
HAL Id: tel-00607906
https://theses.hal.science/tel-00607906

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to software deployment in a
component-based reflexive architecture

Jakub Kornaś

To cite this version:
Jakub Kornaś. Contributions to software deployment in a component-based reflexive architecture.
Networking and Internet Architecture [cs.NI]. Université Joseph-Fourier - Grenoble I, 2008. English.
�NNT : �. �tel-00607906�

https://theses.hal.science/tel-00607906
https://hal.archives-ouvertes.fr

UNIVERSITÉ JOSEPH FOURIER

No attribué par la
bibliothèque

THÈSE

pour obtenir le grade de

DOCTEUR DE L’UJF

Specialite : Informatique : Systèmes et Communication

préparée au laboratoire LIG, projet SARDES,
dans le cadre de l’Ecole Doctorale

Mathématiques, Sciences et Technologies de l’Information

préparée et soutenue publiquement par

Jakub KORNAŚ

le 23 Octobre 2008

Contributions au déploiement dans les architectures réflexives
basé sur les composants

Directeur de thèse :

Jean-Bernard STEFANI

JURY

M. Pierre SENS Université Paris 6 Président du Jury
Mme. Françoise BAUDE Université de Nice Rapporteur
M. Lionel SEINTURIER Université Lille 1 Rapporteur
M. Thierry COUPAYE Orange Labs Examinateur
M. Olivier GRUBER Université Joseph Fourier Examinateur
M. Jean-Bernard STEFANI INRIA Rhône-Alpes Directeur de thèse

Acknowledgments

First and foremost, I would like to thank my family – Jadwiga, Stanisław and Gosia – for always
being there for me and supporting me in the difficult moments. Without you three this document
would have probably never existed. I would also like to thank Izabela, who has been my best friend
for so many years now. And Agata, with whom I hope to spend the rest of my life and who reminded
me what the important things are.

I would like to thank Jean-Bernard Stefani for taking me on this PhD journey and being the advi-
sor of this thesis.

Olivier Gruber for his tremendous help in finalizing this work and for all the interesting discus-
sions that we had.

Adrian Mos for being my best friend here in Grenoble. I have learnt a great deal of stuff from you,
man! And it ain’t all work-related :)

Julien Legrand, Noël de Palma, Matthieu Leclercq, Fabienne Boyer, Benoı̈t Claudel, Stéphane
Fontaine, Jérémy Philippe, Sylvain Sicard and Christophe Taton, my INRIA colleagues, with whom I
have enjoyed working as well as simply spending time. Hope to see you in Kraków soon!

And finally I would like to thank all the members of the SARDES project for the time spent
together.

3

Résumé de thèse

Les logiciels récents sont de plus en plus complexes en terme de leur développement et gestions
associés. Pour adresser cette complexité, un approche fondé sur les composant a vu le jour qui vise une
meilleure ingénierie des logiciels. En particulier, une approche à composants structure les logiciels
comme un assemblage dynamique des composants qui doivent être déployés et gérés à l’exécution,
en continu. Pour ce deploiement et cette gestion, nous avons adopté une approche fondée sur une
architecture logicielle explicite de composants. Cette approche, communément appelée “gestion basée
sur l’architecture”, a évolué de premières solutions ad-hoc vers des infrastructures génériques fondées
sur des modèles de composants réflexifs. Une de ces infrastructures est la plateforme JADE.

JADE vise à gérer autonomiquement des systèmes distribués complexes. Basé sur un modèle de
composants réflexifs, JADE capture l’architecture logicielle complète des systèmes distribués, inclu-
ant non seulement les applications distribuées hébergées mais aussi les systèmes distribués qui les
“hébergent”. En particulier, cette architecture réifie en continue certains aspects de l’exécution des
systèmes distribués, tels que les défaillances de noeuds ou les caractéristiques de performance. Util-
isant cette architecture réifiée, les gestionnaires autonomes observent et réagissent selon les change-
ments de conditions. Chaque réaction de gestionnaires automatiques a pour but de planifier une recon-
figuration de l’architecture en réponse à un changement des conditions d’exécution. Par exemple, un
gestionnaire d’auto-réparation observant la défaillance d’un noeud aurait pour but de reconstruire, sur
un autre noeud, la partie perdue du système distribué. Un gestionnaire d’auto-protection observerait
une intrusion et planifierait la reconfiguration du système distribué pour isoler les composants compro-
mis. Un gestionnaire d’auto-optimisation pourrait observer une disponibilité en baisse d’un serveur
répliqué et planifier daugmenter cette réplication cardinale des composants serveurs.

Au coeur de cette gestion autonomique fournie par JADE se trouve le déploiement des com-
posants. En effet, la plupart des reconfigurations de l’architecture de systèmes distribués s’appuient
sur l’aptitude à instancier des composants sur des noeuds distants. Plus précisément, une fois que
les gestionnaires autonomes ont générés un plan de reconfiguration du système distribué, l’exécution
effective du plan est automatiquement distribuée, essentiellement par création et suppression de com-
posants ainsi que leur édition de liens. La création et la suppression de composants requièrent une
gestion locale des composants sur chaque noeud du système distribué. Cette gestion locale nécessite
une infrastructure distribuée pour trouver, installer, charger et supprimer les composants.

Le travail présenté dans cette thèse est le socle de JADE, fournissant les capacités de déploiement
avancé dans un environnement distribué. En particulier, nous avons traité ce défi via une conception
récursive o l’implémentation de composants a été modélisée par des composants. Cette approche
fournie un déploiement uniforme qui suit les principes basés sur l’architecture. En particulier, nous
pouvons déployer non seulement des composants d’applications mais aussi des composants “middle-
ware”. De plus, au-delà du déploiement de composants normaux, nous pouvons également déployer
des logiciels “legacy” qui sont gérés uniformément par JADE.

En plus de fournir le socle du déploiement de JADE, ce travail a montré que le modèle de com-

5

posant réflexif utilisé par JADE (appelé FRACTAL) a besoin d’être étendu pour capter les implémentations
et leur spécificité. Bien que conu spécifiquement pour FRACTAL et JADE, ces extensions présetent
une applicabilité bien plus large, elles s’appliquent en effet à la plupart des modèles de composant
courant. En effet, la plupart de ces modèles se focalisent sur lassemblage fonctionnel de composants
et ne proposent rien ou peu sur le déploiement des composants. Ce travail a également montré que
l’architecture autonomique basée sur l’architecture a des besoins dynamiques spécifiques en terme de
déploiement qui rend difficile la ré-utilisation de plateformes existantes pour la gestion dynamique de
composants, tels que OSGI. Sur la base d’OSGI, cette thèse a expérimenté plusieurs conceptions et
prototypes qui ont été utilisé avec succès, mais dont ultimement les limites sont apparues. Ces limites
sont liées à une tension fondamentale entre les conceptions architecturales de JADE et OSGI. Une
nouvelle conception et un nouveau prototype ont montré la faisabilité de supporter notre FRACTAL

étendu sur la plateforme Java, servant de fondation à la gestion autonomique de systèmes distribués
complexes fondée sur larchitecture.

6

Contents

1 Introduction 15

1.1 Challenges of component-based software deployment 15

1.2 What software deployment is? . 16

1.3 Contributions of this thesis . 18

1.4 Thesis overview . 20

I Analysis of the state of art 23

2 Models and frameworks for the deployment of component-based software 27

2.1 OMG D&C . 27

2.1.1 Deployment process . 28

2.1.2 Deployment models . 28

2.1.3 Summary . 32

2.2 DAnCE . 33

2.3 JSR88 . 35

2.4 SmartFrog . 37

2.5 Fractal Deployment Framework (FDF) . 42

2.6 NIX . 44

2.7 Summary . 45

3 Software packaging systems 49

3.1 Unix/Linux packages . 49

3.1.1 DEB . 49

3.1.2 RPM . 51

3.1.3 Summary . 52

3.2 Java JARs & .NET assemblies . 53

3.3 Summary . 54

7

4 Module systems for Java 57
4.1 OSGI . 58

4.1.1 Physical part . 58

4.1.2 Runtime part . 59
4.1.3 OBR . 60
4.1.4 Summary . 60

4.2 Java EE servers . 60
4.2.1 Isolation of the Java EE components . 61

4.2.2 Isolation of the container from the applications 61
4.2.3 JOnAS . 61
4.2.4 JBoss . 63

4.2.5 Summary . 63
4.3 iJAM & JSR277 . 64

4.4 MJ . 65
4.5 JPloy . 68
4.6 Summary . 71

5 Summary 73

II Contribution 77

6 Capturing deployment in the component-based reflexive architectures 81
6.1 Introduction . 82
6.2 JADE Management System . 83

6.2.1 Component model . 84

6.2.2 Membrane model . 84
6.2.3 Containment model . 86

6.2.4 Factories and deployment . 88
6.2.5 Reflexive Architecture . 89
6.2.6 Autonomic managers . 90

6.3 Capturing Modules . 91
6.3.1 Extending the component model . 92

6.3.2 Module Resolver . 93
6.3.3 Considering versions . 95
6.3.4 Module API . 98

6.4 Capturing Deployment . 99
6.4.1 Modelling distributed systems . 100

6.4.2 Introducing physical packages . 102
6.4.3 Reconfiguration plans . 103
6.4.4 Plan implementation details . 107

6.5 Case studies . 107
6.5.1 GRID-like deployment . 108

8

Contents 9

6.5.2 The self-repair case . 110
6.6 Conclusion . 114

III Implementation 117

7 JADE: First Design 121
7.1 Background . 122

7.1.1 About OSGI . 122
7.1.2 About JULIA . 124

7.2 Wrapping Legacy Systems . 126
7.3 Component Deployment . 129

7.3.1 Distributed deployment . 129
7.3.2 Local deployment . 131

7.4 Admin Console . 133
7.5 First Evaluation . 136
7.6 Conclusion . 140

8 JADE: Second Design 143
8.1 Evaluation—Breaking Point . 144

8.1.1 Distributed deployment conflicts . 144
8.1.2 Local deployment conflicts . 145

8.2 Distributed Architecture . 148
8.3 Modularity . 150

8.3.1 Class loading . 150
8.3.2 Delegation . 151
8.3.3 Module resolution . 153
8.3.4 Module updates . 154

8.4 Physical Packages . 156
8.5 Garbage Collection . 157
8.6 Conclusion . 158

9 Conclusions and Future Work 161
9.1 Problems addressed . 161
9.2 Review of principal contributions . 162
9.3 Future work . 163

9.3.1 Distributed deployment . 163
9.3.2 Atomic reconfigurations . 163
9.3.3 Optimizations around modularity . 164
9.3.4 Tooling . 164

Bibliography 167
0.4pt0.3pt 0pt0.0pt 0pt0.0pt 0pt0pt

List of Figures

1.1 The deployment life cycle of a software component 17

2.1 Data part of the OMG D&C component model . 30
2.2 Data part of the OMG D&C target model . 31
2.3 Management part of the OMG D&C execution model 32
2.4 SmartFrog architecture . 38
2.5 SmartFrog description . 39
2.6 SmartFrog component and its lifecycle . 40
2.7 General architecture of the Fractal Deployment Framework (FDF) 42
2.8 An FDF description of the Petals component . 43
2.9 NIX repositories and closure values . 45
2.10 Nix derivation value . 46

3.1 Java JARs and .NET assemblies . 53

4.1 A sample OSGI manifest file . 59
4.2 Hierarchy of class loaders in the JOnAS Java EE server 62
4.3 A sample description of the MJ module . 67
4.4 A sample JPloy configuration file. 69

6.1 The Java signature of the AttributeController interface 85
6.2 The Java signature of the Component interface . 85
6.3 The Java signature of the BindingController interface 86
6.4 The Java signature of the LifeCycleController interface 86
6.5 The Java signature of the ContentController interface 86
6.6 An internal content of a fractal component . 87
6.7 An example usage of sharing . 88
6.8 The Java signature of the Factory interface . 88
6.9 The Java signature of the extended Factory interface 98
6.10 The Java signature of the garbage collector interface 99
6.11 JADE Node . 101
6.12 An example JADE architecture description file . 108

12 LIST OF FIGURES

6.13 An example JADE architecture description file with modules 109
6.14 A sample module description file . 110
6.15 Management and Checkpoint layer . 111
6.16 Putting pieces together: repair service & replicated components 113

7.1 An example of OBR metadata . 125
7.2 Basic Architecture of a Management System . 126
7.3 A clustered web application server . 127
7.4 A snowflake infrastructure . 128
7.5 An example bundle manifest file . 129
7.6 JADE Node . 130
7.7 The Java signature of the LocalInstallPackage interface 132
7.8 JADE deployment engine . 134
7.9 An example JADE deployment file . 135
7.10 Jasmine assembly and deployment console . 137
7.11 The architecture of the JonasALaCarte J2EE server. 138

8.1 An example of incoherent configuration . 146
8.2 Type incoherence after a component update . 147
8.3 JADE Node . 149
8.4 Modules and physical packages. 152
8.5 The Java signature of the IPackageExport interface 153
8.6 A sample module repository description file . 153
8.7 Organization of optimized modules and their class loaders. 155
8.8 A simple client-server component application in Java. 156
8.9 Interface reconfiguration example. 156

LIST OF FIGURES 13

Résumé de chaptire 1

Dans le chapitre 1 de cette these on introduit nos travaux de recherche dans la domaine de de-
ploiement des logiciels a base des composants. D’abord on explique les problemes de deploiement
des logiciels dans le contexte des systems autonomes base sur l’architecture explicite des logiciels.
Ensuite, on donne une definition precise de ce que le deploiement des logiciels dans ce contexte est.
Puis on explique les contributions scientifiques de cette these.

Chapter 1

Introduction

Contents
1.1 Challenges of component-based software deployment 15

1.2 What software deployment is? . 16

1.3 Contributions of this thesis . 18

1.4 Thesis overview . 20

1.1 Challenges of component-based software deployment

Modern software systems are increasingly complex, both regarding their development and their run-
time management. To address these challenges, a component-based paradigm has emerged. Com-
ponents not only modularize development for better software engineering but also promote a vision
of software as a dynamic assembly of components that can be deployed and managed at runtime.
One successful approach for advanced runtime management is based on the software architecture
that components make explicit. This approach, called architecture-based management, has evolved
from ad-hoc early solutions to generic frameworks based on reflexive component models. One such
framework is the JADE framework.

JADE targets autonomic management of complex distributed systems. Based on a reflexive com-
ponent model, JADE captures the complete software architecture of distributed systems, including
hosted distributed applications and their hosting distributed system. In particular, this architecture
reifies the runtime behavior of the distributed system, such as node failures or performance character-
istics. Using this complete architecture, autonomic managers can then observe and react accordingly
to changing conditions. The reaction of autonomic managers is to plan an architecture reconfigura-
tion. For instance, a self-repair manager observing a node failure would plan to reconstruct the lost
part of the distributed system on another node. A self-protection manager would observe an intrusion
and would plan reconfiguring the distributed system in order to isolate or sandbox compromised com-
ponents. A self-optimizing manager could observe an availability problem in a replicated server and
plan to augment the replication cardinality of the server components.

Consequently, at the heart of JADE, one finds the challenge of component deployment. Indeed,
most reconfigurations of the architecture of a distributed system rely on the ability to instantiate com-
ponents on remote nodes of the distributed system. More precisely, once autonomic managers have
generated a reconfiguration plan of the distributed system, the actual execution of the plan is itself
distributed, essentially creating and removing components as well as binding and unbinding them.

16 1. Introduction

Creating and removing components requires a local management of components on each node of the
distributed system. This local management requires a distributed infrastructure to find, download,
install, and remove components.

The work presented in this thesis has provided JADE with advanced deployment capabilities in a
distributed environment. In particular, we have approached this challenge through a recursive design
where the implementation of components has been modelled using components, providing a sound
and uniform deployment that follows the architecture-based principles. In particular, we can deploy
application components as well as middleware components. Moreover, we can not only deploy regular
components but we can also deploy legacy software that are wrapped with components. Through
wrapping, remotely deployed legacy software can be managed by JADE in a uniform manner.

Besides providing the deployment subsystem of JADE, this work has shown that underlying com-
ponent model, a reflexive component model called FRACTAL, needed to be extended in order to cap-
ture implementations and their specifics. Although conceived for FRACTAL and JADE, these exten-
sions apply to most current component models that focus on the functional assembly of components
and not on how components are deployed. This work has also shown that autonomic architecture-
based management has specific dynamic needs in terms of deployment that makes it difficult to reuse
existing dynamic component platforms such as OSGI. A first design and prototype, although success-
ful in many ways, has demonstrated fundamental design and architectural tensions between OSGI and
JADE. A second design and prototype has shown the feasibility of using the Java platform for sup-
porting our extended FRACTAL as the foundation to autonomic architecture-based management of
complex distributed systems.

In the following sections, we first put deployment in perspective with respect to the overall chal-
lenge of software management. We then present the contributions of this work in more details. We
conclude this introduction with presenting and discussing the organization of this document.

1.2 What software deployment is?

Deployment of a software component spans multiple phases, as represented in figure 1.1 (taken
from (Hall 2004)). It covers all the activities performed on a given component after it has been de-
veloped by the software developer. Once the component has been developed, it can enter the release
phase of deployment. A released component can then be installed on the target nodes on the con-
sumer side. Installed components can then be managed, namely activated and deactivated, updated,
reconfigured and removed if they become obsolete.

The specific roles of deployment phases are as follows:

• The release phase is performed right after the component has been developed and compiled
against a set of dependencies. The result of this phase is a packaged software component ready
to be installed on target machines. A component package contains information on the depen-
dencies that the given component needs in order to work (unless the component package is self
contained). Furthermore, a package may contain different implementations of the interfaces
exposed by the given component. Normally, a component is released into a repository, for
example on a web server, from which it can be installed on the target machines.

1.2. What software deployment is? 17

Figure 1.1: The deployment life cycle of a software component

• The install phase consists in “physically” bringing the component onto the target machine
where it will execute. Once the component is installed, it can be run on that machine.

• The activate and deactivate phases correspond to the launching and stopping down the com-
ponent

• The update and adapt phases are similar. An update consists in replacing a component with a
newer version which has been released. In most systems this means installing a new version of
an already present component on the target machine, deactivating the old version and activating
the new one. In systems that support dynamic updates the deactivation is not necessary and as a
result the state of an updated component is not lost. The adapt phase modifies the configuration
of an installed component and requires it to be restarted.

• The reconfigure consists in changing the configuration parameters of an installed component.
This deployment phase is similar to the adapt phase, however reconfigurations can be performed
on running components.

• The remove step of deployment means that a given component is undeployed from the target
machine. Usually this phase of deployment is performed after the component has been de-
activated. The removal of a component results in freeing the underlying resources, such as
processing power, disk space etc.

• The retire phase is performed on the repository where a component has been released. When a
component is retired, it can not be installed any more on the targets.

18 1. Introduction

Based on the analysis of related work which we perform in the first part of this thesis we con-
clude that most of the existing research projects around component deployment and architecture-based
management, such as SmartFrog (Goldsack et al. 2003) and DAnCE (Deng et al. 2005), as well as ex-
isting distributed middleware frameworks, such as CORBA (Group 1996), RMI (Sun Microsystems
Inc. 1996) and JMS (Java Message Service Specification Final Release 1.1 2002), do not address
the issue of component installation, versioning and dynamic updates. These projects simply assume
that implementations of components are readily available on target nodes. On the other hand, deploy-
ment solutions addressing the non component-based software applications, such as the DEB and RPM
projects as well as the .NET framework can not be used in the architecture-based management context
because they do not provide a component model on top of which the explicit reflexive architectures
and their autonomic managers could be built.

Therefore, in this thesis we focus on the post-release phases of component deployment in the
context of autonomic, architecture-based management, as we believe those aspects of component de-
ployment to be insufficiently addressed by existing solutions. Our work environment – the JADE

architecture-based autonomic management system – in its initial version only handled the activate
and deactivate as well as adapt and reconfigure phases of component deployment. It did not handle
any of the component deployment phases which require the manipulation of the components’ imple-
mentations, such as installation, updates etc.

1.3 Contributions of this thesis

In our first attempt to enhance JADE with post-release deployment functionality, we have applied
OSGI as the deployment layer. OSGI, as will be described in detail in the first part of this thesis,
is currently the most advanced deployment solution for Java applications. It provides a packaging
format, a runtime environment for isolation and versioning of Java code and a set of tools for the
development, publishing, and on-target installation of pieces of this code. Thus, using OSGI as a
deployment layer for JADE seemed highly interesting.

Based on OSGI, we have implemented a system for distributed deployment of Java components
which provides several interesting characteristics compared to the state of the art. Firstly, it supports
architecture-based deployment in which functional assemblies of components in terms of provided
and required services are described together with the implementations of these components. We call
it the architecture-based deployment, because in this approach the deployment related information,
such as target nodes and physical packages, becomes an integral part of the software architecture.
This information can be provided in, for example, an Architecture Description Language (ADL) file.
Secondly, the OSGI-based deployment system supports component versioning and, in certain cases,
dynamic updates. Finally, integrating OSGI and JADE has many advantages in terms of reuse of the
state of the art development and software publishing tools for Java provided by OSGI and Eclipse.
This implementation of the JADE platform proved successful in terms of real world usability and
is now part of the JASMINE project. It supports and simplifies deployment of various industrial
middleware.

Unfortunately, the OSGI-based implementation of the deployment system for JADE turned out to
be incompatible with the architectural approach to autonomic software management. The principal

1.3. Contributions of this thesis 19

issue with using OSGI as a mechanism of component installation and versioning is that it hides several
important aspects of the reflexive architecture within its runtime—the decision on how components
are resolved in terms of Java types is taken by the OSGI runtime and not exposed by it to JADE

managers. This contradicts the JADE approach to software management, where JADE managers take
decisions on architectural modifications.

Therefore, the main rationale behind our “post OSGI” work was to answer the following question:
how do we extend JADE and its component model in order to provide equivalent deployment capa-
bilities but without OSGI? Although this work is based on and was integrated in the JADE platform,
we believe the approach and core concepts to be applicable to most of the existing architecture-based
management frameworks for software components such as SmartFrog or Rainbow (Cheng et al. 2004).
From the high-level point of view, the deployment-related extensions to component-based reflexive
architectures essentially mean capturing dependencies between component implementations by intro-
ducing the notions of modules and physical packages into the component model.

A module is about the loaded implementation of a component. The application components, such
as the ones initially managed by JADE, are about a service-oriented architecture, in which depen-
dencies between components are those of provided and required services. If a component model is
implemented in an object-oriented programming language, this means a resolution of dependencies
based on service objects which implement interfaces. Modules are also components, thus they also
have dependencies which need to be resolved. The dependencies between modules represent imple-
mentation dependencies. For example, if a component model is implemented in the Java programming
language, a dependency between module components is about the classes in one module imported by
classes in another module. If the model is implemented in C or C++, the inter-module dependency is
about unresolved symbols, such as functions and global variables.

As regular components need to have their dependencies resolved, modules also need their de-
pendencies resolved. This resolution has however the semantics of code-level linking rather than
service-level binding. The mechanisms used are however exactly the same and relies on FRACTAL

components and bindings. For components implemented in Java, the implementations rely on Java
class loaders and module resolution is about controlling class loading delegation between these class
loaders. For components implemented in C or C++, resolution is essentially about the linking of
code, often packaged as dynamically loaded libraries (DLLs). One important point in both cases is
that the assembly is dynamic, so resolved modules may be unresolved, which requires reorganizing
class loader delegation or unlinking DLLs, taking into consideration the limitations of each execution
engine regarding such reconfigurations at runtime.

A physical package is about a physical container that encapsulates the on-disk implementation of
one or more components. The notion of a physical package, similarly like the one of modules, strongly
depends on the programming language in which a component model is implemented. For example, a
physical package would correspond to a JAR archive if the component model is implemented in Java
and to a file on the file system or an ELF archive if the model is implemented in C or C++. Physical
packages require a notion of local repository. This repository is where the packages are stored on
a given node. From there, they can be associated to module components. The local store can have,
like for example in NIX, a complex hierarchical structure managed similarly to what is done in terms
of memory management. Another abstraction associated with the physical packages is the one of

20 1. Introduction

garbage collection—unused physical packages are cleaned-up automatically.

Another important extension to the component model is the one we call the resolver. Resolver is
the entity that binds (connects) components to form a reflexive architecture. It therefore resolves the
dependencies between components. Since we introduce modules as special types of components, as
a consequence we also distinguish two types of inter-component resolution—the resolution of tradi-
tional applicative components and the resolution of module components. By contrast to the standard
version of JADE, in which component implementations were not considered, in the extended version,
the resolver of module components is part of the explicit architecture of the JADE system.

In addition to the extensions to a component model, we also propose a layered approach to the
deployment of component-based software. This approach distinguishes a local (single machine) de-
ployment layer and the distributed (spanning many machines) layer. A local layer is about the man-
agement, isolation, and versioning of implementations of components, whereas the distributed layer
is about the synchronized execution of the deployment process (plan) on multiple target machines.
We believe that the problems encountered in the local and distributed deployment layers are suffi-
ciently disparate to be handled by two distinct abstractions. This allows for a more structured and
technology-independent approach to modelling deployment.

We believe our approach to be the first attempt at building an integrated environment for compo-
nent development, deployment and runtime management. We have validated it by building a prototype
full-featured architecture-based management system for JADE, without the drawbacks of the OSGI-
based solution.

1.4 Thesis overview

This thesis is divided into three parts: the analysis of the state of art, the description of the contribution
and finally the evaluation of our work.

Part I – Analysis of the state of art The goal of the first part of the thesis is to investigate the
existing work around the deployment of component-based software. Since this is a vast area, we
have divided our analysis of the related work into three domains: the Models and frameworks for
the deployment of software components, the Software packaging systems and finally the Module sys-
tems for Java. Each of those aspects of investigation is treated in a separate chapter. We describe
component-based as well as “standard” approaches to these issues.

Deployment frameworks and models for component-based software are described in Chapter 2.
Our main goal in presenting the work around this subject is to understand how the existing research
and industrial projects handle the issue of component deployment. We are specifically interested
in distributed, architecture-based deployment, as we believe it to be the state of the art in software
deployment.

In Chapter 3 we focus on the issues around the software packaging. It is the building block of
software deployment, yet it is an often overlooked aspect of it. We essentially focus on investigating
how the existing solutions handle the issues of package dependencies, as well as whether or not they
address the software packaging in the context of software components.

Chapter 4 presents an analysis of the existing solutions around the modularity (code versioning

1.4. Thesis overview 21

and isolation) in the Java platform. We have chosen Java because (1) it is a programming language
and an execution platform often used to implement component frameworks as well as deployment
systems on top of them and (2) the prototypes that we have built for this thesis were implemented
in Java. Our main goal in this chapter is to see whether any of the existing solutions to the lack of
modularity in Java can be coupled with a component-based approach, reflexive software architectures
and the requirements on dynamicity and autonomic management.

From those three chapters we build a general vision of the various aspects of software deployment.
We also identify a number of limitations of the existing solutions which gives us a foundation for
discussing the contributions of our work. We summarize our analysis of related work in Chapter 5.

Part II – Contribution Chapter 6 presents the contribution of this thesis – capturing deployment
as an integral part of architecture-based software management. We describe a set of extensions to a
component model which bring deployment from the status of external and necessary evil to the status
of an autonomic manager, fully integrated with the rest of the architecture-based approach to software
management.

Even though we make reference to the FRACTAL component model and the JADE autonomic
system, we believe our approach to be independent of the concrete component technology as well as
programming language used to implement it.

Part III – Implementation Chapters 7 and 8 describe the experimental evaluations of our approach
to component-based software deployment.

Chapter 7 describes the OSGI-based platform for deployment of component-based Java software.
This platform was developed as part of this thesis. We show how the approach and the model presented
in Chapter 6 are implemented to provide a full-featured deployment platform for Java components.
It also shows how this deployment system has been applied to real-world component-based software.
As use-cases, we show how various Java middleware, including the Joram JMS server and the JOnAS
Java EE server, are deployed by the system.

After identifying certain limitations of the OSGI-based approach, we present in Chapter 8 the
second prototype that we have built during this thesis. This prototype does not use OSGI. Instead,
it directly implements the extensions to a component model and builds a deployment solution from
scratch. Even though less complete in terms of tooling and practical applicability than the solution
described in Chapter 7, this prototype has the advantage of supporting the full gamut of dynamic
deployment capabilities needed by autonomic architecture-based management.

Conclusion Chapter 9 concludes this thesis and outlines the areas of future investigation.

Part I

Analysis of the state of art

25

Résumé de chaptire 2

Dans le chapitre 2 de cette thèse on présente les modelés, les API et les plateformes pour le
déploiement et la reconfiguration dynamique des logiciels a base des composants. D’abord on décrit
la spécification OMG D&C, qui est indépendante de technologie subjacent. Ensuite on présent la
plateforme de déploiement et configuration DAnCE, qui est une implémentation de la spécification
OMG D&C et qui vise les systèmes embarques de temps réel. On continue en décrivant le JSR88
— une spécification pour le déploiement des composant Java Enterprise Edition . Enfin on illustre
plusieurs solutions existants pour le déploiement et la configuration des compostants logiciels, tel que
le SmartFrog, le Fractal Deployment Framework (FDF) et autres. Notre but dans ce chapitre est de
expliquer comment les problèmes de déploiement des composants logiciels sont abordé par l’état de
l’art et de identifier les dsavantages des solutions existants.

Chapter 2

Models and frameworks for the deployment of
component-based software

Contents
2.1 OMG D&C . 27

2.1.1 Deployment process . 28

2.1.2 Deployment models . 28

2.1.3 Summary . 32

2.2 DAnCE . 33

2.3 JSR88 . 35

2.4 SmartFrog . 37

2.5 Fractal Deployment Framework (FDF) . 42

2.6 NIX . 44

2.7 Summary . 45

This chapter presents existing models, APIs and frameworks for the deployment and dynamic
reconfiguration of component based software systems. We first describe the OMG Deployment and
Configuration (D&C) specification, which is independent from the underlying component technology.
Next we discuss the DAnCE deployment and configuration framework, which is an implementation of
the OMG D&C specification and targets the Distributed Real-time and Embedded (DRE) systems. We
continue by describing JSR88, a deployment Application Programming Interface (API) specification
for Java Enterprise Edition (Java EE) component-based applications. Finally, we illustrate several ex-
isting deployment and configuration frameworks such as SmartFrog, Fractal Deployment Framework
(FDF) and others. Our goal is to investigate how the subject of deployment of software components
is addressed by the state of the art, as well as to identify the shortcomings of existing solutions.

2.1 OMG D&C

The Object Management Group (OMG) has defined a specification called Deployment and Con-
figuration (D&C) of distributed component based applications (Group 2006). The goal of this speci-
fication is to unify and thus facilitate the deployment and configuration of component based systems
into a set of heterogeneous, distributed target nodes. The specification achieves this unification by
defining models that describe the deployment process in a platform-independent manner. The OMG

28 2. Models and frameworks for the deployment of component-based software

D&C follows a Model Driven Architecture (MDA) approach—it defines several Platform Independent
Models (PIMs) which are transformed into Platform Specific Models (PSMs) for concrete component
based technologies. The OMG D&C specification also standardizes several aspects of deployment
and configuration of component based distributed systems by precisely defining deployment-related
abstractions and identifying the interactions between these abstractions.

An application, as defined by this specification, is a component that is assumed to be indepen-
dently useful. It can either be implemented directly, as a monolithic implementation, or as an assembly
of subcomponents, where each subcomponent can again, recursively, be either monolithic or an as-
sembly. Ultimately, each application can be decomposed into a set of monolithic components. At
deployment time decision is made about which components are to be deployed where.

A component package, according to the OMG D&C specification, is a set of metadata and com-
piled code containing implementations of a component interface. Packages can reference other pack-
ages. This property allows for reusing third-party implementations as well as replacing dependent
packages without the impact on the rest of the application. However, no on-line update functionality
is implied by the OMG D&C specification—this feature is considered optional by the specification.
Component packages can contain multiple implementations to provide a match for a given target
environment, such as Windows, Linux etc.

2.1.1 Deployment process

The deployment process starts once the software has been developed, packaged according to the D&C
specification and published by a software provider. It is then acquired by a new owner, called the de-
ployer. The deployment process consists of the installation, configuration, planning, preparation and
launch phases. The installation phase means moving the published software package into the reposi-
tory. The location of the repository is not necessarily the same as the location where the software will
execute. Once the software is in the repository it can be configured, but only in terms of functional
configuration and not in terms of where it will execute. The decision on how and where software
components are deployed is taken in the planning stage. This phase also consists in deciding which
implementation of the software component will be deployed. The result of this stage is the deploy-
ment plan, specific for a given target environment. The preparation phase means performing the work
needed to deploy a given component on a given target node. This phase can consist in moving the
binary files from the repository into the target machines. The preparation can either be done “just in
time” or performed in advance in order to minimize the start-up time. The launch phase consists in
bringing the application into the executing state. This means interconnecting and configuring compo-
nent instances as well as starting execution. Application runs until it completes or until it is stopped
by the same infrastructure that launched it.

2.1.2 Deployment models

Following the phases of the deployment process, the D&C PIMs can be divided into three main
models: the Component Model, the Target Model and the Execution Model. The component model
describes component assemblies in terms of bindings, encapsulation etc. The role of the target model
is to represent the environment into which the components are deployed. Finally, the execution models

2.1. OMG D&C 29

represent the runtime aspects of component assemblies.
From another point of view, the PIMs can be divided into the Data Models and the Management

Models. Data models are used to generate and store descriptive information about component assem-
blies, configurations and deployment constraints. The management models specify runtime entities
(managers) that create, process, provide and store the data model content in order to deploy a system.

In total six different models can be identified within the OMG D&C specification:

• The Component Data and Management model

• The Target Data and Management model

• The Execution Data and Management model

Below we describe those six different models and their role in representing the component de-
ployment process.

Component Data and Management Model

Each component deployable in conformance with this specification has interfaces, via which it can be
connected to other components, and has an implementation, which is either monolithic or composite.
The component data model provides abstractions that describe these components, their implementa-
tions and interfaces as well as information on component packages and configuration. A simplified
view of the component data model is presented in figure 2.1.

30 2. Models and frameworks for the deployment of component-based software

Figure 2.1: Data part of the OMG D&C component model

The PackageConfiguration describes one configuration of a component package and represents a
reusable work product. It extends the ComponentUsageDescription. This allows for several ways
of specifying the ComponentPackageDescription that is being configured. The ComponentPack-
ageDescription describes alternative implementations of the same component interface. It references
the ComponentInterfaceDescription and the ComponentImplementationDescription and is composed
of one or more PackagedComponentImplementations.

The component management model only contains one entity: the RepositoryManager. This man-
ager exposes methods such as installPackage, createPackage, findPackageByName and deletePackage.
It manages component data by maintaining a collection of PackageConfiguration elements.

Target Data and Management Model

The target model describes and manages information about the environment in which applications are
deployed.

The target data model defines abstractions that represent the target environment. A simplified
UML diagram of this model is represented in figure 2.2. The top-level abstraction is the Domain, it
contains Nodes, Interconnects, Bridges, Resources and SharedResources. The Domain simply wraps
information about its content. The Node has computational capabilities and is a target for executing
component instances. Nodes can either use Resources or SharedResouces. Interconnects and Bridges
can only use Resources—they can not share them. Interconnects provide direct connections between

2.1. OMG D&C 31

Nodes whereas the Bridges provide routing capabilities between the Interconnects.

Figure 2.2: Data part of the OMG D&C target model

The target management model consists of only two management abstractions—the TargetMan-
ager and the ResourceCommitmentManager. The TargetManager provides information about the
domain in a form of its data model, as well as tracks the usage of resources within this domain. It
provides methods to create and destroy the ResourceCommitmentManagers. The ResourceCommit-
mentManagers allow for reservation/dereservation of resources.

Execution Data and Management Model

The main abstraction in the data part of the execution model is the DeploymentPlan. The deploy-
ment plan is the result of the planning stage of the deployment process and can either be executed
immediately or stored for further use. It contains information about: (1) artefacts that are part of
the deployment via the ArtifactDeploymentDescription abstraction, (2) how to create component in-
stances from these artifacts (the MonolithicDeploymentDescription) and (3) where to instantiate the
components (the InstanceDeploymentDescription).

The management part of the execution model contains the following abstractions: the Execution-
Manager which manages the deployment process for all domains. It interacts with a set of DomainAp-
plicationManagers. A DomainApplicationManager is responsible for the deployment of components
within a single domain. It splits the deployment plan for a given domain into several subplans—one
for each node. The NodeManager runs on each node. It manages the deployment of components on
a given node, without taking under consideration the application to which these components belong.
Components are created by containers. Each container is hosted in a process called the NodeAppli-
cation. The NodeManager uses the NodeApplicationManager to create the NodeApplication process.
NodeApplicationManager is responsible for deployment of components within a NodeApplication.
One NodeApplicationManager is created for each deployment in order to differentiate deployments
in a node. A NodeApplication provisions resources (CPU, memory, etc.) for the components that
it hosts. It creates an environment for instantiation of components based on the metadata from the
deployment plan, which it obtains from other managers.

32 2. Models and frameworks for the deployment of component-based software

A simplified diagram of the management part of the execution model is presented in figure 2.3.

Figure 2.3: Management part of the OMG D&C execution model

RepositoryManager is associated to a domain and is used by the deployer agents to store compo-
nent implementations and by NodeApplicationManagers to retrieve the software packages. Compo-
nents are stored as dynamic linking libraries and are transferred by the NodeApplicationManager to
the local node’s file system when needed.

2.1.3 Summary

The OMG D&C specification is very interesting for several reasons. Firstly, to our knowledge it is
the only existing attempt at fully modelling the deployment process. The OMG D&C platform in-
dependent models cover not only the component-based application itself, but also the environment
into which this application is deployed as well as the execution of the deployment process and the
execution of the deployed application. Furthermore, this specification is independent from the under-
lying component technology, which makes it highly reusable. Finally, it contains a highly interesting
notion of the deployment plan. The specification proved its real-world applicability in projects such
as DAnCE, which we describe in the following section of this chapter.

Despite the above advantages, the OMG D&C specification also has certain drawbacks. Firstly, its
platform specific models (PSMs) support only a single component technology. Namely, it is impossi-
ble to deploy with this specification an application built with two different component technologies.
This has been identified and addressed in (Hnetynka 2005). Secondly, the modelling of component
implementations in this specification is limited. Nothing is said about the resolution of dependencies
between implementations of software components, as well as on how this resolution integrates into
the deployment process. As will be described in this thesis, it is an important issue of component
deployment.

2.2. DAnCE 33

2.2 DAnCE

DAnCE (Subramonian et al. 2007) is a deployment and configuration engine aimed at distributed real-
time and embedded component based systems (DRE). It conforms to the OMG D&C specification and
thus can be seen as an implementation of it. Authors of the DAnCE project argue that following a
component based approach to software development, therefore separating the application functionality
from lifecycle activities, brings important advantages in terms of software flexibility. Such flexibility
is highly important in software systems such as shipboard computing environments, inventory tracking
systems and intelligence, surveillance and reconnaissance systems, which are the target application
domains of the DAnCE engine.

Authors of DAnCE consider the conventional component platforms, such as Java EE and .NET,
not well-suited for real time or embedded systems, because they do not provide real-time quality of
service (QoS) support. Moreover, applying the component based approach to the construction of DRE
middleware introduces many challenges that hinder its adoption. These challenges are essentially the
need to:

• Deploy the component assemblies into the target nodes

• Activate and deactivate component assemblies automatically

• Initialize and configure server resources to enforce end-to-end QoS requirements

According to the authors, there are no portable, reusable and standard mechanisms to address
these challenges. Therefore, DAnCE provides the following capabilities:

• Automatic downloading of component packages

• Automatic configuration of Object Request Brokers (ORBs), containers and component servers

• Automatic establishment of bindings between components

• Automatic deployment and lifecycle management of middleware services (such as security,
transactions etc.)

In its current implementation, DAnCE uses XML files as deployment descriptors and deploys only
CCM components. Since DAnCE follows the OMG D&C specification, its deployment mechanism
implements and works with the abstractions that we have described in Section 2.1. DAnCE defines
domains as the target execution environments. Domains consist of nodes, interconnects, bridges and
resources. System to be deployed by dance is described in a deployment plan. Architecture of the
DAnCE deployment system is presented in figure [fig]. All the entities in DAnCE are implemented as
cooperating CORBA services. ExecutionManager manages the deployment process for all domains
and interacts with a set of DomainApplicationManagers, which in turn are responsible for the deploy-
ment of components within a single domain. DomainApplicationManagers split the deployment plan
for a given domain into several sub plans – one for each node – and pass the extracted information
to the NodeManagers running on the nodes. NodeManagers manage the deployment of components
on a given node, without taking into consideration the application to which these components belong.

34 2. Models and frameworks for the deployment of component-based software

Components are created by containers. Each container is hosted in a process called the NodeApplica-
tion. The NodeManager uses the NodeApplicationManager to create the NodeApplication process.

NodeApplicationManager is responsible for deployment of components within a NodeApplica-
tion. One NodeApplicationManager is created for each deployment in order to differentiate deploy-
ments in a node.

NodeApplication provisions resources (CPU, memory, etc.) for the components it hosts. It creates
an environment for instantiation of components based on the metadata from the deployment plan,
which it obtains from other managers.

By providing the implementation of the RepositoryManager service, DAnCE has the functionality
to store component implementations and retrieve different versions of them. The RepositoryManager
can also retrieve the software packages given a URL.

DAnCE NodeApplicationManagers can periodically poll their associated RepositoryManagers in
order to obtain the newest version of a software package. This way, when an administrator decides
to redeploy a component, an overhead induced by downloading the new software package from the
repository into the target node can be minimized. Software packages in DAnCE are ZIP files trans-
ported via CORBA invocations.

DAnCE also defines a standard lifecycle for its software components, consisting of four states:
PREACTIVE, ACTIVE, PASSIVE and DEACTIVATED. In a PREACTIVE state a component has been
created and all its environment settings have been performed. Once a component is activated with
its underlying middleware, it is in an ACTIVE state. PASSIVE state indicates that the component
is not executing and its required resources can be used by other components in the application. A
DEACTIVATED component is one which has been removed from the system. DAnCE components
can only be connected and activated if they are in the PREACTIVE state. Similarly, components can
only be deactivated if they are in the PASSIVE state.

Furthermore, DAnCE allows the user to specify, using XML files, the end-to-end QoS related de-
ployment information. Namely, one can manipulate the ORB command line-options, such as choosing
a communication protocol or optimizing request processing and the ORB service configuration op-
tions, such as concurrency and demultiplexing models. This is an important feature required by the
real-time software components which DAnCE is able to deploy.

Summary The main goal of the DAnCE project is to provide a QoS-enabled environment for de-
ployment and management of software components. The target application domain of this work are
the distributed, real time and embedded systems (DREs). In such systems, assuring the quality of ser-
vice is important because the systems must often support real-time processing for tasks such as avion-
ics mission computing and shipboard computing. However, despite a precisely defined application
domain, DAnCE is as a matter of fact a full-featured deployment platform for software components
which can be used in other contexts than DRE systems.

DAnCE addresses the challenges of component deployment by following the OMG D&C specifi-
cation. As a result, the deployment framework is independent of the underlying component technol-
ogy. The main contribution of DAnCE is extending the OMG D&C model with QoS-related aspects.
From the functional point of view, the framework supports XML-based deployment of components.
In the XML-based architecture description file one can specify not only the desired component as-

2.3. JSR88 35

sembly, but also its QoS requirements. The DAnCE framework will then take care of the distributed
deployment of the components and of the proper configuration of middleware services according to
the QoS constraints. Finally, the DAnCE platform performs an automatic installation of component
binaries.

DAnCE shares many similarities with the work described in this thesis, especially in terms of
architecture-based deployment and dynamic installation of their implementations. However, DAnCE
does not attempt to model this installation. It also is not based on a reflexive component model,
thus offers limited runtime management capacity. Furthermore, as described in (Deng et al. 2005)
component implementation binaries are stored in the form of dynamic linking libraries, which has
many drawbacks.

2.3 JSR88

JSR88 (J2EE Deployment Specification (JSR88) 2005) is a deployment API (Application Program-
ming Interface) for Java Enterprise Edition (Java EE). Java EE is an environment for building and
running component-based, distributed, multi-tiered applications. Two types of Java EE components
exist: the WEB components, which usually provide the presentation tier (static or dynamic web pages)
and the EJB (or Enterprise Java Beans) components, which provide the business logic of the appli-
cation. Those two types of components are different not only in terms of functionality, but also
packaging - web components packages, or WARs (Web ARchives), usually contain static (HTML)
and dynamic (JSP) web pages, whereas the EJB-JAR archives contain compiled Java classes. All the
Java EE components are deployed into a Java EE server.

The goal of JSR88 is to allow tools from different providers to configure and deploy Java EE ap-
plications on any Java EE server. JSR88 identifies three roles participating in the process of deploying
a component-based application:

• The Java EE product provider is a supplier of a Java EE server (container) in which the appli-
cation components can be deployed

• The deployment tool provider is a supplier of the software tool that can be used in development,
packaging, deployment, management and monitoring of an application

• The deployer is a person or a software programme who configures and deploys a Java EE
application component on a specific product (server). Typically this is done in three steps:
configuration, distribution and execution.

In order to make the deployment tools independent of the Java EE products and also to allow the
deployers to use different deployment tools, the JSR88 specifies an API that has to be implemented
by the Java EE product and the deployment tool, as well as a model of the information exchanged
between those three participants when deploying a Java EE component.

In order to be compatible with JSR88, the product needs to implement interfaces defined in the
javax.enterprise.deploy.spi package, namely the Deployment Manager, the Deployment Factories (for
accessing the deployment manager) and the Deployment Configuration Components (JavaBeans). The

36 2. Models and frameworks for the deployment of component-based software

main role of the product is to generate the platform-specific deployment information, as well as to
deploy the application.

The tool, which usually is an Integrated Development Environment (IDE) such as Eclipse or
NetBeans, needs to implement the interfaces defined in the javax.enterprise.deploy.model package.
In addition, it has to be able to discover and interact with Java EE product’s Deployment Manager.
The main role of the tool is to access the Java EE application archive as well as to display and allow
for editing of the deployment-related information extracted from the archive. Therefore, the JSR88
interfaces implemented by the deployment tool simply represent the information exchanged with the
Java EE product.

From the sequential point of view, the deployment happens as follows:

• The tool opens an application archive file (such as an EJB-JAR or a WAR) and builds a Deploy-
ableObject object from it. This object represents the metadata of the application archive and is
part of the deployment model.

• The tool obtains a reference to the DeploymentManager and asks it for the server-specific in-
formation for a given DeploylableObject, via the DeploymentConfiguration createConfigura-
tion(DeployableObject) method.

• The DeploymentConfiguration is made editable to the deployer, usually through the graphical
user interface (GUI) of the deployment tool.

• Once the deployment information was filled-in by the deployer, he chooses the Targets on which
the module will be deployed, by calling the Target[] getTargets() method of the Deployment-
Manager

• Next, the tool asks the DeploymentManager to distribute the configured module on selected
targets. This phase consists in the installation of the configured Java EE modules “inside” the
containers provided by the Java EE products represented as targets. A module installed within
a target is represented by the TargetModuleID abstraction.

• The tool can now ask the DeploymentManager to perform life cycle operations on the given
installed modules

The life cycle operations that one can perform on a deployed Java EE module are start/stop but
also redeploy and undeploy. The start and stop operations are fairly straightforward. The redeploy
operation is interesting, because its goal is to replace the given module with its updated version. The
undeploy operation’s goal is to completely remove a given module. Both redeploy and undeploy
operations are however optional in the specification, thus are not necessarily implemented by the
server products.

Summary Main goal of the JSR88 is to separate the deployment tools from the products on which
Java EE applications are deployed. Therefore, the deployers do not need to know all the details of
specific deployment tools in order to deploy applications on different Java EE servers and also any

2.4. SmartFrog 37

deployment tool can work with any Java EE product. This can be considered an important advantage
of JSR88 compared to other deployment APIs.

On the other hand, JSR88 is specific to the Java EE technology and is not generic enough to
be used outside this context. Furthermore, even within the context of Java EE components, this
specification fails to address several important issues. First of all, since this JSR essentially works
with physical packages (EJB-JARs, WARs etc.) it does not fully model the software components that
it deploys and the dependencies between them, as identified and described in detail in (Exertier 2004).
This is contrary to the definition of a component, which is a fully introspectable software entity.

Furthermore, the details of installation, isolation and dynamic updates of the software compo-
nents deployed with this JSR are not covered by the specification. As a result, Java EE server product
providers apply ad-hoc solutions to provide execution-time isolation and dynamic updates of Java
EE components, which will be described in detail in section 4.2. These solutions are usually based
on class loaders and often have drawbacks resulting in class name clashes and other unexpected in-
teractions between the application components. Moreover, they usually force the deployer of the
application to learn about the internal deployment mechanisms of a given Java EE product.

2.4 SmartFrog

SmartFrog (Goldsack et al. 2003) is a deployment and reconfiguration framework for Java. The main
reason behind the existence of this framework, created by HP Labs, is to overcome issues of incorrect
configuration in distributed systems, such as the multi-tier web services, where often numerous soft-
ware components have to be correctly configured, bound and started in a proper sequence. According
to the authors, no existing tools ensure the above and as a result, ad-hoc, error-prone solutions are
adopted by system administrators. SmartFrog aims to (1) increase operational reliability (resilience
to failure) (2) reduce cost of installation and maintenance and (3) assure correctness and consistency.
To achieve it, the framework provides a configuration language, a deployment tool and an execu-
tion environment for distributed software applications written in the Java programming language and
conforming to the SmartFrog API.

Figure 2.4 presents the overall architecture of the SmartFrog system.

Configuration language The SmartFrog configuration language can be considered an Architecture
Description Language. Its principal goal is to allow the application deployer to describe the system to
be deployed in a relatively simple, domain-specific language.

The essential information contained in the SmartFrog application descriptions describes:

• What components should be deployed and their configuration parameters

• How components are related in terms of connections and encapsulation

• The workflow associated with lifecycle of components and the whole system

SmartFrog descriptions can be hierarchical, they can be parametrized and can be validated before
deployment. The validation is performed against a set of rules, such as dependencies between various
system components (e.g. version dependencies), rules governing repetition (e.g. each web server

38 2. Models and frameworks for the deployment of component-based software

Figure 2.4: SmartFrog architecture

should run the N processes), replication (e.g. two cooperating instances of this component should
exist for reliability), location (e.g. this component should be close to the database), and so on. In
practice, the validation rules are defined in SmartFrog templates.

SmartFrog descriptions are ordered collections of attributes, where each attribute has a name-value
format. However, different types of attributes exist in SmartFrog, namely the simple values (such as
integers, strings etc.), references to other attributes and finally the references to other components,
for the inheritance purpose. Furthermore, SmartFrog attributes can either be resolved normally, that
is before deployment, or they are resolved lazily—once all the components have been deployed. Fig-
ure 2.5 illustrates a set of example SmartFrog descriptions. The webServerTemplate and dbTemplate
descriptions are referenced within the “main” description, which is called system:

As can be seen, the component descriptions are hierarchical and each component within the hier-
archy defines a name space.

The above illustrated SmartFrog description language could very well be quite different in terms
of form—the SmartFrog parser works in fact with a set of open data structures. Thus, different textual
representations of the notation can be supported by the parser.

The SmartFrog configuration language is only used to define the configuration parameters of com-
ponents and the information on the target machines on which these components should be deployed.

2.4. SmartFrog 39

Figure 2.5: SmartFrog description

The notation is not used to define behaviour of components—it is not a programming language. Be-
havioural part of the component is hidden within the implementation code of these components.

SmartFrog comes with the tools to create, store and manipulate the architecture descriptions writ-
ten in the SmartFrog configuration language.

Component model The SmartFrog component model consists of primitive and composite compo-
nents, it is therefore hierarchical. Furthermore, each SmartFrog component is divided into the control
part and the functional part, with the control part being a simple, extensible set of interfaces to access
key management actions: instance creation, configuration and termination. SmartFrog components
can be:

• Fully integrated, in which case they fully implement the component interfaces directly in Java

• Independent, in which case they are wrappers (Java adapters) for legacy code

SmartFrog distinguishes a notion of a system and an application. A system deployed and managed
by SmartFrog is a collection of applications. Each application is in turn built as a set of components.
Since each application consists of a collection of components, an application is not seen by Smart-
Frog as an atomic object. Each component in an application is tightly bound via a parent-child or
binding relationship and the transitive closure of the parent-child relationship defines the scope of the
application. There are no direct bindings between components belonging to different applications,
but components can locate each other via a naming and discovery service provided by the SmartFrog
framework.

Lifecycle of each component in an application is tightly bound to lifecycle of other components via
a parent-child relationship - parent components are notified of children death and vice versa. Parents
are responsible for the lifecycle of children.

40 2. Models and frameworks for the deployment of component-based software

A structure and lifecycle automaton of a SmartFrog component is presented in figure 2.6. The
illustrated lifecycle methods, such as the sfDeployWith(ComponentDescription) or the sfStart() are
imposed by the component model and have to be provided by the component’s implementation class.
Some of these methods, for example the sfDeployWith(ComponentDescription) are inherited from the
basic component implementation class provided by SmartFrog, and should not be overriden. Other
methods, such as the sfDeploy() can be overriden to provide component-specific initialization code.
All lifecycle methods are called on the component after its implementation class has been instanti-
ated. Some of them make callbacks to component’s parent. This is the case for the sfTerminate-
With(TerminationRecord) method, which notifies the parent component of the given component’s ter-
mination.

A SmartFrog component SmartFrog components’ lifecycle

Figure 2.6: SmartFrog component and its lifecycle

Deployment infrastructure The deployment infrastructure in SmartFrog is a distributed service
responsible for the configuration and instantiation of software components. Once the SmartFrog de-
scription written in a notation is parsed (processed by the language processor), the simplified model is
passed to SmartFrog deployment infrastructure to carry the deployment process. The deployment in-
frastructure ensures that the deployment tasks are scheduled and executed (orchestrated) in an orderly
manner and with transactional guarantees. Once the components are instantiated, the deployment
framework can perform initialization operations on them using the “standard”, predefined, manage-
ment interface. Low-level semantics of these management operations can be overloaded by the devel-
oper of the application—he can for example define various types of bindings (via a naming service,
SLP discovery etc.). Furthermore, SmartFrog provides different possibilities to define the placement
of a component—host name, co localization with another component etc.

Physically the deployment means invoking the sfDeployComponentDescription method on the
ProcessCompound—a predefined SmartFrog composite component which represents a JVM. By de-
fault, components from the given deployment description are created in this compounds JVM. This
can be changed using sfProcessHost parameter. Given a description, compound passes it to a deployer
identified by sfProcessHost. Deployer looks for the sfClass attribute, that identifies the implementa-
tion class of a component, extracts this name and creates an instance of this class using a default

2.4. SmartFrog 41

constructor. Component instance is initialized using sfDeployWith method. As a result of sfDeploy-
ComponentDescription call, an object reference is returned. The receiving object, which usually is
the deployer, has to call all the other lifecycle methods in order to start the component.

SmartFrog also comes with a workflow-like system to carry complex configuration tasks on clus-
ters, where task ordering, recovery from failure etc. is required. This system is called the SmartFlow
and can be seen as a part of the deployment infrastructure. It consists of (1) a library of composite
components with predefined lifecycle (parallel, sequence) etc. to manage the subcomponents, that
allow one to build workflows, and (2) of an event framework to disseminate events between compo-
nents. Currently the SmartFlow lacks transactions and persistence.

Example, predefined SmartFlow components are the following:

• Sequence—Starts components one after another, that is a next component in a sequence is
started when the previous one terminates.

• Time-out—Contains a single subcomponent. Starts this subcomponent and waits for it to ter-
minate within a given time.

• Try—Contains several subcomponents. Tries to execute the primary sub-component and when
this subcomponent terminates, tries to execute the continuation subcomponent depending on
the termination type (the continuation subcomponent is indexed by the termination code).

The deployment infrastructure in SmartFrog also provides interesting solutions in terms of secu-
rity, based on the public key infrastructure (PKI). Each SmartFrog target machine is a security domain,
and is supplied with a security certificate. Furthermore, each software component is signed with a cer-
tificate. Based on this, nodes can have different access restrictions and only validated nodes will be
allowed, for example, to manipulate components and descriptions that have been correctly signed.
Furthermore, all network communication carried out within SmartFrog happens over an encrypted
channel.

Summary SmartFrog is an interesting research project around the deployment of highly complex,
distributed applications. It has been successfully used in the industrial environment, for example to
manage clusters of Java EE servers. It shares many similarities with Fractal Deployment Framework
(the FDF), which we describe in the next section.

The interesting aspects of SmartFrog are multi fold. Its component model allows for the mod-
elling of legacy software in a unified manner. The model is hierarchical and divides a component
into a control and a functional part. Thanks to the component abstraction, applications deployed and
managed by SmartFrog can be described in an architecture description language. In terms of deploy-
ment, SmartFrog comes with a sophisticated engine, which is a distributed application. This engine
ensures that deployment tasks are executed in an orderly and transactional manner. Furthermore,
SmartFrog provides a set of composite components which can be put in the deployment descriptor
and which define a specific lifecycle for the children of a given composite (for example sequence,
parallel etc.). Finally, the security aspects have been seriously considered and implemented by the
creators of SmartFrog.

42 2. Models and frameworks for the deployment of component-based software

The main limitation of SmartFrog is that it does not address software packaging, local installation
and runtime modularity/versioning issue. It simply assumes that software code is either present on
the target machine. Software packages and versions of components instantiated from them are not
part of the explicit architectures managed by SmartFrog. Furthermore, SmartFrog does not provide
a package repository for its software components. Finally, SmartFrog supports only limited forms of
dynamic reconfiguration, dependent on a fixed component life cycle.

2.5 Fractal Deployment Framework (FDF)

Fractal Deployment Framework (FDF), also called DeployWare (Fractal Deployment Framework
2006), is a component-based tool for deploying legacy applications. The framework essentially con-
sists of three elements: (1) a language in which the deployer can describe the desired software archi-
tecture and (2) an extensible library of Java classes which represent the legacy software that FDF can
deploy (such as Apache (The Apache Software Foundation 2005) HTTP server, JVMs etc.) as well
as the basic deployment operations (SSH, SCP etc.) and (3) a set of tools which facilitate the writing
and editing of deployment descriptor files and executing the deployment process. In FDF everything
is reified as a component (variables, shells, protocols, commands, software etc.).

Figure 2.7 presents the general architecture of the Fractal Deployment Framework.

Figure 2.7: General architecture of the Fractal Deployment Framework (FDF)

Given a description of an architecture to deploy (the DeployWare file), FDF first parses it and
builds a component-based representation of it, called the configuration. The configuration references
the set of predefined FDF deployment components which perform the basic deployment tasks. This

2.5. Fractal Deployment Framework (FDF) 43

representation can then be edited and manipulated through the tools provided with FDF—the tools
allow the end-user to perform the install, configure, start, stop, unconfigure and uninstall operations
on the given configuration.

The target software architecture to be deployed using FDF is described in the deployment descrip-
tor, which is either XML-based or is written in a domain-specific language defined by the FDF. The
two languages are equivalent in terms of the information they can handle. This high-level description
contains the list of components to be deployed and the target host. In the same file, the end-user can
reference software components predefined by the FDF, which perform basic deployment actions by
wrapping file transfer protocols (FTP, SCP), remote access mechanisms (Telnet, SSH) and different
shells (Linux, Windows).

Figure 2.8 is an example of the FDF deployment description for the Petals component.

<component name =” p e t a l s 1 ” d e f i n i t i o n =”PEtALS . SERVER”>
<component name=” a r c h i v e ” d e f i n i t i o n =”PEtALS . ARCHIVE(f i l eName)”/ >
<component name=”home ” d e f i n i t i o n =”PEtALS .HOME(homeDir)”/ >
<component name=” name ” d e f i n i t i o n =”PEtALS .NAME(PEtALS−Name)”/ >
<component name=” h o s t ” d e f i n i t i o n = ” . / h o s t 1 ”/>
<component name=” p o r t ” d e f i n i t i o n =”PEtALS . PORT(p o r t)” / >
<component name=” userName ” d e f i n i t i o n =”PEtALS .USERNAME(u s e r)”/ >
<component name=” password ” d e f i n i t i o n =”PEtALS .PASSWORD(p a s s)”/ >

</component>

Figure 2.8: An FDF description of the Petals component

The FDF configuration language allows the software deployer (the end-user) to define dependen-
cies between components, it also supports certain non-functional properties of deployment, such as
parallelism. These dependencies and non-functional aspects of deployment will be then respected
by the FDF deployment engine. Thanks to this, one can deploy a complete system in one step—for
example, in case of a Java EE application, FDF is capable of deploying everything, starting from the
JVM, through the Java EE container, and finally the Java EE application.

Summary FDF can be considered a practical tool for deploying legacy software binaries on hetero-
geneous machines. Its main advantage, and at the same time similarity with the SmartFrog platform,
is that it represents everything as software components. However, since FDF is based on Fractal, its
component model is more advanced than the one in SmartFrog—it is not only hierarchical, but also
supports sharing of components and is highly extensible.

The main disadvantage of FDF is that it does not address the fundamental issue of packaging
and versioning of component-based software. For example, versioning of the library of software
components which represent objects deployable with FDF is not supported. In the context of Java
applications, FDF does not reify Java types as part of software architecture, thus it is unable to support
the evolution of such application without restarting a JVM in which they execute.

44 2. Models and frameworks for the deployment of component-based software

2.6 NIX

Nix (Dolstra et al. 2004) is a research project around the deployment of component-based software
conducted at the University of Utrecht. The main goal of the project is to provide a framework for
safe and flexible deployment of software components.

By safe deployment the authors of Nix understand the fact that all component’s dependencies
are satisfied. By flexible they mean that different deployment policies can be defined and that sev-
eral versions of components can coexist. Nix draws an analogy between deployment and memory
management, by identifying two essential problems occurring in deployment:

• Unresolved dependencies, which happen when a component’s dependency cannot be found.
This is equivalent to a dangling pointer in the file system

• Collisions, which occur when two different versions of a component cannot coexist because
they occupy the same location in the file system

Nix proposes an approach to this problem which organizes the component repository like an ad-
dress space. In this approach, every component has a unique name which is similar to a symbolic
name in a file system. In the repository this unique name corresponds to a folder in which all the
component’s resources are stored. The symbolic name also contains, as a prefix, the hash of all the
symbolic names of components used to build a given one. Thus, if a change to any of the “parent”
components occurs, a new symbolic name for the given component is generated. This new symbolic
name corresponds to a different version of the given component, stored in a new store path.

The closure of component’s dependencies in Nix is calculated automatically, based on the prin-
ciple that if a component A depends on a component B, then A contains the store path of B. This
is illustrated in figure 2.9 (taken from (Dolstra et al. 2004)). This figure also illustrates value of the
closure.

Closures are automatically determined by interpreting derivation values. A sample derivation
value is shown in figure 2.10.

A derivation value includes the deployment description (names of components, description of the
target platform) and the shell script with the deployment tasks. Normally derivation values are not
hand-written, but rather generated from a higher level description. Furthermore, derivation values are
hidden from NIX clients using various mechanisms.

The deployment process in NIX is a functional one in that the result of it depends only on the
parameters—if we use the same parameters twice, we always obtain the same result. Also, the content
of a repository built from a set of inputs never evolves once it has been built.

Summary NIX is a deployment framework which ensures safe and flexible deployment of soft-
ware components—it solves the problem of unresolved component dependencies and allows multiple
versions of components to coexist. Main contributions of NIX are that it manages the component
repository like memory and that deployment process in NIX is fully functional one.

However, NIX is strongly tied to the UNIX environment. Furthermore, its expression language
is based on shell scripts, thus it is not typed. Finally, NIX was not used for the deployment in a
distributed environment so far.

2.7. Summary 45

Organisation of the NIX store A sample NIX closure value

Figure 2.9: NIX repositories and closure values

2.7 Summary

In this chapter we have analysed the existing projects around the deployment of component-based
software. We have focused on APIs, models and frameworks for the distributed deployment of such
software.

Most of the presented solutions, including SmartFrog, do not address the issue of installing
component implementations, the versioning of these implementations and the depencendies between
them—they simply assume that software packages are always available on the target machines. The
DAnCE system does perform the dynamic installation of implementations of components, but as op-
posed to SmartFrog and similarly to FDF it does not provide a reflexive component model for runtime
management of the deployed architecture. This makes building autonomic systems on top of these
three platforms impossible.

NIX and JSR88 on the other hand are technology-specific solutions. NIX was designed with
Unix/Linux environment in mind, JSR88 is an API for Java EE applications. Especially the JSR88 is
not generic enough to be applicable in a different context than the deployment Java EE components,
such as Enterprise Beans and Web Applications.

46 2. Models and frameworks for the deployment of component-based software

Figure 2.10: Nix derivation value

Résumé de chaptire 3

Dans le chapitre 3 de cette thèse on analyse les systèmes de paquetage des logiciels. On se focalise
sur les solutions le plus pertinents—les systèmes de paquetage pour Linux/Unix, tel que les RPMs et
les DEBs ainsi que les systèmes de paquetage pour les environnements Java et .NET.

La raison pour nos travaux d’investigation dans cette domaine est le fait que les paquetages
physiques et leurs systèmes de gestion constituent une couche de base de déploiement des logiciels.
Notamment, pour construire un système de déploiement complet on doit répondre au question d’où le
code exécutable des composants arrive, comment il est installé sur les machines cibles et quelle gen-
dre des propriétés les paquetages physiques doivent-elles supporter. On s’intéresse particulièrement
aux ensembles des méta-donnes supporté par chaque format de paquetages, tel que les déclarations

2.7. Summary 47

des dépendances des pacquages, leur conflits etc.

Chapter 3

Software packaging systems

Contents
3.1 Unix/Linux packages . 49

3.1.1 DEB . 49

3.1.2 RPM . 51

3.1.3 Summary . 52

3.2 Java JARs & .NET assemblies . 53

3.3 Summary . 54

This chapter is an anlysis of existing software packaging systems. We focus on the most relevant
solutions—the Unix/Linux package formats (DEB and RPM) and the packaging formats for the Java
and .NET environments.

The reason for our investigation in this area is that physical packages are the “nuts and bolts” of
software deployment. Namely, for a full-featured deployment system one must answer the question of
where the executable code of components comes from, how it is installed on the target machines and
what kind of properties must the physical packages support. We are especially interested in the set of
meta information supported by each of those packaging formats, such as the declarations of package
dependencies, conflicts etc.

3.1 Unix/Linux packages

Unix-like operating systems support several types of software packages. Most of those packages can
exist in two forms: source packages contain the code which can be compiled on the user’s computer,
whereas binary packages contain executable, compiled code which only needs to be installed on the
user’s machine. In this section we will describe two popular package formats for Linux: the DEB and
RPM, focusing on the binary packages.

3.1.1 DEB

DEB is a package management system used by the Dpkg—the package manager for the Debian Linux
distribution. DEB packages are archiver (also known as ar) files containing three parts: the package
version and two archives containing the package metadata as well as the files to be installed (the
package content). Metadata can contain the following fields with information about the package:

• Package (mandatory) - a package name

50 3. Software packaging systems

• Source - the name of the source package from which this binary package was created

• Version (mandatory) - the package version number

• Section - a field used to classify packages (main, contrib or non-free)

• Priority - a package can be required (a system will not function without it), important (expected
on any Linux system, but the system can work without it), standard (installed by default),
optional (usually installed but not necessary), extra (everything else). Packages on the optional
level and above need not conflict with each other

• Architecture (mandatory) - either specifies a concrete architecture, such as i386, or all to denote
an architecture-independent package

• Essential - if set to yes, the package should never be removed, although it can be upgraded or
replaced

• Installed-Size - specifies the size of the package when it is installed

• Maintainer (mandatory) - specifies the person responsible for maintaining the package

• Description (mandatory) - a description of the package

The rest of the package metadata specifies the dependencies on other packages as well as conflict-
ing packages using the following fields:

• Depends - before package A is configured, package B has to be configured first. This is a run
dependency meaning package A cannot run without B

• Recommends - similar to Depends, however package B is not necessary, only recommended. If
package B is not present, A may malfunction

• Suggests - similar to Depends, however A can function correctly without B

• Enhances - opposite of Suggests

• Pre-depends - this is an installation dependency. Package A cannot be installed if package B is
not already installed

• Conflicts - opposite of Depends

• Replaces - a way to resolve conflicts. If package A replaces package B, then package B will be
removed if A is installed

DEB Package dependencies can be scoped using the following operators: =, ≤ and ≥.

Packages can also depend on virtual packages. Virtual packages do not physically exist, but they
can be provided by other packages using the Provides field. Virtual packages are not versioned.

3.1. Unix/Linux packages 51

Source packages The information presented above is only relevant to binary DEB packages. Source
packages are different in several aspects. Firstly, many binary packages can be built from a single
source package. Secondly, source packages only have build-time dependencies. Namely, a source
package can build-depend or build-conflict with other packages.

Versioning A version number of a DEB package consists of three parts: the epoch, the upstream
version and the revision. Epoch is a single integer and the most important part of the version - a
package of epoch n+1 will always be of higher version than a package of epoch n.

Sections Each DEB package belongs to a section (main, contrib, etc.) depending on whether or not
they conform to certain coding conventions, as well as what kind of packages they depend on. This
allows to assure certain quality of packages in each of the sections.

3.1.2 RPM

Like DEB, RPM (Bailey 2000) packages also exist in either source or binary form. Here we only
describe the binary ones.

RPM packages have their own binary file format - same for both source and binary packages.
It was designed to be independent of the target machine’s architecture, therefore it follows the byte
ordering defined for the internet. This format can be divided into the following logical sections:

• Lead which contains the package format signature and some information concerning the struc-
ture of the package

• Signature which is a collection of digital signatures for cryptographic purpose

• Header which contains the package metadata, such as package description, dependencies etc.

• Payload which is the actual archive with the package content

The header section is where package metadata is stored. The main elements of this metadata are
the following:

• Name specifies the name of the software being packaged

• Version, Release and Epoch specify the version of the software

• Description and Summary describe and summarize the content of the package

• Group provides a way to organize packages. Groups can be hierarchical.

In RPM, the package headers can also contain information on package dependencies, which allows
to establish relationships between packages. Package dependencies are specified using the name of
the package and sometimes arithmetic constraints, which is possible because RPM package versions
are totally ordered. Available comparison operators are the following: <, ≤, =, ≥, >.

Here are the dependency-related tags that an RPM header may contain:

52 3. Software packaging systems

• Requires specifies a package needed by the given package to work. The required package can
be installed “on the fly” and thus not have to be present before the installation process of the
current package starts

• PreReq similar to Requires but the package has to be present before the installation of the current
package starts

• Conflict specifies the packages that must not be installed in order to make the current package
work

• Provides, often referred to as a virtual package, allows a package to specify a capability that it
provides. This can also be a way to group packages together

• Obsoletes specifies the packages that are made redundant by the current one. Redundant pack-
ages are automatically deleted

Versioning A version number of an RPM package consists of three parts: the epoch, the version
and the release.

3.1.3 Summary

RPM and DEB are two very common and highly advanced packaging formats for Linux. Therefore,
analysing them helps to better understand the requirements that software packages need to fulfil,
especially in terms of metadata. It is clear that these two packaging formats share many similarities
and the only important differences are the following:

• Package priority is a feature that allows to specify how important a package is. It is present in
DEB, but not in RPM

• Essential package is a feature that allows to specify a package that can never be removed.
Again, this feature is available in DEB but not in RPM

• Multiple versions of a package - in RPM is it possible to have several versions of a package
installed simultaneously. This feature is not available in DEB

Being essentially software packaging technologies, RPM and DEB do not address the distributed
deployment issues. Furthermore, neither of the two systems attempts to establish a link between the
physical packages and the applications contained within them. This results in package management
systems built on top of these formats (such as the Synaptics system) being often unable to correctly
manage software uninstallation or handle application conflicts. Finally, since RPM and DEB are
only packaging systems, they do not provide the necessary reflexive component model for building
autonomic management systems.

3.2. Java JARs & .NET assemblies 53

3.2 Java JARs & .NET assemblies

JARs and assemblies are packaging formats for the Java and .NET platforms respectively. We describe
both of those formats in this section, because they share many similarities—they contain a machine-
independent, partially compiled code. This code is compiled into machine language at runtime, just
in time (JIT).

Java’s machine independent code, the bytecode, is executed by the Java Virtual Machine (JVM).
Initially, Java bytecode was designed to support only the Java programming language. Currently some
other programming languages can be compiled into it. .NET’s equivalent of bytecode is called the
Common Intermediate Language (CIL). It is run by the .NET’s Common Language Runtime (CLR),
which can be seen as .NET’s equivalent of the JVM. As opposed to Java’s bytecode, .NET’s CIL was
specifically designed to support various programming languages, such as C#, Java, etc.

The packaging format for the Java bytecode is called JAR (Java ARchive). JAR packages contain
Java classes compiled into the bytecode and metadata in a form of a manifest file. .NET assembly is
a packaging format for the .NET platform. Just as Java JARs, .NET assemblies contain the compiled
code, a manifest file and possibly other resources. A simplified diagram of both of those packaging
formats is represented by figure 3.1.

The manifest files, a purpose of which is to describe the content of the packages, have different
formats in JARs and assemblies—they are regular text files in Java JARs and XML files in .NET
assemblies.

Java JAR .NET assembly

Figure 3.1: Java JARs and .NET assemblies

JARs do not provide a versioning scheme, neither do they allow for explicit declaration of depen-
dencies on other JARs. Compared to assemblies, they are very simplistic in this respect. Assemblies
can be defined as versioned, self-describing binaries (DLL or EXE) which contain a collection of
types such as classes, interfaces, structures etc. An assembly can span multiple files (the multi-file
assemblies), but also a single file can contain one or more assemblies. In a typical case an assembly
consists of a single DLL or EXE file. Despite the fact that assemblies can have the DLL extension,
they are different from the old (C-style) DLLs, the only similarity being a conceptual one—both
are libraries of code intended to be loaded and called by other programs. The EXE assemblies are
executable programs, but they can also export DLL resources to be used by other programs.

54 3. Software packaging systems

.NET assemblies can be strong- and weak- named. Weak named assemblies do not have any
restrictions on their naming convention. Strong named assemblies have to specify: a name, a version
number, a programming language used to develop them and a public key. This approach is extremely
useful for version identification. Compared to Java, in which the only versioning scheme is the fully
qualified class contained within a JAR, strong named .NET assemblies have a much more powerful
versioning scheme. This, coupled with the notion of application domains, allows .NET applications to
simultaneously use several versions of the same classes. This feature is not easily achieved in Java—
it can be obtained by clever usage of class loaders, the entities that convert bytecode into the code
executing within a JVM. This will be explained later in this document.

The notion of an application domain in .NET does not exist in Java. Each application domain is
an isolated execution environment and communication between different application domains must
be an inter-process communication – just like Remote Method Invocation (RMI) in Java. Assemblies
loaded in one domain are not available in the other domains. Each application domain manages its
own assemblies.

Class loading is an important difference between the Java and .NET. The first major difference
is that .NET is only able to load CIL code from assemblies. The Java class loaders, by default, can
load classes either from JAR files, or directly from .class (bytecode) files. Moreover, one can define
his own class loader capable of loading code from yet another file format, over the network etc.—this
feature is not available in .NET. On the other hand, .NET allows for dynamic unloading of assemblies,
which in turn allows for the evolution of the applications deployed on .NET without the need to restart
the platform, a feature not available in Java. However, only complete assemblies can be unloaded.

3.3 Summary

In this chapter we have described several popular software packaging technologies. We were inter-
ested in these systems because packaging can be considered the lowest layer of deployment thus needs
to be addressed by any system attempting to provide a full-featured deployment functionality.

RPM and DEB are popular packaging formats in the Linux/Unix environments. They share many
similarities and provide an extensive set of metadata that the package provider can use in order to
express package dependencies, conflicts, priorities etc. The two packaging formats support source
and binary packages—source packages are independent of the target machine’s architecture, binary
packages contain code that was compiled specifically for a given architecture. The main drawback of
these systems is that they can only be used to install software on Linux/Unix machines and are not
compatible with other operating systems. Furthermore, they are not coupled with a component model,
thus make building autonomic management tools on top of them impossible.

Java JARs and .NET assemblies are packaging formats for the Java and .NET platforms respec-
tively. These platforms are modern, machine-independent technologies that use a form of intermediate
code (bytecode in Java, CIL in .NET) within the software packages. This allows the packaging to be
independent of architecture of the target machines as well as the operating systems running on them.
JARs are only units of grouping for the precompiled Java code—they do not allow for expressing
dependencies or conflicts between this code. Furthermore, they do not provide metadata to describe
the content of packages. .NET assemblies are more similar to RPM and DEB packages in terms of

3.3. Summary 55

completeness of the metadata and thus are more advanced than Java JARs. Yet, .NET is limited in
terms of dynamic loading of code, as opposed to the Java platform, which makes building custom
component-based systems on top of it difficult.

56 3. Software packaging systems

Résumé de chaptire 4

Dans le chapitre 4 de cette thèse on présent plusieurs solutions visant a résoudre le problème de
la manque de support pour la modularité dans le langage Java. On a choisi Java comme environ-
nement car c’est un langage type, oriente objet, dans lequel des nombreuses modelés a composants
était implémenté. Par ailleurs, plusieurs plateformes de déploiement décrit dans le chapitre 2 de cette
thèse sont construits en Java et par conséquence souffrent a cause de limitations de cette langage et son
environnement d’exécution—la JVM (Java Virtual Machine). Ensuite, comme Java est une technolo-
gie relativement moderne et en cours d’évolution, elle est construit a partir des années d’expérience
dans plusieurs autres langages de programmation, elle partage également des nombreuses similarités
avec d’autres langages modernes oriente objet, tel que le C#, et leurs environnement d’autres envi-
ronnement d’exécution, tel que .NET. Par conséquence, les problèmes de modularité décrit dans ce
chapitre et les approches qui essayent de les résoudre sont également applicable aux autres technolo-
gies a partir lesquelles les plateformes a composants et leur systèmes de déploiement sont construit.

Chapter 4

Module systems for Java

Contents
4.1 OSGI . 58

4.1.1 Physical part . 58

4.1.2 Runtime part . 59

4.1.3 OBR . 60

4.1.4 Summary . 60

4.2 Java EE servers . 60

4.2.1 Isolation of the Java EE components . 61

4.2.2 Isolation of the container from the applications 61

4.2.3 JOnAS . 61

4.2.4 JBoss . 63

4.2.5 Summary . 63

4.3 iJAM & JSR277 . 64

4.4 MJ . 65

4.5 JPloy . 68

4.6 Summary . 71

This chapter presents several solutions to the lack of modularity in the Java programming lan-
guage. We have chosen Java, because it is an object-oriented, typed programming language in which
many component models are implemented. Furthermore, many of the existing deployment frame-
works described in Chapter 2 are built in Java, thus they suffer from the limitations of this language
and its execution environment—the Java Virtual Machine (JVM). Finally, since Java is a relatively
modern and evolving technology, it not only builds on many years of experience in various program-
ming languages, but also shares numerous similarities with other modern object-oriented languages,
such as C#, and their execution environments, such as .NET. Thus, modularity issues discussed in this
chapter and the solutions that attempt to address them are in many aspects applicable to other existing
technologies on which component-based frameworks and their deployment solutions are built.

Before discussing the modularity in Java, we need to briefly present its encapsulation and scoping,
as well as type system and linking mechanism. A more in-depth description of these aspects of Java
will be given in the contribution part of this document.

Java programming language provides classes and packages for static encapsulation and scoping.
Packages, such as java.lang define name spaces for Java classes. Different visibility modifiers can be
applied to classes, their fields, methods etc. such as public or private.

58 4. Module systems for Java

Class loaders, on the other hand, can be seen as dynamic name spaces. A class loader is an object
called by the JVM whenever a reference to a name (the fully qualified class name—FQN, thus the
name of a class plus the name of its package) needs to be resolved. The class loader converts the Java
bytecode, that it finds either in the CLASSPATH in a file system or downloads over the network, into
a Class object. From the class objects, object instances can then be created. The Type of each object
instance is defined as a tuple, containing the fully qualified class name of the class from which this
object was created, and the class loader that converted this class’ bytecode into a class object. Thus,
class loaders in Java can be seen as name space mechanisms. Since Java allows the class loaders to
delegate the loading of a classes between them, one can build sophisticated module mechanisms on
top of class loaders.

As will be presented in this chapter, the static scoping combined with class loaders is insufficient
to provide the true modularity in Java. The research projects described below attempt to build higher-
level, reusable module frameworks for the Java platform.

4.1 OSGI

The OSGI Alliance has created a set of specifications defining an environment for the deployment
and execution of component-based, service-oriented applications on top of the Java platform (Open
Services Gateway Initiative, OSGi service gateway specification, Release 4 2005). Initially these
specifications were targeted at the set-top box devices, on which different vendors could remotely
deploy and manage software services written in the Java language. Since then, OSGI has evolved
significantly and is now used in various contexts, spanning from mobile phones to server-side Java
EE platforms. OSGI can therefore be seen as a general, component-based environment for the Java
applications executing within a single JVM. It is thus very interesting to see how it copes with the
problems of modularity, versioning and dynamic updates in Java and analyse its shortcomings.

Essentially, the OSGI specification can be divided into the (1) physical part and the (2) runtime
part. The physical part is about packaging and deployment of OSGI components, whereas the runtime
part is about managing life cycle of these components and the dependencies between the services over
which they communicate.

4.1.1 Physical part

The physical part of the OSGI specification defines a packaging format for the OSGI components,
called bundles. This format is based on Java jars enhanced with metadata stored in a manifest file.
There is one manifest file per bundle. Bundles’ metadata is processed by the OSGI platform when
bundles are loaded into the OSGI execution environment. The main element of bundle’s metadata is
the declarations of dependencies. Each bundle can specify what Java packages it provides (exports)
and what packages it needs (imports). Java package names, not class names, have therefore been cho-
sen by the authors of OSGI as the granularity of import/export dependencies. In the metadata, bundles
can express additional information on the provided/required packages, such as versions. Furthermore,
the metadata file lists the directories and JAR files which constitute the given bundle’s class path and
which are contained within the bundle archive (therefore an OSGI bundle JAR file can contain nested
JARs). A sample manifest file of an OSGI bundle is presented in figure 4.1.

4.1. OSGI 59

Bundle−Name : SampleBundle
Bundle−SymbolicName : f r . j a d e . b u n d l e s . sample . SampleBundle
Bundle−D e s c r i p t i o n : A sample bund le
Bundle−V e r s i o n : 1 . 0 . 0
Bundle−Vendor : SARDES
Bundle−A c t i v a t o r : f r . j a d e . b u n d l e s . sample . A c t i v a t o r
Bundle−C l a s s p a t h : . , / c l a s s e s , / l i b / jms . j a r
Impor t−Package : f r . j a d e . b u n d l e s . l i b r a r y ; s p e c i f i c a t i o n −v e r s i o n = ” 1 . 0 . 0 ”
Expor t−Package : f r . j a d e . b u n d l e s . sample . i n t e r f a c e ; s p e c i f i c a t i o n −v e r s i o n = ” 1 . 0 . 0 ”

Figure 4.1: A sample OSGI manifest file

When an end-user attempts to deploy a bundle into the OSGI environment, the environment at-
tempts to resolve the bundle’s dependencies. If some of the bundle’s dependencies can not be resolved,
its exported resources will not be available to other bundles. If the resolution phase succeeds, the plat-
form will be able to proceed and start the bundle.

Starting a bundle means invoking its activator class. This class is specified in the bundle’s manifest
and is the entry-point to the component. Bundles are not required to declare an activator. If they don’t,
the bundle can not interact with the runtime part of the platform, thus its only purpose is to serve as a
library of compiled Java code. If a bundle declares an activator in its manifest, the activator class must
implement the org.osgi.framework.BundleActivator interface. This interface is used by the OSGI

framework to manage the bundle and give it the access to the OSGI platform’s runtime.

4.1.2 Runtime part

When a bundle is resolved, thus its dependencies are satisfied, the OSGI runtime calls a start method
of its activator, passing an instance of a BundleContext as this method’s only argument. This call gives
the programmer of the bundle the reference to a BundleContext—an interface through which bundles
register services that they provide and lookup services that they require. Each bundle can provide and
use as many services as it wants.

OSGI services are published in the bundle context by specifying the service interface, the refer-
ence to an object implementing this interface and finally a set of meta-information about the service.
To lookup a service in the bundle context, one has to define the service interface and an LDAP-like
query against which the provided services’ metadata will be matched.

The OSGI specification imposes the organisation of class loaders within the framework—there is
always one class loader per bundle. A good example is the Felix platform. Its underlying class load-
ing mechanism, built on top of the Module Loader (Hall 2004) extensible class loading framework,
follows precisely this requirement—each bundle installed within Felix is equipped with its own class
loader. When resolving the bundle accordingly to its import/export dependencies, Felix will configure
the class loader delegation graph. Furthermore, the platform’s underlying class loading mechanism
observes the lifecycle events of bundles as they come and go and reconfigures the class loader graph
accordingly. As a result, often an update of a bundle imposes that bundles which transitively depend
on it be also updated. An update means simply recreating the bundle’s class loader, thus reloading
all the code from it. It is necessary because Java class loaders cannot unload classes, yet they define
types.

60 4. Module systems for Java

4.1.3 OBR

Finally, an interesting aspect of the OSGI specification is the OSGI Bundle Repository (OBR). OBR
allows the users of OSGI to store their bundles, including metadata, on an HTTP server, from which
they can be seamlessly deployed on target machines. When a manager of an OSGI gateway asks the
OBR to deploy a bundle, automatically this bundle’s dependencies will be analysed and the bundles
missing on the given gateway will also be installed.

4.1.4 Summary

OSGI is currently the most advanced module system for Java applications. It handles not only the
versioning of Java software components within a single JVM, but also allows for dynamic installation,
removal and updates of those components. It comes with a rather lightweight API, thus writing Java
software compatible with OSGI is relatively straightforward and the existing Java applications can
fairly easily be ported to OSGI-compatible versions and benefit from the deployment and service-
oriented aspects of this framework.

Furthermore, OSGI comes with a growing library of existing software components which can
be used off-the-shelf. It also has a powerful tooling, including the Eclipse plugins to easily write,
compile, store and deploy bundles. This is important because those tools ensure that, for example,
Java types used within OSGI bundles are resolved against the same dependencies during develop-
ment (compilation) and execution—thus eliminating the problems commonly encountered with Java
class path. Those advantages have made OSGI especially popular with the developers of Java-based
containers of third-party applications (such as Java EE servers), which often suffer from unexpected
type resolution problems.

Despite the above advantages, OSGI also presents several important limitations. First of all, it
cannot be considered a real component framework. There is no notion of explicit, reflexive soft-
ware architecture in the OSGI specification. Service-level dependencies between bundles are hidden
within the activators, and it is the bundle developer’s responsibility to correctly manage those depen-
dencies. This is not only against the definition of a component as a piece of software which is bound
to other pieces of software by a third-party entity, but also can quickly lead to bugs such as non-
nullified references which prevent the unused code from being garbage-collected. Therefore, building
architecture-based deployment or autonomic management tools on top of OSGI is difficult.

4.2 Java EE servers

Java Enterprise Edition (EE) (J2EE: Java 2 Platform, Enterprise Edition 2002) is a platform for
building server-side applications in the Java programming language. It extends the “standard” Java
platform in that it provides a set of libraries that facilitate the construction and deployment of trans-
actional, distributed, fault-tolerant and scalable multi-tiered applications. Each application written in
the Java EE technology is component-based and deployed within the Java EE container, according to
the JSR88 specification (see Section 2.3). This specification, however, does not address the issue of
modularity and versioning of Java EE application components within the Java EE containers.

4.2. Java EE servers 61

The problem of modularity is inherent to the Java EE containers for two main reasons:

• The need for isolation of the application components (EJBs, Servlets/JSPs) from one another

• The need for isolation of the Java EE containers internals from the application components

4.2.1 Isolation of the Java EE components

Java EE components such as the EJB business components or Servlet/JSP presentation components
can be developed and deployed in the Java EE container by various providers. This means that the
Java EE container (the server) has to assure that components deployed by multiple actors are properly
isolated and that no conflicts occur when those components are deployed and when they execute.

4.2.2 Isolation of the container from the applications

The Java EE container itself is usually written in the Java language. The role of the container is to pro-
vide all the non-functional services, such as transaction, security, fault-tolerance, messaging, logging
etc. to the application components. Most of the existing containers reuse legacy libraries to provide
those non-functional services. For example, the JOnAS Java EE server uses the JORAM (JORAM:
Java Open Reliable Asynchronous Messaging 2002) JMS (Java Message Service Specification Final
Release 1.1 2002) library to provide communication services to Java EE applications and the Monolog
library to provide the logging. The code of these services and the JOnAS server should be isolated
from the code of the application components deployed within the server. If it is not, the applications
may fail to work correctly after it is deployed in the server due to the clashes between the Java classes
contained within the applications and the ones used by the server.

The two types of isolation presented above are difficult to achieve in Java, because as explained in
the introduction to this chapter, Java has no support for modules—it uses JARs as packaging format,
which do not support versioning, and class loaders for modularity, which are too low-level. The JSR88
specification does not attempt to address this issue. As a result, providers of the Java EE servers use
ad-hoc solutions to the problem of modularity in the Java environment. All of those solutions are
built on top of the Java class loaders, but vary in terms of approach (Understanding J2EE Application
Server Class Loading Architectures 2002).

4.2.3 JOnAS

Most of the existing Java EE servers use a tree-based hierarchy of class loaders to obtain the neces-
sary modularity (WebLogic Server, Application Class loading 2004) (WebSphere Software Information
Center, Class loaders 2003) (Bailliez 2005). This is illustrated by the JOnAS server (JOnAS: Java
Open Application Server 2005) and its class loading architecture depicted in figure 4.2. In this hier-
archy, the children class loaders always delegate the request of loading a class to their parent before
they attempt to load the class themselves. Class loaders which are not on the same branch are sep-
arate namespaces for classes. In the case of JOnAS, the System class loader loads all the “standard”
Java libraries as well as the Java EE API. The Commons, Tools and Application class loaders load the
classes that build the JOnAS Java EE server.

62 4. Module systems for Java

Figure 4.2: Hierarchy of class loaders in the JOnAS Java EE server

For each Java EE component deployed within the JOnAS Java EE server, the server creates a
proper class loader, which is always a child of the Application class loader—that way the application
components can “see” the Java and Java EE APIs. How those children class loaders are created de-
pends on how the application components were packaged, as is visible in picture 4.2 for the Enterprise
Application Archives (EAR) and for “stand alone” EJB jars and WAR files. The server also manages
how the application archives (EJB jars, EAR and WAR files) are stored in the file system once they
are deployed in the server.

Having such a hierarchy of class loaders partially solves the issue of isolation of Java EE components—
depending on how the components are packaged, each EAR is a namespace for its EJB jars and WAR
archives, or each EJB jar and WAR archive can be a namespace of its own. The solution is partial for
several reasons. Firstly, if the application components are not contained within the same archive, they
can only communicate using serialization. This has an important performance overhead and eschews
the Java type system. It would be better to be able to define fine-grained import/export dependencies
between those application components. Secondly, how the applications were packaged has an impact
on the reconfiguration capability—only complete archives can be redeployed, thus it is impossible to
update a single EJB from Enterprise Application without redeploying the whole application.

In terms of isolation between the container and the applications deployed within it, the above
solution does not work. Since the class loaders created by the container for the application components
deployed within it inherit from the class loader that load the server’s code, the application components’
class loaders “see” all the classes that the container consists of. This has two important implications:
(1) the classes contained within the application can clash with the ones used by the server. This

4.2. Java EE servers 63

means that the applications deployed within the container can have unexpected behaviour. And (2)
the applications can access the internals of the server and for example call the public static

methods of the server’s code.

4.2.4 JBoss

Another approach to the problem of modularity within a Java EE container is the one adopted by the
JBoss server (Fleury and Reverbel 2003). It introduces the concept of a class loader repository, with
the unified class loader (UCL) being the centeral piece of the class loading mechanism. Each UCL is
associated with a class loader repository of classes and resources—UCL can only have one repository,
but many UCLs can use a single repository. Every time a class is loaded by a UCL, it becomes
available via its associated repository. This way, all the UCLs associated to a given repository share
classes.

By default JBoss has a flat class namespace because it uses a single repository. This means that
every UCL “sees” all the classes loaded by other UCLs. Two things are important: (1) one can
configure the delegation scheme, namely either a UCL first looks for classes in the repository, and
only if it doesn’t find them there tries to load them itself, or it first looks for classes “locally”, which
means that it breaks the default delegation scheme defined by Java. (2) when a UCL looks for classes
in the repository, the order in which other UCLs were added to this repository becomes important,
because if the class is not found in the repository the UCLs are queried for a given class in the order
in which they were added to the repository.

In order to handle more complex isolation scenarios than the one where the class namespace is
flat, JBoss supports hierarchies of class repositories, with user-defined delegation schemes between
them.

In general, the approach to code isolation taken by the JBoss server is more complex and more
powerful than the one adopted by most of the other Java EE servers. It provides a bigger flexibility
in defining hierarchies of class loaders, but at the same time requires more knowledge on the subject.
Furthermore, the authors of JBoss do not attempt to generalize their solution beyond the context of
the Java EE application components. Neither do they attempt to integrate it into their implementation
of the JSR88. As a result, the deployment of application components within the JBoss server is
orthogonal with respect to the configuration of the isolation between these components at runtime. A
more unified approach to the subject would be interesting.

4.2.5 Summary

The need for modularity in Java is especially visible in the context of component containers, such as
the Java EE servers. Due to the lack of an existing standardized approach, providers of the Java EE
servers implement their own ad-hoc solutions. Most of the approaches are based on the “standard”
tree-like hierarchy of Java class loaders. Such approach makes reuse of deployed code difficult, thus
implies a high level of redundancy, which has impact on the memory consumption. Moreover, it
makes the server classes visible to application components, which can result in name clashes and
opens a security hole for malicious behaviour of components.

64 4. Module systems for Java

The JBoss server follows a more complex and flexible approach which consists in using a federa-
tion of class loader repositories and user-defined delegation schemes between them. This solution is
still insufficient in that it is not general and is not integrated with the JSR88.

The context of Java EE servers is a good illustrations of the need for modularity in the Java
environment as well as of how ad-hoc solutions are insufficient in this area. At the time of writing
of this document, several Java EE servers, including JOnAS (Desertot et al. 2006), IBM WebSphere
and BEA WebLogic have been or are being ported to the OSGI platform in order to address the class
loading problems in a standardized manner.

4.3 iJAM & JSR277

iJAM (Strnisa et al. 2007) is essentially a formalized module systems built on top of the JSR277 spec-
ification. The JSR277 (Java Module System (JSR277) 2004) is a response to the lack of modularity in
Java from the Java Community Process (JCP).

JSR277 provides an architecture for the development and deployment of module-based Java ap-
plications and libraries. In that respect, it is similar to OSGI. Authors of the JSR277 argue that the
JAR packaging format, which was supposed to be a distribution and execution format for Java, did not
scale particularly well in either of those roles, mainly due to the lack of support for versioning. This
leads to the already mentioned problems with the classpath and in general, to the so called JAR Hell.

To address these problems, the JSR277 provides the following:

• A distribution format for the Java modules. This distribution format covers the packaging and
metadata of units of delivery for collections of Java classes. Metadata contains information
about the module, classes and resources within the module and the dependencies on other mod-
ules. Module’s metadata also defines the list of classes exported by the module.

• A versioning scheme for modules which covers the version of a module as well as the versions
of its dependencies

• A repository for storing, discovering and retrieving modules with support for module isolation

• Class loader based runtime support for discovering, loading and integrity checking of modules

The specification makes a distinction between module definitions and module instances. Module
definitions are the units of reuse, packaging, versioning and deployment in the module system. The
definitions specify module’s imports and exports and they are stateless. Module definitions have a
physical representation in a form of a module archive. Module archives contain metadata, classes and
resources that constitute the module. From the physical packaging point of view, module archives are
called JAM files and are essentially JAR files with a module-specific manifest. Each module archive is
self contained and does not reference external resources. There is always a one to one correspondence
between a module archive and a module definition.

From the module definitions one can instantiate module instances at run time. Multiple instances
of a module definition can coexist in the JVM, however to maximize sharing a single instance should
be reused. Each module instance has a copy of classes and other resources contained within the

4.4. MJ 65

module, it can also be interconnected with modules which satisfy its imports. Thus, each module
instance is a namespace at runtime.

The JSR277 provides a detailed specification of how modules are supported by the JVM at run-
time. There is a one to one association between a module instance and a module class loader.

Module definitions and instances are reified by an explicit module API. This allows for the pro-
grammatic creation and introspection of module definitions in the repository and for introspection of
module instances at runtime.

Since the JSR277 is mainly a textual specification, the iJAM projects attempt to formalize it.
Based on the formalization of JSR277, the authors of iJAM attempt to provide a reference implemen-
tation of the specification.

In order to formalize this JSR the iJAM project defines a formal language called the LJAM, ver-
ifiable in the Isabelle/HOL automatic proof assistant. The authors’ conclusion after formalizing the
JSR277 is that the specification has limitations that make solving certain basic software engineering
problems impossible. Furthermore, they argue that it does not fully solve the issue of class name
clashes. They propose an alternative that solves these limitations.

Summary The JSR277 is an attempt to provide a standardized module system for the Java applica-
tions supported by the Java Community Process. It can be seen as an alternative solution to what OSGI

provides. This JSR goes further than the OSGI specification in specifying the class loading mecha-
nism underlying the module system, it also provides detailed information on what module repositories
are, which is not the case in OSGI. However, the main drawback of this JSR is that it does not address
the dynamicity. Modules are static units of code isolation within a JVM. If one wants to dynamically
remove or update modules, the JVM needs to be restarted. This is not an acceptable solution in an
environment that requires hot (re)deployment of components instantiated from modules, such as Java
EE containers. In this respect, OSGI is a much more advanced solution. Furthermore, the JSR277 is
not coupled with a component or service oriented application execution model, thus it is difficult to
build architecture-based deployment and software management frameworks on top of it.

The iJAM is a research project providing a formalization of JSR277 and a reference implementa-
tion of the module system based on this formalization. It identifies other shortcomings of the JSR277,
especially in terms of solving class name clashes. iJAM attempts to address these shortcomings by
defining its own class loading delegation scheme. However, the solution proposed by iJAM can lead
to yet another types of problems, as explained in (Formalized Class Loading 2007).

4.4 MJ

MJ (Corwin et al. 2003), or a “Rational Module System for Java”, is an IBM project which tries to
address the lack of modularity in Java. Work on MJ within IBM was partly triggered by the experience
with large Java-based containers for Java software components, such as the WebSphere Java EE server.

According to the authors of MJ, when constructing large software systems, it is desirable to de-
compose the system into collaborating components with well-defined interfaces between them. Each
component should specify declaratively, using mechanisms that can be statically checked and dy-
namically enforced, what functionality of other components it depends on and what functionality it

66 4. Module systems for Java

makes available to other components. Moreover, according to the authors of MJ components must be
hierarchical—a component must be able to contain an arbitrary number of other components. Internal
components may either be hidden or exposed as part of the containing component’s interface.

Authors identify that building such system in Java is difficult, especially because there is no dis-
tinction between linking, which is the process of resolving the textual reference to a name found in
a piece of code which is part of the current component, and the component activation which is the
process of resolving a reference to a name imported from another component. This causes serious
problems in applications that need to support multiple versions of the same class. Furthermore, au-
thors argue that Java packages are only a static name space mechanism and class loaders are too
low-level. As a result, Java applications often suffer from unexpected interactions between inde-
pendent components deployed within a single JVM. Furthermore, the class path against which Java
program is compiled can very well be different from the class path against which the same program
is executed. This can result in NoClassDefFound errors when the class used at compilation cannot
be found at execution, or in the usage of a wrong version of a class at execution time—possibly a
completely different class than the one used for compilation, but which just happens to have the same
fully qualified name.

Since Java allows for defining of custom class loaders, the above mentioned issues result in the
proliferation of ad-hoc, class loader based solution. These solutions, combined with elaborate uses
of the class paths, attempt to address the lack of a sufficiently strong module system. However, the
implicit dependency between the compile-time and the runtime class path is a particular problem, not
addressed by most of the custom solutions.

To address the above issues, authors of MJ have developed a complete module system for Java.
The system comes with (1) a module description language, (2) a module repository which can be used
for both, compilation and execution, (3) a high-level API for the manipulation of modules and (4) a
class loader based execution environment for MJ modules.

The MJ module description language is the essential part of the MJ system from the end-user
point of view. It completely replaces the need for specifying a class path to the JVM and the need
for creating custom class loaders. Instead, MJ comes with a component registry, which contains
both the module metadata and module provided classes (bytecode). The module’s metadata contains
information on:

• What classes the module provides and where they are stored

• What other modules this one depends on

• Which classes are made visible to other modules, which can be sub classed and which package-
prefixes are restricted

• Initialization code which is called when the module is started

There is one module description file per each module. An example module description is illus-
trated by figure 4.3.

Modules can define load and main methods. The load method is called whenever a module is first
loaded by the MJ system. The main method is called when a module is started from command line.

4.4. MJ 67

p r o v i d e s ” c a t a l i n a . j a r ” ;

i m p o r t ∗ from x e r c e s ;
i m p o r t ∗ from b o o t s t r a p ;
i m p o r t com . sun . t o o l s .∗ from t o o l s ;

h i d e ∗ i n ∗ ;
e x p o r t o rg . apache . c a t a l i n a .∗ t o webapp ;
e x p o r t o rg . apache . c a t a l i n a . s e r v l e t s .∗ t o s e r v l e t s ;

f o r b i d o rg . apache . c a t a l i n a .∗ i n ∗ ;

module c a t a l i n a {

p u b l i c s t a t i c vo id l o a d () {

System . s e t P r o p e r t y (” j a v a x . xml . p a r s e r s . SAXParse rFac to ry ” ,
” o rg . apache . x e r c e s . j a x p . SAXParse rFac to ry Impl ”) ;

}

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

org . apache . c a t a l i n a . s t a r t u p . B o o t s t r a p . main (a r g s) ;
}

}

Figure 4.3: A sample description of the MJ module

Before a module can be started, it first needs to be stored in the repository. This is performed using
a tool provided with MJ—the modjavac. This tool takes a module description file, parses it and creates
a corresponding module in the repository. Next, Java source code can be compiled against a module,
using the javamodc tool. What the javamodc actually does, is the checking of static constraints and
a proper configuration of the compilation class path. Finally, one can start the application from a
command line by specifying a repository and a module to start.

The MJ system defines a set of specific class loaders used by the framework when executing an
application. Each MJ module is associated with exactly one class loader instance. The module and its
class loader are named using a unique ID. Module’s class loader loads and defines classes provided
by the module. Any inter-module class loading is delegated to a central unit, called the component
class loader. This class loader uses the information from the component registry to verify if the
delegating module has the right to load classes from the module to which it delegates. Clearly, this
approach prohibits the users of MJ from defining the custom class loader. Instead, users can add
module dynamically into the MJ system using the MJ’s API.

Summary MJ is an interesting example of a module system for Java. It is complete in a sense
that it provides a configuration language, a module repository, an execution environment and finally
the tools to efficiently create, compile and execute modular Java code. In this respect, MJ solves
the issues of unexpected code interactions and incoherence between build and execution class paths
found in “standard” Java. Moreover, it provides a powerful mechanism for exposing different subsets
of module’s content to various importers.

However, MJ needs to be seen mainly as an isolation platform for the Java code, not a truly
dynamic platform for Java components. MJ is not component-based in a sense that MJ modules are

68 4. Module systems for Java

not reflexive and cannot be introspected. Thus, autonomic managers would be hard to build on top of
MJ. This is even more true due to the fact that MJ does not provide an API for the undeployment of
modules. In fact, the module life cycle in MJ is very limited and the only way to remove modules is
to restart a JVM.

Finally, the notion of import/export dependencies in MJ is simplistic in that it is based on the
names of modules. A better solution would be to have a more flexible language for describing the
dependencies, including their versions, similar to what is provided in OSGI.

4.5 JPloy

JPloy (Luer and van der Hoek 2004) is a “user-centric” deployment platform. By that, the authors
of JPloy mean that they give more control over the deployment process to the users of the software,
rather than to the software manufacturers.

Their motivation is that with the increased usage of fine-grained components, the deployment
activities, such as installation and configuration, becomes a continuous operation. This is mainly due
to the fact that updates for individual components are frequently available.

Authors of the JPloy project argue that currently there are two approaches to the deployment
and composition of component based software: the component platforms and deployment tools, with
no common ground between the two. According to the authors component models allow the user
to configure an application at their site, but the process of installation and configuration is manual
and error-prone. Deployment tools, on the other hand, support the installation of components, but
they do not support their configuration – rather they assume that components are configured at the
manufacturer’s site. The authors argue that there’s a need to blend the two approaches in order to
obtain a user-centric deployment technology for a component platform. Authors identify the following
requirements for a user-centric deployment platform:

• Interference-free deployment means that installation and configuration of components should
not change the behaviour of these already installed. A special case of interference-free deploy-
ment is concurrent deployment of several versions of the same component.

• Independent deployability and absence of strict dependencies this requirement states that there
should be no strict dependencies between components since they are independent units of de-
ployment. In practice, a component’s requirements should be possible to resolve by several
components, not just a specific one. Thus the component platform should provide mecha-
nisms to specify dependencies not based on component identities. Independent deployability
means that components are deployed independently of the application—once components are
deployed, the application builder at user’s site decides how they are configured and assembled.
Therefore, the information on component interactions (assembly) and configuration is stored
elsewhere than in the components themselves.

• Compatibility with legacy code means that the component platform has to provide an effortless
way to deploy legacy code—by, for example, wrapping the legacy software to make it compat-
ible with the platform. It may be possible to create such wrappers automatically.

4.5. JPloy 69

Authors also state transparent updating and incremental builds as interesting features of the de-
ployment platform. The former is a mechanism of automatic update of components when their new
version is released, which would be interesting for applications build using a large number of fine-
grained components, the latter means that the deployment platform allows for deployment and execu-
tion of only parts of the application, for the purpose of testing etc.

Authors of the JPloy framework identify several ways to provide support for component deploy-
ment:

• By integrating it into the programming language. This approach has the disadvantage in that
the deployment information is lost after compilation. Since components are usually shipped in
a compiled form, programming-language level support would not be helpful for the application
builder.

• Using external tools to modify existing components by editing their binary representation. This
approach has the disadvantage of creating many binary versions of a component.

• Extending the platform’s API and dynamically injecting the calls to the platform into the com-
ponent binaries. It may be hard to apply on legacy components which were not specifically
designed for a given platform.

• Extending the platform’s loading and linking mechanism. This is the approach followed by
JPloy.

Authors considered either .NET or Java platform for implementing their approach. They have
chosen the latter mainly due to the exhaustive documentation on its extensible loading and linking
mechanism—the class loader. Their solution extends the Java class loader so that it can read con-
figuration files and modify the bytecode of component classes when they are loaded into JVM. This
bytecode manipulation is performed according to the information obtained from the configuration
files. The configuration files have a simple syntax illustrated by an example below 4.4:

1 . wren = c :\ wren\ w r e n c l i e n t . j a r
2 . a rgo = c :\ wren\ argouml . j a r
3 . x e r c e s = c :\ wren\ x e r c e s . j a r
4 . a r g o i n i t = c :\ wren\ a r g o i n i t . j a r
5 .
6 . wren main
7 .
8 . wren use a rgo
9 . a rgo use x e r c e s
1 0 . a rgo use a r g o i n i t
1 1 .
1 2 . a rgo r e p l a c e

o rg . argouml . a p p l i c a t i o n . P r e l o a d C l a s s e s
edu . u c i . wren . P r e l o a d C l a s s e s

Figure 4.4: A sample JPloy configuration file.

This language allows to:

70 4. Module systems for Java

• Define components—see lines 1-4 in the example. A JPloy component is simply an alias to a
jar file

• Define an entrance point to the application, that is the component which provides the main(String[]
args) method. See line 6 in the example

• Define usage (import/export) relationships between components—see lines 8-10. Usage rela-
tionships mean that a component which declares a usage of another component has the access
to all the resources contained within the given component

• Replace at load time a class by a different one

The possibility of JPloy to define components and the usage relationships between them solves the
problem of name conflicts, and thus addresses the interference free deployment requirement. Since
every component in this relationship can be replaced by a different, compatible one, the independent
deployability requirement is also addressed. Finally, JPloy does not require the modification of source
code or the repackaging of components, thus it also addressed the compatibility to legacy components
requirement.

Summary The JPloy framework can be resumed to an extended class loader which allows, through
configuration files, to apply custom configurations to existing Java jar files without the need to repack-
age them. It can therefore be seen as an evolution of the Java class path mechanism. This approach
allows for an elegant way of resolving name space and versioning conflicts between components.
Moreover, through bytecode manipulation at the load time of components, JPloy allows for replacing
some classes within a component, without the necessity to modify and recompile the source code of
these components.

However, JPloy has several disadvantages. Firstly, it is Java centric and does not attempt to gener-
alize its approach through higher level modelling of component packaging, loading and dependencies.
Moreover, in the Java world a more promising approach to the modularity problem seems to be the one
proposed by OSGI or MJ—where many class loaders are used. This approach seems better because
by applying the bytecode manipulation, JPloy prohibits the usage of reflection. This is not the case
in OSGI or MJ. In JPloy there’s also no way to make parts of the components private—a component
is either exported as a whole, or not at all. This again is not the case in OSGI or MJ, where exports
are on the Java package level. JPloy does not explicitly address the component undeployment issue,
which is an important feature in the evolving, component based software.

Furthermore, JPloy does not address the distributed deployment—it has no notion of repositories
of software components, thus can only handle components which are already present in the file system
of the target machine. Finally, it does not provide a runtime component model, therefore the notion
of a component only exists in the JPloy configuration files, but is lost at the execution time of the
application, which prohibits any form of runtime management of executing JPloy applications.

4.6. Summary 71

4.6 Summary

In this chapter we have described various solutions to the lack of modularity in the Java platform.
Those solutions vary in terms of completeness—OSGI is a mature technology used in the industrial
context, whereas projects such as MJ, JPloy and JAM are research prototypes.

A common drawback of all those approaches is that they only address the problem of isolation of
code, without placing themselves in the context of component-based software. Therefore, modules
that they propose are not reified at runtime and are not part of the reflexive software architecture. This
makes it difficult to build autonomic systems on top of those solutions. Furthermore, the presented
systems do not address the issue of distributed software deployment, thus have a largely limited scope.

72 4. Module systems for Java

Résumé de chaptire 5

Dans le chapitre 5 de cette thèse on présente une analyse comparative des éléments de l’état de
l’art décrit dans les chapitres 2, 3 et 4. A partir de cette analyse on peut conclure que la modélisation
et gestion des implémentations physiques des composants logiciels est un aspect clé des systèmes
de déploiement pour les applications a base des composants. Cette modélisation est nécessaire car
les implémentations des composants ainsi que le faon dont elles sont résolu a un impact sur la va-
lidité de l’architecture logicielle a l’exécution. Comme on va le présenter dans la deuxième partie de
cette thèse, cette modélisation facilite la construction des plateformes de gestion autonome pour les
applications a base des composants.

Chapter 5

Summary

In this first part of the thesis we have analysed the existing solutions around software deployment,
packaging and modularity. The goal of this analysis was to investigate whether any of the exist-
ing solutions provides a complete deployment system which could be used in the architecture-based
management context.

Table 5.1 presents our comparative analysis, according to various criteria. By interference-free
deployment we understand the possibility to install and configure software components without them
having an irreversible impact on other components within the system. A special case of interference-
free deployment is having multiple versions of a component running simultaneously. By independent
deployment we understand the lack of strict dependencies. This means that dependencies should be
expressed on flexible requirements and not on specific components that fulfil them. Transparent up-
dating is a mechanism of automatic deployment of software components if, for example, their new
versions are released. Finally, the incremental builds are about configuring partial software archi-
tectures, for example for the purpose of testing. Other criteria listed in this table, such as support
for dynamic updates, undeployment of components etc. are straight forward. The table illustrates
that none of the systems described in the state of the art part of this thesis supports the full gamut of
requirements that we have identified. This is not surprising, since our criteria of evaluation concern
many aspects of software deployment and runtime management, which is a vast field. However, it is
interesting to see what particular categories of systems that we have analysed are missing.

The existing deployment frameworks, such as SmartFrog, DAnCE and others are mainly limited
in terms of software packaging and installation. All of those systems support only a single type of
software packages. Most of them do not support package installation. Instead, they assume that the
implementations of deployed applications are always readily available on target machines. Except for
the NIX framework, none of the deployment frameworks provides a repository into which packages
can be released, or addresses the issue of dependencies and conflicts between those packages. Except
for the JSR88 specification, none of the system addresses the dynamic updates of software. Finally,
most of these systems do not provide a notion of runtime components, thus make building autonomic
frameworks on top of them challenging. The only exception to this rule is the SmartFrog platform,
which we consider as highly similar to the initial version of the JADE platform described in this thesis.

The existing packaging solutions are on the other hand, and not surprisingly, not made for the
distributed deployment. Furthermore, these systems also do not have a notion of runtime components.
Thus, similarly to many of the deployment frameworks, make building autonomic systems on top
of them difficult. Among the three presented systems (Java JARs, .NET assemblies and DEB/RMP
Linux packages) Java JARs are the least advanced one. Namely, they do not support most of the basic
package-level deployment operations, such as installation via an installation manager, uninstallation
and versioning. Furthermore, standard Java environment does not provide a package repository into

74 5. Summary

which JARs can be released.
Solutions around the lack of modularity in the Java platform also, like the existing packaging sys-

tems, suffer from the lack of mechanisms for distributed deployment of code—none of them, except
for the OSGI platform, is coupled with tools for the distributed deployment. Furthermore, these are
mostly low-level solutions to Java-specific problems, not coupled with reflexive runtime component
models. As a result, systems such as MJ, JPloy or iJAM do not provide advanced support for run-
time management of components, such as dynamic updates. On the other hand, all of those systems
provide extended installation-related functionality such as component repository, support for multiple
versions and isolation of code. These features are mostly ignored by the deployment frameworks and
models, such as JSR88, SmartFrog etc.

Based on our analysis, we believe that a key aspect of deployment of component-based appli-
cations is to properly model and manage the physical implementations of these components. This
modelling is necessary because the implementations of components and the way in which they are
resolved has an impact on the correctness of the runtime software architecture. Thus, the implemen-
tations need to become part of this explicit architecture. As we will illustrate in the following chapter
of this thesis, such modelling facilitates the building of autonomic architecture based management
frameworks for component systems.

75

Table 5.1: A comparative analysis of the state of the art
Deployment frameworks Packaging systems Java module systems

DAnCE JSR88 SmartFrog FDF NIX DEB/RPM JARs Assemblies OSGi iJAM MJ JPloy

Support different packaging formats? No No No No No No No No No No No No

Have a notion of runtime component? Yes No Yes No No No No No No No No No

Addresses dynamic updates? No Yes No No No Yes No No Yes No No No

Interference free deployment? No Yes No No Yes Yes No Yes Yes Yes Yes Yes

Independent deployment? No Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes

Transparent updating? No No No No No No No No No No No No

Incremental builds? No No No Yes Yes No No No Yes Yes Yes No

Supports installation? No Yes No Yes Yes Yes No Yes Yes Yes No No

Supports multiple versions? No Yes No Yes Yes Yes No Yes Yes Yes Yes Yes

Supports undeployment? No Yes No Yes Yes Yes No Yes Yes Yes No No

Has a repository? No No No No Yes Yes No Yes Yes No Yes No

Fine-grained import-export? No No No No Yes Yes No No Yes Yes Yes No

Supports distributed deployment? Yes Yes Yes Yes No No No No No No No No

Applicable to legacy software? Yes No Yes Yes No No No No Yes No No No

Part II

Contribution

79

Résumé de chaptire 6

Dans le chapitre 6 de cette thèse on explique le déploiement dans le contexte de JADE—un projet
de recherche qui vise a fournir une plateforme a composants réflexives pour le développement des
gestionnaires autonomes. Au début, comme la plupart d’autres systèmes de gestion base sur architec-
ture, JADE s’est focalise sur la gestion des logiciels patrimoniaux. Par conséquence, le déploiement
n’était pas considéré comme une partie intégrale de gestion des logiciels base sur l’architecture. Nos
expériences montre que le déploiement doit être considéré comme une partie intégrale d’approche
architectural pour la gestion des systèmes reparti. D’abord, le déploiement est une brique de base
pour la plupart des opérations de gestion et reconfiguration d’architecture. Ensuite, JADE a rapi-
dement évolué vers une conception récursive, dans laquelle JADE est lui-même construit avec les
composants de JADE. Par conséquence, JADE gère JADE ce qui rends le déploiement un aspect fon-
damentale. Dans ce chapitre on présent comment notre système de déploiement était conu et notre
solution générale dans le contexte architectural.

Chapter 6

Capturing deployment in the component-based reflexive
architectures

Contents
6.1 Introduction . 82

6.2 JADE Management System . 83

6.2.1 Component model . 84

6.2.2 Membrane model . 84

6.2.3 Containment model . 86

6.2.4 Factories and deployment . 88

6.2.5 Reflexive Architecture . 89

6.2.6 Autonomic managers . 90

6.3 Capturing Modules . 91

6.3.1 Extending the component model . 92

6.3.2 Module Resolver . 93

6.3.3 Considering versions . 95

6.3.4 Module API . 98

6.4 Capturing Deployment . 99

6.4.1 Modelling distributed systems . 100

6.4.2 Introducing physical packages . 102

6.4.3 Reconfiguration plans . 103

6.4.4 Plan implementation details . 107

6.5 Case studies . 107

6.5.1 GRID-like deployment . 108

6.5.2 The self-repair case . 110

6.6 Conclusion . 114

This chapter is about considering deployment in the context of JADE, a research project that aims
at providing a reflexive component-oriented framework for developing autonomic management sys-
tems. When it started, like many other architecture-based management systems, JADE (Bouchenak
et al. 2005) focused on managing legacy software systems. Hence, deployment was not considered
as part of the initial goals since legacy deployment tools were used. It is our experience however that
deployment must be considered as an integral part of an architecture-based approach to the manage-
ment of distributed systems. First, deployment underlies most of the management reconfigurations of

82 6. Capturing deployment in the component-based reflexive architectures

the architecture. Second, JADE rapidly evolved towards a recursive design where JADE is built using
distributed JADE components. Consequently, JADE manages JADE and therefore deployment became
the foundation of JADE. This chapter presents how our deployment was designed, its challenges, and
our solution from an architecture perspective1

6.1 Introduction

The goal of autonomic computing (Kephart and Chess 2003) (White et al. 2004) (Ganek and
Corbi 2003) is to automate the functions related to system administration. This effort is motivated
by the increasing size and complexity of systems and applications alike, which has two direct con-
sequences: the administration costs are an increasing part of the total information system costs, the
difficulty of the administration tasks reach the limits of what human administrators can handle. Conse-
quently, autonomic computing advocates self-management capabilities. It is our experience in JADE

that deployment is the foundation of autonomic computing but that it has seldom been seamlessly
integrated in architecture-based management systems for autonomic computing.

In JADE, we address self-management through an architecture-based approach where manage-
ment is about observing and evolving the architecture of the managed systems. The role of autonomic
managers is to react to observed evolutions of the managed system, re-architecturing it accordingly.
Our experience is that a reflexive component-oriented approach is very effective for advanced self-
management capabilities. JADE uses components to capture the traditional concept of managed el-
ements but applies component modelling to not only managed applications but also the architecture
and behavior of the underlying distributed system hosting these applications. In other words, JADE

models the architecture and behavior of a complete distributed system through a component-oriented
approach.

JADE advocates the use of component reflection as the foundation to support the introspection and
reconfiguration of the managed distributed system. Through introspection, autonomic managers can
not only observe the architecture of the managed distributed system but also its runtime behavior, in-
cluding for instance its dynamic performance for detecting poor resource utilization or security-related
communication patterns for detecting intrusion. Through reconfigurations, autonomic managers can
manipulate the architecture of the managed distributed system, including for instance the ability to
balance dynamic loads by migrating components across nodes, provide higher availability through
replicating components across nodes, or changing the overall Quality of Service (QoS) by replacing
certain components with others that have different QoS characteristics.

JADE advocates a minimal reflection on components that offers a uniform management inter-
face for autonomic managers. In fact, JADE provides only a few reflexive controllers that capture
the traditional management aspects such as configuration properties, bindings amongst components
and lifecycle. We argue that our minimal reflexive component-oriented approach, combined with a
fault-tolerant programming model, represents a suitable framework for building advanced autonomic

1The work around the JADE autonomic management system is a common effort of many people participating in the
INRIA Rh ône-Alpes SARDES project. I was mainly responsible for the design and development of JADE’s deployment
functionality.

6.2. JADE Management System 83

management over distributed systems. By a fault-tolerant programming model we understand the
fact that JADE applies active component-level replication as well as checkpointing of reconfiguration
operations to allow for classical roll backs. Furthermore, JADE is built using JADE, following a re-
cursive design. Autonomic managers are developed using JADE components that are distributed and
replicated. Hence, JADE is itself a distributed system and JADE manages itself.

As the foundation of JADE, one finds the challenge of autonomic deployment of components in the
context of a distributed system. To reach autonomic deployment, we had to take several major steps
in JADE. From a traditional architecture-based approach, we first had to model the distributed system
within the architecture. We also had to extend the component model to capture the implementation of
components, recursively modelling component implementations with components. These two steps
brings deployment within the realm of architecture-based management, into which we introduced an
autonomic deployment manager.

The last step was to consider faults, which is unavoidable in distributed systems. One of our
main goals in JADE was to provide a fault-tolerant environment for building autonomic systems. The
approach was through an autonomic self-repair manager that detects failures and repairs them by
reconfiguring the architecture to repair what has been lost in the failure. The self-repair manager is
also able to self repair itself, since the self-repair manager is itself a set of distributed and cooperative
JADE components. For the self-repair manager to function properly, it needs not only to rely on a
deployment manager, but it needs that the deployment manager be fault-tolerant, which impacted our
early design of our deployment manager.

This chapter is organized as follows. In Section 6.2, we introduce the architecture-based design of
JADE. In Section 6.3, we introduce modules that capture the concept of component implementations,
extending the JADE architecture. In Section 6.4, we capture deployment in the architecture-based
paradigm, extending the JADE architecture again and introducing the autonomic deployment manager.
In Section 6.5, we present two case studies that illustrate deployment in JADE. In Section 6.6, we
conclude.

6.2 JADE Management System

In JADE, we address self-management through an architecture-based approach where we model the
architecture and behavior of a complete distributed system through a component-oriented approach.
In particular, JADE also advocates the use of component reflection as the foundation to support the
introspection and reconfiguration of the managed distributed system. Through introspection, auto-
nomic managers can not only observe the architecture of the managed distributed system but also
its runtime behavior. Through reconfiguration, autonomic managers can manipulate the architec-
ture of the managed distributed system. JADE advocates a minimal reflection on components that
offers a uniform management interface for autonomic managers. We argue that our minimal reflex-
ive component-oriented approach, combined with a fault-tolerant programming model, represents a
suitable framework for building advanced autonomic management over distributed systems.

84 6. Capturing deployment in the component-based reflexive architectures

6.2.1 Component model

The component model underlying the JADE autonomic management system follows the definition of
a software component given by Clemens Szyperski (Szyperski 1998) —

A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties.

Accordingly, any managed element is a component in JADE. More formally, JADE adopted the
FRACTAL component model (Bruneton et al. 2004) — a general model which is not tied to a spe-
cific programming language or software technology. Through Fractal, JADE can cleanly separate the
content and control aspects of components. The control aspect is about the management control of
components provided by a set of control interfaces, more on this below in Section 6.2.2.

The content aspect of a FRACTAL component carries the functionality of that component, fol-
lowing a service-oriented paradigm. A component provides services, through server interfaces, and
requires services, through client interfaces. Through interfaces, FRACTAL advocates a strong encap-
sulation for better software engineering, offering an effective mean for hiding the implementation
details of components.

This explicit definition of requirements is one of the important differences between components
and objects. Explicit requirements make assembling components by third parties possible. In such
component assemblies, component dependencies are satisfied through binding. FRACTAL supports
both primitive and composite bindings. Primitive bindings directly connect a required client interface
to a provided server interface. In contrast, composite bindings are built out of chained primitive
bindings, allowing to build complex communication schemes such as remote stubs or dynamic service
adapters.

6.2.2 Membrane model

The membrane reifies the control aspect of a component, providing the foundation for the JADE man-
agement operations. In JADE, each functional component is associated with the following five con-
trollers:

• Attribute controller

• Interface controller

• Binding controller

• Lifecycle controller

• Containment controller

Each controller supports both the introspection and reconfiguration of the metadata it reifies. The
attribute controller allows to observe and change the set of configurable properties understood by the
component content. A Java signature of this controller is illustrated in figure 6.1. The listFcAtt method
returns a table containing the names of the attributes. The getAttribute method takes the name of an

6.2. JADE Management System 85

attribute as a parameter and returns its value. Finally, the setAttribute method takes a name and a value
of an attribute as parameters and assigns the given value to the given attribute.

p u b l i c i n t e r f a c e A t t r i b u t e C o n t r o l l e r {

p u b l i c S t r i n g [] l i s t F c A t t () ;
p u b l i c O b j e c t g e t A t t r i b u t e (S t r i n g name) ;
p u b l i c vo id s e t A t t r i b u t e (S t r i n g name , O b j e c t v a l u e) ;

}

Figure 6.1: The Java signature of the AttributeController interface

The interface controller (also called the Component control interface) allows to navigate the client
and server interfaces of a component. Each of the interfaces of a component has a name. Thus, as
illustrated in the Java signature of this controller interface presented in figure 6.2, the getFcInterface
method takes a name of an interface as an argument. It returns a value of this interface, which is either
an implementation of an interface if the interface is of a server type, or a reference to the component’s
required service if an interface is of client type. The getFcInterfaces method returns a table containing
all the component’s external interfaces – the client, the server and the control ones.

p u b l i c i n t e r f a c e Component {

O b j e c t g e t F c I n t e r f a c e (S t r i n g i n t e r f a c e N a m e)
O b j e c t [] g e t F c I n t e r f a c e s ()

}

Figure 6.2: The Java signature of the Component interface

The binding controller allows to observe and modify bindings between components Any com-
ponent which has a client interface must also have a binding controller. The Java signature of this
control interface is illustrated in Figure 6.3. The bindFc method takes two arguments: a name of a
client interface belonging to this component and a reference to a server interface to which the given
client interface is to be bound. The listFc method returns all the names of client interfaces that this
component has. The lookupFc method takes a name of a client interface and returns a reference of the
server interface to which this client interface is bound. Finally, the unbindFc method unbinds a given
client interface from its associated server interface.

The lifecycle controller allows to observe and change the running state of its component, such as
started or stopped. This controller provides a set of methods to perform the life cycle operations, as
illustrated in figure 6.4 The startFc and stopFc methods allow for a transition between two possible
states of the component lifecycle: STARTED and STOPPED. The current life cycle state of a com-
ponent can be introspected by calling the getFcState method, which returns one of the two lifecycle
states.

The containment controller allows to observe and change the hierarchical containment of com-
ponents, as described in the next section below. The Java signature of this controller’s interface is
illustrated in figure 6.5. The addFcSubComponent method takes a reference to a component as an

86 6. Capturing deployment in the component-based reflexive architectures

p u b l i c i n t e r f a c e B i n d i n g C o n t r o l l e r {

p u b l i c vo id b indFc (S t r i n g c l i e n t I t f N a m e , O b j e c t s e r v e r I t f) ;
p u b l i c S t r i n g [] l i s t F c () ;
p u b l i c O b j e c t lookupFc (S t r i n g c l i e n t I t f N a m e) ;
p u b l i c vo id unb indFc (S t r i n g c l i e n t I t f N a m e) ;

}

Figure 6.3: The Java signature of the BindingController interface

p u b l i c i n t e r f a c e L i f e C y c l e C o n t r o l l e r {

p u b l i c s t a t i c f i n a l S t r i n g STARTED;
p u b l i c s t a t i c f i n a l S t r i n g STOPPED;

p u b l i c vo id s t a r t F c () ;
p u b l i c vo id s t o p F c () ;
p u b l i c S t r i n g g e t F c S t a t e () ;

}

Figure 6.4: The Java signature of the LifeCycleController interface

argument and adds this component as a child of the component to which this controller belongs. The
getFcSubComponents method returns a table with references to all the children of the component to
which this controller belongs. Finally, the removeFcSubComponent method takes a reference to a
component as an argument and removes this component from the list of children.

p u b l i c i n t e r f a c e C o n t e n t C o n t r o l l e r {

p u b l i c vo id addFcSubComponent (Component subComponent)
p u b l i c Component [] ge tFcSubComponents ()
p u b l i c vo id removeFcSubComponent (Component subComponent)

}

Figure 6.5: The Java signature of the ContentController interface

Each controller is easy to understand, providing only a few methods, but all five controllers provide
powerful low-level mechanisms that enable full introspection and reconfiguration of complex archi-
tectures. Moreover, FRACTAL controllers constitute a uniform management interface. This means
that most management functions become generic in that they only manipulate functional components
through controllers.

6.2.3 Containment model

JADE leverages the hierarchical nature of the Fractal component model to provide a better structuring
of the architecture of the managed system. The Fractal model distinguishes between primitive and

6.2. JADE Management System 87

composite components. Primitive components only encapsulate functionality, such as business logic,
providing server interfaces. Composite components only encapsulate a group of components, either
primitive or composite. Hence, composite components provide a hierarchical structure to an otherwise
flat assembly of components. It is important to point out that components may be shared between one
or more composite components.

Figure 6.6 illustrates a sample assembly of FRACTAL components. The client interfaces are rep-
resented in green, the server ones in red. Within the primitive components one can see their imple-
mentations.

Figure 6.6: An internal content of a fractal component

Composite components have several important roles in JADE. Hierarchical composites are impor-
tant from the architectural point of view in that they allow to define the level of abstraction at which
the system’s architecture is introspected by the management software. Furthermore, composites have
an important role in managing the life cycle, binding and sharing of their subcomponents.

Composites also define binding scopes. When not shared, components can only be bound between
siblings, that is sub-components of the same composite. In other words, a component that is not shared
must have all its bindings satisfied by its sibling components. When shared, a component can have its
bindings satisfied by its sibling components across several composites.

The use of shared components can prove very useful in the context of dynamic assemblies of
components, like the one illustrated in figure 6.7, a Client component can be dynamically deployed
outside of the Composite A, yet it needs to be bound to the Server which is the subcomponent of the
Composite A.

In this example, one possible solution is to expose the server interface of the Server component
as a server interface of the composite A. However, this is not always possible as it requires the change
in the set of interfaces exposed by composite A. Another solution uses sharing. A new composite
component, called the composite B is created. The Client and Server components become the children
of this composite B with two consequences. First, the Server component becomes shared between

88 6. Capturing deployment in the component-based reflexive architectures

”Unbindable” client and server components Exposing the server’s interface via composite

Using sharing

Figure 6.7: An example usage of sharing

composite A and composite B. Second, both components Client and Server can now be bound together
as siblings within the composite B.

Composites also define a group lifecycle for all their sub-components. When a composite is
started, it also starts its subcomponents. The order in which subcomponents are started is defined by
the order in which the subcomponents were added to the composite. When the composite is stopped,
it recursively stops all its subcomponents, in the same order.

6.2.4 Factories and deployment

The creation of components in JADE happens through component factories. It is customary, but not
mandatory, that there is a single factory per running environment. A factory is defined as a functional
interface, illustrated in Figure 6.8.

p u b l i c i n t e r f a c e F a c t o r y {

p u b l i c Component n e w F c I n s t a n c e (Type type , O b j e c t c o n t r o l l e r D e s c , O b j e c t c o n t e n t D e s c) ;

}

Figure 6.8: The Java signature of the Factory interface

To create a new component, one calls the newFcInstance method on a factory. The first argument

6.2. JADE Management System 89

of this method is the type of the component to create. The type of a component defines the contract
between components of that type and the outside world. In the FRACTAL model, a type is the set of
client and server interfaces that represents what a component requires from surrounding components
and what it provides to these components.

The type does not imply an implementation. Making a parallel with object-oriented languages,
a component’s type is similar to an interface of an object, specifying a behavior. It differs from a
language interface type in that a type not only specifies the behavior of the component (the server
interfaces) but also the requirements of that component (the client interfaces). A component type also
differs from a language class that combines a behavior and an implementation (both a structure and
method bodies).

Therefore, to complete the type information, the factory needs some information about the im-
plementation. In fact, this information is two-fold because a component is made of a content and a
membrane. The membrane is described through a domain specific language that essentially tells what
implementation to use for each controller, following a mixin approach for an efficient code generation
of the membrane. The content description is relatively simple in the case of composite components
since FRACTAL composites have a generic implementation as one that groups sub-components.

For primitive components, a factory needs something that will represent the implementation of
the functional content of the component to create. In Java for instance, this information is the name
of the implementation class for that component. In the C language, it would be an entry point in a
shared library as it is the case in binary-level component models such as COM or XPCOM. In COM
for instance, a component is created through a CLASSID that is an 128-bit world-global and unique
identifier of an implementation, itself provided as a Dynamically Loadable Library (DLL).

When creating a new component, the factory returns the Component interface of that compo-
nent. Any FRACTAL component must implement this server interface that uniquely identifies that
component throughout its lifetime. By default, there are no other means to identify or locate compo-
nents within a reflexive architecture. For instance, components do not necessarily have unique and
immutable names and they do not have any other form of binary identification.

6.2.5 Reflexive Architecture

The reflexive architecture in JADE captures the architecture of the assembly of components. It is the
foundation of the architecture-based approach advocated by JADE for system management. The re-
flexive architecture is a meta-level description leveraging the presence of membranes in the FRACTAL

component model. The five controllers described previously provide the core reflection necessary for
management operations, allowing not only to introspect the reflexive architecture but also supporting
reconfigurations of that architecture.

In other words, JADE supports full runtime reflection that combines the ability to both introspect
and reconfigure the reflexive architecture. This runtime reflection supports the programming model
for JADE managers that are autonomic control loops. An autonomic manager observes all or part of
the reflexive architecture and maintains some invariants such as a certain quality of service or repairs
failures or smooths out workload variations. The autonomic goal is that no human intervention be
necessary in the dynamic maintenance of these invariants. Human intervention should be kept to
tuning these invariants and the decision making process of the corresponding policies to achieve them.

90 6. Capturing deployment in the component-based reflexive architectures

Composites play an important role in the reflexive architecture provided by JADE as they supply a
view mechanism on the architecture itself. Using a uniform approach, a hierarchy of composites cap-
tures a view of the architecture such as a hierarchy of functional features of the system, a hierarchical
clustering of components on the different nodes of a cluster, or simply a group of replicas as JADE

supports the transparent replication of components.

Views therefore facilitate the communication of high-level ideas and design decisions about var-
ious aspects of the reflexive architecture, similarly to what blueprints do in the context of building
architecture. Through views, managers can introspect and reconfigure the reflexive architecture from
the one perspective provided by the view they are using, such as a functional bindings, component
placement on nodes, or component replication. As such, views demonstrate the importance of com-
ponent sharing between composites. For example, a logger component can be a subcomponent of an
application, which gives one view of it as a functional part of an application, and at the same time, the
same logger component would be a subcomponent of a node, which gives another view of it as being
deployed on that node.

Because JADE is advocated to build self-managing distributed systems, it is important to consider
failures and their impacts on the programming model JADE provides. To resist component failures,
JADE maintains a checkpoint of the reflexive architecture, called the System Representation (SR).
Indeed, when a component fails, both its content and membrane fail. This is perfectly illustrated
by process failures, where the entire implementation of a component is lost, which includes both its
membrane and its content. In such events, JADE looses the parts of the reflexive architecture that were
captured by the lost membranes.

This loss is jeopardizing the ability to build autonomic self-repair systems, that is, systems that
autonomously repair their own failures. Indeed, a self-repair manager would need to know what was
the reflexive architecture prior to a detected failure in order to rebuild what was lost. This knowledge
was exactly the one that the lost membranes captured. Note that the original scripts in the FRACTAL

ADL (Architecture Description Language) are useless here since JADE supports designing dynamic
systems that most probably evolve after their initial creation.

Therefore, the checkpoint dynamically captures a consistent system representation. JADE con-
trollers are responsible to maintain this System Representation up to date as a side-effect of commit-
ting reconfigurations of the reflexive architecture. Indeed, autonomic managers express their recon-
figurations as atomic reconfigurations.

6.2.6 Autonomic managers

As mentioned previously, autonomic managers are control loops that observe and reconfigure the
running system through the JADE reflexive architecture. Each manager typically observes a view of
the architecture and when necessary plans and executes a reconfiguration. The observation usually
relies on the presence of probes that reify both reflexive and hardware characteristics such as failure
detectors, performance monitors or component-specific feedback.

The reconfiguration relies on the concept of a reconfiguration plan. A plan is a sequence of
operations on the architecture, expressed as reified method invocations on the membranes of certain
components. For example, one may wish to add a sub-component to a composite, which is represented
in the plan by the reification of an invocation to the method of the containment controller. This

6.3. Capturing Modules 91

reification includes the identity of the receiver of the future method invocation (the composite) as well
as the argument values (the sub-component to add).

The plan is a runtime data structure that fully leverages the reification of the reflexive architecture
as well as the underlying reflective capabilities of Java, the programming language used to develop
managers in JADE. First, all component entities in the plan are identified using their reification in the
SR, as first-class components. As we mentioned earlier, components do not have any special means
of identification other than the reference to their component interface. For JADE managers written in
Java, the identity of a component simply appears as a Java reference to an object implementing the
language interface Component.

Second, the reification of the plan requires the use of Java reflection in order to reify the method in-
vocations of the plan. Through reflection, Java supports building runtime data structures that describe
full method invocations, including the Java method to invoke, the future receiver of this invocation
and the future arguments to use in that invocation. Beyond the other usual reasons for choosing Java
as a programming language, the reflective capabilities of Java were a major rationale.

6.3 Capturing Modules

The early versions of JADE carried over the traditional approach to component-oriented programming,
which proved a strong limitation in the context of building autonomic management systems.

Traditionally, component-oriented programming is about a service-oriented paradigm where com-
ponents provide functional services that need to be composed into a consistent assembly. The focus is
on the mechanisms needed to express and enact this assembly. Most component-oriented approaches
do limit themselves to this early phase, usually adopting a descriptive approach based on an Architec-
ture Description Language. An assembly is expressed in the ADL and an ADL factory processes such
ADL description in order to build an assembly of components that can be started.

JADE adopts a more dynamic approach to component-oriented programming, reifying at runtime
the reflexive architecture for managers to observe and reconfigure. The starting point is the same
however, JADE uses an ADL description of an initial assembly that is processed by a specific ADL
factory, creating an initial assembly of components and therefore the corresponding reflexive architec-
ture. Autonomic managers can then use this reflexive architecture to not only observe and report about
the architecture but also reconfigure it when necessary. The focus remains however on the functional
aspects of the component assembly.

The forgotten aspect is the management of the implementations of components. Many component-
oriented frameworks consider the management of the implementations of the components they man-
age as something external to component-oriented programming. It is assumed that an underlying
platform takes care of implementation concerns. A perfect example is the use of Java to support
component-oriented programming. In most approaches, the implementations of components are JAR
files that need to be made available in the class path of the running Java Runtime Environment (JRE).
This approach works in many cases, but proved insufficient for JADE and our goal to support auto-
nomic management system in distributed environments.

The stumbling stone is that implementations do carry specific dependencies that also need to be
captured in the reflexive architecture. Failure to do so simply prohibits autonomic managers to have

92 6. Capturing deployment in the component-based reflexive architectures

a complete view of the architecture and therefore potentially prevents them from planning correct
reconfigurations. Let’s illustrate this in JULIA (Julia: Fractal Composition Framework Reference
Implementation, Objectweb 2002), the Java incarnation of FRACTAL, since Java is an environment
most people are familiar with.

Using JULIA, one can create components and describe an initial assembly. Let’s further assume
this assembly is consistent and can actually be built and started. At the end of this process, a runtime
instance of the JADE environment is up and running, hosting a set of components. Some time later,
a new version of a component is published fixing some important bugs, which suggests to update the
component used in our running system with the newly available version. The types of both versions
of the component are verified to be compatible, in other words, the new version of the component
provides the same server interfaces and requires the same client interfaces. All seems perfect, the new
component can safely replace the old one, the update reconfiguration can take place.

A reconfiguration plan is generated. The first step is to determine which components need to be
stopped. This starts with the component to be updated. Other components bound to that component
also need to be stopped; this is of course a recursive concern and the entire transitive closure of com-
ponents bound to components that need to be stopped must be stopped. Then, the plan must include
the installation of the new version of the component and the removal of the old version. Then, bind-
ings can be reconstructed so as to rebuild the assembly using the new version of the component. Once
bindings are in place, the stopped components can be restarted. The expectation is that everything
will start smoothly.

The reality can be shockingly different. The new version of the component may be using some
native library that fail on the version of the underlying operating system. Without being that crude,
the new version of the component may fail because it expects a newer version of the Java Runtime
Environment. For instance, it uses the W3C XML DOM API and assumed it was available from the
JRE, which is only true after Java version 5.0. Even more subtle, the new version of the component
may provide the same component type, with the same server and client interfaces, but they may
use slightly different versions of the corresponding language interfaces. Indeed, FRACTAL does not
capture such information about component interfaces. It uses the name of language interface but does
not capture any versioning information about such interfaces.

Capturing modules is about solving this problem. We capture the implementation of modules in
the architecture and we do so using components. Thereby, implementations are not only visible to
managers but the dependencies of these implementations are also visible. We describe this extension
in the following subsections.

6.3.1 Extending the component model

We extended the component model of FRACTAL to include the concept that every component has
an implementation, modelled as components. We call the implementation of a component a module.
Therefore, every component has a module. A module is itself a component, which introduces a
classical recursion, as in object-oriented programming languages with reflection. An object is an
instance of a class, itself an object and therefore instance of a class. The recursion stops with a
meta-class, instance of itself. Our recursion stops with a meta-module, module of itself.

The binding concept in FRACTAL is generic enough to capture the dependency between a com-

6.3. Capturing Modules 93

ponent and its module, but such a binding reflects a meta-level dependency. Most incarnations of
component models approach bindings as functional dependencies. These functional dependencies are
usually supported by services, that is, objects implementing language interfaces. Although we usu-
ally perceive these concepts as applied to a business logic of components, they are quite general and
equally apply to a meta-level.

The binding between a component and its module is indeed a meta-level dependency. It does not
reify a functional dependency in most cases2 . It reifies a runtime dependency between the component
and its implementation, as needed by the execution engine. In C, this is the dependency between the
running component and the shared library loaded to provide that component with the code and static
data it needs. In Java, this is the dependency between the component and the class loader providing
the classes that component needs.

In Java, modules are usually represented with class loaders, which is a functional component from
a meta-level perspective. A class loader reifies classes and provides a scope for Java types that is used
by the execution engine. At runtime, the Java virtual machine will invoke the class loader to obtain the
classes needed by the running component. The class loader has a functional interface, it is invoked as
a service; but it is not explicitly invoked by the functional code of components, except for components
that explicitly manipulate Java runtime reflection.

This binding between a component and its module is however special regarding the component’s
lifecycle. The component cannot be instantiated before its module is available, meaning created and
started. Indeed, without an implementation, a component may not be created. This is different than
a regular binding where the component is created first and its binding are created later. For regular
bindings, the lack of a binding may prevent the component from being started but not from being
created.

Symmetrically, the loss of the module binding requires the component to be disposed of. This is
an interesting side-effect of considering modules as components. As such, modules may be affected
by reconfigurations of the architecture. They may have to be stopped, as any regular functional com-
ponent might be. However, when stopping a module, all the components that use that module must not
only be stopped, as it is the case when revoking a regular binding, but they also need to be disposed
of.

6.3.2 Module Resolver

The Module Resolver establishes bindings between module components, something that requires spe-
cial care as module bindings are more complex and more flexible than most other bindings. We are not
discussing here the binding between a component and its module, which obviously needs to be based
on the identity of the module. We are discussing here the dependencies between modules. These
dependencies exist because modules are components themselves.

Regular bindings are often considered as rather simple and inflexible. In many component-
oriented approaches, bindings are using names that identify components. This is inflexible in that
such bindings do not express what is needed – they express who provides what is needed. In FRAC-
TAL, bindings are left unspecified in the model and can therefore use any technology and be as flexible

2For Java and other reflection-aware programming languages, this binding may also be used functionally

94 6. Capturing deployment in the component-based reflexive architectures

as one needs.

However, in most incarnations of FRACTAL, names are used and rely on composites for controlling
the visibility scopes of such names. The names however do not name components but interfaces,
introducing an interesting degree of flexibility: a client interface is bound to a server interface if the
two interfaces have correct names and their two components are siblings within a composite.

For module dependencies, we need to revisit how dependencies are expressed. First, a simple
name is no longer sufficient. Implementation dependencies strongly suggests to introduce versioning
of implementation artefacts as implementations do evolve to fix bugs or improve functionality. The
versioning semantics must capture this evolution and express compatibility rules between versions.
We decided to use the same version semantics as the OSGI specification, a versioning scheme already
in use for years in successful OSGI-based middleware platforms such as Eclipse, JOnAS, or IBM
WebSphere.

The versioning model is as follows. A version is composed of four tokens: major, minor, micro,
and qualifier. When two versions have different major tokens, the versioned artefacts are allowed to
be incompatible. They don’t have to be, they might be. It is extremely important for practical reasons
to allow implementation artefacts to break backward compatibility, even though all efforts must be
made to maintain backward compatibility as long as possible. The other tokens express evolutions
that are expected to be backward compatible, such as internal bug fixes or extensions to the public
behavior of the versioned artefact.

The second aspect to discuss about module dependencies is their granularity. Some approaches ar-
gue for the importance of module-level dependencies, such as Eclipse and bundle-level requirements.
We feel this is an unfortunate decision in most cases as such dependencies are dependencies, tying
together what is needed and who provides it. In particular, this approach does not support simple
reorganizations such as splitting a module in one or more smaller modules, something quite natural to
maintain the reflexive engineering quality of a module whose implementation grows.

We adopted a smaller granularity, expecting modules to have exported services like any regular
FRACTAL component. At a model level, the exact semantics of such exported services cannot be
specified; such semantics is incarnation dependent. Indeed, the exact semantics may differ for dif-
ferent incarnations of FRACTAL. For instance, Java incarnations are likely to use a granularity of
Java type packages. An incarnation of FRACTAL in the C language may use a similar granularity but
corresponding to the definition of a header file.

Whatever the granularity is, module dependencies can be modelled as regular FRACTAL bindings
and perceived as meta-level dependencies. In both our previous examples, in Java and C, the exported
services are indeed used at runtime to link the various component implementations together. We will
name such services module services. A module service is a FRACTAL server interface that is named
and versioned. An import is a FRACTAL client interface that specifies not only the name of the needed
server interface but also its version. In practice, we need to consider a range of compatible versions,
potentially covering versions with different majors.

Given how imports and exports are expressed for module services, we need to discuss how they
are resolved, that is, how we create bindings amongst them. Regular bindings are scoped by com-
posites, following a hierarchical approach. The resolution is straightforward since both imports and
exports are expressed as simple names. Beyond the obvious impacts of considering versions, the more

6.3. Capturing Modules 95

important point to discuss is the adequation of hierachical resolution approach of FRACTAL, based on
composites. One could wonder if this hierarchical approach is still adequate for resolving module
dependencies.

The answer can be approached in two steps. First, the presence of composites does not imply
any granularity on these composites. Hence, one could consider that all modules are sub-components
of one unique composite, thereby creating a flat shared scope for resolving module imports and ex-
ports. In many situations, this approach is perfectly acceptable, as demonstrated by most existing
incarnations of component-oriented systems that do not use runtime scoping of implementations. For
instance, Julia, the Java incarnation of FRACTAL, does not use class loaders to isolate the various
implementations of components.

Furthermore, in some implementations, the use of a single composite to group all modules may
even be mandatory if there is no possibility to achieve runtime scoping of implementations. An incar-
nation in the C language using an unmodified dynamic linker and C compiler would be challenged to
support multiple implementations of modules.

The second step remains at the model level, abstracting the potential runtime limitations of various
incarnations. Conceptually, from a binding perspective, there is no difference between components
and modules. Hence, composites are equally applicable to modules and provide a powerful structuring
principle. Of course, modules will be shared for the same reasons regular components are shared.

6.3.3 Considering versions

Introducing versions for module services goes much further than just adding version meta-data to both
client and server interfaces of modules. It is actually one crucial point of design that could favor or
hinder the establishment of successful component ecosystems.

The danger goes as follows. Different modules may export different module services but may
also export the same module service at the same version level or at a different version level. Hence,
the situation may be that the same version of a module service may be exported by several distinct
modules as well as different versions of the same module service be exported by different modules.
Depending on how one resolves the various imports of modules, one may produce an assembly that is
consistent or not.

The consistency of an assembly needs to be considered at two levels. First, we consider modules
and if they are resolved or not. A module is said to be resolved when it has all its imports resolved
(bound) to exports. This is known and visible in the reflexive architecture as modules are regular
components and their bindings are reified as any binding between components are. The second level
concerns the functional components. Even though modules are resolved, depending on how versions
are handled, the assembly may still be inconsistent regarding functional components.

To illustrate clearly this complex situation, it is easier to consider the practical case of Java. In
Java, a module translates into a class loader, a low-level mechanism for scoping Java types, that sup-
ports the encapsulation of component implementations. Our prototype as well as OSGI platforms
consider module services at the granularity of Java packages. We could have the following situa-
tion: two functional components are bound through a regular service implementing the Java interface
named org.foo.Foo. This interface uses a Java type named org.bar.Bar as part of the signature of some
of its methods (either as parameter types or return types, it does not matter).

96 6. Capturing deployment in the component-based reflexive architectures

This settings requires that each component has a module with two distinct imports — one for
the org.foo package and the other for the org.bar package. Each import expresses also a version
constraint. Let us assume that all imports express the same constraints as an interval of acceptable
versions such as [1.0.0;2.0.0[that specifies a compatibility with the major version one. If we further
assume that different versions of both packages are available, we can discuss consistency depending
on how imports are resolved on exports.

The correct choice is that all imports are resolved to the same exports. In this case, both functional
components see the same package org.foo and org.bar and their execution will be flawless. If we
assume that they see the same org.foo package, but different versions of the org.bar package; the
service binding between functional modules could be considered valid, given the available meta-
description. The client interface is bound to a server interface with the proper name and implementing
the same language interface (org.foo.Foo). However, this is an inconsistent configuration because of
the different resolution of the org.bar package. At runtime, when the two functional components will
interact, passing instances of the org.bar.Bar types, runtime cast exceptions are more than likely to
happen.

It is also interesting to point out that bindings regarding functional services are impacted by con-
sidering modules and multiple versions. Indeed, we can see that a binding for a functional service
between two components is only correct if both components have the same visibility of the language
type that the service implements. Please refer to Chapter 8, Section 8.1 for full details on the problem
in Java.

For our design, we retained the simpler mono-version approach. We can still have different mod-
ules exporting module services with different versions, nothing is changed there. However, the re-
solver that creates the bindings between modules will only retain one unique version of each exported
module service. The resolution process thereby ensures that all modules importing the same service,
with potentially different version ranges, will see the same exported service. The problem described
above disappears and the resolution process is greatly simplified.

The drawback of this design is that certain configurations could only resolve partially where it
could be argued that they should fully resolve. Indeed, some assemblies could have different modules
needing different versions that are all available (exported by other modules). There are situations
where it would be correct to use these different versions and other where it would be incorrect (as il-
lustrated in our example above). It all depends on the degree and nature of the integration of functional
components. It is interesting to consider the impacts of advocating a support for multiple versions or
not on the overall component ecosystem.

Assuming that one supports multiple versions, we believe that one favors an ecosystem that is
turned towards backward compatibility and therefore slower to adopt evolutions. This choice has an
advantage though — it is able to resolve assemblies with different modules needing different versions,
even potentially incompatible ones. As explained above, this only works if functional components
whose modules are resolved with different versions do not interoperate (or at least not around the
software artefacts resolved differently). Therefore, the validity of the approach is related to the degree
of interoperability between applications. With traditional applications, mostly standalone, the support
of multiple versions is a major win. For instance, two standalone applications could be resolved with
different versions of the same toolkit library for their graphical widgets.

6.3. Capturing Modules 97

With a more middleware–like approach, where applications tend to cooperate at a finer granularity,
chances are that supporting multiple versions will impair the actual runtime cooperation while the cor-
responding assemblies are considered resolved and correct from a dependency perspective. Consistent
with the position of statically typed languages, we decided to err on the side of safety. Our design
considers only one version, which is justifiable only if managed components are not only assembled
for standalone operations but actually cooperate. This suggests an interesting use of composites to
isolate different parts of the overall systems, allowing the best of both worlds. However, the challenge
will become the detection of resolution problems and deciding which hierarchy of composites avoids
them.

It is interesting to further discuss the different heuristics that can be used in resolving modules,
within the design choice of keeping a single version for each exported artefact. The major heuristic
concerns the choice of the kept version when several are available. Choosing the older versions
seems hardly arguable. However, a choice exists between the most recent version and the version that
resolves the most importers.

Locally, it seems that this latter choice is the most favorable, and it is. However, it is interesting
to discuss the expected effects on the ecosystem at large. If the ecosystem is alive and thriving, the
tendency will be for newer versions to resolve many importers. The burden will be for providers
of older versions of components and their modules to release newer versions, staying on top of the
evolutions of the functionality they depend on.

If the ecosystem is slow to evolve, the tendency will be that older versions will satisfy more
importers on average. The consequence is that newer components will have a difficult time being
installed and resolved in most runtime systems. This indirectly will limit the ability for novelty to
succeed and will most probably lead to the death of the ecosystem, although nothing is certain since
component technology is rather new and that evolution of cooperating assembly has neither been a
reality nor a subject of study.

It is interesting to note that the needs of one particular system are somewhat contradictory with the
survival needs of the overall ecosystem, not something unlike the similar conflicts in natural ecosys-
tems between the immediate needs of the individuals and the longer term needs of the community.

Given a system that needs to be reconfigured, the tendency will be to favor preserving already
installed components and therefore choose older versions. Indeed, already installed components are
likely to be used by end users to manage important data. Therefore, end users would rather see a
system preserving the already installed and running software and their corresponding data. But this
in turns would make it harder for newer software to develop a market, something essential for the
longer-term viability of the ecosystem.

In our design, we favored the choice of the version that satisfy the most importers. It is a prac-
tical choice that is justified to preserve the maximum usability of the running system that is being
reconfigured. We expect that human intervention will be necessary to tweak this behavior. For in-
stance, it must be possible for an end user to choose to favor newer components at the price of loosing
older ones. This can be easily manipulated by end users through expressing the relative importance
of components or higher-level features composed of components. With such hints, the resolver can
then take care of the details of finding which older components will be invalidated. A feedback loop
approach could be conceived where the configuration management and the end user (or administrator)

98 6. Capturing deployment in the component-based reflexive architectures

will iterate several times before striking the right balance.

6.3.4 Module API

Since from the architectural point of view modules are regular components, their manipulation is
performed exactly like manipulation of any other types of components within the application. This
means that modules are created and managed using the same API as any other components. The spe-
cific aspects of module components are defined in their implementations as well as in their bindings.
For example, a Java-based module component would have an implementation that encapsulates a Java
class loader and a binding that defines a delegation scheme between class loaders.

Before a module can be instantiated, its type needs to be defined. In FRACTAL, like in many
other component models, a type of a component is defined by this component’s set of client and
server interfaces, as previously described in Section 6.2.4. In case of module components, the names
of those interfaces are important in that they define the inter-module dependencies processed by the
resolver. Thus, a name of every interface contains information on the provided or required resources,
as well as the versions of these resources.

The resolution of modules is implementation-specific – it can either be triggered automatically,
every time a new module is created within the local repository, or it can be forced. In the former
case, the module repository awaits notifications of module creation from the component factory or,
if the repository is at the same time the factory of module components it knows when new modules
are added to the system. In case when the module resolution is forced, an external manager calls the
resolver’s resolve method, which launches the process of module resolution.

Once modules are resolved, functional components can be created from them. For that, the factory
interface previously described and illustrated in figure 6.8 has been extended. The extended version
of this interface provides several ways of specifying which module is to be used for a given functional
component.

p u b l i c i n t e r f a c e F a c t o r y {

p u b l i c Component n e w F c I n s t a n c e (Type type , O b j e c t c o n t r o l l e r D e s c ,
O b j e c t con ten tDe s c , IModule module) ;

p u b l i c Component n e w F c I n s t a n c e (Type type , O b j e c t c o n t r o l l e r D e s c ,
O b j e c t con ten tDe s c , Component moduleComponent) ;

p u b l i c Component n e w F c I n s t a n c e (Type type , O b j e c t c o n t r o l l e r D e s c ,
O b j e c t con ten tDe s c , O b j e c t moduleComponentDesc) ;

}

Figure 6.9: The Java signature of the extended Factory interface

Each functional component created using the extended component factory keeps an immutable
reference to this factory. Every such component also exposes an extended life cycle controller in-
terface (see Section 6.2.2 for the description of the basic life cycle controller). The extended life
cycle controller provides the undeploy method. When this method is called on a stopped and un-
bound functional component, the factory which created this component is notified of the component’s

6.4. Capturing Deployment 99

destruction. The factory then, in turn, notifies the garbage collector component of the component de-
struction. This allows the garbage collector to remove a potentially unused module component from
which the given functional component was created, as well as the unused dependencies of the given
module component. The Java signature of the notification interface is illustrated in figure 6.10.

p u b l i c i n t e r f a c e I G a r b a g e C o l l e c t o r {

p u b l i c vo id n o t i f y C o m p o n e n t C r e a t e d (Component comp) ;

p u b l i c vo id n o t i f y C o m p o n e n t D e s t r o y e d (Component comp) ;

}

Figure 6.10: The Java signature of the garbage collector interface

6.4 Capturing Deployment

Capturing deployment in JADE is about the core mechanisms necessary to support the deployment
of components in the context of a distributed system. In fact, deployment capabilities are required
by almost all architecture-based management operations and thereby constitute the foundation of a
framework like JADE.

Given the reflexive architecture described in the previous section, capturing deployment has sev-
eral dimensions. The first one is deciding how deployment will be surfaced to developers of autonomic
managers in JADE. From day one, we wanted to re-use our architecture-based approach, modelling de-
ployment as architecture reconfigurations. This suggests capturing the underlying distributed system
as part of the overall reflexive architecture, using components.

The second dimension is to model physical packages that are the concrete artefacts that need to
be copied onto a given node in order to be able to instantiate a component. In the previous section,
we introduced modules as the implementation of a functional component. Modules reify the loaded
implementations while physical packages are the artefacts on disk. A typical example is the difference
between a loaded and linked shared library and its corresponding image on disk. Physical packages
are locally managed at nodes in a local repository.

The third dimension is the concept of a reconfiguration plan as the collaboration medium between
autonomic managers. Autonomic managers do manipulate the reflexive architecture, producing plans
for reconfigurations. Most managers will produce plans that are abstract from any deployment details.
At a certain level, the distributed architecture is virtualized, that is managers see virtual nodes. They
produce plans expressing constraints on these virtual nodes, the deployment carries out these plans
translating virtual nodes into real nodes taking into consideration the physical constraints of deploy-
ment. For instance, a component may have an implementation only for Linux systems and not for
Windows.

The deployment manager also augments the plan with module-related considerations. All existing
JADE managers are focused on the assembly of functional components. The role of the deployment
manager is to complement any reconfiguration plan about functional components with the necessary

100 6. Capturing deployment in the component-based reflexive architectures

architecture reconfiguration for creating and binding the necessary modules needed by these func-
tional components. Of course, this includes the deployment of the modules themselves on nodes
where they are needed by functional components.

In this regard, the deployment manager has an essential responsibility: scheduling the execution
of the various operations for reconfiguring the architecture. For instance, a physical package has to
be deployed onto a node prior to creating a module from it. Another example is that a functional
component can only be created once its module has been created from a corresponding physical
package, resolved, and started.

This section is structured as follows. We present the different dimensions of component deploy-
ment in the first subsections. In Section 6.4.1, we discuss the modelling of a distributed system in
JADE. In Section 6.4.2, we discuss physical packages and their local management. In Section 6.4.3,
we detail the concept of reconfiguration plans and the different responsibilities of the deployment
manager. In Section 6.5, we illustrate component deployment with two important use cases. The first
one presents a deployment for the GRID and the second one illustrates the cooperation between the
autonomic self-repair manager and component deployment.

6.4.1 Modelling distributed systems

Modelling distributed systems in JADE goes much further than just modelling nodes and their network
connections. Of course, it is about extending the reflexive architecture with a virtual model of a
distributed system. This allows to approach deployment through architecture reconfiguration, keeping
the JADE programming model consistent. But more fundamentally, it is about recognizing that JADE

itself is a distributed system composed of both managed and managing components that are physically
distributed on networked nodes. This is the main rationale behind our recursive design where JADE

itself is built using FRACTAL components, opening up the possibility of JADE managing JADE. In
particular, this means that JADE can deploy the components of itself.

Recursive design

The foundation of a recursive design is the separation of a base layer and its meta-level layer. For the
recursive design of JADE, the meta-level is a set of manager components that manage a set of managed
components that constitute the base layer. Of course, as it is always the case with recursive designs,
manager components are also managed components. Therefore, any component may manage others
through their controllers but any component may also be managed by other components through its
own controllers.

Hence, the first autonomic capability to achieve in JADE is deployment, which suggests to reify the
underlying distributed system as managed components. To achieve this, JADE introduces the concept
of JADE nodes, illustrated in figure 6.11. A JADE node represents a physical node of the underlying
distributed system. The main goal of JADE nodes is to serve as factories of software components to the
deployment manager running within the JADE boot. JADE nodes are therefore composite components
into which deployed components are added as sub-components. This applies for both modules and
functional components.

6.4. Capturing Deployment 101

Figure 6.11: JADE Node

This very first autonomic capability illustrates very well the originality of JADE’s design: the ar-
chitecture not only captures software elements but also hardware elements such as physical machines.
JADE also reifies other system information such as main memory, processing power or stable stor-
age capacity. Other system information are more dynamic such as monitoring probes that provide
runtime feedback on the load of nodes. All this is modelled using sub-components to the composite
representing a physical machine.

The use of components keeps the programming model consistent. A manager that wishes to use
remote monitoring probes will do so using the reflexive architecture. It will model its probes as com-
ponents and will deploy them by declaring them as subcomponents to the composites reifying the
nodes where its probes need to be deployed. It will use these probes through regular bindings, ex-
pressing a dependency as any component would do on another component. Such bindings will be
composite bindings however, transparently handling the remote nature of the probe location. Another
example would be about failure detection using heartbeats. Each node will have a heartbeat compo-
nent that generates heart beats. Such heart beats are multicasted to a group of components on other
machines that will be able to detect the machine failure if heart beats are no longer received. These
communications are also expressed as regular bindings between components.

Generalizing, any management function in JADE is implemented using components, deployed
over the underlying distributed system. Hence, components and their controllers are a distributed
system whose architecture is self-describing. A manager is therefore a component interacting with
this distributed system, evolving its architecture.

102 6. Capturing deployment in the component-based reflexive architectures

Fault-tolerance

3

Beyond deployment which we have just discussed, the distributed nature of JADE gives raise to
fault-tolerance concerns, especially the single-point of failure that any manager represents, or any
component for that matter. To address this concern, JADE advocates a fault-tolerant programming
model.

Fault-tolerance is introduced through active replication at a component level. The choice of an
active replication is natural for transparently replicating components; indeed, most components are
naturally developed as deterministic. Furthermore, an active replication does not require any extra
development effort from component developers as there is no need for a component-specific protocol
to propagate updates between replicas.

The introduction of a transparent replication capability within JADE fully leverages its recursive
and reflexive component-oriented design. While JADE developers perceive non-replicated compo-
nents being assembled through unicast bindings, JADE runtime has to handle the corresponding multi-
cast and gathercast semantics to and from replicated components. An incoming binding to a replicated
component has to be intercepted and transparently translated to a multicast semantics onto the differ-
ent replicas. An outgoing binding from a replicated component has to be also intercepted and trans-
parently translated to a gathercast semantics, ensuring that any architectural manipulation requested
by the different replicas is executed only once. This is achieved transparently through composite
bindings.

Replication provides a way to protect components from partial or temporary failures of the under-
lying distributed system, such as node failures or network failures. Replication is however not enough
in our context – it has to be combined with the overall atomicity of architectural reconfigurations,
evolving the architecture from one consistent state to another. Indeed, architectural reconfigurations
may be rejected by controllers for various reasons such as security policies or lack of appropriate
connecting technologies between legacy systems.

This overall atomicity is transparently provided by the JADE runtime. All JADE controllers offer
architectural manipulations that can be undone. For example, a bind operation has the unbind opera-
tion as a reverse operation. Another example is adding a sub component to a composite that can be
later removed. Consequently, JADE can automatically provide atomicity for architectural reconfigu-
rations using a classical roll-back mechanism that apply reverse operations.

This scheme has to be extended to functional cooperation between managers. Indeed, managers
may not be limited to manipulating the FRACTAL controllers of the components they manage; they
may themselves be developed as cooperating meta-level components. For instance, most managers
do interoperate with the deployment manager. Atomicity has to be preserved also regarding this
functional cooperation. This requires managers to offer reverse operations as well.

6.4.2 Introducing physical packages

3The work around fault-tolerance is mainly the work of Sylvain Sicard, as his Ph.D. thesis. It is presented here to provide
the necessary background to understand the cooperation between the self-repair and deployment managers.

6.4. Capturing Deployment 103

A physical package is a physical container that groups a set of resources, both code and data, such
as compiled code or image files. From a physical package, available locally on disk, the JADE runtime
knows how to instantiate a module. As a concrete example, the physical package can represent a JAR
file if a component model is implemented in Java or an ELF file for a component implemented in the
C programming language.

The management of physical packages represents the first layer of deployment. Each JADE node
provides such a management, being able to receive physical packages from the network and store
them in a local repository. It is essential that this information be part of the reflexive architecture,
modelled as any other architecture information. Hence, each physical package is modelled as a com-
ponent. When available on a JADE node, the component reifying a physical package appears as a
sub-component of the component reifying that JADE node.

This uniform approach allows JADE managers to observe what physical packages are available on
which JADE nodes. In particular, any one wanting to deploy a physical package P to a JADE node N
can do so simply by adding the component reifying the physical package P as a sub-component to the
composite component reifying the JADE node N. Internally, the JADE system will transfer a copy of
that physical package P to the JADE node N. To resist failures, physical packages can be replicated
across JADE nodes. The internal transfer will therefore find a live replica, close to the target node, and
initiate the copy from that replica to the target node.

Also because of failures and to simplify deployment, each JADE node can garbage collect its own
local repository of physical packages. Each JADE node tracks and removes unused physical pack-
age components from its local repository. A physical package is not used when no local module is
currently instantiated from that physical package. Each JADE node has access to the necessary infor-
mation through local component factories that create and remove components, including modules.

6.4.3 Reconfiguration plans

Any manager that wishes to reconfigure the reflexive architecture does so through a deployment plan
that it passes to the deployment manager. A reconfiguration plan is a set of core operations on specific
JADE controllers. A plan can be as simple or as complex as necessary. It can be the deployment of
entire GRID application over five thousand nodes around the world or it can be as simple as changing
bindings between two components.

When a plan is passed to the deployment manager, it is a raw sequence of architectural reconfig-
uration operations, reifying future invocations on the controller methods of certain JADE components
in the reflexive architecture. In most cases, this plan focuses on the functional reconfiguration of man-
aged components and does not include any of the necessary reconfiguration regarding the deployment
of functional components on the various nodes of the underlying distributed system.

This section presents the various transformation that the deployment manager performs on the raw
plan in order to achieve the reconfiguration that it represents. We first introduce the plan itself. Next
we discuss the deployment specific transforms on that plan, producing a complete plan containing
all the necessary management operations to carry out the desired reconfiguration of the architecture.
Finally we discuss the distributed execution of the complete plan.

104 6. Capturing deployment in the component-based reflexive architectures

Raw plan

A plan is a set of ordered Tasks. Each task encapsulates an operation performed on the basic con-
trol API exposed by JADE controllers (see Section 6.2.2). The plan is written in a domain specific
language. This language allows to encapsulate the control operations within the tasks as well as to ex-
press dependencies between these tasks. There are essentially three types of tasks within the domain
specific language:

• The Regular tasks

• The Require tasks

• The Provider tasks

The regular tasks, when executed, simply perform the control operations on the software com-
ponents – they do not return a result. Like any other type of tasks, they can depend on other tasks
in which case the other tasks are always executed first. The require tasks provide the possibility to
specify a reference to a task on which they depend. This way, the require tasks can use the result of
the execution of a task which they require. Finally, the provider tasks when executed return a result
which can be used by the tasks that require them.

For example, the Component Creation task reifies the future invocation of a JADE factory to create
a new component. It is a provider task in that the execution of this task returns an instance of a newly
created software component. The Binding task reifies the future invocation of bind method of the
binding controller on a given component in order to establish a binding with another component. It
is a Require task in that it requires a component creation task to provide it with a reference to two
components between which the execution of this task will establish a binding. These are only a few
examples of the tasks within the raw reconfiguration plan and of the dependencies between these
tasks. The plan uses tasks which cover all the controller functionality provided by the component
model underlying JADE.

It is important to note that the raw plan only uses tasks which concern functional components.
This plan does not contain information on physical nodes into which these functional components are
deployed, or on the modules which the components require in order to be instantiated.

Completing a plan

Every autonomic manager in JADE is capable of producing a deployment plan. Most autonomic
managers will however be focused on the assembly of functional components. It is therefore the
responsibility of the deployment manager to complete the produced plan with the missing information.

Raw plans are expressed using virtual nodes that need to be mapped onto available physical nodes.
Virtual nodes allow autonomic managers to express hints about which components need to be co-
located on the same machine and which components need to be placed on different machines. The
deployment manager will choose the actual nodes of the underlying distributed system based on sev-
eral criteria that are part of the internal policy of the deployment manager. As any autonomic manager,
the deployment manager can be replaced or modified in the JADE framework.

6.4. Capturing Deployment 105

Our default deployment manager is designed for cluster environments and therefore uses the load
of nodes as the essential heuristic. However, we do not impose all the nodes of the cluster to be iden-
tical machines, with identical hardware and identical operating systems. Therefore, when choosing a
cluster node, our deployment manager takes into consideration if it has an implementation available
for the hosting environment (operating system and hardware).

Hence, choosing real nodes is done in conjunction with extending the plan with the necessary
architectural reconfiguration steps regarding both modules and physical packages. As regular compo-
nents, modules and packages have to be deployed as the other functional components in the raw plan.
Of course, modules and physical packages are co-located with the functional components that depend
on them.

At the end of this phase, the deployment plan contains all the necessary reconfiguration operations
to carry the entire reconfiguration, including the deployment specific operations regarding the contain-
ment manipulation of the composites reifying the target nodes. This includes adding new components
(functional, modules, and physical packages) to these composites as well as removing the unnecessary
ones.

Execution of a plan

One essential responsibility of the deployment manager is to execute the complete plan, distributing
that execution on the various target nodes and locally scheduling the various tasks in the correct order.

Although the reflexive architecture appears as centralized to an autonomic manager when intro-
specting it, the reflexive architecture is a distributed system. Hence, a plan that reconfigures the ar-
chitecture is a distributed process. In our prototype, the plan is interpreted locally and the deployment
manager relies on a remote method invocation substrate to invoke methods on remote controllers.
This approach has the advantage of simplicity for the one that developed the deployment manager but
also from a fault-tolerance perspective. The plan succeeds or fails, leaving no orphans distributed on
concerned nodes.

It would be interesting to pursue this work and experiment with distributing the execution of the
plan, shipping sub-parts of the plan to concerned nodes for local execution, similarly to what is de-
scribed in (Quéma et al. 2004) – an approach in which modules are not taken under consideration. The
plan partitioning seems simple at first since we know all the receivers of the controller method invoca-
tions that need to be done and we know where these receivers are located on physical nodes. However,
many operations will be cross-node operations such as creating bindings between remote components
or starting a composite whose sub-components are distributed on different nodes. An examample
scenario could be a composite representing a multi-tiered web system, such as the complete Java EE
solution. In this scenario, each tier is a subcomponent of the Java EE solution composite. The tiers are
often located on different network nodes, mainly for performance and administration reasons. These
tiers need to be started in an orderly manner, i.e. the database should be started before the business
tier and the business tier before the presentation tier. Furthermore, each tier can be duplicated within a
composite representing a clustered solution. In this “view”, each composite encapsulating duplicated
tiers, which are also normally located on different network nodes for fault-tolerance reasons, should
start its children in a parallel manner, to optimize the tier’s start-up time.

This clearly shows that the efficient distributed execution of the complete reconfiguration plan is

106 6. Capturing deployment in the component-based reflexive architectures

a complex subject that needs further study. This work has focused on the other dimension of this
execution: the ordering of the various tasks in the plan. Indeed, tasks carry implicit synchronizations
as some depend on the results of others tasks. The following list gives an idea of the main scheduling
dependencies between tasks:

• A component can only be created once its module has successfully started.

• A binding can only be done on a created component, not yet started.

• Starting a component can only happens once all the necessary bindings are available

• A module can only be instantiated on a JADE node if its corresponding physical package is
available on that node.

• A component must be stopped prior to be disposed of.

• A component must be disposed of before its module is stopped.

Ordering the tasks is not sufficient. For the reconfiguration plan to be valid, all modules on all
concerned JADE nodes must resolve. This requires that the deployment manager runs a resolver on
modules, per concerned JADE node. The resolver solves the constraint problem represented by the
required client interfaces and the provided server interfaces amongst modules. The result of this
resolution step is a set of bindings between modules and the final decision about which modules
are resolved, that is, have all their required client interfaces bound to an acceptable exported server
interface.

The resolver usually attempts an incremental approach, avoiding to unbind any pre-existing bind-
ings so to limit the disruption of the execution of the reconfiguration plan. But sometimes it is best to
destroy some of the existing bindings to allow for a more consistent overall configuration of modules.
How aggressive a deployment manager is in reconfiguring already running components will be an
interesting trade-off to study as dynamic component-oriented programming will become mainstream.

The resolution phase could be distributed, as the overall execution of the plan. However, it can also
be done locally as long as it is divided with respect to nodes. In other words, the resolution process
uses the node containment view in the reflexive architecture. Through this view, the deployment
manager can introspect the current location of components, including modules, and therefore produce
one constraint system to be solved per target node, for the modules deployed on that node.

Once we had computed the bindings between modules and that we have the knowledge of those
that are resolved and those that are not, the execution of the complete plan can continue. All tasks are
organized in three phases: all the stop operations on local components that need to be stopped. All the
necessary bind and unbind operations on stopped components. For components loosing their modules
at this stage (unbind operation on the binding to their module), they have to be disposed of. Finally,
all the start operations on stopped components that can be started (the resolved ones).

If anything goes wrong, the reconfiguration is considered to have failed and it is rolled-back. It
is interesting to point out that the deployment of physical packages and module components does not
need to be rolled-back as each JADE node has a local garbage collector for the asynchronous clean-up
of local repositories of these packages and modules. It is however essential that all other operations
be undone so to bring the overall architecture back to a consistent state.

6.5. Case studies 107

6.4.4 Plan implementation details

The notion of the reconfiguration plan described above is a general one. In the existing prototypes of
a deployment systen for JADE described in chapters 7 and 8 we have implemented several ways of
expressing and executing the architectural reconfiguration tasks contained within the plan.

The first prototype of a deployment system for JADE, described in chapter 7, is essentially an ex-
tended FRACTALADL factory. In this respect, this work is similar to the ones described in (Abdellatif
et al. 2005) and in (Flissi and Merle 2006). The deployment system therefore reuses the ObjectWeb
task scheduling framework. This framework is a Java API for defining a set of tasks, which can be
executed in an orderly manner. Based on this API, we have extended the set of tasks with the ones
responsible for allocation of physical nodes, installation of physical packages and instantiation and
resolution of modules. This prototype however is limited in terms of cooperation between autonomic
managers. Moreover, the tasks describing architectural reconfigurations are essentially about building
an initial architecture, not modifying an existing one.

In the second prototype of JADE, described in chapter 8, the reconfiguration plan is also expressed
in terms of a Java API. This work has been realized by Sylvain Sicard, as part of his PhD thesis.
Compared to the work described in chapter 7, the plan is externalized from the ADL factory and can
be exchanged between the autonomic managers. In both prototypes of JADE the plan is expressed
in terms of Java code, which essentially encapsulates future calls on the component factories and
controllers provided by the JADE framework.

Further investigation of possible implementations of the deployment plan are beyond the scope of
this thesis. As illustrated by the work of Christophe Taton in his PhD thesis, one possible approach is
to use a high-level, concurrency- oriented language, such as Oz, to provide a dynamic adl. Thanks to
its built-in parallelism and synchronization features, Oz allows to express complex workflows in a nat-
ural manner. The work of Christophe proves that this allows languages like Oz to be used succesfully
for describing architectural reconfigurations of component-based software. Such reconfiguration de-
scriptions are “externalized”, thus can be exchanged between autonomic managers or serialized. They
are also more compact and powerful in terms of their expressiveness than similar programs written in
the Java language.

6.5 Case studies

This section presents two essential categories of deployment scenarios that JADE handles. The ini-
tial deployment is an ADL-based deployment that assumes an empty system beyond the core JADE

platform. It assumes that a software has to be deployed on a known set of target machines where an
empty JADE runtime is already present. This is a common case in the context of GRID computing.

The incremental deployment corresponds to a dynamic reconfiguration of an already running JADE

system. It usually is a result of incremental activities performed by autonomic or human managers
that wish to reconfigure the reflexive architecture. We will use the self-repair case as it demonstrates
the full gamut of dynamic reconfigurations of the reflexive architecture.

108 6. Capturing deployment in the component-based reflexive architectures

6.5.1 GRID-like deployment

Deployment in the context similar to the one of grid computing (Grid Computing Info Centre 2002) is
a specific case of software deployment. For one, grid-like environments are built using a large number
of heterogeneous machines. For two, each deployment within such context is an initial one since
grid applications are standalone applications only sharing the underlying grid infrastructure. Namely,
when an application is deployed on the grid it is given a clean set of empty machines on which no other
software components execute. Thanks to the virtualization, these machines may not be real machines,
but this is irrelevant here. Once the distributed application is deployed on the grid, it does not evolve
until the user decides to free the resources and perform another initial deployment.

In this context, JADE provides an Architecture Description Language (ADL) to describe initial
assemblies of components. The ADL is XML-based and initial configurations are provided via XML
files. An ADL description of an initial assembly contains information about the software components
to be deployed, the nodes on which each component is supposed to run, and how components are to
be interconnected (bindings). By default Jade’s ADL files do not contain information on modules and
physical packages, as illustrated in figure 6.12

<!DOCTYPE d e f i n i t i o n PUBLIC ” − / / o b j e c t w e b . o rg / / DTD F r a c t a l ADL 2 . 0 / / EN”
” c l a s s p a t h : / / o rg / o b j e c t w e b / f r a c t a l / a d l / xml / b a s i c . d t d ”>

<d e f i n i t i o n name =” examples . C l i e n t S e r v e r ”>
<component name =” C l i e n t ”>

< i n t e r f a c e name=” c ” r o l e =” c l i e n t ” s i g n a t u r e =” S e r v i c e ”/>
<c o n t e n t c l a s s =” C l i e n t I m p l ”/>
<v i r t u a l −node name =” node1 ” />

</component>
<component name =” S e r v e r ”>

< i n t e r f a c e name=” s ” r o l e =” s e r v e r ” s i g n a t u r e =” S e r v i c e ”/>
<c o n t e n t c l a s s =” S e r v e r I m p l ”/>
< a t t r i b u t e s s i g n a t u r e =” S e r v i c e A t t r i b u t e s ”>

< a t t r i b u t e name=” h e a d e r ” v a l u e =”−>”/>
< a t t r i b u t e name=” c o u n t ” v a l u e =”1”/>

</ a t t r i b u t e s >

<v i r t u a l −node name =” node1 ” />
</component>
<b i n d i n g c l i e n t =” c l i e n t . c ” s e r v e r =” s e r v e r . s ”/>

</ d e f i n i t i o n >

Figure 6.12: An example JADE architecture description file

In the above ADL description, a user of the grid decides to deploy a simple client-server applica-
tion which consists of two functional components: the client and the server. The client component has
a client (required) interface named c, has an implementation class ClientImpl and is to be deployed
on a node symbolically named node1. The server component provides a server interface called s,
which has the same signature as the client’s interface c, has an implementation class ServerImpl, is to
be deployed on a node1, and has two configurable attributes. Finally, the user specifies that client’s
required interface is to be bound to the server’s provided interface.

Given such a description, the ADL-based deployment engine of JADE parses it and performs
preliminary verifications such as checking that all the mandatory component interfaces have corre-

6.5. Case studies 109

sponding bindings etc. Once the verification is successful, the deployment engine creates a raw de-
ployment plan, as described in Section 6.4.3. In the initial version of JADE, this raw plan was almost
the complete plan as modules and physical packages were not modelled as components. The actual
deployment of software artefacts was simply performed under the hood with ad-hoc deployment tools
and infrastructures.

In the current version of JADE, the raw plan has to be completed with modules and physical
packages. As illustrated in Figure 6.13, the information about modules can be included in the ADL
description. If not, the deployment manager would use available meta-data about known relationships
between components and modules.

<!DOCTYPE d e f i n i t i o n PUBLIC ” − / / o b j e c t w e b . o rg / / DTD F r a c t a l ADL 2 . 0 / / EN”
” c l a s s p a t h : / / o rg / o b j e c t w e b / f r a c t a l / a d l / xml / dep loymen t . d t d ”>

<d e f i n i t i o n name =” examples . C l i e n t S e r v e r ”>
<component name =” C l i e n t ”>

< i n t e r f a c e name=” c ” r o l e =” c l i e n t ” s i g n a t u r e =” i n t e r f a c e s . S e r v i c e ”/>
<c o n t e n t c l a s s =” C l i e n t I m p l ”/>
<v i r t u a l −node name =” node1 ”/>
<module name =” C l i e n t ” v e r s i o n =”1 .0 .0 ” / >

</component>
<component name =” S e r v e r ”>

< i n t e r f a c e name=” s ” r o l e =” s e r v e r ” s i g n a t u r e =” i n t e r f a c e s . S e r v i c e ”/>
<c o n t e n t c l a s s =” S e r v e r I m p l ”/>
< a t t r i b u t e s s i g n a t u r e =” S e r v i c e A t t r i b u t e s ”>

< a t t r i b u t e name=” h e a d e r ” v a l u e =”−>”/>
< a t t r i b u t e name=” c o u n t ” v a l u e =”1”/>

</ a t t r i b u t e s >

<v i r t u a l −node name =” node1 ”/>
<module name =” S e r v e r ” v e r s i o n =”1 .0 .0 ” / >

</component>
<b i n d i n g c l i e n t =” c l i e n t . c ” s e r v e r =” s e r v e r . s ”/>

</ d e f i n i t i o n >

Figure 6.13: An example JADE architecture description file with modules

In the above figure the Client component’s implementation is contained within the ClientModule-
1.0.0 module, whereas the Server component’s implementation comes from the ServerModule-1.0.0
module. The modules are described in a separate architecture description file for the purpose of clarity.
An example module description file is illustrated in Figure 6.14.

We can see that each module is associated with at least one physical package. Furthermore, we
can see that this file describes the dependencies between modules. The syntactic differences should
not be understood as perceiving modules as different than regular components, they are not. Modules
are regular components and their imports and exports represent regular FRACTAL interfaces that will
have regular FRACTAL bindings.

The Client module imports the interfaces package from some other module and comes with a set
of resources contained within the client.pkg physical package. The Server module on the other hand
exports (provides) the interfaces package in version 1.0.0 and also comes with a set of resources,
contained in the server.pkg physical package.

Once the ADL-based deployment engine has generated the complete deployment plan, using both

110 6. Capturing deployment in the component-based reflexive architectures

<modules>

<module name=” C l i e n t ” v e r s i o n =”1.0 .0” >

<i m p o r t package =” i n t e r f a c e s ” v e r s i o n =”1 .0 .0 ” / >

<i m p o r t package =” sys t em ” v e r s i o n =”1 .0 .0 ” / >

<c o n t e n t f i l e =” c l i e n t . pkg ”/>
</module>

<module name=” S e r v e r ” v e r s i o n =”1.0 .0” >

<e x p o r t package =” i n t e r f a c e s ” v e r s i o n =”1 .0 .0 ” / >

<i m p o r t package =” sys t em ” v e r s i o n =”1 .0 .0 ” / >

<c o n t e n t f i l e =” s e r v e r . pkg ”/>
</module>

</modules>

Figure 6.14: A sample module description file

description files illustrated in Figure 6.13 and Figure 6.14, it executes the plan, scheduling appropri-
ately the different tasks. This starts with the installation of physical packages client.pkg and server.pkg
on virtual node node1. Follows the creation of the module components for the Client and Server mod-
ules, binding them together, and starting them. The execution ends with the creation of application
components from the correct modules, binding them, and starting them.

6.5.2 The self-repair case

Self-repair is certainly one of our most advanced autonomic managers in JADE. It ensures not only the
autonomic self-repair behavior of the components it manages but it is also capable of self-repairing
itself. As such, the self-repair provides the foundation of the JADE programming model for devel-
oping advanced management capabilities that are fault-tolerant. The autonomic self-repair manager
relies heavily on the presence and fault-tolerance of the autonomic deployment manager for its proper
function. This case study perfectly illustrates our incremental deployment scenario.

Architecture-based self-repair

Our self-repair advocates an architectural recovery process that, after a failure, re-establishes a valid
reflexive architecture of the managed system. Our current failure model for nodes is a fail-stop one.
A fail-stop model says that a node may fail but it assumes that the node was working correctly until
it stopped. This fail-stop model ensures that no failed manager has performed erroneous reconfigura-
tions of the architecture. This assumption, combined with the overall atomicity property of architec-
tural reconfigurations, maintains the overall consistency of the reflexive architecture.

Our self-repair is an entirely generic process at the architecture level. The capacity to self-repair
does not imply any specific pattern on the reflexive architecture of the managed application. It does
not require any specific capability from managed components beyond the JADE controllers.

Once a failure is detected, the self-repair manager reverts the managed system to an earlier con-
sistent state that existed prior to the failure detection. This roll-back approach is composed of the
following three main steps: fault detection, fault analysis, and fault recovery.

6.5. Case studies 111

The detection step. This step detects fail-stop faults appearing in the system. It monitors the health
of the managed system through probes installed on nodes; these probes use a heartbeat technique to
detect node failures. In other words, nodes are self-watching for failures.

The analysis step. This step analyses the detected fault by introspecting the reflexive architecture
in order to understand how to repair the detected fault.

This step only works if the reflexive architecture is fault-tolerant. Indeed, when a node fails, all
components running on that node also fail, including their controllers. This means that JADE looses
some parts of its reflexive architecture. Without proper measures, this would mean that the self-repair
manager has lost the very information it needs to know what needs to be repaired.

It is important to recall that JADE is a totally dynamic system where the architecture evolves at run-
time. Only the reflexive architecture reflects the true state of the managed system. Consequently, our
design ensures that the reflexive architecture is tolerant to node failures. This is done by introducing
a checkpoint capability that checkpoints the last known consistent sate of the reflexive architecture.

Figure 6.15: Management and Checkpoint layer

The checkpointed architecture appears as regular components, as depicted in Figure 6.15. It is
the responsibility of JADE controllers to maintain the checkpoint of the architecture as a side effect of
commits of architectural changes requested by autonomic managers. The rationale for designing the
checkpoint using components is to maintain a uniform reflexive interface for any manager that needs
to access the architecture, be it the reflexive architecture or its checkpointed counter part.

The repair step. The checkpointed architecture restores the ability of the self-repair manager to
observe a consistent architecture once a failure has been detected. It can therefore build a plan to
repair what has been lost. During this repair step, the self-repair manager allocates a new available

112 6. Capturing deployment in the component-based reflexive architectures

node, uses the deployment service to deploy the components that need to be instantiated on the new
node, re-establishes the bindings and containment (composites) for these newly created components
and finally restarts components that were running prior to the failure.

This scheme works well for stateless components, the self-repair manager only needs to restore
the architecture, simply re-creating components that were lost in the failure. This is perfectly appli-
cable for the various tiers of a J2EE Web Application Server, as long as the underlying file system is
accessible from the various nodes of the cluster. For the database component, it will usually require
to restore the failed node since database systems usually require using local disks. If stateful com-
ponents wrap legacy systems that offer checkpointing capabilities, these can be used. For pure JADE

components, the use of persistence frameworks such as JDO or Hibernate could be envisioned.

Recursive self-repair

Self-repair suggests a recursive design that exploits the overall recursive design of JADE, based on
components. Indeed, the self-repair manager watches over managed components and repairs them
when a failure is detected; but the self-repair manager itself needs to be watched and repaired in case
a failure affects its operation. We term this the self-self-repair.

For self-self-repair, we need to add fault-tolerance to both the self-repair process itself and the
Checkpoint layer that is used by the self-repair process. This almost comes for free in JADE if care is
taken to consistently apply the fundamentals of architecture-based management using JADE reflexive
and component-oriented framework. Because both the Checkpoint layer and the self-repair manager
are both developed as JADE components, we can leverage JADE’s ability to replicate components and
provide a fault-tolerant self-repair service.

By being a replicated component, the self-repair manager can self-repair itself. First, the self-
repair manager detects failures of replicas of itself. Second, it is able to re-create failed replicas,
like any other component lost due to a failure. In doing so, the self-repair manager maintains the
cardinality of its own replication, without human intervention. The transactional semantics of the
JADE programming model ensures that failures during repair attempts do not compromise the reflexive
architecture.

Being a replicated component, the Checkpoint layer is guaranteed to resist node failures. We
also know that the checkpoint layer only captures consistent architecture state since JADE controllers
atomically update the checkpointed architecture, as we already mentioned.

By designing the Checkpoint layer with components, we introduce a recursion that needs to be
controlled. Indeed, as the checkpoint layer represents the architecture of managed components and
since it is itself composed of components, the checkpoint layer contains a representation of its own
architecture. Since changes in the reflexive architecture create components and therefore controllers,
the very architecture of the Checkpoint itself changes since it mirrors the reflexive architecture in
terms of components. This recursion is illustrated in Figure 6.16. To avoid this problematic recursion,
the controllers of the components used to implement the Checkpoint layer are specialized in that they
do not attempt to reflect their own architecture in the Checkpoint layer.

The operating principle to gain self-self-repair capability can be summarized as follows. First,
there is one self-repair manager that uses one Checkpoint layer. Second, both are implemented as
JADE components that are transparently replicated by JADE. Replication provides a first step towards

6.5. Case studies 113

Figure 6.16: Putting pieces together: repair service & replicated components

self-self-repair; the second step is provided through the ability of the self-repair manager to maintain
the replication cardinality. Third and final step, the consistency of the reflexive architecture is ensured
by the atomicity of architecture reconfigurations.

Relationship with deployment

The self-repair manager relies on an autonomic and fault-tolerant deployment manager for its proper
function. Like any other manager, the self-repair manager relies on the deployment manager to com-
plete its raw reconfiguration plans. However, it also relies on the deployment manager for part of the
fault-tolerance of its resolution of the recursion induced by the self-self-repair property.

Regarding the completion of raw reconfiguration plans, the deployment manager has the same
responsibility as explained in Section 6.4.3. In this regard, deployment supports the fault-tolerance
requirement of JADE. First, through its ability to choose physical nodes and deploy components
on them, it supports the replication strategy for providing fault-tolerance to autonomic managers.
Second, it supports the ability of the self-repair manager to rebuild what has been lost in a failure
through re-deploying components on new nodes and rebuilding bindings.

The design of our deployment has been also impacted in more subtle ways. By replicating the local

114 6. Capturing deployment in the component-based reflexive architectures

storage of physical packages on several nodes, the deployment participates in fault-tolerance since it
avoids loosing some component implementations in case of node failures. Moreover, the presence of
garbage collection at each local node simplifies the implementation of the atomicity of architectural
reconfigurations. Indeed, there is no need to explicitly remove modules or physical packages – unused
ones will be discovered asynchronously and removed locally, without a global decision. However, for
fault-tolerance reasons, the positive decision on removal of a package is taken only if there are enough
available replicas of the given package on other nodes. This will be explained in detail in section 8.5
Of course, any such removal will be reflected atomically in the reflexive architecture.

A more important point is the replication of the deployment manager itself to provide the neces-
sary fault-tolerance to the self-repair manager in order to solve the recursion introduced by its self-
self-repair ability. As part of repairing itself, the self-repair manager depends on its ability to maintain
the cardinality of its own replication. To do this, it relies on the deployment manager as it needs to
re-deploy a new replica of itself on a new node. By replicating the deployment manager, we ensure
enough fault-tolerance to node failure to ensure the proper functioning of our overall fault-tolerance
scheme.

The actual design of the self-repair manager is the subject of the Ph.D. thesis of Sylvain Sicard,
in the Sardes team at INRIA. We have worked together in the interaction between the two goals of
autonomic self-repair and self-deployment. Sylvain’s work includes the replication scheme and its
FRACTAL mechanisms, I am responsible for the design of the deployment manager and in particular
the design of the local repository of packages and the module layer.

6.6 Conclusion

In this chapter, we captured deployment as an integral part of the architecture-based approach to sys-
tem management. We did this work in JADE, a research project that aims at providing a reflexive
component-oriented framework for developing autonomic management systems. Through the years,
deployment has imposed itself as the foundation of JADE, underlying most if not all management op-
erations through architectural reconfigurations. However, the journey has been long and treacherous,
as the next chapter illustrates through the various attempts at introducing deployment in JADE.

One of the main reasons for this was that JADE evolved from a traditional approach to architecture-
based system management to an advanced framework for building autonomic systems. In the tradi-
tional approach, the focus was on managing legacy systems, independently deployed through legacy
deployment tools and infrastructures. This puts deployment as a necessary evil, but not captured by
the architecture-based paradigm. Through the years, JADE evolved towards a fundamentally novel
approach: a framework and a distributed platform for building autonomic systems. The approach is
still compatible with managing legacy systems, but it uses a recursive design where JADE itself is
developed as a distributed component-oriented systems.

Hence, JADE manages JADE, putting deployment at the foundation of the JADE architecture and a
central design issue. In particular, JADE provides a fault-tolerant distributed paradigm for developing
autonomic managers that rely on both the self-deployment and self-repair capabilities of JADE. This
required not only a cooperation between deployment and self-repair, but it strongly suggested to con-
sider a uniform approach to modelling the architecture of the managed system: JADE itself. From a

6.6. Conclusion 115

deployment perspective, we extended the component-oriented model for capturing the implementa-
tion of modules as well as the modelling of a distributed system, bringing deployment from the status
of an external and necessary evil to the status of an autonomic manager, providing many of the core
bootstrap functionalities for other autonomic managers to work properly.

Part III

Implementation

119

Résumé de chaptire 7

Dans le chapitre 7 de cette thèse nous décrivons la première version de système de déploiement
pour JADE. Cette version est basé sur deux technologies existants—le modèle a composants FRACTAL

et la plateforme a service OSGI (voir 7.1). On a adopté OSGI car cette plateforme fourni une solution
avancée aux problèmes de modularité de l’environnement Java. Cette aspect de OSGI complète bien
le aspects dynamiques fourni par JULIA—une incarnation Java de modèle FRACTAL.

Dans la section 7.1 de ce chapitre, on décrit OSGI et JULIA pour donner une base des connais-
sances nécessaires pour la compréhension de la reste de ce chapitre. Section 7.2 illustre comment cette
version de JADE gère les logiciels patrimoniaux. Ensuite, dans la section 7.3 on présente l’architecture
reparti de JADE, en se focalisant sur le déploiement et sur la représentation système. Puis, dans la sec-
tion 7.4 on décrit la console d’administration de jade, qui offre les capacités avances de déploiement
pour les administrateurs humains. Dans la section 7.5 on évalue cette première version de jade, avant
de conclure ce chapitre dans la section 7.6.

Chapter 7

JADE: First Design

Contents
7.1 Background . 122

7.1.1 About OSGI . 122

7.1.2 About JULIA . 124

7.2 Wrapping Legacy Systems . 126

7.3 Component Deployment . 129

7.3.1 Distributed deployment . 129

7.3.2 Local deployment . 131

7.4 Admin Console . 133

7.5 First Evaluation . 136

7.6 Conclusion . 140

This is the original design of JADE. It is an architecture-based approach to the management of
complex and distributed legacy systems. This a two-layer design: the JADE system and the man-
aged systems. The approach is architecture-based and component-based such as to model managed
systems as components. The component-based approach provides a uniform management APIs, the
controllers.

In its early years, JADE targeted the autonomic management of complex and distributed legacy
systems. By autonomic, we mean that JADE could manage the legacy systems without, or with min-
imal, human intervention. The approach was architecture-based which means that the architecture of
the managed legacy systems is reified at runtime for autonomic managers to observe and reconfigure
if need be.

One crucial and early design point was to adopt a reflexive component-oriented model as the
foundation of JADE. We chose the FRACTAL model that not only provided components but also reified
the assembly of components. In FRACTAL, a component is both a content (its functional part) and
a membrane (its control part). FRACTAL does not impose any particular set of controllers but JADE

imposes the set of five controllers detailed in Section 6.2.2. These five controllers provide the core
management operations that are basis of autonomic managers. In other words, autonomic managers
can both observe and reconfigure the architecture through these five controllers.

Through components, the goal was to model the architecture of complex legacy systems and prove
that the approach advocated by JADE made it simpler to write autonomic control loops. Three early
autonomic managers were initially considered: self-protection, self-repair, and self-optimization. All
three were written using the FRACTAL controller API, a task that proved much simpler in JADE than

122 7. JADE: First Design

in many other management systems. The manipulation of a high-level modelling of the architecture
through only the five concepts of the FRACTAL membrane proved highly effective.

Another main reason for this software engineering efficiency was that JADE managed to hide most
of the distribution challenges. The first challenge regarding distribution is that the managed legacy
systems were distributed. This meant that managers had to observe and reconfigure a distributed
architecture. The second challenge was that the distributed nature of the legacy systems suggested
that a deployment solution had to be provided—deployment underlies almost all architecture-based
reconfigurations.

The two challenges found a unique solution in a distributed design of the JADE platform. We
decided to combine several existing technologies. We adopted Java for its large acceptance and its
portability. We adopted the OSGI platform for its advanced support for dynamic modularity; some-
thing that perfectly complemented the JULIA technology, a Java highly-optimized incarnation of the
FRACTAL model.

This chapter presents this first design of the JADE based on these various software technologies. In
Section 7.1, we cover the necessary background on OSGI and JULIA technologies. In Section 7.2, we
present how wrappers are built for legacy systems. In Section 7.3, we present the overall distributed
architecture of JADE, focusing on deployment and the system representation of the architecture. In
Section 7.4, we discuss the administration console that offers advanced deployment capabilities for
human administrators. In Section 7.5, we evaluate this first design of JADE in the context of the
success story of Jasmine. In Section 7.6, we conclude.

7.1 Background

This section is a background section about the OSGI and JULIA that underlay JADE. The OSGI

technology is used for its advanced support for modularity while the JULIA technology is used for its
advanced support for components, following the reflexive FRACTAL model.

7.1.1 About OSGI

The OSGI Technology is a specification from the OSGI Alliance that defines a Java platform for
the dynamic assembly of network deployed components. The design target was long-running system
where software components could be dynamically added and removed, without having to shut-down
and restart the OSGI platform.

Several implementations of the OSGI specification exists and some have been the foundation
of very successful projects, both open source software and proprietary products. For example, the
Eclipse platform is based on OSGI, using a home-brewed implementation called Equinox. On the
server side, Equinox is used as the platform of the IBM WebSphere Application Server. Similarly, in
the ObjectWeb open source community, the JONAS Web Application Server is also based on OSGI,
using the Apache implementation of OSGI called Felix.

The rationale for the OSGI success is two fold. From a runtime perspective, OSGI is one of the
most achieved platform for the dynamic management of components, called bundles in OSGI. Since
2003 and its adoption by the Eclipse community as the foundation of the Eclipse platform, OSGI

enjoys good tool support. We considered both the runtime and tool perspective when we decided to

7.1. Background 123

adopt the OSGI Technology for the design of JADE, we discuss both dimensions in the two sections
below.

Runtime perspective

A component in OSGI is called a bundle; however, an OSGI bundle only partially corresponds to
the Szyperski definition of a component in that a bundle only partially defines its dependencies. A
bundle is in fact composed of two layers: a module layer and service layer. The module layer relates
to modularity regarding Java types, leveraging Java class loaders. The service layer relates to the
ability for bundles to register or look up services in a shared registry. The module layer is fully declar-
ative through bundle manifests, as the Szyperski definition requires while the service layer follows a
programmatic approach.

Corresponding to the Szyperski definition, a bundle is an independent entity that can be down-
loaded in an OSGI platform and dynamically assembled with other bundles already installed. This
assembling is a two-phase process that corresponds to the two layers of a bundle—the module and the
service layers. Once a bundle is installed, the OSGI platform automatically attempts to resolve the
module of that bundle (there is a single module per bundle).

The module is meta-declared in the bundle manifest, written in a domain specific language that
supports the definition of module dependencies. A sample bundle manifest is illustrated in Chapter 4,
figure 4.1. A module is essentially grouping a set of Java packages, themselves grouping a set of Java
types, both classes and interfaces. A module may export some of the Java packages that it has locally.
A module may also import Java packages. It does so for essentially two reasons. One is to resolve
local Java types, the imports therefore corresponds to missing Java types that are needed by local Java
types to resolve at load time. The other reason is to provide a larger scope of Java types.

Module defines a visibility scope for Java types, like Java class loaders do. In fact, an OSGI

module is a class loader at runtime in the Java Virtual Machine (JVM). It provides access to its
local types, of course, but also to the types of its imported Java packages. This happens through
the traditional class loading delegation between Java class loaders (Sheng and Bracha 1998). The
Java type scope of a module is used by the service layer.

Per bundle, one may define a bundle activator that is started when its module is resolved. A
module is resolved when it has all its imports satisfied. When started, the bundle activator is an
automatically instantiated Java class from the module. It has therefore the type visibility of that
module. The bundle activator acts as the service-level constructor of the bundle, it creates services
that it registers and looks up the services that it needs.

Hence, OSGI has adopted a programmatic approach to services rather than a declarative one. In
other words, service dependencies are not meta-declared and managed by a service-aware container
following an Inversion of Control (IoC) pattern. OSGI only provides a shared registry that tracks
registered services. A service is registered using a dictionary of key-value pairs. Leveraging this
dictionary-based meta description of services, the registry allows bundles to lookup services through
LDAP-like filters.

A bundle may register or revoke a service at any point in time. The correction of the programming
model is ensured via lifecycle events about services being registered and unregistered. Anyone using
a service must listen to these events and be prepared to relinquish that service whenever a revoke event

124 7. JADE: First Design

is received. This programming model works but represents a real burden on developers. Furthermore,
the service layer lifecycle is slave to the module layer lifecycle. The OSGI platform automatically
starts and stops bundle activators according to the module lifecycle. An activator is started only if
its corresponding module is resolved, stopped otherwise. Modules also have a lifecyle, distinct from
the service lifecycle. A module is resolved only if it has its dependencies resolved, that is, if all its
imports are satisfied. Since bundles may be installed, uninstalled, and updated dynamically, that is,
without shutting down the OSGI platform, modules may not be immediately resolved when installed
and resolved modules may go unresolved at any time.

Tool perspective

The availability of tools is a decisive factor in the success of complex platforms such as OSGI. Today,
developers can get help from either Maven or Eclipse. There are essentially two difficult issues with
OSGI bundle development: managing imports and exports on the one hand and on the other hand
publishing (releasing) developed bundles in order to make them available for deployment.

Both Eclipse and Maven provide automated support for managing imports and exports. A good
thing since manually managing imports and exports rapidly proves tiresome and error-prone for most
Java developers. Without automated support, a developer needs to track all its import statements in
his or her Java classes, combine them, and maintain the list of all imported Java packages that are
not locally available. These are the imports to be declared in the OSGI manifest. Automated support
makes this an absolute no-brainer and totally safe.

Regarding publishing bundles, the OSGI Alliance promotes the use of OBR, the OSGI Bundle
Repository. Bundles in OBR are identified by a string and have associated metadata in the form
of key-value pairs. An extract from the OBR metadata is illustrated in Figure 7.1. Through this
metadata, one can specify for example the bundle contents and dependencies between bundles. The
OBR repository includes a resolver on such dependencies that allows to retrieve a transitive closure
of bundles. In other words, if one wants to download a given bundle, the OBR permits to know what
extra bundles are necessary to download for that one bundle to resolve. This is a valuable core service
for the deployment of bundles.

7.1.2 About JULIA

Since JADE leverages the FRACTAL model, we need a Java incarnation of that model for complement-
ing the modularity provided by the OSGI platform. Julia is a highly-optimized incarnation of the
FRACTAL component model in Java, whose implementation is open-enough that it can be ported to
the module layer of osgi.

JULIA provides a platform for dynamic assemblies of functional components, following a service-
oriented paradigm. In JULIA, components are regular FRACTAL components developed in Java.
Server interfaces are typed using Java interfaces, providing an adequate separation between the in-
terface behaviors and the internal implementation of components. Client interfaces are essentially
Java references to objects implementing the correct Java interfaces.

JULIA is an extremely well engineered incarnation of the FRACTAL component model. It heavily
uses mixins and load-time weaving in order to limit the runtime overhead of components, especially

7.1. Background 125

<?xml v e r s i o n = ” 1 . 0 ” encod ing =” ISO−8859−1” s t a n d a l o n e =” yes ”?>
<?xml−s t y l e s h e e t t y p e =” t e x t / x s l ” h r e f =” ob r2h tml . x s l ”?>
< r e p o s i t o r y l a s t m o d i f i e d =”20071019162042.169 ” name =”{\ j a d e } Package R e p o s i t o r y ”>

<r e s o u r c e i d =”7” p r e s e n t a t i o n n a m e =” Apache Wrapper ”
symbol icname =” o rg . ow2 . j a s m i n e . j a d e . wrappe r . apache ”
u r i = ” . / j 2 e e / o rg . ow2 . j a s m i n e . j a d e . wrappe r . apache − 2 . 0 . 0 . j a r ”
v e r s i o n =”2.0 .0” >

<d e s c r i p t i o n >{\ j a d e } wrappe r o f Apache Ht tp s e r v e r </ d e s c r i p t i o n >

<s i z e >11214</ s i z e >

<c a t e g o r y i d =” o rg . ow2 . j a s m i n e . j a d e . wrappe r ” />
<c a p a b i l i t y name=” bund le ”>

<p n=” m a n i f e s t v e r s i o n ” v =”2” />
<p n=” p r e s e n t a t i o n n a m e ” v=” Apache Wrapper ” />
<p n=” symbol icname ” v=” o rg . ow2 . j a s m i n e . j a d e . wrappe r . apache ” />
<p n=” v e r s i o n ” t =” v e r s i o n ” v = ” 2 . 0 . 0 ” />

</ c a p a b i l i t y >

<c a p a b i l i t y name=” package ”>
<p n=” package ” v=” o rg . ow2 . j a s m i n e . j a d e . wrappe r . apache ” />
<p n=” u s e s : ”

v=” o rg . ow2 . j a s m i n e . j a d e . f r a c t a l . u t i l ,
o rg . ow2 . j a s m i n e . j a d e . f r a c t a l . a p i . c o n t r o l , o rg . o b j e c t w e b . j a s m i n e . j a d e . u t i l ,
o rg . o b j e c t w e b . f r a c t a l . ap i , o rg . o b j e c t w e b . f r a c t a l . a p i . c o n t r o l ”

/>
<p n=” v e r s i o n ” t =” v e r s i o n ” v = ” 2 . 0 . 0 ” />

</ c a p a b i l i t y >

< r e q u i r e e x t e n d =” f a l s e ”
f i l t e r =”(& ; (package = org . o b j e c t w e b . asm) (v e r s i o n &g t ; = 0 . 0 . 0)) ”
m u l t i p l e =” f a l s e ” name=” package ” o p t i o n a l =” f a l s e ”>
Impor t package org . o b j e c t w e b . asm

</ r e q u i r e >

. . (t h e r e s t o f r e q u i r e m e n t s)
</ r e s o u r c e >

</ r e p o s i t o r y >

Figure 7.1: An example of OBR metadata

optimizing the membrane. In JULIA, the different controllers are collapsed into a single object through
mixins, avoiding most of the space and time overhead of having membranes. This is important because
JULIA targets reflexive programming in that the running assembly of FRACTAL components may
be introspected and reconfigured at runtime, through the meta operations of the controllers in the
component membranes.

JULIA has focused solely on dynamic reconfiguration at the functional level of an application; it
relies on the assumption that all the Java types needed by JULIA components are available in the class-
path of the Java Virtual Machine (JVM). Cleverly though, JULIA offers the right hooks to introduce
class loaders. These hooks were precious when we assembled the JULIA and OSGI middleware into
a single platform that offered both dynamic modularity and dynamic assembly of FRACTAL compo-
nents. We had the foundation for JADE, we needed to understand how to wrap legacy systems so that
they can be deployed and managed through the component membranes.

126 7. JADE: First Design

7.2 Wrapping Legacy Systems

Wrapping legacy systems is a development task that is specific to the JADE environment. The goal
is to create FRACTAL components that act as a gateway between the management world of JADE and
the functional world of legacy systems. It is therefore easier to think about wrapping legacy systems
as inducing a two-layer architecture, as depicted in Figure 7.2.

Figure 7.2: Basic Architecture of a Management System

In this example, we have two legacy elements to wrap: a web server and a database system. At the
very least, the wrappers have to provide the following controllers. A lifecycle controller that enables to
start and stop its legacy element. A binding controller that translates bindings into actual connections
between legacy elements. In this example, this is done through parametrizing configuration files; the
binding between the web server and the database is establishing through a JDBC connection on IPC
port 3306.

Developers are usually creating one JADE component per legacy system, although nothing pre-
vents to bundle legacy systems together. However, legacy systems are traditionally large and complex
software systems that one would rather componentize than bundle together. Hence, a wrapper com-
ponent usually reifies one managed legacy system as one JADE component, exposing the controllers
defined by JADE. We discuss below the details of two real wrapping experiences: J2EE clustered Web

7.2. Wrapping Legacy Systems 127

Application Server and an advanced JMS provider using a snowflake distributed design. For each, we
give an evaluation of the challenges and difficulty of the wrapping process.

Web Application Server Scalable Web Application Server are often structured in multiple tiers as
depicted in Figure 7.3 to meet the performance requirements of demanding web applications such
as e-commerce and auctions, on-line banking, stock market quotation servers, web portals, and news
servers.

Figure 7.3: A clustered web application server

The web tier is an HTTP server, such as Apache. Its function is to receive and process the HTTP
requests from clients. For static content, the web tier can answer the request directly. For dynamic
content, requests are dispatched to the presentation tier, such as Tomcat Servlet engine. Servlets
produce dynamic pages using the business tier (e.g. EJB Enterprise Java Beans) that implements the
business logic, accessing the database tier (e.g. a MySQL server) that provides transactional query-
oriented storage.

This n-tiers infrastructure is managed through a set of interconnected components that wrap the
tiered legacy system. Each legacy wrapper provides the five controllers defined by JADE.

Attribute controllers are used to expose and change configuration attributes of the different tiers.
For the web tier, it wraps the configuration file of the Apache HTTPD server. Hence, a modification of
the port attribute of the Apache component is reflected in the httpd.conf file in which the port attribute
is defined.

Binding controllers are used to reflect and manipulate connections between tiers. For instance,
the Apache HTTPD server needs to be connected to the Tomcat Servlet engine. The implementation
of this bind method is reflected at the legacy layer in the worker.properties file used to configure the
connections between Apache and Tomcat servers. A bind operation will create that connection where
an unbind operation removes that connection.

Lifecycle controllers are used to start and stop tiers. For instance, the web and presentation tiers
can be started or stopped through the execution of shell scripts to start/stop the Apache HTTPD server
or Tomcat Servlet engine.

Legacy wrappers are not components that can be transparently replicated by JADE, but they can
nevertheless be replicated explicitly on a cluster of machines. Each instance of a legacy Apache
HTTPD server and Tomcat Servlet engine would be wrapped as one primitive component, then paired

128 7. JADE: First Design

in a composite component representing one web server. The replicas of that web-server component
on different machines would be grouped in a composite component capturing the replication group.
Of course, this replication-oriented hierarchy of components combines itself with the deployment
hierarchy when each machine of the cluster is reified as a node component that is a composite grouping
all components deployed on that machine. A front-end switch that applies a round-robin policy across
Apache servers would also be wrapped as a component with bindings that capture its connections to
the different Apache HTTPD servers.

Message-Oriented Middleware Message-Oriented Middlewares (MOMs) are distributed platforms
that enable a message-based integration of loosely-coupled heterogeneous distributed systems. We
wrapped the MOM called JORAM (Java Open Reliable Asynchronous Messaging) that provides
a fully compliant implementation of the JMS specification. JMS applications cooperate through
messages, using either message queues for point-to-point communications or topics for a publish-
subscribe paradigm. In this context, architecture-based management is two-fold. On the one hand,
one needs to manage message queues and topics, something that is not covered by the JMS specifica-
tion. On the other hand, one needs to manage the distributed snowflake architecture of the JORAM
middleware itself.

Figure 7.4: A snowflake infrastructure

The JORAM snowflake architecture is illustrated in Figure 7.4. It is a distributed middleware that
sets up a routing overlay for delivering queue and topic messages efficiently and reliably. In JADE,
JORAM servers are reified as composite components, each composite grouping all the middleware
components deployed on the corresponding server. For instance, topics and queues are also wrapped
as components and locally deployed on JORAM servers. The manifest file for the Joram JMS bundle
is illustrated by figure 7.5.

Modelling message queues and topics as components allows for JMS administrative tasks to be
done through JADE controllers. For example, one can create message queues or topics on certain
JORAM servers. JORAM supports replicated topics that can easily be modelled and managed through

7.3. Component Deployment 129

Bundle−A c t i v a t o r : f r . j a d e . o s g i . joram . A c t i v a t o r
Bundle−Name : Joram S e r v e r
Impor t−Package : f r . j a d e . f r a c t a l . a d l . a t t r i b u t e s ,

. . .
o rg . o b j e c t w e b . f r a c t a l . ad l ,
. . .
o rg . o b j e c t w e b . f r a c t a l . j u l i a

Bundle−D e s c r i p t i o n : A bund le t h a t c o n t a i n s Joram components (Se rve r , Queues ,
Top ic s e t c .)
Bundle−Vendor : S c a l a g e n t D . T .
Bundle−V e r s i o n : 0 . 0 . 1
Man i f e s t −V e r s i o n : 1 . 0
Bundle−C l a s s P a t h : . ,

joram−mom. j a r ,
joram−c l i e n t . j a r ,
joram−s h a r e d . j a r ,
ow monolog . j a r ,
JCup . j a r ,
j a k a r t a −regexp −1 .2 . j a r ,
jms . j a r

Figure 7.5: An example bundle manifest file

JADE like we already discussed for replicated multi-tiered web servers. The same would be true of the
JORAM advanced support for message queues with load-balancing capabilities. Through JADE, one
can write queue managers that can create, deploy, and configure such message queues. Going further,
JADE opens the path for more autonomic management functions such as autonomic load balancing
for both message queues and replicated topics.

7.3 Component Deployment

Deploying components in JADE is a two-level process: local deployment and the distributed deploy-
ment. Local deployment is about the local installation of OSGI bundles, carrying both JADE wrappers
and the wrapped legacy systems themselves or enough information to be able to trigger their installa-
tion through legacy installers such as DEB or RPM. Distributed deployment is about the distributed
infrastructure that supports this local deployment on local OSGI platforms.

7.3.1 Distributed deployment

Before any deployment can take place within JADE, JADE itself needs to bootstrap, which is a some-
what autonomous distributed process. On a set of physical machines, a human administrator has
installed the JADE local platform. Starting such a local platform creates a JADE node.

Each JADE node is a runtime instance of the OSGI platform that bootstraps individually. When
an OSGI platform bootstraps, it starts a set of locally available bundles, the initial configuration. This
initial configuration is described in an XML file automatically parsed by the OSGI platform. These
bundles are usually self-sufficient so that they can be resolved autonomously, without requiring any
further downloads of other bundles. This initial OSGI bootstrap produces a locally running JADE

node that has minimal functionality. This minimal functionality is already an assembly of FRACTAL

130 7. JADE: First Design

components managed by JULIA, the OSGI platform providing the necessary modularity. This initial
assembly, depicted in Figure 7.6, contains the following core JADE services:

• A OSGI management agent.

• A factory for FRACTAL components.

• A heartbeat generator.

Figure 7.6: JADE Node

The management agent supports the local management of installed OSGI bundles, please refer to
the section on local deployment below for further details.

The factory is an extended FRACTAL factory. As a regular factory, it supports the creation of
FRACTAL components. In the JADE context, the factory is used remotely by the autonomic brain
of JADE located on a specific administrator node, called the JADE Boot. The JADE Boot accesses
local JADE node factories through FRACTALRMI, a FRACTAL-aware framework supporting Remote
Method Invocations between distant FRACTAL components.

This remote use of local JADE node factories relies on an autonomous node discovery algorithm.
On each bootstrapped JADE node, the heartbeat generator starts automatically and thereby generates
heart beats. These heart beats, which are JMS messages, are automatically detected on the jade Boot
by the node discovery component. When discovered, a JADE node is added to the System Representa-
tion of the managed distributed system.

The System Representation is an essential part of the JADE design that supports on JADE Boot the
execution of autonomic managers such as the self-protection or the self-repair managers. The System
Representation is essentially a causally consistent copy of managed components’ membranes. In that,
the System Representation offers a complete architectural view of the managed systems. It represents

7.3. Component Deployment 131

locally on JADE boot the remote JADE nodes as FRACTAL composites. These local composites contain
local copies of the membranes of all the wrappers deployed on remote JADE nodes.

Consequently, the System Representation provides a local representation of the system (hence its
name) for autonomic managers to operate on. Managers may introspect the architecture and may
also reconfigure it when necessary. Indeed, following the architecture-based management principle,
any management task in JADE follows the pattern of introspection and then reconfiguration of the
architecture. Autonomic managers never interact with the managed legacy systems, only with the
copied membranes in the System Representation.

Of course, causality is enforced between this System Representation and the real wrappers in order
to apply to the legacy systems the reconfigurations enacted by autonomic managers on the SR. This
causality is achieved through remote method invocation that again rely on FRACTALRMI.

7.3.2 Local deployment

JADE uses Felix as an implementation of the OSGI specification from Apache. Felix implements the
OSGI R4 specification, thus the most recent one at the time of writing of this document. However,
nothing in JADE deployment is specific to Felix since we use only the official OSGI specification. As
a validating proof of concept, we have also run JADE on Equinox, the OSGI implementation from the
Eclipse community.

In this early design of JADE, we didn’t extend the reflexive architecture of JADE with modules and
physical packages, we had a local abstraction called a local install package. A local install package
represented the physical entities underlying a locally installed JADE wrapper and the legacy system it
wrapped. Using a Tomcat Servlet engine for example, a local install package would be a set of JAR
files. One JAR file would be the OSGI bundle that contains the JADE wrapper written in Java as a
JULIA component. It also contained the JAR files necessary to launch a Tomcat Servlet engine in a
Java Runtime Environment (JRE).

Local deployment is therefore two-fold. One fold is about the wrapper side of the world and
the other fold is about the legacy systems that are wrapped. It is the responsibility of the local JADE

node to coordinate both sides, following the reconfiguration requests emanating from autonomic man-
agers. This coordination takes place within the local factory on JADE nodes. When a local factory is
requested to create a local wrapper, the factory has to take the following steps.

The factory has to identify the corresponding physical package. This information is given as part
of the request to create a wrapper under the form of a physical package identifier. If the physical
package is not locally present already, it is downloaded from a repository through HTTP. Once the
physical package is installed, the factory has to extract the OSGI bundle from it. With the JAR file of
the OSGI bundle, it can call the OSGI APIs to install a bundle. It is the OSGI platform that will open
up the JAR file and, from the extracted OSGI manifest, will actually create the bundle in memory.
Once created, the module of the bundle is automatically resolved by the OSGI platform (if it has all
its dependencies met) and it is finally started. As a side effect of being started, the actual creation of
the wrapper as a FRACTAL component managed by JULIA happens, using the Java classes provided
by the module of the bundle.

The JADE node factory is an extended FRACTAL factory because it keeps track of the components
it created, as described in Section 6.3.4. This allows a JADE node to keep track of the wrappers that

132 7. JADE: First Design

have been locally deployed. However, this creates a local root of persistence for locally deployed
wrappers, both in memory and on disk. We therefore extended the factory API to include a undeploy
operation that allows autonomic managers to request that a JADE node undeploys and forgets about a
locally known wrapper.

This undeploy operation concerns of course not only the wrapper but also the corresponding legacy
system that is wrapped. Both are removed. The OSGI bundle is uninstalled from the running OSGI

platform, thereby cleaning the in-memory footprint of the deployed wrapper. The physical package
is also removed, thereby freeing on-disk storage. An important point needs to be discussed though:
physical packages may be shared in the sense that they may contain several wrappers. The rationale
is that it is advantageous for wrappers wrapping small and cooperating legacy systems to be bundled
together as one downloadable unit.

However, this requires a more subtle handling of the undeploy semantics. The undeploy request
comes on a single wrapper, which is all what autonomic managers know about. Hence, the local JADE

factory has to put in place a reference counting scheme to know when a physical package has no
instantiated wrappers in the OSGI platform. Only then could the actual OSGI bundle be uninstalled
and the physical package removed from disk.

As described previously, the module abstraction with which local JADE factory works is called
the LocalInstallPackage. A Java signature of this interface is illustrated in figure 7.7

p u b l i c i n t e r f a c e L o c a l I n s t a l l P a c k a g e {

p u b l i c Loader g e t L o a d e r () ;

p u b l i c i n t g e t R e f e r e n c e C o u n t e r () ;

p u b l i c vo id i n c r e a s e R e f e r e n c e C o u n t e r () ;

p u b l i c vo id d e c r e a s e R e f e r e n c e C o u n t e r () ;

p u b l i c L i s t g e t D e p e n d e n c i e s () ;

p u b l i c P a c k a g e D e s c r i p t i o n g e t P a c k a g e D e s c r i p t i o n () ;

p u b l i c b o o l e a n i sMarked () ;

p u b l i c vo id u n I n s t a l l () ;
}

Figure 7.7: The Java signature of the LocalInstallPackage interface

This abstraction is the central piece of the local deployment infrastructure in the first version of
JADE. It represents a module – an OSGI bundle – within the explicit architecture managed by JADE.
It provides the JULIA framework with a Loader encapsulated by a given bundle. This loader is used
to instantiate functional components. Every local install package contains information on the number
of other local install packages which depend on the given one. This information can be obtained by
calling the getReferenceCounter and is used by the garbage collector to remove unnecessary mod-
ules. However, modules are only removed if they are not “marked”. Information whether a module is
marked or not is provided via the isMarked method. The possibility to mark local install packages is

7.4. Admin Console 133

useful especially if such a package is large and its installation on the local file system is costly. Mark-
ing such packages prevents them from being garbage collected and thus optimizes the deployment
time. A PackageDescription is the description used to identify a package within a possibly remote
and distributed repository. This description is used at the deployment time, but can also be obtained
from a local install package after the deployment completes, by calling the getPackageDescription
method of the local install package.

7.4 Admin Console

Very early on, it was obvious that JADE needed to provide an administration console. Right from the
start in fact since an initial deployment had to take place, creating an initial architecture that autonomic
managers could then observe and manipulate.

The deployment engine is a service of the JADE Boot that supports the admin console. The ad-
ministrator, through the console, can upload an ADL description of an architecture to create or can
directly use script commands. Currently BeanShell and FScript scripts are supported by JADE. Using
scripts and an interactive console, a human administrator can introspect and reconfigure the architec-
ture. In contrast, the upload of an ADL-based deployment is more suited for the initial deployment of
the system. In the current implementation, the JADE deployment engine is a largely modified Fractal
ADL factory1, as represented by figure 7.8

Therefore, the deployment engine is a component-based application and is part of the Jade’s ex-
plicit architecture. It consists of three composite components: (1) loader, (2) compiler and (3) backend
each of them containing a set of primitive components. The loader composite component is respon-
sible for verifying the correctness of the JADE deployment file. Compiler component creates the
deployment plan tasks that are executed by the backend component. The compiler component con-
sists of several primitive components, which are executed in the top-down order, therefore the module
compiler for example is executed before the type compiler.

The parsing of the uploaded ADL description is performed within the JADE Boot. The JADE

Architecture Description Language (ADL) is an extension of the FRACTAL ADL. Therefore, it is
XML-based and provides a static description of the system to be deployed. It contains all the infor-
mation needed by the deployment system to deploy a given JADE-enabled application. A minimum
set of such information is the following:

• Architecture of the application to be deployed i.e. components and their relation in terms of
hierarchy and interconnections

• Configuration of the components — values of their attributes

• Placement information, i.e. on which machine which component is to be deployed, or certain
constraints on component co-location, without explicit information on the target nodes

• Information on modules used by the components, i.e. which module contains the code and other
resources needed by the given component

1http://fractal.objectweb.org/current/doc/javadoc/fractal-adl/overview-summary.html

134 7. JADE: First Design

Figure 7.8: JADE deployment engine

7.4. Admin Console 135

<?xml v e r s i o n = ” 1 . 0 ” encod ing =” ISO−8859−1” ?>
<!DOCTYPE d e f i n i t i o n PUBLIC ” − / / o b j e c t w e b . o rg / / DTD F r a c t a l ADL 2 . 0 / / EN”

” c l a s s p a t h : / / f r / j a d e / s e r v i c e / d e p l o y e r / a d l / xml / j a d e . d t d”>

<d e f i n i t i o n name =” J2EE”>
< i n t e r f a c e name =” s e r v i c e ” r o l e =” s e r v e r ”

s i g n a t u r e =” f r . j a d e . s e r v i c e . S e r v i c e ” />

<component name =” s t a r t ”
d e f i n i t i o n =” f r . j a d e . r e s o u r c e . s t a r t . S t a r t T y p e ”>

<v i r t u a l −node name =” node1 ” />
</component>

<component name =” apache ”
d e f i n i t i o n =” f r . j a d e . r e s o u r c e . j 2 e e . apache . ApacheResourceType ”>

< a t t r i b u t e s
s i g n a t u r e =” f r . j a d e . f r a c t a l . a p i . c o n t r o l . G e n e r i c A t t r i b u t e C o n t r o l l e r ”>
< a t t r i b u t e name=” u s e r ” v a l u e =” j k o r n a s ” />
< a t t r i b u t e name=” p o r t ” v a l u e =”8081” />

</ a t t r i b u t e s >

<v i r t u a l −node name =” node1 ” />
<module name =” Apache Wrapper ” />

</component>

<component name =” tomca t ”
d e f i n i t i o n =” f r . j a d e . r e s o u r c e . j 2 e e . t omca t . TomcatResourceType”>

< a t t r i b u t e s
s i g n a t u r e =” f r . j a d e . f r a c t a l . a p i . c o n t r o l . G e n e r i c A t t r i b u t e C o n t r o l l e r ”>
< a t t r i b u t e name=” w o r k e r P o r t ” v a l u e =”8098” />

</ a t t r i b u t e s >

<v i r t u a l −node name =” node2 ” />
<module name =” Tomcat Wrapper ” />

</component>

<component name =” mysql ”
d e f i n i t i o n =” f r . j a d e . r e s o u r c e . j 2 e e . mysql . MysqlResourceType ”>

< a t t r i b u t e s
s i g n a t u r e =” f r . j a d e . f r a c t a l . a p i . c o n t r o l . G e n e r i c A t t r i b u t e C o n t r o l l e r ”>
< a t t r i b u t e name=” u s e r ” v a l u e =” j k o r n a s ” />

</ a t t r i b u t e s >

<v i r t u a l −node name =” node3 ” />
<module name =”MySql (l i n u x x86) ” />

</component>

<b i n d i n g c l i e n t =” apache . worker ” s e r v e r =” tomca t . r e s o u r c e ” />
<b i n d i n g c l i e n t =” tomca t . j d b c ” s e r v e r =” mysql . r e s o u r c e ” />

<b i n d i n g c l i e n t =” s t a r t . r s r c m y s q l ” s e r v e r =” mysql . r e s o u r c e ” />
<b i n d i n g c l i e n t =” s t a r t . r s r c t o m c a t ” s e r v e r =” tomca t . r e s o u r c e ” />
<b i n d i n g c l i e n t =” s t a r t . r s r c a p a c h e ” s e r v e r =” apache . r e s o u r c e ” />

<v i r t u a l −node name=” node1 ” />
</ d e f i n i t i o n >

Figure 7.9: An example JADE deployment file

An example JADE deployment file is presented in figure 7.9, it builds a simple 3-tier Web Appli-
cation Server, composed of Apache, Tomcat and MySQL legacy servers. As specified by the virtual-

136 7. JADE: First Design

node tag, each of the tiers is deployed on a separate target machine. The virtual-node tag provides
only collocation information, i.e. it does not provide information on the exact name or IP address of
the target machine, but only says which components should be placed together, and which should not.

The only ”dynamic” aspect of this description is the order in which the tiers are started. MySQL
needs to be started before Tomcat, which in turn needs to be launched before the Apache server.
Since Fractal by default does not allow to specify the order in which components are started, JADE

uses a specific component, called start, to achieve this goal. The start component launches all the
components bound to it in an order equal to the one of bindings. Therefore, in the example above,
starter will first launch MySQL, then Tomcat and finally Apache.

Information about component modules is provided through the module XML element. Each com-
ponent specifies one module element. Depending on the implementation of the module repository
from which the modules are obtained, module identifiers can have different forms. At present we
reuse the identifiers from OSGI Bundle Repository (OBR), as will be explained later in this section.

7.5 First Evaluation

JASMINE is an open-source project aiming at providing an administration tool for various types of
middleware, such as Java EE servers, Message-Oriented Middleware platforms, SOA containers etc.
The goal of the project is to facilitate the life of administrator of these heterogeneous systems. JAS-
MINE relies on the deployment infrastructure provided by the OSGI-based version of JADE. On top
of this infrastructure, it provides a graphical user interface (GUI) built using the Eclipse RTP technol-
ogy. This graphical interface, illustrated in figure 7.10 supports the drag-and-drop style assembly of
middleware components and the deployment of these software components on potentially distributed
target machines, which are also represented graphically as components within the JASMINE con-
sole. Furthermore, using the JADE’s deployment infrastructure the JASMINE builds an autonomic
management system on top of it, based on the Drools business rule management system (BSRM).

Once a middleware configuration is defined by an administrator using the JASMINE console, it
can either be saved for further processing later on, or it can be given to the JADE’s deployment engine
for deployment. If the configuration is given to JADE, it is first parsed into the XML form, like the
one illustrated in figure 7.9. Next, it is converted into a deployment plan and deployed accordingly to
the JADE’s deployment process.

Jasmine use-case: Component-based JOnAS 2

JonasALaCarte (Abdellatif 2005) is an example of deployment of a component-based middleware
platform performed with JADE. It is a component-based version of the JOnAS Java EE server, con-
forming to the JADE’s component model and packaged into OSGI bundles. The work on deploying
JonasALaCarte with JADE has been described in (Abdellatif et al. 2007).

To create the component-based version of JOnAS we have replaced all the static interfaces used
for communication between JOnAS entities (services and management entities) with inter-component
bindings. As illustrated in figure 7.11 the JonasALaCarte server is therefore a composite component

2The work on deployment of a component-based JOnAS (JonasALaCarte) has been performed in collaboration with
Takoua Abdellatif.

7.5. First Evaluation 137

Figure 7.10: Jasmine assembly and deployment console

138 7. JADE: First Design

encapsulating a set of primitive components which represent the JOnAS services bound to one another.
These bindings can potentially be remote, in which case we obtain a distributed application server.
Each service is a separate component that exposes a basic set of control interfaces defined by JADE,
namely:

• The attribute controller. In case of JOnAS services, this controller sets the service configuration
values

• The life-cycle controller, which is implemented following the JSR77 (J2EE Management Spec-
ification (JSR77) 2005) life-cycle graph. This controller allows for the modification of the state
of JOnAS services

• The binding controller, which establishes references between JOnAS services

The binding to the configuration manager component lets each service obtain a default configura-
tion. Additionally, each component exposes a set of specific functional interfaces. For example, the
EAR service implements deployment interfaces compatible with JSR88 (see Section 2.3).

The ADL describes the configuration of each service and lists its interfaces.

Figure 7.11: The architecture of the JonasALaCarte J2EE server.

After the “componentization” step, we packaged each JOnAS component in an OSGI bundle. Ev-
ery such bundle contains the component’s code. In addition to component bundles, an interface bun-
dle contains all the interfaces involved in the communication between the different application server
components. Unlike “regular” JOnAS, which delivers all services in a single package, JonasALaCarte
packages each service separately. This decreases the memory footprint of JOnAS on the target ma-
chines and reduces the deployment time of the whole server within, for example, a cluster.

7.5. First Evaluation 139

To deploy clustered JonasALaCarte, an administrator must either create the deployment configura-
tion within JASMINE or write the ADL file manually. For clustered environments, the configuration
must specify not only the architecture of the server (that is what services are to be deployed in a given
configuration), but also the information on collocation of the components building the server (that is,
the virtual nodes on which the different services are to be deployed). The JADE’s deployment engine
then automatically deploys the entire clustered architecture. Unlike in “regular” JOnAS clusters, the
unit of replication in JonasALaCarte is the service component, not the whole server. This selective
replication is important because the Enterprise JavaBeans (EJB) containers and Web containers are
generally execution bottlenecks, so we need more replicas for these services than for other ones, such
as registry or transaction services).

As with any component-based software deployed and managed by JADE, in JonasALaCarte we
abstract an application-server’s cluster deployment and configuration to the uniform handling of com-
ponents. A cluster configuration is therefore a particular configuration of the application server, where
components are distributed and replicated on different Java Virtual Machines. We use the same man-
agement tools to manage a standalone server in a single JVM as we do to manage a cluster of servers.

Compared to traditional scripts, writing the deployment plan with ADL or creating it within JAS-
MINE is less error prone, because the overall system architecture is exposed to the administrator at
different levels of granularity. The syntax of the configuration language or the configuration tools used
for JOnAS, Tomcat, Apache, and so forth becomes homogeneous. Detecting configuration errors is
easier and the deployment time is significantly shorter.

Using the local installation mechanism, the server administrator can also perform some basic
dynamic updates of components. This feature may be of use when updating JOnAS services due to
the release of new versions or for performance optimization. However, in the context of server-side
Java EE middleware, we need to consider two additional aspects of dynamic updates of software: the
treatment of the ongoing requests from clients to the server during the reconfiguration and the state
of the modified service and its impact on the other services. Regarding the ongoing requests, we
implemented a front-end proxy that queues the incoming client requests during the reconfiguration
time (evaluated in advance). The state depends on the service component being dynamically added to
or removed from the server and on the applied management policy. These aspects of reconfigurations
as well as proposed solutions to address them have been described in (Abdellatif 2005).

From the update sequence point of view, the (autonomic) manager of JonasALaCarte first stops
the component that needs to be updated. This translates to the stop operation performed on the cor-
responding managed elements life-cycle controller. Next, the manager unbinds this component from
other components, which translates to the unbind operation on this components binding controller
and calls the update interface with the new package. Finally, the manager updates the component and
re-establishes the bindings, and the updated version of the component treats the requests in the queue.

As a runtime configuration, consider the case of a fault-recovery policy. This policy is similar
to the micro reboot policy pioneered by JAGR (JBoss with Application-Generic Recovery) (Candea
et al. 2003) in the context of J2EE servers (although at the level of J2EE applications, not of the J2EE
server itself). The policy consists of rebooting only the necessary services in case of failures and not
the whole server.

Now consider the failure of a node containing a Web container – an interesting issue in the context

140 7. JADE: First Design

of internet services (Oppenheimer et al. 2003). For fault tolerance, an in-memory session replication
for HTTP sessions is performed on a separate machine for each Web component modification or
update. This technique is delivered with the Web container (Tomcat) and is classically used in J2EE
clusters. Upon being notified of the node failure, the JADE’s fault manager retrieves from the system
representation the software configuration that was running on the failed node. It then requests the
allocation of a new node, considering some hardware criteria (for example CPU charge and memory
usage). The fault manager knows of available nodes because every new node registers itself within
the management system, under a well known address. Once the node is allocated from the list of
avaiable ones, the fault manager deploys a Web container component on a newly allocated node and
to reintegrates it into the software architecture in terms of composition and binding. Finally, the
repaired web container can be started. If an application state must be recovered, when starting the
application components in the new container, the fault manager component sends a request to the
replica group to get the session state.

7.6 Conclusion

In this chapter, we presented the first design of the JADE platform. JADE adopted an architecture-based
approach to system management, modelling the managed legacy systems as FRACTAL components.
My work was the design and implementation of the deployment capabilities of JADE.

Deployment happens both at a distributed and local level within JADE. Indeed, the managed
legacy systems need to be deployed on various physical nodes of the underlying distributed system.
Furthermore, the control of these legacy systems also has to be deployed, that is, the JADE wrappers
developed as FRACTAL components developed with JULIA that provides a Java incarnation of the
FRACTAL component model. Hence, deployment in JADE is a process that happens across the Java
and legacy worlds.

For the legacy world, any existing legacy deployment infrastructure such as RPM or DEB or Win-
dows Installer could be used. In fact, most legacy systems are deployed today using these infrastruc-
tures. The only requirement from our side is that these infrastructures must provide a programmatic
API so that they can be driven from within the JADE platform, which is something that most do.
Also, in many cases, legacy systems could be just wrapped within one JAR file along with the code
of the wrapper, both downloaded as one unique OSGI bundle; but this is only a simplification, not a
requirement.

For the Java world, we decided to use the OSGI platform. It provides advanced modularity for
the managed of dynamically assembled components. These components are called bundles and can
be downloaded through the network. OSGI seemed a great foundation to build on, especially that we
were able to adapt JULIA to run on top of OSGI modularity. The result was a complete foundation for
the local deployment of JADE wrappers. That foundation included a Java Runtime Environment for
the portability of the wrapper code and the ubiquity of the JADE node. It also included the OSGI and
JULIA frameworks to provide modular and dynamic assemblies of components that supported well
the deployment needs of autonomic managers.

This design of JADE has been used successfully in different environments, such as the manage-
ment of clustered Web Application Servers, databases, and Message-Oriented Middleware. It is the

7.6. Conclusion 141

foundation of the Jasmine open-source project that aims at providing advanced management capabil-
ities to the ObjectWeb community. However, this first design of JADE is fundamentally based on the
assumption that components are used as wrappers of legacy systems. This assumption is perfectly
valid in the previous use cases but limits the ability for JADE to manage itself, something that seemed
more and more appealing as we realized that JADE itself was becoming a component-oriented dis-
tributed system and would soon require very similar management facilities as the ones it provides for
legacy systems.

This realization slowly matured into the new design of JADE presented in the next chapter that
corresponds to the novel approach of JADE detailed in Chapter 8. This novel approach considers
JADE as offering a distributed component-oriented platform that provides a full reflexive architecture
that can be introspected and reconfigured through a fault-tolerant distributed programming model.
This required changing fundamentally our design and opened up challenging research questions. This
research work is still on-going at the time of this writing.

142 7. JADE: First Design

Résumé de chaptire 8

Dans le chapitre 8 de cette thèse on décrit une nouvelle conception de JADE. Cette version existe
car dans le chapitre 7 on a identifie des tensions fondamentales entre JULIA et OSGI au sein du JADE.
On décrit ces tensions dans la section 8.1 de ce chapitre. Ensuite, dans la section 8.2 on explique la
nouvelle architecture reparti de JADE. Puis dans la section 8.3 on descends vers le système a modules
qu’on a conu et prototypé pour cette nouvelle version de JADE. On se focalise sur les spécificités de
résolution des modules dans la section 8.3.3 et sur la optimisation des mises a jour des modules, une
opération important dans les systèmes réflexives dynamiques, dans la section 8.3.4. Dans la section 8.4
on présente les paquetages physiques, qui peuvent łtre téléchargé et installé et qui contiennent les
implantations physiques des composants. On se focalise sur le ramasse miettes dans la section 8.5,
avant de conclure ce chapitre dans la section 8.6.

Chapter 8

JADE: Second Design

Contents
8.1 Evaluation—Breaking Point . 144

8.1.1 Distributed deployment conflicts . 144

8.1.2 Local deployment conflicts . 145

8.2 Distributed Architecture . 148

8.3 Modularity . 150

8.3.1 Class loading . 150

8.3.2 Delegation . 151

8.3.3 Module resolution . 153

8.3.4 Module updates . 154

8.4 Physical Packages . 156

8.5 Garbage Collection . 157

8.6 Conclusion . 158

The new JADE has stepped in the world of a reflexive and recursive design. We kept our reflexive
design to architecture-based system management that leverages the reflexive component model of
FRACTAL. Beyond this first design choice, we revisited our first design and pushed further a recursive
design where JADE is designed and developed using JADE technology.

JADE technology is a framework to build autonomic systems, to be contrasted with building a
management system that aims to provide autonomic properties to managed legacy systems. This is
not to say that the new approach could not be used to manage legacy systems. In fact, the same
wrapping technology could be used. But the essential difference is that the use of the FRACTAL

component model is no longer limited to building and deploying such wrappers.

The new goal is much more ambitious. Designing and developing it became clear that writing
autonomic managers required that almost all autonomic managers applied to themselves. In other
words, JADE needed to manage itself. For instance, JADE needed to deploy itself, not only what it
managed. The self-repair manager also needed to self repair to provide real autonomic behavior. A
self-protect manager that protects managed components could also be the subject of attacks and needs
to self protect.

This requires evolving the design of JADE towards a foundation to build such autonomic managers.
The foundation is a distributed platform that still advocates a reflexive component-oriented paradigm
where introspecting and reconfiguring the reflexive architecture is fault-tolerant, that is, both atomic

144 8. JADE: Second Design

and highly available through replication. We approached this design with a recursive design philos-
ophy, searching to provide enough self-behavior through the very own technology we were trying to
build.

We decided to keep our starting point in Java for it provides a portability and ubiquity that is hard to
beat. However, we decided to do without the OSGI platform whose architecture and design conflicts
with ours. Similarly, we needed more freedom in the design of the incarnation of the FRACTAL

component model than JULIA permitted. The rationales emerged from the two first self-behaviors
that needed to be provided: self-deployment and self-repair.

In this chapter, we present the new design of JADE, focusing on the JADE foundation. In Sec-
tion 8.1, we discuss the breaking point of the previous design of JADE. Section 8.2 gives an overview
of the new, distributed architecture of JADE. In Section 8.3, we present our design for modularity
in Java. We focus on the specifics of module resolution in Section 8.3.3 and on optimizing module
updates, an important operation in dynamic reflexive systems, in Section 8.3.4. In Section 8.4, we
present our physical packages that support physical download and caching of the implementations of
components. We focus on the garbage collection issue of physical packages in Section 8.5, before we
conclude this Chapter in Section 8.6.

8.1 Evaluation—Breaking Point

In this section we come back on the first design of JADE and we propose an analysis of where it
breaks down with respect of our new approach for JADE that is both reflexive and recursive. One
of the main issues is a fundamental architectural mismatch between the decision flow of autonomic
management in JADE and the OSGI design. By essence, an architecture-based approach is a top-down
decision flow. Autonomic managers observe a running system and react to changing conditions by
reconfiguring the architecture of that running system. This means that the policies are above, in the
managers, and the driven mechanisms are below, in the runtime platform.

In the case of deployment, the conflict shows in both the distributed and local dimensions of
deployment. The conflict with respect to distributed deployment is not really directly with the use of
the OSGI platform, it is with the use of the OBR repository. The conflict with respect to the local
deployment results from incompatible architecture perspectives between the OSGI specification and
an architecture-based approach à la JADE.

8.1.1 Distributed deployment conflicts

The use of OBR is dual. On the one hand, the OBR is not really a repository for publishing bundles.
Consequently, the OBR does not support an ecosystem around OSGI bundles—there is no market
place for OSGI bundles. The OBR is simply a way to publish a description of modules and their
dependencies. This description is simply an XML description that a user of OBR would have to
download and locally process using the OBR resolver. If this works for a few bundles up to a few
thousands (if one has a powerful machine), it certainly does not scale to a world-wide ecosystem of
OSGI bundles. Hence, OBR gives very little above a dependency resolver that we would need to be
part of an autonomic self-deployment manager anyway.

8.1. Evaluation—Breaking Point 145

There is one idea to retain though from OBR, the ability to have suggestions about what modules
would be necessary to resolve a given module. Given a module, OBR is able to process bundle
dependencies (from the locally downloaded description) and provide a transitive-closure download
list. By transitive closure, we mean that given a bundle that one needs, OBR can propose a list of
bundles to download that downloaded altogether satisfy all the dependencies of that bundle. This is
an important of a solution because module imports are flexible dependencies in that they specify what
the needed Java packages are and not where they should come from. Hence, we need a brokering
infrastructure that can answer which modules could potentially fulfil an unresolved import.

In of itself, using the OBR seemed a good idea, as it provided a useful functionality. In the context
of JADE, however, this has proved to be a mistake because it divides the autonomic decision between
JADE and OBR, without any consistency guarantee. On the one hand, OBR decides to pick certain
OSGI bundles looking at module-level dependencies. On the other hand, JADE looks at service-level
dependencies between FRACTAL components. Both dependencies are related because service-level
dependencies do mention language types and the type correctness of the assembly depends on the
consistency between module-level and service-level dependencies.

A solution would be to correlate both decision making, by maybe adding service dependencies
to the dependencies that OBR processes, but this is awkward at best. The problem is that OBR has
only a partial view of the dependencies anyway. It does not capture the architecture of the overall
distributed system and does not know about other constraints on modules such as co-location hints
from the deployment plan. Therefore, in choosing different versions of modules, it is blind to some
dependencies and incompatibilities of the desired assembly. Basically this means that JADE cannot
rely on OBR. Besides requiring a development effort within JADE, there is no show stoppers here. The
point is simply that the entire decision process of choosing and downloading modules and their related
physical packages must be done within JADE, using the full knowledge of the reflexive architecture
and of the deployment plan.

8.1.2 Local deployment conflicts

This leads us to the show-stopper conflict at the local deployment level between OSGI and JADE. As
we just discussed, JADE has to be in control of the overall deployment plan, which includes not only
which physical packages to download and where, but it also includes the binding decisions between
modules. The crucial point is that the creation of the bindings carries the overall consistency of the
distributed assembly of components, including both regular components and modules. And this is
exactly where the use of OSGI breaks down.

The problem is that there is no way for JADE to impose those bindings to OSGI, the OSGI plat-
form autonomously decides how modules should be resolved, resolving module imports and exports
as it sees fit. Of course, the resulting bindings will be correct from a module perspective, respecting
the semantics of OSGI and therefore the type system of Java, but there is no longer any guarantee
that the bindings between regular FRACTAL components are consistent. This is especially true in the
case of the Release 4 of OSGI that allows for multiple versions to be retained by the OSGI resolver,
potentially partitioning Java types.

To put it simply, we found that building an autonomic layer on top of another autonomic layer just
does not work if there are subtle dependencies in between the decision processes. At first, JULIA and

146 8. JADE: Second Design

OSGI seems just perfectly complementary with the OSGI platform providing modularity and JULIA

providing a service-oriented paradigm for FRACTAL components. We all missed the consistency
requirements between service-level bindings and the type-level bindings.

As a concrete example such a consistency problem can be illustrated by figure 8.1. In the pre-
sented scenario, functional components A and B have a runtime binding, resolved by JADE. Via this
binding they exchange a number of types, including the type T. However, due to the lack of a proper
import/export declaration between the OSGI bundles (modules) providing types for components A
and B, the OSGI resolver does not establish a module-level binding between the two bundles. As a
result, component A sees a different type than component B and the whole configuration is inconsis-
tent. At runtime, when the two components attempt to use the shared type T, the Java Virtual Machine
will raise a ClassCast Java exception.

Figure 8.1: An example of incoherent configuration

Beyond this “static” configuration scenario, the conflicts in the local deployment layer of JADE

extend to the lifecycle of components. When JADE completes a reconfiguration plan, it does so in-
cluding the lifecycle transitions that are necessary to permit the reconfiguration. For instance, JADE

computes the transitive closure of components that need to be stopped, including those that need to be
disposed of. For instance, if a module needs to be updated, JADE computes the transitive closure of all
modules depending on that module and will include tasks in the plan to stop all of them. This requires
a precise and accurate knowledge of the bindings amongst modules, which is impossible when using
an OSGI platform.

In fact, the OSGI platform does the same decision making autonomously, computing its own
transitive closure, using an implementation-specific algorithm that cannot be predicted as it is not
specified by the OSGI Alliance. This translates into spurious lifecycle events at the level of OSGI

bundles requesting them to stop. This is obviously correct for applications fully adopting the OSGI

programming model, but JULIA is not. In fact, JULIA is not aware of OSGI modules on the one hand
and on the other hand does not use OSGI services. JULIA is therefore ignorant of OSGI lifecycle
events. The result will be an inconsistent system, leading undoubtedly to runtime failures.

A concrete example of this type of a conflict is illustrated in figure 8.2. In this scenario, component
A is updated by the JADE framework. Since JADE manages dependencies between functional com-
ponents and their corresponding OSGI modules (bundles), the JADE’s autonomic manager asks the
OSGI platform to update the bundle A which provides types for functional component A. However,

8.1. Evaluation—Breaking Point 147

during an update of bundle A OSGI takes an internal decision to also update bundle B. This is because
bundle B depends on bundle A by importing Java types from it. OSGI’s resolver’s algorithm imposes
an update of the dependent bundle in such a case, due to the way types are resolved by the JVM.
This raises a conflict between the update manager of JADE and the resolver of OSGI—any functional
component created from bundle B should be recreated when this bundle is updated. In our case this
means that component B should be recreated. However, JADE is unaware of the fact that bundle B
was updated and thus attempts to rebind the “old” version of component B on the “new” version of
component A. This results in potential type inconsistencies in terms of what these two components
exchange. Furthermore, since type resolution in Java is lazy and OSGI decided to discard the “old”
version of bundle B, which in our case component B continues to use, further execution of component
B after an update may result in it being unable to resolve Java types that it needs to operate correctly.

Figure 8.2: Type incoherence after a component update

One may feel that a solution would be to adopt a design similar to what the Spring-OSGI frame-
work has chosen (Framework 2006). It would indeed solve some of the problems but not all for the
distributed context of JADE. The Spring Framework (Community 2004) is not unlike JULIA in many
regards, it provides a Java framework for dynamic assemblies of components. It is extremely success-
ful in the J2EE server arena, abstracting with components the various complex frameworks of Web
Application Servers.

Recently, the Spring Framework has adopted the OSGI platform as its foundation, like Eclipse
did a few years earlier. The rationales are the same for Spring as they were for Eclipse or for JADE,
the OSGI platform is one of the most advanced platforms when it comes to combining modularity
and services. The early approach of Spring was consistent with the design we adopted in JADE: keep
the service layer between Spring components as it is and leverage the underlying modularity provided
by the OSGI platform.

The conclusions were essentially the same as ours—this design did not work. A second design
followed, which is the current Spring-OSGI design where both layers were integrated. In fact, the
module layer is the master and the service layer the slave. Any Spring service exported by a Spring
component is in fact an OSGI service, registered in the dynamic OSGI service registry. The Spring
runtime fully understands and follows the lifecycle events from the underlying OSGI platform, obey-
ing to events requesting to drop the use of services as well as events notifying that components as a
whole must be disposed of because a module is going unresolved.

148 8. JADE: Second Design

A similar design would work for JULIA, but conflict with the FRACTAL model. Indeed, controllers
have the complete control of the lifecycle and bindings in FRACTAL. A JADE specific implementation
could have a restricted approach, using hard-coded controllers that in fact obey the service and module
lifecycle events from the OSGI platform. But this would only work in a centralized system, with a
unique OSGI platform making decisions.

For JADE, the Spring-OSGI design is not an option because of its distributed nature. Components
are distributed across nodes and therefore across different runtime instances of the OSGI platform.
Therefore, JADE must globally coordinate reconfigurations of the architecture. For instance, it is
impossible to have the two ends of a remote bindings making different decisions about the version
of the Java types to use for the type of the service interface. Moreover, remote components must be
stopped for the same reasons as local ones must. As far as our understanding goes, using OSGI is not
an option for a reflexive architecture-based management system like JADE.

Regarding JULIA, the decision to stop using it was more difficult to make. Julia is an efficient
incarnation of FRACTAL in Java, always something one wishes to have. However, the same opti-
mization that ensures JULIA performance is also the source of real development complexity. Just
debugging alone across the use of JULIA and FRACTALRMI is awkward at best, seriously hindering
productivity and our ability to seek for the best trade-off in the context of JADE. This lack of freedom
in the implementation details of the FRACTAL model was the final decision maker. We already had to
extend JULIA several times for accounting for bi-directional bindings, component tracking factories,
or introducing class loaders on top of the internal JULIA ones. Moreover, we also made changes to
FRACTALRMI in order to make it module-aware and we expect further changes around the centralized
registry, not an option for a distributed autonomic system.

8.2 Distributed Architecture

The new design has evolved towards a truly distributed architecture without any single point of fail-
ure. In particular, the JADE Boot has been removed as a singular entity and replaced by replicated
components. In other words, the autonomic self-deployment manager is now a replicated component,
like the autonomic self-repair manager.

The bootstap sequence is now entirely autonomic, after the initial human intervention to install the
JADE TFTP-like bootstrap loader on certain physical machines. This very primitive loader knows how
to contact known servers to download the first image of the JADE platform. We are still using Java, so
the platform could reuse an already installed JRE or download one. Once Java is available, a certain
number of physical packages are downloaded and installed locally in the local repository. These very
first physical packages correspond to the initial component assembly that makes up a JADE node.

This initial assembly, depicted in Figure 8.3, contains the following core JADE services:

• A JMS client.

• A factory for FRACTAL components.

• A heartbeat generator.

8.2. Distributed Architecture 149

Figure 8.3: JADE Node

The JMS client is usually as simple as a JAR file and could be easily wrapped as a FRACTAL

component. The local JMS client is used to support the asynchronous protocol for the autonomic
discovery of JADE nodes. Each JADE node bootstrapping will publish on a node discovery topic that
allows the self-deploy manager to autonomously discover newly available nodes.

The self-deployment manager is a replicated component, using an active replication that requires a
deterministic implementation. Hence, it is mandatory that each correct replica of the self-deployment
manager receives the same publish messages about bootstrapping JADE nodes. This can be achieved
with JMS asynchronous messages using topics that are persistent and transactional senders. Each
replica will react to the published bootstrap message in two steps:

• Establish a remote reference

• Update the System Representation

Establishing a remote reference to the bootstrapping JADE node is easily done through our component-
aware Remote Method Invocation framework called now JADERMI. It suffices to add to the bootstrap
publish message some very basic network information such as an IP address and a port number. With
this simple information, a first pair of stub and skeleton can be created. This remote reference will be
used by the causality layer between the System Representation.

But before causality can take place, the System Representation needs to be updated in order to re-
flect the presence of the newly bootstrapped JADE node. The System Representation is also replicated
for the same fault-tolerance reasons, but it is co-located with the self-deployment manager replicas.
Hence, each replica of the self-deployment manager will locally update the System Representation,
bootstrapping the necessary knowledge for the causality layer that needs to apply reconfigurations
done on the System Representation to the remote JADE nodes.

150 8. JADE: Second Design

The heartbeat generator is for the failure detection of JADE nodes. It starts automatically when a
JADE node bootstraps and starts multicasting heart beats to the replicas of the self-repair manager. The
addresses of the replicas are provided by the self-deployment manager when establishing the remote
reference to newly bootstrapped JADE nodes. When one of replicas of the self-repair manager fails,
all the other replicas attempt to repair it on a newly allocated node. Of course only one repair order is
executed. The address of the newly created self-repair manager replica is then sent to all the managed
nodes by all of the self-repair managers. The nodes only process one instance of this message and
update the information on self-repair replicas to which they broadcast heartbeats.

The component factory is an extended FRACTAL factory. As a regular factory, it supports the
creation of FRACTAL components. In the JADE context, the factory is used remotely by the causality
of the System Representation when it needs to request the remote creation of a component on a JADE

node.

8.3 Modularity

A module is a loaded implementation, loaded from an on-disk physical package. In our Java prototype,
a physical package is a JAR file and a module is implemented using a Java class loader that can load
classes from the the JAR file.

In contrast to regular Java class loaders, modules are organized in a directed graph and not a
hierarchy. The graph is the class loading delegation graph along the bindings between modules. Class
loading delegation is the ability of a class loader to delegate the load of a class to another class loader.
This is the core of our module layer that supports the cooperation between modules to load the classes
requested by the Java Virtual Machine (JVM).

This cooperation is controlled through the bindings between modules, since modules are FRAC-
TAL components. We decided to use the granularity of a Java package for our bindings. This means
that for each exported Java package, a module provides a server interface, named with the very name
of the exported Java package. Of course, the interface language is always the same, more on this Java
interface below. Exported Java packages are not only named but versioned.

The resolution of modules is the creation of the bindings between imports and exports, respectively
FRACTAL client interfaces and FRACTAL server interfaces of modules. This resolution is achieved by
the deployment manager as it completes a reconfiguration plan. So in contrast to using an OSGI

platform, a local JADE node behaves, regarding module bindings, as a slave to the master deployment
manager.

8.3.1 Class loading

When a JVM needs a class, it needs it in the context of an already loaded class. For instance, it is
loading that class or it is linking it lazily while executing the bytecode of a method. It does not matter,
the point is that the JVM asks a class loader for the classes it needs. The class loader can define the
requested class or it can delegate this process to another class loader. A newly created class belongs
to the class loader that defines it, not the one that has been originally requested to load it.

To define a class, a class loader has to call back the JVM. In other words, the actual reification of
the class object happens within the JVM, not within the class loader. The class loader needs the actual

8.3. Modularity 151

contents of a class file to call back the JVM. It can find a class file on disk and load it in memory
or it can generate directly in memory, it does not matter. The JVM expects a byte array formatted
following the class file format specification, which is part of the JVM specification.

It is important to point out that class loaders are not part of the Java language specification. Class
loaders are a runtime scoping of Java types. The type system of the Java language defines the concept
of classes and interfaces. It defines the concept of Java packages, a hierarchical grouping of Java types,
with explicit visibility rules based on the public, protected, and private attributes. But at compile
time, type equivalence is based on name equivalence, assuming that only one class for a given name
is visible on the compiler class path. Furthermore, the Java language has no concept of versions on
types.

At runtime, class loaders do scope Java types however, but still don’t use any concept of versions.
The JVM no longer use name equivalence for comparing types but actually compares the class objects.
Two Java types are equal at runtime if they are the same reified type, that is, the same class object
(instances of the class Class). It is important however to realize that this means that if two class
loaders load the same class file, this will create two class objects and therefore two Java types that are
not equal although they have the name and they come from the same class file. It is important also to
mention that class loaders do not support the reloading of classes.

8.3.2 Delegation

Delegation between class loaders determines which class loader defines a given class, it defines the
overall coherence of the reification of Java types in a JVM. In JADE, it is driven by the bindings
between modules. Each class loader, supporting one module, therefore delegates the decision to its
module.

We have to take into account a limitation of the JVM, all types within the java.lang package
cannot be reloaded by any class loader. Delegation must therefore happen to the system class loader
that is created by the JVM when it starts. This system class loader in fact loads everything that is on
the JVM classpath. In our approach, this JVM classpath does not contain any entries related to the
different modules created by JADE.

For each such module, we create a class loader and we provide it the path to the one or more
physical packages that it needs. This is simply done through a URL class loaders that takes as its
classpath a set of URLs. These URLs are local ones pointing within the local repository for physical
packages that is present on each JADE node. It is important to point out though that we modified this
URL class loader so that it delegates to its module when requested a class by the JVM. Indeed, we
don’t want to use the original implementation that implements the hierarchical design of class loaders,
delegating to a parent class loader.

Modules have a delegation policy that corresponds to a graph, corresponding to the graph of
bindings between modules. Before anything else, a module attempts to load the class through the
system class loader, so to respect the aforementioned limitation. If the system class loader does not
find the requested class, the module can either attempt to find it locally (in its physical package) or use
its bindings, representing imported Java packages. It first searches through its imports, checking the
package names. If no import is found for the package of the requested class, the class is searched for
locally, within the physical packages of the module. Of course, this is a recursive process since when

152 8. JADE: Second Design

searching an import, one delegates the request for a class to the exporter module that simply repeats
the same delegation policy.

It is very important that it uses its imports first. The rationale is the overall consistency of the
module layer, which will be discussed in the next section. Simply put here, we want imports to
dominate the local packages so that the global resolution decided by the self-deployment manager can
force the hiding of a local package if necessary.

Figure 8.4: Modules and physical packages.

This overall scheme is depicted in Figure 8.4. It shows two modules, assembled through bindings
for the packages org.foo and org.bar. When the class loader of the module M1 is requested a class
org.bar.MyClass, it upcalls its module. The module M1 first extracts the package name from the fully
qualified class name, org.bar in this case. If finds that it has an import for that package, an import
bound to the module M2. The request for the class MyClass is forwarded to the module M2, that
repeats the process. However, the module M2 does not have an import for the package org.bar, hence
it is searched locally. The module M2 requests its class loader to load the class from its associated
JAR file (physical package). If it is found, the class loader of M2 defines the class in the JVM and
returns the class object. If it is not found, the class loader raises a ClassNotFound exception.

The delegation that occurs through bindings relies on the functional services exported by modules.
As already mentioned, modules are regular JADE components and are therefore organized around a
service-oriented paradigm, even though the functionality of these services is to load classes, some-
thing perceived as arcane details of a Java Runtime Environment. Each exported Java package corre-
sponds to the export of a FRACTAL server interface with the interface language given in Figure 8.5.
IPackageExport interfaces expose the classes loaded by a module to other modules via the loadClass
method. Other resources contained within the modules, such as image files, can be accessed through
the getResource method.

In the FRACTAL model, server interfaces not only have a language interface but they are also
identified by a name. The bindings are actually resolved on that name and not on the language type
of the interface. Therefore, the name of an exported package must be the very name of that exported
package. For instance, if a package org.foo is exported by a module, it is done so through an exported
server interface whose name is org.foo. Furthermore, the version of that package needs to be added,

8.3. Modularity 153

p u b l i c i n t e r f a c e I P a c k a g e E x p o r t {

p u b l i c C l a s s l o a d C l a s s (S t r i n g className) th rows Clas sNo tFoun d Exc e p t i on ;
p u b l i c URL g e t R e s o u r c e (S t r i n g resourceName) ;
p u b l i c I n p u t S t r e a m ge tResource As S t r e a m (S t r i n g resourceName) ;

}

Figure 8.5: The Java signature of the IPackageExport interface

so the name is in reality org.foo#1.4.3. Hence, each export has a specific name but they all share the
same language type, the IPackageExport interface.

8.3.3 Module resolution

The process of resolution of module components consists in binding its imports to exports from other
modules. These imports and exports are meta-declared for each module, using a domain specific
language, illustrated in Figure 8.3.3.

<modules>

<module i d =” c l i e n t ” v e r s i o n =”1.0 .0” >

<i m p o r t package =” i t f s ” v e r s i o n =”1 .0 .0 ” / >

<i m p o r t package =” sys t em ” v e r s i o n =”1 .0 .0 ” / >

<c o n t e n t f i l e =” c l i e n t . j a r ”/>
</module>

<module i d =” s e r v e r ” v e r s i o n =”1.0 .0” >

<e x p o r t package =” i t f s ” v e r s i o n =”1 .0 .0 ” / >

<i m p o r t package =” sys t em ” v e r s i o n =”1 .0 .0 ” / >

<c o n t e n t f i l e =” s e r v e r . j a r ”/>
</module>

</modules>

Figure 8.6: A sample module repository description file

This file describes two modules—the client and the server one. The server module contains,
within the server.jar file, the resources needed by the application components created from this module
to work. It also contains the Java interface over which other components can be bound to those
application components. This interface is defined in the itfs package. The client module, contained
within the client.jar file, needs this Java package in order to be resolved.

When the above file is parsed by the component framework underlying JADE, the client and server
module components (both in version 1.0.0) are instantiated and added as subcomponents to the com-
posite called the module repository. There is only one such composite per JADE node, each running
in a single instance of the JVM. The purpose of module repository composite is to permit the bind-
ings between imports and exports of the various modules to happen while respecting the FRACTAL

model. Indeed, the FRACTAL model imposes that a binding can be established solely through sibling
components, sharing the same parent composite.

154 8. JADE: Second Design

These bindings are created by the self-deployment manager when it completes a reconfiguration
plan. It corresponds to solving the constraint system modeled as imports and exports on a know set
of modules. Of course, imports must be matched to corresponding exports, using the package names
and versions. An export is identified by a package name and its version; an import is expressed via
a package name and a range of compatible versions. This scheme introduces a great flexibility that
needs close attention.

First, the presence of a range of compatible versions introduces a flexibility in the resolution pro-
cess. The resolver (part of the self-deployment manager) may have a choice between different versions
exported by different modules. Indeed, a module may export only one version of a package but dif-
ferent modules may export different versions of the same package. As we explained in Section 6.3.3,
we chose to retain a unique version and avoid the complex issues related to multiple versions.

Second, we need to consider the overall consistency of the module assembly from the point of
view of the Java type system. It is paramount that we avoid multiple modules to define the same
Java type. Delegation is the raw mechanism for avoiding this, as we already explained. But it is not
sufficient, the problem has to be handled at the resolver level. A correct solution requires that exports
are implicit imports. Indeed, if we have two modules that export the same package P, the resolver will
retain only one for the importers of P, but what about the two exporters? Without imports, they will
both load and define the Java types of the package P. This is obviously incorrect since we have two
reified class objects for the same Java type.

With exports being implicit imports, the overall assembly of modules behave correctly. For each
exported package, the resolver retains one specific exporter of that package. The resolver will then
bind all imports for that package (including the implicit ones) to that specific exporter. This means
that any exporter of that package will know, through its implicit import, who has been chosen to export
the package. If it is itself, it loads from its local package, otherwise it delegates.

Implicit imports can be made explicit. The reason is that an exporter of a Java package exports
a specific version of that package but it may be able to accept other versions, lower or higher. For
instance, a module may export a package P in version 1.4 but be able to accept any 1.x version. Hence,
a module can define an explicit import with a version range for any of its exports. This provides greater
flexibility for the resolver to bind modules, thereby allowing greater number of various assemblies to
be resolved.

8.3.4 Module updates

An interesting question about Java-based modules arises in the context of dynamic updates of mod-
ules. Is there any superior organization of modules regarding the separation between exported Java
packages and those private encapsulated ones? The pursued idea here would be to allow updating the
private packages while minimizing the transitive closure of modules that need to be stopped because
they use the exported public packages.

In other words, we would like to be able to update the implementation of a functional component
with minimal impacts on the availability of the overall system. In all cases, functional components
that use exported services from components that need to be updated will have to be stopped. This
is unavoidable. What is avoidable is to force them to be not only stopped but disposed of. Indeed,
a revoked functional service requires the client component to be stopped. A revoked exported Java

8.3. Modularity 155

package requires that any module importing that package be non only stopped but also disposed
of. This is because Java does not support relinking loaded classes dynamically. Hence, the class
loader of a module has to be thrown away and a new one created every time one binding of that
module is changed. The disposal of the module cascades over all its functional components since
such components cannot exist without their implementation.

As one can see, updating modules could be a very expensive operations. Not only can it be ex-
pensive from the actual amount of work to be done for disposing of modules and reloading them, but
it is also expensive in terms of the entailed interruption of service that end users are likely to notice.
Hence, having a module per component that captures not only the encapsulated private implementa-
tion but also the public exported types does not seem optimal. Requesting developers to handle this
separation of concerns is however a serious burden, unlikely to be accepted and furthermore likely to
be error-prone.

Fortunately, we can propose an automated approach to this optimization. JADE runtime can au-
tomatically separate the two facets of a module in two different class loaders. If, for example, we
want to bind two components Client and Server using the interface ServiceItf, the ServiceItf has to
be loaded by the module common to components Client and Server. At the same time, the Client
and Server components’ implementation classes must be loaded by independent modules to allow for
code isolation and versioning of the two components’ implementations. The preliminary version of
this approach has been described in (Kornaś et al. 2004).

Figure 8.7: Organization of optimized modules and their class loaders.

Figure 8.7 presents the resulting organization of the modules of our simple client-server appli-
cation depicted in figure 8.8. Classes building the application are separated into the ones that are
exchanged between components and the ones that components use privately. This leads to the use of
three distinct modules: client and server modules load the components’ private classes, whereas the
itfs module loads the interface via which the two components are connected.

Presented solution allows flexible updates of the server component’s implementations without the

156 8. JADE: Second Design

Figure 8.8: A simple client-server component application in Java.

impact on other components running in the system. Such capability is important in long-term main-
tenance of component-based applications. Note that after an implementation of a given component is
updated, as long as the old version of a component is no longer used in the system, the module that
loaded the old version of a component can be garbage-collected to decrease the memory footprint of
the application.

Updates of component’s interfaces are also possible. However, since interfaces are referenced
by the components’ implementation classes, the update of an interface for a component C requires
the update of all the components bound to C through this interface. This is depicted in figure 8.9:
interface I is used to bind components C2 to C3. Interface J binds the component C1 to C2. Updating
I requires an update of both C2 and C3 because both of these components use this interface. However,
it does not require an update of C1, even though it is bound to C2. This is due to the fact that the J
interface creates a “reconfiguration border”. Therefore, after the interface I has been replaced by the
new versions for components C2 and C3, components C1 and C2 can continue using the “old” version
of J and the implementation of component C1 does not need to be reloaded.

Figure 8.9: Interface reconfiguration example.

8.4 Physical Packages

Physical packages in this implementation of JADE are JAR files. Each JADE node implements a lo-
cal repository for downloaded physical packages. A local repository acts as a local cache, therefore
avoiding multiple expensive downloads of physical packages. Furthermore, the local repository par-
ticipates in the overall fault-tolerance of JADE as it stores multiple copies of the same JAR files across
several nodes. This prevents node failures from making some JAR files unavailable.

8.5. Garbage Collection 157

At bootstrap, when a Java node is started, it has to reify its local repository of physical packages.
Indeed, physical packages are modelled as JADE components and the local repository as a compos-
ite. The bootstrap process therefore creates the repository composite and adds a physical package
subcomponent for each locally stored JAR file. Once a JADE node will be discovered by JADE Boot
(through our heartbeat detectors), the JADE node will upload the description of the contents of its local
repository so that JADE Boot knows where to find copies of JAR files.

8.5 Garbage Collection

Garbage collection is applied to both deployed modules and physical packages, on each JADE node.
The rationale for an approach based on automated garbage collection is that it provides greater fault
tolerance through a simpler design. Indeed, deployed physical packages and the modules created
from these physical packages do not need special care when rollbacking atomic reconfigurations of
the architecture; they will be automatically garbage collected if no longer used locally.

This preserves most autonomic managers from having to know about modules and physical pack-
ages; they can focus on the functional assembly of components and let the deployment manager
complete the reconfiguration plans they produce as explained in Section 6.4. Nevertheless, such plans
need to have explicit undeploy tasks for functional components as this corresponds to an explicit re-
configuration of the reflexive architecture. No garbage collector can automatically decide this since a
functional component is always reachable within the reflexive architecture.

At the very least it is part of the composite that models the software feature that component is part
of. For instance, a Servlet engine is part of a Web Application Server, from a feature perspective. This
means that a Web Application Server has the potential functionality of hosting servlets. Now, each
actual instance of a Web Application Server is represented with another composite that has a servlet
engine or not. This corresponds to the two views: one is the abstract software description in terms of
software features while the other is the actual configuration of a given instance of that software.

Although modules and physical packages are regular components and as such always reachable
within the reflexive architecture, JADE runtime has enough semantics to be able to apply an automated
garbage collection. Indeed, modules and physical packages are downloaded onto a given JADE node
to support the instantiation of functional components. If no functional components need a particular
module, it can be garbage collected. If no particular module needs a physical package, it can also be
garbage collected.

It is important that our garbage collection be relatively aggressive regarding the reclamation of
modules. Indeed, modules are loaded implementations and thereby waste main memory, potentially
important amounts for large modules encapsulating many classes. This is especially important because
once loaded, Java classes are not individually unloaded; only an entire class loader can be unloaded.
This is only possible if there are no Java references to the class loader itself, to any of the class it
loaded, and to any instance of these classes. These invariants are true in JADE when a module is no
longer used by any functional components.

The reclamation of physical packages has to be tempered because of our design of the local repos-
itory that participates to the overall fault tolerance of JADE. The automated garbage collector will
discover that physical packages are no longer needed locally, but it will not actually reclaim the phys-

158 8. JADE: Second Design

ical packages. It will inform the local repository that certain physical packages are no longer needed,
the repository will reclaim the physical packages only if enough other copies are available on other
nodes.

8.6 Conclusion

In this chapter, we presented the deployment-related new design of the JADE platform. Although, this
new design is still on-going work at the time of this writing, still facing open research challenges, we
reported here the design of a significant first step towards self-deployment which in turns helps with
self-repair.

We have most of the raw mechanisms in place for autonomic self-deployment. We have an auto-
nomic self-discovery of nodes. We have the ability to download, cache, and reclaim physical pack-
ages, which participates to the overall fault-tolerance as our scheme supports replicated storage of
physical packages. We have a modularity layer that can load component implementations from phys-
ical packages.

We have a powerful resolution scheme for our modules. We believe that we stroke the right
balance between expressive power and understandability by developers. This balance is in between
the Release 3 and 4 of the OSGI modularity specification. The Release 3 retained only one version of
each exported package, but the versioning scheme was the official Java versioning specification that
prevents any incompatible evolutions of Java types; not something that we consider practical. The
versioning scheme has changed in Release 4, we adopted the same one.

However, we did not retain some of the more arcane support for modularity, mostly adopted for
supporting the bundle-izing of legacy Java code1. We did not retain split packages. We did not retain
the inflexible requirements at a module level. We did not retain multiple versions, as we discussed in
6.3.3.

We are experimenting with optimizations around modularity. We presented one optimization
around the support of updates of modules. The core idea is to recognize that many updates are about
incremental fixes, usually limited to fixing the implementation and not changing the exported types.
We propose a two-classloader scheme that prevents much of the overhead of such updates.

Our design is compatible with the needs of our autonomic self-repair goal. Our self-deployment
manager is co-replicated with the System Representation, providing fault-tolerance to the failures of
JADE node. The cardinality of the replication is kept by the self-repair manager that detects such
failures and repairs the failed JADE node, creating a new node identical to the one that failed.

We are missing the support for the atomicity of the reconfigurations. The atomicity of the mem-
brane level operations are easier to obtain since any controller operation has a reverse. Traditional
roll-back techniques can therefore be applied. Regarding operations on functional interfaces, the so-
lution is much harder without any virtual machine support. This is because most of the operations
exposed by components through their functional interfaces do not have a reverse. Relying on pro-
gramming rules is a burden on developers and extremely error-prone. Recovery touches about 80%

1Personal communication with Olivier Gruber, ex-expert to the OSGI Alliance in the Core Expert Group that specifies
the core OSGI framework.

8.6. Conclusion 159

of the code of a database system, it would be unrealistic to expect component developers to succeed
in providing atomicity-reliable code.

We are missing tools. Indeed, the compilation of modules written in Java has to happen with the
same visibility rules as the actual execution of the same modules. This requires that the Java compiler
uses the same modularity model to scope types when compiling. For instance, the encapsulation of
private types must be respected or the compiler may see multiple types with the same name. Also,
the visibility at the module level ensures the use of proper versions of types, something that current
compilers are unaware of.

Beyond compiling, tools are also necessary for the management of the complete lifecycle of our
components. Developers need to decide how to package their Java packages in modules. They have to
version both modules and Java packages. They further need to bundle modules in physical packages.
The physical packages have to be versioned and published to public repositories. These are complex
tasks, poorly supported by existing traditional tools. As we mentioned, Eclipse started to include some
of this tool support, but it is OSGI specific.

160 8. JADE: Second Design

Résumé de chaptire 9

Dans le chapitre 9 de cette thèse on résume nos travaux sur le déploiement dans le contexte des
systèmes autonomes pour la gestion des applications a composants base sur l’architecture. D’abord,
dans la section 9.1 on résume brièvement les problèmes adressé dans cette thèse. Ensuite, dans la
section on résume nos contributions. Puis, dans section on illustre les pistes pour nos travaux futurs.

Chapter 9

Conclusions and Future Work

Contents
9.1 Problems addressed . 161

9.2 Review of principal contributions . 162

9.3 Future work . 163

9.3.1 Distributed deployment . 163

9.3.2 Atomic reconfigurations . 163

9.3.3 Optimizations around modularity . 164

9.3.4 Tooling . 164

In this final chapter of the thesis we summarize our work on deployment in the context of au-
tonomically managed component-based software architectures. We begin by briefly reminding the
problems that we have investigated in Section 9.1. Then we present a summary of our contributions.
Finally, we describe the areas for future investigation.

9.1 Problems addressed

Due to the growing size of software projects, the software development process became increas-
ingly complex in the past years. As a result, a component-based approach imposed itself as a de
facto standard in software production. This is because a component based approach provides better
software engineering through modularized development. Even though the component-based approach
proves effective in addressing the development challenges of modern software, it shows limitations in
terms of runtime software management.

Through the analysis of related work performed in the first part of this thesis, we showed that these
limitations are a consequence of ignoring deployment-related aspects of software management. Most
existing component frameworks assume that implementations of software components are always
available on target machines. As a consequence, they do not investigate the issues of dependencies
between those implementations as well as their isolation and versioning. The lack of proper mecha-
nisms for the management of component implementations has major implications on the construction
of autonomic software systems based on the explicit architecture provided by components. One of
such systems is JADE—the context of our work. In its initial version JADE, like other frameworks
described in the analysis of the state of the art, did not consider deployment as an integral part of soft-
ware management. One would expect an autonomic management framework to be able to perform

162 9. Conclusions and Future Work

all the deployment activities described in Section 1.2, such as the installation, dynamic updates and
removal of software components. Unfortunately, this is not the case. Our work proposed and vali-
dated a solution that, although designed for JADE, is applicable to most component-based deployment
systems.

9.2 Review of principal contributions

Chronologically, the first contribution of this thesis is an architecture-based deployment system for
the JADE autonomic management framework. This deployment system addresses several limitations
of the existing solutions described in the analysis of the state of the art. It provides the just-in-
time installation of software components managed by JADE. It also allows for runtime isolation and
versioning of these components. Finally, it supports in certain cases the dynamic updates of the
implementations of components.

This deployment system reuses OSGI as a packaging and modularity mechanism and FRACTAL

as a component model. The usage of OSGI was motivated by the completeness of this framework in
terms of providing a development and deployment environment for Java software. Through various
real-world examples described in this thesis, we illustrated the applicability of our approach to the
deployment of industrial grade component-based middleware, such as the JOnAS Java EE server and
the Joram JMS server. This version of our deployment system for JADE is successfully used within
the ObjectWeb JASMINE project, where it supports ADL-based deployment of complex software.

However, when trying to apply this first version of the deployment system to JADE itself, we
have realized that the combination of OSGI and FRACTAL is incompatible with the architecture-
based approach to software management. The principal issue arises from the fact that OSGI takes
its own autonomic decisions which concern certain aspects of the software architecture. Namely,
dependencies between implementations of components are resolved internally by OSGI, which is not
visible to JADE. As a result, JADE’s autonomic managers can potentially take decisions about software
architecture being deployed which are incompatible with the ones taken by OSGI.

Therefore, the second contribution of this thesis is the integration of the deployment-related in-
formation with the component model. This integration is performed through several extensions to
the basic component model (FRACTAL in our case). The first extension is about modules and physi-
cal packages. Both are represented as software components within the explicit software architecture.
However, the roles of these components differ from the roles of regular “business” components. The
role of modules is to represent the loaded implementations of components. This is important, because
component frameworks are usually implemented in typed programming languages, in which the res-
olution of language types has an impact on the correctness of the whole software architecture. The
role of physical packages is to represent the on-disk implementations of components. This models the
local installation of software artefacts, such as compiled code.

The second extension is what we call the resolver. A resolver is an additional autonomic manager,
part of the explicit architecture of JADE, which decides how modules are bound to one another and
how runtime components are created from these modules. To establish a correct software architecture,
the resolver manager cooperates with other autonomic managers, such as the self-reparation and self-

9.3. Future work 163

optimization ones. It does so by being the one who completes the raw deployment plan, enhancing
it with the deployment-related information. This makes the management process easier and more
abstract for other autonomic managers within the JADE system.

Introduction of modules, physical packages and the phase of resolution of their dependencies
has an impact on the lifecycle of components. We have handled this impact by extending the basic
start/stop life cycle automaton provided by the FRACTAL model with the resolution and destruction
phases. No application components can be created unless their corresponding module components
are resolved. Whenever the resolver decides that a given module component becomes unresolved, the
application components created from this module need to be destroyed.

To prove the correctness of our approach, we have built a prototype implementation of the deploy-
ment environment for JADE components in Java. This second implementation built during this thesis
does not reuse OSGI as the installation and versioning layer. Instead, it is built directly on top of Java
class loaders. The advantage of this implementation is that the implementations of software compo-
nents are part of the explicit software architecture managed by JADE and the decision on how these
implementations are resolved is taken by JADE internally. Thus, JADE framework can take correct
decisions when reconfiguring the software architecture that it manages.

9.3 Future work

Our research work during this thesis focused essentially on providing models and a core infrastruc-
ture for integrating deployment into an architecture-based approach to software management. This re-
search opened several interesting areas for future investigation around the deployment of component-
based software.

9.3.1 Distributed deployment

Even though we have identified the distributed execution of the deployment plan as a core aspect
of software deployment, we have not thoroughly investigated this issue. Instead, we have mainly
focused on the local installation and versioning of software components. It would therefore be in-
teresting to couple the approach described in this thesis with a sophisticated distributed deployment
plan. One possible approach would be to replace the current deployment plan used within JADE by a
software program written directly in a concurrent, distributed language, such as Oz (Smolka 1995) or
Erlang (Armstrong et al. 1996). This would allow for building complex deployment workflows.

9.3.2 Atomic reconfigurations

Currently, neither of the two prototypes that we have built for this thesis support fully atomic recon-
figurations of the software architectures. At present, the only atomicity that JADE offers is the one
resulting from the reversibility of membrane operations provided by the FRACTAL model. On top of
this simple mechanism, roll-back techniques can potentially be built. However, in order to obtain a
full support for atomic operations on the level of functional interfaces, one would need to have this
atomicity provided by the virtual machine.

164 9. Conclusions and Future Work

9.3.3 Optimizations around modularity

The subject of optimizations of module components also requires further attention. In Section 8.3.4
we presented an example of how the organization of modules can be optimized in order to improve
the handling of dynamic updates of components’ implementations. The presented approach limits the
impact of updating a component on other components. This, however, is only one of many possi-
ble optimizations. It would be interesting to evaluate the trade-offs between various policies in the
creation of modules.

9.3.4 Tooling

There is a lot of possible work to be done in terms of tools for the development and deployment of
components and their modules. Indeed, when the code of components written in Java is compiled,
the compilation should be performed with the same visibility rules as the actual execution of these
components. This requires proper tools that are capable of applying the same modularity model
for scoping Java types at compilation time as the visibility model used by the component runtime.
In practice, this means that not only the encapsulation rules of private types should be respected at
compilation, but also that the compiler should be able to see and handle multiple versions of types
with the same name. This is something that existing compilers are not supporting, even though certain
tools, such as the Eclipse Plug-In Development Environment (PDE), are heading in that direction.

Tools are also needed for managing the complete deployment life cycle of software components.
These tools would allow the developers to decide how they package their components into versioned
artefacts for the release phase. Again, Eclipse provides some of these functionalities, but it is currently
incomplete and OSGI specific.

Beyond compiling, tools are also necessary for the management of the complete lifecycle of our
components. Developers need to decide how to package their Java code in modules. They have to
version both modules and Java packages. They further need to bundle modules in physical packages.
The physical packages have to be versioned and published to public repositories. These are complex
tasks, poorly supported by existing traditional tools. As we mentioned, Eclipse started to include some
of this tool support, but it is OSGI specific.

9.3. Future work 165

Conclusion de thèse

A cause de l’augmentation de la taille des projets logiciels modernes, le processus de développement
est devenu très complexe ces dernières années. Par conséquence, un approche a base des composants
s’est impose comme un de facto standard dans la production des logiciels. C’est du au fait que cette
approche fourni une meilleure ingénierie des logiciels grce au développement modulaire. Hélas, cette
approche a des limitations en terme de la gestion des logiciels a l’exécution.

A travers d’analyse des travaux connexe décrit dans la première partie de cette thèse, on a prouvé
que ces limitations sont une conséquence de du fait que les aspects lie au déploiement sont souvent
ignoré dans la domaine de gestion des logiciels. La plupart des plateformes pour la gestion des
composants simplement assume que les implémentations des composants sont toujours disponible
sur les machines cibles. Par conséquence, ces plateformes ne s’intéressent pas aux problèmes des
dépendances entre ces implémentations ainsi que leur isolation et versionnement. La manque des
mécanismes de gestion des implémentations des composants a un impact important sur la construction
des systèmes autonomes qui se basent sur une architecture explicite fourni par les composants. Un
de ces systèmes est JADE—le contexte de notre travail. Dans sa version initiale JADE, comme la
plupart d’autres plateformes décrit dans l’état de l’art, n’a pas considéré le déploiement comme une
partie intégrale de la gestion des logiciels. Pourtant, une plateforme de gestion des logiciels devrait
supporter toutes les opérations de gestion décrit dans la section 1.2, tel que l’installation, les mises
a jour dynamiques et la suppression des composants. Malheureusement, c’est pas le cas dans JADE.
Nos travaux ont propose et valide une solution qui, même si conu pour JADE, est applicable a la
plupart des systèmes de déploiement pour les applications a base des composants.

La première contribution de cette thèse est un système de déploiement base sur l’architecture
pour la plateforme de gestion autonome JADE. Ce système résout plusieurs limitations des autres
solutions existants décrit dans l’état de l’art. Il fournit également la capacité d’installation a la volé
des composants géré par JADE, supporte l’isolation et versionnement des composants et, dans certains
cas, le mise a jour dynamique de ces composants. Ce système utilise OSGI comme solution pour
le paquetage et modularité et un modèle a composants FRACTAL pour l’architecture explicite des
logiciels. Cette version de système de déploiement pour JADE était applique avec succès dans le
contexte industriel pour déployer des intergiciels tel que le serveur Java EE JOnAS et le serveur JMS
Joram dans le cadre de projet JASMINE ObjectWeb.

Hélas, ce système ne peut pas être applique au JADE lui-même a cause des tensions entre OSGI

et FRACTAL. En effet, OSGI prend ses propres décisions qui ont un impacte sur la validité de
l’architecture logiciel, tel que la résolution des dépendances entre les implémentations des com-
posants. Ces décisions ne sont pas visibles pour les gestionnaires JADE. Par conséquence, les ges-
tionnaires autonome de JADE peuvent potentiellement prendre des décisions concernant l’architecture
géré qui ne sont pas compatibles avec les décisions pris par OSGI.

La deuxième contribution de cette thèse est l’intégration d’information lié au déploiement avec
le modèle a composants. Cette intégration est effectué a travers des plusieurs extensions de modèle,

166 9. Conclusions and Future Work

tel que la représentation explicite des modules et des paquetages physiques en forme des composants.
Les rles des ces composants sont différents que les rles des composants “réguliers”. Les modules
représentent les implémentations des composants chargé par le système. C’est important car les plate-
formes a composants sont pour la plupart implémenté dans les langages de programmation typé, dans
lesquelles la résolution des types langage a un impacte sur la validité des architectures logiciels. Les
composants paquetages physiques représentent le code installé sur les machines cibles. L’introduction
des ces deux notions dans le modèle a composant implique l’introduction d’un nouveau gestionnaire
autonome dans JADE—le resolver. Ce gestionnaire décide comment les modules sont résolu entre
eux et comment les composants “applicatives” sont crées a partir des modules. Pour établir une ar-
chitecture logicielle correcte, le resolver coopère avec les autres gestionnaires autonomes de JADE a
travers d’un plan de déploiement, ce qui rends le processus de gestion plus abstrait pour les gestion-
naires autonomes de JADE. Enfin, l’introduction de toutes ces éléments a un impact sur le cycle de
vie des composants. Notamment, les composants applicatives peuvent être crées que si leurs modules
correspondantes sont résolu. également, si le resolver décide qu’un module devient non-résolu, les
composants applicatives crées a partir de ce module doivent être détruits.

On a validé ce deuxième approche au déploiement avec un nouveau prototype pour JADE. Cette
deuxième implémentation ne utilise pas OSGI mais fourni son propre système d’isolation et résolution
des types langage, basé sur les chargeurs des classes Java (les class loaders). L’avantage de cette
version de JADE est que les implémentations des composants font partie intégrale de l’architecture
logicielle géré par JADE et donc toutes les décisions sur la reconfiguration d’architecture sont prises
par JADE lui-même.

Dans les travaux futurs qui suivront cette thèse, on pense se focaliser sur plusieurs aspects de
déploiement. D’abord on aimerai se focaliser sur le plan de déploiement. Dans la version actuelle,
le plan est simpliste en terme d’exécution repartie ainsi que la synchronisation des taches. Ensuite,
les aspects de atomicité des reconfigurations nécessitent plus de travail. C’est également le cas pour
la optimisation de modularité. Enfin, la partie outillage pour le développement et déploiement des
composants n’est pas a l’heure actuelle suffisamment complète.

Bibliography

Abdellatif, T.: 2005, Enhancing the Management of a J2EE Application Server using a Component-Based
Architecture, Proceeding of the 31st EUROMICRO Conference (EUROMICRO’2005), Porto, Portugal.

Abdellatif, T., Korna ś, J., and Stefani, J.-B.: 2007, Reengineering j2ee servers for automated management in
distributed environments, IEEE Distributed Systems Online Journal, vol. 8 no. 11.

Abdellatif, T., Kornas, J. and Stefani, J.-B.: 2005, J2ee packaging, deployment and reconfiguration using a
general component model, Component Deployment, pp. 134–148.

Armstrong, J., Virding, R., Wikstr öm, C. and Williams, M.: 1996, Concurrent Programming in Erlang, 2nd
edn, Prentice Hall.

Bailey, E. C.: 2000, Maximum RPM, http://www.redhat.com/docs/books/max-rpm/max-rpm-html/index.html .

Bailliez, S.: 2005, Class loader architecture in Geronimo. http://marc.theaimsgroup.com/?l=geronimo-
dev&m=111876562108164.

Bouchenak, S., Boyer, F., Krakowiak, S., Hagimont, D., Mos, A., Stefani, J.-B., de Palma, N. and Quema, V.:
2005, Architecture-based autonomous repair management: An application to j2ee clusters, srds 0, 13–24.

Bruneton, E., Coupaye, T., Leclercq, M., Qu éma, V. and Stefani, J.-B.: 2004, An Open Component Model and
its Support in Java, Proceedings of the International Symposium on Component-based Software Engineer-
ing (CBSE’2004), Edinburgh, Scotland.

Candea, G., Kiciman, E., Zhang, S., Keyani, P. and Fox, A.: 2003, Jagr: An autonomous self-recovering appli-
cation server., 5th Annual International Workshop on Active Middleware Services (AMS 2003), Autonomic
Computing Workshop.

Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl, B. R. and Steenkiste, P.: 2004, Rainbow: Architecture-
based self-adaptation with reusable infrastructure., 1st International Conference on Autonomic Computing
(ICAC 2004).

Community, T. S.: 2004, The Spring framework. http://www.springframework.org/.

Corwin, J., Bacon, D. F., Grove, D. and Murthy, C.: 2003, Mj: a rational module system for java and its
applications., Conference on Object-Oriented Programming Systems Languages and Applications (OOP-
SLA’2003), Anaheim, California, USA.

Deng, G., Balasubramanian, J., Otte, W., Schmidt, D. and Gokhale, A.: 2005, Dance: A qos-enabled component
deployment and configuration engine, 3rd Working Conference on Component Deployment (CD 2005),
Grenoble, France.

Desertot, M., Donsez, D. and Lalanda, P.: 2006, A dynamic service-oriented implementation for java ee servers,
IEEE SCC, pp. 159–166.

168 BIBLIOGRAPHY

Dolstra, E., de Jonge, M. and Visser, E.: 2004, Nix: A safe and policy-free system for software deployment,
LISA ’04: Proceedings of the 18th USENIX conference on System administration, USENIX Association,
Berkeley, CA, USA, pp. 79–92.

Exertier, F.: 2004, J2ee deployment: The jonas case study, CoRR cs.NI/0411054.

Fleury, M. and Reverbel, F.: 2003, The jboss extensible server, International Middleware Conference .

Flissi, A. and Merle, P.: 2006, A generic deployment framework for grid computing and distributed applications,
2nd International OTM Symposium on Grid computing, high-performAnce and Distributed Applications
(GADA’06), Vol. 4279 of Lecture Notes in Computer Science, Springer-Verlag, pp. 1402–1411.

Formalized Class Loading: 2007.

Fractal Deployment Framework: 2006.

Framework, S.: 2006, Spring Dynamic Modules for OSGi. http://www.springframework.org/osgi.

Ganek, A. and Corbi, T.: 2003, The dawning of the autonomic computing era, IBM Syst. J 42(1), 5–18.

Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P. and Toft, P.: 2003, SmartFrog: Configuration
and Automatic Ignition of Distributed Applications.

Grid Computing Info Centre: 2002. http://www.gridcomputing.com.

Group, O. M.: 1996, Common Object Request Broker Architecture (CORBA). http://www.corba.org.

Group, O. M.: 2006, Deployment and Configuration of Component-based Distributed Applications Specifica-
tion, OMG Document, formal/2006-04-02.

Hall, R. S.: 2004, A Policy-Driven Class Loader to Support Deployment in Extensible Frameworks, Proceed-
ings of the International Conference on Component Deployment (CD’2004), Edinburgh, Scotland.

Hnetynka, P.: 2005, Making deployment process of distributed component-based software unified, PhD thesis,
Charles University, Prague.

J2EE Deployment Specification (JSR88): 2005.

J2EE: Java 2 Platform, Enterprise Edition: 2002.

J2EE Management Specification (JSR77): 2005. http://jcp.org/jsr/detail?id=77.jsp.

Java Message Service Specification Final Release 1.1: 2002. Sun Microsystems,
http://java.sun.com/products/jms/docs.html.

Java Module System (JSR277): 2004. http://www.jcp.org/en/jsr/detail?id=277.

JOnAS: Java Open Application Server: 2005.

JORAM: Java Open Reliable Asynchronous Messaging: 2002. Objectweb,
http://www.objectweb.org/joram/.

Julia: Fractal Composition Framework Reference Implementation, Objectweb: 2002.
http://www.objectweb.org/fractal.

Kephart, J. O. and Chess, D. M.: 2003, The vision of autonomic computing, IEEE Computer 36(1), 41–50.

Korna ś, J., Leclercq, M., Qu éma, V. and Stefani, J.-B.: 2004, Support pour la reconfiguration d’implantation
dans les applications a composants java, CoRR cs.NI/0411082.

Luer, C. and van der Hoek, A.: 2004, JPloy: User-Centric Deployment Support in a Component Platform, Pro-
ceedings of the 2nd International Working Conference on Component Deployment (CD’2004), Edinburg,
Scotland.

Open Services Gateway Initiative, OSGi service gateway specification, Release 4: 2005.

BIBLIOGRAPHY 169

Oppenheimer, D., Ganapathi, A. and Patterson, D.: 2003, Why do Internet services fail, and what can be done
about it?, 4th Symposium on Internet Technologies and Systems (USITS 2003).

Qu éma, V., Balter, R., Bellissard, L., F éliot, D., Freyssinet, A. and Lacourte, S.: 2004, Asynchronous, hierar-
chical, and scalable deployment of component-based applications, Component Deployment, pp. 50–64.

Sheng, L. and Bracha, G.: 1998, Dynamic class loading in the java virtual machine, Proceedings of the In-
ternational Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’1998), Vancouver, Canada.

Smolka, G.: 1995, The Oz programming model, in J. van Leeuwen (ed.), Computer Science Today, Springer-
Verlag LNCS 1000, Berlin, pp. 324–343.
URL: http://www.mozart-oz.org/papers/abstracts/volume1000.html

Strnisa, R., Sewell, P. and Parkinson, M. J.: 2007, The java module system: core design and semantic definition,
OOPSLA, pp. 499–514.

Subramonian, V., Deng, G., Gill, C., J.Balasubramanian, Shen, L., Otte, W., Schmidt, D., Gokhale, A. and
Wang, N.: 2007, The design and performance of component middleware for qos-enabled deployment and
configuration of dre systems, Journal of Systems and Software 80(5).

Sun Microsystems Inc.: 1996, Rmi - remote method invocation.

Szyperski, C.: 1998, Component Software: Beyond Object-Oriented Programming, ACM Press and Addison–
Wesley, New York, NY.

The Apache Software Foundation: 2005. http://apache.org.

Understanding J2EE Application Server Class Loading Architectures: 2002. The Server Side,
http://www.theserverside.com/.

WebLogic Server, Application Class loading: 2004. http://www.bea.com/.

WebSphere Software Information Center, Class loaders: 2003. http://www.ibm.com/.

White, S. R., Hanson, J. E., Whalley, I., Chess, D. M. and Kephart, J. O.: 2004, An architectural approach to
autonomic computing, ICAC, pp. 2–9.

	Introduction
	Challenges of component-based software deployment
	What software deployment is?
	Contributions of this thesis
	Thesis overview

	I Analysis of the state of art
	Models and frameworks for the deployment of component-based software
	OMG D&C
	Deployment process
	Deployment models
	Summary

	DAnCE
	JSR88
	SmartFrog
	Fractal Deployment Framework (FDF)
	NIX
	Summary

	Software packaging systems
	Unix/Linux packages
	DEB
	RPM
	Summary

	Java JARs & .NET assemblies
	Summary

	Module systems for Java
	OSGi
	Physical part
	Runtime part
	OBR
	Summary

	Java EE servers
	Isolation of the Java EE components
	Isolation of the container from the applications
	JOnAS
	JBoss
	Summary

	iJAM & JSR277
	MJ
	JPloy
	Summary

	Summary

	II Contribution
	Capturing deployment in the component-based reflexive architectures
	Introduction
	Jade Management System
	Component model
	Membrane model
	Containment model
	Factories and deployment
	Reflexive Architecture
	Autonomic managers

	Capturing Modules
	Extending the component model
	Module Resolver
	Considering versions
	Module API

	Capturing Deployment
	Modelling distributed systems
	Introducing physical packages
	Reconfiguration plans
	Plan implementation details

	Case studies
	GRID-like deployment
	The self-repair case

	Conclusion

	III Implementation
	Jade: First Design
	Background
	About OSGi
	About Julia

	Wrapping Legacy Systems
	Component Deployment
	Distributed deployment
	Local deployment

	Admin Console
	First Evaluation
	Conclusion

	Jade: Second Design
	Evaluation---Breaking Point
	Distributed deployment conflicts
	Local deployment conflicts

	Distributed Architecture
	Modularity
	Class loading
	Delegation
	Module resolution
	Module updates

	Physical Packages
	Garbage Collection
	Conclusion

	Conclusions and Future Work
	Problems addressed
	Review of principal contributions
	Future work
	Distributed deployment
	Atomic reconfigurations
	Optimizations around modularity
	Tooling

	Bibliography

