimposed to the original structure, the distribution of the
near field in the reciprocal space is folded with respect to k, = 7/(2a) and therefore a replica
of the distribution near the first BZ appears at k, = 0. Consequently, radiation is now leaked
mainly vertically and the amount of leakage is controlled by the amplitude of the subharmonics
with period 2a [138]. Figs. 10.1.c and d show the L3 cavity without and with modification of
the period, respectively. The radiation pattern for the cavity in figs. 10.1.c and d are shown
in figs. 10.1.e and f, respectively [139]. Note the highly directive emission of the cavity where
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the band folding was implemented. It is important to mention that, due to this modification of
the holes period, the quality factor of the structure is reduced by about a factor 4. This value
is of the same order than the reduction of the cavity quality factor due to the coupling with a
tapered fiber with a coupling efficiency of n = 80% (according to the CMT formalism developed
in chapter 2). Such geometry would not only provide an alternative channel for light injection
but also enable selective measurements of the radiation from each cavity with low cross-talk.
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Figure 10.1: Principle of band folding: (a) schematic representation of the near field distribution
in the reciprocal space for an optimized cavity; (b) band-folded distribution (Image from [138]).
Scheme of a L3 cavity with standard design (c¢) and with implementation of the band folding
(d) through additional sub-harmonic modulation. Radiation pattern with broad emission for the

standard L3 design (e) and highly directive for the modified (f)(Image from [139]).

A further advantage of exciting the cavities by the surface is the possibility of simultane-
ously exciting an array of cavities. Whereas the tapered fiber allows to symmetrically inject at
most two cavities, a surface injection scheme would allow to inject several cavities "in parallel",
provided the excitation spot is large enough. Since, above threshold, an excitable pulse is in-
dependent of the excitation intensity, robust pulse transmission can be expected through cavity
chains, giving interesting prospects for delay line applications and even original all-optical logical
gates. From the nonlinear dynamical point of view, chains of coupled cavities can be used to
study the propagation of nonlinear wavefronts, fig 10.2. In this context, this work opens the door
for investigating interesting and applicable (e.g. all-optical devices) behaviors in two nonlinear
cavities in a short term, as well as arrays of excitable cavities in a mid-to-long term.
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