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Abstract. Low-temperature scanning tunneling spectroscopy (STS) under ultrahigh vacuum was

used to investigate In0.53Ga0.47As/In0.52Al0.48As quantum-well (QW) structures, grown by molecular

beam epitaxy on lattice-matched InP(111)A substrates. In a first part, as a preliminary step,

the (111)A epitaxial surface of n-type In0.53Ga0.47As was studied by STS. It was found that the

surface Fermi level is located in the conduction band, close to the bulk Fermi level, and can be

partially controlled by varying the n-type impurity density in the bulk. This result was confirmed

by determining the conduction-band dispersion relation at the surface. Such partial unpinning of

the surface Fermi level indicates a low density of acceptorlike surface states. It was proposed that

these states originate from native point defects located at the surface. In a second part, based on the

results of the first part, (111)A-oriented In0.53Ga0.47As surface QWs grown on top of In0.52Al0.48As

barriers were studied by STS. The STS measurements were performed at the (111)A epitaxial

surface of the In0.53Ga0.47As QW, in order to probe with nanometer-scale resolution the in-plane

spatial distribution of electronic local density of states. It was confirmed that electron subbands

are formed in the QW, and that the electron density in the QW can be varied owing to the partial

unpinning of the surface Fermi level. It was found that a phenomenon of percolation of localized

states occurs in each subband tail, due to the presence of a disorder potential in the QW. The

percolation thresholds were determined by using a semiclassical model. The origin of the disorder

potential was ascribed to the random distribution of the native point defects at the QW surface.

It was also found that a bound state splits off from each subband minimum in the vicinity of a

positively charged native point defect. Both the binding energy and the Bohr radius of the bound

states could be directly determined. Moreover, it was shown that the binding energy and the Bohr
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radius are functions of the QW thickness, in quantitative agreement with variational calculations

of hydrogenic impurity states.

Keywords. Scanning tunneling microscopy, scanning tunneling spectroscopy, molecular beam

epitaxy, III-V compound semiconductor, Fermi level pinning, electronic surface state, quantum

well, Anderson localization, percolation, hydrogenic impurity, binding energy, Bohr radius.

Résumé. Des puits quantiques à base d’hétérostructures In0.53Ga0.47As/In0.52Al0.48As, fabriqués

par épitaxie par jets moléculaires sur substrats InP(111)A, sont étudiés par microscopie et spec-

troscopie à effet tunnel à basse température et sous ultra-vide. La première partie est consacrée

à une étude de la surface épitaxiée (111)A de In0.53Ga0.47As de type n. Il est découvert que le

niveau de Fermi de surface est positionné dans la bande de conduction, à proximité du niveau de

Fermi de volume, et peut être partiellement contrôlé en variant la concentration d’impuretés de

type n dans le volume. Ce résultat est confirmé en déterminant la relation de dispersion de la

bande de conduction en surface. Un tel dépiégeage partiel du niveau de Fermi de surface indique

que la densité d’états de surface accepteurs est faible. Il est proposé que ces états proviennent de

défauts ponctuels natifs localisés à la surface. La deuxième partie, basée sur les résultats obtenus

dans la première partie, est consacrée à une étude de puits quantiques In0.53Ga0.47As de surface,

déposés sur des barrières In0.52Al0.48As selon la direction (111)A. Les mesures sont conduites sur la

surface épitaxiée (111)A du puits quantique In0.53Ga0.47As, de manière à pouvoir sonder à l’échelle

du nanomètre la distribution de densité locale d’états électroniques dans le plan du puits quantique.

Il est confirmé que des sous-bandes électroniques sont formées dans le puits quantique, et que la

concentration d’électrons dans le puits peut être contrôlée du fait du dépiégeage partiel du niveau

de Fermi de surface. Il est découvert qu’un phénomène de percolation d’états localisés survient

dans la queue de chaque sous-bande, ce qui indique la présence d’un potentiel désordonné dans le

puits quantique. Les seuils de percolation sont déterminés en utilisant un modèle semi-classique.

L’origine du potentiel désordonné est attribuée à une distribution aléatoire des défauts ponctuels

natifs à la surface du puits quantique. Il est également découvert qu’un état lié apparâıt au bas de

chaque sous-bande à proximité d’un défaut ponctuel natif de type donneur. L’énergie de liaison et

le rayon de Bohr des états liés peuvent être directement déterminés. De plus, il est démontré que
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l’énergie de liaison et le rayon de Bohr sont fonctions de l’épaisseur du puits quantique, en accord

quantitatif avec des calculs variationnels d’impuretés dans le modèle de l’atome d’hydrogène.

Mots-clés. Microscopie à effet tunnel, spectroscopie à effet tunnel, épitaxie par jets moléculaires,

semiconducteur III-V, piégage du niveau de Fermi, état électronique de surface, puits quantique,

localisation d’Anderson, percolation, impureté, énergie de liaison, rayon de Bohr.
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1 Introduction

Research in the field of two-dimensional electronic systems (2DES) [1] is at the cutting edge of

modern solid-state physics. From the viewpoint of technological applications, 2DES form the

core of field-effect transistors [2], which are the workhorses of today’s electronic industry. From

the viewpoint of fundamental science, the study of 2DES has led to the discovery of fascinating

quantum-mechanical phenomena, including weak localization [3], integer quantum Hall effect [4],

and fractional quantum Hall effect [5].

The most successful method to create 2DES is to employ semiconductor heterostructures [6–9]

fabricated by molecular beam epitaxy (MBE) [10–13]. Using MBE growth, layers with different

chemical composition can be superimposed on each other with atomically abrupt interfaces. Apply-

ing this technique to semiconductors, in particular III-V compound materials, the band structure

along the growth direction can be tailored in a nearly arbitrary way [14]. In such artificial semi-

conductor heterostructures, it is possible to realize 2DES by restricting electron motion to a plane

perpendicular to the growth direction. Two main types of semiconductor heterostructures allow

the formation of 2DES, namely single-interface structures (figure 1.1) and quantum-well (QW)

structures (figure 1.2).

The interest in 2DES formed in semiconductor heterostructures grown by MBE is two-fold.

First, the electron mobilities are extremely high [15, 16]. This results from the purity of semicon-

ductor materials and the smoothness of heterointerfaces obtained by MBE, as well as from the use

of the technique of modulation doping [17]. Second, the main parameters of the system can be

readily controlled, including quantum confinement along the growth direction (tuned by varying

the thickness of grown layers) and electron density (tuned by modulation doping [17] or by an ex-

ternal electric field [18–23]). Owing to these remarkable properties, semiconductor heterostructures

are employed in today’s highest-frequency field-effect transistors [24, 25], and are indispensable for

exploring the complex properties of 2DES [16].

Crystalline defects play a crucial role in solids in general and in 2DES in particular. In order

to fully understand the influence of defects on the properties of 2DES, analytical tools with high
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Figure 1.1: (Color) Formation of 2DES in semiconductor heterostructures: band diagrams along the

growth direction z for a single-interface structure. The wide-gap layer (called the barrier) is doped with

donor impurities, while the narrow-gap layer (called the channel) is undoped. Since the conduction-band

minimum in the channel lies lower in energy than the impurity level in the barrier, the impurities in the

barrier are ionized and the electrons are transferred to the conduction band in the channel. The conduction-

band electrons in the channel are pulled against the potential step at the interface with the barrier, due to

the electric field of the ionized donors from which the electrons came. Thus the conduction-band electrons

in the channel are confined along z by a triangular potential. The fact that only the barrier is doped while

the channel is undoped is referred to as modulation doping [17]. Modulation doping allows to spatially

separate the free electrons from their parent donor impurities, leading to high electron mobilities in the

channel. (a) Out of equilibrium (before the transfer of electrons from the barrier to the channel). (b) At

equilibrium (after the transfer of electrons from the barrier to the channel).
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Figure 1.2: (Color) Formation of 2DES in semiconductor heterostructures: band diagram along the growth

direction z for a QW structure. A narrow-gap layer (called the QW) is grown between two wide-gap layers

(called the barriers). Conduction-band electrons in the QW are bounded on each side by the potential

step at the interface with the barrier. Thus conduction-band electrons in the QW are confined along z by

a rectangular potential.

spatial resolution are necessary. In this respect, scanning tunneling spectroscopy (STS) [26–30] is

one of the most powerful methods. Using STS, it is possible to measure the electronic local density

of states (LDOS) at solid surfaces with atomic-scale resolution. In other words, STS allows to map

in real space the electron wave functions. Thus STS appears as an ideal technique for characterizing

the local properties of 2DES in the vicinity of defects. Since STS is a surface-sensitive technique,

the 2DES to be investigated should be located as close as possible to a solid surface.1 So far, STS

measurements of 2DES have been conducted mainly on metal surface states [55–67], metal thin

films [68,69], ErSi2 layers [70–73], highly oriented pyrolitic graphite surfaces [74–77], and the electron

accumulation layer at InAs surfaces [78–81]. Several aspects of the physics of 2DES in the presence

of defects have been investigated, e.g., scattering interferences [55–60,62–64,67,69–72,74,75,78,79],

1This contrasts with the well-known case of conventional semiconductor heterostructures, where the 2DES are

buried several 10 nanometers below the epitaxial surface. Over the last decade, the buried 2DES formed in such

semiconductor heterostructures have been characterized at sub-micrometer scales by various low-temperature scan-

ning probe microscopy techniques, including near-field scanning optical microscopy [31, 32], scanning gate [33–46],

subsurface charge accumulation imaging [47–51], and scanning single-electron transistor [52–54].
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impurity bound states [61, 65, 66, 73], electron localization by a disorder potential [81], and the

quantum Hall regime [76,77,80].

However, STS has been seldom used for studying 2DES formed in semiconductor heterostruc-

tures, in spite of their importance for physics and technology. In a very recent work [82], STS

measurements were performed at the cleaved surface of QW structures, in order to probe the cross-

sectional spatial distribution of LDOS [figures 1.3(a) and (b)]. Another interesting possibility is to

perform STS measurements at epitaxial surfaces of QW structures, in order to probe the in-plane

spatial distribution of LDOS [figure 1.3(c)].

In this dissertation, we report low-temperature STS measurements under ultrahigh vacuum

(UHV) at the (111)A epitaxial surface of In0.53Ga0.47As/In0.52Al0.48As QW structures, grown by

MBE on lattice-matched InP substrates. The outline is as follows.

• In section 2 the experimental procedures are described, including the MBE growth of III-V

compound semiconductor thin films and the low-temperature STS measurements.

• As a preliminary step, section 3 focuses on the electronic properties of the In0.53Ga0.47As(111)A

epitaxial surface.

• Based on the results of section 3, section 4 presents a study of two-dimensional electronic

states in (111)A-oriented In0.53Ga0.47As surface QWs grown on top of In0.52Al0.48As barriers.

• In section 5, the main results reported in this dissertation are highlighted and future experi-

ments are proposed.
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Figure 1.3: (Color) STS study of 2DES formed in semiconductor QW structures. (a) STS measurements

at cleaved surfaces of QW structures, in order to probe the cross-sectional spatial distribution of LDOS.

This is the type of measurement performed in Ref. [82], where the structure consists of an InAs QW

between two GaSb barriers. (b) Cross-sectional spatial distribution of LDOS for a 17-nm-thick InAs QW

between two 23-nm-thick GaSb barriers [82]: STS data and calculation. (c) STS measurements at epitaxial

surfaces of QW structures, in order to probe the in-plane spatial distribution of LDOS. Vacuum plays the

role of one of the two barriers, hence the configuration is referred to as a surface QW structure. This is

the type of measurement reported in this dissertation, where the structure consists of a (111)A-oriented

In0.53Ga0.47As surface QW grown on top of an In0.52Al0.48As barrier.
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2 Experimental procedures

2.1 Overview of the experimental set-up

Experiments were carried out in a multi-chamber UHV system, shown in figure 2.1. It consists

of four connected UHV chambers [process, optical analysis, MBE, and low-temperature scanning

tunneling microscope (STM)], plus an entry lock. The MBE system was employed for growing

III-V compound semiconductor thin films. After the growth, samples were transferred under UHV

from the MBE chamber to the low-temperature STM chamber. Thus STM measurements could be

performed on the clean epitaxial surfaces of the thin films.

The entry lock allows to load samples into the UHV system without breaking vacuum. It is

equipped with a rotary pump and a turbomolecular pump, which enable to reach a pressure lower

than 1×10−7 Torr before transferring samples to the UHV chambers.

The process chamber and the optical analysis chamber are dedicated for sample cleaving and

photoluminescence measurements, respectively. Both chambers are equipped with a ion-getter

pump and a titanium sublimation pump, and the base pressure is below 5×10−10 Torr. These two

chambers were not directly used in this work.

The MBE chamber is equipped with a cryopump, a ion-getter pump and a titanium sublimation

pump, along with a liquid nitrogen cryopanel. The base pressure is within the range of 10−10 Torr.

The low-temperature STM chamber is equipped with a ion-getter pump and a titanium subli-

mation pump, and the base pressure is within the range of 10−11 Torr.

Bellows with a resonance frequency lower than 10 Hz are installed between the optical analysis

chamber and the process chamber, and between the process chamber and the STM chamber. The

bellows help reducing the mechanical vibrations coming from the MBE chamber, and thus improve

the signal on noise ratio during STM measurements.

12



Figure 2.1: Experimental set-up: UHV system consisting of four connected chambers (process, optical

analysis, MBE, and low-temperature STM), plus an entry lock. The MBE system was employed for growing

III-V compound semiconductor thin films. After the growth, samples were transferred under UHV from

the MBE chamber to the low-temperature STM chamber. Thus STM measurements could be performed

on the clean epitaxial surfaces of the thin films.

2.2 Molecular beam epitaxy system

2.2.1 Basic principles of molecular beam epitaxy

MBE, developed by Arthur and Cho at Bell Laboratories in the early 1970s, is a technique for

growing monocrystalline thin films under UHV [10–13]. During MBE growth, the constituent

elements of the thin film are evaporated from separated sources. The thermal beams of atoms

or molecules leaving the sources travel without collision in UHV, toward a heated single-crystal

substrate, on top of which the monocrystalline thin film grows monolayer by monolayer. MBE is a

versatile technique; it was first used to grow III-V compound semiconductors, but it is also able to

fabricate thin films of II-VI compound semiconductors, elemental semiconductors, insulators and

metals. The main advantages of MBE are the followings:

• The use of an UHV environment and of high purity source materials allow to achieve a low

unintentional impurity concentration in the grown thin films (typically in the range of 1014

cm−3 for GaAs).

• Since the growth rate is slow (about one monolayer per second) and beam controllers consist

of fast action shutters (operational time shorter than one second), the thickness of grown

layers can be controlled with an accuracy of less than one monolayer. Therefore, layers with
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different chemical compositions can be superimposed on each other, with atomically abrupt

interfaces. Moreover, the substrate temperature during growth (typically between 550◦C and

650◦C for GaAs) is sufficiently low to consider diffusion between layers as negligible.

• Preparing clean surfaces in UHV, an indispensable step in the field of surface science, can

be readily achieved by MBE. Other methods to obtain clean surfaces in UHV include ion

sputtering and cleaving in situ. However, ion sputtering may produce defects, and cleaving is

limited to particular cleavage planes [for example, the (111) plane for Si and the (110) plane

for III-V compound semiconductors with a zinc-blende structure], whereas MBE is able to

achieve many crystallographic orientations.

2.2.2 Description of the growth chamber

The MBE growth chamber used in this work was an Anelva system, dedicated for growing III-V

compound semiconductor thin films. A valved cracker cell was used for arsenic (purity of 7 N, i.e.,

99.99999%). Individual effusion cells with pyrolitic boron nitride crucibles were used for aluminum

(5 N), gallium (8 N), indium (7 N) and silicon. Between growths, the Al, Ga, In and Si cells were

idled at 300◦C; the As crucible and the As cracker were idled at 200◦C and 300◦C, respectively.

Before growths, sources were outgassed during one hour, at 340◦C for the As crucible, 800◦C for

the As cracker, and 50◦C more than the temperature during growth for the effusion cells. The

As beam equivalent pressure was measured by an ionization gauge positioned behind the substrate

holder. The substrate holder was heated by radiation and its temperature was monitored by a W-Re

thermocouple located in a black-body enclosure behind the holder. The sample surface temperature

was measured through a viewport by an infrared pyrometer. The crystallographic structure of the

sample surface was characterized by 15-keV reflection high-energy electron diffraction (RHEED).

2.2.3 Preparation of substrates

The substrates employed in this work were semi-insulating InP single crystal wafers, grown by the

liquid encapsulated Czochralski method. Two different crystal orientations were employed, namely

(001) and (111)A.

The InP substrates were degreased and etched in a commercial solution (Semico 23 clean from
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Furuuchi Chemical) during 3 min, rinsed in deionized water during 5 min and blown dry with filtered

nitrogen gas. The substrates were then bounded on a molybdenum plate with indium solder on the

back. Indium soldering ensures uniform temperature across the substrate during MBE growth. The

molybdenum plate was mounted on a molybdenum block and loaded into the UHV system. The

block is dedicated for the MBE chamber, the optical analysis chamber and the process chamber,

while the plate is dedicated for the STM chamber.

Before MBE growth, native oxides formed on the substrate surface have to be removed by

thermal desorption under UHV. In the case of InP, surface oxides are desorbed at a temperature of

500◦C, which largely exceeds the congruent sublimation temperature of 363◦C [83]. Therefore, InP

substrates have to be stabilized by a group V element flux to avoid the formation of In droplets. It

has been shown that InP(001) substrates can be stabilized by a flux of P2 or P4 molecules [84], but

the residual pressure of phosphorus molecules is undesirable for the MBE growth of materials which

do not contain phosphorus. It has also been reported that surface oxides on InP(001) substrates

can be desorbed by heating to 500-530◦C in a stabilizing As4 flux of 10−6-10−5 Torr [85]. Since

the surface oxide desorption is done at a temperature much higher than the congruent sublimation

temperature, surface P atoms are desorbed and replaced by the impinging As atoms [86,87], which

leads to the formation of a pseudomorphic InAs overlayer on the InP substrate. The exchange

reaction between P and As is limited to the topmost layers. At 500◦C, the InAs overlayer thickness

ranges between 1.5 monolayers [87] and 2 monolayers [86]. It has been found that the InAs overlayer

forms at the top of the surface oxides [88]. Therefore the oxide desorption rate is strongly reduced,

and the complete removal of the oxide requires a temperature of at least 520◦C.

In this work, a technique similar as that proposed in Ref. [85] was employed. Surface oxides on

(001)- and (111)A-oriented InP substrates were desorbed by annealing during 10 min at 520◦C under

a stabilizing As4 flux. Before annealing, the RHEED pattern showed a halo character, indicating

the presence of amorphous surface oxides. After annealing, the RHEED pattern usually showed

streaks, as expected for a clean and flat crystalline surface.

2.2.4 Calibration of fluxes

The MBE growth of stoichiometric films of GaAs, AlAs, InAs and their alloys was carried out under

excess As4 flux, the growth rate being simply determined by the fluxes of group III elements [10–12].
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Figure 2.2: Calibration of fluxes for MBE growth. (a) Growth rate measured by RHEED intensity

oscillations as a function of source temperature Tsource, for aluminum (squares), gallium (circles) and

indium (triangles). Linear fits of the experimental data (solid lines) are also shown. (b) Silicon impurity

density incorporated in grown thin films, measured by SIMS depth profiling as a function of silicon source

temperature Tsilicon. The silicon impurity density is given for a growth rate of 0.1 µm/h. SIMS depth profile

analysis was performed on GaAs thin films grown on GaAs(001) substrates at a substrate temperature

of 550◦C (squares), and on In0.53Ga0.47As thin films grown on lattice-matched InP(111)A substrates at a

substrate temperature between 450◦C and 500◦C (circles). A linear fit of the experimental data (solid line)

is also shown.

The growth rate for each group III element was measured by RHEED intensity oscillations [10–12]

as a function of source temperature [figure 2.2(a)]. For measuring the growth rate for aluminum and

gallium, AlAs and GaAs thin films were grown on GaAs(001) substrates at a substrate temperature

of 550◦C, respectively. For measuring the growth rate for indium, InAs thin films were grown on

InAs(001) substrates at a substrate temperature of 430◦C. A CCD camera was employed to record

the intensity of the specular beam of the RHEED pattern as a function of growth time. During the

growth, the surface cycles between smooth and atomically rough, with a period corresponding to

the time to grow a monolayer. Since the intensity of diffracted beams depends on the roughness

of the surface, measuring the period of the intensity oscillations during the growth gives directly

access to the growth rate.

The silicon impurity density incorporated in the grown thin films was determined by secondary-

ion mass spectrometry (SIMS) depth profiling [89] as a function of silicon source temperature
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[figure 2.2(b)]. SIMS depth profile analysis was performed on GaAs thin films grown on GaAs(001)

substrates at a substrate temperature of 550◦C, and on In0.53Ga0.47As thin films grown on lattice-

matched InP(111)A substrates at a substrate temperature between 450◦C and 500◦C. No significant

silicon segregation effect at the surface was observed in the depth profiles.

2.3 Low-temperature scanning tunneling microscope

2.3.1 Basic principles of scanning tunneling microscopy

The STM, invented by Binnig and Rohrer at IBM Zürich Laboratories in the early 1980’s, allows to

investigate in real space the surfaces of electrically conductive materials (conductors, semiconductors

or superconductors) [26–30]. The basic principle of the STM is the following. A metallic probe tip is

brought to a few Å of the sample surface, and a bias voltage applied between the tip and the sample

causes a tunneling current to flow. Measuring the tunneling current provides local information about

the topographic and electronic structures of the surface.

The STM can be used for so-called constant-current topographic measurements. While the

probe tip scans the (x, y) plane of the sample surface at a constant sample voltage U , the tunneling

current is kept constant by using a feedback loop which adjusts the vertical position z of the tip.

A topographic image represents z as a function of (x, y). The tunneling current depends mainly on

two parameters: tip-sample separation and LDOS at the sample surface [equation (A.12)]. Thus

a topographic image not only provides information about the topography of the surface, but also

about its electronic properties.

The STM can also be employed for so-called spectroscopic measurements, referred to as STS.

The tunneling current I is recorded as a function of the sample voltage U , with the position (x, y, z)

of the tip fixed, the current feedback loop being disengaged. The differential conductance dI/dU

at U is proportional to the LDOS at the sample surface at energy +eU (where e is the elementary

charge and U=0 corresponds to the sample Fermi level), if the tip-sample separation is constant

[equation (A.14)]. Thus STS provides a measurement of the LDOS at the sample surface as a

function of energy and position.

The spatial resolution of the STM is extremely high, owing to the exponential decay of electron
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wave functions in classically forbidden regions. Specifically, the lateral resolution is sufficient for

characterizing atomic-size structures, and the vertical resolution during topographic measurements

is better than 1 pm for state-of-the-art instruments. The resolution is limited by the probe tip

condition and mechanical vibrations. A sharp and stable tip, as well as a low level of mechanical

noise, are key requirements for high-resolution STM measurements.

2.3.2 Description of the scanning tunneling microscope

The STM used in this work was an Omicron LT-STM [90], an instrument operating under UHV

and at low temperature (5 K). The UHV environment is crucial for reliable STM investigations on

semiconductor surfaces, which are sensitive to oxidation and contamination. The low temperature

offers several advantages, such as: increased mechanical stability, increased energy resolution for

STS, and increased coherence length of electron wave functions.

Let us briefly describe the design of the Omicron LT-STM. More details can be found in Ref. [90].

The UHV chamber of the LT-STM contains the STM stage, the vibration isolation elements, and

the cryogenic equipment (figure 2.3).

The cryogenic equipment consists of two concentric bath cryostats. The inner cryostat, filled

with about four liters of liquid helium, is used to cool down the STM stage. The outer cryostat, filled

with about four liters of liquid nitrogen, serves for shielding. The STM stage and the vibration

isolation elements are mounted below the liquid helium cryostat and surrounded by a radiation

shield made of two concentric copper cups. The inner cup and the outer cup are screwed to the

liquid helium cryostat and the liquid nitrogen cryostat, respectively. Both copper cups have three

windows for optical access, and one window for changing sample plates and probe tips. The time

between liquid helium refills is typically 20 h.

The vibration isolation is realized by using both spring suspension (the STM stage is suspended

by three soft springs, with a resonance frequency of about 2 Hz) and eddy-current damping (the

STM stage is surrounded by a ring of copper plates, which come down between permanent magnets

fixed at the inner copper cup). During measurements, the STM stage is hanging free, held vertically

by the suspension springs and horizontally by the eddy-current damping. Between measurements,

the STM stage can be pressed against the liquid helium cryostat in order to quickly reach low

temperatures. In this work, the root mean square of mechanical noise measured at 5 K during
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Figure 2.3: (Color) Omicron LT-STM [90]. (a) Picture showing the whole LT-STM. (b) Picture showing

the STM stage and the vibration isolation elements.
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constant-current topographic measurements was between 1 and 2 pm.

The STM stage includes the sample plate, the probe tip, the scanner and the piezo motor. The

scanner, used for the fine movement of the tip during measurements, consists of a single piezo tube.

At room temperature, the maximum scan range is about 10×10 µm2, with a z-travel of about 1

µm. At 5 K, the maximum scan range is about 1.8×1.8 µm2, with a z-travel of about 0.2 µm.

The piezo motor, employed for a coarse positioning of the scanner before measurements, is based

on a slip/stick effect: sliders, magnetically coupled to shear piezos driven in a fast/slow sequence,

are transported during the slow movement of the piezos and slip during the fast movement. The

maximum coarse movement is about 5×5 mm2, with a z-travel of about 10 mm.

2.3.3 Lock-in technique

In this work, the tunneling differential conductance dI/dU was often recorded by using a lock-

in technique, in order to increase the signal on noise ratio. Specifically, a sinusoidal modulation

(Umod = 10 mV peak-to-peak, fmod = 700 Hz) was added to the sample voltage, and dI/dU was

measured through a lock-in amplifier.

When the sinusoidal modulation was added to the sample voltage, a capacitive coupling between

the sample voltage wire and the tunneling current wire led to a parasitic signal in the tunneling

current. This cross-talk signal was compensated before feeding the lock-in amplifier, by superim-

posing on the tunneling current a sinusoidal signal at the frequency of the modulation, with an

appropriate amplitude and phase.

2.3.4 Preparation of probe tips

Commercial probe tips from Omicron were employed in this work. The tips are made from tungsten

wires prepared by vacuum annealing and electrochemical etching.

Before measurements, tips were cleaned in situ by applying pulsed high voltages (typically U =

+10 V during about 1 s). The quality of tips was checked by STM topographic images (obtaining

the resolution of atomic-scale features) and STS measurements (obtaining the expected band gap

for the semiconductor material under investigation).
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3 Electronic properties of the

In0.53Ga0.47As(111)A epitaxial surface

3.1 Background and motivation

The main goal of this work is to study electronic states in (111)A-oriented In0.53Ga0.47As surface

QWs. Thus, as a preliminary step, it is highly desirable to investigate in detail the electronic

properties of the In0.53Ga0.47As(111)A surface.

In this section, we report STS measurements at the (111)A epitaxial surface of In0.53Ga0.47As,

grown by MBE on lattice-matched InP substrates. We focus on three important points:

• Fermi level position at the In0.53Ga0.47As(111)A surface. In the bulk of a semicon-

ductor, the Fermi level position can be precisely tuned by impurity doping [2]. However, the

Fermi level position at a semiconductor surface depends not only on bulk doping, but also on

electronic surface states (appendix B). In particular, in the case of a high density of surface

states, the surface Fermi level is strongly pinned, i.e., the surface Fermi level remains almost

constant over a wide range of impurity density in the bulk. A strong pinning of the Fermi level

has been demonstrated, e.g., for the Si(111)-(2×1) [91,92], Si(001)-(2×1) [92,93], GaAs(001)-

(2×4) [94,95], In0.53Ga0.47As(001)-(2×4) [96], and InAs(001)-(2×4) [97,98] surfaces. However,

the case of the In0.53Ga0.47As(111)A surface has not been studied so far. In section 3.3.1, we

show that the Fermi level is partially unpinned at the (111)A surface of n-type In0.53Ga0.47As,

i.e., the surface Fermi level can be partially controlled by varying the n-type impurity density

in the bulk. Specifically, the surface Fermi level almost equals the bulk Fermi level at low

values of the free-electron density n, while it is slightly below the bulk Fermi level at high

values of n.

• Conduction-band (CB) dispersion relation at the In0.53Ga0.47As(111)A surface. In

section 3.3.2, we show that the CB dispersion relation measured by STS at the (111)A surface

of n-type In0.53Ga0.47As is well described by a two-band Kane model including nonparabolicity
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effects (appendix C), with an effective mass at the CB minimum in agreement with a previously

reported value of 0.041m0 [99]. In addition, we confirm the partial unpinning of the surface

Fermi level.

• Native point defects at the In0.53Ga0.47As(111)A surface. In section 3.3.3, we iden-

tify two types of native point defects at the In0.53Ga0.47As(111)A surface, namely negatively

charged and positively charged defects. We show that the density of negatively charged de-

fects increases with increasing n, explaining quantitatively the n-dependence of the surface

Fermi level position.

3.2 Experiment

Silicon-doped In0.53Ga0.47As thin films were grown by MBE on lattice-matched semi-insulating InP

substrates, at a growth rate of 0.1 ML/s and at a substrate temperature between 450◦C and 500◦C.

The grown layers were in direct electrical contact with the STM sample plate, through indium

deposited on the edges of the InP substrate before the growth. Both (001)- and (111)A-oriented

InP substrates were used. The layer thicknesses were larger than 100 nm. During the growth,

RHEED patterns indicated the (2×4) and (2×2) surface reconstructions for the (001) and (111)A

orientations, respectively.

After the growth, epitaxial surfaces were kept during 3 min at the growth temperature in an

As4 flux. Substrate heating was then stopped. When the surface temperature passed below 430◦C

(detection limit of the infrared pyrometer), samples were rapidly taken out from the MBE chamber

and transferred under UHV to the low-temperature STM chamber.

STM and STS measurements were performed at 5 K under UHV, on the clean epitaxial surfaces

of the In0.53Ga0.47As thin films. STM topographic images were acquired in the constant-current

mode. For STS experiments, the tunneling current I was recorded as a function of sample volt-

age U , by positioning the probe tip at one point above the surface and disengaging the current

feedback loop. Spectra of the differential conductance dI/dU as a function of U were obtained by

numerically differentiating the I-U spectra. dI/dU spatial maps at fixed values of U were acquired

simultaneously to constant-current STM topographic images, by directly recording dI/dU through

a lock-in amplifier. We recall that dI/dU at U is proportional to the LDOS at the sample surface at
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Figure 3.1: Free-electron density n in silicon-doped In0.53Ga0.47As thin films grown on InP(111)A sub-

strates (squares), measured by the Van der Pauw method at 4 K, as a function of silicon source temperature.

The growth rate of the thin films is 0.1 µm/h. The silicon impurity density incorporated in the thin films

(solid line), taken from figure 2.2(a), is also shown.

energy +eU (where e is the elementary charge and U = 0 corresponds to the sample Fermi level),

if the tip-sample separation is constant [equation (A.14)].

After the STM measurements, the epitaxial surfaces of the In0.53Ga0.47As thin films grown on

InP(111)A substrates were examined by scanning transmission electron microscopy. No dislocation

line was observed, confirming that the InGaAs thin films are well matched to the InP substrates.

However, stacking fault tetrahedrons [78,100,101] were found at the surface with a density of about

10 µm−2. These defects may be formed during the cooling of the thin films after the growth.

The free-electron density n in the silicon-doped In0.53Ga0.47As thin films grown on InP(111)A

substrates was measured by the Van der Pauw method at 4 K. Ohmic contacts were made by

alloying indium dots onto the grown layers at 420◦C for 1 min in H2 ambient. Results are shown

in figure 3.1. It was found that all silicon impurities behave as donors for the doping levels used in

this experiment, as expected from previous studies [102].
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3.3 Results and discussion

3.3.1 Partial unpinning of the Fermi level

Fermi level position at the (001) surface

As a control experiment, let us first examine the Fermi level position with respect to the CB

minimum at the (001) surface of n-type In0.53Ga0.47As. Figure 3.2(a) shows a STM topographic

image of the (001) surface. Arsenic-dimer-vacancy rows resulting from the (2×4) reconstruction

[103, 104] are observed, with a typical corrugation along the [110] direction of about 1 Å at the

indicated tunneling parameters. The separation of these rows is about 1.6 nm, corresponding to

the expected value of 2
√

2a (where a = 0.586 nm is the lattice constant of In0.53Ga0.47As).

Figure 3.2(c) shows a typical dI/dU spectrum acquired at the (001) surface. The measured band

gap is about 0.8 eV, in agreement with previously reported values for In0.53Ga0.47As at low temper-

ature [99]. Thus, indium segregation effects at the surface [105] do not affect STS measurements.

The surface Fermi level is found to be located close to midgap even at high doping, in agreement

with a previous report [96].

The Fermi level position with respect to the CB minimum in the bulk was calculated as a function

of the free-electron density n, by using Fermi-Dirac statistics (appendix B). The density of states

in the CB was given by a two-band Kane model including nonparabolicity effects (appendix C).

Results are shown in figure 3.3(a). It is found that the Fermi level at the (001) surface is well below

the bulk Fermi level, a situation which corresponds to an upward band bending in the near-surface

region, i.e., a positive space-charge layer. Overall charge neutrality requires that the charge carried

by the surface states exactly compensate the space charge inside the semiconductor (appendix B).

Thus, there are filled acceptorlike surface states at the (001) surface. These acceptorlike surface

states are probably related to kinks in the arsenic-dimer-vacancy rows [94, 95] or step edges [106].

Furthermore, as it can be seen in figure 3.3(a), the Fermi level at the (001) surface is strongly pinned

near midgap independently of n. Such strong pinning of the surface Fermi level around midgap

means that there is a high density of acceptorlike surface states around midgap. Specifically, the

situation can be understood in the framework of the Bardeen model (appendix B) by considering

the distribution of acceptorlike surface states depicted in figure 3.3(b). The surface Fermi level
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Figure 3.2: (001) surface of n-type In0.53Ga0.47As; n = 2×1018 cm−3. (a) 67×67 nm2 STM topographic

image (U = +2.5 V; I = 0.15 nA). (b) Schematic of the unreconstructed (001) arsenic-rich surface

and of the (2×4) reconstruction [103, 104]. a′ denotes the lattice constant of the square unit cell of the

unreconstructed (001) surface (a′ = a
√

2
2 , where a is the bulk lattice constant). (c) dI/dU spectrum. The

Fermi level (U = 0) and the CB minimum are indicated. The hatched region represents the band gap.
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Figure 3.3: (a) Fermi level position with respect to the CB minimum at the (111)A surface of n-type

In0.43Ga0.47As, determined from dI/dU spectra (black squares) and Fourier analysis of dI/dU spatial maps

(white circles), and calculated by using the Bardeen model (appendix B) with a density of acceptorlike

surface states in the CB of about 2×1013 cm−2.eV−1 (dash-dotted line). Also shown are the Fermi level

at the (001) surface determined from dI/dU spectra (black circles), and the bulk Fermi level calculated by

using Fermi-Dirac statistics (appendix B) (solid line). (b) Schematic energy band profiles and acceptorlike

surface state distributions in the Bardeen model, for high doping, at the (001) surface and (c) at the

(111)A surface.

pinning within the 0.08 eV error bar corresponds to a density of acceptorlike surface states above

midgap larger than 1×1014 cm−2.eV−1.

Fermi level position at the (111)A surface

Then, let us examine the Fermi level position with respect to the CB minimum at the (111)A surface

of n-type In0.53Ga0.47As. Figure 3.4(a) shows a STM topographic image of the (111)A surface.

Indium and gallium vacancies resulting from the (2×2) reconstruction [107,108] are visible, with a

typical corrugation along the 〈110〉 directions of about 0.1 Å at the indicated tunneling parameters.

The separation of these vacancies is about 0.83 nm, corresponding to the expected value of
√

2a

(where a = 0.586 nm is the lattice constant of In0.53Ga0.47As).
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It should be noted that the STM topographic image of figure 3.4(a) has a mottled appearance,

with a typical corrugation of about 0.5 Å at the indicated tunneling parameters. Such a phenomenon

has been observed in STM topography of InGaAs(110) cleaved surfaces [109], and is due to local

inhomogeneities of the alloy composition. Bright and dark regions are believed to correspond to

indium- and gallium-rich areas, respectively. The contrast has been ascribed to electronic effects

[109] or strain effects [110]. The physical origin of the compositional inhomogeneities observed in

figure 3.4(a) is presently unknown. These inhomogeneities could be the result of either random

fluctuations [110] or a phase separation [111–113]. The mottled appearance is less clear in STM

topographic images of the (001) surface [figures 3.2(a)], probably because the corrugation related

to the (2×4) reconstruction is larger than that related to the compositional inhomogeneities.

Figures 3.4(c) and (d) show typical dI/dU spectra acquired at the (111)A surface. The measured

band gap has the expected value of about 0.8 eV [99], similar to what is found at the (001) surface.

However, in contrast with the case of the (001) orientation, the Fermi level at the (111)A surface lies

in the CB. Specifically, the surface Fermi level is located near the CB minimum at low doping [figure

3.4(c)], while well above the CB minimum at high doping [figure 3.4(d)]. No significant difference

in band gap or surface Fermi level position was observed between indium- and gallium-rich regions.

It is known that the presence of filled CB states in a semiconductor induces a nonzero signal

in the band gap of dI/dU spectra (appendix A). Accordingly, we observe a nonzero signal in the

band gap of dI/dU spectra measured at the (111)A surface [figures 3.4(c) and (d)], while we do not

observe such signal at the (001) surface [figure 3.2(c)].

The Fermi level position at the (111)A surface was determined from dI/dU spectra for several

values of n. Results are shown in figure 3.3(a). At low values of n, the Fermi level at the (111)A

surface almost equals the bulk Fermi level, a situation which corresponds to flat bands in the

near-surface region. At high values of n, the surface Fermi level is slightly below the bulk Fermi

level, a situation which corresponds to an upward band bending, i.e., a positive space-charge layer.

Overall charge neutrality requires that the charge carried by the surface states exactly compensate

the space charge inside the semiconductor (appendix B). Thus, there are filled acceptorlike surface

states at the (111)A surface. Furthermore, as it can be seen in figure 3.3(a), the surface Fermi level

follows the bulk Fermi level very well. Such partial unpinning of the surface Fermi level means that

the density of acceptorlike surface states is low. Specifically, the situation can be understood in
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the framework of the Bardeen model (appendix B) by considering the distribution of acceptorlike

surface states depicted in figure 3.3(c): acceptorlike surface states are almost absent in the band

gap (thus the separation between the surface Fermi level and the bulk Fermi level is almost zero at

low doping), but some are present in the CB (thus the number of filled acceptorlike surface states

increases with n, meaning that the separation between the surface Fermi level and the bulk Fermi

level increases with n). The dependence of the surface Fermi level position on n is well fitted by

assuming a density of acceptorlike surface states in the CB of about 2×1013 cm−2.eV−1.

3.3.2 Conduction-band dispersion relation

Let us now determine the CB dispersion relation at the (111)A surface of n-type In0.53Ga0.47As.

Figure 3.5(a) shows a STM topographic image of the (111)A surface, at high doping (n = 1×1019

cm−3). Monolayer steps separating atomically-flat terraces are visible in the image. Figure 3.5(b)

shows dI/dU spatial maps of this area, for two values of U corresponding to energies within the CB.

It is found that the LDOS in the CB has a complex spatial distribution, with a wavelength which

decreases when U increases. This LDOS spatial modulation is ascribed to electron standing waves

resulting from scattering interferences [55–60,62–64, 67, 69–72,74, 75, 78, 79]. Scattering centers are

mainly ionized silicon donors distributed in the whole thin film, as well as native point defects

located at the surface (section 3.3.3). For the value of n investigated, the band-bending in the near-

surface region is upward and the Fermi wavelength is much smaller than the thickness of the grown

In0.53Ga0.47As thin film. Therefore electrons in the near-surface region form a three-dimensional

system. Due to the continuous depth distribution of scattering centers below the surface (the

In0.53Ga0.47As thin film is uniformly doped by silicon), the surface-plane wave number k|| detected

in dI/dU spatial maps at sample voltage U takes all values between 0 and k, where k is the

electron wave number at the energy corresponding to U . Consequently, a disk-shaped distribution

is observed in Fourier transforms of dI/dU spatial maps [figure 3.5(c)], and the diameter of the

disk equals 4k. Using the rotationally averaged Fourier spectra [figure 3.5(d)], k was precisely

determined as a function of U . The same analysis was performed for different values of n. Results

are shown in figure 3.6. The obtained CB dispersion relation is well fitted by a two-band Kane

model including nonparabolicity effects (appendix C). At each value of n investigated, the fit leads

to an effective mass mC at the CB minimum in agreement (within the fit uncertainty of about 10%)
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Figure 3.4: (111)A surface of n-type In0.53Ga0.47As. (a) 10.7×10.7 nm2 STM topographic image (U =

+2.5 V; I = 0.15 nA); n = 1×1019 cm−3. (b) Schematic of the unreconstructed (111)A surface and

of the (2×2) reconstruction [107, 108]. a′ denotes the lattice constant of the hexagonal unit cell of the

unreconstructed (111)A surface (a′ = a
√

2
2 , where a is the bulk lattice constant). (c) dI/dU spectrum for

n = 1×1016 cm−3 and (d) n = 1×1019 cm−3. The Fermi level (U = 0) and the CB minimum are indicated.

The hatched region represents the band gap. The nonzero signal in the band gap of the dI/dU spectra is

due to the presence of filled CB states (appendix A). The position of the CB minimum is determined by

finding from which U the slope of dI/dU becomes positive.
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Figure 3.5: Fourier analysis of dI/dU spatial maps at the (111)A surface of n-type In0.53Ga0.47As. (a)

134×134 nm2 STM topographic image (U = +0.3 V; I = 0.25 nA); n = 1×1019 cm−3. (b) dI/dU spatial

maps of the same area as in (a), at U = +0.125 V and U = +0.3 V. Bright regions correspond to high

dI/dU signal. (c) Fast Fourier transforms (FFTs) of the dI/dU spatial maps of (b). In the FFT of a

dI/dU spatial map at sample voltage U , the diameter of the disk-shaped distribution equals 4k, where k

is the electron wave number at the energy corresponding to U . (d) Rotational average of the FFTs of (c):

FFT intensity as a function of the surface-plane wave number k||. The FFT intensity is normalized by the

value at k|| = 0.

with a previously reported value of 0.041m0 [99], and to a surface Fermi level position consistent

with that extracted from dI/dU spectra [figure 3.3(a)].

We emphasize that the expected CB dispersion relation for In0.53Ga0.47As (namely the two-band

Kane model with an effective mass at the CB minimum of 0.041m0) is consistent with both the

Fourier analysis of dI/dU spatial maps (which leads to k for values of U in the range from about

+0.1 V to about +0.3 V) and the analysis of dI/dU spectra (which leads to the position of the CB

minimum, corresponding to values of U in the range from about -0.2 V to about 0 V). It means

that tip-induced band bending (appendix B) does not affect the STS data obtained in this work (at

least for U in the range from about -0.2 V to about +0.3 V), although the density of acceptorlike

surface states was found to be low (section 3.3.1).
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Figure 3.6: (Color) CB dispersion relation determined by Fourier analysis of dI/dU spatial maps at the

(111)A surface of n-type In0.53Ga0.47As, for three different values of n (dots). Also shown is a fit by a

two-band Kane model including nonparabolicity effects (appendix C) (dashed lines).

3.3.3 Native point defects

Two type of point defects are observed at the In0.53Ga0.47As(111)A surface, as shown in figure 3.7 in

the case of a nominally undoped In0.53Ga0.47As layer.1 The density of these defects does not increase

with time. Therefore the defects are not due to surface contamination by residual gas atoms in

the UHV environment of the STM chamber, but are rather native defects formed during the MBE

growth.2 The first type of defect appears as a depression in STM topography at positive sample

voltage [figure 3.7(a)]. dI/dU spectra acquired close to the defect [figure 3.7(b)] have a peak near

the valence-band maximum, and a large signal in the valence band. Therefore the defect is probably

negatively charged, the peak near the valence-band maximum corresponding to an acceptor bound

state. The second type of defect appears as a protrusion in STM topography at positive sample

1The last 50 nm of the In0.53Ga0.47As layer is nominally undoped. However, the first 100 nm of the layer is

doped by silicon with a density of about 7×1018 cm−3, in order to ensure sufficient electrical conductivity for STS

measurements.
2Surface contamination during the sample transfer under UHV from the MBE chamber to the STM chamber is

unlikely, since the transfer is fast (less than 20 min) and the surface is hot (more than 400◦C when the sample is

taken out from the MBE chamber).

31



Figure 3.7: (Color) (111)A surface of nominally undoped In0.53Ga0.47As. (a) 10.7×10.7 nm2 STM topo-

graphic image (U = +1.1 V; I = 0.12 nA). A native point defect appearing as a depression is visible.

(b) dI/dU spectrum acquired on the defect of (a) (solid curve), and dI/dU spectrum acquired at a point

located 8 nm away from the defect (dashed curve). In the dI/dU spectrum acquired on the defect, a peak

is observed near the valence-band maximum, as indicated by a vertical line. (c) 29.5×29.5 nm2 STM

topographic image (U = +1.1 V; I = 0.12 nA). A native point defect appearing as a protrusion is visible.

(d) dI/dU spectrum averaged over a 2×2 nm2 square area centered on the defect of (c) (solid curve), and

dI/dU spectrum averaged over a 2×2 nm2 square area located 8 nm away from the defect (dashed curve).

In the dI/dU spectrum acquired on the defect, a peak is observed at U = EA, as indicated by a vertical

line.

voltage [figure 3.7(c)]. dI/dU spectra acquired close to the defect [figure 3.7(d)] have a peak at

U = EA about 0.5 eV above the CB minimum, and a weak signal in the valence band. Recent first-

principle calculations and STS studies [114–116] suggest that such a defect is positively charged,

and corresponds to a Ga (or In) adatom sitting on top of the surface, or to a Ga (or In) antisite

located in the topmost surface layers.

It should be noted that the native point defects are observed not only on terraces (as in the case

of figure 3.7), but also on step edges. The defects located on step edges cannot be clearly seen in

STM topographic images, but can be unambiguously identified by using STS measurements, since

a dI/dU spectrum acquired close to a defect shows a peak near the valence-band maximum (in the

case of a negatively charged defect) or in the CB (in the case of a positively charged defect).

At the (111)A surface of nominally undoped In0.53Ga0.47As, the density of negatively and pos-

itively charged defects is about 2×1011 cm−2 and 1×1011 cm−2, respectively. Therefore the net

density of negative charges at the surface is about 1×1011×e cm−2 (where e is the elementary
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Figure 3.8: STM topographic image of a 107×107 nm2 area of the In0.53Ga0.47As(111)A surface (U =

+1.1 V; I = 0.12 nA). (a) Nominally undoped layer. (b) Heavily doped layer (n = 1×1019 cm−3).

charge). This corresponds to an upward band bending in the near-surface region of about 6 meV

(appendix B), assuming that the nominally undoped In0.53Ga0.47As layer is unintentionally n-type

with a density of donor impurities of about 1×1015 cm−3 [117]. It means that, in the case of low

n-type doping levels, the surface Fermi level almost equals the bulk Fermi level. This is in agreement

with what found above (section 3.3.1). Note that the Fermi level at the (111)A surface of nominally

undoped In0.53Ga0.47As is located close to the CB minimum, as seen in the dI/dU spectra of figure

3.7. This is a confirmation that the nominally undoped thin films are unintentionally n-type.

At the (111)A surface of heavily doped In0.53Ga0.47As (n = 1×1019 cm−3), the density of pos-

itively charged defects is roughly the same as in the case of nominally undoped layers, but the

density of negatively charged defects increases by at least a factor 10, as seen in figures 3.8(a) and

(b). Therefore the net density of negative charges at the surface is of the order of 2×1012×e cm−2.

This corresponds to an upward band bending in the near-surface region of the order of 70 meV

(appendix B). It means that, in the case n = 1×1019 cm−3, the surface Fermi level lies below the

bulk Fermi level, the separation being of the order of 70 meV. This is in agreement with what found

above (section 3.3.1).

In summary, it is found that the density of negatively charged defects at the (111)A surface
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of n-type In0.53Ga0.47As increases with increasing n, explaining quantitatively the n-dependence

of the surface Fermi level position found above (section 3.3.1). In other words, there is a direct

link between the negatively charged defects and the acceptorlike surface states responsible for the

n-dependence of the surface Fermi level position.

3.4 Summary

In this section, the (111)A epitaxial surface of n-type In0.53Ga0.47As was studied by STS. It was

shown that

• The surface Fermi level can be partially controlled by varying the n-type impurity density in

the bulk. Specifically, the surface Fermi level almost equals the bulk Fermi level at low values

of the free-electron density n, while it is slightly below the bulk Fermi level at high values of

n. Such a partial unpinning of the Fermi level at the In0.53Ga0.47As(111)A surface is crucial

for the study of (111)A-oriented In0.53Ga0.47As surface QWs. Indeed, the partial unpinning of

the surface Fermi level means that it is possible to control the electron density in the surface

QW, as demonstrated below (section 4). This would be impossible with the more conventional

(001)-oriented GaAs or In0.53Ga0.47As surface QWs, because of the strong midgap pinning of

the surface Fermi level at the GaAs(001) [94,95] and In0.53Ga0.47As(001) [96] surfaces.

• The CB dispersion relation measured by STS is well described by a two-band Kane model

including nonparabolicity effects (appendix C), with an effective mass at the CB minimum in

agreement with a previously reported value of 0.041m0 [99]. This result will be indispensable

for calculating the energy of the electronic states confined in (111)A-oriented In0.53Ga0.47As

surface QWs, as done below (section 4).

• Two types of native point defects are located at the surface, namely negatively and posi-

tively charged defects. The density of negatively charged defects increases with increasing n,

explaining quantitatively the n-dependence of the surface Fermi level position. The native

point defects at the In0.53Ga0.47As(111)A surface have a considerable impact on the electronic

properties of (111)A-oriented In0.53Ga0.47As surface QWs, as demonstrated below (section 4).
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First, the random distribution of the defects at the QW surface creates a disorder potential in

the QW. Second, the positively charged defects induce hydrogenic bound states in the QW.
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4 Electronic states in (111)A-oriented

In0.53Ga0.47As surface quantum wells

4.1 Background and motivation

In this section, based on the results obtained above (section 3), we report a STS study of (111)A-

oriented In0.53Ga0.47As surface QWs grown on top of In0.52Al0.48As barriers. The STS measurements

are performed at the (111)A epitaxial surface of the In0.53Ga0.47As QWs, in order to probe with

nanometer-scale resolution the in-plane spatial distribution of LDOS. Three interesting aspects of

the physics of semiconductor QW structures are investigated:

• The formation of electron subbands in a QW, due to quantum confinement along

the growth direction. STS allows to measure the LDOS as a function of energy [26–30],

hence it can provide a direct evidence for quantum-size effects in semiconductor QW struc-

tures. Such an ability has been demonstrated only in a very recent work [82], in which STS

measurements on InAs/GaSb QW structures show a LDOS with a step-like energy depen-

dence, revealing the electron subbands formed in the QW. In section 4.3.1, we present similar

STS results for the In0.53Ga0.47As surface QW.

• The effect of a disorder potential on the spatial distribution of LDOS in a QW.

As pointed out by Anderson nearly 50 years ago [118], the presence of disorder in a crys-

talline solid can lead to the formation of localized electronic states. The formation of the

localized states is due to quantum-mechanical interference between electron waves that have

undergone multiple scatterings by the disorder potential. Since localization is a general wave

phenomenon relying on interference, it has been observed not only for electrons in disordered

solids [3], but also in other systems exhibiting wave motion in inhomogeneous media, e.g.,

water waves in basins with random obstacles [119], light waves in the presence of randomly

distributed optical scatterers [120, 121], and light waves in disordered photonic lattices [122].

The study of localization is therefore of paramount importance for many areas of physics.
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The semiclassical model of disordered electronic systems predicts that localized states per-

colate with increasing energy [123]. A strong increase in electrical conductivity is expected

when the Fermi level crosses over the percolation threshold, as studied in the technologically

important case of 2DES [124].1 Recently, various scanning probe microscopy techniques have

been employed to improve the microscopic understanding of such a phenomenon of percolation

of localized states in disordered 2DES. Near-field scanning optical microscopy has revealed

strong spatial variations of electron density when the Fermi level lies below the percolation

threshold [31]. In addition, using STS, the percolation of localized states with increasing en-

ergy has been directly observed in real-space maps of LDOS [81]. In section 4.3.2, we present

STS measurements revealing that there is a disorder potential in the In0.53Ga0.47As surface

QW. We observe a remarkable feature in the case of a multisubband QW, namely that a

phenomenon of percolation of localized states occurs in each subband tail. We determine the

percolation threshold for each subband by using the semiclassical model of disordered elec-

tronic systems [123]. It was shown above (section 3.3.3) that native point defects are present at

the In0.53Ga0.47As(111)A surface. We propose that the disorder potential originates from the

random distribution of these native point defects at the (111)A surface of the In0.53Ga0.47As

QW.

• The influence of quantum confinement on hydrogenic bound states formed in a

QW. Doping a semiconductor with foreign atoms called impurities allows to precisely tune

the concentration of charge carriers, a principle at the basis of virtually all electronic and

optoelectronic devices [2]. In the simplest approximation, an impurity inside a semiconductor

is described as an hydrogen atom [2]. Thus the two essential properties of an impurity are the

binding energy and the Bohr radius. Up to now, only the binding energy can be determined

experimentally, by techniques such as absorption, luminescence, and Raman scattering [129].

However, it is highly desirable to also measure the Bohr radius aB, which is a key parameter

for various important phenomena, e.g.: an impurity band is formed if the mean impurity

1This change in electrical conductivity does not probably correspond to a true metal-insulator transition, since

the scaling theory of localization predicts that all states are localized in disordered two-dimensional systems of non-

interacting electrons, no matter how weak the disorder [125]. There might exist a true metallic phase in disordered

two-dimensional systems of strongly interacting electrons [126,127], but this is still a controversial topic [128].
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separation becomes comparable with aB [130]; two impurity nuclear spins interact if the

distance between impurities becomes comparable with aB [131]; impurities in QW structures

are affected by the confining potential if the QW thickness becomes comparable with aB [132].

The case of an impurity in a QW has attracted considerable attention both theoretically

[132–136] and experimentally [137–143], since it is a model system for an hydrogen atom

in reduced dimensionality [144]. It was shown above (section 3.3.3) that positively charged

native point defects are present at the In0.53Ga0.47As(111)A surface. In section 4.3.3, we

present a detailed STS study of the behavior of these defects at the (111)A surface of the

In0.53Ga0.47As QW. We are able to determine both the binding energy and the Bohr radius of

single defects. Moreover, we show that the binding energy and the Bohr radius depend on the

QW thickness, in quantitative agreement with the hydrogenic model. To our knowledge, this

work presents the first direct measurement of the Bohr radius of an hydrogenic wave function in

a semiconductor. While previous STM studies of impurities in III-V semiconductors have been

mostly dedicated to acceptor states deriving from the nonspherical valence band [145–147],

here we focus on donor states deriving from the spherical CB.

4.2 Experiment

In0.53Ga0.47As/In0.52Al0.48As QW structures were grown by MBE on lattice-matched semi-insulating

InP(111)A substrates, at a growth rate of 0.1 ML/s and at a substrate temperature of 450◦C. The

grown layers were in direct electrical contact with the STM sample plate, through indium deposited

on the edges of the InP substrate before the growth. Two different QW structures were investigated.

Both structures consist of a (111)A-oriented In0.53Ga0.47As surface QW of thickness l, grown on top

of a 5-nm-thick In0.52Al0.48As barrier. Electronic states in the In0.53Ga0.47As surface QW are confined

on one side by vacuum and on the other side by the In0.52Al0.48As barrier. In the QW structure of

type I [figure 4.1(a)], the barrier is doped by silicon in order to provide electrons to the QW (this is

the so-called technique of modulation doping [17]). In the QW structure of type II [figure 4.2(a)],

both the QW and the barrier are undoped, hence there is no electron in the QW.

After the growth, epitaxial surfaces were kept during 3 min at the growth temperature in an

As4 flux. Substrate heating was then stopped. When the surface temperature passed below 430◦C
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(detection limit of the infrared pyrometer), samples were rapidly taken out from the MBE chamber

and transferred under UHV to the low-temperature STM chamber.

STM and STS measurements were performed at 5 K under UHV, on the (111)A clean epitaxial

surface of the In0.53Ga0.47As QW. STM topographic images were acquired in the constant-current

mode. For STS experiments, the tunneling differential conductance dI/dU was directly measured

through a lock-in amplifier. Spectra of dI/dU as a function of U were acquired by positioning the

probe tip at one point above the surface and disengaging the current feedback loop. dI/dU spatial

maps at fixed values of U were obtained by recording a dI/dU spectrum on each pixel of a grid. We

recall that dI/dU at U is proportional to the LDOS at the sample surface at energy +eU (where

e is the elementary charge and U = 0 corresponds to the sample Fermi level), if the tip-sample

separation is constant [equation (A.14)].

4.3 Results and discussion

4.3.1 Quantum confinement along the growth direction

Let us first demonstrate the formation of electron subbands in the In0.53Ga0.47As QW. We investigate

the structure of type I [figure 4.1(a)], where electrons are provided to the QW by modulation doping.

Figure 4.1(b) shows a typical dI/dU spectrum acquired at the In0.53Ga0.47As QW surface, for l = 10

nm. The measured band gap is about 0.8 eV, in agreement with what found above (section 3.3.1).

The dI/dU signal in the CB has a clear step-like voltage dependence. In other words, the LDOS

has a step-like energy dependence, which is the typical signature of 2DES. The steps correspond to

the electron subbands formed in the QW due to quantum confinement along the growth direction.

Three subbands are found.

The dI/dU spectrum of figure 4.1(b) indicates that the Fermi level (U = 0) is within the first

subband. This was expected, considering that modulation doping is employed [figure 4.1(a)], and

that the Fermi level is partially unpinned at the In0.53Ga0.47As(111)A surface (section 3.3.1).

The energy of the subband minima was determined with respect to the CB minimum by solving

the one-dimensional Schrödinger equation in the In0.53Ga0.47As QW (appendix D), assuming the po-

tential profile shown in figure 4.1(c). Following what found above (section 3.3.2), the CB dispersion
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Figure 4.1: (a) In0.53Ga0.47As/In0.52Al0.48As QW structure grown by MBE on a lattice-matched

InP(111)A substrate: structure of type I. The In0.52Al0.48As barrier is doped by silicon with a density

of about 3×1018 cm−3, in order to provide electrons to the In0.53Ga0.47As surface QW (this is the so-

called technique of modulation doping [17]). (b) dI/dU spectrum averaged over a 30×30 nm2 square area

at the In0.53Ga0.47As QW surface, for a QW thickness l = 10 nm. The hatched region represents the

band gap. The subband minima (E1, E2, and E3) found from the spectrum are indicated. Note that

the Fermi level (U = 0) is within the first subband. (c) Band diagram along the growth direction z

for the In0.53Ga0.47As/In0.52Al0.48As QW structure. l is the QW thickness. χ is the electron affinity of

In0.53Ga0.47As. ∆EC is the CB offset between In0.53Ga0.47As and In0.52Al0.48As.
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relation in the In0.53Ga0.47As QW was given by a two-band Kane model including nonparabolicity

(appendix C), with an effective mass mC at the CB minimum of 0.041m0 [99]. The potential barrier

was the electron affinity of In0.53Ga0.47As on one side (χ = 4.48 eV [148]), and the CB offset between

In0.53Ga0.47As and In0.52Al0.48As on the other side (∆EC = 0.5 eV [99]). The effective mass in the

In0.52Al0.48As barrier was 0.075m0 [99]. The calculation indicates that three subbands are formed

in the QW for l = 10 nm, with the subband minima (E1, E2, and E3) given by: E1 − ECBM =

0.045 eV (where ECBM is the CB minimum), E2 − E1 = 0.117 eV, and E3 − E2 = 0.150 eV. This

is in good agreement with the subband spacings found from the dI/dU spectrum of figure 4.1(b)

(E2 − E1 = 0.13 eV and E3 − E2 = 0.17 eV).

If it is assumed that half of the electrons supplied by the silicon donors of the In0.52Al0.48As

barrier go to the In0.53Ga0.47As QW (the other half going to the In0.53Ga0.47As buffer layer), then

the surface density of electrons in the QW is nS = 1
2
× (3 × 1018 cm−3) × l [figure 4.1(a)]. Electrons

in the QW occupy both the first subband [density of states above E1 (in the simple case of a free-two

dimensional electron gas): NC = mC/πh̄
2] and the band of acceptorlike surface states [density of

states above ECBM (section 3.3.1): NA = 2×1013 eV−1.cm−2]. Therefore the Fermi level EF in the

QW is given by:

nS = NC(EF − E1) +NA(EF − ECBM). (4.1)

Solving this equation gives EF − E1 = 0.016 eV. This is consistent with the Fermi level position

found from the dI/dU spectrum of figure 4.1(b) (EF − E1 = 0.02 eV).

4.3.2 Disorder potential

Let us now focus on the effect of a disorder potential on the spatial distribution of LDOS in the

In0.53Ga0.47As QW. We investigate the structure of type II [figure 4.2(a)], where there is no electron

in the QW. The absence of electrons in the QW allows us to consider the simple case where there

is no screening effect.

Percolation of localized states

Figure 4.2(b) shows a typical dI/dU spectrum acquired at a given point of the In0.53Ga0.47As QW

surface, for l = 10 nm. The Fermi level (U = 0) is within the band gap, i.e., the subbands are
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empty. This is because both the In0.53Ga0.47As QW and the In0.52Al0.48As barrier are undoped. We

emphasize that it is possible to control the electron density in the (111)A-oriented In0.53Ga0.47As

surface QW: the Fermi level is within the band gap in the QW structure of type II, while it was found

to be within the first subband in the QW structure of type I (section 4.3.1). The control of electron

density is possible owing to the partial unpinning of the Fermi level at the In0.53Ga0.47As(111)A

surface (section 3.3.1).

Note that the subband spacings found from the dI/dU spectrum of figure 4.2(b) (E2 − E1 =

0.16 eV and E3 − E2 = 0.21 eV) are larger than the values calculated above (section 4.3.1), and

that the measured band gap (about 1.15 eV) is larger than the expected value of 0.8 eV.2 Such

discrepancies were not found in the case of the structure of type I (section 4.3.1).3

We now examine the spatial distribution of LDOS in the QW plane. Figure 4.3(a) shows a

STM topography of a 214×214 nm2 area of the QW surface, for l = 10 nm. A dI/dU spectrum

was acquired on each pixel of a 128×128 grid of this area, for U ranging from 0 V to +1 V. Figure

4.3(b) shows a dI/dU spatial map of this area at U = +0.376 V. The dI/dU signal has large spatial

fluctuations in the QW plane. This is because the subband minima shift rigidly with the spatial

position. As an example, let us consider the two locations A and B indicated in figure 4.3(b).

A rigid shift of the subband minima of 0.15 eV is found between the two locations, as shown in

figure 4.3(c). U = +0.376 V corresponds to an energy which is within the band gap at the location

A, while within the first subband at the location B. This leads to the contrast between the two

locations observed in the dI/dU spatial map of figure 4.3(b). Due to such spatial variations of the

subband minima, the dI/dU spectrum averaged over the whole area of figure 4.3(a) is a broaden

step-like function, as shown in figure 4.3(d). This broadening corresponds to the formation of a

2These discrepancies can be explained as follows. The In0.53Ga0.47As QW layer is insulating in the case of the

structure of type II, since the Fermi level is within the band gap. It means that the QW layer is not at the same

electrostatic potential than the STM sample plate, in spite of the presence of the indium contact between the grown

layers and the STM plate (section 4.2). In other words, there may be a voltage drop between the QW layer and the

STM sample plate, most probably in the In0.52Al0.48As barrier.
3The In0.53Ga0.47As QW layer is conductive in the case of the structure of type I, since the Fermi level is within

the first subband (section 4.3.1). It means that the QW layer is put at the same electrostatic potential than the

STM plate, through the indium contact between the grown layers and the STM plate (section 4.2). In other words,

there is no voltage drop between the QW layer and the STM sample plate.
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Figure 4.2: (a) In0.53Ga0.47As/In0.52Al0.48As QW structure grown by MBE on a lattice-matched

InP(111)A substrate: structure of type II. Both the In0.53Ga0.47As surface QW and the In0.52Al0.48As

barrier are undoped, hence there is no electron in the QW. However, the first 75 nm of the In0.53Ga0.47As

buffer layer are doped by silicon with a density of about 7×1018 cm−3, in order to ensure sufficient electrical

conductivity for STS measurements. (b) dI/dU spectrum acquired at a given point of the In0.53Ga0.47As

QW surface, for a QW thickness l = 10 nm. The hatched region represents the band gap. The subband

minima (E1, E2, and E3) found from the spectrum are indicated. Note that the Fermi level (U = 0) is

within the band gap.
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Figure 4.3: (Color) (a) STM topographic image of a 214×214 nm2 area of the In0.53Ga0.47As QW surface

(U = +1.1 V; I = 0.12 nA), for the structure of type II with l = 10 nm. A dI/dU spectrum was acquired

on each pixel of a 128×128 grid of this area, for U ranging from 0 V to +1 V. (b) dI/dU spatial map

of the same area as in (a), at U = +0.376 V. (c) dI/dU spectra averaged over the square areas A (solid

curve) and B (dashed curve) indicated in (b). (d) dI/dU spectrum averaged over the whole area of (a)

(black curve), and fit of each subband by equation (4.2) (yellow curve). The percolation thresholds (EC1,

EC2, and EC3) determined by the fit are indicated.

band tail [130] for each subband. Note that the spatial fluctuations of the dI/dU signal observed

in a particular area are reproducible for successive measurements.

In the semiclassical approximation of electron dynamics in crystalline solids [149], if a spatially

varying potential V (r) is superimposed on the periodic potential of the crystal, then the energy

bands shift rigidly when r changes. Thus it is natural to interpret our experimental data in terms

of the semiclassical approximation, i.e., by assuming that a disorder potential V (r) induces the

observed rigid shift of the subband minima.

Figure 4.4(a) shows dI/dU spatial maps of the same area as in figure 4.3(a), at several values

of U covering the transition from the band gap to the first subband. In a dI/dU spatial map at a

given value of U , one can easily distinguish the regions for which U is within the band gap (regions

of low dI/dU), from the regions for which U is within the first subband (regions of high dI/dU).

The fraction of area of high dI/dU increases with increasing U . Specifically, at low U there are only

isolated clusters of high dI/dU , while at high U there is an extended cluster of high dI/dU . Thus

the series of dI/dU spatial maps of figure 4.4(a) provides a real-space observation of the percolation

of localized states with increasing energy.
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Figure 4.4: (Color) dI/dU spatial maps of the same area as in figure 4.3(a), at several values of U covering

the transition (a) from the band gap to the first subband, (b) from the first to the second subband, and

(c) from the second to the third subband. The percolation thresholds (EC1, EC2, and EC3), determined

by fitting the dI/dU spectrum of figure 4.3(d) by equation (4.2), are indicated.
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Interestingly, we observe a phenomenon of percolation of localized states not only for the first

subband [figure 4.4(a)], but also for the second subband [figure 4.4(b)] and the third subband [figure

4.4(c)]. We would like to stress that the evolution of dI/dU spatial maps with increasing U is mostly

identical for the three figures 4.4(a), (b) and (c). This is a confirmation that there is actually a

rigid shift of the subband minima, in agreement with the semiclassical approximation [149].

Determination of the percolation thresholds

The percolation threshold can be determined for each subband, by using a statistical character-

ization of the disorder potential, as described by the semiclassical model of disordered electronic

systems [123]. The disorder potential V (r) induces spatial variations of the nth subband minimum:

En(r) = En + V (r), as depicted in figure 4.5(a). The LDOS of the nth subband at point r and

energy E is nonzero if E > En(r) and zero if E < En(r). Associated with V (r) is the statistical

distribution function ψ(V ) [ψ(V )dV is the probability of occurrence, at an arbitrary location r, of a

potential value in the range V ↔ V +dV ]. The knowledge of ψ(V ) allows to determine the function

φn(E) =
∫ E−En
−∞ ψ(V )dV , defining the fraction of area for which E > En(r), i.e., the fraction of area

of nonzero LDOS for a given subband n at energy E. φn(E) increases with increasing E [figure

4.5(b)]. At low E there are only isolated clusters of nonzero LDOS, while at high E there is an

extended cluster of nonzero LDOS [figure 4.5(c)]. The extended cluster is formed at a critical value

E = ECn, corresponding to the percolation threshold for the nth subband.

In the high-disorder limit, ψ(V ) obeys a Gaussian distribution [123,130]. In this case, it imme-

diately follows that

φn(E) =
1 + erf[(E − En − V̄ )/

√
2Vrms]

2
. (4.2)

Here, erf is the error function, V̄ is the mean of V (r), and Vrms is the root mean square of V (r).

The critical percolation density is 1/2 for a 2DES subject to a disorder potential with a Gaussian

distribution [123]. Therefore ECn is given by φn(ECn) = 1/2, i.e., ECn = En + V̄ .

If the LDOS of the nth subband at a given point r is assumed to be a Heavyside function of the

energy E, as for a free two-dimensional electron gas, then the spatially averaged LDOS is simply

proportional to φn(E). Therefore each subband in the spatially averaged dI/dU spectrum of figure

4.3(d) was fitted by equation (4.2). The fit of the dI/dU spectrum is excellent, which means that

assuming a Gaussian distribution for the disorder potential is a correct choice. The fit leads to the
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Figure 4.5: Semiclassical model of disordered electronic systems [123]: case of multisubband 2DES. (a)

The disorder potential V (r) induces spatial variations of the nth subband minimum: En(r) = En + V (r).

(b) For a given subband n, the fraction of area for which E > En(r) (i.e., the fraction of area of nonzero

LDOS) increases with increasing energy E. (c) At low E there are only isolated clusters of nonzero LDOS,

while at high E there is an extended cluster of nonzero LDOS. The extended cluster is formed at a critical

value E = ECn, corresponding to the percolation threshold for the nth subband. In the case of a disorder

potential with a Gaussian distribution, ECn = En + V̄ .

percolation thresholds (EC1 = +0.35 V, EC2 = +0.51 V, and EC3 = +0.72 V), as well as to the

root mean square of the disorder potential [Vrms = 0.05 (± 0.01) eV]. The percolation thresholds

are indicated in the series of dI/dU spatial maps of figure 4.4. It can be checked that, for a given

subband, the percolation threshold corresponds to the value of U at which the extended cluster of

high dI/dU is formed.

Origin of the electronic disorder

We now discuss the physical origin of the electronic disorder observed in the In0.53Ga0.47As QW.

A first possible cause of electronic disorder is related to spatial fluctuations of the QW thickness,

l. Monolayer steps separating atomically-flat terraces are visible in the STM topography of figure

4.3(a). The height of a monolayer step measured in STM topographic images is 0.34 nm, corre-
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sponding to the expected value of a/
√

3 for the (111) surface of a crystal with a zincblende structure

(where a is the lattice constant). Solving the one-dimensional Schrödinger equation in the QW (ap-

pendix D) indicates that the shift of E1 due to a variation of l by 0.34 nm is 2 meV, which is much

smaller than the Vrms found above. Therefore the spatial variations of l are not the main cause of

electronic disorder. To confirm this point, let us compare the STM topography of figure 4.3(a) with

the dI/dU spatial maps of figures 4.3(b) and 4.4. It can be seen that the spatial fluctuations of the

dI/dU signal are irrelevant to the position of the terraces.

A second possible cause of electronic disorder is related to spatial fluctuations of the CB offset

between In0.53Ga0.47As and In0.52Al0.48As, ∆EC . Spatial fluctuations of ∆EC may arise due to

phase separation in the ternary alloys In0.53Ga0.47As and In0.52Al0.48As [111–113]. The band gap

was measured by STS in both the In0.53Ga0.47As QW and the In0.52Al0.48As barrier.4 In both cases,

the spatial variations of the band gap were found to be less than 0.08 eV. It is known that ∆EC

is equal to about 70% of the difference in band gap between In0.53Ga0.47As and In0.52Al0.48As [99].

Therefore the spatial variations of ∆EC are less than 0.7×2×0.08 eV=0.11 eV. Solving the one-

dimensional Schrödinger equation in the QW (appendix D) indicates that the corresponding shift

of E1 is less than 1 meV. Again, this is much smaller than the Vrms found above. Therefore the

spatial variations of ∆EC are not the main cause of electronic disorder.

A third possibility is a disorder potential created by a random distribution of charged impurities

[124, 150]. The QW and the barrier are nominally undoped. However, native point defects are

present at the In0.53Ga0.47As(111)A surface, as discussed above (section 3.3.3). These defects are

observed at the (111)A surface of the In0.53Ga0.47As QW [figures 4.6(a) and (c)]. The dI/dU spectra

acquired close to the defects exhibit the same features as found above (section 3.3.3), namely a peak

near the valence-band maximum and a large signal in the valence band for the negatively charged

defect [figure 4.6(b)], and a peak located at U = EA about 0.5 eV above the CB minimum for the

positively charged defect [figure 4.6(d)]. In addition, for the positively charged defect, a peak is

observed near each subband minimum [figure 4.6(d)]. These peaks are interpreted as bound states

splitting off from the subband minima, due to the attractive potential created by the defect.5

4In order to measure by STS the band gap in the In0.52Al0.48As barrier, we used a reference sample without the

In0.53Ga0.47As QW.
5The formation of bound states in the vicinity of the positively charged defects is a breaking-down of the semi-

classical approximation used in the analysis of the percolation phenomenon. However, the bound states are observed
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Figure 4.6: (Color) (a) STM topographic image of a 10.7×10.7 nm2 area of the In0.53Ga0.47As QW surface

(U = +1.2 V; I = 0.12 nA), for the structure of type II with l = 10 nm. A negatively charged native point

defect (dark spot) is visible. (b) dI/dU spectrum acquired on the defect of (a) (solid curve), and dI/dU

spectrum acquired at a point located 4 nm away from the defect (dashed curve). In the dI/dU spectrum

acquired on the defect, a peak is observed near the valence-band maximum, as indicated by a vertical line.

(c) STM topographic image of a 10.7×10.7 nm2 area of the In0.53Ga0.47As QW surface (U = +1.1 V; I =

0.12 nA), for the structure of type II with l = 10 nm. A positively charged native point defect (bright spot)

is visible. (d) dI/dU spectrum acquired on the defect of (c) (solid curve), and dI/dU spectrum averaged

over points located 11.5 nm away from the defect (dashed curve). In the dI/dU spectrum acquired on the

defect, a peak is observed at U = EA, as indicated by a vertical line. In addition, a peak is observed near

each subband minimum, as also indicated by vertical lines.
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The root mean square of the bare Coulomb potential created in a 2DES by a plane of randomly

distributed point charges is given by [124]

Vrms =
√

2π
e2
√
C

4πε

√
ln
L

2s
. (4.3)

Here, C is the density of point charges, ε is the dielectric constant, L is the size of the area

under consideration in the 2DES plane, and s is the distance between the plane containing the

point charges and the 2DES plane. In our case, C = 3×1011 cm−2 (total density of native point

defects, as discussed in section 3.3.3), ε = ε0+εbulk

2
[dielectric constant for a point charge at the

interface between In0.53Ga0.47As and vacuum (appendix E), with εbulk = 13.75ε0 dielectric constant

of In0.53Ga0.47As [2]], L = 214 nm [size of the area of figure 4.3(a)], and s = l/4 = 2.5 nm (if we

consider, e.g., the case of the second subband6). The result of the calculation is Vrms = 0.052 eV,

which is in good agreement with the value found above.7 Thus the origin of the electronic disorder

is ascribed to the native point defects located at the QW surface.

To confirm this point, let us compare the spatial fluctuations of the dI/dU signal with the

position of the native point defects found at the QW surface. Figure 4.7(a) shows a STM topography

of a 96×96 nm2 area of the QW surface, for l = 10 nm. A dI/dU spectrum was acquired on each

pixel of a 64×64 grid of this area, for U ranging from -1.2 V to +1 V. 31 defects (20 negatively

charged defects and 11 positively charged defects) were found in this area by examining the dI/dU

spectrum of each pixel of the grid. As an example, figure 4.7(b) shows the dI/dU spectrum for one

of the negatively charged defects [which is labeled AD in figure 4.7(a)], and the dI/dU spectrum

for one of the positively charged defects [which is labeled DD in figure 4.7(a)]. The bare Coulomb

only in a small fraction (less than 10%) of the surface. A detailed study of the bound states is presented below

(section 4.3.3).
6In the ideal case of a QW with infinite barrier height, the distribution of LDOS along the growth direction

is given by |ψn(z)|2 ∝ sin2
(

nπz
l

)
, where z is the distance from the QW surface. The distance between the QW

surface and the closest maximum of LDOS is l/2n. Thus the disorder Coulomb potential V (r), created by the native

point defects located at the QW surface, would be different for each subband. However, this difference is small

[according to equation (4.3), Vrms changes only by 20% between the first and the third subband], in agreement with

the semiclassical approximation.
7The length scale at which the disorder potential was characterized experimentally [i.e., L = 214 nm, the size of

the area of figure 4.3(a)] is large enough. Indeed, equation (4.3) indicates that, for L = 214 nm, Vrms at 2L is only

10% larger than Vrms at L.
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potential V (r) created in the QW by the native point defects found in the area of figure 4.7(a) is

given by

V (r) =
∑
a

e2

4πε
√

(r− ra)2 + s2
−
∑
d

e2

4πε
√

(r− rd)2 + s2
. (4.4)

Here, ra and rd are the positions in the QW plane of the negatively and positively charged defects,

respectively. The dielectric constant ε is taken to be ε0+εbulk

2
, as explained above. s is taken to be

l/4 = 2.5 nm (if we consider, e.g., the case of the second subband). The result of the calculation is

shown in figure 4.7(c). As already mentioned, the LDOS of the nth subband at point r and energy

E is nonzero if E > En + V (r) and zero if E < En + V (r). In this way, we can easily calculate the

spatial distribution of LDOS in the area of figure 4.7(a). Calculated LDOS spatial maps are shown

in figure 4.7(e). These should be compared with measured dI/dU spatial maps, shown in figure

4.7(d). It can be seen that the calculated LDOS and the measured dI/dU signal have a quite similar

spatial distribution. This is remarkable, considering the simplicity of the calculation method. This

is a clear confirmation that the electronic disorder observed experimentally in the QW is due to the

native point defects located at the QW surface. The slight differences found between calculation

and experiment are probably due to the fact that we neglect in the calculation the influence of the

defects located outside of the area of figure 4.7(a).

4.3.3 Hydrogenic bound states induced by positively charged native

point defects

Let us now study the influence of quantum confinement on hydrogenic bound states formed in the

In0.53Ga0.47As QW. We investigate the structure of type II [figure 4.2(a)], where there is no electron

in the QW. The absence of electrons in the QW allows us to consider the simple case where there

is no screening effect.

Figure 4.8(a) shows a STM topographic image of the In0.53Ga0.47As QW surface, for l = 10 nm.

A positively charged native point defect is visible, appearing as a protrusion. Note that for all the

defects, the corrugation at U ≈ +1 V is 0.15 (± 0.05) nm.8 Figure 4.8(b) shows the same defect as

in figure 4.8(a), but at larger scale. It can be seen that the defect is isolated on an atomically-flat

8The variations of corrugation from defect to defect (± 0.05 nm) do not correlate with variations of binding energy

and Bohr radius, and are ascribed to slight changes of tip condition.
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Figure 4.7: (Color) (a) STM topographic image of a 96×96 nm2 area of the In0.53Ga0.47As QW surface

(U = +2.5 V; I =), for the structure of type II with l = 10 nm. A dI/dU spectrum was acquired on each

pixel of a 64×64 grid of this area, for U ranging from -1.2 V to +1 V. The positions of the negatively

and positively charged native point defects found in this area are indicated by blue and red squares,

respectively. (b) dI/dU spectra averaged over the square areas AD (negatively charged defect, blue curve)

and DD (positively charged defect, red curve) indicated in (a). (c) Calculated spatial map of the potential

V (r), in the same area as in (a). See the text for details about the calculation of V (r). (d) dI/dU spatial

maps of the same area as in (a), at two different values of U . The values of U are given with respect to

the experimentally determined percolation threshold for the second subband, EC2. (e) Calculated spatial

maps of the LDOS of the nth subband, in the same area as in (a), at two different energies E. The energies

E are given with respect to the theoretical percolation threshold for the nth subband, ECn = En + V̄ .

White and black regions correspond to nonzero and zero LDOS, respectively. See the text for details about

the calculation of the LDOS.
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terrace, with no other defects in the vicinity (the mottled appearance of the terrace is due to local

fluctuations of the InGaAs alloy composition, as explained in section 3). A dI/dU spectrum was

acquired on each pixel of a 64×64 grid of the area of figure 4.8(b), for U ranging from 0 V to +1 V

(CB region). Figure 4.8(c) shows the dI/dU spectra averaged over rings of thickness 1 nm and of

several radii r, centered on the defect. The dI/dU spectrum at r = 9.7 nm has a step-like voltage

dependence, as expected for a 2DES. The steps correspond to the subbands formed in the QW

due to quantum confinement along the growth direction. The dI/dU spectrum at r = 9.7 nm also

exhibits a peak below each subband minimum. The height of these peaks increases as r decreases.

The peak found below the nth subband minimum is interpreted as a bound state splitting off from

the nth subband, due to an attractive potential created by the defect [134]. Bound states splitting

off from a two-dimensional continuum have been recently observed by STS measurements on metal

surface states [61,65,66] or ErSi2 layers [73]. In contrast to those works, here it is possible to study

the influence of quantum confinement on the bound states, by simply varying l.

Note that the bound state peaks move to lower U when r increases, as it can be seen in figure

4.8(c). The origin of this shift is unknown. Since it has a small amplitude (about 10 mV between

r = 0.9 nm and r = 9.7 nm, which is comparable to Umod), it will be neglected in the following. At

r = 0.9 nm, the bound states are located at U = ε1, ε2, and ε3.

Note also that the peak at U = EA in figure 4.8(c) is only found for r < 2 nm (i.e., in the

immediate vicinity of the defect), while the bound state peaks can be observed up to r ≈ 13 nm.

For all the defects, EA is 0.5 (± 0.05) eV above the CB minimum, independently of l.

Figure 4.8(d) shows the dI/dU spatial maps at U = ε1, ε2, and ε3. The wave functions of the

bound states are not completely isotropic, but are slightly elongated in one particular direction.

The exact shape of the wave functions was found to vary from defect to defect. This is consistent

with the fact that a disorder potential is present in the QW (section 4.3.2). The disorder potential,

superimposed on the central potential of the defect, induces a small distortion of the wave functions

of the bound states.

The spatial extension of the wave functions of the bound states can be precisely determined by

plotting the height of the corresponding dI/dU peaks as a function of r. Figure 4.8(e) shows the

case of the bound state attached to the first subband.9 The obtained spatial dependence is well

9The dI/dU peak height is plotted for r > 2 nm. For r < 2 nm, the defect is visible in the STM topography,
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fitted by an exponential decay A exp (−2r/aB1), representing the 1s hydrogenic wave function. The

fit leads to the Bohr radius for the first subband, aB1 = 6.8 (± 1) nm. The Bohr radii determined

in a similar way for high-order subbands are aB2 = 6.1 (± 1) nm and aB3 = 5.4 (± 1) nm.

Having shown how to determine the Bohr radius of a positively charged native point defect,

we now present a method for determining the binding energy. The binding energy is defined as

the difference between the energy of the bound state and that of the subband minimum. On one

hand, the bound state peaks appear the most clearly in the dI/dU spectra acquired close to the

defect. Therefore, the bound state energies εn were determined from the dI/dU spectrum at the

smallest measured radius, r = 0.9 nm. On the other hand, the steps associated with the subband

minima appear the most clearly in the dI/dU spectra acquired far from the defect. From about

r = 2aB1, the dI/dU spectra exhibit a clear step-like voltage dependence, the bound state peaks

having completely vanished. Therefore the subband minima En were determined from the dI/dU

spectrum at r = 2aB1 (for a precise determination of the energy position of the steps, the derivative

of the dI/dU spectrum at r = 2aB1 was calculated and then fitted by Gaussian functions). Figure

4.9 illustrates this method for three different values of l.

Figure 4.10 summarizes the STS data obtained in this work. The smaller l, the larger E1 − ε1

and the smaller aB1, i.e., the tighter the electron is bound to the positively charged native point

defect. Thus we clearly observe the influence of quantum confinement on the bound states, as

expected in the present case where l is comparable with aB1 [132]. Note that for a given value of l,

different defects do not have exactly the same E1 − ε1 or the same aB1. This can be explained by

the presence of a disorder potential in the QW (section 4.3.2).

We now compare the STS data with a calculation of hydrogenic impurity states. The effect of

tip-induced band bending on the bound states was neglected.10 However, the CB nonparabolicity

was taken into account, since it plays a significant role in In0.53Ga0.47As (section 3.3.2). The method

proposed in Ref. [133] was employed. It consists of two steps. In the first step, the energies En were

determined with respect to the CB minimum by solving the one-dimensional Schrödinger equation

hence the r-dependence of dI/dU may reflect a variation of tip-sample distance (appendix A).
10Tip-induced band bending (appendix B) was estimated by assuming that the density of surface states is zero,

and that the unintentional n-type impurity density in the nominally undoped In0.53Ga0.47As layer is about 1×1015

cm−3 [117]. For U > 0, the space-charge layer thickness was found to be larger than 100 nm, hence much larger than

aB1.
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Figure 4.8: (Color) Determination of the Bohr radius of a positively charged native point defect at

the In0.53Ga0.47As QW surface, for the structure of type II with l = 10 nm. (a) 10.7×10.7 nm2 STM

topographic image (U = +1.1 V; I = 0.1 nA). A positively charged native point defect (bright spot) is

visible. (b) 29.5×29.5 nm2 STM topographic image (U = +1.1 V; I = 0.5 nA), showing the same defect as

in (a). A dI/dU spectrum was acquired simultaneously to the STM topography, on each pixel of a 64×64

grid, for U ranging from 0 V to +1 V (CB region). (c) dI/dU spectra averaged over rings of thickness 1 nm

and of several radii r, centered on the defect (for clarity, the spectra are offset by a constant of 0.15 nA/V,

relative to the lowest curve; the ordinate axis for the spectrum at r = 0.9 nm is multiplied by 0.4). Three

subbands are observed in the present case where l = 10 nm, in agreement with the calculations detailed

in the text. A peak is found near each subband minimum, as indicated by vertical lines. For the dI/dU

spectrum at r = 0.9 nm, these peaks are found at U = ε1, ε2, and ε3. (d) dI/dU spatial maps of the same

area as in (b), at several values of U indicated in (c). (e) Height of the dI/dU peak attached to the first

subband as a function of distance r from the defect (squares). Also shown is a fit by an exponential decay

A exp(−2r/aB1) (red line). The fit leads to a Bohr radius for the first subband, aB1 = 6.8 (± 1) nm. Note

that the ordinate axis has a logarithmic scale.
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Figure 4.9: (Color) Determination of the binding energy of a positively charged native point defect at the

In0.53Ga0.47As QW surface, for the structure of type II. An analysis similar to that of figure 4.8 leads to

the Bohr radius for the first subband, aB1. The energy of the bound state attached to the nth subband,

εn, is determined from the dI/dU spectrum at r = 0.9 nm. The nth subband minimum, En, is determined

from the d2I/dU2 spectrum at r = 2aB1. The binding energy for the nth subband is then given by En−εn.

(a) l = 10 nm, for a defect with aB1 = 7.3 (± 1) nm. (b) l = 6 nm, for a defect with aB1 = 5.15 (± 1)

nm. (c) l = 2 nm, for a defect with aB1 = 4.4 (± 1) nm. Three subbands are observed for l = 10 nm, two

subbands for l = 6 nm, and one subband for l = 2 nm, in agreement with the calculations detailed in the

text. Note that the disorder potential in the QW induces a rigid shift of subband minima when the spatial

position changes (section 4.3.2). Therefore one can only compare the subband spacings in dI/dU spectra

for different defects.
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Figure 4.10: Binding energy E1 − ε1 and Bohr radius aB1 of positively charged native point defects as a

function of the In0.53Ga0.47As QW thickness l: STS data (each circle corresponds to a single defect), and

variational calculation of hydrogenic impurity states including the CB nonparabolicity (solid curves).

in the In0.53Ga0.47As/In0.52Al0.48As QW structure, as described above (section 4.3.1). For a given

value of l, the number of subbands found by solving the Schrödinger equation agrees with the STS

data.11 In the second step, E1−ε1 and aB1 were determined by using a variational calculation for an

electron bound to a point charge +e [132]. The point charge was taken to be at the QW boundary,

since the defects are located at the QW surface. The dielectric constant was that for a point charge

at the interface between In0.53Ga0.47As and vacuum (appendix E), given by ε = ε0+εbulk

2
(εbulk =

13.75ε0 is the dielectric constant of In0.53Ga0.47As [2]). The electron effective mass was given by the

two-band Kane model at the energy E1 determined in the first step. The calculation agrees well

with the STS data, as shown in figure 4.10. We emphasize that this calculation has no adjustable

parameters. The increase of E1 − ε1 (or, equivalently, the decrease of aB1) with decreasing l is

enhanced by the CB nonparabolicity. From l = 14 nm to l = 2 nm, E1− ε1 increases by factors 2.4

and 3.3 without and with considering the CB nonparabolicity, respectively.

We point out that the distribution of LDOS along the growth direction, |ψn(z)|2, depends on

the subband index n [in the ideal case of a QW with infinite barrier height, |ψn(z)|2 ∝ sin2
(
nπz
l

)
where z is the distance from the QW boundary]. The distance between the QW boundary and the

closest maximum of |ψn(z)|2 decreases with increasing n (in the case of infinite barrier height, this

11The measured subband spacings are between 20 and 30% larger than the calculated ones. As already mentionned

(section 4.3.2), this maybe due to a voltage drop in the In0.52Al0.48As barrier. This effect is neglected here [even for

the largest measured binding energy (40 meV), a variation of 20-30% is smaller than Umod].
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distance is l/2n). Therefore the binding of the electron to a defect located at the QW boundary is

expected to become tighter for larger n. This is what observed in the STS data of figures 4.8 and

4.9. Further experimental work is needed, e.g., by studying impurities at different positions along

the growth direction.

4.4 Summary

In this section, electronic states in (111)A-oriented In0.53Ga0.47As surface QWs grown on top of

In0.52Al0.48As barriers were studied by STS. It was shown that:

• Electron subbands are formed in the In0.53Ga0.47As QW, due to quantum confinement along

the growth direction. In addition, the electron density can be controlled in the QW, owing to

the partial unpinning of the Fermi level at the In0.53Ga0.47As(111)A surface.

• A disorder potential is present in the In0.53Ga0.47As QW. In the case of a multisubband QW,

a phenomenon of percolation of localized states occurs in each subband tail. The disorder

potential is created by a random distribution of negatively and positively charged native point

defects at the QW surface.

• A bound state splits off from each subband minimum in the vicinity of a positively charged

native point defect at the In0.53Ga0.47As QW surface. Both the binding energy and the Bohr

radius of the bound states can be directly measured. The binding energy and the Bohr radius

are functions of the QW thickness, in quantitative agreement with variational calculations of

hydrogenic impurity states.
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5 Conclusion

Low-temperature STS under UHV was used to study (111)A-oriented In0.53Ga0.47As surface QWs

grown by MBE on top of In0.52Al0.48As barriers. The STS measurements were performed at the

(111)A epitaxial surface of the In0.53Ga0.47As QW, in order to probe with nanometer-scale resolution

the in-plane spatial distribution of LDOS.

It appeared that the (111)A-oriented In0.53Ga0.47As/In0.52Al0.48As materials system offers major

advantages for investigating surface QWs by STS:

• The Fermi level is partially unpinned at the (111)A surface of n-type In0.53Ga0.47As. Thus

the electron density in the QW could be controlled by modulation doping. This important

result suggests that it would be possible to tune the electron density in the QW during STS

measurements under UHV, by using an electrical gate.

• Native point defects are present at the In0.53Ga0.47As(111)A surface, creating a disorder po-

tential in the QW. Thus a STS study of disordered 2DES could be performed, which revealed

that a phenomenon of percolation of localized states occurs in each subband tail. For future

experiments, it would be interesting to vary the electron density in the QW, in order to in-

vestigate many-electron phenomena in disordered 2DES, such as the crossover from linear to

nonlinear screening regime [31,124].

• Among the native point defects found at the In0.53Ga0.47As(111)A surface, some are positively

charged. Thus a STS study of donor impurities located in a semiconductor QW could be

performed. Both the binding energy and the Bohr radius of the bound states could be directly

determined. Moreover, it was shown that the binding energy and the Bohr radius are functions

of the QW thickness, in quantitative agreement with variational calculations of hydrogenic

impurity states. Future experiments could investigate how the bound states are influenced by

a perpendicular magnetic field applied in the QW [175,176]. Even more challenging would be

to manipulate with the STM tip the positively charged defects at the QW surface, in order

to study artificial nanostructures where the bound states are coherently coupled.
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A Tunneling current in a perturbative approach

In order to precisely understand the principle of the scanning tunneling microscope [26–30], it is

necessary to obtain an analytical expression of the tunneling current flowing between the sample

and the metallic probe tip. In this section, we establish a useful formula for the tunneling current

and the differential tunneling conductance, by using a simple perturbative model.

We consider that the probe tip and the sample are separated by a sufficiently thick tunneling

junction, so that tunneling can be treated in a perturbative approach, as proposed by Bardeen [151].

In addition, we assume elastic tunneling. Within this framework, the probability per unit time of the

transition of an electron, from a single-electron state ψt of energy Et on the tip, to a single-electron

state ψs of energy Es on the sample, is given by the Fermi golden rule of first-order time-dependent

perturbation theory:

Pts =
2π

h̄
|Mts|2 δ (Et − Es) f(Et − EF − eU) [1− f(Es − EF )] (A.1)

where Mts is the tunneling matrix element, f (E) = 1

1+exp

(
E

kBT

) is the Fermi-Dirac function, EF

is the sample Fermi level, and U is the bias voltage applied between the tip and the sample (tip

neutral). Note that EF + eU corresponds to the tip Fermi level. Summing the probabilities per

unit time Pts [equation (A.1)] over all states ψt and ψs leads to the tunneling current from the tip

to the sample:

ITS = −e
∫ +∞

−∞

∑
t

δ (E − Et)
∑
s

2π

h̄
|Mts|2 δ (E − Es) f(E − EF − eU) [1− f(E − EF )] dE. (A.2)

The tunneling current IST from the sample to the tip is obtained in a similar way. It is then easy

to calculate the net tunneling current I = IST − ITS from the sample to the tip. The result is

I =
2πe

h̄

∫ +∞

−∞

∑
t

δ (E − Et)
∑
s

|Mts|2 δ (E − Es) [f(E − EF − eU)− f(E − EF )] dE. (A.3)

Tersoff and Hamann have modeled the probe tip as a locally spherical potential well where it

approaches nearest to the sample surface [152,153]. With this approximation, they have shown that
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Mts ∝ ψs (r0) (A.4)

where r0 denotes the center of curvature of the tip. The wave functions ψs (x, y, z) obey the time-

independent Schrödinger equation

HSψs (x, y, z) = Esψs (x, y, z) (A.5)

where HS is the single-electron Hamiltonian on the sample side, (x, y) are the coordinates in the

sample surface plane, and z is the coordinate in the perpendicular direction. We assume that HS

can be written as HS = HS,xy + HS,z, where HS,xy is an operator acting only on the the (x, y)

variables, and HS,z an operator acting only on the z variable. In this case, we use the separation of

variables ψs (x, y, z) = ψs (x, y)ψs (z) and obtain

HS,xyψs (x, y) = Es,xyψs (x, y) (A.6)

HS,zψs (z) = Es,zψs (z) (A.7)

with Es = Es,xy +Es,z. In addition, if the tunneling barrier is modeled by a potential step of height

φ(U), then solving equation (A.7) in the tunneling barrier region (Es,z < φ) gives

ψs (z) ∝ exp (−κz) (A.8)

φ(U)− Es,z =
h̄2κ2

2m0

(A.9)

where m0 is the free-electron mass. Together, equations (A.4), (A.8) and (A.9) lead to

Mts ∝ ψs (x0, y0) exp

−z0

√
2m0 [φ(U)− Es,z]

h̄

 (A.10)

with r0 ≡ (x0, y0, z0), z0 being the distance between the sample surface and the center of curvature

of the tip. It is usually assumed that Es,z ' Es. With this approximation, injecting equation (A.10)

into equation (A.3) gives

I (U, x0, y0, z0) ∝
∫ +∞

−∞
NT (E)NS (E, x0, y0)D (E,U, z0) [f(E − EF − eU)− f(E − EF )] dE

(A.11)
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where

• NT (E) =
∑
t δ (E − Et) is the density of states on the probe tip,

• NS (E, x0, y0) =
∑
s δ (E − Es) |ψs (x0, y0)|2 is the local density of states at the sample surface,

• D (E,U, z0) = exp
[
−2z0

√
2m0[φ(U)−E]

h̄

]
is the transmission coefficient of the tunneling barrier.

At low temperature, equation (A.11) becomes

I (U, x0, y0, z0) ∝
∫ EF +eU

EF

NT (E)NS (E, x0, y0)D (E,U, z0) dE (A.12)

which is actually the expression proposed by Lang [154].1

If NT is independent of energy, then the differential conductance derived from equation (A.12)

has a simple expression:

dI

dU
∝ eD(EF + eU, U, z0)NS(EF + eU, x0, y0) +

∫ EF +eU

EF

dD

dU
NS(E, x0, y0)dE. (A.13)

The tunneling barrier height is usually taken to be φ(U) = EF +φS+EF +eU+φT

2
, i.e., an average

between the height EF+φS (φS sample work function) on the sample side and the height EF+eU+φT

(φT tip work function) on the tip side. In this case, D (EF , U, z0) = exp
[
−2z0

√
2m0[(φS+φT +eU)/2]

h̄

]
.

Thus, as long as eU is small compared to φS and φT , equation (A.13) simplifies as

dI

dU
∝ D(z0)NS(EF + eU, x0, y0). (A.14)

Equation (A.14) indicates that the differential conductance dI/dU at sample voltage U is propor-

tional to the local density of states at the sample surface at energy EF + eU , if the tip-sample

separation z0 is constant. This equation is usually employed for interpreting scanning tunneling

microscopy data. However, it cannot be used in the particular case where the sample is a semicon-

ductor, with EF lying in the conduction band, and EF + eU lying in the band gap [155]. In such

situation, the first term in equation (A.13) equals zero (because NS at EF + eU equals zero), but

1In Ref. [154], the energies Et and Es are measured with respect to the bottom of the band on the tip side and on

the sample side, respectively. Thus the formula for the tunneling current at low temperature has a slightly different

form.
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the second term is nonzero (because NS is nonzero between EF and the conduction-band minimum,

and D depends on U). In other words, NS is zero at EF +eU , but dI/dU is nonzero at U . A similar

situation happens if EF lies in the valence band.
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B Fermi level position in semiconductors

In this section, we present a general method for determining the Fermi level position with respect

to bulk band edges in a semiconductor. We show in detail how to calculate the Fermi level position

in the bulk of a semiconductor, at a semiconductor free surface, at a metal-insulator-semiconductor

(MIS) junction, and at a metal-semiconductor contact.

We make the following assumptions:

• Thermal equilibrium is reached. Hence the Fermi level EF is constant throughout the semi-

conductor.

• The semiconductor is uniformly doped, with ρD and ρA the volume densities of donor impu-

rities and acceptor impurities, respectively.

• If a potential V (z) is superimposed on the periodic potential of the semiconductor crystal, then

single-electron energies are shifted by +V (z). Specifically, the conduction-band minimum EC

becomes EC (z) = EC + V (z), and the other energy levels experience the same shift: the

valence-band maximum is written as EV (z) = EC (z)−EG (with EG fundamental band gap),

the donor impurity level as ED (z) = EC (z)−∆D (with ∆D donor binding energy), and the

acceptor impurity level as EA (z) = EC (z) − EG + ∆A (with ∆A acceptor binding energy).

Such an approximation corresponds to a semiclassical model [149]. In the present case where

the impurity concentrations are uniform in the semiconductor, the potential V (z) arises solely

due to the presence of the surface. Hereafter, z denotes the distance from the surface.

B.1 Volume density of charge

The volume density of charge in the semiconductor is given by

ρ (z) = e [p (z)− n (z) + ρD+ (z)− ρA− (z)] (B.1)

where
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• n (z) and p (z) are the volume densities of electrons and holes, respectively. n (z) and p (z)

are determined by using Fermi-Dirac statistics:

n (z) =
∫ +∞

0
NC (E)

1

1 + exp
[
EC(z)+E−EF

kBT

]dE (B.2)

p (z) =
∫ +∞

0
NV (E)

1

1 + exp
[
EF−EV (z)+E

kBT

]dE (B.3)

where NC (E) and NV (E) are the densities of states (per volume unit) in the conduction band

and in the valence band, respectively. For parabolic bands

NC (E) =
mC

π2h̄3

√
2mCE (B.4)

NV (E) =
mV

π2h̄3

√
2mVE (B.5)

where mC and mV are the effective masses in the conduction band and in the valence band,

respectively. For a conduction-band dispersion relation given by a two-band Kane model

including nonparabolicity effects [equation (C.15)]

NC (E) =
mC

π2h̄3

√
2mCE

(
1 +

E

EG

)(
1 +

2E

EG

)
. (B.6)

• ρD+ (z) and ρA− (z) are the volume densities of donor impurity states which are empty and

of acceptor impurity states which are filled, respectively. In the case of nondegenerate doping

levels, ρD+ (z) and ρA− (z) are determined by using Fermi-Dirac statistics:

ρD+ (z) =
ρD

1 + exp
[
EF−ED(z)

kBT

] (B.7)

ρA− (z) =
ρA

1 + exp
[
EA(z)−EF

kBT

] . (B.8)

In the case of degenerate doping levels, ρD+ (z) and ρA− (z) are simply given by:

ρD+ (z) = ρD (B.9)

ρA− (z) = ρA. (B.10)
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B.2 Fermi level position in the bulk of a semiconductor

The Fermi level position in the bulk of the semiconductor, EF − EC (+∞), is determined by the

condition of charge neutrality in the bulk

ρ (+∞) = 0. (B.11)

Solving equation (B.11) for a typical semiconductor material, it is found that the bulk Fermi

level position can be precisely tuned by varying the impurity density [2].

B.3 Surface density of charge

The Fermi level position at the semiconductor surface, EF −EC (0), is usually different from that in

the bulk, EF −EC (+∞). If so, bulk band edges bend in the near-surface region, i.e., a space-charge

layer is formed. The surface density of charge at the semiconductor surface can be written as

σ = σspace + e (σD+ − σA−) (B.12)

where

• σspace is the surface density of space charge in the near-surface region. It can be determined

in a simple way if one assumes a rectangular profile for the volume density of space charge,

i.e., ρ (z) = ρ (0) for 0 < z < Z0, where Z0 is the thickness of the space-charge layer. Solving

the Poisson equation in this case leads to

Z0 =

√√√√2εS [EC (0)− EC (+∞)]

eρ (0)
(B.13)

where εS is the dielectric constant in the semiconductor, and EC (+∞)− EC (0) corresponds

to the band bending in the space-charge layer. σspace is then simply given by

σspace = ρ (0)Z0. (B.14)
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• σD+ and σA− are the surface densities of donorlike surface states which are empty and of

acceptorlike surface states which are filled, respectively. In the model proposed by Bardeen

[159], one assumes that the donorlike (acceptorlike) surface states lie below (above) ECNL (0),

where ECNL (z) = EC (z) − ∆CNL is the so-called charge neutrality level and ∆CNL is an

energy characteristic of the semiconductor.1 Thus, if EF − EC (0) is larger (smaller) than

−∆CNL, then surface states carry a negative (positive) charge. In the Bardeen model [159],

σD+ and σA− are determined by using Fermi-Dirac statistics:

σD+ =
∫ +∞

0
ND (E)

1

1 + exp
[
EF−EC(0)+∆CNL+E

kBT

]dE (B.15)

σA− =
∫ +∞

0
NA (E)

1

1 + exp
[
EC(0)−∆CNL+E−EF

kBT

]dE (B.16)

whereND (E) andNA (E) are the densities of states (per surface unit) in the bands of donorlike

surface states and of acceptorlike surface states, respectively.

B.4 Fermi level position at a semiconductor free surface

At a semiconductor free surface, the Fermi level position EF−EC (0) is determined by the condition

of charge neutrality

σ = 0, (B.17)

i.e., the space charge in the near-surface region must compensate the charge carried by surface

states.

Employing such a method for calculating the surface Fermi level position, Bardeen [159] has

shown that the surface Fermi level tends to be pinned to energies where the density of surface

states is high.2

1In models based on virtual-induced gap states [160, 161], ECNL corresponds to the effective center of the bulk

band gap. In models based on disorder-induced gap states [162] or amphoteric defects [163], ECNL corresponds to

the average energy of the sp3 hybrids. In the three types of model, the obtained ECNL is located about 5 eV below

the vacuum level, and lies in the band gap for most semiconductors (i.e., ∆CNL is usually positive).
2Fermi level pinning is a general phenomenon, which is not limited to the case of semiconductor surfaces. In any
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Two extreme cases can be considered depending on the density of surface states. If the density

of surface states is low [figure B.1(a)], then the surface Fermi level is weakly pinned, thus the surface

Fermi level position can be readily controlled by changing the impurity density. On the contrary, if

the density of surface states is high [figure B.1(b)], then the surface Fermi level is strongly pinned,

thus the surface Fermi level position remains almost constant over a wide range of impurity density.

The Fermi level pinning phenomenon has been observed experimentally at the following clean

crystalline surfaces in ultrahigh vacuum (UHV)3:

• Si(111)-(2×1) cleaved surface. The surface Fermi level is strongly pinned in the band gap by

intrinsic surface states originating from the (2×1) reconstruction [91,92].

• Si(001)-(2×1) surface prepared by annealing. The situation is similar to the case of the

Si(111)-(2×1) cleaved surface [92,93].

• (001)-(2×4) epitaxial surfaces of InxGa1−xAs. The surface Fermi level is strongly pinned by ex-

trinsic surface states, i.e., surface states related to defects (adatoms, vacancies, steps, disloca-

tions, etc.). At the GaAs(001)-(2×4) surface, the Fermi level is pinned around midgap by kinks

in the As-dimer-vacancy rows of the (2×4) reconstruction [94,95]. At the In0.53Ga0.47As(001)-

(2×4) surface, the Fermi level is also pinned around midgap [96], probably for the same

reasons as for GaAs. At the InAs(001)-(2×4) surface, the surface Fermi level is pinned in

the conduction band [97, 98], but the exact nature of the defects responsible for Fermi level

pinning has not been identified so far.

A noticeable exception is the (110) clean surface of III-V compound semiconductors cleaved in

UHV. Since the density of surface states is very low in the band gap, the surface Fermi level is

mostly unpinned [164].

electronic system, if the Fermi level is located in a region where the density of electronic states is high, then even

a large change in the amount of charge carried by the states corresponds to only a slight shift in the Fermi level

position. Therefore the Fermi level is pinned to energies where the density of states is high.
3Crystalline surfaces in a UHV environment are model systems with a well-defined atomic structure, and thus are

often used in the field of surface science.
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Figure B.1: (Color) Determination of the Fermi level position at a semiconductor free surface, EF −

EC (0), in the Bardeen model [159]. The method is illustrated in the case where EF lies in the band

of acceptorlike surface states [i.e., EF lies above the charge neutrality level ECNL (0) = EC (0) −∆CNL].

Furthermore, it is assumed that the density of states in the band of acceptorlike surface states is independent

of energy [NA(E) = Nsurf ], hence the density of filled acceptor surface states is simply given by σA− =

[EF − EC (0) + ∆CNL]Nsurf . The density of space charge in the near-surface region, σspace, is given by

equation (B.14). EF − EC (0) is given by equation (B.17). (a) If Nsurf is low, then varying the impurity

density [i.e., varying the bulk Fermi level position EF −EC (+∞)] allows to vary EF −EC (0). (b) If Nsurf

is high, then varying the impurity density has almost no effect on EF − EC (0).
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B.5 Fermi level position at a MIS junction

Let us consider the MIS junction shown in figure B.2. At the semiconductor-insulator interface, the

Fermi level position EF − EC (0) is determined by the condition of charge neutrality

σ + σM = 0, (B.18)

where σM is the surface density of charge on the metal surface. Equation (B.18) means that the

charge on the metal must compensate the total charge on the semiconductor. σM is given by

σM = CI [Φ(−z0)− Φ(0)] , (B.19)

where CI = εI/z0 is the insulator capacitance per unit area, εI is the dielectric constant in the

insulator, z0 is the thickness of the insulator, and Φ(−z0)−Φ(0) is the drop of electrostatic potential

across the insulator. Φ(−z0)−Φ(0) is related to the bias voltage U applied between the metal and

the semiconductor (figure B.2):

e [Φ(0)− Φ(−z0)] = eU + eφ− eχ+ EF − EC (0) , (B.20)

where eχ is the electron affinity of the semiconductor, and eφ is the work function of the metal.

Again, two extreme cases can be considered depending on the density of surface states. If the

density of surface states is high, then the surface Fermi level is weakly pinned, thus the surface

Fermi level position remains almost constant over a wide range of bias voltage. In other words,

electrons in surface states efficiently screen the charge on the metal, and most of the electrostatic

potential applied between the metal and the semiconductor is dropped in the insulating layer. On

the contrary, if the density of surface states is low, then the surface Fermi level is weakly pinned,

thus the surface Fermi level position strongly depends on the bias voltage. In other words, electrons

in surface states cannot completely screen the charge on the metal, and some of the electrostatic

potential applied between tip and semiconductor is dropped in the semiconductor itself.

The strength of Fermi level pinning at the semiconductor-insulator interface of MIS junctions is

an extremely important issue in semiconductor physics and technology, in particular for

• The realization of a MIS field-effect transistor. If the Fermi level pinning at the semiconductor-

insulator interface is too strong, then the Fermi level position cannot be controlled by varying
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Figure B.2: Schematic band diagram of a planar metal-insulator-semiconductor (MIS) junction. EF is

the Fermi level in the semiconductor, EF + eU is the Fermi level in the metal, U is the bias voltage

applied between the metal and the semiconductor, eχ is the electron affinity of the semiconductor, z0 is

the thickness of the insulator, and eφ is the work function of the metal.
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the bias voltage, hence the MIS junction cannot be used for building a field-effect transistor

[165]. The strength of Fermi level pinning can be reduced at Si-SiO2 interfaces by hydrogen

annealing [2], but pinning is much more difficult to suppress in the case of III-V compound

semiconductors in spite of considerable effort to develop new insulating materials [166–169].

This is one of the main reason why silicon is preferred to III-V compound semiconductors for

the realization of MIS field-effect transistors.

• The interpretation of data in scanning tunneling microscopy of semiconductor surfaces. If

the Fermi level pinning at the semiconductor surface is too weak, then the surface Fermi level

position changes with the bias voltage, an effect known as tip-induced band bending [170–173].

B.6 Fermi level position at a metal-semiconductor contact

The case of metal-semiconductor contacts can be treated in the same way as the case of MIS

junctions. Specifically, following Bardeen [159], a metal-semiconductor contact is modeled as a

metal-vacuum-semiconductor junction, i.e., a MIS junction where the insulator is vacuum.

An important parameter for a metal-semiconductor contact is the barrier height [2]. For a n-type

semiconductor, the barrier height eφBn is defined as the value of EC (0)− EF at U = 0. Equation

(B.20) immediately gives

φBn = φ− χ− [Φ(0)− Φ(−z0)] . (B.21)

In equation (B.21), the term φ− χ corresponds to the barrier height in the Schottky-Mott model,

while the term Φ(0) − Φ(−z0) corresponds to the interface dipole due to the presence of surface

states.
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C Conduction-band dispersion relation in the

two-band Kane model

The conduction band of narrow-gap semiconductors departs from the simple parabolic form in the

experimentally attainable range of carrier concentrations, as observed, e.g., in InSb and InAs [156].

In this section, we establish an expression for the conduction-band dispersion relation which includes

such nonparabolicity effects. We consider the case of direct-gap III-V compound semiconductors

and use the k · p method as introduced by Kane [7, 157,158].

In a crystalline solid, the single-electron time-independent Schrödinger equation is

[
p2

2m0

+ V (r)

]
ψ (r) = Eψ (r) (C.1)

where p = h̄
i
∇ is the momentum operator, m0 is the free-electron mass, and V (r) is a periodic

potential with the periodicity of the crystal. Spin-orbit coupling has been neglected. The solutions

of equation (C.1) can be written as Bloch waves

ψnk (r) = unk (r) exp (ik · r) (C.2)

of energy En (k). Here, unk (r) is a periodic function of r with the periodicity of the crystal, n is

the band index, and k is the crystal wave vector. Injecting equation (C.2) into equation (C.1) gives

[
p2

2m0

+ V (r) +
h̄

m0

k · p
]
unk (r) =

(
En (k)− h̄2k2

2m0

)
unk (r) . (C.3)

The third term in equation (C.3) is referred to as the k ·p interaction, and involves the momentum

operator p. We want to determine the shape of the energy bands En (k) in the vicinity of some

special point k0 of the first Brillouin zone, from the knowledge of the energies En (k0) and of

the matrix elements of the momentum operator at k0. Such an analysis is known as the k · p

formalism [7].

In the case of direct-gap III-V compound semiconductors
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• The band extrema occur at the center of the first Brillouin zone, the so-called Γ point. Thus

we apply the k · p formalism for k around k0 = 0.

• The lowest conduction band and the three topmost valence bands are close and well separated

from the other bands, especially for narrow-gap semiconductors such as InSb or InAs. Thus,

following the Kane model [7, 157, 158], we solve Eq. (C.3) exactly within the limited set of

bands consisting of the lowest conduction band (n = 1) and the three topmost valence bands

(n = 2,3,4). Therefore the functions unk (r) can be expressed as

unk (r) =
4∑

m=1

cnm (k)um0 (r) (C.4)

where the functions un0 (r) ≡ ψn0 (r) are the Bloch waves at the Γ point. u10 (r) is a s-wave

labeled |S〉, u20 (r) is a px-wave labeled |X〉, u30 (r) is a py-wave labeled |Y 〉, and u40 (r) is a

pz-wave labeled |Z〉.

• The band structure is isotropic in the vicinity of the Γ point. Thus we solve Eq. (C.3) with

the wave vector k along one particular axis, e.g., in the x direction.

With these simplifications, the energies En (kx) solutions of Eq. (C.3) are given by diagonalizing

the following matrix



EC + h̄2k2
x

2m0
−ih̄Pkx 0 0

ih̄Pkx EV + h̄2k2
x

2m0
0 0

0 0 EV + h̄2k2
x

2m0
0

0 0 0 EV + h̄2k2
x

2m0


(C.5)

where EC ≡ E1 (0) is the conduction-band minimum, EV ≡ E2 (0) = E3 (0) = E4 (0) is the valence-

band maximum, and P ≡ −i
m0
〈S |px|X〉 is the interband matrix element of the momentum operator

(all other matrix elements of the momentum operator vanish by symmetry). In practice, one has

to diagonalize a 2×2 matrix. Thus this method is known as the two-band Kane model.

The eigenvalues of the matrix (C.5) are

E1 (kx) =
h̄2k2

x

2m0

+
EC + EV

2
+

1

2

√
E2
G + h̄2P 2k2

x (C.6)
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E2 (kx) =
h̄2k2

x

2m0

+
EC + EV

2
− 1

2

√
E2
G + h̄2P 2k2

x (C.7)

E3 (kx) = E4 (kx) = EV +
h̄2k2

x

2m0

(C.8)

where EG = EC − EV is the fundamental band gap.

The second-order Taylor series expansion of E1 (kx) leads to the parabolic approximation for

the conduction-band dispersion relation:

E1 (kx) ' EC +
h̄2k2

x

2mC

(C.9)

where the effective mass mC is given by

1

mC

=
1

m0

+
2P 2

EG
. (C.10)

The fourth-order Taylor series expansion of E1 (kx) leads to the simplest nonparabolic approxi-

mation for the conduction-band dispersion relation:

E1 (kx) ' EC +
h̄2k2

x

2mC

− h̄4P 4k4
x

E3
G

(C.11)

which is formally equivalent to

h̄2k2
x

2mC

' (E1 − EC) [1 + λ (E1 − EC)] . (C.12)

It is easy to show that λ = 1/EG, i.e.,

h̄2k2
x

2mC

' (E1 − EC)
(
1 +

E1 − EC
EG

)
. (C.13)

With such conduction-band dispersion relation, the effective momentum mass [ 1
mC(E1)

= 1
h̄2kx

dE1

dkx
] is

mC (E1) = mC

(
1 + 2

E1 − EC
EG

)
, (C.14)

and the density of states is

NC (E1) =
mC

π2h̄3

√
2mC(E1 − EC)

(
1 +

E1 − EC
EG

) [
1 +

2(E1 − EC)

EG

]
. (C.15)
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D Stationary states of an asymmetric quantum

well

In this section, we consider the single-electron time-independent Schrödinger equation in a one-

dimensional quantum well (QW)

[
p2
z

2m (z)
+ V (z)

]
ψ (z) = Eψ (z) (D.1)

where pz = h̄
i
d
dz

is the momentum operator, m (z) is a position-dependent effective mass, and V (z)

is the confinement potential. The effective mass and the potential are given by


m (z) = mL and V (z) = VL in the left barrier (−∞ < z < 0)

m (z) = mQW and V (z) = 0 in the QW (0 < z < l)

m (z) = mR and V (z) = VR in the right barrier (l < z < +∞)

(D.2)

where l is the QW width.

Solving equation (D.1) separately in the three regions, one obtain the following wave functions

and energies


ψ (z) = A exp (κLz) +B exp (−κLz) and VL − E =

h̄2κ2
L

2mL
for −∞ < z < 0

ψ (z) = C exp (ikz) +D exp (−ikz) and E = h̄2k2

2mQW
for 0 < z < l

ψ (z) = F exp (κRz) +G exp (−κRz) and VR − E =
h̄2κ2

R

2mR
for l < z < +∞

(D.3)

for the bound states (0 < E < VL, VR). The coefficients B and F must vanish, to avoid divergence

of the wave function for z → −∞ and z → +∞, respectively. The boundary conditions [continuity

of ψ (z) and of 1
m(z)

dψ
dz

] then lead to the system



A = C +D

1
mL
κLA = 1

mQW
ikC − 1

mQW
ikD

C exp (ikl) +D exp (−ikl) = G exp (−κRl)
1

mQW
ikC exp (ikl)− 1

mQW
ikD exp (−ikl) = − 1

mR
κRG exp (−κRl)

(D.4)
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which has solutions only if

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 0

κL

mL

−ik
mQW

ik
mQW

0

0 exp (ikl) exp (−ikl) − exp (−κRl)

0 ik exp (ikl)
mQW

−ik exp (−ikl)
mQW

κR exp (−κRl)
mR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (D.5)

Developing the determinant in equation (D.5) gives

k

mQW

(
κL
mL

+
κR
mR

)
cos (kl) +

(
κLκR
mLmR

− k2

m2
QW

)
sin (kl) = 0. (D.6)

Equation (D.6), with the dispersion relations given in (D.3), allows to determine numerically

the discrete energy levels En of the bound states.

It is possible to take into account nonparabolicity effects for the dispersion relation in the QW.

Specifically, one has to solve equation (D.6) and the equation giving the energy-dependent effective

mass [equation (C.14) in the case of the two-band Kane model] in a self-consistent manner.
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E Method of images in electrostatics

In this section, we present the method of images in electrostatics [174]. This method can be used to

solve problems involving one (or more) point charges in the presence of interfaces on which either

the electrostatic potential or the surface density of external charge is known. The method consists

of considering a small number of so-called image charges, put outside of the region of interest in

order to simulate the required boundary conditions. Here, we apply the method of images in two

important cases, namely a dielectric-metal interface and a dielectric-dielectric interface.

E.1 Dielectric-metal interface

Let us first consider the case of a point charge q embedded in a semi-infinite dielectric of constant

ε, at a distance d from a plane interface which separates the dielectric from a metal. The situation

is depicted in figure E.1(a). In cylindrical coordinates, q is located at a point (r = 0, ϕ = 0, z = d).

The electrostatic potential Φ at the interface is assumed to be zero, hence the boundary condition

at z = 0:

Φ(r, ϕ, z = 0) = 0. (E.1)

For calculating Φ for z > 0, an image charge q′ is put at the position (r = 0, ϕ = 0, z = −d):

Φ(r, ϕ, z > 0) =
1

4πε

(
q

R1

+
q′

R2

)
(E.2)

where R1 =
√
r2 + (d− z)2 and R2 =

√
r2 + (d+ z)2. Together, equations (E.1) and (E.2) lead to

the image charge q′:

q′ = −q. (E.3)

E.2 Dielectric-dielectric interface

Let us then consider the case of a point charge q embedded in a semi-infinite dielectric D1 of constant

ε1, at a distance d from a plane interface which separates the dielectric D1 from another dielectric
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Figure E.1: Method of images in electrostatics. (a) Point charge q embedded in a semi-infinite dielectric, at

a distance d from a plane interface which separates the dielectric from a metal. In cylindrical coordinates, q

is located at a point (r = 0, ϕ = 0, z = d). An image charge q′ is put at the position (r = 0, ϕ = 0, z = −d).

(b) Point charge q embedded in semi-infinite dielectric D1, at a distance d from a plane interface which

separates the dielectric D1 from another dielectric D2. In cylindrical coordinates, q is located at a point

(r = 0, ϕ = 0, z = d). An image charge q′ is put at the position (r = 0, ϕ = 0, z = −d), and an image

charge q′′ is put at the position of the actual charge q.
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D2 of constant ε2. The situation is depicted in figure E.1(b). In cylindrical coordinates, q is located

at a point (r = 0, ϕ = 0, z = d). The surface density of external charge at the interface is assumed

to be zero, hence the boundary condition at z = 0:
ε1
∂Φ
∂z

(z → 0+) = ε2
∂Φ
∂z

(z → 0−)

∂Φ
∂x

(z → 0+) = ∂Φ
∂x

(z → 0−)

∂Φ
∂y

(z → 0+) = ∂Φ
∂y

(z → 0−)

(E.4)

On one hand, for calculating Φ for z > 0, an image charge q′ is put at the position (r = 0, ϕ =

0, z = −d):

Φ(r, ϕ, z > 0) =
1

4πε1

(
q

R1

+
q′

R2

)
. (E.5)

On the other hand, for calculating Φ for z < 0, an image charge q′′ is put at the position (r =

0, ϕ = 0, z = d) of the actual charge q:

Φ(r, ϕ, z < 0) =
1

4πε2

q′′

R1

. (E.6)

Together, equations (E.4), (E.5) and (E.6) lead to the image charges q′ and q′′: q′ = ε1−ε2
ε1+ε2

q

q′′ = 2ε2
ε1+ε2

q
(E.7)

If the point charge q is located at the interface between the two dielectrics, i.e., if d = 0, then

Φ(r, ϕ, z) =
2q

4π(ε1 + ε2)R
(E.8)

where R = R1 = R2 =
√
r2 + z2. In other words, the effective dielectric constant for a point charge

located at the interface between the two dielectrics D1 and D2 is given by

εeff =
ε1 + ε2

2
. (E.9)
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