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1. Introduction 

1.1. Foreword 

The main problem, which is considered in this work, is the investigation of plate-shell 

structures response due to impact loadings caused by gas mixture explosions. This rather 

complex phenomenon is studied in the context of its mechanical aspects. The main field of 

interest is the ductile fracture prediction, which occurs in impact subjected plate-shell 

structures during their inelastic dynamic response. This phenomenon can be assigned to the 

field of failure mechanics. A primary problem of this domain is associated with formulation of 

sufficiently simple and accurate criterion of crack initiation and propagation for both regular 

and singular stress concentrations in structural elements involving multiaxial stress states. The 

design against failure is a fundamental importance in everyday engineering practice. The area 

of potential applications is very wide. Starting from the assessment of safety against the 

damage threat posed by internal explosion on-board commercial aircrafts in the aeronautical 

industry, through assuring the reliability against the metallic pressurised vessels accidents 

caused by explosions or ductile tearing of pipelines in the industrial transport or storage of 

fluids, the metal-forming processes such as stamping and extrusion in aluminium and steel 

industries (also automotive engineering), army applications, such as a ballistic penetration – 

projectile impact of steel plates, finishing with the general problems of life prediction and 

many others. The presented work focuses on the experimental investigations, modelling and 

numerical simulations of the considered problem. The different model analyses, verifications 

and comparison studies give the field to discuss and to draw conclusions.

1.2. Aim and range 

The following aim and range have been stated for this work: 

 The literature review concerning the area of different approaches to failure designing, 

especially the numerical fracture modelling in ductile materials; 

 Elaborating the effective subroutines (in FORTRAN for MSC.MARC system) for 

geometrically and physically non-linear analysis including damage and fracture criterions; 

 Creating and executing the laboratory tests program incorporating the experiments on the 

plates subjected to explosions and uniaxial experiments necessary for material parameters 

identification; 



- 10 -  Viscoplastic damage analysis...,  ukasz Pyrzowski
 

 Performing the identification of material constants for the assumed constitutive model, 

their verification, calibrating the fracture criterion parameters; 

 Creating the plate’s model; 

 Performing the example numerical simulations with different fracture criterions, the 

verifications by comparing obtained results to experiments; 

 The discussion of results and conclusions. 

1.3. Literature review 

The first studies, which have begun the scientists’ interest in the failure designing, are the 

works of Wieghardt [188], Inglis [82] and Griffith [71], [72] from the early 1920s. In that time 

Griffith has developed the original concept of fracture energy, which is assumed as the 

beginning of the fracture mechanics. His first hypothesis was that brittle materials contain 

elliptical microcracks, which introduce high stress concentrations near their tips. The 

Griffith’s work was ignored by the engineering community for almost thirty years. In the 

1950s, the extension of his theory was provided by Irwin [83]. He extended the model to an 

arbitrary crack and proposed the criterion for its growth. Irwin also showed that the stress 

field in the area of crack tip is completely determined by the parameter K (stress intensity 

factor) related to the three different crack opening modes. After Irwin the further development 

of the Griffith’s model was continued. In 1957 McClintock and Walsh [122] introduced the 

friction between crack faces, in 1959 Barenblatt [16] and in 1960 Dugdale [60] made the first 

attempts at including the cohesive forces in the crack tip region, in 1961 Kaplan [91] focused 

on the possibility of applying the fracture model to concrete. In the late 1960s the first 

extensions to ductile fracture processes was initiated. Rice [147] showed that the energy 

release rate can be expressed as a path-independent line integral called the J-integral. Wells 

[185] proposed a parameter called crack tip opening displacement. One of the first fracture 

mechanics finite element applications was performed in 1976 by Hillerborg et al. [80]. They 

proposed the model where the constitutive relation is described by a material softening law 

between tensile stress and local opening, instead of a stress versus strain relation. Recent 

trends in fracture mechanics include dynamic investigations on nonlinear materials, fracture 

mechanics of microstructures and modelling related to local, global and geometry-dependent 

fractures. 

Nowadays, fracture mechanics concerned in the lifetime analyses of structures creates a 

huge part in the solid mechanics domain. Unfortunately, it has still one crucial limitation. In 
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general, a structural fracture may be decomposed into two steps: the crack initiation, and the 

crack propagation. The classic fracture mechanics has been developed to study the evolution 

of a pre-existing crack. This causes that the stage of crack initiation in this approach is quite 

problematic. 

While the fracture mechanics theories were being developed, in 1958 the new approach to 

the failure designing was formed. The pioneer of the new idea was Kachanov [88]. He 

introduced a damage variable to describe the microdefect density locally in a creeping 

material. The notation was that that damage could be measured by the volume fraction of 

voids. This became the fundament to continuum damage mechanics. One year later Rabatnov 

[146] furthered this idea with the evolution of void density equations based on the concept of 

effective stress in damaged materials. The first paper in English, which described the new 

theory, was published by Odqvist and Hult [135] in 1961. The later more known publications 

are Chaboche [41] in 1981 presenting the general theory and several applications to a turbine 

blade refractory alloy, Murakami [129] in 1983 discussing the notion and the practical 

procedures, Lemaitre and Chaboche [112] in 1990 the monograph of solid mechanics, 

containing one chapter with the description of damage theory and Lemaitre [109] in 1996 

presenting a course on damage mechanics. 

The key concept for this theory is the damage evolution law obtained from the 

thermodynamic potential and the potential of dissipation. The shape of second potential has 

not been well established in literature, during the theory development different damage 

evolution laws were proposed. The first after the pioneers was Lemaitre [111] who in 1984 

introduced the most popular till now damage evolution equations for the ductile damage. 

After him many other models occurred: in 1986 Tai and Yang [165], in 1992 Wang [184], in 

1993 Chandrakanth and Pandey [44], in 1997 Bonora [28], in 2000 Armero and Oller [9], 

Dhar et al. [57], in 2004 Lin et al. [114].  

The continuum damage is not limited to ductility only. It was also applied in the analyses 

of brittle materials like rock by Shao and Khazraei [154], concrete by Fl"rez-L"pez [65], 

Peng and Meyer [139], Faming and Zongjin [63], Kuna-Ciska  and Skrzypek [103], graphite 

by Kaji et al. [89], laminates and composites by Maire and Chaboche [119], Allen [3], Edlund 

and Volgers [61] and even of a human bone by Taylor et al. [167]. 

The original concept of damage mechanics was created for an isotropic material, in such 

case the damage variable is represented by a scalar value. At the beginning of 1980s the first 

efforts have been done to find realistic models to describe anisotropic damage phenomena. As 

the first attempt, the vectorial damage variables were introduced by Kracinovic and Fonseka 
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[98], [99]. In further attempts, two approaches were proposed. The general anisotropy model, 

where the damage variable is represented by the fourth order tensor, analyzed by Lecke and 

Onat [105], Chaboche [40] and Kracinovic [97] and the simplified orthotropic model, where 

the damage variable is represented by the second order tensor, analyzed by Murakami and 

Ohno [130], Chow and Wang [46], Voyiadjis and Kattan [182] and Lemaitre [110]. In the 

anisotropic damage modelling the effective stress tensor is usually non-symmetric. The 

solution avoiding a complicated theory is the symmetrisation of this tensor. Such procedure 

was analyzed by Lu and Chow [116] or Voyiadjis and Park [183]. 

The further extension of continuum damage mechanics was done by deriving a large strain 

theory in elastic-plastic damage analysis. In 1990 Combescure and Yin [52] proposed a 

generalization of the discrete Kirchhoff theory to the analysis for large displacement and large 

strain with some applications to damage mechanics. At the beginning of 2000s a theory for 

large strain in elastic-plastic damage was analyzed by Brünig [37]. He used a multiplicative 

decomposition of the metric transformation tensor into elastic and damage-plastic parts. In the 

same time Menzel and Steinmann [124] proposed a theoretical and computational model for 

the treatment of anisotropic damage at large strains, Kaliske et al. [90] introduced the 

constitutive relations for elastometric materials large strain modelling. 

In the damage modelling the essential problem is the experimental identification of the 

damage variable evolution. The reliable measurement is still nowadays a challenging task. In 

1987 Lemaitre and Dufailly [113] described possible approaches. The experimental 

procedures to estimate the damage evolution can be classified in two main groups direct and 

non-direct measurements, where this last group can be divided to destructive and non-

destructive methods. The practical examples of identifications using the results of load-unload 

tensile tests were presented by Amar and Dufailly [5], Alves et al. [4], Mashayekhi et al. [120] 

and Ambroziak [6]. Recently this problem was also analyzed by Celentano and Chaboche 

[39], they proposed a new procedure of damage measurement including the correction factor 

eliminating the triaxial effects occurring during experimental tension tests. 

The continuum damage mechanics has began the continuous, micromechanical approach 

in the failure designing. It made this kind of modelling more attractive then global, 

discontinuous approaches such as fracture mechanics because the model parameters depend 

on the material only, not on the geometry. The theory based on such assumptions is also better 

adapted to the analysis of the crack initiation in a crack-free body. 

But damage mechanics is not the only approach, which has been developed on the basis of 

micromechanical models. Soon after the continuum damage theory pioneers in the late 1960s 
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McClintock [121] and Rice and Tracy [148] studied the role played by growth of microvoids 

in ductile fracture. This new idea has began the new group models, sometimes called the 

porosity models, based on the observation that ductile damage develops at microstructural 

level in form of voids and cavities, which may grow differently according to the plastic strain 

and the stress triaxiality level. From a general point of view, in these models, porosity has the 

major effect to shrink the material yield surface with the progression on the deterioration 

process. The failure was postulated to occur when the cavity radius would reach a critical 

value specific for the material. 

On the basis of this new theory in the middle of 1970s Gurson [74], [75] developed the 

widely known pours ductile material model and fracture model. At the beginning of 1980s the 

modifications introduced by Tvergaard [172], [173] and Tvergaard and Needleman [174] 

made this model more complete. The initial formulation was extended to include the 

acceleration in the failure process induced by void coalescence. In 1985 Thomason [170] 

proposed the plastic limit load model for void coalescence. In 2001 Zhang [200] integrated 

the models of Gurson and Thomason and proposed a so-called complete Gurson model. The 

similar model to Gurson’s but with a slightly different dependency in the hydrostatic term was 

proposed by Rousselier [151] in 1987. In 1992 Besson and Abouaf [24] extended the modified 

Gurson model to viscoplasticity. In 1993 Gologanu et al. [70] proposed the modification by 

introducing a void shape parameter, which allowed considering the anisotropic damage effects 

in cavity based modelling. This idea was further used also by Benzerga et al. [23], Siruguet 

and Leblond [158].

Recently the micromechanical studies have been performed in order to correlate voids 

evolution and interaction with the resulting macroscale material yield function. The role of 

smaller size voids in a ductile damage was investigated by Tvergaard and Niordson [175] and 

incorporated into the Gurson model by Wen et al. [186]. The 3D voided unit cell based 

approach investigating the role and effects associated with the crystallographic orientation of 

the matrix material was analyzed by Schacht et al. [153]. Bonfoh et al. [27] used the modified 

Gurson theory to model damage evolution initiated by secondary included particles debonding 

in a policrystaline material.  

The Gurson model for a single material involves over ten parameters, which need to be 

calibrated. The material parameters are not physically based and cannot be directly measured. 

Typically, an iterative calibration procedure, involving numerical simulations and 

experimental data is necessary. In 1998 an attempt of the parameters calibrating was made by 

Faleskog et al. [62], [68]. Later Rivalin et al. [149] determined the parameters by comparing 
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tests on experimental samples with the finite element simulation, Prahl et al. [144] used a 

period homogenization approach, Springmann and Kuna [160], [161] developed a non-linear 

optimization identification procedure.  

The results of experiments performed by Shockey et al. [156] have shown that 

coalescence mechanism can be treated as a nucleation and growth process on a smaller scale. 

This simplifies the description (also identification) of the intrinsic micro-damage process by 

taking into account only the nucleation and growth mechanism. Such approach was used by 

#odygowski and Perzyna [117] in investigation of the fracture in the polycrystalline solids 

under dynamic loading process.  

The porosity damage models are related to a specific micromechanism of failure, this is 

the main deference between this theory and the continuum damage models presented earlier, 

where damage is one of the thermodynamics variables that affect the material stiffness. One 

of the similarities is that both approaches are called the fully coupled, which means that the 

damage effect is introduced directly into the overall constitutive equations and affects all the 

thermomechanical fields according to the appropriate coupling theory. 

The third and up till now last group in ductile failure modelling, which has been 

developed on the basis of micromechanical models is the approach called abrupt failure 

criteria. These criteria predict the occurrence of failure in the material when a chosen 

parameter in a model reaches its critical value or a criterion is satisfied. In this approach no 

coupling exists between the variable that accounts for progressive damage and other variables 

as strain, stress, etc. The concepts of McClintock [121] and Rice and Tracy [148], the initial 

studies in the porosity models, can be also joined to this group. In their work the parameter, 

which is characteristic and the fracture occurs when it reaches critical value is the cavity 

volume fraction.  

During the development of abrupt failure methods many criteria have been formulated. In 

the 1950 Freudenthal [67] proposed the criterion of total plastic work, which postulates that 

the initiation and propagation of a crack is dominated by a critical value of the absorbed 

plastic energy. The simple criterion predicting the occurrence of failure in the moment when 

the equivalent plastic strain reaches a critical value was used by Datsko in 1966 [54]. In 1968 

Cockcroft and Latham [51] postulated that fracture is controlled by maximum principal 

tensile stress integrated over the plastic strain path. This last criterion was modified in 1972 

by Brozzo et al. [36], who introduced an explicit dependence on hydrostatic stress, in 1979 by 

Oh et al. [136], who introduced the normalization of the maximum principal tensile stress by 

the equivalent stress and in 1990 by Clift et al. [49], who replaced the maximum principal 
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tensile stress by the equivalent stress. In 1978 Norris et al. [131] proposed en empirical 

criterion based only on the hydrostatic stress and one material constant. In 1981 Atkins [10] 

modified the last criterion by introducing an explicit dependence on the deformation path. In 

1985 Johnson and Cook [85] is postulated that the critical equivalent fracture strain is a 

monotonic function of the stress triaxiality. This model has become very popular in 

commercial codes, since in 1989 Johnson and Holmquist [86] published a table of material 

fracture data for a number of structural materials. In 2004 Bao and Wierzbicki [14], [15] 

studied the model based on assumption that fracture initiates at the critical point of a structure 

when the accumulated equivalent plastic strain with a suitable triaxiality weighing functions 

reaches a critical value. In this works they determined these functions in the wide range of 

stress triaxiality from eleven different tests. In 2005 Wierzbicki et al. [191] presented 

calibration and evaluation of seven most popular fracture models. In 2010 Bai and Wierzbicki 

[12] proposed the ductile fracture criterion, where the Mohr-Coulomb model [128], [53] is 

used. A large majority of the criterions presented in this group belongs to empirical methods, 

based on extensive test programs. Their calibration for new materials sometimes requires 

comprehensive series of experiments involving tensile tests on unnotched and notched bars, 

upsetting tests and sheer tests. 

Recently, in the failure analysis new models, which links the different approaches 

classified in groups presented above, occurred. In 2001 Chaboche et al. [43] introduced 

interface damage mechanics developed as a part of continuum damage mechanics, with 

capabilities intermediate between the damage and fracture mechanics. The main reason of 

developing this model is simulating various scales of composite debonding effects, such as 

decohesion between matrix and fibres and delamination in laminates. In 2006 Chaboche et al. 

[42] proposed a continuum damage mechanics approach with plastic compressibility. This 

model modified the classical formalism of damage mechanics in order to describe plastic 

compressibility in the context of ductile damage. A new damage state variable was introduced. 

This variable plays role of porosity in micromechanics based approaches like Gurson’s model. 

In 2007 Xue [199] proposed a new damage plasticity model. Fracture is postulated to occur 

when the accumulated equivalent plastic strain, modified by the function of the stress 

triaxiality and the deviatoric state parameter reaches a limiting value equal to one. This model 

has a construction similar to the abrupt failure methods, however introducing additionally the 

material weakening mechanism into the constitutive model by coupling the yield function and 

associated flow rule with the damage, moves it into the coupled methods. 
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Since the beginning of numerical methods development researchers have tried to simulate 

the damage and fracture process. Many methods have been proposed to implement the 

presented above models.  

The example of the fracture mechanics implementation is the nodal relaxation method 

used frequently in the finite element analysis. The crack is modelled by releasing nodes one 

by one in order to enable the crack tip to propagate through the mesh. This method very often 

is improved by the advanced remeshing techniques. The simulations of this kind were 

performed in 1998 by Trädegård et al. [171] using characterization of the crack tip fields 

strength by the value of J-integral, in 2000 and 2003 by Bouchard et al. [35], [34] applying 

different crack propagation criteria, in 2001 by Andersson et al. [8] using the calculation of 

first mode stress intensity factor, in 2008 by Souiyah et al. [159] using the displacement 

extrapolation method [73] to calculate the stress intensity factors. 

The other technique to simulate the propagation is the cohesive element approach. The 

cohesive elements originate from the concept of cohesive zone [60], [17]. In these type 

elements the numerical separation process is described by the cohesive law, which defines the 

relation between crack surface traction and the surface opening displacement. This technique 

was used in 1994 by Xu and Needleman [197] and in 1999 by Miller et al. [126] to simulate 

crack growth in brittle solids, in 2005 by Cirak et al. [50] to analysis the fracture and 

fragmentation in thin-shells, in the same year by Zhou et al. [201] to simulate the dynamic 

crack propagation in brittle materials using the cohesive rate-dependent model. 

In contrast to above methods, where cracks are limited to element boundaries, the 

extended finite element method (X-FEM) has been developed. Here the concept of the 

discontinuous displacement has been incorporated within a finite element formulation based 

on the partition of unity concept [11]. The displacement discontinuities are represented by 

means of additional degrees of freedom. Cracks can be located arbitrarily in the finite element 

mesh. The first applications of this approach were done in 1999 by Belytschko and Black [19] 

and Moës et al. [127]. The comprehensive survey of the extended finite element method was 

done by Abdelaziz and Hamouine [1]. Recently this method was used by Meschke and 

Dumstorff [125], Belytschko and Gracie [20], Benvenuti [22], Xu and Yuan [198]. 

The failure modelling approaches are based also on other methods then the finite element 

analysis. The two examples can be given. The first is the meshless method. Its application to 

the fracture prediction was proposed in 1995 by Belytschko and Lu [21]. Up till now there 

have been quite a few works using this method. The examples are: Hao et al. [79], Rabczuk 

and Belytschko [145], Bordas et al. [30], Duflot and Nguyen-Dang [59]. The second example 
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is the boundary element method used in the fracture mechanics: Carpinteri et al. [38], Frangi 

[66].

The most popular approach in the ductile fracture numerical modelling is performing 

analysis using the classic finite element method. The crack initiation and propagation is 

modelled by deactivation/deleting elements which fulfil the assumed fracture criterion. One of 

the firsts authors, who applied this method are Taupin et al. [166] in 1996. They simulated the 

blanking in the metal forming process using the McClintock criterion and compared the 

results with experiments, reaching a relatively good correlation. Further many others followed 

the same method. In 2001 Besson et al. [25] simulated the cup-cone fracture in round bars and 

plane strain specimens using the Gurson and Rousselier models. In 2008 Teng [169] analyzed 

the same phenomenon using the continuum damage mechanics. He compared his results with 

experiment. In 2003 Børovik et al. [32] analyzed the influence of stress triaxiality and strain 

rates on the basis of the tension tests performed on the smooth and notched specimens using 

in simulations the Johnson-Cook criterion. In 2005 Bonora et al. [29] performed similar 

analysis of the stress triaxial state influence. They used their own non-linear continuum 

damage model and compared the results of simulations with experiments. In 2007 Xue [199] 

simulated the tension tests of the smooth specimens with emphasis on crack path prediction 

using his own model. 

The alternative approach to element deactivation in the finite element method is changing 

the material parameters in elements, which are considered as broken/damaged. Rivalin et al. 

[149], who analyzed ductile tearing of the pipeline-steel wide plates using the extended 

Gurson-Tvergaard-Needleman model, proposed replacing the behaviour of broken elements 

by an elastic behaviour with very low stiffness (the value of Young modulus of 1 MPa). 

Hambli and Badie-Levet [77] and Hambli [76], who simulated fracture prediction during 

extrusion and sheet-metal blanking process using the continuous damage mechanics, proposed 

increasing abruptly in the damaged elements the value of damage parameter from critical to 

the value near 1, decreasing considerably their stiffness. 

The extension of presented approach is applying the adaptive remeshing to the finite 

element method. This additional procedure is due to the large geometrical distortion of finite 

elements and the adaptation to the physical behaviour of the solution. Recently this kind of 

analysis became very popular. In 2002 Børovik et al. [33] presented the simulation of the 

thick steel plates perforation with the different shape noses using the continuum damage 

model with own modifications. The simulations were performed with fixed and adaptive 

mesh, the results were compared with experiments reaching close correlation. In the same 
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year, Borouchaki et al. [31] used adaptation of the element size with respect to the damage in 

metal forming fracture prediction. In 2005 Lee and Wierzbicki [107] simulated fracture 

prediction of thin plates under localized impulsive loading. They compared analytical and 

numerical solutions for discing and petalling phenomena. In numerical analysis they used Bao 

and Wierzbicki fracture criterion and both fixed and adaptive mesh methods. In 2008 

Labergere et al. [104] and Saanouni [152] used this method in simulation of metal forming 

using the continuum damage mechanics.  

The finite element method is nowadays the most popular and powerful tool in mechanics, 

including the damage and fracture analysis. A large majority of researchers use this method in 

the local approach, unfortunately sometimes it causes problems. One of them is the 

pathological localization and mesh dependence associated with materials softening. This 

problem is essential in quasi-brittle materials but also important in the ductile failure. The 

solution, which attempts to overcome this problem, is applying the non-local models 

including the regularization techniques. The examples of such approach are the works of 

#odygowski and Perzyna [118], who used the relaxation time as a regularization parameter in 

thermoviscoplasticity theory, Addessi et al. [2], who analyzed a plastic non-local damage 

model for cementious materials, Rodriguez-Ferran et al. [150], who proposed a new damage 

model based on non-local displacements and presented two versions of application: integral-

type and gradient, Mediavilla et al. [123], who introduced the discrete crack modelling of 

ductile fracture driven by non-local softening plasticity. 

The present work focuses attention on the experimental and numerical investigation on the 

behaviour of circular metallic plates subjected to impulse loadings. The problem of plates 

responses to dynamic loads have been already analyzed by many authors. The first studies 

were concerned on experimental and analytical analysis of permanent deformations in plates 

subjected to uniformly distributed impulses. Florence [64] in 1966 performed an analytical 

solution for simply supported circular plates based on the bending theory of rigid-plastic 

plates and compared results to experiments. Jones [87] in 1968 considered taking into account 

membrane stresses in a study of simply supported circular plates. Wierzbicki [190] in 1954, 

Perrone [141] in 1967, Kelley and Wilshaw [92] in 1968, Wierzbicki and Florence [192] in 

1970 considered in analysis a viscoplastic theory taking into account the large deflections and 

strain rate sensitivity comparing results with experiments. The displacement of the plate’s 

centre as a function of time during dynamic response on explosive loadings was examined by 

Duffey [58] in 1967. Bodner and Symonds [26], Symonds and Chon [164] both in 1979 

applied the mode approximation technique to simulate large deflections of viscoplastic 
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structures and compared results with experiments on circular plates loaded impulsively. 

Nurick [132] in 1985 proposed a new experimental technique involving the use of light 

interference, which improved the deflection time history measurement of plates subjected 

impulsively. Nurick and Martin [133] in 1989 discussed their experimental results and 

presented an empirical relationship between the deflection-thickness ratio and a function of 

impulse, plate geometry, plate dimensions and material properties. The dynamic response of 

shock wave subjected plates was also analyzed by Pennetier and Renard [140] in 1998, 

K osowski et al. [96] in 2000, Woznica and K osowski [195] in 2000, Woznica et al. [196], 

Jacinto et al. [84], Stoffel et al. [163] all in 2001, Veldman [180] in 2006, Wi!niewski et al. 

[194] in 2007 and many others. 

Recently more often, beside the dynamic response, also the fracture prediction in plates is 

investigated. Teeling-Smith and Nurick [168] in 1991 performed experiments conducted on 

fully clamped circular mild steel plates subjected to a uniformly distributed impulse and 

analyzed numerically the deformation and tearing. Olson et al. [137] in 1993 analyzed the 

experimental and numerical results of the fracture initiation in clamped square mild steel 

plates subjected to uniformly distributed blast pressure loading. Wierzbicki [189] in 1999 

presented analytical solutions for plate’s petalling under explosive and impact loading. Kreja 

et al. [102] in 2001, Kreja and Schmidt [101] in 2004 modelled the plastic ductile damage 

evolution and collapse of plates and shells in the quasi-static conditions. Shen [155] in 2002 

studied experimentally and theoretically the failure of circular plates struck by masses. Lee et 

al. [108] in 2004 analyzed numerically the fracture in thin plates under hemi-spherical punch. 

Day et al. [56] in 2006 performed the fracture experiments on projectile impact of steel plates. 

Daudonnet [55] in 2006 considered in numerical analysis the fracture of plates subjected to 

explosions. Stoffel [162] in 2007 analyzed the anisotropic ductile damage and failure of shock 

wave-loaded plates. Veldman [179] in 2008 investigated experimentally the effects of pre-

pressurization on fracture in blast-loaded reinforced rectangular aluminium plates. P$cherski 

et al. [143] in 2009 studied the effect of strain rate on ductile fracture in the dynamic double 

shear tests with thermographic observations. 

The author is aware of the fact that the presented literature review does not exhaust the 

full state of art in the analyzed field. Despite the relatively young age of this solid mechanics 

sub-discipline in the last decades high interests among researchers caused very fast 

development. The intention of the author of this review is to present the approaches which 

had significant influence on the discipline evolution and which are widely used in the fracture 
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modelling. For each mentioned method only a limited number of publications is presented, of 

course those are only examples among many others.  
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2. Theoretical foundations 

2.1. Abstract

This chapter contains the description of models, which are in common use in damage and 

fracture mechanics analysis. Firstly, the assumed constitutive model is presented. Further, the 

examples of different approaches to the failure modelling are discussed. Four main groups are 

here distinguished and described: fracture mechanics, continuum damage mechanics, the 

porous solids plasticity models and the abrupt failure criteria. The selection of models, which 

are considered in further analysis, is finally done.

2.2. Introduction

One of the main parts of this work is the numerical simulation of the plates subjected to 

impact loadings. The plates are submitted to large plastic deformations and fracture. Such 

analysis requires applying non-linear material models. Initially, an appropriate constitutive 

law should be chosen. The author used the earlier experiences of the researchers who were 

interested in the shock wave-loaded plates behaviour analysis: K osowski et al. [96], Woznica 

and Klosowski [195], Woznica et al. [196], Stoffel [162], Stoffel et al. [163], and decided to 

use, descended from the model of Perzyna [142], the viscoplastic model proposed by 

Chaboche [112]. This model was successfully employed by the mentioned authors. Its main 

advantage is universality. Of course before application to the current problem an appropriate 

identification of material parameters and its results verification should be performed. 

Secondly, the choice of a suitable fracture model and criterion describing correctly the 

initiation and propagation of cracks should be done. Here different approaches are considered, 

some of them are chosen to the numerical analysis applications. 

2.3. Constitutive model

The chosen constitutive model in the considered study is based on two main assumptions: 

the material is isotropic and the strains are small. The second condition allows employing the 

additive decomposition of the strain rate into its elastic and inelastic parts 

E I! "      , (2.1) 

where    is the total strain rate, E
   and I

   are the elastic and inelastic strain rates. 
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State variables 
Associated variables 

Observable variables Internal variables 

Elasticity 
Temperature, T Specific entropy, S

Total strain,  Stress, !

Viscoplasticity  

Inelastic strain, I
 Stress, !

Isotropic hardening, r
Isotropic hardening 

stress, R

Kinematic  
hardening, "

Kinematic hardening 
stress, X

Tab. 2-1. Summary of the state and associate variables 

The derivation of the constitutive equation for a given material can be done in the 

framework of the thermodynamics of irreversible phenomena through a certain number of so-

called state variables. These variables distinguished into observable and internal and their 

associated variables are presented in Tab. 2-1. For the material characterization introducing 

the thermodynamic potential, from which the state laws can be derived, is necessary. Usually 

the Helmholtz free energy ,# , which is a scalar function of all state variables, is used. The 

expression of the state potential can be determined taking into account the state coupling 

between variables. It is possible to uncouple the state potential into the elastic behaviour and 

inelastic (hardening), with the specific free energy being decomposed as 

( , ) (a, , ).E E IT r T# # #! "  (2.2) 

The elastic part of the free energy function can be expressed as follows 

$ %$ %1/ 2 : : ,E E E# &! a    (2.3) 

where   is the material density, a is an elasticity tensor. By the definition of the associated 

variable, the stress can be derived from the potential !E to give the law of state 

: .
E

E

E

#
&
'

! !
'

a!  
 

 (2.4) 

The elastic strain can be evaluated by reversing the equation (2.4) 

$ %
1

,E Tr
E E

( ("
! )! I! !  (2.5) 

where E is the elastic modulus, " is the Poisson’s ratio and I is the metric tensor. 

The thermodynamic state potential allows writing relations between observable state 

variables and associated variables. For the internal variables it allows only to definite their 

associated variables. To describe the evolution of the internal variables (the dissipation 
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process) the dissipation potential function (a positive convex function of associated 

thermodynamic variables) **  is needed 

* ( , , ).R* !+ X!  (2.6) 

The complementary law of evolution is expressed by the normality property 

.I '+
!
'

 
!

  (2.7) 

To describe the evolution of the inelastic strain the viscoplastic constitutive Chaboche 

model was chosen. In this model the dissipation function,+,is defined as 

$ %
1

3

2

' '
, ( ) ,

1

n

ij

ij ij

J R kK
J a a a

n K

"

) ) )
+ ! !

"

X!
 (2.8) 

where '!  and 'X  are the deviatoric parts of the stress and kinematic hardening tensors, 

respectively, k  is the initial yield stress, K  and n  are the viscous material parameters. The 

angle brackets x  are referred to the McCauley brackets: 
1

2
( )x x x! " .

The inelastic strain rate is derived from the equation (2.7) earlier substituted by (2.8) 

$ %
3 ' '

,
2 ' '

I p
J

)
!

)

X

X

!
 

!
   (2.9) 

where accumulated plastic strain rate p  is given by 

$ %' '
.

n

J R k
p

K

) ) )
!

X!
  (2.10) 

The kinematic hardening tensor X and the isotropic hardening scalar R are expressed as 

1

2
, ( ) ,

3
Ia c p R b R R p! ) ! )X X       (2.11) 

where a, c, b and R1 are hardening material parameters. 

2.4. Damage and fracture models 

2.4.1. Fracture mechanics 

In the fracture mechanics field of interest are all kind of defects understood as the stress 

concentrators in the form of cracks, flaws or notches. The problem is to study an influence of 

applied loads, defects geometry, environmental conditions and a material behaviour on the 

fracture process in solids. The fracture mechanics is the powerful tool in the crack 
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propagation analysis but it avoids the problem of the crack initiation, which is very important 

for this work. That is why only the brief review of these mechanics field foundations are 

presented here. 

The first approach in the fracture mechanics is the energy criterion, which states that the 

crack extension occurs when the energy available for the crack growth is sufficient to 

overcome the resistance of a material. This approach was proposed by Griffith [71], [72] and 

later developed by Irwin [83]. For example, in an infinite plate presented in Fig. 2-1, 

subjected to remote tensile stress for the crack of length 2a the energy realise rate G is given 

by [7] 

2

.e

a
G

E

 !
"  (2.12) 

At the moment of fracture Ge = Gec = 2#, where Gec is the critical energy realise rate – the 

material’s resistance to fracture and #$ is the energy necessary to create the unit of a free 

surface. 

Fig. 2-1. Infinite plate with the elliptic crack under tension stress 

The alternative to energy criterion is the stress intensity approach based on the stress 

function used to determination of the stress and displacement field near the crack tip proposed 

by Westergaard [187]. In this approach three ways of applying a force to enable a crack to 

propagate are distinguished (Fig. 2-2): 

mode I – opening, a tensile stress normal to the plane of the crack, 

mode II – sliding, a shear stress acting parallel to the plane of the crack and perpendicular 

to the crack front, 

mode III – tearing, a shear stress acting parallel to the plane of the crack and parallel to the 

crack front. 
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Fig. 2-2. Types of cracks loadings 

For each type of the crack loading the following stress field responds [7] 

% &, , , ,
2

T TT
ij ij

K
f T I II III

r
! '

 
" "  (2.13) 

where r and '$are the polar coordinates with the beginning point in the crack tip, KT is the 

stress intensity factor for each type of the crack. 

As the example the stress and displacement fields near the tip of mode I crack in the 

infinite plate under plane-stress conditions, shown in Fig. 2-3, are presented.

Fig. 2-3. Stress field near the crack tip in infinite plate 

The stress components are expressed by the following formulas 

3
cos 1 sin sin ,

2 2 22

3
cos 1 sin sin ,

2 2 22

3
cos sin cos .

2 2 22
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. /
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. /
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 (2.14) 

The displacements are defined as 
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 (2.15) 

The stress intensity factor in this case is given by 

.IK a!  "  (2.16) 

The displacement of crack edges in its area (Fig. 2-4) is defined by 

 ! 2 2
1

2
.2u a x

E
!" +  (2.17) 

The maximum displacement called the crack opening displacement COD occurs in the half 

length of the crack 

4
.COD a

E
!"  (2.18) 

Fig. 2-4. Crack edges displacement 

Of course, for the other crack types, body dimensions and stress conditions different 

formulas not discussed here describing the stress and displacement fields are necessary.  

In the stress intensity approach the failure occurs when KI = KIc, where KIc is a fracture 

toughness (a measure of material resistance) determined by experiments.  

The energy and stress intensity approaches represents the methods of linear elastic 

fracture mechanics, the extension to the plasticity was proposed by Rice [147], who applied 

the path-independent J-integral to the analysis of conditions for a crack propagation. The 

integral is defined as follows (Fig. 2-5) 

2

1

,J Wdx ds
x2

) *3
" +, -3. /
4

u
p  (2.19) 
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where 2 denotes a curve surrounding the crack tip, p  is the surface force vector, u is the 

displacement vector and W is the strain energy density 

0
: .W d" 4

 

!   (2.20) 

The physical interpretation of the J-integral is the rate of change of potential energy with 

respect to the incremental change of the crack length.  

Fig. 2-5. Two-dimensional cracked body 

The J-integral in the non-linear fracture mechanics has a similar task as the stress intensity 

factor in the linear mechanics. It determinates the field of stress near the crack tip. As the J-

integral is path-independent, usually the easiest possible contour 25 which is the circle with 

radius r, is being chosen. In such case the stress field is given by the following formula [69] 
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. /
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where !o, 6, n are the material constants, ,o o E7 !" ln is the constant depending on n and 

ij!"  is the nondimensional function of ' depending on n, the crack type, and the stress state.

2.4.2. Continuum damage mechanics 

The continuum damage mechanics has began the continuous, micromechanical approach 

in the failure analysis. This theory gives a possibility of simulating the crack initiation and 

propagation. It is fully coupled with the constitutive law that affects the weakening of the 

material stiffness. This approach is chosen for further analysis in this work, that is why the 

detailed description including coupling with the Chaboche constitutive model is presented. 

The continuum damage mechanics is based on the statement that the damage is mainly the 

process of initiation and growth of microcracks and cavities in a material’s structure. This 

process is mechanically represented by the damage variable D proposed by Kachanov [88]. 
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Fig. 2-6. Damaged body 

Considering a volume element in a damaged body presented in Fig. 2-6 at macro-scale, 

that is of a size large enough to contain many defects and small enough to be considered as a 

material point of mechanics of continua, and a plane cross-section defined by its normal 

vector n, the damage variable D(n) can be expressed as 

( )

( ) ( )
,

n

D
n n

S
D

S
"  (2.22) 

where S
(n) is the area of the intersection of the plane with the volume element and ( )n

DS  is the 

effective area of the intersection of all microcracks or cavities which lie on ( )nS .

According to this definition, the damage variable depends on the choice of the normal n,

therefore a tensor formulation for this parameter should be used. Assuming the isotropy of 

damage, which means uniform distribution of cracks and cavities in all directions, D(n) does

not depend upon n and becomes a scalar value D, which is bounded by the values of 0 

(undamaged material) and 1 (fully broken).   

Fig. 2-7. Damaged body at uniaxial loading state 

The important step in development of the continuum damage theory was introducing the 

concept of effective stress by Rabotonov [146]. Considering a volume element in uniaxial 

loading conditions, presented in Fig. 2-7, usually the stress is calculated as 

,
F

S
! "  (2.23) 
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but if the material is damaged and the defects are open, no microforces acts on the surfaces of 

microcracks or cavities represented by SD, then the stress should be related to the effective 

surface DS S S" +" , thus the effective stress are defined as 

.
D

F

S S
! "

+
"  (2.24) 

Introducing to this equation the damage variable definition (2.22) the effective stress !" are

expressed as 

.
1 D

!
! "

+
"  (2.25) 

At this stage of theory development for each type of defect and mechanism of damage a 

micromechanical analysis should be done. To avoid this problem Lemaitre [109] proposed the 

strain equivalence principle. The statement postulated that every strain behaviour of a 

damaged material is represented by constitutive equations of an undamaged material in the 

potential of which the stress is simply replaced by the effective stresses. 

The defined damage variable D is a new internal variable considered in the framework of 

the thermodynamics. Its associated variable is the damage energy release rate Y. Both 

complement variables presented in Tab. 2-1. The extended state potential in the form of 

decomposed free energy is expressed as 

( , , ) ( , , ).E E IT D r T8 8 8" 0 "  (2.26) 

The elastic part of the free energy including damage has the following form 
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According to the strain equivalence principle the stress component can be calculated as 
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After reversing the equation (2.28) the elastic strain are expressed as 
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By the definition of the associated variable, the damage strain energy release rate can be 

derived from the potential  E [109] 
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Considering WE as the density of the elastic strain energy 

1
(1 ) : : ,

2
E E E

EW d D" " +4 a!$     (2.31) 

we can establish the relation between Y and WE
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+
 (2.32) 

Splitting the density of the elastic strain energy WE into two parts: the shear energy part and 

the hydrostatic energy part and using the law of linear isotropic elasticity coupled with 

damage [109] the final formula for the damage strain energy release rate can be obtained 

2

2
,

2(1 )
eq

Y R
D E

1

!
+ "

+
 (2.33) 

where R1  is the triaxiality function 

2

2
(1 ) 3(1 2 ) ,

3
H

eq

R1
!

1 1
!

) *
" 0 0 + , -, -

. /
 (2.34) 

where
H eq! !  is the stress traxiality ratio, which contains 

eq!  the Huber-Misses equivalent 

stress and 
H!  the hydrostatic stress, expressed as 
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To describe the evolution of the damage variable the dissipation potential function 

including damage is needed. In case of viscoplastic and damage effects, it is possible to note 

from experimental observation that damage does not depend explicitly upon !, R, X.

Therefore, it is possible to separate the dissipation effect in damage and the viscoplastic flow 

contribution [28] 

* ( , , ) ( , , , ).D IY p D R D@ @ @" 0 X!#  (2.36) 

The damage evolution is expressed by the generalized normality law 
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where A#  is the plasticity multiplier expressed as 

% &1 .p DA " +# #  (2.38) 
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To describe the evolution of the damage variable the isotropic damage model proposed by 

Lemaitre was chosen [109], [111]. The dissipation function D@  is written as a power function 

of Y

% &
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D S Y
D

s S
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++) *" +, -0 . /
 (2.39) 

where S, s and B are damage material parameters. The evolution of the damage variable is 

derived from the equation (2.37) earlier substituted by (2.38) and (2.39) 
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The dissipation function I@  for the Chaboche model coupled with damage is defined as 
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The inelastic strain rate derived from equation (2.7) earlier substituted by (2.41) has the 

following form 
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where the accumulated plastic strain rate p#  is given by 
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Both kinematic and isotropic hardening formulas have the same form as in the model without 

damage – equations (2.11). 

The fracture in the continuum damage mechanics model occurs when the damage variable 

reaches a critical value Dcr, which depends on the material and the stress state. In the uniaxial 

stress state the critical value of damage is considered as a material parameter D1cr, which can 

be identified from the pure tension test. In three dimensions the fracture criterion is given by 

the following formula 
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where
u!  is the ultimate stress – the maximum value of stress obtained in the tension test and 

*!"  is the effective damage equivalent stress given by 



- 32 -  Viscoplastic damage analysis...,  ukasz Pyrzowski
 

% &
* 1 2.

1
eq

R
D

1

!
! "

+
"  (2.45) 

2.4.3. Porous solid plasticity models 

The porous plasticity models are based on the assumption that the effect of ductile damage 

is taken into account in the yield condition by a porosity term that progressively shrinks the 

yield surface. The first in this group is the model proposed by Gurson [75], [74]. He derived 

this model from the Rice and Tracey [148] analysis of an isolated void. The damage variable 

in this approach corresponds with the void volume fraction or porosity denoted as f. In the 

model initial formulation the yield surface E  is given by the following expression 
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where 0!  is the flow stress of the matrix material. 

The most popular version of the Gurson’s model is the extended approach proposed by 

Tvergaard and Needleman [174]. The modified model includes not only the nucleation and 

growth of the voids as the origin version but also their coalescence, which induces the 

acceleration in the failure process. In this model the isotropic damage is represented by the 

effective porosity *f . The Gurson’s yield surface is generalized in the following form [200] 
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where q1 and q2 are the material coefficients which are assumed to be constant. The effective 

porosity function *f  accounts for the effects of rapid void coalescence [200] 
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where
cf  is the volume fraction of voids at which the void coalescence starts and 

ff  is the 

void volume fraction at final fracture. 

The evolution of f  is the sum of the nucleation contribution 
nf  and the growth of existing 

voids
gf

.n gf f f" 0# # #  (2.49) 
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The void nucleation law generally is taken as 

% & ,I

n eq m eqf A B7 ! !" 0 0# # # #  (2.50) 

where A and B are the strain and stress controlled void nucleation intensity, respectively, I

eq7#  is 

the equivalent plastic strain rate, 
m!#  is the mean normal stress rate. 

The growth of existing voids law generally is written as 

% & % &1 Tr .I

gf f" +  # #  (2.51) 

In this model the material loses all stress-carrying capacity – the fracture occurs, when 

ff fL  and *
11f qL .

The Gurson model contains up to ten material constants which should be identified before 

application. Some of them are not physically based and cannot be directly measured for a 

material. For example, the parameters q1and q2 governing the voids growth and the parameter 

cf  should be determined from numerical micromechanics analysis, the initial void volume 

fraction and the nucleation parameters can be estimated only from micrographs analysis at 

different states of deformation. Such complicated identification causes problems in 

applications with a specific material for which parameters have not been estimated before by 

other researchers. 

Similar to the Gurson’s model, the damage is also represented by the porosity variable f ,

in the model proposed by Rousselier [151]. The difference is that Rousselier based his model 

on the thermodynamical considerations whereas the first one was derived from the 

micromechanical description of the porous material. This model’s description is omitted, as 

well as the further development of this both representative approaches for the porous 

plasticity methods, as these models are not chosen for further applications in the present work. 

2.4.4. Abrupt failure criteria 

In the abrupt failure criteria approach the fracture is predicted to occur when one chosen 

variable, uncoupled from other internal variables, reaches its critical value. Those criteria are 

relatively simple and very often based on recourse of experimental data. One of the first 

examples is the criterion, which origin comes from the Huber’s strength of materials theory 

[81] formulated at the beginning of 20th century, postulating that the fracture occurs when the  
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equivalent plastic strain I7  reaches a critical value 
I

f7  (the equivalent plastic strain at 

fracture)

,I I

f7 7"  (2.52) 

where for incompressible plastic material I7  is defined as 

% & % & % &2 2 2

1 2 32 3 ,I I I I7 7 7 7" 0 0  (2.53) 

where 1
I7 , 2

I7  and 3
I7  are the principal plastic strains. 

In the further development of this approach it has been accepted that generally the criteria 

should take into account the deformation path, because the current state of the material is not 

enough to characterise damage [51], [131], [10]. Therefore, fracture criteria should be 

expressed in general form as 

% &
*

*

0
process parameters ,

f

C f d
7

7" 4  (2.54) 

where *7  is usually the equivalent, total or plastic strain and *
f7  is the value of this strain at 

failure. 

One of the first criterions formulated in this form is the Freudenthal’s approach [67], 

based on micromechanics, which postulates that the fracture is dominated by a critical value 

of the plastic work IW

0
.

I
fI I

eqC W d
7
! 7" " 4  (2.55) 

The alternative to previous one, is the criterion of maximum plastic shear work considered 

by Lee and Shaffer [106] 

max max0
,

I
f xy I xyC d

#
( #" 4  (2.56) 

where max
xy(  is the maximum shear stress in plane xy, max

I xy#  is the maximum plastic shear strain 

in plane xy and I

f#  is the maximum plastic shear strain at failure.  

Cockcroft and Latham assumed that the maximum principal stress 1!  is the most relevant 

in the initiation of fracture 

10
.

I
f IC d

7
! 7" 4  (2.57) 
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Recently, Daudonnet [55] used the criterion, which assumes that the total strain energy 

density W is constant 

0
: .

f

crC W d" " 4
 

!   (2.58) 

The pioneer experimental work performed in 1911 by von Kármán [181], further 

continued by Hancock and Mackenzie [78], Tai and Yang [165] and many others showed that 

the fracture in the same material will occur at different strain levels depending on the state of 

stress. The first attempt to include this phenomenon in the abrupt fracture criteria was 

performed by introducing the hydrostatic stress 
H!  into formulas. The experiments showed 

that the material ductility decrees rapidly as the hydrostatic stress 
H!  grows. 

Brozzo et al. [36] based his criterion on the experimental evidence and introduced 
H!

into the process function 

% &
1

0
1

2
.

3

I
f I

H

C d
7 !

7
! !

"
+4  (2.59) 

Norris et al. [131] proposed the criterion based only on the hydrostatic stress 
H!

% &0

1
,

1

I
f I

N H

C d
c

7
7

!
"

+4  (2.60) 

where
Nc  is the material parameter. 

Wilkins et al. [193] introduced the fracture criterion based on the dependence of fracture 

strain on the hydrostatic and deviatoric states 

% &
% &

0

1
2  in ,

1

I
f I

c

H

C A d R
a

7 M

A 7
!

" +
+4  (2.61) 

where A, a, A  and M  are the material constants, Rc is the critical dimension of the fracture 

zone.

The second and more popular approach is introducing the stress triaxiality ratio 
H eq! ! ,

which is recognized as the most influential factor, that controls initiation of the ductile 

fracture in different states of stress. This factor is also used in the already mentioned models: 

the continuum damage and the porous plasticity. Recently Bao [13] performed fifteen 

different tests covering a wide range of stress triaxialities and constructed the fracture locus in 

the space of equivalent plastic strain at fracture versus the stress triaxiality ratio, Fig. 2-8. 
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Oyane et al. [138] developed the ductile fracture criterion for metal powders and porous 

materials that include the stress triaxiality 

0

1
1 ,

I
f

IH

Oy eq

C d
A

7
!

7
!

: ;) *) *
" 0< =, -, -, -, -< =. /. /> ?
4  (2.62) 

where
OyA  is the material parameter. 

Johnson and Cook [85] postulated that the critical equivalent fracture plastic strain is a 

monotonic function of the stress triaxiality 

1 2 3exp ,I H
f

eq

C C C
!

7
!

) *
" 0 , -, -

. /
 (2.63) 

where C1, C2 and C3 are the constants determined from tensile or shear tests with high 

triaxiality. 

Fig. 2-8. Dependence of the equivalent plastic strain at fracture on the stress triaxiality [13] 

Bao and Wierzbicki [15] studied the condition for fracture in the following form 

0

,

I
f

IH
cr

eq

C T f d

7
!

7
!

) *
" " , -, -

. /
4  (2.64) 

where % &H eqf ! !  is the suitable triaxiality weighing function determined in the wide 

range of the stress triaxiality % &1 3 1H eq! !+ D D  from eleven different tests. Lee et al. [108] 

used this criterion in the fracture prediction of thin plates under hemi-spherical punch. In the 

range of expected stress triaxiality for that problem % &1 3 2 3H eq! !D D  the weight function 

has been assumed as linear: 

0

.

I
f

IH
cr

eq

C T d

7
!

7
!

) *
" " , -, -

. /
4  (2.65) 
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The criteria, which are presented in this group, are only the examples chosen from a large 

group formed during development of this approach. For the further analysis three different 

fracture criterions are chosen. First is the simplest, based on the critical value of the 

equivalent plastic strain at fracture (Huber). Second is based on micromechanics, precisely the 

total strain energy density constancy assumption, used by Daudonnet. Third is the last 

presented, based on the triaxiality stress ratio dependency. 

2.5. Summary

In this chapter, the assumed constitutive law is described. Also the survey of models, 

which are in often use in fracture and damage analysis, is presented. Four groups are here 

distinguished. The models for the further applications have been chosen: the continuum 

damage model as the example of fully coupled approach and three different criterions from 

abrupt methods as the examples of uncoupled approach. 
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3. Numerical tools  

3.1. Abstract

The numerical study considered in this work has been performed using the commercial 

finite element system. This chapter contains the description of only the most important, from 

the analyzed phenomenon point of view, numerical tool choices which, have been made 

during the preparation of simulations. The description includes the short review of selected 

finite elements, chosen approach in the large displacement analysis, detailed algorithms of 

used user-subroutines, equation of motion integration method, contact effect and adaptive 

mesh features capability.  

3.2. Introduction

The extensive part of the performed work is the numerical study of analyzed phenomenon. 

All numerical calculations have been carried out using the MSC.Marc software. It is a 

multipurpose finite element method program for advanced engineering simulations. The 

system gives, among many others, a possibility of performing linear or nonlinear analyses in 

the static and dynamic regimes. Its great advantage is the openness (a user may define and 

implement his own subroutines), which enable performing analysis of advanced problems.  

3.3. Elements selected for numerical analyses 

Marc includes an extensive finite elements library. It allows modelling various types of 

structures, such as: plane stress, plane strain, axisymmetric, full three-dimensional solids and 

shell-type ect. For the numerical analyses considered in this work three different element 

types have been chosen. Two of them are the 2-D analysis dimension shells and one is the 

axisymmetrical shell element. 

The first one is the four-node bilinear thick-shell element – called in Msc.Marc type 75, 

see [177]. This Lagrange type low order element is based on the Mindlin theory. The bilinear 

interpolation is used for the coordinates, displacements and rotations. The membrane strains 

are obtained from the displacement field and the curvatures from the rotation field. Due to its 

simple formulation, it is less expensive than the standard higher order shell elements, 

therefore it is very attractive in nonlinear dynamic analyses. This element is not very sensitive 

to distortion. As all low order elements, is threaded by the locking effect [47]. Here, to avoid 
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this effect, the transverse shear strains are calculated at the middle of edges and interpolated to 

the integration points. In this way the element exhibits a correct behaviour also in the limiting 

case of thin shells.  

The element is defined by the (x, y, z) coordinates of the four nodes, see Fig. 3-1. The 

integration over the middle surface is performed numerically by the full integration Gauss 

algorithm. The integration through the shell thickness is made by the Simpson’s rule. The 

element has six degrees of freedom per node: u, v, w – displacements along global x, y, z-axis 

respectively and Nx, Ny, Nz – rotations about global x, y, z-axis respectively. The generalized 

output strain components are: 11 22 12, ,7 7 7  – middle surface stretches, 11 22 12, ,O O O  – middle 

surface curvatures and 23 31,# # $– transverse shear strains, all in local ( 1V
"

, 2V
"

, 3V
"

) orthogonal 

surface directions. The output stresses are 11 22 12 23 31, , , ,! ! ! ! !  in local directions given at 

equally spaced layers through thickness.

Fig. 3-1. Four-node bilinear thick-shell element [177] 

Fig. 3-2. Three-node bilinear thin-triangular shell element [177] 
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The second element type is three-node bilinear thin-triangular shell element – type 138, 

see [177]. This element is based on the discrete Kirchhoff theory. Similarly to the previous 

one, the simple formulation makes this element very attractive in nonlinear dynamic analyses. 

This element is also not very sensitive to distortion and uses the same integration algorithms 

as previous described, except of the number of Gauss points, which in this case is three, see 

Fig. 3-2. The degrees of freedom are the same, the generalized output strains do not include 

the transverse shear components and the output stresses are limited to 11 22 12, ,! ! ! .

The third element is three-node thick curved axisymmetrical shell element – type 89 (Fig. 

3-3), see [177]. In this element, the quadratic displacement assumption based on the global 

displacement and rotation is introduced. The protection against the locking effect is ensured 

by application of the reduced integration. The two-point Gauss integration (the points are 

close to the outside nodes) is used along the element for the stiffness calculation, and three-

point integration for the mass and pressure determination is applied. The integration through 

the shell thickness is made by the Simpson’s rule. The element has three degrees of freedom 

per node: u, v – axial (parallel to symmetry axis), and radial (normal to symmetry axis) 

displacements, respectively and N – right hand rotation. The generalized output strains are s7

– meridional membrane, P7  – circumferential membrane, t#  – transverse shear, sQ  – 

meridional curvature and  !  – circumferential curvature. The output stresses are s"  – 

meridional,  "  – circumferential and t"  – transverse.#

Fig. 3-3. Three-node thick curved axisymmetrical shell element [177] 

The strain-displacement relationships used in all presented elements are suitable for large 

displacement – small strains analyses and are described below. Also all constitutive relations, 
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including user-defined subroutines, can be applied. The presented elements in the performed 

computations have been divided into five layers.

3.4. Large displacement analysis 

In order to obtain the adequate results of the numerical simulations in the studied problem, 

the large displacements must be considered. There are two natural classes of large 

deformation problems: large displacement – small strain and large displacement – large strain. 

In the considered study, due to assumptions made in Chapter 2, the first class analysis has 

been chosen.  

The kinematic of deformation for structural elements is naturally described in the 

Lagrangian formulation. In this method a finite element mesh (as well as local coordinate 

stystems) is attached to a material and moves through space along with a material. In such 

case, there is no difficulty in establishing stress or strain histories at a particular material point 

and the treatment of free surfaces is natural and straightforward.  

The Lagrangian approach can be classified in two categories: the total Lagrangian and the 

updated Lagrangian variant [18]. In the total Lagrangian approach, all tensors are referred to 

initial configuration, at time t = 0. The equilibrium is expressed with the original undeformed 

state as the reference. In the updated Lagrangian approach all tensors are referred to the 

updated configuration of the body, at time t.

The equilibrium can be formulated as the principle of virtual work. In the total Lagrangian 

approach this principle, for an arbitrary body during its motion caused by external forces, has 

the following form [95] 

$ % $ %0 0 0 0,
TT T T T

V V A A

dV dV dA dA& ' & & &( )* + + + ,- ./ / / /S E f u u u u p u   0  (3.1) 

where V  and A  are the volume and area, respectively, taken from initial configuration, S  is 

the second Piola-Kirchhoff stress tensor, E  is the Green-Lagrange strain tensor, 0f  is the 

volumetric force vector referred to the initial configuration, '  is the mass, 00  is the viscous 

damping tensor of the surface damping forces referred to the initial configuration, 0p  is the 

vector of forces applied to the surface, u  is the displacement vector in an arbitrary point 

(superposed dots indicate differentiation with respect to time) and & u  is the virtual 

displacement. 

Since the stresses and strains in the searched time step are unknown, for solution, the 

following incremental decomposition are used 
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,t t t*1 , * 1S S S  (3.2) 

.t t t*1 , *1E E E  (3.3) 

The incremental strains are further decomposed into elastic E1E  and inelastic I1E  parts 

.E I1 , 1 *1E E E  (3.4) 

After linearization and adaptation to the finite element method the principle of virtual work 

(3.1) can be written as the incremental equation of motion  

$ % ,G S t t t*11 * 1 * * * 1 , +M q C q K K K q R Q    (3.5) 

where

, , ,t t t t t t t t t*1 *1 *11 + 1 + 1 +q = q q q = q q q = q q          (3.6) 

,  and q q q    are the vectors of finite elements nodal displacements, velocities and 

accelerations, respectively, related with ,  and u u u   by the following dependences, where N  is 

the shape function matrix 

,    ,    ,, , ,u Nq u Nq u Nq     (3.7) 

 and M C  are the mass and viscous damping, respectively, t t*1R  is the applied external forces 

vector, tQ  is the vector of nodal balanced forces, ,  and G SK  K K  are the linear, geometrical 

and stress related stiffness matrixes, respectively.  

In the updated Lagrangian approach all variables are referred to the updated (at time t)

configuration. The principle of virtual work in this approach has the following form 

$ % $ % 0,
TT T T T

v v a a

dv dv da da& ' & & &( )* + + + ,- ./ / / /f u u u u p u !    0  (3.8) 

where v  and a  are the volume and area, respectively, taken from updated configuration,   is 

the Cauchy stress tensor, ! is the Hencky strain tensor and , ,f  p0  are the same vectors/tensors 

as in equation (3.1), but here referred to updated configuration. The incremental stress 

decomposition used in this case is given as 

.t t t*1 , *1    (3.9) 

Considering the strain increment the following relations holds  

,t t*1 , 1! !  (3.10) 

where the increment is further decomposed as it is shown in equation (3.4).
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After linearization and adaptation to the finite element method the principle of virtual work 

(3.8) can be transformed to the incremental equation of motion  

$ % .G S t t t*11 * 1 * * 1 , +M q C q K K q R Q   
 (3.11) 

In the considered numerical study the updated Lagrangian formulation has been applied. 

This selection has been forced by using the large rotation during the analyses [176]. In such 

case the nonlinear terms in the curvature expressions may no longer be neglected. Applying 

the updated Lagrangian approach in Marc system follows that the program uses and prints the 

Cauchy stress tensor   (also called as true stress) and energetically conjugated the Hencky 

strain tensor !  (also called as true or logarithmic strain). 

3.5. User-defined subroutines 

Among an extensive number of user-defined subroutines available in the Marc program, 

the following three have been applied in the considered numerical studies: UVSCPL – 

definition of the inelastic strain rate, UACTIVE – activate or deactivate elements and PLOTV 

– user-selected postprocessing of element variables, see [178]. 

The UVSCPL subroutine allows implementing an arbitrary elastic-viscoplastic material 

law to compute the inelastic strain increment. The user must define the inelastic strain 

increment I

t1!  and the stress increment t1 . This subroutine is used to implement the chosen 

material law, which is the viscoplastic Chaboche model, and to calculate all considered 

fracture criterion parameters: _cr tD  – current (at time t) critical value in damage criterion, I

t2

– equivalent plastic strain criterion, Tt – stress triaxiality ratio based criterion and Wt – total 

strain energy density criterion (the selection of active criterion in the particular simulations is 

performed in UACTIVE). Two different versions of this subroutine have been created: the 

uncoupled constitutive law and the constitutive law coupled with the damage theory. The 

integration of constitutive law variables and the fracture parameters is performed by the 

trapezoidal rule. The algorithms used in the UVSCPL are presented in the form of a flow chart 

in Fig. 3-4 to Fig. 3-6. The tensor C , which is used in this algorithms, is the constitutive 

tensor. 

 The UACTIVE subroutine allows deactivation of elements in a structure. This user 

subroutine is called at the beginning of analysis and at the end of each increment. 
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Fig. 3-4. Flow chart of the UVSCPL subroutine, uncoupled version 
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Fig. 3-5. Flow chart of the UVSCPL subroutine, coupled version, (1/2) 
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Fig. 3-6. Flow chart of the UVSCPL subroutine, coupled version, (2/2) 

A deactivated element does not contribute to the load, mass, stiffness, or internal force 

calculation. This subroutine controls which criterion is used in the particular simulations. 

In all considered studies the divided into five layers shell elements have been used. 

Elements should be deactivated when they fulfil the assumed fracture criterion. The question 

is, when the deactivation should start. If the criterion is fulfilled: in one layer only (appeared 

as first), in a few layers (some part of the cross-section) or in all layers (through all height of 

the cross-section). Finally, to study this problem the calculations have been performed using 

three different methods. In the first approach an element has been deleted when the assumed 

fracture criterion has been fulfilled in each integration point of its any single layer (1/5 layer, 

which is 20 % of the cross-section). In the second one an element has been removed when at 

least three layers have been fractured (3/5 layers, which is 60 % of the cross-section). In the 

third one the deactivation of an element has occurred when the criterion has been fulfilled in 

its all integration points (5/5 layers, which is 100 % of the cross-section).  

The PLOTV subroutine allows a user to define an element variable to be written to the 

post file. It enables plotting the values of variables appearing in user subroutines. In the 

considered analyses this procedure has been used to get output of the damage parameter D,

the equivalent plastic strain I2 , the total strain energy density W, the stress triaxiality ratio 

H eq" "  and the triaxiality stress ratio fracture condition parameter T.

3.6. Integration of the motion equation 

The equation of motion numerical integration methods can be divided into approaches 

based on modal superposition (usually used in linear analysis) and into so-called direct 
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methods. The second group can be divided into explicit and implicit methods. The 

characteristic feature of the explicit methods is calculation of the motion parameters in the 

searched time step t t* 1  on the basis of the equation written for the time step t. In the 

implicit methods the motion parameters in the searched time step t t* 1  are calculated on the 

basis of the equation written in the same time step. This causes the necessity of iterations.  

The Marc program offers the possibility of using methods, which are representative for all 

mentioned groups. In the considered numerical study the direct, the implicit single-step 

Houbolt method has been used. The basis of this approach can be found in [48].

The characteristic for the single-step methods is that, they rely only on the initial 

conditions provided at the beginning of a time step t and on evaluating the motion parameters 

at time points within the time interval [ ; ]t t + t1 . This simplifies the procedure in relation to 

multistep methods (the original Houbolt method), because it does not employ any historical 

information from the earlier time steps than t.

In this work the incremental nonlinear form of motion equation presented in equation 

(3.11) has been considered. The expressions for displacement and velocity in the single-step 

Houbolt method are  

2 2
1

1

,

,
t t t t t t t

t t t t t t

t t t

t t

F F

G G
*1 *1

*1 *1

, * 1 * 1 * 1

, * 1 * 1

q q q q q

q q q q

     

      
 (3.12) 

where F G,  and 1 1F G G, * . The parameters G  and 1G  influence on the algorithm’s overshot 

and the global error growth behaviour usually are assumed as 1/ 2G , +  and 1 3/ 2.G , To start 

this algorithm the initial value of acceleration is necessary. It can be calculated as

$ %-1
0 0 0 0 .t t t t, , , ,, + +q M R Cq Q    (3.13) 

3.7. Contact phenomena 

The considered numerical simulations required the ability to model the contact 

phenomena. Marc allows performing such analysis. In the program there are defined two 

types of bodies – deformable and rigid [176]. Deformable bodies are simply meshed as a 

collection of finite elements. Their deformation is prescribed using the conventional methods 

of applying displacements, forces or loads to elements. Rigid bodies are composed of curves 

or surfaces. It is not necessary to define the complete rigid structure, only the bounding 

surface or curve needs to be specified. The motion of rigid bodies is possible and can be 

prescribed by velocity, position or load. The detection of contact is realized during the 
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incremental procedure. Each potential contact node is first checked to see whether it is near a 

contact segment. To assure the efficiency in the large number of nodes case, a bounding box 

algorithm is used, see [115]. It allows determining quickly whether a node is near a segment. 

If the node falls within the box more sophisticated technique – the iterative penetration 

checking procedure is used. In the direct contact procedure, while contact does not occur, 

target nodes on the deformable bodies have no constraints. Once the contact is detected, the 

degrees of freedom are transformed to a local system and a constraint is imposed. The contact 

phenomena implemented in the Marc system allows introducing the modelling of friction. 

Two models are available in the program: the Coulomb model and the shear friction model, 

see [134]. In the performed simulations, the friction has not been considered.   

3.8. Adaptive mesh 

The generation of adaptive mesh improves the accuracy of obtained solutions. During 

calculation this capability increases the number of elements and nodes. In the Marc program 

the adaptive mesh can be applied for lower-order elements only [176]. Among the chosen 

elements this feature cannot be used with the axisymmetrical shell. The adaptive meshing 

procedure works by dividing an element and internally tying nodes to insure compatibility. 

For the quadrilaterals and triangles, the number of elements expands by four with each 

subdivision. When the adaptive meshing occurs, the discontinuities are created in the mesh, 

see Fig. 3-7. To ensure compatibility, node B is effectively tied to nodes A and C, node D is 

effectively tied to nodes C and E. This procedure occurs internally and does not conflict with 

user-defined contact. The adaptive meshing subdivision occurs when a particular adaptive 

criterion is satisfied. Among many possibilities, the equivalent values criterion has been 

chosen. An element is subdivided when the assumed absolute value of equivalent total strain 

is reached. 

Fig. 3-7. Discontinuities in the adaptive mesh [176] 
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3.9. Summary

The described in this chapter numerical tools give the possibility of performing 

geometrically and materially nonlinear axisymmetrical or 2-D shell analyses. Additionally the 

subroutine, which deactivates elements, allows simulating the crack initiation and 

propagation. All these features have been used in the attempt of the fracture prediction 

analyses described in the further chapters. 
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4. Experimental tests

4.1. Abstract

The following chapter contains the detail overview of all experimental tests, which have 

been performed during realization of this work. The laboratory tests consisted of: experiments 

on plates subjected to explosions, quasi-static experiments on plates and uniaxial experiments 

on bar samples. For each group the detailed description of the research stands, experimental 

procedures and the results are presented.  

4.2. Introduction

Experimental testing is the best verification for all new theories and models in the 

mechanics field. The comparison analyses, where results of numerical simulations are referred 

to experiments give the unequivocal answer if an assumed model or theory is correct or 

wrong. A laboratory test is appropriate when it is repeatable and gives an exact answer for a 

stated problem. Unfortunately, sometimes it is not easy to fulfil completely these 

circumstances. The best known problem is that of boundary conditions determination.  This 

could be: the determination of loading conditions, specimen’s fixing, etc.  

The laboratory tests performed for the requirements of this work have been realized in 

Institute PRISME in Bourges, and in Gda sk University of Technology in Faculty of Civil 

and Environmental Engineering, Department of Structural Mechanics and Bridges. All 

realized experiments have been executed with a very high carefulness. 

4.3. Experiments on plates  

The experiments on thin metallic plates subjected to various well controlled dynamic 

excitations – gas mixture explosions are the key laboratory tests for this study. The results of 

these experiments are the base for final verification of fracture prediction numerical 

simulations. The quasi-static experiment gives the information, which can be useful in 

determination of the boundary conditions. Its result can be employed in the verification of 

conditions applied in the assumed model. 



- 52 -  Viscoplastic damage analysis...,  ukasz Pyrzowski
 

4.3.1. Research stand and experimental devices 

The main part of the research stand is a rigid steel tube inside which it is appropriate to 

perform detonations (designed to withstand very high overpressure up to 15 MPa) presented in 

Fig. 4-1. This tube is composed of two separate parts between which a specimen – a plate, 

could be mounted. Its main dimensions are 194 mm of inner diameter, 12.5 mm of wall’s 

thickness and 1310 mm of full length, see Fig. 4-2. All experimental devices used during 

experiments are presented in the connection diagram in Fig. 4-3. Both parts of the tube have 

its own manometers protected by high pressure resistant valves. The longer part of the tube is 

connected to a vacuum pump and a gas cylinder with an explosive mixture. The device is 

equipped with an igniter connected to a high voltage generator and two sensors measuring 

pressure during explosions, which are installed just before and behind a specimen. These 

sensors are connected to amplifiers and in turn to an oscilloscope, which records pressure time 

histories.

Fig. 4-1. Research stand – the tube used in experiments 

Fig. 4-2. Main dimensions of the tube 

An important element for the experiments in the research stand is the additional plate 

presented in Fig. 4-4 fixed just behind a specimen. Thanks to the special 12 mm radius circle 
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rounding of its inside edge, it prevents cutting out circles along the specimen’s fixing during 

the tests. 

Fig. 4-3. Connection diagram of experimental devices 

4.3.2. Experimental work in dynamic tests 

The experiments have been performed on specimens made from Al2017 aluminium alloy 

1 mm thickness sheets. These sheets have been cut into 330x330 mm square plates. The gas 

mixture, which has been used for the experiments, is the stoechiometric mixture of propane 

and oxygen, during the explosion the following reaction occurred: 3 8 2C H   5O  * H

2 2 4H O  3COH * . There are two possibilities of igniting the explosion: by a spark and then 

the result is a deflagration or by an electric filament (the capacitors discharge through a thin 

copper wire which instantaneously melts creating plasma) resulting in a detonation. The 

detailed description of these methods can be found in Pennetier at al. [140]. The shock ignited 

by the second method is very stable, whereas by the first is partly stochastic. That is why in  

Fig. 4-4. Additional plate 
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Fig. 4-5. Specimen’s fixing

the experiments the detonation has been applied. The initial gas mixture pressures used for the 

explosions are: 0.25, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 bars. 

The procedure of a single test includes the following actions: 

I fixing the plate between both parts of the tube by four screws and the system of two o-

rings, Fig. 4-5; 

I preparing the igniter by soldering a wire and installing in a special opening, Fig. 4-6; 

I pumping out air from both parts of the tube simultaneously until reaching vacuum; 

I separating both parts by closing the valves in the connecting hose; 

I in the same time, filling the first part of the tube with gas mixture of an appropriate 

pressure and the second part with air of the same pressure (due to the balance of pressures 

in both tubes the specimen remains flat); 

I closing all valves and igniting the explosion by an electric filament induced by the 

capacitors discharge; 

I during the test registering pressure time histories on the oscilloscope, Fig. 4-7; 

I unscrewing the plate and measuring its geometry after an experiment. 

Fig. 4-6. Igniter and its installation 
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Fig. 4-7. Registering of the pressure time histories 

During each test a special attention is necessary, working with explosive gas mixture require 

keeping restrict safety conditions and high concentration. 

4.3.3. Results of dynamic experiments 

During the experimental program eighteen succeeded tests on plates subjected to 

explosions have been performed. For better organization the following designations to 

particular experiments have been used: x_y, where x signifies the initial pressure, y signifies 

the following number of the succeeded test for this initial pressure. For example the 

designation “05_1” means that it is the first test with initial pressure 0.5 bar.   

The first analyzed results of the experiments are the registered pressure time histories. 

During each test, the pressure histories have been registered with frequency of 2.5·105 1/s. 

The pressure histories have been recorded by two sensors installed just before and behind the 

plate. The pressure, which is assumed as acting exactly on the specimen, is calculated as a 

difference, an example is presented in Fig. 4-8. All eighteen pressure time histories are 

presented in Annex 1, here for the initial pressures from 0.3 to 0.8 bar one chosen example is 

shown in Fig. 4-9.

Fig. 4-8. Calculating of active pressure time histories, example for initial pressure 0.7 bar 
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Fig. 4-9. Pressure time histories 

Fig. 4-10. Pressure impulses 
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In all presented pressure time histories it can be noticed that the first hit of the explosion is 

the strongest, the following pressure maxims seems to be rebounds of gases inside the tube. 

For better visualisation of the explosions power during first hit after detonation the pressure 

impulses has been calculated for each pressure time history by integrating its function with 

respect to time, the result is presented in Fig. 4-10. The average values of the impulses, for 

each initial pressure, are shown in Fig. 4-11. In the presented plots it is noticeable how the 

impulses are growing with increasing the gas mixture initial pressure. 

The photos of all tested plates after an experiment are presented in Annex 2, here the 

examples for the initial pressures from 0.3 to 0.8 bar are shown in Fig. 4-12. For the lowest 

initial pressures the plates are only permanently deflected, for the higher pressures the 

characteristic fracture occurred. In these plates in their centre region circle-shaped pieces of 

material have been cut out. Increasing the pressure followed cutting out circles of higher 

diameters. The highest applied initial pressure has caused the petelling fracture of plate.

The geometry of all tested plates, except the plate damaged by the explosion with initial 

pressure 0.8 bar (petelling fracture), have been measured. These measurements have been 

made in two directions going through plates’ middle points: the first one along the plate 

diagonal and the second one parallel to the plate side. The example results are presented in 

Fig. 4-13 and Fig. 4-14. The measurements show that the square shape of specimens does not 

influence the axisymmetrical deformation of tested plates, therefore in further numerical 

applications an axisymmetrical analysis can be performed and in the verifications the average 

value of two measurements can be used. The average geometries (cross-sections) of all tested 

plates with initial pressures from 0.3 to 0.7 bars are presented in Annex 3. 

Fig. 4-11. Average values of pressure impulses for each pressure level 
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Fig. 4-12. Plates after experiments 

Fig. 4-13. Plates after experiments – intersections 
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Fig. 4-14. Plates after experiments – intersections 

In the test performed with the lowest initial pressure 0.25 bar, additionally, the deflection 

in the middle point of plate has been registered using an optic sensor. Performing this 

experiment has required disassembling of the second part of tube, see Fig. 4-15. Such a test, 

due to safety conditions, has been realized only for the lowest impact, where the fracture of 

plate has not been expected. The registered pressure and middle point deflection time histories 

are presented in Fig. 4-16. The initial 4 mm deflection of plate is caused by the negative 

pressure in the first tube (lack of the second tube precluded the pressure balance on both sides 

of the specimen). 

In the plates, which have been damaged by cutting out almost circle shaped pieces of 

material, the equivalent diameters of holes are calculated. This measurement has been done by 

importing the pictures of plates in the appropriate scale to the program AutoCad. After import 

for every plate a hole’s circumference has been marked and its area has been measured using 

program’s tools. Then the circle’s diameter of the same area has been calculated. The 

examples of this procedure are shown in Fig. 4-17, all results are presented in Annex 4. 

Fig. 4-15. Optic sensor measuring deflection of the plate 
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Fig. 4-16. Pressure and deflection time histories, test 0.25 bar 

Fig. 4-17. Equivalent hole diameter measurement 

Initial pressure Test designation 
Max. deflection 

[mm]
Hole diameter 

[mm] 

0.25 bar 025_1 20.0

0.3 bar 

03_2 25.2 - 

03_3 28.2 - 

03_4 26.5 - 

03_5 26.3 - 

0.4 bar 04_1 38.5 -

0.5 bar 

05_2 - 35.3 

05_3 - 30.8 

05_4 - 34.2 

0.6 bar 

06_0 - 41.9 

06_1 - 45.2 

06_2 - 34.5 

06_3 - 38.7 

0.7 bar 

07_1 - 58.7 

07_2 - 39.3 

07_3 - 40.0 

07_4 - 56.5 

Tab. 4-1. Characteristic results of the plates’ measurement 

All characteristic results, which are the maximum deflections in the middle points of 

plates or the equivalent hole diameters are listed in Tab. 4-1. The differences in these results 

for particular initial pressures are relatively high, especially for its higher values. That is why 
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the relationship between every presented characteristic result and its impulse obtained during 

the test are checked. The values of impulses are taken for the time step of 0.9 ms, which is the 

end time of main impact in all experiments. The setting-up is presented in Fig. 4-18. The 

results show that relationship between the plates’ geometries after experiments and the values 

of pressure impulses is noticeable. Two results: tests 07_2 and 07_3 seem to unfit. This might 

be caused by the problems with the igniter during the last tests. The first has been 

conditionally accepted (its result is similar to the 0.6 bar tests). The second has been rejected 

for the further analyses. 

Fig. 4-18. Plates geometry referred to pressure impulses 

4.3.4. Experimental work in quasi-static test 

The dynamic experiments on plates have exhibited that the specimens fixing in the tube 

does not fulfil typical support conditions such as a full clamping. During the explosion, the 

plate have been slid and folded inside the fixing area in half height, see Fig. 4-19. That is why  

Fig. 4-19. Folding of the plate in the fixing area 
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the static experiment has been performed. The result of the static experiment will be used 

further for boundary condition modelling. 

The research stand, for performing static experiments, has been prepared in the same way 

as in the dynamic test with the lowest initial pressure. Also in this test the second part of the 

tube has been disassembled and the middle point deflection has been measured. The static 

loading has been applied by slowly increasing air pressure in the first part of the tube up to the 

value of 2 bar. 

4.3.5. Result of quasi-static experiment 

The result of experiment is the middle point deflection vs. pressure value curve presented 

in Fig. 4-20. The maximum pressure level of 2 bar have assured elastic behaviour of the plate, 

after reducing the loading to the starting point the plate’s deflection have came back to the 

zero value. 

Fig. 4-20. Result of static experiment 

4.4. Uniaxial experiments 

The uniaxial experiments have been performed in purpose of the further material 

parameters identification. The specimens for these tests have been prepared from the material 

used in the main experiments. They have been cut from the virgin aluminium plates as flat 

rectangular of size of 150x12x1 mm along and across sheet’s rolling directions. All uniaxial 

experiments have been performed using the Zwick/Roell Z020 test machine equipped with an 

extensometer presented in Fig. 4-21. The machine’s clamps spacing has been set to 75 mm, 

the gauge length to 40 mm. All tests have been carried out at room temperature. 
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Fig. 4-21. Test machine with the extensometer 

4.4.1. Tension tests with constant strain rates 

The tension tests have been performed for five different constant strain rates: 0.0001 1/s, 

0.0005 1/s, 0.001 1/s, 0.005 1/s and 0.01 1/s. Both kinds of the specimens, cut along and 

across sheet’s rolling directions, have been tested to the rupture. For all chosen rates (except 

0.0001 1/s) two the same tests have been realized. The results (true stress vs. true strain 

curves) of all experiments are presented in Annex 5, here some examples are shown in Fig. 

4-22.

Fig. 4-22. Results of tension tests with constant strain rates 

4.4.2. Load-unload tension cyclic tests

The load-unload tension tests have been performed with a constant strain rate 0.0005 1/s 

in the loading phases, the unloading phases have been controlled by force, decreasing down to 

zero value with the same velocity. The successive cycles have been proceeded with 0.015 of 
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 the total strain increment. Also here both kinds of the specimens, cut along and across the 

sheet’s rolling direction, have been tested. For each kind, two tests have been realized. The 

results of all experiments are presented in Annex 5, here the examples are shown in Fig. 4-23. 

The results are presented as the plots of uniaxial force value vs. displacement. It will be 

suitable in further identifications. 

Fig. 4-23. Results of load-unload tension cyclic tests 

4.5. Summary

All experimental work has been performed with the highest possible to achieve precision 

during the realization and during elaborating the results. The author has been actively engaged 

in all experiments, which have been performed. All elaboration of results has been done by 

him. The experimental results, which have been acquired, are the base of the further work: 

material parameters identification and finally modelling of the main problem and its 

verification.
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5. Material parameters identification

5.1. Abstract

The description of the aluminium alloy Al2017 material parameters identification is the 

main subject of the present chapter. The calibration procedures of the elastic modulus, the 

offset yield stress and the other assumed constitutive model parameters including damage are 

presented. This identification has been made on the basis of the uniaxial laboratory tests 

results. Due to the assumption made in Chapter 2 concerning the isotropy of the material, all 

parameters have been identified separately from the results of tests on the specimens cut along 

and across sheet’s rolling and later the mean values have been calculated. After identifications 

suitable verifications have been performed.  

5.2. Introduction

Material parameters identification is a basic stage for further numerical modelling 

analysis. Usually the assumed model parameters can be calibrated using different methods. 

Proposed approaches very often depend on the experiments, which are chosen for 

identification. A selection of appropriate method, precise experiments and an accurate 

calibration are necessary conditions for a correct identification. After each calibration 

procedure a verification of obtained material parameters is indispensable.  

During the procedures of identification, calculation of the different mathematical 

quantities is required. In the present work very often it is necessary to obtain the arithmetic 

mean value 

1
1 ,

n

ii
y y

n ,
, D  (5.1) 

where yi is an i-th value (from a collection size n) of a function obtained in experiment or 

identification. Also the standard deviation, as a measure of the variability or dispersion, is 

calculated 
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In more complicated procedures of identification very often different approximations are 

needed. In all such occurrences in the present work, the curve fitter tool offered by the 

commercial program SigmaPlot has been used. Nevertheless, the author has prepared his own 
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procedure for each identification. The program uses the Marquardt-Levenberg algorithm to 

find the coefficients of the independent variables that give the best fit between the equation 

and the data. This algorithm seeks the values of parameters that minimize the sum of the 

squared differences between the values of the observed and predicted values of the dependent 

variable [157] 
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where SS is the minimized sum, 
iy , ˆ

iy  are the observed and the predicted value of the 

dependent variable, respectively, and 
iw  is the weight parameter. 

The verification of identification results requires a parameter, which indicates a fitting 

between numerical simulations and experiments. In all verifications in the present work 

coefficients of determination r2 and correlation 2r r,  have been calculated ([95], [45])

$ % $ %2 22

1 1

,      ,     ,
n n

t r
r i i t i

i it

S S
r S y f S y y

S , ,

+
, , + , +D D  (5.4) 

where
if  is an i-th value of a function obtained in approximation. The values of correlation 

coefficient changes between 0;1rJ , r = 1 means full fitting, 0r K means very low or lack 

of fitting. 

5.3. Identification of elastic modulus and yield stress 

The first performed identification is the estimation of the elastic modulus E and the yield 

stress Rp0.2. For the purpose of this identification the results of uniaxial tension tests with 

constant strain rate yield stress has been used.

Fig. 5-1. Elastic modulus identification 
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The values of the elastic modulus have been estimated by approximating the elastic range 

of strain-stress tension test curve by a linear function $ %f x ax b, * . The identification has 

been performed separately for all tension tests results and then the mean value has been 

calculated. All approximations are presented in Annex 6, here the examples of two tension 

tests for the specimens cut along and across sheet’s rolling direction are shown in Fig. 5-1. 

The results of all particular identifications, the mean value of elastic modulus and the standard 

deviations are presented in Tab. 5-1. 

Test 
Specimens cut along 

sheet’s rolling 
E [GPa] 

Specimens cut across 
sheet’s rolling 

E [GPa] 

0.0001 1/s 69.8 67.6

0.0005 1/s, t1 70.9 68.7

0.0005 1/s, t2 70.7 68.3

0.001 1/s, t1 71.0 69.2

0.001 1/s, t2 71.5 70.4

0.005 1/s, t1 72.0 69.5

0.005 1/s, t2 70.6 70.0

0.01 1/s, t1 71.3 70.4

0.01 1/s, t2 70.5 69.2

Mean values 70.9 69.2 
Standard deviations 0.64 0.95

Mean value 70.1

Tab. 5-1. Results of elastic modulus identification 

Fig. 5-2. Offset yield strength identification 

The tested material has not shown the distinct yield stress, that is why the offset yield 

stress Rp0.2 had to be identified. These values are estimated as stress responding to the 

intersection point of the strain-stress curve with a line parallel to the elastic range of this 
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curve. The offset between the curve and the line expressed in strain values has been assumed 

as 0.2 %. The identifications for all tension tests are presented in Annex 6, here the examples 

are shown in Fig. 5-2. The results of all particular identifications and the mean values of the 

offset yield stress for each strain rate are presented in Tab. 5-2. 

Test 
Specimens cut along 

sheet’s rolling 
Rp0.2 [MPa] 

Specimens cut 
across sheet’s rolling 

Rp0.2 [MPa] 

Mean
value

0.0001 1/s 294.3 294.3 270.4 270.4 282.3 

0.0005 1/s, t1 292.9 
293.8

269.4
269.2 281.5 

0.0005 1/s, t2 294.7 269.0

0.001 1/s, t1 294.6 
295.3

270.9
271.5 283.4 

0.001 1/s, t2 296.0 272.2

0.005 1/s, t1 296.4 
294.0

269.5
270.3 282.1 

0.005 1/s, t2 291.6 271,2

0.01 1/s, t1 295.2 
293.5

271.0
270.9 282.2 

0.01 1/s, t2 291.8 270.8

Tab. 5-2. Results of offset yield strength identification 

5.4. Identification of Chaboche model parameters 

This identification is performed on the basis of the procedure given in [95]. Estimating the 

material parameters requires writing the Chaboche model equations in uniaxial loading 

conditions. The deviators of the stress tensor ' and the kinematic hardening tensor 'X  in 

such conditions have the following form 
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where "  is the stress and X is the kinematic hardening, both in uniaxial loading conditions.  

The invariant J  of the above tensors difference can be written as 

$ %J ' ' X"+ , +X . (5.6) 

The basic Chaboche model formulas can be written in the following way 
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where I2  is the inelastic strain rate in uniaxial loading conditions. Both hardening functions 

can be integrated explicitly 
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where + ,sgn 1X- .# & # / , 0X  and 0
I  are the initial values of the kinematic hardening and 

inelastic strain functions. The equation (5.7) can be transformed to the following stress 

function
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The Chaboche model material parameters can be identified from the uniaxial fully 

reversible cyclic loading tests or the tension tests with constant strain rate (for several 

different strain rates). Despite of better effectiveness of the first method, the second had to be 

chosen, as the specimens (cut from the one millimetre thickness aluminium alloy sheet) have 

been too sensitive to buckling, so the compression loading phase in cyclic test has been 

unrealizable. 

For the identification of the Chaboche model parameters, the results of the tensile tests 

with at least three different strain rates are necessary. In this work the results of five different 

strain rates are used. 

The procedure of identification requires the following functions calculated from the 

laboratory test: stress . , total strain  , inelastic strain I  and inelastic strain rate I  . The 

first two functions have been prepared during elaborating the uniaxial tests results in Chapter 

5.3. The functions of the inelastic strain are calculated directly from the equation 

pl
E

.
  # & . (5.13) 
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The computation of the inelastic strain rate functions is more complicated. In calculations, the 

following rule of numerical differentiation has been applied [45] 
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Unfortunately, after using in calculations the results of laboratory tests directly with the 

above formula, it has been found that the inelastic strain rate functions are not smooth enough 

for the identification. This problem has been solved by approximating the strain by the 

polynomial time funcions of degree 1 and the stress by the polynomials of degree 10. In these 

actions only the values behind the proportionality limit are taken. Recalculating the inelastic 

strain rate using the results of approximation gives smooth enough functions (after 

approximation two methods of the inelastic strain rate calculation are possible: by analytical 

differentiation or by the numerical differentiation – using the rule (5.14), the same results 

have been obtained by both methods). 

Two examples of this procedure for different kind of specimens and strain rates are 

presented. The first one for the specimen cut along sheet’s rolling and tested with 0.001 1/s 

(test 1). The following strain and stress functions have been obtained after approximations  

(Fig. 5-3) 
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Fig. 5-3. Approximation of the strain and stress functions, example 1 

The strain-stress graph after this procedure is presented in Fig. 5-4. The final results obtained 

for inelastic strain and inelastic strain rate using the results of approximation are presented in 
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Fig. 5-5. It has been found that the difference between the inelastic strain function before and 

after approximation is very small, but as it has been mentioned before, for the inelastic strain 

rate function, such procedure is necessary. 

Fig. 5-4. Stress versus strain after approximations, example 1 

Fig. 5-5. Functions of inelastic strain and its rate before and after approximations, example 1 

The second example is presented for the specimen cut across sheet’s rolling direction and 

tested with 0.01 1/s (test 1). The following strain and stress functions have been obtained (Fig. 

5-6)

+ , 3 39.68 10 9.72 10 ,t t & &# $ & $  (5.17) 

+ , 10 9 8 7 2 6 3 5

4 4 4 3 4 2 4 4

0.012 0.55 10.66 120.66 8.77 10 4.27 10

1.41 10 3.1 10 4.38 10 3.57 10 1.25 10 .

t t t t t t t

t t t t

. # & % & % & $ % $ %

& $ % $ & $ % $ & $
 (5.18) 

The strain-stress graph after above approximations is presented in Fig. 5-7 and the final 

results in Fig. 5-8. The conclusions are the same as in the first example. The preparation of all 

other tension tests plots proceeded in a similar way and the effects are as good as in presented 

examples. 
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Fig. 5-6. Approximation of the strain and stress functions, example 2 

Fig. 5-7. Stress versus strain after approximations, example 2 

Fig. 5-8. Functions of inelastic strain and its rate before and after approximations, example 2 

The identification should be started with estimating the value of the parameter k, which is 

the yield stress for theoretical zero strain rate. The graph presenting the dependence of the 

estimated offset yield stress to the test’s strain rates is shown in Fig. 5-9. It has been found 

that the material in room temperature shows very weak viscous properties, the values of yield 

stress are almost constant for different strain rates. The parameter k has been assumed as equal 

to the average value. The result is presented in Tab. 5-3. 
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The very weak viscous properties in room temperature in analyzed material has caused 

necessity of making assumptions for parameters controlling viscosity in the model: n and K.

The values have been established as: n = 10, K = 5 MPa. This assumption has been done on 

the basis of the identification presented in [93], where it has been shown that such parameters 

work well in the aluminium alloy material with similar characteristics. 

Fig. 5-9. Offset yield stress versus strain rates 

Strain rates [1/s] 0.0001 0.0005 0.001 0.005 0.01 
Mean
values

Mean
value

Along, Rp0.2 [MPa] 294.3 293.8 295.3 294.0 293.5 294.2
282.3

Across, Rp0.2 [MPa] 270.4 269.2 271.5 270.3 270.9 270.5

Tab. 5-3. Mean value of offset yield stress 

The last step of identification, estimating the values of hardening parameters: a, c, b and 

R1, is realized by approximation of the laboratory tests results: function of stress . , inelastic 

strain I  and inelastic strain rate I  . The main formula, which is used for this approximation, 

is the stress function given by equation (5.12) and its components, hardening functions, 

defined in equations (5.10) and (5.11). The identification is made on the basis of uniaxial 

tension tests, where the initial values of the kinematic hardening 0 0X #  and inelastic strain 

0 0pl # , so the equation (5.10) can be simplified to the following form 

+ ,+ ,2
1 exp

3
pl

a
X c

c
 # $ & & . (5.19) 

At first the approximations have been done separately for each uniaxial test result, then the 

test’s results have been cumulated for each strain rate and finally cumulated for each 

specimen’s kind. At the end the mean value has been calculated. The results are presented in 

Tab. 5-4. This procedure is forced by high sensitivity of approximation to initial values, when 

four different parameters are estimated together. For the first approximation, the initial 



- 74 -  Viscoplastic damage analysis...,  ukasz Pyrzowski
 

parameters have been taken from the results of identification presented in [93]: a = 4.7·105

MPa, c = 5.4·104, b = 7.4, R1 = 213.3 MPa. For all next estimations, the initial values have 

been replaced by those from previous calculations.  

a [MPa] c [-] b [-] R1 [MPa] 

Along sheet’s rolling 1019.9 7.5 129.9 18.1 

Across sheet’s rolling 3274.3 60.8 185.1 12.9 

Mean values 2147.1 34.2 157.5 15.5 

Tab. 5-4. Mean values of hardening material parameters  

5.5. Verification of material parameters identification 

The complete set of accepted constitutive law material parameters for aluminium alloy 

Al2017 is presented in Tab. 5-5. The verification of the obtained values is made by 

comparison of the numerical simulations of laboratory tests results with the uniaxial 

experiments results. The numerical calculations have been performed according to the 

description presented in Chapter 3. In the analysis the damage has not been taken into 

account, as the verification concerns the constitutive law material parameters only. The static 

scheme assumed in the uniaxial tension test simulations is the 1 mm thickness clamped bar, 

calculated in a two dimensional state of stress, presented in Fig. 5-10. The four node thick 

shell elements are used. To check and avoid the mesh density influence two different 

meshings are analyzed (coarse mesh – 180 elements and fine mesh – 720 elements). The 

loading is applied by the support right displacement. The numerical simulations have been 

performed for three different strain rates: 0.01, 0.001 and 0.0001 1/s.

E

[MPa]
 

[-]
k

[MPa]
a

[MPa]
c

[-] 
b

[-]
R1

[MPa]
n

[-] 
K

[MPa]

70.0 0.33 282.0 2150.0 34.0 157.5 15.5 10.0 5.0 

Tab. 5-5. Final values of constitutive law material parameters  

The numerical calculations for the first verification, the tensile test with 0.001 1/s strain 

rate, presented in Fig. 5-11 have been performed for two meshes: coarse and fine. It has been 

obtained almost full agreement between both results. Therefore, in all further uniaxial 

numerical calculations only the coarse mesh has been used. The comparison of numerical and 
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experimental results gives a very high correlation, the average correlation coefficient (the 

average value calculated for two experimental results: along and across sheet’s rolling 

directions) reaches the value of 0.993. 

Fig. 5-10. Static scheme in uniaxial tension tests simulations 

Fig. 5-11. Verification of numerical results, tension test 0.001 1/s 

The next two verifications, the tension test with 0.01 and 0.0001 1/s strain rate, presented 

in Fig. 5-12 and Fig. 5-13, have confirmed high correlations between the numerical and 

experimental results. The obtained correlation coefficients r are 0.988 and 0.992.

The last question in this verification, which might be asked, is if the assumption of the 

material isotropy by taking the mean values of material parameters is not too strong. The 

parameters presented in Tab. 5-3 and Tab. 5-4, identified for two types of the specimens, are 

rather different. To answer that question the additional two simulations have been performed. 

In each, the material parameters identified separately (along and across sheet’s rolling) have 

been used. The results of this analysis are presented in Fig. 5-14. The differences between the 

obtained plots and the previous one (simulation performed with the mean values of 

parameters) are rather small.  
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Therefore, after all verifications, it has been proofed that the material parameters have 

been identified correctly. 

Fig. 5-12. Verification of numerical results, tension test 0.01 1/s 

Fig. 5-13. Verification of numerical results, tension test 0.0001 1/s 

Fig. 5-14. Verification of material isotropy assumption, tension test 0.001 1/s 
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5.6. Identification of damage and its model material parameters 

5.6.1. Damage measurement method  

The damage measurement can be done using the direct or nondirect method [109]. The 

direct method is based on the damage definition (2.22), where the evaluation of damage 

consists in the evaluation of the total crack areas 
DS0  lying on a surface S0  at mesoscale. 

This measurement can be done by observing micrograph pictures with a magnification of 

1000. This method is destructive and difficult in practice. The nondirect methods give more 

possibilities. The measurement of the damage can be performed by using the variations of the 

elasticity modulus, microhardness, density, electrical resistance, cyclic plasticity response, 

tertiary creep response and acoustic emission etc.  

The easiest in practice is the nondirect method based on the influence of damage on elastic 

properties of a material. The formula, which allows estimation of the damage, can be derived 

from the concept of effective stress (2.25) and the direct state coupling in uniaxial loading 

conditions

(1 )el
E D E

. .
 # #

& !
, (5.20) 

where E!  is considered as the effective elasticity modulus of the damaged material 

(1 )E E D# &! . (5.21) 

The values of the damage parameter may be evaluated from the following equation 

1
E

D
E

# &
!

. (5.22) 

Performing this measurement requires the results of the uniaxial load-unload tension tests, 

presented in the previous chapter. The identification of elastic modulus for each load-unload 

cycle in this method is necessary. According to Celentano and Chaboche [39] the uniaxial 

modulus corresponding to an elastic path of a cycle i can be obtained with: 

u l

l
i

u l

l

P P

A
E

L L

L

&

#
&

 (5.23) 

where P is the current axial load, A is the current transversal area of the sample, L is the 

current extensometer length and sub indexes u and l refer to the upper and lower points 

located in the elastic path of the stress-strain curve, respectively.   
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In the chosen method some precautions related to non-linearities have to be taken [109]. 

The most accurately damage measurement is obtained when the values of elastic modulus are 

estimated during unloadings. At the beginning and at the end of each unloading paths there 

are small non-linearities due to viscous or hardening effects and also caused by experimental 

devices. The best way is to ignore them and identify Ei in the range: 0.15Pmax/A < P/A <

0.85Pmax/A.

In the present identification of the each cycle elastic modulus, the linear approximations 

are applied. In the assumed range, the function of uniaxial force vs. displacement has been 

approximated by a linear function ( )f x a x b# $ % . The examples of this procedure are 

presented in Fig. 5-15 and Fig. 5-16. The values of axial load and extensometer length, 

necessary in equation (5.23), are taken as initial and final values of the linear functions after 

approximations. The current extensometer lengths in equation (5.23) are calculated as initial 

extensometer length (40 mm) plus obtained displacement. 

Fig. 5-15. Example of approximations used in elastic modulus identification (along, test 1) 

Fig. 5-16. Example of approximations used in elastic modulus identification (across, test 2) 
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Estimation of the elastic modulus according to equation (5.23) requires the values of the 

current transversal area of the specimen. This kind of measurement has not been realized 

during the laboratory tests. Two different approaches to overcome this problem are proposed.  

5.6.2. Damage measurement, first approach 

In the first variant, the constant transversal area during the test has been assumed. Its 

current value at the lower point of elastic path Al is replaced by the initial value A0. In this 

approach equation (5.23) is changed to the following formula 

0

0

u l

i
u l

P P

A
E

L L

L

&

#
&

 (5.24) 

Cycle Pu [N] Pl [N] A0 [mm2] Lu [mm] Ll [mm] L0 [mm] Ei [MPa]

0 2213.5 398.5 11.7 40.107 40.019 40.0 70181 

1 3177.0 555.0 11.7 40.575 40.441 40.0 68480 

2 3460.3 601.3 11.7 41.175 41.022 40.0 67190 

3 3637.6 630.4 11.7 41.770 41.604 40.0 67042 

4 3807.7 644.7 11.7 42.370 42.190 40.0 66834 

5 3888.9 669.2 11.7 42.967 42.778 40.0 66506 

6 4010.0 685.2 11.7 43.566 43.366 40.0 66768 

7 4045.7 701.0 11.7 44.164 43.956 40.0 66420 

8 4071.9 712.4 11.7 44.777 44.564 40.0 66834 

9 4095.9 712.6 11.7 45.359 45.138 40.0 66709 

Tab. 5-6. Example of first approach elastic modulus identification (along, test 1) 

Fig. 5-17. Final results of first approach elastic modulus identification  
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Cycle Pu [N] Pl [N] A0 [mm2] Lu [mm] Ll [mm] L0 [mm] Ei [MPa]

0 2017.2 292.2 11.6 40.097 40.014 40.0 71066 

1 3067.8 535.0 11.6 40.576 40.447 40.0 67545 

2 3365.6 587.2 11.6 41.174 41.026 40.0 64516 

3 3593.3 637.4 11.6 41.773 41.610 40.0 62455 

4 3735.2 647.1 11.6 42.371 42.195 40.0 60366 

5 3797.7 653.2 11.6 42.966 42.781 40.0 58674 

6 3878.6 674.7 11.6 43.564 43.370 40.0 56920 

7 3931.4 684.3 11.6 44.164 43.963 40.0 55789 

8 4027.8 709.9 11.6 44.763 44.550 40.0 53865 

9 4091.7 734.6 11.6 45.363 45.142 40.0 52357 

10 4072.6 724.0 11.6 45.961 45.735 40.0 51116 

Tab. 5-7. Example of first approach elastic modulus identification (across, test 2) 

The detail results of first approach elastic modulus identification for two example tests are 

presented in Tab. 5-6 and Tab. 5-7. All results are shown in Fig. 5-17. 

After estimation of the elastic modulus values in each cycle the damage may be evaluated 

directly from equation (5.22). The results are presented in Fig. 5-18. 

Fig. 5-18. Final results of first approach damage measurement  

5.6.3. Identification of model material parameters for first damage 
approach  

There are at least three different methods for the damage material parameters 

identification, which can be found in literature: Mashayekhi et al. in [120], Ambroziak in [6] 

and Daudonnet in [55]. Their description and verification are presented in [88]. This study 

shows that the best correlation between numerical and experimental results can be obtained by 
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the last mentioned method. After small modification this method is applied in the present 

work.

The base equations of these identifications are the damage function (2.40) and the damage 

strain energy function (2.33). Taking both in uniaxial loading conditions and substituting the 

second to the first one, the following formula is obtained 

+ ,
2

1

2

( )
1

2 (1 )

I I
s

dD d
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dt dtE D S
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! " %' (# # &
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Then by reducing dt this formula is simplified to following form 
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The main difficulty in this identification is to obtain the function + ,IdD   from experimental 

results. This problem is solved by approximation of experimental values function + ,ID   by 

the formula, which assures very good fitting and can be easy differentiated analytically. The 

following function is proposed

+ , + ,1 exp( )I ID a b  # & & . (5.27) 

The derivative of this function with respect to the inelastic strain I  gives 

exp( )I
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# & . (5.28) 

By comparison of the function (5.28) with equation (5.26) the final formula, from which the 

material parameters can be approximated, is obtained 
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The detail presentation of preparation to final identification of the damage material 

parameters ,  and s S 1  is presented for two example tests. The necessary in this example 

identification experimental data are listed in Tab. 5-8 and Tab. 5-9. The approximations of 

+ ,ID   functions are presented in Fig. 5-19. The final identified values of damage material 

parameters, obtained in approximation of formula (5.29) using all experimental data, are 

presented in Tab. 5-10. 
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cycle 0 1 2 3 4 5 6 7 8 9 

D [-] 0.0 0.044 0.088 0.116 0.143 0.171 0.189 0.215 0.232 0.253
I [-] 0.0 0.010 0.024 0.038 0.052 0.066 0.080 0.093 0.107 0.120

 [MPa] 294 326 358 384 407 423 439 450 458 465 

Tab. 5-8. Experimental data for damage material parameters identification (along, test 1) 

cycle 0 1 2 3 4 5 6 7 8 9 10 

D [-] 0.0 0.049 0.092 0.121 0.151 0.174 0.199 0.215 0.242 0.263 0.281
I [-] 0.0 0.010 0.024 0.038 0.052 0.066 0.080 0.093 0.107 0.120 0.133

! [MPa] 270 317 352 379 400 418 430 442 458 469 474 

Tab. 5-9. Experimental data for damage material parameters identification (across, test 2) 

Fig. 5-19. Approximations of damage vs. plastic strain functions  

S [GPa] s [-] " [-] 

546.6 -0.099 -3.40 

Tab. 5-10. Final values of first approach damage material parameters identification 

5.6.4. Verification of first approach damage material parameters 
identification

The verification of the damage model material parameters identification has been 

performed using the same model as used in the verification of the constitutive law material 

parameters in Chapter 5.5. The only difference is that the damage model is included and the 

identified damage model material constants are applied. In the previous verification it has 

been found that the model behaves correctly for different strain rates. In the present 

verification the same conclusion are drawn. That is why here only one example, tension test 
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with 0.001 1/s strain rate, is presented in Fig. 5-20. The correlation between the numerical and 

experimental results is high. The correlation coefficient values are above 0.98. 

Fig. 5-20. Verification of numerical results, tension test 0.001 1/s 

5.6.5. Damage measurement, second approach 

The second approach to the damage measurement is more complicated. The values of 

current transversal area of the sample are calculated on the basis of the material 

incompressibility assumption given in [100]: det 1J # #F , where F is the deformation 

gradient. The current transversal area of the sample at the lower point of elastic path of the 

stress-strain curve Al, which is necessary in equation (5.23), is calculated as 
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 (5.30) 

The detail results of second approach elastic modulus identification for two example tests 

are presented in Tab. 5-11 and Tab. 5-12. All results are shown in Fig. 5-21. 

The results obtained in the second approach give higher values of elastic modulus in the 

following cycles, the effect of elasticity weakening in material is smaller, even disappears 

(after four cycles the values of elastic modulus are similar). This identification is more precise 

than the first one, but consequently this new effect emerged. The observed effect is due to the 

triaxial stress state that occurs in the samples during tension tests, caused by necking, which 

decreases the load. This problem can be solved by application of the procedure proposed by 

Celentano and Chaboche [39] and obtaining the real values of elastic modulus through 

measurements of the corresponding uniaxial modulus using a correction factor fE

1 ,E DE f E#  (5.31) 
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where E1D is the elastic modulus obtained directly from experiment. 

Cycle Pu [N] Pl [N] Al [mm2] Lu [mm] Ll [mm] Ei [MPa]

0 2213.5 398.5 11.70 40.107 40.019 70181 

1 3177.0 555.0 11.57 40.575 40.441 68480 

2 3460.3 601.3 11.41 41.175 41.022 67190 

3 3637.6 630.4 11.25 41.770 41.604 67042 

4 3807.7 644.7 11.09 42.370 42.190 66834 

5 3888.9 669.2 10.94 42.967 42.778 66506 

6 4010.0 685.2 10.79 43.566 43.366 66768 

7 4045.7 701.0 10.65 44.164 43.956 66420 

8 4071.9 712.4 10.50 44.777 44.564 66834 

9 4095.9 712.6 10.37 45.359 45.138 66709 

Tab. 5-11. Example of second approach elastic modulus identification (along, test 1) 

Cycle Pu [N] Pl [N] Al [mm2] Lu [mm] Ll [mm] Ei [MPa]

0 2017.2 292.2 11.60 40.097 40.014 71114 

1 3067.8 535.0 11,47 40.576 40.447 69064 

2 3365.6 587.2 11,31 41.174 41.026 67867 

3 3593.3 637.4 11,15 41.773 41.610 67583 

4 3735.2 647.1 11,00 42.371 42.195 67172 

5 3797.7 653.2 10,85 42.966 42.781 67117 

6 3878.6 674.7 10,70 43.564 43.370 66916 

7 3931.4 684.3 10,55 44.164 43.963 67392 

8 4027.8 709.9 10,42 44.763 44.550 66817 

9 4091.7 734.6 10,28 45.363 45.142 66683 

10 4072.6 724.0 10,15 45.961 45.735 66823 

Tab. 5-12. Example of second approach elastic modulus identification (across, test 2) 

Fig. 5-21. Results of second approach elastic modulus identification  
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This procedure needs iterations and requires the following actions: 

a) evaluation of E1D via equation (5.23) (already done), 

b) initialization of iteration (index k = 0) and defining the initial correction factor  

fE
k=0 = E0/E1D,sim0, where E1D,sim0 is evaluated using numerical results obtained from a 

simulation without damage effects, 

c) computation of Eexp = fE
k
· E1D for every cycle i,

d) using Eexp computed in step (c), calculation of the parameter D according to equation 

(5.22),

e) application of identification of damage model material parameters using D calculated in 

step (d), 

f) updating iterative index k = k +1 and computation of a new correction factor fE
k = 

Esim/E1D,sim, where Esim and E1D,sim are both evaluated using numerical results obtained 

from a simulation with damage effects considering as damage material parameters those 

derived in step (e), Esim is the average value of E0/(1-D) calculated in the necking zone of 

the sample, 

g) checking convergence (#f  – admissible tolerance, considered here as 10-3):  

2 if 1k k

E E ff f  && 3 , fE
k is the final correction factor that leads to the final damage 

parameters computed in step (e), 

2 if 1k k

E E ff f  && 4 , go to step (c). 

The first step of procedure – the results of evaluation of E1D is presented in Fig. 5-21. The 

second step required the numerical simulations of uniaxial load-unload tension test without 

damage effects. The uniaxial model applied in verification of constitutive law material 

parameters identification presented in Chapter 5.5 has been used. The results of this 

simulation and calculation of the initial correction factor fE
k=0 are presented in Tab. 5-13. The 

following step required computation of Eexp by multiplying the measured elastic modulus 

directly from experiments E1D by the initial correction factor fE
k=0. The result is presented in 

Fig. 5-22. Calculation of the damage using the new values of elastic modulus has given the 

result shown in Fig. 5-23. The last operation in initial iteration step is to apply identification 

of damage material parameters using the computed values of D. The identification procedure 

has been already described in the identification by the first approach in Chapter 5.6.3. The 

only difference is the formula, which approximates the function of the experimental values

+ ,ID  . The formula in equation (5.27) is replaced by the function, which gives better fitting 

in this approach 
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+ , + ,+ , + ,+ ,1 exp 1 expI I ID a b c d   # & & % & & . (5.32) 

The derivative of this function with inelastic strain is 
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therefore, the final formula from which the material parameters can be approximated, has the 

following form 
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Two example approximations of the function + ,ID   are presented in Fig. 5-24. The values of 

damage material parameters obtained in initial iteration step are presented in Tab. 5-14.  

Cycle Pu [N] Pl [N] Al [mm2] Lu [mm] Ll [mm]
E1D,sim0

[MPa]
fE

k=0 [-]

0 3053.2 0.0 12.00 40.146 40.000 70000 1,000 

1 3868.5 137.4 11.87 40.623 40.442 70215 0,994 

2 4320.7 58.6 11.70 41.238 41.026 70687 0,987 

3 4640.3 168.3 11.53 41.856 41.629 71170 0,981 

4 4867.3 194.3 11.36 42.479 42.237 71698 0,973 

5 5028.5 163.2 11.20 43.110 42.852 72237 0,966 

6 5142.1 186.8 11.04 43.749 43.481 72800 0,959 

7 5220.8 179.7 10.88 44.401 44.122 73361 0,951 

8 5273.4 240.9 10.72 45.070 44.786 73942 0,944 

9 5306.2 194.3 10.56 45.766 45.470 74534 0,936 

10 5323.6 223.0 10.39 46.504 46.203 75182 0,928 

Tab. 5-13. Results of uniaxial numerical calculations and initial correction factor computing, k = 0 

Fig. 5-22. Results of elastic modulus computing, k = 0
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Fig. 5-23. Results of damage computing, k = 0  

Fig. 5-24. Approximations of damage vs. plastic strain functions, k = 0  

S [MPa] s [-] " [-] 

2.25 -1.05 -10.6 

Tab. 5-14. Values of damage material parameters identification, k = 0 

The following steps of the procedure is to update the iterative index to k = 1, perform once 

again the numerical simulations (this time including damage effects), calculate the new 

correction factor fE
k=1 and repeat all operations, which has been done in initial iteration step. 

Then if the difference between the actual and previous correction factors is still too large, 

repeat all in the next iteration step until the convergence is fulfilled. In the present procedure 

the convergence is fulfilled for k = 2. The final values of the correction factor, elastic modulus 

and damage are presented in Fig. 5-25 and Fig. 5-26. The final values of damage material 

parameters identified by second approach (obtained in the last iteration) are shown  

in Tab. 5-15. 
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Fig. 5-25. Final results of elastic modulus computing, k = 2  

Fig. 5-26. Final results of damage computing, k = 2  

S [MPa] s [-] " [-] 

1.77 -1.23 -10.7 

Tab. 5-15. Final values of second approach damage material parameters identification, k = 2 

5.6.6. Verification of second approach damage material parameters 
identification

The verification of second approach damage model material parameters identification is 

performed using the same model, which have been used for the first approach presented in 

Chapter 5.6.4. The only difference is that the new damage material parameters are applied. 

The results are presented in Fig. 5-27. The correlation between the numerical and 

experimental results is high. The correlation coefficient values are above 0.99. 
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Fig. 5-27. Verification of numerical results, tension test 0.001 1/s 

5.7. Summary

The identification of all assumed models material parameters necessary in numerical 

modelling has been done. The only problem has occurred during estimation of the damage. 

The lack of the specimens’ current transversal area measurement in the laboratory tests has 

caused the necessity of finding alternative solutions to overcome this problem. Two different 

approaches have been proposed. All the uniaxial verifications have showed good correlations 

between the results obtained in numerical simulations and experiments. 
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6. Fracture criteria calibration 

6.1. Abstract

The fracture criteria, which can be used in the current study, have been discussed in 

Chapter 2. From the presented possibilities, four different approaches have been chosen. 

Three of them represent the abrupt failure criteria, the fourth one represents the classic critical 

damage criterion in continuum damage mechanics. This chapter contains the description of 

calibration procedure, which has been performed to obtain the critical parameters.  

6.2. Introduction

The calibration of fracture criteria parameters has been performed on the basis of the 

results obtained in the uniaxial experiments and their numerical simulations. In the numerical 

study presented in this chapter the tensile test model created for the verifications of material 

parameters identification, presented in Fig. 5-10, is used. The simulations are limited to the 

tensile tests with 0.001 1/s strain rate. In this numerical study, the fracture moment has been 

assumed to occur, when the total strain in the loading direction reaches the average value 

obtained in the experiments. The experimental values of the total true strain at fracture point 

f  for each test and the calculated averages av

f  are presented in Tab. 6-1. 

Test 

Specimens cut along 
sheet’s rolling 

 [-] 

Specimens cut across 
sheet’s rolling 

f [-] 

0.0001 1/s 0.179 0.150

0.0005 1/s, t1 0.170 0.148

0.0005 1/s, t2 0.158 0.150

0.001 1/s, t1 0.176 0.148

0.001 1/s, t2 0.166 0.144

0.005 1/s, t1 0.174 0.146

0.005 1/s, t2 0.163 0.146

0.01 1/s, t1 0.161 0.140

0.01 1/s, t2 0.162 0.145

average value  
0.168 0.146 

0.157

Tab. 6-1. Total true strain at fracture obtained in the experiments 

f 

av

f 
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6.3. Critical equivalent plastic strain criterion 

Calibration of the equivalent plastic strain critical values requires numerical simulations of 

tension tests. During this analysis the searched variable is calculated according to equation 

(2.53). The numerical studies are computed until the total true strain, measured in the half 

high of the specimen, reaches the value of 0.157av

f # . In the considered calibration three 

different analyses have been realised: the first one with no damage effects included, the 

second with damage effects taken from the first identification approach and the third also with 

damage effects but taken from the second identification approach. The growths of the 

equivalent plastic strain in each analysis are presented in Fig. 6-1. 

Fig. 6-1 Growth of the equivalent plastic true strain in the numerical study 

The critical values of the equivalent plastic strain, which occur at assumed fracture 

moment, are presented in Tab. 6-2. The weakening of the material in the analyses with 

damage effects does not influence too much the result. The differences between the obtained 

values are minor. 

No damage effects 
(uncoupled)

Damage 
first approach 

Damage 
second approach 

Critical equivalent 
plastic true strain  

I

f  [-] 
0.135 0.136 0.136 

Tab. 6-2. Equivalent plastic true strain at fracture  

6.4. Total strain energy density criterion 

The criterion of total strain energy density is based on the assumption of its constancy. 

The critical values are evaluated in the analogical study as for the first criterion. In the 
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numerical analyses the strain energy is calculated according to the formula given in equation 

(2.58). The results of these computations are presented in Fig. 6-2. The obtained critical 

values at fracture are summarised in Tab. 6-3. 

Fig. 6-2 Growth of the total strain energy density in the numerical study 

No damage effects 
(uncoupled)

Damage 
first approach 

Damage 
second approach 

Critical total strain 
energy density  

crW  [MJ·m-3]
64.98 66.38 65.75 

Tab. 6-3. Total strain energy density at fracture in the numerical study  

Test 
Specimens cut along 

sheet’s rolling 
Wcr [MJ·m-3]

Specimens cut across 
sheet’s rolling 
Wcr [MJ·m-3]

0.0001 1/s 76.40 60.50

0.0005 1/s, t1 71.39 59.36

0.0005 1/s, t2 65.79 60.02

0.001 1/s, t1 74.37 59.32

0.001 1/s, t2 69.72 57.94

0.005 1/s, t1 73.90 58.02

0.005 1/s, t2 67.75 58.70

0.01 1/s, t1 66.89 55.45

0.01 1/s, t2 66.85 57.83

average value 
70.34 58.57 

64.45

Tab. 6-4. Total strain energy density at fracture in the experimental study  

Additionally, the average value of the total strain energy density at fracture point during 

the experimental tests has been calculated. The critical values obtained in each test and the 
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evaluated averages are presented in Tab. 6-4. The maximum relative error between the 

numerical and experimental results does not exceed the value of 3%. 

6.5. Stress triaxiality ratio based criterion 

The stress triaxiality ratio during the uniaxial tensile tests considered in the calibrations is 

changing in a relatively narrow range and is always positive. This observation allows the 

introduction of the concept of average stress triaxiality during deformation  

0

1
I
f

IH H

I

eq f eqav

d

 
. .
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) *
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and rewriting the fracture criterion given in (2.64) as 

.IH
cr f

eq av

T
.

 
.

! "
# ' (' (
) *

 (6.2) 

The results presenting the stress triaxiality ratio obtained in the numerical simulations for 

the three different analyzed damage effects are shown in Fig. 6-3. The average ratios 

evaluated in each case are almost the same and can be set to 0.333. By taking the equivalent 

Fig. 6-3 Stress triaxiality ratio in the numerical study 

No damage effects 
(uncoupled)

Damage 
first approach 

Damage 
second approach 

I

f  [-] 0.135 0.136 0.136 

+ ,H eq av
. .  [-] 0.333 0.333 0.333 

crT [-] 0.0450 0.0453 0.0453 

Tab. 6-5. Critical parameters in the stress triaxiality ratio based criterion  
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plastic strain from the first fracture criterion and using equation (6.2) the critical values crT can

be calculated. The final results are presented in Tab. 6-5. 

6.6. Critical damage criterion 

The calibration of three-dimensional critical damage criterion, given in the equation 

(2.44), requires evaluation of two parameters: the critical damage in uniaxial loading 

conditions and the ultimate stress. Theoretically both parameters can be measured directly 

using the results of load-unload cyclic experiments. Practically in these tests, which are the 

base of damage measurement, the fracture has occurred much faster than the average level 

obtained in the constant strain rate experiments. That is why in this calibration also the 

numerical simulations have been used. Of course, in this case the coupled analysis, where the 

damage effects are considered has been used. The results of the numerical study are presented 

in Fig. 6-4 and Fig. 6-5. The critical values of damage and ultimate stress obtained in this 

study are summarised in Tab. 6-6.  

Fig. 6-4 Stress vs. strain plot in the numerical study 

Fig. 6-5 Growth of the damage variable in the numerical study 
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Additionally, the average value of ultimate stress obtained in the experimental tests has 

been calculated, see Tab. 6-7. The first numerical result is higher, the second smaller than in 

the experiments, but the relative error between them is under the value of 3%. 

 Damage 
first approach 

Damage 
second approach 

u.  [MPa] 504 484.5 

D1cr [-] 0.293 0.127 

Tab. 6-6. Critical parameters for the damage criterion 

Test 

Specimens cut along 
sheet’s rolling 

u.  [MPa] 

Specimens cut across 
sheet’s rolling 

u.  [MPa] 

0.0001 1/s 501.0 488.0

0.0005 1/s, t1 496.0 486.0

0.0005 1/s, t2 490.0 486.0

0.001 1/s, t1 499.0 487.0

0.001 1/s, t2 500.5 481.0

0.005 1/s, t1 504.0 480.0

0.005 1/s, t2 492.0 482.0

0.01 1/s, t1 494.0 475.0

0.01 1/s, t2 491.0 479.0

average value 
496.4 482.7 

489.5

Tab. 6-7. Ultimate stress in the experimental study  

6.7. Summary

The critical fracture parameters have been calibrated for four different criteria. The 

obtained critical values and the material parameters identified in the previous chapter allow 

performing the numerical study, which is the last part of this work. These analyses are 

presented in next two chapters. 
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7. Numerical study – axisymmetrical model 

7.1. Abstract

The first chapter in which the numerical study is presented focuses on the axisymmetrical 

model analysis. The main simulations are preceded by the determination of plate’s fixing 

boundary conditions, which is described in detail. In the further part of this chapter, the results 

obtained in the numerical simulations are shown and discussed. The analyses have been 

performed using all approaches and fracture criteria, which have been described, chosen and 

prepared (identification of material parameters) in the previously presented part of this work. 

7.2. Introduction

Performing the analyses, where the laboratory tests are simulated numerically, requires 

application of the model with suitable boundary conditions. The specimens (plates) have been 

fixed between two parts of the tube during the considered experiments. They have been 

tightened using four screws and the massive flanges. As it has been mentioned in the 

description of the dynamic tests in Chapter 4, this fixing has not assured the distinct support 

conditions. The plates during the tests have been slid and folded in the area where they should 

be clamped. That is why the main numerical simulations are preceded by the determination of 

suitable fixing conditions. A few different models are analyzed to find the most suitable 

boundary conditions. The verifications of these models are made using the results of static and 

dynamic experiments. In those verifications, a fitting between numerical simulations and 

experiments is indicated by the coefficient of correlation r.

7.3. Determination of plate’s fixing boundary conditions 

In the numerical analyses during the determination of fixing boundary conditions a 

relatively fine mesh in the axisymmetrical model is used, the applied element size is 1.2 mm. 

The damage effects in the first calculations are not taken into account.

The plates fixing conditions in the first analyzed approach is assumed as basic clamped or 

hinged supports presented in Fig. 7-1. The rounding of the additional plate fixed behind the 

specimen is modelled as the rigid contact body. The verification of these models is made by 

the numerical analysis of the plates’ responses to quasi-static loading. The models are loaded 

by the increasing pressure used in this laboratory test. The calculated middle point deflections 
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are compared with the experimental values. The results are presented in Fig. 7-2. The 

maximum middle point deflections obtained in the simulations, for both kinds of boundary 

conditions, are almost 30 % lower than in experiments. In the next step, the plates’ response to 

dynamic load is considered. The test performed with the initial pressure 0.25 bar is analyzed. 

The model is submitted to the pressure time history recorded during the real experiment. The 

results of numerical simulations compared with the experiment are presented in Fig. 7-3. The 

calculated middle point deflections are also over 35 % lower than the experimental one. The 

further verifications have been omitted due to poor correspondence of both variants of  

Fig. 7-1. Clamped and hinged models  

Fig. 7-2. Middle point deflections, quasi-static test, clamped and hinged models 

Fig. 7-3. Middle point deflections, test with initial pressure 0.25 bar, clamped and hinged models 
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boundary conditions. The presented results are sufficient to state that the basic models cannot 

give the right answers in the analyzed problem. The obtained deflections are considerably 

understated.

In the following approach, denoted as model No. 3, the fixed part of the plate is included. 

The 68 mm collar, which is the smallest segment size of the tube’s flange, is introduced. The 

applied boundary conditions are presented in Fig. 7-4. The plate can slide horizontally in its 

fixing area. The results of quasi-static and dynamic (initial pressure 0.25 bar) simulations for 

this model are presented in Fig. 7-5 and Fig. 7-6. The solution obtained in the quasi-static 

analysis is much better than in the previous models. The calculated maximum deflection is 

only 5.5 % lower than the experimental one. Unfortunately, the results of dynamic analysis  

Fig. 7-4. Boundary conditions in model No. 3  

Fig. 7-5. Middle point deflections, quasi-static test, model No. 3 

Fig. 7-6. Middle point deflections, test with initial pressure 0.25 bar, model No. 3 
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disqualify this model. The obtained deflections are still too small and the response of plate has 

quite different character. 

The next idea is to introduce a gap in the fixing area. The maximum measured gap, which 

has occurred after fixing the plate, is 0.3 mm. This value is applied into the model No. 4. The 

chosen boundary conditions are presented in Fig. 7-7. The results of verifications are shown 

in Fig. 7-8 and Fig. 7-9. The quasi-static numerical analysis result is in very good agreement 

with the experiment, both displacement vs. pressure paths are almost overlapped. However, 

the dynamic study does not give a good solution. The character of response is again different. 

In the considered model the numerical problems have also occurred, in spite of using the 

Fig. 7-7. Boundary conditions in model No. 4 

Fig. 7-8. Middle point deflections, quasi-static test, model No. 4 

Fig. 7-9. Middle point deflections, test with initial pressure 0.25 bar, model No. 4 
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integration step three times shorter than in the previous calculations, reaching the convergence 

after about 1.6 ms has not been possible. 

In the following models the gap idea is retreated. The research concentrates on reducing 

the plate’s collar in the fixing area. Three different sizes of the collar are analyzed: 45, 30 and 

15 mm. The free horizontal displacements of plate are maintained. The boundary conditions 

in the considered model, denoted as No. 5, are presented in Fig. 7-10. The results of 

verifications are shown in Fig. 7-11 and Fig. 7-12. In the quasi-static analysis, the best 

solution has been obtained using the model with 45 mm collar size. However, the dynamic 

study shows that in this model the rebound after reaching the first maximum deflection is too 

strong. Much better result has been obtained using the model with collar 15 mm. The  

Fig. 7-10. Boundary conditions in model No. 5 

Fig. 7-11. Middle point deflections, quasi-static test, model No. 5 

Fig. 7-12. Middle point deflections, test with initial pressure 0.25 bar, model No. 5 
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maximum deflection and the character of response (the coefficient of correlation above 0.99) 

are the closest to the experiment. This model has been chosen for the further analyses. 

In the next step the dynamic experiment performed with the initial pressure 0.3 bar (test 

03_2) is considered. The middle point deflection obtained in numerical study is compared 

with the permanent deflection measured for the tested plate in Fig. 7-13. The difference 

between the calculated and experimental values is higher than in the previous comparison for 

the lower initial pressure. The cross-sections presented in Fig. 7-14 show that the shapes of 

simulated and tested plates are also different. The explanation of these problems can be too 

high displacement (sliding) of the plate’s model inside the fixing area. Some limitations for 

this movement are necessary. 

Fig. 7-13. Middle point deflections, test with initial pressure 0.3 bar, model No. 5 

Fig. 7-14. Plate cross-sections, test with initial pressure 0.3 bar, model No. 5 

The limitation of the displacement in the fixing area of the model has been applied using 

the spring element. The spring’s stiffness is introduced as kspr = 0 for the displacement from 

zero to the assumed limit and kspr = 1e+10 (N/m)/m for the displacement higher than the limit 

(due to jamming of the plate). During the experiments, the observed values of the plates’ 

movement in the fixing area oscillated between 1 to 3 mm. In the model, three values of 

allowed displacement are considered: 1, 2 and 3 mm. The introduced boundary conditions are 

presented in Fig. 7-15. 
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The verification omits the quasi-static analysis. The displacement in fixing area, which 

occurrs in these simulations, is lower than 1 mm. The applied limitations do not change the 

solution presented in Fig. 7-11. The results of dynamic simulations for the lowest initial 

pressure 0.25 bar are presented in Fig. 7-16. The comparison shows that model with the 

allowed displacement of 2 mm gives the closest solution to the experiment. The results for 

higher impulse 0.3 bar shown in Fig. 7-17 and Fig. 7-18 confirm this observation.  

Fig. 7-15. Boundary conditions in model No. 5 with different displacement limits 

Fig. 7-16. Middle point deflections, test 0.25 bar, model No. 5 with displacement limit 

Fig. 7-17. Middle point deflections, test 0.3 bar, model no. 5 with displacement limit 

For the final verification of plate’s fixing boundary conditions the model with 15 mm 

collar and 2 mm displacement limit in the fixing area has been chosen. The verification 

contains the analysis of all applied initial pressures. This study gives the answer if the chosen 

model is universal and works well in all considered cases. Three different analyses have been 
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Fig. 7-18. Plate cross-sections, test 0.3 bar, model no. 5 with displacement limit 

performed: study with no damage effects, with damage 1 effects (first approach in the damage 

identification – Chapter 5.6.2) and with damage 2 effects (second approach – Chapter 5.6.5). 

In this analysis, the fracture is not considered. The plate’s cross-sections obtained in the 

simulations compared with the experimental result for one chosen example in each initial 

pressure level are presented in Fig. 7-19 – Fig. 7-23. The results for all performed tests are 

shown in Annex 7. The solutions obtained in this study show that the chosen model gives a 

very good response in almost all analyzed tests. Finally, the model that has been chosen as the 

most suitable for current problem is presented in Fig. 7-24. 

Fig. 7-19. Plate’s cross-sections, test 0.3 bar, final verification 

Fig. 7-20. Plate’s cross-sections, test 0.4 bar, final verification 

Fig. 7-21. Plate’s cross-sections, test 0.5 bar, final verification 
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Fig. 7-22. Plate’s cross-sections, test 0.6 bar, final verification 

Fig. 7-23. Plate’s cross-sections, test 0.7 bar, final verification 

Fig. 7-24. Final model of boundary conditions 

7.4. Investigation of mesh density influence – model with no fracture 

The investigation of a mesh density influence is necessary in all finite element method 

applications. A result obtained in a numerical analysis can be assumed as reliable if 

performing the same calculation using usually a twice as dense mesh gives the same solution. 

The considered axisymmetrical model is divided into 93 elements. This division gives the 

element size of 1.2 mm. For the density influence investigation, the model with the same 

boundary conditions but divided into 186 elements has been created. For this study, the 

pressure time history recorded during the test 06_1 has been used. Three analyses considered 

in this work have been performed: with no damage, damage first approach and damage 

second approach effects. The results are compared in two selected nodes presented in Fig. 

7-25. The chosen nodes are: node 41 located at the centre of the plate and node 30 located at 

the area of possible crack initiation. In this mesh density investigation study, the fracture is 

not taken into account. The results presenting the equivalent total strain and the damage 

variable change in time are shown in Fig. 7-26 and Fig. 7-27. The obtained solutions for both 

axisymmetrical models are almost identical, therefore the results can be admitted as reliable. 
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Fig. 7-25. Nodes selected for mesh density influence analysis 

Fig. 7-26. Mesh density influence analysis – equivalent total strain 

Fig. 7-27. Mesh density influence analysis – damage variable 

7.5. Modelling of fracture prediction

The numerical simulations of the fracture prediction in the considered model have been 

realized using the axisymmetrical shell elements divided into five layers. The crack initiation 

is modelled by the deactivation of elements. In this approach, as it has been described in 

Chapter 3, three different approaches are analyzed. In the first an element is deleted when the 

assumed fracture criterion is fulfilled in each integration point of its any single layer (1/5 

layer). In the second an element is removed when at least three layers (3/5 layers) are assumed 

to be fractured (criterion fulfilled in all integration points in three layers). In the third the 

deactivation of an element occurs when the criterion is fulfilled in its all integration points 
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(5/5 layers). The analyses are computed until a first element is deactivated. This moment is 

assumed as the occurrence of circumference fracture. The example presenting the initiation of 

crack during the analysis is shown in Fig. 7-28. 

Fig. 7-28. Fracture occurrence in the numerical study 

During the axisymmetrical model fracture prediction, in each analyzed approach, ten 

different numerical simulations have been performed. Each time the model is submitted to the 

pressure time histories registered during the succeeded, fracture effected experiments. The 

computed numerical solutions, which are the diameters of obtained holes, are compared 

individually with the experimental results. For each individual test, the relative error and for 

each method, their arithmetic mean values have been determined. 

For each approach one chosen example (test 06_1) presenting the plates’ cross-sections in 

the fracture moment is shown. 

7.5.1. Uncoupled analysis – no damage effects 

The uncoupled approach assumes that no coupling exists between a chosen variable, 

which is established as critical for fracture, and a constitutive law. It means that the material 

weakening is not considered. In this analysis, the three chosen abrupt failure criteria are 

investigated.  

The first applied criterion is based on the critical value of plastic strain (Chapter 2.4.4). 

The value of this critical parameter has been determined during the calibration procedure 

presented in Chapter 6.3 and in the considered uncoupled approach is equal to 0.135I

f # .

After performing all ten simulations, the reliable solutions have not been obtained in any case. 

In the analyses with the lowest applied fracturing initial pressure 0.5 bar, the critical value of 

plastic strain has not been reached at any point of the plate. During the simulations, in which 

the stronger impulses have been applied, the critical value occurs but the localisation of crack 
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is impossible. In all these cases, the element deactivation starts at the plate centre point. This 

fracture criterion is completely inefficient for the present study in the analyzed uncoupled 

approach model. 

The second considered criterion is based on the constancy of the total strain energy 

density assumption (Chapter 2.4.4). The calibrated value of critical parameter in Chapter 6.4 

is Wcr = 64.98 MJ·m-3. The results of performed analyses are presented in Tab. 7-1. The empty 

cells, which occur in the table, mean that the crack localisation is impossible. Similarly to the 

previous study in these cases, the element deactivation starts at the plate centre point. In the 

considered criterion, the most efficient method is based on the assumption that the fracture 

occurs when the total strain energy density reaches its critical value in only one layer. 

However, in four cases the results still have not been obtained. In addition, the mean error – 

27 % in this solution is relatively high. The methods “3/5 layers” and “5/5 layers” are 

inefficient, the crack indication is possible in only two tests with the strongest impulses. The 

plate’s cross-sections for the chosen test are presented in Fig. 7-29. 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 -  - -    

05_3 30.8 -  - -    

05_4 34.2 -  - -    

0.6

06_0 41.9 27.4 34.6 - -    

06_1 45.2 36.6 19.0 - -    

06_2 34.5 28.6 17.1 - -   

06_3 38.7 -  - -

0.7

07_1 58.7 36.6 37.6 34.2 41.7 29.0 50.6 33.3 43.3 3.9

07_2 39.3 26.0 33.8 - -   

07_3 56.5 19.6 19.6 47.2 16.5 37.0 34.5 50.6 10.4 15.6

Mean values 27.0 29.1 42.6  26.9 9.7

Tab. 7-1. Results of uncoupled fracture study, total strain energy density criterion 

Fig. 7-29. Fracture in uncoupled model with the total strain energy density criterion, test 06_1 
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The last abrupt failure criterion, which has been chosen for the analyses (Chapter 2.4.4), is 

based on the direct dependency to the stress triaxiality. The calibrated critical parameter in 

Chapter 6.5 is Tcr = 0.045. The results are presented in Tab. 7-2. The meaning of the empty 

cells, which also occur in these results, is the same as in the previous table. The best solution, 

twith respect to the mean error – 13.3 %, has been obtained when the fracture condition is 

satisfied in at least three layers. However, in two individual cases the “1/5 layers” method 

gives the result, which is closer to experiment. The solution efficiency in the analyzed 

criterion is the best among the three considered in the uncoupled approach, but still not all 

solutions have been obtained. The analysis of average values calculated from the results 

succeeded in all three different methods gives relatively low error 7.1 %, the standard 

deviation, which is quite high – 16.7, shows that the simulations in the considered case are 

sensitive to the assumption concerning the number of layers, in which the criterion should be 

fulfilled to initiate a crack. The plate’s cross-sections illustrating the fracture moment in the 

considered approach, for the chosen test 06_1, are presented in Fig. 7-30. 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 27.6 21.8 - -   

05_3 30.8 33.6 9.1 - -   

05_4 34.2 - - -   

0.6

06_0 41.9 51.2 22.2 36.0 14.1 33.6 19.8 40.3 3.9 40.3

06_1 45.2 69.0 52.7 43.8 3.1 31.0 31.4 47.9 6.0 47.9

06_2 34.5 51.2 48.4 38.6 11.9 -   

06_3 38.7 33.4 13.7 28.2 27.1 -   

0.7

07_1 58.7 64.0 9.0 51.4 12.4 33.6 42.8 49.7 15.4 49.7

07_2 39.3 56.6 44.0 38.6 1.8 28.4 27.7 41.2 4.8 41.2

07_3 56.5 78.2 38.4 69.4 22.8 30.8 45.5 59.5 5.3 59.5

Mean values 28.8 13.3 33.4  7.1 16.7

Tab. 7-2. Results of uncoupled fracture study, stress triaxiality dependency criterion 

 

Fig. 7-30. Fracture in uncoupled model with the stress triaxiality dependency criterion, test 06_1 



- 110 -  Viscoplastic damage analysis...,  ukasz Pyrzowski
 

7.5.2. Coupled analysis – damage first approach effects 

In the coupled approach, the continuum damage model is considered. It means that the 

material weakening, controlled by the damage variable and the effective stress concept, is 

taken into account. In the current case, the model based on the damage variable identified in 

the first approach, presented in Chapter 5.6.2, is used. The criterion in such analysis is based 

on the critical value of damage and the ultimate stress (Chapter 2.4.2). The calibrated 

parameters in Chapter 6.6 are D1cr = 0.293 and u. = 504 MPa. The results of performed 

calculations are presented in Tab. 7-3. The solution efficiency is very good. In all considered 

cases, the crack localisation is possible. The mean error for the “1/5 layer” method is high – 

almost 45 %, but two others give much better solutions – mean error around 16 %. The 

average value obtained for all three methods is 18.8 %. The cross-sections for the example 

test are presented in Fig. 7-31. 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 22.0 37.7 32.4 8.2 27.4 22.4 27.3 22.8 5.2

05_3 30.8 40.0 29.9 35.0 13.6 32.6 5.8 35.9 16.5 3.8

05_4 34.2 37.8 10.5 29.8 12.9 37.8 10.5 35.1 2.7 4.6

0.6

06_0 41.9 60.4 44.2 45.2 7.9 35.0 16.5 46.9 11.9 12.8

06_1 45.2 75.8 67.7 53.2 17.7 40.2 11.1 56.4 24.8 18.0

06_2 34.5 65.6 90.1 45.2 31.0 40.2 16.5 50.3 45.9 13.5

06_3 38.7 42.6 10.1 40.2 3.9 37.6 2.8 40.1 3.7 2.5

0.7

07_1 58.7 68.0 15.8 65.8 12.1 35.0 40.4 56.3 4.1 18.5

07_2 39.3 71.6 82.2 45.2 15.0 40.2 2.3 52.3 33.2 16.9

07_3 56.5 86.8 53.6 79.8 41.2 40.6 28.1 69.1 22.2 24.9

Mean values 44.2 16.4 15.6  18.8 12.1

Tab. 7-3. Results of coupled, damage 1st approach fracture study, critical damage criterion 

Fig. 7-31. Fracture in coupled, damage 1st approach model with the critical damage criterion, test 06_1 
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The critical damage criterion in the continuum damage analysis is the natural choice. 

However, it is also interesting how the abrupt fracture criteria, originally created for the 

uncoupled approach, would behave in the model in which the material weakening is 

considered. Such study, where the coupled model is used but the fracture is controlled by the 

abrupt criteria, has been also performed. The results are presented in Tab. 7-4 – Tab. 7-6. In all 

three criteria, the solution efficiency improved. However, it is still not as good as in the 

critical damage analyses. The results, obtained using the total strain energy density criterion, 

are much better than in the uncoupled approach. For example the mean error in the “3/5 

layers” method is under 13 % and the maximum in the “3/5 layers” is still not too high – 22.3 

% (the average error in all three methods – 12.6 %). Meanwhile the solutions obtained using 

the stress triaxiality dependency criterion deteriorated. Admittedly, the lowest mean error 

increased from 13.3 to 14.7 % (the best solution moves from “3/5 layers” method to “5/5 

layers”), but the highest in the coupled approach is almost twice high, from 33.4 to 61.3 %. 

The cross-sections for the example test are presented in Fig. 7-32 – Fig. 7-34. 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 - - -   

05_3 30.8 - - -   

05_4 34.2 - - -   

0.6

06_0 41.9 - - -   

06_1 45.2 37.8 16.4 32.6 27.9 -   

06_2 34.5 27.0 21.7 - -   

06_3 38.7 - - -   

0.7

07_1 58.7 32.4 44.8 32.6 44.5 -   

07_2 39.3 - - -   

07_3 56.5 56.4 0.2 46.2 18.2 41.0 27.4 47.9 15.3 7.8

Mean values 18.5 30.2 27.4  15.3 7.8

Tab. 7-4. Results of coupled, damage 1st approach fracture study, critical equivalent plastic strain criterion 

Fig. 7-32 Fracture in coupled, damage 1st approach model with the equivalent plastic strain criterion, test 
06_1 
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Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 -  - -   

05_3 30.8 34.0 10.4 - -   

05_4 34.2 -  - -   

0.6

06_0 41.9 36.6 12.6 36.8 12.2 35.6 15.0 36.3 13.3 0.6

06_1 45.2 65.2 44.2 44.6 1.3 39.6 12.4 49.8 10.2 13.6

06_2 34.5 44.4 28.7 39.4 14.2 38.2 10.7 40.7 17.9 3.3

06_3 38.7 31.2 19.4 31.4 18.9 34.0 12.1 32.2 16.8 1.6

0.7

07_1 58.7 65.0 10.7 55.0 6.3 39.6 32.5 53.2 9.4 12.8

07_2 39.3 43.2 9.9 42.0 6.9 39.6 0.8 41.6 5.9 1.8

07_3 56.5 80.4 42.3 73.2 29.6 41.2 27.1 64.9 14.9 20.9

Mean values 22.3 12.8 15.8  12.6 7.8

Tab. 7-5. Results of coupled, damage 1st approach fracture study, total strain energy density criterion 

Fig. 7-33. Fracture in coupled, damage 1st approach model with the total strain energy density criterion, 
test 06_1 

7.5.3. Coupled analysis – damage second approach effects 

In the alternative coupled approach, the model is based on the damage variable taken from 

the results of second identification (Chapter 5.6.5). The values of damage obtained in this case 

are smaller than in the first approach, it means that the material weakening effect is also less 

intensive. As in the previous study, initially the analyses based on the critical damage criterion 

have been performed. The calibrated parameters in Chapter 6.6 are D1cr = 0.127 and u. =

484.5 MPa. The results of performed calculations are presented in Tab. 7-3. The best solution 

with respect to the mean error – 15 %, has been obtained when the fracture condition is 

satisfied in a first layer of shell element – 1/5 layer. In this case, the obtained mean error is 15 

% (in five simulations is under 8 %). The average error calculated for all three methods is18.4 

%. The relatively low mean standard deviation shows that these calculations are not very 

sensitive to the chosen number of layers assumed in the crack initiation method. The plate’s 
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cross-sections illustrating the fracture moment in the considered approach, for the chosen test 

06_1, are presented in Fig. 7-35. 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 - - -   

05_3 30.8 43.6 41.6 38.6 25.3 -   

05_4 34.2 - - -   

0.6

06_0 41.9 64.0 52.7 56.6 35.1 35.0 16.5 51.9 23.8 15.1

06_1 45.2 76.8 69.9 69.4 53.5 41.2 8.8 62.5 38.2 18.8

06_2 34.5 71.6 107.5 46.4 34.5 38.8 12.5 52.3 51.5 17.2

06_3 38.7 61.4 58.7 41.2 6.5 38.8 0.3 47.1 21.8 12.4

0.7

07_1 58.7 69.0 17.5 69.4 18.2 31.0 47.2 56.5 3.8 22.1

07_2 39.3 69.0 75.6 64.4 63.9 41.4 5.3 58.3 48.3 14.8

07_3 56.5 94.2 66.7 84.6 49.7 41.2 27.1 73.3 29.8 28.2

Mean values 61.3 35.8 14.7  31.0 18.4

Tab. 7-6. Results of coupled, damage 1st approach fracture study, stress triaxiality dependency criterion 

Fig. 7-34. Fracture in coupled, damage 1st approach model with the stress triaxiality dependency criterion, 
test 06_1 

Analogically to the first presented coupled approach, the application of abrupt fracture 

criteria is also considered in this study. This time, due to lower values of the damage variable, 

the material weakening effect is not as strong as it has been observed in the previous 

approach. In such conditions, the first criterion based on the critical value of equivalent plastic 

strain is again (as it has been observed in the uncoupled approach) completely ineffective. No 

results or wrong results have been obtained. 

The solutions computed in the analyses with two other criteria are presented in Tab. 7-8 

and Tab. 7-9. The crack localisation efficiency in these cases is worse than in the previous 

approach, but still better than in the uncoupled one. The best results have been obtained in the 

calculations with the stress triaxiality dependency criterion, where the mean error in the “3/5 

layers” method is 11.3 % and the average calculated for three different 16.8 %. Similarly as in 
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the other approaches, this criterion is sensitive due to the number of layers taken to the crack 

initiation. The mean standard deviation calculated for the individual mean errors is 16.1. 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 27.2 22.9 19.4 45.0 11.2 68.3 19.3 45.4 8.0

05_3 30.8 28.6 7.1 35.8 16.2 33.2 7.8 32.5 5.6 3.6

05_4 34.2 32.8 4.1 33.2 2.9 27.8 18.7 31.3 8.6 3.0

0.6

06_0 41.9 32.6 22.2 31.6 24.6 30.2 27.9 31.5 24.9 1.2

06_1 45.2 41.8 7.5 36.8 18.6 33.0 27.0 37.2 17.7 4.4

06_2 34.5 35.2 2.0 26.2 24.1 30.2 12.5 30.5 11.5 4.5

06_3 38.7 27.3 29.5 30.0 22.5 27.6 28.7 28.3 26.9 1.5

0.7

07_1 58.7 61.0 3.9 43.2 26.4 33.0 43.8 45.7 22.1 14.2

07_2 39.3 31.4 20.1 32.8 16.5 32.8 16.5 32.3 17.7 0.8

07_3 56.5 74.0 31.0 62.8 11.2 38.2 32.4 58.3 3.2 18.3

Mean values 15.0 20.8 28.4  18.4 6.0

Tab. 7-7. Results of coupled, damage 2nd approach fracture study, critical damage criterion 

Fig. 7-35. Fracture in coupled, damage 2st approach model with the critical damage criterion, test 06_1 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 -  - -   

05_3 30.8 23.4 24.0 - -   

05_4 34.2 -  - -   

0.6

06_0 41.9 31.2 25.5 31.2 25.5 28.8 31.3 30.4 27.4 1.4

06_1 45.2 41.8 7.5 36.8 18.6 27.8 38.5 39.3 13.1 7.1

06_2 34.5 36.6 6.1 - -   

06_3 38.7 26.0 32.8 - -   

0.7

07_1 58.7 52.0 11.4 39.4 32.9 34.2 41.7 41.9 28.7 9.2

07_2 39.3 31.2 20.6 - -   

07_3 56.5 72.8 28.8 57.8 2.3 39.6 29.9 56.7 0.4 16.6

Mean values 19.6 19.8 35.4  19.5 8.6

Tab. 7-8. Results of the coupled, damage 2st approach fracture study, total strain energy density criterion 
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Fig. 7-36. Fracture in coupled, damage 2st app. model with the total strain energy density crit., test 06_1 

Press. 
[bar]

Test 
Exp. 1/5 layer 3/5 layers 5/5 layers Average from 3 met. 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

av. d
[mm]

error
[%]

stand.
dev.

0.5

05_2 35.3 - - -     

05_3 30.8 38.6 25.3 28.2 8.4 -   

05_4 34.2 - - -     

0.6

06_0 41.9 59.0 40.8 41.2 1.7 33.6 19.8 44.6 6.4 13.0

06_1 45.2 71.6 58.4 46.4 2.7 38.8 14.2 52.3 15.6 17.2

06_2 34.5 64.0 85.5 43.8 27.0 28.4 17.7 45.4 31.6 17.9

06_3 38.7 43.6 12.7 36.2 6.5 -   

0.7

07_1 58.7 66.6 13.5 61.8 5.3 33.6 42.8 54.0 8.0 17.8

07_2 39.3 64.0 62.8 43.8 11.5 36.2 7.9 48.0 22.1 14.4

07_3 56.5 84.0 48.7 74.4 31.7 -   

Mean values 43.5 11.3 20.5  16.8 16.1

Tab. 7-9. Results of coupled, damage 2st approach fracture study, stress triaxiality dependency criterion 

Fig. 7-37. Fracture in coupled, damage 1st approach model with the stress triaxiality dependency criterion, 
test 06_1 

7.6. Investigation of mesh density influence – model with fracture 

The already presented investigation the mesh density influence analysis has shown that 

the chosen model gives the results, which can be admitted as reliable, if the failure is not 

considered (elements have not been deactivated). However, it is also interesting, whether the 

results are still mesh density independent, when the fracture prediction is analyzed. To check 

the reliability of the presented above results, the additional study has been performed. For the 

chosen test 06_1, the same crack initiation analyses have been computed, but this time the 

fine mesh model (the same as in Chapter 7.4 – 186 elements model) has been used. The 
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results are presented in Tab. 7-10. For each solution the percentage difference between the 

results obtained in both models have been calculated. The differences are low, the maximum 

value is 4.9 %, and therefore the results again can be admitted as reliable. 

Criterion 

1/5 layer 3/5 layers 5/5 layers 

93
d

[mm] 

186
d

[mm]

diff. 
[%]

93
d

[mm] 

186
d

[mm]

diff. 
[%] 

93
d

[mm] 

186
d

[mm]

diff. 
[%]

Uncoupl.
analysis 

tot. strain en. 
density

36.6 35.4 3.3 -  -  -  -  

stress triax. 
dependency

69.0 69.0 0.0 43.8 42.6 2.8 31.0 32.4 4.4

Coupled
analysis, 
damage 
1st app. 

critical 
damage 

75.8 76.2 0.5 53.2 55.8 4.8 40.2 40.6 1.0

crit. equiv. pl. 
strain 

37.8 38.6 2.1 32.6 34.0 4.2 - - 

tot. strain en. 
density

65.2 68.2 4.5 44.6 45.2 1.3 39.6 39.4 0.5

stress triax. 
dependency

76.8 78.0 1.6 69.4 68.8 0.9 41.2 40.4 2.0

Coupled
analysis, 
damage 
2nd app. 

critical 
damage

41.8 41.8 0.0 36.8 38.0 3.2 33.0 33.6 1.8

crit. equiv. pl. 
strain 

23.8 25.0 4.9 -  -  -  -  

tot. strain en. 
density

41.8 41.8 0.0 36.8 35.6 3.3 27.8 26.9 3.3

stress triax. 
dependency

71.6 73.0 1.9 46.4 46.8 0.9 38.8 37.4 3.7

Tab. 7-10. Results obtained in the investigation of mesh density influence 

7.7. Summary

The complex study in the fracture prediction in the axisymmetrical model has been made. 

The analysis has been preceded by the determination of the fixing boundary conditions, which 

have been applied to the model. This stage of the presented work is a key for the further 

analysis. The proper answer of the model is necessary in the later fracture prediction 

modelling. The various verifications have confirmed that the assumed conditions are 

sufficient in the considered problem. The simulations of fracture prediction have been 

performed for all considered approaches and criteria. As it has been shown some of the 

criteria are completely inefficient. The critical equivalent plastic strain criterion in the 
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considered problem is useless. The two criteria are chosen as the most reliable. The first is the 

stress triaxiality stress dependency criterion, where the lowest mean errors have been obtained 

(the uncoupled approach, 3/5 layers – 13.3 %, the coupled 2nd damage approach – 11.3 %). 

The second is the critical damage criterion, where the relatively low mean error has been 

obtained for the “1/5 layer” method – 15 %. Additionally in this second criterion the 100 % 

efficiency of the obtained solutions has been observed and the low mean standard deviation 

has shown that these calculations are not very sensitive to the number of layers assumed in the 

crack initiation condition. 





Numerical study – plate’s quarter model - 119 -
 

8. Numerical study – plate’s quarter model 

8.1. Abstract

In the following stage of the numerical study the 2-D shell analyses have been performed. 

The present chapter begins with the description of assumed boundary conditions and meshing 

of the model. At first four different meshes proposed for this study are presented. After the 

first analyses, the selection of two has been made. Then, for selected types of mesh, the 

verification of solution symmetry and mesh density influence is investigated. The main 

analyses contain the numerical simulations only for the criteria, which have been found as the 

most reliable in the previous chapter. The obtained results are compared with the results of 

experiments and axisymmetrical analyses. 

8.2. Introduction

The specimens used in the experiments were prepared as square sheet metal plates. The 

measurements presented in Chapter 4.3.3 have shown that this shape do not interfere the 

axisymmetrical deformation of plates during the tests. Therefore, also in the 2-D shell analysis 

the assumption of model’s axisymmetry is maintained. It allows application of the same fixing 

boundary conditions to the model as used in the previous study. Due to the willingness of 

decreasing task’s size (the analysis is highly time-consuming), the model is limited to the 

quarter of plate. On the symmetry edges, the appropriate boundary conditions have been 

applied.

8.3. Finite elements mesh geometry 

At the beginning of analysis four different meshes have been created, see Fig. 8-1 and Fig. 

8-2 (the dashed lines show the fixing area). The first presented – mesh A, built mainly using 

the three node shell elements, has been generated by the MSC.Marc automesh feature. The 

three next (four node shell element meshes) have been formed using the AutoCad software 

tools. To solve the problem of laying for mesh B and C the regular square region of the four 

node elements at the plate’s centre has been created. For mesh D the centre row elements has 

been reduced to triangles. 

During first performed analyses, damage second approach effects (Chapter 5.6.5) are 

considered and the fracture is not taken into account. The investigation concentrates on 
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models’ answer to the dynamic impact. For this study, the pressure time history recorded 

during the test 06_1 has been used. The results of these simulations (four selected time steps 

for each analysis) are presented in Fig. 8-3 and Fig. 8-4. In each case, the maps of damage 

variable in the elements’ bottom layers are presented. The worst results have been obtained 

using mesh A. There is no axisymmetry of the solution, especially in the fixing region. The 

irregularities in damage distribution, which appeared in this area, may lead to undesirable 

deactivation of elements in the fracture prediction analysis. The similar, though smaller, effect 

is also observed for mesh B. It is caused by the elements geometry in the fixing area, which is 

not perfectly axisymmetrical. This problem has not occurred for mesh C, where the 

axisymmetry of elements’ geometry is kept for three rows of elements near inner and outer 

side of the fixing edge. Therefore, for the main study, two geometries – mesh C and D are 

chosen.

    
Fig. 8-1. Finite element mesh A and mesh B 

    
Fig. 8-2. Finite elements mesh C and mesh D 
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Fig. 8-3. Dynamic analysis – test 06_1, time steps: t1 = 0.21 ms, t2 = 0.24 ms, t3 = 0.27 ms,  t4 = 0.3 ms,   
mesh A and mesh B 
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Fig. 8-4. Dynamic analysis – test 06_1, time steps: t1 = 0.21 ms, t2 = 0.24 ms, t3 = 0.27 ms,  t4 = 0.3 ms,   
mesh C and mesh D 
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8.4. Finite elements mesh quality

After choosing the meshing types for the further analyses, their quality investigation 

should be performed. At first, the verification of symmetry has been carried out to exclude 

errors during meshing. For each mesh two pairs of nodes, lying on the opposite sides of the  

Fig. 8-5. Nodes chosen for the verification of symmetry in mesh C  

Fig. 8-6. Verification of symmetry in mesh C – quasi-static test 

Fig. 8-7. Verification of symmetry in mesh C – dynamic test 06_1 
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Fig. 8-8. Nodes chosen for the verification of symmetry in mesh D  

Fig. 8-9. Verification of symmetry in mesh D – quasi-static test 

Fig. 8-10. Verification of symmetry in mesh D – dynamic test 06_1 

plate’s quarter symmetry line, have been chosen – Fig. 8-5 and Fig. 8-8. For both meshes two 

different analyses have been performed: the quasi-static test and the dynamic test 06_1. In the 

dynamic test only the damage second approach effects (Chapter 5.6.5) with no fracture has 

been considered. The results of simulations, vertical displacements and the equivalent total 
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true strain in bottom layer for mesh C are presented in Fig. 8-6, Fig. 8-7 and for mesh D in 

Fig. 8-9, Fig. 8-10. For each mesh, the results obtained for selected pairs of nodes are 

identical. These results confirm good quality of selected types of meshing.  

The second investigation concerns the mesh density influence. The considered models are 

divided into 540 elements – mesh C and 680 elements – mesh D. For this study, the number of 

elements in each mesh is four times higher than for the standard mesh. Also in this analysis 

the pressure time history recorded during test 06_1 and the damage second approach 

Fig. 8-11. Nodes chosen for mesh C dense influence analysis 

Fig. 8-12. Mesh C dense influence analysis – equivalent total strain 

Fig. 8-13. Mesh C dense influence analysis – damage variable 
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Fig. 8-14. Nodes chosen for mesh D dense influence analysis 

Fig. 8-15. Mesh D dense influence analysis – equivalent total strain 

Fig. 8-16. Mesh D dense influence analysis – damage variable 

effects with no fracture has been applied. The results are compared for two selected nodes for 

each mesh, see Fig. 8-11 and Fig. 8-14. The results, which are the equivalent total true strain 

and the damage variable in the bottom layer, are shown for mesh C in Fig. 8-12, Fig. 8-13 and 

for mesh D in Fig. 8-15, Fig. 8-16. At the nodes located in the plate’s centre there are small 

differences between the obtained results at the beginning of the analyses, but later the paths of 

the equivalent total true strain and the damage variable are close to each other. At the nodes 

located beyond the plate’s centre, the solutions are almost overlapped during all analysis time. 
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According to obtained results, the standard density of meshing can be considered as dense 

enough.

8.5. Modelling of fracture prediction 

The modelling of fracture prediction in 2D shell studies is limited to the fracture criteria, 

which have been chosen as the most reliable in Chapter 7. That is why only the following 

three analyses are considered: uncoupled (no damage effects) with the stress triaxiality 

dependency criterion and coupled – damage second approach effects with two different 

criteria based on the critical damage and the stress triaxiality dependency. For each case three 

example tests are investigated: 05_3 (equivalent hole diameter d = 30.8 mm), 06_1 (d = 45.2 

mm) and 07_1 (d = 58.7 mm). The results are compared with the experiments and the 

axisymmetrical analysis. 

As in the previous study, the shell elements are divided into five layers and the crack is 

modelled by deactivation of elements with three different approaches: “1/5 layer”, “3/5 

layers”, “5/5 layers”. The analyses have been continued until a clear crack appeared. In the 

area of its possible initiation the adaptive mesh feature (described in Chapter 3.8) has been 

applied. During adaptive procedure, an element is divided into four elements after satisfying 

the criterion of equivalent total strain equal to 0.001.

8.5.1. Uncoupled analysis – no damage effects 

The first considered approach is the uncoupled study with the stress triaxiality dependency 

criterion.  For each selected test, two analyses using mesh C and mesh D have been made. 

The results obtained in the test 05_3 simulations, where the “1/5 layer” approach is used, 

are shown in Fig. 8-17. The hole diameter could be identified only from the analysis with the 

D type of meshing. Additionally, the plate’s deflections in six selected time steps and the 

criterion parameter for the fracture moment (the values in top and bottom layers), both set up 

together with the axisymmetrical solutions, are plotted in Fig. 8-18 and Fig. 8-19. The arrows 

show the fracture localization. Obtained diameters of damage circle d compared with the 

experiment and the previous study is presented in Tab. 7-1. The next two simulations: “3/5 

layers” and “5/5 layers” did not give any clear solutions.
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Fig. 8-17. Fracture in uncoupled model with the stress triaxiality dependency criterion, test 05_3  

Fig. 8-18. Dynamic analysis – test 05_3, time steps: t1 = 0.2 ms, t2 = 0.22 ms, t3 = 0.24 ms, t4 = 0.26 ms,  
t5 = 0.28 ms, t6 = 0.29 ms 

Fig. 8-19. Stress triaxiality dependency criterion parameter in the plate’s cross-section in the fracture 
moment, t = 0.29 ms, uncoupled study, test 05_3 

Model Test 
Exp. 1/5 layer 3/5 layers 5/5 layers 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

2-D shell 
05_3 30.8 

24.8 19.5 - -  

axisym. shell 33.6 9.1 - -  

Difference [%]  30.1 - -  

Tab. 8-1. Results of uncoupled fracture study, stress triaxiality dependency criterion, test 05_3 
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The numerical simulation results of tests 06_1 and 07_1 with “1/5 layer” approach are 

presented in Fig. 8-20 and Fig. 8-23. In both cases the cracks obtained in the analyses using 

mesh C characterize strong influence of the mesh geometry, but generally the solutions are 

comparable with mesh D. The six selected time steps deflections and the criterion parameter 

in the fracture moment for the mesh D analyses are presented in Fig. 8-21, Fig. 8-22 (test 

06_1) and Fig. 8-24, Fig. 8-25 (test 07_1). All results including “3/5 layers” and “5/5 layers” 

approaches are presented in Tab. 8-2 and Tab. 8-3. 

Fig. 8-20. Fracture in uncoupled model with the stress triaxiality dependency criterion, test 06_1  

Fig. 8-21. Dynamic analysis – test 06_1, time steps: t1 = 0.17 ms, t2 = 0.19 ms, t3 = 0.21 ms,  t4 = 0.23 ms,  
t5 = 0.25 ms, t6 = 0.27 ms 

Fig. 8-22. Stress triaxiality dependency criterion parameter in the plate’s cross-section in the fracture 
moment, t = 0.27 ms, uncoupled study, test 06_1 
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Model Test 
Exp. 1/5 layer 3/5 layers 5/5 layers 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

2-D shell 
06_1 45.2 

68.8 52.2 40.7 10.0 35.2 33.0 

axisym. shell 69.0 52.7 43.8 3.1 31.0 31.4 

Difference [%]  0.3  7.3  12.7  

Tab. 8-2. Results of uncoupled fracture study, stress triaxiality dependency criterion, test 06_1 

Fig. 8-23. Fracture in uncoupled model with the stress triaxiality dependency criterion, test 07_1  

Fig. 8-24. Dynamic analysis – test 07_1, time steps: t1 = 0.14 ms, t2 = 0.16 ms, t3 = 0.18 ms,  t4 = 0.2 ms,  
t5 = 0.22 ms, t6 = 0.24 ms 

Fig. 8-25. Stress triaxiality dependency criterion parameter in the plate’s cross-section in the fracture 
moment, t = 0.24 ms, uncoupled study, test 07_1 
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Model Test 
Exp. 1/5 layer 3/5 layers 5/5 layers 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

2-D shell 
07_1 58.7 

66.0 12.4 49.6 15.5 42.6 27.4 

axisym. shell 64.0 9.0 51.4 12.4 33.6 42.8 

Difference [%]  3.1  3.6  23.6  

Tab. 8-3. Results of uncoupled fracture study, stress triaxiality dependency criterion, test 07_1 

Generally, in the considered uncouple approach with the stress triaxiality dependency 

criterion, the results (hole diameters d) obtained in the 2-D and axisymmetrical shell studies 

are similar. The presented dynamic analyses showing the following stages of plate’s 

deflections and the plots of criterion parameter in the fracture moment exhibit small 

differences between these two solutions, but they almost did not influence on the final results 

– the localization of a crack.

8.5.2. Coupled analyses – damage second approach effects 

The next considered analysis is the coupled study, where the damage second approach 

effects are taken into account. Also here, the calculations have been performed using both 

type of meshing – C and D. At first, the critical damage condition, as the fracture criterion, is 

used. The results of numerical simulations for all analyzed tests, where the deactivation is 

applied according to “1/5 layer” approach, are presented in Fig. 8-26, Fig. 8-29 and Fig. 8-32. 

The solutions obtained for both meshes are comparable, although for the higher impacts the 

crack shape is quite fuzzy. In contrary to the previous uncoupled analysis the results differ 

much more in comparison to axisymmetrical study. The difference is higher when the stronger 

impact is considered. The detailed results for each test are given in Tab. 8-4, Tab. 8-5 and Tab. 

8-6. The obtained hole diameters seem to be independent from the loading conditions, for 

each analysis the result is close to d = 30 mm. Comparing the analyses presented in Fig. 8-27, 

Fig. 8-30 and Fig. 8-33 with the analogical one in uncoupled study it can be noticed that the 

fracture in the present solutions occurs later. For example in test 07_1 in the previous 

approach the crack occurred at time t = 0.24 ms while in the present study at time t = 0.26 ms. 

During deformation process the plate’s geometry turns into the dome-like shape. This causes 

that the little differences obtained in axisymmetrical and 2-D shell analyses (the plate 

modelled by 2-D shell elements is a bit stiffer) have higher influence on the final solutions. 

For each test, the damage variable at the fracture moments is presented in Fig. 8-28, Fig. 8-31 

and Fig. 8-34. 
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Fig. 8-26. Fracture in coupled model with the critical damage criterion, test 05_3  

Fig. 8-27. Dynamic analysis – test 05_3, time steps: t1 = 0.2 ms, t2 = 0.22 ms, t3 = 0.24 ms,  t4 = 0.26 ms,  
t5 = 0.28 ms, t6 = 0.3 ms 

Fig. 8-28. Damage variable in the plate’s cross-section in the fracture moment, t = 0.3 ms, coupled study, 
test 05_3 

Model Test 
Exp. 1/5 layer 3/5 layers 5/5 layers 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

2-D shell 
05_3 30.8 

33.4 8.4 25.4 17.5 -  

axisym. shell 28.6 7.1 35.8 16.2 33.2 7.8 

Difference [%]  15.5  34.0  -  

Tab. 8-4. Results of coupled fracture study, critical damage criterion, test 05_3 
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Fig. 8-29. Fracture in coupled model with the critical damage criterion, test 06_1  

Fig. 8-30. Dynamic analysis – test 06_1, time steps: t1 = 0.17 ms, t2 = 0.19 ms, t3 = 0.21 ms,  t4 = 0.23 ms,  
t5 = 0.25 ms, t6 = 0.27 ms, t6 = 0.29 ms 

Fig. 8-31. Damage variable in the plate’s cross-section in the fracture moment, t = 0.29 ms, coupled study, 
test 06_1 

Model Test 
Exp. 1/5 layer 3/5 layers 5/5 layers 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

2-D shell 
06_1 45.2 

33.4 26.1 32.4 28.3 36.8 18.6 

axisym. shell 41.8 7.5 36.8 18.6 33.0 27.0 

Difference [%]  22.3  12.7  10.9  

Tab. 8-5. Results of coupled fracture study, critical damage criterion, test 06_1 
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Fig. 8-32. Fracture in coupled model with the critical damage criterion, test 07_1  

Fig. 8-33. Dynamic analysis – test 07_1, time steps: t1 = 0.14 ms, t2 = 0.16 ms, t3 = 0.18 ms, t4 = 0.2 ms,  
t5 = 0.22 ms, t6 = 0.24 ms, t7 = 0.26 ms 

Fig. 8-34. Damage variable in the plate’s cross-section in the fracture moment, t = 0.26 ms, uncoupled 
study, test 07_1 

Model Test 
Exp. 1/5 layer 3/5 layers 5/5 layers 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

2-D shell 
07_1 58.7 

35.4 39.7 30.2 48.6 32.4 44.8 

axisym. shell 61.0 3.9 43.2 26.4 33.0 43.8 

Difference [%]  53.1  35.4  1.8  

Tab. 8-6. Results of coupled fracture study, critical damage criterion, test 07_1 
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Fig. 8-35. Fracture in coupled model with the stress triaxiality dependency criterion, test 05_3  

Fig. 8-36. Fracture in coupled model with the stress triaxiality dependency criterion, test 06_1  

Fig. 8-37. Fracture in coupled model with the stress triaxiality dependency criterion, test 07_1  

For the third type of analysis the coupled approach is used with the stress triaxiality 

dependency criterion (originally from the uncoupled study). In such case, the differences 

between axisymmetrical and 2-D shell studies significantly decreased. The value of this 

criterion parameter increases faster, thereby the crack occurs earlier, just as it has been 

observed in the uncoupled analysis. The results presenting the fracture obtained in 

calculations with mesh C and D, where the deactivation is applied according to “1/5 layer” 
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approach, are shown in Fig. 8-35, Fig. 8-36 and Fig. 8-37. The hole diameters d taken from all 

simulations are given in Tab. 8-7. 

Model Test 
Exp. 1/5 layer 3/5 layers 5/5 layers 

d

[mm]
d

[mm]
error
[%]

d

[mm]
error
[%]

d

[mm]
error
[%]

2-D shell 
05_3 30.8 

34.8 13.0 23.2 24.7 -  

axisym. shell 38.6 25.3 28.2 8.4 -  

Difference [%]  10.4  16.9  -  

2-D shell 
06_1 45.2 

74.0 63.7 45.1 0.2 37.4 17.3 

axisym. shell 71.6 58.4 46.4 2.7 38.8 14.2 

Difference [%]  3.3  2.8  3.7  

2-D shell 
07_1 58.7 

65.9 12.3 47.8 18.6 28.8 50.9 

axisym. shell 66.6 13.5 61.8 5.3 33.6 42.8 

Difference [%]  1.1  25.5  15.4  

Tab. 8-7. Results of coupled fracture study, stress triaxiality dependency criterion, tests 05_3, 06_1, 07_1 

8.6. Investigation of mesh density influence – model with fracture 

The last analysis considered the influence of mesh density on the localization of crack 

occurrence. The investigation has been performed for D-type of meshing. The old and new 

finite element division is presented in Fig. 8-38. The number of elements has increased from 

680 to 840. The densification is mainly applied close the area of possible crack initiation. 

Fig. 8-38. Mesh D before and after the densification of elements 
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The investigation is limited to two tests 05_3 and 06_1. For each, three different analyses 

are performed: uncoupled with the stress triaxiality dependency criterion, coupled with the 

critical damage and the stress triaxiality dependency criteria. In all cases, the elements have 

been deactivated according to “1/5 layer” approach. The results are presented in Fig. 8-39 and 

Fig. 8-40 (particular solutions are shown in the analyses order given above). The obtained 

hole diameters are given and compared in Tab. 8-8. 

Fig. 8-39. Investigation of mesh dense influence, test 05_3 

Fig. 8-40. Investigation of mesh dense influence, test 06_1 

The results obtained in the analyses with both meshes (mesh D and mesh D – fine) are 

almost identical. The maximum differences do not exceed 5%. It shows that the sensitiveness 

of solutions due to the density of mesh is very low. 
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Model Test 
first analysis 

1/5 layer 
second analysis 

1/5 layer 
third analysis 

1/5 layer 

d [mm] d [mm] d [mm] 

mesh D 
05_3

24.8 33.4 34.8 

mesh D - fine 25.9 32.4 33.2

Difference [%] 4.2 3.1 4.8 

mesh D 
06_1

68.8 32.4 74.0 

mesh D - fine 68 32.6 71.8

Difference [%] 1.2 1.5 3.1 

Tab. 8-8. Hole diameters in the investigation of mesh dense influence, tests 05_3 and 06_1 

8.7. Summary

The presented chapter contains the study in the fracture prediction in the 2-D shell model. 

In the analyses, the plate’s quarter model has been investigated. The boundary conditions have 

been applied according to those which have been determined in Chapter 7. In the numerical 

simulations two different meshes have been used. The study is limited to the approaches, 

which gave the most reliable solutions for the previous axisymmetrical analyses and to three 

example tests 05_3, 06_1 and 07_1. The results have shown that the expansion of model to 

two dimensional case not always leads to the same results. The coupled approach with its 

original critical damage criterion, in the considered simulations, gives the solutions, which 

differs from the previous analysis ones. The obtained hole diameters do not depend on the 

loading conditions (the impulse strength). The second applied stress triaxiality dependency 

criterion in both analyses (uncoupled and coupled) gives much better results. The solutions 

are very close to those, which have been presented in Chapter 7. The investigation of shell 

density influence shows that this study is not very sensitive for this kind of problem. 
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9. Final summary and conclusions 

The presented work considers the investigation of plate-shell structures response due to 

impact loadings caused by gas mixture explosions. The investigation has been stated in the 

first chapter, where the main field of interest (aim and range) has been established and the 

area of potential applications has been specified. This chapter also contains the literature 

review concerning the area of different approaches to failure designing. As it has been shown, 

the problem has been investigated since early 1920s and up to now is still in the high interest 

of many researchers. The overview includes different theories, different approaches to 

numerical modelling and the historical survey of the scientists’ activities in the research 

concerning the plates’ response to dynamic loadings.  

The more precise description of theoretical foundations in the considered problem has 

been presented in Chapter 2. At first, the appropriate constitutive law has been specified. The 

investigated plates have been submitted to large plastic deformations and fracture. From the 

two natural classes of large deformation problems, here the large displacement – small strain 

analysis has been chosen. Additionally, the assumption of material’s isotropy has been 

introduced. This approach has been often used in the shock wave-loaded plates’ numerical 

simulations performed by many authors. It allows applying the viscoplastic model proposed 

by Chaboche, based on the strain rate additive decomposition. This constitutive law has been 

chosen by the author, suggested by the earlier experiences and successful implementations by 

K!osowski, Woznica and Stoffel ([96], [195], [196], [162], [163]). Such law selection has 

been also determined by the good recognition in the material parameters identification. It is 

the first step in the model development. In the future, extension to the class of large strain and 

material’s anisotropy problems is planned. It will be linked with section and implementation 

of new constitutive laws and the new identification rocedures of the material parameters.  

The latter part of the second chapter contains the description of damage and fracture 

models. The theories, which are nowadays the most popular, have been described. Also the 

models and fracture criteria for the further analyses have been selected. The chosen 

approaches give the possibility of modelling crack initiation and propagation. The models in 

which the evolution of a pre-existing crack is only considered have been rejected. In the work, 

the problem of crack localisation is investigated and initialisation of the crack must be found 

by algorithm itself. 
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In Chapter 3 the numerical tools, used in all realized finite element method simulations, 

have been presented. For the dynamic, geometrically and materially non-linear analyses three 

different element types have been selected. The updated Lagrangian approach, used in 

MSC.Marc software in the large displacement analyses, has been described. In detail, the 

user-defined subroutines, used in the performed simulations, have been presented. The 

descriptions of the chosen integration method for the motion equation and the features such as 

the contact phenomena and the adaptive mesh have also been attached.  

The fourth chapter contains the description of all experimental tests carried out during the 

realization of this work. Two types of laboratory tests have been executed. The first are the 

experiments on plates. Their results have been used as the testing material in the model’s 

fixing boundary conditions calibration and for the verification of results obtained in the main 

fracture prediction numerical simulations. The second are the uniaxial experiments. Their 

results have been used for the identification of model’s material parameters.  

The material parameters identification is the main subject of the next chapter. At first, the 

estimations of elastic modulus and yield stress have been presented. In each case the values 

have been identified using the results of experiments performed for the specimens cut along 

and across sheet’s rolling. The difference between the obtained parameters for two orthogonal 

directions is 2 % for the elastic modulus and 8 % for the yield stress. Therefore, the 

assumption of material’s isotropy is justified and the final parameters have been taken as the 

mean values. The results of hardening parameters identification performed later shows much 

higher differences. However, calculating of the mean values in this case has also been 

possible, due to the fact of low sensitivity in the model’s answer to changes of these 

parameters observed in the verification process. The considered material has shown very 

weak viscous properties. It has caused problems in the identification of parameters controlling 

viscosity in the model. Despite of this difficulty, the author has decided to keep the chosen 

constitutive law. It gives higher universality of the model in possible analyses with different 

materials or for higher temperatures. The necessary values of viscosity parameters have been 

finally taken from the literature as the first approximation. As it has been presented in the final 

verification, all these treatments leads to the correct values, reaching very high correlation in 

the comparison analyses (numerical model vs. experiment). In the second part of this chapter 

the identification of the damage and its model parameters have been presented. The main 

difficulty, which has been encountered in this analysis, is the lack of current transversal area 

measurement in the specimen during the laboratory tests. Two different approaches have been 

proposed to overcome this problem. Therefore, two separate identifications have been 
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presented. After each, the appropriate verifications have confirmed correctness of the 

estimations. 

The next chapter contains the description of fracture criteria calibration. In each chosen 

for the further analyses condition, the critical parameter has been identified. This procedure 

has been based on the results of experiments and numerical simulations. 

Two following chapters present the numerical study of the considered problem. At first, 

the determination of plate’s fixing boundary conditions has turned out to be necessary. The 

basic hinged or clamped supports have underrated the values of maximum middle point 

deflections in all analyzed simulations. After the extensive study, the conditions, which have 

assured the best correlation between the results of numerical analyses and experiments in all 

applied impact strength levels, have been accepted. The problem of fixing conditions in the 

considered experiments will be continued in the author’s further scientific research. One of 

the new ideas is to develop the existing plate’s mounting in the experimental tube by adding 

additional elements and thereby reaching clearer fixing of the plate specimens. 

The numerical study has been performed for two types of analyses: the axisymmetrical 

shell and the 2-D shell models. At first, for both the investigation of mesh density influence in 

the study without fracture have been applied. Additionally in the 2-D case, for the chosen 

types of meshing, the symmetry of the solution has been successfully checked. The full study 

containing all chosen models and fracture criteria has been performed using the 

axisymmetrical model (1-D model). Additionally, the deactivation of elements with three 

different conditions: “1/5 layer”, “3/5 layers” and “5/5 layers” has been investigated. After the 

summary of all obtained results, the most reliable approaches have been selected. It is the 

uncoupled analysis (no damage effects) with the stress triaxiality dependency criterion, and 

the coupled (damage second approach effects) analysis with two different criteria based on the 

critical damage and the stress triaxiality dependency. The 2-D shell study has been limited to 

the analysis with the selected above approaches. For each, three example tests have been 

investigated: 05_3, 06_1 and 07_1. The obtained solutions have shown that the expansion of 

model to two dimensional case does not always lead to the same results. 

After both: axisymmetrical and 2D shell studies, the investigation of mesh density 

influence for the study, where the fracture is considered, has been carried out. The local 

approach, which is applied in presented simulations, often causes problems in the finite 

element method. It leads to the pathological localization and the mesh dependence associated 

with materials softening. In the considered analyses such effect has not occurred. All 

performed investigations have shown the weak dependence of mesh size in the transient 
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response. The analogical conclusions have been drawn by Børovik et al. [33] or Lee and 

Wierzbicki [107]. This positive effect might be caused by using in all this analyses shell 

elements, which are always divided into the specified number of layers and thereby integrated 

over the thickness. However, the non-local models and the regularization techniques are in the 

author’s high interest and will be investigated in the further research.  

The main conclusions, which have been finally drawn, are: 

2 The presented study belongs to the large displacement – small strain class of large 

deformation problems. It allows implementation of the constitutive laws based on the 

strain rate additive decomposition. The presented investigation (encouraged by successful 

verifications) has shown that such approach is also possible in the damage analyses, but of 

course the extension to large strain models is planned. 

2 The assumption of material’s isotropy (constitutive and damage models) in the considered 

study have not caused obtaining the adverse solutions. The investigated aluminium has 

shown, during the material parameters identification procedure, small orthotropic 

properties. The implementation of anisotropy to the model is considered as the further 

development. 

2 In the considered model, the viscoplastic constitutive law is applied in spite of the 

investigated material’s weak viscous properties. It gives higher universality of the model 

in the possible further analyses. 

2 After the elaboration of experimental results, the axisymmetry of model has been 

assumed. It has been observed that the initial shape of the specimens (they have been 

prepared as a square plates) has not influenced on the plates’ deflections during the 

experiments. 

2 The boundary conditions have played a key role in the investigated analysis. The special 

process of its determination has been applied. The simple supports (hinged or clamped) 

have not assured the adequate plate’s answer in the analyses. The development of fixing 

conditions in the research stand is planned for the future. 

2 The numerical simulations have been performed using the axisymmetrical and the 2D 

shell elements. Such analyses as considered should be performed with a high accuracy. As 

it has been turned out the results are not always identical. The axisymmetrical elements 

have proved better usability in the analyzed calculations. They are much less time 

consuming and thanks to them, much denser discretization of the model can be applied. 
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2 The study includes four different criteria in three approaches and three conditions of 

elements’ deactivation. The best solutions have been pointed (uncoupled analysis with the 

stress triaxiality dependency criterion and the coupled analysis with the critical damage 

and the stress triaxiality dependency criteria). 

2 After each analysis, the mesh density influence has been investigated. Very weak 

influence has been stated in the applied simulations. The development of model to non-

local approach is considered in the further studies. 

This work has shown that the numerical investigation of plate-shell structures response 

due to impact loadings may lead to the results, which are in the high correlation with the 

experiments. Maybe it does not give the evident answer which considered approach is the 

only correct one, but gives the field to discussion and the direction to the further analysis in 

the ductile fracture prediction. 
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Annex 1 

This annex contains the setting-up of all pressure time histories, which have been 

registered during the experiments. For each test the direct results from both sensors and the 

recalculated real active pressure (the difference between pressure recorded before and behind 

the specimen) are presented.  

Fig. A1-1. Registered and active pressure time histories, test 025_2 (0.25 bar) 

Fig. A1-2. Registered and active pressure time histories, test 03_2 (0.3 bar) 

Fig. A1-3. Registered and active pressure time histories, test 03_3 (0.3 bar) 
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Fig. A1-4. Registered and active pressure time histories, test 03_4 (0.3 bar) 

Fig. A1-5. Registered and active pressure time histories, test 03_5 (0.3 bar) 

Fig. A1-6. Registered and active pressure time histories, test 04_1 (0.4 bar) 
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Fig. A1-7. Registered and active pressure time histories, test 05_2 (0.5 bar) 

Fig. A1-8. Registered and active pressure time histories, test 05_3 (0.5 bar) 

Fig. A1-9. Registered and active pressure time histories, test 05_4 (0.5 bar) 



- 158 -  Viscoplastic damage analysis...,  ukasz Pyrzowski
 

Fig. A1-10. Registered and active pressure time histories, test 06_0 (0.6 bar) 

Fig. A1-11. Registered and active pressure time histories, test 06_1 (0.6 bar) 

Fig. A1-12. Registered and active pressure time histories, test 06_2 (0.6 bar) 
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Fig. A1-13. Registered and active pressure time histories, test 06_3 (0.6 bar) 

Fig. A1-14. Registered and active pressure time histories, test 07_1 (0.7 bar) 

Fig. A1-15. Registered and active pressure time histories, test 07_2 (0.7 bar) 
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Fig. A1-16. Registered and active pressure time histories, test 07_3 (0.7 bar) 

Fig. A1-17. Registered and active pressure time histories, test 07_4 (0.7 bar) 

Fig. A1-18. Registered and active pressure time histories, test 08_1 (0.8 bar) 
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Annex 2 

This annex contains the pictures of tested plates. The plates are shown in the order of the 

gas mixture initial pressure level used in the experiments, from the lowest to the highest. 

Fig. A2-1. Tested plate 03_2 (0.3 bar) 

Fig. A2-2. Tested plate 03_3 (0.3 bar) 

Fig. A2-3. Tested plate 03_4 (0.3 bar) 
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Fig. A2-4. Tested plate 03_5 (0.3 bar) 

Fig. A2-5. Tested plate 04_1 (0.4 bar) 

Fig. A2-6. Tested plate 05_2 (0.5 bar) 
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Fig. A2-7. Tested plate 05_3 (0.5 bar) 

Fig. A2-8. Tested plate 05_4 (0.5 bar) 

Fig. A2-9. Tested plate 06_0 (0.6 bar) 
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Fig. A2-10. Tested plate 06_1 (0.6 bar) 

Fig. A2-11. Tested plate 06_2 (0.6 bar) 

Fig. A2-12. Tested plate 06_3 (0.6 bar) 
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Fig. A2-13. Tested plate 07_1 (0.7 bar) 

Fig. A2-14. Tested plate 07_2 (0.7 bar) 

Fig. A2-15. Tested plate 07_3 (0.7 bar) 
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Fig. A2-16. Tested plate 07_4 (0.7 bar) 

Fig. A2-17. Tested plate 08_1 (0.8 bar) 
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Annex 3 

This annex contains the setting-up of results obtained in the cross-section measurements. 

The figures present the average geometries calculated from two measurements which have 

been performed for each plate. 

Fig. A3-1. Cross-sections of the tested plates, initial pressure 0.3 bar 

Fig. A3-2. Cross-section of the tested plate, initial pressure 0.4 bar 

Fig. A3-3. Cross-sections of the tested plates, initial pressure 0.5 bar 
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Fig. A3-4. Cross-sections of the tested plates, initial pressure 0.6 bar 

Fig. A3-5. Cross-sections of the tested plates, initial pressure 0.7 bar 

 



Annex  - 169 -
 

Annex 4 

This annex contains the setting-up of results obtained in the equivalent hole diameters 

measurements. 

Fig. A4-1. Measurement of equivalent hole diameters, experiments with initial pressure 0.5 bar 

Fig. A4-2. Measurement of equivalent hole diameters, experiments with initial pressure 0.6 bar 

Fig. A4-3. Measurement of equivalent hole diameters, experiments with initial pressure 0.7 bar 
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Annex 5 

This annex contains the setting-up of results obtained in the uniaxial tension tests (tension 

tests with constant strain rate, load-unload tension cyclic tests). The experiments have been 

performed on the specimens cut along and across sheet’s rolling.  

Fig. A5-1. Constant strain rate tension tests on the specimens cut along sheet's rolling 



Annex  - 171 -
 

Fig. A5-2. Constant strain rate tension tests on the specimens cut across sheet's rolling 
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Fig. A5-3. Load-unload tension cyclic tests on the specimens cut along sheet's rolling 

Fig. A5-4. Load-unload tension cyclic tests on the specimens cut across sheet's rolling 
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Annex 6 

This annex contains the setting-up of all results obtained in the elastic modulus and offset 

yield stress identifications.  

Fig. A6-1. Elastic modulus identifications, the specimens cut along sheet's rolling 
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Fig. A6-2. Elastic modulus identifications, the specimens cut across sheet's rolling 
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Fig. A6-3. Offset yield strength identifications, the specimens cut along sheet's rolling 
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Fig. A6-4. Offset yield strength identifications, the specimens cut across sheet's rolling 
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Annex 7 

Annex contains the results of final verification in the determination of plate’s fixing 

boundary conditions. The plate’s cross-sections obtained in the simulations compared with the 

experimental result for each test are presented. 

Fig. A8-1. Plate’s cross-sections, test 03_2 (0.3 bar) 

Fig. A8-2. Plate’s cross-sections, test 03_3 (0.3 bar) 

Fig. A8-3. Plate’s cross-sections, test 03_4 (0.3 bar) 

Fig. A8-4. Plate’s cross-sections, test 03_4 (0.3 bar) 
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Fig. A8-5. Plate’s cross-sections, test 04_1 (0.4 bar) 

Fig. A8-6. Plate’s cross-sections, test 05_2 (0.5 bar) 

Fig. A8-7. Plate’s cross-sections, test 05_3 (0.5 bar) 

Fig. A8-8. Plate’s cross-sections, test 05_3 (0.5 bar) 

Fig. A8-9. Plate’s cross-sections, test 06_0 (0.6 bar) 
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Fig. A8-10. Plate’s cross-sections, test 06_1 (0.6 bar) 

Fig. A8-11. Plate’s cross-sections, test 06_2 (0.6 bar) 

Fig. A8-12. Plate’s cross-sections, test 06_3 (0.6 bar) 

Fig. A8-13. Plate’s cross-sections, test 07_1 (0.7 bar) 

Fig. A8-14. Plate’s cross-sections, test 07_2 (0.7 bar) 
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Fig. A8-15. Plate’s cross-sections, test 07_4 (0.7 bar) 
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Analyse visco-plastique de l’endommagement 
des plaques et coques soumises aux impacts

Le travail concerne le comportement des plaques et coques soumises à des charges 
dynamiques dues à des explosions des mélanges gazeux. Des problèmes mécaniques 
d’apparition des fissures et d’endommagement ductile sont analysés. En introduction, la 
revue de la littérature a été présentée ainsi que les théories actuellement les plus souvent 
utilisées dans ce domaine. Une brève description des outils numériques qui ont servi dans 
l’étude a été également donnée. Les essais expérimentaux et les résultats des mesures ont été 
discutés dans la deuxième partie du mémoire. Ils ont permis d’identifier les paramètres 
matériels du modèle constitutif viscoplastique et d’endommagement nécessaires pour mener 
une analyse numérique du comportement des plaques, de faire la vérification des 
nombreuses simulations discutées à la fin du travail. Dans les conclusions, est présenté le 
bilan des modélisations en exposant surtout celles qui ont conduit à de meilleurs résultats. 
L’auteur discute les hypothèses utilisées, les limitations du modèle et esquisse des 
perspectives et l’évolution possible à l’avenir. 

mots-clés : dynamique des plaques, endommagement, fissuration, lois de comportement 

Viscoplastic damage analysis of plate-shell structures 
subjected to impact loading

The work presents the investigation in the response of plate-shell structures subjected to 
impact loadings (gas mixture explosions). This phenomenon is studied in the context of its 
mechanical aspects, mainly the ductile fracture prediction. The work starts with the literature 
review and the description of theories, which are nowadays the most popular in the damage 
and fracture modelling. After selecting the theoretical models and the numerical tools for the 
further analysis, the detailed report of all realized experimental tests and their results is 
presented. Then, for the assumed constitutive and damage laws, the identification of 
material and fracture criteria parameters is realized. Finally, the numerical simulations are 
performed and their results, verified by the experiments, are summarized and commented. 
The work finishes with the conclusions, where the best approaches (from those, which have 
been tested) are pointed, all assumptions or limitations used in the study are discussed and 
the objectives for the further research are indicated. 
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