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Chapter 1

Introduction(in French)

1.1 L'informatique quantique

La mécanique quantique est l'une des plus importantes découvertes du siècle
dernier en physique théorique. Grâce à la mécanique quantique, nous savons
qu'à une très petite échelle, les particules se comportent très di�éremment de ce
que nous pensions auparavant. À cette échelle, les particules possèdent plusieurs
états simultanés et sont modi�ées lorsqu'elles sont observées. Bien que ces
concepts furent développés à la �n des années 1930, de nombreux mystères liés
à cette théorie demeurent, en raison de sa nature contre-intuitive. Pourtant, de
nombreuses expériences ont con�rmé la nature quantique du monde.

Au milieu des années 80, le physicien Richard Feynman eut une idée re-
marquable : si nous pouvions contrôler les états quantiques de certaines partic-
ules, nous pourrions simuler des systèmes physiques quantiques. L'informatique
quantique est née de son premier article [Fey82]. L'idée de base est qu'au lieu
de travailler sur des bits, qui prennent la valeur 0 ou 1, nous allons travailler
sur des qubits qui sont des superpositions de bits. Un qubit prend la valeur 0
et 1 avec des coe�cients associés.

L'informatique quantique a deux principaux avantages. En manipulant des
qubits en superposition, nous pourrons être en mesure de faire des calculs en
parallèle et résoudre certains problèmes beaucoup plus rapidement qu'en infor-
matique classique. En 1994, Peter Shor a découvert que la factorisation (voir
�g Figure 1.1) peut être réalisée en temps polynomial sur un ordinateur quan-
tique [Sho94]. Cela signi�e que toutes les applications cryptographiques basées
sur la di�culté de la factorisation (y compris l'algorithme RSA) peuvent être
brisées en utilisant un ordinateur quantique.

Ce résultat a soulevé un grand intérêt pour le calcul quantique qui est devenu
aujourd'hui un sujet de recherche très important et fructueux. Un autre exemple
de la supériorité du calcul quantique : Grover a montré que l'on peut trouver
un élément dans un ensemble de données de taille n en temps O(

√
n)[Gro97] à

l'aide d'un ordinateur quantique, au lieu de O(n) pour un ordinateur classique.
Cependant, ces algorithmes quantiques sont encore très di�ciles à mettre en
÷uvre car il est di�cile de contrôler un grand nombre de qubits simultanément.

Une autre caractéristique importante des états quantiques, est qu'ils per-
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Figure 1.1: Factorisation

• Entrée: n'importe quel nombre n = p·q ou p, q sont des nombres premiers
et p, q 6= 1

• But: trouver p et q

Par exemple, si n = 657713791279, il faut découvrir que 657713791279 =
660661 · 995539. Généralement, lorsque n est de 100 chi�res (lorsque p, q ont
de l'ordre de 50 chi�res), le problème est di�cile pour un ordinateur classique,
mais pourrait être facilement résolu par un ordinateur quantique.

dent leur comportement quantique lorsqu'on les observe. Tant qu'un état quan-
tique n'est pas observé, il reste dans une superposition d'états. Mais quand
il est observé, il choisit de manière probabiliste l'état dans lequel il se trouve.
Cela signi�e que les états quantiques changent lorsqu'on les observe. En 1984,
Bennett et Brassard [BB84] ont montré comment utiliser ce phénomène quan-
tique pour e�ectuer une tâche cryptographique: la distribution de clé (�gure
Figure 1.1)), ce qui est impossible à réaliser inconditionnellement en utilisant
uniquement des ordinateurs classiques. Depuis lors, la cryptographie quantique
a été développée dans plusieurs directions et il est déjà possible de mettre en
÷uvre pratiquement ces protocoles. Le coût et l'e�cacité de la cryptographie
quantique est aujourd'hui moins bonne que son homologue classique, mais elle
devient de plus en plus viable et plusieurs sociétés vendent déjà des dispositifs
quantiques.

Figure 1.2: La distribution de clé quantique

Alice et Bob communiquent quantiquement. Leur but est de partager une clé
commune k. Ève ne doit pas être en mesure d'obtenir des informations sur la

clé k sans qu'Alice et Bob ne le remarquent.
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1.2 Primitives cryptographiques

La cryptographie est l'étude et la pratique de la dissimulation d'information.
Elle est utilisée dans de très nombreuses applications comme les cartes de
paiement, le commerce électronique ou plus simplement la possibilité d'envoyer
un courriel sans être espionné. La cryptographie est largement utilisée dans la
vie quotidienne.

Si nous avions à analyser et à prouver la sécurité de tous les systèmes cryp-
tographiques séparément, la probabilité de commettre des erreurs serait énorme.
Il est plus e�cace d'utiliser des blocs de base qui, assemblés, permettent de
construire des cryptosystèmes plus complexes. Ces blocs de base sont appelés
primitives cryptographiques et vont être étudiés dans cette thèse.

Nous nous intéresserons aux primitives cryptographiques fondamentales : le
pile-ou-face, la mise-en-gage de bit, et la transmission inconsciente.

Le pile-ou-face est une primitive cryptographique qui permet à deux per-
sonnes mé�antes et éloignées les unes des autres, Alice et Bob, de créer un
bit aléatoire qui reste non biaisé, même si l'un des joueurs tente de tricher.
Cette primitive a d'abord été proposée par Blum [Blu81] et a depuis trouvé de
nombreuses applications dans le calcul sécurisé à deux joueurs.

La primitive de mise-en-gage de bit se compose de deux phases: dans la
phase de mise-en-gage, Alice s'engage sur un bit b; dans la phase de révélation,
Alice révèle ce bit b à Bob. Il faut s' assurer de deux choses: que Bob n'ait pas
d'informations sur b après la phase de mise-en-gage et qu'Alice ne puisse pas
changer d'avis lorsqu'elle révèle b.

La transmission inconsciente est la primitive la plus forte car c'est une prim-
itive universelle pour tout calcul sécurisé à deux joueurs [Rab81, EGL82, Cré87]
ce qui signi�e que si l'on peut e�ectuer la transmission inconsciente de manière
parfaite, alors on peut réaliser tout type de calcul de deux joueurs de manière
sécurisé. Nous étudions plus précisément la transmission inconsciente 1-2 aléa-
toire. À la �n d'un tel protocole, Alice se retrouve avec deux bits aléatoires
(x0, x1) et se retrouve avec xb et b pour un choix aléatoire de b. L'objectif du
protocole est de veiller à ce que Bob n'ait aucune information sur xb et que Alice
n'ait aucune information sur b.

En informatique classique, toutes ces primitives sont utilisées pour constru-
ire des cryptosystèmes, et l'informatique quantique ne semble pas nécessaire.
Cependant, toutes ces primitives classiques reposent sur des hypothèses de cal-
cul. Par exemple, il est possible de réaliser (presque) parfaitement un pile ou
face en prenant comme hypothèse que la factorisation est un problème di�cile.
Toutes les primitives en cryptographie classique reposent sur des hypothèses de
calcul. Nous disons que ces primitives sont sécurisées du point de vue calcula-
toire.

Une notion plus forte de sécurité est la sécurité inconditionnelle. Dans ce
cadre, les primitives doivent être sécurisées, même contre un tricheur tout puis-
sant - un joueur qui peut facilement factoriser ou exécuter tout type d'opération.
Dans le cadre classique, nous savons qu'il est impossible d'atteindre une sécu-
rité inconditionnelle pour la plupart de ces primitives cryptographiques. Pire,
lorsque l'on considère des tricheurs tout puissants, nous avons

Dans tout pile-ou-face classique, mise-en-gage de bit ou protocole de trans-
mission inconsciente, au moins un joueur peut tricher avec une probabilité de 1

7



Figure 1.3: pile-ou-face

Alice and Bob sont loin. Ils veulent tirer à pile ou face mais ne se font pas
con�ance.

dans le cadre de la sécurité inconditionnelle

Cela signi�e que ces primitives sont impossibles à réaliser dans le modèle de
calcul classique.

1.3 Les limites physiques des primitives cryptographiques

quantiques

L'informatique quantique nous a donné l'occasion de réétudier la sécurité in-
conditionnelle en cryptographie. Le premier résultat a été le protocole de dis-
tribution quantique de clé de Bennett et Brassard [BB84]. Dès lors, de nom-
breux travaux ont porté sur la possibilité de réaliser d'autres primitives cryp-
tographiques grâce à l'informatique quantique. Malheureusement, les résultats
postérieurs ont été décevants. Mayers et Lo, Chau ont prouvé l'impossibilité
de la mise-en-gage de bit quantique ainsi que la transmission inconsciente et
par conséquent de tout type de calcul sécurisé à deux joueurs [May97, LC97,
DKSW07].

Ces impossibilités empêchent la construction de primitives cryptographiques
parfaites. Mais il reste possible de construire des primitives cryptographiques
quantiques presque parfaites. Aharanov et al . [ATVY00] ont d'abord montré
comment construire une mise-en-gage de bit quantique imparfaite où la proba-
bilité de tricher est inférieure à 0, 9143. Le meilleur protocole est dû à Ambainis
qui a construit un protocole de mise-en-gage de bit (et un pile-ou-face quan-
tique), dans lequel aucun joueur ne peut tricher avec une probabilité supérieure
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à 3
4 [Amb01].

Il existe un protocole de pile-ou-face quantique et un protocole de mise-en-gage
de bit quantique dans lequel chaque joueur peut tricher avec une probabilité d'au
plus 3

4 .

D'autre part, Kitaev a montré qu'il n'est pas possible de construire des
protocoles quantiques de pile-ou-faces avec une probabilité de tricher inférieure
à 1√

2

Dans n'importe quel protocole de mise-en-gage de bit ou de pile-ou-face, au
moins l'un des joueurs peut tricher avec une probabilité de 1√

2
.

On en déduit que les lois de la physique quantique permettent théoriquement
de construire un protocole de pile-ou-face avec une probabilité de tricher égale à
3
4 , mais aucun protocole de pile-ou-face n'est physiquement réalisable avec une
probabilité de tricher inférieure à 1√

2
, si on suppose que les lois de la physique

quantique sont vraies.
Une autre notion de pile-ou-face a été étudiée: le pile-ou-face faible. Dans

ce cas, nous voulons faire en sorte qu'Alice ne puisse pas tricher pour que la
pièce tombe sur 'PILE' et d'autre part que Bob ne puisse pas tricher pour
que la pièce tombe sur 'FACE'. Contrairement au pile-ou-face usuel, Alice peut
forcer le résultat 'FACE' avec une probabilité de 1 et Bob peut forcer le résultat
'PILE' avec une probabilité de 1. Après une série de travaux [Moc04, Moc05,
Moc07], Mochon a montré comment construire un pile-ou-face faible quantique,
qui est presque parfaitement sécurisé. Par opposition à cette notion de pile-ou-
face faible, nous appellerons le pile-ou-face standard le pile-ou-face fort. Même
pour cette dé�nition faible, il est impossible de construire un tel protocole en
informatique classique.

Nous avons amélioré les limites physiques pour des primitives cryptographiques
quantiques. Dans le chapitre 3, nous étudions le pile-ou-face quantique. Nous y
montrons comment construire un protocole de pile-ou-face quantique avec une
probabilité de tricher arbitrairement proche de 1√

2
. De la borne inférieure de

Kitaev, nous savons que nos protocoles sont arbitrairement proche de l'optimal.
Plus précisément, nous montrons que

Theorem 1 Pour tout ε > 0, il existe un pile-ou-face fort quantique avec une
probabilité de tricher de 1√

2
+ ε.

Pour montrer ce théorème, nous nous servons du pile-ou-face faible de Mo-
chon. Nous construisons un protocole classique où nous utilisons ce pile-ou-
face faible comme un sous-protocole. Cela signi�e que la capacité d'e�ectuer
un pile-ou-face quantique fort avec une probabilité de tricher de 1√

2
vient de

la possibilité d'e�ectuer un pile-ou-face quantique faible (presque) optimal. De
manière équivalente, si nous pouvions construire un pile-ou-face faible classique-
ment alors notre construction donnerait un pile-ou-face classique fort avec une
probabilité de tricher de 1√

2
.

Nous étudions ensuite les limites physiques de la mise-en-gage de bit. Avant
notre travail, les bornes pour le pile-ou-face quantique et la mise-en-gage de bit
quantique étaient les mêmes. On ne savait pas si ces deux primitives avaient la
même borne optimale. Dans le chapitre 4, nous montrons que ce n'est pas le

9



cas. Nous montrons d'abord une meilleure borne inférieure pour la mise-en-gage
de bit quantique.

Theorem 2 Dans tout protocole quantique de mise-en-gage de bit, au moins
un des joueurs peut tricher avec une probabilité de tricher de 0, 739.

Ensuite, nous fournissons une limite supérieure correspondante. Nous décrivons
un protocole de mise-en-gage de bit qui permet d'obtenir une probabilité de
tricher arbitrairement proche de 0, 739.

Theorem 3 Pour tout ε > 0, il existe un protocole quantique de mise-en-gage
de bit avec une probabilité de tricher inférieure à 0, 739 + ε.

Ce protocole utilise également le pile-ou-face faible de Mochon comme un
sous-protocole. Toutefois, ce protocole est quantique même au-delà du sous-
protocole. Ceci est en e�et nécessaire. Nous montrons que tout protocole clas-
sique de mise-en-gage de bit avec la possibilité d'utiliser un pile-ou-face faible
(ou même fort) parfait ne peut avoir une probabilité de tricher inférieure à 3

4 .

Theorem 4 Tout protocole de mise-en-gage de bit classique avec accès à un
pile-ou-face faible (ou fort) ne peut pas avoir une probabilité de tricher inférieure
à 3

4 .

Contrairement au cas du pile-ou-face fort qui utilise un pile-ou-face faible et
un protocole classique, la mise-en-gage de bit optimale utilise des e�ets quan-
tiques au-delà du pile-ou-face faible.

Dans le chapitre 5, nous étendons ces résultats à la transmission incon-
sciente. Nous présentons les premières bornes de transmission inconsciente
quantique. Contrairement au pile-ou-face quantique et à la mise-en-gage de
bit, nous n'avons pas été en mesure de trouver une borne optimale pour la
transmission inconsciente quantique. Nous montrons d'abord une faible limite
supérieure pour cette primitive.

Theorem 5 Dans tout protocole quantique de transmission inconsciente, au
moins l'un de joueurs peut tricher avec probabilité supérieure à 0, 58

Pour démontrer ce théorème, nous réduisons tout protocole de transmission
inconsciente à un protocole de mise-en-gage de bit. Nous utilisons ensuite les
bornes inférieures de la mise-en-gage quantique pour conclure. Le protocole de
mise-en-gage de bit résultant n'a pas les probabilités de tricher que le protocole
de transmission inconsciente d'origine, c'est pourquoi la borne inférieure de la
transmission inconsciente quantique est moins bonne que la borne inférieure de
la mise-en-gage de bit.

On construit ensuite un protocole avec une probabilité de tricher de 3
4 .

Theorem 6 Il existe un protocole de transmission inconsciente quantique qui
permet d'obtenir des probabilités de tricher de 3

4

Les tableaux suivants présentent les anciennes et les nouvelles bornes obtenues
dans cette thèse pour les primitives cryptographiques quantiques, pour tout
ε > 0.

Anciennes bornes pour les primitives cryptographiques quantiques.
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Borne inférieure Borne supérieure
pile-ou-face faible 1/2 1/2 + ε
pile-ou-face fort 1√

2
3/4

mise-en-gage de bit 1√
2

3/4
transmission inconsciente * *

Les bornes pour la transmission inconsciente ont été étudiées dans [SSS09]. Les
bornes obtenues sont exprimées en terme d'entropie pour une notion un peu
plus forte de la transmission inconsciente. Ces bornes ne sont pas comparables
avec les bornes obtenues dans cette thèse

Nouvelles bornes pour les primitives cryptographiques quantiques.

Borne inférieure Borne supérieure
pile-ou-face faible 1/2 1/2 + ε
pile-ou-face fort 1√

2
1√
2

+ ε

mise-en-gage de bit 0, 739 0, 739 + ε
transmission inconsciente 0,58 3/4

1.4 Modèles pratiques pour la cryptographie quan-

tique à deux joueurs

Dans la première partie, nous avons étudié les possibilités et les limites de la
cryptographie quantique avec une sécurité inconditionnelle. Nous allons main-
tenant étudier la mise en ÷uvre pratique de ces primitives. Ceci a largement
été fait pour la distribution de clé quantique ainsi que pour les primitives cryp-
tographiques quantiques mais sans sécurité inconditionnelle. Notre objectif est
de mettre en ÷uvre ces primitives avec une sécurité inconditionnelle. Bien sûr,
nos résultats seront plus faibles que ceux obtenus pour la distribution quan-
tique de clé, puisque nous sommes limités par les bornes inférieures décrites
précédement, et donc nos protocoles auront toujours des probabilités de tricher
constantes.

1.4.1 Le modèle indépendant-du-dispositif

Un protocole quantique est dit indépendant-du-dispositif si la �abilité de sa
mise en ÷uvre peut être garantie sans faire aucune supposition concernant le
fonctionnement interne des appareils quantiques utilisés.

Le modèle indépendant-du-dispositif supprime les mécanismes de triche et de
nombreux modes de défaillance, comme, par exemple, celles qui sont exploitées
dans [XQL10, LWW+10].

En fait, un protocole indépendant-du-dispositif, en principe, reste solide
même si les appareils de mesure et de création des états quantiques ont été
fabriqués par un adversaire. Jusqu'à présent, les protocoles indépendant-du-
dispositif ont été proposés pour la distribution de clés quantiques [AGM06,
ABG+07, MY03, BHK05], la génération de nombres aléatoires [Col09, PAM+10],
l'estimation d'état [BLM+09], et l'auto-véri�cation des ordinateurs quantiques
[MMMO06].
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Il n'est pas clair a priori, s'il est possible de construire des primitives cryp-
tographiques à 2 joueurs dans ce modèle. Cette contrainte nous propose un
nouveau dé�:

Dans la distribution quantique de clés indépendant-du-dispositif, Alice et
Bob vont coopérer pour obtenir une clé inconnue d'une tierce personne, Ève.
Dans les protocoles à deux joueurs, les joueurs ne se font pas con�ance et ne
peuvent compter que sur eux-mêmes. Dans le chapitre 6, nous montrons la
possibilité de réaliser des primitives cryptographiques à deux joueurs dans ce
modèle.

Nous présentons un protocole indépendant-du-dispositif pour la mise-en-gage
de bit, dans lequel, Alice et Bob peuvent tricher avec une probabilité au plus
cos2(Π/8) ≈ 0, 854. Nous utilisons ensuite ce protocole pour construire un pile-
ou-face indépendant-du-dispositf avec une probabilité de tricher plus faible que
0, 836.

Theorem 7 Il existe un protocole indépendant-du-dispositif pour la mise-en-
gage de bit avec une probabilité de tricher de 0, 854 et un protocole de pile-ou-face
indépendant-du-dispositif avec une probabilité de tricher de 0, 836.

Il s'agit de la première construction de protocoles indépendant-du-dispositif
pour les primitives cryptographiques quantiques à deux joueurs.

1.4.2 pile-ou-face quantique tolérant aux pertes

Nous considérons maintenant un modèle où les joueurs n'ont pas de mémoire
quantique et les dispositifs de mesure ont des pertes. En 2008, Berlin a présenté
une pièce de monnaie quantique tolérante aux pertes avec des probabilités de
tricher de 0, 9[BBBG08]. Dans ce protocole, les joueurs honnêtes ne réussissent
pas toujours à avoir un résultat quand ils e�ectuent une mesure (la mesure peut
parfois échouer) mais quand ils y parviennent, ils ont toujours le résultat correct.
Ceci est à distinguer de la tolérance au bruit où un joueur honnête pourrait
e�ectuer une mesure avec un résultat faux sans le savoir. Très récemment,
Aharon et al . [AMS10] ont créé un pile-ou-face quantique tolérant aux pertes
avec une probabilité de tricher de 0, 8975. Dans un contexte un peu di�érent,
Barrett et Massar [BM04] ont montré comment générer aléatoirement une chaîne
de bits (une notion plus faible que le pile-ou-face) en présence de bruit.

Nous continuons le travail de Berlin et proposons un pile-ou-face quantique
tolérant aux pertes avec une probabilité de tricher de 0, 859. Comme dans le
protocole de Berlin et al . , nous demandons à Alice et Bob d'envoyer plusieurs
copies d'états sur un qubit. De plus, les joueurs honnêtes n'ont pas besoin de
mémoire quantique.

Le protocole de Berlin et al . est le suivant

• Alice envoie un état σ à Bob.

• Bob mesure cet état dans une base B (qui peut dépendre d'un aléa privé
de Bob). Si la mesure réussit, ils continuent le protocole. Sinon, ils recom-
mencent.

Dans ce protocole, l'état σ doit être choisi très soigneusement pour qu'un Bob
tricheur ne puisse pas utiliser le fait qu'une mesure ratée réinitialise le protocole.
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Ceci limite fortement les choix possibles pour σ. Pour résoudre partiellement
ce problème, on utilise la méthode suivante :

• Alice choisit r ∈R {0, 1} et envoie Er(σ) où Er est une opération quantique
de chi�rement qui cache de l'information sur σ.

• Bob mesure dans une base B. Si la mesure réussit, on continue le proto-
cole, sinon on recommence.

• Alice révèle r puis ils continuent comme dans le protocole précédent.

En appliquant cette méthode avec une répétition, en parallèle, de deux fois
le protocole de Berlin et al . , nous montrons que

Theorem 8 Il existe un protocole quantique de pile-ou-face tolérant aux pertes
avec une probabilité de tricher de 0, 859

Sans cette étape de cryptage supplémentaire, le protocole résultant ne serait
pas tolérant aux pertes.

Cette technique qui fait face aux pertes semble très générique. Il serait
intéressant de voir si ces techniques peuvent être utilisées dans d'autres modèles
pratiques. De plus, trouver un pile-ou-face quantique tolérant au bruit demeure
une question ouverte très intéressante.

1.5 Relations entre les preuves sans-connaissance

quantiques et la mise-en-gage quantique de

bit

Dans la dernière partie de cette thèse, nous allons au-delà de la sécurité in-
conditionnelle des primitives cryptographiques et étudions les protocoles sans-
connaissance quantiques. Nous étudions quelles sont les hypothèses calculatoires
qui impliquent la mise-en-gage de bit. Nous allons montrer que l'existence de
protocole quantique de mise-en-gage de bit est étroitement liée aux protocoles
sans-connaissance quantiques et aux classes de preuves interactives.

Pour illustrer ce que sont les protocoles sans-connaissance, prenons un ex-
emple.

Considérons un problème P considéré comme di�cile à résoudre. Supposons
qu'une personne (le prouveur) veuille révéler à une autre personne (le véri�-
cateur) que la réponse au problème P est OUI, sans donner aucune autre in-
formation. En particulier, le véri�cateur ne sera pas en mesure de convaincre
quelqu'un d'autre que la réponse à ce problème est OUI. A�n de créer ce genre
de preuves, le prouveur et le véri�cateur doivent interagir. La condition "sans
donner d'autres informations" a été formalisée de manière simple et élégante
par[GMR89] et cette condition de sécurité a été dé�nie à la fois en sécurité cal-
culatoire ainsi qu'en sécurité inconditionnelle. Ces protocoles sont très utiles en
cryptographie par exemple pour l'identi�cation sécurisée. La classe des prob-
lèmes qui peuvent être résolus avec un protocole sans-connaissance est appelée
PZK, SZK si on permet la fuite de très peu d'information, ou ZK si nous sup-
posons que le véri�cateur a une puissance de calcul polynomial.
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Ces classes sans-connaissance ont été étendues au cas quantique [Wat02a,
Kob07, Wat09] où nous permettons aux joueurs d'interagir quantiquement et
d'e�ectuer des opérations quantiques. Les classes correspondantes sont QPZK,QSZK,QZK.

Il y a une relation étroite entre les protocoles sans-connaissance quantiques et
les protocoles de mise-en-gage de bit. Tout d'abord, nous pouvons construire un
protocoles sans-connaissance pour tout problème dans PSPACE si nous avons
un protocole de mise-en-gage de bit. D'autre part, nous pouvons construire
des protocoles de mise-en-gage de bit basés sur la di�culté des problèmes de
SZK[OW93].

Nous avons d'abord étendu ce résultat au cas quantique et nous avons montré
que :

Theorem 9 SI QSZK 6⊆ QMA, alors il existe un protocole quantique de mise-
en-gage de bit avec une sécurité inconditionnelle pour Alice et une sécurité cal-
culatoire pour Bob.

est un équivalent quantique de NP. Notez que cette inégalité est considérée
comme plausible. Récemment, un oracle pour séparer ces deux classes a été
trouvé par Aaronson [Aar11].

Notez également que la famille de protocoles de mise-en-gage de bit ainsi
construite est non-uniforme, c'est à dire qu'Alice et Bob reçoive un aide classique
qui dépend uniquement du paramètre de sécurité qu'ils veulent obtenir.

Nous nous sommes ensuite intéressés à la mise-en-gage de bit où les joueurs
ont aussi l'aide d'un état quantique (potentiellement di�ciles à construire) (non-
uniformité quantique). Nous montrons qu'une telle famille de protocoles de
mise-en-gage existe sous une hypothèse très faible, à savoir :

Theorem 10 Si QIP 6⊆ QMA, alors il existe un protocole quantique de mise-
en-gage de bit avec aide quantique, avec une sécurité inconditionnelle pour Alice
et calculatoire pour Bob.

Notez que cette hypothèse est très probable vu que QMA ⊆ PP ⊆ PSPACE =
QIP et que ces inclusions sont probablement strictes. Dans nos deux théorèmes,
on peut choisir pour quel joueur la sécurité est calculatoire.

1.6 Organisation de la thèse

• Dans le chapitre 2 nous présentons les notions de base de l'informatique
quantique.

• Dans le chapitre 3, nous étudions le pile-ou-face quantique et montrons
comment construire un pile-ou-face optimal i .e. un protocole avec une
probabilité de tricher d'au plus 1√

2
+ ε pour tout ε > 0, améliorant le

meilleur protocole existant qui avait une probabilité de tricher égale à
3/4. Ce travail a été réalisé avec Iordanis Kerenidis [CK09].

• Dans le chapitre 4, nous étudions les protocoles quantiques de mise-en-
gage de bit. Nous établissons d'abord une borne inférieure de 0, 739 pour
cette primitive. Nous montrons ensuite comment construire un protocole
de mise-en-gage de bit presque optimal, avec une probabilité de tricher
d'au plus 0, 739 + ε pour tout ε > 0. Nous montrons aussi une borne
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inférieure pour les protocoles classiques de mise-en-gage où on ajoute la
capacité d'e�ectuer des lancers de pièce parfaits. Il s'agit d'un travail
conjoint avec Iordanis Kerenidis [CK11].

• Dans le chapitre 5, nous étudions la transmission inconsciente quantique.
Cette étude est la première qui donne des bornes constantes pour cette
primitive. Nous établissons d'abord une borne inférieure pour le transfert
quantique oublieux de 0, 58. Nous montrons ensuite comment construire
un protocole de transmission inconsciente quantique avec une probabilité
de tricher de 3/4. Ce travail a été réalisé avec Iordanis Kerenidis et Jamie
Sikora [CKS10].

• Dans le chapitre 6, nous étudions ces primitives cryptographiques dans
le modèle indépendant-du-dispositif. Nous montrons comment construire
un protocole indépendant-du-dispositif de mise-en-gage de bit avec une
probabilité de tricher de 0, 854 pour Alice et 3/4 pour Bob. Nous éten-
dons ensuite cette construction pour construire un pile-ou-face dans ce
même modèle avec une probabilité de tricher égale à 0, 836. Ce travail a
été réalisé en collaboration avec Jonathan Silman, Nati Aharon, Iordanis
Kerenidis, Stefano Pironio et Serge Massar [SCA+11].

• Dans le chapitre 7, nous construisons un pile-ou-face quantique sécurisé
contre les pertes avec une probabilité de tricher de 0, 859. Cette con-
struction donne également un protocole quantique de mise-en-gage de bit
tolérant aux pertes avec la même probabilité de tricher [Cha10].

• En�n, au chapitre 8, nous donnons des hypothèses calculatoires reliées aux
protocoles sans-connaissance qui permettent de construire des protocoles
de mise-en-gage de bit avec une sécurité calculatoire. Il s'agit d'un travail
conjoint avec Iordanis Kerenidis et Bill Rosgen [CKR11].
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Chapter 2

Introduction

2.1 Quantum computing

Quantum mechanics is one of the most important discoveries of the last century
in theoretical physics. Thanks to quantum mechanics, we know that at a very
small scale, particles behave very di�erently than what we thought before. At
this scale, particles are at several states at the same time and they are mod-
i�ed when observed. Even though these concepts have been developed in the
late 1930's, there are still many mysteries related to this theory because of its
counterintuitive nature. Still, many experiments have con�rmed the quantum
nature of the world.

In the mid-80's, the physicist Richard Feynman had a remarkable idea: If we
can control some quantum particles, we are able to simulate physical systems
in a more e�cient way. From his article [Fey82], quantum computing was born.
The basic idea is that instead of working on bits that take the value 0 or 1, we
work on qubits that are superpositions of bits. A qubit takes the value 0 and 1
with some related coe�cients.

There are two main advantages of quantum computing. By manipulating
qubits in superposition, we could be able to make some computations in parallel
and solve some problems much more quickly than in the classical case. In 1994,
Peter Shor discovered that factoring (see Figure 2.1) can be done in polynomial
time by a quantum computer [Sho94]. This means that every cryptographic
application based on the hardness of factoring (including RSA) can be broken
using a quantum computer. This result raised much interest in quantum com-
puting which has now become a very wide and fruitful research topic. Another
witness of quantum superiority : Grover showed that one can �nd an item in
database of size n in time O(

√
n) [Gro97] using a quantum computer instead

of O(n) for a classical computer. However, such quantum algorithms are still
very di�cult to implement since it is hard to control many qubits simultaneously.

Another important feature of quantum states is that they lose their quan-
tum behavior when observed. As long as a quantum state is not observed, it
is in a superposition of states. However, when it is observed, it chooses proba-
bilistically in which state it is. This means in particular that a quantum state
changes when observed. In 1984, Bennett and Brassard [BB84] showed how
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Figure 2.1: Factoring

• Input: any number n = p · q where p, q are prime numbers and p, q 6= 1

• Goal: �nd p and q

For example, if n = 657713791279, the goal is to �nd out that 657713791279 =
660661 · 995539. Typically, when n has 100 digits (when p, q can have each
around 50 digits), the problem is hard for a classical computer but could be
easily solved by a quantum computer.

to use this fact to perform quantumly a cryptographic task: Key Distribution
(Figure 2.1), which is impossible to perform unconditionally using only classi-
cal computers. Since then, Quantum Cryptography has also been developed in
many directions. Note also that it is already possible to implement such proto-
cols in practice. The cost and e�ciency of quantum cryptography is still worse
than its classical counterpart but it becomes more and more a viable solution
and several companies sell such quantum devices.

Figure 2.2: Key distribution

Alice and Bob communicate quantumly. At the end, they want to share a
common string k. Eve should not be able to gather information about the

key k without Alice and Bob noticing.

2.2 Cryptographic primitives

Cryptography is the practice and study of hiding information. Applications
of cryptography include ATM cards, electronic commerce or more simply the
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possibility of sending an email without being spied on. Cryptography is widely
used in everyday life.

If we had to analyze and prove security for each cryptosystem separately, the
probability of making errors would be huge so we use some basic building blocks
and assemble them to build more complex cryptosystems. It is these building
blocks, that we call cryptographic primitives, that will be studied in this thesis.

We study here some fundamental cryptographic primitives: coin �ipping,bit
commitment and oblivious transfer.

Coin �ipping is a cryptographic primitive that enables two distrustful and
far apart parties, Alice and Bob, to create a random bit that remains unbiased
even if one of the players tries to force a speci�c outcome. It was �rst proposed
by Blum [Blu81] and has since found many applications in two-party secure
computation.

A bit commitment protocol consists of two phases: in the commit phase,
Alice commits to a bit b; in the reveal phase, Alice reveals the bit to Bob.
We want to ensure two things: that Bob has no information about b after the
commit phase and that Alice cannot change her mind when revealing b.

Oblivious transfer is the strongest primitive since it is a universal primitive
for any two-party secure computation [Rab81, EGL82, Cré87] which means that
if one can perform perfect Oblivious Transfer, one can perform almost any kind
of two party secure computation. We study more precisely 1-out-of-2 random
oblivious transfer protocols. In such protocols, Alice outputs two uniformly
random bits (x0, x1) and Bob outputs xb for a uniformly random choice of b.
The goal of the protocol is to ensure that Bob has no information about xb and
that Alice has no information about b.

Figure 2.3: Coin �ipping

Alice and Bob are far away. They want to �ip a coin but do not trust each
other.
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In the classical setting, all these primitives are widely used to construct cryp-
tosystems, so quantum computing does not seem to be necessary. However, all
these classical protocols rely on some computational assumption. For example,
it is possible to perform (almost) perfect coin �ipping under the assumption
that factoring is hard. All current classical cryptographic primitives rely on
such hardness assumptions. We say that such primitives are computationally
secure.

A stronger notion of security is information theoretic security. In this setting,
the primitives must be secure even against an all powerful cheating player -
typically a player who can easily factor and easily perform any kind of operation.
In the classical setting, we know that it is impossible to achieve information
theoretic security for most of these cryptographic primitives. Even worst, when
considering all powerful cheating players, we have the following statement

In any classical coin �ipping, bit commitment or oblivious transfer protocol,
there is a party which can cheat with probability 1 in the information theoretic
setting (i .e. the cheating player is computationally unbounded)

This means that such primitives are impossible to perform in the classical model
of computation.

2.3 Physical limitations of quantum cryptographic

primitives

Quantum information has given us the opportunity to revisit information theo-
retic security in cryptography. The �rst breakthrough result was the quantum
key distribution protocol of Bennett and Brassard [BB84]. Thenceforth, a long
series of work has focused on which other cryptographic primitives are possible
with the help of quantum information. Unfortunately, the subsequent results
were not positive. Mayers and Lo, Chau proved the impossibility of secure
quantum bit commitment and oblivious transfer and consequently of any type
of two-party secure computation [May97, LC97, DKSW07].

These impossibility results rule out the ability to build perfect cryptographic
primitives. However, it could be possible to build some quantum cryptographic
primitives which are almost perfect. Aharanov et al . [ATVY00] �rst showed
how to construct imperfect quantum bit commitment with cheating probabilities
smaller than 0.9143. The best protocol was due to Ambainis who constructed a
quantum bit commitment scheme (and a quantum coin �ipping protocol) where
no player can cheat with probability greater than 3/4 [Amb01].

There is a quantum coin �ipping protocol and a quantum bit commitment
scheme, where each player can cheat with probability at most 3/4.

On the other hand, Kitaev showed that it is not possible to build quantum
coin �ipping protocols which have low cheating probability in the information
theoretic setting [Kit03]:

In any quantum coin �ipping or quantum bit commitment scheme, there is a
player who can cheat with probability at least 1√

2
.
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The way to interpret this is that the laws of quantum physics allow us
theoretically to construct coin �ipping protocols with cheating probability 3/4;
but no physically realizable coin �ipping protocol with cheating probability less
than 1√

2
exists.

There is also another notion of coin �ipping which has been studied: Quan-
tum Weak Coin Flipping. In this case, we want make sure that Alice cannot
force the heads outcome and that Bob cannot force the tails outcome. However,
unlike regular coin �ipping, Alice can force the tails outcome with probability
1 and Alice can force the heads outcome with probability 1. After a series of
works [Moc04, Moc05, Moc07], Mochon showed how to build a quantum Weak
Coin Flipping protocol which is almost perfectly secure. As opposed to this
weak notion of coin �ipping, we will refer to the standard coin �ipping as strong
coin �ipping. Notice that even for this weaker de�nition, it is impossible to
exhibit such a classical protocol.

We greatly improve these physical bounds for quantum cryptographic prim-
itives. In Chapter 4, we study quantum coin �ipping. We show here how to
construct a quantum coin �ipping protocol with cheating probability arbitrar-
ily close to 1√

2
. From Kitaev's lower bound, we know that our protocols are

arbitrarily close to optimal. More precisely, we show the following

Theorem 1 For any ε > 0, there exists a strong coin �ipping protocol with
cheating probability 1√

2
+ ε.

To show this, we actually use Mochon's construction of optimal quantum weak
coin �ipping. We build a classical protocol where we use weak coin �ipping as
a subroutine. This means that the ability to perform strong coin �ipping with
cheating probability 1√

2
comes from the ability to perform optimal weak coin

�ipping. Equivalently, if we could build a perfect classical weak coin then our
construction would give a classical strong coin �ipping with cheating probability
1√
2
.
We then investigate the physical bounds for quantum bit commitment. Be-

fore our work, the bounds for quantum coin �ipping and quantum bit commit-
ment were the same. It was not clear whether these two primitives had the same
optimal bound or not. In Chapter 4, we show that this is not the case. We �rst
show an improved lower bound for quantum bit commitment.

Theorem 2 In any quantum bit commitment protocol, at least one of the play-
ers can cheat with probability at least 0.739.

Then, we provide a matching upper bound. We describe a quantum bit com-
mitment protocol that achieves a cheating probability arbitrarily close to 0.739.
Our protocol uses a weak coin �ipping protocol with cheating probability 1/2+ε
as a subroutine and achieves a cheating probability for the bit commitment of
0.739 +O(ε).

Theorem 3 For any ε > 0, there exists a quantum bit commitment protocol
that achieves cheating probabilities less than 0.739 + ε.

This protocol also uses Mochon's quantum weak coin �ipping. However this
protocol is in fact quantum even beyond the weak coin �ip subroutine. This is in
fact necessary. We show that any classical bit commitment protocol with access
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to a perfect weak coin (or even strong coin) cannot achieve cheating probability
less than 3/4.

Theorem 4 Any classical bit commitment protocol with access to perfect weak
(or strong) coin �ipping cannot achieve cheating probabilities less than 3/4.

Unlike the case of quantum strong coin �ipping that is derived classically
when one has access to a weak coin �ipping protocol, the optimal quantum bit
commitment takes advantage of quantum e�ects beyond the weak coin �ipping
subroutine.

In Chapter 5, we extend these results to Oblivious Transfer. We present
the �rst bounds for quantum oblivious transfer. Unlike quantum coin �ipping
and bit commitment, we were not able to �nd an optimal value for quantum
oblivious transfer. We �rst show an upper lower bound for quantum oblivious
transfer

Theorem 5 In any quantum oblivious transfer protocol, at least one of the
players can cheat with probability 0.58

To prove this Theorem, we reduce any Oblivious transfer protocol to a bit
commitment protocol. We then use the lower bounds on quantum bit commit-
ment to conclude. Notice however, that the resulting bit commitment protocol
does not have the same cheating probabilities as the original oblivious transfer
protocol, this is why the lower bound for quantum oblivious transfer is worse
than the lower bound for quantum bit commitment.

We then construct a protocol with cheating probability 3/4.

Theorem 6 There exists a quantum oblivious transfer protocol that achieves
cheating probabilities of 3/4

The following tables present old bounds and new bounds obtained in this
thesis for quantum cryptographic primitives, for any ε > 0.

Old bounds for quantum cryptographic primitives

lower bound upper bound
Weak Coin Flipping 1/2 1/2 + ε
Strong Coin Flipping 1√

2
3/4

Bit Commitment 1√
2

3/4
Oblivious transfer * *

* Bounds for quantum oblivious transfer have been studied in [SSS09]. The
bounds obtained were in terms of entropy for a stronger notion of oblivious
transfer. These bounds are incomparable with the types of bounds we obtain
here

New bounds for quantum cryptographic primitives

lower bound upper bound
Weak Coin Flipping 1/2 1/2 + ε
Strong Coin Flipping 1√

2
1√
2

+ ε

Bit Commitment 0.739 0.739 + ε
Oblivious Transfer 0.58 3/4
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2.4 Practical models for two party quantum cryp-

tographic primitives

In the �rst part, we studied the possibilities and the limits of information the-
oretic quantum cryptography. We now investigate the possibility of practically
implementing such primitives. This has extensively been done for Quantum
Key Distribution. It has also been done for two party quantum cryptographic
primitives but not in the information theoretic setting. Our goal is to see how
possible it is to implement such primitives in the information theoretic setting.
Of course, our results will be weaker than the ones for Quantum Key Distribu-
tion since we are limited by the lower bounds described in the previous part,
hence our protocols will always have constant cheating probabilities.

2.4.1 The device independent model

A quantum protocol is said to be device-independent if the reliability of its
implementation can be guaranteed without making any assumptions regard-
ing the internal workings of the underlying apparatus. The key idea is that
the certi�cation of a su�cient amount of non-locality ensures that the under-
lying systems are quantum and entangled. By dispensing with the (mathe-
matically convenient but physically untestable) notion of a Hilbert space of a
�xed dimension, the device independent approach does away with many cheat-
ing mechanisms and modes of failure, such as, for example, those exploited in
[XQL10, LWW+10]. In fact, a device independent protocol, in principle, remains
secure even if the devices were fabricated by an adversary. So far, device inde-
pendent protocols have been proposed for quantum key distribution [AGM06,
ABG+07, MY03, BHK05], random number generation [Col09, PAM+10], state
estimation [BLM+09], and the self-testing of quantum computers [MMMO06].

It is not a priori clear, whether the scope of the device independent approach
can be extended to cover cryptographic problems with distrustful parties. In
particular, this setting presents us with a novel challenge: Whereas in device
independent quantum key-distribution Alice and Bob will cooperate to estimate
the amount of nonlocality present, for protocols in the distrustful cryptography
model, honest parties can rely only on themselves. In Chapter 7, we show that
protocols in this model are indeed amenable to a device independent formula-
tion. As our aim is to provide a proof of concept, we concentrate on one of
the simplest, yet most fundamental, primitives in this model, bit commitment.
We present a device independent bit commitment protocol, wherein after the
commit phase Alice cannot control the value of the bit she wishes to reveal with
probability greater than cos2

(
π
8

)
≈ 0.854 and Bob cannot learn its value prior

to the reveal phase with probability greater than 3
4 . We then use this protocol to

construct a device independent coin �ipping protocol with cheating probability
smaller than 0.336.

Theorem 7 There exists a device-independent quantum bit commitment pro-
tocol with cheating probability 0.854 and a quantum coin �ipping protocol with
cheating probability 0.836.

This is the �rst construction of device independent protocols for two party
quantum cryptographic primitives.

23



2.4.2 Quantum loss-tolerant coin �ipping

We are now interested in the loss-tolerant model where honest players do not
have any quantum memory and the measurement devices have some losses. In
2008, Berlin et al. presented a loss-tolerant quantum coin �ipping with cheat-
ing probabilities 0.9 [BBBG08]. In this protocol, honest players do not always
succeed when they perform a measurement (the measurement sometimes abort)
but when they do succeed, they always output the correct value. This is in con-
trast with noise tolerance where an honest player could perform a measure with
a wrong outcome without knowing it. Very recently, Aharon et al . [AMS10]
created a loss-tolerant quantum coin �ipping protocol with cheating probabil-
ity 0.3975. In another �avor, Barrett and Massar [BM04] showed how to do
bit-string generation (a weaker notion of coin �ipping) in the presence of noise.

We continue Berlin et al . 's work work and create a loss-tolerant quantum
coin �ipping protocols where the players can chat with probability at most 0.359.
As in Berlin et al . 's protocol, we ask Alice and Bob to send several copies of
single qubit states. Moreover, we do not require honest players to have any
quantum memories and consider cheating players as being all powerful.

Berlin et al. 's protocol is of the following form.

• Alice sends a state σ to Bob.

• Bob measures this state in some basis B (possibly dependent on some of
his private coins). If Bob successfully measures then they continue the
protocol. Otherwise, they start again

In this protocol, the state σ is chosen very carefully such that a cheating Bob
cannot take advantage of the fact, that he can reset the protocol. This strongly
limits the good choices for σ. To partially overcome this problem, we use the
following high-level scheme

• Alice picks r ∈R {0, 1} and sends Er(σ) where Er is some quantum oper-
ation that hides some information about σ

• Bob measures in some basis B. If Bob successfully measures then they
continue the protocol. Otherwise, they start again

• Alice reveals r and then they continue the protocol

While doing this, one must be careful that an honest Bob will still be able to
exploit the measurement of the encrypted state and that Alice cannot use this
to cheat.

Applying this scheme on a two-fold parallel repetition of Berlin etal's proto-
col, we show the following

Theorem 8 There is a loss-tolerant quantum coin �ipping protocol where any
cheating player can cheat with probability at most 0.859.

Notice that without this encryption step extra step, the resulting scheme
would not be loss-tolerant but the bias would remain the same.

This technique to deal with losses seems very generic. It would be interesting
to see whether such techniques can be used in other practical models. More-
over, �nding a noise-tolerant quantum coin �ipping with information theoretic
security and small cheating probability remains an interesting open question.
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2.5 Relationship between quantum zero-knowledge

proofs and quantum bit commitment

In the last part of this thesis, we go a little beyond the scope of information
theoretic quantum cryptography and study quantum computational bit commit-
ment schemes. We study complexity assumptions that imply such commitment
schemes. We will show that the existence of quantum computationally secure bit
commitments is closely related to quantum zero-knowledge classes and quantum
interactive proofs.

To illustrate what zero-knowledge protocols are, let us consider an example.
Consider a problem P believed to be hard to solve. Suppose that one person
(the Prover) can prove to another person (the Veri�er) that the answer to the
problem is Y ES without giving any other information. In particular, the Ver-
i�er will not be able to convince someone else that the answer to this problem
is Y ES. In order to create this kind of proofs, the Prover and the Veri�er must
interact with each other. The condition "Without giving any other informa-
tion" has been formalized in a simple and elegant way by [GMR89] and this
security condition has been de�ned in the computational setting as well as the
information-theoretical setting. Such protocols are very useful in cryptography
for example in secure identi�cation. The class of problems that can be solved
with a zero-knowledge protocol is called PZK, SZK if one allows to leak a (very)
small amount of information, or ZK if we assume that the veri�er has polynomial
computational power.

These zero-knowledge classes have been extended to the quantum case [Wat02a,
Kob07, Wat09] where we allow the players to interact quantumly and to perform
quantum operations. The resulting classes are QPZK,QSZK,QZK.

There is a tight relationship between bit commitment schemes and zero-
knowledge proofs. First of all, we can construct a zero-knowledge for any prob-
lem in PSPACE if we have a bit commitment scheme. On the other hand, we
can construct bit commitment schemes based on the hardness of SZK prob-
lems [OW93].

We �rst extend this result to the quantum case and show the following:

Theorem 9 If QSZK 6⊆ QMA, then there exists a quantum commitment scheme
which is information theoretically secure for the Sender and computationally
secure for the receiver.

QMA is the quantum equivalent of NP. Notice that this condition is believed
to be true. Recently, an oracle separating these two classes was found by Aaron-
son [Aar11]. Notice also that the commitments we construct are non-uniform,
which means that the players receive some classical advice in order to perform
this commitment.

We are then interested in commitments where the players have as advice a
quantum state (potentially hard to construct). We show that such commitment
exists under a very weak assumption, namely

Theorem 10 If QIP 6⊆ QMA, then there exists quantum commitment scheme
with quantum advice which is information theoretically secure for the Sender
and computationally secure for the receiver.
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This is highly plausible since QMA ⊆ PP ⊆ PSPACE = QIP and these
containments are believed to be strict. Note that in both our Theorems, we can
exchange the player for which we have computational security.

2.6 Organization

• In Chapter 3, we present the basic notions of quantum mechanics.

• In Chapter 4, we study quantum coin �ipping and show how to construct
an optimal quantum strong coin �ipping, i .e. a protocol with cheating
probability at most 1√

2
+ ε for any ε > 0, improving the previously best

known protocol which achieved a cheating probability of 3/4. This is joint
work with Iordanis Kerenidis [CK09].

• In Chapter 5, we study quantum bit commitment. We �rst show a lower
bound for quantum bit commitment of 0.739. We then show how to con-
struct an optimal quantum strong coin �ipping, i .e. a protocol with cheat-
ing probability at most 0.739 + ε for any ε > 0. We also show a lower
bound on classical bit commitment protocols where the ability to perform
coin �ipping is given for free. This is joint work with Iordanis Kereni-
dis [CK11].

• In Chapter 6, we study quantum oblivious transfer. This is the �rst study
that gives some constant bounds for quantum oblivious transfer. We �rst
show a lower bound for quantum oblivious transfer of 0.58. We then
show how to construct a quantum oblivious transfer protocol with cheating
probability 3/4. This is joint work with Iordanis Kerenidis and Jamie
Sikora [CKS10].

• In Chapter 7, we study quantum coin �ipping and quantum bit commit-
ment in the device independent model. We show how to construct a device
independent bit commitment scheme with cheating probability 0.854 for
Alice and 3/4 for Bob. We then extend this construction to build a de-
vice independent quantum coin �ipping with cheating probabilities 0.836.
This is joint work with Jonathan Silman, Nati Aharon, Iordanis Kerenidis,
Stefano Pironio and Serge Massar [SCA+11].

• In Chapter 8, we build a quantum coin �ipping protocol secure against
losses with cheating probabilities 0.859. This construction also gives a
quantum bit commitment scheme secure against losses with the same
cheating probabilities [Cha10].

• Finally, in Chapter 9, we show under which assumptions related to quan-
tum zero-knowledge protocols, it is possible to create quantum bit com-
mitment schemes which are computationally secure. This is joint work
with Iordanis Kerenidis and Bill Rosgen [CKR11].
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Chapter 3

Quantum Preliminaries

In this Chapter, we present the standard model of quantum computing.

3.1 Pure states

A qubit is the quantum equivalent of a bit. Unlike classical bits, quantum bits
can be in a superposition of states. We call such quantum states pure states.
A 1-qubit pure state |q〉 is a superposition of 0 and 1 with certain amplitudes.
We will note it |q〉 = a|0〉 + b|1〉 with a, b ∈ C and |a|2 + |b|2 = 1. |q〉 is
fully determined by these 2 amplitudes a and b and can be represented by the
complex vector

(
a
b

)
of norm 1. Let Q1 the Hilbert space of 1-qubit pure states.

Q1 = {a, b ∈ C : |a|2 + |b|2 = 1}. If we restrict ourselves to a, b ∈ R, we can
represent a qubit on the unit circle

Figure 3.1: Quantum bit on the unit circle

A N-qubit pure state |q〉 is de�ned similarly as an element of a Hilbert
space. Instead of being the superposition of 2 possible outcomes 0 or 1, it is the
superposition of 2N possible outcomes in {0, 1}N . We have

|q〉 =
2N−1∑
i=0

ai|i〉 = a0|00...0〉+ a1|00..01〉+ · · ·+ a2N−1|11...1〉 =

 a0

...
a2N−1


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Where the ai's are in C and
∑
i |ai|2 = 1. We note QN the space of N-qubit

states.

Dirac's notation : If we note |q〉 = a|0〉 + b|1〉, we write the equality |q〉 =
a
(

1
0

)
+ b
(

0
1

)
. The |·〉 notation is for column vectors. We also note 〈q| the line

vector t|q〉. This notation is very useful. In particular, if |q〉 =
∑
i ai|i〉 and

|q′〉 =
∑
i a
′
i|i〉, we have 〈q| · |q′〉 =

∑
i aia

′
i = 〈q|q′〉 which is the inner-product

of q and q′. The outer product |q〉〈q′| will also be useful.

3.2 Operations on quantum bits

There are two operations that can be performed a quantum states: Unitary
operations and Measurements. For a Hilbert space H, we de�ne as L(H) the
set of linear operators on H.

Unitary operations Quantum unitary operations done on quantum pure
states are elements of L(H) which preserve the set of pure states. They are
described by matrices of size 2n × 2n (for an operation acting on an N -qubit
state). Such a unitary M is invertible. Let M† such that MM† = M†M = Id.
When applying an operation M to a pure state |q〉, the result is M · |q〉 which
is a standard multiplication of a matrix and a vector.

Note that when a unitary acts on an N -qubit state, it acts on the superpo-
sition of up to 2N states simultaneously. Quantum operations can be simulated
by classical computers but it takes exponential time. This is one of the main
reasons why quantum computers are more powerful than classical computers.

Measurements The qubits we have described are not disturbed. The only
way to extract information from a qubit is to make a measurement. For example,
if we measure a qubit q = a|0〉 + b|1〉, we will get 0 with probability |a|2 and
1 with probability |b|2. Note that after the measurement, if for example we
measure |0〉, the qubit now behaves like the qubit |0〉 and "forgets" his previous
state. The measurement works in a similar way when looking at N-qubit states.
Similarly, we can measure in any basis B = (b1, . . . , b2N ). When measuring |q〉
in basis B, the probability of obtaining bi is |〈bi|q〉|2.

Note that you can also do partial measurements. Let |q〉 = a|00〉 + b|01〉 +
c|10〉 + d|11〉. Suppose you measure the �rst qubit of |q〉. You'll measure ”0”
with probability |a2|+ |b2|. If you measure 0 then the second qubit will be in the
following state : a√

|a|2+|b|2
|0〉+ b√

|a|2+|b|2
|1〉. We ignored the parts that started

with 1 and renormalized to have total norm one. Similar reasoning can be used
when a ”1” is measured.

For a quantum state, the most general type of measurement is a Posi-
tive Operator Valued Measure (or POVM). A POVM consists of n elements
{E1, . . . , En} which are positive matrices such that

∑
iEi = I. When perform-

ing such a POVM on a state |ψ〉, you get outcome i with probability 〈ψ|Ei|ψ〉.
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3.3 Mixed states

Very often, it will be useful to consider probabilistic quantum states. We will
call such states mixed states. The set of mixed states on a Hilbert space H is
D(H)

A mixed state is of the form ρ =


wp. p1 → |e1〉

...
...

wp. pk → |ek〉
with

∑
i pi = 1.

which means that with probability pi, the state behaves like |ei〉 where the |ei〉's
are pure states. Each mixed state is represented by a density matrix of size
2N × 2N of the from

ρ =
k∑
i=1

pi|ei〉〈ei|

Note from Dirac's notation that |ei〉〈ei| is a matrix of size 2N×2N when the |ei〉's
are N qubit-states and the sum is a usual sum of matrices. Density matrices
are symmetric and have trace 1. A mixed state ρ ∈ D(H) is an element in L(H)
satisfying tr(ρ) = 1 and ρ positive.

When applying an operationM to a mixed state ρ, the result is ρ′ = MρM†.
If we measure a mixed state ρ in a basis B = (b1, . . . , bn), the probability of
getting bi is 〈bi|ρ|bi〉. When applying a POVM {E1, . . . , En} to ρ, the outcome
is i with probability p(i) = tr(Eiρ).

This means that any mixed state is characterized exactly by its density
matrix. In particular, if 2 mixed states have the same density matrix then they
are indistinguishable in an information theoretical sense. For example, let's
de�ne |+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉) and consider the 2 following

mixed states

ρ1 =
{
wp. 1/2→ |0〉
wp. 1/2→ |1〉 and ρ2 =

{
wp. 1/2→ |+〉
wp. 1/2→ |−〉

If we calculate these density matrices, we have :

ρ1 =
1
2

(
1 0
0 1

)
+

1
2

(
1 0
0 1

)
=
(

1/2 0
0 1/2

)

ρ2 =
1
2

(
1/2 1/2
1/2 1/2

)
+

1
2

(
1/2 −1/2
−1/2 1/2

)
=
(

1/2 0
0 1/2

)
It means that even though these 2 states are not de�ned the same way, we

say that they are equal. When the density matrix of a state is of the form 1
2n

times the identity, we say that this state is the totally mixed state. This state
is noted I or In if we want to specify the number of qubits of this state. In our
example, ρ1 = ρ2 = I1.

3.4 On N-qubit states

Tensor products Suppose we have 2 qubits q1 = a1|0〉 + b1|1〉 and q2 =
a2|0〉 + b2|1〉. Consider the 2 qubit state consisting of |q1〉 and |q2〉. We note
that this state |q〉 = |q1〉⊗|q2〉 and q = a1a2|00〉+a1b2|01〉+b1a2|10〉+b1b2|11〉.
This is called a tensor product.
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Entangled states We cannot obtain all the possible N -qubit states by doing
only tensor products. Consider for example the 2-qubit state |q〉 = 1√

2
(|00〉 +

|11〉). We can see that we cannot create this state from the tensor of any 2
states. It means that when we look at each part separately, we do not get pure
states. Instead, we get a mixed state. In our example, we have the totally mixed

state for each part :

{
wp. 1/2 : |0〉
wp. 1/2 : |1〉 We say that these 2 halves are entangled.

Entanglement can be used in protocols. Suppose that Alice and Bob each
have 1 half of the state |00〉+ |11〉. If Alice measures (in the |0〉, |1〉 basis), she
will get |0〉 or |1〉 with half probability. The same holds for Bob but they both
know that they will get the same result. Protocols that allow Alice and Bob to
coordinate their actions can be done just by using entangled states.

Tracing out qubits As we have seen, we obtain mixed states by ignoring
some parts of a given state. We say that we trace out these ignored qubits.
For example, let |q〉 a pure state that has qubits in a space A× B. If we want
to consider the mixed state qA consisting only of the qubits in A, we write
qA = TrB(|q〉) (the B part is traced out). Similarly, qB = TrA(|q〉).

3.5 Norms

In order to de�ne the statistical distance between quantum states, we use a
generalization of the `1 norm to linear operators. This is the trace norm which
gives the sum of the singular values of an operator. More formally, the trace
norm may be expressed as

‖ X ‖tr =
√
X†X = max

U
|trXU | , (3.1)

where the maximization is taken over all unitaries of the appropriate size.
The diamond norm is a generalization of the trace norm to quantum channels

that preserves the distinguishability characterization. Given one of two quantum
channels Q0, Q1 each with equal probability, then the optimal procedure to
determine the identity of the channel with only one use succeeds with probability
1/2 +‖ Q0 −Q1 ‖�/4. The de�nition of the diamond norm is more complicated
than the trace norm, however, as the optimal distinguishing procedure may
make use of an auxiliary space, sending only a portion of some entangled state
through the channel. It is known, however, that the dimension of this auxiliary
space does not need to exceed the dimension of the input space [Kit97, Smi83].
The diamond norm, for a linear map from Q : L(H) → L(K) with an auxiliary
space F with dimF = dimH can be de�ned as

‖ Q ‖� = max
X∈L(H⊗F)

‖ Q(X) ‖tr
‖ X ‖tr

.

Closely related to the diamond norm is a known studied in operator theory
known as the completely bounded norm. An upper bound on this norm can
be found in [Pau02]. Since the diamond norm is dual to this norm, this bound
may also be applied also to the diamond norm. See [JKP09] for a discussion of
this bound and the relationship between the diamond and completely bounded
norms.
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Lemma 1 Let Φ: L(H)→ L(K) be a linear map, then

‖ Φ ‖� ≤ (dimH)‖ Φ ‖tr = (dimH) sup
X∈L(H)

‖ Φ(X) ‖tr
‖ X ‖tr

.

One inconvenient property of the diamond norm is that for some maps the
maximum in the de�nition may not be achieved on a quantum state. Fortu-
nately, in the case of the di�erence of two completely positive maps it is known
that this maximum is achieved by a pure state.

Lemma 2 ([RW05]) Let Φ0,Φ1 : L(H) → L(K) be completely positive linear
maps and let Φ = Φ0 − Φ1. Then, there exists a Hilbert space F and a unit
vector |φ∗〉 ∈ F ⊗H such that

‖ Φ ‖� = ‖ (IF ⊗ Φ)(|φ∗〉〈φ∗|) ‖tr.

3.6 How close are two quantum states ?

We start by stating a few properties of the trace distance ∆ and �delity F
between two quantum states. These two notions characterize how close are two
quantum states.

Trace distance between two quantum states

De�nition 1 For any two quantum states ρ, σ, the trace distance ∆ between
them is given by ∆(ρ, σ) = ∆(σ, ρ) = 1

2‖ ρ− σ ‖tr
Proposition 1 For any two states ρ, σ, and a POVM E = {E1, . . . , Em} with
pi = tr(ρEi) and qi = tr(σEi), we have ∆(ρ, σ) ≥ 1

2

∑
i |pi − qi|. There is a

POVM (even a projective measurement) for which this inequality is an equality.

Proposition 2 [Hel67] Suppose Alice has a bit c ∈R {0, 1} unknown to Bob.
Alice sends a quantum state ρc to Bob. We have

Pr[Bob guesses c] ≤ 1
2

+
∆(ρ0, ρ1)

2
Proposition 3 For any two states ρ, σ such that ρ =

∑
i pi|i〉〈i| and σ =∑

i qi|i〉〈i|, we have

∆(ρ, σ) =
∑
i

1
2
|pi − qi| =

∑
i:pi≥qi

(pi − qi)

= 1−
∑
i

min{pi, qi} =
∑
i

max{pi, qi} − 1

Proof: Since
∑
i pi =

∑
i qi = 1, we have

∑
i:pi≥qi

(pi− qi) =
∑
ipi<qi

(qi− pi)
and

∑
i max{pi, qi}+ min{pi, qi} = 2 hence

∆(ρ, σ) =
∑
i

1
2
|pi − qi| =

1
2

 ∑
i:pi≥qi

(pi − qi) +
∑

i:pi<qi

(qi − pi)

 =
∑

i:pi≥qi

(pi − qi)

∆(ρ, σ) =
∑
i

1
2
|pi − qi| =

1
2

∑
i

(max{pi, qi} −min{pi, qi})

= 1−
∑
i

min{pi, qi} =
∑
i

max{pi, qi} − 1
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Proposition 4 [NC00] For any two states ρ, σ such that ρ =
∑
i pi|φi〉〈φi|

and σ =
∑
i qi|φi〉〈φi|, we have

∆(ρ, σ) ≤ 1
2

∑
i

|pi − qi|

Fidelity of quantum states

De�nition 2 For any two states ρ, σ, the �delity F between them is given by

F (ρ, σ) = F (σ, ρ) = tr(
√
ρ

1
2σρ

1
2 )

Proposition 5 For any two states ρ, σ, and a POVM E = {E1, . . . , Em} with
pi = tr(ρEi) and qi = tr(σEi), we have F (ρ, σ) ≤

∑
i

√
piqi. There is a POVM

for which this inequality is an equality.

Proposition 6 (Uhlmann's theorem) For any two quantum states ρ, σ, there
exist a puri�cation |φ〉 of ρ and a puri�cation |ψ〉 of σ such that |〈φ|ψ〉| = F (ρ, σ)

Proposition 7 For any two quantum states ρ, σ and a completely positive trace
preserving operation Q, we have F (ρ, σ) ≤ F (Q(ρ), Q(σ)).

Proposition 8 ([SR01, NS03]) For any two quantum states ρ, σ

max
ξ

(
F 2(ρ, ξ)2 + F 2(ξ, σ)

)
= 1 + F(ρ, σ).

Proposition 9 ([FG99]) For any quantum states ρ, σ, we have

1− F (ρ, σ) ≤ ∆(ρ, σ) ≤
√

1− F 2(ρ, σ)
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Chapter 4

Optimal Quantum coin
s�ipping

Coin �ipping is a cryptographic primitive that enables two distrustful and far
apart parties, Alice and Bob, to create a random bit that remains unbiased
even if one of the players tries to force a speci�c outcome. It was �rst proposed
by Blum [Blu81] and has since found many applications in two-party secure
computation.

The goal here is to present a quantum strong coin �ipping protocol where
any player can bias the coin with probability at most 1√

2
+ε for any ε > 0. This

protocol is based on a quantum weak coin �ipping protocol by Mochon where
any cheating player can cheat with probability at most 1

2 + ε for any ε > 0.
There are two variants of coin �ipping, strong coin �ipping and weak coin

�ipping.

4.1 Strong coin �ipping

4.1.1 De�nition

In a coin �ipping protocol, we call a round of communication one message from
Alice to Bob and one message from Bob to Alice. We suppose that Alice always
sends the �rst message and Bob always sends the last message. The protocol
is quantum if we allow the parties to send quantum messages and perform
quantum operations. A player is honest if he or she follows the protocol. A
cheating player can deviate arbitrarily from the protocol but still outputs a
value at the end of it.

De�nition 3 A strong coin �ipping protocol between two parties Alice and Bob
is a protocol where Alice and Bob interact and at the end, Alice outputs a value
cA ∈ {0, 1,Abort} and Bob outputs a value cB ∈ {0, 1,Abort}. If cA = cB, we
say that the protocol outputs c = cA = cB. If cA 6= cB then the protocol outputs
c = Abort.

A strong coin �ipping protocol with bias ε (SCF (ε)) has the following prop-
erties

• If Alice and Bob are honest then Pr [c = 0] = Pr [c = 1] = 1/2
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• If Alice cheats and Bob is honest then P ∗A = max{Pr [c = 0] ,Pr [c = 1]} ≤
1/2 + ε.

• If Bob cheats and Alice is honest then P ∗B = max{Pr [c = 0] ,Pr [c = 1]} ≤
1/2 + ε

The probabilities P ∗A and P ∗B are called the cheating probabilities of Alice and Bob
respectively. The cheating probability of the protocol is de�ned as max{P ∗A, P ∗B}.
We say that the coin �ipping is perfect if ε = 0.

4.1.2 Example

We present here a general construction of Quantum Strong Coin Flipping pro-
tocols that can achieve a cheating probability of 3/4. Most quantum strong coin
�ipping protocols are of this form [ATVY00, Amb01, KN04].

General construction of quantum strong coin �ipping protocols

• Alice picks a random a ∈ {0, 1}, creates some state |ψa〉 in some space
A1⊗A2 and sends the qubits in space A2 to Bob. Let's call σa the state
Alice sends to Bob

• Bob picks a random b ∈ {0, 1} and sends b to Alice

• Alice reveals a and sends the qubits in A1

• Bob checks that the joint state sent by Alice corresponds to |ψa〉 by
trying to project this state on |ψa〉. He aborts if this checking procedure
fails.

• The outcome of the protocol is c = a⊕ b.

Let's analyze this protocol in more detail. If both players are honest then
the protocol never Aborts.

Alice cheats and Bob is honest Suppose that Alice wants c = 0 as an
outcome of the protocol (the same proof will follow for c = 1) As a �rst message,
Alice can send any state σ to Bob. Bob then picks a random b. If b = 0, Alice
wants to reveal a = 0. By Uhlmann's Theorem, she can apply an operation
on A1 such that the joint state |ψ〉 in A1 ⊗ A2 veri�es |〈ψ|ψ0〉|2 = F 2(σ, σ0).
Similarly, if b = 1, Alice wants to reveal a = 1 and she can apply an operation
on A1 such that the joint state |ψ〉 in A1 ⊗ A2 veri�es |〈ψ|ψ1〉|2 = F 2(σ, σ1).
Since b is random, we have

P ∗A =
1
2
(
F 2(σ, σ0) + F 2(σ, σ1)

)
We want to remove the dependency on σ to prove an upper bound on Alice's
cheating probability. We can use Proposition 8 and show that there is a cheating
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strategy such that

P ∗A =
1
2

+
F (σ0, σ1)

2

Bob cheats and Alice is honest Similarly, we can suppose that Bob wants
c = 0. This means that he wants to send b = a. This is equivalent to saying
that Bob wants to guess a when having σa. By Proposition 2, we have that

P ∗B =
1
2

+
∆(σ0, σ1)

2

By the Fuchs - Van de Graaf inequalities (Proposition 9), we know that
F (σ0, σ1) ≥ 1−∆(σ0, σ1). This means in particular that

P ∗A ≥ 1− ∆(σ0, σ1)
2

From this, we have P ∗A+P ∗B ≥ 3/2 and max{P ∗A, P ∗B} ≥ 3/4 hence any quantum
strong coin �ipping of this form has cheating probability at least 3/4.

It is actually possible to achieve this bound. Consider the following states:

σ0 =
1
2
|0〉〈0|+ 1

2
|2〉〈2|

σ1 =
1
2
|1〉〈1|+ 1

2
|2〉〈2|

Such protocol corresponds to Ambainis's protocol [Amb01] even though this
formulation is due to Kerenidis and Nayak [KN04]. We can easily calculate that
F (σ0, σ1) = ∆(σ0, σ1) = 1/2 which gives us directly P ∗A = P ∗B = 3/4.

4.2 Weak coin �ipping

4.2.1 De�nition

A weak coin �ipping protocol between two parties Alice and Bob is a protocol
where Alice and Bob interact and at the end, Alice outputs a value cA ∈ {0, 1}
and Bob outputs a value cB ∈ {0, 1}. If cA = cB , we say that the protocol
outputs c = cA. If cA 6= cB then the protocol outputs c = Abort. The di�erence
with Strong coin �ipping is that the players do not Abort. This is because a
player that wants to Abort can always declare victory rather than aborting
without reducing the security of the protocol.

De�nition 4 A (balanced) weak coin �ipping protocol with bias ε (WCF (1/2, ε))
has the following properties

• If c = 0, we say that Alice wins. If c = 1, we say that Bob wins.

• If Alice and Bob are honest then Pr [ Alice wins ] = Pr [ Bob wins ] = 1/2

• If Alice cheats and Bob is honest then P ∗A = Pr [ Alice wins ] ≤ 1/2 + ε

• If Bob cheats and Alice is honest then P ∗B = Pr [ Bob wins ] ≤ 1/2 + ε
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Similarly, P ∗A and P ∗B are the cheating probabilities of Alice and Bob. The
cheating probability of the protocol is de�ned as max{P ∗A, P ∗B}.

We can also de�ne weak coin �ipping for the case where the winning prob-
abilities of the two players in the honest case are not equal.

De�nition 5 A weak coin �ipping protocol with parameter z and bias ε (WCF (z, ε))
has the following properties.

• If c = 0, we say that Alice wins. If c = 1, we say that Bob wins.

• If Alice and Bob are honest then Pr [ Alice wins ] = z and Pr [ Bob wins ] =
1− z

• If Alice cheats and Bob is honest then P ∗A = Pr [ Alice wins ] ≤ z + ε

• If Bob cheats and Alice is honest then P ∗B = Pr [ Bob wins ] ≤ (1− z) + ε

Unlike strong coin �ipping, it is possible to create a quantum weak coin
�ipping protocol arbitrarily close to optimal. This construction is due to Mo-
chon [Moc07].

Proposition 10 For any ε > 0, there exists a quantum weak coin �ipping
protocol with cheating probabilities less than 1

2 + ε.

4.2.2 Reformulation of Quantum weak coin �ipping pro-

tocol

In a quantum protocol, Alice and Bob have an output which they measure to
determine the values of cA, cB . When using weak-coin �ipping in a quantum
protocol, it will be useful to keep the quantumness of this output.

We reformulate here the de�nition of a quantum weak coin �ipping to take
into account the fact that Alice and Bob are quantum players that perform uni-
tary operations during the protocol and at the end they perform a measurement
on a quantum register in order to get their classical output. This will be useful
when using quantum weak coin �ipping in a quantum protocol as in Chapter 5.

More precisely, let OA (resp. OB) be Alice's (resp. Bob's) one-qubit output
register. At the end of the protocol Alice (resp. Bob) has a state ρA in OA (
resp. ρB in OB ). They also share some garbage state. The players get their
output value by measuring their output qubit in the computational basis. Let
ρAB the joint output state of Alice and Bob in OA ⊗ OB . In this setting, we
de�ne a weak coin �ipping as follows

De�nition 6 A (balanced) weak coin �ipping protocol with bias ε (WCF (1/2, ε))
has the following properties

• The 0 outcome corresponds to Alice winning. The 1 outcome corresponds
to Bob winning.

• If Alice and Bob are honest then 〈00|ρAB |00〉 = 〈11|ρAB |11〉 = 1/2

• If Alice cheats and Bob is honest then P ∗A = 〈0|ρB |0〉 ≤ 1/2 + ε

• If Bob cheats and Alice is honest then P ∗B = 〈1|ρA|1〉 ≤ 1/2 + ε
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Notice that Alice's cheating probability depends only on Bob's output. This
is because a cheating Alice will always claim that she won, so she wins when
Bob outputs `Alice wins'. We have the same behavior for a cheating Bob.

We also de�ne unbalanced weak coin �ipping in this setting.

De�nition 7 A weak coin �ipping protocol with parameter z and bias ε (WCF (z, ε))
has the following properties.

• The 0 outcome corresponds to Alice winning. The 1 outcome corresponds
to Bob winning.

• If Alice and Bob are honest then 〈00|ρAB |00〉 = z ; 〈11|ρAB |11〉 = 1− z

• If Alice cheats and Bob is honest then P ∗A = 〈0|ρB |0〉 ≤ z + ε

• If Bob cheats and Alice is honest then P ∗B = 〈1|ρA|1〉 ≤ (1− z) + ε

4.2.3 An unbalanced weak coin �ipping protocol from bal-

anced weak coin �ipping protocol

In the quantum setting, it is known by Mochon's protocol how to build a weak
coin �ipping protocol which is arbitrarily close to optimal. However, this gives
us a balanced weak coin �ipping protocol. A natural question is whether we can
extend this construction to an unbalanced weak coin �ipping protocol.

We show here how to use any almost optimal balanced weak coin �ipping
protocol to build an almost optimal unbalanced weak coin �ipping protocol.
This procedure will be purely classical and will use the balanced weak coin
�ipping as a black box. These unbalanced protocols will be very useful to
construct optimal quantum coin �ipping and bit commitment protocols.

Our goal is to prove the following proposition

Proposition 11 Let P be a WCF (1/2, ε) protocol with N rounds. Then,
∀z ∈ [0, 1] and ∀k ∈ N, there exists a WCF (x, ε0) protocol Q such that:

• Q uses k ·N rounds.

• |x− z| ≤ 2−k.

• ε0 ≤ 2ε.

The protocol Q is a sequential composition of the WCF (1/2, ε) protocol P .
In high level, we use P in order to combine two weak coin �ipping protocols
with parameters z1 and z2 into a new protocol with parameter z1+z2

2 . Then,
by recursion, for any given z we can create a protocol Q with parameter x that
rapidly converges to z. We also prove that the bias of Q is at most 2ε.

Assume we have a WCF (z1, ε0) protocol P1 and a WCF (z2, ε0) protocol P2

each with at most M rounds of communication and z2 ≥ z1. We combine them
in the following way.
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Comb(P1,P2)

• Alice and Bob run P .

• If Alice wins, run P2. If Bob wins, run P1. If P Aborts then Abort.

Note that this protocol uses at most N +M rounds. We have

Lemma 3 Comb(P1, P2) is a WCF ( z1+z2
2 , ε0 + ε(z2 − z1)) protocol.

Proof:

Alice and Bob are honest If Alice and Bob are honest then the protocol
never aborts. We have Pr[ Alice wins ] = z1+z2

2 and Pr[ Bob wins ] = 1− z1+z2
2 .

Alice cheats and Bob is honest Let x = Pr[Alice wins P] ; y = Pr[Bob
wins P]; u = Pr[Alice wins P2 | Alice wins P]; v = Pr[Alice wins P1 | Bob wins
P]. We know the following inequalities concerning these probabilities:

x+ y ≤ 1 x ≤ 1/2 + ε u ≤ z2 + ε0 v ≤ z1 + ε0

Note that the last two inequalities hold, since the biases for the protocols P1

and P2 do not increase depending on the outcome of P . We have

Pr [ Alice wins Comb(P1, P2)]
= x · u+ y · v ≤ x(z2 + ε0) + (1− x)(z1 + ε0) = (z1 + ε0) + x(z2 − z1)
≤ (z1 + ε0) + (1/2 + ε)(z2 − z1) since z2 ≥ z1

≤ z1 + z2

2
+ ε0 + ε(z2 − z1)

Bob cheats and Alice is honest Using a similar calculation as in the previ-
ous case, we have Pr[Bob wins Comb(P1, P2)] ≤ (1−z2)+(1−z1)

2 +ε0+ε(z2−z1) =
1− z1+z2

2 + ε0 + ε(z2 − z1).

We now show the following inductive Lemma

Lemma 4 Suppose we have a WCF (1/2, ε) protocol P that uses N rounds of
communication. Then ∀z ∈ [0, 1] and ∀k ∈ N, we can construct a WCF (x1, ε0)
protocol P1 and a WCF (x2, ε0) protocol P2 such that

• P1, P2 each use at most k ·N rounds.

• x1 ≤ z ≤ x2 and x2 − x1 = 2−k.

• ε0 ≤ (2− 2(x2 − x1))ε.

Proof: Fix z ∈ [0, 1]. We show this result by induction on k. For k =
0, we clearly have a WCF (0, 0) protocol (a protocol where Bob always wins)
and a WCF (1, 0) (a protocol where Alice always wins) that use no rounds of
communication. We suppose the Lemma is true for k and we show it for k + 1.
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Let x1, x2, P1, P2, ε0 that satisfy the above properties for k. Let P ′ be the
Comb(P1, P2) protocol and u = x1+x2

2 . P ′ uses at most (k+1)N rounds and from
Lemma 3, we know that P ′ is aWCF (u, ε′0 = ε0+(x2−x1)ε) protocol. From the
induction step we have that ε′0 ≤ (2−2(x2−x1))ε+(x2−x1)ε ≤ (2−(x2−x1))ε.
We now distinguish two cases

• If z ≤ u, consider the protocols P1 and P ′. Each one uses at most (k+1)N
rounds. Also, x1 ≤ z ≤ u and u − x1 = x2−x1

2 = 2−(k+1). Finally,
ε′0 ≤ (2− (x2 − x1))ε = (2− 2(u− x1))ε which concludes the proof.

• If z > u, consider the protocols P ′ and P2. Each one uses at most (k+1)N
rounds. Also, u ≤ z ≤ x2 and x2 − u = x2−x1

2 = 2−(k+1). Finally,
ε′0 ≤ (2− (x2 − x1))ε = (2− 2(x2 − u))ε which concludes the proof.

In Lemma 4, we have |x1 − z| ≤ (x2 − x1) ≤ 2−k and ε0 ≤ 2ε. Hence this
Lemma directly implies Proposition 11 by considering Q = P1.

4.3 Optimal quantum strong coin �ipping

In this Section, we present a general method on how to use any weak coin-
�ipping protocol with cheating probability 1/2+ε in order to construct a strong
coin-�ipping protocol with cheating probability 1/

√
2 + O(ε). Our protocol

uses roughly the same number of rounds as the weak coin �ipping protocol.
Combining our construction with Mochon's quantum weak coin �ipping protocol
that achieves arbitrarily small bias, we conclude that it is possible to construct
a quantum strong coin �ipping protocol with cheating probability arbitrarily
close to 1√

2
.

The protocol is classical and uses the weak coin �ipping as a subroutine. In
other words, in strong coin �ipping, the power of quantum really comes from
the ability to perform weak coin �ipping. If there existed a classical weak coin
�ipping protocol with arbitrarily small bias, then this would have implied a
classical strong coin �ipping protocol with cheating probability arbitrarily close
to 1/

√
2 as well.

4.3.1 A �rst attempt

Using weak coin �ipping in order to perform strong coin �ipping is not a new
idea. There is a trivial protocol that uses a perfect weak coin �ipping and
achieves strong coin �ipping with cheating probability 3/4: Alice and Bob
run the weak coin �ipping protocol and whoever wins, �ips a random coin
c ∈R {0, 1}.
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SCF(3/4) protocol using a perfect weak coin �ipping protocol P

• Alice and Bob run the protocol P

• The winner chooses a random c ∈R {0, 1}, and sends c to the other
player, c being the outcome of the protocol.

Let us analyze this protocol more closely. Let Alice be dishonest and her
desired value for the coin be 0. Her strategy will be to try and win the WCF
protocol, which happens with probability 1/2 and then output 0. However, even
if she loses the weak coin �ipping, there is still a probability 1/2 that the honest
Bob will output 0. Hence, Alice's (and by symmetry Bob's) cheating probability
is 3/4.

4.3.2 The optimal protocol

In order to reduce this bias, we would like to eliminate the situation where the
honest player, after winning the WCF, still helps the dishonest player cheat with
probability 1/2. One can try to resolve this problem by having Alice �ip and
announce her random coin c before running the WCF protocol. In this case:
�rst, Alice announces a bit a. Then, Alice and Bob perform a WCF. If Alice
wins the outcome is a; if Bob wins then the outcome is a.

In this case, Bob never outputs a. However, there is a simple cheating
strategy for Alice. If she wants 0, she sets a = 1, loses the WCF (which she can
do with probability 1) and therefore Bob always outputs 0. Hence, Bob's choice
when he wins the WCF must be probabilistic.

The optimal protocol In order to reduce this bias, we would like to eliminate
the situation where the honest player, after winning the WCF, still helps the
dishonest player cheat with probability 1/2. One can try to resolve this problem
by having Alice �ip and announce her random coin c before running the WCF
protocol. In this case: �rst, Alice announces a bit a. Then, Alice and Bob
perform a WCF. If Alice wins the outcome is a; if Bob wins then the outcome
is a.

In this case, Bob never outputs a. However, there is a simple cheating
strategy for Alice. If she wants 0, she sets a = 1, loses the WCF (which she can
do with probability 1) and therefore Bob always outputs 0. Hence, Bob's choice
when he wins the WCF must be probabilistic.

Since such protocols are not symmetric, we use an unbalanced weak coin
�ipping protocol to ensure that the two cheating probabilities are the same. We
know how to construct such protocols from balanced protocols using Proposi-
tion 11. The coin �ipping protocol becomes the following
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Quantum Strong Coin Flipping protocol with bias 1√
2

+O(ε)

1. Alice chooses a ∈R {0, 1} and sends a to Bob.

2. Alice and Bob perform the WCF (z, ε) protocol Q

• If Alice wins Q then honest players output cA = cB = a

• If Bob wins Q then he �ips a coin b such that b = a with probability
p and b = a with probability (1 − p). He sends b to Alice. In this
case, honest players output cA = cB = b.

• If Q outputs Abort then Abort

We will now show how to optimize the parameters z and p in order to make
the cheating probability of our protocol at most 1/

√
2 +O(ε).

Security analysis of our protocol We calculate the cheating probability of
our protocol S that uses a WCF (z, ε) protocol Q.

Proposition 12 The protocol S is a strong coin �ipping protocol with N + 2
rounds of communication and cheating probabilities P ∗A ≤ 1

2−z−ε and P ∗B ≤
2−z+ε

2 .

Proof:
Alice and Bob are honest If both players are honest then they never abort.
Moreover, since the protocol is symmetric in 0 and 1, we have Pr [c = 0] =
Pr [c = 1] = 1/2.
Alice cheats and Bob is honest We prove that Pr [c = 0] ≤ 1

2−z−ε . By
symmetry, the same holds for Pr [c = 1]. Since Alice cheats, she can choose
arbitrarily between a = 0 and a = 1 instead of picking a uniformly at random.
Hence, Pr[c = 0] ≤ max{Pr [c = 0|a = 0] ,Pr [c = 0|a = 1]}.

• We �rst calculate Pr [c = 0|a = 0].
Let x = Pr [Alice wins Q|a = 0] and y = Pr [Bob wins Q|a = 0]. We
have Pr [c = 0|a = 0] = x ·1+y ·p. Note that x+y ≤ 1 and also x ≤ z+ε,
since the maximum bias with which Alice can win Q is independent of the
value of a. We have

Pr [c = 0|a = 0] = x · 1 + y · p ≤ x+ (1− x)p = p+ x(1− p)
≤ p+ (z + ε)(1− p)

• We now calculate Pr [c = 0|a = 1].
Let x = Pr [Alice wins Q|a = 1] and y = Pr [Bob wins Q|a = 1]. We have

Pr [c = 0|a = 1] = x · 0 + y(1− p) ≤ y(1− p) ≤ 1− p

which is achievable since Alice could always let Bob win Q.
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Since Pr [c = 0] ≤ max{Pr [c = 0|a = 0] ,Pr [c = 0|a = 1]}, we choose p such that
the upper bounds for Pr [c = 0|a = 0] and Pr [c = 0|a = 1] are equal.

p+ (z + ε)(1− p) = 1− p

p =
1− z − ε
2− z − ε

With this value of p, we have

Pr[c = 0] ≤ max{Pr [c = 0|a = 0] ,Pr [c = 0|a = 1]} = 1− p ≤ 1
2− z − ε

Since the protocol is symmetric in 0 and 1, we also have Pr [c = 1] ≤ 1
2−z−ε and

hence P ∗A ≤ 1
2−z−ε .

Bob cheats and Alice is honest We prove that Pr [c = 0] ≤ 2−z+ε
2 . By sym-

metry, the same holds for Pr [c = 1]. Alice is honest and picks a uniformly at ran-
dom. We �rst have Pr [c = 0|a = 0] ≤ 1. We now upper bound Pr [c = 0|a = 1].
Let x = Pr [Bob wins Q|a = 1] and y = Pr [Alice wins Q|a = 1]. We have

Pr [c = 0|a = 1] ≤ x · 1 + y · 0 ≤ x ≤ 1− z + ε

Since Alice is honest, we have Pr [a = 0] = Pr [a = 1] = 1/2 and hence:

Pr [c = 0] = Pr [c = 0|a = 0] · Pr [a = 0] + Pr [c = 0|a = 1] · Pr [a = 1]

=
1
2

(Pr [c = 0|a = 0] + Pr [c = 0|a = 1])

≤ 1
2

+
1− z + ε

2

=
2− z + ε

2

Since the protocol is symmetric in 0 and 1, we also have Pr [c = 1] ≤ 2−z+ε
2 and

hence P ∗B ≤ 2−z+ε
2 .

4.3.3 Putting it all together

To conclude, we have to optimize z. In the case where there exists an ideal
weak coin �ipping protocol WCF (1/2, 0), it is easy to see that in order to
equalize the cheating probabilities P ∗A and P ∗B , we need to take z = 2 −

√
2.

If also our Proposition 11 was ideal, i.e. if from P we could create perfectly a
WCF (2 −

√
2, 0) protocol Q, then S would have cheating probability exactly

1√
2
.
In general, we need to take care of the small bias ε of the initialWCF (1/2, ε)

protocol P and the error of our Proposition 11. However, we will see that the
overall increase in the cheating probability of our protocol S is only O(ε).

Proposition 13 If there exists a WCF (1/2, ε) protocol P that uses N rounds
of communication then there exists a strong coin �ipping protocol S that uses
2dlog( 1

ε )e ·N + 2 rounds with cheating probability at most 1√
2

+
√

2ε+ o(ε).
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Proof: Starting from the WCF (1/2, ε) weak coin �ipping protocol P with
N rounds, we can use Proposition 11 with k = 2dlog( 1

ε )e and construct a
WCF (x, ε′) protocol Q with the following properties

• Q uses 2dlog( 1
ε )e ·N rounds.

• |x− (2−
√

2)| ≤ ε2.

• ε′ ≤ 2ε.

We use the protocol Q in the strong coin �ipping protocol described in
Section 4.3 and by Proposition 12 we a strong coin �ipping protocol with
2dlog( 1

ε )e ·N + 2 rounds and

P ∗A =
1

2− x− ε′
≤ 1√

2− 2ε− ε2
≤ 1√

2
+
√

2ε+ o(ε)

P ∗B =
2− x+ ε′

2
≤
√

2 + 2ε+ ε2

2
=

1√
2

+ ε+ o(ε)

Using Proposition 13 and Mochon's weak coin �ipping protocol (Proposition
10) we conclude that

Theorem 1 For any ε > 0, there exists a strong coin �ipping protocol with
cheating probability 1√

2
+ ε.

Last, note that our strong coin �ipping protocol uses O(N · log( 1
ε )) rounds,

where N is the number of rounds of Mochon's weak coin �ipping protocol.

Conclusion

In this Chapter, we presented the �rst quantum strong coin �ipping protocol
with a cheating probability arbitrarily close to the optimal value 1√

2
. Our

protocol uses as a subroutine the quantum weak coin �ipping protocol designed
by Mochon which is arbitrarily close to optimal. Note that except when using
this quantum weak coin �ipping protocol, our entire protocol is classical.

In the next Chapter, we will see another application of Mochon's weak coin
�ipping protocol: building an optimal quantum bit commitment scheme. In this
case however, the protocol will be quantum and not classical.
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Chapter 5

Bounds for quantum bit
commitment

Bit commitment is a cryptographic primitive that enables two distrustful and
far apart parties, Alice and Bob, to simulate a safe. Suppose Alice has a bit b
that she wants kept secret. She writes b on a piece of paper and puts the paper
into the safe. Bob does not know how to open the safe and hence does not know
b. Later on, Alice will want to reveal b. However, Bob wants to make sure that
Alice did not change her mind. So he will check that there was only one piece
of paper in the safe. This primitive has been widely studied. However, classical
bit commitment can only be performed with computational security.

Quantum information allows for bit commitment schemes in the information
theoretic setting where no dishonest party can perfectly cheat. Perfect quantum
bit commitment is impossible [LC97, May97]. However, unlike the classical case,
it is possible to construct partially secure quantum bit commitment. The previ-
ously best-known quantum protocol by Ambainis achieves a cheating probability
of at most 3/4 [Amb01]. On the other hand, Kitaev showed that no quantum
protocol can have cheating probability less than 1/

√
2 [Kit03] (his lower bound

on coin �ipping can be easily extended to bit commitment). Closing this gap
has since been an important and open question.

In this Chapter, we provide the optimal bound for quantum bit commitment.
We �rst show a lower bound of approximately 0.739, improving Kitaev's lower
bound. We then present an optimal quantum bit commitment protocol which
has cheating probability arbitrarily close to 0.739. More precisely, we show how
to use any weak coin �ipping protocol with cheating probability 1/2+ε in order
to achieve a quantum bit commitment protocol with cheating probability 0.739+
O(ε). We then use the optimal quantum weak coin �ipping protocol described
by Mochon [Moc07]. To stress the fact that our protocol uses quantum e�ects
beyond the weak coin �ip, we show that any classical bit commitment protocol
with access to perfect weak (or strong) coin �ipping has cheating probability at
least 3/4.
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5.1 De�nition of quantum bit commitment

De�nition 8 A quantum commitment scheme is an interactive protocol between
Alice and Bob with two phases, a Commit phase and a Reveal phase.

• In the commit phase, Alice interacts with Bob in order to commit to b.

• In the reveal phase, Alice interacts with Bob in order to reveal b. Bob
decides to accept or reject depending on the revealed value of b and his
�nal state. We say that Alice successfully reveals b, if Bob accepts the
revealed value.

We de�ne the following security requirements for the commitment scheme.

• Completeness: If Alice and Bob are both honest then Alice always success-
fully reveals the bit b she committed to.

• Binding property: For any cheating Alice and for honest Bob, we de�ne
Alice's cheating probability as

P ∗A =
1
2

(Pr[ Alice successfully reveals b = 0] + Pr[ Alice successfully reveals b = 1])

• Hiding property: For any cheating Bob and for honest Alice, we de�ne
Bob's cheating probability as

P ∗B = Pr[ Bob guesses b after the Commit phase ]

Remark: The de�nition of quantum bit commitment we use is the standard
one when one studies stand-alone cryptographic primitives. In this setting,
quantum bit commitment has a clear relation to other fundamental primitives
such as coin �ipping and oblivious transfer [ATVY00, Amb01, Kit03, Moc07,
CKS10]. Moreover, the study of such primitives sheds light on the physical
limits of quantum mechanics and the power of entanglement. Recently there
have been some stronger de�nitions of Quantum Bit Commitment protocols
that suit better practical uses (see for example [DFR+07]).

Notice that using our weaker de�nition of quantum bit commitment only
strengthens our lower bound which also holds for the stronger ones.

We now describe more in detail the di�erent steps on a quantum bit com-
mitment protocol. We consider protocols where Alice reveals b at the beginning
of the decommit phase. Note that this does not help Bob and can only harm a
cheating Alice. Proving a lower bound for such protocols will hence be a lower
bound for all bit commitment protocols.

We assume here that Alice and Bob are both honest. Let A Alice's space
and B Bob's space.

The commit phase: Alice wants to commit to a bit b. Alice and Bob com-
municate with each other and perform some quantum operations. This can be
seen as a joint quantum operation which depends on b. We can suppose wlog
that this operation is a quantum unitary UCb (by increasing Alice and Bob's
quantum space). At the end of the commit phase, Alice and Bob share the
quantum state |ψb〉. Let σb = TrA|ψb〉〈ψb| the state that Bob has after the
commit phase.
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The reveal phase: Alice wants to reveal b to Bob. Alice reveals b at the be-
ginning of the decommit phase. Similarly to the commit phase, we can suppose
that the decommit phase is equivalent to Alice and Bob performing a joint uni-
tary UDb on their shared state (|ψb〉 if they were honest in the Commit phase).
At the end, Bob performs a check to see whether Alice cheated or not. In the
honest case, Bob always accepts.

5.2 Lower bound for quantum bit commitment

To prove the lower bound, we will show some generic cheating strategies for
Alice and Bob that work for any kind of bit commitment scheme. We will then
show that these cheating strategies give a cheating probability of approximately
0.739 for any protocol.

5.2.1 Description of cheating strategies

We denote by |ψb〉 the quantum state Alice and Bob share at the end of the
commit phase. Let σb = TrA|ψb〉〈ψb| the state that Bob has after the commit
phase when Alice honestly commits to bit b.

Bob's cheating strategy The cheating strategy of Bob is the following:

• Perform the Commit phase honestly.

• Guess b by performing on the state at the end of the commit phase the
optimal discriminating measurement between σ0 and σ1.

First note that an all-powerful Bob can always perform this strategy, since he
knows the honest states σ0 and σ1 and can hence compute and perform the
optimal measurement. Let us analyze this strategy. We know [Hel67] that Bob
can guess b with probability 1

2 + ∆(σ0,σ1)
2 and hence

P ∗B ≥
1
2

+
∆(σ0, σ1)

2

Alice's cheating strategy The cheating strategy of Alice is the following

• Perform a quantum strategy so that at the end of the commit phase, Bob
has the state σ+ = 1

2 (σ0 + σ1).

• In order to reveal a speci�c value b, send b then apply a local quantum
operation such that the actual joint state of the protocol, |φb〉, satis�es
|〈φb|ψb〉| = F (σ+, σb). Perform the rest of the reveal phase honestly.

First note that an all-powerful Alice can perform this strategy. An honest
Alice has a strategy to make Bob's state after the commit phase equal to σb
for both b = 0 and b = 1. A cheating Alice creates a qubit 1√

2
(|0〉 + |1〉).

Conditioned on 0 (resp. 1), she applies the strategy that will give Bob the state
σ0 (resp. σ1). By doing this Bob's state at the end of the commit phase is
exactly σ+. Moreover, by Uhlmann's theorem, Alice can compute and perform
the local unitary in the beginning of the reveal phase to create a state |φb〉 that
satis�es |〈φb|ψb〉| = F (σ+, σb).
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For the analysis, since Bob accepts b with probability 1 when the joint state of
the protocol is |ψb〉, he accepts with probability at least |〈φb|ψb〉|2 = F 2(σ+, σb)
when the joint state of the protocol is |φb〉. From this cheating strategy, we have
that

P ∗A ≥
1
2
(
F 2(σ+, σ0) + F 2(σ+, σ1)

)
5.2.2 Showing the Lower Bound

We have the following bounds for cheating Alice and cheating Bob.

P ∗A ≥
1
2
(
F 2(σ+, σ0) + F 2(σ+, σ1)

)
P ∗B ≥

1
2

+
∆(σ0, σ1)

2

We now use the following inequality that will be proved in the next section

Proposition 14 Let σ0, σ1 any two quantum states. Let σ+ = 1
2 (σ0 + σ1). We

have

1
2
(
F 2(σ+, σ0) + F 2(σ+, σ1)

)
≥
(

1− (1− 1√
2

)∆(σ0, σ1)
)2

.

Let t = ∆(σ0, σ1). From the above Proposition, we have the following bounds.

P ∗A ≥
1
2
(
F 2(σ+, σ0) + F 2(σ+, σ1)

)
≥
(

1− (1− 1√
2

)t
)2

P ∗B ≥
1
2

+
∆(σ0, σ1)

2
=

1 + t

2

We get the optimal cheating probability by equalizing these two bounds, ie.(
1− (1− 1√

2
)t
)2

=
1 + t

2

Notice that the same cheating probabilities appeared in the analysis of a weak
coin �ipping protocol in [KN04]. Solving the equation gives t ≈ 0.4785 and
hence we have

Theorem 2 In any quantum bit commitment protocol with cheating probabili-
ties P ∗A and P ∗B we have max{P ∗A, P ∗B} ≥ 0.739.

5.2.3 Proof of the �delity Lemma

In this Section, we show Proposition 14.

Proof of Proposition 14: We will prove this Lemma in three steps. Let
σ0, σ1 two quantum states and let σ+ = 1

2 (σ0 + σ1).
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Step 1 We �rst consider the states ρ0 = 1
2 |0〉〈0| ⊗ σ0 + 1

2 |1〉〈1| ⊗ σ1 and
ρ+ = 1

2 |0〉〈0| ⊗ σ+ + 1
2 |1〉〈1| ⊗ σ+. We compute the trace distance and �delity

of these states

∆(ρ0, ρ+) =
1
2

(∆(σ0, σ+) + ∆(σ1, σ+)) =
1
2

∆(σ0, σ1) (5.1)

In order to calculate the �delity we note �rst that ρ
1
2
+ = 1√

2

(
|0〉〈0| ⊗ σ

1
2
+ + |1〉〈1| ⊗ σ

1
2
+

)
.

From the de�nition of �delity we have

F (ρ0, ρ+) = tr

(√
ρ

1
2
+ρ0ρ

1
2
+

)
= tr

(√
1
4
|0〉〈0| ⊗ σ

1
2
+σ0σ

1
2
+ +

1
4
|1〉〈1| ⊗ σ

1
2
+σ1σ

1
2
+

)

= tr

(
1
2
|0〉〈0| ⊗

√
σ

1
2
+σ0σ

1
2
+ +

1
2
|1〉〈1| ⊗

√
σ

1
2
+σ1σ

1
2
+

)
=

1
2
tr

(√
σ

1
2
+σ0σ

1
2
+

)
+

1
2
tr

(√
σ

1
2
+σ1σ

1
2
+

)
=

1
2

(F (σ0, σ+) + F (σ1, σ+))

Hence, by Cauchy-Schwartz we conclude that

F 2(ρ0, ρ+) ≤ 1
2
F 2(σ0, σ+) +

1
2
F 2(σ1, σ+) (5.2)

Step 2 Consider the POVM E = {E1, . . . , Em} with pi = tr(ρ0Ei) and qi =
tr(ρ+Ei) such that F (ρ0, ρ+) =

∑
i

√
piqi (Prop. 5). We consider the states

D0 =
∑
i pi|i〉〈i| and D+ =

∑
i qi|i〉〈i|. For the trace distance and �delity of

these states, we have

∆(D0, D+) =
1
2

∑
i

|pi − qi| ≤ ∆(ρ0, ρ+) =
1
2

∆(σ0, σ1) by Prop. 3, 1 and Eq. 5.1

(5.3)

F (D0, D+) = F (ρ0, ρ+) =
∑
i

√
piqi (5.4)

Step 3 Let us de�ne k such that k/2 = ∆(D0, D+). We now consider the
states T0 = k|0〉〈0| + (1 − k)|2〉〈2| and T+ = k

2 |0〉〈0| +
k
2 |1〉〈1| + (1 − k)|2〉〈2|.

We calculate the trace distance and �delity of these states

∆(T0, T+) =
k

2
= ∆(D0, D+) ≤ ∆(σ0, σ1)

2
(5.5)

F (T0, T+) =
(

1− k +
k√
2

)
≥
(

1− (1− 1√
2

)∆(σ0, σ1)
)

(5.6)
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The only thing remaining is to show that F (T0, T+) ≤ F (D0, D+). To prove
this, we construct a completely positive trace preserving operation Q such that
Q(T0) = D0 and Q(T+) = D+. We can then conclude using Proposition 7.

We de�ne D1 =
∑
i ri|i〉〈i| with pi + ri = 2qi. This means that D+ =

1
2D0 + 1

2D1 and ∆(D0, D1) = k.
Let A = {i : pi ≥ ri} and B = {i : pi < ri}. Let wi = min{pi, ri} We

consider the following Q

Q(|0〉〈0|) =
∑
i∈A

1
k

(pi − ri)|i〉〈i|

Q(|1〉〈1|) =
∑
i∈B

1
k

(ri − pi)|i〉〈i|

Q(|2〉〈2|) =
∑
i

1
1− k

wi|i〉〈i|

Q(|i〉〈j|) = 0 for i 6= j

Since ∆(D0, D1) = k, we have in particular that
∑
i wi = 1−k ;

∑
i∈A(pi−ri) =∑

i∈B(ri − pi) = k (see Proposition 3). Q is hence a completely positive trace
preserving operation. We now have:

Q(T0) = k
∑
i∈A

1
k

(pi − ri)|i〉〈i|+ (1− k)
∑
i

1
1− k

wi|i〉〈i|

=
∑
i∈A

(pi − ri)|i〉〈i|+
∑
i

wi|i〉〈i|

=
∑
i∈A

(pi − ri + ri)|i〉〈i|+
∑
i∈B

pi|i〉〈i|

=
∑
i

pi|i〉〈i| = D0

Similarly, we have

Q(T+) =
k

2

∑
i∈A

1
k

(pi − ri)|i〉〈i|+
k

2

∑
i∈B

1
k

(ri − pi)|i〉〈i|+ (1− k)
∑
i

1
1− k

wi|i〉〈i|

=
∑
i∈A

pi − ri
2
|i〉〈i|+

∑
i∈B

ri − pi
2
|i〉〈i|+

∑
i

wi|i〉〈i|

=
∑
i∈A

(ri +
pi − ri

2
)|i〉〈i|+

∑
i∈B

(pi +
ri − pi

2
)|i〉〈i|

=
∑
i

qi|i〉〈i| = D+

From this, we conclude that

F (D0, D+) = F (Q(T0), Q(T+)) ≥ F (T0, T+). (5.7)
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Putting everything together, we have using equations 5.2,5.4,5.6,5.7

1
2
(
F 2(σ0, σ+) + F 2(σ1, σ+)

)
≥ F 2(ρ0, ρ+)

≥ F 2(D0, D+)

≥ F 2(T0, T+)

≥
(

1− (1− 1√
2

)∆(σ0, σ1)
)2

5.3 Upper Bound for quantum bit commitment

In this section we describe and analyze a protocol that proves the optimality of
our bound.

Theorem 3 There exists a quantum bit commitment protocol that uses a weak
coin �ipping protocol with cheating probability 1/2 + ε as a subroutine and
achieves cheating probabilities less than 0.739 +O(ε).

Our protocol is a quantum improvement of the following simple protocol
that achieves cheating probability 3/4. Alice commits to bit b by preparing
the state 1/

√
2(|bb〉+ |22〉) and sending the second qutrit to Bob. In the reveal

phase, she sends the �rst qutrit and Bob checks that the pure state is the correct
one. It is not hard to prove that both Alice and Bob can cheat with probability
3/4 [Amb01, KN04]. The main idea in order to reduce the cheating probabilities
for both players is the following: �rst we increase a little bit the amplitude of
the state |22〉 in this superposition. This decreases the cheating probability of
Bob. However, now Alice can cheat even more. To remedy this, we use the
quantum procedure of a weak coin �ipping so that Alice and Bob jointly create
the above initial state (with the appropriate amplitudes) instead of having Alice
create it herself. We present now the details of the protocol.
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5.3.1 The protocol

Optimal Quantum Bit Commitment

Commit phase, Step 1 Alice and Bob perform an unbalanced weak coin
�ipping procedure (without measuring the �nal outcome), where Alice wins
with probability 1− p and Bob with probability p. As we said, we can think
of this procedure as a big unitary operation that creates a joint pure state
in the space of Alice and Bob. Moreover, Alice and Bob have each a special
1-qubit register that they can measure at the end of the protocol in order to
read the outcome of the weak coin �ipping. Here, we assume that they do
not measure anything and that at the end Alice sends back to Bob all her
garbage qubits. In other words, in the honest case, Alice and Bob share the
following state at the end of the weak coin protocol

|Ω〉 =
√
p|L〉A ⊗ |L,GL〉B +

√
1− p|W 〉A ⊗ |W,GW 〉B

where W corresponds to the outcome "Alice wins" and L corresponds to
the outcome "Alice loses". The spaces A,B correspond to Alice's and Bob's
private quantum space. The garbage states |GW 〉, |GL〉 are known to both
players.

Commit phase, Step 2 After the end of the weak coin �ipping procedure,
Alice does the following. Conditioned on her qubit being W , she creates two
qutrits in the state |22〉 and sends the second to Bob. Conditioned on her
qubit being L, she creates two qutrits in the state |bb〉 where b is the bit she
wants to commit to and sends the second to Bob. If the players are both
honest, they share the following state:

|Ωb〉 =
√
p|L, b〉A ⊗ |L, b,GL〉B +

√
1− p|W, 2〉A ⊗ |W, 2, GW 〉B

Reveal phase In the reveal phase, Alice sends b and all her remaining
qubits in space A to Bob. Bob checks that he has the state |Ωb〉.

5.3.2 Analysis of the above protocol

If Alice and Bob are both honest then Alice always successfully reveals the bit
b she committed to.

Cheating Bob Bob is not necessarily honest in the weak coin �ipping proto-
col, however the weak coin �ipping has small bias ε. Since Alice is honest, Bob
has all the qubits expect the one qubit which is in Alice's output register. At
the end of the �rst step of the Commit phase, Alice and Bob share a state

|Ω∗〉 =
√
p′|L〉A|ΨL〉B +

√
1− p′|W 〉A|ΨW 〉B

for some states |ΨL〉, |ΨW 〉 held by Bob. Recall that the outcome L in Alice's
output register corresponds to the outcome where Alice loses the weak coin
�ipping protocol. Hence, for any cheating Bob, since our coin �ipping has bias
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ε, we have p′ ≤ p + ε. At the end of the commit phase, depending on Alice's
committed bit b, the joint state is

|Ω∗b〉 =
√
p′|L, b〉A|b,ΨL〉B +

√
1− p′|W, 2〉A|2,ΨW 〉B

and Bob's density matrix is

σ∗b = p′|b,ΨL〉〈b,ΨL|+ (1− p′)|2,ΨW 〉〈2,ΨW |.

By Proposition 2, we have

P ∗B = Pr[ Bob guesses b] ≤ 1
2

+
∆(σ∗0 , σ

∗
1)

2
=

1
2

+
p′

2
≤ 1 + p

2
+
ε

2

Cheating Alice Let σb be Bob's reduced state at the end of the commit
phase when both players are honest. Let |x〉 = |L, x,GL〉 for x ∈ {0, 1} and
|2〉 = |W, 2, GW 〉. We have

σb = p|b〉〈b|+ (1− p)|2〉〈2|

Let ξ be Bob's state at the end of the commit phase for a cheating Alice.
Let ri = 〈i|ξ|i〉 for i ∈ {0, 1, 2}. From the characterization of the �delity in
Proposition 7, we have that

F (ξ, σb) ≤
√
prb +

√
(1− p)r2

From standard analysis of bit commitment protocol (for example [KN04] ), we
have using Uhlmann's Theorem that

P ∗A ≤
1
2
(
F 2(ξ, σ0) + F 2(ξ, σ1)

)
≤ 1

2

(√
pr0 +

√
(1− p)r2

)2

+
1
2

(√
pr1 +

√
(1− p)r2

)2

In order to get a tight bound for the above expression, we use here the
property of the weak coin �ipping. Recall that |2〉 = |W, 2, GW 〉 has its �rst
register as W (this corresponds to Alice winning the coin �ip). On the other
hand, |0〉 and |1〉 have L as their �rst register, corresponding to the case where
Bob wins. For any cheating Alice, she can win the weak coin �ip with probability
smaller than 1 − p + ε and hence this means in particular that r2 ≤ 1 − p + ε.
Moreover, r0 + r1 + r2 ≤ 1. For ε < p(1 − 1

2−p ) , we show that this quantity
is maximal when r2 is maximal and r0 = r1 = (p − ε)/2 (proven in the next
Section). This gives us

P ∗A ≤

(√
p · p− ε

2
+
√

(1− p)(1− p+ ε)

)2

≤
(

1− (1− 1√
2

)p
)2

+O(ε)

Putting it all together Except for the terms in ε, we obtain exactly the same
quantities as in our lower bound. By equalizing these cheating probabilities, we
have

max{P ∗A, P ∗B} ≈ 0.739 +O(ε)

which proves Theorem 3 Since we can have ε arbitrarily close to 0 (Proposi-
tion 10) and we can have an unbalanced weak coin �ipping protocol with prob-
ability arbitrarily close to p (Proposition 11), we conclude that our protocol is
arbitrarily close to optimal, and hence we proved Theorem 3.
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5.3.3 Proof of r0 = r1 and r2 maximal in the quantum lower

bound

In this Section, we show the following:

Proposition 15 Let

P ∗A ≤
1
2

(√
pr0 +

√
(1− p)r2

)2

+
1
2

(√
pr1 +

√
(1− p)r2

)2

with the constraints: r0, r1, r2 ≥ 0, r0 + r1 + r2 ≤ 1 and r2 ≤ 1 − p + ε for
ε < p(1 − 1

2−p ). This cheating probability is maximized for r0 = r1 = p−ε
2 and

r2 = 1− p+ ε.

Proof: First note that the maximal cheating probability is achieved for r0 +
r1 + r2 = 1 since this cheating probability is increasing in r0, r1, r2.

We �rst show that r0 = r1. Let's �x r2. This means that S = r0 +r1 = 1−r2

is �xed. Let u =
√

(1− p)r2. We have

P ∗A ≤ f(r0) =
1
2

(
√
pr0 + u)2 +

1
2

(√
p(S − r0) + u

)2

.

Taking the derivative, we have

=
1
2

(
p+

u
√
p

√
r0
− p− u

√
p

√
S − r0

)
=
u
√
p

2

(
1
√
r0
− 1√

S − r0

)
We have f ′(r0) > 0 for r0 < S/2 ; f ′(r0) = 0 for r0 = S/2 ; f ′(r0) < 0 for
r0 > S/2. This means that the maximum of f is achieved for r0 = S/2 i .e.
r0 = r1.

We now show that r2 = 1− p+ ε gives the maximal cheating probability if
ε is not too big. Since P ∗A is maximal for r0 = r1 and for r0 + r1 + r2 = 1, we
have

P ∗A ≤
1
2

(√
pr0 +

√
(1− p)r2

)2

+
1
2

(√
pr0 +

√
(1− p)r2

)2

≤ (
√
pr0 +

√
(1− p)r2)2

≤

(√
p(

1− r2

2
) +

√
(1− p)r2

)2

= g(r2)

Again, we take the derivative of g.

g′(r2) =

(
−

√
p√

2(1− r2)
+
√

1− p
√
r2

)
·

(√
p(

1− r2

2
) +

√
(1− p)r2

)
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From this, we have

g′(r2) ≥ 0⇔

(
−

√
p√

2(1− r2)
+
√

1− p
√
r2

)
≥ 0

⇔
√

p

2(1− r2)
≤
√

1− p
r2

⇔ pr2 ≤ 2(1− r2)(1− p)

⇔ r2 ≤ 1− p

2− p

For ε < p(1− 1
2−p ), we have 1− p+ ε < 1− p

2−p , so when ε < p(1− 1
2−p ), g(r2)

is always increasing when r2 ≤ 1 − p + ε and is maximal when r2 = 1 − p + ε,
which concludes the proof.

5.4 Proof of the classical lower bound

In this Section, we show a 3/4 lower bound for classical bit commitment schemes
when players additionally have the power to perform perfect (strong or weak)
coin-�ipping. This will show that unlike strong coin �ipping, quantum and
classical bit commitment are not alike in the presence of weak coin �ipping.

We �rst describe such protocols in Section 5.4.1. In Section 5.4.2, we con-
struct a cheating strategy for Alice and Bob for these protocols such that one
of the players can cheat with probability at least 3/4.

5.4.1 Description of a classical bit commitment protocol

with perfect coin �ips

We describe classical bit commitment schemes when players additionally have
the power to perform perfect (strong or weak) coin-�ipping. The way we deal
with the coin is the following: when Alice and Bob are honest, they always
output the same random value c and both players know this value. We can
suppose equivalently that a random coin c is given publicly to both Alice and
Bob each time they perform coin �ipping. We describe any BC protocol with
coins as follows:

• Alice and Bob have some private randomness RA and RB respectively.

• Commit phase: Alice wants to commit to some value x. Let N the number
of rounds of the commit phase. For i = 1 to N : Alice sends a message
ai, Bob sends a message bi, Alice and Bob �ip a coin and get a public
ci ∈R {0, 1}.

• Reveal phase: Alice wants to decommit to some value y (= x if Alice is
honest).

1. Alice �rst reveals y. This is a restriction for the protocol but showing
a lower bound for such protocols will show a lower bound for all pro-
tocols since this can only limit Alice's cheating possibilities without
helping Bob.
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2. Let M the number of rounds of the reveal phase. For i = 1 to M :
Alice sends a message a′i, Bob sends a message b′i, Alice and Bob �ip
a coin and get a public c′i ∈R {0, 1}.

3. Bob has an accepting procedure Acc to decide whether he accepts
the revealed bit or whether he aborts (if Bob catches Alice cheating).

We denote the commit phase transcript by tC = (a1, b1, c1, . . . , aN , bN , cN ).
If Alice and Bob are honest, then we can write tC = TC(RA, RB , c, x) where TC
is a function �xed by the protocol that takes as input Alice and Bob's private
coins RA, RB , the outcomes of the public coin �ips c = (c1, . . . , cN ) as well as
the bit x Alice wants to commit to and outputs a commit phase transcript tC .
If we can write tC = TC(RA, RB , c, x) for some RA, RB , c, x, we say that tC is
an honest commit phase transcript.

Similarly, we de�ne the decommit phase transcript by tD = (a′1, b
′
1, c
′
1, . . . , a

′
M , b

′
M , c

′
M ).

If Alice and Bob are honest, we can write tD = TD(RA, RB , c′, y, tC), where TD
is a function �xed by the protocol that takes as input Alice and Bob's private
coins RA, RB , the outcomes of the public coin �ips c′ = (c′1, . . . , c

′
M ), the bit

y Alice reveals as well as the commit phase transcript tC and outputs a re-
veal phase transcript tD. If we can write tD = TD(RA, RB , c′, y, tC) for some
RA, RB , c

′, y and some honest commit phase transcript tC , we say that tD is an
honest reveal phase transcript.

Whether Bob accepts at the end of the protocol depends on both transcripts
tC , tD of the commit and reveal phase, the bit y Alice reveals as well as Bob's
private coins. We write that Acc(tC , tD, y, RB) = 1 when Bob accepts.

Note that in the honest case, Bob always accepts Alice's decommitment.
This means that we can transform Alice's honest strategy in the reveal phase
to a deterministic strategy which will also be always accepted. This fact will be
useful in the proof.

5.4.2 Proof of the classical lower bound

In this Section, we construct cheating strategies for Alice and Bob such that
one of the players will be able to cheat with probability greater than 3/4. We
only consider cheating strategies where Alice and Bob are honest during the
coin �ips so again, they will be modeled as public and perfectly random coins.
Moreover, Alice and Bob will always be honest during the commit phase.

Before describing the cheating strategies we need some de�nitions. More
particularly, we consider a cheating Alice who cheats during the reveal phase
by following a deterministic strategy A∗. For a �xed honest commit phase
transcript tC , we can write the transcript of the reveal phase as a function of
A∗, RB , c

′, y, tC , more precisely T ∗D(A∗, RB , c′, y, tC).

De�nition 9 We say that RB is consistent with tC if and only if there exist
RA, c, x such that tC = TC(RA, RB , c, x).

De�nition 10 Let tC an honest commit phase transcript. We say that tC ∈ Ay
if and only if

∃A∗ s.t. ∀c′ and ∀RB consistent with tC , Acc(tC , T ∗D(A∗, RB , c′, y, tC), y, RB) = 1
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Intuitively, tC ∈ Ay means that if Alice and Bob output an honest commit
phase transcript tC , there is a deterministic strategy A∗ for Alice that allows
her to reveal y without Bob aborting, independently of Bob's private coins RB .
Since there is always a deterministic honest strategy for Alice in the reveal phase
(when Alice and bob have been honest in the commit phase), we have

∀ RA, RB , c, x tC = TC(RA, RB , c, x) ∈ Ax
Notice also that for any honest commit phase transcript tC , both players Alice
and Bob can compute whether tC ∈ Au for both u = 0 and u = 1.

De�nition 11 We de�ne the probability

pu = Pr[tC = TC(RA, RB , c, u) ∈ Au] where the probability is taken over uniform RA, RB , c.

Consider that Bob is honest. pu is the probability that if Alice behaves honestly
in the commit phase and commits to u, she has a deterministic cheating strategy
to reveal u which always succeeds (independently of c′, RB).

We can now describe and analyze our cheating strategies for Alice and Bob and
prove our theorem

Theorem 4 For any classical bit commitment protocol with access to public
perfect coins, one of the players can cheat with probability at least 3/4.

Proof: Let us �x a bit commitment protocol. We describe cheating strategies
for Alice and Bob.

Cheating Alice

• Commit phase: Alice picks x ∈R {0, 1} and she honestly commits to x
during the commit phase.

• Reveal phase: if Alice wants to reveal x, she just remains honest during
the reveal phase. By completeness of the protocol, this strategy succeeds
with probability 1. If Alice wants to reveal x, we know by de�nition of px
that she succeeds with probability at least px. This gives us:

P ∗A ≥
1
2

+
px
2

since Alice chooses x at random, we have:

P ∗A ≥
1
2

+
p0 + p1

4

Cheating Bob As Alice, Bob is honest in the commit phase. Let x the bit
Alice committed to. Since Alice and Bob are honest the commit-phase transcript
is tC = TC(RA, RB , c, x) for uniformly random RA, RB , c. As said before, we
know that tC ∈ Ax.

At the end of the commit phase, Bob wants to guess the bit x Alice commits
to and he performs the following strategy: if tC ∈ A0 ∩ A1 he guesses x at
random. If ∃! u s.t. tC /∈ Au he guesses x = u.

We know that Bob succeeds in cheating with probability 1/2 if tC ∈ Ax and
with probability 1 if tC /∈ Ax. This gives us P ∗B ≥ px · 1

2 + (1− px) · 1 = 1− px

2 .
Since again, Alice's bit x is uniformly random, we have

P ∗B ≥ 1− p0 + p1

4
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Putting it all together Taking Alice and Bob cheating probabilities to-
gether, we have
P ∗A + P ∗B ≥ 3/2 which gives max{P ∗A, P ∗B} ≥ 3/4.

5.5 Conclusion

In this Chapter, we presented new bounds for Quantum bit Commitment, im-
proving both the lower bound and the upper bound. In the end, we got a lower
bound of 0.739 and an upper bound of 0.739 + ε for any ε > 0 which is a
construction of a quantum bit commitment arbitrarily close to optimal.

The lower bound we obtained is of di�erent �avor than the one found by
Kiteav for coin �ipping. While Kitaev's lower bound uses semi-de�nite pro-
gramming, our bound just reasons on quantum states.

Like the optimal quantum coin �ipping, this protocol uses Mochon's quan-
tum weak coin �ipping as a subroutine. We show however, that in addition
to weak coin �ipping, one also needs quantum e�ects elsewhere, since we show
that any classical bit commitment with access to perfect coin �ips cannot achieve
better cheating probabilities than 3/4.
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Chapter 6

Bounds for quantum
Oblivious transfer

In this Chapter, we quantitatively study the bias of quantum oblivious transfer
protocols. More precisely, we construct a bit commitment protocol that uses
oblivious transfer as a subroutine and show a relation between the cheating
probabilities of the OT protocol and the ones of the bit commitment protocol.
Then, using the lower bound for quantum bit commitment from Chapter 5, we
derive a non-trivial lower bound (albeit weaker) on the cheating probabilities
for OT . More precisely we prove the following theorem.

Theorem 5 In any quantum oblivious transfer protocol, we have

max{AOT , BOT } ≥ 0.58

Moreover, in Section 6.4 we describe a simple 1-out-of-2 random-OT protocol
and analyze the cheating probabilities of Alice and Bob.

Theorem 6 There exists a quantum oblivious transfer protocol such that AOT =
BOT = 3

4 .

6.1 De�nitions

In the literature, many di�erent variants of oblivious transfer have been consid-
ered. We consider two variants of quantum oblivious transfer and for complete-
ness we show that they are equivalent with respect to the bias ε.

De�nition 12 (Random Oblivious Transfer) A 1-out-of-2 quantum random
oblivious transfer protocol with bias ε, denoted here as random-OT , is a protocol
between Alice and Bob such that:

• Alice outputs two bits (x0, x1) or Abort and Bob outputs two bits (b, y) or
Abort

• If Alice and Bob are honest, they never Abort, y = xb, Alice has no infor-
mation about b and Bob has no information about xb. Also, x0, x1, b are
uniformly random bits.
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• AOT := sup{Pr[Alice guesses b and Bob does not Abort]} = 1
2 + εA

• BOT := sup{Pr[Bob guesses (x0, x1) and Alice does not Abort]} = 1
2 + εB

• The bias of the protocol is de�ned as ε := max{εA, εB}

where the suprema are taken over all cheating strategies for Alice and Bob.

Note that this de�nition is slightly di�erent from usual de�nitions because
we want the exact value of the cheating probabilities and not only an upper
bound. This is because we consider both lower bounds and upper bounds for
OT protocols but we could have equivalent results using the standard de�nitions.

An important issue is that we quantify the security against a cheating Bob as
the probability that he can guess (x0, x1). One can imagine a security de�nition
where Bob's guessing probability is not for (x0, x1), but for example for x0⊕x1

or any other function f(x0, x1). Since we are mostly interested in lower bounds,
we believe our de�nition is the most appropriate one, since a lower bound on
the probability of guessing (x0, x1) automatically yields a lower bound on the
probability of guessing any f(x0, x1).

We now de�ne a second notion of OT where the values (x0, x1) and b are
Alice's and Bob's inputs respectively and show the equivalence between the two
notions.

De�nition 13 (Oblivious Transfer) A 1-out-of-2 quantum oblivious trans-
fer protocol with bias ε, denoted here as OT , is a protocol between Alice and
Bob such that:

• Alice has input x0, x1 ∈ {0, 1} and Bob has input b ∈ {0, 1}. At the
beginning of the protocol, Alice has no information about b and Bob has
no information about (x0, x1)

• At the end of the protocol, Bob outputs y or Abort and Alice can either
Abort or not

• If Alice and Bob are honest, they never Abort, y = xb, Alice has no infor-
mation about b and Bob has no information about xb

• AOT := sup{Pr[Alice guesses b and Bob does not Abort]} = 1
2 + εA

• BOT := sup{Pr[Bob guesses (x0, x1) and Alice does not Abort]} = 1
2 + εB

• The bias of the protocol is de�ned as ε := max{εA, εB}

where the suprema are taken over all cheating strategies for Alice and Bob.

6.2 Equivalence between the di�erent notions of

Oblivious Transfer

We show the equivalence between OT and random-OT with respect to the bias
ε. First, note that a random-OT is a special case of OT , since in the de�nition
of OT there is no restriction on how the inputs are chosen, and hence they can
be chosen uniformly at random.
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Proposition 16 Let P an OT protocol with bias ε. We can construct a random-
OT protocol Q with bias ε using P .

Proof: The construction of the OT protocol Q is pretty straightforward:

1. Alice picks x0, x1 ∈R {0, 1} uniformly at random and Bob picks b ∈R {0, 1}
uniformly at random.

2. Alice and Bob perform the OT protocol P where Alice inputs x0, x1 and
Bob inputs b. Let y be Bob's output. Note that at this point, Alice has
no information about b and Bob has no information about (x0, x1).

3. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the
outputs of protocol Q are (x0, x1) for Alice and (b, y) for Bob.

The outcomes of Q are uniformly random bits since Alice and Bob choose their
inputs uniformly at random. All the other requirements that make Q an OT
protocol with bias ε are satis�ed because P is an OT protocol with bias ε.

We now prove how to go from a random-OT to an OT protocol.

Proposition 17 Let P a random-OT protocol with bias εP . We can construct
an OT protocol Q with bias εQ = εP using P .

Proof: Let P a random-OT protocol with bias εP . Consider the following
protocol Q:

1. Alice has inputs X0, X1 and Bob has an input B.

2. Alice and Bob run protocol P and output (x0, x1) for Alice and (b, y) for
Bob.

3. Bob sends r = b⊕B to Alice. Let x′c = xc⊕r, for c ∈ {0, 1}.

4. Alice sends to Bob (s0, s1) where sc = x′c ⊕ Xc for c ∈ {0, 1}. Let y′ =
y ⊕ sB .

5. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the
output of the protocol is y′ for Bob.

We now show that our protocol is an OT protocol with inputs with bias ε. First,
note that the values x′c are known by Alice and the value y′ is known by Bob.
Also, notice that x′B = xB⊕r = xb.

• Alice and Bob are honest:
By de�nition we have y = xb. Then, we have y′ = y ⊕ sB = xb ⊕ sB =
x′B ⊕ sB = XB . Moreover, Alice knows r but has no information about
b and hence she has no information about B = b⊕ r. Bob knows (s0, s1)
and r but has no information about xb̄, hence he has no information about
XB̄ = x′

B̄
⊕ sB̄ = x′

b̄⊕r ⊕ sb̄⊕r = xb̄ ⊕ sb̄⊕r.

• Cheating Alice:
Alice picks r and B = b⊕ r. Hence

AOT (Q) = sup{Pr[Alice guesses B and Bob does not Abort]}
= sup{Pr[Alice guesses b and Bob does not Abort]} = AOT (P ).
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• Cheating Bob: Bob picks a random r, sends r to Alice and then Alice
picks (s0, s1). We have Xc = x′c ⊕ sc = xc⊕r ⊕ sc so it is equivalent for
Bob to guess (X0, X1) and (x0, x1). Hence

BOT (Q) = sup{Pr[Bob guesses (X0, X1) and Alice does not Abort]}
= sup{Pr[Bob guesses (x0, x1) and Alice does not Abort]} = BOT (P ).

We can now conclude for the biases

εQ = max{AOT (Q), BOT (Q)} − 1
2

= max{AOT (P ), BOT (P )} − 1
2

= εP .

6.3 Lower bound for quantum oblivious transfer

6.3.1 From quantum oblivious transfer to quantum bit

commitment

In this section we prove that the bias of any random-OT protocol, and hence
any OT protocol, is bounded below by a constant. We start from a random-OT
protocol and �rst show how to construct a bit commitment protocol. Then, we
prove a relation between the cheating probabilities of the bit commitment and
those in the random-OT protocol. Last, we use the lower bounds for quantum
bit commitment from Chapter 5.

We create a bit commitment protocol from a random-OT protocol as follows.

Bit Commitment Protocol via random-OT

• Commit phase: We invert the roles of Alice and Bob. Bob is the one
who commits. He wants to commit to a bit a. Alice and Bob perform
the OT protocol such that Alice has (x0, x1) and Bob has (b, xb). Bob
sends a⊕ b to Alice.

• Decommit phase: Bob reveals b and y = xb to Alice. If xb from Bob is
consistent with Alice's bits then Alice accepts. Otherwise Alice aborts.

We now analyze how much Alice and Bob can cheat in the bit commitment
protocol and compare these quantities to the bias of the random-OT protocol.
Let AOT , BOT the cheating probabilities for the quantum oblivious transfer
protocol and ABC , BBC the cheating probabilities for the resulting quantum bit
commitment protocol. Our goal is to show the following:

Proposition 18

AOT ≤ ABC ; BOT ≤ f(BC) where f(x) = x(2x− 1)2

Proof:
Let ¬⊥BCA (resp. ¬⊥BCB ) denote the event �Alice (resp. Bob) does not abort

during the entire bit commitment protocol�. Let ¬⊥OTA (resp. ¬⊥OTB ) denote
the event �Alice (resp. Bob) does not abort during the random-OT subroutine�.
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Cheating Alice By de�nition, AOT is the optimal probability of Alice guess-
ing b in the random-OT protocol without Bob aborting and ABC is the optimal
probability of Alice guessing a in the bit commitment protocol without Bob
aborting. Since Alice knows c := a ⊕ b, the probability of Alice guessing a in
the bit commitment protocol is the same as the probability of her guessing b in
the random-OT protocol. Thus AOT = ABC .

Cheating Bob By de�nition, BOT is the optimal probability of Bob learning
both bits in the random-OT protocol without Alice aborting. Thus,

BOT = sup{Pr[ (Bob guesses (x0, x1)) ∧ ¬⊥OTA ]}
= sup{Pr[¬⊥OTA ] · Pr[ (Bob guesses (x0, x1))|¬⊥OTA ]}.

where the suprema are taken over all strategies for Bob.
If Bob wants to reveal 0 in the bit commitment protocol (a similar argument

works if he wants to reveal 1), then �rst, Alice must not abort in the random-OT
protocol and second, Bob must send b = c as well as the correct xc such that
Alice does not abort in the last round of the bit commitment protocol. This is
equivalent to saying that Bob succeeds if he guesses xc and Alice does not abort
in the random-OT protocol. Since Bob randomly choses which bit he wants to
reveal, we can write the probability of Bob cheating as

BBC = max
{

1
2

Pr[(Bob guesses x0) ∧ ¬⊥OTA ] +
1
2

Pr[(Bob guesses x1) ∧ ¬⊥OTA ]
}

= max
{

Pr[¬⊥OTA ] ·
(

1
2

Pr[(Bob guesses x0)|¬⊥OTA ] +
1
2

Pr[(Bob guesses x1)|¬⊥OTA ]
)}

.

Notice that we use �max� instead of �sup� above. This is because an optimal
strategy exists for every coin �ipping protocol. This is a consequence of strong
duality in the semide�nite programming formalism of [Kit03], see [ABDR04] for
details.

Let us now �x Bob's optimal cheating strategy in the bit commitment proto-
col. For this strategy, let p = Pr[(Bob guesses x0)|¬⊥OTA ], q = Pr[(Bob guesses x1)|¬⊥OTA ]
and a = p+q

2 . Note that, without loss of generality, we can assume that Bob's
measurements are projective measurements. This can be done by increasing
the dimension of Bob's space. Also, Alice has a projective measurement on her
space to determine the bits (x0, x1).

We use the following lemma to relate BBC and BOT .

Lemma 5 (Learning-In-Sequence Lemma) Let p, q ∈ [1/2, 1]. Let Alice
and Bob share a joint pure state. Suppose Alice performs on her space a projec-
tive measurement M = {Mx0,x1}x0,x1∈{0,1}to determine the values of (x0, x1).
Suppose there is a projective measurement P = {P0, P1} on Bob's space that
allows him to guess bit x0 with probability p and a projective measurement
Q = {Q0, Q1} on his space that allows him to guess bit x1 with probability
q. Then, there exists a measurement on Bob's space that allows him to guess
(x0, x1) with probability at least a(2a− 1)2 where a = p+q

2 .
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We postpone the proof of this lemma to Subsection 6.3.2.
We now construct a cheating strategy for Bob for the OT protocol: Run the

optimal cheating bit-commitment strategy and look at Bob's state after step 1
conditioned on ¬⊥OTA . Note that this event happens with nonzero probability
in the optimal bit commitment strategy since otherwise the success probability
is 0. The optimal bit commitment strategy gives measurements that allow
Bob to guess x0 with probability p and x1 with probability q. Bob uses these
measurements and the procedure of Lemma 5 to guess (x0, x1). Let m be the
probability he guesses (x0, x1). From Lemma 5, we have that m ≥ a(2a − 1)2.
By de�nition of BOT and BBC , we have:

m = Pr[ (Bob guesses (x0, x1))|¬⊥OTA ] ≤ BOT
Pr[¬⊥OTA ]

and a =
BBC

Pr[¬⊥OTA ]
.

This gives us

BOT
Pr[¬⊥OTA ]

≥ BBC
Pr[¬⊥OTA ]

(
2

BBC
Pr[¬⊥OTA ]

− 1
)2

=⇒ BOT ≥ BBC (2BBC − 1)2
,

where the implication holds since BBC ≥ 1/2.

Using this Proposition and the lower bound for quantum bit commitment,
we can show our Lower Bound

Theorem 7 In any quantum oblivious transfer protocol, at least one of the
players can cheat with probability 0.58.

Proof: We use ABC = AOT and BBC ≤ f(BOT ) (where f(x) = x(2x −
1)2) from Proposition 18. From Chapter 5, we have that for any quantum bit
commitment scheme, there exists a parameter t ∈ [0, 1] such that

ABC ≥ (1− (1− 1√
2

)t)2 ; BBC ≥
1
2

+
t

2

We immediately have that there exists a parameter t ∈ [0, 1] such that

AOT ≥ (1− (1− 1√
2

)t)2 ; BOT ≥ g(
1
2

+
t

2
) = t2(

1
2

+
t

2
)

We get the lower bound by equalizing AOT and BOT which gives us

(1− (1− 1√
2

)t)2 = t2(
1
2

+
t

2
)

t ≈ 0.8046
max{AOT , BOT } ≥ 0.5841

6.3.2 Proof of the Learning-In-Sequence Lemma

A few claims
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Claim 1 Let |X〉 be a pure state, Q a projection, and |Y 〉 a pure state such
that Q|Y 〉 = |Y 〉. Then we have

‖Q|X〉‖22 ≥ |〈X|Y 〉|2.

Proof: Using Cauchy-Schwarz we have

|〈X|Y 〉|2 = |〈X|Q|Y 〉|2 ≤ ‖ Q|X〉 ‖22‖ |Y 〉 ‖
2
2 = ‖ Q|X〉 ‖22.

Claim 2 Suppose θ, θ′ ∈ [0, π/4]. If |〈ψ|φ〉| ≥ cos(θ) and |〈φ|ξ〉| ≥ cos(θ′) then

|〈ψ|ξ〉| ≥ cos(θ + θ′).

Proof: De�ne the angle between two pure states |ψ〉 and |φ〉 as A(ψ, φ) :=
arccos |〈ψ|φ〉|. This is a metric (see [NC00] page 413). Thus we have

arccos |〈ψ|ξ〉| = A(ψ, ξ) ≤ A(ψ, φ)+A(φ, ξ) = arccos |〈ψ|φ〉|+arccos |〈φ|ξ〉| ≤ θ+θ′.

Taking the cosine of both sides yields the result.

Claim 3 Let θ, ρ ∈ [0, π/4]. Then

cos(θ + ρ) ≥ cos2(θ) + cos2(ρ)− 1.

Proof: Wlog suppose that θ ≥ ρ. Consider the function

f(θ) = cos(θ + ρ)− cos2(θ) + sin2(ρ)

for �xed ρ. Taking its derivative we get

f ′(θ) = − sin(θ + ρ) + sin(2θ)

which is nonnegative for θ ∈ [ρ, π/4]. Since f(ρ) = 0, we conclude that f(θ) ≥ 0
for θ ∈ [ρ, π/4] which gives the desired result.

The Learning-in-Sequence Lemma follows from the following simple geomet-
ric result.

Lemma 6 Let |ψ〉 be a pure state and let {C, I − C} and {D, I −D} be two
projective measurements such that

cos2(θ) := ‖ C|ψ〉 ‖22 ≥ half and cos2(θ′) := ‖ D|ψ〉 ‖22 ≥ half.

Then we have
‖ DC|ψ〉 ‖22 ≥ cos2(θ) cos2(θ + θ′).

Proof: De�ne the following states

|X〉 :=
C|ψ〉

‖ C|ψ〉 ‖2
, |X ′〉 :=

(I − C)|ψ〉
‖ (I − C)|ψ〉 ‖2

, |Y 〉 :=
D|ψ〉

‖ D|ψ〉 ‖2
, |Y ′〉 :=

(I −D)|ψ〉
‖ (I −D)|ψ〉 ‖2

.

Then we can write |ψ〉 = cos(θ)|X〉 + eiα sin(θ)|X ′〉 and |ψ〉 = cos(θ′)|Y 〉 +
eiβ sin(θ′)|Y ′〉 with α, β ∈ R. Then we have

‖ DC|ψ〉 ‖22 = cos2(θ)‖ D|X〉 ‖22
≥ cos2(θ)|〈Y |X〉|2 using Claim 1

≥ cos2(θ) cos2(θ + θ′) using Claim 2.
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We now prove Lemma 5.

Proof: Let |Ω〉AB be the joint pure state shared by Alice and Bob, where A
is the space controlled by Alice and B the space controlled by Bob.

Let M = {Mx0,x1}x0,x1∈{0,1} be Alice's projective measurement on A to de-
termine her outputs x0, x1. Let P = {P0, P1} be Bob's projective measurement
that allows him to guess x0 with probability p = cos2(θ) and Q = {Q0, Q1}
be Bob's projective measurement that allows him to guess x1 with probabil-
ity q = cos2(θ′). These measurements are on B only. Recall that a = p+q

2 =
cos2(θ)+cos2(θ′)

2 . We consider the following projections on AB:

C =
∑
x0,x1

Mx0,x1 ⊗ Px0 and D =
∑
x0,x1

Mx0,x1 ⊗Qx1 .

C (resp. D) is the projection on the subspace where Bob guesses correctly
the �rst bit (resp. the second bit) after applying P (resp. Q).

A strategy for Bob to learn both bits is simple: apply the two measurements
P and Q one after the other, where the �rst one is chosen uniformly at random.

The projection on the subspace where Bob guesses (x0, x1) when applying
P then Q is

E =
∑
x0,x1

Mx0,x1 ⊗Qx1Px0 = DC.

Similarly, the projection on the subspace where Bob guesses (x0, x1) when ap-
plying Q then P is

F =
∑
x0,x1

Mx0,x1 ⊗ Px0Qx1 = CD.

With this strategy Bob can guess both bits with probability

1
2
(
||E|Ω〉||22 + ||F |Ω〉||22

)
=

1
2
(
||DC|Ω〉||22 + ||CD|Ω〉||22

)
≥ 1

2
(
cos2(θ) + cos2(θ′)

)
cos2(θ + θ′) using Lemma 6

≥ 1
2
(
cos2(θ) + cos2(θ′)

) (
cos2(θ) + cos2(θ′)− 1

)2
using Claim 3

= a(2a− 1)2.

Note that we can use Lemma 6 since Bob's optimal measurement to guess x0

and x1 succeeds for each bit with probability at least 1/2.

6.4 A Two-Message Protocol With Bias 1/4

We present in this section a random-OT protocol with bias 1/4. This also
implies, as we have shown, an OT protocol with inputs with the same bias.
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Random Oblivious Transfer Protocol

1. Bob chooses b ∈R {0, 1} and creates the state |φb〉 = 1√
2
|bb〉+ 1√

2
|22〉.

He sends half of this state to Alice.
2. Alice chooses x0, x1 ∈R {0, 1} and applies the unitary |a〉 → (−1)xa |a〉,

where x2 := 0.
3. Alice returns the qutrit to Bob who now has the state |ψb〉 := (−1)xb

√
2
|bb〉+ 1√

2
|22〉.

4. Bob performs on the state |ψb〉 the measurement {Π0 = |φb〉〈φb|,Π1 := |φ′b〉〈φ′b|,
I −Π0 −Π1}, where |φ′b〉 := 1√

2
|bb〉 − 1√

2
|22〉.

If the outcome is Π0 then xb = 0, if it is Π1 then xb = 1, otherwise he aborts.

It is clear that Bob can learn x0 or x1 perfectly. Moreover, note that if he
sends half of the state 1√

2
|00〉+ 1√

2
|11〉 then he can also learn x0 ⊕ x1 perfectly

(although in this case he does not learn either of x0 or x1). We now show that
it is impossible for him to perfectly learn both x0 and x1 and also that his bit
is not completely revealed to a cheating Alice.

Theorem 8 In the protocol described above, we have AOT = BOT = 3
4 .

Proof: We analyze the cheating probabilities of each party.

Cheating Alice
De�ne Bob's space as B and let σb := TrB(|φb〉〈φb|) denote the two reduced

states Alice may receive in the �rst message. Then, the optimal strategy for
Alice to learn b is to perform the optimal measurement to distinguish between
σ0 and σ1. In this case, she succeeds with probability

1
2

+
1
4
‖ σ0 − σ1 ‖tr =

3
4
,

(see for example [KN04]). Alice's optimal measurement is, in fact, a measure-
ment in the computational basis. If she gets outcome |0〉 or |1〉 then she knows
b with certainty. If she gets outcome |2〉 then she guesses. Notice also, that
even after this measurement she can return the measured qutrit to Bob and the
outcome of Bob's measurement will always be either Π0 or Π1. Hence, Bob will
never abort.

Cheating Bob
Bob wants to learn both bits (x0, x1). We now describe a general strategy

for Bob:

• Bob creates |ψ〉 =
∑
i αi|i〉A|ei〉B and sends the A part to Alice. The |ei〉's

are not necessarily orthogonal but
∑
i |αi|2 = 1.

• Alice applies Ux0,x1 on her part and sends it back to Bob. He now has the
state |ψx0,x1〉 =

∑
i αi(−1)xi |i〉|ei〉 recalling that x2 := 0.

At the end of the protocol, Bob applies a two-outcome measurement on |ψx0,x1〉
to get his guess for (x0, x1).
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From this strategy, we create another strategy with the same cheating prob-
ability where Bob sends a pure state. We de�ne this strategy as follows:

• Bob creates |ψ′〉 =
∑
i αi|i〉A and sends the whole state to Alice.

• Alice applies Ux0,x1 on her part and sends it back to Bob. He now has the
state |ψ′x0,x1

〉 =
∑
i αi(−1)xi |i〉 recalling that x2 := 0.

• Bob applies the unitary U : |i〉|0〉 → |i〉|ei〉 to |ψ′x0,x1
〉|0〉 and obtains

|ψx0,x1〉.

To determine (x0, x1), Bob applies the same measurement as in the original
strategy.

Clearly both strategies have the same success probability. When Bob uses
the second strategy, Alice and Bob are unentangled after the �rst message and
Alice sends back a qutrit to Bob. We use the following Claim originally due to
Nayak.

Proposition 19 ([DW09] following [Nay99]) Suppose we have a classical
random variable X, uniformly distributed over [n] = {1, . . . , n}. Let x → |φx〉
be some encoding of [n], where |φx〉 is a pure state in a d-dimensional space.
Let P1, . . . , Pn be the measurement operators applied for decoding; these sum to
the d-dimensional identity operator. Then the probability of correctly decoding
in case X = x is

px = ||Px|φx〉||2 ≤ Tr(Px).

The expected success probability is

1
n

n∑
x=1

px ≤
1
n

n∑
x=1

Tr(Px) =
1
n
Tr

(
n∑
x=1

Px

)
=

1
n
Tr(I) =

d

n
.

Using this Claim, we directly have

Pr[Bob correctly guesses (x0, x1)] ≤ 3/4.

Note that there is a strategy for Bob to achieve 3/4. Bob wants to learn
both bits (x0, x1). Suppose he creates the state

|ψ〉 :=
1√
3
|0〉+

1√
3
|1〉+

1√
3
|2〉

and sends it to Alice. The state he receives is

|ψx0,x1〉 :=
1√
3

(−1)x0 |0〉+
1√
3

(−1)x1 |1〉+
1√
3
|2〉.

Then, Bob performs a projective measurement in the 4-dimensional basis {|Ψx0,x1〉 :
x0, x1 ∈ {0, 1}} where

|Ψx0,x1〉 :=
1
2

(−1)x0 |0〉+
1
2

(−1)x1 |1〉+
1
2
|2〉+

1
2

(−1)x0⊕x1 |3〉.

The probability that Bob guesses the two bits x0, x1 correctly is∑
x0,x1

1
4

Pr[Bob guesses (x0, x1)] =
∑
x0,x1

1
4
|〈Ψx0,x1 |ψx0,x1〉|2 =

3
4
.

Note that in our protocol Alice never aborts.
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One possibility to improve this bound would be to use the techniques used
in the previous Chapter. By using quantum weak coin �ipping, one could try
to control the �rst state sent by Bob. Unfortunately, this approach does not
work for this protocol since both cheating players want to decrease the quantity
〈2|ρ|2〉 if Bob's state sent is ρ. To ensure that this quantity remains the same
with a cheating player, we would need quantum perfect strong coin �ipping
which is impossible.

6.5 Conclusion

In this chapter, we presented a way to reduce quantum oblivious transfer to
quantum bit commitment and showed a relationship between the cheating prob-
abilities of the two protocols. We use this relationship and our lower bound on
quantum bit commitment to derive a lower bound for quantum oblivious trans-
fer of 0.58. We also constructed a quantum oblivious transfer protocol with
cheating probability 3/4. However, there is still a gap between the lower and
the upper bound. The main open question here is to have tight bounds for
quantum oblivious transfer.
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Chapter 7

Device independent quantum
coin �ipping and quantum bit
commitment

In this Chapter, we extend our study of quantum bit commitment and quantum
coin �ipping in the device independent model. We show the following

Theorem 9 There exists a device-independent quantum bit commitment pro-
tocol with cheating probability 0.854 and a quantum coin �ipping protocol with
cheating probability 0.836.

7.1 The device independent model

A quantum protocol is said to be device-independent if the reliability of its im-
plementation can be guaranteed without making any assumptions regarding the
internal workings of the underlying apparatus. For example, the measurement
device could be �awed, or the quantum states one sends are di�erent than the
expected ones. No matter what imperfections exist, we want to guarantee the
security of the protocol. This is of interest since lately, there has been some
work on how to exploit such imperfections in order to break existing quantum
cryptosystems [XQL10, LWW+10].

In the device independent model, we get the following kind of security:

• If the apparatus used is working according to the speci�cations, the pro-
tocol will succeed

• If the apparatus is �awed, or even fabricated by an adversary, the protocol
will detect it and the protocol will abort. Note that there is no a priori
way to check whether some given apparatus is �awed or not (the checking
device could also be �awed).

So far, device independent protocols have been proposed for quantum key
distribution [AGM06, ABG+07, MY03, BHK05], random number generation
[Col09, PAM+10], state estimation [BLM+09], and the self-testing of quantum
computers [MMMO06].
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It is not a priori clear, whether the scope of the device independent approach
can be extended to cover cryptographic problems with distrustful parties. In
particular, this setting presents us with a novel challenge: Whereas in device
independent quantum key-distribution Alice and Bob will cooperate to estimate
the amount of nonlocality present, for protocols in the distrustful cryptography
model, honest parties can rely only on themselves.

In this chapter we show that protocols in this model are indeed amenable to
a device independent formulation. We show how to use quantum non-locality
and more precisely the GHZ paradox to build a device independent bit com-
mitment protocol where Alice's cheating probability is P ∗A ≤ 0.854 and Bob's
cheating probability is P ∗B ≤ 3/4. We then use this protocol to construct a
device independent coin �ipping protocol with cheating probability 0.836.

Device independent formulation

In our device-independent formulation, we assume that each honest party has
one or several devices which are viewed as `black boxes'. Each box allows for a
classical input si ∈ {0, 1}, and produces a classical output ri ∈ {0, 1} (the index
i designates the box).

We suppose that the boxes are shielded i .e. they cannot communicate with
each other. Notice that this can be done experimentally without knowing what
is inside the box by appropriately con�ning it.

The probabilities of the outputs given the inputs for an honest party are
hence expressed for n boxes as

P (r1, . . . , rn|s1, . . . , sn) = Tr
(
ρ(
⊗
i

Πri|si
)
)

where ρ is some joint quantum state and Πri|si
is a POVM element correspond-

ing to inputting si in box i and obtaining the outcome ri. Apart from this
constraint we impose no restrictions on the boxes' behavior. In particular, we
allow a dishonest party to choose the state ρ (which she can entangle with her
system) and the POVM elements Πri|si

for the other party's boxes.
The above assumption amounts to the most general modeling of boxes that

1. satisfy the laws of quantum theory

2. are such that the physical process yielding the output ri in box i depends
solely on the input si, i.e. the boxes cannot communicate with one another.
It is also implicit in our analysis that no unwanted information can enter
or exit an honest party's laboratory.

In a fully distrustful setting, where the devices too cannot be trusted, these
conditions can be satis�ed by shielding the boxes. Notice also that we do not
rely on the fact that the boxes are far away. This observation is important
because relativistic causality is by itself su�cient for perfect bit commitment
and coin �ipping [Ken99a, Ken99b].
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7.2 Device independent quantum bit commitment

7.2.1 The GHZ paradox

Our protocol is based on the Greenberger-Horne-Zeilinger (GHZ) paradox [GHZ89,
Mer90].

The GHZ paradox

• setting: We consider three boxes A, B, and C with binary inputs, sA,
sB and sC , and outputs rA, rB and rC , respectively. The boxes do not
communicate with each other.

• goal: If the inputs satisfy sA ⊕ sB ⊕ sC = 1, we want rA ⊕ rB ⊕ rC =
sAsBsC ⊕ 1.

This relation can be guaranteed if the three boxes implement measurements
on a three-qubit GHZ state 1√

2
(|000〉+ |111〉), where si = 0 (resp. si = 1) cor-

responds to measuring in the {|+〉, |−〉} basis (resp. in the {|0〉, |1〉} basis). In
contrast, for classical boxes this relation can only be satis�ed with 3

4 probability
at most.

We will also use the CHSH game

The CHSH game

• setting: We consider two boxes A,B that do not communicate with
binary inputs sA, sB and binary outputs rA, rB respectively.

• goal: rA ⊕ rB = sA · sB

In the boxes are quantum and get random inputs sA, sB , you cannot win this
game with probability greater than cos2(π/8). This probability is tight.

1
4

∑
sA,sB∈{0,1}

Pr[rA ⊕ rB = sA · sB |(sA, sB)] ≤ cos2(π/8)

On the other hand, if the boxes are classical, one can win this game with prob-
ability at most 3/4.

7.2.2 The protocol

The idea of the protocol is the following. Alice and Bob want to use the GHZ
paradox to perform bit commitment. Since only a quantum state can satisfy the
GHZ paradox perfectly, they want to use such a state to perform quantum bit
commitment as in the non-device independent way. The protocol runs as follows.
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Device independent quantum coin �ipping

Alice has a box, A, and Bob has a pair of boxes, B and C. The three boxes
are supposed to satisfy the GHZ paradox.

• Commit phase: Alice inputs into her box the value of the bit she wishes
to commit to. Denote the input and output of her box by sA and rA.
sA is the bit she commits to. She then selects a classical bit a uniformly
at random and sends c = rA ⊕ (a · sA) as her commitment.

• Reveal phase: Alice sends to Bob a, sA, rA. Bob �rst checks if c =
rA ⊕ a · sA. He then randomly chooses a pair of inputs sB and sC ,
satisfying sA ⊕ sB ⊕ sC = 1, inputs them into his two boxes B,C. He
gets outcomes rB , rC and checks that the GHZ paradox is satis�ed i .e.
rA ⊕ rB ⊕ rC = sAsBsC ⊕ 1.

If any of these tests fails then he aborts.

Completeness If the parties are honest (and the boxes satisfy the GHZ para-
dox), then the protocol never aborts.

Alice's cheating probability We consider the worst-case scenario, wherein
(dishonest) Alice prepares (honest) Bob's boxes in any state she wants, possibly
entangled with her own ancillary systems. Since the commit phase consists of
Alice sending a classical bit c as a token of her commitment, without receiving
any information from Bob, without loss of generality we may assume that Alice
decides on the value of c beforehand, and accordingly prepares Bob's boxes to
maximize her cheating probability.

Let us then suppose that Alice sends c = 0. A similar analysis can be done
if c = 1. If Alice wants to reveal reveals sA = 0, she has to reveal rA = 0 (or
else the test that c = rA⊕ (a · sA) will fail). If Alice wants to reveal sA = 1, she
can chose between rA = 0 and rA = 1 (by choosing a accordingly).

Let r1
A the value Alice reveals for rA in case she wants to reveal sA = 1.

Since the choice of rA is fully determined when Alice wants to reveal sA = 0,
Alice can also decide the value of r1

A beforehand.

• If Alice wants to reveal sA = 0. She sends rA = 0. Bob's second check is
only on the boxes B,C. He picks random sB , sC with sB ⊕ sC = 1 and
check that rB ⊕ rC = sB · sC ⊕ 1. In this case,
Pr[Alice successfully reveals sA = 0] =

1
2

(Pr[rB ⊕ rC = 1|(sB , sC) = (0, 1)] + Pr[rB ⊕ rC = 1|(sB , sC) = (1, 0)])

• If Alice wants to reveal sA = 1, she sends rA = r1
A. Bob will then choose

random sB , sC satisfying sB ⊕ sC = 1 and check that rA ⊕ rB ⊕ rC =
sB · sC ⊕ 1. We have Pr[Alice successfully reveals sA = 1] =

1
2
(
Pr[rB ⊕ rC = 1⊕ r1

A|(sB , sC) = (0, 0)] + Pr[rB ⊕ rC = r1
A|(sB , sC) = (1, 1)]

)
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Let us put everything together. If r1
A = 0, we have

P ∗A =
1
4

∑
sB ,sC∈{0,1}

Pr[rB ⊕ rC = sB · sC ⊕ 1|(sB , sC)]

This can be easily reduced to the CHSH inequality as follows. Suppose that
the output of the box B is r′B = 1⊕ rB . We have

P ∗A =
1
4

∑
sB ,sC∈{0,1}

Pr[r′B ⊕ rC = sB · sC |(sB , sC)]

which is exactly the CHSH inequality. Note that we can use the CHSH inequality
since Bob's two boxes B and C do not communicate. If r1

A = 1, we use a similar
argument to reduce Alice's cheating probability to a CHSH inequality. We
conclude that P ∗A ≤ cos2(π/8).

Bob's cheating probability

Bob's most general strategy consists of sending Alice a box entangled with some
ancillary system in his possession. Depending on the value of c he receives from
Alice (which is uniformly random since Alice is honest), Bob carries out one of
a pair of two-outcome measurements on his system. We denote Bob's binary
input and output by mB and gB , where mB = 0 (mB = 1) corresponds to
the measurement he carries out when Alice sends c = 0 (c = 1), and gB = 0
(gB = 1) corresponds to his guessing that Alice has committed to 0 (1).

We interpret this as follows: honest Alice has a box in which she inputs
sA and outputs rA. Bob also has some big apparatus where he inputs mB =
rA ⊕ a · sA. His goal is to output gB = sA. We de�ne Pr[x, y|u, v] as:

Pr[x, y|u, v] = Pr[rA = x, gB = y|sA = u,mB = v]

Since a is a random bit, we have

P ∗B =
1
2

∑
a,x,y∈{0,1}

Pr[sA = y,mB = x⊕ (a · y)] · Pr[x, y|y, (x⊕ (a · y))]

We always have mB = rA ⊕ a · sA and sA is a random bit hence

P ∗B =
1
4

∑
a,x,y

Pr[x, y|y, (x+ a · y)]

=
1
4

(∑
x,y

Pr[x, y|y, x] +
∑
x,y

Pr[x, y|y, (x⊕ y)]

)

=
1
4

(2 Pr[0, 0|0, 0] + Pr[0, 1|1, 0] + 2 Pr[1, 0|0, 1] + Pr[1, 1|1, 1] + Pr[0, 1|1, 1] + Pr[1, 1|1, 0])

=
1
4

(X + Y + Z)

whereX = Pr[0, 0|0, 0]+Pr[0, 1|1, 0]+Pr[1, 1|1, 0] ; Y = Pr[1, 0|0, 1]+Pr[1, 1|1, 1]+
Pr[0, 1|1, 1] ; Z = Pr[0, 0|0, 0] + Pr[1, 0|0, 1].

For this proof, we will not use the general device independent condition.
We will actually just use the fact that the boxes do not communicate (the

74



no-signaling condition). For cheating Bob, the security is guaranteed without
assuming correctness of our quantum computing model.

The non-signaling condition states the following (see for example [BLM+05])

Pr[rA = x|sA = u] =
∑

y∈{0,1}

Pr[rA = x, gB = y|sA = u,mB = v] for any v

Pr[gB = y|mB = v] =
∑

x∈{0,1}

Pr[rA = x, gB = y|sA = u,mB = v] for any u

From these non-signalling condition, we have:

X = Pr[0, 0|0, 0] + Pr[0, 1|1, 0] + Pr[1, 1|1, 0]
≤ Pr[0, 0|0, 0] + Pr[1, 0|0, 0] + Pr[0, 1|1, 0] + Pr[1, 1|1, 0]
≤ Pr[gB = 0|mB = 0] + Pr[gB = 1|mB = 0] ≤ 1

Y = Pr[1, 0|0, 1] + Pr[1, 1|1, 1] + Pr[0, 1|1, 1]
≤ Pr[1, 0|0, 1] + Pr[0, 0|0, 1] + Pr[1, 1|1, 1] + Pr[0, 1|1, 1]
≤ Pr[gB = 0|mB = 1] + Pr[gB = 1|mB = 1] ≤ 1

Z = Pr[0, 0|0, 0] + Pr[1, 0|0, 1]
≤ Pr[0, 0|0, 0] + Pr[0, 1|0, 0] + Pr[1, 0|0, 1] + Pr[1, 1|0, 1]
≤ Pr[rA = 0|sA = 0] + Pr[rA = 1|sA = 0] ≤ 1

This allows us to conclude that

P ∗B =
1
4

(X + Y + Z) ≤ 3/4

7.3 Device independent quantum coin �ipping

We extend our bit commitment protocol to a coin �ipping protocol. We can
easily create a bit commitment coin �ipping protocol (see Section 4.1.2) with
cheating probability P ∗A = cos2(Π/8) and P ∗B = 3/4. We will now try to equalize
these cheating probabilties.

There is no elegant way to equalize these probabilities. We will consider
the simplest way where we use several instances of the device independent coin
�ipping sequentially. Consider our coin �ipping protocol S. Consider now the
following Protocol
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Two fold repetition of S

• Alice and Bob �ip a coin using S.

• If the outcome is 0, they run S again and the outcome becomes the
outcome of the protocol. If the outcome is 1, they also run S but now,
Alice and Bob exchange behaviors (Alice becomes Bob and Bob becomes
Alice)

It is easy to see that Alice's optimal strategy is to try to enforce 0 in the
�rst coin �ipping to remain Alice in the second one. She wins with probability
cos4

(
π
8

)
+
(
1− cos2

(
π
8

))
· 3

4 ' 0.838. On the other hand, Bob wants outcome 1
for the �rst coin �ip and he can win with probability 3

4 cos2
(
π
8

)
+ 1

4 ·
3
4 ' 0.827

Notice that this analysis work because we consider sequential repetition of
these protocols. Alice and Bob perform the �rst coin �ip, they get a classical
outcome c and then perform the second coin �ip. The security of our coin
�ipping protocol guarantees that during this second coin �ip Alice (resp. Bob)
has cheating probability at most P ∗A (resp. P ∗B) independently of the outcome
of the �rst coin.

By repeating this procedure, we manage to equalize the probabilities P ∗A and
P ∗B and we obtain a device independent coin �ipping protocol with cheating
probailities equal to 0.836.

7.4 Conclusion

By introducing explicit device independent bit commitment and coin �ipping
protocols, we have shown that two-party cryptographic primitives can be con-
structed in the device independent setting. The connection between quantum
nonlocality and cryptography, �rst noted by Ekert twenty years ago [Eke91],
is thus seen to apply also in the very rich �eld of cryptography with mutually
distrustful parties (and devices), a�ording us with a new perspective on the
connection between cryptography and the foundations of quantum mechanics.

The security guaranteed by our device independent protocols is reasonably
close to (though of course greater than) that of the best known device dependent
protocols. For the bit commitment protocol we have P ∗A ' 0.854 and P ∗B = 3

4 ,
as compared to P ∗A, P

∗
B . 0.739 for the optimal device dependent protocol.

The coin �ipping protocol has a cheating probability of 0.836, as compared to
1√
2
≈ 0.707 in the device dependent case.
It is an open question whether there exists a quantum bit commitment pro-

tocol that is secure against dishonest parties limited only by the no-signaling
principle, as is the case in quantum key distribution [BHK05, Mas09].
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Chapter 8

Loss-tolerant quantum coin
�ipping and quantum bit
commitment

8.1 The loss tolerant model

We now study a di�erent model where we are interested in a speci�c �aw in
the measurement devices: losses. Sometimes, a measurement device will not
give any outcome when a measurement is performed. However, when the device
gives an outcome, we know that it is the correct outcome. This condition is
weaker than the device independent model where we deal with any kind of �aws
in the apparatus.

We also add another requirement, that the honest players do not use quan-
tum memory. This requirement did not appear in the previous model. This
model is hence incomparable with the device independent model.

In 2008, Berlin et al. presented a loss-tolerant quantum coin �ipping with
a cheating probability of 0.9. In this protocol, honest players do not always
succeed when they perform a measurement (the measurement sometimes abort)
but when they do succeed, they always output the correct value. This is in
contrast with noise tolerance where an honest player could perform a measure
with a wrong outcome without knowing it. Recently, Aharon et al . [AMS10]
created a loss-tolerant quantum coin �ipping protocol with a cheating probabil-
ity of 0.3975. In another �avor, Barrett and Massar [BM04] showed how to do
bit-string generation (a weaker notion of coin �ipping) in the presence of noise.

In this Chapter, we continue the study of loss-tolerant quantum coin �ipping
protocol. We construct such a protocol with a cheating probability of 0.359. To
achieve this bias, we extend Berlin et al. 's protocol by adding an encryption
step that hides some information to Bob as long as he does not con�rm that
he successfully measured. Notice that we improve the bias of the protocol by
adding only a classical layer on top of Berlin et al. 's protocol.

77



8.2 The loss-tolerant protocol

8.2.1 The loss-tolerant model

In the loss-tolerant model, we have the following constraints:

1. The measurement devices of honest players have losses. This means when
performing a measurement, an honest player can also have an outcome
⊥ which corresponds to no outcome. In this case, the state is destroyed.
However, if the measurement does not yield the ⊥ then it behaves as a
perfect measurement. Especially, there are no errors in the measurement.

2. Honest players should be able to perform the protocol without the use of
quantum memory.

8.2.2 Quantum states used

Consider the two orthonormal basis B0(λ) = {|φ0
0(λ)〉, |φ0

1(λ)〉} and B1(λ) =
{|φ1

0(λ)〉, |φ1
1(λ)〉} for any λ ∈ R with:

|φ0
0(λ)〉 =

√
λ|0〉+

√
1− λ|1〉

|φ0
1(λ)〉 =

√
1− λ|0〉 −

√
λ|1〉

and

|φ1
0(λ)〉 =

√
λ|0〉 −

√
1− λ|1〉

|φ1
1(λ)〉 =

√
1− λ|0〉+

√
λ|1〉

|φbc〉 corresponds to the encoding of bit c in basis b.
Finally, we de�ne

ρc =
1
2

∑
i

|φic〉〈φic| = λ|c〉〈c|+ (1− λ)|1− c〉〈1− c|

8.2.3 Berlin etal's protocol

Berlin etal's protocol (parameter λ omitted)

1. Alice chooses at random b ∈R {0, 1} and c ∈R {0, 1} and sends |φbc〉 to
Bob.

2. Bob chooses b′ ∈R {0, 1} and measures the qubit he receives in basis
Bb′ . If his measurement fails, he announces it to Alice and they repeat
the protocol from step 1. If the measurement succeeds continue.

3. Bob picks c′ ∈R {0, 1} and sends c′ to Alice

4. Alice reveals b, c

5. If b = b′, Bob checks that what he measured corresponds to |φbc〉. If it
does not match, he aborts.

6. The outcome of the protocol is x = c⊕ c′.
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This protocol is loss tolerant in the sense that a cheating Bob cannot gain
advantage in the fact that he can restart the protocol when his measurement
fails. This protocol has the following security parameters:

• P ∗A = 1
2 + 1+F(ρ0,ρ1)

4 = 3
4 +
√
λ(1−λ)

2

• P ∗B = 1+∆(ρ0,ρ1)
2 = λ

By taking λ = 0.9, we have P ∗A = P ∗B = 0.9
This protocol is a bit-commitment based protocol and is very similar to the

protocols described in Section 4.1.2. The only di�erence is that Bob measures
directly the state he receives in order to satisfy requirement 2. (no quantum
memory) of the loss-tolerant model. Berlin et al. showed that Bob's lossy detec-
tors do not decrease security of the protocol. If we did not require the absence
of quantum memory, we would have P ∗A = 1+F(ρ0,ρ1)

2

8.2.4 Our protocol

Our protocol

1. Alice chooses at random b1, b2 ∈R {0, 1} ; c ∈R {0, 1} and r1, r2 ∈R
{0, 1} sends two quantum registers |φbi

c⊕ri
〉 for i ∈ {1, 2} to Bob.

2. Bob chooses b′1, b
′
2 ∈R {0, 1} and measures each register i he receives in

basis Bb′i . If one of his measurements fails, he announces it to Alice and
they repeat the protocol from step 1. If the measurement succeeds, Bob
announces this fact to Alice and they continue.

3. Alice sends r1, r2 to Bob.

4. Bob picks c′ ∈R {0, 1} and sends c′ to Alice

5. Alice reveals b1, b2, c

6. For each register i for which bi = b′i, Bob checks that what he measured
corresponds to |φbi

c⊕ri
〉. If one of the measurements does not match, he

aborts.

7. The outcome of the protocol is x = c⊕ c′.

This protocol is closely related to a two-fold parallel repetition of Berlin
etal's protocol. Such a repetition would directly improve the bias if we did not
require loss tolerance. We add an additional step in this protocol. Alice hides
some information about the state she sends using 2 private bits r1, r2 that she
reveals as soon as Bob con�rms that he measured successfully. As we will show,
this makes the protocol loss-tolerant again.
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8.3 Security proofs

If Alice and Bob are honest then Bob never aborts and x = c ⊕ c′ is random.
We now analyse separately cheating Alice and cheating Bob.

8.3.1 Cheating Alice

We consider a cheating Alice and an honest Bob.

General framework for checking Bob

The way Bob checks is closely related to the following procedure

• Alice sends a state σ in space Y

• At a later stage, Alice sends a bit i to Bob in space X

• Bob checks that the �rst state Alice sends in Y is the state |ψi〉 for some
state |ψi〉.

We extend the notion of �delty for ensembles of quantum states.

De�nition 14 Let E and F any two ensembles of quantum states and let ρ any
quantum state. We de�ne:

F (ρ,E) = max
σ∈E

F (ρ, σ)

F (E,F ) = max
σ∈E,σ′∈F

F (σ, σ′)

We want to show the following:

Proposition 20

Pr[ Alice passes Bob's test ] ≤ F 2(σ, L)

where L = {
∑
j pi|φj〉〈φj | :

∑
j pj = 1}

Proof: Let σ the �rst state in Y sent by Alice and let σ̃ the state in XY after
Alice reveals i. Since Bob immediately measures the register X in the compu-
tational basis, there is an state σ̃ which will give the best cheating probability
of the form σ̃ =

∑
i pi|i〉〈i| ⊗ |ψi〉〈ψi| and

Pr[ Alice passes Bob's test ] =
∑
i

||ψi〉〈φi||2

Similarly, if we �x σ̃ = |Ω〉〈Ω| where |Ω〉 =
∑
i

√
pi|i, φi〉, we get that Pr[ Alice passes Bob's test ] =∑

i ||ψi〉〈φi||2 This means that we can suppose w.log that after the last step,
the state in XY is pure.

Let σ̃ = |Ω〉〈Ω| where |Ω〉 =
∑
i

√
pi|i, φi〉. Let K subspace of quantum pure

states spanned by {|i〉 ⊗ |φi〉}. Let PK =
∑
i |i〉〈i| ⊗ |φi〉〈φi| the projection on
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subspace K. Bob's check is equivalent to projecting on the subspace K.

Pr[ Alice passes Bob's test ] = tr(PK σ̃PK)
= tr(PK |Ω〉〈Ω|PK) = max

|u〉∈L
|〈Ω|u〉|2

≤ max
|u〉∈K

F 2(TrX (|Ω〉〈Ω|),TrX |u〉〈u|)

≤ max
|u〉∈K

F 2(σ,TrX |u〉〈u|)

≤ F 2(σ, L) since ∀|u〉 ∈ K, TrX |u〉〈u| ∈ L

Proof of security for cheating Alice

We consider a cheating Alice and an honest Bob. For the sake of the analysis,
we can suppose that honest Bob does not have losses when he measures (this
does not help Alice). Our protocol says that Bob measures each register i in
a random basis Bb′i and performs a check if this basis corresponds to the basis
Bbi in which Alice encoded c. Similarly, we could say that Bob performs this
measurement at the very end (still picking b′i at random). In this case, we are
in the framework of the previous subsection except that with some probability,
Bob chooses the wrong basis and does not check anything.

Suppose Alice wants to reveal c in our protocol. Let ξ the state in XY she
sends at state 1. Let ξX = TrYξ and ξY = TrX ξ. Let Lc = {

∑
i∈{0,1} pi|φic〉〈φic|}

We have the following cases:

• Bob �ipped b′1 6= b1 and b′2 6= b2. Bob does not check anything Alice
successfully reveals c with probability 1.

• Bob �ipped b′1 = b1 and b′2 6= b2. Bob checks the �rst register. From
Proposition 20, Alice successfully reveals c with probability no greater
than F 2(ξX , Lc).

• Bob �ipped b′1 6= b1 and b′2 = b2. Bob checks the second register. Similarly,
Alice successfully reveals c with probability no greater than F 2(ξY , Lc).

• Bob �ipped b′1 = b1 and b′2 = b2. Bob checks both registers. In the
same way, Alice successfully reveals c with probability no greater than
F 2(ξ, L⊗2

c ).

This gives us

Pr[ Alice successfully reveals c] =
1
4
(
1 + F 2(ξX , Lc) + F 2(ξY , Lc) + F 2(ξ, Lc⊗2)

)
We will now need the following Lemma

Lemma 7
F (L0, L1) ≤ 2

√
λ(1− λ)
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Proof: Let ρ0 ∈ L0 and ρ1 ∈ L1 such that F (ρ0, ρ1) = F (L0, L1). By
de�nition of L0, we have 〈0|ρ0|0〉 = λ and 〈0|ρ1|0〉 = 1 − λ. This gives us
∆(ρ0, ρ1) ≥ 2λ− 1. Using the Proposition 9 (Section 3.6), we have

F (ρ0, ρ1) ≤
√

1−∆2(ρ0, ρ1)

≤
√

1− 4λ2 + 4λ− 1
≤ 2

√
λ(1− λ)

We can now prove our main statement

Proposition 21

P ∗A ≤
1
2

+
1
2

(
1 + f(λ)

2

)2

where f(λ) = 2
√
λ(1− λ)

Proof: We suppose w.log that Alice wants �nal outcome x = 0. This means
that she has to reveal c = c′. Let ξ the state sent by Alice and let ξX = TrYξ
and ξX = TrYξ. Since c′ is random, we have

P ∗A =
1
2

∑
c∈{0,1}

Pr[ Alice successfully reveals c]

≤
∑

c∈{0,1}

1
4
(
1 + F 2(ξX , Dc) + F 2(ξY , Dc) + F 2(ξ,DDc)

)
≤ 1

8
(2 + 1 + F (D0, D1) + 1 + F (D0, D1) + 1 + F (DD0, DD1)) (Proposition 8)

≤ 1
2

+
1
2

(
1
4

+
1
2
F (D0, D1) +

1
4
F 2(D0, D1)

)
≤ 1

2
+

1
2

(
1 + f(λ)

2

)2

(f(λ) ≥ F (D0, D1) from Lemma 7)

8.3.2 Cheating Bob

The main part here is to show the loss-tolerance of the protocol. This means
that a cheating Bob cannot take advantage of the fact that he's allowed to reset
the protocol in case one of his measurements failed.

Loss tolerance For a �xed c and r1, r2, let ξr1,r2c sent by Alice. We have

ξr1,r2c =
1
4

∑
b1,b2∈{0,1}

|φb1c⊕r1φ
b2
c⊕r2〉〈φ

b1
c⊕r1φ

b2
c⊕r2 |

= ρc⊕r1 ⊗ ρc⊕r2
=

∑
u,v∈{0,1}

pu,vc⊕r1,c⊕r2 |u, v〉〈u, v|
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where: if x = y then pyx = λ ; if x 6= y then pyx = 1 − λ and pu,vc⊕r1,c⊕r2 =
puc⊕r1 · p

v
c⊕r2 .

When receiving ξ, Bob performs a quantum operation

A(|u, v〉) = αu,v|ψu,v〉|0〉O + βu,v|ωu,v〉|1〉O

where O is the space that Bob measures to determine whether he should an-
nounce that he succeeded the measurement or not. The outcome 0 in space O
corresponds to the outcome where the protocol continues. In a way, the cheat-
ing Bob postselects on the outcome being 0 since if he obtains 1, he decides to
start the protocol again. Once Bob successfully measured and after Alice sends
r1, r2, Bob has the following state depending on the operation A he performed
averaging on r1, r2.

ξAc =
1
S

∑
r1,r2∈{0,1}
u,v∈{0,1}

pu,vc⊕r1,c⊕r2Γu,v|r1, r2, ψu,v〉〈r1, r2, ψu,v|

where

• The Γu,v's are arbitrary real numbers. These numbers depend on the
αu,v's. We assume that Bob can choose any value for these numbers.

• The |ψu,v〉's are not necessarily orthogonal.

• S is a normalization factor.

Proposition 22 ∀A, ∆(ξA0 , ξ
A
1 ) ≤ ∆(ξ0, ξ1) where ξc = ρ⊗2

c .

Proof: Let's �x A. From the de�nition of ξAc and from Proposition 4, we have

∆(ξA0 , ξ
A
1 ) ≤ 1

2S

∑
r1,r2∈{0,1}
u,v∈{0,1}

|pu,vr1,r2Γu,v − pu,v1⊕r1,1⊕r2Γu,v|

≤ 1
2S

∑
u,v

Γu,v
∑
r1,r2

|pu,vr1,r2 − p
u,v
1⊕r1,1⊕r2 |

To calculate this sum, if (r1, r2) = (u, v) then pu,vr1,r2 = λ2 and pu,v1⊕r1,1⊕r2 =
(1 − λ)2. If (r1, r2) = (u, v) then pu,vr1,r2 = (1 − λ)2 and pu,v1⊕r1,1⊕r2 = λ2. In the
other cases, pu,vr1,r2 = pu,v1⊕r1,1⊕r2 . This gives us

∆(ξA0 , ξ
A
1 ) ≤ 1

2S

∑
u,v

2Γu,v
(
λ2 − (1− λ)2

)
≤ 2λ− 1

Since, ξc = λ2|cc〉〈cc|+λ(1−λ)(|01〉〈01|+ |10〉〈10|) + (1−λ)2|c c〉〈c c|, we have
∆(ξ0, ξ1) = (λ2 − (1− λ)2) = 2λ− 1, which allows us to conclude.

We can now prove our main Claim

Proposition 23 P ∗B ≤ λ
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Proof: Suppose w.log that Bob wants outcome x = 0. He wants to pick
c′ = c. Before picking c′, he has the state ξAc . We have

P ∗B = Pr[ Bob guesses c]

=
1
2

+
∆(ξA0 , ξ

A
1 )

2
≤ λ

Theorem 10 There is a loss-tolerant quantum coin �ipping protocol with bias
ε ≈ 0.359.

Proof: We just need to �nd λ that minimizes max(P ∗A, P
∗
B). The maximum

is achieved for λ ≈ 0.859 which gives P ∗A = P ∗B ≈ 0.859 which gives a bias
ε ≈ 0.359.

8.4 Further discussion

Optimality of the bias The bias that we show here is actually not optimal
for the protocol. The reason is the following: in the analysis of cheating Alice
(Section 8.3.1), we consider the cheating probability for Alice depending on
whether Bob checks the �rst bit, the second bit or both bits. For each of these
cases, we upper bound Alice's cheating probability. But it appears that the
cheating probabilities for each of these cases is di�erent and that Alice cannot
cheat optimally for all these cases at the same time. This slightly decreases
Alice's cheating probability. We can numerically calculate in this case that for
λ ≈ 0.858, we have P ∗A = P ∗B ≈ 0.858. This gives a bias of ε ≈ 0.858 which is a
slight improvement over what is shown.

Multiple repetition Our protocol consists of a two-fold repetition of Berlin
et al . 's protocol. What happens if we consider a k-fold repetition? Even if it
is di�cult to calculate the exact cheating probabilities of Alice and Bob in the
case of multiple repetitions, these probabilities can be easily upper and lower
bounded. We use the following bounds. Let P ∗A(k, λ) the cheating probability
for Alice (resp. Bob) with a k-fold repetition of Berlin et al . 's protocol with
parameter λ. Let P (k) = minλ(max{P ∗A(k, λ), P ∗B(k, λ). P (k) corresponds to
the best cheating probability when consider a k-fold repetition of the protocol.
We need to lower bound P ∗A(k, λ). We have

P ∗A(k, λ) ≤ f(k, λ) =
1
2

+
1
2

(
1
2

+
√
λ(1− λ)

)k
This is a generalization of the upper bound we use to show that ε ≈ 0.359.

Intuitively, this corresponds to the case where Alice knows if Bob measured in
the correct basis or not. When we consider Alice's cheating strategies where she
uses separate (non entangled) strategies for each of the k repetitions, we have
the following lower bound.

P ∗A(k, λ) ≥ g(k, λ) = (
3
4

+

√
λ(1− λ)

2
)k
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On the other hand, it is possible to calculate exactly Bob's cheating probability
since

P ∗B(k, λ) = 1/2 + ∆(ρ⊗k0 , ρ⊗k1 )/2

Using these bounds, we get the following diagram for cheating probabilities of
Alice and Bob which shows that the optimal value is achieved using a 2-fold
repetition of the protocol. The x-axis corresponds to the number of repetition
k. The y-axis corresponds to the minimal cheating probability P (k) when using
lower/upper bounds for P ∗A.
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Chapter 9

Relationship between
quantum zero-knowledge
proofs and quantum bit
commitment

9.1 Introduction

In this Chapter, we go beyond the scope of information theoretic security and
study quantum computational bit commitment schemes. We study complexity
assumptions that imply such commitment schemes. We will show that the
existence of quantum computationally secure bit commitments is closely related
to quantum zero-knowledge classes and quantum interactive proofs.

9.1.1 Zero-knowledge proofs

One of the main goals of modern cryptography is to give a formal and practical
way of de�ning security for given protocols. Some theoretically secure objects
such as one-way functions have been de�ned. Assuming the hardness of certain
problems, we can create these secure objects and therefore prove that a given
protocol is secure. One can also base security on information-theoretic based
arguments. These arguments are much stronger because they do not rely on
any computational assumption but are usually much harder to achieve.

It's in this setting that Zero-Knowledge proofs were invented. Consider a
problem P that is believed hard. Suppose that one person (the Prover) can prove
to another person (the Veri�er) that the answer to the problem is Y ES without
giving any other information. In particular, the Veri�er will not be able to
convince someone else that the answer to this problem is Y ES. In order to create
this kind of proofs, the Prover and the Veri�er must interact with each other.
The condition "Without giving any other information" has been formalized in a
simple and elegant way by [GMR89] and this security condition has been de�ned
in the computational setting as well as the information-theoretical setting. The
true power of Zero-Knowledge started to be understood in [GMW91] where it
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was shown that all of NP has computational Zero-Knowledge proofs.
To get a better understanding of Zero-Knowledge proofs, let's look at an

example. Suppose that the prover creates 2 isomorphic graphs G1 and G2 =
σ0(G1). He wants to convince the veri�er that these 2 graphs are isomorphic
but without giving him any information. In particular, the veri�er will have no
information about σ0. Note that the graph isomorphism problem is believed to
be a hard and a polynomial time veri�er is not able to determine by himself if
the 2 graphs are isomorphic or not. Consider the following protocol :

Zero-Knowledge protocol for the Graph Isomorphism problem

P : Choose a random permutation σ and send G′ = σ(G1) to the veri�er.

V : Choose at random b ∈ {1, 2} and send it to the veri�er

P : Send σ′ to the veri�er such that σ′(G′) = Gb.

Without going into deep analysis of this protocol, note the following :

• If the graphs are isomorphic then the prover will always be able to �nd a
correct σ′ and the veri�er will always be convinced.

• If the graphs are non-isomorphic then whatever the prover sends to the
veri�er as a �rst graph G′, he will not be able to �nd a correct σ′ for both
b = 1 and b = 2. His probability of convincing the veri�er is therefore
≤ 1/2. Note that some techniques can reduce this probability to 1/2k.

• Suppose the graphs are isomorphic. Let's look what information the ver-
i�er has at the end of the protocol. The veri�er has a random graph G′

isomorphic to Gb and the isomorphism that goes from G′ to Gb. He can
obtain this information by himself by just by picking a random permuta-
tion and apply it to Gb. Therefore, he gains no information. Note that
we are interested in keeping the Prover's secret only if the assertion is
true. Note also that the veri�er cannot gain any information by sending
a biased coin.

Classical zero-knowledge proofs have been widely studied [GMR89, BGG+90,
Vad99] and especially their relationship with cryptographic primitives such as
one-way functions. Ostrovsky and Wigderson [OW93] proved, at a high level,
that if Computational Zero Knowledge (ZK) is not trivial then there exists a
family of functions that are not `easy to invert'. The result was extended by
Vadhan [Vad06] to show that if ZK does not equal Statistical Zero Knowledge
(SZK), then there exists an auxiliary-input one-way function, i.e. one can con-
struct a one-way function given an auxiliary input (or else advice). Looking at
auxiliary-input cryptographic primitives is convenient, since we are looking at
worst-case complexity classes. Last, Ostrovsky and Wigderson also showed that
if ZK contains a `hard-on-average' problem, then `regular' one-way functions
exist.
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9.1.2 Relationship between quantum commitments and

quantum zero-knowledge proofs

We study complexity assumptions under which quantum commitment schemes
exist. We only look at worst-case complexity classes, and hence similar to
the classical case, we obtain auxiliary-input commitments, i.e. commitments
that can be constructed with classical and/or quantum advice. Needless to say,
since our commitments are quantum, we de�ne the computationally binding and
hiding properties against quantum poly-time adversaries (that are also allowed
to receive an arbitrary quantum auxiliary input).

We extend these results to the quantum case but we are intersted in quantum
bit commitment instead of quantum one-way functions. Our �rst result, involves
the class of Quantum Statistical Zero Knowledge, QSZK, and states the following

Theorem 11 If QSZK 6⊆ QMA there exists a non-interactive auxiliary-input
quantum statistically binding-computationally hiding commitment scheme.

Before explaining this result, let us try to see what an equivalent classical
result would mean. At a high level, the classical statement would be of the
following form: if SZK is not in MA, then auxiliary-input commitments exist.
However, under some derandomization assumptions, we have that NP = MA =
AM ([MV06, KvM02]) and since SZK ⊆ AM, we conclude that SZK ⊆ MA.
Hence, the equivalent classical assumption is quite strong and, if one believes in
derandomization, possibly false.

However, in the quantum setting, it would be surprising if QSZK is actually
contained in QMA. We know that QSZK ⊆ QIP[2] [Wat09], where QIP[2] is the
class of languages that have quantum interactive proofs with two messages (note
that one only needs three messages to get the whole power of quantum interac-
tive proofs). So far, any attempt to reduce QIP[2] to QMA or �nd any plausible
assumptions that would imply it, have not been fruitful. The main reason is
that the veri�er's message cannot be reduced to a public coin message nor to a
pure quantum state. His message is entangled with his quantum workspace and
this seems inherent for the class QIP[2]. It would be striking if one can get rid
of this entanglement and reduce the class to a single message from the prover.

Last, if we weaken the security condition to hold against quantum adversaries
with only classical auxiliary input, then the above assumption also becomes
weaker, i.e. QSZK 6⊆ QCMA, where QCMA is the class where the quantum
veri�er receives a single classical message from the prover.

It is not known whether the condition QSZK ⊆ QMA holds. Recently, it
Aaronson showed that HVQSZKA ⊆ QMAA for some oracle A. This means that
the inequality holds in some restricted model, and gives some evidence that the
inequality holds in general

We then turn our attention to even weaker complexity assumptions about
quantum interactive proofs. More precisely, we look at the class QIP (which is
believed to be much larger than QSZK) and its relation to QMA and show the
following

Theorem 12 If QIP 6⊆ QMA there exist non-interactive auxiliary-input quan-
tum commitment schemes (both statistically hiding-computationally binding and
statistically binding-computationally hiding) with quantum advice.
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Note, that QIP = PSPACE [JJUW10] and QMA ⊆ PP [MW05], so our as-
sumption is extremely weak, in fact weaker than PSPACE 6⊆ PP. Of course,
with such a weak assumption we get a weaker form of commitment: the advice
is now quantum (and classical). This means that in order for the prover and
the veri�er to e�ciently perform the commitment for a security parameter n,
they need to receive a classical auxiliary input as well as quantum advice of size
polynomial in n. This quantum advice is a quantum state on poly(n) qubits
that is not e�ciently constructible (otherwise, we could have reduced the quan-
tum advice to classical advice by describing the e�cient circuit that produces
it). Moreover, the quantum advice we consider does not create entanglement
between the players.

The key point behind this result is the structure of QIP. More precisely,
we use the fact that there exists a QIP-complete problem where the protocol
has only three rounds and the veri�er's message is a single coin. The equiv-
alent classical result would say that if three-message protocols with a single
coin as a second message are more powerful than MA then commitments exist.
Again, classically, if we believe that AM = MA, then this assumption is false.
Taking this assumption to the quantum realm, it becomes `almost' true, unless
PSPACE = PP.

Let us also note that all our commitments are non-interactive, a feature that
could be useful for applications. Last, from the QIP 6⊆ QMA assumption we
construct both statistically hiding-computationally binding commitments and
statistically binding-computationally hiding ones, whose constructions are con-
ceptually di�erent. In order to prove the security of the second construction we
prove a parallel repetition result for protocols based on the swap test that may
be of independent interest. From the QSZK 6⊆ QMA assumption we show only
the construction of statistically binding-computationally hiding commitments,
but one can also similarly construct statistically hiding-computationally binding
commitments.

9.1.3 Quantum interactive complexity classes

The class QMA, �rst studied in [Wat00], is informally the class of all problems
that can be veri�ed by a quantum polynomial-time veri�er with access to a
quantum proof.

De�nition 15 A language L is in QMA if there is poly-time quantum veri�er
V such that

1. if x ∈ L, then there exists a state ρ such that Pr[V (x, ρ) accepts] ≥ a,

2. if x 6∈ L, then for any state ρ, Pr[V (x, ρ) accepts] ≤ b,

where a, b are any e�ciently computable functions of |x| such that such that
|a− b| is at least an inverse polynomial [KSV02, MW05].

If in the above de�nition the witness state ρ is restricted to be a classical
witness while keeping a quantum poly-time veri�er, then the class is called
QCMA.

The class QIP, �rst studied in [Wat03], consists of those problems that can
be interactively veri�ed in quantum polynomial time. A recent result has shown
that QIP = PSPACE [JJUW10].
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De�nition 16 A language L ∈ QIP if there is a polynomial time quantum
algorithm V exchanges quantum messages with a computationally unbounded
prover P such that, for any input x

1. if x ∈ L, then there exists a prover P such that, (V, P ) accepts with prob-
ability at least a.

2. if x 6∈ L, then for any prover P , (V, P ) accepts with probability at most b.

As in the case of QMA, we need only require that |a− b| is at least an inverse
polynomial in the input size [KW00].

One key property of QIP is that any quantum interactive proof system can
be simulated by one using only three messages [KW00]. This is not expected to
hold in the classical case, as it would imply that PSPACE = AM. This property
allows us to de�ne simple complete problems involving quantum circuit for the
class.

In what follows we consider quantum unitary circuits C, that output a state
in the space O⊗G. These spaces can be di�erent for each circuit. O corresponds
to the output space and G to the garbage space. For any circuit C, we de�ne
|φC〉 = C|0〉 in the space O⊗G to be the output of the circuit before the garbage
space is traced out, and ρC = TrG(|φC〉〈φC |) to be the mixed state output by the
circuit after the garbage space is traced out. We will also consider mixed-state
quantum circuits C,that take as input a mixed quantum state σ and output
a mixed quantum state, denoted by C(σ). Note that circuits of this form can
(approximately) represent any quantum channel. The size of a circuit C is
equal to the number of gates in the circuit plus the number of qubits used by
the circuit. This is denoted |C |. We will also use the notation |X | to refer to
the size of a Hilbert space X , which is the number of qubits needed to represent
a vector in the space, i.e. |X | = dlog2 dimXe. We now describe some complete
problems for the class.

De�nition 17 (QCD Problem) Let µ a negligible function. We de�ne the
promise problem Quantum Circuit Distinguishability QCD = {QCDY ,QCDN}
as follows

• Input: two mixed-state quantum circuits C0, C1 of size n.

• (C0, C1) ∈ QCDY ⇔ ‖ C0 − C1 ‖� ≥ 2− µ(n)

• (C0, C1) ∈ QCDN ⇔ ‖ C0 − C1 ‖� ≤ µ(n)

Quantum Circuit Distinguishability is QIP-complete [RW05].

9.1.4 A new complete problem for QIP

In this Section, we construct a new problem which is complete for QIP.

De�nition 18 (Π Problem) Let µ a negligible function. We de�ne the fol-
lowing promise problem Π = {ΠY ,ΠN}:

• Input: two mixed-state quantum circuits C0, C1 of size n that take as input
quantum states in D(X ⊗ Y) and output a single bit .
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• (C0, C1) ∈ ΠY ⇔ ∃ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ0) = trX (ρ1) such that

1
2
(
Pr[C0(ρ0) = 1] + Pr[C1(ρ1) = 1]

)
= 1

• (C0, C1) ∈ ΠN ⇔ ∀ρ0, ρ1 ∈ D(X ⊗ Y) with trX (ρ0) = trX (ρ1), we have

1
2
(
Pr[C0(ρ0) = 1] + Pr[C1(ρ1) = 1]

)
≤ 1

2
+ µ(n)

Proposition 24 The promise problem Π problem is also complete for QIP

Proof: We prove this proposition via a reduction from the Close Images
problem, which is complete for QIP [KW00]. This problem can be de�ned as

Problem 13 (Close Images) The input to the problem is two mixed-state
quantum circuit Q0 and Q1 that implement transformations from D(I) to D(O),
where n is the number of input qubits to the circuits and |(Q0, Q1)| ∈ poly(n).
The promise problem is to distinguish the two cases:

Yes: Q0(σ0) = Q1(σ1) for some σ0, σ1 ∈ D(I),

No: F(Q0(σ0), Q1(σ1)) ≤ 2−n for all σ0, σ1 ∈ D(I).

Before giving the reduction, we �rst observe that the problem Π is in QIP.
This is done using the following protocol:

Protocol 14 On input (C0, C1) an instance of Π.

1. P sends the portion of ρ0 that lies in Y.

2. V chooses i ∈ {0, 1} at random and sends it to P .

3. P sends a state in X so that V has the state ρi. V computes Ci(ρi) and
accepts if and only if the output is 1.

Note that in Step 3 the honest prover can always send a state in X so that the
veri�er holds ρi. This follows from the unitary equivalence of all puri�cations
of the state trX ρ0 = trX ρ1.

Consider the probability that the veri�er accepts in Protocol 14. At Step 3
the Veri�er holds one of two states ρ0 and ρ1 with the property that trX ρ0 =
trX ρ1, because the Prover is forced to commit to the portion of the state in
Y before learning i. Notice also that the Prover can send one of two arbitrary
states satisfying the reduced-state property. Since the Veri�er runs each of the
two circuits with uniform probability, he can be made to accept with probability
exactly

1
2

max
ρ0,ρ1∈D(X ,Y)

trX ρ
0=trX ρ

1

(
Pr[C0(ρ0) = 1] + Pr[C1(ρ1) = 1]

)
.

This implies that if (C0, C1) ∈ ΠY the V accepts with probability at least 1 −
µ(n), and if (C0, C1) ∈ ΠN , then V accepts with probability at most 1/2+µ(n),
which puts the problem Π into QIP.

To see that the problem is hard for QIP, let Q0, Q1 be the circuits from an
instance of the Close Images problem. By the standard technique of moving the
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measurements to the end of the circuit, we may assume that these circuits are
given as unitary circuits U0, U1 : I ⊗ A → O ⊗ G such that

Qi(σ) = trG Ui(σ ⊗ |0〉〈0|)U†i ,

where A corresponds to the space of any ancillary qubits introduced in the |0〉
state. From these circuits we construct the circuits C ′0, C

′
1 : D(O ⊗ G)→ D(A)

given by
C ′i(ρ) = trI U

†
i ρUi,

which is, the circuit C ′i simply runs the unitary Ui in reverse and traces out
the space I. To obtain the �nal circuits Ci we simply measure the output of
C ′i in the computational basis and output 1 if the result is |0〉 and 0 otherwise.
Informally, the circuit Ci simply runs Qi backwards and accepts (outputs 1) if
and only if the result is a valid initial con�guration for the circuit Qi, i.e. the
space of the `ancillary' qubits in A is |0〉. The pair (C0, C1) is the constructed
instance of Π.

If (Q0, Q1) is a yes-instance of Close Images, then (Q0, Q1) ∈ ΠY . To see
this, take the states σ0, σ1 ∈ D(I) such that Q0(σ0) = Q1(σ1). Let ρi =
Ui(σi⊗|0〉〈0|)U†i be the state obtained by running the circuit Qi and not tracing
out the space G. This implies that the reduced states of ρ0 and ρ1 on the space
O are equal. Furthermore, notice that

C ′i(ρ
i) = trI U

†
i ρ
iUi = trI U

†
i (Ui(σi ⊗ |0〉〈0|)U†i )Ui = |0〉〈0|,

and so on these states the circuits C0, C1 output 1 with certainty, which implies
that (C0, C1) ∈ ΠY .

On the other hand, if (Q0, Q1) is a no-instance of Close Images, we show
that the constructed instance belongs to ΠN . This argument is more technical.
First we compute the acceptance probability of Ci on a state ρ, which is given
by

Pr[Ci(ρ) = 1] = tr(|0〉〈0| trI(U†i ρUi)) = F(|0〉〈0|, trI U†i ρUi)
2.

We then apply Uhlmann's theorem to conclude that, for some �xed puri�cation
|φ〉 ∈ A ⊗ I ⊗ F of U†i ρUi, this quantity is equal to

max
|ψ〉∈I⊗F

F(|0〉〈0| ⊗ |ψ〉〈ψ|, |φ〉〈φ|)2 ≤ max
σ∈D(I)

F(|0〉〈0| ⊗ σ, U†i ρUi)
2

= max
σ∈D(I)

F(Ui|0〉〈0| ⊗ σU†i , ρ)2

≤ max
σ∈D(I)

F(Ci(σ), trG ρ)2,

where we have made repeated use of the monotonicity of the �delity with respect
to the partial trace. Using this result, we have, for any two states ρ0, ρ1 such
that trG ρ0 = ξ = trG ρ1

Pr[C0(ρ0) = 1] + Pr[C1(ρ1) = 1] ≤ max
σ0,σ1

F(C0(σ0), ξ)2 + F(C1(σ1), ξ)2

≤ 1 + max
σ0,σ1

F(C0(σ0), C1(σ1))

≤ 1 + 2−n,

where the penultimate inequality is by Lemma 8. This implies that (Q0, Q1) ∈
ΠN , and since this reduction is easily implemented in polynomial time, this
implies that the problem Π is complete for QIP.
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9.1.5 Quantum zero-knowledge proofs

The complexity class QSZK, introduced in [Wat02b], is the class of all problems
that can be interactively veri�ed by a quantum veri�er who learns nothing
beyond the truth of the assertion being veri�ed. In the case that the veri�er is
honest, i.e. does not deviate from the protocol in an attempt to gain information,
this class can be de�ned in the following way.

De�nition 19 A language L ∈ QSZKHV if

1. There is a quantum interactive proof system for L.

2. The state of the veri�er in this proof system after the sending of each mes-
sage can be approximated, within negligible trace distance, by a polynomial-
time preparable quantum state.

If we insist that Item 2 holds even when the Veri�er departs from the protocol,
the result is the class QSZK. Watrous has shown that these two notions give the
same complexity class, i.e. that QSZKHV = QSZK [Wat09].

This de�nition of QSZK is somewhat informal. Fortunately this class has
complete problems. This will allow us to work with this class without consider-
ing a completely formal de�nition.

De�nition 20 (QSD Problem) Let µ a negligible function. We de�ne the
promise problem QSD = {QSDY ,QSDN} as follows

• Input: two unitary quantum circuits C0, C1 of size n and m output qubits.

• (C0, C1) ∈ QSDY ⇔ ‖ ρC0 − ρC1 ‖tr ≥ 2− µ(n)

• (C0, C1) ∈ QSDN ⇔ ‖ ρC0 − ρC1 ‖tr ≤ µ(n)

The promise problem QSD is QSZK-complete [Wat02b].

9.1.6 Quantum computational distinguishability

The following de�nitions may be found in [Wat09].

De�nition 21 Two mixed states ρ0 and ρ1 onm qubits are (s, k, ε)-distinguishable
if there exists a mixed state σ on k qubits and a quantum circuit D of size s
that performs a binary outcome measurement on (m+ k) qubits, such that

|Pr[D(ρ0 ⊗ σ) = 1]− Pr[D(ρ1 ⊗ σ) = 1]| ≥ ε.

If ρ0 and ρ1 are not (s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input state ensemble be a collection of
mixed states {ρx}x∈I on r(|x|) qubits for some polynomial r. These states have
the further property that given x they can be generated in time t(|x|), for some
polynomial t.

De�nition 22 Two auxiliary-input state ensembles {ρ0
x} and {ρ1

x} on I are
quantum computationally indistinguishable if for all polynomials p, s, k and for
all but �nitely many x ∈ I, the states ρ0

x and ρ1
x are (s(|x|), k(|x|), 1/p(|x|))-

indistinguishable.
The ensembles {ρ0

x} and {ρ1
x} on I are quantum computationally distin-

guishable if there exist polynomials p, s, k such that for all x ∈ I, the states ρ0
x

and ρ1
x are (s(|x|), k(|x|), 1/p(|x|))-distinguishable.
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If two ensembles are computationally distinguishable, then for all x there exists
an e�cient procedure in |x| that distinguishes ρ0

x and ρ1
x with probability at

least 1/2 + 1/p(|x|). Note that this is not a uniform procedure: the circuit that
distinguishes the two states may depend on x.

We also de�ne the statistical case

De�nition 23 Two auxiliary-input state ensembles {ρ0
x} and {ρ1

x} on I are
quantum statistically indistinguishable if for any polynomial p and for all but
�nitely many x ∈ I,

||ρ0
x − ρ1

x||tr ≤
1

p(|x|)

De�nition 24 Two admissible superoperators Φ0 and Φ1 from t qubits to m
qubits are (s, k, ε)-distinguishable if there exists a mixed state σ on t+ k qubits
and a quantum circuit D of size s that performs a binary outcome measurement
on (m+ k) qubits, such that

|Pr[D((Φ0 ⊗ 1k)(σ)) = 1]− Pr[D((Φ1 ⊗ 1k)(σ)) = 1]| ≥ ε,

where 1k denotes the identity superoperator on k qubits. If the superoperators Φ0

and Φ1 are not (s, k, ε)-distinguishable, then they are (s, k, ε)-indistinguishable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a collec-
tion of superoperators {Φx}x∈I from q(|x|) to r(|x|) qubits for some polynomials
q, r, where as in the case of state ensembles given x the superoperators can be
performed e�ciently in |x|.

De�nition 25 Two auxiliary-input superoperator ensembles {Φ0
x} and {Φ1

x} on
I are quantum computationally indistinguishable if for all polynomials p, s, k
and for all but �nitely many x ∈ I, Φ0

x and Φ1
x are (s(|x|), k(|x|), 1/p(|x|))-

indistinguishable.
Two auxiliary-input state ensembles {Φ0

x} and {Φ1
x} on I are quantum com-

putationally distinguishable if there exist polynomials p, s, k such that for all
x ∈ I the superoperators Φ0

x and Φ1
x are (s(|x|), k(|x|), 1/p(|x|))-distinguishable.

If two superoperator ensembles are computationally distinguishable then there
exists an e�cient procedure (in |x|) to distinguish them with probability at least
1/2 + 1/p(|x|) for some polynomial p. As in the case of state ensembles, this
procedure is not necessarily uniform.

If the property of being (s, k, ε)-indistinguishable holds for all s, then we call
an ensemble statistically-indistinguishable.

Let us note, that these de�nitions provide a strong quantum analogue of
the classical non-uniform notion of computational indistinguishability, since the
non-uniformity includes an arbitrary quantum state as advice to the quantum
distinguisher.

We now de�ne a new notion that we will use later on. Intuitively, we say
that two circuits that take as input mixed states on the space X ⊗Y and output
a single bit are witnessable if there exist two input states that are equal on the
space Y that are accepted respectively from the two circuits with high enough
probability. More formally,
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De�nition 26 Two superoperators Φ0 and Φ1 from L(X ⊗ Y) to a single bit
are (s, k, p)-witnessable if there exist two input states ρ0, ρ1 ∈ L(X ⊗ Y) such
that

1.
1
2
(
Pr[Φ0(ρ0) = 1] + Pr[Φ1(ρ1) = 1]

)
≥ 1/2 +

1
p(n)

2. there exists a state σ ∈ L(W) with |W| = k and an admissible superoper-
ator Ψ : L(W ⊗X )→ L(X ) of size s, such that

ρ1 = (Ψ⊗ IY)(σ ⊗ ρ0)

where IY denotes the identity superoperator on L(Y).

If the superoperators Φ0 and Φ1 are not (s, k, p)-witnessable, then they are
(s, k, p)-unwitnessable.

Let I ⊆ {0, 1}∗ and let an auxiliary-input superoperator ensemble be a col-
lection of superoperators {Φx}x∈I from q(|x|) to 1 bit for some polynomial q,
where given x the superoperators can be performed e�ciently in |x|.

De�nition 27 Two auxiliary-input superoperator ensembles {Φ0
x} and {Φ1

x}
on I are quantum computationally witnessable if there exist polynomials s, k, p
such that for all x ∈ I the superoperators Φ0

x and Φ1
x are (s(|x|), k(|x|), p(|x|))-

witnessable.
Two auxiliary-input superoperator ensembles {Φ0

x} and {Φ1
x} on I are quan-

tum computationally unwitnessable if for all polynomials s, k, p and for all but
�nitely many x ∈ I the superoperators Φ0

x and Φ1
x are (s(|x|), k(|x|), p(|x|))-

unwitnessable.

9.1.7 Quantum commitments

De�nition 28 A quantum commitment scheme (resp. with quantum advice) is
an interactive protocol Com = (S,R) with the following properties

• The sender S and the receiver R have common input a security parameter
1n (resp. both S and R have a copy of a quantum state |φ〉 of poly(n)
qubits). The receiver has private input the bit b ∈ {0, 1} to be committed.
Both S and R are quantum algorithms that run in time poly(n).

• In the commit phase, the sender S interacts with the receiver R in order
to commit to b.

• In the reveal phase, the sender S interacts with the receiver R in order
to reveal b. The receiver R decides to accept or reject depending on the
revealed value of b and his �nal state. We say that S reveals b, if R accepts
the revealed value. In the honest case, R always accepts.

A commitment scheme is non-interactive if both the commit and the reveal
phase consist of a single message from the sender to the receiver.

When the commit phase is non-interactive, we call ρbS the state sent by the
honest sender during the commit phase if his input bit is b.
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Since we will only consider non-interactive commitments, we de�ne auxiliary-
input quantum commitment schemes only for the non-interactive case.

De�nition 29 A non-interactive auxiliary-input quantum commitment scheme
(resp. with quantum advice) on I which is statistically/computationally hid-
ing and statistically/computationally binding is a collection of non-interactive
quantum commitment schemes (resp. with quantum advice) C = {Comx =
(Sx, Rx)}x∈I with the following properties

• there exists a quantum circuit Q of size polynomial in |x|, that given as
input x for any x ∈ I, can apply the same maps that Sx and Rx apply
during the commitment scheme in time polynomial in |x|.

• (statistically/computationally hiding) the two auxiliary-input state ensem-
bles {ρ0

Sx
}x∈I and {ρ1

Sx
}x∈I are quantum statistically/computationally in-

distinguishable.

• (statistically/computationally binding) for all but �nitely many x ∈ I, for
all polynomial p and for any unbounded/polynomial dishonest sender S∗x,
we have

PS∗x =
1
2

(Pr[S∗x reveals b = 0] + Pr[S∗x reveals b = 1]) ≤ 1
2

+
1

p(|x|)

When referring to a commitment scheme, we will use the (bs, hc) and (bc, hs)
to denote schemes that are statistically binding-computationally hiding and
computationally binding-statistically hiding, respectively.

In high level, the distinction between the two notions, with or without advice,
is the following. We can assume that the two players decide to perform a
commitment scheme and agree on a security parameter n. Then, in the �rst
case, a trusted party can give them the description of the circuits (C0, C1) so
that the players can perform the commitment scheme themselves. One can think
of the string (C0, C1) as a classical advice to the players. In the second case,
the trusted party gives them the description of the circuits, as well as one copy
of a quantum state each. This quantum state is of polynomial size, however it
is not e�ciently constructable, otherwise the trusted party could have given the
players the classical description of the circuit that constructs it. Hence, in the
second notion the players receive both classical and quantum advice.

9.2 Quantum commitments unlessQSZK ⊆ QMA
Theorem 15 If QSZK 6⊆ QMA, then there exists a non-interactive auxiliary-
input quantum (bs, hc)-commitment scheme on an in�nite set I.

Proof: First, we show the following

Lemma 8 If QSZK 6⊆ QMA then there exist two auxiliary-input state ensembles
that are quantum computationally indistinguishable on an in�nite set I.

Proof: Let us consider the complete problem QSD = {QSDY ,QSDN} for
QSZKHV. We may restrict attention to the honest veri�er case, since it is known
that QSZK = QSZKHV [Wat09]. Let n = |(C0, C1)| and de�ne |φCb

〉 = Cb(|0〉)
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in the space O ⊗ G to be the entire output state of the circuit on input |0〉 and
ρCb

(C0,C1) = TrG(|φCb
〉〈φCb

|) be the output of circuit Cb on m(n) qubits for a
polynomial m.

Recall that the set QSDY consists of pairs of circuits (C0, C1), such that the
trace norm satis�es ‖ ρC0

(C0,C1) − ρ
C1
(C0,C1) ‖tr ≥ 2−µ(n). We now consider the two

auxiliary-input state ensembles {ρC0
(C0,C1)} and {ρ

C1
(C0,C1)} for (C0, C1) ∈ QSDY .

Assume for contradiction that they are quantum computationally distinguish-
able on QSDY , i.e. for some polynomials p, s, k and for all (C0, C1) ∈ QSDY ,
the states ρC0

(C0,C1) and ρ
C1
(C0,C1) are (s(n), k(n), 1/p(n))-distinguishable. In other

words, for polynomials p, s, k and for all (C0, C1) ∈ QSDY there exists a mixed
state σ on k(n) qubits and a quantum circuit Q of size s(n) that performs a
binary outcome measurement on m(n) + k(n) qubits, such that

|Pr[Q(ρC0
(C0,C1) ⊗ σ) = 1]− Pr[Q(ρC1

(C0,C1) ⊗ σ) = 1]| ≥ 1
p(n)

.

We now claim that this implies that QSZK ⊆ QMA, which is a contradiction. For
any input (C0, C1) the prover can send the classical polynomial size description
of Q to the veri�er as well as the mixed state σ with polynomial number of
qubits. Then, for all (C0, C1) ∈ QSDY , the veri�er with the help of Q and σ
can distinguish between the two circuits with probability higher than 1

2 + 1
2p(n) .

On the other hand, for all (C0, C1) ∈ QSDN , no matter what Q and σ the prover
sends, since ‖ ρC0

(C0,C1) − ρ
C1
(C0,C1) ‖tr ≤ µ(n) the veri�er can only distinguish the

two circuits with probability at most 1
2 + µ(n)

2 . This implies that there is an
inverse polynomial gap between the acceptance probabilities in the two cases.
By applying standard error reduction tools for QMA [KSV02, MW05], we obtain
a QMA protocol to solve QSD.

This implies that if QSZK 6⊆ QCMA then there exists a non empty set
I ⊆ QSDY such that the two auxiliary-input state ensembles {ρC0

(C0,C1)} and
{ρC1

(C0,C1)} are quantum computationally indistinguishable on I. Notice that
the set I is in�nite. Indeed, if I is �nite, then by hard-wiring this �nite number
of instances into the QMA veri�er (who always accepts these instances), we have
again that QSZK ⊆ QMA.

We now show how to construct a commitment scheme from these ensembles

Lemma 9 The two auxiliary-input state ensembles {ρC0
(C0,C1)}(C0,C1)∈I and {ρC1

(C0,C1)}(C0,C1)∈I
that are quantum computationally indistinguishable on the in�nite set I imply
a non-interactive auxiliary-input quantum (bs, hc)-commitment scheme on I.

Proof:
For every (C0, C1) ∈ I we de�ne the following commitment scheme

• De�ne n = |(C0, C1)| to be the security parameter.

• Commit phase: To commit to bit b, the sender S runs the quantum circuit
Cb with input |0〉 to create |φCb

〉 = Cb(|0〉) and sends ρCb

(C0,C1) to the
receiver R, which is the portion of |φCb

〉 in the space O.

• Reveal phase: To reveal bit b, the sender S sends the remaining qubits
of the state |φCb

〉 to the receiver R, which lie in the space G (the honest
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sender sends |φ′〉 = Cb|0〉). The receiver applies the circuit C†b on his
entire state and then measures all his qubits in the computational basis.
He accepts if and only if the outcome is |0〉.

Let us analyze the above scheme. First, note that all operations of the sender
and the receiver in the above protocol can be computed in time polynomial in
n given the input (C0, C1). This includes the receiver's test during the reveal
phase.

Moreover, it is computationally hiding since the states {ρC0
(C0,C1)} and {ρ

C1
(C0,C1)}

are quantum computationally indistinguishable.
The fact that the protocol is statistically binding follows from the fact that

for the states {ρC0
(C0,C1)} and {ρ

C1
(C0,C1)} (for (C0, C1) ∈ I ⊆ QSDY ) we have

‖ ρC0
(C0,C1) − ρ

C1
(C0,C1) ‖tr ≥ 2− µ(n), for a negligible function µ. More precisely,

if ξ is the total quantum state sent by a dishonest sender S∗ in the commit and
reveal phase of the protocol, then the probability that ξ can be revealed as the
bit b is bounded by

Pr[S∗ reveals b from ξ] = tr(|0〉〈0|C†b ξCb) = F(Cb(|0〉), ξ)2 ≤ F(ρCb

(C0,C1), trG ξ)
2

using the monotonicity of the �delity with respect to the partial trace. This
calculation follows the proof of Watrous that QSZK is closed under complemen-
tation [Wat02b]. Using this fact, as well as the property of the �delity given in
Lemma 8, we have

PS∗ =
1
2

(Pr[S∗ reveals b = 0] + Pr[S∗ reveals b = 1])

≤ max
ξ

1
2

(
F(ρC0

(C0,C1), trG ξ)
2 + F(ρC1

(C0,C1), trG ξ)
2
)

=
1
2

(
1 + F(ρC0

(C0,C1), ρ
C1
(C0,C1))

)
≤ 1

2
+

√
µ(n)
2

,

where the �nal inequality follows from Lemma 9 and the fact that the trace
distance of the two states satis�es ‖ ρC0

(C0,C1) − ρ
C1
(C0,C1) ‖tr ≥ 2 − µ(n). This

implies that the protocol is statistically binding.

By combining the above two Lemmata, we conclude that if QSZK 6⊆ QMA,
then there exists a non-interactive auxiliary-input quantum (bs, hc)-commitment
scheme on an in�nite set I.

Note, that if we are willing to relax the indistinguishability condition, i.e.
enforce the indistinguishability of the states against a quantum algorithm that
has only classical auxiliary input (i.e. get rid of the state ξ), then the condition
becomes QSZK 6⊆ QCMA. Notice also that by using a result of Crépeau, Légaré,
and Salvail [CLS01] we can convert this commitment scheme into one that is
statistically hiding and computationally binding.
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9.3 Quantum (bs, hc)-commitments unless QIP ⊆
QMA

First, let us note that the condition QIP ⊆ QMA implies that PSPACE ⊆ PP
which is widely believed not to be true. Hence, the commitment we exhibit
are based on a very weak classical computational assumption. Of course, since
the result is so strong, the commitments themselves are weaker, in the sense
that apart from a classical advice, one needs a quantum advice as well in order
to construct them. Note of course, that our de�nitions of security are against
quantum adversaries that also receive an arbitrary quantum advice, hence our
honest players are not more powerful than the dishonest ones. Moreover, the
quantum advice does not create entanglement between the two players.

The proof is very similar to the previous one. The �rst protocol that we
obtain is based on the swap test on two nearly orthogonal states. For this reason
a cheating Sender can open either zero or one with probability 3/4 + neg(n).
Following the proof of this Theorem (in Proposition 25 we show how to repeat
the protocol in parallel to obtain negligible binding error.

Theorem 16 If QIP 6⊆ QMA, then there exists a non-interactive auxiliary-input
quantum (bs, hc)-commitment scheme with quantum advice on an in�nite set I.
This scheme has constant binding error.

Proof: We �rst show the following

Lemma 10 If QIP 6⊆ QMA, there exist two auxiliary-input superoperator en-
sembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I that are quantum computationally in-
distinguishable on an in�nite set I.

Proof: Suppose QIP 6⊆ QMA. Let us consider the complete problem QCD

for QIP with input the mixed-state circuits (Q0, Q1). Let n = |(Q0, Q1)|. Let I
denote the input space, O the output space and G the output garbage space of
the circuits Q0, Q1.

Consider the set QCDY , whose elements are pairs of circuits (Q0, Q1), such
that the diamond norm satis�es ‖ Q0 −Q1 ‖� ≥ 2−µ(n), and the two auxiliary-
input superoperator ensembles {Q0}(Q0,Q1)∈QCDY

and {Q1}(Q0,Q1)∈QCDY
. As-

sume for contradiction that they are quantum computationally distinguishable
onQCDY , i.e. for some polynomials p, s, k and all (Q0, Q1) ∈ QSDY , the super-
operators Q0 and Q1 are (s(n), k(n), 1/p(n))-distinguishable. In other words,
for polynomials p, s, k and for all (Q0, Q1) ∈ QSDY there exists a mixed state
σ on t(n) + k(n) qubits and a quantum circuit D of size s(n) that performs a
binary outcome measurement on (m(n) + k(n)) qubits, such that

|Pr[D((Q0 ⊗ 1k)(σ)) = 1]− Pr[D((Q1 ⊗ 1k)(σ)) = 1]| ≥ 1
p(n)

We now claim that this implies that QIP ⊆ QMA, which is a contradiction.
For any input (Q0, Q1) the QMA-prover can send to the veri�er the classical
polynomial size description of D as well as the mixed state σ with poly(n)
qubits. Then, for all (Q0, Q1) ∈ QCDY , the veri�er with the help of D and
σ can distinguish between the two circuits with probability higher than 1

2 +
1

2p(n) . On the other hand, for all (Q0, Q1) ∈ QCDN , no matter what D and
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σ the prover sends, since ‖ Q0 −Q1 ‖� ≤ µ(n) the veri�er can only distinguish

the two circuits with probability at most 1
2 + µ(n)

2 . Hence, there is at least
an inverse polynomial gap between the two probabilities, so we can use error
reduction [KSV02, MW05] to obtain a QMA protocol that solves QCD with
high probability.

We just showed that QIP 6⊆ QMA implies that there exists a non-empty set
I ⊆ QCDY and two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈QCDY

and {Q1}(Q0,Q1)∈QCDY
which are quantum computationally indistinguishable

on I. Once again, the set I must be in�nite, as if I is �nite then by hard-wiring
this �nite number of instances into the QMA veri�er (who always accepts these
instances), we have again that QIP ⊆ QMA.

We now need to show how to construct a commitment scheme on I based
on these indistinguishable superoperator ensembles. The protocol we obtain
has only constant binding error: the average of the probability of successfully
revealing 0 and the probability of successfully revealing 1 is negligibly larger
than 3/4. Following this Lemma we prove a parallel repetition result for this
protocol that reduces this error to a negligible function.

Lemma 11 The two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and
{Q1}(Q0,Q1)∈I , which are quantum computationally indistinguishable on the in-
�nite set I ⊆ QCDY , imply a non-interactive auxiliary-input quantum (bs, hc)-
commitment scheme with quantum advice on I. This protocol has constant bind-
ing error.

Proof: For every (Q0, Q1) ∈ I we de�ne a quantum commitment scheme
with quantum advice. For convenience we let U b be the unitary operation
that simulates the admissible map Qb, in other words we have that Qb(ρ) =
trG U b(ρ ⊗ |0〉〈0|)(U b)†. Note that any Qb can be e�ciently converted to a
unitary circuit U b. Let also |φ∗〉 be the pure state from Lemma 2, such that

‖ Q0 −Q1 ‖� = ‖ (IF ⊗ (Q0 −Q1))(|φ∗〉〈φ∗|) ‖tr.

• De�ne n = |(Q0, Q1)| to be the security parameter. S and R also receive
as advice a copy of the state |φ∗〉 on poly(n) qubits.

• Commit phase: To commit to bit b, the sender S runs the quantum circuit
1F ⊗ U b with input |φ∗〉|0〉. The entire output of the circuit is a state in
the space F⊗O⊗G. The sender then sends the qubits in the space O⊗F
to the receiver R.

• Reveal phase: To reveal bit b, the sender S sends the remaining qubits of
the state (1F ⊗U b)(|φ∗〉|0〉) in the space G to the receiver R. The receiver
�rst applies the operation 1F ⊗ (U b)† to the entire state he received from
the sender and then performs a swap test between this state and his copy
of |φ∗〉|0〉.

Let us analyze the above scheme. First, note that all operations of the sender
and the receiver in the above protocol can be computed in time polynomial in
n given the input (Q0, Q1). This includes the receiver's test during the reveal
phase, since given a description of a unitary circuit it can be inverted by simply
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taking the inverse of each gate and running the circuit in reverse and the swap
test which is also e�cient.

The protocol is computationally hiding since the superoperators Q0 and Q1

are quantum computationally indistinguishable.
The fact that the protocol is statistically binding (with constant error) fol-

lows from the fact that we have ‖ Q0 −Q1 ‖� ≥ 2−µ(n) for a negligible function
µ. More precisely, let σb be the state sent by the sender with trG σ0 = trG σ1 =
σOF (the honest sender sends the pure state (1F ⊗ U b)(|φ∗〉|0〉)). Then the
receiver accepts if and only if the output of (1F ⊗ (U b)†)σb(1F ⊗ Ub) and his
copy of |φ∗〉|0〉 pass the swap test. This probability is equal to

Pr[S∗ reveals b from σb] =
1
2

+
1
2

tr
[
(|φ∗〉〈φ∗| ⊗ |0〉〈0|)(1F ⊗ (U b)†)σb(1F ⊗ Ub)

]
=

1
2

+
1
2

F((1F ⊗ Ub)(|φ∗〉〈φ∗| ⊗ |0〉〈0|)(1F ⊗ (U b)†), σb)2

≤ 1
2

+
1
2

F(1F ⊗Qb(|φ∗〉〈φ∗|), trG σb)2

≤ 1
2

+
1
2

F(1F ⊗Qb(|φ∗〉〈φ∗|), σOF )2

where we have used the fact that the swap test on a state ρ ⊗ σ returns the
symmetric outcome with probability 1

2 + 1
2 tr ρσ, as well as the monotonicity of

the �delity with respect to the partial trace.
Using this calculation, the binding property of the protocol is given by

PS∗ =
1
2

(Pr[S∗ reveals b = 0] + Pr[S∗ reveals b = 1])

≤ 1
2

+
1
4
(
F(1F ⊗Q0(|φ∗〉〈φ∗|), trG σ)2 + F(1F ⊗Q1(|φ∗〉〈φ∗|), trG σ)2

)
≤ 1

2
+

1
4
(
1 + F(1F ⊗Q0(|φ∗〉〈φ∗|), 1F ⊗Q1(|φ∗〉〈φ∗|))

)
≤ 3

4
+

√
µ(n)
4

,

where we have used Lemma 2 and Lemma 8.

From the above two Lemmata, we almost have that if QIP 6⊆ QMA, then there
exists a non-interactive auxiliary-input quantum (bs, hc)-commitment scheme
with quantum advice on an in�nite set I, with constant binding error. The only
thing to do is to reduce the cheating probability of the sender to 1/2 + neg(n).
To do this, we will use parallel repetition of the above protocol.

Proposition 25 Consider a k-fold repetition of the above bit commitment pro-
tocol. This protocol is a non-interactive auxiliary-input quantum (bs, hc)-commitment
scheme with quantum advice on I.

Proof: The two things we have to make sure of is that the computationally
hiding property remains under parallel repetition and that the cheating prob-
ability of the sender decreases as a negligible function in k. To show that the
protocol is computationally hiding, we use the following Lemma.

Lemma 12 ([Wat09]) Suppose that ρ1, . . . ρn and ξ1, . . . , ξn are m-qubit states
such that ρ1⊗ · · ·⊗ ρn and ξ1⊗ · · ·⊗ ξn are (s, k, ε)-distinguishable. Then there

101



exists at least one choice of j ∈ {1, . . . , n} for which ρj and ξj are (s, (n−1)m+
k, ε/n)-distinguishable.

From this Lemma, we easily have that if the superoperators Q0 and Q1 are quan-
tum computationally indistinguishable then the output states of the superoper-
ators Q⊗k0 and Q⊗k1 applied to any product state are quantum computationally
indistinguishable for any k of polynomial size. This proves that the repeated
protocol remains computationally hiding, since the honest Sender prepares a
product state.

We now need to prove that the statistical hiding property decreases to 1/2+
neg(n). We �rst prove the following Lemma that applies to the ideal case, i.e.
the Receiver applies the swap test to one of two states with orthogonal reduced
states. The calculation that this strategy (approximately) generalizes to the
case of states that are almost orthogonal states follows the proof of the Lemma.

Lemma 13 Let |φ0〉, |φ1〉 ∈ A ⊗ B be states such that trB |φ0〉〈φ0| and trB |φ1〉〈φ1|
are orthogonal, and let ρ0, ρ1 be two states on (A⊗ B)⊗k = A1⊗B1⊗· · ·⊗Ak⊗Bk
such that

trB1⊗···⊗Bk ρ0 = trB1⊗···⊗Bk ρ1.

Consider the following test:

Test b: Take k copies of |φb〉 and apply for each i ∈ {1, . . . , k} the swap test
between each copy and the state in Ai ⊗ Bi. Accept if all the swap tests accept.

For any ρ0 and ρ1 with equal reduced states on A1 ⊗ · · · ⊗ Ak, we have

1
2

(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1]) ≤ 1
2

+
1

2k+1

Proof: [Proof of Lemma 13] We prove the result by induction on k. For k = 1.
We have

Pr[ρb passes Test b] = 1/2 + 〈φb|ρb|φb〉/2
= 1/2 + F(|φb〉〈φb|, ρb)2/2

≤ 1/2 + F(trB |φb〉〈φb|, trB ρb)2/2.

Since trB ρ0 = trB ρ1, this implies that

1
2

(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1])

≤ 1
2

+
1
4

(F(trB |φ0〉〈φ0|, trB ρ0)2 + F(trB |φ1〉〈φ1|, trB ρ1)2)

≤ 1
2

+
1
4

(1 + F(trB |φ0〉〈φ0|, trB |φ1〉〈φ1|)) =
3
4

since the reduced states of |φ0〉, |φ1〉 are orthogonal.
Now we suppose the Lemma is true for k and show it for k + 1. For conve-

nience we set Si = Ai ⊗ Bi. We take a reference space R of su�cient size to
consider puri�cations of ρ0 and ρ1. Let ρb = trR |ψb〉〈ψb| be these (arbitrary)
puri�cations. Using this notation, we write

|ψ0〉 = α0|φ0〉S1 |Ω0〉S2⊗···⊗Sk+1⊗R+α1|φ1〉S1 |Ω1〉S2⊗···⊗Sk+1⊗R+α2

n∑
i=2

|φi〉|Ωi〉

(9.1)
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and

|ψ1〉 = β0|φ0〉S1 |Γ0〉S2⊗···⊗Sk+1⊗R + β1|φ1〉S1 |Γ1〉S2⊗···⊗Sk+1⊗R + β2

n∑
i=2

|φi〉|Γi〉

(9.2)
where each |φi〉, |φj〉 are orthogonal for i 6= j (for |φ0〉 and |φ1〉 this follows from
the fact that the reduced states on A1 are orthogonal). Since the goal is to pass
swap tests with |φ0〉 and |φ1〉, we can easily see that we can take α2 = β2 = 0
without loss of generality, since this state will only have larger probability of
passing the tests. As one �nal notational convenience, let pi = |αi|2 and qi =
|βi|2.

Before we analyze the probability that the swap tests pass, we show that the
probabilities p0 and q1 satisfy p0 + q1 ≤ 1. By Equation (9.1) we have

p0 = |α0 |2 = tr((|φ0〉〈φ0| ⊗ 1)|ψ0〉〈ψ0|)
≤ F(|φ0〉〈φ0|, trS2...Sk+1R |ψ0〉〈ψ0|)2

≤ F(trB1 |φ0〉〈φ0|, trB1S2...Sk+1R |ψ0〉〈ψ0|)2.

By a similar calculation, we have

q1 = |β1 |2 ≤ F(trB1 |φ1〉〈φ1|, trB1S2...Sk+1R |ψ1〉〈ψ1|)2.

Then, using the fact that trB1S2...Sk+1R |ψ0〉〈ψ0| = trB1S2...Sk+1R |ψ1〉〈ψ1|, as
well as the fact that trB1 |φ0〉〈φ0| and trB1 |φ1〉〈φ1| are orthogonal, we have

p0 + q1 ≤ F(trB1 |φ0〉〈φ0|, trB1S2...Sk+1R |ψ0〉〈ψ0|)2 + F(trB1 |φ1〉〈φ1|, trB1S2...Sk+1R |ψ1〉〈ψ1|)2

≤ 1 + F(trB1 |φ0〉〈φ0|, trB1 |φ1〉〈φ1|)
= 1. (9.3)

We now analyze the probability that the swap tests pass. Consider applying
test 0 on |ψ0〉. When applying the swap test between |φ0〉 and |φ0〉, the result
is the state |0〉|φ0〉|φ0〉 where the �rst register corresponds to the acceptance
of the swap test (0 corresponds to accept). When applying the swap test be-
tween the two states |φ0〉 and |φ1〉, the result before measuring the �rst qubit is
1√
2

(|0〉(|φ0〉|φ1〉+ |φ1〉|φ0〉) + |1〉(|φ0〉|φ1〉 − |φ1〉|φ0〉)). So the swap test on the
space S1 accepts with probability p0 + p1/2. Conditioned on this test passing,
we have the state:

1√
p0 + p1/2

[
α0|φ0〉|φ0〉|Ω0〉S2⊗···⊗Sk+1R +

α1√
2

(|φ0〉|φ1〉+ |φ1〉|φ0〉)|Ω1〉S2⊗···⊗Sk+1R

]
Discarding the �rst system results in the state in S2 ⊗ · · · ⊗ Sk+1 ⊗ R (using
orthogonality of |φ0〉 and |φ1〉) given by

σ =
p0

p0 + p1
2

|Ω0〉〈Ω0|+
p1
2

p0 + p1
2

|Ω1〉〈Ω1|

Let T0(ξ) be the probability that a state ξ ∈ S2 ⊗ · · · ⊗ Sk+1 ⊗ R passes all
swap tests in S2⊗· · ·⊗Sk+1 with |φ0〉. We include the space R for convenience
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only: notice that the choice of puri�cation in the space R has no e�ect on this
probability. Using this notation, we have

Pr[ρ0 passes Test 0] = (p0 +
p1

2
) ·
(

p0

p0 + p1
2

T0(|Ω0〉〈Ω0|) +
p1
2

p0 + p1
2

T0(|Ω1〉〈Ω1|)
)

= p0T0(|Ω0〉〈Ω0|) +
p1

2
T0(|Ω1〉〈Ω1|)

Similarly, we de�ne T1(ξ) for any ξ and we have

Pr[ρ1 passes Test 1] =
q0

2
T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)

which gives us

P =
1
2

(Pr[ρ0 passes Test 0] + Pr[ρ1 passes Test 1])

=
1
2

(
p0T0(|Ω0〉〈Ω0|) +

p1

2
T0(|Ω1〉〈Ω1|) +

q0

2
T1(|Γ0〉〈Γ0|) + q1T1(|Ω1〉〈Ω1|)

)
(9.4)

Consider the states ξ0 = p0|Ω0〉〈Ω0|+p1|Ω1〉〈Ω1| and ξ1 = q0|Γ0〉〈Γ0|+q1|Γ1〉〈Γ1|.
These states are obtained from ρ0 and ρ1 by discarding the system in S1. This
implies that they have the properties in the statement of the Lemma, i.e. the
reduced states of ξ0 and x1 on A2 ⊗ · · · ⊗ Ak+1 are equal. Thus, by induction,
we know that 1

2 (T0(ξ0) + T1(ξ1)) ≤ 1
2 + 1

2k+1 . This means that:

1
2

(p0T0(|Ω0〉〈Ω0|) + p1T0(|Ω1〉〈Ω1|) + q0T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)) ≤
1
2

+
1

2k+1

Using this, as well as Equation (9.4), we have

P =
1
2

(
p0T0(|Ω0〉〈Ω0|) +

p1

2
T0(|Ω1〉〈Ω1|) +

q0

2
T1(|Γ0〉〈Γ0|) + q1T1(|Γ1〉〈Γ1|)

)
=

1
4

+
1

2k+2
+
p0

4
T0(|Ω0〉〈Ω0|) +

q1

4
T1(|Γ1〉〈Γ1|)

≤ 1
2

+
1

2k+2
,

where the �nal inequality is by Equation (9.3).

Proof: [Proof of Lemma 14] For simplicity, let ρi = trB |φi〉〈φi|. We have

2− ε ≤ ‖ ρ0 − ρ1 ‖tr = tr |ρ0 − ρ1 | = tr Π+(ρ0 − ρ1)− tr Π−(ρ0 − ρ1), (9.5)

where Π+ and Π− are the projectors onto the positive and negative eigenspaces
of ρ0 − ρ1 respectively. Notice that

tr(Π+ρ0) = tr(Π+(ρ0 − ρ1)) + tr(Π+ρ1) ≥ tr(Π+(ρ0 − ρ1)),

and similarly tr(Π−ρ1) ≥ − tr(Π−(ρ0 − ρ1)), which implies that

tr(Π+ρ0) + tr(Π−ρ1) ≥ tr(Π+(ρ0 − ρ1))− tr(Π−(ρ0 − ρ1)) ≥ 2− ε,

by Equation (9.5). This implies that tr(Π+ρ0) ≥ 1− ε and tr(Π−ρ1) ≥ 1− ε.
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We introduce the states ρ′i given by the (renormalized) projection of ρ0

and ρ1 into the spaces spanned by Π+ and Π−, respectively. Since these are
orthogonal projectors the states ρ′0 and ρ′1 are orthogonal. Notice also that

‖ ρ0 − ρ′0 ‖tr = tr |ρ0 − ρ′0 | = tr(Γ+(ρ0−ρ′0))−tr(Γ−(ρ0−ρ′0)) = 2 tr(Γ+(ρ0−ρ′0)),

where Γ+,Γ− are the projectors onto the positive and negative eigenspaces of
ρ0−ρ′0, and we have also used the fact that tr(ρ0−ρ′0) = 0, which implies that the
positive portion of ρ0−ρ′0 has the same trace as the negative portion. Consider
the positive eigenspace of ρ0−ρ′0. This is precisely the subspace spanned by the
support of ρ0 that lies outside the support of ρ′0, i.e. this is exactly the space
spanned by the projector Π− = Γ+. Using this observation

‖ ρ0 − ρ′0 ‖tr = 2 tr(Γ+(ρ0 − ρ′0)) = 2 tr(Π−ρ0) ≤ 2ε, (9.6)

where we have used the fact that tr(Π−ρ0) = 1 − tr(Π+ρ0) ≤ ε. A similar
argument establishes the fact that

‖ ρ1 − ρ′1 ‖tr = 2 tr(Π+ρ1) ≤ 2ε. (9.7)

Finally, we note that Equations (9.6) and (9.7) and Uhlmann's theorem
imply that there exist puri�cations |φ′0〉, |φ′1〉 ∈ A ⊗ B of ρ′0 and ρ′1 such that

〈φ′i|φi〉 = F(ρ′i, ρi) ≥ 1− ε.

This, combined with the orthogonality of ρ′0 and ρ′1, completes the proof.

Notice that in the original bit commitment protocol the Receiver applies the
swap test to |φ∗〉|0〉 and the output of (U†b ⊗1)(σb)(Ub⊗1) where σb is the state
sent during the protocol. Since U†b is unitary, this is equivalent to applying the
swap test between σb and the state |φb〉 = (Ub⊗ 1)|φ∗〉|0〉, for whatever value of
b the Sender has revealed. Viewed in this way, the receiver applies the swap test
between σb and one of two almost orthogonal states. Furthermore, these two
states have the property that the reduced states on the space O have negligible
�delity. Notice also that the Sender may send one of two states σ0 and σ1

depending on the value that he wishes to reveal. Since we are interested in the
sum of the probabilities that the Sender can successfully reveal both 0 and 1
in a given instance of the protocol, we may assume that the �rst message stays
the same, i.e. that trG σ0 = trG σ1. This is exactly the condition in Lemma 13
with the exception that instead of the orthogonality of the states |φi〉 we have
only approximate orthogonality. We are able to overcome this obstacle with the
following Lemma.

Lemma 14 Let |φ0〉, |φ1〉 ∈ A ⊗ B such that ‖ trB |φ0〉〈φ0|, trB |φ1〉〈φ1| ‖tr ≥
2− ε. Then there exist states |φ′0〉, |φ′1〉 ∈ A ⊗ B such that

1. 〈φ′i|φi〉 ≥ 1− ε for i ∈ {0, 1},

2. trB |φ′0〉〈φ′0| and trB |φ′1〉〈φ′1| are orthogonal.

This Lemma shows that we may replace the two states that are almost
orthogonal with nearby states that have exactly the orthogonality property
required by Lemma 13, which we can in turn use to show that the protocol
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repeated k times is statistically binding. To do so, notice that the two states
|φ0〉 and |φ1〉, which are given by applying the circuits Q0 and Q1 to the state
|φ∗〉|0〉, satisfy

‖ |φ0〉〈φ0| − |φ1〉〈φ1| ‖tr ≥ ‖ trG(|φ0〉〈φ0| − |φ1〉〈φ1|) ‖tr
= ‖ ((Q0 −Q1)⊗ I)(|ψ∗〉〈ψ∗|) ‖tr
= ‖ Q0 −Q1 ‖�
≥ 2− µ(n),

These states are not orthogonal, but are nearly so. We may, however, use
Lemma 14 to obtain |φ′0〉 and |φ′1〉 that have the orthogonality property required
by Lemma 13 that have inner product at least 1− µ(n) with the original states
|φ0〉 and |φ1〉, respectively.

We now relate the probability that the state ρ passes our Test 0, i.e. the k
swap tests with the state |φ0〉⊗k to the probability that the same state ρ passes
the k swap tests with the state |φ′0〉⊗k (denoted by Test′ 0). The di�erence
of these probabilities is upper bounded by the trace distance of the di�erence
of the states |φ0〉⊗k and |φ′0〉⊗k, since we can view the swap test with ρ as a
measurement to distinguish these two states. This gives

|Pr[ρ passes Test 0]− Pr[ρ passes Test′ 0]| ≤ ‖ (|φ0〉〈φ0|)⊗k − (|φ′0〉〈φ′0|)⊗k ‖tr

= 2
√

1− |〈φ′0|φ0〉|2k

≤ 2
√

1− (1− µ(n))2k

≤ 2
√

2kµ(n),

where the �nal inequality is Bernoulli's inequality. Similarly we have

|Pr[ρ passes Test 1]− Pr[ρ passes Test′ 1]| ≤ 2
√

2kµ(n)

Hence, for the binding property of our scheme we have

1
2

(Pr[ρ passes Test 0] + Pr[ρ passes Test 1])

≤ 1
2
(
Pr[ρ passes Test′ 0] + Pr[ρ passes Test′ 1]

)
+ 2
√

2kµ(n)

≤ 1
2

+
1

2k+1
+ 2
√

2kµ(n).

since, for the Test′ 0 and Test′ 1 we can use Lemma 13 for the perfect case.
This quantity is negligibly larger than 1/2, as we may take k any polynomial
and µ is a negligible function.

The proposition gives the desired result

9.4 Quantum (bc, hs)-commitments unless QIP ⊆
QMA

Theorem 17 If QIP 6⊆ QMA, then there exists a non-interactive auxiliary-input
quantum (bc, hs)-commitment scheme with quantum advice on an in�nite set I.
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Proof: Recall the Complete problem Π = {ΠY ,ΠN} from De�nition 18 with
inputs the mixed-state circuits (Q0, Q1) from D(X ⊗ Y) to a single bit and
n = |(Q0, Q1)|. To show this Theorem, we �rst show the following Lemma

Lemma 15 If QIP 6⊆ QMA, there exist two auxiliary-input superoperator en-
sembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I that are quantum computationally un-
witnessable on an in�nite set I.

Proof: Let us consider the set ΠY and suppose for contradiction that the two
auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈ΠY

and {Q1}(Q0,Q1)∈ΠY

are quantum computationally witnessable, i.e. there exist polynomials (s, k, p)
such that for all (Q0, Q1) ∈ ΠY the superoperatorsQ0 andQ1 are (s(n),k(n),p(n))-
witnessable. In other words, there exist polynomials (s, k, p) such that for all
(Q0, Q1) ∈ ΠY there exist two input states ρ0, ρ1 ∈ L(X ⊗ Y) such that �rst,
there exists a state σ ∈ L(W) with |W| = k and an admissible superoperator
Ψ : L(W ⊗X )→ L(X ) of size s, such that ρ1 = (Ψ⊗ 1Y)(σ ⊗ ρ0); and second

1
2
(
Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]

)
≥ 1/2 +

1
p(n)

Then, we provide a QMA protocol for the problem Π. Merlin sends ρ0, σ
(of size k(n)) and the classical description of Ψ (of size s(n)). Arthur with
probability 1/2 applies Q0 on ρ0 and accepts if he gets 1; and with probability
1/2 he �rst creates ρ1 from ρ0,Ψ and σ, then applies Q1 on it and also accepts
if he gets 1.
(Completeness) If (Q0, Q1) ∈ ΠY , we have

Pr[Arthur accepts] =
1
2
(
Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]

)
≥ 1

2
+

1
p(n)

(Soundness) If (Q0, Q1) ∈ ΠN , then for any cheating Merlin, Arthur receives
a state ρ0

∗, form which he constructs (with half probability) a state ρ1
∗ each in

space X ⊗ Y such that trX ρ0
∗ = trX ρ1

∗. By de�nition of ΠN , we have

Pr[Arthur accepts] =
1
2
(
Pr[Q0(ρ0

∗) = 1] + Pr[Q1(ρ1
∗) = 1]

)
=

1
2

+ µ(n)

We have an inverse polynomial gap between completeness and soundness and
hence we conclude that Π ∈ QMA. This proves that there is an nonempty I that
satis�es the property of our Lemma. Note that if I is �nite, then by hard-wiring
this �nite number of instances into the QMA veri�er (who always accepts these
instances), we have again that QIP ⊆ QMA. So if QIP 6⊆ QMA then the above
I is in�nite.

To �nish the proof of the Theorem, we now need to show the following

Lemma 16 The two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and
{Q1}(Q0,Q1)∈I that are quantum computationally unwitnessable on the in�nite
set I ⊆ ΠY imply a non-interactive quantum (bc, hs)-commitment scheme with
quantum advice on I.

Proof: Commitment scheme For each (Q0, Q1) ∈ I ⊆ ΠY , we consider the
following commitment scheme
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• Let n = |(Q0, Q1)| be the security parameter. The sender receives as
quantum advice ρ0, ρ1, with each ρi in space X i ⊗ Yi such that:

1. trX ρ0 = trX ρ1

2. 1
2

(
Pr[Q0(ρ0) = 1] + Pr[Q1(ρ1) = 1]

)
≥ 1− µ(n)

For consistency with our de�nitions, we also suppose that the Receiver
gets a copy of ρ0, ρ1. These states will not be used in the honest case and
moreover they will not harm the security for a cheating Receiver.

• (Commit phase) To commit to bit b, the Sender sends the state in register
Yb to the Receiver.

• (Reveal phase) To reveal b, the Sender sends the state in register X b. The
Receiver applies Qb on the space X b ⊗ Yb and accepts if he gets 1.

Statistical hiding property The states that the receiver gets in the commit phase
satisfy trX ρ0 = trX ρ1 and hence our scheme is perfectly hiding.
Computationally binding property The property follows from the fact that the
two auxiliary-input superoperator ensembles {Q0}(Q0,Q1)∈I and {Q1}(Q0,Q1)∈I
are quantum computationally unwitnessable. Let us �x (Q0, Q1) ∈ I with
|(Q0, Q1)| = n. After the reveal phase, the Receiver has a state ρb∗ in space
X ⊗Y, where b is the revealed bit. Since we consider dishonest senders S∗(Q0,Q1)

that are quantum polynomial time machines with quantum advice, the states ρ0
∗

and ρ1
∗ satisfy the property 2 of De�nition 26. Hence, for all but �nitely many

(Q0, Q1) ∈ I they must not satisfy property 1 of De�nition 26. Then, for such
(Q0, Q1) ∈ I we have

PS∗
(Q0,Q1)

=
1
2

(
Pr[S∗(Q0,Q1) reveals b = 0] + Pr[S∗(Q0,Q1) reveals b = 1]

)
=

1
2
(
Pr[Q0(ρ0

∗) = 1] + Pr[Q1(ρ1
∗) = 1]

)
≤ 1

2
+

1
p(n)

for all polynomials p.

From the above two Lemmata, we conclude that unless QIP ⊆ QMA there
exists a non-interactive auxiliary-input quantum (bc, hs)-commitment scheme
with quantum advice on in�nite set I.

This result, combined with Theorem 16 and Proposition 25, completes the proof
of Theorem 12.
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Chapter 10

Conclusions

In this thesis, we presented a study of two-party quantum cryptographic prim-
itives in the information theoretic setting. We considered basic quantum cryp-
tographic primitives as a way of understanding what is possible and what is
impossible in a quantum world. Since the impossibility of quantum coin �ipping
and quantum bit commitment can explain many features of quantum physics,
we �rst wanted to quantify to what extent these cryptographic primitives are
impossible. In the �rst part of this thesis, we showed tight bounds for both
quantum coin �ipping ( 1√

2
bound) and quantum bit commitment (0.739 bound)

These bounds raise interesting questions. For example, following the line
of thought of Smolin,Fuchs and Brassard [FM01, Bra05], one could ask the
following question

What properties have theories that:

1. Allow key distribution

2. Allow coin �ipping up to cheating probabilities of 1√
2

3. Allow bit commitment up to cheating probabilities of 0.739

At the end of the �rst part, we also tried to extend these bounds for quan-
tum oblivious transfer. We derived the bounds for quantum bit commitment
to obtain - unfortunately not tight - bounds for quantum oblivious transfer.
Reducing oblivious transfer to quantum bit commitment presents the following
underlying question

If I can get some information about a bit x0 and I can get some information
about a bit x1, what information can I get about the two bits (x0, x1) ?

The Learning in Sequence Lemma that we showed in Chapter 6 partially
answers this question by stating that if someone can guess bit x0 with probabil-
ity cos2(α0) and x1 with probability cos2(α1) then he can learn both with with

probability at least
(

cos2(α0)+cos2(α1)
2

)
cos2(α0 + α1). This is in sharp contrast

with the classical case where we know that one can learn both bits with proba-
bility at least cos2(α0) cos2(α1) which is much higher than our quantum bound.
Even if we only show lower bounds for the learning of (x0, x1), we can construct
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some examples where the probability of learning both bits is strictly smaller than
cos2(α0) cos2(α1) when information about x0 and x1 is encoded into a quantum
state. This also seems to be a fundamental characteristic of quantum mechan-
ics as a carrier of classical information. In future work, we plan to extend this
study and show how such learning lemmata are related to quantum non-locality.

We then tried to base quantum cryptographic primitives solely on quantum
non-locality. In this setting, we showed that Alice and Bob can use a quan-
tum state to perform cryptographic tasks even without trusting their quantum
apparatus and without trusting each other. This is in contrast with quantum
key distribution based on non-locality where Alice and Bob cooperate against a
third party, Eve. It is a new application of non-locality and it is interesting that
quantum non-locality can be used even without the cooperation of two honest
parties.

One important thing to notice is that we do not obtain the same bounds in
this setting than in the general setting. The question that arises from this is

Can we build optimal quantum coin �ipping and quantum bit commitment
protocols that rely only on the violation of Bell's inequalities ?

We then presented a quantum coin �ipping protocol that was tolerant to
losses. Even if the obtained protocol cannot be used for practical applications
because of the high bias, the method we used to deal with losses are e�cient
and generic and we feel that this method can be used for many other protocols.

The remaining question is to �nd similar techniques against quantum noise.
It is relatively easy to deal with noise when Alice and Bob cooperate against a
third party or if one of the players is physically bounded. However, there are
no methods to deal with noise in the most general case. It is not a priori clear
whether dealing with noise in the general setting is even possible with good
parameters.

Finally, we showed under what conditions computational bit commitment
was possible. We extended classical relationships between bit commitment and
zero-knowledge protocols to the quantum case. We showed how the complete
problem for quantum zero-knowledge protocols and the ability to solve it in
QMA is related to the existence of quantum bit commitment schemes.

It will be instructive to get a better understanding of quantum zero-knowledge
protocols and quantum Merlin-Arthur protocols. If we �nd some notable di�er-
ence in these quantum classes compared to their classical counterparts, it might
be possible to construct quantum computational commitments from weak com-
putational assumptions.
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