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Chapter 1

Introduction(in French)

1.1 L'informatique quantique La mécanique quantique est l'une des plus importantes découvertes du siècle dernier en physique théorique. Grâce à la mécanique quantique, nous savons qu'à une très petite échelle, les particules se comportent très diéremment de ce que nous pensions auparavant. À cette échelle, les particules possèdent plusieurs états simultanés et sont modiées lorsqu'elles sont observées. Bien que ces concepts furent développés à la n des années 1930, de nombreux mystères liés à cette théorie demeurent, en raison de sa nature contre-intuitive. Pourtant, de nombreuses expériences ont conrmé la nature quantique du monde.

Au milieu des années 80, le physicien Richard Feynman eut une idée remarquable : si nous pouvions contrôler les états quantiques de certaines particules, nous pourrions simuler des systèmes physiques quantiques. L'informatique quantique est née de son premier article [START_REF] Feynman | Simulating physics with computers[END_REF]. L'idée de base est qu'au lieu de travailler sur des bits, qui prennent la valeur 0 ou 1, nous allons travailler sur des qubits qui sont des superpositions de bits. Un qubit prend la valeur 0 et 1 avec des coecients associés.

L'informatique quantique a deux principaux avantages. En manipulant des qubits en superposition, nous pourrons être en mesure de faire des calculs en parallèle et résoudre certains problèmes beaucoup plus rapidement qu'en informatique classique. En 1994, Peter Shor a découvert que la factorisation (voir g Figure 1.1) peut être réalisée en temps polynomial sur un ordinateur quantique [START_REF] Shor | Algorithms for quantum computation: Discrete logarithms and factoring[END_REF]. Cela signie que toutes les applications cryptographiques basées sur la diculté de la factorisation (y compris l'algorithme RSA) peuvent être brisées en utilisant un ordinateur quantique.

Ce résultat a soulevé un grand intérêt pour le calcul quantique qui est devenu aujourd'hui un sujet de recherche très important et fructueux. Un autre exemple de la supériorité du calcul quantique : Grover a montré que l'on peut trouver un élément dans un ensemble de données de taille n en temps O( √ n) [START_REF] Lov | Quantum mechanics helps in searching for a needle in a haystack[END_REF] à l'aide d'un ordinateur quantique, au lieu de O(n) pour un ordinateur classique.

Cependant, ces algorithmes quantiques sont encore très diciles à mettre en ÷uvre car il est dicile de contrôler un grand nombre de qubits simultanément.

Une autre caractéristique importante des états quantiques, est qu'ils per- • Entrée: n'importe quel nombre n = p•q ou p, q sont des nombres premiers et p, q = 1 • But: trouver p et q

Par exemple, si n = 657713791279, il faut découvrir que 657713791279 = 660661 • 995539. Généralement, lorsque n est de 100 chires (lorsque p, q ont de l'ordre de 50 chires), le problème est dicile pour un ordinateur classique, mais pourrait être facilement résolu par un ordinateur quantique.

dent leur comportement quantique lorsqu'on les observe. Tant qu'un état quantique n'est pas observé, il reste dans une superposition d'états. Mais quand il est observé, il choisit de manière probabiliste l'état dans lequel il se trouve.

Cela signie que les états quantiques changent lorsqu'on les observe. En 1984, Bennett et Brassard [START_REF] Bennett | Quantum cryptography: Public key distribution and coin tossing[END_REF] ont montré comment utiliser ce phénomène quantique pour eectuer une tâche cryptographique: la distribution de clé (gure 

Primitives cryptographiques

La cryptographie est l'étude et la pratique de la dissimulation d'information.

Elle est utilisée dans de très nombreuses applications comme les cartes de paiement, le commerce électronique ou plus simplement la possibilité d'envoyer un courriel sans être espionné. La cryptographie est largement utilisée dans la vie quotidienne.

Si nous avions à analyser et à prouver la sécurité de tous les systèmes cryptographiques séparément, la probabilité de commettre des erreurs serait énorme.

Il est plus ecace d'utiliser des blocs de base qui, assemblés, permettent de construire des cryptosystèmes plus complexes. Ces blocs de base sont appelés primitives cryptographiques et vont être étudiés dans cette thèse.

Nous nous intéresserons aux primitives cryptographiques fondamentales : le pile-ou-face, la mise-en-gage de bit, et la transmission inconsciente.

Le pile-ou-face est une primitive cryptographique qui permet à deux personnes méantes et éloignées les unes des autres, Alice et Bob, de créer un bit aléatoire qui reste non biaisé, même si l'un des joueurs tente de tricher.

Cette primitive a d'abord été proposée par Blum [START_REF] Blum | Coin ipping by telephone[END_REF] et a depuis trouvé de nombreuses applications dans le calcul sécurisé à deux joueurs.

La primitive de mise-en-gage de bit se compose de deux phases: dans la phase de mise-en-gage, Alice s'engage sur un bit b; dans la phase de révélation, Alice révèle ce bit b à Bob. Il faut s' assurer de deux choses: que Bob n'ait pas d'informations sur b après la phase de mise-en-gage et qu'Alice ne puisse pas changer d'avis lorsqu'elle révèle b.

La transmission inconsciente est la primitive la plus forte car c'est une primitive universelle pour tout calcul sécurisé à deux joueurs [START_REF] Michael Rabin | How to exchange secrets by oblivious transfer[END_REF][START_REF] Even | A randomized protocol for signing contracts[END_REF][START_REF] Crépeau | Equivalence between two avours of oblivious transfer[END_REF] ce qui signie que si l'on peut eectuer la transmission inconsciente de manière parfaite, alors on peut réaliser tout type de calcul de deux joueurs de manière sécurisé. Nous étudions plus précisément la transmission inconsciente 1-2 aléatoire. À la n d'un tel protocole, Alice se retrouve avec deux bits aléatoires (x 0 , x 1 ) et se retrouve avec x b et b pour un choix aléatoire de b. L'objectif du protocole est de veiller à ce que Bob n'ait aucune information sur x b et que Alice n'ait aucune information sur b.

En informatique classique, toutes ces primitives sont utilisées pour construire des cryptosystèmes, et l'informatique quantique ne semble pas nécessaire.

Cependant, toutes ces primitives classiques reposent sur des hypothèses de calcul. Par exemple, il est possible de réaliser (presque) parfaitement un pile ou face en prenant comme hypothèse que la factorisation est un problème dicile.

Toutes les primitives en cryptographie classique reposent sur des hypothèses de calcul. Nous disons que ces primitives sont sécurisées du point de vue calculatoire.

Une notion plus forte de sécurité est la sécurité inconditionnelle. Dans ce cadre, les primitives doivent être sécurisées, même contre un tricheur tout puissant -un joueur qui peut facilement factoriser ou exécuter tout type d'opération.

Dans le cadre classique, nous savons qu'il est impossible d'atteindre une sécurité inconditionnelle pour la plupart de ces primitives cryptographiques. Pire, lorsque l'on considère des tricheurs tout puissants, nous avons Dans tout pile-ou-face classique, mise-en-gage de bit ou protocole de transmission inconsciente, au moins un joueur peut tricher avec une probabilité de 1 Dans n'importe quel protocole de mise-en-gage de bit ou de pile-ou-face, au moins l'un des joueurs peut tricher avec une probabilité de 1 √ 2 .

On en déduit que les lois de la physique quantique permettent théoriquement de construire un protocole de pile-ou-face avec une probabilité de tricher égale à 3 4 , mais aucun protocole de pile-ou-face n'est physiquement réalisable avec une probabilité de tricher inférieure à 1 √ 2

, si on suppose que les lois de la physique quantique sont vraies.

Une autre notion de pile-ou-face a été étudiée: le pile-ou-face faible. Dans . De la borne inférieure de Kitaev, nous savons que nos protocoles sont arbitrairement proche de l'optimal.

Plus précisément, nous montrons que Theorem 1 Pour tout ε > 0, il existe un pile-ou-face fort quantique avec une probabilité de tricher de 1 √ 2 + ε. Theorem 2 Dans tout protocole quantique de mise-en-gage de bit, au moins un des joueurs peut tricher avec une probabilité de tricher de 0, 739.

Ensuite, nous fournissons une limite supérieure correspondante. Nous décrivons un protocole de mise-en-gage de bit qui permet d'obtenir une probabilité de tricher arbitrairement proche de 0, 739.

Theorem 3 Pour tout ε > 0, il existe un protocole quantique de mise-en-gage de bit avec une probabilité de tricher inférieure à 0, 739 + ε.

Ce protocole utilise également le pile-ou-face faible de Mochon comme un sous-protocole. Toutefois, ce protocole est quantique même au-delà du sousprotocole. Ceci est en eet nécessaire. Nous montrons que tout protocole classique de mise-en-gage de bit avec la possibilité d'utiliser un pile-ou-face faible (ou même fort) parfait ne peut avoir une probabilité de tricher inférieure à 3 4 .

Theorem 4 Tout protocole de mise-en-gage de bit classique avec accès à un pile-ou-face faible (ou fort) ne peut pas avoir une probabilité de tricher inférieure à 3 4 .

Contrairement au cas du pile-ou-face fort qui utilise un pile-ou-face faible et un protocole classique, la mise-en-gage de bit optimale utilise des eets quantiques au-delà du pile-ou-face faible.

Dans le chapitre 5, nous étendons ces résultats à la transmission inconsciente. Nous présentons les premières bornes de transmission inconsciente quantique. Contrairement au pile-ou-face quantique et à la mise-en-gage de bit, nous n'avons pas été en mesure de trouver une borne optimale pour la transmission inconsciente quantique. Nous montrons d'abord une faible limite supérieure pour cette primitive.

Theorem 5 Dans tout protocole quantique de transmission inconsciente, au moins l'un de joueurs peut tricher avec probabilité supérieure à 0, 58

Pour démontrer ce théorème, nous réduisons tout protocole de transmission inconsciente à un protocole de mise-en-gage de bit. Nous utilisons ensuite les bornes inférieures de la mise-en-gage quantique pour conclure. Le protocole de mise-en-gage de bit résultant n'a pas les probabilités de tricher que le protocole de transmission inconsciente d'origine, c'est pourquoi la borne inférieure de la transmission inconsciente quantique est moins bonne que la borne inférieure de la mise-en-gage de bit.

On construit ensuite un protocole avec une probabilité de tricher de 3 4 .

Theorem 6 Il existe un protocole de transmission inconsciente quantique qui permet d'obtenir des probabilités de tricher de 3 4 Les tableaux suivants présentent les anciennes et les nouvelles bornes obtenues dans cette thèse pour les primitives cryptographiques quantiques, pour tout ε > 0.

Anciennes bornes pour les primitives cryptographiques quantiques. Theorem 7 Il existe un protocole indépendant-du-dispositif pour la mise-engage de bit avec une probabilité de tricher de 0, 854 et un protocole de pile-ou-face indépendant-du-dispositif avec une probabilité de tricher de 0, 836.

Il s'agit de la première construction de protocoles indépendant-du-dispositif pour les primitives cryptographiques quantiques à deux joueurs. • Alice envoie un état σ à Bob.

• Bob mesure cet état dans une base B (qui peut dépendre d'un aléa privé de Bob). Si la mesure réussit, ils continuent le protocole. Sinon, ils recommencent.

Dans ce protocole, l'état σ doit être choisi très soigneusement pour qu'un Bob tricheur ne puisse pas utiliser le fait qu'une mesure ratée réinitialise le protocole.

Ceci limite fortement les choix possibles pour σ. Pour résoudre partiellement ce problème, on utilise la méthode suivante :

• Alice choisit r ∈ R {0, 1} et envoie E r (σ) où E r est une opération quantique de chirement qui cache de l'information sur σ.

• Bob mesure dans une base B. Si la mesure réussit, on continue le protocole, sinon on recommence.

• Alice révèle r puis ils continuent comme dans le protocole précédent. • Dans le chapitre 7, nous construisons un pile-ou-face quantique sécurisé contre les pertes avec une probabilité de tricher de 0, 859. Cette construction donne également un protocole quantique de mise-en-gage de bit tolérant aux pertes avec la même probabilité de tricher [START_REF] Chailloux | Improved loss-tolerant quantum coin ipping[END_REF].

• Enn, au chapitre 8, nous donnons des hypothèses calculatoires reliées aux protocoles sans-connaissance qui permettent de construire des protocoles de mise-en-gage de bit avec une sécurité calculatoire. Il s'agit d'un travail conjoint avec Iordanis Kerenidis et Bill Rosgen [START_REF] Chailloux | Quantum Commitments from Complexity Assumptions[END_REF].

Cette thèse est basée sur les publications suivantes : In the mid-80's, the physicist Richard Feynman had a remarkable idea: If we can control some quantum particles, we are able to simulate physical systems in a more ecient way. From his article [START_REF] Feynman | Simulating physics with computers[END_REF], quantum computing was born.

[CK09]
The basic idea is that instead of working on bits that take the value 0 or 1, we work on qubits that are superpositions of bits. A qubit takes the value 0 and 1 with some related coecients.

There are two main advantages of quantum computing. By manipulating qubits in superposition, we could be able to make some computations in parallel and solve some problems much more quickly than in the classical case. In 1994, Peter Shor discovered that factoring (see Figure 2.1) can be done in polynomial time by a quantum computer [START_REF] Shor | Algorithms for quantum computation: Discrete logarithms and factoring[END_REF]. This means that every cryptographic application based on the hardness of factoring (including RSA) can be broken using a quantum computer. This result raised much interest in quantum computing which has now become a very wide and fruitful research topic. Another witness of quantum superiority : Grover showed that one can nd an item in database of size n in time O( √ n) [START_REF] Lov | Quantum mechanics helps in searching for a needle in a haystack[END_REF] using a quantum computer instead of O(n) for a classical computer. However, such quantum algorithms are still very dicult to implement since it is hard to control many qubits simultaneously.

Another important feature of quantum states is that they lose their quantum behavior when observed. As long as a quantum state is not observed, it is in a superposition of states. However, when it is observed, it chooses probabilistically in which state it is. This means in particular that a quantum state changes when observed. In 1984, Bennett and Brassard [START_REF] Bennett | Quantum cryptography: Public key distribution and coin tossing[END_REF] showed how • Input: any number n = p • q where p, q are prime numbers and p, q = 1 • Goal: nd p and q For example, if n = 657713791279, the goal is to nd out that 657713791279 = 660661 • 995539. Typically, when n has 100 digits (when p, q can have each around 50 digits), the problem is hard for a classical computer but could be easily solved by a quantum computer.

to use this fact to perform quantumly a cryptographic task: Key Distribution (Figure 2.1), which is impossible to perform unconditionally using only classical computers. Since then, Quantum Cryptography has also been developed in many directions. Note also that it is already possible to implement such protocols in practice. The cost and eciency of quantum cryptography is still worse than its classical counterpart but it becomes more and more a viable solution and several companies sell such quantum devices. 

Cryptographic primitives

Cryptography is the practice and study of hiding information. Applications of cryptography include ATM cards, electronic commerce or more simply the possibility of sending an email without being spied on. Cryptography is widely used in everyday life.

If we had to analyze and prove security for each cryptosystem separately, the probability of making errors would be huge so we use some basic building blocks and assemble them to build more complex cryptosystems. It is these building blocks, that we call cryptographic primitives, that will be studied in this thesis.

We study here some fundamental cryptographic primitives: coin ipping,bit commitment and oblivious transfer.

Coin ipping is a cryptographic primitive that enables two distrustful and far apart parties, Alice and Bob, to create a random bit that remains unbiased even if one of the players tries to force a specic outcome. It was rst proposed by Blum [START_REF] Blum | Coin ipping by telephone[END_REF] and has since found many applications in two-party secure computation.

A bit commitment protocol consists of two phases: in the commit phase, Alice commits to a bit b; in the reveal phase, Alice reveals the bit to Bob. We want to ensure two things: that Bob has no information about b after the commit phase and that Alice cannot change her mind when revealing b.

Oblivious transfer is the strongest primitive since it is a universal primitive for any two-party secure computation [Rab81, [START_REF] Even | A randomized protocol for signing contracts[END_REF][START_REF] Crépeau | Equivalence between two avours of oblivious transfer[END_REF] which means that if one can perform perfect Oblivious Transfer, one can perform almost any kind of two party secure computation. We study more precisely 1-out-of-2 random oblivious transfer protocols. In such protocols, Alice outputs two uniformly random bits (x 0 , x 1 ) and Bob outputs x b for a uniformly random choice of b.

The goal of the protocol is to ensure that Bob has no information about x b and that Alice has no information about b. In the classical setting, all these primitives are widely used to construct cryptosystems, so quantum computing does not seem to be necessary. However, all these classical protocols rely on some computational assumption. For example, it is possible to perform (almost) perfect coin ipping under the assumption that factoring is hard. All current classical cryptographic primitives rely on such hardness assumptions. We say that such primitives are computationally secure.

A stronger notion of security is information theoretic security. In this setting, the primitives must be secure even against an all powerful cheating playertypically a player who can easily factor and easily perform any kind of operation.

In the classical setting, we know that it is impossible to achieve information theoretic security for most of these cryptographic primitives. Even worst, when considering all powerful cheating players, we have the following statement

In any classical coin ipping, bit commitment or oblivious transfer protocol, there is a party which can cheat with probability 1 in the information theoretic setting (i.e. the cheating player is computationally unbounded)

This means that such primitives are impossible to perform in the classical model of computation.

Physical limitations of quantum cryptographic primitives

Quantum information has given us the opportunity to revisit information theoretic security in cryptography. There is a quantum coin ipping protocol and a quantum bit commitment scheme, where each player can cheat with probability at most 3/4.

On the other hand, Kitaev showed that it is not possible to build quantum coin ipping protocols which have low cheating probability in the information theoretic setting [START_REF] Kitaev | Quantum coin-ipping[END_REF]:

In any quantum coin ipping or quantum bit commitment scheme, there is a player who can cheat with probability at least 1 √ 2 .

The way to interpret this is that the laws of quantum physics allow us theoretically to construct coin ipping protocols with cheating probability 3/4; but no physically realizable coin ipping protocol with cheating probability less

than 1 √ 2 exists.
There is also another notion of coin ipping which has been studied: Quantum Weak Coin Flipping. In this case, we want make sure that Alice cannot force the heads outcome and that Bob cannot force the tails outcome. However, We greatly improve these physical bounds for quantum cryptographic primitives. In Chapter 4, we study quantum coin ipping. We show here how to construct a quantum coin ipping protocol with cheating probability arbitrarily close to 1 √ 2

unlike
. From Kitaev's lower bound, we know that our protocols are arbitrarily close to optimal. More precisely, we show the following Theorem 1 For any ε > 0, there exists a strong coin ipping protocol with cheating probability 1 √ 2 + ε.

To show this, we actually use Mochon's construction of optimal quantum weak coin ipping. We build a classical protocol where we use weak coin ipping as a subroutine. This means that the ability to perform strong coin ipping with cheating probability 1 √ 2 comes from the ability to perform optimal weak coin ipping. Equivalently, if we could build a perfect classical weak coin then our construction would give a classical strong coin ipping with cheating probability 1 √ 2 .

We then investigate the physical bounds for quantum bit commitment. Before our work, the bounds for quantum coin ipping and quantum bit commitment were the same. It was not clear whether these two primitives had the same optimal bound or not. In Chapter 4, we show that this is not the case. We rst show an improved lower bound for quantum bit commitment.

Theorem 2 In any quantum bit commitment protocol, at least one of the players can cheat with probability at least 0.739.

Then, we provide a matching upper bound. We describe a quantum bit commitment protocol that achieves a cheating probability arbitrarily close to 0.739.

Our protocol uses a weak coin ipping protocol with cheating probability 1/2+

as a subroutine and achieves a cheating probability for the bit commitment of 0.739 + O( ).

Theorem 3 For any ε > 0, there exists a quantum bit commitment protocol that achieves cheating probabilities less than 0.739 + ε.

This protocol also uses Mochon's quantum weak coin ipping. However this protocol is in fact quantum even beyond the weak coin ip subroutine. This is in fact necessary. We show that any classical bit commitment protocol with access to a perfect weak coin (or even strong coin) cannot achieve cheating probability less than 3/4.

Theorem 4 Any classical bit commitment protocol with access to perfect weak (or strong) coin ipping cannot achieve cheating probabilities less than 3/4.

Unlike the case of quantum strong coin ipping that is derived classically when one has access to a weak coin ipping protocol, the optimal quantum bit commitment takes advantage of quantum eects beyond the weak coin ipping subroutine.

In Chapter 5, we extend these results to Oblivious Transfer. We present the rst bounds for quantum oblivious transfer. Unlike quantum coin ipping and bit commitment, we were not able to nd an optimal value for quantum oblivious transfer. We rst show an upper lower bound for quantum oblivious transfer Theorem 5 In any quantum oblivious transfer protocol, at least one of the players can cheat with probability 0.58

To prove this Theorem, we reduce any Oblivious transfer protocol to a bit commitment protocol. We then use the lower bounds on quantum bit commitment to conclude. Notice however, that the resulting bit commitment protocol does not have the same cheating probabilities as the original oblivious transfer protocol, this is why the lower bound for quantum oblivious transfer is worse than the lower bound for quantum bit commitment.

We then construct a protocol with cheating probability 3/4.

Theorem 6 There exists a quantum oblivious transfer protocol that achieves cheating probabilities of 3/4

The following tables present old bounds and new bounds obtained in this thesis for quantum cryptographic primitives, for any ε > 0. In the rst part, we studied the possibilities and the limits of information theoretic quantum cryptography. We now investigate the possibility of practically implementing such primitives. This has extensively been done for Quantum Key Distribution. It has also been done for two party quantum cryptographic primitives but not in the information theoretic setting. Our goal is to see how possible it is to implement such primitives in the information theoretic setting.

Of course, our results will be weaker than the ones for Quantum Key Distribution since we are limited by the lower bounds described in the previous part, hence our protocols will always have constant cheating probabilities.

The device independent model

A quantum protocol is said to be device-independent if the reliability of its implementation can be guaranteed without making any assumptions regarding the internal workings of the underlying apparatus. The key idea is that the certication of a sucient amount of non-locality ensures that the underlying systems are quantum and entangled. By dispensing with the (mathematically convenient but physically untestable) notion of a Hilbert space of a xed dimension, the device independent approach does away with many cheating mechanisms and modes of failure, such as, for example, those exploited in We present a device independent bit commitment protocol, wherein after the commit phase Alice cannot control the value of the bit she wishes to reveal with probability greater than cos 2 π 8 ≈ 0.854 and Bob cannot learn its value prior to the reveal phase with probability greater than 3 4 . We then use this protocol to construct a device independent coin ipping protocol with cheating probability smaller than 0.336.

Theorem 7 There exists a device-independent quantum bit commitment protocol with cheating probability 0.854 and a quantum coin ipping protocol with cheating probability 0.836. This is the rst construction of device independent protocols for two party quantum cryptographic primitives.

Quantum loss-tolerant coin ipping

We are now interested in the loss-tolerant model where honest players do not have any quantum memory and the measurement devices have some losses. In • Alice sends a state σ to Bob.

• Bob measures this state in some basis B (possibly dependent on some of his private coins). If Bob successfully measures then they continue the protocol. Otherwise, they start again In this protocol, the state σ is chosen very carefully such that a cheating Bob cannot take advantage of the fact, that he can reset the protocol. This strongly limits the good choices for σ. To partially overcome this problem, we use the following high-level scheme

• Alice picks r ∈ R {0, 1} and sends E r (σ) where E r is some quantum operation that hides some information about σ

• Bob measures in some basis B. If Bob successfully measures then they continue the protocol. Otherwise, they start again

• Alice reveals r and then they continue the protocol While doing this, one must be careful that an honest Bob will still be able to exploit the measurement of the encrypted state and that Alice cannot use this to cheat.

Applying this scheme on a two-fold parallel repetition of Berlin etal's protocol, we show the following Theorem 8 There is a loss-tolerant quantum coin ipping protocol where any cheating player can cheat with probability at most 0.859.

Notice that without this encryption step extra step, the resulting scheme would not be loss-tolerant but the bias would remain the same.

This technique to deal with losses seems very generic. It would be interesting

to see whether such techniques can be used in other practical models. Moreover, nding a noise-tolerant quantum coin ipping with information theoretic security and small cheating probability remains an interesting open question.

Relationship between quantum zero-knowledge proofs and quantum bit commitment

In the last part of this thesis, we go a little beyond the scope of information theoretic quantum cryptography and study quantum computational bit commitment schemes. We study complexity assumptions that imply such commitment schemes. We will show that the existence of quantum computationally secure bit commitments is closely related to quantum zero-knowledge classes and quantum interactive proofs.

To illustrate what zero-knowledge protocols are, let us consider an example.

Consider a problem P believed to be hard to solve. Suppose that one person (the Prover) can prove to another person (the Verier) that the answer to the problem is Y ES without giving any other information. In particular, the Verier will not be able to convince someone else that the answer to this problem is Y ES. In order to create this kind of proofs, the Prover and the Verier must interact with each other. The condition "Without giving any other information" has been formalized in a simple and elegant way by [START_REF] Goldwasser | The knowledge complexity of interactive proof systems[END_REF] and this security condition has been dened in the computational setting as well as the information-theoretical setting. Such protocols are very useful in cryptography for example in secure identication. The class of problems that can be solved with a zero-knowledge protocol is called PZK, SZK if one allows to leak a (very) small amount of information, or ZK if we assume that the verier has polynomial computational power.

These zero-knowledge classes have been extended to the quantum case [Wat02a, [START_REF] Kobayashi | General Properties of Quantum Zero-Knowledge Proofs[END_REF][START_REF] Watrous | Zero-knowledge against quantum attacks[END_REF] where we allow the players to interact quantumly and to perform quantum operations. The resulting classes are QPZK, QSZK, QZK.

There is a tight relationship between bit commitment schemes and zeroknowledge proofs. First of all, we can construct a zero-knowledge for any problem in PSPACE if we have a bit commitment scheme. On the other hand, we can construct bit commitment schemes based on the hardness of SZK problems [START_REF] Ostrovsky | One-way functions are essential for non-trivial zero-knowledge[END_REF].

We rst extend this result to the quantum case and show the following:

Theorem 9 If QSZK ⊆ QMA, then there exists a quantum commitment scheme which is information theoretically secure for the Sender and computationally secure for the receiver.

QMA is the quantum equivalent of NP. Notice that this condition is believed to be true. Recently, an oracle separating these two classes was found by Aaronson [START_REF] Aaronson | Impossibility of succinct quantum proofs for collision-freeness[END_REF]. Notice also that the commitments we construct are non-uniform, which means that the players receive some classical advice in order to perform this commitment.

We are then interested in commitments where the players have as advice a quantum state (potentially hard to construct). We show that such commitment exists under a very weak assumption, namely

Theorem 10 If QIP ⊆ QMA, then there exists quantum commitment scheme with quantum advice which is information theoretically secure for the Sender and computationally secure for the receiver.

This is highly plausible since QMA ⊆ PP ⊆ PSPACE = QIP and these containments are believed to be strict. Note that in both our Theorems, we can exchange the player for which we have computational security.

Organization

• In Chapter 3, we present the basic notions of quantum mechanics.

• In Chapter 4, we study quantum coin ipping and show how to construct an optimal quantum strong coin ipping, i .e. a protocol with cheating probability at most 1 √ 2 + ε for any ε > 0, improving the previously best known protocol which achieved a cheating probability of 3/4. This is joint work with Iordanis Kerenidis [START_REF] Chailloux | Optimal quantum strong coin ipping[END_REF].

• In Chapter 5, we study quantum bit commitment. We rst show a lower bound for quantum bit commitment of 0.739. We then show how to construct an optimal quantum strong coin ipping, i .e. a protocol with cheating probability at most 0.739 + ε for any ε > 0. We also show a lower bound on classical bit commitment protocols where the ability to perform coin ipping is given for free. This is joint work with Iordanis Kerenidis [START_REF] Chailloux | Optimal bounds for quantum bit commitment[END_REF].

• In Chapter 6, we study quantum oblivious transfer. This is the rst study that gives some constant bounds for quantum oblivious transfer. We rst show a lower bound for quantum oblivious transfer of 0.58. We then show how to construct a quantum oblivious transfer protocol with cheating probability 3/4. This is joint work with Iordanis Kerenidis and Jamie Sikora [START_REF] Chailloux | Lower bounds for Quantum Oblivious Transfer[END_REF].

• In Chapter 7, we study quantum coin ipping and quantum bit commitment in the device independent model. We show how to construct a device independent bit commitment scheme with cheating probability 0.854 for Alice and 3/4 for Bob. We then extend this construction to build a device independent quantum coin ipping with cheating probabilities 0.836. • In Chapter 8, we build a quantum coin ipping protocol secure against losses with cheating probabilities 0.859. This construction also gives a quantum bit commitment scheme secure against losses with the same cheating probabilities [START_REF] Chailloux | Improved loss-tolerant quantum coin ipping[END_REF].

• Finally, in Chapter 9, we show under which assumptions related to quantum zero-knowledge protocols, it is possible to create quantum bit commitment schemes which are computationally secure. This is joint work with Iordanis Kerenidis and Bill Rosgen [START_REF] Chailloux | Quantum Commitments from Complexity Assumptions[END_REF].

This thesis is based on the following publications: A study of classical and quantum zero-knowledge protocols using alternative models Chapter 3

[CK09]

Quantum Preliminaries

In this Chapter, we present the standard model of quantum computing.

Pure states

A qubit is the quantum equivalent of a bit. Unlike classical bits, quantum bits can be in a superposition of states. We call such quantum states pure states. 

|q = 2 N -1 i=0 a i |i = a 0 |00...0 + a 1 |00..01 + • • • + a 2 N -1 |11...1 =    a 0 . . . a 2 N -1   
Where the a i 's are in C and i |a i | 2 = 1. We note Q N the space of N-qubit states.

Dirac's notation : If we note |q = a|0 + b|1 , we write the equality |q = a 1 0 + b 0 1 . The |• notation is for column vectors. We also note q| the line vector t |q . This notation is very useful. In particular, if |q = i a i |i and |q = i a i |i , we have q| • |q = i a i a i = q|q which is the inner-product of q and q . The outer product |q q | will also be useful.

Operations on quantum bits

There are two operations that can be performed a quantum states: Unitary operations and Measurements. For a Hilbert space H, we dene as L(H) the set of linear operators on H.

Unitary operations Quantum unitary operations done on quantum pure states are elements of L(H) which preserve the set of pure states. They are described by matrices of size 2 n × 2 n (for an operation acting on an

N -qubit state). Such a unitary M is invertible. Let M † such that M M † = M † M = Id.
When applying an operation M to a pure state |q , the result is M • |q which is a standard multiplication of a matrix and a vector.

Note that when a unitary acts on an N -qubit state, it acts on the superposition of up to 2 N states simultaneously. Quantum operations can be simulated by classical computers but it takes exponential time. This is one of the main reasons why quantum computers are more powerful than classical computers.

Measurements The qubits we have described are not disturbed. The only way to extract information from a qubit is to make a measurement. For example, if we measure a qubit q = a|0 + b|1 , we will get 0 with probability |a| 2 and 1 with probability |b| 2 . Note that after the measurement, if for example we measure |0 , the qubit now behaves like the qubit |0 and "forgets" his previous state. The measurement works in a similar way when looking at N-qubit states.

Similarly, we can measure in any basis

B = (b 1 , . . . , b 2 N ). When measuring |q in basis B, the probability of obtaining b i is | b i |q | 2 .
Note that you can also do partial measurements. Let |q = a|00 + b|01 + c|10 + d|11 . Suppose you measure the rst qubit of |q . You'll measure "0" with probability |a 2 |+|b 2 |. If you measure 0 then the second qubit will be in the following state : a

√ |a| 2 +|b| 2 |0 + b √ |a| 2 +|b| 2 |1
. We ignored the parts that started with 1 and renormalized to have total norm one. Similar reasoning can be used when a "1" is measured.

For a quantum state, the most general type of measurement is a Positive Operator Valued Measure (or POVM). A POVM consists of n elements {E 1 , . . . , E n } which are positive matrices such that i E i = I. When performing such a P OV M on a state |ψ , you get outcome i with probability ψ|E i |ψ .

Mixed states

Very often, it will be useful to consider probabilistic quantum states. We will call such states mixed states. The set of mixed states on a Hilbert space H is D(H)

A mixed state is of the form ρ =      wp. p 1 → |e 1 . . . . . . wp. p k → |e k with i p i = 1.
which means that with probability p i , the state behaves like |e i where the |e i 's are pure states. Each mixed state is represented by a density matrix of size

2 N × 2 N of the from ρ = k i=1 p i |e i e i |
Note from Dirac's notation that |e i e i | is a matrix of size 2 N ×2 N when the |e i 's are N qubit-states and the sum is a usual sum of matrices. Density matrices are symmetric and have trace 1. A mixed state ρ ∈ D(H) is an element in L(H) satisfying tr(ρ) = 1 and ρ positive.

When applying an operation M to a mixed state ρ, the result is

ρ = M ρM † . If we measure a mixed state ρ in a basis B = (b 1 , . . . , b n ), the probability of getting b i is b i |ρ|b i . When applying a P OV M {E 1 , . . . , E n } to ρ, the outcome is i with probability p(i) = tr(E i ρ).
This means that any mixed state is characterized exactly by its density matrix. In particular, if 2 mixed states have the same density matrix then they are indistinguishable in an information theoretical sense. For example, let's

dene |+ = 1 √ 2 (|0 + |1 ), |-= 1 √ 2 (|0 -|1
) and consider the 2 following mixed states

ρ 1 = wp. 1/2 → |0 wp. 1/2 → |1 and ρ 2 = wp. 1/2 → |+ wp. 1/2 → |-
If we calculate these density matrices, we have :

ρ 1 = 1 2 1 0 0 1 + 1 2 1 0 0 1 = 1/2 0 0 1/2 ρ 2 = 1 2 1/2 1/2 1/2 1/2 + 1 2 1/2 -1/2 -1/2 1/2 = 1/2 0 0 1/2
It means that even though these 2 states are not dened the same way, we say that they are equal. When the density matrix of a state is of the form 1 2 n times the identity, we say that this state is the totally mixed state. This state is noted I or I n if we want to specify the number of qubits of this state. In our example, ρ 1 = ρ 2 = I 1 .

On N -qubit states

Tensor products Suppose we have 

2 qubits q 1 = a 1 |0 + b 1 |1 and q 2 = a 2 |0 + b 2 |1 .
q = a 1 a 2 |00 + a 1 b 2 |01 + b 1 a 2 |10 + b 1 b 2 |11 .
This is called a tensor product. Tracing out qubits As we have seen, we obtain mixed states by ignoring some parts of a given state. We say that we trace out these ignored qubits.

For example, let |q a pure state that has qubits in a space A × B. If we want to consider the mixed state q A consisting only of the qubits in A, we write q A = Tr B (|q ) (the B part is traced out). Similarly, q B = Tr A (|q ).

Norms

In order to dene the statistical distance between quantum states, we use a generalization of the 1 norm to linear operators. This is the trace norm which gives the sum of the singular values of an operator. More formally, the trace norm may be expressed as

X tr = √ X † X = max U |tr XU | , (3.1)
where the maximization is taken over all unitaries of the appropriate size.

The diamond norm is a generalization of the trace norm to quantum channels that preserves the distinguishability characterization. Given one of two quantum channels Q 0 , Q 1 each with equal probability, then the optimal procedure to determine the identity of the channel with only one use succeeds with probability

1/2 + Q 0 -Q 1 /4.
The denition of the diamond norm is more complicated than the trace norm, however, as the optimal distinguishing procedure may make use of an auxiliary space, sending only a portion of some entangled state through the channel. It is known, however, that the dimension of this auxiliary space does not need to exceed the dimension of the input space [START_REF] Yu | Quantum computations: algorithms and error correction[END_REF][START_REF] Smith | Completely bounded maps between C*-algebras[END_REF].

The diamond norm, for a linear map from Q : L(H) → L(K) with an auxiliary space F with dim F = dim H can be dened as

Q = max X∈L(H⊗F ) Q(X) tr X tr .
Closely related to the diamond norm is a known studied in operator theory known as the completely bounded norm. An upper bound on this norm can be found in [START_REF] Paulsen | Completely Bounded Maps and Operator Algebras[END_REF]. Since the diamond norm is dual to this norm, this bound may also be applied also to the diamond norm. See [START_REF] Johnston | Computing stabilized norms for quantum operations via the theory of completely bounded maps[END_REF] for a discussion of this bound and the relationship between the diamond and completely bounded norms.

Lemma 1 Let Φ : L(H) → L(K) be a linear map, then

Φ ≤ (dim H) Φ tr = (dim H) sup X∈L(H) Φ(X) tr X tr .
One inconvenient property of the diamond norm is that for some maps the maximum in the denition may not be achieved on a quantum state. Fortunately, in the case of the dierence of two completely positive maps it is known that this maximum is achieved by a pure state.

Lemma 2 ([RW05]) Let Φ 0 , Φ 1 : L(H) → L(K) be completely positive linear maps and let Φ = Φ 0 -Φ 1 . Then, there exists a Hilbert space F and a unit vector

|φ * ∈ F ⊗ H such that Φ = (I F ⊗ Φ)(|φ * φ * |) tr .

How close are two quantum states ?

We start by stating a few properties of the trace distance ∆ and delity F between two quantum states. These two notions characterize how close are two quantum states.

Trace distance between two quantum states Denition 1 For any two quantum states ρ, σ, the trace distance ∆ between them is given by

∆(ρ, σ) = ∆(σ, ρ) = 1 2 ρ -σ tr
Proposition 1 For any two states ρ, σ, and a POVM E = {E 1 , . . . , E m } with p i = tr(ρE i ) and q i = tr(σE i ), we have

∆(ρ, σ) ≥ 1 2 i |p i -q i |.
There is a POVM (even a projective measurement) for which this inequality is an equality.

Proposition 2 [START_REF] Helstrom | Detection theory and quantum mechanics[END_REF] Suppose Alice has a bit c ∈ R {0, 1} unknown to Bob.

Alice sends a quantum state ρ c to Bob. We have

Pr[Bob guesses c] ≤ 1 2 + ∆(ρ 0 , ρ 1 ) 2
Proposition 3 For any two states ρ, σ such that ρ = i p i |i i| and σ = i q i |i i|, we have

∆(ρ, σ) = i 1 2 |p i -q i | = i:pi≥qi (p i -q i ) = 1 - i min{p i , q i } = i max{p i , q i } -1 Proof: Since i p i = i q i = 1, we have i:pi≥qi (p i -q i ) = ipi<qi (q i -p i ) and i max{p i , q i } + min{p i , q i } = 2 hence ∆(ρ, σ) = i 1 2 |p i -q i | = 1 2   i:pi≥qi (p i -q i ) + i:pi<qi (q i -p i )   = i:pi≥qi (p i -q i ) ∆(ρ, σ) = i 1 2 |p i -q i | = 1 2 i (max{p i , q i } -min{p i , q i }) = 1 - i min{p i , q i } = i max{p i , q i } -1
Proposition 4 [START_REF] Nielsen | Quantum computation and quantum information[END_REF] For any two states ρ, σ such that

ρ = i p i |φ i φ i | and σ = i q i |φ i φ i |, we have ∆(ρ, σ) ≤ 1 2 i |p i -q i |

Fidelity of quantum states

Denition 2 For any two states ρ, σ, the delity F between them is given by

F (ρ, σ) = F (σ, ρ) = tr( ρ 1 2 σρ 1 2 )
Proposition 5 For any two states ρ, σ, and a POVM E = {E 1 , . . . , E m } with p i = tr(ρE i ) and q i = tr(σE i ), we have F (ρ, σ) ≤ i √ p i q i . There is a POVM for which this inequality is an equality.

Proposition 6 (Uhlmann's theorem) For any two quantum states ρ, σ, there exist a purication |φ of ρ and a purication |ψ of σ such that

| φ|ψ | = F (ρ, σ)
Proposition 7 For any two quantum states ρ, σ and a completely positive trace

preserving operation Q, we have F (ρ, σ) ≤ F (Q(ρ), Q(σ)). Proposition 8 ([SR01, NS03]) For any two quantum states ρ, σ max ξ F 2 (ρ, ξ) 2 + F 2 (ξ, σ) = 1 + F(ρ, σ).
Proposition 9 ([FG99]) For any quantum states ρ, σ, we have

1 -F (ρ, σ) ≤ ∆(ρ, σ) ≤ 1 -F 2 (ρ, σ)
Chapter 4

Optimal Quantum coin sipping

Coin ipping is a cryptographic primitive that enables two distrustful and far apart parties, Alice and Bob, to create a random bit that remains unbiased even if one of the players tries to force a specic outcome. It was rst proposed by Blum [START_REF] Blum | Coin ipping by telephone[END_REF] and has since found many applications in two-party secure computation.

The goal here is to present a quantum strong coin ipping protocol where any player can bias the coin with probability at most 1 √ 2 + ε for any ε > 0. This protocol is based on a quantum weak coin ipping protocol by Mochon where any cheating player can cheat with probability at most 1 2 + ε for any ε > 0.

There are two variants of coin ipping, strong coin ipping and weak coin ipping. 

Strong coin ipping

* A = max{Pr [c = 0] , Pr [c = 1]} ≤ 1/2 + ε.
• If Bob cheats and Alice is honest then

P * B = max{Pr [c = 0] , Pr [c = 1]} ≤ 1/2 + ε
The probabilities P * A and P * B are called the cheating probabilities of Alice and Bob respectively. The cheating probability of the protocol is dened as max{P * A , P * B }.

We say that the coin ipping is perfect if ε = 0.

Example

We present here a general construction of Quantum Strong Coin Flipping protocols that can achieve a cheating probability of 3/4. • The outcome of the protocol is c = a ⊕ b.

Let's analyze this protocol in more detail. If both players are honest then the protocol never Aborts.

Alice cheats and Bob is honest Suppose that Alice wants c = 0 as an outcome of the protocol (the same proof will follow for c = 1) As a rst message, Alice can send any state σ to Bob. Bob then picks a random b. If b = 0, Alice wants to reveal a = 0. By Uhlmann's Theorem, she can apply an operation on A 1 such that the joint state

|ψ in A 1 ⊗ A 2 veries | ψ|ψ 0 | 2 = F 2 (σ, σ 0 ).
Similarly, if b = 1, Alice wants to reveal a = 1 and she can apply an operation on A 1 such that the joint state

|ψ in A 1 ⊗ A 2 veries | ψ|ψ 1 | 2 = F 2 (σ, σ 1 ).
Since b is random, we have

P * A = 1 2 F 2 (σ, σ 0 ) + F 2 (σ, σ 1 )
We want to remove the dependency on σ to prove an upper bound on Alice's cheating probability. We can use Proposition 8 and show that there is a cheating strategy such that

P * A = 1 2 + F (σ 0 , σ 1 ) 2
Bob cheats and Alice is honest Similarly, we can suppose that Bob wants c = 0. This means that he wants to send b = a. This is equivalent to saying that Bob wants to guess a when having σ a . By Proposition 2, we have that

P * B = 1 2 + ∆(σ 0 , σ 1 ) 2
By the Fuchs -Van de Graaf inequalities (Proposition 9), we know that

F (σ 0 , σ 1 ) ≥ 1 -∆(σ 0 , σ 1 )
. This means in particular that

P * A ≥ 1 - ∆(σ 0 , σ 1 ) 2
From this, we have P * A + P * B ≥ 3/2 and max{P * A , P * B } ≥ 3/4 hence any quantum strong coin ipping of this form has cheating probability at least 3/4.

It is actually possible to achieve this bound. Consider the following states:

σ 0 = 1 2 |0 0| + 1 2 |2 2| σ 1 = 1 2 |1 1| + 1 2 |2 2|
Such protocol corresponds to Ambainis's protocol [START_REF] Ambainis | A new protocol and lower bounds for quantum coin ipping[END_REF] even though this formulation is due to Kerenidis and Nayak [START_REF] Kerenidis | Weak coin ipping with small bias[END_REF]. We can easily calculate that F (σ 0 , σ 1 ) = ∆(σ 0 , σ 1 ) = 1/2 which gives us directly P * A = P * B = 3/4. has the following properties

Weak coin ipping

• If c = 0, we say that Alice wins. If c = 1, we say that Bob wins. We can also dene weak coin ipping for the case where the winning probabilities of the two players in the honest case are not equal.

Denition 5 A weak coin ipping protocol with parameter z and bias ε (W CF (z, ε))

has the following properties.

• If c = 0, we say that Alice wins. If c = 1, we say that Bob wins. Proposition 10 For any ε > 0, there exists a quantum weak coin ipping protocol with cheating probabilities less than 1 2 + ε.

Reformulation of Quantum weak coin ipping protocol

In a quantum protocol, Alice and Bob have an output which they measure to determine the values of c A , c B . When using weak-coin ipping in a quantum protocol, it will be useful to keep the quantumness of this output.

We reformulate here the denition of a quantum weak coin ipping to take into account the fact that Alice and Bob are quantum players that perform unitary operations during the protocol and at the end they perform a measurement on a quantum register in order to get their classical output. This will be useful when using quantum weak coin ipping in a quantum protocol as in Chapter 5.

More precisely, let O A (resp. O B ) be Alice's (resp. Bob's) one-qubit output register. At the end of the protocol Alice (resp. Bob) has a state ρ A in O A ( resp. ρ B in O B ). They also share some garbage state. The players get their output value by measuring their output qubit in the computational basis. Let • If Alice cheats and Bob is honest then

P * A = 0|ρ B |0 ≤ 1/2 + ε • If Bob cheats and Alice is honest then P * B = 1|ρ A |1 ≤ 1/2 + ε
Notice that Alice's cheating probability depends only on Bob's output. This is because a cheating Alice will always claim that she won, so she wins when Bob outputs `Alice wins'. We have the same behavior for a cheating Bob.

We also dene unbalanced weak coin ipping in this setting.

Denition 7 A weak coin ipping protocol with parameter z and bias ε (W CF (z, ε))

has the following properties.

• The 0 outcome corresponds to Alice winning. The 1 outcome corresponds to Bob winning.

• If Alice and Bob are honest then

00|ρ AB |00 = z ; 11|ρ AB |11 = 1 -z • If
Alice cheats and Bob is honest then

P * A = 0|ρ B |0 ≤ z + ε • If Bob cheats and Alice is honest then P * B = 1|ρ A |1 ≤ (1 -z) + ε

An unbalanced weak coin ipping protocol from balanced weak coin ipping protocol

In the quantum setting, it is known by Mochon's protocol how to build a weak coin ipping protocol which is arbitrarily close to optimal. However, this gives us a balanced weak coin ipping protocol. A natural question is whether we can extend this construction to an unbalanced weak coin ipping protocol.

We show here how to use any almost optimal balanced weak coin ipping protocol to build an almost optimal unbalanced weak coin ipping protocol. This procedure will be purely classical and will use the balanced weak coin ipping as a black box. These unbalanced protocols will be very useful to construct optimal quantum coin ipping and bit commitment protocols.

Our goal is to prove the following proposition Proposition 11 Let P be a W CF (1/2, ε) protocol with N rounds. Then, ∀z ∈ [0, 1] and ∀k ∈ N, there exists a W CF (x, ε 0 ) protocol Q such that:

• Q uses k • N rounds. • |x -z| ≤ 2 -k . • ε 0 ≤ 2ε.
The protocol Q is a sequential composition of the W CF (1/2, ε) protocol P . In high level, we use P in order to combine two weak coin ipping protocols with parameters z 1 and z 2 into a new protocol with parameter z1+z2 2 . Then, by recursion, for any given z we can create a protocol Q with parameter x that rapidly converges to z. We also prove that the bias of Q is at most 2ε.

Assume we have a W CF (z 1 , ε 0 ) protocol P 1 and a W CF (z 2 , ε 0 ) protocol P 2 each with at most M rounds of communication and z 2 ≥ z 1 . We combine them in the following way.

Comb(P 1 , P 2 )

• Alice and Bob run P .

• If Alice wins, run P 2 . If Bob wins, run P 1 . If P Aborts then Abort.

Note that this protocol uses at most N + M rounds. We have Lemma 3 

Comb(P 1 , P 2 ) is a W CF ( z1+z2 2 , ε 0 + ε(z 2 -z 1 )) protocol.
x + y ≤ 1 x ≤ 1/2 + ε u ≤ z 2 + ε 0 v ≤ z 1 + ε 0
Note that the last two inequalities hold, since the biases for the protocols P 1 and P 2 do not increase depending on the outcome of P . We have

Pr [ Alice wins Comb(P 1 , P 2 )] = x • u + y • v ≤ x(z 2 + ε 0 ) + (1 -x)(z 1 + ε 0 ) = (z 1 + ε 0 ) + x(z 2 -z 1 ) ≤ (z 1 + ε 0 ) + (1/2 + ε)(z 2 -z 1 ) since z 2 ≥ z 1 ≤ z 1 + z 2 2 + ε 0 + ε(z 2 -z 1 )
Bob cheats and Alice is honest Using a similar calculation as in the previous case, we have Pr[Bob wins Comb(P

1 , P 2 )] ≤ (1-z2)+(1-z1) 2 +ε 0 +ε(z 2 -z 1 ) = 1 -z1+z2 2 + ε 0 + ε(z 2 -z 1 ).
We now show the following inductive Lemma Lemma 4 Suppose we have a W CF (1/2, ε) protocol P that uses N rounds of communication. Then ∀z ∈ [0, 1] and ∀k ∈ N, we can construct a W CF (x 1 , ε 0 ) protocol P 1 and a W CF (x 2 , ε 0 ) protocol P 2 such that

• P 1 , P 2 each use at most k • N rounds. • x 1 ≤ z ≤ x 2 and x 2 -x 1 = 2 -k . • ε 0 ≤ (2 -2(x 2 -x 1 ))ε.
Proof: Fix z ∈ [0, 1]. We show this result by induction on k. For k = 0, we clearly have a W CF (0, 0) protocol (a protocol where Bob always wins) and a W CF (1, 0) (a protocol where Alice always wins) that use no rounds of communication. We suppose the Lemma is true for k and we show it for k + 1.

. P uses at most (k+1)N rounds and from Lemma 3, we know that P is a W CF (u,

ε 0 = ε 0 +(x 2 -x 1 )ε) protocol. From the induction step we have that ε 0 ≤ (2-2(x 2 -x 1 ))ε+(x 2 -x 1 )ε ≤ (2-(x 2 -x 1 ))ε.
We now distinguish two cases

• If z ≤ u, consider the protocols P 1 and P . Each one uses at most (k +1)N rounds. Also, x 1 ≤ z ≤ u and u -

x 1 = x2-x1 2 = 2 -(k+1) . Finally, ε 0 ≤ (2 -(x 2 -x 1 ))ε = (2 -2(u -x 1 ))ε which concludes the proof.
• If z > u, consider the protocols P and P 2 . Each one uses at most

(k +1)N rounds. Also, u ≤ z ≤ x 2 and x 2 -u = x2-x1 2 = 2 -(k+1) . Finally, ε 0 ≤ (2 -(x 2 -x 1 ))ε = (2 -2(x 2 -u))ε which concludes the proof.
In Lemma 4, we have |x 1 -z| ≤ (x 2 -x 1 ) ≤ 2 -k and ε 0 ≤ 2ε. Hence this Lemma directly implies Proposition 11 by considering Q = P 1 .

Optimal quantum strong coin ipping

In this Section, we present a general method on how to use any weak coinipping protocol with cheating probability 1/2 + ε in order to construct a strong coin-ipping protocol with cheating probability 1/ √ 2 + O(ε). Our protocol uses roughly the same number of rounds as the weak coin ipping protocol.

Combining our construction with Mochon's quantum weak coin ipping protocol that achieves arbitrarily small bias, we conclude that it is possible to construct a quantum strong coin ipping protocol with cheating probability arbitrarily

close to 1 √ 2 .
The protocol is classical and uses the weak coin ipping as a subroutine. In other words, in strong coin ipping, the power of quantum really comes from the ability to perform weak coin ipping. If there existed a classical weak coin ipping protocol with arbitrarily small bias, then this would have implied a classical strong coin ipping protocol with cheating probability arbitrarily close to 1/ √ 2 as well.

A rst attempt

Using weak coin ipping in order to perform strong coin ipping is not a new idea. There is a trivial protocol that uses a perfect weak coin ipping and achieves strong coin ipping with cheating probability 3/4: Alice and Bob run the weak coin ipping protocol and whoever wins, ips a random coin c ∈ R {0, 1}.

SCF(3/4) protocol using a perfect weak coin ipping protocol P

• Alice and Bob run the protocol P

• The winner chooses a random c ∈ R {0, 1}, and sends c to the other player, c being the outcome of the protocol.

Let us analyze this protocol more closely. Let Alice be dishonest and her desired value for the coin be 0. Her strategy will be to try and win the WCF protocol, which happens with probability 1/2 and then output 0. However, even if she loses the weak coin ipping, there is still a probability 1/2 that the honest Bob will output 0. Hence, Alice's (and by symmetry Bob's) cheating probability is 3/4.

The optimal protocol

In order to reduce this bias, we would like to eliminate the situation where the honest player, after winning the WCF, still helps the dishonest player cheat with probability 1/2. One can try to resolve this problem by having Alice ip and announce her random coin c before running the WCF protocol. In this case: rst, Alice announces a bit a. Then, Alice and Bob perform a WCF. If Alice wins the outcome is a; if Bob wins then the outcome is a.

In this case, Bob never outputs a. However, there is a simple cheating strategy for Alice. If she wants 0, she sets a = 1, loses the WCF (which she can do with probability 1) and therefore Bob always outputs 0. Hence, Bob's choice when he wins the WCF must be probabilistic.

The optimal protocol In order to reduce this bias, we would like to eliminate the situation where the honest player, after winning the WCF, still helps the dishonest player cheat with probability 1/2. One can try to resolve this problem by having Alice ip and announce her random coin c before running the WCF protocol. In this case: rst, Alice announces a bit a. Then, Alice and Bob perform a WCF. If Alice wins the outcome is a; if Bob wins then the outcome is a.

In this case, Bob never outputs a. However, there is a simple cheating strategy for Alice. If she wants 0, she sets a = 1, loses the WCF (which she can do with probability 1) and therefore Bob always outputs 0. Hence, Bob's choice when he wins the WCF must be probabilistic.

Since such protocols are not symmetric, we use an unbalanced weak coin ipping protocol to ensure that the two cheating probabilities are the same. We We will now show how to optimize the parameters z and p in order to make the cheating probability of our protocol at most 1/

√ 2 + O(ε).
Security analysis of our protocol We calculate the cheating probability of our protocol S that uses a W CF (z, ε) protocol Q. Note that x + y ≤ 1 and also x ≤ z + ε, since the maximum bias with which Alice can win Q is independent of the value of a. We have p

Pr [c = 0|a = 0] = x • 1 + y • p ≤ x + (1 -x)p = p + x(1 -p) ≤ p + (z + ε)(1 -p) • We now calculate Pr [c = 0|a = 1]. Let x =
+ (z + ε)(1 -p) = 1 -p p = 1 -z -ε 2 -z -ε
With this value of p, we have

P r[c = 0] ≤ max{Pr [c = 0|a = 0] , Pr [c = 0|a = 1]} = 1 -p ≤ 1 2 -z -ε
Since the protocol is symmetric in 0 and 1, we also have Pr 

[c = 1] ≤ 1 2-z-ε and hence P * A ≤ 1 2-z-ε .
Pr [c = 0|a = 1] ≤ x • 1 + y • 0 ≤ x ≤ 1 -z + ε
Since Alice is honest, we have Pr [a = 0] = Pr [a = 1] = 1/2 and hence:

Pr [c = 0] = Pr [c = 0|a = 0] • Pr [a = 0] + Pr [c = 0|a = 1] • Pr [a = 1] = 1 2 (Pr [c = 0|a = 0] + Pr [c = 0|a = 1]) ≤ 1 2 + 1 -z + ε 2 = 2 -z + ε 2
Since the protocol is symmetric in 0 and 1, we also have Pr [c = 1] ≤ 2-z+ε 2 and hence P * B ≤ 2-z+ε 2 .

Putting it all together

To conclude, we have to optimize z. In the case where there exists an ideal weak coin ipping protocol W CF (1/2, 0), it is easy to see that in order to equalize the cheating probabilities P * A and P * B , we need to take z = 2 -√ 2.

If also our Proposition 11 was ideal, i.e. if from P we could create perfectly a W CF (2 -√ 2, 0) protocol Q, then S would have cheating probability exactly

1 √ 2 .
In general, we need to take care of the small bias ε of the initial W CF (1/2, ε) protocol P and the error of our Proposition 11. However, we will see that the overall increase in the cheating probability of our protocol S is only O(ε).

Proposition 13 If there exists a W CF (1/2, ε) protocol P that uses N rounds of communication then there exists a strong coin ipping protocol S that uses

2 log( 1 ε ) • N + 2 rounds with cheating probability at most 1 √ 2 + √ 2ε + o(ε).
Proof: Starting from the W CF (1/2, ε) weak coin ipping protocol P with N rounds, we can use Proposition 11 with k = 2 log( 1 ε ) and construct a W CF (x, ε ) protocol Q with the following properties

• Q uses 2 log( 1 ε ) • N rounds. • |x -(2 - √ 2)| ≤ ε 2 .
• ε ≤ 2ε.

We use the protocol Q in the strong coin ipping protocol described in Section 4.3 and by Proposition 12 we a strong coin ipping protocol with 2 log( 1 ε ) • N + 2 rounds and

P * A = 1 2 -x -ε ≤ 1 √ 2 -2ε -ε 2 ≤ 1 √ 2 + √ 2ε + o(ε) P * B = 2 -x + ε 2 ≤ √ 2 + 2ε + ε 2 2 = 1 √ 2 + ε + o(ε)
Using Proposition 13 and Mochon's weak coin ipping protocol (Proposition 10) we conclude that Theorem 1 For any ε > 0, there exists a strong coin ipping protocol with

cheating probability 1 √ 2 + ε.
Last, note that our strong coin ipping protocol uses O(N • log( 1 ε )) rounds, where N is the number of rounds of Mochon's weak coin ipping protocol.

Conclusion

In this Chapter, we presented the rst quantum strong coin ipping protocol with a cheating probability arbitrarily close to the optimal value 1 √ 2

. Our protocol uses as a subroutine the quantum weak coin ipping protocol designed by Mochon which is arbitrarily close to optimal. Note that except when using this quantum weak coin ipping protocol, our entire protocol is classical.

In the next Chapter, we will see another application of Mochon's weak coin ipping protocol: building an optimal quantum bit commitment scheme. In this case however, the protocol will be quantum and not classical.

Chapter 5 In this Chapter, we provide the optimal bound for quantum bit commitment.

Bounds for quantum bit commitment

We rst show a lower bound of approximately 0.739, improving Kitaev's lower bound. We then present an optimal quantum bit commitment protocol which has cheating probability arbitrarily close to 0.739. More precisely, we show how to use any weak coin ipping protocol with cheating probability 1/2 + ε in order to achieve a quantum bit commitment protocol with cheating probability 0.739+ O(ε). We then use the optimal quantum weak coin ipping protocol described by Mochon [START_REF] Mochon | Quantum weak coin ipping with arbitrarily small bias[END_REF]. To stress the fact that our protocol uses quantum eects beyond the weak coin ip, we show that any classical bit commitment protocol with access to perfect weak (or strong) coin ipping has cheating probability at least 3/4.

Denition of quantum bit commitment

Denition 8 A quantum commitment scheme is an interactive protocol between Alice and Bob with two phases, a Commit phase and a Reveal phase.

• In the commit phase, Alice interacts with Bob in order to commit to b.

• In the reveal phase, Alice interacts with Bob in order to reveal b. Bob decides to accept or reject depending on the revealed value of b and his nal state. We say that Alice successfully reveals b, if Bob accepts the revealed value.

We dene the following security requirements for the commitment scheme.

• Completeness: If Alice and Bob are both honest then Alice always successfully reveals the bit b she committed to.

• Binding property: For any cheating Alice and for honest Bob, we dene Alice's cheating probability as Notice that using our weaker denition of quantum bit commitment only strengthens our lower bound which also holds for the stronger ones.

P * A = 1 
We now describe more in detail the dierent steps on a quantum bit commitment protocol. We consider protocols where Alice reveals b at the beginning of the decommit phase. Note that this does not help Bob and can only harm a cheating Alice. Proving a lower bound for such protocols will hence be a lower bound for all bit commitment protocols.

We assume here that Alice and Bob are both honest. Let A Alice's space and B Bob's space.

The commit phase: Alice wants to commit to a bit b. Alice and Bob communicate with each other and perform some quantum operations. This can be seen as a joint quantum operation which depends on b. We can suppose wlog that this operation is a quantum unitary At the end, Bob performs a check to see whether Alice cheated or not. In the honest case, Bob always accepts.

Lower bound for quantum bit commitment

To prove the lower bound, we will show some generic cheating strategies for Alice and Bob that work for any kind of bit commitment scheme. We will then show that these cheating strategies give a cheating probability of approximately 0.739 for any protocol. Bob's cheating strategy The cheating strategy of Bob is the following:

Description of cheating strategies

• Perform the Commit phase honestly.

• Guess b by performing on the state at the end of the commit phase the optimal discriminating measurement between σ 0 and σ 1 .

First note that an all-powerful Bob can always perform this strategy, since he knows the honest states σ 0 and σ 1 and can hence compute and perform the optimal measurement. Let us analyze this strategy. We know [START_REF] Helstrom | Detection theory and quantum mechanics[END_REF] that Bob can guess b with probability 1 2 + ∆(σ0,σ1) 2 and hence

P * B ≥ 1 2 + ∆(σ 0 , σ 1 ) 2
Alice's cheating strategy The cheating strategy of Alice is the following

• Perform a quantum strategy so that at the end of the commit phase, Bob has the state σ + = 1 2 (σ 0 + σ 1 ). For the analysis, since Bob accepts b with probability 1 when the joint state of the protocol is |ψ b , he accepts with probability at least | φ b |ψ b | 2 = F 2 (σ + , σ b ) when the joint state of the protocol is |φ b . From this cheating strategy, we have that

•
P * A ≥ 1 2 F 2 (σ + , σ 0 ) + F 2 (σ + , σ 1 )

Showing the Lower Bound

We have the following bounds for cheating Alice and cheating Bob.

P * A ≥ 1 2 F 2 (σ + , σ 0 ) + F 2 (σ + , σ 1 ) P * B ≥ 1 2 + ∆(σ 0 , σ 1 ) 2
We now use the following inequality that will be proved in the next section Proposition 14 Let σ 0 , σ 1 any two quantum states. Let σ + = 1 2 (σ 0 + σ 1 ). We have

1 2 F 2 (σ + , σ 0 ) + F 2 (σ + , σ 1 ) ≥ 1 -(1 - 1 √ 2 )∆(σ 0 , σ 1 ) 2 .
Let t = ∆(σ 0 , σ 1 ). From the above Proposition, we have the following bounds.

P * A ≥ 1 2 F 2 (σ + , σ 0 ) + F 2 (σ + , σ 1 ) ≥ 1 -(1 - 1 √ 2 )t 2 P * B ≥ 1 2 + ∆(σ 0 , σ 1 ) 2 = 1 + t 2
We get the optimal cheating probability by equalizing these two bounds, ie.

1 -(1 - 1 √ 2 )t 2 = 1 + t 2
Notice that the same cheating probabilities appeared in the analysis of a weak coin ipping protocol in [START_REF] Kerenidis | Weak coin ipping with small bias[END_REF]. 

Proof of the delity Lemma

In this Section, we show Proposition 14.

Proof of Proposition 14: We will prove this Lemma in three steps. Let σ 0 , σ 1 two quantum states and let σ + = 1 2 (σ 0 + σ 1 ).

Step 1 We rst consider the states

ρ 0 = 1 2 |0 0| ⊗ σ 0 + 1 2 |1 1| ⊗ σ 1 and ρ + = 1 2 |0 0| ⊗ σ + + 1 2 |1 1| ⊗ σ + .
We compute the trace distance and delity of these states

∆(ρ 0 , ρ + ) = 1 2 (∆(σ 0 , σ + ) + ∆(σ 1 , σ + )) = 1 2 ∆(σ 0 , σ 1 ) (5.1)
In order to calculate the delity we note rst that ρ

1 2 + = 1 √ 2 |0 0| ⊗ σ 1 2 + + |1 1| ⊗ σ 1 2 + .
From the denition of delity we have

F (ρ 0 , ρ + ) = tr ρ 1 2 + ρ 0 ρ 1 2 + = tr 1 4 |0 0| ⊗ σ 1 2 + σ 0 σ 1 2 + + 1 4 |1 1| ⊗ σ 1 2 + σ 1 σ 1 2 + = tr 1 2 |0 0| ⊗ σ 1 2 + σ 0 σ 1 2 + + 1 2 |1 1| ⊗ σ 1 2 + σ 1 σ 1 2 + = 1 2 tr σ 1 2 + σ 0 σ 1 2 + + 1 2 tr σ 1 2 + σ 1 σ 1 2 + = 1 2 (F (σ 0 , σ + ) + F (σ 1 , σ + ))
Hence, by Cauchy-Schwartz we conclude that

F 2 (ρ 0 , ρ + ) ≤ 1 2 F 2 (σ 0 , σ + ) + 1 2 F 2 (σ 1 , σ + ) (5.2)
Step 2 Consider the POVM E = {E 1 , . . . , E m } with p i = tr(ρ 0 E i ) and q i = tr(ρ + E i ) such that F (ρ 0 , ρ + ) = i √ p i q i (Prop. 5). We consider the states D 0 = i p i |i i| and D + = i q i |i i|. For the trace distance and delity of these states, we have

∆(D 0 , D + ) = 1 2 i |p i -q i | ≤ ∆(ρ 0 , ρ + ) = 1 2 ∆(σ 0 , σ 1 ) by Prop.
3, 1 and Eq. 5.1

(5.3)

F (D 0 , D + ) = F (ρ 0 , ρ + ) = i √ p i q i (5.4)
Step 3 Let us dene k such that k/2 = ∆(D 0 , D + ). We now consider the

states T 0 = k|0 0| + (1 -k)|2 2| and T + = k 2 |0 0| + k 2 |1 1| + (1 -k)|2 2|.
We calculate the trace distance and delity of these states

∆(T 0 , T + ) = k 2 = ∆(D 0 , D + ) ≤ ∆(σ 0 , σ 1 ) 2 (5.5) F (T 0 , T + ) = 1 -k + k √ 2 ≥ 1 -(1 - 1 √ 2 )∆(σ 0 , σ 1 ) (5.6)
The only thing remaining is to show that F (T 0 , T + ) ≤ F (D 0 , D + ). To prove this, we construct a completely positive trace preserving operation Q such that Q(T 0 ) = D 0 and Q(T + ) = D + . We can then conclude using Proposition 7. We dene D 1 = i r i |i i| with p i + r i = 2q i . This means that D + =

1 2 D 0 + 1 2 D 1 and ∆(D 0 , D 1 ) = k. Let A = {i : p i ≥ r i } and B = {i : p i < r i }. Let w i = min{p i , r i } We consider the following Q Q(|0 0|) = i∈A 1 k (p i -r i )|i i| Q(|1 1|) = i∈B 1 k (r i -p i )|i i| Q(|2 2|) = i 1 1 -k w i |i i| Q(|i j|) = 0 for i = j Since ∆(D 0 , D 1 ) = k, we have in particular that i w i = 1-k ; i∈A (p i -r i ) = i∈B (r i -p i ) = k (see Proposition 3).
Q is hence a completely positive trace preserving operation. We now have:

Q(T 0 ) = k i∈A 1 k (p i -r i )|i i| + (1 -k) i 1 1 -k w i |i i| = i∈A (p i -r i )|i i| + i w i |i i| = i∈A (p i -r i + r i )|i i| + i∈B p i |i i| = i p i |i i| = D 0
Similarly, we have

Q(T + ) = k 2 i∈A 1 k (p i -r i )|i i| + k 2 i∈B 1 k (r i -p i )|i i| + (1 -k) i 1 1 -k w i |i i| = i∈A p i -r i 2 |i i| + i∈B r i -p i 2 |i i| + i w i |i i| = i∈A (r i + p i -r i 2 )|i i| + i∈B (p i + r i -p i 2 )|i i| = i q i |i i| = D +
From this, we conclude that

F (D 0 , D + ) = F (Q(T 0 ), Q(T + )) ≥ F (T 0 , T + ).
(5.7)

Putting everything together, we have using equations 5.2,5.4,5.6,5.7

1 2 F 2 (σ 0 , σ + ) + F 2 (σ 1 , σ + ) ≥ F 2 (ρ 0 , ρ + ) ≥ F 2 (D 0 , D + ) ≥ F 2 (T 0 , T + ) ≥ 1 -(1 - 1 √ 2 )∆(σ 0 , σ 1 ) 2 

Upper Bound for quantum bit commitment

In this section we describe and analyze a protocol that proves the optimality of our bound.

Theorem 3 There exists a quantum bit commitment protocol that uses a weak coin ipping protocol with cheating probability 1/2 + as a subroutine and achieves cheating probabilities less than 0.739 + O( ).

Our protocol is a quantum improvement of the following simple protocol that achieves cheating probability 3/4. 

|Ω b = √ p|L, b A ⊗ |L, b, G L B + 1 -p|W, 2 A ⊗ |W, 2, G W B
Reveal phase In the reveal phase, Alice sends b and all her remaining qubits in space A to Bob. Bob checks that he has the state |Ω b . 

Analysis of the above protocol

|Ω * b = p |L, b A |b, Ψ L B + 1 -p |W, 2 A |2, Ψ W B
and Bob's density matrix is

σ * b = p |b, Ψ L b, Ψ L | + (1 -p )|2, Ψ W 2, Ψ W |.
By Proposition 2, we have

P * B = Pr[ Bob guesses b] ≤ 1 2 + ∆(σ * 0 , σ * 1 ) 2 = 1 2 + p 2 ≤ 1 + p 2 + ε 2
Cheating Alice Let σ b be Bob's reduced state at the end of the commit phase when both players are honest. Let |x = |L, x, G L for x ∈ {0, 1} and |2 = |W, 2, G W . We have

σ b = p|b b| + (1 -p)|2 2|
Let ξ be Bob's state at the end of the commit phase for a cheating Alice. Let r i = i|ξ|i for i ∈ {0, 1, 2}. From the characterization of the delity in Proposition 7, we have that

F (ξ, σ b ) ≤ √ pr b + (1 -p)r 2
From standard analysis of bit commitment protocol (for example [START_REF] Kerenidis | Weak coin ipping with small bias[END_REF] ), we have using Uhlmann's Theorem that

P * A ≤ 1 2 F 2 (ξ, σ 0 ) + F 2 (ξ, σ 1 ) ≤ 1 2 √ pr 0 + (1 -p)r 2 2 + 1 2 √ pr 1 + (1 -p)r 2 2
In order to get a tight bound for the above expression, we use here the property of the weak coin ipping. Recall that |2 = |W, 2, G W has its rst register as W (this corresponds to Alice winning the coin ip). On the other hand, |0 and |1 have L as their rst register, corresponding to the case where Bob wins. For any cheating Alice, she can win the weak coin ip with probability smaller than 1 -p + ε and hence this means in particular that r 2 ≤ 1 -p + ε. Moreover, r 0 + r 1 + r 2 ≤ 1. For ε < p(1 -1 2-p ) , we show that this quantity is maximal when r 2 is maximal and r 0 = r 1 = (p -ε)/2 (proven in the next Section). This gives us

P * A ≤ p • p -ε 2 + (1 -p)(1 -p + ε) 2 ≤ 1 -(1 - 1 √ 2 )p 2 + O(ε)
Putting it all together Except for the terms in ε, we obtain exactly the same quantities as in our lower bound. By equalizing these cheating probabilities, we have max{P * A , P * B } ≈ 0.739 + O(ε) which proves Theorem 3 Since we can have ε arbitrarily close to 0 (Proposition 10) and we can have an unbalanced weak coin ipping protocol with probability arbitrarily close to p (Proposition 11), we conclude that our protocol is arbitrarily close to optimal, and hence we proved Theorem 3.

Proof of r 0 = r 1 and r 2 maximal in the quantum lower bound

In this Section, we show the following:

Proposition 15 Let

P * A ≤ 1 2 √ pr 0 + (1 -p)r 2 2 + 1 2 √ pr 1 + (1 -p)r 2 2
with the constraints: r 0 , r 1 , r 2 ≥ 0, r 0 + r 1 + r 2 ≤ 1 and r 2 ≤ 1 -p + ε for

ε < p(1 -1 2-p ).
This cheating probability is maximized for r 0 = r 1 = p-ε 2 and

r 2 = 1 -p + ε.
Proof: First note that the maximal cheating probability is achieved for r 0 + r 1 + r 2 = 1 since this cheating probability is increasing in r 0 , r 1 , r 2 . We rst show that r 0 = r 1 . Let's x r 2 . This means that S = r 0 +r 1 = 1-r 2 is xed. Let u = (1 -p)r 2 . We have

P * A ≤ f (r 0 ) = 1 2 ( √ pr 0 + u) 2 + 1 2 p(S -r 0 ) + u 2 .
Taking the derivative, we have

= 1 2 p + u √ p √ r 0 -p - u √ p S -r 0 = u √ p 2 1 √ r 0 - 1 √ S -r 0
We have f (r 0 ) > 0 for r 0 < S/2 ; f (r 0 ) = 0 for r 0 = S/2 ; f (r 0 ) < 0 for r 0 > S/2. This means that the maximum of f is achieved for r 0 = S/2 i .e. r 0 = r 1 .

We now show that r 2 = 1 -p + ε gives the maximal cheating probability if ε is not too big. Since P * A is maximal for r 0 = r 1 and for r 0 + r 1 + r 2 = 1, we have

P * A ≤ 1 2 √ pr 0 + (1 -p)r 2 2 + 1 2 √ pr 0 + (1 -p)r 2 2 ≤ ( √ pr 0 + (1 -p)r 2 ) 2 ≤ p( 1 -r 2 2 ) + (1 -p)r 2 2 = g(r 2 )
Again, we take the derivative of g.

g (r 2 ) = - √ p 2(1 -r 2 ) + √ 1 -p √ r 2 • p( 1 -r 2 2 ) + (1 -p)r 2
From this, we have

g (r 2 ) ≥ 0 ⇔ - √ p 2(1 -r 2 ) + √ 1 -p √ r 2 ≥ 0 ⇔ p 2(1 -r 2 ) ≤ 1 -p r 2 ⇔ pr 2 ≤ 2(1 -r 2 )(1 -p) ⇔ r 2 ≤ 1 - p 2 -p For ε < p(1 -1 2-p ), we have 1 -p + ε < 1 -p 2-p , so when ε < p(1 -1 2-p ), g(r 2
) is always increasing when r 2 ≤ 1 -p + ε and is maximal when r 2 = 1 -p + ε, which concludes the proof.

Proof of the classical lower bound

In this Section, we show a 3/4 lower bound for classical bit commitment schemes when players additionally have the power to perform perfect (strong or weak) coin-ipping. This will show that unlike strong coin ipping, quantum and classical bit commitment are not alike in the presence of weak coin ipping.

We rst describe such protocols in Section 5.4.1. In Section 5.4.2, we construct a cheating strategy for Alice and Bob for these protocols such that one of the players can cheat with probability at least 3/4.

Description of a classical bit commitment protocol with perfect coin ips

We describe classical bit commitment schemes when players additionally have the power to perform perfect (strong or weak) coin-ipping. The way we deal with the coin is the following: when Alice and Bob are honest, they always output the same random value c and both players know this value. We can suppose equivalently that a random coin c is given publicly to both Alice and Bob each time they perform coin ipping. We describe any BC protocol with coins as follows:

• Alice and Bob have some private randomness R A and R B respectively.

• Commit phase: Alice wants to commit to some value x. Let N the number of rounds of the commit phase. For i = 1 to N : Alice sends a message a i , Bob sends a message b i , Alice and Bob ip a coin and get a public c i ∈ R {0, 1}.

• Reveal phase: Alice wants to decommit to some value y (= x if Alice is honest).

1. Alice rst reveals y. This is a restriction for the protocol but showing a lower bound for such protocols will show a lower bound for all protocols since this can only limit Alice's cheating possibilities without helping Bob.

2. Let M the number of rounds of the reveal phase. For i = 1 to M : Alice sends a message a i , Bob sends a message b i , Alice and Bob ip a coin and get a public c i ∈ R {0, 1}.

3. Bob has an accepting procedure Acc to decide whether he accepts the revealed bit or whether he aborts (if Bob catches Alice cheating).

We denote the commit phase transcript by t C = (a 1 , b 1 , c 1 , . . . , a N , b N , c N ). If Alice and Bob are honest, then we can write t C = T C (R A , R B , c, x) where T C is a function xed by the protocol that takes as input Alice and Bob's private coins R A , R B , the outcomes of the public coin ips c = (c 1 , . . . , c N ) as well as the bit x Alice wants to commit to and outputs a commit phase transcript t C . If we can write t C = T C (R A , R B , c, x) for some R A , R B , c, x, we say that t C is an honest commit phase transcript.

Similarly, we dene the decommit phase transcript by t D = (a 1 , b 1 , c 1 , . . . , a M , b M , c M ). If Alice and Bob are honest, we can write t D = T D (R A , R B , c , y, t C ), where T D is a function xed by the protocol that takes as input Alice and Bob's private coins R A , R B , the outcomes of the public coin ips c = (c 1 , . . . , c M ), the bit y Alice reveals as well as the commit phase transcript t C and outputs a reveal phase transcript t D . If we can write t D = T D (R A , R B , c , y, t C ) for some R A , R B , c , y and some honest commit phase transcript t C , we say that t D is an honest reveal phase transcript.

Whether Bob accepts at the end of the protocol depends on both transcripts t C , t D of the commit and reveal phase, the bit y Alice reveals as well as Bob's private coins. We write that Acc(t C , t D , y, R B ) = 1 when Bob accepts.

Note that in the honest case, Bob always accepts Alice's decommitment. This means that we can transform Alice's honest strategy in the reveal phase to a deterministic strategy which will also be always accepted. This fact will be useful in the proof.

Proof of the classical lower bound

In this Section, we construct cheating strategies for Alice and Bob such that one of the players will be able to cheat with probability greater than 3/4. We only consider cheating strategies where Alice and Bob are honest during the coin ips so again, they will be modeled as public and perfectly random coins.

Moreover, Alice and Bob will always be honest during the commit phase.

Before describing the cheating strategies we need some denitions. More particularly, we consider a cheating Alice who cheats during the reveal phase by following a deterministic strategy A * . For a xed honest commit phase transcript t C , we can write the transcript of the reveal phase as a function of A * , R B , c , y, t C , more precisely T * D (A * , R B , c , y, t C ).

Denition 9 We say that R B is consistent with t C if and only if there exist Since there is always a deterministic honest strategy for Alice in the reveal phase (when Alice and bob have been honest in the commit phase), we have

R A , c, x such that t C = T C (R A , R B , c, x).
∀ R A , R B , c, x t C = T C (R A , R B , c, x) ∈ A x
Notice also that for any honest commit phase transcript t C , both players Alice and Bob can compute whether t C ∈ A u for both u = 0 and u = 1.

Denition 11 We dene the probability

p u = Pr[t C = T C (R A , R B , c, u) ∈ A u ]
where the probability is taken over uniform R A , R B , c. Consider that Bob is honest. p u is the probability that if Alice behaves honestly in the commit phase and commits to u, she has a deterministic cheating strategy to reveal u which always succeeds (independently of c , R B ).

We can now describe and analyze our cheating strategies for Alice and Bob and prove our theorem Theorem 4 For any classical bit commitment protocol with access to public perfect coins, one of the players can cheat with probability at least 3/4.

Proof: Let us x a bit commitment protocol. We describe cheating strategies for Alice and Bob.

Cheating Alice

• Commit phase: Alice picks x ∈ R {0, 1} and she honestly commits to x during the commit phase.

• Reveal phase: if Alice wants to reveal x, she just remains honest during the reveal phase. By completeness of the protocol, this strategy succeeds with probability 1. If Alice wants to reveal x, we know by denition of p x that she succeeds with probability at least p x . This gives us:

P * A ≥ 1 2 + p x 2
since Alice chooses x at random, we have:

P * A ≥ 1 2 + p 0 + p 1 4
Cheating Bob As Alice, Bob is honest in the commit phase. Let x the bit Alice committed to. Since Alice and Bob are honest the commit-phase transcript 

is t C = T C (R A , R B , c, x) for uniformly random R A , R B , c.
≥ p x • 1 2 + (1 -p x ) • 1 = 1 -px 2 .
Since again, Alice's bit x is uniformly random, we have

P * B ≥ 1 - p 0 + p 1 4 57
Putting it all together Taking Alice and Bob cheating probabilities together, we have

P * A + P * B ≥ 3/2 which gives max{P * A , P * B } ≥ 3/4.

Conclusion

In this Chapter, we presented new bounds for Quantum bit Commitment, improving both the lower bound and the upper bound. In the end, we got a lower bound of 0.739 and an upper bound of 0.739 + ε for any ε > 0 which is a construction of a quantum bit commitment arbitrarily close to optimal.

The lower bound we obtained is of dierent avor than the one found by Kiteav for coin ipping. While Kitaev's lower bound uses semi-denite programming, our bound just reasons on quantum states.

Like the optimal quantum coin ipping, this protocol uses Mochon's quantum weak coin ipping as a subroutine. We show however, that in addition to weak coin ipping, one also needs quantum eects elsewhere, since we show that any classical bit commitment with access to perfect coin ips cannot achieve better cheating probabilities than 3/4.

Chapter 6

Bounds for quantum Oblivious transfer

In this Chapter, we quantitatively study the bias of quantum oblivious transfer protocols. More precisely, we construct a bit commitment protocol that uses oblivious transfer as a subroutine and show a relation between the cheating probabilities of the OT protocol and the ones of the bit commitment protocol.

Then, using the lower bound for quantum bit commitment from Chapter 5, we derive a non-trivial lower bound (albeit weaker) on the cheating probabilities for OT . More precisely we prove the following theorem.

Theorem 5 In any quantum oblivious transfer protocol, we have max{A OT , B OT } ≥ 0.58

Moreover, in Section 6.4 we describe a simple 1-out-of-2 random-OT protocol and analyze the cheating probabilities of Alice and Bob.

Theorem 6 There exists a quantum oblivious transfer protocol such that A OT = B OT = 3 4 .

Denitions

In the literature, many dierent variants of oblivious transfer have been considered. We consider two variants of quantum oblivious transfer and for completeness we show that they are equivalent with respect to the bias ε.

Denition 12 (Random Oblivious Transfer) A 1-out-of-2 quantum random oblivious transfer protocol with bias ε, denoted here as random-OT , is a protocol between Alice and Bob such that:

• Alice outputs two bits (x 0 , x 1 ) or Abort and Bob outputs two bits (b, y) or Abort

• If Alice and Bob are honest, they never Abort, y = x b , Alice has no information about b and Bob has no information about x b . Also, x 0 , x 1 , b are uniformly random bits. where the suprema are taken over all cheating strategies for Alice and Bob.

Note that this denition is slightly dierent from usual denitions because we want the exact value of the cheating probabilities and not only an upper bound. This is because we consider both lower bounds and upper bounds for

OT protocols but we could have equivalent results using the standard denitions.

An important issue is that we quantify the security against a cheating Bob as the probability that he can guess (x 0 , x 1 ). One can imagine a security denition where Bob's guessing probability is not for (x 0 , x 1 ), but for example for x 0 ⊕ x 1 or any other function f (x 0 , x 1 ). Since we are mostly interested in lower bounds, we believe our denition is the most appropriate one, since a lower bound on the probability of guessing (x 0 , x 1 ) automatically yields a lower bound on the probability of guessing any f (x 0 , x 1 ).

We now dene a second notion of OT where the values (x 0 , x 1 ) and b are Alice's and Bob's inputs respectively and show the equivalence between the two notions.

Denition 13 (Oblivious Transfer) A 1-out-of-2 quantum oblivious transfer protocol with bias ε, denoted here as OT , is a protocol between Alice and Bob such that:

• Alice has input where the suprema are taken over all cheating strategies for Alice and Bob.

Equivalence between the dierent notions of Oblivious Transfer

We show the equivalence between OT and random-OT with respect to the bias ε. First, note that a random-OT is a special case of OT , since in the denition of OT there is no restriction on how the inputs are chosen, and hence they can be chosen uniformly at random.

Proposition 16 Let P an OT protocol with bias ε. We can construct a random-OT protocol Q with bias ε using P .

Proof: The construction of the OT protocol Q is pretty straightforward:

1. Alice picks x 0 , x 1 ∈ R {0, 1} uniformly at random and Bob picks b ∈ R {0, 1}

uniformly at random.

2. Alice and Bob perform the OT protocol P where Alice inputs x 0 , x 1 and Bob inputs b. Let y be Bob's output. Note that at this point, Alice has no information about b and Bob has no information about (x 0 , x 1 ).

3. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the outputs of protocol Q are (x 0 , x 1 ) for Alice and (b, y) for Bob.

The outcomes of Q are uniformly random bits since Alice and Bob choose their inputs uniformly at random. All the other requirements that make Q an OT protocol with bias ε are satised because P is an OT protocol with bias ε.

We now prove how to go from a random-OT to an OT protocol.

Proposition 17 Let P a random-OT protocol with bias ε P . We can construct an OT protocol Q with bias ε Q = ε P using P .

Proof: Let P a random-OT protocol with bias ε P . Consider the following protocol Q:

1. Alice has inputs X 0 , X 1 and Bob has an input B. 5. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the output of the protocol is y for Bob.

We now show that our protocol is an OT protocol with inputs with bias ε. • Cheating Bob: Bob picks a random r, sends r to Alice and then Alice picks (s 0 , s 1 ). We have X c = x c ⊕ s c = x c⊕r ⊕ s c so it is equivalent for Bob to guess (X 0 , X 1 ) and (x 0 , x 1 ). Hence B OT (Q) = sup{Pr[Bob guesses (X 0 , X 1 ) and Alice does not Abort]}

= sup{Pr[Bob guesses (x 0 , x 1 ) and Alice does not Abort]} = B OT (P ).

We can now conclude for the biases

ε Q = max{A OT (Q), B OT (Q)} - 1 2 = max{A OT (P ), B OT (P )} - 1 2 = ε P .
6.3 Lower bound for quantum oblivious transfer

From quantum oblivious transfer to quantum bit commitment

In this section we prove that the bias of any random-OT protocol, and hence any OT protocol, is bounded below by a constant. We start from a random-OT protocol and rst show how to construct a bit commitment protocol. Then, we prove a relation between the cheating probabilities of the bit commitment and those in the random-OT protocol. Last, we use the lower bounds for quantum bit commitment from Chapter 5.

We create a bit commitment protocol from a random-OT protocol as follows.

Bit Commitment Protocol via random-OT

• Commit phase: We invert the roles of Alice and Bob. Bob is the one who commits. He wants to commit to a bit a. Alice and Bob perform the OT protocol such that Alice has (x 0 , x 1 ) and Bob has (b, x b ). Bob sends a ⊕ b to Alice.

• Decommit phase: Bob reveals b and y = x b to Alice. If x b from Bob is consistent with Alice's bits then Alice accepts. Otherwise Alice aborts.

We now analyze how much Alice and Bob can cheat in the bit commitment protocol and compare these quantities to the bias of the random-OT protocol.

Let A OT , B OT the cheating probabilities for the quantum oblivious transfer protocol and A BC , B BC the cheating probabilities for the resulting quantum bit commitment protocol. Our goal is to show the following:

Proposition 18

A OT ≤ A BC ; B OT ≤ f (BC)
where f (x) = x(2x -1) 2

Proof:

Let ¬⊥ BC A (resp. ¬⊥ BC B ) denote the event Alice (resp. Bob) does not abort during the entire bit commitment protocol. Let ¬⊥ OT A (resp. ¬⊥ OT B ) denote the event Alice (resp. Bob) does not abort during the random-OT subroutine.

Cheating Alice By denition, A OT is the optimal probability of Alice guessing b in the random-OT protocol without Bob aborting and A BC is the optimal probability of Alice guessing a in the bit commitment protocol without Bob aborting. Since Alice knows c := a ⊕ b, the probability of Alice guessing a in the bit commitment protocol is the same as the probability of her guessing b in the random-OT protocol. Thus A OT = A BC .

Cheating Bob By denition, B OT is the optimal probability of Bob learning both bits in the random-OT protocol without Alice aborting. Thus,

B OT = sup{Pr[ (Bob guesses (x 0 , x 1 )) ∧ ¬⊥ OT A ]} = sup{Pr[¬⊥ OT A ] • Pr[ (Bob guesses (x 0 , x 1 ))|¬⊥ OT A ]}.
where the suprema are taken over all strategies for Bob.

If Bob wants to reveal 0 in the bit commitment protocol (a similar argument works if he wants to reveal 1), then rst, Alice must not abort in the random-OT protocol and second, Bob must send b = c as well as the correct x c such that Alice does not abort in the last round of the bit commitment protocol. This is equivalent to saying that Bob succeeds if he guesses x c and Alice does not abort in the random-OT protocol. Since Bob randomly choses which bit he wants to reveal, we can write the probability of Bob cheating as

B BC = max 1 2 Pr[(Bob guesses x 0 ) ∧ ¬⊥ OT A ] + 1 2 Pr[(Bob guesses x 1 ) ∧ ¬⊥ OT A ] = max Pr[¬⊥ OT A ] • 1 2 Pr[(Bob guesses x 0 )|¬⊥ OT A ] + 1 2 Pr[(Bob guesses x 1 )|¬⊥ OT A ]
.

Notice that we use max instead of sup above. This is because an optimal strategy exists for every coin ipping protocol. This is a consequence of strong duality in the semidenite programming formalism of [START_REF] Kitaev | Quantum coin-ipping[END_REF], see [START_REF] Ambainis | Multiparty quantum coin ipping[END_REF] for details.

Let us now x Bob's optimal cheating strategy in the bit commitment protocol. For this strategy, let p = Pr[(Bob guesses x 0 )|¬⊥ OT A ], q = Pr[(Bob guesses x 1 )|¬⊥ OT A ] and a = p+q 2 . Note that, without loss of generality, we can assume that Bob's measurements are projective measurements. This can be done by increasing the dimension of Bob's space. Also, Alice has a projective measurement on her space to determine the bits (x 0 , x 1 ).

We use the following lemma to relate B BC and B OT .

Lemma 5 (Learning-In-Sequence Lemma) Let p, q ∈ [1/2, 1]. Let Alice and Bob share a joint pure state. Suppose Alice performs on her space a projective measurement M = {M x0,x1 } x0,x1∈{0,1} to determine the values of (x 0 , x 1 ). Suppose there is a projective measurement P = {P 0 , P 1 } on Bob's space that allows him to guess bit x 0 with probability p and a projective measurement Q = {Q 0 , Q 1 } on his space that allows him to guess bit x 1 with probability q. Then, there exists a measurement on Bob's space that allows him to guess (x 0 , x 1 ) with probability at least a(2a -1) 2 where a = p+q 2 .

We postpone the proof of this lemma to Subsection 6.3.2.

We now construct a cheating strategy for Bob for the OT protocol: Run the optimal cheating bit-commitment strategy and look at Bob's state after step 1 conditioned on ¬⊥ OT A . Note that this event happens with nonzero probability in the optimal bit commitment strategy since otherwise the success probability is 0. The optimal bit commitment strategy gives measurements that allow Bob to guess x 0 with probability p and x 1 with probability q. Bob uses these measurements and the procedure of Lemma 5 to guess (x 0 , x 1 ). Let m be the probability he guesses (x 0 , x 1 ). From Lemma 5, we have that m ≥ a(2a -1) 2 . By denition of B OT and B BC , we have:

m = Pr[ (Bob guesses (x 0 , x 1 ))|¬⊥ OT A ] ≤ B OT Pr[¬⊥ OT A ] and a = B BC Pr[¬⊥ OT A ]
.

This gives us

B OT Pr[¬⊥ OT A ] ≥ B BC Pr[¬⊥ OT A ] 2 B BC Pr[¬⊥ OT A ] -1 2 =⇒ B OT ≥ B BC (2B BC -1) 2 ,
where the implication holds since B BC ≥ 1/2.

Using this Proposition and the lower bound for quantum bit commitment, we can show our Lower Bound Theorem 7 In any quantum oblivious transfer protocol, at least one of the players can cheat with probability 0.58.

Proof:

We use A BC = A OT and B BC ≤ f (B OT ) (where f (x) = x(2x -1) 2 ) from Proposition 18. From Chapter 5, we have that for any quantum bit commitment scheme, there exists a parameter t ∈ [0, 1] such that

A BC ≥ (1 -(1 - 1 √ 2 )t) 2 ; B BC ≥ 1 2 + t 2
We immediately have that there exists a parameter t ∈ [0, 1] such that

A OT ≥ (1 -(1 - 1 √ 2 )t) 2 ; B OT ≥ g( 1 2 + t 2 ) = t 2 ( 1 2 + t 2 )
We get the lower bound by equalizing A OT and B OT which gives us

(1 -(1 - 1 √ 2 )t) 2 = t 2 ( 1 2 + t 2 )
t ≈ 0.8046 max{A OT , B OT } ≥ 0.5841

Proof of the Learning-In-Sequence Lemma A few claims

We now prove Lemma 5.

Proof: Let |Ω AB be the joint pure state shared by Alice and Bob, where A is the space controlled by Alice and B the space controlled by Bob. Let M = {M x0,x1 } x0,x1∈{0,1} be Alice's projective measurement on A to determine her outputs x 0 , x 1 . Let P = {P 0 , P 1 } be Bob's projective measurement that allows him to guess x 0 with probability p = cos 2 (θ) and Q = {Q 0 , Q 1 } be Bob's projective measurement that allows him to guess x 1 with probability q = cos 2 (θ ). These measurements are on B only. Recall that a = p+q 2 = cos 2 (θ)+cos 2 (θ ) 2

. We consider the following projections on AB:

C = x0,x1 M x0,x1 ⊗ P x0 and D = x0,x1 M x0,x1 ⊗ Q x1 .
C (resp. D) is the projection on the subspace where Bob guesses correctly the rst bit (resp. the second bit) after applying P (resp. Q).

A strategy for Bob to learn both bits is simple: apply the two measurements P and Q one after the other, where the rst one is chosen uniformly at random.

The projection on the subspace where Bob guesses (x 0 , x 1 ) when applying

P then Q is E = x0,x1 M x0,x1 ⊗ Q x1 P x0 = DC.
Similarly, the projection on the subspace where Bob guesses (x 0 , x 1 ) when applying

Q then P is F = x0,x1 M x0,x1 ⊗ P x0 Q x1 = CD.
With this strategy Bob can guess both bits with probability

1 2 ||E|Ω || 2 2 + ||F |Ω || 2 2 = 1 2 ||DC|Ω || 2 2 + ||CD|Ω || 2 2 ≥ 1 2 cos 2 (θ) + cos 2 (θ ) cos 2 (θ + θ ) using Lemma 6 ≥ 1 2 cos 2 (θ) + cos 2 (θ ) cos 2 (θ) + cos 2 (θ ) -1 2 using Claim 3 = a(2a -1) 2 .
Note that we can use Lemma 6 since Bob's optimal measurement to guess x 0 and x 1 succeeds for each bit with probability at least 1/2.

A Two-Message Protocol With Bias 1/4

We present in this section a random-OT protocol with bias 1/4. This also implies, as we have shown, an OT protocol with inputs with the same bias.

Random Oblivious Transfer Protocol

1. Bob chooses b ∈ R {0, 1} and creates the state |φ b = 1 √ 2 |bb + 1 √ 2 |22 .
He sends half of this state to Alice.

2.

Alice chooses x 0 , x 1 ∈ R {0, 1} and applies the unitary |a → (-1) xa |a , where x 2 := 0. 3. Alice returns the qutrit to Bob who now has the state |ψ b :=

(-1) x b √ 2 |bb + 1 √ 2 |22 . 4. Bob performs on the state |ψ b the measurement {Π 0 = |φ b φ b |, Π 1 := |φ b φ b |, I -Π 0 -Π 1 }, where |φ b := 1 √ 2 |bb -1 √ 2 |22 . If the outcome is Π 0 then x b = 0, if it is Π 1 then x b = 1, otherwise he aborts.
It is clear that Bob can learn x 0 or x 1 perfectly. Moreover, note that if he sends half of the state

1 √ 2 |00 + 1 √ 2 |11
then he can also learn x 0 ⊕ x 1 perfectly (although in this case he does not learn either of x 0 or x 1 ). We now show that it is impossible for him to perfectly learn both x 0 and x 1 and also that his bit is not completely revealed to a cheating Alice.

Theorem 8 In the protocol described above, we have states Alice may receive in the rst message. Then, the optimal strategy for Alice to learn b is to perform the optimal measurement to distinguish between σ 0 and σ 1 . In this case, she succeeds with probability

A OT = B OT = 3
1 2 + 1 4 σ 0 -σ 1 tr = 3 4 ,
(see for example [START_REF] Kerenidis | Weak coin ipping with small bias[END_REF]). Alice's optimal measurement is, in fact, a measurement in the computational basis. If she gets outcome |0 or |1 then she knows b with certainty. If she gets outcome |2 then she guesses. Notice also, that even after this measurement she can return the measured qutrit to Bob and the outcome of Bob's measurement will always be either Π 0 or Π 1 . Hence, Bob will never abort.

Cheating Bob

Bob wants to learn both bits (x 0 , x 1 ). We now describe a general strategy for Bob: At the end of the protocol, Bob applies a two-outcome measurement on |ψ x0,x1 to get his guess for (x 0 , x 1 ).

• Bob creates |ψ = i α i |i A |e i B
From this strategy, we create another strategy with the same cheating probability where Bob sends a pure state. We dene this strategy as follows:

• Bob creates |ψ = i α i |i A and sends the whole state to Alice.

• Alice applies U x0,x1 on her part and sends it back to Bob. He now has the state |ψ x0,x1 = i α i (-1) xi |i recalling that x 2 := 0.

• Bob applies the unitary U : |i |0 → |i |e i to |ψ x0,x1 |0 and obtains |ψ x0,x1 .

To determine (x 0 , x 1 ), Bob applies the same measurement as in the original strategy.

Clearly both strategies have the same success probability. When Bob uses the second strategy, Alice and Bob are unentangled after the rst message and Alice sends back a qutrit to Bob. We use the following Claim originally due to Nayak.

Proposition 19 ([DW09] following [Nay99]) Suppose we have a classical random variable X, uniformly distributed over [n] = {1, . . . , n}. Let x → |φ x be some encoding of [n], where |φ x is a pure state in a d-dimensional space.

Let P 1 , . . . , P n be the measurement operators applied for decoding; these sum to the d-dimensional identity operator. Then the probability of correctly decoding in case X = x is

p x = ||P x |φ x || 2 ≤ Tr(P x ).
The expected success probability is

1 n n x=1 p x ≤ 1 n n x=1
Tr(P x ) = 1 n

Tr

n x=1 P x = 1 n Tr(I ) = d n .
Using this Claim, we directly have

Pr[Bob correctly guesses (x 0 , x 1 )] ≤ 3/4.

Note that there is a strategy for Bob to achieve 3/4. Bob wants to learn both bits (x 0 , x 1 ). Suppose he creates the state

|ψ := 1 √ 3 |0 + 1 √ 3 |1 + 1 √ 3 |2
and sends it to Alice. The state he receives is

|ψ x0,x1 := 1 √ 3 (-1) x0 |0 + 1 √ 3 (-1) x1 |1 + 1 √ 3 |2 .
Then, Bob performs a projective measurement in the 4-dimensional basis {|Ψ x0,x1 :

x 0 , x 1 ∈ {0, 1}} where |Ψ x0,x1 := 1 2 (-1) x0 |0 + 1 2 (-1) x1 |1 + 1 2 |2 + 1 2 (-1) x0⊕x1 |3 .
The probability that Bob guesses the two bits x 0 , x 1 correctly is

x0,x1 1 4 Pr[Bob guesses (x 0 , x 1 )] = x0,x1 1 4 | Ψ x0,x1 |ψ x0,x1 | 2 = 3 4 .
Note that in our protocol Alice never aborts.

One possibility to improve this bound would be to use the techniques used in the previous Chapter. By using quantum weak coin ipping, one could try to control the rst state sent by Bob. Unfortunately, this approach does not work for this protocol since both cheating players want to decrease the quantity 2|ρ|2 if Bob's state sent is ρ. To ensure that this quantity remains the same with a cheating player, we would need quantum perfect strong coin ipping which is impossible.

Conclusion

In this chapter, we presented a way to reduce quantum oblivious transfer to quantum bit commitment and showed a relationship between the cheating probabilities of the two protocols. We use this relationship and our lower bound on quantum bit commitment to derive a lower bound for quantum oblivious transfer of 0.58. We also constructed a quantum oblivious transfer protocol with cheating probability 3/4. However, there is still a gap between the lower and the upper bound. The main open question here is to have tight bounds for quantum oblivious transfer.

Chapter 7

Device independent quantum coin ipping and quantum bit commitment

In this Chapter, we extend our study of quantum bit commitment and quantum coin ipping in the device independent model. We show the following Theorem 9 There exists a device-independent quantum bit commitment protocol with cheating probability 0.854 and a quantum coin ipping protocol with cheating probability 0.836.

The device independent model

A quantum protocol is said to be device-independent if the reliability of its implementation can be guaranteed without making any assumptions regarding the internal workings of the underlying apparatus. For example, the measurement device could be awed, or the quantum states one sends are dierent than the expected ones. No matter what imperfections exist, we want to guarantee the security of the protocol. This is of interest since lately, there has been some work on how to exploit such imperfections in order to break existing quantum cryptosystems [XQL10, LWW + 10].

In the device independent model, we get the following kind of security:

• If the apparatus used is working according to the specications, the protocol will succeed

• If the apparatus is awed, or even fabricated by an adversary, the protocol will detect it and the protocol will abort. Note that there is no a priori way to check whether some given apparatus is awed or not (the checking device could also be awed). It is not a priori clear, whether the scope of the device independent approach can be extended to cover cryptographic problems with distrustful parties. In particular, this setting presents us with a novel challenge: Whereas in device independent quantum key-distribution Alice and Bob will cooperate to estimate the amount of nonlocality present, for protocols in the distrustful cryptography model, honest parties can rely only on themselves.

In this chapter we show that protocols in this model are indeed amenable to a device independent formulation. We show how to use quantum non-locality and more precisely the GHZ paradox to build a device independent bit commitment protocol where Alice's cheating probability is P * A ≤ 0.854 and Bob's cheating probability is P * B ≤ 3/4. We then use this protocol to construct a device independent coin ipping protocol with cheating probability 0.836.

Device independent formulation

In our device-independent formulation, we assume that each honest party has one or several devices which are viewed as `black boxes'. Each box allows for a classical input s i ∈ {0, 1}, and produces a classical output r i ∈ {0, 1} (the index i designates the box).

We suppose that the boxes are shielded i .e. they cannot communicate with each other. Notice that this can be done experimentally without knowing what is inside the box by appropriately conning it.

The probabilities of the outputs given the inputs for an honest party are hence expressed for n boxes as

P (r 1 , . . . , r n |s 1 , . . . , s n ) = Tr ρ( i Π ri|si )
where ρ is some joint quantum state and Π ri|si is a POVM element corresponding to inputting s i in box i and obtaining the outcome r i . Apart from this constraint we impose no restrictions on the boxes' behavior. In particular, we allow a dishonest party to choose the state ρ (which she can entangle with her system) and the POVM elements Π ri|si for the other party's boxes.

The above assumption amounts to the most general modeling of boxes that 1. satisfy the laws of quantum theory 2. are such that the physical process yielding the output r i in box i depends solely on the input s i , i.e. the boxes cannot communicate with one another.

It is also implicit in our analysis that no unwanted information can enter or exit an honest party's laboratory.

In a fully distrustful setting, where the devices too cannot be trusted, these conditions can be satised by shielding the boxes. Notice also that we do not rely on the fact that the boxes are far away. This observation is important because relativistic causality is by itself sucient for perfect bit commitment and coin ipping [START_REF] Kent | Coin tossing is strictly weaker than bit commitment[END_REF][START_REF] Kent | Unconditionally secure bit commitment[END_REF].

7.2 Device independent quantum bit commitment

The GHZ paradox

Our protocol is based on the Greenberger-Horne-Zeilinger (GHZ) paradox [START_REF] Daniel | Going Beyond Bell's Theorem[END_REF][START_REF] David Mermin | What's wrong with these elements of reality?[END_REF].

The GHZ paradox

• setting: We consider three boxes A, B, and C with binary inputs, s A , s B and s C , and outputs r A , r B and r C , respectively. The boxes do not communicate with each other.

• goal: If the inputs satisfy s A ⊕ s B ⊕ s C = 1, we want r A ⊕ r B ⊕ r C = s A s B s C ⊕ 1.
This relation can be guaranteed if the three boxes implement measurements on a three-qubit GHZ state 1 √ 2 (|000 + |111 ), where s i = 0 (resp. s i = 1) corresponds to measuring in the {|+ , |-} basis (resp. in the {|0 , |1 } basis). In contrast, for classical boxes this relation can only be satised with 3 4 probability at most.

We will also use the CHSH game

The CHSH game

• setting: We consider two boxes A, B that do not communicate with binary inputs s A , s B and binary outputs r A , r B respectively.

• goal: r A ⊕ r B = s A • s B
In the boxes are quantum and get random inputs s A , s B , you cannot win this game with probability greater than cos 2 (π/8). This probability is tight.

1 4 s A ,s B ∈{0,1} Pr[r A ⊕ r B = s A • s B |(s A , s B )] ≤ cos 2 (π/8)
On the other hand, if the boxes are classical, one can win this game with probability at most 3/4.

The protocol

The idea of the protocol is the following. Alice and Bob want to use the GHZ paradox to perform bit commitment. Since only a quantum state can satisfy the GHZ paradox perfectly, they want to use such a state to perform quantum bit commitment as in the non-device independent way. The protocol runs as follows.

no-signaling condition). For cheating Bob, the security is guaranteed without assuming correctness of our quantum computing model.

The non-signaling condition states the following (see for example [BLM + 05])

Pr[r A = x|s A = u] = y∈{0,1} Pr[r A = x, g B = y|s A = u, m B = v] for any v Pr[g B = y|m B = v] = x∈{0,1} Pr[r A = x, g B = y|s A = u, m B = v] for any u
From these non-signalling condition, we have:

X = Pr[0, 0|0, 0] + Pr[0, 1|1, 0] + Pr[1, 1|1, 0] ≤ Pr[0, 0|0, 0] + Pr[1, 0|0, 0] + Pr[0, 1|1, 0] + Pr[1, 1|1, 0] ≤ Pr[g B = 0|m B = 0] + Pr[g B = 1|m B = 0] ≤ 1 Y = Pr[1, 0|0, 1] + Pr[1, 1|1, 1] + Pr[0, 1|1, 1] ≤ Pr[1, 0|0, 1] + Pr[0, 0|0, 1] + Pr[1, 1|1, 1] + Pr[0, 1|1, 1] ≤ Pr[g B = 0|m B = 1] + Pr[g B = 1|m B = 1] ≤ 1 Z = Pr[0, 0|0, 0] + Pr[1, 0|0, 1] ≤ Pr[0, 0|0, 0] + Pr[0, 1|0, 0] + Pr[1, 0|0, 1] + Pr[1, 1|0, 1] ≤ Pr[r A = 0|s A = 0] + Pr[r A = 1|s A = 0] ≤ 1
This allows us to conclude that

P * B = 1 4 (X + Y + Z) ≤ 3/4

Device independent quantum coin ipping

We extend our bit commitment protocol to a coin ipping protocol. We can easily create a bit commitment coin ipping protocol (see Section 4.1.2) with cheating probability P * A = cos 2 (Π/8) and P * B = 3/4. We will now try to equalize these cheating probabilties.

There is no elegant way to equalize these probabilities. We will consider the simplest way where we use several instances of the device independent coin ipping sequentially. Consider our coin ipping protocol S. Consider now the following Protocol

Two fold repetition of S

• Alice and Bob ip a coin using S.

• If the outcome is 0, they run S again and the outcome becomes the outcome of the protocol. If the outcome is 1, they also run S but now,

Alice and Bob exchange behaviors (Alice becomes Bob and Bob becomes

Alice)

It is easy to see that Alice's optimal strategy is to try to enforce 0 in the rst coin ipping to remain Alice in the second one. She wins with probability

cos 4 π 8 + 1 -cos 2 π 8
• 3 4 0.838. On the other hand, Bob wants outcome 1

for the rst coin ip and he can win with probability 3

4 cos 2 π 8 + 1 4 • 3 4 0.827
Notice that this analysis work because we consider sequential repetition of these protocols. Alice and Bob perform the rst coin ip, they get a classical outcome c and then perform the second coin ip. The security of our coin ipping protocol guarantees that during this second coin ip Alice (resp. Bob) has cheating probability at most P * A (resp. P * B ) independently of the outcome of the rst coin.

By repeating this procedure, we manage to equalize the probabilities P * A and P * B and we obtain a device independent coin ipping protocol with cheating probailities equal to 0.836.

Conclusion

By introducing explicit device independent bit commitment and coin ipping protocols, we have shown that two-party cryptographic primitives can be constructed in the device independent setting. The connection between quantum nonlocality and cryptography, rst noted by Ekert twenty years ago [START_REF] Ekert | Quantum cryptography based on bell's theorem[END_REF],

is thus seen to apply also in the very rich eld of cryptography with mutually distrustful parties (and devices), aording us with a new perspective on the connection between cryptography and the foundations of quantum mechanics.

The security guaranteed by our device independent protocols is reasonably close to (though of course greater than) that of the best known device dependent protocols. For the bit commitment protocol we have P * A 0.854 and P * B = 3 4 , as compared to P * A , P * B 0.739 for the optimal device dependent protocol. The coin ipping protocol has a cheating probability of 0.836, as compared to 1 √ 2 ≈ 0.707 in the device dependent case.

It is an open question whether there exists a quantum bit commitment protocol that is secure against dishonest parties limited only by the no-signaling principle, as is the case in quantum key distribution [START_REF] Barrett | No Signaling and Quantum Key Distribution[END_REF][START_REF] Masanes | Universally composable privacy amplication from causality constraints[END_REF].

The loss-tolerant protocol 8.2.1 The loss-tolerant model

In the loss-tolerant model, we have the following constraints:

1. The measurement devices of honest players have losses. This means when performing a measurement, an honest player can also have an outcome ⊥ which corresponds to no outcome. In this case, the state is destroyed. However, if the measurement does not yield the ⊥ then it behaves as a perfect measurement. Especially, there are no errors in the measurement.

2. Honest players should be able to perform the protocol without the use of quantum memory.

Quantum states used

Consider the two orthonormal basis B 0 (λ This protocol is loss tolerant in the sense that a cheating Bob cannot gain advantage in the fact that he can restart the protocol when his measurement fails. This protocol has the following security parameters:

) = {|φ 0 0 (λ) , |φ 0 1 (λ) } and B 1 (λ) = {|φ 1 0 (λ) , |φ 1 1 (λ) } for any λ ∈ R with: |φ 0 0 (λ) = √ λ|0 + √ 1 -λ|1 |φ 0 1 (λ) = √ 1 -λ|0 - √ λ|1 and |φ 1 0 (λ) = √ λ|0 - √ 1 -λ|1 |φ 1 1 (λ) = √ 1 -λ|0 + √ λ|1
• P * A = 1 2 + 1+F(ρ0,ρ1) 4 = 3 4 + √ λ(1-λ) 2 • P * B = 1+∆(ρ0,ρ1) 2 = λ
By taking λ = 0.9, we have P * A = P * B = 0.9

This protocol is a bit-commitment based protocol and is very similar to the protocols described in Section 4. This protocol is closely related to a two-fold parallel repetition of Berlin etal's protocol. Such a repetition would directly improve the bias if we did not require loss tolerance. We add an additional step in this protocol. Alice hides some information about the state she sends using 2 private bits r 1 , r 2 that she reveals as soon as Bob conrms that he measured successfully. As we will show, this makes the protocol loss-tolerant again.

Security proofs

If Alice and Bob are honest then Bob never aborts and x = c ⊕ c is random.

We now analyse separately cheating Alice and cheating Bob.

Cheating Alice

We consider a cheating Alice and an honest Bob.

General framework for checking Bob

The way Bob checks is closely related to the following procedure

• Alice sends a state σ in space Y

• At a later stage, Alice sends a bit i to Bob in space X

• Bob checks that the rst state Alice sends in Y is the state |ψ i for some state |ψ i .

We extend the notion of delty for ensembles of quantum states.

Denition 14 Let E and F any two ensembles of quantum states and let ρ any quantum state. We dene:

F (ρ, E) = max σ∈E F (ρ, σ) F (E, F ) = max σ∈E,σ ∈F F (σ, σ )
We want to show the following:

Proposition 20

Pr[ Alice passes Bob's test ] ≤ F 2 (σ, L)
where L = { j p i |φ j φ j | : 

j p j =
1. Let ξ X = Tr Y ξ and ξ Y = Tr X ξ. Let L c = { i∈{0,1} p i |φ i c φ i c |}
We have the following cases:

• Bob ipped b 1 = b 1 and b 2 = b 2 . Bob does not check anything Alice successfully reveals c with probability 1.

• Bob ipped b 1 = b 1 and b 2 = b 2 . Bob checks the rst register. From Proposition 20, Alice successfully reveals c with probability no greater than F 2 (ξ X , L c ).

• Bob ipped b 1 = b 1 and b 2 = b 2 . Bob checks the second register. Similarly, Alice successfully reveals c with probability no greater than F 2 (ξ Y , L c ).

• Bob ipped b 1 = b 1 and b 2 = b 2 . Bob checks both registers. In the same way, Alice successfully reveals c with probability no greater than F 2 (ξ, L ⊗2 c ).

This gives us

Pr[ Alice successfully reveals c] =

1 4 1 + F 2 (ξ X , L c ) + F 2 (ξ Y , L c ) + F 2 (ξ, L c ⊗2)
We will now need the following Lemma Lemma 7

F (L 0 , L 1 ) ≤ 2 λ(1 -λ)
Proof: Let ρ 0 ∈ L 0 and ρ 1 ∈ L 1 such that F (ρ 0 , ρ 1 ) = F (L 0 , L 1 ). By denition of L 0 , we have 0|ρ 0 |0 = λ and 0|ρ 1 |0 = 1 -λ. This gives us ∆(ρ 0 , ρ 1 ) ≥ 2λ -1. Using the Proposition 9 (Section 3.6), we have

F (ρ 0 , ρ 1 ) ≤ 1 -∆ 2 (ρ 0 , ρ 1 ) ≤ 1 -4λ 2 + 4λ -1 ≤ 2 λ(1 -λ)
We can now prove our main statement Proposition 21

P * A ≤ 1 2 + 1 2 1 + f (λ) 2 2 where f (λ) = 2 λ(1 -λ)
Proof: We suppose w.log that Alice wants nal outcome x = 0. This means that she has to reveal c = c . Let ξ the state sent by Alice and let ξ X = Tr Y ξ and ξ X = Tr Y ξ. Since c is random, we have

P * A = 1 2 c∈{0,1}
Pr[ Alice successfully reveals c]

≤ c∈{0,1} 1 4 1 + F 2 (ξ X , D c ) + F 2 (ξ Y , D c ) + F 2 (ξ, DD c ) ≤ 1 8
(2 + 1 + F (D 0 , D 1 ) + 1 + F (D 0 , D 1 ) + 1 + F (DD 0 , DD 1 )) (P roposition 8)

≤ 1 2 + 1 2 1 4 + 1 2 F (D 0 , D 1 ) + 1 4 F 2 (D 0 , D 1 ) ≤ 1 2 + 1 2 1 + f (λ) 2 2 (f (λ) ≥ F (D 0 , D 1 ) from Lemma 7)

Cheating Bob

The main part here is to show the loss-tolerance of the protocol. This means that a cheating Bob cannot take advantage of the fact that he's allowed to reset the protocol in case one of his measurements failed.

Loss tolerance For a xed c and r 1 , r 2 , let ξ r1,r2 c sent by Alice. We have

ξ r1,r2 c = 1 4 b1,b2∈{0,1} |φ b1 c⊕r1 φ b2 c⊕r2 φ b1 c⊕r1 φ b2 c⊕r2 | = ρ c⊕r1 ⊗ ρ c⊕r2 = u,v∈{0,1} p u,v c⊕r1,c⊕r2 |u, v u, v|
where: if x = y then p y x = λ ; if x = y then p y x = 1 -λ and p u,v c⊕r1,c⊕r2 = p u c⊕r1 • p v c⊕r2 .

When receiving ξ, Bob performs a quantum operation

A(|u, v ) = α u,v |ψ u,v |0 O + β u,v |ω u,v |1 O
where O is the space that Bob measures to determine whether he should announce that he succeeded the measurement or not. The outcome 0 in space O corresponds to the outcome where the protocol continues. In a way, the cheating Bob postselects on the outcome being 0 since if he obtains 1, he decides to start the protocol again. Once Bob successfully measured and after Alice sends r 1 , r 2 , Bob has the following state depending on the operation A he performed averaging on r 1 , r 2 .

ξ A c = 1 S r1,r2∈{0,1} u,v∈{0,1} p u,v c⊕r1,c⊕r2 Γ u,v |r 1 , r 2 , ψ u,v r 1 , r 2 , ψ u,v |
where • The Γ u,v 's are arbitrary real numbers. These numbers depend on the α u,v 's. We assume that Bob can choose any value for these numbers.

• The |ψ u,v 's are not necessarily orthogonal.

• S is a normalization factor.

Proposition 22 ∀A, ∆(ξ A 0 , ξ A 1 ) ≤ ∆(ξ 0 , ξ 1 ) where ξ c = ρ ⊗2 c .

Proof: Let's x A. From the denition of ξ A c and from Proposition 4, we have

∆(ξ A 0 , ξ A 1 ) ≤ 1 2S r1,r2∈{0,1} u,v∈{0,1} |p u,v r1,r2 Γ u,v -p u,v 1⊕r1,1⊕r2 Γ u,v | ≤ 1 2S u,v Γ u,v r1,r2 |p u,v r1,r2 -p u,v 1⊕r1,1⊕r2 | To calculate this sum, if (r 1 , r 2 ) = (u, v) then p u,v r1,r2 = λ 2 and p u,v 1⊕r1,1⊕r2 = (1 -λ) 2 . If (r 1 , r 2 ) = (u, v) then p u,v
r1,r2 = (1 -λ) 2 and p u,v 1⊕r1,1⊕r2 = λ 2 . In the other cases, p u,v r1,r2 = p u,v 1⊕r1,1⊕r2 . This gives us 

∆(ξ A 0 , ξ A 1 ) ≤ 1 2S u,v 2Γ u,v λ 2 -(1 -λ) 2 ≤ 2λ -1 Since, ξ c = λ 2 |cc cc| + λ(1 -λ)(|01 01| + |10 10|) + (1 -λ) 2 |c c c c|, we have ∆(ξ 0 , ξ 1 ) = (λ 2 -(1 -λ) 2 ) = 2λ -1,
P * B (k, λ) = 1/2 + ∆(ρ ⊗k 0 , ρ ⊗k 1 )/2
Using these bounds, we get the following diagram for cheating probabilities of Alice and Bob which shows that the optimal value is achieved using a 2-fold repetition of the protocol. The x-axis corresponds to the number of repetition k. The y-axis corresponds to the minimal cheating probability P (k) when using lower/upper bounds for P * A .

Chapter 9

Relationship between quantum zero-knowledge proofs and quantum bit commitment

Introduction

In this Chapter, we go beyond the scope of information theoretic security and study quantum computational bit commitment schemes. We study complexity assumptions that imply such commitment schemes. We will show that the existence of quantum computationally secure bit commitments is closely related to quantum zero-knowledge classes and quantum interactive proofs.

Zero-knowledge proofs

One of the main goals of modern cryptography is to give a formal and practical way of dening security for given protocols. Some theoretically secure objects such as one-way functions have been dened. Assuming the hardness of certain problems, we can create these secure objects and therefore prove that a given protocol is secure. One can also base security on information-theoretic based arguments. These arguments are much stronger because they do not rely on any computational assumption but are usually much harder to achieve.

It's in this setting that Zero-Knowledge proofs were invented. Consider a problem P that is believed hard. Suppose that one person (the Prover) can prove to another person (the Verier) that the answer to the problem is Y ES without giving any other information. In particular, the Verier will not be able to convince someone else that the answer to this problem is Y ES. In order to create this kind of proofs, the Prover and the Verier must interact with each other.

The condition "Without giving any other information" has been formalized in a simple and elegant way by [START_REF] Goldwasser | The knowledge complexity of interactive proof systems[END_REF] and this security condition has been dened in the computational setting as well as the information-theoretical setting. The true power of Zero-Knowledge started to be understood in [START_REF] Goldreich | Proofs that yield nothing but their validity or all languages in NP have zeroknowledge proof systems[END_REF] where it was shown that all of N P has computational Zero-Knowledge proofs.

To get a better understanding of Zero-Knowledge proofs, let's look at an example. Suppose that the prover creates 2 isomorphic graphs G 1 and G 2 = σ 0 (G 1 ). He wants to convince the verier that these 2 graphs are isomorphic but without giving him any information. In particular, the verier will have no information about σ 0 . Note that the graph isomorphism problem is believed to be a hard and a polynomial time verier is not able to determine by himself if the 2 graphs are isomorphic or not. Consider the following protocol :

Zero-Knowledge protocol for the Graph Isomorphism problem P : Choose a random permutation σ and send G = σ(G 1 ) to the verier.

V : Choose at random b ∈ {1, 2} and send it to the verier P : Send σ to the verier such that σ (G ) = G b .

Without going into deep analysis of this protocol, note the following :

• If the graphs are isomorphic then the prover will always be able to nd a correct σ and the verier will always be convinced.

• If the graphs are non-isomorphic then whatever the prover sends to the verier as a rst graph G , he will not be able to nd a correct σ for both b = 1 and b = 2. His probability of convincing the verier is therefore ≤ 1/2. Note that some techniques can reduce this probability to 1/2 k .

• 

Relationship between quantum commitments and quantum zero-knowledge proofs

We study complexity assumptions under which quantum commitment schemes exist. We only look at worst-case complexity classes, and hence similar to the classical case, we obtain auxiliary-input commitments, i.e. commitments that can be constructed with classical and/or quantum advice. Needless to say, since our commitments are quantum, we dene the computationally binding and hiding properties against quantum poly-time adversaries (that are also allowed to receive an arbitrary quantum auxiliary input).

We extend these results to the quantum case but we are intersted in quantum bit commitment instead of quantum one-way functions. Hence, the equivalent classical assumption is quite strong and, if one believes in derandomization, possibly false.

However, in the quantum setting, it would be surprising if QSZK is actually contained in QMA. We know that QSZK ⊆ QIP[2] [START_REF] Watrous | Zero-knowledge against quantum attacks[END_REF], where QIP[2] is the class of languages that have quantum interactive proofs with two messages (note that one only needs three messages to get the whole power of quantum interactive proofs). So far, any attempt to reduce QIP[2] to QMA or nd any plausible assumptions that would imply it, have not been fruitful. The main reason is that the verier's message cannot be reduced to a public coin message nor to a pure quantum state. His message is entangled with his quantum workspace and this seems inherent for the class QIP[2]. It would be striking if one can get rid of this entanglement and reduce the class to a single message from the prover.

Last, if we weaken the security condition to hold against quantum adversaries with only classical auxiliary input, then the above assumption also becomes weaker, i.e. QSZK ⊆ QCMA, where QCMA is the class where the quantum verier receives a single classical message from the prover.

It is not known whether the condition QSZK ⊆ QMA holds. Recently, it Aaronson showed that HVQSZK A ⊆ QMA A for some oracle A. This means that the inequality holds in some restricted model, and gives some evidence that the inequality holds in general

We then turn our attention to even weaker complexity assumptions about quantum interactive proofs. More precisely, we look at the class QIP (which is believed to be much larger than QSZK) and its relation to QMA and show the following Theorem 12 If QIP ⊆ QMA there exist non-interactive auxiliary-input quantum commitment schemes (both statistically hiding-computationally binding and statistically binding-computationally hiding) with quantum advice.

Note, that QIP = PSPACE [START_REF] Jain | QIP = PSPACE[END_REF] and QMA ⊆ PP [START_REF] Marriott | Quantum Arthur-Merlin games[END_REF], so our assumption is extremely weak, in fact weaker than PSPACE ⊆ PP. Of course, with such a weak assumption we get a weaker form of commitment: the advice is now quantum (and classical). This means that in order for the prover and the verier to eciently perform the commitment for a security parameter n, they need to receive a classical auxiliary input as well as quantum advice of size polynomial in n. This quantum advice is a quantum state on poly(n) qubits that is not eciently constructible (otherwise, we could have reduced the quantum advice to classical advice by describing the ecient circuit that produces it). Moreover, the quantum advice we consider does not create entanglement between the players.

The key point behind this result is the structure of QIP. More precisely, we use the fact that there exists a QIP-complete problem where the protocol has only three rounds and the verier's message is a single coin. The equivalent classical result would say that if three-message protocols with a single coin as a second message are more powerful than MA then commitments exist. Again, classically, if we believe that AM = MA, then this assumption is false.

Taking this assumption to the quantum realm, it becomes `almost' true, unless PSPACE = PP.

Let us also note that all our commitments are non-interactive, a feature that could be useful for applications. Last, from the QIP ⊆ QMA assumption we construct both statistically hiding-computationally binding commitments and statistically binding-computationally hiding ones, whose constructions are conceptually dierent. In order to prove the security of the second construction we prove a parallel repetition result for protocols based on the swap test that may be of independent interest. From the QSZK ⊆ QMA assumption we show only the construction of statistically binding-computationally hiding commitments, but one can also similarly construct statistically hiding-computationally binding commitments.

Quantum interactive complexity classes

The class QMA, rst studied in [START_REF] Watrous | Succinct quantum proofs for properties of nite groups[END_REF], is informally the class of all problems that can be veried by a quantum polynomial-time verier with access to a quantum proof.

Denition 15 A language L is in QMA if there is poly-time quantum verier V such that 1. if x ∈ L, then there exists a state ρ such that Pr

[V (x, ρ) accepts] ≥ a, 2. if x ∈ L, then for any state ρ, Pr[V (x, ρ) accepts] ≤ b,
where a, b are any eciently computable functions of |x| such that such that |a -b| is at least an inverse polynomial [START_REF] Yu | Classical and Quantum Computation[END_REF][START_REF] Marriott | Quantum Arthur-Merlin games[END_REF].

If in the above denition the witness state ρ is restricted to be a classical witness while keeping a quantum poly-time verier, then the class is called QCMA.

The class QIP, rst studied in [START_REF] Watrous | PSPACE has constant-round quantum interactive proof systems[END_REF], consists of those problems that can be interactively veried in quantum polynomial time. A recent result has shown that QIP = PSPACE [START_REF] Jain | QIP = PSPACE[END_REF].

Denition 16 A language L ∈ QIP if there is a polynomial time quantum algorithm V exchanges quantum messages with a computationally unbounded prover P such that, for any input x 1. if x ∈ L, then there exists a prover P such that, (V, P ) accepts with probability at least a.

2. if x ∈ L, then for any prover P , (V, P ) accepts with probability at most b.

As in the case of QMA, we need only require that |a -b| is at least an inverse polynomial in the input size [START_REF] Kitaev | Parallelization, amplication, and exponential time simulation of quantum interactive proof systems[END_REF].

One key property of QIP is that any quantum interactive proof system can be simulated by one using only three messages [START_REF] Kitaev | Parallelization, amplication, and exponential time simulation of quantum interactive proof systems[END_REF]. This is not expected to hold in the classical case, as it would imply that PSPACE = AM. This property allows us to dene simple complete problems involving quantum circuit for the class.

In what follows we consider quantum unitary circuits C, that output a state in the space O ⊗G. These spaces can be dierent for each circuit. O corresponds to the output space and G to the garbage space. For any circuit C, we dene |φ C = C|0 in the space O ⊗G to be the output of the circuit before the garbage space is traced out, and ρ C = Tr G (|φ C φ C |) to be the mixed state output by the circuit after the garbage space is traced out. We will also consider mixed-state quantum circuits C,that take as input a mixed quantum state σ and output a mixed quantum state, denoted by C(σ). Note that circuits of this form can (approximately) represent any quantum channel. The size of a circuit C is equal to the number of gates in the circuit plus the number of qubits used by the circuit. This is denoted |C |. We will also use the notation |X | to refer to the size of a Hilbert space X , which is the number of qubits needed to represent a vector in the space, i.e. |X | = log 2 dim X . We now describe some complete problems for the class.

Denition 17 (QCD Problem) Let µ a negligible function. We dene the promise problem Quantum Circuit Distinguishability QCD = {QCD Y , QCD N } as follows

• Input: two mixed-state quantum circuits C 0 , C 1 of size n.

• (C 0 , C 1 ) ∈ QCD Y ⇔ C 0 -C 1 ≥ 2 -µ(n) • (C 0 , C 1 ) ∈ QCD N ⇔ C 0 -C 1 ≤ µ(n) Quantum Circuit Distinguishability is QIP-complete [RW05].

A new complete problem for QIP

In this Section, we construct a new problem which is complete for QIP.

Denition 18 (Π Problem) Let µ a negligible function. We dene the following promise problem Π = {Π Y , Π N }:

• Input: two mixed-state quantum circuits C 0 , C 1 of size n that take as input quantum states in D(X ⊗ Y) and output a single bit .

• (C 0 , C 1 ) ∈ Π Y ⇔ ∃ρ 0 , ρ 1 ∈ D(X ⊗ Y) with tr X (ρ 0 ) = tr X (ρ 1 ) such that 1 2 Pr[C 0 (ρ 0 ) = 1] + Pr[C 1 (ρ 1 ) = 1] = 1 • (C 0 , C 1 ) ∈ Π N ⇔ ∀ρ 0 , ρ 1 ∈ D(X ⊗ Y) with tr X (ρ 0 ) = tr X (ρ 1 ), we have 1 2 Pr[C 0 (ρ 0 ) = 1] + Pr[C 1 (ρ 1 ) = 1] ≤ 1 2 + µ(n)
Proposition 24 The promise problem Π problem is also complete for QIP Proof: We prove this proposition via a reduction from the Close Images problem, which is complete for QIP [START_REF] Kitaev | Parallelization, amplication, and exponential time simulation of quantum interactive proof systems[END_REF]. This problem can be dened as Problem 13 (Close Images) The input to the problem is two mixed-state

quantum circuit Q 0 and Q 1 that implement transformations from D(I) to D(O),
where n is the number of input qubits to the circuits and

|(Q 0 , Q 1 )| ∈ poly(n).
The promise problem is to distinguish the two cases:

Yes: Q 0 (σ 0 ) = Q 1 (σ 1 ) for some σ 0 , σ 1 ∈ D(I), No: F(Q 0 (σ 0 ), Q 1 (σ 1 )) ≤ 2 -n for all σ 0 , σ 1 ∈ D(I).
Before giving the reduction, we rst observe that the problem Π is in QIP. This is done using the following protocol:

Protocol 14 On input (C 0 , C 1 ) an instance of Π.

1. P sends the portion of ρ 0 that lies in Y.

2. V chooses i ∈ {0, 1} at random and sends it to P .

3. P sends a state in X so that V has the state ρ i . V computes C i (ρ i ) and accepts if and only if the output is 1.

Note that in Step 3 the honest prover can always send a state in X so that the verier holds ρ i . This follows from the unitary equivalence of all purications of the state tr X ρ 0 = tr X ρ 1 .

Consider the probability that the verier accepts in Protocol 14. At Step 3 the Verier holds one of two states ρ 0 and ρ 1 with the property that tr X ρ 0 = tr X ρ 1 , because the Prover is forced to commit to the portion of the state in Y before learning i. Notice also that the Prover can send one of two arbitrary states satisfying the reduced-state property. Since the Verier runs each of the two circuits with uniform probability, he can be made to accept with probability exactly 1 2 max

ρ 0 ,ρ 1 ∈D(X ,Y) tr X ρ 0 =tr X ρ 1 Pr[C 0 (ρ 0 ) = 1] + Pr[C 1 (ρ 1 ) = 1] .
This implies that if (C 0 , C 1 ) ∈ Π Y the V accepts with probability at least 1µ(n), and if (C 0 , C 1 ) ∈ Π N , then V accepts with probability at most 1/2 + µ(n), which puts the problem Π into QIP.

To see that the problem is hard for QIP, let Q 0 , Q 1 be the circuits from an instance of the Close Images problem. By the standard technique of moving the measurements to the end of the circuit, we may assume that these circuits are given as unitary circuits U 0 , U 1 :

I ⊗ A → O ⊗ G such that Q i (σ) = tr G U i (σ ⊗ |0 0|)U † i ,
where A corresponds to the space of any ancillary qubits introduced in the |0 state. From these circuits we construct the circuits C 0 , C 1 :

D(O ⊗ G) → D(A)
given by C i (ρ) = tr I U † i ρU i , which is, the circuit C i simply runs the unitary U i in reverse and traces out the space I. To obtain the nal circuits C i we simply measure the output of C i in the computational basis and output 1 if the result is |0 and 0 otherwise. Informally, the circuit C i simply runs Q i backwards and accepts (outputs 1) if and only if the result is a valid initial conguration for the circuit Q i , i.e. the space of the `ancillary' qubits in A is |0 . The pair (C 0 , C 1 ) is the constructed instance of Π.

If (Q 0 , Q 1 ) is a yes-instance of Close Images, then (Q 0 , Q 1 ) ∈ Π Y . To see this, take the states σ 0 , σ 1 ∈ D(I) such that Q 0 (σ 0 ) = Q 1 (σ 1 ). Let ρ i = U i (σ i ⊗|0 0|)U †
i be the state obtained by running the circuit Q i and not tracing out the space G. This implies that the reduced states of ρ 0 and ρ 1 on the space O are equal. Furthermore, notice that

C i (ρ i ) = tr I U † i ρ i U i = tr I U † i (U i (σ i ⊗ |0 0|)U † i )U i = |0 0| 
, and so on these states the circuits C 0 , C 1 output 1 with certainty, which implies that (C 0 , C 1 ) ∈ Π Y .

On the other hand, if (Q 0 , Q 1 ) is a no-instance of Close Images, we show that the constructed instance belongs to Π N . This argument is more technical. First we compute the acceptance probability of C i on a state ρ, which is given by Pr

[C i (ρ) = 1] = tr(|0 0| tr I (U † i ρU i )) = F(|0 0|, tr I U † i ρU i ) 2 .
We then apply Uhlmann's theorem to conclude that, for some xed purication

|φ ∈ A ⊗ I ⊗ F of U † i ρU i , this quantity is equal to max |ψ ∈I⊗F F(|0 0| ⊗ |ψ ψ|, |φ φ|) 2 ≤ max σ∈D(I) F(|0 0| ⊗ σ, U † i ρU i ) 2 = max σ∈D(I) F(U i |0 0| ⊗ σU † i , ρ) 2 ≤ max σ∈D(I) F(C i (σ), tr G ρ) 2 ,
where we have made repeated use of the monotonicity of the delity with respect to the partial trace. Using this result, we have, for any two states ρ 0 , ρ

1 such that tr G ρ 0 = ξ = tr G ρ 1 Pr[C 0 (ρ 0 ) = 1] + Pr[C 1 (ρ 1 ) = 1] ≤ max σ0,σ1 F(C 0 (σ 0 ), ξ) 2 + F(C 1 (σ 1 ), ξ) 2 ≤ 1 + max σ0,σ1 F(C 0 (σ 0 ), C 1 (σ 1 )) ≤ 1 + 2 -n ,
where the penultimate inequality is by Lemma 8. This implies that (Q 0 , Q 1 ) ∈ Π N , and since this reduction is easily implemented in polynomial time, this implies that the problem Π is complete for QIP.

Quantum zero-knowledge proofs

The complexity class QSZK, introduced in [Wat02b], is the class of all problems that can be interactively veried by a quantum verier who learns nothing beyond the truth of the assertion being veried. In the case that the verier is honest, i.e. does not deviate from the protocol in an attempt to gain information, this class can be dened in the following way.

Denition 19 A language L ∈ QSZK HV if 1. There is a quantum interactive proof system for L.

2. The state of the verier in this proof system after the sending of each message can be approximated, within negligible trace distance, by a polynomialtime preparable quantum state.

If we insist that Item 2 holds even when the Verier departs from the protocol, the result is the class QSZK. Watrous has shown that these two notions give the same complexity class, i.e. that QSZK HV = QSZK [Wat09].

This denition of QSZK is somewhat informal. Fortunately this class has complete problems. This will allow us to work with this class without considering a completely formal denition.

Denition 20 (QSD Problem) Let µ a negligible function. We dene the promise problem QSD = {QSD Y , QSD N } as follows

• Input: two unitary quantum circuits C 0 , C 1 of size n and m output qubits.

• (C 0 , C 1 ) ∈ QSD Y ⇔ ρ C0 -ρ C1 tr ≥ 2 -µ(n) • (C 0 , C 1 ) ∈ QSD N ⇔ ρ C0 -ρ C1 tr ≤ µ(n)
The promise problem QSD is QSZK-complete [START_REF] Watrous | Limits on the power of quantum statistical zeroknowledge[END_REF]. 9.1.6 Quantum computational distinguishability

The following denitions may be found in [START_REF] Watrous | Zero-knowledge against quantum attacks[END_REF].

Denition 21 Two mixed states ρ 0 and ρ 1 on m qubits are (s, k, ε)-distinguishable if there exists a mixed state σ on k qubits and a quantum circuit D of size s that performs a binary outcome measurement on (m + k) qubits, such that

| Pr[D(ρ 0 ⊗ σ) = 1] -Pr[D(ρ 1 ⊗ σ) = 1]| ≥ ε.
If ρ 0 and ρ 1 are not (s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1} * and let an auxiliary-input state ensemble be a collection of mixed states {ρ x } x∈I on r(|x|) qubits for some polynomial r. These states have the further property that given x they can be generated in time t(|x|), for some polynomial t.

Denition 22 Two auxiliary-input state ensembles {ρ 0

x } and {ρ 1 x } on I are quantum computationally indistinguishable if for all polynomials p, s, k and for all but nitely many x ∈ I, the states ρ 0

x and ρ 1 x are (s(|x|), k(|x|), 1/p(|x|))indistinguishable.

The ensembles {ρ 0 x } and {ρ 1 x } on I are quantum computationally distinguishable if there exist polynomials p, s, k such that for all x ∈ I, the states ρ 0 x and ρ 1 x are (s(|x|), k(|x|), 1/p(|x|))-distinguishable.

If two ensembles are computationally distinguishable, then for all x there exists an ecient procedure in |x| that distinguishes ρ 0 x and ρ 1

x with probability at least 1/2 + 1/p(|x|). Note that this is not a uniform procedure: the circuit that distinguishes the two states may depend on x.

We also dene the statistical case Denition 23 Two auxiliary-input state ensembles {ρ 0

x } and {ρ 1 x } on I are quantum statistically indistinguishable if for any polynomial p and for all but nitely many x ∈ I,

||ρ 0 x -ρ 1 x || tr ≤ 1 p(|x|)
Denition 24 Two admissible superoperators Φ 0 and Φ 1 from t qubits to m qubits are (s, k, ε)-distinguishable if there exists a mixed state σ on t + k qubits and a quantum circuit D of size s that performs a binary outcome measurement on (m + k) qubits, such that

| Pr[D((Φ 0 ⊗ 1 k )(σ)) = 1] -Pr[D((Φ 1 ⊗ 1 k )(σ)) = 1]| ≥ ε,
where 1 k denotes the identity superoperator on k qubits. If the superoperators Φ 0 and Φ 1 are not (s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1} * and let an auxiliary-input superoperator ensemble be a collection of superoperators {Φ x } x∈I from q(|x|) to r(|x|) qubits for some polynomials q, r, where as in the case of state ensembles given x the superoperators can be performed eciently in |x|.

Denition 25 Two auxiliary-input superoperator ensembles {Φ 0

x } and {Φ 1

x } on I are quantum computationally indistinguishable if for all polynomials p, s, k and for all but nitely many x ∈ I, Φ 0

x and Φ 1 x are (s(|x|), k(|x|), 1/p(|x|))indistinguishable.

Two auxiliary-input state ensembles {Φ 0 x } and {Φ 1 x } on I are quantum computationally distinguishable if there exist polynomials p, s, k such that for all x ∈ I the superoperators Φ 0

x and Φ 1 x are (s(|x|), k(|x|), 1/p(|x|))-distinguishable.

If two superoperator ensembles are computationally distinguishable then there exists an ecient procedure (in |x|) to distinguish them with probability at least 1/2 + 1/p(|x|) for some polynomial p. As in the case of state ensembles, this procedure is not necessarily uniform.

If the property of being (s, k, ε)-indistinguishable holds for all s, then we call an ensemble statistically-indistinguishable.

Let us note, that these denitions provide a strong quantum analogue of the classical non-uniform notion of computational indistinguishability, since the non-uniformity includes an arbitrary quantum state as advice to the quantum distinguisher.

We now dene a new notion that we will use later on. Intuitively, we say that two circuits that take as input mixed states on the space X ⊗ Y and output a single bit are witnessable if there exist two input states that are equal on the space Y that are accepted respectively from the two circuits with high enough probability. More formally, Denition 26 Two superoperators Φ 0 and Φ 1 from L(X ⊗ Y) to a single bit are (s, k, p)-witnessable if there exist two input states ρ 0 , ρ 1 ∈ L(X ⊗ Y) such that 1.

1 2 Pr[Φ 0 (ρ 0 ) = 1] + Pr[Φ 1 (ρ 1 ) = 1] ≥ 1/2 + 1 p(n)
2. there exists a state σ ∈ L(W) with |W| = k and an admissible superoperator Ψ : L(W ⊗ X ) → L(X ) of size s, such that

ρ 1 = (Ψ ⊗ I Y )(σ ⊗ ρ 0 )
where I Y denotes the identity superoperator on L(Y).

If the superoperators Φ 0 and Φ 1 are not (s, k, p)-witnessable, then they are (s, k, p)-unwitnessable.

Let I ⊆ {0, 1} * and let an auxiliary-input superoperator ensemble be a collection of superoperators {Φ x } x∈I from q(|x|) to 1 bit for some polynomial q, where given x the superoperators can be performed eciently in |x|.

Denition 27 Two auxiliary-input superoperator ensembles {Φ 0

x } and {Φ 1

x } on I are quantum computationally witnessable if there exist polynomials s, k, p such that for all x ∈ I the superoperators Φ 0 x and Φ 1 x are (s(|x|), k(|x|), p(|x|))witnessable.

Two auxiliary-input superoperator ensembles {Φ 0 x } and {Φ 1 x } on I are quantum computationally unwitnessable if for all polynomials s, k, p and for all but nitely many x ∈ I the superoperators Φ 0

x and Φ 1 x are (s(|x|), k(|x|), p(|x|))unwitnessable.

Quantum commitments

Denition 28 A quantum commitment scheme (resp. with quantum advice) is an interactive protocol Com = (S, R) with the following properties

• The sender S and the receiver R have common input a security parameter 1 n (resp. both S and R have a copy of a quantum state |φ of poly(n) qubits). The receiver has private input the bit b ∈ {0, 1} to be committed. Both S and R are quantum algorithms that run in time poly(n).

• In the commit phase, the sender S interacts with the receiver R in order to commit to b.

• In the reveal phase, the sender S interacts with the receiver R in order to reveal b. The receiver R decides to accept or reject depending on the revealed value of b and his nal state. We say that S reveals b, if R accepts the revealed value. In the honest case, R always accepts.

A commitment scheme is non-interactive if both the commit and the reveal phase consist of a single message from the sender to the receiver.

When the commit phase is non-interactive, we call ρ b S the state sent by the honest sender during the commit phase if his input bit is b. where each |φ i , |φ j are orthogonal for i = j (for |φ 0 and |φ 1 this follows from the fact that the reduced states on A 1 are orthogonal). Since the goal is to pass swap tests with |φ 0 and |φ 1 , we can easily see that we can take α 2 = β 2 = 0 without loss of generality, since this state will only have larger probability of passing the tests. As one nal notational convenience, let p i = |α i | 2 and q i = |β i | 2 .

Before we analyze the probability that the swap tests pass, we show that the probabilities p 0 and q 1 satisfy p 0 + q 1 ≤ 1. By Equation (9.1) we have By a similar calculation, we have

q 1 = |β 1 | 2 ≤ F(tr B1 |φ 1 φ 1 |, tr B1S2...S k+1 R |ψ 1 ψ 1 |) 2 .
Then, using the fact that tr B1S2... Let T 0 (ξ) be the probability that a state ξ ∈ S 2 ⊗ • • • ⊗ S k+1 ⊗ R passes all swap tests in S 2 ⊗ • • • ⊗ S k+1 with |φ 0 . We include the space R for convenience We introduce the states ρ i given by the (renormalized) projection of ρ 0 and ρ 1 into the spaces spanned by Π + and Π -, respectively. Since these are orthogonal projectors the states ρ 0 and ρ 1 are orthogonal. Notice also that ρ 0 -ρ 0 tr = tr |ρ 0 -ρ 0 | = tr(Γ + (ρ 0 -ρ 0 ))-tr(Γ -(ρ 0 -ρ 0 )) = 2 tr(Γ + (ρ 0 -ρ 0 )), where Γ + , Γ -are the projectors onto the positive and negative eigenspaces of ρ 0 -ρ 0 , and we have also used the fact that tr(ρ 0 -ρ 0 ) = 0, which implies that the positive portion of ρ 0 -ρ 0 has the same trace as the negative portion. Consider the positive eigenspace of ρ 0 -ρ 0 . This is precisely the subspace spanned by the support of ρ 0 that lies outside the support of ρ 0 , i.e. this is exactly the space spanned by the projector Π -= Γ + . Using this observation ρ 0 -ρ 0 tr = 2 tr(Γ + (ρ 0 -ρ 0 )) = 2 tr(Π -ρ 0 ) ≤ 2ε, (9.6) where we have used the fact that tr(Π -ρ 0 ) = 1 -tr(Π + ρ 0 ) ≤ ε. A similar argument establishes the fact that ρ 1 -ρ 1 tr = 2 tr(Π + ρ 1 ) ≤ 2ε.

(9.7) Finally, we note that Equations (9.6) and (9.7) and Uhlmann's theorem imply that there exist purications |φ 0 , |φ 1 ∈ A ⊗ B of ρ 0 and ρ 1 such that between σ b and one of two almost orthogonal states. Furthermore, these two states have the property that the reduced states on the space O have negligible delity. Notice also that the Sender may send one of two states σ 0 and σ 1 depending on the value that he wishes to reveal. Since we are interested in the sum of the probabilities that the Sender can successfully reveal both 0 and 1 in a given instance of the protocol, we may assume that the rst message stays the same, i.e. that tr G σ 0 = tr G σ 1 . This is exactly the condition in Lemma 13 with the exception that instead of the orthogonality of the states |φ i we have only approximate orthogonality. We are able to overcome this obstacle with the following Lemma. This Lemma shows that we may replace the two states that are almost orthogonal with nearby states that have exactly the orthogonality property required by Lemma 13, which we can in turn use to show that the protocol repeated k times is statistically binding. To do so, notice that the two states |φ 0 and |φ 1 , which are given by applying the circuits Q 0 and Q 1 to the state |φ * |0 , satisfy

φ i |φ i = F(ρ i , ρ i ) ≥ 1 -ε.
|φ 0 φ 0 | -|φ 1 φ 1 | tr ≥ tr G (|φ 0 φ 0 | -|φ 1 φ 1 |) tr = ((Q 0 -Q 1 ) ⊗ I)(|ψ * ψ * |) tr = Q 0 -Q 1 ≥ 2 -µ(n),
These states are not orthogonal, but are nearly so. We may, however, use Lemma 14 to obtain |φ 0 and |φ 1 that have the orthogonality property required by Lemma 13 that have inner product at least 1 -µ(n) with the original states |φ 0 and |φ 1 , respectively.

We now relate the probability that the state ρ passes our Test 0, i. since, for the Test 0 and Test 1 we can use Lemma 13 for the perfect case. This quantity is negligibly larger than 1/2, as we may take k any polynomial and µ is a negligible function.

The proposition gives the desired result 9.4 Quantum (b c , h s )-commitments unless QIP ⊆ QMA Theorem 17 If QIP ⊆ QMA, then there exists a non-interactive auxiliary-input quantum (b c , h s )-commitment scheme with quantum advice on an innite set I.

• Let n = |(Q 0 , Q 1 )| be the security parameter. The sender receives as quantum advice ρ 0 , ρ 1 , with each ρ i in space X i ⊗ Y i such that:

1. tr X ρ 0 = tr X ρ 1

1

2 Pr[Q 0 (ρ 0 ) = 1] + Pr[Q 1 (ρ 1 ) = 1] ≥ 1 -µ(n)

For consistency with our denitions, we also suppose that the Receiver gets a copy of ρ 0 , ρ 1 . These states will not be used in the honest case and moreover they will not harm the security for a cheating Receiver.

• (Commit phase) To commit to bit b, the Sender sends the state in register Y b to the Receiver.

• (Reveal phase) To reveal b, the Sender sends the state in register X b . The Receiver applies Q b on the space X b ⊗ Y b and accepts if he gets 1.

Statistical hiding property

The states that the receiver gets in the commit phase satisfy tr X ρ 0 = tr X ρ 1 and hence our scheme is perfectly hiding.

Computationally binding property The property follows from the fact that the two auxiliary-input superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈I and {Q 1 } (Q 0 ,Q 1 )∈I are quantum computationally unwitnessable. Let us x (Q 0 , Q 1 ) ∈ I with |(Q 0 , Q 1 )| = n. After the reveal phase, the Receiver has a state ρ b * in space X ⊗ Y, where b is the revealed bit. Since we consider dishonest senders S *

(Q 0 ,Q 1 )
that are quantum polynomial time machines with quantum advice, the states ρ 0 * and ρ 1 * satisfy the property 2 of Denition 26. Hence, for all but nitely many (Q 0 , Q 1 ) ∈ I they must not satisfy property 1 of Denition 26. Then, for such (Q 0 , Q 1 ) ∈ I we have From the above two Lemmata, we conclude that unless QIP ⊆ QMA there exists a non-interactive auxiliary-input quantum (b c , h s )-commitment scheme with quantum advice on innite set I. 3. Allow bit commitment up to cheating probabilities of 0.739

At the end of the rst part, we also tried to extend these bounds for quantum oblivious transfer. We derived the bounds for quantum bit commitment to obtain -unfortunately not tight -bounds for quantum oblivious transfer.

Reducing oblivious transfer to quantum bit commitment presents the following underlying question

If I can get some information about a bit x 0 and I can get some information about a bit x 1 , what information can I get about the two bits (x 0 , x 1 ) ?

The Learning in Sequence Lemma that we showed in Chapter 6 partially answers this question by stating that if someone can guess bit x 0 with probability cos 2 (α 0 ) and x 1 with probability cos 2 (α 1 ) then he can learn both with with probability at least cos 2 (α0)+cos 2 (α1) 2 cos 2 (α 0 + α 1 ). This is in sharp contrast with the classical case where we know that one can learn both bits with probability at least cos 2 (α 0 ) cos 2 (α 1 ) which is much higher than our quantum bound. Even if we only show lower bounds for the learning of (x 0 , x 1 ), we can construct some examples where the probability of learning both bits is strictly smaller than cos 2 (α 0 ) cos 2 (α 1 ) when information about x 0 and x 1 is encoded into a quantum state. This also seems to be a fundamental characteristic of quantum mechanics as a carrier of classical information. In future work, we plan to extend this study and show how such learning lemmata are related to quantum non-locality.

We then tried to base quantum cryptographic primitives solely on quantum non-locality. In this setting, we showed that Alice and Bob can use a quantum state to perform cryptographic tasks even without trusting their quantum apparatus and without trusting each other. This is in contrast with quantum key distribution based on non-locality where Alice and Bob cooperate against a third party, Eve. It is a new application of non-locality and it is interesting that quantum non-locality can be used even without the cooperation of two honest parties.

One important thing to notice is that we do not obtain the same bounds in this setting than in the general setting. The question that arises from this is Can we build optimal quantum coin ipping and quantum bit commitment protocols that rely only on the violation of Bell's inequalities ?

We then presented a quantum coin ipping protocol that was tolerant to losses. Even if the obtained protocol cannot be used for practical applications because of the high bias, the method we used to deal with losses are ecient and generic and we feel that this method can be used for many other protocols.

The remaining question is to nd similar techniques against quantum noise.

It is relatively easy to deal with noise when Alice and Bob cooperate against a third party or if one of the players is physically bounded. However, there are no methods to deal with noise in the most general case. It is not a priori clear whether dealing with noise in the general setting is even possible with good parameters.

Finally, we showed under what conditions computational bit commitment was possible. We extended classical relationships between bit commitment and zero-knowledge protocols to the quantum case. We showed how the complete problem for quantum zero-knowledge protocols and the ability to solve it in QMA is related to the existence of quantum bit commitment schemes.

It will be instructive to get a better understanding of quantum zero-knowledge protocols and quantum Merlin-Arthur protocols. If we nd some notable dierence in these quantum classes compared to their classical counterparts, it might be possible to construct quantum computational commitments from weak computational assumptions.
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  ce cas, nous voulons faire en sorte qu'Alice ne puisse pas tricher pour que la pièce tombe sur 'PILE' et d'autre part que Bob ne puisse pas tricher pour que la pièce tombe sur 'FACE'. Contrairement au pile-ou-face usuel, Alice peut forcer le résultat 'FACE' avec une probabilité de 1 et Bob peut forcer le résultat 'PILE' avec une probabilité de 1. Après une série de travaux [Moc04, Moc05, Moc07], Mochon a montré comment construire un pile-ou-face faible quantique, qui est presque parfaitement sécurisé. Par opposition à cette notion de pile-ouface faible, nous appellerons le pile-ou-face standard le pile-ou-face fort. Même pour cette dénition faible, il est impossible de construire un tel protocole en informatique classique. Nous avons amélioré les limites physiques pour des primitives cryptographiques quantiques. Dans le chapitre 3, nous étudions le pile-ou-face quantique. Nous y montrons comment construire un protocole de pile-ou-face quantique avec une probabilité de tricher arbitrairement proche de 1 √ 2

2 .

 2 Pour montrer ce théorème, nous nous servons du pile-ou-face faible de Mochon. Nous construisons un protocole classique où nous utilisons ce pile-ouface faible comme un sous-protocole. Cela signie que la capacité d'eectuer un pile-ou-face quantique fort avec une probabilité de tricher de 1 √ 2 vient de la possibilité d'eectuer un pile-ou-face quantique faible (presque) optimal. De manière équivalente, si nous pouvions construire un pile-ou-face faible classiquement alors notre construction donnerait un pile-ou-face classique fort avec une probabilité de tricher de 1 √ Nous étudions ensuite les limites physiques de la mise-en-gage de bit. Avant notre travail, les bornes pour le pile-ou-face quantique et la mise-en-gage de bit quantique étaient les mêmes. On ne savait pas si ces deux primitives avaient la même borne optimale. Dans le chapitre 4, nous montrons que ce n'est pas le cas. Nous montrons d'abord une meilleure borne inférieure pour la mise-en-gage de bit quantique.

  la transmission inconsciente ont été étudiées dans [SSS09]. Les bornes obtenues sont exprimées en terme d'entropie pour une notion un peu plus forte de la transmission inconsciente. Ces bornes ne sont pas comparables avec les bornes obtenues dans cette thèse Nouvelles bornes pour les primitives cryptographiques quantiques. Modèles pratiques pour la cryptographie quantique à deux joueurs Dans la première partie, nous avons étudié les possibilités et les limites de la cryptographie quantique avec une sécurité inconditionnelle. Nous allons maintenant étudier la mise en ÷uvre pratique de ces primitives. Ceci a largement été fait pour la distribution de clé quantique ainsi que pour les primitives cryptographiques quantiques mais sans sécurité inconditionnelle. Notre objectif est de mettre en ÷uvre ces primitives avec une sécurité inconditionnelle. Bien sûr, nos résultats seront plus faibles que ceux obtenus pour la distribution quantique de clé, puisque nous sommes limités par les bornes inférieures décrites précédement, et donc nos protocoles auront toujours des probabilités de tricher constantes. 1.4.1 Le modèle indépendant-du-dispositif Un protocole quantique est dit indépendant-du-dispositif si la abilité de sa mise en ÷uvre peut être garantie sans faire aucune supposition concernant le fonctionnement interne des appareils quantiques utilisés. Le modèle indépendant-du-dispositif supprime les mécanismes de triche et de nombreux modes de défaillance, comme, par exemple, celles qui sont exploitées dans [XQL10, LWW + 10]. En fait, un protocole indépendant-du-dispositif, en principe, reste solide même si les appareils de mesure et de création des états quantiques ont été fabriqués par un adversaire. Jusqu'à présent, les protocoles indépendant-dudispositif ont été proposés pour la distribution de clés quantiques [AGM06, ABG + 07, MY03, BHK05], la génération de nombres aléatoires [Col09, PAM + 10], l'estimation d'état [BLM + 09], et l'auto-vérication des ordinateurs quantiques [MMMO06]. Il n'est pas clair a priori, s'il est possible de construire des primitives cryptographiques à 2 joueurs dans ce modèle. Cette contrainte nous propose un nouveau dé: Dans la distribution quantique de clés indépendant-du-dispositif, Alice et Bob vont coopérer pour obtenir une clé inconnue d'une tierce personne, Ève. Dans les protocoles à deux joueurs, les joueurs ne se font pas conance et ne peuvent compter que sur eux-mêmes. Dans le chapitre 6, nous montrons la possibilité de réaliser des primitives cryptographiques à deux joueurs dans ce modèle. Nous présentons un protocole indépendant-du-dispositif pour la mise-en-gage de bit, dans lequel, Alice et Bob peuvent tricher avec une probabilité au plus cos 2 (Π/8) ≈ 0, 854. Nous utilisons ensuite ce protocole pour construire un pileou-face indépendant-du-dispositf avec une probabilité de tricher plus faible que 0, 836.
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  4.1.1 DenitionIn a coin ipping protocol, we call a round of communication one message from Alice to Bob and one message from Bob to Alice. We suppose that Alice always sends the rst message and Bob always sends the last message. The protocol is quantum if we allow the parties to send quantum messages and perform quantum operations. A player is honest if he or she follows the protocol. A cheating player can deviate arbitrarily from the protocol but still outputs a value at the end of it.Denition 3 A strong coin ipping protocol between two parties Alice and Bob is a protocol where Alice and Bob interact and at the end, Alice outputs a value c A ∈ {0, 1, Abort} and Bob outputs a value c B ∈ {0, 1, Abort}. If c A = c B , we say that the protocol outputs c = c A = c B . If c A = c B then the protocol outputs c = Abort. A strong coin ipping protocol with bias ε (SCF (ε)) has the following properties • If Alice and Bob are honest then Pr [c = 0] = Pr [c = 1] = 1/2 • If Alice cheats and Bob is honest then P

  4.2.1 DenitionA weak coin ipping protocol between two parties Alice and Bob is a protocol where Alice and Bob interact and at the end, Alice outputs a value c A ∈ {0, 1} and Bob outputs a value c B ∈ {0, 1}. If c A = c B , we say that the protocol outputs c = c A . If c A = c B then the protocol outputs c = Abort. The dierence with Strong coin ipping is that the players do not Abort. This is because a player that wants to Abort can always declare victory rather than aborting without reducing the security of the protocol. Denition 4 A (balanced) weak coin ipping protocol with bias ε (W CF (1/2, ε))

ρ

  AB the joint output state of Alice and Bob in O A ⊗ O B . In this setting, we dene a weak coin ipping as follows Denition 6 A (balanced) weak coin ipping protocol with bias ε (W CF (1/2, ε)) has the following properties • The 0 outcome corresponds to Alice winning. The 1 outcome corresponds to Bob winning. • If Alice and Bob are honest then 00|ρ AB |00 = 11|ρ AB |11 = 1/2

  Proof: Alice and Bob are honest If Alice and Bob are honest then the protocol never aborts. We have Pr[ Alice wins ] = z1+z2 2 and Pr[ Bob wins ] = 1 -z1+z2 2 . Alice cheats and Bob is honest Let x = Pr[Alice wins P] ; y = Pr[Bob wins P]; u = Pr[Alice wins P 2 | Alice wins P]; v = Pr[Alice wins P 1 | Bob wins P]. We know the following inequalities concerning these probabilities:

  know how to construct such protocols from balanced protocols using Proposition 11. The coin ipping protocol becomes the following Quantum Strong Coin Flipping protocol with bias 1 √ 2 + O(ε) 1. Alice chooses a ∈ R {0, 1} and sends a to Bob. 2. Alice and Bob perform the W CF (z, ε) protocol Q • If Alice wins Q then honest players output c A = c B = a • If Bob wins Q then he ips a coin b such that b = a with probability p and b = a with probability (1 -p). He sends b to Alice. In this case, honest players output c A = c B = b. • If Q outputs Abort then Abort

Proposition 12

 12 The protocol S is a strong coin ipping protocol with N + 2 rounds of communication and cheating probabilities P * are honest If both players are honest then they never abort. Moreover, since the protocol is symmetric in 0 and 1, we have Pr [c = 0] = Pr [c = 1] = 1/2. Alice cheats and Bob is honest We prove that Pr [c = 0] ≤ 1 2-z-ε . By symmetry, the same holds for Pr [c = 1]. Since Alice cheats, she can choose arbitrarily between a = 0 and a = 1 instead of picking a uniformly at random. Hence, P r[c = 0] ≤ max{Pr [c = 0|a = 0] , Pr [c = 0|a = 1]}. • We rst calculate Pr [c = 0|a = 0]. Let x = Pr [Alice wins Q|a = 0] and y = Pr [Bob wins Q|a = 0]. We have Pr [c = 0|a = 0] = x • 1 + y • p.

  Pr [Alice wins Q|a = 1] and y = Pr [Bob wins Q|a = 1]. We have Pr [c = 0|a = 1] = x • 0 + y(1 -p) ≤ y(1 -p) ≤ 1 -p which is achievable since Alice could always let Bob win Q. Since Pr [c = 0] ≤ max{Pr [c = 0|a = 0] , Pr [c = 0|a = 1]}, we choose p such that the upper bounds for Pr [c = 0|a = 0] and Pr [c = 0|a = 1] are equal.

.

  Bob cheats and Alice is honest We prove that Pr [c = 0] ≤ 2-z+ε 2 By symmetry, the same holds for Pr [c = 1]. Alice is honest and picks a uniformly at random. We rst have Pr [c = 0|a = 0] ≤ 1. We now upper bound Pr [c = 0|a = 1]. Let x = Pr [Bob wins Q|a = 1] and y = Pr [Alice wins Q|a = 1]. We have

  Bit commitment is a cryptographic primitive that enables two distrustful and far apart parties, Alice and Bob, to simulate a safe. Suppose Alice has a bit b that she wants kept secret. She writes b on a piece of paper and puts the paper into the safe. Bob does not know how to open the safe and hence does not know b. Later on, Alice will want to reveal b. However, Bob wants to make sure that Alice did not change her mind. So he will check that there was only one piece of paper in the safe. This primitive has been widely studied. However, classical bit commitment can only be performed with computational security.Quantum information allows for bit commitment schemes in the information theoretic setting where no dishonest party can perfectly cheat. Perfect quantum bit commitment is impossible[START_REF] Lo | Is quantum bit commitment really possible?[END_REF][START_REF] Mayers | Unconditionally secure quantum bit commitment is impossible[END_REF]. However, unlike the classical case, it is possible to construct partially secure quantum bit commitment. The previously best-known quantum protocol by Ambainis achieves a cheating probability of at most 3/4[START_REF] Ambainis | A new protocol and lower bounds for quantum coin ipping[END_REF]. On the other hand, Kitaev showed that no quantum protocol can have cheating probability less than 1/ √ 2[START_REF] Kitaev | Quantum coin-ipping[END_REF] (his lower bound on coin ipping can be easily extended to bit commitment). Closing this gap has since been an important and open question.

2 (

 2 Pr[ Alice successfully reveals b = 0] + Pr[ Alice successfully reveals b = 1]) • Hiding property: For any cheating Bob and for honest Alice, we dene Bob's cheating probability as P * B = Pr[ Bob guesses b after the Commit phase ] Remark: The denition of quantum bit commitment we use is the standard one when one studies stand-alone cryptographic primitives. In this setting, quantum bit commitment has a clear relation to other fundamental primitives such as coin ipping and oblivious transfer [ATVY00, Amb01, Kit03, Moc07, CKS10]. Moreover, the study of such primitives sheds light on the physical limits of quantum mechanics and the power of entanglement. Recently there have been some stronger denitions of Quantum Bit Commitment protocols that suit better practical uses (see for example [DFR + 07]).

  U C b (by increasing Alice and Bob's quantum space). At the end of the commit phase, Alice and Bob share the quantum state |ψ b . Let σ b = Tr A |ψ b ψ b | the state that Bob has after the commit phase. The reveal phase: Alice wants to reveal b to Bob. Alice reveals b at the beginning of the decommit phase. Similarly to the commit phase, we can suppose that the decommit phase is equivalent to Alice and Bob performing a joint unitary U D b on their shared state (|ψ b if they were honest in the Commit phase).

  We denote by |ψ b the quantum state Alice and Bob share at the end of the commit phase. Let σ b = Tr A |ψ b ψ b | the state that Bob has after the commit phase when Alice honestly commits to bit b.

  In order to reveal a specic value b, send b then apply a local quantum operation such that the actual joint state of the protocol, |φ b , satises | φ b |ψ b | = F (σ + , σ b ). Perform the rest of the reveal phase honestly. First note that an all-powerful Alice can perform this strategy. An honest Alice has a strategy to make Bob's state after the commit phase equal to σ b for both b = 0 and b = 1. A cheating Alice creates a qubit 1 √ 2 (|0 + |1 ). Conditioned on 0 (resp. 1), she applies the strategy that will give Bob the state σ 0 (resp. σ 1 ). By doing this Bob's state at the end of the commit phase is exactly σ + . Moreover, by Uhlmann's theorem, Alice can compute and perform the local unitary in the beginning of the reveal phase to create a state |φ b that satises | φ b |ψ b | = F (σ + , σ b ).

•

  A OT := sup{Pr[Alice guesses b and Bob does not Abort]} = 1 2 + ε A • B OT := sup{Pr[Bob guesses (x 0 , x 1 ) and Alice does not Abort]} = 1 2 + ε B • The bias of the protocol is dened as ε := max{ε A , ε B }

  x 0 , x 1 ∈ {0, 1} and Bob has input b ∈ {0, 1}. At the beginning of the protocol, Alice has no information about b and Bob has no information about (x 0 , x 1 ) • At the end of the protocol, Bob outputs y or Abort and Alice can either Abort or not • If Alice and Bob are honest, they never Abort, y = x b , Alice has no information about b and Bob has no information about x b • A OT := sup{Pr[Alice guesses b and Bob does not Abort]} = 1 2 + ε A • B OT := sup{Pr[Bob guesses (x 0 , x 1 ) and Alice does not Abort]} = 1 2 + ε B • The bias of the protocol is dened as ε := max{ε A , ε B }

2.

  Alice and Bob run protocol P and output (x 0 , x 1 ) for Alice and (b, y) for Bob. 3. Bob sends r = b ⊕ B to Alice. Let x c = x c⊕r , for c ∈ {0, 1}.

4.

  Alice sends to Bob (s 0 , s 1 ) where s c = x c ⊕ X c for c ∈ {0, 1}. Let y = y ⊕ s B .

  First, note that the values x c are known by Alice and the value y is known by Bob. Also, notice that x B = x B⊕r = x b . • Alice and Bob are honest: By denition we have y = x b . Then, we have y = y ⊕ s B = x b ⊕ s B = x B ⊕ s B = X B . Moreover, Alice knows r but has no information about b and hence she has no information about B = b ⊕ r. Bob knows (s 0 , s 1 ) and r but has no information about xb, hence he has no information about X B = x B ⊕ s B = x b⊕r ⊕ sb ⊕r = xb ⊕ sb ⊕r . • Cheating Alice: Alice picks r and B = b ⊕ r. Hence A OT (Q) = sup{Pr[Alice guesses B and Bob does not Abort]} = sup{Pr[Alice guesses b and Bob does not Abort]} = A OT (P ).

  analyze the cheating probabilities of each party. Cheating Alice Dene Bob's space as B and let σ b := Tr B (|φ b φ b |) denote the two reduced

  and sends the A part to Alice. The |e i 's are not necessarily orthogonal but i |α i | 2 = 1. • Alice applies U x0,x1 on her part and sends it back to Bob. He now has the state |ψ x0,x1 = i α i (-1) xi |i |e i recalling that x 2 := 0.

  So far, device independent protocols have been proposed for quantum key distribution [AGM06, ABG + 07, MY03, BHK05], random number generation [Col09, PAM + 10], state estimation [BLM + 09], and the self-testing of quantum computers [MMMO06].

  |φ b c corresponds to the encoding of bit c in basis b.

Finally

  c | = λ|c c| + (1 -λ)|1 -c 1 -c| 8.2.3 Berlin etal's protocol Berlin etal's protocol (parameter λ omitted) 1. Alice chooses at random b ∈ R {0, 1} and c ∈ R {0, 1} and sends |φ b c to Bob. 2. Bob chooses b ∈ R {0, 1} and measures the qubit he receives in basis B b . If his measurement fails, he announces it to Alice and they repeat the protocol from step 1. If the measurement succeeds continue. 3. Bob picks c ∈ R {0, 1} and sends c to Alice 4. Alice reveals b, c 5. If b = b , Bob checks that what he measured corresponds to |φ b c . If it does not match, he aborts. 6. The outcome of the protocol is x = c ⊕ c .

2.

  Bob chooses b 1 , b 2 ∈ R {0, 1} and measures each register i he receives in basis B b i . If one of his measurements fails, he announces it to Alice and they repeat the protocol from step 1. If the measurement succeeds, Bob announces this fact to Alice and they continue. 3. Alice sends r 1 , r 2 to Bob. 4. Bob picks c ∈ R {0, 1} and sends c to Alice 5. Alice reveals b 1 , b 2 , c 6. For each register i for which b i = b i , Bob checks that what he measured corresponds to |φ bi c⊕ri . If one of the measurements does not match, he aborts. 7. The outcome of the protocol is x = c ⊕ c .

and |ψ 1

 1 = β 0 |φ 0 S1 |Γ 0 S2⊗•••⊗S k+1 ⊗R + β 1 |φ 1 S1 |Γ 1 S2⊗•••⊗S k+1 ⊗R + β 2 n i=2 |φ i |Γ i (9.2)

p 0 =

 0 |α 0 | 2 = tr((|φ 0 φ 0 | ⊗ 1)|ψ 0 ψ 0 |) ≤ F(|φ 0 φ 0 |, tr S2...S k+1 R |ψ 0 ψ 0 |) 2 ≤ F(tr B1 |φ 0 φ 0 |, tr B1S2...S k+1 R |ψ 0 ψ 0 |) 2 .

  S k+1 R |ψ 0 ψ 0 | = tr B1S2...S k+1 R |ψ 1 ψ 1 |, as well as the fact that tr B1 |φ 0 φ 0 | and tr B1 |φ 1 φ 1 | are orthogonal, we havep 0 + q 1 ≤ F(tr B1 |φ 0 φ 0 |, tr B1S2...S k+1 R |ψ 0 ψ 0 |) 2 + F(tr B1 |φ 1 φ 1 |, tr B1S2...S k+1 R |ψ 1 ψ 1 |) 2 ≤ 1 + F(tr B1 |φ 0 φ 0 |, tr B1 |φ 1 φ 1 |) the probability that the swap tests pass. Consider applying test 0 on |ψ 0 . When applying the swap test between |φ 0 and |φ 0 , the result is the state |0 |φ 0 |φ 0 where the rst register corresponds to the acceptance of the swap test (0 corresponds to accept). When applying the swap test between the two states |φ 0 and |φ 1 , the result before measuring the rst qubit is1 √ 2 (|0 (|φ 0 |φ 1 + |φ 1 |φ 0 ) + |1 (|φ 0 |φ 1 -|φ 1 |φ 0 )). So the swap test on the space S 1 accepts with probability p 0 + p 1 /2. Conditioned on this test passing, we have the state:1 p 0 + p 1 /2 α 0 |φ 0 |φ 0 |Ω 0 S2⊗•••⊗S k+1 R + α 1 √ 2 (|φ 0 |φ 1 + |φ 1 |φ 0 )|Ω 1 S2⊗•••⊗S k+1 RDiscarding the rst system results in the state in S 2 ⊗ • • • ⊗ S k+1 ⊗ R (using orthogonality of |φ 0 and |φ 1 ) given by

  This, combined with the orthogonality of ρ 0 and ρ 1 , completes the proof. Notice that in the original bit commitment protocol the Receiver applies the swap test to |φ * |0 and the output of (U † b ⊗ 1)(σ b )(U b ⊗ 1) where σ b is the state sent during the protocol. Since U † b is unitary, this is equivalent to applying the swap test between σ b and the state |φ b = (U b ⊗ 1)|φ * |0 , for whatever value of b the Sender has revealed. Viewed in this way, the receiver applies the swap test

  Lemma 14 Let |φ 0 , |φ 1 ∈ A ⊗ B such that tr B |φ 0 φ 0 |, tr B |φ 1 φ 1 | tr ≥ 2 -ε. Then there exist states |φ 0 , |φ 1 ∈ A ⊗ B such that 1. φ i |φ i ≥ 1 -ε for i ∈ {0, 1},2. tr B |φ 0 φ 0 | and tr B |φ 1 φ 1 | are orthogonal.

  e. the k swap tests with the state |φ 0 ⊗k to the probability that the same state ρ passes the k swap tests with the state |φ 0 ⊗k (denoted by Test 0). The dierence of these probabilities is upper bounded by the trace distance of the dierence of the states |φ 0 ⊗k and |φ 0 ⊗k , since we can view the swap test with ρ as a measurement to distinguish these two states. This gives| Pr[ρ passes Test 0] -Pr[ρ passes Test 0]| ≤ (|φ 0 φ 0 |) ⊗k -(|φ 0 φ 0 |) ⊗k tr = 2 1 -| φ 0 |φ 0 | 2k ≤ 2 1 -(1 -µ(n)) 2k ≤ 2 2kµ(n),where the nal inequality is Bernoulli's inequality. Similarly we have | Pr[ρ passes Test 1] -Pr[ρ passes Test 1]| ≤ 2 2kµ(n) Hence, for the binding property of our scheme we have 1 2 (Pr[ρ passes Test 0] + Pr[ρ passes Test 1]) ≤ 1 2 Pr[ρ passes Test 0] + Pr[ρ passes Test 1] + 2 2kµ(n)

  * (Q 0 ,Q 1 ) reveals b = 0] + Pr[S * (Q 0 ,Q 1 ) reveals b = 1]

  This result, combined with Theorem 16 and Proposition 25, completes the proof of Theorem 12. Chapter 10 Conclusions In this thesis, we presented a study of two-party quantum cryptographic primitives in the information theoretic setting. We considered basic quantum cryptographic primitives as a way of understanding what is possible and what is impossible in a quantum world. Since the impossibility of quantum coin ipping and quantum bit commitment can explain many features of quantum physics, we rst wanted to quantify to what extent these cryptographic primitives are impossible. In the rst part of this thesis, we showed tight bounds for both quantum coin ipping ( 1 √ 2 bound) and quantum bit commitment (0.739 bound) These bounds raise interesting questions. For example, following the line of thought of Smolin,Fuchs and Brassard [FM01, Bra05], one could ask the following question What properties have theories that: 1. Allow key distribution 2. Allow coin ipping up to cheating probabilities of 1 √ 2

  En appliquant cette méthode avec une répétition, en parallèle, de deux fois le protocole de Berlin et al . , nous montrons que Theorem 8 Il existe un protocole quantique de pile-ou-face tolérant aux pertes avec une probabilité de tricher de 0, 859 QIP et que ces inclusions sont probablement strictes. Dans nos deux théorèmes, on peut choisir pour quel joueur la sécurité est calculatoire.

	Ces classes sans-connaissance ont été étendues au cas quantique [Wat02a,
	Kob07, Wat09] où nous permettons aux joueurs d'interagir quantiquement et
	d'eectuer des opérations quantiques. Les classes correspondantes sont QPZK, QSZK, QZK.
	Il y a une relation étroite entre les protocoles sans-connaissance quantiques et
	les protocoles de mise-en-gage de bit. Tout d'abord, nous pouvons construire un
	protocoles sans-connaissance pour tout problème dans PSPACE si nous avons
	un protocole de mise-en-gage de bit. D'autre part, nous pouvons construire
	des protocoles de mise-en-gage de bit basés sur la diculté des problèmes de
	SZK[OW93].
	Nous avons d'abord étendu ce résultat au cas quantique et nous avons montré
	que :
	Theorem 9 SI QSZK ⊆ QMA, alors il existe un protocole quantique de mise-
	en-gage de bit avec une sécurité inconditionnelle pour Alice et une sécurité cal-
	culatoire pour Bob.
	par[GMR89] et cette condition de sécurité a été dénie à la fois en sécurité cal-
	culatoire ainsi qu'en sécurité inconditionnelle. Ces protocoles sont très utiles en
	cryptographie par exemple pour l'identication sécurisée. La classe des prob-
	lèmes qui peuvent être résolus avec un protocole sans-connaissance est appelée
	PZK, SZK si on permet la fuite de très peu d'information, ou ZK si nous sup-
	posons que le véricateur a une puissance de calcul polynomial.

Sans cette étape de cryptage supplémentaire, le protocole résultant ne serait pas tolérant aux pertes. Cette technique qui fait face aux pertes semble très générique. Il serait intéressant de voir si ces techniques peuvent être utilisées dans d'autres modèles pratiques. De plus, trouver un pile-ou-face quantique tolérant au bruit demeure une question ouverte très intéressante. 1.5 Relations entre les preuves sans-connaissance quantiques et la mise-en-gage quantique de bit Dans la dernière partie de cette thèse, nous allons au-delà de la sécurité inconditionnelle des primitives cryptographiques et étudions les protocoles sansconnaissance quantiques. Nous étudions quelles sont les hypothèses calculatoires qui impliquent la mise-en-gage de bit. Nous allons montrer que l'existence de protocole quantique de mise-en-gage de bit est étroitement liée aux protocoles sans-connaissance quantiques et aux classes de preuves interactives. Pour illustrer ce que sont les protocoles sans-connaissance, prenons un exemple. Considérons un problème P considéré comme dicile à résoudre. Supposons qu'une personne (le prouveur) veuille révéler à une autre personne (le véricateur) que la réponse au problème P est OUI, sans donner aucune autre information. En particulier, le véricateur ne sera pas en mesure de convaincre quelqu'un d'autre que la réponse à ce problème est OUI. An de créer ce genre de preuves, le prouveur et le véricateur doivent interagir. La condition "sans donner d'autres informations" a été formalisée de manière simple et élégante est un équivalent quantique de NP. Notez que cette inégalité est considérée comme plausible. Récemment, un oracle pour séparer ces deux classes a été trouvé par Aaronson [Aar11]. Notez également que la famille de protocoles de mise-en-gage de bit ainsi construite est non-uniforme, c'est à dire qu'Alice et Bob reçoive un aide classique qui dépend uniquement du paramètre de sécurité qu'ils veulent obtenir. Nous nous sommes ensuite intéressés à la mise-en-gage de bit où les joueurs ont aussi l'aide d'un état quantique (potentiellement diciles à construire) (nonuniformité quantique). Nous montrons qu'une telle famille de protocoles de mise-en-gage existe sous une hypothèse très faible, à savoir : Theorem 10 Si QIP ⊆ QMA, alors il existe un protocole quantique de miseen-gage de bit avec aide quantique, avec une sécurité inconditionnelle pour Alice et calculatoire pour Bob. Notez que cette hypothèse est très probable vu que QMA ⊆ PP ⊆ PSPACE = 1.6 Organisation de la thèse

•

  Dans le chapitre 2 nous présentons les notions de base de l'informatique quantique.

• Dans le chapitre 3, nous étudions le pile-ou-face quantique et montrons comment construire un pile-ou-face optimal i .e. un protocole avec une probabilité de tricher d'au plus 1 √ 2 + ε pour tout ε > 0, améliorant le meilleur protocole existant qui avait une probabilité de tricher égale à 3/4. Ce travail a été réalisé avec Iordanis Kerenidis [CK09].

•

  Dans le chapitre 5, nous étudions la transmission inconsciente quantique.

	Cette étude est la première qui donne des bornes constantes pour cette
	primitive. Nous établissons d'abord une borne inférieure pour le transfert
	quantique oublieux de 0, 58. Nous montrons ensuite comment construire
	un protocole de transmission inconsciente quantique avec une probabilité
	de tricher de 3/4. Ce travail a été réalisé avec Iordanis Kerenidis et Jamie
	Sikora [CKS10].

  André Chailloux and Iordanis Kerenidis, Optimal quantum strong coin ipping. Foundations of Computer Science (FOCS'09), 0:527533, 2009. André Chailloux and Iordanis Kerenidis, Optimal bounds for quantum bit commitment. Foundations of Computer Science (FOCS'11), 2011. André Chailloux, Iordanis Kerenidis, and Jamie Sikora. Lower bounds for Quantum Oblivious Transfer. IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)

	Chapter 2
	Introduction
	2.1 Quantum computing
	Des résultats préliminaires sont présents dans ma thèse de Mastère:
	A study of classical and quantum zero-knowledge protocols using alternative
	models

[CK11] [CKS10] [SCA + 11] Jonathan Silman, André Chailloux, Nati Aharon, Iordanis Kerenidis, Stefano Pironio, and Serge Massar. Fully distrustful quantum bit-commitment and coin ipping. Physical Review Letters (PRL), 2011 (To Appear). [Cha10] André Chailloux. Improved loss-tolerant quantum coin ipping. AQIS'10 [CKR11] André Chailloux, Iordanis Kerenidis, and Bill Rosgen. Quantum Commitments from Complexity Assumptions. International Colloquium on Automata, Languages and Programming (ICALP'11) J'ai également publié les articles suivants qui ne sont pas présentés dans cette thèse [CCKV08] André Chailloux, Dragos Florin Ciocan, Iordanis Kerenidis and Salil Vadhan. Interactive and non-interactive zero knowledge are equivalent in the help model. Proceedings of the 5th conference on Theory of cryptography (TCC'08) [CK08] André Chailloux and Iordanis Kerenidis, Increasing the power of the verier in Quantum Zero Knowledge. IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2008) Quantum mechanics is one of the most important discoveries of the last century in theoretical physics. Thanks to quantum mechanics, we know that at a very small scale, particles behave very dierently than what we thought before. At this scale, particles are at several states at the same time and they are modied when observed. Even though these concepts have been developed in the late 1930's, there are still many mysteries related to this theory because of its counterintuitive nature. Still, many experiments have conrmed the quantum nature of the world.

  regular coin ipping, Alice can force the tails outcome with probability 1 and Alice can force the heads outcome with probability 1.

	After a series of
	works [Moc04, Moc05, Moc07], Mochon showed how to build a quantum Weak
	Coin Flipping protocol which is almost perfectly secure. As opposed to this
	weak notion of coin ipping, we will refer to the standard coin ipping as strong
	coin ipping. Notice that even for this weaker denition, it is impossible to
	exhibit such a classical protocol.

  We continue Berlin et al . 's work work and create a loss-tolerant quantum coin ipping protocols where the players can chat with probability at most 0.359. As in Berlin et al . 's protocol, we ask Alice and Bob to send several copies of single qubit states. Moreover, we do not require honest players to have any quantum memories and consider cheating players as being all powerful. Berlin et al. 's protocol is of the following form.

	2008, Berlin et al. presented a loss-tolerant quantum coin ipping with cheat-
	ing probabilities 0.9 [BBBG08]. In this protocol, honest players do not always
	succeed when they perform a measurement (the measurement sometimes abort)
	but when they do succeed, they always output the correct value. This is in con-
	trast with noise tolerance where an honest player could perform a measure with
	a wrong outcome without knowing it. Very recently, Aharon et al . [AMS10]
	created a loss-tolerant quantum coin ipping protocol with cheating probabil-
	ity 0.3975. In another avor, Barrett and Massar [BM04] showed how to do
	bit-string generation (a weaker notion of coin ipping) in the presence of noise.

  André Chailloux and Iordanis Kerenidis, Optimal quantum strong coin ipping. Foundations of Computer Science (FOCS'09), 0:527533, 2009. André Chailloux and Iordanis Kerenidis, Optimal bounds for quantum bit commitment. Foundations of Computer Science (FOCS'11), 2011. André Chailloux, Iordanis Kerenidis, and Jamie Sikora. Lower bounds for Quantum Oblivious Transfer. IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)

[CK11] [CKS10] [SCA + 11] Jonathan Silman, André Chailloux, Nati Aharon, Iordanis Kerenidis, Stefano Pironio, and Serge Massar. Fully distrustful quantum bit-commitment and coin ipping. Physical Review Letters (PRL), 2011 (To Appear).

[Cha10] André Chailloux. Improved loss-tolerant quantum coin ipping. AQIS'10 [CKR11] André Chailloux, Iordanis Kerenidis, and Bill Rosgen. Quantum Commitments from Complexity Assumptions. International Colloquium on Automata, Languages and Programming (ICALP'11) I also published some articles which are not contained in the present manuscrpit: [CCKV08] André Chailloux, Dragos Florin Ciocan, Iordanis Kerenidis and Salil Vadhan. Interactive and non-interactive zero knowledge are equivalent in the help model. Proceedings of the 5th conference on Theory of cryptography (TCC'08) [CK08] André Chailloux and Iordanis Kerenidis, Increasing the power of the verier in Quantum Zero Knowledge. IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2008) Some preliminary results contained in these articles can be found in my master's thesis:

  Entangled states We cannot obtain all the possible N -qubit states by doing only tensor products. Consider for example the 2-qubit state |q = 1 We can see that we cannot create this state from the tensor of any 2 states. It means that when we look at each part separately, we do not get pure states. Instead, we get a mixed state. In our example, we have the totally mixed state for each part : |1We say that these 2 halves are entangled.Entanglement can be used in protocols. Suppose that Alice and Bob each have 1 half of the state |00 + |11 . If Alice measures (in the |0 , |1 basis), she will get |0 or |1 with half probability. The same holds for Bob but they both know that they will get the same result. Protocols that allow Alice and Bob to coordinate their actions can be done just by using entangled states.

	√	2 (|00 +
	|11 ). wp. 1/2 : |0	
	wp. 1/2 :	

  Similarly, P *A and P * B are the cheating probabilities of Alice and Bob. The cheating probability of the protocol is dened as max{P *

	A , P * B }.

• If Alice and Bob are honest then Pr [ Alice wins ] = Pr [ Bob wins ] = 1/2 • If Alice cheats and Bob is honest then P * A = Pr [ Alice wins ] ≤ 1/2 + ε • If Bob cheats and Alice is honest then P * B = Pr [ Bob wins ] ≤ 1/2 + ε

•

  If Alice and Bob are honest then Pr [ Alice wins ] = z and Pr [ Bob wins ] = 1 -z • If Alice cheats and Bob is honest then P * A = Pr [ Alice wins ] ≤ z + ε • If Bob cheats and Alice is honest then P

* B = Pr [ Bob wins ] ≤ (1 -z) + ε

Unlike strong coin ipping, it is possible to create a quantum weak coin ipping protocol arbitrarily close to optimal. This construction is due to Mochon

[START_REF] Mochon | Quantum weak coin ipping with arbitrarily small bias[END_REF]

.

  Solving the equation gives t ≈ 0.4785 and

	hence we have
	Theorem 2 In any quantum bit commitment protocol with cheating probabili-
	ties P * A and P * B we have max{P * A , P * B } ≥ 0.739.

  -p and Bob with probability p. As we said, we can think of this procedure as a big unitary operation that creates a joint pure state in the space of Alice and Bob. Moreover, Alice and Bob have each a special 1-qubit register that they can measure at the end of the protocol in order to read the outcome of the weak coin ipping. Here, we assume that they do not measure anything and that at the end Alice sends back to Bob all her garbage qubits. In other words, in the honest case, Alice and Bob share the following state at the end of the weak coin protocol

	5.3.1 The protocol
	Optimal Quantum Bit Commitment
	Commit phase, Step 1 Alice and Bob perform an unbalanced weak coin
	ipping procedure (without measuring the nal outcome), where Alice wins
	with probability 1

Alice commits to bit b by preparing the state 1/ √ 2(|bb + |22 ) and sending the second qutrit to Bob. In the reveal phase, she sends the rst qutrit and Bob checks that the pure state is the correct one. It is not hard to prove that both Alice and Bob can cheat with probability 3/4 [Amb01, KN04]. The main idea in order to reduce the cheating probabilities for both players is the following: rst we increase a little bit the amplitude of the state |22 in this superposition. This decreases the cheating probability of Bob. However, now Alice can cheat even more. To remedy this, we use the quantum procedure of a weak coin ipping so that Alice and Bob jointly create the above initial state (with the appropriate amplitudes) instead of having Alice create it herself. We present now the details of the protocol. |Ω = √ p|L A ⊗ |L, G L B + 1 -p|W A ⊗ |W, G W B where W corresponds to the outcome "Alice wins" and L corresponds to the outcome "Alice loses". The spaces A, B correspond to Alice's and Bob's private quantum space. The garbage states |G W , |G L are known to both players. Commit phase, Step 2 After the end of the weak coin ipping procedure, Alice does the following. Conditioned on her qubit being W , she creates two qutrits in the state |22 and sends the second to Bob. Conditioned on her qubit being L, she creates two qutrits in the state |bb where b is the bit she wants to commit to and sends the second to Bob. If the players are both honest, they share the following state:

  At the end of the commit phase, depending on Alice's committed bit b, the joint state is

	If Alice and Bob are both honest then Alice always successfully reveals the bit
	b she committed to.
	Cheating Bob Bob is not necessarily honest in the weak coin ipping proto-
	col, however the weak coin ipping has small bias . Since Alice is honest, Bob
	has all the qubits expect the one qubit which is in Alice's output register. At
	the end of the rst step of the Commit phase, Alice and Bob share a state
	|Ω

* = p |L A |Ψ L B + 1 -p |W A |Ψ W B

for some states |Ψ L , |Ψ W held by Bob. Recall that the outcome L in Alice's output register corresponds to the outcome where Alice loses the weak coin ipping protocol. Hence, for any cheating Bob, since our coin ipping has bias ε, we have p ≤ p + ε.

  Denition 10 Let t C an honest commit phase transcript. We say that t C ∈ A y if and only if ∃A * s.t. ∀c and ∀R B consistent with t C , Acc(t C , T * Intuitively, t C ∈ A y means that if Alice and Bob output an honest commit phase transcript t C , there is a deterministic strategy A * for Alice that allows her to reveal y without Bob aborting, independently of Bob's private coins R B .

D (A * , R B , c , y, t C ), y, R B ) = 1

  As said before, we know that t C ∈ A x .At the end of the commit phase, Bob wants to guess the bit x Alice commits to and he performs the following strategy: if t C ∈ A 0 ∩ A 1 he guesses x at random. If ∃! u s.t. t C /∈ A u he guesses x = u. We know that Bob succeeds in cheating with probability 1/2 if t C ∈ A x and with probability 1 if t C / ∈ A x . This gives us P * B

  1.2. The only dierence is that Bob measures directly the state he receives in order to satisfy requirement 2. (no quantum memory) of the loss-tolerant model. Berlin et al. showed that Bob's lossy detectors do not decrease security of the protocol. If we did not require the absence Alice chooses at random b 1 , b 2 ∈ R {0, 1} ; c ∈ R {0, 1} and r 1 , r 2 ∈ R {0, 1} sends two quantum registers |φ bi c⊕ri for i ∈ {1, 2} to Bob.

	of quantum memory, we would have P * A = 1+F(ρ0,ρ1) 2
	8.2.4 Our protocol
	Our protocol
	1.

1}

  Proof: Let σ the rst state in Y sent by Alice and let σ the state in X Y after Alice reveals i. Since Bob immediately measures the register X in the computational basis, there is an state σ which will give the best cheating probability of the form σ= i p i |i i| ⊗ |ψ i ψ i |and Pr[ Alice passes Bob's test ] = Similarly, if we x σ = |Ω Ω| where |Ω = i √ p i |i, φ i , we get that Pr[ Alice passes Bob's test ] = i ||ψ i φ i || 2 This means that we can suppose w.log that after the last step, the state in X Y is pure. Let σ = |Ω Ω| where |Ω = i √ p i |i, φ i . Let K subspace of quantum pure states spanned by {|i ⊗ |φ i }. Let P K = i |i i| ⊗ |φ i φ i | the projection on subspace K. Bob's check is equivalent to projecting on the subspace K. Tr X |u u|) ≤ F 2 (σ, L) since ∀|u ∈ K, Tr X |u u| ∈ L Proof of security for cheating Alice We consider a cheating Alice and an honest Bob. For the sake of the analysis, we can suppose that honest Bob does not have losses when he measures (this does not help Alice). Our protocol says that Bob measures each register i in a random basis B b i and performs a check if this basis corresponds to the basis B bi in which Alice encoded c. Similarly, we could say that Bob performs this measurement at the very end (still picking b i at random). In this case, we are in the framework of the previous subsection except that with some probability, Bob chooses the wrong basis and does not check anything. Suppose Alice wants to reveal c in our protocol. Let ξ the state in X Y she sends at state

	Pr[ Alice passes Bob's test ] = tr(P K σP K )
	|u ∈L = tr(P K |Ω Ω|P K ) = max	| Ω|u | 2
	≤ max |u ∈K	F 2 (Tr X (|Ω Ω|), Tr X |u u|)
	≤ max	F 2 (σ,
	|u ∈K	

i ||ψ i φ i || 2

  which allows us to conclude.On the other hand, it is possible to calculate exactly Bob's cheating probability since

	We can now prove our main Claim
	Proposition 23 P * B ≤ λ

  Suppose the graphs are isomorphic. Let's look what information the verier has at the end of the protocol. The verier has a random graph G isomorphic to G b and the isomorphism that goes from G to G b . He can

	obtain this information by himself by just by picking a random permuta-
	tion and apply it to G b . Therefore, he gains no information. Note that
	we are interested in keeping the Prover's secret only if the assertion is
	true. Note also that the verier cannot gain any information by sending
	a biased coin.
	Classical zero-knowledge proofs have been widely studied [GMR89, BGG + 90,
	Vad99] and especially their relationship with cryptographic primitives such as
	one-way functions. Ostrovsky and Wigderson [OW93] proved, at a high level,
	that if Computational Zero Knowledge (ZK) is not trivial then there exists a
	family of functions that are not `easy to invert'. The result was extended by
	Vadhan [Vad06] to show that if ZK does not equal Statistical Zero Knowledge
	(SZK), then there exists an auxiliary-input one-way function, i.e. one can con-
	struct a one-way function given an auxiliary input (or else advice). Looking at
	auxiliary-input cryptographic primitives is convenient, since we are looking at
	worst-case complexity classes. Last, Ostrovsky and Wigderson also showed that
	if ZK contains a `hard-on-average' problem, then `regular' one-way functions
	exist.

  Our rst result, involves the class of Quantum Statistical Zero Knowledge, QSZK, and states the following Theorem 11 If QSZK ⊆ QMA there exists a non-interactive auxiliary-input quantum statistically binding-computationally hiding commitment scheme.Before explaining this result, let us try to see what an equivalent classical result would mean. At a high level, the classical statement would be of the following form: if SZK is not in MA, then auxiliary-input commitments exist. However, under some derandomization assumptions, we have that NP = MA = AM ([MV06, KvM02]) and since SZK ⊆ AM, we conclude that SZK ⊆ MA.

[START_REF] Ambainis | A new protocol and lower bounds for quantum coin ipping[END_REF].

Remerciements

Claim 1 Let |X be a pure state, Q a projection, and |Y a pure state such that Q|Y = |Y . Then we have

Proof: Using Cauchy-Schwarz we have Taking the cosine of both sides yields the result.

Claim 3 Let θ, ρ ∈ [0, π/4]. Then cos(θ + ρ) ≥ cos 2 (θ) + cos 2 (ρ) -1.

Proof: Wlog suppose that θ ≥ ρ. Consider the function f (θ) = cos(θ + ρ) -cos 2 (θ) + sin 2 (ρ)

for xed ρ. Taking its derivative we get f (θ) = -sin(θ + ρ) + sin(2θ)

which is nonnegative for θ ∈ [ρ, π/4]. Since f (ρ) = 0, we conclude that f (θ) ≥ 0 for θ ∈ [ρ, π/4] which gives the desired result.

The Learning-in-Sequence Lemma follows from the following simple geometric result.

Lemma 6 Let |ψ be a pure state and let {C, I -C} and {D, I -D} be two projective measurements such that cos 2 (θ) := C|ψ 2 2 ≥ half and cos 2 (θ ) := D|ψ 2 2 ≥ half. ≥ cos 2 (θ) cos 2 (θ + θ ) using Claim 2.

Then we have

Device independent quantum coin ipping

Alice has a box, A, and Bob has a pair of boxes, B and C. The three boxes are supposed to satisfy the GHZ paradox.

• Commit phase: Alice inputs into her box the value of the bit she wishes to commit to. Denote the input and output of her box by s A and r A . s A is the bit she commits to. She then selects a classical bit a uniformly at random and sends c = r A ⊕ (a • s A ) as her commitment.

• Reveal phase: Alice sends to Bob a, s A , r A . Bob rst checks if c = r A ⊕ a • s A . He then randomly chooses a pair of inputs s B and s C , satisfying s A ⊕ s B ⊕ s C = 1, inputs them into his two boxes B, C. He gets outcomes r B , r C and checks that the GHZ paradox is satised i .e. r A ⊕ r B ⊕ r C = s A s B s C ⊕ 1.

If any of these tests fails then he aborts.

Completeness If the parties are honest (and the boxes satisfy the GHZ paradox), then the protocol never aborts.

Alice's cheating probability We consider the worst-case scenario, wherein (dishonest) Alice prepares (honest) Bob's boxes in any state she wants, possibly entangled with her own ancillary systems. Since the commit phase consists of Alice sending a classical bit c as a token of her commitment, without receiving any information from Bob, without loss of generality we may assume that Alice decides on the value of c beforehand, and accordingly prepares Bob's boxes to maximize her cheating probability.

Let us then suppose that Alice sends c = 0. A similar analysis can be done if c = 1. If Alice wants to reveal reveals s A = 0, she has to reveal r A = 0 (or else the test that c = r A ⊕ (a • s A ) will fail). If Alice wants to reveal s A = 1, she can chose between r A = 0 and r A = 1 (by choosing a accordingly).

Let r 1 A the value Alice reveals for r A in case she wants to reveal s A = 1. Since the choice of r A is fully determined when Alice wants to reveal s A = 0, Alice can also decide the value of r 1 A beforehand.

• If Alice wants to reveal s A = 0. She sends r A = 0. Bob's second check is only on the boxes B, C. He picks random s B , s

Let us put everything together. If r 1 A = 0, we have

This can be easily reduced to the CHSH inequality as follows. Suppose that the output of the box B is r B = 1 ⊕ r B . We have

which is exactly the CHSH inequality. Note that we can use the CHSH inequality since Bob's two boxes B and C do not communicate. If r 1 A = 1, we use a similar argument to reduce Alice's cheating probability to a CHSH inequality. We conclude that P * A ≤ cos 2 (π/8).

Bob's cheating probability

Bob's most general strategy consists of sending Alice a box entangled with some ancillary system in his possession. Depending on the value of c he receives from Alice (which is uniformly random since Alice is honest), Bob carries out one of a pair of two-outcome measurements on his system. We denote Bob's binary input and output by m B and g B , where m B = 0 (m B = 1) corresponds to the measurement he carries out when Alice sends c = 0 (c = 1), and g B = 0 (g B = 1) corresponds to his guessing that Alice has committed to 0 (1).

We interpret this as follows: honest Alice has a box in which she inputs s A and outputs r A . Bob also has some big apparatus where he inputs m B = r A ⊕ a • s A . His goal is to output g B = s A . We dene Pr[x, y|u, v] as:

Since a is a random bit, we have

We always have m B = r A ⊕ a • s A and s A is a random bit hence

For this proof, we will not use the general device independent condition.

We will actually just use the fact that the boxes do not communicate (the Chapter 8

Loss-tolerant quantum coin ipping and quantum bit commitment

The loss tolerant model

We now study a dierent model where we are interested in a specic aw in the measurement devices: losses. Sometimes, a measurement device will not give any outcome when a measurement is performed. However, when the device gives an outcome, we know that it is the correct outcome. This condition is weaker than the device independent model where we deal with any kind of aws in the apparatus.

We also add another requirement, that the honest players do not use quantum memory. This requirement did not appear in the previous model. This model is hence incomparable with the device independent model.

In 2008, Berlin et al. presented a loss-tolerant quantum coin ipping with a cheating probability of 0.9. In this protocol, honest players do not always succeed when they perform a measurement (the measurement sometimes abort) but when they do succeed, they always output the correct value. This is in contrast with noise tolerance where an honest player could perform a measure with a wrong outcome without knowing it. Recently, Aharon et al . [START_REF] Aharon | A family of loss-tolerant quantum coin ipping protocols[END_REF] created a loss-tolerant quantum coin ipping protocol with a cheating probability of 0.3975. In another avor, Barrett and Massar [START_REF] Barrett | Security of quantum bit-string generation[END_REF] showed how to do bit-string generation (a weaker notion of coin ipping) in the presence of noise.

In this Chapter, we continue the study of loss-tolerant quantum coin ipping protocol. We construct such a protocol with a cheating probability of 0.359. Proof: Suppose w.log that Bob wants outcome x = 0. He wants to pick c = c. Before picking c , he has the state ξ A c . We have

Theorem 10 There is a loss-tolerant quantum coin ipping protocol with bias ε ≈ 0.359.

Proof: We just need to nd λ that minimizes max(P * A , P * B ). The maximum is achieved for λ ≈ 0.859 which gives P * A = P * B ≈ 0.859 which gives a bias ε ≈ 0.359.

Further discussion

Optimality of the bias The bias that we show here is actually not optimal for the protocol. The reason is the following: in the analysis of cheating Alice (Section 8.3.1), we consider the cheating probability for Alice depending on whether Bob checks the rst bit, the second bit or both bits. For each of these cases, we upper bound Alice's cheating probability. But it appears that the cheating probabilities for each of these cases is dierent and that Alice cannot cheat optimally for all these cases at the same time. This slightly decreases Alice's cheating probability. We can numerically calculate in this case that for λ ≈ 0.858, we have P * A = P * B ≈ 0.858. A (k, λ), P * B (k, λ). P (k) corresponds to the best cheating probability when consider a k-fold repetition of the protocol. We need to lower bound P * A (k, λ). We have

This is a generalization of the upper bound we use to show that ε ≈ 0.359.

Intuitively, this corresponds to the case where Alice knows if Bob measured in the correct basis or not. When we consider Alice's cheating strategies where she uses separate (non entangled) strategies for each of the k repetitions, we have the following lower bound.

input quantum commitment schemes only for the non-interactive case.

Denition 29 A non-interactive auxiliary-input quantum commitment scheme (resp. with quantum advice) on I which is statistically/computationally hiding and statistically/computationally binding is a collection of non-interactive quantum commitment schemes (resp. with quantum advice) C = {Com x = (S x , R x )} x∈I with the following properties

• there exists a quantum circuit Q of size polynomial in |x|, that given as input x for any x ∈ I, can apply the same maps that S x and R x apply during the commitment scheme in time polynomial in |x|.

• (statistically/computationally hiding) the two auxiliary-input state ensembles {ρ 0 Sx } x∈I and {ρ 1 Sx } x∈I are quantum statistically/computationally indistinguishable.

• (statistically/computationally binding) for all but nitely many x ∈ I, for all polynomial p and for any unbounded/polynomial dishonest sender S * x , we have

When referring to a commitment scheme, we will use the (b s , h c ) and (b c , h s ) to denote schemes that are statistically binding-computationally hiding and computationally binding-statistically hiding, respectively.

In high level, the distinction between the two notions, with or without advice, is the following. We can assume that the two players decide to perform a commitment scheme and agree on a security parameter n. Then, in the rst case, a trusted party can give them the description of the circuits (C 0 , C 1 ) so that the players can perform the commitment scheme themselves. One can think of the string (C 0 , C 1 ) as a classical advice to the players. In the second case, the trusted party gives them the description of the circuits, as well as one copy of a quantum state each. This quantum state is of polynomial size, however it is not eciently constructable, otherwise the trusted party could have given the players the classical description of the circuit that constructs it. Hence, in the second notion the players receive both classical and quantum advice. 9.2 Quantum commitments unless QSZK ⊆ QMA Theorem 15 If QSZK ⊆ QMA, then there exists a non-interactive auxiliaryinput quantum (b s , h c )-commitment scheme on an innite set I.

Proof: First, we show the following Lemma 8 If QSZK ⊆ QMA then there exist two auxiliary-input state ensembles that are quantum computationally indistinguishable on an innite set I.

Proof: Let us consider the complete problem QSD = {QSD Y , QSD N } for QSZK HV . We may restrict attention to the honest verier case, since it is known that QSZK = QSZK HV [Wat09]. Recall that the set QSD Y consists of pairs of circuits (C 0 , C 1 ), such that the trace norm satises 

.

We now claim that this implies that QSZK ⊆ QMA, which is a contradiction. For any input (C 0 , C 1 ) the prover can send the classical polynomial size description of Q to the verier as well as the mixed state σ with polynomial number of qubits. Then, for all (C 0 , C 1 ) ∈ QSD Y , the verier with the help of Q and σ can distinguish between the two circuits with probability higher than

On the other hand, for all (C 0 , C 1 ) ∈ QSD N , no matter what Q and σ the prover sends, since

≤ µ(n) the verier can only distinguish the two circuits with probability at most

2 . This implies that there is an inverse polynomial gap between the acceptance probabilities in the two cases.

By applying standard error reduction tools for QMA [START_REF] Yu | Classical and Quantum Computation[END_REF][START_REF] Marriott | Quantum Arthur-Merlin games[END_REF], we obtain a QMA protocol to solve QSD.

This implies that if QSZK ⊆ QCMA then there exists a non empty set I ⊆ QSD Y such that the two auxiliary-input state ensembles {ρ C0 (C0,C1) } and {ρ C1 (C0,C1) } are quantum computationally indistinguishable on I. Notice that the set I is innite. Indeed, if I is nite, then by hard-wiring this nite number of instances into the QMA verier (who always accepts these instances), we have again that QSZK ⊆ QMA.

We now show how to construct a commitment scheme from these ensembles Lemma 9 The two auxiliary-input state ensembles {ρ C0 (C0,C1) } (C0,C1)∈I and {ρ C1 (C0,C1) } (C0,C1)∈I that are quantum computationally indistinguishable on the innite set I imply a non-interactive auxiliary-input quantum (b s , h c )-commitment scheme on I.

Proof:

For every (C 0 , C 1 ) ∈ I we dene the following commitment scheme entire state and then measures all his qubits in the computational basis.

He accepts if and only if the outcome is |0 .

Let us analyze the above scheme. First, note that all operations of the sender and the receiver in the above protocol can be computed in time polynomial in n given the input (C 0 , C 1 ). This includes the receiver's test during the reveal phase.

Moreover, it is computationally hiding since the states {ρ C0 (C0,C1) } and {ρ C1 (C0,C1) }

are quantum computationally indistinguishable.

The fact that the protocol is statistically binding follows from the fact that for the states {ρ C0 (C0,C1) } and {ρ C1

if ξ is the total quantum state sent by a dishonest sender S * in the commit and reveal phase of the protocol, then the probability that ξ can be revealed as the bit b is bounded by

using the monotonicity of the delity with respect to the partial trace. This calculation follows the proof of Watrous that QSZK is closed under complementation [START_REF] Watrous | Limits on the power of quantum statistical zeroknowledge[END_REF]. Using this fact, as well as the property of the delity given in Lemma 8, we have

where the nal inequality follows from Lemma 9 and the fact that the trace distance of the two states satises

implies that the protocol is statistically binding.

By combining the above two Lemmata, we conclude that if QSZK ⊆ QMA, then there exists a non-interactive auxiliary-input quantum (b s , h c )-commitment scheme on an innite set I.

Note, that if we are willing to relax the indistinguishability condition, i.e.

enforce the indistinguishability of the states against a quantum algorithm that has only classical auxiliary input (i.e. get rid of the state ξ), then the condition becomes QSZK ⊆ QCMA. Notice also that by using a result of Crépeau, Légaré, and Salvail [START_REF] Crépeau | How to convert the avor of a quantum bit commitment[END_REF] we can convert this commitment scheme into one that is statistically hiding and computationally binding. 9.3 Quantum (b s , h c )-commitments unless QIP ⊆ QMA First, let us note that the condition QIP ⊆ QMA implies that PSPACE ⊆ PP which is widely believed not to be true. Hence, the commitment we exhibit are based on a very weak classical computational assumption. Of course, since the result is so strong, the commitments themselves are weaker, in the sense that apart from a classical advice, one needs a quantum advice as well in order to construct them. Note of course, that our denitions of security are against quantum adversaries that also receive an arbitrary quantum advice, hence our honest players are not more powerful than the dishonest ones. Moreover, the quantum advice does not create entanglement between the two players.

The proof is very similar to the previous one. The rst protocol that we obtain is based on the swap test on two nearly orthogonal states. For this reason a cheating Sender can open either zero or one with probability 3/4 + neg(n).

Following the proof of this Theorem (in Proposition 25 we show how to repeat the protocol in parallel to obtain negligible binding error.

Theorem 16 If QIP ⊆ QMA, then there exists a non-interactive auxiliary-input quantum (b s , h c )-commitment scheme with quantum advice on an innite set I. This scheme has constant binding error.

Proof: We rst show the following Lemma 10 If QIP ⊆ QMA, there exist two auxiliary-input superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈I and {Q 1 } (Q 0 ,Q 1 )∈I that are quantum computationally indistinguishable on an innite set I.

Proof: Suppose QIP ⊆ QMA. Let us consider the complete problem QCD for QIP with input the mixed-state circuits (Q 0 , Q 1 ). Let n = |(Q 0 , Q 1 )|. Let I denote the input space, O the output space and G the output garbage space of the circuits Q 0 , Q 1 .

Consider the set QCD Y , whose elements are pairs of circuits (Q 0 , Q 1 ), such that the diamond norm satises

, and the two auxiliaryinput superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈QCD Y and {Q 1 } (Q 0 ,Q 1 )∈QCD Y . Assume for contradiction that they are quantum computationally distinguishable on QCD Y , i.e. for some polynomials p, s, k and all (Q 0 , Q 1 ) ∈ QSD Y , the superoperators Q 0 and Q 1 are (s(n), k(n), 1/p(n))-distinguishable. In other words, for polynomials p, s, k and for all (Q 0 , Q 1 ) ∈ QSD Y there exists a mixed state σ on t(n) + k(n) qubits and a quantum circuit D of size s(n) that performs a binary outcome measurement on (m(n

We now claim that this implies that QIP ⊆ QMA, which is a contradiction. For any input (Q 0 , Q 1 ) the QMA-prover can send to the verier the classical polynomial size description of D as well as the mixed state σ with poly(n) qubits. Then, for all (Q 0 , Q 1 ) ∈ QCD Y , the verier with the help of D and σ can distinguish between the two circuits with probability higher than 1 2 + 1 2p(n) . On the other hand, for all (Q 0 , Q 1 ) ∈ QCD N , no matter what D and σ the prover sends, since Q 0 -Q 1 ≤ µ(n) the verier can only distinguish the two circuits with probability at most 1 2 + µ(n) 2 . Hence, there is at least an inverse polynomial gap between the two probabilities, so we can use error reduction [START_REF] Yu | Classical and Quantum Computation[END_REF][START_REF] Marriott | Quantum Arthur-Merlin games[END_REF] to obtain a QMA protocol that solves QCD with high probability.

We just showed that QIP ⊆ QMA implies that there exists a non-empty set I ⊆ QCD Y and two auxiliary-input superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈QCD Y and {Q 1 } (Q 0 ,Q 1 )∈QCD Y which are quantum computationally indistinguishable on I. Once again, the set I must be innite, as if I is nite then by hard-wiring this nite number of instances into the QMA verier (who always accepts these instances), we have again that QIP ⊆ QMA.

We now need to show how to construct a commitment scheme on I based on these indistinguishable superoperator ensembles. The protocol we obtain has only constant binding error: the average of the probability of successfully revealing 0 and the probability of successfully revealing 1 is negligibly larger than 3/4. Following this Lemma we prove a parallel repetition result for this protocol that reduces this error to a negligible function.

Lemma 11 The two auxiliary-input superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈I and Proof: For every (Q 0 , Q 1 ) ∈ I we dene a quantum commitment scheme with quantum advice. For convenience we let U b be the unitary operation that simulates the admissible map Q b , in other words we have that

Note that any Q b can be eciently converted to a unitary circuit U b . Let also |φ * be the pure state from Lemma 2, such that

| to be the security parameter. S and R also receive as advice a copy of the state |φ * on poly(n) qubits.

• Commit phase: To commit to bit b, the sender S runs the quantum circuit 1 F ⊗ U b with input |φ * |0 . The entire output of the circuit is a state in the space F ⊗ O ⊗ G. The sender then sends the qubits in the space O ⊗ F to the receiver R.

• Reveal phase: To reveal bit b, the sender S sends the remaining qubits of the state (1

) in the space G to the receiver R. The receiver rst applies the operation 1 F ⊗ (U b ) † to the entire state he received from the sender and then performs a swap test between this state and his copy of |φ * |0 .

Let us analyze the above scheme. First, note that all operations of the sender and the receiver in the above protocol can be computed in time polynomial in n given the input (Q 0 , Q 1 ). This includes the receiver's test during the reveal phase, since given a description of a unitary circuit it can be inverted by simply taking the inverse of each gate and running the circuit in reverse and the swap test which is also ecient.

The protocol is computationally hiding since the superoperators Q 0 and Q 1 are quantum computationally indistinguishable.

The fact that the protocol is statistically binding (with constant error) follows from the fact that we have

for a negligible function µ. More precisely, let σ b be the state sent by the sender with tr G σ 0 = tr G σ 1 = σ OF (the honest sender sends the pure state (1

Then the receiver accepts if and only if the output of (1

and his copy of |φ * |0 pass the swap test. This probability is equal to

where we have used the fact that the swap test on a state ρ ⊗ σ returns the symmetric outcome with probability 1 2 + 1 2 tr ρσ, as well as the monotonicity of the delity with respect to the partial trace.

Using this calculation, the binding property of the protocol is given by

where we have used Lemma 2 and Lemma 8.

From the above two Lemmata, we almost have that if QIP ⊆ QMA, then there exists a non-interactive auxiliary-input quantum (b s , h c )-commitment scheme with quantum advice on an innite set I, with constant binding error. The only thing to do is to reduce the cheating probability of the sender to 1/2 + neg(n).

To do this, we will use parallel repetition of the above protocol.

Proposition 25 Consider a k-fold repetition of the above bit commitment protocol. This protocol is a non-interactive auxiliary-input quantum (b s , h c )-commitment scheme with quantum advice on I.

Proof: The two things we have to make sure of is that the computationally hiding property remains under parallel repetition and that the cheating probability of the sender decreases as a negligible function in k. To show that the protocol is computationally hiding, we use the following Lemma.

Lemma 12 ([Wat09]) Suppose that ρ 1 , . . . ρ n and ξ 1 , . . . , ξ n are m-qubit states

Then there exists at least one choice of j ∈ {1, . . . , n} for which ρ j and ξ j are (s, (n -1)m + k, ε/n)-distinguishable.

From this Lemma, we easily have that if the superoperators Q 0 and Q 1 are quantum computationally indistinguishable then the output states of the superoperators Q ⊗k 0 and Q ⊗k 1 applied to any product state are quantum computationally indistinguishable for any k of polynomial size. This proves that the repeated protocol remains computationally hiding, since the honest Sender prepares a product state.

We now need to prove that the statistical hiding property decreases to 1/2 + neg(n). We rst prove the following Lemma that applies to the ideal case, i.e.

the Receiver applies the swap test to one of two states with orthogonal reduced states. The calculation that this strategy (approximately) generalizes to the case of states that are almost orthogonal states follows the proof of the Lemma.

Lemma 13 Let |φ 0 , |φ 1 ∈ A ⊗ B be states such that tr B |φ 0 φ 0 | and tr B |φ 1 φ 1 | are orthogonal, and let ρ 0 , ρ 1 be two states on

Consider the following test: Test b: Take k copies of |φ b and apply for each i ∈ {1, . . . , k} the swap test between each copy and the state in A i ⊗ B i . Accept if all the swap tests accept.

For any ρ 0 and ρ 1 with equal reduced states on

Proof: [Proof of Lemma 13] We prove the result by induction on k. For k = 1.

We have

Pr[ρ b passes

since the reduced states of |φ 0 , |φ 1 are orthogonal. Now we suppose the Lemma is true for k and show it for k + 1. For convenience we set S i = A i ⊗ B i . We take a reference space R of sucient size to consider purications of ρ 0 and ρ 1 . Let ρ b = tr R |ψ b ψ b | be these (arbitrary) purications. Using this notation, we write

only: notice that the choice of purication in the space R has no eect on this probability. Using this notation, we have

Similarly, we dene T 1 (ξ) for any ξ and we have

These states are obtained from ρ 0 and ρ 1 by discarding the system in S 1 . This implies that they have the properties in the statement of the Lemma, i.e. the reduced states of ξ 0 and x 1 on A 2 ⊗ • • • ⊗ A k+1 are equal. Thus, by induction, we know that 1 2 (T 0 (ξ 0 ) + T 1 (ξ 1 )) ≤ 1 2 + 1 2 k+1 . This means that:

Using this, as well as Equation (9.4), we have

where the nal inequality is by Equation (9.3).

Proof: [Proof of Lemma 14] For simplicity, let ρ

where Π + and Π -are the projectors onto the positive and negative eigenspaces of ρ 0 -ρ 1 respectively. Notice that tr(Π + ρ 0 ) = tr(Π + (ρ 0 -ρ 1 )) + tr(Π + ρ 1 ) ≥ tr(Π + (ρ 0 -ρ 1 )), and similarly tr(Π -ρ 1 ) ≥ -tr(Π -(ρ 0 -ρ 1 )), which implies that tr(Π + ρ 0 ) + tr(Π -ρ 1 ) ≥ tr(Π + (ρ 0 -ρ 1 )) -tr(Π -(ρ 0 -ρ 1 )) ≥ 2 -ε, by Equation (9.5). This implies that tr(Π + ρ 0 ) ≥ 1 -ε and tr(Π -ρ 1 ) ≥ 1 -ε.

Proof: Recall the Complete problem Π = {Π Y , Π N } from Denition 18 with inputs the mixed-state circuits (Q 0 , Q 1 ) from D(X ⊗ Y) to a single bit and n = |(Q 0 , Q 1 )|. To show this Theorem, we rst show the following Lemma Lemma 15 If QIP ⊆ QMA, there exist two auxiliary-input superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈I and {Q 1 } (Q 0 ,Q 1 )∈I that are quantum computationally unwitnessable on an innite set I.

Proof: Let us consider the set Π Y and suppose for contradiction that the two auxiliary-input superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈Π Y and {Q 1 } (Q 0 ,Q 1 )∈Π Y are quantum computationally witnessable, i.e. there exist polynomials (s, k, p) such that for all (Q 0 , Q 1 ) ∈ Π Y the superoperators Q 0 and Q 1 are (s(n),k(n),p(n))witnessable. In other words, there exist polynomials (s, k, p) such that for all (Q 0 , Q 1 ) ∈ Π Y there exist two input states ρ 0 , ρ 1 ∈ L(X ⊗ Y) such that rst, there exists a state σ ∈ L(W) with |W| = k and an admissible superoperator Ψ : L(W ⊗ X ) → L(X ) of size s, such that ρ 1 = (Ψ ⊗ 1 Y )(σ ⊗ ρ 0 ); and second

Then, we provide a QMA protocol for the problem Π. Merlin sends ρ 0 , σ (of size k(n)) and the classical description of Ψ (of size s(n)). Arthur with probability 1/2 applies Q 0 on ρ 0 and accepts if he gets 1; and with probability 1/2 he rst creates ρ 1 from ρ 0 , Ψ and σ, then applies Q 1 on it and also accepts if he gets 1. We have an inverse polynomial gap between completeness and soundness and hence we conclude that Π ∈ QMA. This proves that there is an nonempty I that satises the property of our Lemma. Note that if I is nite, then by hard-wiring this nite number of instances into the QMA verier (who always accepts these instances), we have again that QIP ⊆ QMA. So if QIP ⊆ QMA then the above I is innite.

To nish the proof of the Theorem, we now need to show the following Lemma 16 The two auxiliary-input superoperator ensembles {Q 0 } (Q 0 ,Q 1 )∈I and {Q 1 } (Q 0 ,Q 1 )∈I that are quantum computationally unwitnessable on the innite set I ⊆ Π Y imply a non-interactive quantum (b c , h s )-commitment scheme with quantum advice on I.

Proof: Commitment scheme For each (Q 0 , Q 1 ) ∈ I ⊆ Π Y , we consider the following commitment scheme