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AbstractNonlinear optics concerns the modi�cations of the optical properties of a material in-duced by the propagation of light. Since its beginnings, �fty years ago, it has already foundapplications in almost any �eld of science. In micro and nano-photonics, nonlinear phenomenaare at the heart of both fascinating fundamental physics and interesting potential applications:they give a handle to tailor and control the �ow of light within a sub-wavelength spatial scale.Indeed, the nonlinear e�ects can be enhanced in systems allowing tight light con�nement andlow optical loses. Good candidates for this are the Photonic Crystal (PhC) nanocavities, whichhave been extensively studied in recent years. Among the great diversity of nonlinear processesin optics, nonlinear dynamical phenomena such as bistability and excitability have recently re-ceived considerable attention. While bistability is well known as a building block for all-opticalmemories, switching and logic gates, excitability has been demonstrated in optics about �fteenyears ago: coming from neuroscience, it is the mechanism underlying action potential �ring inneurons. In this work, we have studied bistable, self-pulsing and excitable regimes in InP-basedPhC nanocavities. In order to achieve e�cient light coupling into the nanocavities, we havedeveloped an evanescent coupling technique using tapered optical micro�bers. As a result, wehave demonstrated for the �rst time excitability in a PhC nanocavity. In addition, we haveaccomplished the �rst step towards nonlinear dynamics in arrays of coupled cavities by demon-strating optical linear coupling between adjacent nanocavitites. This was achieved using far �eldmeasurements of photoluminescence. A set of coupled nonlinear resonators opens the door to arich family of nonlinear dynamical phenomena based on spontaneous symmetry breaking. Wehave theoretically demonstrated this phenomenon in two evanescently coupled cavities. The �rstexperimental studies on this regime were carried out, which establish a basis for a future demon-stration of spontaneous symmetry breaking in arrays of nonlinear coupled PhC nanocavities.Key words Nonlinear dynamics, InP-based Photonic crystal, Coupled cavities, Ex-citability, Bistability, Self-pulsing, Symmetry breaking.





Dynamique Non-linéaire en Nano-cavités àCristal Photonique en Semiconducteur III-VRésuméL'optique non linéaire traite les modi�cations des propriétés optiques d'un matériau in-duites par la propagation de la lumière. Depuis ses débuts, il y a cinquante ans, des nombreusesapplications ont été démontrées dans presque tous les domaines de la science. Dans le domainede la micro et nano-photonique, les phénomènes non linéaires sont à la fois au cur d'une physiquefondamentale fascinante et des applications intéressantes: ils permettent d'adapter et de con-trôler le �ux de lumière à une échelle spatiale inferieure à la longueur d'onde. En e�et, les e�etsnon linéaires peuvent être ampli�és dans des systèmes qui con�nent la lumière dans des espacesrestreints et avec de faibles pertes optiques. Des bons candidats pour ce con�nement sont lesnanocavités à cristaux photoniques (CPs), qui ont été largement étudiées ces dernières années.Parmi la grande diversité des processus non linéaires en optique, les phénomènes dynamiquestels que la bistabilité et l'excitabilité font l'objet de nombreuses études. La bistabilité est bienconnue pour ces applications potentielles pour les mémoires et les commutateurs optiques etpour les portes logiques. Une réponse excitable typique est celle subjacente dans le déclanche-ment du potentiel d'action dans les neurones. En optique, l'excitabilité a été observée il y aune quinzaine d'années. Dans ce travail, nous avons étudié les régimes bistables, auto-oscillantset excitables dans des nanocavités semiconductrices III-V à CP. A�n de coupler e�cacement lalumière dans les nanocavités, nous avons développé une technique de couplage par onde évanes-cente en utilisant une micro�bre optique étirée. Grâce à cette technique, nous avons démontrépour la première fois l'excitabilité dans une nanocavité à CP. En parallèle, nous avons accomplila première étape vers la dynamique non linéaire dans un réseau de cavités couplées en démon-trant le couplage optique linéaire entre nanocavitités adjacentes. Ceci a été réalisé en utilisantde mesures de photoluminescence en champ lointain. Un ensemble de résonateurs non linéairescouplés ouvre la voie à une famille de phénomènes dynamiques non linéaires très riches, baséssur la rupture spontanée de symétrie. Nous avons démontré théoriquement ce phénomène dansdeux cavités couplées par onde évanescente. Les premières études expérimentales de ce régimeont été menées, établissant ainsi les bases pour une future démonstration de la rupture spontanéede symétrie dans un réseau de nanocavités non linéaires couplées.Mots Clés Dynamique non-linéaire, Cristal Photonique, Cavités couplées, Bistabilité,Excitabilité, Oscillations auto-entretenues, Rupture de symétrie.
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Chapter 1Introduction to nonlinear systemsThe aim of this thesis is the study of nonlinear phenomena in III-V photonic crystal semiconduc-tor nanocavities. We shall provide some background for a better understanding of this reading."What is a nonlinear system?", "Which kind of behavior can it show?", "What is a photoniccrystal nanocavity and why using it to study nonlinear e�ects?". In this chapter we try to answerthese questions.We will give some theoretical bases of nonlinear dynamics in systems described by oneor two variables. These concepts will be useful for the interpretation of nonlinear regimes suchas bistability, excitability and self-sustained oscillations. The particularities of such regimesin optical systems are discussed in the second part of this chapter, where an introduction tononlinearities in optics is presented. Then, we will see that nonlinearities can be enhanced innanocavities and good candidates for this are the photonic crystals. Indeed, we introduce thephotonic crystal principles and the di�erent ways to con�ne light, ending the section with anoverview of the methods to couple light into the nanocavities, an important and non trivialproblem. Finally, we develop a model for the intracavity energy, the carrier dynamics andtemperature variation in a generic cavity �lled with III-V semiconductor material. This modelallows to capture, in a single set of simple equations, a large family of nonlinear dynamicalbehaviors at the heart of this thesis.1.1 Introduction to nonlinear dynamics"Nonlinear dynamics concerns the study of systems whose time evolution equations are nonlin-ear. What is the fuss over nonlinearity? The basic idea is the following: If a parameter thatdescribes a linear system, such as the spring constant k, is changed, then the frequency and theamplitude of the resulting oscillations will change, but the qualitative nature of the behavior (sim-ple harmonic oscillations in this example) remains the same. In fact, by appropriately rescalingour length and time axes, we can make the behavior for any value of k look just like that forsome other value of k. As we shall see, for nonlinear systems, a small change in a parame-ter can lead to sudden and dramatic changes in both the qualitative and quantitative behaviorof the system. For one value, the behavior might be periodic, for another value only slightlydi�erent from the �rst, the behavior might be completely aperiodic" [1]. We should point outthat almost all real systems are nonlinear at least to some extent, from population biology tolaser physics passing through planetary systems and turbulence, among others. Hence, the kindof behaviors we will discuss in this chapter can be considered to be somewhat universal in nature.1



In this section we give a short introduction to nonlinear dynamics as a general descriptiontool for the dynamics of complex systems. Di�erent qualitative behaviors present in systems withdi�erent kinds of nonlinearities, as well as the tools to extract such behaviors from the equationsare discussed. This theoretical background on nonlinear dynamics will be implemented in thenext sections focusing on particular optical systems.Nonlinear dynamics is the study of the time evolution of a system that is governed bynonlinear equations of motion. This is usually represented in two ways: by di�erential equationsor iterated maps. Di�erential equations describe the evolution of the system in continuous timewhile iterated maps do so in discrete time. In this section we will focus on di�erential equations,in particular, on ordinary di�erential equations (ODE).Nonlinearities in a system can make the equations di�cult to solve analytically. Then,geometrical methods, which allow a qualitative description of the system behavior, become asuitable approach. As an example, let us consider a system described by:
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

(1.1)with ẋ1,2 = dx1,2/dt. Suppose we know a solution to eq. 1.1, (x1(t), x2(t)), for a certain initialcondition. If we construct an abstract space with cordinates (x1, x2), then, the solution corre-sponds to a point moving along a curve in this space, �g. 1.1.

Figure 1.1: Phase space showing a trajectory for the system described by eq. 1.1.The curve in �g. 1.1 is called trajectory and the space where it is plotted is called thephase space [2]. This space is completely full of trajectories since each point in the phase spaceis a possible initial condition for the system. Generally, the problem is addressed in the oppositeway: given the di�erential equation we �nd the trajectories in the phase space.Di�erential equations are classi�ed according to the number of variables (n) or degreesof freedom needed to characterize the state of the system, which can be seen as the dimensionof the phase space. Then, eq. 1.1 is a set of ODEs with a 2D phase space since the system isdescribed by two variables (x1 and x2). Table 1.1 summarizes the di�erent behaviors we can �nd2



n=1 n=2 n≥ 3 n�3Linear Exponential growth linear oscillators Electrical engineering Coupled harmonicRC circuit RLC circuit Civil engineering oscillatorsRadioactive decay 2-body problem Solid-state physics,...Nonlinear Fixed points Pendulum Strange attractors Coupled nonlinearBifurcations Anharmonic oscillator (Lorentz) oscillatorOverdamped systems Limit cycles Chemical kinetics Neuronal networkBiological oscillators Fractals,...Table 1.1: Characteristic behavior found in system described by di�erent numbers of variables(n).in linear and nonlinear ODEs of di�erent dimensions [2]. As expected, the higher n is, the morecomplex the system can be.1.1.1 Systems described by a single variableIn order to show the advantages of geometrical analysis over an analytical approach in nonlinearsystems, let us consider a simple example: a pendulum, where the dynamics of the angularcoordinate θ is governed by the equation
θ̈ + γθ̇ +

g

L
sin(θ) = 0. (1.2)In the case of an overdamped pendulum (γ >> 1), eq. 1.2 reads

θ̇ = −αsin(θ) (1.3)with α = g/Lγ. Eq. 1.3 can be solved analytically and yields
t =

1

α
ln|cosec(θ0) + cot(θ0)

cosec(θ) + cot(θ)
| (1.4)This result is exact but quite hard to interpret. In contrast, a graphical analysis is much easieras shown in �g. 1.2. Fig. 1.2 shows the phase space of the system in eq. 1.2: θ is a point in phasespace and its time evolution is described by the vector �eld f(θ) = αsinθ, which dictates thevelocity vector (θ̇) at each θ. The arrows in �g. 1.2 indicate the sign of the velocity; arrows tothe right means θ̇ > 0 and to the left θ̇ < 0. For an initial condition of θ(t = 0) = a the velocityis positive then the system evolves to higher θ; close to θ = 0 the velocity tends to zero and thesystem converges to θ(t → ∞) = 0. On the other hand, if θ(t = 0) = b the velocity is negativeand the system also converges to θ(t → ∞) = 0. Then, we say that θ = 0 is a stable �xed point(θf ). In general, all points that satisfy θ̇ = 0 are called �xed points and we can de�ne two kindsof them: stable (e.g. θf = 0), which satisfy θ(t → ∞) = θf , and unstable (e.g. θf = π), whichsatisfy θ(t → −∞) = θf .The stability of the �xed points can be found graphically as in �g. 1.2 or mathematicallyby linearizing the system around the �xed point. Let us consider the general case ẋ = f(x). If

xf is a �xed point of this eq., the linearization around xf is given by
ẋ = f(xf ) +

df

dx
|xf

(x− xf ) +O(x2) (1.5)3



Figure 1.2: Phase space of the system in eq. 1.3 showing the �xed points and its stability. Thearrows show the sign of the velocity.
f(xf ) = 0 because xf is a �xed point. Neglecting the higher order we have

ẋ =
df

dx
|xf

(x− xf ) (1.6)The solution to eq. 1.6 is an exponential function whose behavior is given by the eigen-value λ =
df

dx
|xf

. For λ > 0 the solution grows exponentially (then x moves away from the �xedpoint meaning that xf is unstable) and for λ < 0 it decays exponentially (then x converge to the�xed point meaning that xf is stable). If λ = 0 the higher orders of eq. 1.5 can not be neglectedand a nonlinear analysis is needed.We can thus say that �xed points dominate the dynamics in systems described by a singlevariable, in the sense that the trajectories can either approach or move away from a �xed point.Indeed, such behavior is all we can �nd in a 1D phase space. The reason is that trajectories areforced to increase or decrease monotonically or remain constant.Now, an important question to be addressed is whether trajectories in the phase spacecan be qualitatively changed by varying some parameters of the system. The variation of aparameter can cause a change in the stability or the apparition/annihilation of a �xed point.This qualitatively changes the dynamics of the system: these changes are called bifurcations.Types of bifurcationsIn the following we present the most common types of bifurcations in 1D phase space.Saddle-node bifurcationA saddle-node is a bifurcation in which two �xed points of a dynamical system collide andannihilate each other. The prototypical example, or "normal form" in the jargon of NonlinearDynamics, is given by:
ẋ = µ− x2 (1.7)where µ is a parameter that can be positive, negative or zero. For µ < 0 there are no �xed points;for µ > 0 the system has two �xed points (xf = ±√

µ) and for µ = 0 they coalesce. Furthermore,4



for µ > 0 one of the �xed point is stable while the other is unstable. Fig. 1.3 shows the value andstability of �xed points as a function of the parameter, which is called the bifurcation diagram.The bifurcation takes place at µ = 0, since the vector �eld for µ > 0 and µ < 0, and hence thepossible trajectories in phase space, are qualitatively di�erent. This bifurcation underliesoptical bistability, which is one of the subjects of study of this thesis.

Figure 1.3: Bifurcation diagram for the saddle-node bifurcation (eq. 1.7).Transcritical bifurcationThe transcritical bifurcation occurs when the parameters do not a�ect the independent term ofthe equation but the linear term. Then a �xed point exists for all values of a parameter andis never destroyed. However, it can interchange its stability with another �xed point as theparameter is varied. The normal form reads:
ẋ = µx− x2 (1.8)Eq. 1.8 accounts for a �xed point at x = µ and another one at x = 0 that coalesce for µ = 0.For µ < 0 the �xed point at x = 0 is stable and the one at x = µ unstable. However, when µ > 0the situation is reversed, �g. 1.4.

Figure 1.4: Bifurcation diagram for the transcritical bifurcation (eq. 1.8).An example of this type of bifurcation is observed in a solid-state laser [3, 2]. The sys-tem consists in a collection of "laser-active" atoms embedded in a solid state matrix, bounded5



by partially re�ecting mirrors at either end. An external pump is used to excite these atoms.For low injected power, each atom oscillates independently and emits out of phase, then thesystem behaves as a lamp. However, as the pump is increased (above a certain thershold) theatoms begin to oscillate in phase. Then, laser emission takes place.A simple model to describe this behavior was developed by Haken [3]. The dynamicalvariable is the number of photons (n(t)) in the laser �eld and its dynamics is given by
ṅ = gain − loss = GnN − kn (1.9)The gain term comes from the stimulated emission, in which photons stimulate excitedatoms to emit additional photons. This process is proportional to the number of photons (n)and excited atoms (N(t)). The parameter G is the gain coe�cient and the losses account forphotons lost through the mirrors forming the optical cavity. k is a constant rate (k > 0) and isthe inverse of the photon lifetime inside the resonator.Once an atom has emitted a photon it returns to its fundamental state; indeed, thereis a relation between N and n. If, in the absence of laser e�ect, the pump produces N0 excitedatoms, then the laser e�ect decrease this number as:

N(t) = N0 − αn (1.10)with α > 0 corresponding to the rate of atoms that return to their fundamental state. Replacingeq. 1.10 in eq. 1.9, this reads
ṅ = (GN0 − k)n− (αG)n2 (1.11)Note the equivalence between eq. 1.11 and eq. 1.8, meaning that the system presents a trans-critical bifurcation, although in this case only n > 0 has a physical meaning. For N0 < k/G thesystem has a stable �xed point at nf = 0 meaning that it behaves as a lamp, �g. 1.5. A bifurca-tion occurs at N0 = k/G where nf = 0 changes its stability. Finally, for N0 > k/G a stable �xedpoint appears at nf = (GN0 − k)/αG > 0 that corresponds to a laser e�ect. N0 = k/G, thevalue at which the laser action appears, is called the laser threshold in this simple representation.

Figure 1.5: Bifurcation diagram for a solid-state laser described by eq. 1.11.Pitchfork bifurcation 6



The pitchfork bifurcation is common in systems having a symmetry. In this kind ofbifurcation a �xed point changes its stability and gives birth to two other �xed points, which"inherit" the original stability of the �rst. The normal form of this bifurcation is:
ẋ = µx± x3 (1.12)Note that eq. 1.12 remains invariant under x → −x transformations.Taking the minus sign in eq. 1.12, for µ < 0 there is one stable �xed point at x = 0. For

µ > 0 there are three, xf = ±√
µ which are stable and x = 0 is unstable, �g. 1.6.a. This typeof behavior is called supercritical pitchfork.

(a) (b)Figure 1.6: Bifurcation diagram of a (a) supercritical and (b) subcritical pitchfork bifurcation (eq.1.12). Taking the plus sign in eq. 1.12, we obtain the opposite behavior. For µ < 0 there arethree �xed points, xf = ±√−µ which are unstable and x = 0 that is stable, �g. 1.6.b. Andfor µ > 0 there is one unstable �xed point at x = 0. This type of behavior is called subcriticalpitchfork.Both super and subcritical pitchfork bifurcations are at the origin of the spon-taneous symmetry breaking in coupled (optical) cavity systems. This phenomenonis studied in detail in the last part of this manuscript.The pitchfork bifurcation is related to systems having a symmetry. However, the symme-try is just a mathematical approximation of real systems. Then, in order to model a real system,we need to add a perturbation (h) to eq. 1.12. This perturbation leads to a disconnection ofthe pitchfork bifurcation into two branches. An upper piece that consists entirely of stable �xedpoints and a lower branch that presents stable and unstable �xed points. Changing µ fromnegative to positive values the lower branch can only be reached by adding a perturbation in thephase space of the system.1.1.2 Systems described by two variablesWe have seen that systems described by a single variable have restricted behaviors, i.e. thevariable either evolve monotonically or it remains constant. In higher dimensional phase spaces,a wider range of dynamical behaviors becomes possible.7



Classi�cation of �xed pointsAs we have seen in the previous paragraphs, the nonlinear dynamical approach to analyze thestability of �xed points is based on the local properties (i.e. in the vicinity of the �xed point) ofthe vector �eld. For this, the vector �eld is linearized.Recall that the general way to model the dynamics of a system in a 2D phase space is:
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

(1.13)We can linearize eq. 1.13 around a �xed point (xf = (x1f , x2f )) in the following way:
ẋ1 =

∂f1
∂x1

|xf
x1 +

∂f1
∂x2

|xf
x2 +O(x2)

ẋ2 =
∂f2
∂x1

|xf
x1 +

∂f2
∂x2

|xf
x2 +O(x2)

(1.14)and simplify this expression by writing ẋ = Ax+O(x2), where ẋ and x are vectors and A is thematrix with the partial derivatives (Jacobian matrix). If the matrix A is diagonalizable (det(A) 6=
0) we can transform the problem into two uncoupled one-dimensional linear problems, where thetime evolution in each transformed coordinate is determined by the associated eigenvalue. Letus now consider the eigenvalues (λ1 and λ2) of A:

λ2 − τλ+∆ = 0 (1.15)with τ the trace of A (τ = λ1 + λ2) and ∆ the determinant (∆ = λ1 × λ2). Then
λ1/2 =

τ ±
√
τ2 − 4∆

2
(1.16)In the following we will detail all possible situations. In the general case, the real partof both eigenvalues is di�erent form zero (Re(λ1/2) 6= 0). We call the �xed point a node if botheigenvalues are real; in particular, stable node if they are both negative and repulsor if they areboth positive. If one eigenvalue is positive and the other one negative we call the �xed point asaddle point. Finally, when the eigenvalues are complex (then λ1 = λ∗

2), we call it a focus. Thereare two types of focus: spiralling inward if Re(λ1) < 0 and spiralling outward if Re(λ1) > 0.In the special case in which Re(λ1/2) = 0 we call the �xed point a center. There are otherclassi�cations but it is not our purpose on being exhaustive and we will only consider these ones.Fig. 1.7 shows the features of each bi-dimensional �xed point.Analyzing the determinant (∆) and the trace (τ) of the matrix A we can determine thetype and the stability of a �xed point. If ∆ < 0 the eigenvalues are real and have opposite signs,then the �xed point is a saddle, �g. 1.8. On the other hand, for ∆ > 0, the eigenvalues are eitherreal with the same sign (nodes) or complex conjugated (spirals). Nodes satisfy τ2−4∆ > 0 whilespirals τ2 − 4∆ < 0. When τ < 0, both eigenvalues have negative real parts, so the �xed pointis stable. On the contrary, for τ > 0 it is unstable and for τ = 0 the �xed point is a center. If
∆ = 0, then the �xed point is not an isolated point, there is either a whole line of �xed points,or a whole plane if A = 0.Let us now consider an example to clarify these points. The most studied example of thistype of system is the pendulum, whose equation of motion is eq. 1.2. In the absence of dampingand external driving, the dynamics of the pendulum is given by

θ̈ +
g

L
sinθ = 0 (1.17)8



Figure 1.7: Types of singularities in systems described by two variables.

Figure 1.8: Summary of the types of singularities and their stability as a function of the trace(τ) and the determinant (∆) of the Jacobian matrix.where θ is the angle with the downward vertical, g is the acceleration due to gravity and L thependulum length. Introducing ω =
√

g/L and τ = ωt, and writing the system in form of twocoupled �rst order ODEs we have
θ̇ = ν
ν̇ = −sinθ

(1.18)with ν the dimensionless angular velocity. The �xed points are Xf = (θf , νf ) = (kπ, 0) with kan integer. Since the vector �eld is periodic we will focus on Xf,1 = (0, 0) and Xf,2 = (π, 0).Linearizing eq. 1.18 around Xf,1 and taking the eigenvalues of A we �nd that Re(λ1/2) = 0, thenthe �xed point is a center. Considering Xf,2, the eigenvalues of A are real and one is positiveand the other negative, then the �xed point is a saddle. Fig. 1.9 shows the phase portrait inthe vicinity of the �xed point. Applying energy conservation considerations we can join thetrajectories between the �xed points. From �g. 1.9, if the state of the system is near the originit performs small oscillations around this point whereas if the system starts at Xf,2 the slightestperturbation causes the pendulum to move away from this point.9



Figure 1.9: Phase portrait in the vicinity of the �xed points of eq. 1.17 which describes thekinetics of a pendulum.Bifurcations in systems described by two variablesThe bifurcations we have discussed so far for systems described by a single variable have ananalogue in 2D (and in larger dimensions). Actually, nothing di�erent happens by adding furtherdimensions to the problem. The interesting dynamics is con�ned to the subspace where thebifurcation takes place. Such subspace is called the "center manifold". However, there arebifurcations that only appear for dimensions higher than one, such as the Hopf bifurcation.Hopf bifurcationThe Hopf bifurcation occurs when a �xed point looses stability as a pair of complexconjugate eigenvalues crosses the imaginary axis of the complex plane as a parameter is varied.The normal form of this type of bifurcation is given by the equations:
ρ̇ = µρ+Re(α)ρ3

ϕ̇ = ω + Im(α)ρ2
(1.19)where ρ and ϕ are cylindrical coordinates describing trajectories in phase space.There are three parameters in eq. 1.19: µ which controls the stability of the �xed point(0,0), ω that gives the frequency of in�nitesimal oscillations and Im(α) which controls the de-pendence of frequency on amplitude for larger amplitude oscillations. Considering Re(α) = −1we observe that, as the parameter µ is varied from negative to positive values, the stable focusat (0,0) changes to an unstable focus and a stable periodic orbit with ρ =

√
µ appears, see �g.1.10. This orbit (�g. 1.10 dashed line) is called a limit cycle. The limit cycle is an isolated closedtrajectory, where the term "isolated" means that neighboring trajectories are not closed, ratherthey are spirals either towards or away from the limit cycle.Self-sustained oscillations: The van der Pol oscillatorIn nonlinear dynamical systems, oscillations usually take place through a Hopf bifurcation. Ingeneral, the normal form given by eq. 1.19 is only valid very close to the bifurcation point(µ ∼ 0). Beyond, higher order nonlinearities play an important role and the limit cycle becomes10



Figure 1.10: Phase portrait of a Hopf bifurcation (eq. 1.19).nonlinear itself. In the following we illustrate this through a typical solution of the so-called vander Pol oscillator. The van der Pol oscillator is given by the equation
ẍ+ µ(x2 − 1)ẋ+ x = 0 (1.20)where µ ≥ 0 is a parameter. This equation looks like a simple harmonic oscillator but with anonlinear damping term µ(x2 − 1)ẋ. Here we will consider the case of strong coupling µ >> 1.We can rewrite eq. 1.20 as:

ẋ = µ[y − F (x)]

ẏ = − 1

µ
x

(1.21)with
F (x) =

1

3
x3 − x, y =

ẋ+ µF (x)

µ
(1.22)It is useful to analyze the nullclines of the system, which are manifolds such that ẋ = 0or ẏ = 0. The �rst nullcline, ẋ = 0, is the y = F (x) curve, and the second one, ẏ = 0, is the yaxis of the phase space. If the initial condition (point A in �g. 1.11.a) is not too close to thecubic nullcline, the condition µ >> 1 leads to |ẋ| >> |ẏ|; besides, in the �rst stage (from A toB), |ẋ| > 0. Indeed, the trajectory is practically horizontal and it approaches the nullcline. Closeto the nullcline (point B in �g. 1.11.a), y − F (x) << 1 then |ẋ| ∼ |ẏ| and the trajectory crossesthe nullcline vertically and eventually moves along it slowly until it reaches the kink at point C,and it jumps sideways again with a fast and almost horizontal trajectory. This is followed by aslow movement along the nullcline until the next jump point (point D in �g. 1.11.a) is reached.This movement continues periodically: we approach a limit cycle.This analysis shows that the limit cycle has two di�erent time scales, governed by µand 1/µ. These time scales are revealed in the time trace of x, �g. 1.11.b, obtained throughnumerical integration of eq. 1.21 with µ = 20 and (x0, y0) = (1, 1). From �g. 1.11.b we observea periodic motion: we say that the system exhibits self-sustained oscillations, meaning that itoscillates even in the absence of periodic forcing. Several systems in nature present this kind ofbehavior: the heart beating, the periodic �ring of a pacemaker neuron, daily rhythms in humanbody temperature and hormone secretion, among others. We will study these oscillationsin an optical system: an optical cavity.Excitability: The forced van der Pol oscillatorSuppose the van der Pol oscillator is biased by a constant force, then eq. 1.20 takes the form

ẍ+ µ(x2 − 1)ẋ+ x = a (1.23)11
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(a) (b)Figure 1.11: (a) Nullclines of eq. 1.21 in the phase space. The line with the arrows representsan example of a possible trajectory. (b) Time trace for µ = 20 and (x0, y0) = (1, 1).Following the same procedure as before, eq. 1.23 can be written as
ẋ = µ[y − F (x)]

ẏ =
−x+ a

µ
(1.24)with F (x) and y as in eq. 1.22. The �xed points are given by the intersection of nullclines (see �g.1.12) that yields xf = (a, F (a)). Linearizing the system around the �xed point, we obtain thedeterminant and the trace of the Jacobian matrix, ∆ = 1 and τ = −µ(a2−1) respectively. From�g. 1.8 we have that the �xed point is unstable if −1 < a < 1 and stable otherwise. Furthermore,

τ2 − 4δ = µ2(a2 − 1)2 − 4 will be positive for su�ciently large values of |a| (|a| > ac), implyingthat the �xed point will be a node. For µ >> 1 and −1 < a < 1 we have a case analogue thethe one described in the previous paragraphs. However, for |a| > ac the �xed point is stable,with no limit cycles, as the trajectory approaches the cubic nullcline, it moves slowly along itand towards the �xed point, �g. 1.12. If a slight perturbation kicks the state of the system awayfrom the �xed point, then, the system jumps to the negative branch of the cubic function, movesalong the nullcline, jumps again when it reaches the maximum and �nally moves slowly towardsthe �xed point. This type of behavior is called excitability. An excitable system is characterizedby two properties: it has a unique, globally attracting rest state, and a large enough stimuluscan send the system on a long excursion through phase space before it returns to the quiescentstate.Types of excitabilityIn the previous paragraph we have introduced the concept of excitable system, which is of centralimportance to this thesis. Here we will discuss excitability in more detail.Excitability is a regime well known in biology since it underlies spiking behavior in manybiological systems such as neurons and cardiac tissue. Excitability can also be found in chem-istry, namely in the Belousov-Zhabotinsky reaction, and in physics from the driven mechanicalpendulum to lasers and ampli�ers [4]. Excitability is usually de�ned in a phenomenological way12



Figure 1.12: Nullclines of eq. 1.24 in the phase space. The line with the arrows represent anexample of a possible excitable trajectory. The small arrows show the velocity vector direction ateach point of the phase space.[5]: a small perturbation from the single stable �xed point can result in a large and long lastingexcursion away from the �xed point before the system comes back to equilibrium. Furthermore,as an external parameter is changed, the global attractor in the form of the stationary pointbifurcates into a stable periodic orbit, and the excitability behavior undergoes oscillatory dy-namics, as discussed in the previous paragraphs. There are three qualitatively di�erent types ofexcitability, called type I, II and III, which are distinguished by the distinct bifurcations leadingto the oscillatory dynamics [6]. This is manifested in di�erent properties of the frequency of theemergent oscillations [7].Type I excitability arises from an attractor (stable node) close to a saddle-node in anattractive invariant circle, as sketched in �g. 1.13.a (left), as in the Terman−Wang model ofneuronal excitability [8]. The fact that the attractor and the saddle point are close togethermeans that the system is close to a saddle-node bifurcation on a limit cycle. A perturbation thatmakes the system cross the saddle point leads to a large amplitude excursion around the invariantcircle. This corresponds to a single pulse in the time trace as depicted in �g 1.13.a (right). TypeII excitability is due to an S-shape slow nullcline in slow-fast systems (as the biased van der Poloscillator discussed previously), as sketched in �g. 1.13.b (left). This type of excitability is foundin the FitzHugh-Nagumo model of neuron spiking [4, 9]. A su�ciently large perturbation bringsthe system from the attractor (black dot) to the white dot, then the system makes a quick jumpto the right branch of the nullcline, follows it before it jumps back to the left branch of the null-cline reaching then the steady state. This leads to square-shaped pulses as shown in �g. 1.13.b(right). Note that in both types of excitability the amplitude of the excursion is independentof the perturbation, because the invariant circle and the slow nullcline determine the maximumof the pulse. The phase portrait of a type III excitability is depicted in �g 1.13.c (left). Theo� solution (y=0) is an attractor (black dot) but a perturbation can push the system above thestable nullcline to the white dot. From there the system produces a single pulse and then relaxesslowly following the slow nullcline to the attractor. The pulse of this type of excitability is shorterthan in �g. 1.13.a-b (right) [10]. This type of excitability was observed in laser with saturableabsorber [10]. In this work we will focus on type II excitability as will see in chapter 6.13



(a)
(b)
(c)Figure 1.13: Phase portrait (left) and time traces (right) for the type I (a), type II (b) and type III(c) excitability. The black dot denotes the �xed points and the white dot is the initial condition.The plots are inspired by [10]Once the system has reacted to an external perturbation with an excitable pulse, a secondresponse can not be initiated immediately. Instead, a �nite time, known as the refractory period,must elapse before another excitable pulse is generated from a second stimulus. This refractoryperiod has been extensively studied in biology, e.g. in neuronal systems, where it has been shownto lye in the ms range [11]. In optics, the refractory times can be much shorter, typically fromsub-ns to millisecond timescale. Such fast dynamics makes time-resolved measurements quitechallenging in optics. In chapter 6 we will see how this quantity can be measured in an optical(photonic crystal) excitable nanocavity.In this section we have described some fundamentals on nonlinear dynamical systems.The methods used to solve nonlinear equations and the di�erent behaviors that can be obtainedwere discussed. In the next section we will apply these tools to a particular kind of systems: thenonlinear optical systems.1.2 Nonlinear optics in III-V semiconductorNonlinear optics is the branch of optics that accounts for phenomena in which the properties oflight propagation in a medium depend on light intensity. This can be described by a nonlinear14



dependency of the dielectric polarization of the material on the electric �eld. Nonlinear opticalphenomena are typically observed for high light intensities.In most cases, the physical origin of the nonlinear polarization relies on the microscopiccharacteristics of the material in which light is propagating. Due to the great diversity of micro-scopic properties of matter, many di�erent nonlinear processes can be expected.In this section we will focus on a particular class of nonlinear properties: third ordernonlinearity. Speci�cally, we will consider third order nonlinear e�ects due to charge carriersin active III-V semiconductor nanostructures induced by one photon absorption process. Suchcarrier density leads to both absorption and refractive index change.This section is organized as follows: we begin with an introduction to nonlinear opticsand active materials. We continue with the description of particular nonlinear regimes: opticalbistability, excitability and self-sustained oscillations. Finally, we will introduce an importantregime in coupled nonlinear cavities: the spontaneous symmetry breaking.1.2.1 Principles of nonlinear opticsIn classical optics, the linear response of a medium to an oscillating electric �eld of amplitude
E(ω) is characterized by the macroscopic polarization (P):

P (ω) = ε0χ(ω)E(ω) (1.25)where χ(ω), the linear electric susceptibility, is a scalar or tensor function which describes themacroscopic optical properties of the material. This can be written as χ = ε − 1, with ε therelative dielectric permittivity. We can also adopt a microscopic point of view considering thematerial as an ensemble of charged particles: electrons and ions. When an electromagnetic �eldis applied to this system the positive and negative charges move in opposite directions followingthe �eld. In a metal, these charges are free carriers subjected to an oscillating driving force. Indielectric materials, however, electric charges do not �ow through the material, but only slightlyshift from their average equilibrium positions inducing a dielectric polarization. Under the actionof an electric �eld with frequency ω the charges will react as dipoles oscillating at a frequency ω.As the electron mass is much smaller than the ion mass we can consider that only the electronsoscillate. A good classical representation of this is the oscillation of a mass attached to a spring.Within this framework, the nonlinear regime can be thought of as a situation where thespring is brought to the stretching limit (high injected intensities). Then the electron displace-ment (and hence the polarization) is no longer linear with the injected �eld. Therefore, a modelof an anharmonic oscillator needs to be implemented. The material polarization (P) can thus beexpanded in a Taylor series of the incident �eld E as:
P = ε0[χ

(1)E + χ(2)E2 + χ(3)E3 + ...] (1.26)In this expression χ(1) corresponds to the linear susceptibility while χ(2), χ(3), ..., to the nonlin-ear susceptibilities. The real part of the susceptibility is related to the refractive index of thematerial and the imaginary part to the optical absorption.The processes governed by the second term in eq. 1.26 are called second order nonlinearprocesses. This type of nonlinearity gives rise to the mixing of frequencies. Among the most15



important second order nonlinear phenomena we �nd the second harmonic generation, sum fre-quency generation, optical parametric ampli�cation, spontaneous parametric down conversion[12]. All these are examples of what is known as parametric processes. Even though these pro-cesses are not strictly associated to second order non linearities, they have been shown to belargely predominant with second order nonlinearities rather than higher orders. Most impor-tantly, in parametric processes the energy of the incident wave is not transferred to the materialthrough absorption.The nonlinear e�ects associated to the third term in eq. 1.26 are called third order non-linear processes. This type of nonlinearity gives rise to several interesting phenomena, amongwhich, we can distinguish those for which the energy of the incident �eld, in resonance withmaterial spectral transitions, leads to energy transfer between light and matter. Then, the en-ergy of the �eld is stored in the material for a period that depends on the excitation dynamicsand the carrier relaxation time. This type of non linearities induces a change in the absorptioncoe�cient and refractive index with the incident �eld. In this work we will focus on this typeof nonlinearities. Note that semiconductor materials are meanly characterized by the existenceof a band gap for the electronic transitions, i.e. a region where there is not available electronicstate. This region separates the last electronic occupied band, called valence band, from the�rst non occupied band, called conduction band. Compare to insulator materials, this band gapis su�ciently small in energy so that an optical external �eld can easily promote an electronfrom the valence to the conduction band. As a consequence, intrinsic or absorptive nonlinearresponses can be achieved, simply by setting the excitation energy within or higher the band gapenergy. This is schematic in �g. 1.14. Note that this electronic dispersion diagram correspondsto a direct semiconductor, which is the case of III-V considered here, and it is oversimplify.Namely, only two bands are represented and the dispersion relation is parabolic. Nevertheless,this description is su�cient to all the situation experimentally encountered in this work.

Figure 1.14: Scheme of the energy of the excitation in a parametric process (PN) and in aabsorptive-based process (ABN). For the �rst the energy of the incident �eld is not absorbed bythe material while in the second one an energy transfer takes place.In the following paragraphs we turn our attention to the properties of absorption anddispersion in semiconductors. We will see that it is possible to control these parameters bychanging the carrier density through optical excitation.1.2.2 Absorption and nonlinear refractive index in III-V semiconductorsWhen a semiconductor is excited with an incident �eld, as long as the incoming energy is higherthan the semiconductor gap (Eg), electrons are promoted from the valence to the conductionbands leaving an equal number of "holes" in the former. As a consequence, the absorption and16



refractive index are modi�ed, within the electron-hole recombination lifetime. In steady state,since the carrier density is a function of the electromagnetic �eld intensity, we can write, at �rstorder in |E|2,
n = n0 + n2|E2| (1.27)with n0 the linear refractive index and n2 the nonlinear refractive index, which is proportionalto χ(3) and gives the rate at which the refractive index increases or decreases with increasingoptical intensity [12]. Di�erent types of nonlinearities may induce a nonlinear refractive indexchange e�ects in semiconductors. Two well known e�ects can be distinguished: the Drude ef-fect, when a photogenerated electron-hole plasma modi�es the refractive index and this changeis proportional to the carrier density [13]; and band �lling e�ect, which produces a decrease ofthe absorption through photoexcited carrier generation. If two pulses are sent to the sample,a strong (pump) pulse followed by a weak (probe) pulse, the occupation of the conduction andvalence bands generated by a pump pulse induces a decrease in the absorption probability of theprobe [14]. This change in the absorption induces a refractive index modi�cation.The detailed calculation of the refractive index and the absorption in a general caseis quite cumbersome. In order to simplify the problem, a �rst assumption is to consider adirect gap semiconductor described by parabolic bands. In this case the susceptibility can becalculated using descriptive tools such as the joint density of states (ρj(E)), i.e. the density oftwo level systems optically coupled by a photon of energy E. In this model, the semiconductoris represented as a continuous sum of two-level systems, of homogeneous broadening γ = (T2)

−1,weighted by the occupation function of electrons (fe) and holes (fh). Then we can express thesusceptibility (χ(ω) = χr(ω) + iχi(ω)) as:
χr(ω) = A

∫ ∞

0
dw′ρj(~ω

′)[1− fe(ω
′)− fh(w

′)]
(ω − ω′)

(ω − ω′)2 + γ2
(1.28)

χi(ω) = A

∫ ∞

0
dw′ρj(~ω

′)[1− fe(ω
′)− fh(w

′)]
γ

(ω − ω′)2 + γ2
(1.29)with A a proportionality constant characteristic of the material. The occupation functions in-troduce the nonlinear mechanisms through the dependency of carrier density with the �eld.

χr describes the refractive index which can be translated into a third order term in the sus-ceptibility, χ
(3)
eff . The induced polarization can thus be expressed with a cubic dependenceof the electric �eld and the total refractive index with a linear dependence of the intensity.On the other hand, the imaginary part of the susceptibility (χi) describes the absorption.In situations of quasi-equilibrium, fe(ω) and fh(ω) can be described by the Fermi-Diracdistribution:

f(ω) = (
e~ω−EF

kBTF
+ 1)−1 (1.30)with TF the lattice temperature, EF the Fermi level and KB the Boltzmann constant. In mostcases h/T2 << kBTF (i.e. γ → 0), then, the Lorentzian distribution of eqs. 1.28 and 1.29 canbe considered as a Dirac distribution, leading to an expression for the absorption of the form:

α(ω) = α0(ω)[1− fe(ω)− fh(ω)] (1.31)with α0 the absorption coe�cient of the material in absence of excitation. Note that α/α0 givesdirect access to the population factors fe and fh.17



The information about the nonlinear refractive index in energy windows close to thespectral gap of a semiconductor is of major interest for devices such as nonlinear Fabry-Perotresonators. The direct measurement of this magnitude requires interferometric methods of highaccuracy. However, the experimental measurement of the absorption spectra is easier and therefractive index can be deduced from it by means of the Kramers-Kronig transformation:
∆n(ω) =

c

π

∫ ∞

0
dω′ ∆α(ω′)

ω′2 − ω2
(1.32)Application of bulk semiconductors to nonlinear optical devices is limited since their non-linear properties are restricted within �xed energy intervals, mainly determined by the band gapenergy. Therefore, materials whose absorption properties can be adjusted to a certain spectralrange, depending on the application, are highly desirable. In the following we describe this kindof materials.Absorption and refractive index change in active materialsActive nanostructured materials, such as quantum dots, wires and wells, allow the modi�cationof the spectral range where the absorption and refractive index change takes place. We will seethat speci�c properties as the energy gap can be tailored by changing the size of these structures.The quantum wells (QW) are semiconductors were the charge carriers are con�ned withina plane (2D) in the space. In quantum wires (QR) con�nement takes place in a line and in QDsthe carriers are con�ned in the three dimensions (0D), �g. 1.15. This con�nement is achievedby introducing an energy barrier for the electrons.

Figure 1.15: Active region (top) and density of states (bottom) for con�nement in no dimensions(i.e., bulk material) (a), in one dimension (i.e., quantum well) (b), in two dimensions (i.e.,quantum wire) (c) and in three dimensions (i.e., quantum dot) (d).For example, the quantum dots can be formed by introducing a nanometric "box", i.e.a well in the three dimensions, of a semiconductor with low bandgap in a semiconductor withhigher bandgap. For well sizes of the order or smaller than the electronic De Broglie wavelength,i. e. ∼ 120 nm in III-V semiconductors, the strong spatial con�nement of the carrier inside thedots yields to a discretization of the energy levels. Moreover, this discretization depends on the18



QD size. Provided that the di�erence in the energy bandgaps of the QD and the bulk is higherthan the thermal energy, the carrier are trapped in the dots. For these reasons the QDs are alsocalled arti�cial atoms.The spatial con�nement and the discretization of the energy levels in the QDs make theminteresting as an active material in semiconductor lasers. They can give rise to a decrease ofthe laser threshold, low sensitivity to temperature, an increase of the gain and a decrease of thefrequency chirp. Some of these structures are nowadays extensively used in technology. They areused in quantum information processing, as single-electron transistors, in diode lasers, ampli�ersand biological sensors, among others.In this work we are interested in InAs/InP III-V semiconductors QDs. The advantages ofthese nanostructures is their emission at the telecommunication wavelengths (1-2 µm). We willuse this type of QDs in photoluminescence measurements, since its broad emission (∼ 150 nm)and low density (∼ 1010cm−3) allow to easily detect the photonic crystal cavity modes, as wewill see in chapter 3. Let us now consider QW structures that are at the center of our nonlinearstudies.Quantum WellsThe quantum wells can be formed by introducing a very thin (< 120 nm) 2D layer ofa semiconductor with low bandgap surrounded by a semiconductor with higher bandgap (�g.1.15.b). The boundary conditions in this layer determine the wave functions of carriers, hence,the potential energies. Because these wave functions depend on the quantum well dimensions,the energies allowed in the well are tunable by adjusting the well dimension, which yields achange of the bandgap energy. The e�ects of quantum con�nement (discrete energy spectrum)take place when the quantum well thickness becomes comparable to the De Broglie wavelengthof carriers (generally electrons and holes), leading to discrete energy levels, �g. 1.16. The lateralcon�nement in the QW produces a restriction of the carrier movement in this direction, givingrise to the discrete energy spectrum. However, carriers are free to move in the parallel directionleading to a dense distribution of states in the parallel plane.

Figure 1.16: Discrete energy levels in a QW semiconductor. I and III correspond to the highbandgap semiconductor (the barrier) and II to the low one (the well). The quantum con�nedcarrier energies are Ee1 or Ee2 for electrons and Eh1, Eh2 for holes. The wave functions ofcarriers at these allowed energies are standing waves.QWs structures are extensively used in technology. One of the most common applicationsof these systems is laser diodes, including red lasers for DVDs and laser pointers, infra-red lasers19



in �ber optical transmitters, blue lasers, among others.Let us now study the absorption spectra and the refractive index change in this kind ofstructures. Experimental measurements of α and ∆n (through Kramers-Kronig tranformation)as a function of energy for di�erent injected intensities in multiple GaAs quantum wells werecarried out by Koch et al. [15], �g. 1.17. The exponential tail below the band gap (dashed line in�g. 1.17.a) in the absorption vs energy plot is called the Urbach tail. This tail can be attributedto transitions between band tails below the band edges. Such tails can result from disorder ofthe perfect crystal, e.g. from defects or doping and the �uctuation of electronic energy bandsdue to lattice vibrations [16].

(a) (b)Figure 1.17: Nonlinear absorption spectra (a) and refractive index change (b) of multiple quantumwells for (from 1 to 6 and a to e, respectively) increasing excitation powers. The refractive indexchange was deduced from the measurements of the absorption by Kramers-Kronig transformation.Images from [15]Note the decrease of the absorption with the incident power regardless the energy. Thiscan be seen in eq. 1.31 when fe+fh ≤ 1 and it is called the absorption saturation. Note also that,for the higher injected power (�g. 1.17.a.6), the absorption is negative for a range of energies,i.e. optical gain. This is obtained when fe + fh ≥ 1 in eq. 1.31. We observe in �g. 1.17.b thatthe variation of the refractive index can be positive or negative depending on the wavelength.Furthermore, its value is strongly dependent on the excitation energy.In this work we will take advantage of this change in the refractive index to spectrallyshift the modes of photonic crystal cavities.1.2.3 Nonlinear dynamical processes in optical resonatorsThe optical properties of nonlinear materials can be varied by changing the intensity of the inci-dent light. Therefore, if light is con�ned in small volumes inside the material, �eld enhancementinside this volume is achieved, thus the material properties can be changed with lower excita-tion powers. This light con�nement can be achieved in optical resonators or cavities. As anexample, micro and nano-photonic devices give a handle to tailor and control the �ow of lightwithin a sub-wavelength spatial scale. Indeed, the nonlinear e�ects can be enhanced in systemsallowing tight light con�nement and low optical losses. Among all the nonlinear phenomenathat can be observed in optical resonators, optical bistability has been extensively investigatedin the last decades, mostly due to its potential for optical memories and switching. In optical20



bistability the system presents two possibles output signals for an equal injection. By de�nition,bistability only deals with static regimes and one dynamical variable, but it is often the pre-cursor of exciting dynamical regimes, which can be found in several natural systems includingneurons, cardiac tissues and chemical reactions. Dynamical nonliearities allow rich and complexnon-stationary phenomena such as excitability and self-sustained oscillations. In self-sustainedoscillation regime the nonlinear system reacts emitting a periodical signal while excited with aCW beam. In the excitable regime the system develops all-or-non calibrated optical responsesto a small perturbation.In the following we give some insights about these three particular nonlinear behaviors:bistability, excitability and self-pulsing regime in optical cavities.Optical bistabilityOptical bistability is the simplest and more robust paradigm for the realization of all-opticaltransistors and memories. Two ingredients are needed in order to obtain bistable operation inan optical system: a resonance capable of localizing the light intensity in the spectral domain,and a nonlinear property that changes the spectral response as a function of the light intensity.Under certain conditions for the injection of a nearly resonant beam, two stable states for thetransmission/re�ection through the device can coexist, in the sense that either one output levelor another can take place for the same input parameters. This type of phenomenon has beentheoretically demonstrated for the �rst time in optics by Szoke [17] and experimentally by [18].The optical bistability has been studied in several works due to its possible application to infor-mation processing. Although, the phenomenon is not inherent to optical system, actually it is acommon behavior in electronic systems.Optical bistability typically occurs in nonlinear optical resonators. Depending on thephysics behind the resonator di�erent mathematical representations can be adopted to describethe system, e.g. the equations that govern the optical �eld in a cavity via the Maxwell Blochequations. In order to theoretically describe the optical bistability in an optical resonator, letus consider the following system: a cavity �lled with a nonlinear material of index n = n0 + n2Ioptically injected though a waveguide, �g. 1.18.
Figure 1.18: Sketch of a cavity coupled to a waveguide. The �eld is injected through the left port(f). The cavity is �lled with a third order nonlinear medium with n = n0 + n2I.The system in �g. 1.18 can be described by a Coupled Mode Theory (CMT) formalism[19, 20] which will be detailed in section 2.2.In this framework, the �eld amplitude inside the cavity (a) is described by [20]:

da

dt
= [j(ω0 − δω)− 1

τ
]a+ df (1.33)where we have considered an injection only through the left port. ω0 is the cavity resonancefrequency, τ the photon lifetime, f the injected �eld and d = jexp(jφ/2)/

√
τ , where the phase

φ depends on the structure. δω accounts for the nonlinear resonance frequency shift:
δω = ± |a|2

P0τ2
(1.34)21



where P0 is the characteristic nonlinear power of the cavity [21]. The term δω can be seen as acorrection of the cavity resonance frequency due to the intensity inside the cavity and accounts forthe nonlinear refractive index. The sign in eq. 1.34 gives the sign of the nonlinear resonance shift.We choose δω = −|a|2/P0τ
2, i.e. nonlinear blue-shift, without loss of generality. Considering

a = a(t)exp(jωint) the steady states of eq. 1.33 are given by:
0 = [j(δ +

|a|2
P0τ

)− 1]a+ jejφ/2
√
τf (1.35)where δ = τ(ω0−ωin) is the detuning of the optical injection with respect to the resonance. Thesquared modulus of eq. 1.35 becomes:

τPin = [δ2 +A2 + 2δA+ 1]A (1.36)where A = |a|2/P0τ and Pin = |f |2. The transmitted power (Pout = |t|2) is related to theintracavity energy (A) through Pout = |a|2/τ = AP0. Then, eq. 1.36 yields
Pout

P0
=

Pin/P0

1 + (Pout/P0 + δ)2
(1.37)Eq. 1.37 contains a cubic dependence of Pin as a function of Pout. Indeed, the curve has eitherzero or two critical (i.e. zero derivative) points depending on δ. P0 does not a�ect the shape ofthe curve, it becomes a rescaling factor. The bistable regime corresponds to the case where thecurve has two critical points, which requires a detuning higher than |δ| >

√
3. In addition, since

Pout is positive by de�nition, δ < −
√
3. From eq. 1.36, the transmission T as a function of the

Pin has the feature of �g. 1.19, provided |δ| >
√
3.
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Figure 1.19: Transmitted power as a function of the injected signal showing the typical feature ofa bistable optical system. The solid line corresponds to the stable states while the dashed line tothe unstable states. The arrows show the sense of the hysteresis cycle. The solid line correspondsto: Pin = Pout; the bistability threshold can be approximated as the intersection between this lineand the curve (grey dot).From �g. 1.19, if the system is injected with an increasing power, the transmitted signal(Pout) remains low until Pin is increased beyond some critical value (Pup) then Pout increases.The transmission remains high even if Pin is decreased until another critical value (Pdown) isreached and the system jumps to the lower branch. Such hysteresis cycle is usually consideredas the experimental evidence of optical bistability. A magnitude that characterizes a bistable22



system is the bistability threshold, which is de�ned as the minimum power for which the systempresents two possible states (Pdown in this case). This value can be estimated as the input powerneeded for 100% transmission [21], which corresponds to the intersection of the curve given byeq. 1.37 with the line Pin = Pout, see �g. 1.19, giving [21]:
Pth,in = P0|δ| (1.38)Note that if the system is injected with powers such as Pdown < Pin < Pup the system presenttwo stable �xed points and one unstable �xed point in between. Besides, the range of power forwhich the multistability takes place is given by two saddle node bifurcations.The bistability can be observed in the spectral domain as a bending of the cavity reso-nance. From eq. 1.36 the detuning (δ) as a function of the transmitted signal for a �xed injectedpower (di�erent from zero) is given by:

δ = −Pout

P0
±

√
Pin

Pout
− 1 (1.39)For an injected power in the range of the bistable regime, the cavity resonance bends tohigher or lower wavelengths depending on the sign of the nonlinearity (in this case the resonancebends to the blue), see �g. 1.20. If the detuning is lower than a certain value (δup in �g. 1.20)the system response remains on the tail of the resonance. Beyond δup the transmission suddenlyjumps to the upper branch and remains high even if δ decreases, until another critical value,

δdown, is reached and the system jumps back to the tail of the resonance. Note that both δupand δdown depend on the injected power.

up

downdown

A

Detuning, 
downFigure 1.20: Resonance bending. Transmitted signal as a function of the detuning for a �xedinjected power in the range of the bistable regime (see �g. 5.1).From the experimental point of view, optical bistability has been extensively studiedin the last decades due to its potential application to optical memories. In particular, it hasbeen investigated in detail in Fabry-Perot etalons [22, 23], monolithic vertical cavities [24, 25],micropillars [26] and microdisks [27]. Fig. 1.21 shows the hysteresis cycles in GaAs/AlGaAsmultiple quantum well microresonator pillars [24].In �g. 1.21 the threshold power is less than 70 µW while the threshold in the unetchedstructure was of the order of 1 mW [26]. This reduction of the threshold power is due to thelateral con�nement. According to [28, 21] the threshold scales as V/Q2, with V the optical23



(a) (b)Figure 1.21: (a) Scanning electron micrograph of 4 µm-diameter microresonators. (b) Oscillo-scope traces showing a wide hysteresis loop in a micropillar. Image from [26].mode volume and Q its quality factor. For example, in [27] Si microdisks with high Q (Q ∼
3 × 105) and small volumes (V ∼ 40(λ/nsi)

3) bistability thresholds as low as 60 µW have beenobserved. As a general rule, optical cavities with high quality factors and small volumes areneeded in order to reduce the bistability threshold. Such reduction is crucial for the applicationsto information processing. Excellent candidates for obtaining high quality factors and smallvolumes are photonic crystal nanocavities, as we will see in section 1.3.Self-sustained oscillations and excitabilityBy de�nition, bistability only deals with static regimes. The dynamical nature of nonlinearitiesin active resonators allows, in principle, rich and complex non-stationary phenomena. In partic-ular we will focus on two interesting regimes: excitability and self-sustained oscillations.As it has been previously discussed, the excitable and spiking (or self-sustained oscilla-tions) regimes are nonlinear dynamical processes that involve variables with di�erent time scales:a fast one, responsible for the �ring of the excitable pulse, and a slow one, that determines thefull recovery to the quiescent state. Usually, in semiconductors, the fast variable is given bythe carrier recombination time and the slow one by the thermal relaxation in the material. Instandard resonators, as the one used in [29], the time scale for thermal relaxation is of the orderof a ms. In microphotonic resonators such as microdisks or photonic crystals, the thermal re-laxation time becomes much faster, due to the small dimensions playing a role in heat di�usion.In [27], self-induced optical modulation of the transmission through a high quality factor (Q)microdisk was reported; the thermal recovery time was of the order of µs. Furthermore, stud-ies on optomechanical oscillations driven by radiation pressure have also shown two time-scaleself-sustained oscillations in ultrahigh Q microtorus [30]. More generally, the world of micropho-tonic devices concerns high and ultrahigh Q resonators [31] which, under light injection, enhancecarrier absorption and radiation pressure thus involving ubiquitous thermal or mechanical dy-namical e�ects, respectively.In the previous section we have studied the excitable and the self-sustained oscillationregime in general systems. In optics, such behaviors are manifested as optical output pulsesthat depend on the input power. When a constant input signal leads to a time-varying outputsignal we have self-sustained oscillations. On the other hand, if a constant input signal plus anoptical perturbation (shorter than the oscillation period) triggers an optical pulse, provided the24



perturbation energy is above a certain value, and if the output pulse shape is independent of theperturbation, we have excitability.Excitability o�ers interesting prospects for applications in all-optical circuits, such asclock recovery and pulse reshaping [32]. The self-pulsing behavior in a network of resonators ispotentially interesting for an optical realization of reservoir computing [33]. A photonic imple-mentation of a reservoir computing o�ers the promise of massively parallel information processingwith low power and high speed [34, 35, 36].Self-oscillation regimes are well known in optics. For instance, passive Q-switching andmode-locking lasers are classical self-oscillating phenomena. In recent years, self-pulsing regimeswere studied in semiconductor materials in [37, 38] and experimentally observed in lasers withoptical feedback [39], in lasers with saturable absorber [40], in etalons [41] and in microdisks [27].More recently, opto-mechanical oscillations were observed in micro-torus [30].Unlike bistability and self-sustained oscillations, well known in optics, few works haveinvestigated excitability in optical systems. In particular, some experimental demonstration ofexcitability in nonlinear optical cavities have been carried out in the last �fteen years. Thesestudies concerned semiconductors lasers with optical feedback [42, 43, 44, 45], gas and solid statelasers with saturable absorber [46, 47], thermo-optical pulsation in broad-area semiconductorampli�ers [29, 48], as well as semiconductors ring lasers [49, 50] and optically injected QD lasers[51]. As an example let us consider a semiconductor laser with optical feedback [42]. The ex-citable regime is observed while feeding the system with a �xed pump current close to the laserthreshold and adding to the pumping current pulses whose amplitude and width can be varied.For perturbation amplitudes less than 2.6 mA no output pulses are observed, �g. 1.22.a. How-ever, for perturbations higher than 3 mA an excitable response is obtained 1.22.b, showing theexistence of a threshold.
Figure 1.22: Excitability in a laser with optical feedback. Intensity of the system when a smallamplitude perturbation is added to the pumping current; amplitude of the pulse: 2.6 mA (a) and3 mA (b). Images from [42].Excitability in optics has received considerable attention because of its prospects forapplications in optoelectronic devices, primarily for optical switching, clock recovery, pulse re-shaping (a dispersed input pulse can trigger a large "clean" output pulse), tunable pulses, andfor generating a coherent resonance output pulse in communication networks [32]. However, formany of such applications low threshold and ultrafast excitability and self-pulsing are needed insystems that allow integration and miniaturization. We will see in section 1.3 that good candi-dates to achieve these requirements are the photonic crystal nanocavities.The regimes studied so far involved a single optical system. In the following we will25



introduce an interesting phenomenon arising from the coupling of two (or more) nonlinear opticalresonators.1.2.4 Coupled resonatorsSeveral works have studied the coupling between resonators in di�erent con�gurations: in "pho-tonic molecules" [52, 53, 54, 55, 56], microdisks [57, 58, 59, 60], microspheres [61] and micropillars[62]. As an example, let us consider the coupling of GaInAsP microdisks studied by Baba etal. [57]. Figs. 1.23.a and b show the system under study and the mode splitting: note thatthe modes split into a bonding and antibonding mode. The spectral distance between these twomodes decreases with the microdisk separation, �g. 1.23.c. This mode split, indeed, depends onthe coupling strength as we will analyze in detail in chapter 7.

Figure 1.23: (a) Scanning electron images of twin microdisks. (b) Lasing spectra. Inset �guresare magnetic �eld pro�les of bonding and antibonding states of the eleventh order whisperinggallery mode. (c) Mode split (∆λ) vs interdisk spacing (d) characteristic of twin disks. The dotsand the line are measurement and calculated results, respectively. Images from [57]In this paragraph we have introduced the coupling between optical resonators, in thefollowing we will introduce a key and elusive phenomenon in coupled nonlinear resonators.Nonlinear coupled resonators: Spontaneous symmetry breakingCoupling sets of nonlinear resonators opens up the possibility of spatio-temporal control of light.The phenomenon underlying the family of rich nonlinear dynamical behaviors in such coupledsystem is called spontaneous symmetry breaking. This phenomenon is the process by which asymmetrical system, under symmetrical excitation ends up in an asymmetric state, while linearly,the intensity inside each resonator would be equal. This behavior opens up a whole new range ofapplications such as photonic reservoir computing [36], slow light engineering [63], and all-optical�ip-�op operation [64]. Imagine we have a system of two cavities with right-left symmetry. If thesystem is linear, the original symmetry is preserved. Since both modes are excited with the same26



strength, a superposition of equal inputs from left and right results in equal outputs to the leftand right. In the nonlinear case, this excitation shifts the resonance frequencies of the modes.Because of the coupling of cavity intensities through the middle channel, it is possible that thesymmetric situation is no longer stable at a certain input power. Therefore, the system will driftto a situation where one cavity is more excited than the other, and thus, an asymmetric statearises. Maes et al. [64] have predicted, both analytically and through numerical simulations,this kind of behavior in two coupled nonlinear cavities with a symmetric excitation through twoports, �g. 1.24.
Figure 1.24: (a) Sketch of two coupled cavities coupled to the outside by two ports. Image from[64] Instantaneous Kerr nonlinearity is used, where the index depends on the intensity of thelocal �eld. Using coupled-mode theory (CMT, see section 2.2) they presented a simple analyticaldescription of the processes. Fig. 1.25 shows the output power (trough the left or right ports)as a function of the input power. Note that there is a range of incident powers for which theoutput powers through the left and right ports are not equal. This means that the symmetricsolution has become unstable and the system has switched to an asymmetric state. Indeed, wehave spontaneous symmetry breaking. Note that the symmetry breaking arises and ends with apitchfork bifurcation.

Figure 1.25: Output power versus input power. Stable and unstable states are shown with solid anddashed lines, respectively. Dots show rigorous simulation results. Note that for a range of injectedpowers, the symmetric solution becomes unstable and the system switches to an asymmetric state.Image from [64]In this thesis we propose the experimental demonstration of spontaneous symmetry break-ing on the bases of two evanescently coupled InP-based photonic crystal cavities, symmetrically27



excited through a micro�ber. We will come back to this in Part III.We have mentioned that photonic crystals are good candidates for light con�nement insmall volumes and with high quality factors. In the next section we give a short introductionto photonic crystals, with particular emphasis in light con�nement in small volumes and lightinput coupling methods.1.3 Photonic crystalsLight con�nement in high quality factor resonators or cavities leads to enhanced nonlinearities,i.e. stronger refractive index changes. Hence, lower bistability, excitability and self-sustainedoscillations thresholds can be obtained. The light con�nement in a dielectric or semiconductormedium can be obtained by two di�erent phenomena: the total internal re�ection mechanism orthe interferences in a medium with a periodicity in the refractive index.1.3.1 Mechanisms of light con�nementTotal internal re�ectionA simple way to con�ne light in a dielectric or semiconductor is by means of refraction indexcontrast between two materials. Let us consider two layers with refractive indices n1 and n2, suchthat n1 < n2, �g. 1.26.a. If the incident light propagates through the material with n2, total inter-nal re�ection can be achieved provided the angle of incidence is higher than θin > arcsin(n1/n2).This is the con�nement mechanism in regular optical �bers but also in microdisks (�g. 1.26.b)and microspheres where the materials of higher and lower index can be, for example, III-V semi-conductor or Si and air, respectively. Using this phenomenon we can con�ne light in 1, 2 and 3directions of space leading to waveguides or cavities.
(a) (b)Figure 1.26: Light con�nement in a layer (a) and in a microdisk (b). The con�nement is givenby total internal re�ection on the interface of two media with di�erent refractive index.Con�nement by interferenceAnother way to con�ne light is via light interference of a wave propagating in a periodic medium,like a photonic crystal (PhC). PhC are dielectric materials with a periodic structure of therefractive index in a scale of the order of the wavelength. This periodicity a�ects the propagationof light in the same way as a atomic periodic potential in a crystal a�ects the motion of electrons,by de�ning allowed and forbidden electronic energy bands. In particular, structures with photonicbandgaps that prevent the light to propagate in certain directions with certain frequencies can28



be realized. The periodicity can be in 1 direction (i.e. 1D PhC), 2 directions (2D PhC) or 3directions (3D PhC). In the following we describe the origin of this con�nement.1.3.2 Band structure in photonic crystalsThe physics of light propagation in periodic media is contained in the dispersion relation. Forsimplicity let us �rst consider a 1D photonic crystal, a Bragg mirror. The structure is given bylayers of index n1 and thickness d1 and layers with n2 and d2. Then, the structure period is
d1 + d2. If for a certain wavelength the phase shift is such that n1d1 = n2d2 = λ0/4, destructiveinterference takes place between the re�ected and transmitted waves at each interface. Hence,the structure behaves as a mirror for a wave of wavelength λ0, which is the central wavelengthof the forbidden band of propagation. Indeed, there exists a whole range of frequencies thatcannot propagate in the system, called the photonic bandgap. This bandgap can be seen inthe dispersion relation or band diagram of the structure, where the frequencies are plotted asa function of the wave vector (ω(k)). As for electron standing Bloch waves in a crystal, theband diagram represents the allowed frequencies (bands) and forbidden frequencies (bandgaps)for an optical Bloch wave propagating in the periodic medium. It contains information of thedispersion characteristics ω(k) of the photonic crystal. Fig. 1.28 shows the band diagram forthe case n1 = n2 (left) and for n1 = 3.6 and n2 = 1 (right). Note the photonic bandgap in thelatter.

Figure 1.27: Scheme of the multiple re�ections on the successive interfaces of a structure with aperiodicity in the refractive index (Bragg mirror).Total re�ectivity in more dimensions can be obtained by adding a periodicity in the otherdirections. As a result, 2D or 3D photonic crystals can be realized. These structures also showphotonic bandgaps, which lead to a range of wavelengths that cannot propagate in the structure.Using this concept we can make an analogy with the band theory for the electrons in a crys-tal. The periodic variation of the refractive index resembles the periodic potential in a crystal.Therefore, we can use the same formalism for the propagation equation due to the wave natureof the photons and electrons.Writing the Maxwell equation for a periodic system (ε(r) = ε(r+R), with ε the dielectricfunction), the eigenmodes of the PhC (hk) are Bloch modes characterized by a vector −→k as
Hk(r) = eikruk(r) (1.40)where uk(r) is a periodic function: uk(r) = uk(r + R) for all lattice vectors R [65]. Note thesystem is invariant under the transformation k → k + m2π/a (with m an integer). Indeed,29



(a) (b)Figure 1.28: Photonic band structure for a propagation perpendicular to the structure for (a)
n1 = n2 and (b) n1 = 3.6 and n2 = 1. Note that for di�erent refractive index the degeneracy atthe crossing points is lifted, giving rise to photonic bandgaps.in order to fully describe the physics of propagation we can restrict ourselves to the interval
−π/a < k 6 π/a: this region in k space is called the Brillouin zone.Let us now consider a particular case of a PhC: a 2D photonic crystal with triangularlattice, �g. 1.29.a. The periodicity is given by air holes (n=1) embedded in a high refractiveindex material. The key to understanding photonic crystals in two dimensions is to realize thatthe �elds in 2D can be divided into two polarizations by symmetry: Transverse-electric (TE)modes where the magnetic �eld is normal to the plane and the electric �eld lies on the plane, andtransverse-magnetic (TM) modes where the magnetic �eld is in the plane and the electric �eld isnormal to the latter. The band structure for the TE and TM modes can be completely di�erent,�g. 1.29.b. In particular, it may occur that a photonic bandgap exists for one polarization whileno bandgap exists for the other one. Frequency bands for which propagation is forbidden bothfor TE and TM modes are called total bandgaps.

(a) (b)Figure 1.29: (a) 2D Photonic crystal of triangular lattice. The periodicity is given by air holesof radius r in a material with dielectric constant ε = 10.89. (b) Band diagram for the structurein (a). The solid lines represent the TE modes while the dashed lines the TM modes. The insetshows the Brillouin zone. 30



The triangular lattice is usually chosen over the square one because the bandgap is widerin the �rst case and leads to more �exibility to get a complete cavity e�ect with better con�ne-ment. 2D PhC have two drawbacks: �rstly, the con�nement cannot be achieved in the normaldirection, and secondly, they are di�cult to fabricate due to the high aspect ratio-etching processneeded to obtain 2D cylinders. Nowadays, almost all the 2D PhC are 2D photonic crystal slabs.In such structures the con�nement in the direction perpendicular to the slab can be achievedby total internal re�ection. However, con�nement is not prefect: photons incident with anglessmaller than the total internal re�ection critical angle can escape from the structure and coupleto the continuum of radiation modes.In this thesis we are interested in a particular type of 2D slab: the 2D PhC suspendedmembrane. Here the lateral con�nement is given by the PhC periodicity and the vertical con-�nement through guided modes in the suspended membrane.1.3.3 Photonic crystal cavitiesThe photonic bandgap can be used to con�ne light in reduced volumes. Imagine we include adefect in a PhC for instance by removing some holes in the lattice: if this defect has the appro-priate size to support a mode surrounded by the photonic band gap, then the light gets trappedinto this defect. As a result, an optical cavity is realized. These cavities can have very smallvolumes and high quality factors (Q), where Q represents the rate of energy loss relative to thestored energy of the oscillator. It is given by Q = τω/2 = ω/∆ω, with τ the photon lifetimeinside the cavity, ω the cavity resonance frequency, and ∆ω the resonance width.Photonic crystal nanocavities can be formed by removing and/or modifying one or moreholes (i.e. by changing the hole size or the refractive index) in an otherwise perfectly periodiclattice. Such a breaking in the periodicity of the lattice introduces new energy levels withinthe photonic band gap. Here we will present two kinds of cavities: defect cavities and doubleheterostructure cavities.Defect photonic crystal cavitiesThe simplest defect cavity in a bi-dimensional photonic crystal consists of removing one hole [66]in a perfect triangular lattice of holes. This cavity is called H1. However, these typically havequality factors of a few hundreds, which exclude them as good candidates for nonlinear optics.In recent years, a considerable amount of e�ort has been devoted to improve PhC cavitydesign in terms of both Q factors and mode volumes. In particular, it has been shown that givena defect cavity, the quality factor of the structure can be improved by shifting the position of thenearby holes or increasing/decreasing their size. This is the case of the L3 modi�ed cavity in asuspended PhC membrane. Such cavities are given by three missing holes in a line of a triangularperiodic lattice, �g. 1.30.a. Noda et al. [67] have demonstrated that a slight shift of the twoholes closing the cavity increases the cavity quality factor by almost one order of magnitude,�g. 1.30.b. Sauvan et al. [68, 69] have given a successful interpretation of this phenomenon.The elements that a�ect the quality factor of a cavity are: an increase of the re�ectivity of thesurrounding "mirrors" of the cavity by shifting the holes positions which better adapt the modepro�le in the cavity to that of the mirrors; and a decrease of the group velocity of the cavitymodes. Thanks to this shift, high quality factors (Q) in this kind of cavities were achieved,31



e.g. Q ∼ 104 in GaAs and Q ∼ 45000 in Si. We have implemented this kind of cavities in InPsuspended membranes for nonlinear studies.

(a) (b)Figure 1.30: (a) Sketch of a L3 cavity with a lattice constant a, where the two holes closing thecavity are shifted away a distance d. Image from [67]. (b) Quality factor of the L3 cavity as afunction of the holes shift, d. Squares correspond to the experimental results in [67] while the lineand the circles correspond to the numerical results from [69]. Image from [69].Double heterostructure cavityExtended defects in a photonic crystal, i.e. a whole missing line of holes or a line with smallerholes, lead to optical waveguides. Examples of this con�nement are W1 waveguides (�g. 1.31.a),where the guide is formed by removing a row of holes in the Γ−K direction from an otherwiseperfect triangular lattice. Light that propagates in the waveguide with a frequency within theband gap of the crystal is con�ned into the defect and can be directed along it. The introductionof this defect results in a frequency band for light propagation lying inside the PhC band gap,�g. 1.31.b.
(a) (b)Figure 1.31: (a) Sketch of a W1 guide, i.e. a whole missing line of holes. (b) Band diagramof this structure. The PhC bandgap takes place inside the white region. Note that a band of thewaveguide lies within this bandgap. Images from [70].The position of the guided-mode band, �g. 1.31.b, depends on the PhC period and hole32



diameter. Changing such parameters allows �ne tuning of the guided mode frequency. Moreover,this allows the realization of optical cavities within the waveguide. These are called double het-erostructure cavities. Noda et al. [70] proposed one type of double heterostructure cavity, wherethe cavity is formed by a local increase (over two periods) of the longitudinal lattice period (froma to a') along the waveguide, �g. 1.32.a. As a result, an inner waveguide with lattice period a' issandwiched between two outer waveguides with lattice constant a. In the case a′ > a, the innerwaveguide mode is red-shifted respect to the outer waveguides mode. Therefore, light is con�nedin the former, �g. 1.32.b. We will call this kind of cavity Noda-type cavity. We have also usedthese cavities, to a lesser extent, for our studies.In these cavities, due to the close similarities between the inner and outer waveguides,the re�ectivity of the mirrors, formed by the outer waveguide, is almost ∼ 99.99%. Besides, thecavity mode has low group velocity (due to the �atness of the dispersion curve, �g. 1.31.b). Asa result, high quality factors can typically be obtained with these cavities. Quality factors ofthe order of 106 in Si were achieved [70] while in III-V semiconductors (in absence of 1-photonabsorption) cavities with Q ∼ 105 were realized in GaAs [71, 72].

(a) (b)Figure 1.32: (a) Sketch of a Noda-type cavity given by an inner waveguide (II) with latticeconstant a' and outer waveguides (I) with lattice constant a. (b) Representation of the opticalcon�nement in this kind of structure. Photons of a speci�c energy can only exist in the innerwaveguide (II). Images from [70]1.3.4 Coupled PhC cavitiesCoupling of microcavities allowing energy transfer introduces new grounds for the development offast lasers [73], delay [54] and non-linear [74] optical lines, bistability-based ultrafast generators,switchable lasers [75], optical memories [76, 77] and other elements of future integrated photonicscircuits. Generally, coupling results in a frequency splitting and, in some circumstances, in asplitting of the modal loss.The coupling between PhC cavities has been investigated in several works [52, 53, 54, 55,78, 56]. In particular, Notomi et al. [78] have experimentally demonstrated the coupling betweencavities in a large (N>100) array of PhC nanocavities. Moreover, the ultrahigh value of Q andsmall size has enabled them to achieve slow light pulse propagation with a group velocity wellbelow 0.01c and a long group delay.The coupling in L3 PhC cavities was studied in [56] where the mode splitting and the33



quality factors splitting is studied in detail. Fig. 1.33 shows this splitting as a function of thedistance between cavities (a) for four di�erent geometries. We observe that the mode at higherenergy can be symmetric (also called bonding) or antisymmetric (anti-bonding) depending on thegeometry and the separation. Note also that the splitting not only depends on the separation butalso on the geometry. We will see later that this splitting is associated to the coupling strength.

Figure 1.33: Theoretical plots of the energies and quality factors of the split fundamental modesof parallel L3 cavities coupled along lines de�ned relative to those of the cavities. Green linesrepresent bonding (B) states, red lines represent anti-bonding (AB) states. Images from [56]The study of the mode splitting builds con�dence in the evanescent coupling betweencavities. A systematic study of the cavities coupling was carried out by Vignolini et al. [79]where the anticrossing of modes was observed. Fig. 1.34.a shows a schematic image of the sam-ple. This kinds of cavities (individually) presents two main modes spatially extended along thetwo orthogonal direction x and y, and they have di�erent polarization properties. In order tocontrol the coupling between the modes of the two PhC cavities, one of the cavities is injectedwith a solution that allows to modify its modes: the cavity modes shift with the evaporation ofthis solution. This evaporation is induced by heating the sample through the photoluminescencesetup. Fig. 1.34.b shows the spectral position of the �rst four modes (P1, P2, P3 and P4) of thecoupled system as a function of the exposure time at high excitation density. P1 and P2 (P3 andP4) arise from the coupling between the fundamental (�rst excited) modes of each cavity. After500 min of exposure time, an anticrossing between the two �rst modes (P1 and P2) is observedwith a minimum splitting of 17 nm. After an exposure time of 1300 min an anticrossing betweenP2 and P3 is observed. These anticrossings of modes are clear evidence of the coupling betweencavities.In Chapter 8 the coupling between PhC cavities is investigated using another approach:the phase coherence between the cavities �elds.1.3.5 Light coupling methodsWe have seen that cavities with high quality factors and small volumes are possible in photoniccrystal devices. However, due to their small volumes and complex radiation patterns comparedto either standard optical �ber modes or free-space di�raction-limited optical beams, the e�cientcoupling of light into PhC devices is quite challenging. Di�erent approaches can be implementedto achieve this coupling. The most usual one is the integration of optical waveguides into thePhC, �g. 1.35, [80, 81, 82]. This is an interesting approach since it allows integration, miniatur-ization and repeatability, among others. However, it presents some drawbacks such us injection,34



(a) (b)Figure 1.34: (a) Schematic image of the studied sample. On the upper cavity, the implementationof the tuning techniques is also schematically drawn, where the turquoise (white) dots representthe water in�ltration and the yellow highlighted area (brighter) represent the laser spot. (b)Spectral position of the �rst four modes of the system as a function of the exposure time for: (�)P1, (•) P2, (N) P3, and (H) P4. In the inset the splitting of P1 and P2 is reported as a functionof the exposure time. The anticrossing corresponds to a minimum splitting at 500 min. Imagesfrom [79].propagation and absorption losses in the waveguides.

Figure 1.35: Photonic crystal cavity coupled by an integrated waveguide. Image from [82].Another interesting approach is the evanescent coupling from PhC cavities to taperedoptical �bers, [80, 83, 84, 85]. This coupling is obtained as far as the spatial overlap of thecavity mode and the micro�ber mode is di�erent from zero. Evanescent coupling between atapered �ber and a PhC waveguide or cavity (�g. 1.36) is well adapted to on-chip input andoutput coupling using silica optical �bers. This evanescent coupling technique is also suitablefor adaptation to planar lightwave circuit technology, allowing for the interfacing between �beroptics and PhCs in a mechanically robust and scalable way.Braclay et al. [83] and Hwang et al. [85] have studied the coupling characteristics be-tween a cavity and a tapered �ber as a function of di�erent parameters. In particular, thecoupling e�ciency as a function of the gap between the �ber and the cavity [85] through FDTD35



Figure 1.36: (a) Coupling geometry between a PhC waveguide and a tapered �ber. Inset: SEMimage of the PhC. (b) Picture of the tapered �ber. Images from [85].numerical simulations was investigated, with the e�ciency de�ned as the intensity collected bythe �ber (in both senses) over the intensity inside the cavity. Fig. 1.37 shows this couplinge�ciency (η) and the loaded quality factor (Qloaded) as a function of the gap; the �lled circlescorrespond to simulations with an ideal cavity while the open circles to simulations using a SEMimage of the PhC cavity. The Qloaded corresponds to the quality factor obtained trough theresonance measured with the tapered �ber and η corresponds to the ratio between the signalcollected through the �ber and the total intracavity power. Note that the maximum couplinge�ciency is given for a gap di�erent form zero (gap=100 nm): a maximum of η ∼ 80% wastheoretically achieved. Moreover, experimental studies were also carried out in [85] where cou-pling e�ciencies of η ∼ 70% were reported, using speci�c cavity design in order to maximizethe e�ciency. Such high coupling e�ciencies allow the application of this system to single pho-ton generators and to e�ciently probe structures with high absorption coe�cients, among others.

Figure 1.37: Fiber coupling e�ciency (squares) and total quality factor (circles) as functions ofdistance between the cavity and the �ber. The open symbols are results from numerical simulationsusing a SEM image of the sample, while the �lled symbols corresponds to the ideal cavity structure.Image from [85].In this thesis we have implemented this coupling system to address the nonlinear behaviorof photonic crystal nanocavities, as we will see in chapter 3.1.3.6 Optical bistability and excitability in PhC: State of the artOnly few works were devoted to the understanding and implementation of nonlinear dynamics innanoresonators. They have mainly dealt with optical bistability of thermal origin since thermale�ects are usually dominant against ultrafast nonlinearities. Notomi et al. [82, 86] have studiedthe all-optical bistable switching operation in Si PhC nanocavities. Fig. 1.38.a shows the outputsignal as a function of the input power for di�erent detuning. Note the similarities with �g. 1.19.A power threshold of ∼ 40 µW was found, which is one order of magnitude smaller than thethreshold for microresonators and vertical cavities discussed in section 1.2. Electronic nonlinear-36



ities in nanoresonators are more di�cult to achieve due to technological issues and due to theirfast time scales (ps-ns scale). Nonetheless, some works have recently demonstrated bistability ofelectronic origin in PhC nanocavities [87, 88]. Kim et al. [87] have also studied optical bistabilityin InP PhC nanocavities (�g. 1.38.b), with the particularity of using a micro�ber to couple lightin and out of the cavity. They have also found a bistability threshold, measured in the vicinityof the cavity, of ∼ 37 µW . These results con�rm that the bistable threshold can be reduced inPhC optical cavities.

(a) (b)Figure 1.38: Bistability in PhC nanocavities. Output signal as a function of the input signal,showing bistability, for di�erent detunings δ = (λin − λ0)/γ (with in,0 the injected/resonancewavelength and γ the HWHM of the resonance) for (a) a Si PhC cavity coupled through waveg-uides (showing thermal bistability) and (b) InP PhC nanocavity coupled by a micro�ber (showingelectronic bistability).Regarding excitability in 2D PhC resonators, Yacomotti et al. [89] have demonstratedself-sustained oscillations and type II excitability in Bloch mode resonators in InP PhC. Thesystem under study was an extended resonator that exhibits a �at band edge at the Γ point.As a result, light can be coupled resonantly into this low group velocity Bloch mode when itis injected normal to the PhC surface, �g. 1.39.a. Injecting the system with a near-resonantconstant signal and measuring the re�ected signal, self sustained oscillations were observed, �g.1.39.a. Decreasing the injected signal under the spiking threshold and adding a perturbation tothis con�guration (an incoherent pump sent by the surface) an excitable regime was obtained,�g. 1.39.b. Note the similarities between �g. 1.39.a and the time trace for the van der Poloscillator (�g. 1.11.b). The excitability is manifested in �g 1.39.b as an all-or-none optical re-sponse. For perturbation energies lower than Up=1.6 pJ no output pulse is observed. However,for perturbation energies higher than 1.9 pJ an excitable pulse of 300-ns-width is observed in there�ected signal.Excitability and self-pulsing, already observed in extended resonators [89], have neverbeen reported in PhC nanocavities. In such a case, self-pulsing and excitable threshold areexpected to be considerably reduced. One of the main goals of this thesis is the experimentaldemonstration of such regimes in PhC nanocavities (chapter 6).In the following section we derive an original and simple model that accounts for nonlinearbehaviors of a PhC cavity that incorporates an active medium and which is coupled to theexternal continuum through a generic optical waveguide.37



(a)
(b) (c)Figure 1.39: Excitability in a PhC band-edge Bloch mode. (a) Sketch of the 2D PhC. (b) Self-sustained oscillations regime in a InP Bloch mode resonator, for a detuning of δ = −5.65 and aninjected power of 5.1 mW. (c) Excitable behavior for a detuning of δ = −5.75 and a perturbationenergy of Up=1.6 pJ (label A), 1.9 pJ (label B), and 2.5 pJ (label C). Images from [89].1.4 Dynamical model equations for active III-V optical cavities.As it has already been discussed in section 1.2, optical bistability involves a single nonlinear ef-fect, either electronic or thermal, while thermo-optical excitability and self-sustained oscillationsinvolve both of them. In this section we develop a model to capture the main features of suchphenomena in a single set of equations, namely amplitude equations of the electromagnetic �eldin a cavity �lled with an active (III-V semiconductor) medium. We will focus on the experi-mental device, given by a suspended membrane with a PhC nanocavity coupled to the externalcontinuum by a micro�ber, where the suspended membrane contains a layer of active material(i.e. QWs). The equations accounting for all those phenomena must describe the time evolutionof three main coupled variables: the electromagnetic �eld, the charge carrier density inside theactive material and the temperature. For the �rst, a coupled mode theory (CMT) formalism isused. The basic ideas of such formulation are given in section 2.2 where the linear equations ofthe time evolution of the electromagnetic �eld inside a cavity are deduced. Let us stress thatsuch equations remain valid for generic optical cavities �lled with active III-V semiconductormedia.1.4.1 Field amplitude equationThe intracavity �eld amplitude (a) in CMT with two nonlinear terms, one given by electronice�ects and another given by thermal e�ects, normalized such that |a|2 is the intracavity energy,38



is governed by the following equation
da

dt
= [j(ω0 +∆ωe +∆ωth)−

1

τ
]a+ df (1.41)with ω0 the cavity resonance in the absence of any nonlinear e�ect; ∆ωe/th the nonlinear frequencyshift of the cavity resonance given by electronic or thermal e�ects, respectively; d is the couplingcoe�cient from the outside and f the injected �eld. 1/τ = 1/τc + 1/τrad + 1/τa, where τc is thecoupling time; τrad the radiative losses time and τa the absorption time. The absorption is givenby active semiconductor nanostrustures, in particular we consider QWs. Then, we can relate

τa to the absorption (α), dependent on the frequency and charge carrier density (N), and thecon�nement factor (Γ) as:
1

τa
=

cΓα(ω,N)

2ng0

(1.42)where ng0 is the group velocity in the dielectric (here semiconductor) slab and c the speed oflight. The con�nement factor (Γ) is de�ned as the fraction of the propagating wave that is seenby the active medium, which extends from x = 0 to x = w, in the following way [90]
Γ =

∫ w
0 |E(x)|2dx∫∞

−∞
|E(x)|2dx (1.43)This value can be approximated as the ratio of the active medium thickness to the whole structurethickness (Γ ∼ w/D), with w and D the active material and structure thickness, respectively.Moreover, we can de�ne the small signal (unsaturated) absorption, α0, as

1

τa0
=

cΓα0

2ng0

(1.44)It is straightforward to relate the material permittivity to the complex refractive index.Its real part is given by both the slab e�ective refractive index (ns) and the change in therefractive index given by the active medium (∆ne), while its imaginary part is related to theextinction coe�cient (κ) in the following way
ε = (ns + Γ∆ne + jΓκ)2 (1.45)Considering that κ = αλ/4π and neglecting O(Γ2) terms we obtain
α =

2π

nsλ
ε′′e =

2π

nsλ
χ′′
e (1.46)

∆ne =
χ′
e

2ns
(1.47)where χ′

e and χ′′
e are the real and imaginary parts of the material susceptibility, respectively,which depend on the frequency (ω) and the carrier density (N). Assuming χe(ω,N) ∼= χe(ω0, N)and expanding χ′′
e(ω0, N) to �rst order in N around the carrier density in transparency (equalnumber of electrons in the conduction than in the valence band) Nt, eq. 1.46 yields

α = α0(1−
N

Nt
) (1.48)Furthermore, eqs. 1.46 and 1.47 can be related to the Henry factor, which is the ratio of the realto the imaginary parts of the di�erential susceptibility, namely:

αH =

∂χ′

∂N
|N=Nt

∂χ′′

∂N
|N=Nt

(1.49)39



In order to derive an expression for∆ne, let us consider a linear approximation of theslab e�ective index close to ω0:
ns

∼= n0 +∆ns(∆ω) (1.50)with
∆ns(∆ω) =

∆ω

ω0
(
c

vg0
− n0) (1.51)being vg0 the group velocity in the slab, n0 ≡ ns(ω0) and ∆ns the refractive index change due tothe mode dispersion in the slab. Using n = ns+Γ∆ne (eq. 1.45), the total refractive index changeassociated to a frequency shift ∆ωe is ∆n = ∆ns(∆ωe)+Γ∆ne. Considering ∆n/n0 ' −∆ωe/ω0,eqs. 1.46 to 1.51 lead to

∆ωe =
αH

τa0
(
N

Nt
− 1) (1.52)Eq. 1.52 shows a linear dependence of the frequency shift with the carrier density.1.4.2 Dynamical equation for carrier densityNow we focus on carrier dynamics. A simple model to describe the time evolution of the 3Dcarrier density N is a rate equation. The variation of the number of carriers in the QWs isgiven by the recombination process and the excitation of carriers by the intracavity �eld and/oran incoherent pump rate (R). Two main recombination processes can be taken into account:a nonradiative recombination process with a time constant τnr, and a radiative recombinationprocess or bimolecular recombination at a rate BN, B being the bimolecular recombinationcoe�cient, which is expected to play an important role for high carrier densities [91]. The carrierexcitation by the intracavity �eld is proportional to the density of photons inside the cavity (S),then the rate equation for N(t) is given by [92, 93]

dN

dt
= − N

τnr
−BN2 − vg0σS(N −Nt) +R (1.53)with σ ' α0/Nt. We can express S as a function of the intracavity energy as:
S =

1

hνVcav
|a|2 (1.54)where Vcav is the cavity volume. De�ning the saturation energy (|asat|2) as

|asat|2 ≡
Vcavhν

vg0τnrσ
∼= VcavhνNt

vg0τnrα0
(1.55)Eq. 1.53 leads to

dN

dt
=

1

τnr
[−N −BτnrN

2 − |a|2
|asat|2

(N −Nt)] +R (1.56)Let us compute the steady states of N. Considering low carrier densities (i.e. we neglectthe bimolecular recombination and saturation) and no incoherent pump, the steady state (Nst)yields
Nst

Nt
∼ |a|2

|asat|2
(1.57)40



meaning that the carrier density is proportional to the intracavity energy. Replacing eq. 1.57into eq. 1.52 we have
∆ωe,st =

αH

τa0
(

|a|2
|asat|2

− 1) (1.58)In addition to a linear shift of the cavity frequency, eq. 1.58 accounts for nonlinearfrequency shift. Note that the shift of the cavity resonance frequency driven by charge carriersbecomes proportional to the intracavity energy.1.4.3 Thermal relaxation dynamicsFinally, we consider the thermal loading of the material inside the cavity. We will assume thatthe dynamics of the temperature increase, say at the center of the cavity, with respect to thesubstrate temperature is governed by the following equation:
d∆T

dt
=

−1

τth
(∆T −∆Tst) (1.59)where ∆Tst denotes the steady state of the temperature change and τth the thermal relaxationtime. Separating contributions from incoherent pump and intracavity power, ∆Tst reads

∆Tst =
1

ρCp
(
ηpumpPpumpτdis,pump

Vpump
+

Pabsτdis,cav
Vcav

) (1.60)where ρ is the density, Cp the speci�c heat capacity in the pumping region, ηpump is the fractionof the incident power absorbed, τdis is the heat dissipation time and Pabs = 2|a|2/τa0 is theabsorbed power (neglecting saturation), as we will see in chapter 2. Note that eq. 1.59 modelstemperature free relaxation in the material as an exponential process, which will be justi�ed inchapter 4. Considering resonant injection only, we can write ∆Tst as a function of the intracavityenergy |a|2 as
∆Tst = |a|2 dT

dU
(1.61)where

dT

dU
≡ Γα0τdis,cavvg0

ρCpVcav
(1.62)is the temperature increase as a result of the intracavity energy increase. Thus, eq. 1.59 becomes

d∆T

dt
=

−1

τth
(∆T − |a|2 dT

dU
) (1.63)Finally, the thermally induced frequency shift ∆ωth can be written in terms of the tem-perature variation ∆T in the following way:

∆ωth = −ω0
∆nth

ng0

= − ω0

ng0

dn

dT
∆T (t) (1.64)Let us now turn to steady states. The stationary thermally-induced frequency shift (eq.1.64) then reads

∆ωth = − ω0

ng0

dn

dT

dT

dU
|a|2 (1.65)meaning that the nonlinear term in eq. 1.41, driven by thermal loading, is proportional to theintracavity energy, similar to eq. 1.58. However, we stress two di�erences: i) the relaxationdynamics, governed by τth, is much slower compared to electronic induced nonlinearities, and ii)the opposite sign of the nonlinear e�ects, namely thermal red-shift and electronic blue-shift.41



1.4.4 Three-variable model for an active cavityWriting eq. 1.41, 1.56 and 1.63 together we have the set of equations that describes the nonlineardynamics of the system:
da

dt
= [j(ω0 +∆ωe +∆ωth)−

1

τ
]a+ df
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dt
=
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[−N −BτnrN

2 − |a|2
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(N −Nt)] +R

d∆T
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(∆T − dT

dU
|a|2)

(1.66)
with |asat|2 = Vcavhν/στnrvg0 and dT/dU = Γα0τdis,cavvg0/ρCpVcav and
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(1.67)In the case of having only thermal nonlinear e�ects and considering the steady states of the fullsystem, eq. 1.66 yields
0 = [j(δ − |a|2

U0,th
)− 1]a+ dτf (1.68)where U0,th = ng0(dU/dT )/2Q(dn/dT ) is the characteristic intracavity energy for thermal bistablethreshold. Note that, since dU/dT ∝ Vcav, U0,th ∝ Vcav/Q. Besides, the intrinsic bistabilitythreshold, i.e. the power coupled into the cavity at threshold (P (thermal)

intrinsic,thr), is proportional to
P

(thermal)
intrinsic,thr ∝ U0,th/τ , thus, P (thermal)

intrinsic,thr ∝ Vcav/Q
2, as pointed out in section 1.2.3.On the other hand, considering only electronic nonlinear e�ects and the full steady states,eq. 1.66 becomes

0 = [j(δ +
|a|2
U0,e

)− 1]a+ dτf (1.69)where U0,e = τa0 |asat|2/αHτ is the characteristic intracavity energy for electronic bistable thresh-old. Note that we have approximated τa ∼ τa0 in eq. 1.69 provided αH >> 1, which is the casein III-V semiconductors for injected wavelengths in the Urbach tail. As in the case of thermalbistability, since U0,e ∝ V/Q, P (elec)
intrinsic,thr ∝ Vcav/Q

2.Considering an L3-type cavity in an InP suspended membrane with QW as active medium,we can estimate the intrinsic bistability threshold both for thermal and electronic origin. Theconstants needed for this calculation are obtained from the literature values and from the experi-ences that will be shown all along this manuscript. Table 1.2 resumes all these constants. Usingthese values, we have obtained intrinsic bistability thresholds of the order of P (thermal)
intrinsic,thr ∼ 2

µW and P
(elec)
intrinsic,thr ∼ 3 µW , for the thermal and electronic thresholds, respectively. Note thatboth values are of the same order of magnitude. Moreover, they are three orders of magnitudesmaller than typical thresholds reported in monolithic vertical cavities [24] and ring resonator42



Vcav ∼ 0.08 µ3[95] ρCp = 1.5Jcm−3K−1ng0 ∼ 3 Γ = 0.2∗(dn/dT)/n∼ 0.63× 10−4K−1[96] Q=3750∗
α0 = 66cm−1∗ τdis,cav ∼ 186 ns[97]
τnr ∼ 200 ps[91] λ = 1.55 µm

αH = 10 τ ∼ 6 psTable 1.2: Table summarizing all the constants involved in the calculation of the bistability thresh-old both of thermal and electronic origin. ∗See chapter 5.devices [94].Note that eq. 1.68 and eq. 1.69 are analogous to the bistability equation developed insection 1.2 (eq. 1.33).In addition, from this set of equation we can calculate the nonlinear refractive index (eq.1.27). From ∆n/n0 ' −∆ωe/ω0 and eq. 1.52, considering the steady states of the carrier density(eq. 1.57), ∆n yields
∆n = −n0αH

ω0τa0
(

|a|2
|asat|2

− 1) (1.70)Considering an uniform slab (i.e. neglecting distributed feedback e�ects) for simplicity, we canwrite |a|2 = (Vcav2/vg0)I. Now using eqs. 1.44 and 1.55 for τa0 and |asat|2, respectively, eq. 1.70reads
∆n ≡ n2I ∼ −Γ[

α2
0αHλ2τnr
2πhcNt

]I (1.71)According to the table 1.2, eq. 1.71 gives n2 ∼ −3.5 × 10−10cm2/W . This value is six ordersof magnitude higher than the nonlinear refractive index in silica (SiO2 : n2 ∼ 3× 10−16cm2/W[98]). The marked di�erence between this two values is a clear evidence of the advantages ofsingle photon absorption in III-V semiconductors over intrinsic Kerr e�ects.The set of equations (eq. 1.66) allows us to study nonlinear dynamical regimes of oursystem such as bistability, self-pulsing and excitability. Moreover, it contains the characteristictime scales of each process, such as the thermal relaxation time (τth) and the nonradiativerecombination time (τnr). We will return to this set of equations along this manuscript and wewill apply it to the particular cases studied during this thesis.1.5 ConclusionThe bases of nonlinear dynamics in systems described by one and two variables were presentedat the beginning of this chapter. By simple graphical methods we have deduced the behavior ofsystems with complex di�erential equations, such as the van der Pol oscillator with and withoutbias. Through these examples we have introduced important concepts for the understanding ofthis thesis, like the self-sustained oscillation regime and the excitable regime.Some key concepts about nonlinear optical systems were introduced in section 1.2, inparticular the parametric processes and the dynamical processes, although we focus on the lat-ter. Dynamical processes allow interesting phenomena such as bistability and excitability. The�rst one has been extensively studied in the last four decades, partly for its potential application43



to optical memories. The second one has been investigated in optical systems only recently. Inparticular it has never been reported in optical nanocavities, which motivated us to study indetail this regime in PhC nanocavities.A model that involves the intracavity energy, the carrier density and the temperature wasproposed in order to predict a large family of nonlinear dynamical behaviors in a PhC suspendedmembrane �lled with an active medium. This model includes, in a simple set of equations, thedynamics of qualitatively di�erent behaviors such as bistability (which involves a single nonlinearvariable) and excitability (which involves two nonlinear variables). These equations will allow usto get physical insight into the di�erent regimes observed along this thesis in PhC nanocavities.
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Part ITapered �ber-assisted coupling into ananocavity: Description,characterization and application.

45





This thesis aims to study nonlinear dynamical behaviors in 2D photonic crystal nano-cavities. For this, the type of cavity and the method to couple light inside this cavity needs to beestablished. In the �rst chapter, we investigate the adequate type of cavity to obtain nonlinearbehaviors and the coupling method: evanescent coupling via a tapered �ber. A theoretical modeland numerical simulations are carried out in order to characterize and study the parameters thatoptimize this coupling.A detailed characterization of the sample is given in the second chapter. Images and pho-toluminescence spectra are shown. Details of the tapered �ber fabrication and the positioningsystem are given. A detailed characterization of the coupling method can be found at the endof this chapter.In the last chapter we apply this coupling method to measure important characteristictimes of the sample. First, we determine the characteristic thermal relaxation time of the pho-tonic crystal membrane. Next, a pump and probe technique is applied to measure the carrierrecombination time. Both magnitudes will be useful in the following part for understandingnon-linear dynamical regimes in active photonic crystal nanocavities.
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Chapter 2Theoretical and numerical calculationsPhotonic crystals allow high degrees of freedom when designing an optical nanocavity. Muchprogress has been recently accomplished in realizing high quality factors and ultra small volumenanocavities. Among them, several cavity designs have been shown to be performant and robust,such as heterostructure cavities, H0 and L3 cavities. Cavities based on L3 con�guration turnout to be adequate geometries for our porposes since high Q, small volumes and straightforwardsets of evanescently coupled cavities can be realized. In the �rst part of this section we discusssome characteristics of these cavities, such as near and far �eld spatial distributions and qualityfactors obtained by FDTD simulations.A mayor challenge in the context of nonlinear optics in nanocavities concerns e�cientinput light coupling methods. Several approaches can be adopted to achieve this, the usualone relying on integrated waveguides. Although this is an attractive option it presents somedrawbacks such us the reduction of the coupling e�ciency due to injection losses and materialabsorption. For this reason, we chose an alternative road: to couple light inside the cavity byevanescent waves via a tapered �ber. Therefore, the �rst question that emerges is how e�cientthis coupling can be. To answer this, in this section we develop a coupled mode theory formalismto characterize and quantify the coupling strength. In order to test this theory, numericalsimulations are carried out for a simpli�ed version of the cavity-�ber system. The results ofsuch study are also discussed in this chapter.2.1 FDTD simulations of a L3 Photonic Crystal cavityAmong all the di�erent types of PhC cavities that can be studied, we have mostly worked withL3 type cavity, although we will see in chapter 8 some studies over heterostructure cavities. TheL3 cavities allows high Q factor and they are well suited to be evanescently coupled through a ta-pered �ber. In order to characterise these cavities, FDTD (�nite-di�erence-time-domain method)numerical simulations [99] of the system shown in �g. 2.1 have been carried out1. This methodconsists in computing the time-dependent Maxwell's equations (in partial di�erential form) ina discretized mesh using central-di�erence approximations to the space and time partial deriva-tives. The resulting �nite-di�erence equations are solved as follows: the electric �eld vector in avolume of space are solved at a given instant in time; then the magnetic �eld vector componentsin the same spatial volume are solved at the next instant in time; and the process is repeateduntil the desired transient or steady-state electromagnetic �eld behavior is fully evolved [100]. Inorder to use the FDTD method, the spatial grid (spatial resolution) and the material (air, metal1This simulations were developed in collaboration with Timothy Karle, post-doc in our group.49



or dielectric), with the corresponding refractive index, in each of those points must be established.

Figure 2.1: Scheme of the L3 cavity simulated in FDTD. The parameters are: a=435 nm, r=0.3a.In the following, we simulate a modi�ed L3 cavity in a PhC membrane, i.e. a L3 cavitywith the two end holes shifted away a given distance. We have carried out simulations with aspatial resolution of a/20 = 21.75 nm in x and z-directions, a√3/2 = 20.9 nm in y-direction, anda material refractive index of 3.3. The PhC period and hole radius are a=435 nm and r=0.3a,respectively, where the two holes closing the cavity are shifted away 0.15a, and the dimensions ofthe sample are 12.2 µm x 8.3 µm. In order to exploit the symmetries of the system, the integra-tion volume corresponds to one eight of the complete structure (grey zone in �g. 2.1). Then, theelectromagnetic �eld is extended to the rest of the structure with the boundary conditions for theelectric �eld depicted in �g. 2.2. The total integration time was 1 ps. The output of the FDTDsimulation is used as the input data into a harmonic inversion algorithm (Harminv) [101, 102] inorder to extract central frequencies and decay times, the latter being used to calculate qualityfactors. The system is excited with an electric dipole polarized in the y-direction laying in thecenter of the cavity.
Figure 2.2: Scheme of the boundary conditions for the electric �eld used in the FDTD simulations.For the system in �g. 2.1, the resonant mode is found at 1.598 µm with a qualityfactor of ∼ 23000. For this mode, the electric and magnetic �elds polarization (in x, y and z-direction) in near �eld (at the center of the membrane) have been recorded (�g 2.3). We observethe electromagnetic �eld concentrated in the cavity region and the principal component of theelectromagnetic �eld in the y-axis, corresponding to an almost linearly polarized mode in they-direction.The far �eld emission pro�le in k-space is shown in �g. 2.4 calculated as the spatialFourier transform of electromagnetic �eld monitors located at twice the membrane thickness (2afrom the slab surface) in z-direction. We observe two lobes at ∼ 70◦ meaning that the emissionof the cavity mode is not perpendicular to the surface but with a strong angle. For this reason,a resonant signal injected perpendicular to the surface do not couple to the cavity mode. Indeed50



Figure 2.3: Field spatial distribution at the membrane center for the system depicted in �g. 2.1.a di�erent method to coupled light inside the cavity is likely to be implemented.
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Figure 2.4: Far �eld emission pro�le for the system depicted in �g 2.1 calculated as the Fouriertransform of the �eld stored on a monitor positioned at twice the lattice period (∼ 0.9 µm fromthe membrane surface).2.2 Coupling between a cavity and a �berThe goal of this section is to describe the light con�nement in an optical resonator coupled tothe outside through an optical micro�ber. Such a device can be directly modelled by meansof e.g. FDTD methods [99], but such technique can be very time and memory-consuming inthis case since the integration zone becomes much larger, both in the propagation directionand in z-direction, than the integration zone used for the con�guration of �g. 2.1. In orderto get physical insight into the di�erent parameters, a simple theoretical framework is highlydesirable. A good candidate is the well-known Coupled Mode Theory (CMT). The basic ideaof coupled-mode theory is to decompose all propagating light into a linear superposition of theknown modes of the uncoupled device (in our case the cavity and waveguide separated away),and then to calculate the coupling strength in presence of some coupling mechanism (cavity-waveguide evanescent coupling in our case). This requires, in principle, a strong approximation:the coupling does not change the intrinsic modes. This assumption remains valid as long as the51



coupling strength is weak. However, even for strong coupling conditions, the intrinsic modesmight be renormalized to take into account changes due to the coupling. The CMT is oftentechnically and conceptually much more convenient than, e.g., recalculating the propagationmodes for the actual situation in which light propagates in the full device.In the following the coupling of a PhC cavity to a micro�ber is described on the basisof the temporal coupled mode formalism developed by Fan et al. in [19]. The transmitted andre�ected signals of one single-mode cavity coupled to the outside by two ports will be calculated,�g. 2.5. We �rst consider that the losses are only given by these two ports. From �g. 2.5 theinjected/output �elds are given by S1+/− and S2+/−, for the left and right port respectively, dcorresponding to the coupling from the cavity to the ports and κ from the ports to the cavity.
(a) (b)Figure 2.5: (a) System of interest: PhC nanocavity evanescently coupled to the outside by atapered �ber. (b) Simplify scheme of the system in (a), a cavity coupled to the outside by twoports. In the following we apply the Dirac notation used in [19], where the kets represent columnvectors. We will consider a general case where the coupling to each port can be di�erent: κ1/2and d1/2 correspond to the coupling to the left/right port. This generalization will be useful inpart II where several cavities and ports will be studied. Let us start by writing the dynamicequation for the �eld amplitude (a) inside the cavity:

da

dt
= (iω0 − 1/τ)a+ (〈κ|∗)|s+〉 (2.1)The �rst term in eq. 2.1 gives the resonance frequency ω0; the second one accounts for the photonlifetime inside the cavity (τ) and the third represents the optical injection (|S+〉) multiplied bythe coupling constant (|κ〉).The output signals depend on the injected �eld and on the �eld inside the cavity that couples tothe ports, in the following way:
|s−〉 = C|s+〉+ a|d〉 (2.2)where C is the (unitary) matrix for the direct process, meaning the incoming �eld can be directlycoupled to the ports, and

|d〉 =
(
d1
d2

)
; |s+〉 =

(
s1+
s2+

)
; |κ〉 =

(
κ1
κ2

)
; 〈κ|∗ = (κ1, κ2) (2.3)where d1/2 is the coupling strength between the cavities and the left/right port. Replacing

a(t) → a′(t)eiωt and f(t) → feiωt, the steady state is given by:
a′ =

(〈κ|∗)|s+〉
j(ω − ω0) + 1/τ

(2.4)52



In the following we recall Fan considerations (conservation of energy and time reversalsymmetry) for determining relations among parameters, such us κ, d and C. For an externalinput |S+〉 the scattering matrix, de�ned as S|s+〉 = |s−〉, is given by:
S = C +

|d〉〈κ|∗
j(ω − ω0) + 1/τ

, (2.5)where we have used eq. 2.4. Since S must be symmetric because of time-reversal symmetry, wehave
|d〉〈κ|∗ = |κ〉〈d|∗ (2.6)meaning that the coe�cients are not independent and must satisfy d1κ2 = d2κ1.� Conservation of energy. Instead of exciting the cavity externally lets now consider thesystem in the absence of external input (|s+〉 = 0) and with �nite amplitude inside thecavity at t = 0, so the energy (U = |a|2) yields:

dU

dt
= −2|a|2/τ = −〈s−|s−〉 = −|a|2〈d|d〉 (2.7)Hence

〈d|d〉 = 2/τ (2.8)It is a common assumption to consider identical ports (d1 = d2 ≡ d) which, in the case ofthe micro�ber, means that the photon inside the cavity has equal probability to couple tothe right and to the left side of the �ber:
〈d|d〉 = 2|d|2 (2.9)

|d| =
√

1/τ (2.10)This means that the coupling constant is related to the photon lifetime inside the cavity,as expected.� Time reversal. The time reversal transformation, i.e. t → −t, for the exponential decayprocess has the following solution
aR =

(〈κ|∗)|s+〉
j(ω − ω0) + 1/τ

(2.11)The time reversal situation can be represented as feeding the resonator with exponentiallygrowing waves at complex frequency ω = ω0 − j(1/τ), with amplitudes at t = 0 equal to
|s−〉∗ (i.e. |s+〉 = |s−〉∗) and taking the complex conjugate, namely

aR = a∗ =
(〈κ|∗)|s+〉

j(ω − ω0) + 1/τ
=

(〈κ|s−〉)∗
2/τ

=
(〈κ|d〉a)∗

2/τ
(2.12)Therefore

〈κ|d〉 = 2/τ = (〈κ|d〉)∗ (2.13)This, together with eq. 2.6 and eq. 2.8, leads to the following important result
|κ〉 = |d〉 (2.14)meaning that the port-cavity coupling constants are equal to the cavity-port ones, as expected.53



Moreover, since no output signal comes out while exciting with time-reversed excitation
|s−〉∗ we have

0 = C|s−〉∗ + a∗|d〉 = a∗C|d〉∗ + a∗|d〉 (2.15)This leads to
C|d〉∗ = −|d〉 (2.16)Eq. 2.16 allows to demonstrate that the scattering matrix given by eq. 2.5 is unitary, whichensures self-consistency.Finally, we consider intrinsic (radiative and/or absorption) losses with photon lifetime

τ0. In this case:
1

τ
=

1

τc
+

1

τ0
(2.17)where

1

τ0
=

1

τrad
+

1

τa
(2.18)with τrad/a the radiative/absorption time. The intrinsic losses can be considered as carried by anexternal port (so the theory remains unchanged) or as an "energy sink" (without considering extraports). We chose this latter approach since it is independent of the nature of losses (radiative ordue to absorption). In doing this, the scattering matrix (eq. 2.5) is no longer unitary becausethe incoming and outgoing power through ports are not equal, i.e. 〈s+|s+〉 6= 〈s−|s−〉. Thedi�erence is given by the radiated or absorbed power

Ploss = 〈s+|s+〉 − 〈s−|s−〉 (2.19)Using eq. 2.5 we have
〈s−|s−〉 = 〈s+|s+〉+ |a|2〈d〉 + 2Re[〈d|C+〉a∗] (2.20)Multiplying both sides of eq. 2.16 by C+ to the left, and applying + to both sides we get

〈d|C = −〈d|∗, so the last term in eq. 2.20 becomes
2Re[〈d|C|s+〉a∗] = −2Re[(〈d|∗)|s+〉a∗] (2.21)

= −2Re[(〈κ|∗)|s+〉a∗] (2.22)
= −2Re[|a|2(j(ω − ω0) + 1/τ)] (2.23)
= −2|a|2/τ (2.24)As a result, eq. 2.19 becomes
Plos = 2|a|2/τ0 (2.25)showing that the dissipated (i.e. radiated and/or absorbed) power is twice the energy per intrinsicphoton lifetime as expected. This justi�es the formula for the absorbed power used in section 1.4.Including the intrinsic losses in eq. 2.5, the scattering matrix becomes

S = C +
|d〉〈d|∗

i(ω − ω0) + 1/τc + 1/τ0
(2.26)54



In order to write down the full expression of the coe�cients d and κ, the direct process hasto be de�ned. We analyse the particular case of a cavity coupled by a tapered �ber, thereforeevanescent coupling. The direct process can be described by the following unitary matrix:
C =

(
0 exp(jφ)

exp(jφ) 0

) (2.27)where φ is the accumulated phase through the �ber. C, given by eq. 2.27, relates S1− with S2+and S2− with S1+, see �g. 2.5.Considering d = exp(jφd)/
√
τ c, eq. 2.16 leads to cos(φ/2 − φd) = 0. This condition issatis�ed with φd = φ/2 + π/2 which gives [20]
d = j exp(jφ/2)/

√
τ c (2.28)In the following we consider the injection through the left port only (|S+〉 = (f, 0)) whichaccounts for the experimental conditions (see section 3.2). Using eq. 2.28 in eq. 2.26 we calculatethe normalized transmission (T = |s2−|2/f2) and the re�ection (R = |s1−|2/f2) signal as

T =
(1 + 4∆2Q2

0)Q
2
c

2Q0Qc +Q2
c +Q2

0(1 + 4∆2Q2
c)

(2.29)
R =

Q2
0

Q2
0 + 2Q0Qc +Q2

c + 4∆2Q2
0Q

2
c

(2.30)where ∆ = (ω − ω0)/ω0, Q0 = τ0ω0/2 and Qc = τcω0/2 (the intrinsic and coupling qualityfactors, respectively) [103].To �x ideas, let us study three particular cases of eqs. 2.29 and 2.30. Fig. 2.6.a showsthe transmitted and re�ected signal for an overcoupled cavity (i.e. when the intrinsic losses canbe neglected, Q0 >> Qc). We observe a 100% contrast in the transmission dip. Fig. 2.6.b showsa more realistic situation where the two quality factors are of the same order of magnitude, inparticular, we consider critical coupling, i.e. Q0 = Qc. Note that the resonance contrast intransmission is ∼ 75% meaning that this con�guration, where the coupling losses equals theintrinsic ones, is still suitable to probe the cavity resonance. Note that R+ T 6= 1, which is dueto the dissipation losses. In the particular case where Q0 << Qc, the undercoupled case, theresonance contrast signi�cantly decreases, �g. 2.6.c, and the cavity can no longer be e�cientlyprobed with the micro�ber.We can conclude from �g. 2.6 that the resonance contrast depends on the relationbetween Q0 and Qc. This resonant contrast is of great interest since it quanti�es the couplinge�ciency. In order to obtain the resonance contrast we calculate from eq. 2.29 the ratio of the"in resonance" (δ = 0) transmitted power (Pt) to the input power (Pin = |f |2) as follows:
T (δ = 0) =

Pt

Pin
=

1

(1 +
Q0

Qc
)2

=
1

(1 +
τ0
τc
)2

(2.31)Eq. 2.31 shows that the resonance contrast is given by the ratio τ0
τc
.It is important to point out that a real tapered �ber has losses between the �ber input and cavityposition and between the cavity position and the �ber output, �g. 2.7. The powers at the �berinput and output can be related to the power near the cavity as:

Pin = Pinpute
−α1L1 (2.32)55
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(c)Figure 2.6: Transmitted (black line) and re�ected signal (green line) for a cavity coupled tothe outside by two ports and excited through one of them. Three particular cases are studied:overcoupled cavity (Q0 = 50000 and Qc = 500)(a), for Q0 = Qc = 5000 (b) and undercoupledcavity (Q0 = 500 and Qc = 50000)(c).

Pt,output = Pte
−α2L2 (2.33)where L is the �ber length and α1/2 are the input/output distributed losses in the �ber.We can also relate the injected power (Pin ) with the power o�-resonance measured intransmission as:

Poff,output = Pine
−α2L2 (2.34)Taking the ratio of eqs. 2.33 and 2.34 we have

Pt,output

Poff,output
=

Pt

Pi
(2.35)Eq. 2.35 means that the ratio of the "in resonance" transmitted power to the input power inthe vicinity of the cavity is equal to the ratio of the powers measured at the �ber end: thetransmitted signal in and o� resonance, respectively.We then de�ne the coupling e�ciency (η) as the probability that a photon inside the cavitycouples to the �ber (in either direction, hence ℘c ∝ 1/τc) with respect to the photon emissionprobability throughout all the coupling channels (℘tot ∝ 1/τc + 1/τ0), namely

ηc ≡ ℘c/℘tot =
1

1 +
τc
τ0

=
1

1 +
Qc

Q0

(2.36)56



Figure 2.7: Scheme of the distributed losses in the micro�ber.Then, we can write the coupling quality factor as a function of the coupling e�ciency as
Qc = Q0(

1

η
− 1) (2.37)The particular case studied in �g. 2.6. a, b and c corresponds to Q0

Qc
=100, 1 and 0.01, whichgives η =0.97, 0.5 and 0.01, respectively. We point out that a strong coupling τc � τ0 gives

ηc → 1, meaning that the lower Qc/Q0 is, the higher the coupling e�ciency will be.2.3 Numerical simulationsAs we have previously seen, e�cient coupling between a cavity and a tapered �ber can be ob-tained provided Qc is of the order of (or much smaller than) Q0. In order to test the CMT modeldeveloped in the previous paragraphs in a more realistic system, CAMFR (Cavity ModellingFramework) [104, 105] simulations of a cavity and a waveguide are carried out. This methodis based on a principle called eigenmode expansion. Rather than working in time domain as inFDTD method, the structure is divided in a number of "slabs" where the refractive index pro�leis uniform in the z-direction. Instead of specifying the �elds explicitly at a number of grid points,the �elds in each layer are written as a sum of the local eigenmodes of that particular layer. Thisleads to a much more compact representation of the �eld and therefore shorter computationtimes. Moreover, contrary to spatial discretisation, the calculation time of a layer is independentof the length of that layer. Also, periodicity or quasi-periodicity is exploited in a more powerfulway. This method requires a discrete set of modes in each slab. In order to achieve this, thestructure under study is typically enclosed in a metal box. Unfortunately, this can create para-sitic re�ections: radiation that would otherwise travel freely towards in�nity is now completelyre�ected at the metal boundaries, returns to the structure, and disturbs the simulation results.In order to overcome this problem, CAMFR makes use of advanced boundary conditions, themost prominent of which are perfectly matched layers (PMLs). These layers can be thoughtas layers with a real refractive index, but with a complex thickness. This complex thicknessprovides re�ectionless absorption of the incident �eld, regardless the incidence angle, wavelengthor polarisation. The use of these advanced boundary conditions not only improves the accuracyof the model, but also speeds up the computation time, as the simulation boundaries can nowbe placed much closer to the structure [106]. In our simulations PML boundary conditions sep-arated from the structure by 5 µm have been used.Since the system must have at least one invariant direction for a simplest implementa-tion of the CAMFR code, the system has to be 2D. For this reason we simulate a 1D periodic57



waveguide (wg), �g 2.8 in dark grey, as a simpli�ed version of the PhC structure. The parameter
ε is chosen so as to respect the same �lling factor as the PhC in �g. 2.1, then ε = πd/8. The�eld propagation is in the x-direction and the system is invariant in the z-direction.

Figure 2.8: Sketch of the 2D system, representing the cavity and �ber, simulated with CAMFR.The parameter values are: a=400 nm, a'=420 nm, φ=240 nm, ε = πφ/8=94 nm , L=250 nm.The red curve corresponds to the spatial pro�le of the injected �eld .The WG shown in �g. 2.8 (in dark grey) corresponds to the PhC while the �ber ismodelled by a simple uniform slab, invariant both along the x and z-directions, �g. 2.8 in lightgrey. The �ber is represented by a SiO2 (n=1.5) layer of thickness w and separated away fromthe WG (n=3) a distance called gap. The two PML layers are 2 µm over the SiO2 and underthe WG. Those spaces are �lled with air. The cavity is a 1D heterostructure composed by aninner periodic WG (period a') and two outer periodic WGs (period a). Light con�nement intothe inner WG is obtained by a 20 nm-increasing a' with respect to a. The length of the innerWG is chosen to be 6 periods. The outer WGs constitute the cavity mirrors whose length hasbeen set to 10 periods. We explore the coupling e�ciency and the coupling quality factor fordi�erent �ber thickness (w) and air gap.We �rst compute the solutions of the system without the �ber. In order to obtain thecavity modes, the band diagrams for the inner WG (red dots) and for the outer WG (blackdots) are calculated, �g. 2.9.a. This gives a range of wavelengths for the cavity mode (1.290
µm < λ <1.355 µm), these wavelengths lying from the inner to the outher band edges. Then,the transmitted and re�ected signal are computed within this wavelength range. For this, theinjected �eld is set as the fundamental mode of the unstructured WG (�g.2.8 without the �ber).The transmitted and re�ected signal in that mode are shown in �g. 2.9.b (black and red lines,respectively). We observe a resonance at λ = 1.3295 µm with a quality factor of Q = 73888.This wavelength is pointed out in the band diagram with a green circle (�g. 2.9.a). Note thatthis lies within the mirror band gap. Injecting the system resonantly (λ = 1.3295 µm) we plotthe �eld spatial distribution in �gs. 2.9.c and d. The intensity con�nement in the cavity regioncan be observed.Let us now consider the whole structure. We start calculating the band diagram of the in-ner WG (red dots) and the outer WG (black dots) in presence of the SiO2 layer, �g. 2.10.a, whichgives a range of wavelengths for the cavity mode (1.32 µm < λ <1.395 µm). The horizontal lines58
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µm is observed with a Qloaded = 520. The position of the resonance wavelength in the banddiagram is pointed out with a green circle (�g. 2.10.a). Note the di�erence between Qloaded and
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w = 1.5 µm.The coupling e�ciency for di�erent w when the cavity and the �ber are in contact(gap=0) are investigated in �g. 2.11.b. Although η decreases with w, an e�ciency of ∼ 20% canbe achieved with a thickness of 3 µm. We will see in section 3.2.2 that this thickness correspondsto the experimental conditions. Let us stress that, since τc depends on the particular geometry ofthe cavity, we can expect di�erences when dealing with L3 cavities instead of 1D-heterostructures.Fig. 2.12 shows the loaded quality factor (black dots) as a function of the air gap for
w = 1.5 µm, directly calculated from the resonance width, Qloaded = λ/∆λ. The coupling qualityfactor (Qc) is given by eq. 2.37:

Qc = ηQloaded (2.38)
60
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2.4 ConclusionThe main characteristics of a L3 cavity such as the mode position, the quality factor and theemission pro�le in near and far �elds were obtained by means of FDTD simulations. Such sim-ulations provided target design parameters for the fabrication of L3 cavities. Intrinsic qualityfactors of ∼ 23000 have been obtained for resonant cavity modes aroun 1.5 µm. Such highquality factors are compatible with e�cient light coupling using a micro�ber.A theoretical model based on coupled mode theory was developed to characterize the cou-pling between a micro�ber and a cavity. We have found that the coupling e�ciency (η) dependson the taper-cavity coupling time (τc) and the cavity photon lifetime (τ0) as η = 1/(1 + τc/τ0).In addition, the ratio τc/τ0 can be easily related to the transmission through the taper at thecavity resonance (T) as: T = 1/(1 + τ0/τc)
2. These results will be useful in the next chapter toquantify the coupling e�ciency.The simple formulas derived with CMT were tested with numerical simulations of a1D-heterostructure cavity coupled to a 1D SiO2 waveguide modelling the optical micro�ber.We found that the presence of the �ber may alter the cavity intrinsic parameters such as thequality factor and the resonance wavelength. The �ber characteristics necessary to obtain e�cientcoupling conditions were studied. We found that even for a �ber thickness of 3 µm, when the �berand the cavity are in contact, a coupling e�ciency of ∼ 20% can be achieved. Remarkably, we willsee in the next chapter that this value is in good agreement with the value found experimentallyfor the coupling e�ciency of light into a L3 PhC nanocavity using a tapered optical �ber.
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Chapter 3A PhC cavity evanescently coupled to atapered �berAccording to the results in chapter 2, e�cient coupling between a micro�ber and a cavity ispossible provided the coupling quality factor is lower than the intrinsic quality factor. In thischapter we establish the experimental conditions for this to occur. In the �rst section we present,describe and characterise the sample. In the second section, we describe the fabrication and thenano-positioning system of the tapered �ber used to couple the cavity. Finally, we characterizethe coupling e�ciency.3.1 Sample descriptionAs it was mentioned in chapter 1, 2D photonic crystal nanocavities allow high qualities factors(up to 106 in the state of the art) meaning that they are, in principle, well adapted for evanescentcoupling. In the following section we present a detailed description of a typical 2D PhC samplestudied during this thesis.3.1.1 Photonic crystal L3 cavityThe samples are 10 µm x 50 µm triangular lattice photonic crystals (PhC) of air holes in an InPsuspended membrane , with a nanocavity in the center (�g. 3.1). The nanocavity is a modi�edL3 (three missing holes over a line of the PhC), where the two holes closing the cavity are shiftedaway by 0.15a. Noda et al. [67] have demonstrated that this shift increases the cavity qualityfactor of almost one order of magnitude.As discussed in chapter 1, the QDs present high inhomogeneous broadening emissionwhich allows to probe cavity modes in all this spectral range. This is one of the reasons thatmotivated the choice of QDs as the active material in the initial studies. In addition, as it has beenmentioned in chapter 1, the absorption coe�cient, which can lead to a reduction of the intrinsicquality factor, is lower in QDs than in QWmaterials allowing a higher coupling e�ciency and thusan easier characterization of the coupling between the cavity and the �ber. The suspended InPmembrane (262 nm-thick) thus incorporates a central single layer of self-assembled InAsP/InPquantum dots (QDs), �g. 3.2.a, whose density is 1.5× 1010cm−2 and whose luminescence at 300K is centered around 1.55 µm (�g. 3.2.b) with a 195-nm inhomogeneous broadening [107]. Themembrane thickness (λ/2n) is such that the �eld maxima (@1550 nm) is located at the center ofthe membrane, where the active material is found. The whole structure, incorporating a GaInAssacri�cial layer under the InP, is grown by metalorganic vapour phase epitaxy (MOCVD). The63



Figure 3.1: MEB (electron beam microscopy) image of a modi�ed L3 cavity (triangular latticewith period a=465 nm, holes radius=120 nm). The two holes closing the cavity are shifted awayby 0.15a.air layer between the InP membrane and the substrate has a thickness of ∼ 1.16 µm. TheQD luminescence cannot be obtained by means of photoluminescence measurements directlyfrom the sample since the luminescence produced by the surrounding GaInAs completely masksthe InAsP emission. Therefore, the photoluminiscence has been measured in a sample withoutInGaAs underneath (�g. 3.2), where the QDs were grown under the same procedure [108].

Figure 3.2: Sketch of the photonic crystal-membrane sample. b) QDs photoluminescence spectrum[108].3.1.2 Sample fabricationThis section contains a summary of the fabrication steps. The samples were fabricated at theLPN clean room by Remy Braive and Isabel Sagnes. More details about the fabrication are givenin [109].The �rst step is the metalorganic vapour phase epitaxy (MOCVD) of the whole struc-ture. This starts by the growth of an InGaAs sacri�cial layer of 1.16 µm over an InP bu�er,followed by an InP layer, which will form the suspended membrane. In the center of the latterthe InAsP/InP quantum dots are grown and subsequently encapsulated with the InP. The InAsPlayer (∼ 2−3 nm thickness) under the QDs is called the wetting layer (WL). The membrane totalthickness is ∼260 nm and it corresponds to λ/2neff whit neff the e�ective refractive index cal-culated as the weighted average of the refractive index of air and material. For details about themembrane thickness impact in the cavities modes and their emission diagram please refer to [110].64



The second step is the fabrication of an etching mask in order to de�ne the geometricalparameters of the 2D PhC. This mask is made of a 300 nm thickness layer of Si3N4 deposed at
300◦C by PECVD (Plasma Enhanced Chemical Vapor Deposition) over the InP. The SiN is thencovered by 450 nm of an electro-sensitive resin (PMMA, Polymethyl Methacrylate). The sampleis positioned in an e-beam writer (LEICA EBPG 5000+) which allows to focus an electron beamover the resin following the structure design, with 2.5 nm precision. Then, using an appropriatechemical solution the isolated regions are dissolved.After the resin isolation, the design is transferred into the nitride layer by a dry etchingusing a CPP-RIE (Capacitively Coupled Plasma-Reactive Ion Etching) which allows a directionaletching. Then the motif is transferred to the semiconductor by a ICP-RIE (Inductively CoupledPlasma-Reactive Ion Etching). During this stage the InP memebrane is drilled by cylindricalair-holes (few hundreds nm depth) down to the InGaAs sacri�cial layer.Finally, in order to obtain the suspended membrane, the sacri�cial layer is etched out ina wet atmosphere. Speci�cally, a H2SO4 : H2O2 : H2O chemical solution is able to penetrateinto the sample trough the holes eventually dissolving the InGaAs.3.1.3 PhotoluminescenceSet up descriptionThe experimental set up used to measure the photoluminescence spectrum of the QD samplesis shown in �g. 3.31. The photoemission of the active material (QDs) is used to identify thecavity mode under incoherent pumping @532 nm, with a CW, frequency doubled Nd:YAG laser.Indeed, the resonant mode �lters the broadband luminescence giving a spectral narrow peak.The pump is focused onto the cavity by a large work-distance microscope objective ('Mitutuyo',M plan Apo NIR, X20, f=100 mm, NA = 0.4). The emission is collected by the same objec-tive and send to either a CCD camera ('Pulnix', TM-6EX) in order to visualize the sample, orto a spectrograph/monochromator ('Princeton Instruments', Acton SP2500i, with a 600 g/mmgrating 1.6 µm blaze and Ni cooled camera). After passing trough the spectrometer the signalis sent to an InGaAs 1D array spectroscopy camera ('Princeton Instruments', OMA V, spectralrange 0.7 µm-1.6 µm, resolution FWHM: 0.315 nm).Sample characterizationA typical spectrum of a L3 cavity sample is shown in �g. 3.4.a for a pump power of 41 µW . ThePhC period and hole radius are a=445 nm and r=120 nm, respectively, giving a mode centerat 1452 nm. The Q factor obtained from the FWHM of the cavity resonance gives 4800. It isimportant to point out that the measurement of the quality factor Q = λ/∆λ by means of pho-toluminescence spectra has two limitations: one instrumental, since the FWHM of the emissionpeak is limited by the monochromator resolution; and one inherent to the system due to thematerial absorption, which leads to pump power dependent quality factors. Therefore, the Qmeasured for low pumping powers has to be considered as a lower bound limit approximation ofthe intrinsic quality factor.1The QD photoluminescence was carried out in collaboration with Richard Hostein and Alexios Berveratosfrom LPN-PEQ group. 65



Figure 3.3: Experimental set up sketch to obtain the photoluminescence spectrum of the sam-ple. The sample is excited with a CW Nd:YAG laser (@532 nm) and the emission is sent to aspectrograph/camera.In order to study the laser e�ect, measurements of the collected intensity and the centralwavelength of the resonance as a function of the injected power are performed, �g 3.4.b and crespectively. For lasers with a β factor lower than 1 (β= emission in the cavity mode/the wholeemission), we expect a S-shaped curve for the emitted power. We also expect a change in theresonance wavelength as a function of the injected power in the following way: for an injectedpower under the laser threshold, a blue shift should be observed given by band �lling e�ects (thecarrier density increase changes the refractive index shifting the resonance to the blue, see section4.2). Above the threshold, in turn, a red shift should be observed due to the membrane heating.Further increase of the pump power may induce a mechanical deformation of the membrane witha subsequent increase of optical losses and eventually complete destruction of the membrane.Since we did not observe neither a S-shape in �g.3.4.b nor a minimum in the wavelength shiftin �g.3.4.c three posibilities can be considered: i) the system behaves as a laser with strong βfactor (β ∼ 1)[111]; ii) the threshold is at a lower power and we do not have enough sensitivityto observe it; iii) the sample does not show a laser e�ect. The usual method to identify laseremission is performing a second order correlation function of the emitted photons, which is outof the scope of this thesis. Though, let us stress the fact that laser emission in not a necessarycondition for the existence of bistability or excitability, which are the phenomena sought in thiswork.
3.2 Tapered �ber assisted couplingAmong all the systems that can be used to couple light into the photonic crystal cavity, wechose the tapered �ber approach since it avoids insertion, propagation and absorption losses ina waveguide while it allows easily probing several cavities on a chip.However, this coupling method requires a device allowing to control the taper positionand movement with high precision (sub-µm resolution) and stability. We have implemented thistechnique for the �rst time at the LPN. 66
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(c)Figure 3.4: (a) Photoluminescence spectrum of a L3 cavity (�g. 3.1.a) for 41 µW of pump powerand 0.1 s of integration time. The mode is at λ = 1452 nm and the resonance quality factor is
Q ∼ 4800, limited by resolution. (b) Output intensity integral as a function of the pump power.Both axes are in logarithmic scale. (c) Resonance central wavelength as a function of the pumppower.3.2.1 Tapered �ber fabrication and characterizationThe �rst tapered �bers we used were commercial ones2. According to the literature [85, 112]the shape of the �ber is important to avoid losses in the bulk material, i.e. outside the PhCmembrane. The �rst shape we tested was a loop, shown in �g 3.5.a. This con�guration showedserious problems of instability, see �g. 3.5.b. The distance between the �ber and the samplecannot be controlled with precision at short distances since, closer than a certain value, the �bersticks onto the sample. Thus, the fact of "attaching" and "detaching" the �ber from the samplemade the loop change. As a next trial, an U-shape where the �ber was �xed on a small glassbar was tested, shown in �g 3.5.c.This con�guration was used to make the �rst characterization of the coupling betweenthe �ber and the QD sample. At that time it became clear that the most e�cient way to con-verge to a performant micro�ber design was to get involved into the fabrication process ourselves,while taking bene�t from the know how of a research team already involved in taper fabrica-2A french company "LASEO" has fabricated customized tapered �bers on the basis of our speci�cations (size,shape and losses). 67



tion. For this reason, we started a collaboration with Laurent Bigot at the Laboratory PhLAM(Laboratoire de Physique des Lasers, Atomes et Molecules) in Lille. I participate, under hissupervision, to the fabrication of the tapered �ber. Trying to reproduce old mounting techniquesfrom LASEO, we noticed that �xing the taper onto a 5 mm-width bar was quite di�cult. Finallywe arrived to the most suitable con�guration: the U-shape �xed on a microscope slide, �g. 3.6.a.

(a) (b) (c)Figure 3.5: (a) Image of the �rst tapered �ber we have tried: a loop shape. (b) Image of the same�ber coiled with itself. (c) Second type of �ber: an U-shape onto a 5 mm-wide bar.The fabrication consists �rstly in removing the plastic jacket, exposing the 125 µmcladding, of a standard single-mode telecommunication �ber in a region of the order of 3 cm.After this, the �ber is �xed at both extremities and a gaz burner is positioned 1 mm under thenaked �ber, �g. 3.6.b. The two �xed points pull out the �ber at 50 µm/seg for 175 seconds untilarriving to a minimum diameter between 1 and 3 µm. Once the �ber is tapered down it is bentin the narrow part forming an U-shape and then it is sticked on a microscope slide using UV gluein such a way that the thin curved segment (between 0.5-1 cm) is freely standing in air, see �g.3.6.c. We have found that such length of the free standing segment achieves a good compromisebetween mechanical stability and physical constraints in the set-up. In addition, the curvatureof the �ber at the stretched segment reduces the optical coupling to the substrate outside thephotonic crystal membrane, thus decreasing optical losses [85]. Finally, two APC �ber pigtailswere soldered at each �ber end.The next step is the characterization of the taper. Losses are measured by means of a@1550 nm CW source. We have set the speci�cations for the maximal optical losses in the taper�ber to 10 dB. The fabricated tapers typically have between 3 db and 7 db. It is important topoint out that the taper thickness also plays a dramatic role. We have found that for thicknesslower than 1.5 µm-diameter the �ber becomes extremely unstable and fragile (losses rapidlyincrease with the use). On the other hand, for diameters larger than 4 µm, we veri�ed that theevanescent tail out of the �ber is reduced and the coupling becomes ine�cient. The tapers usedduring this work have diameters between 1.5 and 3 µm (�g. 3.6.a inset). It has been observeda degradation of the �ber (quanti�ed by the losses) with the use: in general, the tapered �berlifetime is ∼ 3 months. The causes of degradation are, among others, the humidity and micro-�ssures caused by the repeated contact with the sample (as discussed in the next paragraph).The �bers are fabricated in Lille and sent to Marcoussis by the post in an adequate package.Even though they seem very fragile, no taper has been broken down during the delivery.68



Figure 3.6: (a) Image of the tapered �ber: �nal mounting. Inset: 50x microscope image of thethinner part of the �ber. (b) Sketch of the tapered �ber fabrication characteristics and (c) sketchof the mounting.3.2.2 Coupling e�ciencyThe microscope slide with the tapered �ber is �xed in a 3-axes stage with two PZT-driven axes(x-z), �g. 3.7. The piezoelectric is used to locate the �ber exactly over the cavity. Besides,the sample is also mounted over a PZT-driven axes that allows to move it in the x-y directions.Hwang et al. [85] have demonstrated that the maximal coupling e�ciency is obtained for aPhC-taper vertical gap of 0.1 µm. However, �ber-sample distances as short as 0.1 µm cannotbe �xed in our system since the �ber systematically sticks on the sample surface, most probablydue to electrostatic forces originated by charges accumulated in the �ber. Nevertheless, we havechosen to work with the taper in contact with the cavity. The contact con�guration ensuresrobustness to the system and reproducibility. Therefore, the fact that the taper is "stuck" to thesample by electrostatic forces guaranties the system stability during measurements. A picture ofthe whole sample is shown in �g. 3.8.a where each tiny square corresponds to a PhC and the redcurved line to the tapered �ber. Fig. 3.8.b shows a picture of the PhC with the �ber positionedover de PhC cavity. In order to reduce mechanical vibrations of the taper due to air currentsand decrease thermal �uctuations and humidity, the whole device (sample plus tapered �ber) iscovered with an acrylic box.To characterize the coupling e�ciency we have used a 80 MHz repetition rate, 120 fs-duration pulsed probe beam from an OPO, optical parametric oscillator ('Opal', Spectra physics).The 30 nm-broad signal is centred at the cavity resonance wavelength and sent through a 50%coupler, to a �bered polarization controller and then through the tapered �ber, �g. 3.9. Thepolarization angle is changed by means of the polarization controller to optimize the optical cou-pling. The coupler splits the beam into two branches with equal intensity that allows measuringboth the transmitted and the re�ected signals. Both signals are sent to an optical spectrum anal-yser (OSA). Fig. 3.10 shows the transmitted and re�ected intensity from an L3 cavity (a=46569



Figure 3.7: (a) Set up to place the �ber over the PhC. A 3-axes stage (Nanomax) is used toprecisely set the position of the �ber over the cavity.
(a) (b)Figure 3.8: (a) Image of the whole sample and the tapered �ber. (b) Picture of the PhC membranewith the �ber positioned above the cavity.nm and r=120 nm) coupled by the tapered �ber. The resonance is centered at λ = 1491.8 nmand the loaded quality factor is Qloaded ∼ 2400. Note that the features of the experimental curvesare in good agreement with the theoretical ones (�g. 2.6).Using eqs. 2.31 and 2.36, we calculate the coupling e�ciency (η) from �g. 3.10. The mea-sured transmitted power in resonance is Pt,output = 5.7 nW and o� resonance is Poff,output ∼11nW, giving ηc = 28% and a coupling quality factor of Qc ∼ 8500, from eqs. 2.36 and 2.37,respectively. This value is in good agreement with the value found in section 2.3 by means ofCAMFR simulations for a �ber 3 µm-thick which approximately corresponds to the diameter ofthe tapered �ber used here. This relative high coupling e�ciency is of great interest in manyapplications, like e�cient single photon sources, or light extraction of cavity based nano-lasers.It is worth mentioning that the �ber, once tepered down, is not longer monomode meaningthat a beating in the transmitted signal of the �ber is likely to be observed. COMSOL simulationswere carried out3 in order to obtain the modes of a standard (SMF28) �ber adiabatically tapered3This simulations were done in collaboration with Nadia Belabas, LPN-PHOTONIQ, and Jean-Marie Moison,70



Figure 3.9: Set up used to the characterise the coupling between the tapered �ber and the nanocav-ity. A MEB image of the L3 cavity is shown.
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Figure 3.10: Simultaneous transmitted and re�ected signal. The thick arrow indicates the o�resonance transmitted power used to estimate the coupling e�ciency (see text).down to 3 µm. A fundamental mode with an e�ective refractive index (neff ) of neff=1.4 and a�rst excited mode with neff=1.34 were found. This gives a beating in the signal with a periodof: ∆λ = λ2/(∆nL) = 3.7nm, with ∆n = neff,0 − neff,1 = 0.06, λ = 1.49 µm and L=1 cm.However, this beating is not observed in �g. 3.10 most probably due to a low contrast of thebeating.3.3 ConclusionA Photonic crystal L3 nanocavity has been designed and fabricated. We estimated the intrin-sic quality factor of at least 4800 (limited by the resolution of the spectrograph) by means ofphotoluminescence measurements. This gives us, according to the results of chapter 2, an estima-tion of the upper bound for the coupling quality factor (Qc) necessary to obtain e�cient coupling.A fabrication process to taper down a commercial �ber was developed at the PhLAMlaboratory. By this process, we succeed in fabricating tapered �bers with diameters between 1.5-3 µm and optical losess lower than 7db. Di�erent mounting schemes of this �ber were studied,out of which the most adequate one was the U-shape mounted on a microscope slide. The �beris �rst bent in the thinner part forming an U-shape and subsequently �xed onto a microscopeslide. Besides, a positioning system with sub-µm resolution and high stability was designed andLPN-PEQ-PHOTONIQ group. 71



assembled in order to locate the tapered �ber over the cavity with high precision.The coupling between the cavity and the �ber was measured injecting a broad-band (∼ 30nm) signal through the �ber and measuring the transmitted/re�ected signal. This broad signalwas �ltered by the cavity mode giving the cavity resonance. Applying this method, couplinge�ciencies of ∼ 28% were achieved, which means that almost a third of the signal injectedthrough the �ber is being coupled inside the cavity. This high coupling e�ciency is of greatinterest in many applications, like e�cient single photon sources, or light extraction of cavitybased nano-lasers. In particular, in the next chapter, we will use this coupling scheme to obtaincharacteristic thermal and electronic times of the nanocavity in actives regimes.

72



Chapter 4Application of the tapered �ber:measurement of relaxation times inactive materialsThe carriers excitation through an incoherent pump in active nanostructures can change theoptical properties of the structure, and hence the intrinsic properties of the cavity, such as thecavity resonance frequency. Indeed, an optical pump allows to externally tuning the resonancewavelength. This phenomenon is interesting in the context of all-optical switching devices. In thischapter we apply the coupling method via a tapered �ber described before, to measure di�erentcharacteristic times of the sample. In particular the thermal relaxation time in a PhC membraneand the characteristic electronic times are investigated. These measurements are based on therefractive index change, having a thermal or electronic origin, due to an incoherent pump. Bothmagnitudes will be of great interest in the following part where dynamical nonlinear regimes arestudied.4.1 Measurements of the characteristic thermal relaxation timeAs it has been mentioned in chapter 1, photon emission and/or carrier induced nonlinearitiesare obtained through the excitation of electrons in semiconductor conduction bands or states.Electron and hole nonradiative recombination processes play a fundamental role in the relax-ation of excited electronic populations. These are mediated by phonons which become a heatsource. While heating turns out to be an unwanted e�ect in most photonic devices because ofdetrimental thermal loading (specially in photonic crystal suspended membranes), it can also beused as a mechanism for fast switching (up to 10 MHz-bandwidth) as long as the dimensionsof optical cavities are small enough [113, 114, 27]. Moreover, in the context of novel nonlineardynamical mechanisms relying on multiple time-scale processes, it has been demonstrated thatthe so-called thermo-optical excitable dynamics may lead to repetition rates as high as 1 GHz [89].For all those situations, an insight into dynamics of heat dissipation is of central impor-tance since it provides information about the characteristic time scales to take into account whenpumping the sample in order to avoid heating up the material, i.e. by modulating the opticalpump faster than the thermal relaxation time. In particular, quasi cw light injection for nonlinearoperation or laser emission often requires the pump pulse to be longer than the carrier recombina-tion lifetime, but shorter than the thermal time, as it has been implemented for instance in [115].73



In the case of self-induced heating phenomena in micro and nano optical cavities (e.g.,when the heat is produced by optical excitation of the resonant mode in the cavity) the charac-teristic heat dissipation times strongly depend on the cavity size. As it has been pointed out in[114], these scale with the characteristic cavity length, i.e. small cavities dissipate heat faster.The equilibrium temperature, in turn, scales with the inverse cavity length, mainly due to thereduced heat capacity of small cavities. Fast thermal processes are thus compatible with highthermal loading, showing the importance of thermal measurements in small cavities, such asphotonic crystal nanocavities.From the experimental point of view, while thermal loading can be estimated throughmeasurements of thermally induced refractive index change, the thermal relaxation times cannotbe obtained straightforwardly; this has been done so far through parameter �tting from nonlin-ear dynamical models [114, 27, 89]. This requires a complex set of equations coupling severalvariables, therefore, the �tted relaxation time becomes model-dependent. To avoid this, we havedeveloped a novel method to directly measure the thermal relaxation time of a photonic crystalnanocavity, based on re�ectivity measurements of a CW probe beam within the tapered �ber-assisted optical coupling scheme [97]. This measure allowed us to test the ability of the tapered�ber to extract interesting information of the system dynamics.4.1.1 Experiment set upThe cavity is probed via the tapered �ber with the coupling characteristics mentioned in section3.2 (ηc = 28%), �g. 3.10. The CW probe power injected into the taper is set to a low level(< 1 mW) in order to prevent any self-induced thermal or electronic e�ects (the system showsnonlinear thermo-optical e�ects for injected powers higher than 1 mW, section 5.1). In orderto produce heat, the cavity is optically pumped by the surface using a modulated CW beamat 800 nm focused down to a 3.2 µm−diameter spot (@1/e2 of the intensity) by a long work-ing distance microscope objective ('Mitutoyo', M Plan Apo NIR, X50, f=170 mm, NA = 0.42),�g. 4.1. This wavelength is mainly absorbed in the InP (bandgap wavelength ∼900 nm @300 K).

Figure 4.1: Set up used to measure the thermal relaxation of a photonic crystal nanocavity.Non-radiative carrier relaxation processes are the central mechanisms producing heat inthe membrane. Thermal e�ects increase the refractive index, shifting the resonance to longerwavelengths. Fig.4.2 shows the resonance spectrum for a pump power of 165 µW (on the sample)in red line and without pump in black line, measured as in section 3.2.2.Thermal dynamics is measured as follows. The wavelength of a tunable laser ('Net Test',74
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Figure 4.2: Re�ectivity spectrum of the cavity resonance without pump (black line), and with 165
µW pump (red line).Tunics Plus S, 1430 nm-1530 nm) is set at a given detuning ∆λ0 with respect to the resonance ofthe unpumped cavity (∆λ0 ≡ λc − λp, where λc is the wavelength at the center of the resonanceand λp the probe wavelength), probing the cavity-induced re�ection. Heating up the cavityresults in a thermally induced wavelength shift, producing a change in the re�ected intensityof the probe light. A high sensitivity �ber coupled avalanche photodiode (APD, 'New Focus',model 1647) with a 15 kHz-1.1 GHz-bandwidth was used to temporally resolve the change of there�ected signal. Traces are recorded on a 400 MHz -bandwidth, 5 Gs/s, oscilloscope ('Lecroy',WaveRunner 44Xi). Upon 10 µs width-50 µs period square pump pulse excitation, the re�ectedsignal exhibited either a drop-out followed by a recovery for ∆λ0 ≥ 0 (i.e. blue detuning), orintensity peaks for ∆λ0 < 0 (red detuning). Both situations are directly related to the thermaldynamics of the resonance towards the equilibrium states. For a nearly resonant probe (∆λ0 = 0,�g. 4.3.a), the signal decreased in the presence of the pump beam due to thermally-induced shiftof the resonance. For red detuning, instead, the resonance "passes through" the injection wave-length leading to a maximum of intensity in the heating process, followed by a maximum in thecooling process (�gs. 4.3.b-d).In order to extract the characteristic thermal time from the time evolution of the re�ectedprobe, the spectral shape of the resonance must be taken into account. The resonance can be�tted with a Lorentzian function. Considering the time dependence of the center of the resonance
λc(t), which contains the refractive index dependence with temperature, the time-dependentre�ectivity R(t) is thus modelled as R(t) = 1/[1 + (λc − λp)

2/(γ/2)2], where γ is the FWHMof the resonance. The resonance width γ is measured from the re�ectivity signals as a functionof the detuning. Since the APD detector cuts-o� DC components, the re�ected signal level wasmeasured with respect to the signal drop out when the probe signal is turned o� in �g 4.3.a-d.From �g. 4.4, the resonance width gives γ = 0.33 nm, corresponding to a quality factor of
Qloaded

∼= 4520. The increase of the Qloaded with respect to the one found in section 3.2.2 maybe given to a decreased absorption due to the higher spectral power density used in this casecompared to previous (broad-band) fs measurements. Let us stress that from the Qloaded and thecoupling e�ciency (η) we can obtain the intrinsic quality factor (Qrad), neglecting the absorption(i.e. Q0 = Qrad), as: Qrad = 1/(1 − η)Qloaded, which gives Qrad = 6300. The time dependentwavelength shift becomes:
∆λ(t) ≡ λc(t)− λp = ±[R(t)−1 − 1]1/2γ/2 (4.1)where the two roots indicate blue or red shift of the probe with respect to the cavity resonance.75



Figure 4.3: Time evolution of the re�ected square modulated (red line above) CW probe fordi�erent detunings. a) ∆λ0 = 0; b) ∆λ0 = −0.08 nm; c) ∆λ0 = −0.21 nm; d) ∆λ0 = −0.33nm. e)-h) Thermal dynamics obtained from (a)-(d), taking into account the lorentzian shape ofthe resonance. The arrow in (c) indicates a small amplitude short peak corresponding to electronicblue-shift dynamics before the slow thermal dynamics takes place.
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Figure 4.4: Cavity resonance measure by means of the re�ectivity decrease while switching o� thesignal. Fitted by a Lorentzian function. From the �tting, the resonance width gives 0.33 nm.It is worth to point out that the kinetics of the center of the resonance also containsan ultrafast process related to carrier-induced index variation. As we will see in section 4.2,76



such processes decrease the refractive index blue-shifting the resonance in a time shorter than1 ns, eventually being followed by a thermally driven red-shift. Therefore, they lead to shortdownward peaks for red detuning, and short upward peaks for blue detuning. Let us stress thatsuch e�ects remain small in our measurements (see arrow in �g. 4.3.c).From eq. 4.1, the time dependent detuning, ∆λ(t), is plotted in �g. 4.3.e-h, for theheating and cooling process. The slight noise in the signal at ∆λ ∼ 0 is due to the disconti-nuity of the two roots in the inverse of the lorentzian function. From those curves we obtainthe characteristic time as the time for which the detuning decays 1/e of |∆λ(0) −∆λ(∞)|, thedi�erence between the initial detuning and its stationary value. The cooling and heating timesfor di�erent detuning are similar, �g. 4.3.e-h. Considering that the characteristic times do notdepend on the initial detuning, the average of the measured values for di�erent detuning yieldsto τc = 0.9±0.2 µs and τh = 1.0±0.2 µs for the cooling and heating processes, respectively. Wethen conclude that there is no signi�cant di�erence between these two times, provided the systemis probed with a weak signal. Fig. 4.3.e shows that for the zero-detuning case the cooling time isabout a factor 2 smaller compared to the other cases. For zero-detuning, indeed, the re�ectivitytime trace for the cooling process is mainly a�ected by the spectral tail at the blue side of theresonance, which is slightly di�erent to the tail at the red side (see the slight asymmetry of theresonance in �g. 4.2), which may explain the substantial deviation for this situation. In spiteof this, we stress the fact that our technique allows one to directly measure the dynamics oftemperature in a nanocavity.The characteristic times found (∼ 1 µs) are in good agreement with the thermal dis-sipation time we have found using an alternative technique [116], so-called transient thermo-re�ectance imaging, which allows to investigate the spatial heat distribution with sub µs timeresolution and sub µm spatial resolution1. Thermore�ectance methods rely on the relation be-tween the temperature variation ∆T and the re�ectivity variation ∆RT of materials which, in�rst approximation, follows ∆RT = (dRT /dT )∆T , where dRT /dT is a constant which dependson the material. By means of a pump and probe technique and a CCD camera, images of thesample are taken for di�erent pump-probe delay (τ). Fig. 4.5 shows the relative re�ectivitychanges (deconvolved with the normalized intensity of probe pulses) as a function of the delay(τ). The value of the relative re�ectivity change is a spatial average on a 10 µm side square.The images are shown for τ equal to 30, 130, 500 and 1000 ns. Fitting the relative re�ectivitychanges by the convolution of an exponential ∆T0exp(−t/τ0)with INprobe (measured with a fastphotodiode)[116], we found a thermal dissipation time of ∼ 1 µs. This measurement is in goodagreement with our results and gives additional information about the spatial thermal distribu-tion.4.1.2 DiscussionThe thermal dissipation time we have measured in the previous paragraphs, namely the dynam-ical relaxation process of the temperature in a PhC slab, characterizes a transient phenomenontowards the thermal equilibrium state. Classically, this is well described by the heat equation.Therefore, in order to obtain an analytical expression for the relaxation time (τth), the timedependent solutions of the heat equation are studied. This equation reads:
∂T/∂t = Q(r) + αO2T (4.2)1Time resolved thermo-re�ectance measurements have been done in collaboration with Virginie Moreau, GillesTessier and Yannick De Wilde at the Institute Langevin.77



(a) (b)Figure 4.5: (a) Relative re�ectivity change as a function of the delay (τ) when the pump is focusedon the PhC membrane. Images of the relative re�ectivity change are plotted for: τ = 30 ns, 130ns, 500 ns and 1000 ns. (b) Heat spot width as a function of the delay.where α is the thermal di�usivity, Q(r) is the heat source (per unit volume) symmetric underre�ections x → −x and y → −y, and T is the temperature increase with respect to the substratetemperature. The time dependent solutions are taken for a 2D rectangular membrane of size
2Lx × 2Ly, �g. 4.6.

Figure 4.6: Rectangular geometry for the calculation of transient dynamics in a 2D membrane.We set the following simpli�ed boundary conditions: T(x=Lx)=T(y=Ly)=0 and ∂T/∂x|x=0 =
∂T/∂y|y=0 = 0 for symmetrical solutions. The general solution is a superposition of a particular(stationary) solution Tst(r) and the homogeneous solution, T (r, t) = Tst(r) + Th(r, t). It can beeasily showed that Th can be expanded in Fourier series,

Th(r, t) =

∞∑

n,m=0

Anme−σnmtcos(kxnx)cos(kymy) (4.3)with kxn = (2n+1)π/2Lx, kyn = (2n+1)π/2Ly and σnm/α = k2xn + k2ym. The amplitudes Anmcan be obtained from the initial conditions. In the case of the heating process (Q(r) 6= 0) theinitial condition is T (H)(r, t = 0) = 0 meaning T
(H)
h (r, t = 0) = −T

(H)
st (r), and the coe�cients

A
(H)
nm are calculated as the Fourier transform of −T

(H)
st (r). Thus, the Fourier modes relax with78



characteristic times given by
τth,nm = 1/σnm = 1/α(k2xn + k2ym) = 4L2

xL
2
y/απ

2[(2m+ 1)2L2
x + (2n + 1)2L2

y] (4.4)Note that higher order modes are dissipated faster. Therefore, we can expect the relaxationdynamics to be driven by the lowest order mode, provided it is e�ciently excited. In our case,since Ly >> Lx, τth,00 ≈ 4L2
x/απ

2; taking α = 0.372 cm2/s [117] then τth,00 ∼ 300 ns, meaningthat the smallest length governs the relaxation process. In addition, eq. 4.3 also accounts forcooling processes, whose dynamics is denoted by T (C)(r, t). In such a case the heat source isturned o� (Q(r)=0) hence T
(C)
st (r) = 0 and the initial condition reads T (C)(r, t = 0) = T

(H)
st (r).Therefore A(C)

nm = −A
(H)
nm , hence T (C)(r, t) = −[T (H)(r, t)−T

(H)
st (r)], which shows that the relax-ation dynamics of the cooling process is the same as for the heating process.The estimated relaxation time (τth) is about a factor 3 below the measured relaxationtime. The discrepancy between these two values may be due to the strong approximations usedin our simple model, in particular the temperature being �xed to the substrate temperature atthe end of the membrane (perfect heat sink at Lx and Ly). Full 3D-�nite element numericalsimulations, as in [118], should be carried out in order to better account for thermal dynamicsin this system.4.2 Measurements of the carrier recombination timeNonlinear e�ects of thermal origin were investigated in the preceding section. Here we will studyrelaxation times related to electronic refractive index change. This will give us information aboutthe characteristic carrier recombination times in the nanostructures with possible applicationsin ultrafast optical switching.All-optical ultrafast switches with chip-integration compatibility and e�cient couplingto the external environment are at the heart of high-speed communications. Optical switchesbased on 2D PhC have already been proposed and investigated in III-V semiconductor-basedmaterials in several con�gurations, including surface-resonant Bloch modes of a non defective2D PhC, waveguides and cavities [119, 81, 91, 115]. Recently, fast switching capabilities of aPhC nanocavity were investigated using an evanescent coupling through a tapered �ber. A ∼ 2ns, ON−OFF switching time was demonstrated [120]. The performance and resolution werelimited by the pulse duration and the detection bandwidth respectively. Indeed, the carrierinduced nonlinear response is expected to allow ON−OFF switching times shorter than 2 ns atleast by one order of magnitude [91]. In this section we present pump and probe measurementswith 100 femtosecond time-resolution for all-�bered and surface pumping con�gurations [121].As mentioned in sec. 3.2 our system contains three di�erent semiconductors structures, all ofthem potentially contributing to index changes as a function of injected carriers: the (3-D) InPslab, a (2-D) wetting layer and a (0-D) QDs . The wavelength corresponding to their electronicbandgaps (λgap) are 0.92, 1.1 and 1.55 µm, respectively. The contribution of each semiconductorstructure to carrier-induced nonlinear e�ects at the probe wavelength is discussed at the end ofthis section.4.2.1 Pump and probe measurementsIn order to achieve sub-ps time resolution compatible with electronically-induced active phe-nomena, a femtosecond pump and probe technique is implemented. Probe pulses (signal) with79



120 fs-duration and 80 MHz-repetition rate are generated by an optical parametric oscillator ataround 1490 nm. The probe power is kept below 250 nW at the input of the taper to avoid anynonlinear e�ect induced by the signal. As in section 3.2.2, using this broadband pulses (∼ 30nm-broad) to probe the nanocavity mode, we measure an optical resonance centered at 1491.5nm with a FWHM of 0.6 nm corresponding to loaded quality factor of Qloaded
∼= 2400.The active regime is achieved by optically injecting carriers using a 80 MHz-repetitionrate, 100 fs-pulse duration Ti:Sa pump source. Pump pulses, emitted at λ = 810 nm, are ab-sorbed in the InP (λgap ∼ 0.92 µm) inducing a carrier population that �rst relax to the wettinglayer bang-edges (λgap ∼ 1.1 µm), �g. 4.7. As it has been shown elsewhere [91], this carrierdensity decreases the refractive index and induces the blue shift of the optical mode. In addi-tion, a slow thermal e�ect also takes place with a time scale of the order of 1 µs, as describedin section 4.1. Therefore, only the averaged thermal loading can be revealed by our measure-ments which, in turn, can fully resolve the ultrafast changes associated to the carrier dynamics.This was accomplished by analyzing the probe re�ectivity/transmission intensity as a functionof the delay between the pump and the probe pulses. Time delays are obtained by increasingor decreasing the probe path by means of a computer-controlled translation stage. The de-lay step is 7 fs and the maximum positive delay that can be reached is 1.3 ns. Both signals,re�ected and transmitted, are measured with an optical spectrum analyser (OSA). In all theexperiments the probe is sent through the tapered �ber, as describe in section 3.2.2, while twocon�gurations were studied to pump the sample: surface pumping and through the tapered �ber.

Figure 4.7: Scheme of the energy levels of the di�erent materials in the sample compared withthe pump and probe energies.Surface pumping con�gurationIn a �rst set of experiments the free space propagating pump beam is sent to the 2D PhC bythe surface, as described in �g 4.8. The pump beam is focused down via a 50x, long workingdistance (17 mm), microscope objective to a diameter of 3.2 µm (@1/e2 of the intensity) shiningthe structure normally to the 2D PhC periodicity (red circle in �g. 4.8).As the pump power is increased to 0.98 mW, a 3 nm red shift of the resonance is ob-served for negative or long positive delays (> 1 ns). This red shift, associated to thermal e�ects,becomes a thermal o�set for the linear regime. In the following, all electronically induced shiftsare measured from this o�set. Such blue shifts are only observed for positives delays within thepicosecond to nanosecond time scale, which con�rms its electronic origin [91, 120].80



Figure 4.8: Experimental setup for surface pump. A translation stage (non shown), allows tochange the pump/probe delay.Fig. 4.9 shows the transmitted signal spectra with a pump power of 0.98 mW for di�erentpump-probe delays. A maximum blue shift of 7 nm is obtained near pump-probe coincidence.This is consistent with the fact that the electronic density and the associated blue shift can beassumed to increase within a time of the order of the carrier relaxation time to the conductionand valence band edges (∼ 1 ps). As the time delay is increased, the blue shift decreases dueto carrier recombination. Clearly, the decrease of the blue shift as pump and probe delay isincreased is related to the carrier recombination time for a given pump power.In order to further analyse this temporal behavior and its dependence on the pumppower, we measure the spectral shift ∆λ as a function of the pump-probe delay for di�erentpumping powers (�g. 4.10.a). The observed rise time is of the order of 4 ps (except for thesmallest power). As it was shown in ref. [122], this time is related to the photon lifetime inthe cavity (∼ 2 ps). A decrease of the total recovery time from ∼ 90 ± 20 ps to ∼ 30 ± 5 ps(measured at 1/e of the maximum) is observed as the pump power is increased from 0.3 mWto 1 mW (4.10.b). Note that both the blue shift and the ps time scale are clear signatures ofthe electronic nature of the nonlinear e�ect. Furthermore, the decrease of the recovery timewith the pump power can be related to nonlinear terms in the carrier recombination process,such as bimolecular recombination [91], which will be discussed in detail at the end of this section.Before describing the all �bered case, where the pump and the probe are injected via thetapered �ber, let us consider one interesting application of such ultrafast behavior: the all-opticalcontrol and switch of a CW signal. In order to implement such con�guration, 490 µW−pumppulses are injected from the free space on the surface while a CW probe is coupled through thetaper. The probe is modulated with 10 MHz repetition rate, with pulse duration of 90 ns andmean power of 235 µW . The modulation is applied to measure the signal contrast. Time tracesare measured using a 15 kHz-1.1 GHz-bandwidth avalanche photodiode (APD). The mechanismunderlying the control of the signal is simple and can be easily understood from the previousexperiments. The resonance shift created by the pump pulse induces a change on the transmit-ted signal which can be switched on and o� by means of the control (pump) pulses. Fig. 4.11.ashows the time trace of the transmitted signal for two di�erent wavelengths. The periodicity of12.5 ns corresponds to the pump repetition rate. Clearly, in the presence of the pump pulsesthe transmitted signal drops or increases depending on whether the probe wavelength is blue orred-shifted with respect to the cavity resonance, respectively. This is summarized in �g. 4.11.b,81
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Figure 4.9: Transmission spectrum for di�erent pump and probe delays: a. ∆t = −24 ps, b.
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nance spectrum (red line) measured in the absence of pump pulses. A contrast as high as 20% isachieved as the probe is slightly shifted but close to the minimum of the resonance (�g. 4.11.b).This is a factor ∼ 2 smaller than the contrast of the resonance in transmission calculated from�g. 4.11.b red line, which can be attributed to the limited bandwidth of the APD, resulting ina time convolution of the actual signal with the impulse response of the detector.
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(a) (b)Figure 4.11: (a) Time resolved transmission, resolution 1 ns, for ∆λ(λinj − λres) = −0.5 nm(black line) and ∆λ = 0 (red line), each peak corresponds to the arrival of one pump pulse(∆t ∼ 12.5 ns). (b) Transmitted amplitude spectrum in % with respect to the background signal
(�) and cavity resonance (dash line).Fibered pumpOne of the usual drawbacks of 2D PhC devices is to cross the bridge between the high e�cientmicroscopic active devices and the macroscopic word. For this reason, we studied here the elec-tronic characteristic time and the switching capabilities in an all �bered con�guration.In this experiment both the 100 fs-long 810 nm pump pulses and the 120 fs-long 1490nm signal pulses are sent through the tapered �ber to the cavity, �g. 4.12. The pump power atthe input of the �ber is �xed to ∼ 2.5 mW, whereas the probe is kept below 250 µW to avoidprobe-induced nonlinearities. Note that these values are measured at the input of the �ber andthe actual pump and signal powers near the cavity are lowered due to both contact and prop-agation losses in the taper. From such losses we can estimate the power near the cavity (Pin)as Pin = 0.26Pinput, where Pinput is the injected power at the input of the �ber. Both signals,pump and probe, propagate through 7 m of �ber until reaching the cavity.The re�ected signal spectrum is represented in �g. 4.13.a for di�erent pump-probe de-lays. A maximum blue shift of 0.9 nm is obtained for the pump-probe coincidence. The linearresonance in this case is at 1494.3 nm. Although it is di�cult to evaluate the actual pumpintensity acting in the nanocavity region, an order of magnitude can be estimated from a com-parison between the pumping powers in the two con�gurations (free-space and �ber-coupled)giving the same blue shift. Indeed, the blue shift achieved in the �bered pumping con�guration(∼ 1 nm) is close to the one obtained in the surface-pumping con�guration for a pump power of0.28 mW (�g. 4.10.a, (�). Therefore, the pumping level in the �bered con�guration is equivalentto ∼ 0.28 mW shining the surface. As the InP coe�cient of absorption at 810 nm is ∼ 33% andconsidering the cavity surface with respect to the excitation surface, the absorbed pump power in83



Figure 4.12: Experimental setup for �bered pump. Using a translation stage, the pump pulses aredelayed with respect to the probe pulses before being sent to the tapered �ber.the cavity region is reduced to ∼ 10 µW , which is of the same order of magnitude as in ref. [120].
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(a) (b)Figure 4.13: All �bered con�guration. (a) Re�ectivity intensity for di�erent pump and probedelays: a. ∆t = −21 ps, b. ∆t = 21 ps, c. ∆t = 100 ps, d. ∆t = 170 ps, e. ∆t = 277 ps, witha vertical o�set, resolution 0.05 nm. The pump power was 2,5 mW at the input of the �ber. (b)Resonance shift as a function of pump-probe delays for all-�bered con�guration (decay time at
1/e = 166 ps and rise time 20 ps).We now consider the dynamics of the resonance wavelength shift in the �bered con�gu-ration. Fig. 4.13.b shows the time dependence of the blue shift in the experimental conditions of�g. 4.13.a. The rise time (switch ON) is ∼ 20 ps and the decay time (switch OFF) is ∼ 170± 15ps. These times are in the picosecond time scale and are still attributed to the carrier inducedrefractive index change as previously. However, they are longer compared to the ones measuredin the surface-pump con�guration. In both cases the signal is �ber coupled and there is nomeasurable e�ect associated to its intensity. Therefore, the increased ON and OFF times mustbe related to a linear and/or nonlinear dispersion associated to the propagation of the pumppulses in the �ber and the taper. In order to verify this hypothesis we further investigate theorigin of the increase of the ON/OFF characteristic times as follows. First, we implement anautocorrelation measurement of the pump pulses at the output of the 7 m �ber-taper setup.Although their initial, free space, duration is ∼ 100 fs, we �nd that pump pulses of 3 mW are84



stretched to ∼ 7 ps (�g. 4.14.a) after propagating through the �ber. This duration does not sig-ni�cantly change for all the pump pulse energies considered in the switching con�guration. Next,we implement a surface pumping con�guration with 7 ps-pump pulse duration in the followingway: the pump pulses are temporally broaden to ∼ 7 ps by taking bene�t from the chromaticdispersion after propagating through a 7 m-long �ber and eventually sent to the sample in thesame surface-pumping conditions of �g. 4.8. The measured rise and decay times are now ∼ 20ps and ∼ 115 ± 20 ps respectively [�g. 4.14.b (•)]. The rise time is close to the one measuredin the all-�ber coupling con�guration, whereas the decay time overlaps with the one obtained inthe femtosecond surface pumping experiment for the same blue shift: (90 ± 20) ps. This buildscon�dence on the fact that the stretching of the pump pulses is at the origin of the increase ofthe ON responses. Indeed, by contrast with the 100-fs pump pulse in the surface-pumping con-�guration, which is shorter than all times scales of the system leading to free carrier relaxation,the 7-ps duration pump pulse is longer compared to the photon lifetime and approaches the fastcarrier recombination time. The 20-ps rise time can thus be understood as resulting from thelonger pumping pulse driving the system. However, the increase of the decay time in the �beredpump con�guration with respect to surface pumping is more intriguing and could be related toa lower carrier density within the WL when pumping through the �ber, as discussed in the nextparagraphs.
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(a) (b)Figure 4.14: (a) Autocorrelation measurement of pump pulses: free space propagation (blue line)and after 7 m of �ber-taper (black line). (b) Resonance shift as a function of pump-probe de-lays for all-�bered con�guration (�) (decay time at 1/e = 166 ps and rise time 20 ps) and forsurface pumping with 7 ps-pump pulses duration (•) (decay and rise times: 150 ps and 20 ps,respectively).4.2.2 DiscussionThe aim of this paragraph is to clarify the origin of the dynamics of the ON and OFF responsesresulting from the femtosecond pump and probe experiments described above. For this porposewe use a simple and intuitive description based in the set of equation deduced in section 1.4.Since the pump-induced e�ects shift the resonance to the blue side of the spectrum, the leadingnonlinear process is the decrease of the refractive index. Therefore, the active phenomena in playare mainly of electronic origin, i.e. they come from carrier-induced e�ects, which turn out to bedominant against (fast) red-shift processes, such as intrinsic Kerr e�ects. The injected carrierdensity in the surface pump experiment per unit power within the PhC slab, as deduced from85



the experimental conditions, is typically
NP ≡ N2D

P
= Tα0L/hνpA ∼ 1014cm−2mW−1 (4.5)where T is the pulse period of the femtosecond pulse-train, L is the membrane thickness, hνpis the pump photon energy, A is the surface of the pumped region (A = πr2, with r=1.6 µm)and α0 is the linear absorption coe�cient at the pump wavelength (α0L ∼ −ln(0.67) ∼ 0.4 2,using that the fraction of the incident power absorbed at 800 nm is ∼ 33% [123]). This densitycorresponds to an overall 3D density of N3D = N2D/d ∼ 1018 cm−3 injected carriers for P ∼ 0.3mW. Considering that the carrier di�usion in the InP is essentially governed by holes Dh = 5

cm2/s [117], carriers are thus able to reach the wetting layer (WL) in ∼ (100 nm)2/Dh ∼ 20ps; therefore only a fraction of the total carriers accounting for fast carriers will be eventuallycaptured inside the WL in a time shorter than 20 ps. Such a fraction will be considered as a�tting parameter in our analysis.We now analyse the contribution of each semiconductor layer or structure to carrier-induced nonlinear e�ects. For probe photon energies (hν) close enough to the bandgap energies(approximately (Eg − hν)/Eg < 0.15 for a III-V semiconductor), it has been shown that indexchange is dominated by band-�lling e�ects [124], which is indeed the case of the QDs in oursystem. On the other hand, for very low photon energies with respect to the electronic bandgaps,
hν << Eg, as it is the case of the InP, Drude e�ects are dominant. In the case of the wettinglayer (WL) we can expect both band �lling and Drude e�ects contributing to the decrease ofrefractive index (see section 1.2).The refractive index change due to Drude e�ects for carrier densities close to transparencyvalues (Ntr ∼ 1018 cm−3) can be estimated as large as ∆n/n ∼ 0.001 [124], leading to wavelengthshifts of about ∆λ ∼ Γλ∆n/n < 1 nm. Band-�lling e�ects produce larger refractive indexchanges for a carrier density Ntr, both in bulk materials and in quantum wells (QWs). Forinstance in InAsP/InP QWs we have previously observed ∆n/n ∼ 0.01 for carrier densities closeto QW transparency (N2D ∼ 1012 cm−2) [91, 115]. In the case of quantum dots, however, themaximum carrier density that can be injected equals the QD density, NQD ∼ 1010cm−2. Takinginto account that this remains at least two orders of magnitude below the carrier density inthe WL, we can therefore conclude that refractive index change in the QDs, even if all the QDlevels are occupied, can be neglected with respect to index change induced by carriers in the WL.From now on we thus consider that the nonlinear carrier-induced e�ects are produced by a carrierdensity con�ned within the WL. Furthermore, we assume that the refractive index change, hencethe wavelength shift, can be considered to be a linear function of the carrier density, as usual:

∆λ = ∆λNN (4.6)where ∆λN is taken constant and N is the 3D carrier density. Therefore, the dynamics of thewavelength shift, ∆λ(t), is considered proportional to the carrier dynamics, N(t).We then study the carrier dynamics governing the observed time dependence of thewavelength shift (�g. 4.9.a). According to eq. 1.56 there are two components in the carrierdynamics, the recombination processes and the intracavity energy. Since in our experiments theprobe power is kept low, we can neglect the contribution of the intracavity energy in front of therecombination processes. Therefore, two main recombination processes can be taken into account:a nonradiative recombination process with a time constant τnr, and a radiative recombination2This expression is expected to hold for low pumping powers86



process or bimolecular recombination at a rate BN, B being the bimolecular recombinationcoe�cient, which is expected to play an important role especially for high carrier densities [91].The corresponding rate equation for N(t) is
dN

dt
=

−N

τnr
−BN2 (4.7)We solve eq. 4.7 analytically for femtosecond pumping. In such a case, carriers relaxfreely from an initial carrier density N(t = t0+) = N0 injected by the femtosecond pumpingpulse centered at t = t0, which has already been described as a kick-like pumping process[89, 93]. De�ning ∆t = t− t0+, the solution of eq. 4.7 reads

N(∆t) =
N0e

−∆t/τnr

1 +N0τnrB(1− e−∆t/τnr )
(4.8)The decay time τ1/e de�ned as the time for the decay of the carrier density at 1/e of theinitial value, N(∆t = τ1/e) = N0/e, can be readily found from eq. 4.8:

τ1/e = τnrln(
e+N0τnrB

1 +N0τnrB
) (4.9)Note that in the limit BN0 << (τnr)

−1 we obtain τ1/e → τnr, meaning that for small bimolecularrecombination rates, the nonradiative decay time is dominant.Eqs. 4.8 and 4.9 can be re-written in terms of the (experimentally measured) initialwavelength shift (∆λ0) by evaluating eq. 4.6 at t = t0+, which gives N0 = ∆λ0/∆λN . Usingthis, we have �tted eq. 4.8 to the experimental data in �g. 4.9.a with the �tting parameters B̂,
∆λ0 and τnr, where B̂ ≡ B/∆λN . We notice that for the highest pump power, P=0.98 mW, thedynamics of ∆λ almost superimpose to that for P=0.67 mW, meaning that carrier saturation isplaying an important role and therefore no additional information can be obtained from the datacorresponding to P=0.98 mW. The excellent quality of the �ts can be observed in �g. 4.15.a.We average out the parameter values resulting from �tting the four curves in �g. 4.9.a usinga weighted average procedure. Normalized weights are de�ned assuming an ensemble of fourindependent measurements with weights wi as usual, wi = (e2i

∑
1/e2i )

−1, where ei is the stan-dard deviation of the i-th �tted value. The weighted average gives 〈B̂〉 = (6.7 ± 1) ns−1nm−1and 〈τnr〉 = (0.12 ± 0.03) ns, where the errors are given by the weighted standard deviation.The obtained nonradiative recombination time in this system is of the same order of magnitudeas in previous measurements of 2D PhC samples with InAsP/InP QWs [91]. The accuracy ofthese two �tted parameters can be tested by comparing the experimental decay times to thoseobtained using eq. 4.9. This is shown in �g. 4.15.b. It can be observed that the dependency ofthe decay times on the initial carrier density is well reproduced by eq. 4.9 with the two averagedparameters 〈B̂〉 and 〈τnr〉.In order to relate 〈B̂〉 to the physical coe�cient B, ∆λN has to be found. With this aimwe �rst calculate the injected carrier density in the WL as a function of (small) pump power(P), N0,WL = (f/d)NpP , where f is the probability of carrier capture in the WL after di�usionand d is the WL thickness (d=0.6 nm). Next we relate the wavelength shift to the pump powerfor small P, ∆λ0 ∼ (3.2 nm/mW )P . As a result, ∆λN ∼ (d/f) × 1.3 × 10−14 nm cm2. Usingan already reported value for the bimolecular recombination coe�cient in InP-based materials,
B ∼ 3 × 10−10 cm3/s [93], the fraction of the total carrier population within the WL becomes
f ∼ 0.02. Considering that the remaining (1 − f) carriers are within the InP, the ratio of the87
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〈τnr〉 = 0.117 ns.density in the InP to that in the WL is N0,InP /N0,WL ∼ d(1 − f)/Lf ∼ 0.1, meaning thateven for such small fraction f , the carrier density in the WL is one order of magnitude largerthan the density in the bulk. This justi�es our early assumption that the main contribution ofcarrier-induced e�ects comes from the WL. In addition, we point out that the small fraction ofthe carrier density trapped within the WL in the observation time scale could be explained as aresult of the rather small di�usion time of holes across the membrane, estimated above as∼ 20 ps.As pointed out in sec. 4.2.1, in the case of the �bered pump con�guration, the observedrelaxation time of an initial wavelength shift of ∆λ0 ∼ 1 nm is ∼ 170 ps, whereas that for thesame ∆λ0 in the surface con�guration is ∼ 90 ps. This could be explained under the hypothesisof a lower carrier density inside the WL in the �bered pump con�guration, which might be relatedto a di�erent pumped volume in this case with respect to free space pumping. Indeed, carriers aremostly injected close to the membrane surface in contact with the taper rather than throughoutthe whole membrane thickness as in the free space illumination. We can thus expect a smallerfraction of carriers being captured by the WL, and therefore a weaker bimolecular recombinatione�ect leading to a slower decay time. The fact that a smaller carrier density in the WL for the�ber-pumping con�guration gives the same ∆λ0 as in the surface pumping con�guration couldbe explained as an additional blue shift induced by the remaining (1-f) carriers in the InP.It is worth pointing out that radiative recombination governs carrier dynamics for thehighest pumping powers used in this work. In particular, they are responsible for the shortesttimes that have been observed, that is, on the order of 30 ps, corresponding to the largest carrierdensities. Also, since carrier saturation e�ects appear for P > 0.7 mW, it can be inferred thatfor the shortest observed time of 30 ps, a material limit is attained for ultrafast carrier-induced88



switching processes in this class of systems. Notice that the shorter relaxation times observedhere are of the same order of magnitude as those recently reported in resonantly pumped H0cavities where carrier di�usion plays a main role in carrier relaxation due to small optical volumeof the H0 cavity [125].4.3 ConclusionIn order to test the performance of our taper-cavity-system, we have �rst developed a method todirectly measure the thermal relaxation time of the nanocavity. This technique relies on re�ectiv-ity measurements of a CW probe beam coupled to the cavity through a tapered �ber, becomingsensitive to the thermally induced increase of the refractive index within the cavity. We appliedthis method to an InP-based nanocavity on a suspended membrane. Wavelength shifts up to 0.3nm for 165 µW pumping power @800 nm were observed. The obtained values for the character-istic thermal times are close to 1 µs, more than a factor 3 compared to a rough estimation of therelaxation time of the fundamental mode in a rectangular 2D membrane, showing the relevanceof the experimental measurements.In a second experiment, time resolved pump and probe measurements with femtosecondresolution have been performed in order to investigate the electronic characteristic time of thesystem. The signal was evanescently coupled through the taper �bered, and the pump was eithersent by the surface or through the tapered �ber. The optical pump provides ON/OFF switchingof the transmitted or re�ected signals with time features associated to the electronically inducedrefractive index change. In the surface pump con�guration switching ON and OFF times of 4and 30 ps, respectively, were measured. In the case of �ber-coupled pump pulses con�guration,an all-�bered stable operation was achieved at the expense of increased ON and OFF switchingtimes up to 20 ps and 170 ps, respectively. These values are still shorter by one order of mag-nitude than the previously reported ON/OFF switching times [120]. Through �tting the decaytime of the nonlinear e�ect by means of rate equations for the carrier density we have explainedthe origin of the shortest overall switching times (35 ps) as a result of radiative carrier recom-bination inside the wetting layer. Moreover, we have shown that the increase of the rise time inthe all-�bered con�guration is a consequence of pump-pulse dispersion in the �ber. This couldbe pre-compensated at the input of the tapered �ber in order to retrieve the characteristic timesmeasured in the surface pumping con�guration, that is ON times as short as 4 ps. In additionto the switching capabilities, this kind of photonic crystal cavities with embedded quantum dotscould be used as lasers sources with ultrafast tunability of the laser mode, taking bene�t fromthe large carrier-induced nonlinear e�ects in the wetting layer described in section 4.2.This electronic time together with the thermal relaxation time will be of major importancefor the nonlinear dynamical studies discussed in the next part. These times are the characteristiclifetimes of the nonlinar phenomena we will see in the next chapters. In the following studies therefractive index change, thermal and/or electronic, is no longer given by an incoherent pump;instead, it will be induced by the intracavity energy.
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Part IINonLinear dynamics in photoniccrystal cavities
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In the previous part we have described, characterized and optimized a mechanism to e�-ciently couple light into a photonic crystal nanocavity. Using this mechanism nonlinear e-�ects ofthermal and electronic origin were measured. These e�ects are given by refractive index changesshifting the resonance mode (to the red in the case of thermal e�ects and to the blue for electronice�ects) due to an incoherent pump. In this part we will study the nonlinear e�ects given by aresonant injection with the photonic mode. Therefore, we focus on nonlinear dynamical regimesleaded by self-induced e�ects.In the �rst chapter we study the nonlinear dynamical regimes ruled by a single materialvariable: thermal or electronic. In the �rst part of the chapter we explore the thermo-opticalbistability; this regime is achieved provided the thermal nonlinear e�ects overcome the electronicones. In the second part, we investigate the electronic bistability. In this case, thermal e�ectsare avoided and only electronic nonlinearities are involved.The nonlinear dynamical regime governed by two variables is studied in the second chap-ter. Both thermal and electronic e�ects are combined in order to obtain interesting phenomenasuch as self-sustained oscillations and excitability regime. Finally, the refractory time of the ex-citable cavity is measured. These studies represent the �rst reported demonstration of electronicexcitability in a photonic crystal nanocavity.
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Chapter 5Nonlinear dynamical regimes involvinga single dynamical variable: OpticalbistabilityIn this chapter we will consider a particular class of dynamical e�ect, associated to the existenceof an unique dynamical variable. Indeed, as long as the photon lifetime in the cavity is muchshorter compared to the time scale of the material variable (i.e. carrier density or temperature)the former can be adiabatically eliminated leading to 1D phase spaces. Specially, we will focuson optical bistability (OB). OB is a key phenomenon in the road of all optical signal processing,in particular for optical memories. Two ingredients are needed in order to obtain bistable oper-ation in an optical system: a resonance capable of localizing the light intensity in the spectraldomain, and a nonlinear e�ect that changes the spectral response as a function of the injectedintensity. Under certain conditions for the injection of a nearly resonant beam, two stable statesfor the transmission/re�ection through the device can coexist. In the �rst section of this chapterwe study the bistability given by thermal e�ects and in the second section by electronic e�ects,where thermallly-induced nonlinearities are avoided.We have introduced the OB in section 1.2, where the constitutive equations have beendetailed and the main behaviors have been discussed. We summarize here some key elements thatare essential to set up and understand the experimental demonstration. The bistable regime inan optical device corresponds to the system showing two stable states of transmission/re�ection,high and low, for a single input light intensity. In order to quantify this phenomenon, let usconsider the steady states of the system (see section 1.2):
Pout

P0
=

Pin/P0

1 + (Pout/P0 ± δ)2
(5.1)where Pout and Pin are the steady states of the transmitted and input power, respectively. P0is the "characteristic power of the cavity" and δ = τ(ω0 − ωin) is the detuning of the opticalinjection (ωin) with respect to the resonance (ω0). The bistable regime corresponds to the casewhere two critical points exist, which requires a detuning of |δ| > √

3. For negative nonlineari-ties, the positive sign in 5.1 holds and δ < −
√
3, whereas for positive nonlinearities the negativesign must be consider and δ > −

√
3. Under these conditions, a typical Pout(Pin) from eq. 5.1is presented in �g. 5.1. Therefore, in order to obtain the bistable operation the system shouldbe injected di�erently depending on the type of nonlinearity involved: with wavelengths on thered side of the resonance for thermal OB or on the blue side for electronic OB, �g. 5.2. We will95



consider both situations in the following sections.
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Figure 5.2: Scheme of the injection wavelengths needed to obtain the thermal (red arrow) orelectronic (blue arrow) bistability.The main change in these sections with respect to Part I is the near resonant pumping.The o� resonant or incoherent pumping implemented in Part I produced a rigid shift of the cavityresonance. In the case of a resonant pumping, there is an interplay between the nonlinear shiftand the enhancement of the intensity inside the cavity. The shift becomes stronger at the max-imum of the electromagnetic �eld enhancement, corresponding at the cavity central frequency,and it is smaller at the resonance wings. As a result, the incident �eld induces a bending of thecavity resonance.The thermal and electronic origin of the OB behavior will be identi�ed by the dynamicsof the switch between the upper and the lower states: slow with µs characteristic time for ther-mal OB and fast in the ps to ns scale for electronic OB.Experimentally, this kind of behavior can be shown through a simple set up. The systemis excited with �rstly increasing and then decreasing power and the re�ected/transmitted signalis collected. Under these conditions the system exhibits what we call the hysteresis cycle (black96



arrows in �g. 5.1), which clearly shows the range of powers where the system presents two stablestates for the same injected power.5.1 Thermo-optical bistabilityThermo-optical bistability was studied in the sample described in section 3.2, under continuouswave (CW) excitation. The coupling into the resonance and the extraction of the signal areachieved via a tapered �ber as described in section 3.2.2. The OB phenomenon [82, 112] canbe obtained through self-induced red shift of the resonance upon (large enough) CW injectionfrom a single beam. The thermally-induced refractive index increase takes place for a nearlyoptically resonant CW injection, in the absence of any incoherent pump. In such a case, bistableoperation can be expected provided that: i) the injection wavelength is red shifted with respectto the resonance; ii) the detuning between the injection beam and the cold resonance is larger(in modulus) than ∼
√
3γ/2, where γ is the FWHM of the resonance; iii) the injection powerexceeds a given threshold. As long as the nonlinearity comes from a thermo-optical e�ect, theswitching times should be related to the characteristic thermal relaxation time obtained before.5.1.1 Set up description and resultsIn order to demonstrate the thermo-optical bistability through the hysteresis cycle, the outputpower as a function of input power for di�erent detunings is investigated. Importantly, the powersweep in such measurements must be quasi-stationary, i.e. the duration of the power ramp mustbe much longer than the thermal relaxation time (> 1 µs according to section 4.1). Therefore,the CW input beam generated by a tunable laser ('Net Test', Tunics Plus S, 1430 nm-1530 nm)is modulated at 10 kHz, �g. 5.3. The modulation is obtained by feeding the laser through alow frequency modulation interface with a 10 kHz, 0-3.8 V, triangular signal, while keeping itscurrent at 130 mA. Under this con�guration the maximum power sent to the tapered �ber is4.7 mW. In such conditions, the input modulation and the optical transmitted signal throughthe �ber are simultaneously measured as a function of time, the latter using a 3.5 GHz DC-coupled photoreceiver (DC-PD,'New Focus', model 1592). Both signals are registered in a 400MHz-bandwidth, 5 Gs/s, oscilloscope ('Lecroy', WaveRunner 44Xi).

Figure 5.3: Scheme of the experimental set up used to study the thermo-optical bistability.In order to determine the wavelength range for bistability operation we �rst characterizethe cavity resonance using the experimental con�guration described in section 3.2.2 where theuse of 100 fs-duration OPO pulses allow to spectrally probe the cavity resonance through the97



tapered �ber. The resonance spectrum is shown in �g. 5.4.a where the arrows indicate thespectral range explored in the thermo-optical bistability experiments.Thermo-optical bistability was observed for injected powers greater than ∼ 1 mW. Theinput and transmitted signals for a detuning of ∆λ = λ0 − λinj = −0.56 nm, where λ0 is thelinear cavity resonance and λinj the injected wavelength, are shown in �g. 5.4.b. The transmit-ted power in �g. 5.4.b reveals the thermo-optical bistable behavior. This is further highlightedin �g.5.4.c where the transmitted power as a function of the input power is plotted, showing thehysteresis cycle.
1489 1490 1491 1492 1493 1494 1495

0

20

40

60

Wavelength (nm)

O
ut

pu
t P

ow
er

 (
ar

b 
un

its
)

λ
A

λ
K

0 20 40 60 80 100
0

1

2

3

4

5

0,0

0,5

1,0

1,5

2,0

2,5

O
ut

pu
t P

ow
er

 (a
rb

 u
ni

ts
)

In
pu

t P
ow

er
 (m

W
)

Time (µs)

1,8µs

4µs

 

 

(a) (b)
0 1 2 3 4

0

0.5

1

1.5

2

Input Power (mW)

O
ut

pu
t P

ow
er

 (
ar

b 
un

its
)

(c)Figure 5.4: (a) Re�ectivity spectrum of the linear cavity resonance, and the wavelength range forthe CW injection. (b) Time traces of input (blue line) and transmitted output (black line) powersfor a detuning of ∆λ0 = −0.56 nm; durations of the switch processes are 1.8 µs and 4 µs for theon/o� switching, respectively. (c) Hysteresis cycles showing the bistable behavior (∆λ0 = −0.56nm). Hysteresis loops are observed for |∆λ| > 0.35 nm. Fig. 5.5 shows the transmitted versusthe input powers for di�erent detunings. The loop size increases for larger detuning-values, upto |∆λ| ∼ 0.72 nm where the maximum injection power remains below the bistability threshold.Note that the hysteresis cycle of �g. 5.4.c has the opposite direction than the cycle in �g. 5.1due to the fact that the resonance in transmission is downwards (spectral dip). As discussed insection 1.2 (eq. 1.39), this sign of the nonlinearity yields to a bending of the resonance, towardshigher wavelengths.Switching on and o� times have been measured as the time the system takes to shiftfrom the higher to the lower value of the transmitted signal (heating up) and vice versa (cooling98



down), respectively. The switch on time is 1.8 µs, whether the switch o� time is 4 µs. Bothare of the order of the 1 µs thermal characteristic time obtained with the pump and probe setup (see section 4.1), as expected. Though, the di�erence between switch on and o� times is lessintuitive. We discuss the origin of such di�erence in the following paragraphs.

Figure 5.5: Hysteresis cycles showing the bistable behavior. Detuning values with respect to thecavity resonance are, from λA to λK : -0.11, -0.27, - 0.36, -0.46, -0.52, -0.56, -0.6, -0.64, -0.66,-0.68 and -0.72 nm. The input power is measured at the tapered �ber input.5.1.2 Theoretical modelThe di�erence between switch-on and switch-o� times can be explained from simple consider-ations of dynamic thermo-optical nonlinearities. For this, we will apply the set of equationsdeduced in chapter 1.4 to the experimental conditions.The dynamical equation for the intracavity energy (a) is given by eq. 1.41. However,according to the experiments, the contribution of electronic nonlinearities con be neglected.Then, eq. 1.41 yields
da

dt
= [i(ω0 +∆ωth)−

1

τ
]a+ df (5.2)Replacing a → a′(t)eiωint, t = t′/τ and f → f ′(t)eiωint eq. 5.3 yields

da

dt
= [iδ(t) − 1]a+ τdf (5.3)99



where δ(t) = τ(ω0 +∆ωth − ωin) = δ0 + τ∆ωth and d = j exp(jφ/2)/
√
τ c. Since the dynamicsof a(t) is much faster than thermal processes, its dynamical equation can be adiabatically elimi-nated. Moreover, we can relate the intracavity energy to the re�ected power as |a(t)|2 = Pr(t)τc.Then, the stationary states of eq. 5.3 are given by

Pr(t) =
η2Pin

1 + δ(t)2
(5.4)which simply describes the Lorentzian shape of the resonance.Considering the di�erential equation for the temperature dynamics (eq. 1.63) and therelation between ∆ωth and the temperature change (eq. 1.64), we obtain the equation for thedynamics of the resonance shift:

dδ

dt
=

−1

τth
(δ(t) − δ0 +

P (t)

P0
) (5.5)with τth the characteristic relaxation time obtained in section 4.1 and P0 = U0,th/τc the outcou-pled characteristic thermal power, see section 1.4, given by

P0 ≈
ng0ρ CpVcav

2Qloaded(dn/dt)τcΓα0τdisvg0
(5.6)with τdis,cav the time scale for heat dissipation, which is approximated by τdis,cav ∼ 186 ns [97].

dn/dT can be taken from the tabulated values of the refractive index change per unit tempera-ture as dn/dT = nT (nT /n ≈ 0.63 10−4K−1 @300K for InP [96]).The steady-states solutions of eqs. 5.4 and 5.5 can be graphically found by intersectingsolutions of dδ/dt = 0 from eq. 5.4 and eq. 5.5, �g. 5.6. Two stable states δ+st and δ−st coexistprovided that δ0 >
√
3, and Pin > Pthr, where Pthr is the bistability threshold. The thresholdin re�ection can be approximated by Pr,thr ∼ P0|δ0|, �g. 5.6, which yields to a threshold for theinjected power in the vicinity of the cavity of P (theo)

in,thr ∼ P0|δ0|/η2 according to CMT. P0 = 9.8
µW is obtained as in section 1.4 (see caption in �g. 5.6) and δ0 is obtained from the hysteresiscycle in �g. 5.5, considering λC , δ0 = 2.2 (using γ = 0.33 from section 4.1). This leads to
P

(theo)
in,thr = 210 µW , which is in good agreement with the value found experimentally for thisdetuning P

(exp)
in,thr = 260 µW (using that Pin = 0.263Pinput, see caption in �g. 5.6).Steady state relaxation dynamics can be obtained through the linearization of eq. 5.5in the vicinity of the �xed points (see eq. 1.5 in the introduction), i.e. by setting δ ∼= δst +

Aexp(−t/τ±) in eq. 5.5. The eigenvalues τ± can be readily obtained:
τ−1
± = τ−1

th [1 +
1

P0

dP

dδ
|δ±st ] (5.7)Since P(t) has slopes with opposite signs at the two stable steady states (see �g. 5.6) cor-responding to the switch on/o� processes, namely positive (negative) slope for δ+st (δ−st), therefore

τ+ < τ−, consistent with the experimental observation of switch-on times shorter than switch-o�times. With the parameters of �g. 5.6 we obtain τ−/τ+ ≈ 8.5. Experimentally, the ratio ofswitch-on to switch-o� times was ∼ 2.2, which contains the information of the full i.e. nonlinearrelaxation dynamics, whereas the calculated τ−/τ+ only accounts for the linear relaxation close100
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st is the stable state for the switchon (o�) process. The direction of the dynamical �ow is indicated by the arrows. The oppositeslopes of dP/dδ at the �xed points mathematically explain the di�erence in relaxation times(see text). The parameters are: P0 = 9.8 µW , calculated with Vc = 0.08 µm3, τth = 186 ns,

Γ = 0.015, Qloaded = 4520, ρCp = 1.5 Jcm−3K−1, δ0 = 3.4 and α=33 cm−1 (�tted parameter);and Pin = 0.263Pinput, with Pinput the injected power into the �ber.to the steady states. We point out that the predicted di�erence in switching times given byeq. 5.7 is generic in bistable systems and can be expected to hold even for fast nonlinearities.Moreover, even in the absence of bistability, a high power input may a�ect the thermal dynamicsin the way described by eq. 5.7 leading to a dependence of the thermal relaxation times to theequilibrium state δst. Unlike linear thermal dissipation regimes, studied in section 4.1, in thenonlinear regime heating and cooling processes may have di�erent relaxation times provided theinjected power is close to the characteristic power P0,th.5.2 Electronic bistabilityInteresting nonlinear behaviors have been obtained for the sample depicted in �g. 3.2, suchas, thermo-optical bistability and ultrafast optical switches provided by electronically-inducednonlinear e�ects. However, nonlinear dynamical mechanisms from an electronic origin, such aselectronic bistability or excitability, were not observed in this sample. The absence of electron-ically driven nonlinear dynamical regimes can be attributed to a low absorption of the sample(the maximum absorption of the QDs is ∼ 10 cm−1) together with the low con�nement factorin QDs. In Yacomotti et al. [115] a nonlinear dynamical regime was observed in a sample withquantum wells (QWs) as active material. We can estimate the absorption (α) in their condition101



through the quality factors with (Qlineal) and without (Qrad) absorption, Qlineal = 1763 and
Qrad = 3775, respectively. From section 1.4, 1/Qlineal = 1/Qrad + 1/Qa, with Qa = ωτa/2, theabsorption quality factor, and τa0 = 2/vg0α0Γ. Considering Γ = 0.2, the absorption in [115]allowing to achieve low-threshold electronic bistability was α ∼ 200 cm−1. Therefore, in orderto obtain nonlinear dynamical regimes, the absorption needs to be increased at least one orderof magnitude. In order to ful�ll this requirement, samples with QW as active medium werefabricated taking bene�t of the QW absorption, ranging from a few hundred of cm−1 to 5000
cm−1, and the larger Γ factors.The following part of this section �rst describes the main characteristics of such 2D PhCusing QW as active medium. Then, we present the experimental demonstration of all-opticalelectronic bistability. The origin of this bistability is shown to be the fast electronic nonlinearindex change.5.2.1 Quantum Well samplesThe geometrical parameters of the sample remain almost unchanged respect to the ones de-scribed in chapter 3; the main di�erence resides in the use of QWs as active material. The cavityis a L3-type cavity, where the two holes closing the cavity are shifted away by 0.15a. The PhCperiod and hole radius are a=450 nm and r=120 nm, respectively. In this case, the suspendedInP membrane (265 nm-thick, λ/2n), grown by metalorganic vapour phase epitaxy (MOCVD),incorporates four central layers of InGaAs/InGaAsP QWs, �g. 5.7.a, each layer with a thicknessof ∼ 13.5 nm and ∼ 16 nm for the well and the barrier, respectively. The QWs luminescenceat 300 K, measured over an unetched region, close to the PhC, is centered at ∼ 1.51 µm (�g.5.7.b) with a spectral broadening of 75 nm. The membrane thickness (λ/2n) is such that the�eld maximum (@1550 nm) is located at the center of the membrane, matching the location ofthe active material. A Si02 sacri�cial layer underneath is bonded on a Si substrate through aBCB layer [126]. A 1 µm air spacer, obtained after etching the sacri�cial layer, lies between theInP membrane and the substrate.

Figure 5.7: (a) Qw sample scheme. (b) QWs photoluminescence spectrum.Sample fabricationThis section contains a summary of the fabrication steps. The samples were fabricated in theLPN clean room by Yacine Halioua, Frabice Raineri, Isabel Sagnes and Remy Braive. More102



details about the fabrication process are given in [126].The �rst step is the metalorganic vapour phase epitaxy (MOCVD) of the InP structure.This starts by the growth of an InGaAs etch stop over an InP substrate, followed by an InP layer,which will form the suspended membrane. In its center, four InGaAsP/InGaAs QWs are grown.The membrane total thickness is ∼ 265 nm and it corresponds to λ/2neff with neff the e�ectiverefractive index calculated as the weighted average of the refractive index of air and material.Finally, a 1 µm-thick sacri�cial layer of Si02 is deposited over the InP active membrane. Thisstructure is positioned (upside down) over a Si substrate coated with a benzocyclobutene (BCB)layer used for the bonding, see �g. 5.8. In order to polymerize the BCB and �nalize the bonding,a hard bake is performed in a nitrogen atmosphere for 2h at 300◦.
Figure 5.8: (a) Sketch of the structure before the etching processes.Once hard baked, the InP substrate is removed by HCl wet etch. The InGaAs etch stopis removed using H2SO4 : H2O2 : H2O (3:1:1) leaving on top the InP layer with the QWs. Theprocedure to etch the holes is the one described in section 3.1.2. Once the InP active membraneis etched, the SiO2 layer is removed under the PhC by HF wet etching in order to obtain thesuspended membrane. Residual HF resting on the sample is removed by a supercritical dryingtechnique.Photoluminescence characterizationWe �rst characterize photoluminiscence spectrum of the sample with QWs for di�erent excitationintensities. The experimental set up, shown in �g. 5.9, is similar to the one described in sec.3.1.3. The sample is pumped with a @810 nm, 80 MHz-repetition rate, 100 fs-pulse durationTi:Sa source. The emission is collected with a 50x microscope objective ('Mitutoyo', M PlanApo NIR, X50, f = 170 mm, NA = 0.42) and sent to a spectrometer, see sec. 3.1.3.A typical spectrum of the L3-type cavity described above is shown in �g. 5.10.a, for apump power of 15 µW . A mode centered at 1565 nm is observed. The quality factor obtainedfrom the FWHM of the cavity resonance gives Q ∼ 1700. As it has been discussed in section3.1.3, the measured of the intrinsic quality factor has an inherent limitation due to the materialabsorption/gain, which leads to pump-dependent Q factors. In addition, both the limited spec-tral resolution and chirp e�ects from short-pulse photoluminescence results in broadening of thecavity peak. Therefore, the Q measurement from the FWHM for lower powers should be con-sider as a lower bound of the intrinsic quality factor. Indeed, we will see in the next paragraphsthat injecting the system resonantly a quality factor of Qloaded ∼ 3752 is found. Measurementsof the collected intensity (�) and the resonance central wavelength ( •) as a function of theinjected power are shown in �g 5.10.b. The overall behavior is similar to the one found for theQDs sample, sec. 3.1.3: an S-shape in �g. 5.10.b (black dots) is not observed and the FWHM103



Figure 5.9: (a) Sketch of the set up used to characterize the QWs sample.shows only an increase with the injected power. Therefore, there is no clear laser threshold-likebehavior. As in the case of QD (sec. 3.1.3), three possible interpretations could be proposed: i)the system behaves as a high β factor (β ∼ 1) laser [111]; ii) the threshold is at a power lowerthan those explored and we do not have enough sensitivity to measure it; iii) the sample does notshow any laser e�ect. The usual method to identify laser emission is performing a second ordercorrelation function, which is out of the scope of this thesis. However, it is important to pointout that measurements carried out over a L3-type cavity in a QW PhC of same characteristicsbut a resonance centered at 1550 nm showed a possible laser threshold at 12 µW , �g. 5.10.c. Asthis resonance wavelength is closer to the QW maximum emission than the sample in �g. 5.10.a,we conclude that the lack of lasing e�ect comes from the strong detuning of the cavity modewith respect to the gain maximum. However, it is important to point out that laser emission isnot a necessary condition for the existence of nonlinear dynamical regimes such as the bistabilityor the excitability, which are the e�ects sought in this work.5.2.2 Bistability measurementsWe have demonstrated in the previous section a thermo-optical bistability with switching timesin the µs scale. These time scales are quite slow for fast information processing applications. Incontrast, electronic nonlinearities allow faster switching, limited by the carrier lifetime which isin the ps to ns scale. Thus, an important task is to isolate electronically induced OB from thethermal e�ects.Preliminary experiments to obtain the electronic bistable regimeIn order to determine the wavelength range where the bistability can be achieved, let us beginwith a detailed characterization of the linear resonance, meaning the resonance in the absenceof gain and avoiding spectral broadening due to chirp e�ects. As previously, this is performedby coupling into the cavity, via the tapered �ber, a 30nm-broadband signal with a central wave-length of 1570 nm (as described in section 3.2.2). The re�ected signal is collected and sent to anoptical spectrum analyser (OSA). Fig 5.11.a shows the measured cavity resonance. The modeis centered at λ =1571.4 nm and its FWHM of 0.42 nm corresponds to a loaded quality factor104
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(c)Figure 5.10: (a) Photoluminescence spectrum of a L3-type cavity (�g. 5.9.a) for a pump powerof 15 µW and 0.5 s of integration time. The mode is centered at λ =1565 nm and the resonancewidth is 1.7 nm (for this injected power). The PhC period and radius are: a=450 nm and r=120nm, respectively. (b) Output intensity integral as a function of the pump power (�), both axesare in logarithmic scale. Resonance width as a function of the injected power ( •). (c) Idem as(b) for a mode centered at λ =1565 nm. The PhC period is: a=445 nm.of Qloaded = 3752. Note that the mode is red-shifted of about 6.4 nm with respect to �g. 5.10,which is due to the electronic nonlinear e�ects induced by the pump in the latter. The arrows in�g. 5.11.a show the spectral range of wavelength detunings used in the following experiment. Asthe injected power is increased, the resonance blue shifts and develops an asymmetric pro�le. Ablue shift of 1.3 nm is obtained for an injected power of 214 µW , black line in �g. 5.11.b. This is

∼ 3 times the FWHM of the linear resonance (�g. 5.11.a). The asymmetry of the resonance is a�rst hint of the electronic character of the response. After eq. 5.1 we can predict that a bistableoperation should occur for optical injection blue-shifted by more than √
3γ/2, with γ the linearresonance width (FWHM).In order to further study the resonance asymmetry with the injected power, additionalspectral measurements were carried out in the CW regime1. They allow discriminating theorigin of the nonlinearity, i.e. thermal or electronic. Indeed, since a thermal e�ect increasesthe refractive index, a thermal bistability produces a bending of the resonance to the "red".1These measurements were done in collaboration with Patricio Grinberg, Samir Haddadi and Kamel Benche-ickh. 105
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Figure 5.12: Set up used to study the resonance bend with the injected power. Modulation periodand pulse duration are: T=21 µs and t=100 ns, respectively.Fig. 5.13 shows the linear resonance (upper trace) obtained as in �g. 5.11 and the outputsignal as a function of the injected wavelength obtained from the modulated CW signal with apeak power of 0.5 mW. Note the strong asymmetry of the resonance, in particular the abruptswitch at the blue side that clearly demonstrates that the resonance bends to the blue. This106



further con�rms the electronic origin of the nonlinear behavior.
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1/Qloaded = 1/Qrad + 1/Qa + 1/Qc = 1/(1 − η)Qrad + 1/Qa. From this, we obtain Qa = 9760,which can be used to calculate to τa giving τa = 0.15 ps. The latter can be related to theabsorption according to eq. 1.44, leading to α = 66 cm−1. This value is lower than the calculatedfor Yacomotti et al. [115], most probably because in our case the cavity resonance is further awayfrom the maximum of absorption of the QWs than in [115]. Let us stress that in the case of�g. 5.11.a the cavity quality factor is not limited by the presence of the �ber (due to the low107
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Figure 5.15: Scheme of the experimental set up used to study electronic bistability. Modulationperiod and pulse duration are: T=25 µs and t=250 ns, respectively.in re�ection. It is important to point out that thermal e�ects, if not completely avoided, canreverse the cycling sense of the hysteresis loop.
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(a) (b)Figure 5.16: (a) Time traces of input (black line) and re�ected (blue, red and green line) signalsfor detunings of ∆λ0 =1.5, 1.7 and 1.9 nm, respectively. (b) Hysteresis cycles showing bistablebehavior (∆λ0 =1.7 nm). The arrows show the sense of the cycle.Fig. 5.17 shows the re�ected signal as a function of the input power for di�erent detun-ings. Hysteresis loops are observed for detuning values between 1.9 and 0.4 nm. The loop sizeincreases for larger ∆λ, up to ∆λ ∼1.9 nm; over this value no bistability is observed. The switch-ing time is measured as the time widths between the minimum and the maximum of the switchprocesses and gives ∼6 ns for both switch on and o� times. This value is 3 orders of magnitudefaster than the switch in the thermo-optical bistability, which is an additional evidence of theelectronic origin of the OB. Indeed, the switching time is limited here by the carrier recombina-tion time. In a PhC this time is faster than the one associated to the bulk recombination time[127, 128], which is ∼ 2 ns [117]. This acceleration of the recombination process is attributed109



to the increased surface recombination states in photonic crystal lattices. The etched sidewallsincrease the overall surface area of the structure and decrease the carrier lifetime [129]. Thus,the recombination time in the structure is < 2 ns. In section 4.2, nonradiative recombinationstimes in the wetting layer of ∼ 120 ps were found; even though it is not the same material andgeometry it gives an order of magnitude for the recombination time. Besides, this time can alsobe estimated from [115] as ∼ 200 ps, which corresponds to the same material but a di�erentlattice and mode distribution.
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into the cavity, as the power in the vicinity (Pin) multiplied by the coupling e�ciency (η).Then, the intrinsic threshold power Pintrinsic,thr is given by Pintrinsic,thr = ηPin,thr ∼ 12µW .This value is what we will consider as the bistability threshold. This value can be comparedwith the theoretical one (P (theo)
intrinsic,thr) obtained from coupled mode theory and eq. 1.38 as

P
(theo)
intrinsic,thr ∼ U0,e|δ0|/τ , where U0,e is the characteristic intracavity energy, described in sec-tion 1.4, and δ0 = 0.4 nm/(0.42 nm/2) = 1.9, according to the experimental results. Thus,

P
(theo)
intrinsic,thr ∼ 8 µW in good agreement with the experimental results.The intrinsic bistability threshold found (∼ 12µW ), in good agreement with the valuefound by Kim et al. [87], is at least one order of magnitude smaller than the threshold of opticalbistability in monolithic vertical cavities [24] and ring resonator devices [94]. This is due to astrong reduction of the mode volume in a PhC cavity. Indeed, according to [28, 21] the thresholdscales as V/Q2, with V the mode volume of the structure and Q its quality factor. Similarthresholds were obtained in Si PhC cavities by Notomi et al.[82]. In this case the mode volumewas of the same order of magnitude while the quality factor was Q ∼ 33400. The fact thatour threshold compares well with the one found in [82] for Q factors ten times higher, is clearlyrelated to the higher nonlinearity associated to the single photon absorption in contrast to thetwo-photon absorption in Si, as discussed in section 1.4. In other words, even when the qualityfactor is degraded by absorption, low threshold can still be achieved taking advantage of thelarge nonlinear coe�cients in III-V semiconductors.5.3 ConclusionOptical bistability of two di�erent physical origins were studied. In both cases the dynamics ofthe system is governed by a single dynamical variable. The dynamical variables studied herewere: a slow variable given by the temperature change inside the cavity and a fast one given bycarrier recombination in QWs.Thermal dynamics has been investigated within a thermo-optical bistable regime. Abistable behavior has been observed for injected power higher than ∼1 mW. The theoretical andexperimental bistability threshold estimated and measured, respectively, at di�erent points of thesystem are shown in table 5.1, i.e. input power (Pinput); power in the vicinity of the cavity (Pin);and intrinsic threshold (Pintrinsic, the power that is coupled into the cavity). Switch-on/o� timesof 2 µs and 4 µs respectively (from the hot to the cold states) were measured. As expected, bothare related to the 1 µs characteristic time measured in the linear regime. By means of a simplenonlinear dynamical representation we explained the origin of the di�erence in time between theswitch-on and o� processes. This di�erence can be mathematically explained by the oppositeslopes of dP/dδ at the �xed points.Fast optical bistability was observed in samples with QWs as active material. Low powerthreshold, Pin ∼ 12 µW , and fast switching times, t ∼ 6 ns, were found. Since this time is threeorders of magnitudes lower than the characteristic thermal time and the nonlinear refractive indexis negative, we conclude that the nonlinear e�ects leading to bistable behavior is electronic.This was demonstrated through spectral measurements, where a bending of the resonance tothe blue-side was observed. Looking at the resonance contrast in transmission we obtained acoupling e�ciency of η ∼ 7%. Table 5.1 summarizes the theoretical/experimental thresholdpower estimated/measured at di�erent points of the system. Note the similarities between thetheoretical and experimental threshold. It is worth mentioning that, whereas for the theoretical111



Pinput Pin PintrinsicThermal Theoretical |δ0|U0/(τη)=210 µW |δ0|U0/τ=67 µWExperimental 1 mW 260 µW 83 µWElectronic Theoretical |δ0|U0/(τη)=114 µW |δ0|U0/τ=8 µWExperimental 300 µW 170 µW 12 µWTable 5.1: Table summarizing the theoretical and experimental bistability threshold (of thermaland electronic origin) measured or estimated at di�erent points in the system: power measuredat the �ber input(Pinput), power in the vicinity of the cavity (Pin) and power that is coupled intothe cavity (Pintrinsic). |δ0| for thermal and electronic bistability are: 2.2 and 1.9, respectively.thresholds of thermal origin one of the parameters arises from a �t (α) in the case of electronice�ects all the parameters were obtained from the experimental data. The bistability thresholdfound, Pintrinsic,thr = 12 µW , which is of the same order of magnitude that the threshold reportedin [87], is at least one order of magnitude smaller than the threshold of optical bistability inmonolithic vertical cavities[24] and ring resonator devices [94] mainly due to the small V/Q2ratios in PhCs.
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Chapter 6Nonlinear dynamical regimes involvingboth thermal and electronic dynamicalvariablesIn the previous chapter we have investigated optical bistability originated either by thermal orelectronic nonlinearities. A particular e�ort was devoted to isolate eletronic nonlinear responsefrom the ubiquitous thermal e�ects. In this chapter, we investigate nonlinear dynamical regimesgoverned by the combination of thermal and electronic nonlinear e�ects. We will show thatthis combination can produce either self sustained oscillations or excitable responses, dependingon the excitation conditions. Both regimes can be understood as the result of the interplay orcompetition between the e�ects of the two nonlinear dynamical variables. These behaviors areof interest in the context of optical information processing and all-optical devices.6.1 Self-sustained oscillationsSelf-sustained oscillations studied here are the consequence of the competition of two nonlinearresponses of opposite sign and distinct time scales. In our case this competition is given by thepositive and slow thermal nonlinearity and the negative and fast electronic nonlinearity.Let us �rst analyse the origin of the self sustained oscillations from the OB cycles demon-strated in the previous chapter. If the system is injected with powers above the bistability thresh-old then a possible state of the system is in the upper branch of the hysteresis cycle. In thisstate, heating is enhanced, shifting the hysteresis cycle to higher injection powers. Therefore, ajump to the low re�ectivity state is likely to occur, with a subsequent cooling. Hence, a jumpback to the high re�ectivity state takes place, giving rise to a periodic signal where the period isleaded by thermal e�ects. These self-pulsing oscillations were theoretically studied in detail byYacomotti et al. [89] in the framework of the nonlinear dynamics of the �eld inside a resonatorcoupled to both electronic and thermal variables. The model proposed in [89] contains the slowlyvarying amplitude of the electromagnetic �eld (E) and carrier density (N). An example of theself-sustained oscillations is presented in �g 6.1.a. The oscillating regime can be seen in the phaseportrait as an unstable �xed point solution and a stable limit cycle, �g. 6.1.b. Note the di�erenttimes scales: the period, governed by the thermal time scale, and the rising and falling edgesgoverned by the electronic time scale. 113



(a) (b)Figure 6.1: Solutions to the model proposed in [89]. (a) Time trace and (b) phase portrait forthe re�ected signal. δ denotes the detuning. x-axis unit in the time traces plot is τth = 0.84 µs.6.1.1 Self-sustained oscillations demonstrationIn the previous chapter, thermal e�ects were avoided by the introduction of a slow modulationto the CW injection signal. This modulation prevents any accumulation of the excitation at thescale of thermal dynamics. In order to investigate the interplay of electronic and thermal dynam-ics, the modulation is now switched o� in the set-up sketched in �g. 5.15, section 5.2. Injectingthe cavity via the tapered �ber with a power above the threshold of the OB, the self-sustainedoscillations presented in �g. 6.2 are observed, where the re�ected signal as a function of time isplotted for di�erent detunings. A shrinking of the pulse as the detuning increased is observed.The pulse duration is related to the initial position on the upper branch of the hysteresis cycleand its distance to the bistability threshold. As this position changes with the detuning, thepulse duration also changes.Fig. 6.3 shows a zoom of a single pulse of λB in �g. 6.2 where the rise time and thepulse duration are depicted. Note that the pulse duration is in the time scale of the thermalprocesses (see section 4.1) while the rise time is of the order of the switching times found forthe electronic bistability (see sec. 5.2.2). These times con�rm the fact that in the self-sustainedoscillations regime two dynamical variables are involved: thermal and electronic nonlinear e�ects.Interesting enough, the presence of self-pulsing dynamics as the one observed here allowsto predict the existence of excitability. Indeed, as far as the system is injected below the oscil-latory threshold, pulses are no longer self-sustained. Instead, they can be triggered by adding asmall external perturbation, as we will see in the next paragraphs.6.2 Excitable regimeExcitability is a nonlinear dynamical mechanism underlying pulse-like responses to small per-turbations in systems possessing one stable state. An excitable system reacts to an externalperturbation in the form of all-or-none pulse responses, depending on whether the perturbationis above or below a certain threshold. In 2D PhC the excitable response can be considered as anaction potential neuron-like ultrafast response. Excitable systems can switch from self-sustainedoscillations to an excitable behavior as one control parameter is varied. In our case this controlparameter is the injected power. In this section we present an experimental demonstration ofexcitable response in a 2D PhC nanocavity. 114
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Figure 6.2: Self-sustained oscillations. Re�ected signals as a function of time for di�erent de-tunings, from λA to λH : 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2 and 1.1 nm. The input power, measuredat the tapered �ber input, is 3.2 mW.
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Figure 6.3: Pulse isolated from a train of self-sustained oscillations for a detuning of 1.7 nm and3.2 mW of injected power.6.2.1 General remarksThe type II excitability can be explained, as in the case of self-sustained oscillations, by consid-ering slow thermal e�ects and fast electronic ones. Given the system in a stationary state, if aperturbation kicks it from the low to the high re�ectivity branch of the hysteresis cycle, thenheating is enhanced, shifting the hysteresis cycle to higher injection powers. Therefore, a jumpback to the high re�ectivity state is possible, with a subsequent cooling, giving rise to a closeddynamical cycle at the origin of a upwards pulse.This dynamics was modeled in [89], for a Bloch-mode PhC (for which the response in115



transmission and re�ection are inverted with respect to our con�guration). Fig. 6.4 shows theresults in the phase portrait (�g. 6.4.a) and time traces (�g. 6.4.b). The excitability can bedistinguished in the phase portrait as a stable �xed point and a trajectory that starts in a smallneighborhood of the equilibrium state, leaves this region, and then returns to the quiescent state,�g. 6.4.a. Fig. 6.4.b shows the time traces for two di�erent detunings showing the dependenceof the pulse duration with the detuning.
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(a) (b)Figure 6.4: Solution to the model proposed in [89]. (a) Phase portraits and (b) time traces of there�ected power. δ denotes the detuning. x-axis unit in the time traces plot is τth = 0.84 µs.6.2.2 Set up descriptionThe experimental set up implemented to study the excitable behavior is shown in �g. 6.5. Thesystem is injected through the �ber with a CW signal as previously. The injected power iskept below the threshold of self-sustained oscillations and an incoherent perturbation is sent bythe surface. This perturbation induces the excitable response by kicking the system from thestable state. The perturbation beam is generated at 808 nm by a CW diode laser ('Thorlabs',L808P200). This is focused down via a 50x microscope objective to a diameter of ∼ 4 µm(@1/e2 of the intensity) illuminating the structure normally to the 2D PhC periodicity. Theperturbation signal is modulated by means of a free-space AOM ('AA optoelectronic', MT350).The modulation is obtained by feeding the AOM with triangular pulses of 7.7 MHz, 40 KHzrepetition rate, 0-1 V signal. This modulation is set in such a way that perturbation durationsare shorter than the self-sustained oscillation period. The peak power attaining the sample isvaried from 0 to 400 µW by changing the diode current.6.2.3 Excitable responseFor testing the excitable regime, the system is prepared with a detuning of ∆λ = 1.5 nm. Forthis detuning the self-sustained oscillations threshold is 2.9 mW. Therefore, the signal power isset to 2.6 mW, at which the stable state corresponds to a low re�ected power. We perturb thisstate by injecting the incoherent pump pulse by the surface. Fig. 6.6 shows the re�ected signalas a function of time (lower trace). For perturbation powers lower than 1 µW, no output pulseis observed (black line). As the perturbation power is increased up to 20 µW a 2-µs-durationre�ected pulse is observed (red line). The pulse characteristics remain essentially invariant for afurther increase of the perturbation (�g. 6.6). The existence of a threshold and the invarianceof the output pulse for di�erent injected powers are strong evidences of the excitable nature ofthe re�ected signal. This constitutes the �rst ever reported demonstration of excitable pulses in116



Figure 6.5: Sketch of the set up used to study the excitable regime. Period and duration of theperturbation pulses are: T=25 µs and t=130 ns, respectively.an optical nanocavity.As discussed in chapter 1 two main families of excitable regime are identi�ed. In classII excitability the response is driven by the coexistence of a fast and slow times scales. From�g. 6.6, the pulse duration is ∼ 2 µs and the rise time of the pulse is ∼ 2 ns. Moreover, inthe transition between excitability and self-sustained oscillations the pulses have a �nite period,showing that the oscillations arise from a Hopf bifurcation as in Type II excitability. Instead, inType I excitability, the oscillations arise from a saddle node bifurcation, thus, the pulses do notshow a periodicity in the transition and they are sensitive to noise. Then, the optical responseshows a slow and a fast dynamics which builds con�dence on class II excitability.
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Figure 6.6: Excitable responses (bottom traces) to 130ns-width, 40-KHz-repetition rate pulseperturbations (top trace) for di�erent perturbation powers: 1 µW (black line), 20 µW (red line),35 µW (blue line) and 46 µW (green line). The injected signal power is set at 2.6 mW and thedetuning is ∆λ = 1.5 nm.Fig. 6.7 shows the excitable response for di�erent detunings. In all the cases the signal in-117



tensity is kept below the self-sustained oscillations threshold by a factor 1.8 and the perturbationpower is set above the largest excitability threshold, at 80 µW . We observe, as it was discussedfor the self-sustained oscillations regime, a shrinking of the excitable pulse with the detuning.Besides, we can distinguish two behaviors: a fast and a slow, quasi-stationary, response. Thefast and well contrasted response occurs for both high detunings and injected powers (�g 6.7,
λA, λB and λC). An ultrafast pulse-like response can be interesting for applications in optoelec-tronic devices, such as optical switching, pulse reshaping [32] and in the context of excitable logicgates [130]. Slow, quasi-CW bistability but less contrasted pulses occur for low both detuningsand injected signals (�g 6.7, λI). This quasi-steady-state bistability can be interesting for theapplications of this system to long optical memories or sensors.
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Figure 6.7: Excitable responses (bottom traces) for di�erent detunings. The injected power isset a factor 1.8 below the self-sustained oscillations threshold. The detunings and the injectedpowers, from λA to λI , are: 1.8 nm and 2.9 mW , 1.7 and 2.5 mW, 1.6 and 2.2 mW, 1.5 and1.8 mW, 1.4 and 1.6 mW, 1.3 and 1.3 mW, 1.2 and 1.2 mW, 1.1 and 0.9 mW, and 1 nm and0.8 mW, respectively. The top trace corresponds to the perturbation signal (peak power=80 µW).The optical pulses found in excitability measurements, as well as the pulses found inself-sustained oscillations, show a particular shape: an overshoot before the trailing edge. Thisshape is quite intriguing and could be the consequence of a quite di�erent situation, e.g. achange in the pulse shape can be given by a particular type of hysteresis cycle such as opticalbistability of Fano-like resonances [131]. These are often found in PhCs as the consequence ofthe coupling between a resonant mode and a quasi-continuum of radiative modes. Nevertheless,as the hysteresis cycles found in the bistability measurements show the regular S-shape, this par-ticular pulses shape must have another origin. In order to gain more insight into this unexpectedshape, additional bistability measurements, as depicted in section 5.2.2, are developed for longer118



durations of the signal modulation. Fig. 6.8.a and b show the output signal (lower trace) andthe input power (upper trace) as a function of time for two di�erent modulation times: 11 µsand 10 µs with 1 µs time-out, respectively. A small upper peak at the end of the bistable pulseis observed in �g. 6.8.a and by adding a time-out this peak becomes more evident, �g. 6.8.b.Note the similarities between the shape of the bistable pulse (�g. 6.8.b) and the excitable pulse(�g. 6.6). The fact that the peak develops within constant injection time windows, and with µstime scales points to their thermal origin.

-0,2

0,0

0,2

0,4

0,6

0 5 10 15

-0,9

-0,6

-0,3

0,0

 

In
pu

t s
ig

na
l (

m
W

)

O
ut

pu
t S

ig
na

l (
ar

b 
un

its
)

Time (µs)

 

 

0 5 10

-3

-2

-1

0

1

2

3

-2

0

2

4

6

8

10

Time (µs)

 
In

pu
t s

ig
na

l (
m

W
)

O
ut

pu
t S

ig
na

l (
ar

b 
un

its
)

(a) (b)Figure 6.8: Bistability measurements for a longer signal modulation with constant injectionintervals: (a) 11 µs and (b) 10 µs with 1 µs of time-out. Re�ection signal (lower trace) andinput signal (upper trace) as a function of time for a detuning of ∆λ0 = 1.6 nm. Note thesimilarities between the shape of the bistable pulse and the excitable pulse (�g. 6.6) specially thecurve in (b).As discussed in chapter 1, another important characteristic of the excitable phenomenonis the existence of a "dead time" between two successive events, called refractory time (τr). Thistime is de�ned as the time it takes for an excitable system to be ready for a second stimulus onceit returns to its resting state. In order to experimentally investigate this refractory time, two per-turbation pulses are sent to the sample and the optical response is observed as a function of thedelay between these two pulses. Fig. 6.9.a-d show the re�ected signal and the perturbation signalas a function of time for three or four di�erent delays and for detunings: ∆λ = 1.2, 1.1, 1, 0.9nm, respectively. We observe a clear dependence of the refractory times with the detuning: thehigher the detuning, the shorter the refractory time. The obtained times are: tr ∼ 2 µs for
∆λ = 1.2 nm, tr ∼ 3 µs for ∆λ = 1.1 nm, tr ∼ 4 µs for ∆λ = 1 nm and tr ∼ 6 µs for ∆λ = 0.9nm. Fig. 6.10 shows the linear dependence of the refractory time with the excitable pulseduration (red line in �g. 6.10). Further theoretical work is necessary to understand this lineardependence. The refractory time has been studied in detail in biology for neurons (where itis in the ms range). To the best of our knowledge, this is the �rst time it is systematicallyinvestigated in a photonic system. This information can be relevant for applications of excitableoptical system to all optical devices. 119
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We have obtained an excitable regime by injecting, through the tapered �ber, a CW signal witha power below the self-sustained oscillation threshold, while an incoherent perturbation was sentby the surface. A dependence of the excitable pulse duration with the detuning was observed. Inparticular, a transition from quasi steady state bistbility to excitability was identi�ed. Studies ofthe refractory time were carried out and a linear relation between this time and the duration ofthe excitable pulse was found. To our knowledge, this is the �rst time it is studied in a photonicsystem. The excitability and self-pulsing studies constitute the �rst ever reported demonstrationof excitable pulses in a PhC nanocavity. The excitable and self-sustained oscillations behaviorof the 2D PhC nanocavities can be of great interest in the development of photonic reservoircomputing and all-optical circuits, such us clock recovery and pulse reshaping.
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Part IIINonlinear behaviors in evanescentlycoupled cavities
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In the previous part we have obtained interesting nonlinear dynamical behaviors in L3PhC cavities, such as electronic and thermal optical bistability, self-pulsing regimes and elec-tronic excitability. In this part, we will focus on nonlinear dynamics in coupled cavities. In the�rst chapter, the evanescent coupling between PhC cavities is numerically investigated by meansof FDTD simulations. Moreover, a theoretical model based on a coupled mode theory formalismis carried out in order to address the spontaneous symmetry breaking in nonlinear evanescentlycoupled cavities. In particular, the symmetry breaking in our experimental conditions is inves-tigated.In the second chapter, preliminary experimental studies on the coupling between twoadjacent cavities etched in the same PhC are carried out by means of photoluminescence mea-surements. Conclusive studies of the coupling are developed through images of the near and far�eld emission pro�les.In the last chapter, we report on nonlinear dynamical measurements in two coupled L3cavities. Bistable, self-sustained oscillations and excitable regimes are investigated. We �nish thischapter by applying the theoretical formalism developed in the �rst chapter to the experimentalconditions.
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Chapter 7Theoretical and numerical calculationsof coupled cavitiesNonlinear coupled resonators can lead to interesting nonlinear behaviors such us symmetry break-ing or pulse transmission in chains of excitable cavities. Symmetry breaking in all-optical de-vices attracts considerable attention due to its potential application to all-optical �ip-�ops. Thisphenomenon arises from the coupling of two identical nonlinear resonators under symmetricalexcitation. When the incident �eld exceeds a certain value, the symmetric solution may no longerbe stable and the system comes to a situation where the intensity inside each resonator is dif-ferent. As a result, a non-symmetric state takes place, while linearly, the modes are completelydelocalized in such a way that the intensity inside each resonator remains equal.Once the symmetry breaking is achieved, e.g. more intensity in the right cavity than inthe left one, a simple perturbation can switch the steady state to con�ne the intensity into theleft cavity, giving rise to an optical �ip-�op.In previous works the symmetry breaking in cavitites with Kerr nonlinearity has beentheoretically demonstrated by equally exciting both cavities from two separated ports [64], �g.7.1. This system is interesting but quite di�cult to reproduce experimentally since the excita-tion must be completely symmetric (in amplitude and phase). For this reason, in this section,we address symmetry breaking in two coupled cavities symmetrically excited through one singleport. Such con�guration is expected to considerably simplify the conditions for an experimentalrealization.In the �rst part of this chapter we study the spatial �eld distribution of two linear coupledcavities by means of FDTD numerical simulations. In the second part the coupling betweenthe two cavities and the external continuum is investigated through a Coupled Mode Theory(CMT) formalism. Finally, the parameters are adjusted in order to investigate the spontaneoussymmetry breaking in two particular con�gurations, one of them accounting for the experimentalconditions.7.1 FDTD numerical simulations of two L3 coupled cavitiesIn order to study the evanescent coupling between cavities in a PhC, FDTD numerical simula-tions of two L3 cavities were carried out1. The method is the one discussed in section 2.1. The1These calculations were done in collaboration with Timothy Karle, post-doc in our group.127



Figure 7.1: (a) Sketch of the coupled cavities structure. (b) The PhC device, with a 4 period-long connecting WG. The electric �eld distribution is superimposed to illustrate the defect modes.Image from [64].simulated structure (see �g. 7.2) corresponds to two modi�ed L3 cavities separated away bythree rows of holes in the Γ−M direction.

Figure 7.2: Scheme of the two L3 cavities simulated in FDTD. The parameters are: a=435nm,r=0.3a for the period and holes radius, respectively.The simulation has a spatial resolution of a/20 = 21.75 nm in x and z-directions,√
3a/36 ' 20.9 µm in y-direction, and a material refractive index of 3.3. The PhC periodand hole radius are a=435 nm and r=0.3a, respectively; and the two holes closing the cavity areshifted away 0.15a. The dimensions of the sample are 28 periods (12.2 µm) in x-direction and19 periods in y-direction (8.3 µm). The integration volume, shown in �g. 7.2 (grey area extendsover half of the space in the z-direction), takes bene�t from the symmetry of the structure . Theelectromagnetic �eld, calculated in this zone, is subsequently extended to the whole structurewith the boundary conditions for the electric �eld shown in �g. 7.3. Fig. 7.3.a and b show thesymmetry conditions of the y-polarization for the simulation of the symmetric and antisymmetricmodes, respectively. The boundary conditions for the x-polarization are deduced from the latter.The system is excited with an electric dipole polarized in the y-direction located in the center ofone of the cavities.As a result of these simulations, two resonant modes were obtained, one at 1.596 µm witha quality factor of 18000 and the other one at 1.6 µm with Q = 35000. This resonance splittingresults from the evanescent coupling between the cavities. The �rst mode corresponds to the128



(a) (b)Figure 7.3: Scheme of the boundary conditions for the electric �eld used in the FDTD simulations,for the y-polarization to simulate the symmetric (a) and antisymmetric mode (b), respectively.symmetric one while the second to the antisymmetric mode. The symmetry of the �rst mode(λ=1.596 µm) is shown in �g. 7.4.a. Note that the energy is con�ned in the cavities region, asexpected, and the principal component of the electric �eld is polarized in the y-direction. It isimportant to point out that the symmetric mode is at higher energy than the antisymmetric one,contrary to the case of classic resonators such as micropillars and microrings. This will play animportant role in the following.The far �eld emission pro�le in k-space for the symmetric mode is shown in �g. 7.4.b,calculated as the spatial Fourier transform of the electromagnetic �eld monitored at twice themembrane thickness (∼ 0.9 µm from the membrane surface) in z-direction. We observe two lobesat ∼ 70◦. Note the emission pro�le is similar to the one found in section 2.1 (�g. 2.4) for a singlecavity. On the other hand, the mode centered at 1.6 µm reveals an antisymmetric spatial distri-bution of the �eld in the membrane, see �g. 7.5.a.The emission pro�le of the antisymmetric mode in the far �eld has four lobes at ∼ 70◦,�g. 7.5.b. While the far �eld emission of the symmetric mode is hard to distinguish from theone of a single cavity, the emission of the antisymmetric mode is qualitatively di�erent. Theminimum of intensity at ky = 0 arises from the destructive interference between the emission ofeach cavity since they are in anti-phase. This di�erence can be used to experimentally check thecoupling between cavities, see chapter 8.It is important to point out that the symmetric and antisymmetric modes only exist forthe particular case where the two cavities are equivalent (i.e. equal resonance frequency andquality factor). Nevertheless, in a general case, where an asymmetry between the cavities takesplace, the two modes of the system still present the same phase di�erence between the cavitiesas the symmetric (φ = 0) and antisymmetric mode (φ = π). These modes, for the general case,are usually called bonding (φ = 0) and antibonding (φ = π). We will return to this in section 8.4.Typically, in coupled systems, the symmetric mode has less energy than the antisym-metric one, as the simple case of two masses coupled by a spring: the symmetric mode is thefundamental one. However, this is not imposed by any fundamental principle. According to thenumerical simulations for two L3 cavities separated away in the Γ−M direction the situation isthe opposite one. In order to better understand this result, 2D FDTD numerical simulations of129
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(b)Figure 7.5: (a) Spatial �eld distribution at the membrane center for the antisymmetric mode(λ = 1.6 µm). (b) Far �eld emission pro�le of the antisymmetric mode calculated as the Fouriertransform of the �eld stored on a monitor positioned at twice the lattice period (∼ 0.9 µm fromthe membrane surface).
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two W1 waveguides separated away by three rows of holes in the Γ−M direction were carriedout. Fig. 7.6 shows the band diagram of the coupled W1s. Note that there is a range of k wherethe splitting of modes is important and for which the symmetric mode is at lower wavelengththan the antisymmetric one. In the case of cavities, since the mode is spatially con�ned, the(discrete) translation invariance is broken and the mode becomes con�ned at around k ∼ 0.4.It can be observed that, for such k-value, the symmetric mode has higher energy than the anti-symmetric one. For longer cavities, the central k-vector is expected to approach the edge of theBrillouin zone (k = 0.5): in such case, the situation would be reversed. It is worth mentioningthat in general, according to [56] (�g. 1.33) the sign of the coupling, which determines the modeat higher energy, can be exchanged by changing the coupling con�guration. This represents anadvantage of PhC over other systems, such as microdisks or micropillars: the geometry can bechosen to tailor not only the coupling strength but also the coupling sign.
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Figure 7.6: Band diagram for two coupled W1 waveguides separated away by three rows of holes.Note there is a range of k where the splitting of modes is important and for which the symmetricmode is at lower wavelength than the antisymmetric one. The green region shows the modecon�nement in k for a L3 cavity. The PhC period and radius are: 430 nm and 0.34a, respectively.7.2 Evanescently coupled linear cavitiesOnce the mutual coupling of PhC cavities has been numerically addressed, we investigate thecoupling to the outside. In the following, we consider two evanescently coupled linear cavitiescoupled to the external continuum through n individual ports and m common ports (�g. 7.8.a).Each cavity has a coupling time to the ports τ .The dynamical equations for this system are [132]:
da

dt
= (jΩ0 − Γ)a+KT |s+〉 (7.1)
|s−〉 = C|s+〉+Da (7.2)where a is the resonant �eld inside the cavities, a = (a1, a2). Ω is a matrix with the resonantfrequencies (ω0) of the cavities and the evanescent coupling e�ciency (κ) between them and Γcontains the losses. K and D are the coupling matrix from the ports to the cavities and viceversa. Using the same considerations as in section 2.2, it can be demonstrated that K = D.132



Figure 7.7: Scheme of two coupled cavities coupled to the outside by n individual ports and mcommon ports.Taking the cavity modes as the basis we can express Ω, Γ and D as:
Ω =

(
w0 κ
κ w0

) (7.3)
Γ =

(
1/τ −γ
−γ 1/τ

) (7.4)
D =




d′1 0... ...
d′n 0
d1 d1... ...
dm dm
0 d′1... ...
0 d′n




(7.5)
where d and d′ are the coupling strengths between the cavities and the common or individualports, respectively.Considering H = jΩ − Γ, the modes of the system are given by the eigenvectors of
H. From eqs. 7.3 and 7.4, H is hermitian, then the eigenvectors form an orthogonal basis.Moreover, since the system is symmetric under re�ection upon the x-axis, the eigenmodes arethe symmetric and the antisymmetric ones. The wave amplitudes of the eigenmodes (cS and cAfor the symmetric and antisymmetric modes respectively) oscillate with complex frequencies

ΩS,A = ωS,A + i/τS,A (7.6)where ωS,A and 1/τS,A are given by:
ωS,A = ω0 ± κ (7.7)

1/τS,A = 1/τ ∓ γ (7.8)Using D†D = 2Γ [132], as in eq. 2.8, we obtain the relation between d, d′, τ and γ givenby: 133



m∑

i=1

|di|2 = −2γ (7.9)
n∑

i=1

|d′i|2 +
m∑

i=1

|di|2 =
2

τ
(7.10)In order to further simplify the calculations, we consider that the coupling strength ofthe individual/common ports are equal (d′1 = ... = d′n = d′/ d1 = ... = dm = d). Eqs. 7.9 and7.10 then read

m|d|2 = −2γ (7.11)
n|d′|2 +m|d|2 = 2

τ
(7.12)Eq. 7.12 relates the modulus of d and d′ with γ and τ . To relate the phases of d and

d′ with the system parameters, the matrix C must be de�ned. In eq. (7.2), C corresponds tothe direct process, meaning the direct incoming �eld coupling to the ports. The direct processcan either be resonant or given by evanescent coupling. These processes can be described by thefollowings unitary matrices Cr and Ce, respectively:
Cr =




ejφ
′

0 . . . . . . . . . . . . . . . . . . 0

0
. . . ...... ejφ

′ ...... ejφ
...... . . . ...... ejφ
...... ejφ

′ ...... . . . 0

0 . . . . . . . . . . . . · · · . . . 0 ejφ
′




; (7.13)

Ce =




0 . . . ejφ
′

0 . . . . . . . . . . . . 0. . . ...
ejφ

′

. . . 0
...

0 0 . . . ejφ
...... . . . ...... ejφ . . . 0 0... 0 . . . ejφ

′... . . .
0 . . . . . . . . . . . . 0 ejφ

′

. . . 0




(7.14)
where φ and φ′ represent the phases, which depend on the properties of the ports. Applying eq.2.16 (CD∗ = −D) to eqs. 7.5 and 7.14 and writing d as d = |d|exp(jφd), d′ = |d′|exp(jφd′) weobtain:

e2jφd′ = −ejφ
′

; e2jφd = −ejφ (7.15)134



Eq. 7.15 leads to φd = φ/2 + π/2. Then d = j|d|exp(jφ/2).This formalism has allowed us to �nd out the relation between di�erent parameters in a systemof linear coupled cavities. We will apply these results in the following section to the study ofnonlinear coupled cavities.7.3 Evanescently coupled nonlinear cavitiesHere we consider two evanescently coupled nonlinear cavities coupled to the outside as in �g. 7.7.The dynamical equations are given by the set of equations deduced in section 1.4. Consideringonly an electronic nonlinear e�ect and adiabatically eliminating the di�erential equation forcarrier density for simplicity (i.e. taking the steady states solution of eq. 1.56, section 1.4) , thedynamic equation for the intracavity energy is given by adding a nonlinear term to eq. 7.1 (seeeq. 1.69 in section 1.4). Thus,
da1,2
dt

= [j(w0 +
|a1,2|2
U0,eτ

)− 1

τ
]a1,2 + (jκ + γ)a2,1 + df (7.16)with U0,e = τa0 |asat|2/αHτ the characteristic intracavity energy for electronic bistable threshold,

d = j|d|exp(jφ/2) and |f |2 is the injected power through one common port. As previouslydiscussed, given the negative sign of the nonlinearity, the intensity blue-shifts the resonance.Considering a1,2(t) = a′(t)ejwt, f(t) = fejwt and t′ = t/τ in Eq. (7.16) the steady states aregiven by [64]:
−τdf = j(δ +A)− 1)a′1 + (jτκ + τγ)a′2 (7.17)
−τdf = j(δ +B)− 1)a′2 + (jτκ + τγ)a′1 (7.18)where δ = τ(w0 − w), A =
|a1|2
U0,e

and B =
|a2|2
U0,e

. Equating the right sides of eqs. (7.17) and(7.18) and taking squared modulus, eqs. 7.17 and 7.18 give:
(A−B)[B2 + (A+ 2α)B +A2 + 2ΛA+ Λ2 + (1 + τγ)2] = 0 (7.19)Here

Λ = δ − τκ = τ(ωA − ω0) (7.20)From Eq. (7.19) it is easy to show that a non-symmetric solution (A 6= B) is possible if |Λ| >√
3(1 + τγ) with A lying between the values −2/3Λ ± 2/3

√
Λ2 − 3(1 + τγ)2. Moreover, sinceA must be positive by de�nition, Λ must be negative, thus Λ < −

√
3(1 + τγ), which implies,according to eqs. 7.20 and 7.8, that τA(ωA − ω0) < −

√
3. Surprisingly, this corresponds to thecondition for bistability of the antisymmetric mode.In the following we apply these results to two particular cases well suited for an experimentaldemonstration.7.3.1 First case of study: Two cavities coupled to the external continuum bythree portsIn these paragraphs we will consider the particular case where the cavities are coupled by threeports: two individual ports and a common one. It has already been demonstrated that sponta-neous symmetry breaking takes place for two nonlinear PhC cavities coupled through a waveguide(see section 1.2.3). We will see that our particular case contains the system dynamics studiedin [64], in the sense that parameters in [64] can be mapped to the parameters of our theory.Therefore, the solutions of [64] are formally equivalent to some set of solutions of eq. 7.16. Fig.135



7.8.a shows a sketch of the system. Note that the coupling strength from one cavity to the leftand right ports is considered to be the same. In this con�guration n=1 and m=1; replacing thesein eqs. 7.11 and 7.12, and further assuming |d| = |d′| by construction, leads to:
γ =

−1

2τ
(7.21)

|d|2 = 1

τ
(7.22)

a=0.43 µm

r=0.34 a

neff=2.77

f κ

f1

f2(a) (b)Figure 7.8: (a) Scheme of two coupled cavities coupled to the outside by two individual ports andone common port. (b) PC device compatible with (a).Replacing eq. 7.21 in the expression for 1/τS,A (eq. 7.8) we obtain 1/τS = 3/2τ and
1/τA = 1/2τ , so the antisymmetric mode has reduced losses with respect to the single cavitywhereas the symmetric one has increased losses. Regarding ΩS/A, we obtain that for positivesvalues of κ: Ωa < w0 < Ωs. FDTD numerical simulations of section 7.1 have shown that this isthe case of two evanescently coupled L3 cavities separated away in the Γ−M direction by threerows of holes, �g. 7.8.b.Replacing eqs. 7.21 and 7.22 in eq. 7.19, we obtain:

(A−B)[B2 + (A+ 2α)B +A2 + 2ΛA+ Λ2 + 1/4] = 0 (7.23)Note that eq. 7.23 is analogue to eq. 6 in [64] provided Λ = ∆′. This allows us to identify
τκ = tg(φ/2)/2 where φ represents the phase that depends on the waveguide length and thePhC re�ection properties in [64], �g. 7.1.b. Let us stress that this analogy is only obtained forthe system of �g. 7.8, where γ = −1/2τ , since γ changes for di�erent system architectures. Thismeans that the system in [64] can be mapped to a subset of solutions of a system of evanescentlycoupled cavities.Replacing eqs. 7.21 and 7.22 in eqs. 7.17 and 7.18, taking squared modulus and combin-ing both, we obtain the energy inside the cavities (A or B) as a function of the injected power(Pin = |f |2/P0, with P0 = U0,e/(τ

2|d|2) = U0,e/τ). This is represented in �g. 7.9 for di�erent de-tunings and τκ = 0.8. This value corresponds to a resonance splitting of 0.8 times the resonancewidth. Fig. 7.9.a shows the energy inside the cavities vs the injected power for a detuning of
δ = −0.2. Note that the symmetric solution (orange line) becomes unstable for a certain inputpower and a stable non-symmetric solution appears (black line). This non-symmetric solutioncan be observed in the temporal simulations of �g. 7.9.b where the time trace of the energy136



inside the cavities for δ = −0.2 and an injected power of Pin/P0 = 2.5 are plotted. The initialcondition is set at the symmetric state Ain = 0.65 and, in order to achieve the breaking, a slightperturbation in the initial condition of the energy inside one of the cavities is added. Note that in�g. 7.9.b the system relaxes to the stationary sates A1 and A2 in �g. 7.9.a. For higher detuning(δ=-3) the curve becomes more complex and several steady states are possible for a single inputpower, �g. 7.9.c. This multi-stability is shown in �g. 7.9.d where the time trace for δ = −3,
Pin/P0 = 12.7 and an initial condition of Ain = 3.41 is plotted. In �g. 7.9.d, at t/τ = 120 aperturbation was added to the energy inside each cavity in order to make the system jump tothe other stable branch. Let us stress that a large perturbation is needed in order to kick thesystem to the other branch. This means that the basin of attraction seems to be larger for themedium branches (A1 and A2) than for the external branches (A′

1 and A′
2).
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rameters in �g. 7.9. Fig. 7.10 shows the transmitted signals f1 and f2 (blue and red line,respectively) as a function of the injected power. For low detuning (δ = −0.2), cycles are notobserved (�g. 7.10.a), although, for higher detuning (δ = −3) a complex hysteresis cycle isobtained revealing multi-stability.
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δ = −0.2 and τκ = 0.8 and (b) δ = −3 and τκ = 0.8. The black arrows in (b) point out thecycle sense.The breaking of symmetry can also be seen in the spectral domain. The nonlinear spec-tral response is studied by analyzing the energy inside the cavities versus the detuning. For avery low injected power (Pin/P0 = 0.1), �g. 7.11 (green line), the linear regime takes place. Theresonance is centred at δ = −0.8, which corresponds to the frequency of the symmetric mode.This can be expected since, as both cavities are injected with the same amplitude and phase,the only mode that can be excited in the linear regime is the symmetric one.Increasing the injected power (Pin/P0 = 4) the nonlinearity becomes stronger and thesymmetric resonance blue-shifts and bends (�g. 7.11, orange line). Moreover, the spontaneoussymmetry breaking is observed in �g. 7.11 (black line). Note the minimum detuning for whichthe breaking takes place satis�es the condition found in the previous section: Λ < −

√
3(1+ τγ).From �g. 7.11, the range of detunings for which the symmetry breaking exists become clear.Phase DiagramIn order to obtain the set of parameters that give rise to the symmetry breaking, the phasediagram of the system in eq. 7.16 was studied. The space of parameters Pin/P0 and τκ of �g.7.12.a shows the di�erent bifurcations for the non-symmetric stable states (-saddle node (SN), -saddle repulsor (SR), -supercritical pitchfork (P), - subcritical pitchfork (SP)) and for the sym-metric one (-saddle node (SNS), -saddle repulsor (SRS)). For di�erent values of τκ (at constant

Λ), the Pin/P0 at which a bifurcation occurs are plotted. Several regions can be distinguished.For strong coupling, τκ & 0.95 (I zone in �g. 7.12.a), we observe symmetry breaking resultingfrom two pitchfork bifurcations (�g. 7.12.b). It is important to point out that the symmetrybreaking threshold increases with the coupling strength. If 0 < τκ < 1 (II zone in �g. 7.12.a)138
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(c) (d)Figure 7.12: (a) Phase diagram for a system with γ = −0.5. The bifurcations of the non-symmetric states are: -saddle node (SN), -saddle-repulsor (SR), -supercritical pitchfork (P), -subcritical pitchfork (SP). For the symmetric one: -saddle node (SNS), -saddle-repulsor (SRS).(b) Intensity inside the cavities as a function of the injected power. The symmetric and non-symmetric solution are shown in orange and black lines, respectively. Stable (unstable) states areshown with solid (dashed) line. τκ = 1. (c) τκ = 0.3. (d) τκ = −0.3. In all the cases Λ = −3.The bifurcation points are highlighted with open circles. The horizontal lines in (a) indicate thevalues of τκ used in (b), (c) and (d).7.3.2 Second case of study: the experimental con�gurationIn the following we apply the theory developed in section 7.3 to the experimental con�guration:a cavity coupled to the outside by a micro�ber, �g. 7.14.a. This is a special case since, if nointrinsic losses are considered, m=2 and n=0 yielding to γ = −1/τ (from eq. 7.12). This means,from eq. 7.8, that the antisymmetric mode has no losses (τA = 0). Therefore, this mode doesnot decay, which is unphysical. In order to add leaky ports to the antisymmetric mode, intrinsiclosses as both individual and a common ports must be taken into account, �g. 7.14.b. The ra-diative common port accounts for the far �eld overlap of the radiative emission of the two cavities.According to �g. 7.14.b, two common ports represent the �ber, with a coupling strength140



Figure 7.13: Phase diagram for a system with γ = 0 and Λ = −3. The bifurcations of the non-symmetric states are: -saddle node (SN), -saddle-repulsor (SR), -supercritical pitchfork (P), -subcritical pitchfork (SP). For the symmetric one: -saddle node (SNS), -saddle-repulsor (SRS).
(a) (b)Figure 7.14: Scheme of the coupling between two cavities and the tapered �ber without (a) andwith (b) intrinsic losses. In (b) each cavity is coupled to the external continuum by three commonports: the �ber (d) and radiative losses (d') and one individual port (the intrinsic losses, d�).

d, an additional port accounts for overlapping leakage from each cavity, with a coupling strength
d′, and two individual ports, with coupling strength d′′, that represent the non-overlappingradiative losses of each cavity. The value of γ can be obtained considering �rst an undercoupledregime between the cavities and the �ber (τc → ∞), then, from eq. 7.8 we obtain:

γ0 =
1

2
(
1

τA
− 1

τS
) =

ωA

4QA
− ωS

4QS
(7.24)Considering the results of the simulation in section 7.1, ωA0

= 1176.916 THz, ωS0
= 1180.102THz, QA0

= 35000, QS0
= 18000 and the results of the simulation for a single cavity (Q0 = 23000and ω0=1178.562 THz, section 2.1) which are used to estimate τ ∼ 39 ps, we get τγ0 = −0.3.If now we add the �ber (τc 6= ∞), eqs. 7.11 and 7.12 yield γ = γ0−1/τc. The experimen-tal �ber-coupling conditions of section 5.2 correspond to the undercoupling regime, η ' 0.07,which gives Q0/Qc ' 0.08. Therefore we can approximate γ ≈ γ0.Replacing in eq. 7.19 the value found for τγ and keeping τκ = −0.8, we obtain the energyinside the cavities (A or B) as a function of the injected power for δ = −3, �g. 7.15.a. Note141



that the main features are similar to the ones shown in �g. 7.9.c meaning that the symmetrybreaking is not signi�cantly a�ected by γ. Fig. 7.15.b shows the time traces for an injectedpower of Pin/P0 = 9. Similarly to the previous case (section 7.3.1), the system decays to thestationary sates A1 and A2 in �g. 7.15.a.
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|S−〉 = Ce|S+〉+Da (7.25)where
|S−〉 =




r
t
t′1
t′2
t′′




(7.26)
Ce =




0 ejφ 0 0 0
ejφ 0 0 0 0
0 . . .

0




(7.27)
D =




d d
d d
d′ d′

d′′ 0
0 d′′




(7.28)The expression of Ce takes into account that the signal can only be injected through the �ber(as it is the case of cavities coupled trough a tapered �ber). Considering |S+〉 = (f, 0, 0, 0, 0)142



(injection through the right side of the �ber) we obtain:
R

P0
=

|r|2
P0

=
|a1 + a2|2

P0τ
(7.29)where we used d = iejφ/2/

√
τ . Fig. 7.16 shows the hysteresis cycle measured in re�ection (re-�ected signal as a function of the injected power). Note the di�erence with respect to bistablehysteresis cycles for a single cavity (�g. 5.17 in section 5.2). In particular, a change in slope of

R(Pin) takes place when the system bifurcates from the symmetrical to non-symmetrical states.This shows, in principle, that the existence of spontaneous symmetry breaking can be detectedfrom the features of the hysteresis cycle.
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Figure 7.16: Hysteresis cycle with the parameters in �g. 7.15. Re�ected signal (R=|r|2, from�g. 7.14.b) as a function of the input signal. The symmetry breaking can be detected from adramatic change in the slope.7.4 ConclusionThe evanescent coupling between two L3 cavities separated by three rows of holes was determinedby FDTD numerical simulations. Two resonant modes were found, separated away by ∼ 4 nm,with di�erent quality factors: QS = 18000 and QA = 35000. This corresponds to lower lossesfor the antisymmetric mode with respect to the symmetric one, which can be expected from thedestructive/constructive interferences taking place for each mode.A linear model based on a Coupled Mode Theory formalism was carried out in orderto characterize the coupling between the cavities and the external ports. From this model therelation between the di�erent parameters (τ , γ, κ and d) of the system was found. These resultswere used to develop a nonlinear model to study the symmetry breaking. We found that thespontaneous symmetry breaking can be achieved in a system where the two evanescently cavitiesare symmetrically excited by a single port. This result is important from an experimental pointof view since, we believe, a demonstration of the symmetry breaking in this con�guration ismore viable than other con�gurations studied so far [64]. Indeed the possibility of symmetricallyinjecting the system through a single port substantially simpli�es the experimental conditions.143



This theoretical formalism was implemented to our experimental case: two cavities cou-pled to the outside via a tapered �ber. Spontaneous symmetry breaking was also found in thiscon�guration. Therefore, choosing the appropriate parameters, the symmetry breaking might beachieved in our set up. In chapter 9 we will seek this phenomenon experimentally.
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Chapter 8Evanescent coupling between cavitiesIn the previous chapter we have shown, though FDTD numerical simulations, that evanescentcoupling can be achieved between adjacent cavities in a PhC. Moreover, we used a coupled modetheory formalism to investigate the nonlinear regime of the coupled cavities and found that inter-esting nonlinear behaviors such as spontaneous symmetry breaking can be reached. We furtherdemonstrated that these regimes are accessible within our experimental conditions, namely, twocavities coupled through a tapered �ber. Among the few works devoted to understanding opticalcoupling in PhC cavities, there is, to our knowledge, only one clear experimental demonstrationby means of anti-crossing measurements of the mode splitting [79]. Here we tackle this problemusing an alternative approach: the measurements of the relative phase coherence of the cavity�elds. The purpose of the present Chapter is to provide clear experimental evidence of thelinear coupling between the cavities, as it was theoretically predicted in the previous one. Thesestudies include spectral and spatial analysis, the latter both in the near and far �elds. Inorder to simplify the access to the coupling parameters we �rst investigate cavities includingQDs as the active medium. Indeed, the inhomogeneous broadening of the emission associatedto the QD distribution allows to easily detect the cavity modes. Preliminary tests involvingstatistical studies of the spectral position of modes in samples with two cavities were carriedout through photoluminescence experiments. Even though such studies are not conclusive fordemonstrating optical coupling, they allow to build con�dence on the observed mode splitting asa signature of coupling. In a second part we focus on L3 cavities including QW as active medium,that, following the results of Part II, are better suited for the nonlinear dynamical operation.Over these samples, near and far �eld emission pro�les were investigated. These measurementsconstitute unequivocal evidence of evanescent coupling between the cavities.8.1 Preliminary statistical studies of the coupling between cavi-tiesThe coupling between two adjacent identical cavities should manifest itself by the splitting ofthe initial mode into the symmetric and the antisymmetric ones. This splitting can be revealedvia photoluminescence measurements. However, in general, technological imperfections mayintroduce a di�erence between the geometries of the cavities. This would end up with a two-peak photoluminescence spectrum which does not necessarily correspond to mode splitting. Ina �rst series of experiments we have investigated the mode separation as a function of the PhChole diameters and the distances between cavities. Here we present studies over L3 coupled145



cavities and Noda-type adjacent cavities both including QDs as the active medium, since theinhomogeneously broadened emission of QDs allows to easily detect the position of the cavitymodes.8.1.1 Spectral studies of the emission of two L3 cavitiesSamples analogous to the one described in section 3.1 including two adjacent L3 cavities etchedin the same PhC were fabricated, �g. 8.1. The cavities are separated away by three rows of holesin the Γ−M direction. In order to characterize these samples, photoluminescence spectra weremeasured. The cavities are pumped @532 nm with a CW, frequency doubled Nd:YAG laser andthe emission is collected with a 20x microscope objective and send to a spectrometer/cameradetection system, see sec. 3.1.3. A typical result is presented in Fig. 2.1. b where two resonances,labelled λ< and λ>, are clearly visible.
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(a) (b)Figure 8.1: (a) MEB image of two L3 cavities in the same PhC separated away by three rows ofholes in the Γ−M direction. (b) Photoluminescence spectrum for a pump power of 23 µW andan integration time of 0.1s.The spectral separation between peaks (λ> −λ<) is measured for 29 di�erent PhCs con-taining two L3 cavities separated away be three rows of holes. For all the samples the latticeperiod, a=455nm, is kept constant, whereas the diameter is varied from 77 nm to 100 nm. Fig8.2 shows the peak separation (λ> − λ<) for the whole set of samples. The average value gives
λ> − λ< = 5.1 ± 0.7 nm, in agreement with the FDTD numerical simulations of sec. 7.1 whichgave ∆λ ∼ 4 nm. The small deviation from the average value (∼ 14%) can be attributed totechnological imperfections. The averaged distance between peaks, in turn, is most probablyrelated to physical reasons: the mode splitting originated from the evanescent coupling. Then,according to section 7.1, λ< may correspond to the symmetric mode (λS) and λ> with the anti-symmetric one (λA). We will return to this discussion in section 8.4.8.1.2 Spectral studies of the emission of two coupled cavities as a functionof their separationWe now study the dependence of this splitting with the cavities separation. For this, we usedNoda-type cavities (described in section 1.3). These were chosen for this study since the dis-tance between cavities can be changed in a more "continuous" way compared to L3 cavities146
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Figure 8.3: MEB image of two Noda-20 cavities in the same waveguide separated away by threeperiods (p=3) of the photonic crystal. The cavity is obtained by a 20-nm increase of the latticeperiod. We proceed to the systematic measurement of the photoluminescence spectra for thedi�erent cavity separations. Typical results are shown in �g. 8.4.a. The λ> − λ< wavelengthsplitting as a function of p is represented in �g. 8.4.b. Each point is the average of 4 samplemeasurements. For p=20 the cavities are separated by ∼ 9 µm and we can consider that they areno longer coupled. Therefore, we can attribute the measured splitting to imperfections, alwayspresent in PhC fabricated with state of the art technologies. The evolution of ∆λ as a function ofp between 2 and 5, can, in turn, be univoquely ascribed to the evolution of the coupling with thebarrier thickness, in good agreement with eq. 7.7. These data are well �tted by a linear curve,which corresponds to consider a linear dependency of the coupling strength with the distancebetween cavities. 147
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∆λ>−<=6 nm. (b) Peak distance (∆λ>−<) as a function of the number of periods (p) betweencavities. The value shown for each p corresponds to the average over four samples.8.2 Choosing the most appropriate type of cavityIn the previous paragraphs we have seen that Noda-20 cavities most probably show a splitting ofthe modes, which can be related to the evanescent coupling between cavities, and this splittingcan be easily changed with the barrier thickness. Unfortunately, coupling tests with the tapered�ber have shown that the coupling is harder to achieve in this con�guration since the anglebetween the �ber and the waveguide becomes critical. The tapered �ber needs to be parallel tothe whole waveguide (which is 50 µm-long) while in the case of L3 cavities the �ber only needsto be parallel to the cavity (∼ 1.5 µm-long).In general, L3-type cavities (�g. 8.1) are much easier to couple with the tapered �bercompared to Noda-type cavities. Moreover, they are separated away in the direction perpendic-ular to the �ber, which is a necessary condition to guarantee a symmetric injection, mandatoryfor symmetry breaking experiments. For all these reasons, we have chosen this con�guration towork with. Samples with two L3 cavities separated away by three and �ve rows of holes werefabricated. In the following we give a detailed characterization of these samples.8.3 Photoluminescence of two cavitiesThe samples are analogue to the ones described in section 5.7 but, in this case, two L3 cavitiesare etched in the same PhC. As mentioned before, we incorporate 4 QWs as the active mediumin order to increase the nonlinear response. Two di�erent barrier thickness were studied: i) twoL3 cavities separated away by three rows of holes in the Γ − M direction and ii) �ve rows ofholes. The Γ −M direction corresponds to the direction perpendicular to the long axis of thecavity. MEB images of these two cases, i and ii, are shown in �g. 8.5.a and b, respectively.The �rst natural characterisation of the samples are photoluminescence measurements,as presented in the previous sections. For this, the cavities are pumped with a @810 nm, 80MHz-repetition rate, 100 fs-pulse duration Ti:Sa source. The emission is collected with a 50148



(a) (b)Figure 8.5: MEB images of samples with two L3 cavities separated away by three (a) and �ve (b)rows of holes in the Γ−M direction. The period and hole radius are: a=450 nm and r=120 nm.x microscope objective and sent to a spectrometer, see sec. 3.1.3. Fig. 8.6.a and b show thespectrum obtained for the cavities separated away by 3 and 5 rows of holes, respectively. For aseparation of three periods ( �g. 8.6.b) we observe two peaks (λ< and λ>) whose spectral separa-tion is about 4 nm, in good agreement with the numerical simulations of section 7.1. Increasingthe period number (p=5) only one peak is observed, meaning that either the coupling is weak,then the distance between the modes is smaller than the resonance width; or the cavities are notcoupled at all. We will continue this discussion in the following sections.
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Wavelength (nm)(a) (b)Figure 8.6: Photoluminescence spectrum of two L3 cavities separated away by three (a) and �ve(b) rows of holes, �g. 8.5.a and b. The injected power and integration time are: 30 µW and 0.2s; 9 µW and 0.5 s, respectively.It is worth mentioning that PhCs with two L3 cavities separated away by one row of holeshave also been fabricated and characterized. Photoluminescence measurements of this systemshow a mode splitting of ∼ 70 nm. This splitting is more than 140 times the FWHM of thecavity resonance and can be the signature of a very strong coupling regime, for which we cannotlonger consider the coupling as a perturbation of each cavity. Therefore, the two cavities becomea single one with a particular geometry. For this reason, in the following we will focus on thecavities separated by 3 and 5 rows of holes.Measurements of the output intensity and the resonance width as a function of the pumppower were carried out (not shown), in order to study the laser e�ect in i) and ii) (�gs. 8.5.aand b, respectively). In the case of the cavities separated away three rows of holes, curves withsimilar features than in �g. 5.10 were obtained for both modes. Indeed, we arrive to the samethree possibilities discussed in section 5.7. On the contrary, for the cavities separated away by149



�ve rows of holes, a S-shape in the curve input vs output power and a decrease followed by anincrease of the resonance width with the injected power were observed. Indeed, there is the pos-sibility that the system shows a laser e�ect with a threshold at 8.5 µW . Second order correlationfunction should be performed in order to con�rm this hypothesis.The micro�ber allows a nice method to further investigate the optical coupling betweenthe cavities. In particular, the collection of the photoluminescence using the tapered �ber shouldbe sensitive to the phase di�erence between the cavity �elds. As it has been discussed in section7.3, if the taper is positioned in the middle of the cavities, the anti-symmetric mode cannot becoupled through the �ber due to destructive interference. In order to test this experimentally,measurements of the coupling of photoluminescence of the λ< and λ> modes through the �berwere carried out for the sample with 3-holes barrier. The cavities are pumped by the surfaceand the �ber is positioned between them. The emission signal is simultaneously collected in freespace and sent to the spectrometer and through the tapered �ber and sent to an optical spectrumanalyser (OSA). Fig. 8.7.a and b show the two spectra. We observe a di�erence in the relativeheights of the peaks in �g. 8.7.a and b. We stress that this di�erence was systematically ob-served, provided the �ber is positioned in the middle of the cavities. This result provides furtherevidence on the fact that the mode at higher wavelengths corresponds to the antisymmetric mode.
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tive with a high numerical aperture (NA) is used: a x160, NA=0.94, objective with 0.2 mm ofworking distance, which focuses the pump beam down to 1.5 µm. This microscope objectiveallows to collect angles up to 72◦. The sample is pumped by the surface with the @ 810 nm,100-fs pump duration, Ti:Sa laser. The emission is collected through the same optics and sentto a spectrometer and to an InGaAs CCD ('Sensor Unlimited', SU320), as sketched in �g. 8.8.Focusing down the signal emitted by the sample over the InGaAs camera the near �eld emissionis obtained, while the far �eld emission is given by the image of the back focal plane of theobjective (which is located near the back pupil of the objective). In the experimental set up weobtain the far �eld images by adding a lens behind the objective (f1 in �g. 8.8). This lens islocated at a distance f1, which corresponds to its focal distance, of the back focal plane of theobjective.

Figure 8.8: Sketch of the device used to measure the near and far �eld emission pro�les of thesamples by either removing or adding f1. f1 = f2 = 250 mm.8.4.1 Emission pro�le of a single cavityLet us start by characterizing the emission of a single cavity. The measured far �eld emissionof the sample and the calculated far �eld using the FDTD (see section 2.1) are shown in �g.8.9.a and b, respectively. The white line corresponds to the light cone (emission at 90◦) whilethe dashed white line corresponds to the maximum angle collected in our set up (∼ 72◦). Notethat part of the main lobes (�g. 8.9.b) are cut by the NA of the objective. In spite of this, twolobes in the vertical direction can be distinguished, in very good agreement with the numericalresults. Fig. 8.9.c and d show the near �eld emission and the photoluminescence spectrum,respectively. The dashed white line in �g. 8.9.c represents the cavity position and it allowsto check that the near �eld emission is located at the cavity center. Finally, �g. 8.9.e showsthe near �eld emission found by the FDTD simulations. Only the principal component of theelectromagnetic �eld is represented: the electric �eld polarized in the y-direction (Ey). It isworth mentioning that, as the objective presents a high numerical aperture and a short workingdistance, the position of the focus becomes very sensitive. For this reason, it is very di�cultto track the actual near �eld pro�le, which is highly dependent on the distance to the focalplane. In the following, although we will present the near �eld measurements, we will focus ourattention on the far �eld measurements. They are much less sensitive to the alignment with re-151



spect to the focal plane, and contain the information about the relative phase of the cavity �elds.

Figure 8.9: Experimental (a) and numerical (b) (provided by FDTD simulations) far �eld emis-sion pro�les of a single L3 cavity. The white line in both �gures corresponds to an emission at
90◦ while the dashed white line corresponds to the maximum angle collected in our set up (∼ 72◦).(c)-(d) Experimental near �eld emission and photoluminescence spectrum (for an injected powerof 38 µW and 0.2 s of integration time). (e) Numerical near �eld pro�le of a single L3 cavity.The bright point in the center of the image in �g. 8.9.a corresponds to the luminescenceof the QW that is not being �ltered by the cavity mode, since it is observed even when pumpingoutside of the cavity region. This emission propagates as a plane wave which corresponds to theorigin of the Fourier space.8.4.2 Near and Far Field images of two L3 cavities separated away by 3 rowsof holesThree di�erent situations associated to the pumping conditions can be tested in the case of twocavities separated away by three rows of holes (�g. 8.5.b): I) pumping the "left" cavity, II)pumping in the middle, III) pumping the "right" cavity, as sketched in �g. 8.10. In situations Iand III a single peak is observed, while for II, two peaks separated away by 4 nm are obtained,�g. 8.10.Fig. 8.11.a and b show the far �eld emission for I and III, respectively. Note the similar-ities with the far �eld emission of a single cavity. Furthermore, the near �eld emission in both152



Figure 8.10: Photoluminescence spectrum acquired for di�erent pump localization (inset) for twoL3 cavities separated away by three rows of holes. The dashed line denotes the cut o� wavelengthof a bandpass �lter used to characterize the emission of each mode separately.situations shows that the intensity is more concentrated in one of the cavities than in the otherone. Fig. 8.11.d shows the corresponding spectra, in black and red lines, for situations I andIII, respectively. We observe a slight di�erence in the central wavelength. However, the actualspectral separation is hard to establish since the resonance wavelength depends on the intensity,hence on the focus. The fact that only one peak in the spectrum is observed shows that onlyone mode is e�ectively being excited. In the following section we will come back to this discussion.On the other hand, when the two cavities are pumped in between, two modes are ob-served with an spectral separation of 4 nm (�g. 8.10.II). In these conditions we placed a band-pass �lter before the spectrograph and the InGaAs CCD in order to selectively detect one ofthe two modes. Fig. 8.12.a shows the far �eld emission of the mode at lower wavelength;we will call this mode λ<. According to the numerical simulations of section 7.1, this modeshould be the symmetric one. Fig. 8.12.b shows the far �eld emission of the symmetric modecalculated by FDTD simulations. Fig. 8.12.c and d show the near �eld and the photolumi-nescence spectrum of this mode. Note that both cavities are "turned on", in agreement withthe near �eld found in the simulations of the symmetric mode (�g. 8.12.e). We attributethe di�erences in the features on �gs. 8.12.c and e to the focal issues already mentioned.We note some similarities between the far �eld of λ< and the one of the symmetric mode,8.12.a and b, respectively. However, since both the far �eld emission of the symmetric mode andof a single cavity present two lobes, it is di�cult to qualitatively distinguish between these twocases. The spectral separation between modes (∼ 4 nm) is in good agreement with the valuefound trough numerical simulations for the separation between the symmetric and antisymmet-ric modes of coupled cavities. This strongly suggest that the symmetric mode is the one beingexcited.Selecting only the mode at higher wavelengths (λ>, see �g. 8.6.b), we observe a quali-tatively di�erent far �eld emission. Fig. 8.13.a and b show the far �eld emission of λ> and the153



Figure 8.11: (a)-(b) Experimental far �eld emission pro�le of two L3 cavities separated away bythree rows of holes when pumping the left and right cavity, respectively. (c) Experimental near�eld emission while pumping the left cavity. (d) Photoluminescence spectrum (for an injectedpower of 24 µW and 0.2 s of integration time) when pumping the left (black line) and right (redline) cavity. (e) Experimental near �eld emission when pumping the right cavity.one of the anti-symmetric mode obtained by FDTD simulations. Note the excellent agreementbetween these two images. Fig. 8.13.c and d show the near �eld and the photoluminescencespectrum of this mode. Note that both cavities are emitting, in agreement with the simulationsof the anti-symmetric mode (�g. 8.12.e). Indeed, looking at �g. 8.13.a and c and consider-ing the fact that λ> is at higher wavelengths, we conclude that this mode corresponds to theanti-symmetric mode of two coupled cavities. The �ngerprints of optical coupling are clearlycontained in the far �eld of the antisymmetric mode.8.4.3 Near and far �eld images of two L3 cavities separated away by 5 rowsof holesIn the case of two cavities separated away by 5 rows of holes, as in the previous case, we can testthree di�erent situations: I) pumping the "left" cavity, II) pumping in the middle, III) pumpingthe "right" cavity, as sketched in �g. 8.14. In I and III a single peak is observed, while for IItwo overlapping peaks are obtained, �g. 8.14.Fig. 8.15.a and b show the far �eld emission for I and III, respectively. The near �eld154



Figure 8.12: Experimental far �eld emission pro�les of two L3 cavities separated by 3 rows ofholes when pumping in the middle and collecting only the emission of the mode at lower wave-length (λ<, �g. 8.6.a). (b) Numerical (provided by FDTD simulations) far �eld emission of thesymmetric mode of coupled cavities. (c)-(d) Experimental near �eld emission and photolumines-cence spectrum (for an injected power of 100 µW and 0.2 s of integration time). (e) Numericalcalculations of the near �eld of the symmetric mode.
155



Figure 8.13: Experimental far �eld emission pro�le of two L3 cavities separated by 3 rows ofholes when pumping in the middle and collecting only the emission of the mode at higher wave-length (λ>, �g. 8.6.a). (b) Numerical (provided by FDTD simulations) far �eld emission of theantisymmetric mode of coupled cavities. (c)-(d) Experimental near �eld emission and photolumi-nescence spectrum (for an injected power of 47 µW and 0.2 s of integration time). (e) Numericalcalculations of the near �eld of the antisymmetric mode.
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Figure 8.14: Photoluminescence spectrum for di�erent pump localizations (inset) for two L3cavities separated away by �ve rows of holes. Note that also in this case two modes are observedin II.emission for I and III is plotted in �gs. 8.15.c and e, respectively, while �g. 8.15.d shows thespectra of both con�gurations (I in black line and III in red line). The overlap of the bothresonances is clearly observed. As in the case of �g. 8.11, only one mode is being excited. Inthe following section we will discuss the origin of the suppression of the second mode when thepump beams excites only one cavity.Pumping the system in the center, at high powers, two modes are observed separatedaway by ∼ 1 nm, see �g. 8.14.II. The spectral separation between them is shorter than theirwidth which makes them di�cult to collect separately. Even more, the spectrum oscillates be-tween these two modes constantly: a mode competition takes place. The emission pro�le alsooscillates between two di�erent patterns. Fig. 8.16.a shows the far �eld emission while maxi-mizing the signal of the mode at lower wavelengths. In order to compare this result with thetheory, FDTD numerical simulations as the ones depicted in section 8.11 were carried out fortwo L3 cavities separated away by 5 rows of holes. This simulation shows the symmetric modecentered at λS = 1599.3 nm with a quality factor of QS = 23300 and the antisymmetric modecenter at λA = 1600 nm with QA = 28000. Fig. 8.16.b shows the far �eld emission found inthis simulation for the symmetric mode. Note the similarities between �g. 8.16.a and b. Theexperimental near �eld of this mode is plotted in �g. 8.16.c: both cavities are "turned on",in agreement with the near �eld found in the simulations (�g. 8.16.d). All these observationsindicate that the λ<-mode indeed corresponds to the symmetric one. We will return to thisdiscussion in the next section.Furthermore, the far �eld emission obtained by maximizing the signal of the mode athigher wavelengths, �g. 8.17.a, is in good agreement with the far �eld found in the numericalsimulations for the antisymmetric mode, �g. 8.17.b. In addition, the near �eld emission, �g.8.17.c, shows the intensity delocalized in both cavities as in the numerical simulations, �g. 8.17.e.157



Figure 8.15: (a)-(b) Experimental far �eld emission pro�le of two L3 cavities separated away by�ve rows of holes when pumping the left and right cavity, respectively. (c) Experimental near �eldemission while pumping the left cavity. (d) Photoluminescence spectrum (for an injected powerof 47 µW and 0.2 s of integration time) when pumping the left (black line) and right (red line)cavity. (e) Experimental near �eld emission when pumping the right cavity.
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Figure 8.16: (a) Experimental far �eld emission pro�le of two L3 cavities separated by 5 rows ofholes when pumping in the middle and maximizing the emission of the mode at lower wavelength.(b) Numerical (provided by FDTD simulations) far �eld emission of the symmetric mode ofcoupled cavities. (c)-(d) Experimental near �eld emission and photoluminescence spectrum (foran injected power of 140 µW and 0.2 s of integration time). (e) Numerical calculations of thenear �eld of the symmetric mode.
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The excellent agreement between �gs. 8.17.a and b and the fact that this mode is red-shifted re-spect to the cavity mode ( �g. 8.17.d) lead us to conclude that this λ>-mode indeed correspondsto the antisymmetric mode of the coupled cavity system.

Figure 8.17: (a) Experimental far �eld emission pro�le of two L3 cavity separated by 5 rows ofholes when pumping in the middle and maximizing the emission of the mode at higher wavelength.(b) Numerical (provided by FDTD simulations) far �eld emission of the antisymmetric mode ofcoupled cavities. (c)-(d) Experimental near �eld emission and photoluminescence spectrum (foran injected power of 140 µW and 0.2 s of integration time). (e) Numerical calculations of thenear �eld of the antisymmetric mode.8.4.4 DiscussionIn the previous paragraphs the near and far �eld emissions of two L3 cavities in a same photoniccrystal separated away by three (p=3) or �ve (p=5) rows of holes were measured. In order tocompare the images found through numerical simulations and the experimental ones, we havemeasured the FWHM of the lobes observed in the images. For this, we measured the intensitypro�le along a circle concentric with the image, whose radius corresponds to the maximum ofintensity of the lobe. Fig. 8.18.a and b show the measurement of the lobe width.Table 8.1 summarizes the theoretical and experimental lobe widths for the di�erent pump160
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L3 single λ< λ< λ< λ>Theoretical 0.9Experimental 0.7L3 Coupled p=3 Theoretical 0.5 0.4Experimental 0.6 0.5 0.5 0.2L3 Coupled p=5 Theoretical 0.3 0.3Experimental 0.8 0.7 0.3 0.3Table 8.1: Comparison between the lobe widths of the theoretical and experimental far �eld emis-sion pro�le images, in units of k/(2π/λ), for the di�erent samples and pump con�gurations. theagreement theoretical/experimental is very good in all the cases except: the experimental width of
λ>-mode for p=3, which may be due to a cut o� e�ect of the NA; and the lobe widths of λ<-mode,which indicates that the energy is mostly localized in one cavity.the pump induces a frequency blue-shift. This shift may be important, according to the resultsof chapter 5: the linear resonance obtained with the tapered �ber is systematically red-shifted ofabout ∼ 6 nm with respect to the resonance measured in photoluminescence experiments. Thisshift leads to a di�erence in the resonance frequency of each cavity. This di�erence may not be ashigh as ∼ 6 nm when pumping one of the cavities, since some of the carriers excited by the pumpreach the second cavity by di�usion, but it may still be important. In order to study the cou-pling between the cavities when such di�erence is induced, the frequencies of the hybrid modesand their amplitudes were calculated as a function of the frequency di�erence between the cavi-ties. Within this aim, we have computed the eigenvalues and eigenvectors of the following system:

da1
dt

= (iτω1 − 1)a1 + τγa2 + iτκa2
da2
dt

= (iτω2 − 1)a2 + τγa1 + iτκa1

(8.1)Two eigenmodes are obtained from eq. 8.1: a mode for which the phase di�erence betweenthe cavities is zero, usually called bonding (with wavelength λ0), and one with a phase di�erenceof π, called anti-bonding (with wavelength λπ). These modes become the syummetric (λ0 = λS)and antisymmetric (λπ = λA) as far as the system is symmetric, i.e. λ1 = λ2. Fig. 8.19.a shows
λπ and λ0 as a function of the di�erence of the resonance wavelengths for p=3. For this situationwe set the parameters τκ = 10 and τγ = −0.3 as it will be deduced in the next chapter. Let usassume that only the cavity 2 is pumped, hence a1(t = 0) = 0 and a2(t = 0) = 1 and λ2 < λ1due to the pumping induced blue-shift. We de�ne the energy in each cavity as:

E1,2 =

∫ ∞

0
|a1,2|2dt (8.2)and (

a1(t)
a2(t)

)
= C0

−→v0eiΩ0t +Cπ
−→vπeiΩπt (8.3)where −−→v0,π is the bonding (anti-bonding) eigenvector. The energy transfer (E1/E2) between thesecond cavity and the �rst one, and the ratio of the bonding (C0) to the anti-bonding (Cπ)modes are plotted in �g. 8.19.b as a function of the λ2 − λ1. In the case λ1 − λ2=4 nm, lessthan half of the intensity is being transferred and the bonding mode is excited a factor 5 more162



than the anti-bonding mode. This may be the reason why we observed more intensity in one ofthe cavities and, in the spectrum, only the bonding mode is being observed.

0 1 2 3 4 5
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

(nm)

1-
0

 (n
m

)

 
  

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

0,4

0,6

0,8

1,0

1,2

1565 1570

 

A

Wavelength (nm)

S

 
|C

0/C

E
1/E

2

 (nm)

0

(a) (b)Figure 8.19: (a) Wavelength of the bonding (λ0) and anti-bonding (λπ) mode as a function of thedi�erence between the resonance wavelength of each cavity (λ1−λ2) for p=3. (b) Energy transferbetween the excited cavity (E2) and the other one (E1) and ratio of the amplitudes of the bongingand anti-bonging modes as a function of λ1 − λ2.The wavelength of the bonding (λ0) and anti-bonding (λπ) modes are plotted in �g. 8.20as a function of the di�erence of the resonance wavelengths for p=5 (which gives τκ = 2.5 and
τγ = −0.014 as we will see in the next chapter). We observed that for λ1 − λ2=4 nm λ0 and λπapproach the values of the resonance wavelengths of each cavity, meaning the energy is stronglylocalized in one of the cavities. This is shown in �g. 8.20 where the energy transfer (E1/E2)between the second cavity (the one excited) and the �rst one, and the ratio of amplitudes of thebonding and anti-bonding modes are plotted as a function of λ1−λ2. For λ1−λ2=4 nm only 3%of the energy is being transferred from the excited cavity to the other and the bonding mode isexcited 50 times more than the anti-bonding one. This is the reason why the anti-bonding modeis not observed when only one cavity is pumped. Indeed, since the energy is highly concentratedin one of the cavities the far �eld emission pro�le is essentially equivalent to the one of a singlecavity.8.5 ConclusionThe evanescent coupling between cavities has been studied in di�erent systems using di�erentmethods. Through statistical analysis of the resonance position in two L3 cavities separated awayby three rows of holes in the Γ−M direction, we found an averaged (for di�erent hole radius)mode splitting of ∼ 5 nm which is a �rst, but not conclusive, evidence of coupling. Studies on thephotoluminescence spectrum of Noda-type cavities separated away by 2, 3, 4, 5 and 20 periodsshowed the dependence of the mode splitting with the barrier thickness, in good agreement withthe theory. This provides further evidence pointing to splitted modes rather than non-interactingcavities.We decided to work with L3-types cavities separated away by three and �ve rows, mainlybecause they are easier to inject through the tapered �ber. By means of photoluminescence163
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resonators is commonly used in optics. However, this type of analysis has never been reported inPhC cavities, perhaps due to collection issues. To our knowledge, the results presented, togetherwith previous anticrossing measurements [79], are the only conclusive demonstrations of opticalcoupling in PhC cavities.In the following chapter we apply our system to the study of nonlinear dynamics in PhCcoupled nanocavities.
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Chapter 9Towards experimental demonstration ofspontaneous symmetry breakingIn this section we present nonlinear dynamical measurements performed in the samples of coupledcavities described in section 8.6. Systematic studies are carried out only for the cavities separatedaway by 3 rows of holes. In this case, modes are clearly splitted allowing us to study the opticalresponse for injection wavelengths near each resonance. In the last part of this chapter, we relatethe experimental results to the the theory developed in section 7.2.9.1 Nonlinear dynamics in two L3 cavities separated away by �verows of holesIn order to study the spontaneous symmetry breaking in evanescently coupled cavities, thehysteresis cycles are studied since, according to section 7.3.2 they can be distinguished frombistability of a single cavity.In the case of cavities separated away by �ve rows of holes, measurements of nonlineardynamical regimes give behaviors comparable to the ones found in chapter 6, section 6, for asingle cavity. It is worth mentioning that, since the cavities are separated away ∼ 2.4 µm, whichis approximately the �ber width, simultaneously coupling both cavities with the �ber is quitedi�cult. Moreover, a symmetrical injection is not guaranteed. Even though, placing the �berabove one of the cavities, one mode is observed. For this mode we observed bistability, excitabilityand self-pulsing regimes but without any evidence of symmetry breaking. Most probably, thismay be due to the fact that the injection is not symmetric in this case.9.2 Nonlinear dynamics in two L3 cavities separated away bythree rows of holesHere we look for the spontaneous symmetry breaking in the evanescently coupled cavities of �g.8.5.a. Nonlinear dynamical mechanisms such as bistability, self-sustained oscillations and ex-citability are studied. Special attention is focussed on hysteresis cycles which are the observablethat may contain �ngerprints of symmetry breaking.Let us start by characterizing the linear resonances, meaning the spectral features inthe absence of absorption saturation and/or refractive index nonlinear e�ects. The cavities are167



injected through the tapered �ber using a 30 nm-broadband resonant signal (as described insection 3.2.2). The re�ected signal is collected and sent to an optical spectrum analyzer (OSA).According to the discussion of section 8.3, the �ber must be positioned asymmetrically withrespect to the cavities in order to excite the antisymmetric mode of the system. Fig. 9.1.a andb show the spectra when the �ber is placed between the cavities and closer to one of them,respectively; as a consequence, λ< (the symmetric mode, λ< = λS) is observed in �g. 9.1.a and
λ> (the antisymmetric mode, λ> = λA) is observed in �g. 9.1.b. We observe λS centered at
λS = 1567.5 nm with a loaded quality factor of QS,loaded = 4236 and the antisymmetric onecenter at λA = 1571.5 nm with QA,loaded = 5069. As expected, the antisymmetric mode hasa higher quality factor. The arrows in �g. 9.1 correspond to the spectral range of wavelengthdetuning used in the next experiments (section 9.2.1). This detuning range satis�es the conditionto obtain symmetry breaking which is, according to section 7.3, τA(ωA − ω0) < −

√
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(a) (b)Figure 9.1: (a) Re�ectivity spectrum of (a) λS and (b) the antisymmetric modes of the system.The modes in (a) and (b) are centered at λS = 1567.5 nm with QS,loaded = 4236 and λA = 1571.5nm with QA,loaded = 5069, respectively. Injected power=107 µW and resolution= 0.05 nm. Thearrows correspond to the spectral range of wavelength detuning used in CW experiments of section9.2.1.9.2.1 Nonlinear dynamical response at low wavelengthsIn the following we investigate the nonlinear dynamical regimes of the system for injected wave-lengths near the �rst (i.e. symmetric) mode, �g. 9.1.a. In order to study the bistable regime thesystem is injected through the tapered �ber with a modulated CW signal. The modulation isgiven by triangular pulses of 4 MHz, 40 KHz repetition rate. The experimental set up is the onedescribed in section 5.2.2. Fast optical bistability is observed for injection powers greater than
∼ 0.2 mW. The input (black line) and re�ected signal (blue, red and green line) for detunings(∆λ = λ0 − λinj) between 1.2 nm and 1.5 nm are shown in �g. 9.2.a. The bistable behavior ishighlighted in �g.9.2.b where the re�ected power is plotted as a function of the input power fora detuning of 1.4 nm (red curve in �g. 9.2.a), showing the hysteresis cycle.Hysteresis loops are observed for detuning values between 1.5 and 0.4 nm. Fig. 9.3shows the re�ected signal as a function of the input power for di�erent detunings. The loop sizeincreases for larger detuning-values, up to ∆λ ∼1.5 nm; over this value no bistability is observedfor the range of power used here. The switching time is measured as the time widths between168
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(a) (b)Figure 9.2: (a) Time traces of input (black line) and re�ected (blue, red and green line) signalsfor a detuning of ∆λ =1.2, 1.4 and 1.5 nm, respectively. (b) Hysteresis cycles showing bistablebehavior (∆λ =1.4 nm). The arrows indicate the sense of the cycle.the minimum and the maximum of the switch processes and gives ∼4 ns for the switch on and o�times, meaning that the e�ect leading the bistability is electronic. Note the similarities betweenthese curves and the ones found in section 5.2.2 (�g. 5.17): no evidence of symmetry breakingis observed in these measurements.
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Figure 9.3: Hysteresis cycles showing bistable behavior. Detuning-values with respect to the cavityresonance are, from λa to λh: 1.5, 1.4, 1.3, 1.2, 1, 0.8, 0.6 and 0.4 nm. The input power ismeasured at the tapered �ber input. The duration of the switch processes is ∼ 4 ns for the on ando� switches.In the following, self sustained oscillations and excitability are studied. Turning o� thesignal modulation and injecting the system with a CW beam above the bistability threshold,169



self-sustained oscillations are obtained. Fig. 9.4 shows the re�ected signals as function of timefor di�erent detunings. Note the similarities with the oscillations found for a single cavity (�g.6.2).
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Figure 9.4: Self-sustained oscillations. Re�ected signals as a function of time for di�erent detun-ings, from λa to λf : 1.3, 1.2, 1.1, 1, 0.9 and 0.8 nm. The input power, measured at the tapered�ber input, is 2.5 mW.Let us now focus on excitability. In the case that both cavities are excitable, the responseto a perturbation of one of the cavities may act as a perturbation for the second cavity. Indeed,two excitable pulses may be observed, provided the response time is longer than the pulse itself;otherwise, larger pulses could be obtained. In the experiments, an excitable regime was alsoobserved decreasing the injected power under the bistability threshold and adding an incoherentperturbation by the surface as described in section 6.2. Fig. 9.5 shows the re�ected signal asa function of time for a detuning of 1.3 nm. For perturbation powers lower than 4 µW , nooutput pulse is observed. However, for higher powers an excitable pulse in the re�ected signal isobtained. Once again, no qualitative di�erence is observed with respect to the excitable pulsesof a single cavity (�g. 6.6).It is worth mentioning that in this case, where the �ber is positioned symmetricallyrespect to the cavities as in the case studied in section 7.3.2, we have also studied the systemresponse under injected wavelengths close to the antisymmetric mode. This is because, accordingto the results of section 7.3, the symmetry breaking is achieved for detunings that satisfy thebistability condition of the antisymmetric mode τA(ωA − ω0) < −
√
3. However, no evidence ofsymmetry breaking was found.In summary, even when a hybrid mode is likely to be excited in this case, the behavior ofthe system in �gs. 9.3, 9.4 and 9.5 cannot be distinguished from that of a single cavity. Moreover,features of the hysteresis cycle as the ones predicted by the CMT model (see section 7.2) havenot been observed. Therefore, no evidence of spontaneous symmetry breaking was obtained. Inconclusion, the bistable, self-pulsing and excitable regimes experimentally observed correspondto non-linear dynamical scenarios involving the symmetric mode of the coupled-cavity system.170
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(a) (b)Figure 9.6: (a) Time traces of input (black line) and re�ected (blue, red and green line) signalsfor a detuning of ∆λ0 =0.6, 1 and 1.1 nm, respectively. (b) Hysteresis cycles showing bistablebehavior (∆λ0 =1.1 nm). The arrows indicate the sense of the cycle.171



Hysteresis loops are observed for detunings between 0.3 and 1.2 nm. Fig. 9.7 shows there�ected signal as a function of the input power for di�erent detunings. The switching timesare ∼7 ns for the switch on and o� times, consistent with electronic e�ects leading to opticalbistability. Also in this case, the curves are similar to the ones found for a single cavity.
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Figure 9.7: Hysteresis cycles showing bistable behavior. Detuning-values with respect to the cavityresonance are, from λa to λi: 1.2, 1.1, 1, 0.9, 0.7, 0.5, 0.4 and 0.3 nm. The input power ismeasured at the tapered �ber input. The durations of the switch processes is ∼ 7 ns for the onand o� switches.Self-sustained oscillations are also observed for detunings between 0.8 and 1.1 nm, �g.9.8. The shape of the pulses is similar to the one found in �g. 6.2.All the aformentioned results show that, injecting the system with wavelengths nearthe mode at lower and higher wavelengths, no evidence of spontaneous symmetry breaking isobtained. In the following section we discuss possible reasons for the absence of this phenomenon.9.3 DiscussionIn order to further understand the experimental results, we adjust the parameters of the theorydeveloped in section 7.2 to match the experimental conditions, for the structures shown in �g.8.5 coupled through a micro�ber.9.3.1 L3 cavities separated away by three rows of holesLet us begin with the L3 cavities separated away by three rows of holes. In order to applythe formalism to the experimental case, we need to obtain the values of τγ, τκ and δ from theexperimental results. τκ can be found from the wavelength splitting. Considering λ< = λS , thissplitting is ∼ 4 nm (see �g. 8.6.b). Then τκ is given by (according to eq. 7.7):172
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τκ = τ

(ωS − ωA)

2
∼ (λS − λA)

∆λFWHM
(9.1)where ∆λFWHM corresponds to the resonance width, which in the experimental case is ∼ 0.4nm. Hence, τκ ∼ 10.Regarding τγ, as we have seen in section 7.3, it can be obtained from the di�erence in thequality factor of the symmetric and antisymmetric modes (eq. 7.24). Therefore, we measure thesequality factors from the resonance spectra in �gs. 9.1.a and b, respectively, giving QS = 4236 and

QA = 5069. τ is estimated from the quality factor of the single L3 cavity (section 5.7) as τ ∼ 6ps. This leads to τγ = −0.3, in good agreement with the value of τγ calculated through theFDTD numerical simulations of section 7.1. Considering one of the detuning values used in theexperiment of �g. 9.3 (∆λ = 1.1 nm) we calculate δ as: δ = τ(ω0−ω) = τ(ωS −ωin−κ) = −15,yielding to Λ = δ − τκ = −25. Fig. 9.9.a shows the energy inside each cavity as a function ofthe injected signal. Note that the symmetry breaking threshold is a factor 30 higher than thethreshold found for τκ = 0.8 (�g. 7.9). Experimentally, however, the injected powers are keptlow in order to avoid damaging the sample. Fig. 9.9.b shows a zoom of the area depicted in redin �g. 9.9.a. We observe a bistable regime for the symmetric mode with a threshold 10 timeslower than the symmetry breaking threshold, meaning that, with the injected powers used inthis experiment, we can only see the bistability of the symmetric mode.In order to get better insight into the experimental hysteresis cycles found in �g. 9.3,calculations of the re�ected signal as a function of the injected power are carried out. Using eq.7.29 we plot, in �g. 9.10, the hysteresis cycle for the parameters of �g. 9.9. The hysteresis cyclecorresponding to bistability of the symmetric mode is observed. In addition, fast oscillations areobserved close to the pitchfork bifurcation since no stable �xed point exists for Pin/P0 & 100173
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most probably due to the limited bandwidth of the detector.
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Therefore, the theory developed in section 7.3 cannot be applied since the injection is consideredsymmetric, for which the antisymmetric mode cannot be excited in the linear regime. Therefore,in the present case, no spontaneous symmetry breaking is expected since the symmetry is alreadybroken: only nonlinear dynamical behaviors of the antisymmetric state are observed.9.3.2 L3 cavities separated away by �ve rows of holesWe proceed as before to understand the experimental results found for the cavities separatedaway by �ve rows of holes. In this case, the resonant modes overlap, as discussed in section 8.3and they cannot be isolated; hence, we cannot obtain the value of γ from the di�erence in thequality factors of the symmetric and antisymmetric modes. For this reason, we will consider theresults of the numerical simulations (see section 8.4.3) since we have seen, in the case p=3, thatthe value found for τγ from the experience and from the simulations are in good agreement. Thenumerical simulations give QS = 23300 and QA = 28000 yielding to τγ = −0.014.The spectral separation between the symmetric and antisymmetric modes can be ap-proximated by ∼ 1 nm, according to section 8.4.3, giving τκ = 2.5. In order to compare thiscase with �g. 7.13, let us consider δ = −0.5 which gives Λ = −3. Fig. 9.13.a shows the en-ergy inside the cavities as a function of the input power. This case corresponds to region I in�g. 7.13, where the symmetry breaking arises from a pitchfork bifurcations. More importantly,the symmetry breaking can be distinguished in the re�ected signal vs input signal plot as theabsence of hysteresis cycles and a marked change in the slope of the curve at Pin/P0 ≈ 10 asshown in �g. 9.13.b. Moreover, this change in the slope becomes more evident as the detuning isincreased. Fig. 9.13.c shows the intracavity energy for each cavity as a function of the injectedsignal for τκ = 2.5, τγ = −0.014 and δ = −3. Note that the features of the curve becomemore complex. In this case, the symmetry breaking can be distinguished by a marked changein the slope followed by a hysteresis cycle as shown in �g. 9.13.d. Also note that the changein the slope is obtained for reasonable injected powers, i.e. 10 times the characteristic power(P0). Therefore this con�guration is the most suitable for obtaining the spontaneous symmetrybreaking. Experimentally, a major di�culty arises from the large separation of the cavities: the�ber-assisted coupling method appears to be no longer e�cient in this case.9.4 ConclusionsNonlinear dynamical regimes were studied in evanescently coupled cavities. Bistable, self-pulsingand excitable operation were observed in two L3 cavities separated away by three and �ve rowsof holes in the Γ−M direction. Unfortunately, no evidence of spontaneous symmetry breakingwas observed.Through these experimental results we have obtained the necessary parameters to adjustthe nonlinear model developed in chapter 7 to the experimental conditions. We have found that,in the case of the cavities separated away by three rows of holes (p=3), the detuning valueschosen in the experiment, i.e. blue detuning with respect to the symmetric mode, lead to ultra-fast oscillating dynamics. Even if these regimes can take place in our system, they would nothave been revealed in our measurements due to experimental limitations. In addition, withinsymmetrical excitation conditions, injecting the system at lower δ (i.e. near the antisymmetricmode), symmetry breaking threshold about 120 times higher than the characteristic power P0are obtained, i.e. about 70 times higher than the onset of bistability (Ponset ∼
√
3P0). Therefore,176
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Chapter 10Conclusions and Prospects10.1 ConclusionsNonlinear optics is being increasingly studied since its beginning �fty years ago. Among allthe nonlinear phenomena that can be observed in optical systems, optical bistability have beenextensively investigated in the last decades, mostly due to its potential for optical memories andswitching. In optical bistability the system allows two possibles output signals for an equal injec-tion. By de�nition, bistability only deals with static regimes and one dynamical variable, but itis often the precursor of exciting dynamical regimes, which can be encountered in several naturalsystems including neurons, cardiac tissues and chemical reactions. Dynamical nonliearities allowrich and complex non-stationary phenomena such as excitability and self-sustained oscillations.In a self-sustained oscillations regime the nonlinear system reacts emitting a periodical signalwhile excited with a CW beam. In the excitable regime the system develops all-or-none cali-brated optical responses to a small perturbation. In both cases the nonlinear dynamics arisesfrom the competition between the evolution of two dynamical variables with di�erent time scales.It is well known that nonlinear e�ects can be enhanced in optical resonators. During thepast decade, small size optical resonators came to maturity, thanks to an enormous amount ofwork both technological and numerical to anticipate and engineer their optical properties. Amongthem, 2D PhC nanocavities share the advantage of attaining small mode volumes . (λ3/n)3,high quality factors up to 106 and the potential of being connected in complex architectures byclever PhC designs.Only few works were devoted to the understanding and implementation of nonlinear dy-namics in nanoresonators. They have mostly focussed on optical bistability of thermal origin,mainly because thermal e�ects in ultra-small cavities are usually dominant against ultra-fast non-linearities. Electronic nonlinearities in nanoresonators are more di�cult to achieve and observedue to both technological issues and small signals in play with fast time scales (ps-ns scale). Eventough, some works have recently demonstrated bistability of electronic origin in PhC nanocavities[87, 88]. However, more complex dynamical nonlinear scenarios are quasi unexplored in 2D PhC.In particular, excitability and self-pulsing regimes in PhC nanocavities have never been reported.The main objective of this PhD thesis was to explore, for the �rst time, self-sustainedoscillations and excitability in photonic crystal nanocavities. We achieved such nonlinear dy-namical regimes by introducing a competition between the electronic and thermal dynamics insuspended membrane 2D PhC nanocavities with QWs as active media.Due to the complexity of the possible scenarios, a �rst e�ort was devoted to develop a179



model able to capture the combined e�ect of the cavity and the nonlinear responses. For this,we have developed an original coupled mode approach that includes the intracavity energy, thecarrier dynamics and temperature variation in a generic cavity �lled with III-V semiconductormaterial. This model allows the study of di�erent regimes in optical resonators such as bistability(which involves at least a single nonlinear variable) and excitability (which involves at least twononlinear variables).In a second step we have experimentally investigated the role of each dynamical variableseparately. Although thermal and electronic e�ects have been widely studied, they are stronglydependent on the particularities of the 2D PhC design and technology. Therefore, measurementsof the thermal relaxation times in a L3 cavity with QDs as active medium were carried out.Through an innovative technique, exploiting the re�ected signal change due to an incoherentpump, a thermal relaxation time of the order of 1 µs was obtained in good agreement withthermo-re�ectance measurements developed in [116]. On the other hand, through a pump andprobe technique we have measured the electronic recombination time. Times of the order of30 ps were found. This short time is associated to bimolecular recombination processes in thewetting layer. These times are the time scales of the regimes sought in this work: bistability,excitability and self-pulsing.Coupling high light intensity levels inside nanocavities for nonlinear dynamical studiesis a challenging task: e�cient input coupling methods are required. With this aim, we havedeveloped a tapered �ber approach to e�ciently inject light into the cavity mode. The couplingmethod consists in evanescent coupling between the tapered �ber and the nanocavity. Couplinge�ciencies of the order of 28% in samples with QDs as active materials and 7% in samples withQW were achieved. Even with 7% coupling e�ciencies we have been able to study nonlineardynamical regimes in PhC nanocavities for input powers in the �ber of less than 1 mW.Bistable regimes governed by thermal or electronic e�ects were studied. In particular, afast bistable switching of electronic origin was obtained in samples with QWs as active media.Bistable thresholds as low as ∼ 10 µW coupled into the cavity were measured, in good agreementwith the values reported by Notomi et al. [82] and Kim et al. [87].We capitalized on these results in order to investigate nonlinear dynamical responses asso-ciated to the competition between electronic and thermal nonlinear variables. Namely, nonlineardynamical regimes involving both thermal and electronic nonlinear e�ects were investigated. Wehave experimentally demonstrated self-pulsing and excitable behavior in this sample. These re-sults represent the �rst ever reported demonstration of excitability and self-sustained oscillationsin photonic crystal nanocavities, which might open a door to future applications of this cavitiesto all optical devices.A second objective of this PhD thesis was to explore the conditions to obtain symmetrybreaking in coupled nonlinear nanocavities. Symmetry breaking is a fundamental phenomenonthat has never been demonstrated in PhC resonators. This phenomenon is characterized by anon-symmetric response of the cavities under a symmetrical injection. We �rst developed ananalytical model based on coupled mode theory (CMT). Through this model, we have obtainedthat symmetry breaking takes place for a wide range of input powers, in cavities coupled to theexternal continuum by three ports and, more importantly, in the experimental con�guration:two cavities coupled to the outside by a tapered �ber.In order to study this phenomenon experimentally, di�erent types of coupled cavities werefabricated and investigated. For L3 adjacent cavities, we have obtained conclusive evidence of180



evanescent coupling through far �eld emission pro�le images. To our knowledge, this is the �rstreported study of the coupling between cavities in PhC by means of near and far �eld emissionpro�le images. Moreover, it is the �rst conclusive evidence of the existence of a phase coherencebetween the �elds inside each cavity. This theoretical and experimental results set the basis forthe demonstration of symmetry breaking in a near future.10.2 ProspectsDuring this PHD thesis the conditions for the experimental demonstration of spontaneous sym-metry breaking were determined from theoretical and experimental studies. Unfortunately, the�nal experimental demonstration was elusive, mainly due to the lack of time to optimize thecavity coupling conditions. Simulations and experiments have shown that the most likely prob-lem is the coupling strength : too strong for cavities separated by 3 rows of holes and, for thoseseparated by 5 rows of holes, the �ber-assisted coupling method may be poorly adapted dueto the increase of the �ber-cavity distance; symmetrical injection into the system may not beguaranteed in such a case. We think that symmetry breaking will be demonstrated in a nearfuture thanks to an improved control of the coupling strength. One possible way of controllingthis coupling is to change the diameter of the holes between the cavities. Therefore, a shortterm prospect is the systematic study, through numerical simulations, of the mode splitting as afunction of the size of holes in the barrier between the cavities.The tapered �ber coupling method, used in this work, allowed demonstrating both self-sustained oscillations and excitability in the 2D PhC nanocavities. However, this method presentssome drawbacks, such as the impossibility to excite the two cavities simultaneously while de-tecting separately their emissions. This becomes important for the symmetry breaking measure-ments, for which the symmetric excitation of the cavities is mandatory and the detection of thestate of each cavity can give an insight on the localization of light. Besides, in order to study thecoupling between cavities, it may be interesting to inject one of the cavities and study the transferof energy between them by collecting the output signal from the other one. Another drawbackof this coupling method is the threshold increase of nonlinear behaviors due to the relatively lowcoupling e�ciency. Therefore, a mid-term prospect is the implementation of a recently proposedmethod that would replace the tapered �ber coupling system, as explain below.Due to the strong solid angle of the emission diagram of L3 nanocavities, their in-put/output coupling by the surface is quite ine�cient even when a high numerical apertureobjective is used. This is the reason why the coupling via a tapered �ber was implemented.Several works have studied the "beam-shaping" in PhC devices [135, 136, 137], in particular,recent works have investigated high-Q photonic crystal nanocavities with a tailored radiationpattern [138, 139, 140]. This type of cavities allow to collect 80% of the radiated power by opticshaving a numerical aperture of 0.6. Such maximization of the in- and out-coupling e�ciencyinto a narrow emission cone is obtained by properly modifying the holes around the cavity. Thebasic idea, called band-folding technique, is illustrated in �g. 10.1a. and b. The near �eld ofan optimized PhC cavity is distributed as close as possible to the border of the Brillouin zone(BZ) (kx = π/a). If a period 2a is superimposed to the original structure, the distribution of thenear �eld in the reciprocal space is folded with respect to kx = π/(2a) and therefore a replicaof the distribution near the �rst BZ appears at kx = 0. Consequently, radiation is now leakedmainly vertically and the amount of leakage is controlled by the amplitude of the subharmonicswith period 2a [138]. Figs. 10.1.c and d show the L3 cavity without and with modi�cation ofthe period, respectively. The radiation pattern for the cavity in �gs. 10.1.c and d are shownin �gs. 10.1.e and f, respectively [139]. Note the highly directive emission of the cavity where181



the band folding was implemented. It is important to mention that, due to this modi�cation ofthe holes period, the quality factor of the structure is reduced by about a factor 4. This valueis of the same order than the reduction of the cavity quality factor due to the coupling with atapered �ber with a coupling e�ciency of η = 80% (according to the CMT formalism developedin chapter 2). Such geometry would not only provide an alternative channel for light injectionbut also enable selective measurements of the radiation from each cavity with low cross-talk.
(a) (b)

(c) (d)

(e) (f)Figure 10.1: Principle of band folding: (a) schematic representation of the near �eld distributionin the reciprocal space for an optimized cavity; (b) band-folded distribution (Image from [138]).Scheme of a L3 cavity with standard design (c) and with implementation of the band folding(d) through additional sub-harmonic modulation. Radiation pattern with broad emission for thestandard L3 design (e) and highly directive for the modi�ed (f)(Image from [139]).A further advantage of exciting the cavities by the surface is the possibility of simultane-ously exciting an array of cavities. Whereas the tapered �ber allows to symmetrically inject atmost two cavities, a surface injection scheme would allow to inject several cavities "in parallel",provided the excitation spot is large enough. Since, above threshold, an excitable pulse is in-dependent of the excitation intensity, robust pulse transmission can be expected through cavitychains, giving interesting prospects for delay line applications and even original all-optical logicalgates. From the nonlinear dynamical point of view, chains of coupled cavities can be used tostudy the propagation of nonlinear wavefronts, �g 10.2. In this context, this work opens the doorfor investigating interesting and applicable (e.g. all-optical devices) behaviors in two nonlinearcavities in a short term, as well as arrays of excitable cavities in a mid-to-long term.
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Figure 10.2: Excitable wave travelling through the nanocavities.
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