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Abstract

This thesis treats applications of String Theory to problems of cosmology and high energy
phenomenology. In particular, we investigate problems related to the description of the ini-
tial state of the universe, using the methods of perturbative String Theory. After a review
of the string-theoretic tools that will be employed, we discuss a novel degeneracy symme-
try between the bosonic and fermionic massive towers of states (MSDS symmetry), living
at particular points of moduli space. We study the marginal deformations of MSDS vacua
and exhibit their natural thermal interpretation, in connection with the resolution of the
Hagedorn divergences of string thermodynamics. The cosmological evolution of a special,
2d thermal ‘Hybrid” model is presented and the correct implementation of the full stringy
degrees of freedom leads to the absence of gravitational singularities, within a fully pertur-
bative treatment.

Keywords : String Theory, Conformal Field Theory, Orbifold Compactifications, String
Thermodynamics, Hagedorn Phase Transition, Non-Singular String Cosmology.

Résumé

Cette these traite des applications de la Théorie des Cordes aux problemes de la cosmo-
logie et de la phénoménologie. En particulier, nous étudions des problemes liés a la descrip-
tion de I’état initial de I’Univers, en utilisant les méthodes perturbatives de la Théorie des
Cordes. Apres une présentation des outils nécessaires, nous présentons une nouvelle symétrie
de dégénérescence spectrale entre les états massifs bosoniques et fermioniques (appelée
symétrie MSDS), se trouvant aux points particuliers de I’espace des modules. Nous étudions
les déformations marginales des vides MSDS et mettons en évidence leur interprétation ther-
mique, et leur lien avec la résolution des divergences de Hagedorn de la thermodynamique
des cordes. L’évolution cosmologique d’un vide thermique bidimensionnel est présentée. On
démontre que la prise en compte des tous les degrés de liberté au niveau des cordes mene a
I’absence des singularités gravitationnelles, dans un traitement entierement perturbatif.

Mots-clés : Théorie des Cordes, Théorie Conforme des Champs, Compactification sur des
Orbifolds, Thermodynamique des Cordes, Transition de Phase de Hagedorn, Cosmologie des
Cordes sans Singularité.






Résumé Détaillé

Cosmologie des Cordes et Sélection du Vide Initial

Certains des problemes les plus difficiles ouverts de la cosmologie moderne sont directe-
ment liés a I'ére primordiale de notre Univers, ou les notions de la théorie des champs ne
sont plus valides, a cause des effets quantiques de la gravité, qui dominent la phase chaude et
fortement courbée de I’Univers. Actuellement, la théorie des cordes ainsi que son extension
non-perturbative, la théorie-M, sont les candidates les plus prometteuses pour formuler une
théorie cohérente de la gravitation quantique. Par conséquent, une profonde compréhension
de la physique a 1’échelle de Planck nécessite un traitement purement cordique, ce qui peut
aider a découvrir les implications de cette phase initiale pour la phénoménologie et la cos-
mologie aux basses énergies et pour les grands temps cosmologiques.

Des solutions cosmologiques peuvent étre construites naturellement dans le cadre de la
théorie des cordes perturbatives, comme des instabilités quantiques (ou thermiques) d’un
fond qui est supposé initialement plat. En particulier, dans les vides de la théorie des
cordes ou la supersymétrie est spontanément brisée, un potentiel effectif de genre 1 non-
nul, Veg(pr) # 0, induira une backréaction sur le fond initial.

Une correction du fond au niveau des arbres est alors nécessaire afin d’annuler le tadpole
du dilaton et de restaurer I'invariance conforme au niveau d’une boucle (genre 1). Le méme
mécanisme peut aussi étre appliqué dans le cas des vides thermiques, ou la densité d’énergie
libre finie, (/) induit une backréaction similaire, avec des modules p; et, en particulier, la
température 7' = 37!, ayant acquis une dépendance temporelle.

Lorsque 'amplitude a une boucle (énergie libre) est finie, I’évolution induite peut étre
étudiée dans le cadre de la théorie des cordes perturbative et, ainsi, ce mécanisme est a la
base de la cosmologie des cordes. Cependant, les tentatives naives pour réaliser ce programme
attrayant rencontrent typiquement deux obstacles majeurs :

— (i) les divergences du type Hagedorn, qui correspondent & une backréaction infinie et

qui amenent la théorie vers un régime non-perturbatif

— (ii) Le probleme de la singularité initiale, traditionnellement rencontré dans la cosmo-

logie standard.
En outre, il existe des complications supplémentaires, associées au mécanisme de sélection
du vide initial. Hors les exigences générales pour 1’absence des divergences du type Hage-
dorn/tachyoniques et des singularités gravitationnelles, ainsi que la tragabilité perturbative
de la théorie tout au long de I’évolution cosmologique, il y a d’autres questions a se poser.
Ces questions concernent principalement ’arbitraire du mécanisme de brisure de la super-
symétrie. On peut naturellement se demander s’il existe un principe fondamental pour briser



la supersymétrie. Idéalement, ce mécanisme serait dicté par des principes de symétrie.

Evidemment, des contraintes supplémentaires devront étre imposées sur le vide initial,
afin d’assurer la compatibilité avec les données d’observation aux grands temps cosmolo-
giques. En particulier, le plus grand soin doit étre apporté a la préparation de cet état
initial, de sorte qu’il se decompactifie dynamiquement aux grands temps cosmologiques vers
un espace-temps de Minkowski 341, avec brisure spontanée du spectre supersymétrique
N =1, 3 générations de fermions chiraux et un groupe de jauge semi-réaliste GUT, tels que
le SO(10).

Une premiere étape cruciale dans la lutte contre ces problemes a été la découverte d'une
nouvelle symétrie de dégénérescence de Bose-Fermi dans tous les modes massifs de la théorie,
présente aux points de symétrie étendue dans ’espace des modules de certaines compactifica-
tions spéciales a deux dimensions. Cette symétrie a été appelée “Symétrie Massive bose-fermi
de dégénérescence spectrale” (MSDS) et peut étre considérée comme une algebre des cou-
rants élargie, différente de la supersymétrie ordinaire. Dans le cas le plus simple des modeles
avec symétrie maximale, cette structure de dégénérescence se manifeste en terme des iden-
tités “généralisées” entre des fonctions-6 de Jacobi, ou en termes des identités entre des
caracteres de Kac-Moody SO(24), par exemple :

Vog — Soy =24 .

En particulier, la structure de dégénérescence du type ‘supersymétrique’ aux niveaux massifs
garantit I’absence d’excitations tachyoniques aux points MSDS de I'espace des modules.

Compte tenu des remarques ci-dessus, il est tres naturel de considérer la possibilité que
I'univers se trouvait initialement dans un état chaud, comme un espace compact (d < 2)
avec une courbure tres proche de I’échelle des cordes. On pourrait envisager un scénario ou
la dynamique induit la décompactification de certaines des ces dimensions spatiales de sorte
que, finalement, on obtienne un univers quadri-dimensionel.

Il est clair que I’époque cosmologique initiale va étre caractérisée par une structure non-
géométrique de I'espace-temps, exigeant un traitement qui prend correctement en compte la
totalité des degrés de liberté de la théorie des cordes. A cet égard, le haut degré de symétrie
des vides MSDS nous invite a les considérer comme des candidats naturels pour décrire cette
ere initiale.

Divergences du type Hagedorn

Afin de réaliser la connexion des vides MSDS définis aux basses dimensions (d < 2),
avec les vides supersymétriques aux dimensions supérieures, il est important d’analyser leur
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espace des modules et d’étudier leurs déformations marginales adiabatiques a 1’échelle des
arbres (avant de prendre en compte la back-réaction). Nous considérons ici des déformations
du modele-o par des opérateurs du type courant-courant :

/ d*z M JH(2)JY(2)

Une étude minuticuse des déformations :

SO(8,8)
SO(8) x SO(8)

du réseau de compactification dans les modeles MSDS de symétrie maximale indique la
présence de 2 modules indépendants qui controlent la brisure des supersymétries ‘gauches’
et ’droites’. Elles correspondent aux modules radiaux de Kahler associées a deux cycles
toroidaux spécifiques, X°, X*.

Dans la limite de décompactification, le couplage aux charges de la R-symétrie est effecti-
vement eliminé et on récupere un vide 4d, N' = 8 de type II et avec une description effective
de supergravité jauge, la jauge étant induite par des flux géométriques bien-définis qui sont
responsables pour la brisure de la supersymétrie.

On considere les deux autres grandes dimensions comme émergeantes par ces déformations.
Dans le cadre cosmologique, ot les modules de déformation acquierent une dépendance tem-
porelle, il est naturel de considérer notre espace cosmologique (4d) comme étant créé dyna-
miquement d’un tel vide initial MSDS de deux dimensions. Bien siir, une condition nécessaire
pour cela est que le vide initial soit libre de divergences tachyoniques/Hagedorn, sous des
déformations arbitraires des modules dynamiques.

Les tentatives visant a décrire la phase initiale de haute température (et/ou de haute
courbure) de 'univers, R ~ /, butent généralement sur le probleme des instabilités du type
Hagedorn (/ tachyonique), ce qui empéche un traitement perturbatif de la back-réaction.
Dans la description standard d'un systeme thermique en terme d’une trace thermique, ces
divergences se produisent a cause de la croissance exponentielle en fonction des masses de la
densité des états a une particule.

Dans 'image euclidienne, cependant, ou le temps est compactifié sur un cycle (toroidale)
X? de rayon Ry = /2w, le méme phénomene se manifeste de fagon différente : certains
états de corde, qui enroulent le cycle du temps euclidien, deviennent tachyoniques des que
le module thermique R, dépasse sa valeur critique (Hagedorn), Ry. De ce point de vue, les
divergences Hagedorn ne doivent pas étre interprétées comme des vraies pathologies de la
théorie des cordes, mais, plutot, comme des instabilités IR du fond euclidien et la transition
de phase correspondante est entrainée par la condensation des ces tachyons.



La présence de ces condensats injecte de la charge de winding non-triviale (O,,) # 0 dans
le vide, une propriété qui sera cruciale pour nos tentatives pour résoudre ces instabilités.
En effet, le traitement dynamique correct de la transition de phase au niveau des cordes, en
condensant le winding tachyon thermal reste un énorme probleme ouvert. Cependant, une
facon alternative de traiter le probleme est de construire directement des vides thermiques
stables (non-tachyoniques) avec des nombre de winding non-trivial, qui correspondent aux
vides résultants qui décrivent la nouvelle phase apres la transition.

En fait, les modeles thermiques MSDS correspondent aux températures supérieures a
la valeur de Hagedorn sans produire de divergences. Cela est possible parce que le cycle
du temps euclidien dans ces modeles est transpercé par des flux “gravito-magnétiques”
non-triviaux, associés aux graviphotons et aux champs axio-vectoriels de jauge, U(1). Leur
présence affine I’ensemble thermique et rend ’énergie libre finie au point MSDS.

Pour illustrer ce point, on peut se dérouler le domaine fondamental, pour des valeurs
suffisamment ? grandes de :

R2 Goo — GorG" G o

et de décomposer I'intégrale a ces orbites modulaires. La contribution de l'orbite (0,0) dans
I'espace des windings s’annule (& cause de la supersymétrie effective & 7' = 0) et on obtient
I’énergie libre, donnée par I'intégrale suivante sur la bande :

2
/d2 2 : e——(Rom a+a7h E : q;qu_%Iﬁ )bn1ezmmo(GOIQ{M)*BOIQ{N)) 7

H ~07£0 my, nIEZ

ot Q' sont les 14 charges des U(1)-transverses associées aux graviphotons et aux axio-
vecteurs de jauge. Rappelons maintenant que la composante temporelle d'un potentiel de
jauge du vide (constant) Ay ne peut étre éliminée par une transformation de jauge dans la
présence de température non-nulle. Sa v.e.v. (valeur moyenne du vide) a une signification
physique en tant que parametre topologique du vide qui caractérise le systeme thermique.

Dans ce sens, 'amplitude thermique a une boucle (énergie libre) peut étre rééxprimé
comme une trace thermique sur l’espace de Hilbert de la théorie initiale en 3 dimensions,
avec supersymétrie (4,0) :

Y

Z(ﬁ,ul,[u) — Ty | e BH g2mi(Ghinr—Born') ]

avec 21y, n! les charges transversales entiéres. La trace thermique est ainsi déformée par la
présence des flux thermiques associés aux graviphotons et aux axio-vecteurs. Les parametres :

Gé = GOKGKI y

3. Ceci est nécessaire afin d’assurer la convergence absolue.



Bor = By — G'(I)(BKI ;

sont invariants d’échelle, non-fluctuants, et constituent des parametres thermodynamiques
du systeme thermique. Ces flux (globaux) peuvent étre décrits en terme des condensats de
champs de jauge, de ‘field strength’ non-nulle (localement), mais avec une valeur non-triviale
de ligne de Wilson autour du cycle du temps euclidien.

Aux températures suffisamment basses, les états chargés sous ces champs U(1) vont
acquérir une masse et, effectivement, ils se découplent du systeme thermique, de sorte
qu’on retrouve ’ensemble thermique canonique. Les tachyons ‘potentiels’ peuvent parfois
étre éliminés de cette méme maniere, étant eux-mémes chargés sous ces champs U(1).

Par une étude attentive du spectre thermique-BPS de basse énergie, il est possible d’obte-
nir des conditions qui garantissent I’absence de divergences Hagedorn pour toute déformation
des modules transversaux (dynamiques). Si celles-ci sont satisfaites, une rotation discrete
O(8;7Z) x O(8;7Z) transforme les conditions pour les flux a la forme pratique suivante :

Gt =By =0,
Gt = 2By = +1,

ou k = 2,...,7 couvre les directions toroidales, qui sont transversales au temps euclidien. En
fait, ces conditions ont un sens géométrique assez simple : elles correspondent au cas ou le
cycle de la température couple de facon chirale aux charges gauches’ de la R-symétrie et se
factorise completement du réseau toroidal, qui reste couplé seulement au nombre fermionique
‘droit’, Fr. Les modeles sans tachyons thermiques, donc, correspondent a la factorisation
suivante du réseau :

Lq,a) [25] =Tay[3l(Ro) @ Ta—1,a-1)[§1(G1s. Brs) -

En outre, dans la phase thermodynamique saturant les conditions ci-dessus, la trace ther-
mique déformée se réduit tout simplement a l'indice de fermion droit :

Z=1In Tr[ e PH(=)Fr]

Modeles Hybrides et Cosmologie Non-Singuliere

Il est facile de vérifier que les modeles de symétrie MSDS maximale ne satisfont pas aux
conditions de stabilité présentées ci-dessus, méme si des trajectoires sans tachyons* peuvent

4. Des classes de modeles MSDS sans tachyons peuvent aussi étre obtenu, en introduisant des orbifolds
asymétriques de type Zo. Dans ces derniers, les fluctuations des modules ‘dangereux’ sont éliminées par la
structure particuliere de I'orbifold.

10



étre construites, les reliant aux vides de plus grande dimension, avec Ny < 8 supersymétrie.
Cependant, une classe tres intéressante de vides thermiques MSDS sans tachyons sont les
modeles thermiques hybrides. Dans leur version froide, T" = 0, ils sont définis comme des vides
de supersymétrie (4,0), avec les supersymétries droites brisées spontanément a I’échelle des
cordes et remplacées par la structure MSDS. Cette structure spéciale (anti-)chirale supporte
un groupe de symétrie de jauge étendue, non-abélienne :

UL x SU(2)i=o.r -

La compactification d’une des directions longitudinales sur un cercle S*(Rp) et son identi-
fication avec la direction du temps euclidien nécessite un modding spécial par I'élément de
Scherk-Schwarz (—) ¢y, conformément & la connexion de spin-statistique. L’énergie libre de
ces modeles thermiques s’écrit alors :

Vi dQT 1 a b9[2]4 W, Q a
1= | [5 2 (| T (Vo = Sl (o)
_F

a,b
o a RO _WR% [0 +rn0? MmOnO4-am®+bno
Lo §l(fo) = 2 Y e (-) .

mO,n0

Les conditions d’absence de divergences tachyoniques sont saturées par la structure facto-
risée du réseau I'(q 1) et I'énergie libre reste finie pour toute valeur des modules transversaux
dynamiques.

En outre, la factorisation est préservée, puisque les modules de mixage (associés aux flux
gravitomagnétiques) ne correspondent pas a des champs fluctuants. En outre, la présence
de ces flux notamment restaure la T-dualité thermique® et injecte un nombre de winding
non-trivial dans le vide thermique.

Il est important de noter ici que 'intégrale des chemins euclidienne se réduit a I’expression
de la trace thermique déformée :

Tr[ e (=)™ ],

seulement pour la région Ry > 1/ V2, ot la convergence absolue est assurée. Afin d’obte-
nir I'expression analogue pour la région Ry < 1/4/2 on doit d’abord effectuer une double
resommation de Poisson pour aller a la phase duale, puis déplier de nouveau le domaine
fondamental.

Ainsi, la description en terme de la trace thermique est un exemple d’une expression de
la théorie des champs qui échoue de prendre en compte la dualité thermique. Ceci permet de

5. La dualité correspond & Ry — 1/(2Ry), avec un échange simultané de la chiralité des spineurs, Sg <> Cs.
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postuler que I'objet fondamental est I'intégrale de chemins euclidienne, qui est valable pour
toutes les températures et qui contient les dualités de fagon manifeste.

Un résultat important est que, une fois que la structure MSDS est préservée dans les
modeles hybrides thermiques, la symetrie MSDS avec le ‘level-matching’ permettent le calcul
explicite et exact de 'amplitude thermique a une boucle :

1
Ro— =

A 1
— =24 R — | —24
X( ot ) . 2Ry

Vi 2Ry

Ce résultat est exact au niveau de genre 1, sans aucune approximation en «’. Il est manifes-
tement invariant sous la dualité thermique et la non-analyticité (structure conique) dans le
second terme est induite par la présence des états de masse-nulle supplémentaires au point
auto-dual fermionique R = 1//2.

En outre, la préservation de la structure MSDS introduit de nombreuses annulations
entre les deux tours des états massifs de la théorie a température nulle, de sorte que la trace
thermique (déformée) puisse étre réduite a un ensemble thermique canonique :

Tr|, 2_q€ :

restreint a I'espace de Hilbert de masse nulle de la théorie froide (4,0) initiale. Compte
tenu de ce résultat, il n’est pas surprenant que I’équation d’état thermique définie par ces
modeles :

p=P =487T?

est exactement celle du rayonnement (de masse-nulle) thermique en deux dimensions.
Cette observation implique la définition :
T=Te ",

de la température physique qui est invariante par la dualité en termes d’une variable ther-
mique o € (—00,400), ol maintenant :

V2

Tc a_
2T

est la température critique (et maximale) de la théorie. On pourrait imaginer qu’avec I'aug-
mentation du parametre o, le systeme se chauffe pour atteindre la température critique, ou
une transition de phase a lieu et, ultérieurement, le systeme refroidit dans la nouvelle phase.

La présence de cette transition de phase peut étre motivée de la fagon suivante. Considérons

un état dynamique pur dans le secteur SgVay et dans le point de symétrie étendue (critique),
o = 0. A ce stade, on observe la présence d’opérateurs localisés qui induisent des transitions
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entre les états de moment purs et des états de winding purs. Par exemple, en prenant le
mode zéro du courant :
-y 0
J_(2) = XD
et en agissant sur l'opérateur vertex de I’état de moment pur :
_ i 304 i y0 — 1 _ _ix0.4 i x0 —
J(2)e” %2810, 0e7 LT 2N RV (w) ~ mﬁge PPCg g BT R Vg (w)
on obtient 1’état pur de winding de chiralité opposée dans le secteur CgVay. Par conséquent,
le point de symétrie étendu o = 0 est caractérisé par la présence des amplitudes non-triviales
a trois points, qui conduisent des transitions entre les états de pur moment et les états de
pur winding.

A ce point, il sera utile de souligner certaines hypotheses implicites dans cette description.
Déja, nous supposons une évolution adiabatique, avec des champs variants assez lentement
et, en particulier, nous exigeons que le temps caractéristique de la transition est suffisamment
court pour permettre une approximation du type ‘delta’ de Dirac, §(c) ~ §(z°). Avec cette
hypothese, la transition de phase se déroule & un moment donné, z° = 0.

En outre, I'action effective totale devrait également contenir des contributions des autres
modules de petite masse. En particulier, les 64 modules qui paramétrisent le coset des
déformations, SO(8,8)/SO(8) x SO(8). Toutefois, dans toutes les phases du modele hybride
thermique, ces directions plates sont finalement levées par le potentiel effectif a 1-boucle et
les modules ci-dessus se stabilisent au point de symétrie MSDS ou ils sont entropiquement
favorisés. Par conséquent, nous n’allons pas étudier leurs v.e.v. mais on va les considérer
comme étre effectivement gelées a leurs valeurs MSDS, en conservant la structure MSDS de
la théorie.

Cette transition de phase a une description efficace en terme d’une brane de type espace,
qui colle 'espace des moments avec 1’espace dual des windings. L’action effective est :

53 :/d% e (%zﬂ 2(v¢)2> + /d% /=g P
- Kj/dl’ld(f e 2 /9116(0) ,

ol, en plus du terme de gravité avec dilaton et du terme qui décrit le potentiel effectif
thermique, I'action contient aussi une contribution effective d’'une brane de type espace,
localisée a la transition de phase a 0 = 0. Ce terme représente de la pression négative loca-
lisée, sourcée par les 24 scalaires supplémentaires (complexes) de masse nulle, au point de la
symétrie élargie.

Nous allons utiliser la paramétrization standard pour la métrique, pertinente pour deux
dimensions :

ds* = —N*(t)dt* + a®(t)da?* | (1)
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ot le facteur d’échelle sera paramétrizé comme a = e¢*. En supposant que la transition de
phase est localisée dans le temps, a t = 0, on peut déduire des équations du mouvement du
modele o, qui seront maintenant modifiées a cause de la présence de la brane :

) .. 1
G0k = 5 Ny,
x_x<2¢_x+%> _ N22p

T '_E I RN ¢
& —2¢ +¢<)\ N) —2Ne (P —p) 2Nm5(t).

On note la présence de la fonction § de Dirac, qui apparait seulement dans la troisieme
équation, ce qui implique une discontinuité (autour de la transition) seulement dans la
premiere dérivée du dilaton, tandis que la fonction de laps, le facteur d’échelle, et leurs
premieres dérivées restent continues partout. Les équations ci-dessus peuvent étre simplifiées
si on se met dans la jauge conforme, N = e* et en utilisant I’équation d’état, p = P.

Le couplage des cordes au point de la transition, g5(0), n’est pas un parametre arbitraire,
mais est lié a la tension de la brane, k. En effet, les équations du mouvement au point de la
transition donnent la relation suivante entre le couplage des cordes, le parametre thermique
A = 487 et la tension de la brane au point de la transition, ¢ = 0 :

g

- O8A

Intuitivement, cela apparailt comme un équilibre entre les effets thermiques et la pression
négative injectée au systeme par la brane, et qui est communiqué par le dilaton. Ainsi, la

validité perturbative du modele est assurée, a condition que le parametre de la tension, k,
est suffisamment petit.

g2(0) =

Si on impose la conservation de 'entropie thermique a travers la transition (c.a.d. I’ab-
sence de chaleur latente) on peut r ?soudre les équations cosmologiques dans la jauge conforme :

4 el™l

ds? = — —d7? + da?
F kS et
g T 1

> 192 1+ |7

Ainsi, on peut voir que la présence de la transition de phase au point de la symétrie élargie
provoque un rebond a la fois dans le facteur d’échelle et, en méme temps, au dilaton, et
I’évolution cosmologique contourne la singularité gravitationnelle, tout en restant dans le
régime perturbatif, & condition que la tension est x? < 1.



En effet, le scalaire de Riemann n’a pas de singularités nues :

=|7]
R=(5)

En outre, la singularité conique dans la dérivée du dilaton :

est résolue par la présence des états supplémentaires de masse nulle, localisés au point de la
transition.

Comme mentionné ci-dessus, il est possible d’ajouter des dérivées de I'ordre supérieur,
ainsi que des corrections de genre supérieur. Toutefois, celles-ci sont supprimées et sont, en
effet, controllées par un développement perturbatif dans le parametre de tension :

K~ geyr < 1.
Ces corrections vont, éventuellement, étaler la brane dans le temps et lisser la transition.

On peut aussi présenter la solution dans le référentiel cosmologique :

ds* = —d&* + a*(&)dy?

mais la solution ci-dessus ne peut étre exprimée en terme des fonctions élémentaires. Elle
implique le changement de variables ci-dessous :

2[7\ elrlu/2 87 1+ |7 1
erfi —erfi| — ,
VI+ |¢ er? 2 V2

y=ux/2.

Le comportement asymptotique de la solution pour les petits temps cosmologiques,
|k€| < 1, a la forme suivante :

€)= 2 |1+ 15l + ()]

2 2
gstr K 2

Ce comportement illustre le rebond du facteur d’échelle, ainsi que la structure conique du
dilaton.

11w [1+’“5' 1<s>+0<|ﬁ5|3>]
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De méme, pour les grands temps cosmologiques, || > 1, on trouve :

1
a(§) = ¢ e T
g%_%ﬂn(f%)?+lnln(m§>2+const+~-] :

et la cosmologie induite est celle d'un univers thermique du type Milne. La présence du
‘dilaton courant’ induit ainsi des corrections logarithmiques, comme affiché ci-dessus.

Le modele hybride est le premier exemple dans la littérature ot un traitement des degrés
de liberté des cordes autour du point de symétrie élargie a amené a la découverte d'un
mécanisme de cordes qui résout simultanément la singularité initiale ainsi que les diver-
gences de Hagedorn.

On entend que les ingrédients de base de ce mécanisme qui protege I'évolution des singu-
larités dans des vides plus généraux aux hautes dimensions sont déja présents dans le modele
hybride. Evidemment, cette approche n’est que la premiere étape dans ce programme ambi-
tieux de connecter l’ére initiale non-singuliere de I’Univers avec la cosmologie standard aux
grands temps cosmologiques.
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Chapitre 1

Introduction

One of the major breakthroughs in theoretical physics over the last century has been the
development of the methods of quantum field theory. These efforts were eventually crowned
with the enormous success of the Standard Model of high energy physics, describing most
the interactions between elementary particles to an astonishing degree of accuracy. Despite
its many successes, however, the Standard Model at the very best ignores a certain number
of issues.

A first aesthetic problem is the inability to explain its 18 parameters, which are introdu-
ced into the model by hand. At the same time, the flavor sector is the least understood, with
its quantum numbers being, again, assigned by hand and they do not seem to derive from
some fundamental principle. One of the more serious, direct problems of the Standard Model
is the absence of right-handed neutrinos. The difficulties arising in our attempts to describe
Nature, however, extend much further beyond the Standard Model and its field-theoretic ex-
tensions. Perhaps the most serious deficit of these approaches is their inability to consistently
incorporate gravity together with the other interactions, into a unified description.

A further problem, of a different nature, has to do with the fact that we essentially only
have good control over a theory through a perturbative (asymptotic) expansion and only to
the extent that we stay within its perturbative regime. Our understanding and treatment of
non-perturbative phenomena is certainly far from complete and our insight is mostly based
on those happy occasions when it is possible to describe a strongly coupled theory, in terms
of a weakly-coupled dual theory. Hence, dualities are of fundamental importance to physics
and are expected to play an important role in the structure of a fundamental theory that
will presumably address the above problems.

A highly attractive candidate for such a fundamental theory (even if only in some limit)
is String Theory. Though initially introduced for different reasons, in the context of dual
models in the 70’s, String Theory has since been the subject of extensive study, indicating
far-reaching consequences for the nature of spacetime itself. The identification of a massless,
spin-2 particle in its perturbative spectrum with the graviton has lead physicists to realize
that String Theory is a theory of quantum gravity.

Even though there still exists no explicit proof for it being UV finite above the genus-2
level, there are strong arguments that it is indeed the case. The generalization from par-
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ticles to strings spreads the interaction from spacetime points to world-surfaces, effectively
smoothening the behaviour of amplitudes. String Theory has the extremely attractive pro-
perty of coming only with one dimensionful parameter, the string length, ¢;. Provided that
the geometric language of string perturbation theory is well-defined, one would expect the
string length to provide a natural regulator and, hence, to render amplitudes finite in the
ultraviolet limit.

The first attempts of quantizing relativistic strings yielded bosonic string theory which,
however, did not include fermions in its spacetime spectrum. This marked the passage to
superstrings, which naturally incorporated supersymmetry in their spacetime spectra. There
exist five consistent, stable superstring theories in the critical, 10d case. These are the Type
I, Type ITA and Type IIB theories of open and closed strings, as well as the Fg x Fg and
SO(32) Heterotic (closed) string theories. Despite their apparent differences it was realized
that they are all connected to each other in terms of dualities. This hinted to the fact that all
of these superstring constructions are, in fact, different vacua of a single underlying theory,
M-theory. Presently, String Theory and its non-perturbative extension, M-theory, are the
most promising candidates for a consistent theory of quantum gravity.

To make contact with four-dimensions, one eventually must look for solutions of String
Theory on spacetimes of the form R x K (6), Where K ) is a 6d compact space. For example,
the geometrical data of the compact space enter the effective action as moduli fields and,
hence, pose additional phenomenological problems unless they are stabilized, acquiring some
non-vanishing mass. The process of compactification has a second caveat, namely, it gives rise
to an enormous number of vacua without providing any dynamical mechanism or principle
why any particular vacuum should be preferred to any other.

The Vacuum Selection problem is indeed a serious embarrassment for the (perturbative)
theory and has lead, to some extent, to the disappointment of some of the leaders of the string
community. A more optimistic approach is to study general properties of classes of string
vacua and their implications for low-energy phenomenology. Starting from such properties
of the observable sector, such as the presence of three net generations of chiral matter, one
might try to investigate under what conditions they can be accommodated in string vacua.
Furthermore, in order to gain more insight into the structure of phenomenologically attractive
classes of vacua, it becomes necessary to study emergent structures and symmetries living
at special points in the string moduli space.

At the same time, String Theory modifies the conventional field-theoretic notions about
spacetime, geometry, dimensionality and even topology. These purely stringy phenomena
typically arise as one tries to probe energies around the string scale. Around these high-
curvature regions the conventional description of spacetime is expected to break down and
a non-geometric picture arises, which may be studied using the underlying conformal field
theory and string theory. One hopes that the application of String Theory in these regions
where the effects of quantum gravity become dominant will be able to resolve some of the
puzzles and problems posed by the phenomenological models of cosmology.

One of the most acute such problems concerns the initial phase of the universe and, in
particular, the resolution of the initial ‘Big Bang’ singularity. The hope is that, by taking
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correctly the effects of quantum gravity into account, the unphysical singularities will be
resolved in the framework of the underlying theory. This necessitates the study of cosmolo-
gical solutions arising at the perturbative string level as quantum (or thermal) instabilities
from an initial string vacuum. This is intimately related to the problem of constructing exact
string vacua with spontaneously broken supersymmetry, which can be used to describe this
initial state of the universe.

However, the breaking of supersymmetry at the string level is usually accompanied by
the presence of tachyonic modes, which pose additional problems to the perturbative incor-
poration of the backreaction to the effective potential. A related twin problem arises through
the introduction of finite temperature effects in string theory. There, because of the expo-
nentially growing density of states, thermodynamical quantities like the free energy diverge
above a certain critical temperature, a problem known in the literature as the Hagedorn
problem.

This thesis essentially discusses work published in references [46], [47], [48] and [91].
The main aspiration of this work has been to study the contribution of stringy effects ari-
sing in the early, high-temperature phase of the universe. The two obstacles that typically
complicate matters, as mentioned above, are the Hagedorn divergences and the initial gra-
vitation singularity. Attempts to systematically construct exact vacua with spontaneously
broken supersymmetry, or which admit a natural thermal interpretation, while preserving
the tachyon-free (stability) requirements consistent with a perturbative treatment, have lead
to the discovery [45] of a novel Degeneracy Symmetry in the Spectra of Massive bosons and
fermions (‘MSDS’).

The study and classification of such special vacua was performed in [46]. The problem
of tachyon stability, the thermal interpretation of MSDS vacua, together with the general
conditions leading to the resolution of the Hagedorn divergences, were discussed in [47].
In [48], the backreaction of a special 2d thermal ‘Hybrid” vacuum on the initially flat back-
ground was exactly calculated. There, because of the remarkable cancellations introduced
by the MSDS structure, the stringy contributions are under control and can be computed
exactly around the extended symmetry point, associated to a thermal T-duality around the
Euclidean time circle. The analysis hints at the presence of a phase transition, where states
with non-trivial momenta are transformed into states with non-trivial windings. At the point
of the transition, the temperature acquires its maximal (critical) value and the scale factor
of the spacetime metric and the dilaton are found to bounce simultaneously and the cosmo-
logical evolution escapes the initial singularity, while remaining in the perturbative regime
throughout its history.

The organization of this thesis is as follows. In Chapter 2 we briefly review some aspects
of perturbative string theory. At the same time we introduce the conventions and notation to
be used throughout the rest of the text. Chapter 3 discusses the process of compactification,
introduces T-duality and briefly reviews exact vacuum constructions, such as compactifica-
tions on orbifolds, as well as fermionic and Gepner constructions. Subsequently, Chapter 4
discusses the beautiful relation between the presence of supersymmetry in spacetime and
the enhancement of the local N = 1 superconformal algebra to a global N =2 (or N = 4)
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on the string worldsheet. In Chapter 5 we discuss the Scherk-Schwarz mechanism for brea-
king supersymmetry at the string level. In Chapter 6 we introduce MSDS vacua, we discuss
their algebra and their classification. We then proceed in Chapter 7 to investigate their de-
formations and thermal interpretation in connection with the resolution of the Hagedorn
divergences. In Chapter 8 we begin with short introduction to the classic problems of stan-
dard Big Bang cosmology and, subsequently, we introduce the Hybrid models and discuss
their non-singular cosmology. Chapter 9 contains an independent aspect of the MSDS struc-
ture, as the spectral-flow algebra appearing in twisted sectors of orbifold vacua with a global
N = 4 superconformal algebra realized internally in the bosonic side of the Heterotic string,
hence, hinting to a possible deeper origin of these structures. Three appendices summarize
useful definitions of modular functions, lattice identities, the equivalence between fermionic
constructions and Zs-type orbifolds and the technique of decomposition of modular invariant
integrals into modular orbits, known as ‘unfolding’ of the fundamental domain.
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Chapitre 2

Elements of String Theory

In this chapter we start with a brief review of string perturbation theory and quanti-
zation in 10 dimensions. The starting point is the quantization of the bosonic string and,
subsequently, the requirement of having spacetime fermions in the string spectrum will ne-
cessitate the passage to the superstring formalism. As in the subsequent chapters, we will be
interested in closed, oriented strings.

2.1 Brief Introduction to Bosonic String Theory

The Polyakov Action and its Symmetries

In this section we will give a lightning overview of the basic elements of bosonic string
theory. We will adopt a rather direct line of approach and speedily introduce only the very
essential elements, without making any attempt to give a complete picture in this rather
vast subject. This section will partially serve to set the conventions to be used later on.

The starting point of string theory is to replace the quantum field-theoretic notion of point
particles by extended 1-dimensional objects propagating in a D-dimensional spacetime M.
With the flow of proper time, these objects trace a 2d surface ¥, commonly referred to as
the (string) worldsheet, which is embedded into the target spacetime.

One chooses local coordinates {o,} = {o,t} to parametrize points on the worldsheet,
which are denoted as X*(o,t). Physically, one may think of ¢ as the proper time along the
worldline of each point on the string and ¢ as the spatial parameter labeling each such point.
Of course, the parametrization on the worldsheet is arbitrary and o,t are not observables
of the theory. This gives rise to the requirement that any physical string theory should be
invariant under reparametrizations.

Consider the case of a closed string, where the two string ends are matched at the same
point. As the ring-shaped string propagates in “time” t, it traces a 2d “tube-like” surface.
This can be thought of as the string-analogue of a particle line in a Feynman diagram.
Likewise, the matching of two incoming closed string tubes to create a single larger tube
and its subsequent breaking to two outgoing string tubes is the analogue of a tree-level
interaction diagram between 4 particles in quantum field theory. However, there are two
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important differences from the field theoretical picture. The first is that in the string case
there is no interaction vertex-point : the reason being that the string is an extended object
and so, the interaction is expected to spread over the 2d surface. Thus, one might a priori
expect some of the UV-divergences of field theory to be absent or at least softer in the string
case. Secondly, in the string interaction no coupling constant is introduced ‘by hand’ as in
the case of field theory but, rather, the string coupling itself is dynamical in the sense that it
is identified with the vacuum expectation value (v.e.v.) of the dilaton. In this respect string
theory dynamically determines the strength of its own interactions. Continuing along the
same train of thought, one finds a similar analogy between the 2d surfaces with holes and
loop diagrams in field theory.

In this formalism the spacetime coordinates X*# (o) and the induced metric gq,(o) on the
worldsheet become themselves dynamical fields, defining a map X from the 2d surfaces
parametrized by local coordinates o,, to the target spacetime :

X:0,€¥X — XH(o) e M. (2.1)

This map also defines the induced metric g,,(0) on 3 as the pullback of the spacetime metric
Guw(X(0)) :

9ap(0) = G (X)0 X0, X" (2.2)

One might then consider String theory essentially as the theory of consistent quantization
of fields propagating on these 2d Riemann surfaces.

Let us motivate the structure of a general action for the fields X*, g,, on a 2d surface,
that is compatible with invariance under diffeomorphisms and which contains up to two
derivatives. The positions X*(o) on the string become scalar fields from the worldsheet
point of view and we may begin with a general (Euclidean) action of the form :

1

g —
Y

/ d*0\/q (90 X 0p X" G (X) + B0, X 0, X" B (X) + /¢(X)RP(0) + p).

(2.3)
One identifies the antisymmetric tensor field B, with the Kalb-Ramond field and the scalar
field ¢ with the dilaton, both of which arise naturally in the spectrum of massless string
excitations. Here, we have also considered the possibility of adding a cosmological constant
term p. R® is the Ricci scalar curvature on the worldsheet and the imaginary i arises from
the Euclidean rotation. Reparametrization invariance forces E% to be an antisymmetric
tensor, proportional to the Levi-Civita antisymmetric tensor density *.
The characteristic string scale will be defined in terms of the Regge slope parameter o’.
The connection between the string tension T, the string length (M;)~! and the o/ is :

1

4o

T , M, = (/)72 (2.4)

1. In fact, the correct identification is to take \/§E“b = €% = 41, depending on convention.
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For general curved manifolds M the above sigma model becomes non-linear and, hence,
very difficult to quantize. Appart from very special cases, for example when M has the
structure of a group manifold 2, exact quantization in the interacting case is, in general, not
possible and one resorts to a low curvature expansion in O(v/a’/R) around a flat background,
with R being the characteristic curvature scale.

In this low-curvature and low-energy regime the purely stringy effects become effectively
suppressed and one recovers the effective field theory description. This is a mixed blessing,
however, in the sense that even though string theory does naturally reduce to the effective
field theory description in this limit (as is desirable) but, at the same time, the novel in-
herently stringy phenomena arising from the extended nature of the string (in particular
phenomena related to the winding around compact dimensions) are masked and can only
be probed at scales of the order of the string length o/ ~ M .. Consequently, attempts to
study these interesting, inherently stringy phenomena are closely related to the problem of
exact quantization in non-trivial backgrounds. This will be of major concern to us in later
chapters.

The action (2.3) enjoys manifest diffeomorphism and general coordinate invariance. For
purposes of exact quantization we will usually consider flat Minkowski backgrounds G, (X) =
n*, in which case the relevant symmetry is Poincaré invariance. One may employ the repa-
rametrization invariance in order to gauge-fix the metric to covariantly flat form :

f]ab((f) = 62w(0)5ab . (25)

The scale factor w(o) is the the only remaining degree of freedom of the 2d metric. In the
limit ¢ = 0 one recovers the (classical) symmetry under Weyl rescalings of the metric :

9a(0) = g (0) = ¥ gan(0) . (2.6)

Under this symmetry, the scale w(o) completely decouples (at least classically) from the
action. In contrast to reparametrization invariance, the Weyl scaling of the metric is not a
redundancy but a dynamical transformation of the metric g, and, thus, causes the distances
between points to actually change. It is a highly non-trivial point about the dynamics of
the theory to have an invariance also under Weyl scalings and it is a special property of 2
dimensions. The requirement that Weyl invariance is preserved at the quantum level, i.e. the
requirement of cancellation of Weyl anomalies, gives rise to a set of consistency conditions
on the central charge of the conformal field theory that remains as a residual symmetry, after
gauge fixing. In this work we will take 4 = 0 and, hence, restrict ourselves to ‘critical’ string
constructions .

In general, the 2d Ricci term /gR® ¢ breaks Weyl invariance because /gR® has an

explicit dependence on the scale factor w :

VIR? = —20w(0). (2.7)

2. These lead to Wess-Zumino-Witten models which can be solved exactly.
3. In fact, p rather acts as a counterterm and is used to subtract the constant term in the anomaly of
the trace (T,”) so that Weyl invariance is reinstated at the quantum level.
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However, if the scalar ¢(o) is constant the R®)-term becomes a total derivative and is,
then, allowed to enter the action. Actually, for a 2-dimensional surface without boundary the
integral is simply the topological Gauss-Bonnet term, proportional to the Euler characteristic
X = 2(1 — gs), with gy being the genus of the surface. By separating out the constant
expectation value of the dilaton, ¢(o) = (@) + d¢ (o), we have :

%ﬁ / d*o/gR® = (¢)x . (2.8)

by

Gauge Fixing a la Faddeev-Popov

The path integral over the fields X*, g, naively diverges as a result of the local diffeo-
morphism and Weyl symmetry. One then fixes the gauge by using the gauge symmetry to
take the metric to conformally flat form. The idea is to write the generic metric g, as the
transformation of a representative g, :

Gab = T - gaba (29)

where T' denotes the gauge transformation. Following the ®amees-ITonos (Faddeev-Popov
or simply @-IT) procedure, we change integration variables from Dg,;, into DT, with T" being
(somewhat abstractly) the transformation parameter :

7 = / DX Dgy e X9 = / DT DX - Apr[g] e 59 (2.10)

The Jacobian of this change of integration variables is the Faddeev-Popov gauge invariant
determinant :

0 O7Gab
oo6T

Aanld] - |

P x
:det< 0 1):detP. (2.11)

This is because the variation of the metric with respect to an infinitesimal diffeomorphism
with parameter do, = £, and a Weyl transformation with parameter dw can be decomposed
into two pieces :

5gab = Eg Gab + 20w Gab = 20w Gab — 2(P€)ab ) (212)

where P is the operator :

(Pf)ab = (vagb + vbga - gabvcgc) ) (213)

DN | —

mapping vectors into traceless symmetric rank 2 tensors. The latter is independent of the
variation in the scale factor dw and, hence, the ®-II determinant reduces simply to the
determinant of P. The latter can be represented in exponential form by integration over
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Grassmann ghost fields b,;, ¢*. Putting everything together and dropping the infinite volume
factor arising from the integration over the gauge parameters we finally find :

Z = /DX DbDe exp {—S[X, ] = Sulb,c, 4] } , (2.14)
where now the ghost action is written :

. 1 - a
Senlb, ¢, g] = o /dQU\/§ bap V. (2.15)

The latter explicit form is obtained by using the symmetry properties of (P-c)® to force the
b-ghost to be also symmetric. After dropping an irrelevant total derivative term, one arrives
at the above ghost action.

The summation over all possible metrics must also take into account the various dif-
ferent worldsheet topologies. One is, then, lead to the Polyakov prescription for the string
perturbative expansion, which takes the form :

Z gs_X/DXDbDC e_S[Xvéﬂ—Sgh[b,C,Q] H/dQJi\/g(O‘i) Vl<kzaaz) , (216)

topologies
where the string coupling g, is naturally identified with the expectation value of the dilaton :
g, = 9. (2.17)

Note that the location o; of the vertex operators V;(k, o), which describe the external on-shell
states of the process, is integrated over the worldsheet in order to yield a diffeomorphism
invariant amplitude.

The string loop expansion is then a topological expansion over Riemann surfaces > of
distinct topology, characterized by the number of handles, boundaries and crosscaps, all of
which contribute to the Euler characteristic xy. The dilaton is singled out in this way, being
the field whose v.e.v. controls the strength of string interactions.

The Weyl Anomaly

Let us next return to the problem of examining the decoupling of the scale factor of the
metric w(o) at the quantum level. Under a Weyl rescaling of the metric the path integral
acquires a non-trivial Liouville factor :

Z[e*g] = exp {i/d%f NZ (gab 0.2 0,2 + R(Q)Q)} Zlg] . (2.18)
T
The anomaly coefficient c¢ is identified with the central charge of the conformal field theory
(CFT) on a flat worldsheet, which is the residual symmetry of the gauge-fixed action :
c/4 2

T(z)T(w) = (z—w)4+(z—w)2T<w)+Z—w

OT(w) + ..., (2.19)



where T'(2) is the holomorphic energy momentum tensor of the CFT in complex coordinates
mapping the cylinder to the complex plane. The central charge is related to the conformal
anomaly (T%,) = —1—‘32R(2) arising from the coupling of the 2d CFT to a curved metric. In

terms of the Laurent modes L,, of the Laurent expansion, T'(z) = 2, the above OPE
nez
takes the form of the (infinite-dimensional) Virasoro algebra :

(Ly L] = (1 — 1) Ly sm + 1—62n(n2 — D)6 . (2.20)

Notice that {L_y, Lo, L41} close into an SL(2,R) Lie subalgebra. They generate translations
L_4, dilatations (rescalings) Lo and special conformal transformations L. Together with the
right-moving subalgebra they form SL(2,C), which contains the globally defined geberators
on the Riemann sphere. They generate the Mébius (or rational) transformations :

az+b

_ — 2.21
cz+d’ ( )

with a, b, c,d € C and ad —bc = 1. Actually, this group is PSL(2,C) = SL(2,C)/Zs, because
an overall change in sign leaves the transformation unaffected.

Furthermore, one may show that the absence of gravitational anomalies (anomalies un-
der diffeomorphism invariance) requires the left-moving and right-moving central charges to
match ¢ = ¢. The absence of conformal (Weyl) anomaly then requires the total central charge
¢ receiving contribution from all degrees of freedom, including the ghosts, to cancel :

Cmatter 1 Cghost = 0. (222)

When this condition is applied to a CFT of D free bosons X*, it determines the (maximal)
critical dimension, D = 26, of the bosonic string. The contribution to the central charge of a
free boson is cx = +1, whereas a bc-ghost system of conformal weight (h,1 — h) contributes
cpe = —3(2h — 1)? + 1. These may be easily derived by going to the flat metric in conformal
coordinates :

z=e 12 (2.23)

that map the cylinder to the complex plane in the ‘radial frame’*. There, the operator
product expansion (OPE) of the energy-momentum tensor with itself, 7'(z)T(w), can be
calculated in terms of free-field OPEs for the CFT of a free boson X and similarly for
the be-ghosts. From the ghost action (2.15) one reads the conformal weights h, = 2 and
h. =1 — hy, = —1. The anomaly cancellation then yields ¢ = D — 26 = 0, from which the
critical dimension of the bosonic string derives. Note that the maximal critical dimension
of the bosonic string is fixed solely by the reparametrization properties of the worldsheet,
which determine the kernel P and, hence, the conformal structure of the ghost action (2.15).

4. The time direction on the cylinder is identified with the modulus |z| in the radial frame. Similarly, the
spatial coordinate o is given by the polar angle arg (2).
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Mode Expansions

It will be useful to give the mode expansion of the free scalar field X. It is obtained
by solving the Laplace equation subject to the relevant boundary conditions. The solution
is decomposed into an holomorphic (left-moving) and an anti-holomorphic (right-moving)
contribution, X (z,2) = X (z) + Xg(Z). For the closed, oriented string, which is the case of
interest in this manuscript, one imposes periodicity in o. In fact, periodicity is imposed up
to a possible winding term, when the scalar X is compact, i.e. taking values in S* :

X(o+2m,t) = X(o,t) + 2mnR, (2.24)

where n € 7Z is the winding quantum number, counting the number of times the string
encircles the compact dimension of radius R.

In the radial frame, the Fourier expansion turns into an expansion in Laurent modes,
centered at z = 0. The (left-moving) free boson propagator is not a well-defined conformal
object since its short distance behaviour is logarithmic, rather than a power-law singularity :

/

Xp(2) X1 (w) = —% log ( — w) + ... (2.25)

The holomorphic current, however, i0X (z) is a well-defined (1,0) conformal tensor and has
a well-defined mode expansion. By integrating the latter, one obtains :

1 a,
XL(Z):%—Z—PLlogz—l—u/ ann (2.26)

1oy,
XR(z):@—ziPleongru/O; O (2.27)

~n
2 n#onz

The average position is zy and, in general, the left- and right- moving momenta P, p need
not be equal, unless the dimension parametrized by X is non-compact. The total momentum
P = 1(Py, + Ppg) satisfies the usual quantization :

%(PL 4+ Pp) = (2.28)

m
R Y
where m € 7Z is the momentum quantum number. The periodicity condition for X = X+ Xg
gives :

/

X(e%iz,e_%ii) — X(Z,E) + QW%(PL — PR) , (229)

which, when compared with (2.24) yields :

1 nRk
5(PL—Pr)=—

o

(2.30)
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One then obtains the quantization of the momentum zero modes Pp, Pr in terms of the
momentum and winding numbers :

PLR—EZE

nR
gl (2.31)
In contrast to the point particle result, the string has tension ~ (a/)~' which tends to
force the string to shrink in size (counterbalanced, in turn, by quantum fluctuations). The
second term in (2.31) simply expresses the fact that it costs energy for the string to wrap
around the compact dimension. In the limit of large radius R/ Va! > 1 the Kaluza-Klein
modes ~ 1/R are so densely packed that their mass spectrum becomes continuous, whereas
the winding modes ~ R become supermassive and essentially decouple, n = 0. One then
recovers P, = Pg, with the momentum now describing the centre-of-mass momentum of
the string propagating in a non-compact dimension. Notice that the zero modes P, r and,
hence, the whole string spectrum is invariant under the inversion R — «'/R, together with
the simultaneous exchange of momenta and windings m <> n. This is the first encounter with
T-duality, the simplest perturbative duality which actually holds at all levels in perturbation
theory.

In terms of the currents J(z) = i0X(2), J(2) = i0X (%) :

Ie=Y S I =Y (2.32)

reZ reZ

the zero modes are expressed as :

B () - ()

R+0/

2.33
T, (2.33)

)=

V2
This is the normalization that will appear later on in lattice sums, when we calculate the
contribution to the torus partition function of compact scalars.

Equations of Motion for the Background Fields

The Weyl anomaly in T, considered above was calculated under the implicit assumption
that the 2d curved worldsheet metric is coupled to a free, exact CF'T. Moreover, it was seen
that the Gauss-Bonnet term in (2.3) containing the dilaton breaks Weyl invariance, even at
the naive classical level, unless the dilaton field is constant. For more general backgrounds
one has to explicitly calculate the anomaly by using weak field perturbation theory. The
trace of the energy-momentum tensor for the sigma model (2.3) becomes renormalized ® as :

T = ——(ﬁ,wg +iflh, E) 0.X" 0, X" — B*R®, (2.34)

5. See, for example, [1] and references therein.
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where 8%, 3% and 3% are the beta functions containing the information about the dependence
of amplitudes on the scale factor. They are obtained as a perturbative expansion in o :

1
o = R — T Hupe 1,7 +2V,V,0 + O(d),

uv 4
1
%= 5V (¢ o) + O(),
& 50 o/ 2 ) (D) 1 2 N2
B =—35 + 5 (4(Ve) —aVie— R+ ZH | +0(d)? (2.35)

where H = dB is the 3-form field strength associated to the antisymmetric tensor :

More correctly, (2.35) should be considered a derivative expansion, since the dimensionless
parameter controlling the perturbative expansion is R/ V!, with R being the characteristic
radius of curvature. The constant term in the beta function for the dilaton is given by the
central charge deficit dc, which induces curvature in the form of a cosmological constant
term.

Thus, the absence of Weyl anomalies for general G, B, ¢ backgrounds requires the

vanishing of the sigma model beta functions 5, = 87, = 8% = 0. In fact, it is straightforward
to show that if ,ny = fy = 0, the sigma model describes a CFT with central charge

¢ = 123%® =constant. This is consistent because the Bianchi identities give :

0,8° ~ V, (4(v¢)2 —4V%p — R+ %HQ)

1
= —2V* (Rw, +2V,V,0 — ZHﬂpaHypg> =0, (2.36)
and, hence, 3% is indeed a c-number.

The above conditions for the absence of Weyl anomaly provide a set of equations of
motion for the background fields. They can be reproduced from the variation of the string
frame action :

S = 21? dPx v/ —Ge (R +4(Vg)? — % H? + 2%6 (o/)—1> +O(d), (2.37)
where k is the D-dimensional Newton’s constant. The full action for the background fields
receives o’-corrections from higher loops in the sigma model, as well as g,-corrections from
higher genuses in which the dilaton appears as exp (x®).

Let us briefly motivate the presence of the central charge deficit term %50 in the effective
action (2.37). As mentioned above, 3% is a constant proportional to the total central charge
of the CFT on the flat worldsheet and the dilaton equation of motion 8® = 0 implies
Cmatter = 26. However, the constant term in 3% is only the flat contribution to the central
charge, with the curved contribution arising from the operator valued O(«’) contribution. Let
us be a bit more specific. Consider the target space to be the direct product MP x K, where
MP is a D-dimensional ¢ space of Lorentzian signature and K is an internal (compactified)

6. The concept of dimensionality of spacetime is only well-defined in the low curvature limit, as we will
discuss in later chapters.
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space of dimension N. The naive concept of dimension would imply D + N = 26 and this
is indeed true for the contribution to the central charges of the spacetime and internal
CFTs in the flat limit. We will take the spacetime and internal space to be parametrized by
coordinates X* and X7, respectively. Independently, the central charges of each of the two
CFTs can be expressed as the anomalies of the two sigma models :

cm=126%, =D+ 370‘ (4(v¢)2 —4V?%p — R ¢ 1—12H2) (X") +0O()?,
cx =128%, =N+ 370‘ (4(v¢)2 —4V2%¢p — RP) 4 %m) (XD +0(")?, (238

where we explicitly include the dependence on the spacetime and internal coordinates X*,
X', explicitly. Since ck is the central charge of the internal CFT, we can write the curved
contribution to the internal central charge as dcx = cx — N. The vanishing of the total
central charge implies that the curved contributions cancel each other dcx = —dcp. Then,
the total beta function (including the ghost contribution) becomes :

8" = 8%+ 8%l — 5

12
_ ek o 2 42— O 4+ L2 ) (xn N2
5 Ty (4Ve) — Ve — R S HP ) (X*) + O(a)? (2.39)

Thus, the central charge deficit arises by coupling the curved ‘spacetime’ (geometrical) sigma
model to an internal, curved CFT. This mechanism can be used, for example, to generate
tree-level cosmological solutions in string theory, with the role of the internal CFT being
played by a gauged WZW model, as in [2].

BRST Quantization and the No-Ghost Theorem

Before ending this section, we will very briefly mention an important ingredient that plays
a major role in the construction of consistent string amplitudes. This is the BRST quantiza-
tion, which leads to a formulation of the No-Ghost theorem. A more general application of
the ®-II procedure of gauge fixing would be to implement the gauge-fixing condition in terms
of auxiliary fields (Lagrange multipliers) as follows. Imagine gauge transformations closing
an algebra [0,,d5] = fus,0, and a set of gauge-fixing condition in the form F4(g) = 0. The
gauge fixing can be imposed through inserting a Dirac delta function §(g — §), which has
a simple exponential representation in terms of new dummy integration variables B4, now
acting as Lagrange multipliers :

/ DX Dy DBADbADE exp (—S[X, ] — Sarostldsbs ¢ — Syoge iclgs B F]).  (2.40)

The first two terms in the exponent are the gauge invariant sigma model action and the ®-II
ghost action :

Sehost = /bA (6 F(g)) . (2.41)
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The third term is the gauge-fixing action :

Seauge fix = —1 / BaF4(g) . (2.42)

The full action now enjoys a symmetry under the following BRST transformation [3], due
to Becchi, Rouet and Stora :

5BRST(gab) - _iecaaagab7
dprst(Ba) = 0,
dprst(ba) = €Ba,
1
5BRST(CQ) = §Z'€faﬁfycﬁcV . (243)

BRST symmetry can be considered a remnant of the original symmetry that is preserved
after gauge fixing. Its importance arises from the observation that physical states must be
BRST invariant. This can be seen demanding that physical amplitudes are unaffected by a
small variation in the gauge-fixing condition 0 F :

0 = (B] 6(Sypen + Sy ) [¥) = (@] [(Q,babF 1} @) (244)

where the BRST charge (D is the generator of the BRST transformations. The requirement
that this hold for arbitrary variation J F' leads to the physical state condition :

Qpl®) = 0. (2.45)

Next, the requirement that the BRST charge itself remains conserved even after the va-
riation 0 F or, equivalently, the requirement that () itself commutes with the variation of
the Hamiltonian, leads to its nilpotency, Q% = 0. This has important consequences for the
structure of physical states. Evidently, any state that is BRST-exact, Qp|®), is also automa-
tically BRST-closed, i.e. annihilated by the BRST charge, and so it is physical. However, such
states are null, in the sense that they are orthogonal to all other physical states (including
themselves!) and, hence, decouple from physical amplitudes.

Since physical states differing by null states have equal amplitudes with any other physical
state, one is lead to the notion of equivalence classes. The Hilbert space of physical states,
therefore, will be defined as the cohomology of Qg :

Hclosed
thysical - Hexact . (246)

The No-Ghost theorem (see, for example, [4]) is precisely the statement that the ‘transverse’
Hilbert space, which does not contain any longitudinal X° X! b, ¢ excitations (and, hence,
has a positive-definite inner product) is isomorphic to the BRST cohomology, Hpnysical =
Hprst- The BRST construction reflects another important fact. Namely, sufficient gauge
symmetry must be present in the first place, if negative norm states are to decouple from
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string amplitudes. This is also particularly clear in light-cone quantization, where the gauge
symmetry (reparametrization invariance) is used to go to the lightcone gauge and, hence,
fixing the longitudinal modes.

We conclude this brief introduction to bosonic string theory by giving the explicit form
for the BRST current :

i 1 3
JB(2) = Thatter(2) + 5 t gnost © (2) + 3 0%c(z). (2.47)

The BRST charge @ is then the zero mode :
dz dz - ,_
Qp = j{— B (%) —j{—. (%) , (2.48)

271 21

with the anti-holomorphic BRST current being defined analogously. The conservation of
the BRST charge is highly sensitive to anomalies in the gauge symmetries. As a result, a
conformal anomaly in the theory will arise as a failure of the nilpotency of the BRST charge.
In this case the jpjp-OPE will contain a non vanishing simple-pole term :

Cmatter — 26 1

js(2)jp(w) = ... — 3 z_wca3c(w)+... : (2.49)
which contributes a non-vanishing value to the anticommutator {Q g, @p}. Similarly, the T'jg

OPE contains a fourth order pole and, thus, jg(z) is not a primary field unless cpatter = 26.

2.2 Bosonic String Spectrum

In section 2.1 we gave a speedy overview of some elements of bosonic string theory. Let
us have a cursory look at its massless spectrum. The vertex operators of the closed bosonic
string take the general form :

gs/dzdf V(z,z), (2.50)

and can, subsequently, be used to perturb the sigma model. In this way, the various exci-
tations of the string act as perturbations whose coherent contribution ‘builds up’ the back-
ground. In this sense, string theory is in principle expected to determine dynamically its own
background, though in practice one is usually forced to treat small perturbations around
some fixed setup. The unintegrated vertex operators V(z, z), are fields of definite conformal
weight (1,1) so that the integrated insertions to the path integral are conformally invariant.
Consider the theory in D = 26 flat dimensions. The lowest mass states are then :

™% (0,0)]0) . (2.51)
Their conformal weight is picked from the double pole in the T'(2)V(w,w) OPE :
1
TV (w,w)=...+ ﬁc’ﬂ/(w,w} + o wV(w,w) +..., (2.52)



where the free boson energy-momentum tensor is :

T(z) = -~ :0X 0X: (2). (2.53)

«

A straightforward calculation yields :

(h,h) = (a;kZ, alfg) . (2.54)

Throughout this manuscript we will adopt a standard ‘CFT convention’. Unless otherwise
stated, in CFT calculations involving vertex operators on the sphere (genus 0), we will set
o/ = 2 so that the chiral vertex operator €4*(*) carrying a definite U(1) charge ¢ under
J(z) = 10X (z), will have conformal weight (¢%/2,0).

With this convention, the mass of ¢’*¥ is found to be :

m?>=m; +myh=—k*=-2. (2.55)

The separation into (equal) left- and right- moving masses m? = m% will be seen to arise na-
turally in the torus partition function. There, the value m? = m% = —1 will be precisely the
mass level of the ground state, which is entirely determined by the (super-)reparametrization
properties of the worldsheet theory, as they are encoded in the (super-)ghost structure.

The mass square in (2.55) is negative and the ground state of the bosonic string is, hence,
tachyonic. This is a considerable embarrassment for the theory, because its presence signals
an IR instability, with the tachyon rolling down its potential away from the unstable point.
We will come back to this point later on, when we discuss the Hagedorn problem.

We next move to the first excited states, which can be constructed from linear combina-
tions of the vertex operators :

OXH XY e*X(0,0)]0) . (2.56)

In what follows we will suppress the normal ordering symbol. The conformal weight of these
operators 7 is (1 + ]“2—2, 1+ %) and, hence, leads to massless states. Representation-wise, these
states are tensor products of two vector representations of the SO(1, D — 1) Lorentz group.
Decomposition into irreducible representations is straightforward and leads to a traceless,
symmetric tensor of spin 2 (the graviton G, ), an antisymmetric tensor (the Kalb-Ramond
field B, ), and the trace (the scalar dilaton ®). This is expected from the beginning, since
the massless excitations can be used as sources in the sigma model, with their fluctuations
determining the background.
Higher mass levels can be constructed in a similar fashion.

7. There are certain ‘on-shell’ conditions that need to be imposed on the coefficients of the linear combi-
nation for such operators to define primary conformal fields. They are obtained by imposing the absence of
higher order poles in the T'(2)V(w,w) OPE.
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2.3 Superstring Theory

Motivation and Worldsheet Fermions

Bosonic string theory suffers from several deficiencies, one of which is the presence of the
tachyonic excitation. Within the framework of a string field theory, one should be able to trace
the roll-down of the tachyon to a new stable vacuum, provided the latter exists. However,
to date, it remains unclear whether bosonic string theory can exist as a theory in its own
right. A far more serious problem is the total absence of spacetime fermions in the bosonic
string spectrum. Clearly, states built out of oscillators transform under tensor (rather than
spinor) representations of the Poincaré group. We present here the conventional approach to
remedy this situation, in terms of the Ramond-Neuveu-Schwarz (RNS) formulation of the
superstring.

In the RNS formulation, spacetime fermions arise from a degenerate ground state, |0),,
carrying a spinorial index of the spacetime little group. Assuming the presence of such an
operator 1*(z), its action on the vacuum state should produce the Dirac gamma matrix
representation :

B()0)e = %mrom e (2.57)

The degeneracy can only arise as long as the field ¢*(z) has zero modes. It is also necessary for
*(2) to carry a spacetime vector index, in order to reproduce the gamma matrix structure.
Then, the antisymmetrized action with a second operator ¥”(z) must reproduce the Lorentz
algebra :

P (200 = 1B es 005 = Sot10)s L 20 (2.58)
We assume the singular part has been subtracted via some normal ordering scheme. The point
now is that the antisymmetric combination of zero modes in the 1.h.s. vanishes identically
unless the fields ¥*(z) are fermionic and, hence, classically anticommuting. Therefore, one
is lead naturally to the introduction of fermion fields 1*(z) (necessarily carrying a Lorentz
index) on the worldsheet. The idea is then that if worldsheet fermions can satisfy periodic
boundary conditions, ¢* (o + 2m,t) = +y#(0,t), their expansion will contain zero modes
which can then give rise to the vacuum degeneracy structure required for spacetime fermions.

Therefore, the first ingredient we should include in a generalization of the bosonic sigma
model action (2.3) is the addition of worldsheet fermions ¢*. One could also add ‘internal’
worldsheet fermions 1!, transforming according to some isometry of the internal space, but
their zero-mode oscillators will give rise to spinors with respect to the internal group, rather
than spacetime fermions. However, one immediately has to face an additional complication.
The introduction of the new objects 1* carrying a Lorentz index also leads to new states
with negative norm. We, therefore, need to introduce a new gauge symmetry that will permit
us to gauge away and decouple the new unphysical states, with a similar BRST cohomology
construction as the one used for the bosonic string.
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It turns out that the relevant new symmetry is super-reparametrization invariance, arising
from the consistent ®-1I gauge fixing of 2d worldsheet supergravity. The starting point is the
N = 1 supergravity action in 2d, coupled to D superfields {X*, ¢*} :

1
4o

S:

- 1
[ #ovs [gabaaXﬂabXﬂ 0 Ot — X (abxu - L—bewu)] - (250)

For simplicity we assume a flat target space background. The auxiliary field of the off-
shell scalar multiplet are eliminated by their equations of motion. The would-be kinetic term
Xa 7V of the worldsheet gravitino y, vanishes identically in two dimensions and only the
‘samma-traceless’ (helicity i%) component of the gravitino, 7°y%y,, appears in the action.
The spin connection does not enter explicitly in the derivative of the Majorana fermions *,
because of the Majorana spin-flip property.

This action is invariant under local supersymmetry, Weyl and super-Weyl transforma-
tions, 2d Lorentz transformations and reparametrizations. It is the possible to use super-
reparametrization and local Lorentz invariance to go to the superconformal gauge :

Jab = €2w5ab y Xa = ’VCLC ) (260>

where the conformal factor w and the gamma-trace ¢ = %VGXa (helicity :I:%) component of
the gravitino completely decouple from the classical action. At the quantum level, they will
give rise to a superconformal anomaly, similarly to the case of the bosonic string.

We will not present this process in detail but merely quote the most important results.
After gauge fixing and some rescalings, the action of the free boson plus fermion takes the
form :

1

2ma!

S

/ R / Pz (P 3, + 0T, ) - (2.61)

It is easy to see that the residual symmetry is invariance under superconformal transforma-
tions (generated by Tr, as shown below). The two-point OPE of the worldsheet fermions
is :

P2y (w) = L (2.62)

and the energy-momentum tensor is :
1 1
T(z) = —— 0X"0X, — 3 Yroy,, . (2.63)
a
From these one can verify that the free fermion 1(z) has conformal weight (%, 0), as expected
from the structure of their kinetic term in the action. The superpartner of T'(z) is a tensor of

weight (%, 0) generating superconformal transformations. It is the worldsheet supercurrent
arising from the Nother procedure :

Tp(z) = z\/gwaxu(z) : (2.64)
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Taken together, the energy momentum tensor and the supercurrent form a 2d ‘gravity mul-
tiplet” and their OPEs close into the N = 1 superconformal algebra :

T(2) T (w) = % Tr(w) + - ! — 0T (w) |
To()Tp(w) = —— + 2 T(w) (2.65)

(z—w)? z—w

where ¢ = %c is the CFT generalization of the naive number of free superfields in a super-
conformal field theory (SCFT).

The worldsheet fermions 1* are 2d Weyl-Majorana spinors and can be taken to be real.
This restricts their possible boundary conditions to a real phase :

V(o 427, t) = ™ Y(o,t) (2.66)

with v = 0, % Grouping fermions together in pairs to make complex fermions would permit
more general boundary conditions with v € [0,1) being a real parameter, but this will be
considered later. In fact, it is conventional to define :

a=1-2v. (2.67)

This will become associated to the helicity charge, or the R-symmetry charge of the gravitini.
After a conformal transformation mapping the cylinder to the complex plane, the Fourier
expansions subject to these conditions become the Laurent expansions :

v = Y S 2.65)

reZ+v

The periodic boundary conditions a = 1 define the so-called Ramond (R) sector, whereas
the anti-periodic boundary conditions a = 0 define the Neuveu-Schwarz (NS) sector. The
R-sector fermion operators (v = 0) have a branch cut, as they encircle the origin, z — €?™z.
On the other hand, the summation is offset by v = % in the NS-sector such that the branch
cut cancels. This has consequences for the assignment of boundary conditions in superstring
constructions, since only theories with mutually local vertex operators lead to consistent
amplitudes.

This implies, in particular, that the supercurrent has the same boundary conditions as
the worldsheet fermions ¢*. In terms of Laurent modes, the N = 1 SCFT algebra (2.65)
becomes :

C 1
{Gm Gs} = 2L7‘+S + E (TQ - _) 57“+s,0 )

2 4
n
Lo, Gy = (5 - s) Gots (2.69)
where the mode expansion of the supercurrent is :
G,
Tp(z)= ) —57 (2.70)

reZ+v
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Notice that the N = 1 SCFT algebra has an (external) Zs-automorphism under which the
supercurrent transforms as Trp — —Tr. This permits the general assignment of v = O,%
boundary conditions, as in (2.70), without the need for the explicit realization in terms of
the free worldsheet fermions.

The Ground States of NS and R Sectors

In the R-sector the supercurrent has zero-modes and the N = 1 algebra (2.69) implies :

¢

{Go,Go} =2Lo— £ 20 (2.71)

The last inequality follows from the requirement of having a unitary theory. This implies the
following bound for the conformal weight of the states in the R-sector :

¢

hp > — .
B =16

(2.72)
The R-ground state saturates this bound. In particular, a real (free) worldsheet fermion (z)
has weight (1—16, 0) in the R-sector, as one can verify from the zero-point energy. Let us repeat
the argument here. The contribution to the vacuum takes the form :

lem 5 1l 5
Ep = 52% —§an , (2.73)
n=0 n=0
B,F

where w,’" are the frequencies of bosonic and fermionic oscillators, respectively. In the R-
sector the bosonic and fermionic oscillators are integrally moded so that EFr = 0. However,
there is a Casimir energy contribution arising from the conformal anomaly and the non-tensor
properties of T'(z). This is proportional to the central charge of the system E = Lo — 5.
Taking this offset into account we find the conformal weight of the R-ground state hgr = ¢/16.
In the NS sector, the fermions are half-integrally moded and anti-periodic, and their
contribution does not cancel against the bosonic. The Casimir energy in this case is :

Eys = gin S (n+3) =50 (-een) =32, e

n=0

where we have used zeta-function regularization. This is justified because it manifestly
preserves the gauge symmetries® of the theory. The offset from the conformal anomaly,
+c¢/24 = 3D /48, completely cancels this contribution so that the matter ground state in the
NS-sector starts at weight hyg = 0.

8. This is essentially equivalent to the statement that it is possible to choose a regulator which manifestly
respects the gauge symmetry, in order to regularize the formally infinite expressions. Then, a suitable coun-
terterm could be used to remove the divergent parts. The finite part cannot be similarly removed because
the would-be counterterm would explicitly break the gauge symmetry.
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Ghosts and Superghosts

The reparametrization ghosts b, c also have ‘superpartners’, which are the commuting
super-ghosts /3, v. They contribute a similar term [ [0y in the action. They arise from the
®-IT procedure by gauge-fixing the super-reparametrization invariance. They contribute to
the ghost energy momentum tensor and supercurrent as :

Ty (2) = —(0b)e — 2bde — L(B)y — 507 (2.75)
Tr ghost (2) = (05)c + gﬁ(‘?c — 2by . (2.76)

From the particular expression of the supercurrent (or, directly, by taking the OPE with
3

T(z)) we instantly read the conformal dimensions of 3,~, which are h—1 = 2 and 1-h+1 =
—%, respectively. Hence, the commuting (~v-system completes the anticommuting be-system
into a ghost supermultiplet.

The central charge of the super-ghost sector is ¢ gnost = 3(2h— 2)2—1. For h = 2, we then
find the relevant super-ghost contribution to be completely fixed by super-reparametrization
invariance to the value csghost = +11. Combining this with the contribution of the bc-ghost
sector, we find the critical matter central charge cpatter = 15 O Cpatter = 10. One then
recovers the critical dimension, D = 10, of the superstring.

The ghost and super-ghost systems can be consistently bosonized. This implies that
that the OPEs in the bc-theory can be reproduced by the introduction of vertex operators
involving a scalar field o with opposite-sign OPE o(z)o(w) ~ log(z — w). One may then

express the b, ¢ ghosts as :
b(z) = e | c(z) =), (2.77)

The OPE between Tj,.(z) and the ghost number current j = bc has a cubic anomaly term
~ O(z73), which has to be reproduced by the bosonization. This requires an appropriate
shift of the o-scalar energy momentum tensor, which amounts to a background charge :
1 2, S
The(2) = 5(80) + 53 0. (2.78)
The situation is more involved for the superghosts because their vacuum structure is
more complicated. The reason is that arbitrary excitations are possible for the 3, fields,
because of their commuting nature. To this end, one introduces a scalar field ¢(z), with the
conventional sign of the ¢(z)p(w) ~ —log(z —w) OPE for scalars, and identifies it with
the superghost number current 0¢(z) = [7y(z). This implies that 3, v has charge —1 and
+1, respectively, with respect to d¢. This is, however, not enough to fully reproduce the
BB, By and vy OPEs. Instead, it requires the introduction of an additional independent
anticommuting 7, {-system, identical to the bc-CFT, but with h, = 1, h¢ = 0. The correct
bosonization of the superghosts is then :

B(z) = e 0E() A=) = e n(z) (2.79)
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The reproduction of all OPEs again requires the modification of the energy-momentum
tensor by the addition of a background charge. Furthermore, it is possible to bosonize the
né-system as well, in terms of another scalar y as n = e™X, £ = eX. The fully bosonized
energy-momentum tensor is then written as :

Tsy(2) = —%(6%)2 — P o+ %(8x)2 + %8%( : (2.80)

The effect of the background charge is similar to a linear dilaton CFT. In particular the
vertex operator e? has conformal weight :

1
et — h= —iq(q +2). (2.81)

Let us now perform the analogous calculation of zero-point energies for the ghost and super-
ghost systems. The bc-ghosts are always integrally moded and are quantized with anticom-
mutation relations. After taking into account the central charge offset, their contribution to
the Casimir energy is :

1 — —26
hi{NS:—2><§§ n+%:—1. (2.82)
n=0

The super-ghosts, on the other hand are quantized with commutation relations, but the
result will depend on the sector. In the R-sector, the modes are again integral and one finds :

1 — (+11) 3
hﬁV — 419 = A 2.
R =2 nzzon + 5 = t3 (2.83)
In the NS-sector, the modes are half-integral and the analogous calculation yields :
1 & 1 (+11) 1
WYl =42 % = I e 2.84

Of course, the calculation of divergent sums over zero-point energies is only mentioned here
as a cross-check. The conformal approach provides the vacuum energies as a natural conse-
quence.

Finally, let us comment on the structure of the ghost vacuum. The starting point in
defining the vacuum is to notice the discrepancy between the SL(2,C)-invariant? vacuum
|0), associated to the identity operator 1(z), and the true ground state. The latter is defined
as the state annihilated by all lowering operators. Notice that ¢(z)|0) and b(z)|0) have to
be regular as z — 0, as a result of the regularity of the ¢(2)1(0) and b(z)1(0) OPEs. This
implies :

|0y =0, n>2,
bl0) =0 , n>—1. (2.85)

9. Indeed, the regularity of the T'(2)1(w) OPE indicates that L,,|0) = 0 for m > —1. This, in particular,
involves the SL(2,R) subalgebra L_y, Lo, L.
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Thus, the SL(2,C)-invariant vacuum is not the true ground state of the be-theory, since ¢
is a lowering operator which does not annihilate the state, ¢1|0) # 0. Therefore, at least for
the bosonic theory, the ground state of the be-system is identified with ¢(0)]0).

The situation is more complicated for the v-system because its commuting character
allows states to be built out of arbitrary /3, v-excitations. Repeating the previous argument
for 3, ~, we would again find :

’77"|O>:0 ) r >

9

N o

B0y =0, r>—=. (2.86)

N

Now we encounter the complication. Evidently the SL(2, C)-invariant vacuum |0) is not the
ground state of the S~ theory, since 72 lowers the weight. In contrast to the bc-ghost case,
however, where the algebra was ‘fermionic’, the S+ ground state is degenerate and cannot
be simply obtained by 7(2)|0). This is because the spectrum is unbounded ! since, for
example, further application of the lowering operator 7;/» does not terminate the spectrum,
/2 (71 /2]0>) # 0. In order to define the NS-vacuum one needs the analogue of a delta
function :

0)ns = 0(7(0))10) , (2.87)

such that the application of v(z) and f(z) produce a simple zero and a simple pole, respec-
tively :

WD GO) ~ ()
BES () ~ 2 () (2.8%)

hence, ensuring the vanishing of v;/2/0) v and terminating the representation. This is achie-
ved by the coherent state §(v(z)) = e %), leading to a consistent definition of the NS-
vacuum :

0)ns = e ?(0)[0) , (2.89)

which satisfies all previous requirements.

In view of this construction, the definition of vertex operators is by no means unique.
Rather, there are infinite inequivalent representations of the f~y-algebra (called ‘pictures’),
which are distinguished by their ¢-ghost charge. In contrast to the mere shifting of the Fermi
sea in the fermionic case, here a finite number of field operators cannot fill a state and the
coherent state operators e?? interpolate between the various Bose sea levels.

10. This does not pose any problems in our case, because we are dealing with a free theory. In the absence
of interactions, the transitions that would destabilize the vacuum are also absent.
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Finally, the analogous argument can be carried out for the R-ground state, |0) = 3(0)|0).
First notice that the R-vacuum is defined by :

7n|O>R:0 ) nzl,
Bul0)r =0, n>0. (2.90)

We have included [, to the lowering operators and v to the raising operators, as is the case
with the bosonic ghosts by, co. This choice (Siegel gauge) is dictated by consistency of the
string amplitudes. These conditions imply :

Y2)E(0) ~ 22 ()
B(2)5(0) ~ ﬁ (). (2.91)

The R-ground state must then contain a factor with —% superghost charge, ¥(z) ~ e~ /2 :
0)r = e ?25(0)[0) (2.92)

where S(z) is the spin-field operator, introducing the required branch cut of the worldsheet
fermions in the R-sector :

WSa(w) = 22

where y* are the conventionally normalized gamma matrices in D dimensions. As discussed
in the beginning of the section in eq. (2.57), the R-vacuum is degenerate and transforms as a
spacetime spinor. Hence, the associated spin-field will carry the relevant SO(1, D —1) (Weyl)
spinor index. We can obtain a simple free-field representation of the spin field by bosonizing
the worldsheet fermions. First, one defines complex fermions as :

(2.93)

1
UOE(2) = — (0 t)
(=5 (0= 0)
1
Ut (2) = — (2 £ap%* ) | 2.94
(2)= 5 (v i) (2:99)
with a = 1,...,4. These are bosonized in terms of free scalars H%(z) :
TOE(2) = G oY (2) = TOTTe(2) . (2.95)

The bosonization of the worldsheet fermions is similar to the bosonization of the bc-system
considered above. However, unlike the ghosts, the conformal weight structure of the fermions
is such that their bosonization does not introduce background charge. In order to reproduce
the branch cut of (2.93), the spin field has to be taken to have A = i% helicity charges!! :

S(z) = Pt (2.96)

11. In fact, there are two spin-fields S(z) and C(z), corresponding to the two irreducible Weyl represen-
tations with opposite chiralities. They are constructed by keeping an even or odd number of minuses in the
helicity charges, respectively.
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This is the helicity basis of the spin-field, where the representation is encoded into the weight
vector A\,. It lacks in manifest covariance, but its main advantage is the explicit free-field
representation which permits the straightforward calculation of OPEs. Its conformal weight
is (g, 0), in agreement with the calculation of the zero-point energy due to D = 10 worldsheet
fermions, ¢/16 = 5/8, in the R-sector.

Finally, by adding the bosonic ghost contribution ¢(0)|0) and using (2.81), it is easy to
verify the conformal weights of the NS and R (ghost) ground states :

Ohs = e (O)0) , hys = .
10z = c(0)e™*/25(0)[0) , hr=0. (2.97)

Notice the negative —% mass contribution in the NS sector. This is familiar tachyon of bosonic
string theory. On the other hand, the R-sector starts already at the massless level.

BRST for the Superstring

Similar expressions hold for the right-movers. The bosonic no-ghost theorem generalizes
with a similar construction to the superstring case and the modified BRST cohomology
gives the physical positive definite spectrum. Picture changing and the consistent covariant
quantization of the superstring is discussed in [20], [21]. The BRST charge @ is defined as
the zero mode of the current :

3 1 3
JB = Tmatter + YT Fmatter + bcOc + Z(Gc)ﬁ*y + Z—lc(aﬁ)v — Zcﬁ@v — by (2.98)

The consistent definition of the BRST charge requires the BRST current to be integrally
moded. This implies that ¥*, 8 and v must have the same periodicity as the supercurrent
Tr. The BRST charge is found to be nilpotent Q% = 0, as in the bosonic case, provided the
superconformal anomalies cancel (total ¢ = 0).

For a physical state |x), one imposes the additional (Siegel gauge) conditions by|x) =
Bolx) = 0. Their origin is kinematical and they consistently project out copies of the spectrum
which would lead to delta functions in physical amplitudes. This leads to the additional
conditions to be imposed on physical states :

Lolx) = {@B,bo}|x) =0,
Golx) = (@B, Bollx) =0 . (2.99)

The first is the mass-shell condition, with Ly being the zero mode of the total (matter plus
ghost) energy-momentum tensor. These conditions reproduce the ones arising in covariant
quantization, where one treats the super-Virasoro algebra (i.e. the residual symmetry) as a
constraint algebra to be imposed on the physical spectrum.
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2.4 Superstring Vertex Operators

Vertex Operators for Low-Lying States

Let us briefly describe here the construction of the simplest superstring vertex operators
in the NS and R sectors. Depending on the choice of boundary conditions in the left- and
right- movers, the theory contains four sectors : NS-NS, R-R, NS-R and R-NS. The first two
give rise to spacetime bosons and the last two give rise to spacetime fermions, respectively.

We start with the NS-NS sector, where the (super-)ghost contribution lowers the vacuum
energy by —%. The lowest state is the tachyon. Its mass is determined from the requirement
(2.99) that Lo =0 :

, . 2
X0 s = e N (0,00) — T+ hws =0 (2.100)

Hence, m? = —1. Reinstating back the o’ dependence, we have m? = —2/a/.

In subsequent parts of the manuscript we will be somewhat cavalier about wording and
will, hence, refer to the conformal weight of the vertex operator at zero momentum as the
‘mass level” of the state. With this convention in mind, we will consider the tachyon ground
state to be at h = —% mass level. This definition of ‘mass level” is consistent with the
conventional one, since they coincide for the massless spectrum.

The next mass level in the NS-NS sector can be obtained by the action of fermion os-
cillators. For simplicity, we will only write the momentum independent part of the vertex
operator.

e=PYPH e~ ¢2(0,0)[0) , h=0. (2.101)

This is the massless level. As in the bosonic case, linear combinations of the above states have
to be considered and conditions have to be imposed on the polarization vectors so that the
vertex operators describe on-shell physical states. The tensor product decomposes again into
massless irreducible representations of the spacetime little group. One obtains a symmetric,
traceless tensor again corresponds to the massless spin-2 graviton G, the antisymmetric
tensor field B,,, and the scalar dilaton ¢. This is the gravitational multiplet.

We have seen that states in the R sector start at the massless level, at least (anti-)chirally.
In the R-R sector, we have :

e 928 ¢=928% (£(0,0)]0) , h=0. (2.102)

The + in the spin-fields, S*, indicates the choice of chirality. The relative chirality choice
leads to distinct theories. Depending on the relative chirality the spinor product decomposes
into the sum of forms of either odd or even rank. They will be discussed below, after the
introduction of the GSO projection.

Finally consider the R-NS sector (NS-R is similarly treated). The conditions (2.99) imply
that physical states have to be level matched, Ly = Ly =0 :

e 28 e=Oyt ¢6(0,0)]0) , h=0. (2.103)
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This decomposes into a helicity :i:% state, the gravitino, and a spin j:%—fermion, the dilatino.
The chirality of the gravitino is given by that of the spin-field S*(z).

The presence of spacetime supersymmetry is, in fact, the result of an enhancement of the
local N = 1 worldsheet supersymmetry into a global N = 2 SCFT. Its spectral flow then gua-
rantees the presence of spacetime supercharges, that map the bosonic matter representations
into the fermionic ones and vice-versa. This will be discussed in Chapter 4.

The Gliozzi—Scherk—Olive Construction

We have seen that the fermions in the R sector are not single-valued because spin fields
introduce branch cuts as worldsheet fermions move around them. The resulting correlation
functions are rendered inconsistent, as the integration over the position arguments of various
vertex operator insertions becomes ill-defined at the branch points. Locality of the operator
products is, therefore, essential for a consistent string theory. The superstring solves this pro-
blem by introducing a consistent truncation onto states with even total (matter plus ghost)
worldsheet fermion number F'. We will motivate this here, although the GSO projection will
be seen to arise from modular invariance constraints coming from higher genuses.

The generic holomorphic part of vertex operators in the NS and R sectors is :

NS : P(O"H,0mX) e ?TH ¢(0)]0), , (2.104)
R : Q(0"H,0mX) e 9> 31 ¢(0)|0),, . (2.105)

Here P, () are polynomials built out of conformal currents 0H,, X, and their derivatives.
They encode all possible oscillator excitations. Since their operator products do not produce
branch cuts, their presence is irrelevant to the present argument and will, hence, be ignored.
Notice that we have chosen to factor out the % out of the helicity charges so that the
spin is parametrized by 5 signs, ¢, = £1. The charges in the NS sector, a,, take values
in a, € {—1,0,1}, as is required by the bosonization of the worldsheet fermions. We have
assumed a complexified basis for the fermions and the spinor representation index in the R
sector is encoded, as before, in the choice of weight vectors A\, = %ea.

Now consider the OPE between two vertex operators, one being in the NS sector and the

other in the R sector. The expansion will contain terms of the form :

1
(z — w)/2tee/24p

R(O"H, o™ X) e-3¢/2Fi(otae) (2.106)

where R(0"H,0X) is again some polynomial of the currents and their derivatives. Also,
p € N is an integral contribution to the singularity arising from the oscillator contractions
between P and (). As z encircles w, there is a net ‘deficit’ phase :

expim(l+a-e€). (2.107)

This must be equal to one for string amplitudes to be well defined. Because the signs ¢, are
irrelevant modulo 2, the condition becomes :

d a, € 2Z+1. (2.108)
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This condition requires the sum of the fermionic charges, a, = % i0H (z), to be odd. This
can be reformulated in terms of the worldsheet fermion number as the zero mode of the
‘diagonal’ current :

d

F = f 2—2 (—0¢ +i0Hy + i0H, + i0Hy + i0H3 + 10H,) . (2.109)
!

Notice that we include also the super-ghost contribution, so that the NS vacuum (2.97) has

negative worldsheet fermion number :

(=) 10)ns = —[0) s
(=) 10)r =T"|0)r = £[0)r - (2.110)

More generally, the condition of mutual locality between the gravitino vertex operator and
any other state with ghost charge ¢ and helicity %aa is :

—q+ Y €ty € 2Z. (2.111)

This is the general form of the GSO condition. Essentially, it expresses the condition of
preservation of the spacetime supersymmetry currents.

For the R vacuum, the worldsheet fermion number brings out the I'”’-matrix '? and gives
the #£-chirality of the R vacuum. One then imposes the consistent truncation of the theory
down to states with even-even worldsheet fermion number :

(57 )=+ . )=+ (2.112)

This is the Gliozzi-Scherk-Olive (GSO) projection [5] defining the supersymmetric (Type
IT) string. Indeed, imposing the projection independently on the left- and right- movers,
as in (2.112), removes all states with even number of fermionic excitations from the NS
sector. Acting on the R sector the GSO projection simply fixes the chirality of the spin-field.
Modular invariance at one loop will require the GSO projection to act on the R sector as well
and hence chirality will be fixed in the R sectors as well. The GSO-projection is precisely the
condition that all vertex operator in the theory be local with respect to the vertex operator
of the gravitino and, so, it is inherently related to the presence of spacetime supersymmetry.

The Type Il Superstring

The construction we have described above is symmetric in the sense that it permits the
combination of GSO-projected left- and right- moving NS and R sectors. This is the Type II
construction. Let us briefly describe these four sectors, starting with NS-NS. Now the tachyon
has been removed and the lowest mass states are the vectors v ® v constituting the massless
gravity multiplet, (2.101). The overall chirality of the spinors is a matter of convention and

12. This is defined as the D-dimensional analogue of 4° in four dimensions.
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only the relative chirality between the left- and right- moving R sector matters. Let us fix S
to be the left-moving spinor representation (the opposite chirality will be denoted by C' - for
conjugate spinor). The R-NS sector will then contain tensor products of the type S®v, which
are decomposed into the C-Majorana-Weyl (spin-2)gravitino and a (spin-1) C-fermion. For
the NS-R sector there are two choices, depending on the right-moving chirality. Keeping the
same chirality as with the left-movers, we obtain tensor products of the type v ® S and this
leads to a chiral theory (Type IIB), with a C-gravitino and C-fermion. On the other hand,
choosing the opposite chirality spinor v ® C' yields a non-chiral theory (Type ITA), since now
the gravitini appear with both chiralities. Finally, the massless R-R sector is S ® S in Type
IIB theory, which decomposes into a scalar and forms of rank 2 and 4 (self-dual). In the
Type IIA case, the massless states are generated by S ® C and decompose into a vectors and
a rank 3 form.

Another important construction is that of the Heterotic string, which is a ‘hybrid’ mar-
rying the structure of the superstring on the left-moving sector together with the structure
of the bosonic string on the right-moving side. It will be easier to introduce them in the next
section, from the point of view of their one-loop partition functions.

Finally, there are variants of the GSO-superselection (2.112) that impose a correlated
projection onto states that are even under the total (left- plus right- moving) worldsheet
fermion number, F 4+ F. These constructions are called Type-0 strings but they are non-
supersymmetric, their spectrum contains a tachyon and there are no spacetime fermions. We
will not be consider them any further.

2.5 Vacuum Amplitude on the Torus

Moduli and Conformal Killing Vectors

In this section we introduce some of genus-one techniques that will be used throughout
this manuscript. The calculation of the 1-loop vacuum amplitude (with no insertions) is
useful because, apart from providing the vacuum energy in the case of setups with broken
supersymmetry 3, it gives rise to the (mass-generating) partition function encoding the in-
formation about the tree-level spectrum of the theory. This is seen most easily by cutting
open the 1-loop amplitude. The information obtained is precisely about the tree-level states
propagating around the loop. This, however, does not contain information about the inter-
actions - one would need to cut open a two-loop double-donut to probe the interactions as
well.

Let us return to our sketch of the topological expansion (2.16). The path integral pres-
cription requires integration over all worldsheet metrics for a given topology. In the pre-
vious sections we described the process of gauge-fixing, which consistently sets the metric
into conformally flat form. However, there is a catch. This logic implicitly assumes that all
possible metrics can be connected to the conformally flat one through diffeomorphism trans-

13. In (Euclidean) thermal settings that we will discuss in subsequent chapters, the 1-loop amplitude
expresses the free energy.
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formations. This is not true in general, because topological obstructions may forbid some of
the gauge transformations that would connect the arbitrary metric to the gauge-fixed one.
In the case of the torus (genus 1, y = 0), for example, the obstructions take the form of per-
iodicity conditions along the two non-contractible cycles, which are not in general respected
by arbitrary diffeomorphism transformations.

Thus, the arbitrary metric can be gauge-transformed to conformally flat form only locally.
The gauged-fixed metrics in different patches will generically differ and the gauge inequivalent
metrics will be parametrized by quantities, pa, that we will refer to as moduli. They are
precisely the remnants of the original general metric left unaffected by the diffeomorphisms
and Weyl transformations of the gauge-fixing procedure and, thus, have to be integrated
over in the path integral. This calls for a modification of the string S-matrix. For simplicity,
we will only quote the result for the bosonic case. For the scattering of N states, with vertex
operators V;(k;) the string S-matrix is :

Sth) = D 9. / " pia / DX Db De ¢~ Smater—Sanont
f

topologies

X ll_ﬁ[ d/de] [B %/dQUA\/E bab@wﬁab] [.lﬁ_[dca(&i)] va(ai) Vi(ks, 03)
(2.113)

Let us comment on this structure. In addition to the gauge-inequivalent metrics which are
parametrized by the moduli there exist also gauge transformations (Killing vectors) that
leave the gauge-fixed metric form-invariant. Taken together, they build the conformal Killing
group of the surface 3,. The Killing symmetry can then be used to gauge-fix the positions
of some of the vertex operator insertions in the path integral.

The number of Killing vectors and moduli on a Riemann surface has topological origin
and, hence, obeys topological constraints. In particular, the Riemann-Roch theorem relates
the number of moduli, n, and the number of conformal Killing vectors, , to the Euler
characteristic x by :

K—n=3x. (2.114)

One may understand the presence of the b and ¢ insertions in the following way. Notice
that to every unintegrated (fixed) vertex operator there corresponds a c-insertion, whereas
every modulus results in a b-insertion. However, the b,, and ¢* ghosts in general have zero
modes, which do not appear in the ghost action (2.15). Thus, unless a suitable number of
ghost insertions is present, in order to soak up the zero modes, the path integral will vanish
identically from the basic properties of Grassmann integration.

It is straightforward to see that the numbers of b and ¢ insertions in (2.113) is precisely
the one required to give a non-trivial result. The conformal Killing vectors are those gauge
transformations leaving the metric invariant dg,, = 0. From (2.12), this condition takes the
form of the conformal Killing equation :

PE=0. (2.115)
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Hence, the conformal Killing vectors are precisely associated with the zero modes of the
kernel, P, defined in (2.13).

The moduli, on the other hand, are precisely those variations 6+ g, of the metric that can-
not be expressed as gauge (diffeomorphisms and Weyl) transformations. They are, therefore,
orthogonal to the variation (2.12) with respect to the natural inner product :

0= [ @05 5 gu 89" = (59159) = (54| 209 — 2(PO)

= 2(61 9|60 g) — 2(PTo*gle) . (2.116)

This has to vanish for arbitrary &, dw, therefore :
96 g =0 , (PT0%g)ar =0, (2.117)
where the transpose PT is obtained via partial integration, (PTv), = —V%v,. The moduli

are, therefore, associated to the traceless, symmetric zero-modes of PT.

The above conditions for the conformal Killing vectors and the moduli as zero-modes of
P and PT, respectively, precisely coincide with the zero modes of by, c?, as seen from the
ghost action :

1 1
Sghost = %<b|PC> = %(PTMC) . (2118)
Thus, the number of b-zero modes is precisely equal to the number of moduli on the Riemann
surface. Similarly, the number of c-zero modes equals the number of conformal Killing vectors.
This is precisely the number of insertions in (2.113), as needed for the path integral to be
non-trivial.
With every b-insertion, we obtain a derivative 0, gay, because the total variation of the
metric in the ®-II procedure must also include the variation with respect to the moduli :

5Gap = 200 Gap — 2(PE)ap + S0y Gab - (2.119)

Putting everything together, the S-matrix structure (2.113) is in agreement with the
considerations of BRST invariant vertex operators. Each fixed (unintegrated) vertex operator
always comes multiplied by a cc-insertion, which renders it BRST invariant. The unfixed
vertex operators have no such insertion and they are not BRST invariant. However, the
action of g on them produces a total derivative, which vanishes after integration. Also,
notice that the action of ()5 on the b-insertion, (b|0,,,g), replaces b by the energy momentum
tensor (7|0, G). However, this is precisely the total variation of the path integral with respect
to the modulus p4 :

0
E gsx/d"u — /DX Db Dc e Smarter=Sghost () | (2.120)
. Opia
topologies Fa

where the ellipsis denotes the remaining insertions with the particular insertion (b|0,,§)
removed. This becomes a surface integral living on the boundary of moduli space and, in
most cases, vanishes.
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There is another formulation, equivalent to (2.113), which is sometimes also useful. The
idea is that we can absorb the coordinate dependence of the unfixed vertex operators into the
transition functions between different patches and, hence, treat them effectively as moduli.
The S-matrix then becomes :

topologies F A=1 =1

where the Ba-insertion is essentially the b-ghost insertion :

1 ~ ~ac A ~
Ba = E/d%\/; bab §°° 5" Oy Gea (2.122)

where we implicitly assume that the moduli have been absorbed into the transition functions.
The number of effective moduli in this framework is then neg =n + 2N — xk = 2N — 3x. In
this formulation all vertex operator insertions are treated as fixed. This result has suitable
generalization for the superstring.

The Metric on the Torus

Let us now return and apply the above to the 2-torus, 72. There are exactly two holo-
morphic differentials, corresponding to the two translations along the two non-contractible
cycles and the conformal Killing group on the torus is, hence, U(1) x U(1). Because this
volume is finite, we can choose not to fix the position of any vertex oeprator insertions and
simply divide by the volume. This will permit one to calculate the 1-loop vacuum amplitude,
that is, without any external-leg insertions. There are also 2 real moduli parameters 7, 7o,
which we combine into a complex variable 7 = 71 + i7y.

We assume that g, (o) (and other fields) are doubly periodic in the coordinate region

€ [0,1). Alternatively, one may extend this to the whole complex plane, w = o' + ic?,
with the double identification :

w~w+1,
W~ WA (2.123)

We already mentioned that there are gauge inequivalent metrics, that is, metrics which
cannot be connected via gauge (diffeomorphisms and Weyl) transformations and which are
parametrized by the metric moduli. Nevertheless, one may perform a local Weyl rescaling in
order to set the Ricci scalar to zero. In 2d this implies that the metric is Weyl-equivalent to
the flat metric. By a coordinate transformation we would have been able to put the metric to
the standard euclidean form g,; o< 045, were it not for the topological obstruction. In fact, one
may use reparametrization invariance to set the metric to the standard form, ds* oc dw dw,
however, this would spoil the original periodicity (2.123), so we would find instead :

w~w+1,
w~wFT (2.124)
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for some 7 € C. We have implicitly rescaled the coordinates and the metric (Weyl trans-
formation) to preserve the first periodicity normalized to w ~ w + 1. Notice that in this
approach the modulus 7 has entered the periodicities, but not the metric. The converse is
more convenient. Define new coordinates o :

w=c"+710% (2.125)

such that the 7-dependence of the periodicity is absorbed. This reinstates the original double
periodicity ¢ ~ ¢* + 1. However, the metric now explicitly contains the Teichmiiller para-
meter 7 :

1 1 1
ds? = 7_—2 |do‘1/ + Td0-2/|2 . 7_—2 ( " |T71_|2 ) . (2.126)

Here we have also performed a Weyl rescaling in order to factor out the volume factor. Of
course T is restricted to takes values in the upper-half plane C* in order for the metric to
be positive definite.

The above argument that we can put the torus into flat form is a special case of a
general uniformization theorem [6]. This states that every Riemann surface 3, is conformally
equivalent to the quotient D/G, with D = CU{oo},C, or C* and G = m(X,) being a freely
acting discrete subgroup of the Mébius transformations SL(2,R) preserving D. This implies
that we can always conformally map ¥, to a constant-curvature Riemann surface. In this way
the sphere 3y = 5% becomes mapped to CU{oo}, with standard metric ds* = dwdw /(1+ww)
and positive constant curvature. The simple torus ¥; = 7% is conformally mapped to C/A,
(with Ay being a translation lattice), metric ds*> = dwdw and vanishing curvature. For
higher genuses, ¥,>» is mapped to C*/G (G is called the Fuschsian subgroup) with metric
ds? = dw dw /w3 and negative constant curvature.

Modular Transformations and the Fundamental Domain

In general, the Teichmiiller space is defined as the quotient of the space of metrics with
respect to the group of gauge transformations, continuously connected to the identity :

metrics
T ‘ 2.127
eichmuller diffeomorphism x Weyl ( |

For the sphere, there are no Teichmiiller parameters, for the torus there are 2 (real), while
for a Riemann surface of genus g > 2 there are 6(g — 1) Teichmiiller parameters. However,
there are in general additional gauge transformations that are not continuously connected to
the identity (large coordinate transformations). They are typically generated by a discrete
group of transformations I'. These have to be factored out as well, so that the true moduli
space M is :

metrics

- - 2.12
M diffeomorphism x Weyl x I ( 8)

52



Let us now return to the simple torus (¢ = 1) and comment on the the physical meaning
of 71 and 7. The flat torus has been defined as the complex plane modded out by a 2d
lattice C/A,. This means that we can construct the torus from the parallelogram (0,0),
(0,1), (11,72), (11 + 1,7), by wrapping and gluing together two opposite sides to obtain a
cylinder. By joining together the two ends of the cylinder (two remaining sides) on obtains
the torus. Consider first the case of the untwisted torus, 7, = 0. The parallelogram is then
orthogonal. By identifying the two vertical sides, we obtain a cylinder of perimeter equal to 1
and length equal to 75. Subsequently, we glue together the two open ends of the cylinder and
obtain the torus. Thus, the physical meaning of 7 is to fix the relative scale (ratio) between
the ‘perimeters’ of the two non-contractible cycles of the torus. Now assume 77 # 0 and notice
that the points (0,0) and (71, 72) are identified. This amounts to ‘twisting’ the cylinder, i.e.
rotating the ends before gluing them, so that instead of gluing point (¢,t) = (0, 0) with point
(0,72), we are gluing it (7, 72), instead.

As mentioned, in contrast to the transformations continuously connected to the identity,
which cannot change the complex structure 7, there are global operations on the torus (large
diffeomorphisms), called Dehn twists, which can change 7. For example, consider cutting the
torus open on one of its cycles, rotating the ends by 27 and gluing them back together. This
takes 7 to 7 + 1. Points that were in the same neighborhood before the twist are still in
the same neighborhood after the twist. However, this operation is clearly not continuously
connected to the identity. Still, it corresponds to an equivalent torus (see the left diagram
on Figure 2.1), because of the lattice periodicity (2.124).

A similar Dehn twist can be performed around the other non-trivial cycle of the torus.
Cut open the second cycle, rotate its ends by 27 and glue them back together. To see what
this translates into, one has to construct the ‘mirror’ image of the parallelogram. Simply
take the original parallelogram, and rotate it counterclockwise so that its edge of length |7|
coincides with the vertical axis. This is similar to the original torus, seen through a mirror
coordinate system 71 <> 7o, with the edges of length |1| and |7| exchanged, which implies
precisely the exchange of the two non-trivial cycles. We have to normalize correctly the side
adjacent to the vertical axis. For this purpose, rescale the coordinates by |7| so that the
four vertices of the parallelogram are not at points 0, %, 1+ % and 1. The new torus is now
described by the effective Teichmiiller parameter % The Dehn twist is, again, a rotation by
21 around the ends of the cylinder, which means % — % + 1. In terms of the ‘original’ 7
parameter, this is precisely the transformation 7 — 7, corresponding to choosing the cell
as in the right diagram on Figure 2.1.

These transformations leave the torus invariant and generate the modular group I' =
PSL(2,7Z), which is defined as the group of Mébius transformations with integer coefficients
a,b,c,d € Z, modulo an overall sign :

ar +b

T —
ct +d

, ad—bc=1. (2.129)
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FIGURE 2.1 — The modular transformations 7 — 7 + 1 (left) and 7 — 7/(7 + 1) (right).

It has two generators, which can be taken to be :

T : 7=7174+1,
1
S T ——. (2.130)

T

The Teichmiiller space for the torus is the upper half plane, C*, and this has to be
modded out by the modular group PSL(2,7Z). The resulting region, F, is the fundamental
domain, F ={ 7€ C* : |7|>1, |n| <31 }. It is shown in Figure 2.2 below. The exclusion
of the 75 — 0 region is important for the absence of UV divergences in string theory, because
7o will effectively become the analogue of the Schwinger parameter of field theory.

The Bosonic Torus Vacuum Amplitude

In order to construct the torus amplitude it will be useful to rewrite the expression
(2.121) for the string S-matrix in a form valid even without insertions. Since there are 2
(real) conformal Killing vectors and 2 (real) moduli, we will always need a (bbcé)-ghost
insertion in order to soak up the ghost zero-modes. We will consider all vertex operators to
be integrated over and not will not use the Killing symmetry to fix any position.

The starting point is to calculate the B insertion. We will not give the details here but
merely state that one varies the standard flat metric ds? = dw dw and from the periodicities
one reads the induced variation of 7. This yields 0, §uw ~ i/T2. Then, one uses the fact that
only the ghost zero modes c¢yGybyby contribute to the torus path integral and, hence, the
B-insertion is independent of the position. The result is B ~ iby,(0). Finally, one divides
by the (finite) volume of the conformal Killing group and integrates over all vertex operator
insertions. The translation invariance of the vertex operators is, of course, necessary. The
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FIGURE 2.2 — The fundamental domain of the torus, F = C*/PSL(2,Z).

final result is :

Sy (ki) = / T b(0)5(0)e(0)2(0) )yr <H / Pw; vi(k,.)> . (2.131)

g=1

This expression holds, in particular, for N = 0 vertex operator insertions, (1),-1, which is
precisely the vacuum amplitude that we want to calculate.

We first evaluate the path integral contribution of matter. There are two ways to per-
form the calculation. Let us take, for example, the simple case of a single free scalar X. The
straightforward way is to carry out the gaussian path integration, which leads to the deter-
minant of the Laplacian on the torus, subject to the periodicity conditions (1) y ~ det’ 200,
This is an infinite product of the non-vanishing eigenvalues, \,,, = %hﬂ — 7n|?, which
typically diverges and has to be regularized. The idea is then to express the determinant,
det’”’0 = exp (1¢/2(0)), in terms of the generalized zeta function of the torus, (r2(s),which
encodes the eigenvalues of the Laplacian on the Riemannian manifold [7]. For the case of the
torus, this is related to the Eisenstein series by :

(re(s) = > A, =(@2m)E(r,s) (2.132)
(m,n) £(0,0)
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where the non-holomorphic Eisenstein series is defined for R(s) > 1 as :

E(r,s) = 15 Y, L (2.133)

2s
(m,n)€Z/{0} ‘m T Tn’

By analytic continuation one may extend E(7,s) to other values including, in particular,
s = 0. Carefully separating out the zero modes and utilizing the periodicity in y = nry, one
may obtain an integral representation by Fourier expansion. After some manipulations (see,
for instance, [8]) one obtains the following expansion :

JTls—3)

E(1,8) = 215¢(2s) + 2/ 7y T(s) ¢(2s —1)
. 47;5(\8/)772 ; <%>sl/2 (627ri7'1mn +€_27ri7-1mn) KS_%(QWTgmn) . (2134)

Here, K(z) is the modified Bessel function of the second kind. By expanding this around
s = 0 we pick the coefficient of the linear term :

T =1
Cra(0) = 5 —log(2mm) +2 D | — (g™ +¢"") = —2log (72 1) (2.135)

m,n=1

where ¢ = exp(2miT) and 7(7) is the Dedekind n-function (A.1). This leads to the result

Vdet'O = /7 n(7)7(7), so that

1
NEXIE

modulo a normalization factor that is proportional to the volume of the 1d ‘box’. This
normalization can be fixed by comparison with the canonical result, by inserting a complete
number of states and taking the limit 75 — oo so that only the ‘ground state’ contributes.
Instead, we will repeat the previous calculation in the canonical formalism. The torus can
be seen as a cylinder whose endpoints are identified (after rotating them by 7). Take one of
the two local coordinates, o! = t, to be the analogue of ‘time’, assuming that it parametrizes
the non-trivial cycle of length 7. The cylinder with two points identified corresponds to a
state propagating along the ‘time’ direction. The identification of the two ends implies that
the initial and final states are the same and we are summing over the whole physical Hilbert
space, which produces a trace. The generator of this translation by 7 is the Hamiltonian
(transfer matrix) H = 2m(Ly + Lo — 5£). We also have to twist (rotate) the ends by 7
before gluing. This rotation is, in fact, a translation along the ‘spatial’ direction 0% = o
corresponding to the other non-trivial cycle of the torus. The generator of translations along
o is the momentum operator P = —2mi(Lo — Lo). Notice the non-conventional factors of 27,
which are there because we are using the non-conventional periodicity o € [0,1), instead

(Dx ~

(2.136)
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of the conventional % € [0,27). Putting it all together, the torus path integral takes the
general form :

Z(T, 7—_) - Tr [ 6727r72(L0+E07c27f) 627r2'7'1(L07[7/0) ]
_ Tr[qLo—i qﬂo—i] . (2.137)

This is the spectrum-generating partition function. This ‘Hamiltonian’ representation is very
useful because it allows one to formally consider the partition function as an expansion into
Fourier modes Z = > d,,,q™q", where the exponent counts the mass level in CFT units

m,n
and the coefficient d,,,, of which term gives the degeneracy. Notice that the final result is
periodic in 7y, as is expected of a rotation parameter.

The general state constructed out of the creation operators o, of the scalar field X*
(with d components) can be written as :

{NNEE) =TT ()™ (@)™ e*Xo) (2.138)

p=1ln=1

where the occupation numbers NV; € N completely specify the state. Its conformal weight is
o0
hiny, = % + > nN,. We assume the states are properly normalized and compute the trace

n=1
as foll