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in Belfort, Ms Cindy Cappelle, Mr Cyril Meurie and Mr Frédérick Zann for
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Chapter 1

Introduction

This dissertation is the final report of the works performed during my PhD

studies. The studies were a part of the collaboration between the Univer-

sity of Technology of Belfort-Montbéliard (UTBM) and the University of

Science and Technology in Krakow (UTS-AGH). It took the form of PhD

”Cotutelle” scholarship.

The subject of the thesis lies within the scope of the project ”Intelligent

Vehicles and their integration in the city of the future”, led by the Systems

and Transportation laboratory of the University of Technology of Belfort-

Montbeliard, and supported by the Regional Council of Franche Comté.

The project is also a part of a program supported in the framework of

Contrat Projet Etat Région (CPER). The final objective of this project is

to ensure a vehicle autonomous navigation in an urban environment.

The motivation for research and development of a system that permits

an autonomous navigation in urban areas results mainly from safety im-

provement, comfort and economic aspects. Passive safety systems such as

safety belts, air bags, crumple zone or pedestrian protection systems reduce

the rate of death in accidents. A further improvement is possible if active

safety systems, like collision avoidance, pre-crash or active cruise control

are used.

The autonomous navigation of a vehicle can be divided into three main

parts. The first one is the perception of the environment. This includes

determining the traversable areas like roads or lanes, obstacle detection,

tracking of dynamic objects, recognition of horizontal and vertical road

signs. The second part consists of localizing the vehicle in its environment.

The third part is path planning of vehicle displacements, while avoiding

1



2 CHAPTER 1. INTRODUCTION

obstacles and collisions with dynamic and static objects.

Autonomous navigation in urban areas is, however, a long term goal.

The intermediate goal is to develop Advanced Driver Assistance Systems,

which are a group of systems that help a driver in its driving process.

This thesis concerns in particular the perception problem of the dynamic

objects in the vehicle environment by using several sensors. This is a core

part of an automatic navigation system. The goal is to detect and track

dynamic objects like cars or pedestrians, and to locate them relatively to

the instrumented vehicle. The estimates of objects states are an entry data

of path planning and collision avoidance algorithms.

Multi-sensor based environment perception points out several research

subjects: object representation, data association, and tracking. Object rep-

resentation is an important part of the tracking process. It is important to

find balance between precision and simplicity of the representation model.

Very precise models can increase the computation complexity of the whole

system since methods of the other stages should be adapted to the repre-

sentation model. Data association is a crucial part of a perception system

because it decides which observations originate from which objects. Wrong

association leads to erroneous objects state estimation. Tracking, often

called also filtering, is the process of recursive estimation of objects states

having access to noisy measurements.

Our contribution concerns the object representation, data association

and tracking stages. We introduce an Oriented Bounding Box (OBB) rep-

resentation model and an extraction method enriched by an Inter-Rays un-

certainty and a Fixed Size assumption. We propose two laser sensors fusion

methods, which increase the tracking precision, especially for far objects.

Concerning data association, we present a data association method based on

the Nearest-Neighbour principle adapted to the OBB object representation

model, which provides correct results for coalescing objects. A laser points

clustering method fusing laser data with stereovision is also proposed. It

allows to reliably separate ambiguous laser points clustering situations.

The development and tests of the presented work are carried out using

two experimental platforms. The first one consists of a simulator that allows

to generate scenarios using different 3D models. The scenarios consist of

creating dynamic environments in which an instrumented vehicle evolves.

The simulator allows hence to acquire data from different sensors, which are

simulated with a flexible manner in terms of their position on the vehicle

and their characteristics. The second experimental platform consists of an

automated electrical vehicle, equipped with several sensors (cameras, laser
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scanners, GPS-RTK) and communication interfaces.

The report is organized in the following manner. In chapter 2, a state

of the art concerning laser points clustering, data association, object track-

ing, and fusion methods is presented. Chapter 3 gives the thesis statement.

Chapter 4 introduces the two experimental platforms, with a detailed de-

scription of the simulator. Chapter 5 describes and evaluates an Oriented

Bounding Box object representation model and a two laser scanner based

tracking fusion method. This chapter presents two paradigms (Inter-Rays

uncertainty and Fixed Size assumption), which are used to improve object

size and position estimation. Chapter 6 presents a data association method

for coalescing objects and a laser points clustering method using stereovi-

sion. Chapter 7 concludes the report and gives several perspectives and new

ideas to exploit.





Chapter 2

State of the art

2.1 Laser data points clustering

In this section the problem of laser scanner data points clustering is dis-

cussed. Each scan of the scene provides a set of consecutive points (see

Figure 2.1). Each points is obtained by the laser ray measurement, which

has an orientation angle θ relatively to the sensor coordinate system. Each

data point pi is defined in polar coordinates by a distance and an angle

(ρi, θi). The point pi can be expressed with its Cartesian coordinates (xi, yi).

Each laser scanner, is characterized by geometrical parameters such as the

angular resolutions ∆θ and the angular field of view. This two parameters

indicate the number of measurement points that can be obtained in one

scan.

The uncertainty of the measurements is described by two errors: the

systematic error and statistical error. The first one does not play an impor-

tant role in the process of clustering since it has the same value for all points

in the scan. The second error, which is assumed to be a white noise with

a normal distribution N (0, σρ), is taken into consideration in clustering or

line fitting algorithms. The angle coordinate θ also undergoes variations,

but its standard deviation is never provided by the laser scanners manufac-

turers. Majority of the algorithms treating laser scanner data assumes that

the angular information is not corrupted by the noise, and thus σθ = 0.

The aim of clustering methods is to classify data into groups (clusters).

The taxonomy and description of general clustering methods can be found

in [38].

In the case of laser scanner data, however, the classical clustering meth-

5



6 CHAPTER 2. STATE OF THE ART

Figure 2.1: Laser scan.

ods do not give good results [40]. This is due to the special characteristics

of laser scan data. The laser points do not concentrate around a cluster

center, they are distributed along detected surfaces. Thus, methods, which

are based on distance to center criterion, are not suitable for laser scanner

data clustering. Methods that partition data into a known number of clus-

ters cannot be used either. The number of detected objects is not provided

when observing dynamic environment. In the laser data clustering, differ-

ent metrics can be used. The Euclidean and Mahalanobis distances are the

most popular ones.

The laser data clustering methods can be divided into two general classes:

Point Distance based (PD) and Kalman Filter based (KF) [60].

2.1.1 Point Distance based methods

The Euclidean distance between two points pi (xi, yi) and pj (xj , yj) in the

cartesian coordinate system is defined as:

d(pi, pj) =
√

(xi + xj)2 + (yi + yj)2 (2.1)

.

In the polar coordinate system, the Euclidian distance between pi (ρi, θi)

and pj (ρj, θj) is expressed as:

d(pi, pj) =
√

ρ2
i + ρ2

j − 2ρiρjcos∆θ (2.2)

where ∆θ is the difference of the angular coordinates between the points pi

and pj.
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A simple approach consists in comparing the distance between points

and a threshold dTh [54, 59]. Two points pi and pj belong to the same

cluster when d(pi, pj) < dTh.

Another approach assumes that each cluster represents one surface.

Thus, the distance is calculated only for consecutive points, and a clus-

ter can be viewed as a segment. The clustering rule can be expressed as

follows: if d(pi, pi+1) < dTh, then the consecutive points pi and pi+1 belong

to the same segment, otherwise, two consecutive segments are considered.

There are different methods for defining the distance threshold dTh. The

most simple method is to set the distance threshold to a constant value.

Other methods determine adaptively the distance threshold. The threshold

is calculated separately of each pair of points. Using different geometrical

relations between points, segments and the sensor. In [49], the following

distance threshold is proposed :

dTh =

∣

∣

∣

∣

ρi − ρi+1

ρi + ρi+1

∣

∣

∣

∣

(2.3)

In this method, the threshold calculation takes into account the distance

between detected surfaces and the sensor. The further the surfaces are the

more difficult it becomes to separate segments.

In [21], the distance threshold is defined as follows (see Figure 2.2):

dTh = C0 + C1min(ρi, ρi+1) (2.4)

where C1 =
√

2(1 − cos ∆θ) and C0 is a constant parameter that reflects

the sensor noise, and which is set usually as C0 = 3σρ. σρ is the sensor

range uncertainty. As the former method, this technique takes into account

the distance between the detected surfaces and the sensor, but it takes also

into account the angular resolution, expressed by the parameter C1.

In [65], and basing on the previous definition, the authors propose a

method, which considers the surface orientation angle. An introduced pa-

rameter β allows to define a maximal surface relative to the laser rays in-

clination (see Figure 2.3). The distance threshold is determined as:

dTh = C0 +
C1min(ρi, ρi+1)

cot(β) cos(∆θ
2

) − sin(∆θ
2

)
(2.5)

The tuning of the parameter β is very important. A big value for this

parameter will cause a clustering with two separate surfaces in one cluster.

A small value will have the contrary effect, i.e., one surface will be detected

as two separate ones. Typically, the parameter β is set to 60◦.
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Figure 2.2: Illustration of the segmentation process presented in [21].

Figure 2.3: Illustration of the segmentation process presented in [65].

Anther method taking into account the surface inclination is presented

in [17]. In this method, the distance threshold is expressed as:

dTh = ρi
sin(∆θ)

sin(λ − θ)
+ σρ (2.6)

where λ is the surface orientation for which the laser scanner cannot obtain

correct readout due to the light reflections (see Figure 2.4). In [17], the

parameter λ is set to 10◦. In [40], it is proposed to set it to 25◦.
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Figure 2.4: Illustration of the segmentation process presented in [17].

2.1.2 Kalman-Filter based methods

These methods detect the break point in terms of stochastic consideration.

The position of the consecutive points of a segment is described by a dy-

namic process, governed by discrete-time stochastic difference equations:

xt+1 = F (xt), vt (2.7)

pt+1 = H(xt), wt (2.8)

where x is the process state, p is an observation, v is the process noise, w

is the observation noise. The linearity of the functions F and H influences

the type of the filter to be used. The algorithms are based on the Kalman

Filter, which will be discussed in more details in section 2.3.1.

All algorithms of this group have the same form:

Repeat for t = 1..N , where N is the number of laser points of a segment,

the following:

1. Initialise the filter x = p0, P = P0, where pi is the ith point of the

segment and P is covariance matrix of the state estimation.

2. Calculate the filter prediction equations

3. Do the gating for point pt. If the point is outside the gate, extract the

break point and reinitialize the filter x = p0, P = P0. Else, Perform the

update stage and go to the step 2.

The point is considered to be inside the gate (in step 3.) if the condi-

tion p̃2
t S

−1p̃t ≤ dTh is met. p̃ is the point measurement residual, S−1 is
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the measurement residual covariance and dTh defines the threshold of the

validation gate based on the sensor range uncertainty.

In [67], two Extended Kalman Filters (EKF) based approach is proposed

to detect breakpoints. The authors use a non-linear dynamic system, which

uses the line model expressed in the polar coordinates.

φt+1 = φt + ∆θ (2.9)

ρt+1 =
sin(φt)

sin(φt + ∆θ)
ρt (2.10)

xt = [ρt φt]
T (2.11)

where φt is the angle between the line segment and the ray t and ρt is the

length of the ray t, i.e., the distance between the sensor and the point pt

created by the ray t.

In this approach, the first filter, called ”flexible” EKF, serves to initial-

ize new segments, estimate the initial orientation for them and search the

clutter. The second one, called ”strict” EKF, allows following each initiated

segment very precisely, estimating orientation of the segment and finding

discontinuities.

In [17], a linear dynamic process is proposed. It is expressed by the

following equations :

ρt+1 = ρt + ∆θ
dρt

dθ
(2.12)

drt+1

dθ
=

drt

dθ
(2.13)

xt = [ρt
drt

dθ
]T (2.14)

Adams [2] proposes another method based on an EKF. In addition to the

correct separation of planar surfaces, the proposed algorithm is suited also

to detect surfaces, which ”smoothly” deviate from planarity. The principle

of the method is based on the calculation of a validity region, provided

by the spatial gradient considering points being previously clustered as a

segment.

2.1.3 Conclusion on laser data points clustering

In accordance to object representation in case of clustering, the planar sur-

face assumption should be relaxed. Most algorithms presented in the litera-

ture assume that detected surfaces are planar. This is a common feature for
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Point distance based and KF-based methods. This implies the definition of

the distance threshold. The EKF-based breakpoint detection algorithm pre-

sented in [2] is not based on planar surface assumption. Nevertheless, this

approach is not suitable for dynamic objects clustering. This is due to the

fact that the algorithm separates correctly only surfaces, which ”smoothly”

deviate from planarity, what is not always the case in road environments.

In addition, these approaches are not resistant to erroneous laser distance

readouts such as missing or wrong distance measurement of one or more of

the rays. This is due to the fact that only consecutive rays points create a

single surface. By introducing 3D information from stereovision, we propose

in this thesis a method that allows to relax the planar surface assumption.

In addition, it is robust and provides correct clustering in the case of miss-

ing or wrong distance measurement of one or more of the rays. Indeed, the

method does not force that only consecutive points can belong to the same

surface.

2.2 Objects representation

2.2.1 Point based representation

Object representation is an important part of tracking systems. The object

representation model expresses object characteristics that are used in the

tracking process. The most basic solution is point based representation. An

object state consists of position and kinematic characteristics such as veloc-

ity and acceleration. This kind of model is suitable for tracking objects for

which the size is punctual from the observer point of view, or may be omit-

ted in the tracking process. Radar based aircrafts tracking is an example

of the first case [9, 10, 25, 26]. In [16] and [15], the authors use the point

based representation model for road obstacle detection. The constrained

environments such as highways allow introducing more assumptions about

objects, and thus, the point based model representation can be used.

2.2.2 Feature based representation

The vicinity of obstacles and objects to be tracked implies more detailed

object representation. In addition to the object position, the size and shape

of the objects must be also taken into account. For obstacle detection and

mapping, linear segments are the most popular way for representing objects

in an environment [75]. They are especially used for indoor applications
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[68, 5]. Line segments extracted for dynamic objects lead in most cases to

represent them as rectangles. A circle representation is not suitable consid-

ering a road environment since there are not many dynamic objects having

circular planar shape. In addition, a rectangular form can approximate the

object shape with an acceptable accuracy.

Lines, circles and ellipses are special cases of the Conic model. The

general equation for all the three representations can be formulated as:

ax2 + 2bxy + cy2 + 2dx + 2ey + f = 0 (2.15)

By considering a = b = c = 0, the line equation is obtained. The circle

equation is obtained with a = c and b = 0. The ellipse equation is defined

when (b2 − ac) < 0.

2.2.3 Rectangle based representation

Rectangle based representation model is most common for dynamic objects

tracking. It provides good approximation of real object size, especially for

road vehicles since their planar shape is generally rectangular. Another im-

portant aspect of this representation model is its compactness. Indeed, the

model has a small number of parameters characterizing the representation.

Most of the existing approaches of rectangle extraction are based on line

fitting algorithm. The first step of the rectangle extraction algorithm is

to fit line segments to laser data points. This stage can be prefaced by a

clustering algorithm, but it is not always necessary.

Line fitting algorithm

The line fitting algorithm is used to approximate the original run of the

scan points. As a result, parameters defining lines and their co-variances

are obtained. The cartesian form of a line equation is defined as follows:

ax + by + c = 0 (2.16)

The equivalent polar form is given as follows:

ρ cos(θ − α) − r = 0 (2.17)

where α and r are the parameters of the line model.

One of the most popular methods used to fit the mathematical model of

a line to data is linear regression. This method solves the minimum error
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along the vertical axis. The method used to fit lines to laser data points is

presented in [75, 68].

In [5], a weighted total-linear regression method is proposed. The total-

line regression minimizes the mean square error calculated as a distance from

the points to the line. The method finds the line equation and covariance

matrix in the polar coordinates system. Data points are described by their

position and range uncertainty. The angular uncertainty is neglected. The

point weights w express the points uncertainty. The solution is expressed

as follows :

tan(2α) =

2
∑

wi

∑

i<

∑

j

wiwjρiρj sin(θi + θj) +
1

∑

wi

∑

(wi −
∑

wj)ρ
2
i sin 2θi

2
∑

wi

∑

i<

∑

j

wiwjρiρj cos(θi + θj) +
1

∑

(wi
−

∑

wj)wiρ
2
i cos 2θi

(2.18)

r =

∑

wiρicos(θi − α)
∑

wi
(2.19)

Less computationally complex, the equivalent cartesian form is defined

as follows:

tan(2α) =
−2

∑

wi(ȳw − yi)(x̄w − xi)
∑

wi[(ȳw − yi)2 − (x̄w − xi)2]
(2.20)

r = x̄w cos α + ȳw sin α (2.21)

where x̄w = (
∑

wi

∑

wiρi cos θi)
−1 and ȳw = (

∑

wi

∑

wiρi sin θi)
−1 are

weighted means.

The co-variance equations are:

σ2
α =

1

(D2 + N2)2

∑

w2
i (A − B)2σ2

ρi
(2.22)

where A = N(x̄w cos θi − ȳw sin θi − ρi cos 2θi)

and B = D(x̄w sin θi + ȳw cos θi − ρi sin 2θi). D and N are the denominator

and the numerator of the right hand side of the equation (5.8), respectively.

σ2
r =

∑

[
wi

∑

wj

cos(θi − α) +
∂α

∂ρi

(ȳw cos α − x̄w sin α)]2σ2
ρi

(2.23)

σαr =
∑ ∂α∂r

∂Pi∂Pi
σ2

ρi
(2.24)
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where Pi = (ρi, θi) is a point measurement.

The detailed equations with derivation can be found in [4].

In [24], Duda proposes an Iterative End-Point Fit method (IEPF), which

is a recursive algorithm. It starts by finding the line which crosses the first

and the last points in a given cluster. In the next step, the point with the

maximum distance to the line is considered to test the following rule. If the

distance is greater that a certain threshold, then the point divides the line

segment into two clusters, and the first step is performed for each of the

clusters. To obtain the line approximation, the line fitting algorithm has to

be executed for separated segments.

Other authors use the Split-and-Merge (SM) algorithm [57], which is

very similar to the IEPF method, described above. The difference concerns

the line creation. Instead of taking only the first and last points, the line

fitting algorithm is performed for all points. The SM method is very popular

and is the fastest compared with the other methods (see [56]). Furthermore,

the method returns line approximations.

In [5], the authors present a line fitting algorithm, which is based on

Hough Transform [37]. All measurement points are transformed into a line

parameter domain (ρ, θ). This leads to a clustering process of n points. The

center of each cluster defines one line segment. The consecutive configura-

tion of laser data points for each surface allows reducing the computation

complexity. The drawback of this method is its implementation complexity,

and the fact that the line fitting algorithm has to be performed for line

approximation.

Another approach is based on an incremental algorithm, which is called

Line-Tracking [72]. The algorithm starts by constructing a line passing by

the two first points. Then, a new point is added to the current line model.

In the next step, the line parameters are recomputed. If the parameters

satisfy the line condition, the next point is considered and the algorithm

continues. Otherwise, the line is returned and the algorithm starts with the

next two points. Simplicity is the advantage of the method, as well as the

fact that the line approximation is performed parallelly. This means that

the method provides directly fitted lines.

Oriented rectangle based representation

In [74], an oriented rectangle model is used to represent dynamic objects.

Extraction of rectangles consists of two stages: modified least-square fit

and corner fitting. The authors propose refinements to the least-square fit
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method to reduce problems with objects having rounded corners. The high

point density of rounded corners causes the line to rotate away from more

distant points. The modified least-square fit algorithm consists of three

steps. The first one performs an unweighted line fitting for all points in the

segment and sets the weights of the points basing on their separation along

the line. The second step achieves a trial weight fit using 80% of the points

having the best unweighted fit. This allows detecting outlier points. The

third step consists of the final weight fit.

The fitted line serves to corner fitting. The points are divided into two

sets. The division is defined by the ”knuckle” point, which is the farthest

point from the fitted line. The geometrically longer part is used to determine

the object direction by line fitting. Next, the position of the shorter line

is found basing on the assumption that there is right angle between the

two sides.It is done by taking the mean position along the longer side. In

the last stage, the goodness of the fit is tested. This is achieved by doing

unconstrained linear fit on the short side and checking the obtained angle

between the two sides. The angle must not differ more that 50 degrees from

the right angle to be considered as a good fit.

In [70], an Oriented Bound Box (OBB) object representation is proposed.

The first step of the proposed algorithm consists of the vectorization of data

points in a given cluster. The principal idea of this operation is similar to

the IEPF method, described in section 2.2.3. The vectorization process

is iterative and starts by describing the vector by the first and the last

points in the cluster. The vector is subdivided until the maximum distance

between every scan point and the current vector is smaller than a given

threshold. This step is repeated for every resulting vector. The longest

vector indicates the orientation angle of the OBB. After the extraction of

the OBB, the quality of the extracted primitive is computed. The quality

is expressed by the mean and divergency of the distance of the scan point

to the closest side of the box. The advantage of the method is its low

computational complexity.

An oriented rectangle representation is proposed in [59]. The tracking

system is based on Particle Filter (PF). In the PF framework, the obser-

vation stage of the filtering consists of computing the likelihood for the

measurement and each of the particles. The separate points are not used to

create a measurement primitive. They are used to compute the likelihood of

the laser points set given the predicted particle. The measurement likelihood

is a sum of all points’ likelihood. The point likelihood is a function of the

rays range uncertainty and a cost, which depends on the rectangle relative
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point position. The advantage of this approach is that one algorithm is used

for representation, data association and tracking. Its drawback is that two

targets may in principle merge into one. Rao-Blackwellized PF is used in

order to reduce the number of parameters being estimated by Monte Carlo

sampling [59].Nevertheless, this solution is more computationally complex

than KF based methods.It is shown that PF gives better accuracy than the

other methods, but the accuracy is positively related with the number of

particles.

2.2.4 Conclusion on object representation

The point based object representation model can be used with success in

tracking of distant objects. It is possible to use this model since the size

of the tracked objects is small relative to the distance. This model, how-

ever, is not precise enough for applications in road environments, except

from well structured environments such as highways, where the objects ma-

neuvers and positions are limited. In such environments, when taking into

consideration autonomous cruise control system (ACC), the representation

model with limited geometrical form precision such as point, ellipse or Axis

Aligned Bounding Box (AABB) may be acceptable. Nonetheless, in con-

strained environments like urban road, where there are less constraints on

objects movements, position and orientation, more precision in terms of

object geometry approximation models is necessary. In the literature, the

oriented rectangles are used [65]. The drawback of the existing methods

is that the rectangle representing an object is obtained by line and corner

fitting. This approach assumes that the objects are constructed by planar

surfaces. In [74], a modified line fitting algorithm is proposed so it can cope

with rounded corners. It is achieved by omitting some points. The num-

ber of points to be omitted is supposed constant during the tracking. This

hypothesis does not allow giving always satisfactory results for all kinds of

objects. The OBB based representation model is proposed in [70]. The

drawback of the method is that it is based on a planar surface assumption.

The orientation angle found by taking the longest extracted vector, repre-

senting the surface, may cause also a problem. The theorem proved in [27]

says: The rectangle of minimum area enclosing a convex polygon has a side

collinear with one of the edges of the polygon. Thus, taking the longest side

of the convex polygon does not guarantee the optimal OBB fit. Figure 2.5

presents the example where taking the longest side of the convex polygon

results in bad OBB alignement.
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Figure 2.5: Comparison of the longest vector orientation OBB with mini-
mum area OBB.

In the literature, there exists no approach, which takes into account the

fact that the extreme points of the detected object do not represent the

real object edges. Thus, Inter-Rays uncertainty is proposed in this thesis

to introduce a parameter, which is used in size estimation and uncertainty

computation.

2.3 Tracking

The aim of the object tracking is estimation of the current object state using

noisy measurement of the objects state. The process of state transitions is

a stochastic process having Markov Chain characteristics. It means that all

state transitions are probabilistic and a state in time t depends only on a

state in time t − 1.

p(xt|x1, x2, ..., xt−1) = p(xt|xt−1) (2.25)

The first two stochastic filters were presented independently by Wiener

[79, 78] and Kolmogorov [47]. The first one, is continuous-time filter and

the second one is discrete-time filter. Both solutions are not recursive, and

thus, cannot be used in objects tracking.

Kalman filter (KF) is the most popular recursive filter. Its applica-

bility is limited, however, to linear dynamic systems with Gaussian noise.

The modification of KF like Extended Kalman Filter (EKF) or Unscented

Kalman Filter (UKF) can be used in case of non-linear systems. The sequen-
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tial Monte Carlo method allows to use other types of probability functions

to describe the uncertainty.

2.3.1 Kalman Filter

The Kalman Filter [43] is an optimal, in terms of Minimum Mean Square

Error (MMSE) criterion, recursive filter for a linear dynamic system driven

by white noise. The discrete-time linear dynamic system is described by

the two equations: dynamic equation and measurement equation. The first

one describes the model of state transition at time t to t + 1:

xt+1 = Ftxt + Ctut + Gtvt (2.26)

Ft is a state transition matrix. Ct is an input matrix applied to the known

input vector ut. vt is a Gaussian zero-mean process noise with a covariance

matrix Qt and Gt is the transition matrix of the process noise vt.

The measurement equation is expressed as follows:

zt = Htxt + wt (2.27)

where zt is an observation of the state xt at time t, Ht is an observation

matrix and wt is a white measurement noise with a covariance matrix Rt.

The two noise sequences are assumed mutually independent.

E
[

viv
T
j

]

= δi,jQi (2.28)

E
[

wiw
T
j

]

= δi,jRi (2.29)

At time t = 0,

x0 ≈ N (x̂0, P0|0) (2.30)

The filtering algorithm consists of two stages: prediction and update.

Prediction stage uses the previous iteration state estimation to produce a

priori state estimation at the current time. A priori state estimation does

not include information from measurements. In the update stage, the state

estimation is improved by incorporating measurements information, and a

posteriori estimation is obtained. The update state formula is governed by a

Kalman gain. The Kalman gain is calculated basing on the error covariance

matrices of the a priori estimation and measurement.

The algorithm equations are expressed as follows:
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p(xt−1|z1:t−1) = N (xt−1; x̂t−1|t−1, Pt−1|t−1) (2.31)

p(xt|z1:t−1) = N (xt; x̂t|t−1, Pt|t−1) (2.32)

p(xt|z1:t) = N (xt; x̂t|t, Pt|t) (2.33)

with :

x̂t|t−1 = Ft−1x̂t−1|t−1 + Ct−1ut−1 (2.34)

Pt|t−1 = Ft−1Pt−1|t−1F
T
t−1 + Gt−1Qt−1G

T
t−1 (2.35)

x̂t|t−1 and Pt|t−1 are respectively the state prediction and the covariance

matrix of the prediction error.

x̂t|t = x̂t|t−1 + Ktνt (2.36)

Pt|t = Pt|t−1 − KtStK
T
t (2.37)

x̂t|t and Pt|t are respectively the state estimation and the covariance matrix

of the estimation error. Kt is the Kalman gain, defined at time t as follows:

Kt = Pt|t−1H
T
t

[

HtPt|t−1H
T
t + Rt

]−1
(2.38)

νt is the innovation, i.e. the difference between the measurement and the

prediction, given by:

νt = zt − Htx̂t|t−1 (2.39)

and the covariance matrix is:

St = HtPt|t−1H
T
t + Rt (2.40)

In the case where the transition function or measurement function are

non-linear or if the noises vt or wt are not gaussian, determinist non optimal

filters, based on a linear Kalman filter algorithm, are usually used. The

Extended Kalman Filter (EKF) is based on a local linearisation of the non-

linear transition and measurement functions. The Unscented Kalman Filter

(UKF) uses a deterministic sampling technique known as the unscented

transform (UT) to pick a minimal set of sample points (called sigma points)

around the mean. These sigma points are then propagated through the non-

linear functions, from which the mean and covariance of the estimate are

then recovered. The result is a filter, which captures more accurately the

true mean and covariance.

The two following sections describe the EKF and the UKF.
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2.3.2 Extended Kalman Filter (EKF)

Let us denote the non-linear transition and observation models by:

xt+1 = ft(xt, vt) (2.41)

zt = ht(xt) + wt (2.42)

with vt and wt are respectively the process and measurement noises.

The function f can be used to compute the predicted state from the

previous estimate and similarly the function h can be used to compute the

predicted measurement from the predicted state. However, f and h cannot

be applied to the covariance directly. Instead a matrix of partial derivatives

(the Jacobian) is computed.

At each time-step the Jacobian is evaluated with current predicted states.

These matrices can be used in the Kalman filter equations. This process

essentially linearizes the non-linear function around the current estimate.

The EKF makes the hypothesis that the a posteriori probability density

function p(xt|z1:t), that is not gaussian, can be approximated by a Gaussian

density with the following recurrences:

p(xt−1|z1:t−1) ≈ N (xt−1; x̂t−1|t−1, Pt−1|t−1) (2.43)

p(xt|z1:t−1) ≈ N (xt; x̂t|t−1, Pt|t−1) (2.44)

p(xt|z1:t) ≈ N (xt; x̂t|t, Pt|t) (2.45)

with:

x̂t|t−1 = ft−1x̂t−1|t−1 (2.46)

Pt|t−1 = F̂t−1Pt−1|t−1F̂
T
t−1 + Gt−1Qt−1G

T
t−1 (2.47)

x̂t|t = x̂t|t−1 + Kt

[

zt − ht(x̂t|t−1)
]

(2.48)

Pt|t = Pt|t−1 − KtStK
T
t (2.49)

Kt = Pt|t−1H
T
t

[

HtPt|t−1H
T
t + Rt

]−1
(2.50)

F̂t and Ĥt are the local linearisation of the functions ft and ht respectively

around the estimate and the prediction:

F̂t =
∂ft

dxt

∣

∣

∣

∣

xt=xt|t

(2.51)

Ĥt =
∂ht

dxt

∣

∣

∣

∣

xt=x̂t|t

(2.52)
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2.3.3 Unscented Kalman Filter (UKF)

The Unscented Kalman Filter, proposed in [41], approximates an a posteri-

ori probability density by a Gaussian function as for EKF. But instead of

approximating the non-linear transition and measurement functions, UKF

approximates the probability density by a set of weighted points that are

chosen deterministically. These points are transformed by the transition

and measurement non-linear functions to obtain the new probability den-

sity. This approximation is called the Unscented Transform.

Unscented Transform

The unscented transform is a method that permits to calculate the statistics

of a random variable transformed by a non-linear function notation [76, 42].

Let us consider a non-linear system, defined as:

y = f(x) (2.53)

with x is a random variable with mean x and covariance Pxx, and y is a

random variable whose statistics are to be determined.

A set of points is choosen deterministically so that the mean and the

covariance are respectively x and Pxx. The non-linear function f is applied

on each point to obtain a set of transformed points of mean y and covariance

Pyy.

The probability density of a random variable x of dimension n, with

mean x and covariance Pxx, is approximated by 2n + 1 weighted points,

given by:

X0 = x W0 = κ
n+κ

Xi = x +
(

√

(n + κ) Pxx

)

i
Wi = 1

2(n+κ)

Xi+n = x −
(

√

(n + κ) Pxx

)

i
Wi+n = 1

2(n+κ)

(2.54)

where κ ∈ ℜ,
(

√

(n + κ) Pxx

)

i
is the i-th line or column of the square root

matrix of (n + κ) Pxx and Wi is the weight associated to the i-th point.

The procedure of the transformation is as follows:

1. Transform each point Xi by the non-linear function f to obtain the

set of transformed points:

Yi = f(Xi) (2.55)
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2. The mean y is given by the weighted mean of the transformed points

y =

2n
∑

i=0

WiYi (2.56)

3. The covariance matrix Pyy is given by :

Pyy =

2n
∑

i=0

Wi(Yi − y)(Yi − y)T (2.57)

Unscented Kalman Filter Algorithm

Let us consider the transition and measurement models, given by:

xt+1 = ft(xt, vt) (2.58)

zt = ht(xt) + wt (2.59)

where vt and wt are respectively the noises on the transition and measure-

ment processes, that are supposed to be mutually independent and zero

mean Gaussian white noise. Their covariance matrices are respectively:

E
[

viv
T
j

]

= δi,jQi (2.60)

E
[

wiw
T
j

]

= δi,jRi (2.61)

It is supposed that:

E
[

viv
T
j

]

= 0 ∀i, j (2.62)

Let us note:

X a =
[

(X x)T (X v)T
]

(2.63)

and

n = dim(xt) + dim(vt) (2.64)
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The UKF algorithm is as follows:

1. Computation of the points of approximation

X a
t−1 =

[

x̂a
t−1 x̂a

t−1 +
√

(n + κ)P a
t−1 x̂a

t−1 −
√

(n + κ)P a
t−1

]

(2.65)

with

x̂a
t−1 =

[

x̂T
t−1|t−1 0T

dim(vt−1)

]T
(2.66)

and

P a
t−1 =

(

Pt−1|t−1 0

0 Qt−1

)

(2.67)

2. Computation of the associated weights

To compute the associated weights, use the equation (2.54).

3. Prediction

X x
t|t−1 = ft−1(X x

t−1,X
v
t−1) (2.68)

x̂t|t−1 =
2n
∑

i=0

WiX
x
i,t|t−1 (2.69)

Pt|t−1 =

2n
∑

i=0

Wi(X
x
i,t|t−1 − x̂t|t−1)(X x

i,t|t−1 − x̂t|t−1)T (2.70)

Zt|t−1 = ht(X
x
t|t−1) (2.71)

ẑt|t−1 =

2n
∑

i=0

WiZ
x
i,t|t−1 (2.72)

4. Estimation

St = Pvtvt
= Rt +

2n
∑

i=0

Wi(Zi,t|t−1 − ẑt|t−1)(Zi,t|t−1 − ẑt|t−1)T (2.73)

Pxtzt
=

2n
∑

i=0

Wi(X
x
i,t|t−1 − x̂t|t−1)(Zx

i,t|t−1 − ẑt|t−1)T (2.74)

Kt = Pxtzt
S−1

t (2.75)

x̂t|t = x̂t|t−1 + Kt(zt − ẑt|t−1) (2.76)

Pt|t = Pt|t−1 − KtStKt (2.77)
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2.3.4 Particle Filter

Bayesian filtering provides a convenient framework for objects tracking due

to the weak assumptions on the state space model and the first order Markov

chain recursive properties. Monte Carlo methods and more specifically par-

ticle filters, based on Bayesian inference, have been extensively employed

for tracking problems [18, 31, 61]. Multi-modality, in particular, enables the

system to evolve in time with several hypotheses on the state in parallel.

This property is practical to corroborate or reject an eventual track after

several frames. Particle filters rely on Sequential Monte Carlo (SMC) meth-

ods. A large number of samples xi
k, i = 1...NS are drawn from the posterior

distribution p(xk|zk). It follows from the law of large numbers that:

p(xk|zk) ≈
NS
∑

i=1

wi
kδ(xk − xi

k) (2.78)

where wi
k are the weights, i.e.

∑

wi
k = 1, and δ(.) is the Kronecker delta

function. However, because it is often difficult to draw samples from the

posterior probability density function (pdf), an importance density q(.) is

used to generate the samples xi
k. It can be shown that [6]:

wi
k ≈ wi

k−1

p(zk|x
i
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
k−1, zk)

(2.79)

The choice of the importance density is crucial to obtain a good estimate

of the posterior pdf. It has been shown that the set of particles and asso-

ciated weights {xi
k, w

i
k} will eventually degenerate, i.e. most of the weights

will be carried by a small number of samples and a large number of samples,

will have negligible weight [69]. In such a case, and because the samples

are not drawn from the true posterior pdf, the degeneracy problem cannot

be avoided, and resampling of the set needs to be performed. Nevertheless,

the closer the importance density is from the true posterior density, the

slower the set {xi
k, w

i
k} will degenerate; a good choice of importance density

reduces the need for resampling.

2.4 Data association

Data association is a crucial part of all objects tracking systems. This

stage allows to correlate observation data obtained in a current time-step
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with existing objects thanks to their estimation from the previous time-

step. False data association leads to erroneous object state estimation. The

association algorithm serves to extract object measurement from the clutter

and to separate multiple objects.

Each tracked object state evolves according to a dynamic model used

in the filter. Thus, the prediction stage provides information, which can be

used to associate the observation with the tracks. A priori state estimate

and its covariance allow to define a validation region for each track. This

allows to reject measurements which cannot originate form the object. This

mechanism is not enough since very often, in a track validation gate, there

are more than one measurement. This is due to the clutter being the re-

sult of the sensor noise or to the presence of other objects measurements.

The second case takes place when the validation gates of different objects

intersect.

2.4.1 Nearest-Neighbour

The Nearest-Neighbour (NN) method associates the closest measurement

from all present in the validation gate of the track [9, 14]. Mahalanobis

distance d2
ij is used to calculate the distance between a measurement zi(t)

and the track measurement prediction ẑj(t). It is expressed as follows:

γ ≤ d2
ij = z̃ij(t)

T S−1
i z̃ij(t) (2.80)

where γ is a gate threshold, found from χ2 distribution, by using the con-

fidence interval of a n states of freedom (related to the dimension of the

measurement domain). z̃ij is the Euclidean distance between the track pre-

dicted measurement ẑi and the measurement ẑj . S is the innovation matrix

defined as:

St
i = Hi(t)Pi(t|t − 1)Hi(t)

T + R(t) (2.81)

The use of the innovation matrix allows to take into account the noise

of the transition dynamic system Hi(t) and measurement system R(t). The

measurement uncertainty is related to the sensor noise. The method is not

adapted to problems like existence of clutter in the sensory data or no object

detection. In this conditions, the NN method can give false association

results.
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2.4.2 PDA

The Probabilistic Data Association is suited for single track case. Instead of

considering only one measurement among the received ones and discard the

rest, the PDA method takes all validate measurements by using weighted a

mean [11]. The weights are calculated in real-time and reflect the measure-

ment origin uncertainty. The uncertainty is represented by the probability

obtained in the process of Bayesian inference. The PDA principles are

applicable to the task of data association in the form of recursive state es-

timator (tracker), called PDA Filter (PDAF). The PDAF is based on the

KF scheme. The algorithm assumes that there is only one track, which

is already initialized. The target uncertainty is represented by a normal

probability density function.

The process of association, executed in each filter iteration, starts by

creating a validation gate as in the case of the NN algorithm (equation

2.80). In this approach, the association events are mutually exclusive and

exhaustive for multiple validated measurements. Each event hi of m ones

represents the fact that measurement zi is a target originated, where m is

the number of validated measurements. There is also an additional event

h0, which represents the case where none of the measurements is a target

originated. Basing on the total probability theorem with regard to the

association event, a conditional mean of the state at time t is defined:

x̂(t|t) =

m(t)
∑

i=0

x̂i(t|t)βi(t) (2.82)

where x̂i(t|t) is the updated state conditioned on the event that validated

the measurement zi is correct and βi(t) is the conditional probability of that

event.

The conditional mean serves to provide the state estimation update

equation is defined as follows :

x̂(t|t) = x̂(t|t − 1)W (k)z̃(t) (2.83)

The combined innovation z̃(k) is a expressed as follows:

z̃(t) =

m(t)
∑

i=0

βi(t)z̃i(t) (2.84)

having residuals z̃i(t) = zi(t) − ẑi(t).
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The events probabilities are obtained by a normalization:

βi(t) =
β

′

i(t)
∑m

i=0 β
′

i(t)
(2.85)

where the H0 false detection event probability is given by:

β
′

0(t) = pm
F (1 − pD) (2.86)

where pF is the probability density of the false measurement, and pD is

the probability of the target detection. The other event probabilities are

expressed as follows:

β
′

i(t) =
pm−1

F pDe−
d2
ij (t)

2

(2π)M/2
√

|Si(t)|
(2.87)

where Si, d2
ij are the same as in equations (2.80) and (2.81).

The rest of the algorithm consists of using a standard Kalman Filter

equation with the modified update equation of covariance P . This modifi-

cation is intended to reflect the effect of uncertain correlation. For details,

one can refer to [11].

2.4.3 MHT

The Multi Hypothesis Tracking, first proposed in [62], is an approach which

can be used in the presence of multiple tracks. In addition to measurements

assigned to the existing tracks, it supports also track initialization [9]. The

principle of this approach consists in taking into account the most probable

hypotheses, where each new observation produces a new hypothesis. For a

new observation, three hypotheses are created. They express the following

cases: an observation is a false alarm, an observation is originating from an

existing track, an observation originates from a new object. The evaluation

of the association probabilities are computed by using track state estimation

with its covariance matrix and probability of associating a new observation

with an existing track. It is assumed that probability density functions are

Gaussians.

The constructed hypotheses create a tree graph. Edges of the graph

represent the hypothesis that a measurement i originates from a track j.

Thus, for each observation, at least, two edges are created (association to

an existing track and a new track initialization) (see Figure 2.6)∗. In the

figure 2.6 a square represents a measurement and a circle represents a track.

∗The figure is extracted from [62].
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Each line represents a possible associations of the measurement with the

tracks. Number of leaves (the bottom graph nodes) gives the number of

possible configurations to be tested.

Figure 2.6: Example of hypothesis tree graph for a given configuration of
targets and measurement. The figure is extracted from [62].

The computation complexity of this approach is exponential. Thus ex-

istence of many tracks and measurements implies long time calculation of

the algorithm. To reduce the complexity the regrouping of hypothesis is

proposed in [62]. The idea is to reduce the number of probabilities to be

calculated by treating separately the hypotheses which do not influence a

certain group of hypotheses. Another possibility is to reject the hypothesis

with low probability.

2.4.4 JPDA

The Joint Probabilistic Data Association is the evolution of PDA approach

to multi-track association, and can be seen as a particular case of MHT

approach which minimizes the number of hypotheses to be checked. This is

obtained by regrouping tracks into groups. Each such a group contains the

tracks with overlapping validation gates. The tracks from one group share

the same measurements. Each group is treated separately, and thus the

complexity can be reduced. The joint probability of association will be cal-

culated only for the tracks in the same group, what reduces the dimensions

of JPDA to the number of the tracks in the group. After first step of tracks

grouping, the hypothesis creation calculation takes place. Every hypothesis

represents a particular way the measurements can be associated with tracks
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from one group. It is assumed that each track generates one measurement,

which may not be detected, and each measurement corresponds to only one

track. The time reference (t) is omitted for simplicity. Next, probabilities

for each hypothesis are calculated by:

p′(hl) = p
(Nm−Nt+Nnd)
F (1 − pD)Nndp

(Nt−Nnd)
D gij · · · gmn (2.88)

where pF is the probability density for false returns. pD and (1 − pD) are

the probabilities of target detection and target missing, respectively. Nm is

the total number of measurements, Nt is the total number of targets, Nnd is

the number of not detected targets. gij is the probability density that the

measurement i originates from the target j. It is expressed as follows:

gij =
e−

d2
ij

2

(2π)M/2
√

|Si|
(2.89)

The number of multipliers gij is equal to Nt − Nnd.

The normalization finishes the computation of hypotheses probabilities,

similar as in the case of the PDA:

p(hl) =
p
′
(hl)

∑Nh

l=0 p
′

(hl)
(2.90)

where Nh is the total number of hypotheses.

The last step of the algorithm consists of computing the probability

of associating the ith measurement with the jth track. It is obtained by

calculating the sum of the probabilities of the hypotheses in which the event

occurs.

βi(t) =
∑

l∈Li

p(hl) (2.91)

where Li is a set of numbers of hypotheses, which include the event that

the ith measurement originates from the jth track.

After, the algorithm continues with the computation of the combined

innovations (equation 2.84) of the standard PDA.

2.4.5 Conclusion on data association techniques

The presented standard mulit-track association methods are not suitable

to the task of road environment tracking without modifications. The ba-

sic assumption in the probabilistic methods is that only one measurement

originates from a track. If we treat the raw data points as measurement
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and consider an OBB track model, it is clear that this assumption is bro-

ken. Even if this assumption was relaxed, the number of hypotheses to be

computed in the case of two close objects would be prohibitive for real-time

algorithm execution. Indeed, there are many laser data points treated as

measurements, even in presence one or two tracks. One can try to associate

the features (eg. line segments) to the tracks. However, the problem arises

when the sides of two close positioned objects are co-linear. The points

originating form the two surfaces would be clustered into one segment. In

the thesis the NN based association adapter to the OBB object represen-

tation model is proposed. The motivation for using NN principle was low

computational complexity. The size information of the object is used to

increase the robustness of not flexible NN approach.

2.5 Data fusion

The aim of data fusion is to combine data from many independent sources

in order to produce information more accurate and reliable than when us-

ing each input source separately. Input data may not only originate from

different sensors, but also from the same sensor at different moments. It is

also possible to use different experts conclusions made for the same data.

The advantage of sensor fusion over one sensor processing consists in redun-

dancy, diversity and complementarity between multiple sensors:

• One can talk about redundancy when there are multiple sensors mea-

suring the same entity. The measured quantity is often correlated,

while the uncertainty of used sensors is usually uncorrelated. Thus,

the sensors redundancy allows reducing the uncertainty.

• Sensors of different nature, which measure the same entity using dif-

ferent technologies, introduce sensor diversity. The spatial and time

diversity is obtained when sensors measure the same scene, but from

different locations and in different moments.

• Sensors observing subsets of the environment space provide comple-

mentary data. By the union of the subsets, broader view of the envi-

ronment may be obtained.

The fusion process can be categorized by the processing stage at which

fusion takes place:
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Low level fusion or data fusion integrates different sources raw data to

obtain data of the same form as an original signal, which is more

synthetic and contains more information.

Intermediate level fusion or feature level fusion combines various fea-

tures, extracted from different sources raw data or from the same raw

data. The objective is to obtain a uniform overall feature map.

High level fusion or decision fusion combines decisions or scores com-

ing from several experts. Hard fusion concerns combination of deci-

sions while soft fusion concerns score combination.

Fusion algorithms can be classified, depending on methods they use

[51], into four groups: estimation methods, inference methods, artificial

intelligence methods and classification methods. The two first groups of

methods are widely used in the context of road environment perception

systems.

Estimation methods provide a fused value by taking the weighted aver-

age of redundant information. These kinds of methods are used in real-time

processing of dynamic low-level data. These methods can be regrouped into

two groups: non-recursive and recursive methods. In the first group, there

are weighted average based and least squares based methods. The methods

of the second group consist in general of filters such as Kalman Filter and

Particle Filter. The most popular methods are based on Kalman Filter,

however, Particle Filter popularity is increasing.

Concerning inference methods, there are two main approaches, which are

based on Bayesian inference and Dempster-Shafer method. The Bayesian

inference based approach allows the information to be fused by applying

probability theory rules. By using Bayes theorem, probabilities of a pri-

ori null hypothesis, a posteriori hypothesis and conditional probability of

an observation given a hypothesis can be related. The a priori hypothesis

probability can be updated by using alternative hypotheses computed bas-

ing on observational evidence. The Dempster-Shafer (DS) theory introduces

the belief mass, which is assigned to each of possible events. From the mass

assignment, a probability interval for an event can be defined. The interval

is bounded by belief and plausibility. The DS approach allows supporting

the total ignorance about an event, what makes it more reliable than Bayes

approach in case of lack of information.
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2.5.1 Estimation methods

In the literature concerning environment perception, estimation methods

are predominant. There are several methodologies, which use KF as a tool

for data fusion and object tracking. KF based fusion methods can be divided

into two main groups: measurement fusion model and track-to-track fusion

model.

The main idea of the methods of the first group is to fuse the measure-

ments obtained from different sensors and to use fused measurements in the

filtering (see Figure 2.7).

Figure 2.7: Measurement fusion schema.

In this group, two fusion approaches are possible. The first one, called

measure merging fusion, is based on the idea of measurements merging

in one vector [33]. In this approach, a classical Kalman filtering is used,

except from the measurement model, where the measurement matrix H , the

measurement vector z and the measurement noise w, with its covariance

matrix R, are changed. The measurements z1
t , z2

t are merged into one

augmented observation vector [33]:

zt = [(z1
t )T (z2

t )T ] (2.92)

The measurement system matrix H becomes:

Ht = [(H1
t )T (H2

t )T ] (2.93)

and the measurement noise becomes:

wt = [(w1
t )T (w2

t )T ] (2.94)

The covariance matrix, under the assumption that sensors signals are inde-

pendent, is defined as:

Rt =

[

R1
t 0

0 R2
t

]

(2.95)
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where Ri
t is the covariance matrix of the ith sensor.

In the second approach, a fused measurement is obtained by the means

of a minimum mean square estimate, which combines sensors measurements

according to their uncertainty [80]. The measurements fusion equation is

expressed as follows:

zt = (z1
t ) + R1

t (R1
t + R2

t )−1((z2
t ) − (z1

t )) (2.96)

The covariance matrix of the fused measurement can be obtained by :

Rt = [(R1
t )−1(R2

t )−1]−1 (2.97)

The fused measurement is then used in a classical Kalman Filter algo-

rithm.

The two measurement fusion approaches are independent from the pro-

cess noise. They are functionally equivalent if the sensors measurement

matrices H1
t and H2

t are equal [29].

The track-to-track fusion model is introduced in [8, 9]. In this model,

the state estimates are obtained for each sensor signal, and then are fused

into a new state estimate (see Figure 2.8). The new fused estimate can be

calculated by using the following equation:

x̂t|t = x̂1
t|t + [P 1

t|t − P 12
t|t ][P 1

t|t + P 2
t|t − P 12

t|t − P 21
t|t ]−1(x̂2

t|t − x̂1
t|t) (2.98)

where P i
t is the covariance matrix of the tracked estimate xi

t. The covariance

matrix of the new estimate is given by the equation:

Pt|t = P 1
t|t − [P 1

t|t − P 12
t|t ][P 1

t|t + P 2
t|t − P 12

t|t − P 21
t|t ]−1[P 1

t|t − P 21
t|t ] (2.99)

The cross covariance matrix P 12
t|t = (P 12

t|t )T is defined by the following recur-

sive equation:

P 12
t|t = (I − K1

t H
1
t )FtP

12
t|t−1F

T
t (I − K2

t H
2
t )T + Qt(I − K2

t H2
t )T (2.100)

with the initial condition P 12
0|0 = 0.

The advantage of this method is that the object can be tracked simulta-

neously by local trackers, and then only fusion equations are performed on

the central unit. This is a way to distribute the computations. It is shown

in [63] that this method gives worse results in terms of uncertainty than the

minimum mean square estimate based measurement fusion.

The track-to-track fusion model is very popular. In [16], it is used for ob-

stacle detection in road environment. The authors tested the fusion method
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Figure 2.8: Track-to-track fusion schema.

with two sensors configurations. The first one considers an infrared camera

and a Radar. The second configuration is built with a Radar and a LI-

DAR. The obtained results show that the fusion method can overcome the

drawbacks of each sensor, with a diminution of the rate of false detection

alarm.

In [30], two variants of the track-to-track method are proposed. The

first one is called a modified track-to-track method (MTF), and the second

variant is called a track fusion model with fused prediction (TFP).

In the first variant, the prediction of each tracked object is not based on

the local state estimation x̂i
t|t like in the basic track-to-track method, but

it is based on the fused state estimate x̂t|t (see Figure 2.9). Thus, Kalman

gains in local trackers are in this case related to the fused prediction state.

This is due to the fact that the fused estimate is less uncertain and more

accurate than each of the local state estimation. This approach changes the

update stage of the track-to-track algorithm.

Figure 2.9: Modified track-to-track fusion schema.

The measurement prediction is given then by:

zi
t = H i

t x̂t|t−1 (2.101)
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The update equation is defined as follows:

x̂i
t|t = x̂t|t−1 + P i

t|t−1(x, z)P i
t|t−1(z, z)−1[zi

t − ẑi
t] (2.102)

where P i
t (x, z) = E[(xt−xi

t|t−1)(zi
t−zit)] and P i

t (z, z) = E[(zi
t−ẑi

t)(z
i
t−ẑi

t)].

The computation cost of the proposed variant is the same as in the

case of the basic track-to-track method. Authors using Monte Carlo based

experimentation conclude that in the case of similar sensors, the modified

track-to-track method is suboptimal to the original track-to-track and mea-

surement fusion ones. However, for dissimilar sensors, by using the modified

track-to-track method, it is possible to obtain better estimation without in-

creasing calculation time.

Figure 2.10: Track fusion model with fused prediction schema.

The track fusion model with fused predictions (TFP) introduces the pre-

dictions fusion to the standard track-to-track algorithm (see Figure 2.10).

The fused prediction xt is used to correct the estimates x̂1
t , x̂2

t with the

measurements z1
t , z2

t respectively. Finally, the obtained local estimates x̂1
t ,

x̂2
t are combined to obtain the fused state estimate x̂t. On the contrary to

the modified track-to-track and like in standard track-to-track method, the

fused state estimate is stored only on the fusion site. The predictions are ob-

tained by using local state estimates. For details, one can see [30]. Authors

claim that this approach has the same performance as MTF algorithm. It

may be, however, numerically unstable for similar sensors. In addition, the

TFP method is computationally more expensive than the MTF method.

2.5.2 Applications of data fusion methods

In this section, some applications of data fusion techniques in object detec-

tion and tracking are presented.
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In [36], a hybrid adaptive cruise control system for highways is presented.

The radar and vision sensors are used to detect and track the obstacles. Ev-

ery readout of the radar is pre-processed and the list of potential vehicles is

created. For each vehicle hypothesis, an occlusion area is computed. The

radars measurements lying in any occlusion area are rejected. Remaining

radar measurements, which could not be assigned to an existing vehicle

hypothesis or occlusion area, are candidates for new vehicle hypotheses.

The candidates are checked by vision. The validated candidates create the

tracks. Non validated candidates during several cycles of the algorithm ex-

ecution are removed. The lane-departure warning functionality is obtained

by using information from vision and the ABS system. The vision is used to

find lane in the images. The ABS, providing rotation speed of the wheel, al-

lows to compute the vehicle heading. These two information are compared,

if needed, to raise the lane-departure alarm.

In [7], a method for inferring scene structure information based on both

laser and visual data is proposed. The aim of the proposed system is to pro-

vide 3D indoor environment reconstruction in robot motion planning and

collision avoidance tasks. The authors use a 2D laser scanner to construct

a 3D structure assumptions. This model is then validated by the stereo-

vision data. The validation of the 3D model is achieved by projecting the

3D model points on the two images. The pixels in the two images corre-

sponding to the 3D model point should have the same characteristics such

as color, intensity values, intensity gradients. If it is the case, the 3D model

is validated, otherwise there exists a strong indication that the 3D model

is locally invalid. The normalized crosscorrelation metric [24] is employed

to evaluate the correctness of the calculated point correspondences. Low

values of the calculated crosscorrelation correspond to regions within the

images depicting parts of the environment that are not conform to the 3D

model. When the region of inconsistencies between the 3D model and the

reality is detected, stereovision is used to provide missing 3D information.

The authors [7] proposed also rules for corresponding pixel search based

on epipolar constraints. The application of the rules allows to reduce the

computation time.

In [28], a three laser scanners configuration is used for objects detection

and recognition. The sensors configuration allows to cover the complete

surrounding of the vehicle. Two sensors are mounted of the front-left and

front-right corner of the vehicle. They allow to cover the area in front

of the vehicle as well as the areas along both sides. The third sensor is

installed at the back of the vehicle. This sensors spatial configuration im-
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proves the object recognition, because gaps in the field of vision of a single

laser scanner can be filled with data from other laser scanners. The sensors

are synchronized and measure using the common time base. The sensors

are calibrated by finding their position on the vehicle using a calibration

field. Laser data points coming from different sensors are transformed into

the same coordinate system.

In [58], a long range obstacle detection system based on fusion of laser

scanner and stereovision is proposed. The main principle is based on the

detection and tracking of obstacles by means of a laser scanner while stere-

ovision is used to confirm the laser scanner based detections. The system is

exploited for driving assistance purpose. The first step consists of cluster-

ing laser scanner data by eliminating the measurements which are outside

a warning area. The warning area is defined by a road detection algorithm

or by using the heading direction of the vehicle. The vehicle pitch move-

ments may make the laser plane cutting the road surface. This can lead to

false detections and losing of the tracked objects. The stereovision based

confirmation algorithm consists of four stages: determination of the region

of interest in the stereoscopic images, maximization of the detection range

by application of a numerical zoom, computation of a local disparity map

in the regions of interest (ROI), confirmation of the laser data detection

using the computed disparity map. There are three confirmation criteria.

In the first criterium, the v-disparity approach [48] is used to classify pixels

from ROI into two groups: road-surface pixels and obstacle pixels. Then,

the number of the obstacle pixels gives a confidence in the existence of an

object over the road surface. This criterion does not make any assumption

on the obstacle to be detected. The robustness can be, however, greatly

influenced by errors in the disparity map. The second criterium is based on

the alignment finding of the observed surface. This is done by using Hough

transform. The vertical alignment corresponds to the obstacle and the ver-

tical one corresponds to the road surface. This criterium is less fragile to

the disparity map imperfections. In the third criterium the altitude of the

laser points are compared with the local road profile, which is estimated

by the v-disparity method. The obstacle is confirmed if the altitude of the

laser points is greater that a certain threshold.

In the literature no detailed fusion methodology for laser scanners fusion

exists. In [28] the multi laser scanner configuration is used. The authors,

however, do not present how the raw data points are used in the process

object detection and tracking. Thus a method for multiple laser scanners

fusion which is adapted to callipers based OBB extraction algorithm is
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presented.

2.6 Stereovision

One of the aims of computer vision is to create the three-dimensional struc-

ture of a scene from one or more images. This function can be fulfilled by

using stereovision. It consists of reconstructing a three-dimensional scene

from several images taken under different angles of view. Like the human vi-

sion, the perception of depth is achieved by operating the discrepancy (later

called disparity) between the images of a same pair. Most techniques rely

on the binocular stereovision using only two images. However, trinocular

stereovision using three images to remove ambiguities due to the occlusion

problem is sometimes used. In this work, we focus on binocular stereovision,

and use left and right images to produce a disparity map.

To accomplish 3D reconstruction, four major steps must be considered:

• Calibration of the stereoscopic sensor.

• Extraction of relevant primitives of the image.

• Matching primitives extracted from stereoscopic images.

• Triangulation and 3D reconstruction of the scene.

2.6.1 Principle of stereovision

With a binocular stereoscopic sensor, the two cameras must observe the

same scene. It means that their optical axes must converge towards the

same scene. It is important to set the cameras to obtain a common angle

of view. This constraint is usually non-existent when a pre-manufactured

stereoscopic sensor is used. The geometric model of a binocular stereoscopic

sensor, presented by Chambon [19], is illustrated in Figure 2.11. By con-

sidering the pinhole camera model, a point P of the scene that can be seen

in both images (left and right of the stereoscopic sensor) is projected at

two points Pg (point in the left image) and Pd (point in the right image).

These two points are called homologous points, since they correspond to

the same point in the observed scene. Thus, one can determine the equa-

tions of the straight line PgOg (respectively PdOd), which goes through the

optical center of the left camera Og (respectively Od) and the point Pg (re-

spectively Pd). These equations must be expressed in a common reference
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system (usually the absolute reference system associated to the scene). It

is therefore necessary to determine transformations between the 3D space

of the scene and the 2D space of the left and right images. These trans-

formations are generally obtained in the calibration step of the stereoscopic

system. Finally, by geometric triangulation, the intersection of these two

straight lines PgOg and PdOd gives the position of the point P of the real

scene.

Figure 2.11: Geometric model of a binocular stereoscopic sensor.

2.6.2 Calibration of a stereoscopic sensor

Calibration of a stereoscopic sensor consists of determining two geometric

transformations (one of each camera) between the 3D space of the scene and

the 2D space of the left and right images. These transformations are deter-

mined using extrinsic parameters (position and orientation of each camera

relative to the 3D reference system) and intrinsic parameters of each cam-

era (focal length, size and resolution of the sensors). For each camera, the

associated transformation is composed with two parts. The first one allows



40 CHAPTER 2. STATE OF THE ART

going from the absolute reference system to the camera relative reference

system. The second part expresses the projection process of a 3D point

in the image of the camera. The combination of these two parts, given

generally by two matrices, allows to calibrate the system.

2.6.3 Extraction of primitives

Extraction of primitives consists of extracting visual cues characterizing

objects in each image. Obviously, primitives must be enough abundant

and have attributes that allow them to be discriminated in order to remove

ambiguities during the matching step. Several types of primitives can be

considered: interest points (Moravec points[55], high curvature points, SIFT

points[50], etc.), edges, snakes[44] and regions.

2.6.4 Stereo matching

The key problem in stereovision is the matching task, which consists in

comparing each feature extracted from one image with a number, gener-

ally large, of features extracted from the other image in order to find the

corresponding one, if any. This process, which is difficult to perform, re-

quires a lot of computation, as well as a large amount of memory [12]. Once

the matching is established and the stereo vision system parameters are

known, the depth computation is reduced to a simple triangulation tech-

nique [39, 23].

Many approaches have been proposed to solve the stereo matching prob-

lem. According to the considered application, the existing techniques are

roughly grouped into two categories: area-based and feature-based [32].

Area-based methods use correlation between brightness patterns in the lo-

cal neighbourhood of a pixel in one image with brightness patterns in the

local neighbourhood of the other image [66]. These methods lead to a dense

depth map. Feature-based methods use zero-crossing points, edges, line seg-

ments, etc. and compare their attributes to find the corresponding features

[53, 13, 20, 39, 66]. These methods lead to a sparse depth map. To resolve

matching ambiguities, feature-based and area-based methods use some con-

straints like epipolar, uniqueness, smoothness and ordering [71, 52, 77, 64].
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Thesis statement

A system for dynamic objects tracking can be divided into following main

stages: perception, pre-processing, detection and clustering, association,

filtering (see Figure 3.1). The perception part is responsible for providing

observation data of the environment. The pre-processing prepares the data

to be treated in the following stages. The third stage consists of object

detection and data clustering. The next stage, data association, is respon-

sible for correct correlation of measurements, extracted from observation

data, with object tracks. Finally, the filtering part responsible for objects

state estimation and prediction. The filtering part provides information,

needed for fulfilling higher level task such as driving assistance, navigation,

platooning.

Figure 3.1: Schematic representation of a dynamic objects tracking system.

Basing on the analysis of the existing algorithms and systems, the following

thesis statement is proposed:

Increasing the reliability and robustness of tracking system by introduc-

ing an OBB based representation relaxing linear surface assumption, an

Inter-Rays uncertainty, a Fixed Size assumption, a two laser scanner fusion

algorithm, a data association algorithm based on Nearest-Neighbour princi-

41
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ple and the Fixed Size assumption, a stereo-vision and laser scanner fusion

for data clustering.

The statement can be decomposed into five arguments :

• The usage of the OBB representation model and OBB extraction al-

gorithm, based on rotating calipers and on-line convex-hull creation

technique is adequate to tracking of dynamic objects. The proposed

representation model and algorithms relax linear surface assumption,

increase the measurement accuracy and do not need all data points

to be considered.

• The Inter-Rays (IR) uncertainty and Fixes Size (FS) assumption in-

crease the quality of object size and position estimation.

• The two laser scanner fusion algorithm increases tracking accuracy in

terms of object size, angle orientation, velocity estimation.

• Based on the Nearest-Neighbour algorithm and the Fixed Size as-

sumption, the data association algorithm for the OBB representation

model increases the robustness of the tracking by a reliable data as-

sociation for coalescing objects.

• The laser scanner and stereo-vision fusion algorithm allows to cluster

correctly laser data points in presence of ambiguous point configura-

tions.

As stated in the introduction, the thesis is a part of the project ”In-

telligent Vehicles and their integration in the city of the future”. The ob-

jective of this project is to ensure a vehicle autonomous navigation in an

urban environment. One of the most important and fundamental part of

the autonomous vehicle navigation is perception of the environment. The

environment can be treated as a decomposition of different entities such

as: ground, obstacles (static objects), ground markings, road signs, traffic

lights, and dynamic objects. Construction of a system, which will be able to

track dynamic objects is the scope of this thesis. The dynamic objects per-

ception system is composed of different algorithms and models, which allow

to solve the following problematics: object detection, object representation,

data association and tracking.

In the dissertation, an Oriented Bounding Box (OBB) model is proposed.

The main idea of the proposed approach is to provide a representation

model that does not depend on the assumption that objects are constructed
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by linear surfaces, what is the case of the majority of based line fitting

algorithms. The fundamental part of the OBB based approach is creation

of a Convex-Hull (CH) for laser data points assigned to the object. The CH

can be obtained by using an on-line algorithm adapted to laser scanner data

or by using a line tracking algorithm. The usage of the first algorithm allows

to relax the aforementioned assumption , without a decrease in tracking

accuracy. In addition, it is less computational complex compared to the

line tracking algorithm. The proposed OBB extraction method increases

measurement accuracy by guaranteeing extraction of the best aligned OBB.

The first part, the most computationally complex, of the proposed solution

does not need all data points as in most of line fitting algorithms.

The Inter-Rays (IR) uncertainty is integrated into the proposed OBB

extraction algorithm. It introduces additional position and size uncertain-

ties taking into account the laser sensor characteristics, i.e. the fact that

extreme raw data points constructing an OBB do not represent the object’s

real extremities. Finally, the Fixed Size assumption based on the fact that

in general tracked objects do not change their size. The FS assumption

allows to store the best, in terms of uncertainty, size estimation obtained

during the tracking, and thus, increases the precision of the position and

size estimation.

The two laser scanner fusion algorithm takes advantage of angular reso-

lution complementarity characteristics of two laser scanners configuration.

The data points of the two laser sensors, merged into one cluster, allow to

obtain more accurate OBB measurement. The two sensors configuration

allows also to increase the velocity estimation reliability by eliminating os-

cillations appearing in the velocity value when one sensor configuration is

used.

The data association stage allows to correct object tracking. In the the-

sis, a data association algorithm, exploiting the geometrical representation

of the object, is proposed. It is based on the NN principle and FS assump-

tion. The idea of the algorithm is that only points, which do not violate the

FS assumption of the track, can be assigned to it. If a point violates the FS

assumption of all probable tracks, the decision to which track it should be

assigned is based on the NN principle. The proposed method gives reliable

coalescing object separation, even for objects touching each other.

Finally, the sensor fusion algorithm for laser points clustering algorithm

is presented. In the algorithm, stereovision based 3D information is used to

answer the question if two laser data points belong to the same object. To

obtain the answer, the discontinuity in the disparity map, extracted from
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two images, is seek between the two image points obtained by projecting

the laser points onto the stereo images. The proposed solution gives correct

results in presence of ambiguous laser data points configurations, for which

only laser data based algorithms fail.

The statements of the thesis will be proved by constructing the percep-

tion system, incorporating the proposed solutions, and by evaluating and

testing the algorithms characteristics on simulated and real vehicle plat-

forms. The simulator, which is a part of the thesis work, is developed

on the purpose of evaluating and testing the proposed algorithms. The

real vehicle platform is a part of the ”Intelligent Vehicle” project, led by

the Systems and Transportation laboratory of the University of Technology

of Belfort-Montbeliard and supported by the Regional Council of Franche

Comt and the Contrat Projet Etat Région
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Testbed

4.1 Simulator

As a part of the ”intelligent vehicles and their integration in the city of the

future” project, a software platform is developed to simulate the sensors

and the multiple objects tracking process. The simulator permits flexible

changing of all sensors parameters and mounting position. In the simula-

tor, laser range finder (LRF), LIDAR, stereovision and odometry sensors are

implemented. This allows to test the developed algorithms with different

sensor configurations. The simulator generates data from each sensors con-

figuration by playing virtual scenarios, which can be visualized in real-time

(see Figure 4.1).

The simulator development is based on an Agile software development

methodology. Agile methods break tasks into small increments with mini-

mal planning, and do not directly involve long-term planning. This method-

ology is chosen since, in our opinion, it is very well suited for producing

prototypes.

The simulator allows to:

• Visualize 3D worlds.

• Simulate dynamic objects.

• Simulate sensors such as: 2D,3D laser scanner sensors, including sys-

tematic and statistical errors, mono and stereovision sensors and odom-

etry.

• Construct 3D worlds by using 3D models with textures.

45
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• Construct itinerary paths to be followed by the vehicles, including the

ego-vehicle.

• Save and load a created scenario and algorithms parameters.

Figure 4.1: Simulator - screenshot.

The tools used for the simulator development are chosen by taking into

account the following aspects: compatibility with C++, free usage, access

to the source, portability, performance, documentation and community sup-

port and stability. All the used tools are under licenses that grant free usage,

and access to the source. The feature of the open source software is that,

very often, the documentation is not up to date or misses important infor-

mation. In such situation, the community support is very important. Due

to this facts, the development of the simulator can be viewed as a research

activity because it as demanded to find new technical solutions. Neverthe-

less, thanks to the free to use software, it is possible to create necessary

tools with limited funding.

The software (IDE) and used libraries are:
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• Object-Oriented Graphics Rendering Engine (OGRE), written in C++,

is a scene-oriented 3D engine. The library simplifies production of ap-

plications utilising hardware-accelerated 3D graphics. The library is

based on the two most popular 3D graphics system libraries: Direct3D

and OpenGL. The details of these system libraries are hidden thanks

to abstract classes included in OGRE. A very important aspect is that

OGRE is released under an open source license: GNU Lesser Public

License (LGPL).

• Open Dynamic Engine (ODE) (open source) is a high performance li-

brary for simulating rigid body dynamics. It is fully featured, stable,

mature and platform independent, with an easy to use C/C++ API.

It has advanced joint types and integrated collision detection with

friction. ODE is useful for simulating vehicles, objects in virtual real-

ity environments and virtual creatures. It is currently used in many

computer games, 3D authoring tools and simulation tools.

• OgreOde is an ODE wrapper for OGRE. The wrapper simplifies the

process of implementation, and includes some prefabricated objects

like vehicles or ragdolls.

• wxWidgets is an API for writing GUI applications on multiple plat-

forms that still utilize the native platform’s controls and utilities. It

allows to link with the appropriate library for different platforms like

Windows, Unix, Mac OS.

• GNU Scientific Library (GSL) is a numerical library for C and C++

programmers. The library provides a wide range of mathematical

routines such as random number generators, special functions and

least-squares fitting.

• Code::Blocks (open-source) is a cross-platform C++ integrated devel-

opment environment (IDE).

• Blender (open source) is a cross-platform suite of tools for 3D creation.

• Gimp - GNU Image Manipulation Program (free software) is a raster

graphics editor.

• Subversion (SVN) is an open-source revision control system.

In the test we use different vehicles models, which are downloaded from

internet, and prepared to be used in the Blender. For the purpose of FS
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evaluation, a special vehicle model is prepared. It is prepared in such man-

ner that the profile obtained by cutting the model by laser the plane has

the maximal vehicle observable size. To obtain it, the mirrors are removed

and the vertical profile is changed (see Figures 4.2 and 4.3). This is done

to assure that maximal vehicle size is detectable by a laser scanner.

Figure 4.2: Deformed 3d model of the vehicle used in FS algorithm evalua-
tion.

Figure 4.3: Deformed 3d model of the vehicle used in FS algorithm evalua-
tion (wireframe).

4.2 Real vehicle platform

The first research platform, acquired by the laboratory, is an automo-

tive robot car, called robuCAB and manufactured by RoboSoft [1]. It is

equipped with a SICK LMS laser scanner, sonar, and an embedded com-

puter. The main disadvantage of this platform is that it is not authorized

to be present on public roads. Thus, decision is made to create a new re-

search platform, which will not have the drawbacks of its ancestor. The

new platform is assembled by the research team of the SeT laboratory (see
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Figure 4.4). The base of the platform is an electric car designed by Global

Electric Motorcars (GEM), a subsidiary company of Daimler Chrystler. The

commercial name of this car is GEM e2. This car has been designed and

developed exclusively for an urban usage. The GEM e2 is equipped with all

necessary safety devices and is authorized on public roads. The vehicle runs

with the maximal speed of 45 km/h. Its range on fully recharged battery is

50 km.

The control system of the platform is installed by specialized team of the

SeT laboratory. Thanks to this installation, the vehicle can be driven by

a person or controlled by a computer. The driving commands send by the

computer are converted to the actuators by a MicroAutoBox, which is a real-

time system for performing fast function prototyping. The MicroAutoBox

is a component widely used for designing and testing different kinds of

prototypes. It is, for example, used in automotive and avionic research.

This module is very expensive, thus, it is planned to replace it by a micro

control cards, which are much cheaper. But, for doing this, the control

software must be optimized.

Figure 4.4: Real vehicle platform.

The platform must be able to perceive its surrounding environment and

to localize itself in it. Thus, the installed sensors can be divided into two

groups: the perception sensors and the global positioning and attitude sen-

sors. The first part consists of three sensors: a vision sensor and two laser

scanners. The first sensor is a Bumblebee2 stereoscopic color cameras which

allow to obtain depth information of a scene. The stereoscopic sensor con-
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sists of two 1/3 inch CCD sensors and 3.8 mm focal length lens, what give a

horizontal field of view of 66◦. The maximal resolution is 1024 x 768 pixels

with a frame rate of 20 images per second. The first laser scanner is a SICK

LMS 221, which provides 2D data. It a maximum of 180◦ for the horizontal

field of view. The angular resolution is set to 0.25◦, 0.5◦ and 1◦ depend-

ing on the used horizontal field of view. The maximal detection range of

80 meters. It can operate in two modes: millimeter mode and centimeter

mode. The first one provides more accurate measurements, but its range is

limited to 8 meters. The other mode allows to detect objects with a range

of 80 meters. The second laser scanner is an Ibeo LUX lidar. It allows to

obtain 3D data providing 100◦ horizontal and 3.2◦ vertical field of views.

The maximum detection range is 200 meters. The angular resolutions can

be set between 0.125◦ and 1◦, depending on the size of the field of view.

The detection range of the laser scanners depends on the surface reflection

characteristics and lightning conditions.

The global positioning of the experimental vehicle is obtained by a GPS-

RTK (ProFlex 500 Magellan). The Real Time Kinematic technology (RTK)

gives a global position with a much greater accuracy compared to standard

GPS. The standard deviation sigma of the horizontal (respectively vertical)

measurement uncertainty is 1 centimeter (respectively 2cm). The attitude of

the vehicle is measured by a Mti Xsens sensor. The Mti Xsens contains a 3D

gyroscope, an accelerometer and a magnetometer. A real-time proprietary

sensor fusion algorithm, running on an internal low-power digital signal

processor, provides drift-free 3D orientation data.

To calculate the real vehicle positions, three GPS-RTK are used. The

first one plays a role of the reference base. It is fixed and, hence, it can

provide RTK corrections. The second one is installed on the experimental

vehicle. The third one is installed on the tracked vehicle. The data obtained

from the two GPS sensors installed on the vehicles allow to calculate the

position, velocity and orientation for the tracked vehicle. The orientation

angle can also be approximated, but it does not represent the real vehicle

heading since it is calculated by using the current and last vehicle position

points. In the calculations, the GPS-RTK position uncertainty is taken into

account.
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Object representation and

tracking

5.1 Oriented bounding box

Point and ellipse based object representation are not suitable for the prob-

lem being treated, ie. tracking objects in urban environment. The two

mentioned models may be accurate enough in simplified environments such

as highways, where:

• distances between objects are much greater than their size

• there are important movement constraints (limited direction, limited

maneuvering), what implies more predictable objects behaviour

• there is a limited types of objects which can be met, what results in

almost uniform object’s shape

• a surface is discretised by lanes

The characteristics of such environments imply that the ego vehicle can

keep big distances to the other objects, and path planning can be reduced

to simple tasks (for example stay in the lane / change the lane). In this kind

of environments it is very important to detect far objects, what gives long

time enough for navigation algorithm to react to a new situation. Naviga-

tion algorithm, however, can be reduced to simple tasks such as accelerate,

decelerate, stay in the lane, change the lane. On may say that navigation

of vehicles in those environments has reduced degrees of freedom.

51
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In diverse environments, however, such as cities, one needs a geometrical

representation or at least an approximation of the obstacle’s geometry. This

is due to:

• short distances (smaller than object’s size).

• one cannot be sure that space is discretised.

• little space available for navigation: the ego vehicle needs to execute

path planing frequently. There is also a need of usage of each free

space.

• little movement constraints: it is difficult to predict objects move-

ments, which can be predicted in far shorter run than in the case of

highway environments.

• there are vast kinds of objects moving around.

• necessity of more accurate data association, what may be really diffi-

cult without objects shape and size approximation.

Navigation in diverse environments is a very demanding task. There are

little constraints on objects manoeuvres. There are driving rules. However,

one can expect everything from the other objects moving around (different

speeds, different directions, short distances between the objects).

The rectangle based representation is suitable for representing objects

in demanding environments such as urban areas. The advantages of the

rectangle based object’s representation:

• shape approximation, and thus, space occupation description

• adequate precision

• easiness of position’s and size’s uncertainties representation and com-

putation

• simplicity and intuitive usage

• data compression

In the literature the proposed algorithms assume, however, that objects

have a rectangular shape (or eventually a shape of rectangle with rounded

corners). In Oriented Bounding Box (OBB) based approaches this assump-

tion is relaxed, and thus, the OBB model introduces a uniform representa-

tion for objects with different shapes.
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It is important to notice that a vast majority of dynamic objects in urban

environments are of the types: personal car, bus, human, bicycle/motorbike,

one part trucks. Each of them is convex and can be represented by an

OBB with a sufficient accuracy. Of course, there are also more complicated

concave objects. But, from the navigation point of view, these objects can

be divided into two groups. The first one contains compact objects whose

concavity cannot be treated as a free space, and so, they can be represented

by an OBB without a lost of accuracy. The other group comprises complex

objects whose concavity is a navigable area or must be taken into account

to produce better predictions, (for example an articulated buse or truck)

(see Figure 5.1). The objects from the second group cannot be represented

by an OBB, but multiple OBB can be used instead. Static obstacles can

be represented using the same principle. Static obstacles can be dividing

into two groups. The first one consists of objects which can be represented

by one OBB. In in the second group, there are objects which have to be

represented by multiple OBB. If a space obtained by a subtraction between

an OBB and the actual object shape is navigable the object belongs to the

first group; otherwise, it belongs to the second one.

An OBB based measurement is described by a state vector z including

centre coordinations cx, cy, orientation angle α, size dx, dy and an uncer-

tainty vector σz:

z = [cx, cy, α, dx, dy]T (5.1)

σz = [σcx, σcy, σα, σdx, σdy]T (5.2)

An OBB based track is described by a state vector x and an uncertainty

vector σx, which include the linear velocity ċx, ċy and the angular velocity

α̇, in addition to the measurement vectors z and σz:

x = [cx, ˙cx, cy, ċy, α, α̇, dx, dy]T (5.3)

σx = [σcx, σċx, σcy, σċy, σα, σα̇, σdx, σdy]T (5.4)

The OBB construction is executed after or during data association stage.

It depends on the data association strategy. Nevertheless, the OBB is ex-

tracted from laser scanner raw data points grouped in a cluster.

The presented method of the OBB construction consists of two main

steps. In the first step, creation of an object’s convex contour takes place.

In the second step, a method of Rotating Calipers [73] is used to construct

an OBB, which is the best aligned to the object’s contour.
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Figure 5.1: (a) Compact object (b) complex object.

5.1.1 Convex contour construction

The convex contour is in fact an open convex-hull. This is due to the fact

that only a part of an object is visible. Below, there are two different ap-

proaches to open convex-hull construction. Both algorithms operate on raw

data points. The first one is direct on-line open convex-hull creation al-

gorithm. In the second algorithm, one convex-hull is obtained by finding

intersections of extracted points line segments. The raw data points can

be produced by a laser range finder (LRF), lidar, or stereovision (SV). The

algorithms, however, are adapted to be used with 2D or 3D lidars since they

achieve calculations on polar coordinates and assume that input points are

sorted with increasing order of the horizontal angle coordinate. This feature

of the algorithms does not exclude stereovism as a data source, though the

data must be sorted. The problem of polar coordinates may be resolved

in two ways: either data are converted from Cartesian to polar coordi-

nates system or the algorithms should be reimplemented so they operate on

Cartesian coordinates.

On-line convex-hull creation

The algorithm is the based on sequencing characteristic of the raw scan

points. In the beginning, two first points are added directly to the convex-

hull. For each next point added to the convex-hull, the convexity test is

executed. To explain the convexity test, let us use two examples (see Fig-

ure 5.2). The examples show a convex-hull, which is described by the points
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D, C, B and A. It is assumed that the point O represents the origin of the

sensor’s coordinate system. When a new point N is considered, two cases

can be distinguished. In the first one (see Figure 5.2 (a)), the point N

can be added to the existing convex-hull by connecting it with the point

A, without violating the convexity constraint. The second case takes place

(see Figure 5.2 (b)), when by adding the point N , the convexity constraint

is broken. In this case, connecting the points N and A produces a concavity

represented by NAB. To recognise the two mentioned cases, the proposed

algorithm computes and compares lengths of the two line segments OP and

OA, where P is the intersection of the lines NB and OA. If the length OP

is greater than OA, the point N is added to the convex-hull and the next

iteration of the algorithm takes place. When the length OP is less or equal

to OA, the point A is removed and the convexity test is repeated for the

remaining points constructing the convex-hull (in the example: B, C, D).

The repetition of the test is stopped when the convexity condition is not

violated for the point N and the two last points in the convex-hull (like in

example (a)).

Figure 5.2: Convex-hull construction.

Line segment extraction based convex-hull creation

The second algorithm for creating a convex-hull is based on line segments,

extracted from raw data points.

Basing on the comparison of the different line extraction algorithms

available in the literature [56, 68], a method called ”Line tracking” (LT) is

chosen. The advantages of this algorithm are the simplicity as well as the

performance in terms of reliability. The only algorithm that outperforms

LT is the ”Split-and-Merge” (S-M) algorithm [57]. However, LT has one

important advantage over S-M. LT algorithm does not need all raw data

points to be executed [68]. LT can run in incremental manner and that is
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why it may be parallelized with data association stage. The LT algorithm

computes a line segment for successively incoming points by the means

of linear regression. The algorithm starts with a segment estimated from

the first two points. For each next incoming point, a distance condition

is checked (see Figure 5.3). If the distance of the new point (P6 in the

Figure 5.3) to the estimated line (Seg1 int the Figure 5.3) is below a certain

threshold, a new line including the new point is computed. If the distance

is over the threshold, the line is saved as a line segment and the algorithm

restarts by estimating a new line. Construction of the line starts from

the last point of the saved line segment and the new point, which has not

meet the distance condition. The distance threshold is based on the sensor

accuracy and uncertainty of the line estimation. The distance condition is

expressed as follows:

T ≥ DN =
d

σ
(5.5)

Where DN represents the normalised distance between the new point and

the line, σ is the sum of the line’s radii σr and angle uncertainties σα, and

the point range uncertainty σp projected on the line:

σ = σr + σα + σp (5.6)

σp = σρ cos β (5.7)

where β is the difference between the line’s angle and the point’s angle

in the polar coordinate system, σρ is the sensor’s range uncertainty. The

threshold can be found as a square root of the value from χ2 distribution

with 1 degree of freedom and with a probability that a correct measurement

(a new point) belongs to the line.

In the proposed method, weighted total-linear-regression technique, in-

corporating the laser range finder sensor model, is used [5]. Considering the

laser range finder, it is assumed that the sensor has only range uncertainty,

while angular uncertainty is neglected. The equations for finding the line

orientation angle α, radii r and their uncertainties σα and σr are expressed

as follows:

tan 2α =
−2

∑

(ȳw − yi)(x̄w − xi)
∑

[(ȳw − yi)2 − (x̄w − xi)2]
(5.8)

r = x̄w cos α + ȳw sin α (5.9)

where x̄w = 1
N

∑

ρi cos θi and ȳw = 1
N

∑

ρi sin θi. (ρi, θi) is the ith point’s

coordinates in the polar system, (xi, yi) is the ith point’s coordinates in the
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Cartesian system.

σ2
α =

1

(D2 + N2)2

∑

w2
i (A − B)2σ2

ρi
(5.10)

σ2
r =

∑

[
wi

∑

wj
cos(θi − α) +

∂α

∂ρi
(ȳw cos α − x̄w sin α)]2σ2

ρi
(5.11)

where ∂α
∂ρi

= A−B
D2+N2 , A = N(x̄w cos θi − ȳw sin θi − ρi cos 2θi)

and B = D(x̄w sin θi + ȳw cos θi − ρi sin 2θi), D and N are the denominator

and the numerator of the right hand side of the equation (5.8) respectively.

wi is the weight associated to the ith point. σ2
ρi

is the sensor’s range variance

associated with the ith point. In the proposed method, σ2
ρi

has the same

value for each point and is equal to σ2
ρ.

Figure 5.3: Line tracking.

The execution of the LT based method provides a set of lines describing

a contour. The next stage of the OBB construction algorithm needs a

convex-hull, which is represented by a list of points. To convert the line

based contour description to a convex-hull, the intersection points of the

extracted lines and the extreme data points of the first and last extracted

line segments are considered. There are cases, especially for a big sensor’s

range uncertainty, where the intersection of consecutive line segments is

outside the Axis Aligned Bounding Box (AABB) of the raw data points.

Taking into account those points in the process of convex-hull construction

gives erroneous results. To avoid those situations, the intersection of the

problematic lines with the AABB sides are used to create the convex-hull,

instead of the lines intersection situated outside the AABB.
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5.1.2 Finding the best aligned OBB for the convex con-

tour

To find the best aligned OBB, rotating calipers (RC) algorithm [73] is used.

The original RC algorithm operates on closed convex-hulls and uses four

calipers. In our case, however, only open convex-hulls are available. Results

of the direct execution of the RC algorithm using an open convex-hull are

not reliable (see Figure 5.4). This is due to the fact that the RC algorithm

takes also into account the edge connecting the first and the last points in

the open convex-hull. This edge cannot be considered since it represents

the invisible part of the object. Hence, the orientation angle, which does

not correspond to the visible part, is obtained.

Figure 5.4: Case when the direct execution of the RC algorithm fails.

To avoid this problem, it is assumed that the contour of visible and

invisible parts of the object are symmetrical with respect to the point,

which is the middle of the segment defined by the two extremities of the

constructed contour (see Figure 5.5). Thanks to the symmetry assumption,

it is possible to use only two calipers.

In the algorithm, it is assumed that the contour of visible and invisible

parts of the object are symmetrical with respect to the point, which is the

middle of the segment defined by the two extremities of the constructed

contour (see Figure 5.5). The rotating calipers (RC) algorithm begins by

bounding the contour through its extreme points using four lines deter-

mining a rectangle (in our case 2 perpendicular lines). In each step of the

algorithm, at least one of these lines coincides with one of the edges of the

contour. The lines are simultaneously rotated in one direction, about their

supporting points (P2 and P4 in Figure 5.5) during each iteration of the

algorithm. The rotation angle has a value, which permits for one of the lines

to coincide with the next edge of the contour (in the Figure 5.5 the lines

are rotated by the angle α). For each lines’ position, an area of bounding

rectangle, created by four lines (two lines, in our case, C1, C2 and their
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symmetrical lines), are computed. This is performed by computing the area

of the rectangle defined by the line segments MM1 and MM2, where M

is the middle of the line segment defined by the extreme open convex-hull

points P1 and P5. M1 and M2 are respectively the intersections of the lines

C1 and C2 with theirs perpendicular lines passing by the point M . The

process is repeated until reaching the expected rotation angle. The smallest

area over all iterations indicates the orientation angle θ of the minimum-area

OBB, which is at the same time the best aligned one.

During the execution of the RC algorithm for each rectangle (two lines

rotation), the two end points of the convex-hull’s edge coinciding with the

line are saved. These points are used to compute the orientation angle

uncertainty.

Figure 5.5: Rotating calipers.

To find the size of the OBB, points constructing the convex-hull are

transformed to the OBB’s local coordinate system. The origin of the OBB’s

local coordinate system is located at the point M , which is the convex-hull

symmetry point. The angle α defines the rotation angle of the OBB’s local

coordinate system.
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5.1.3 OBB uncertainties

After extracting the measurement OBB, the uncertainty vector must be

found. The vector consists of covariances of the centre position, size and

orientation angle.

The centre and size uncertainties, given respectively by equation (5.12),

are found by applying an error propagation law [3].

σ2
cX = 1

4
σ2

dX

σ2
cY = 1

4
σ2

dY

σ2
dX = σ2

minX + σ2
maxX

σ2
dY = σ2

minY + σ2
maxY

(5.12)

where σ2
minX , σ2

maxX , σ2
minX and σ2

maxX are defined as follows:

σ2
minX = |σ2

ρ sin βminX |

σ2
minY = |σ2

ρ cos βminY |

σ2
maxX = |σ2

ρ sin βmaxX |

σ2
maxY = |σ2

ρ cos βmaxY |

(5.13)

with βminX , βminY , βmaxX and βmaxY are respectively the angles of the points

with the minimum x coordinate, minimum y coordinate, maximum x coor-

dinate, the maximum y coordinate in the constructed OBB (see Figure 5.6).

The angles β are defined between the Y local axis and the laser ray passing

by the extreme OBB points for which the angle is defined. Since the center

position uncertainty is computed from the size uncertainties, it is related to

the local OBB coordinate system. Thus, σ2
cX and σ2

cY have to be rotated:

Mr = Ml ∗ R (5.14)

where Ml and Mr are respectively the center position covariances matrices

respectively in the local OBB and ego-vehicle coordinate systems.

The matrix Ml is defined as follows:

[

σ2
cX 0

0 σ2
cY

]

(5.15)

The rotation matrix R is defined as follows:

[

cos α sin α

− sin α cos α

]

(5.16)

where α is the orientation angle of the OBB.
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Figure 5.6: Computation of the position uncertainty of an extreme point of
the extracted OBB.

The center positions cX and cY become correlated in the ego-vehicle

coordinate system. However, we neglect the covariances σcXY and σcY X ,

which are set to 0.

To compute the orientation angle uncertainty σ2
θ , the edge of the convex-

hull, which coincides with the best aligned OBB, is used. The end points

of the coinciding edge are saved during the RC algorithm. The end points

are input of the weighted total-linear-regression method, incorporating the

laser range finder sensor model [5]. The ith raw data point has a radial

uncertainty σρi
, while the angular uncertainty is neglected.

σ2
θ =

1

(D2 + N2)2

∑

(A − B)2σ2
ρi

(5.17)

where A = N(x̄ cos θi − ȳ sin θi − ρi cos 2θi),

B = D(x̄ sin θi + ȳ cos θi − ρi sin 2θi),

D =
∑

[(ȳ − yi)
2 − (x̄− xi)

2], N = −2
∑

(ȳ − yi)(x̄− xi), x̄ = 1
N

∑

ρi cos θi,

ȳ = 1
N

∑

ρi sin θi.

The used sensors (real LRF ones as well as simulated ones) have a con-

stant value of σρi
for each laser ray and is equal to σρi = σρ.
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5.1.4 Simulator based results

For the test of the proposed algorithm, a Laser Range Finder (LRF) is

mounted in front of the ego-vehicle. The step angle for the LRF is set to 1◦

with an angle range of 180◦. The test scenario consists of a vehicle running

according to a circular trajectory in front of the ego-vehicle. To compare

the proposed approaches, three attributes of the real object and estimated

OBB representation are measured: orientation angle, distance and length

of the more visible side (see Figure 5.7). The visible object’s side, for which

the angle between its normal vector and the line passing by the origin of the

coordinate system and the object is the smallest, is called the more visible

side. The angle between side’s normal vector and the line passing by the

origin of the coordinate system and the object is called visibility angle.

Figure 5.7: More and less visible side of the measurement OBB.

Figures 5.8 - 5.13 show measured values (versus real ones) of the distance,

angle and side’s length respectively, where the sensor range uncertainty σρ

is set to 0.1m. The convex-hull based and the LT based contour finding
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methods are used to obtain object OBB representation. In the case of the

LT based method, the threshold is set to 1.645.
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Figure 5.8: Distance of the more visible side (convex-hull).
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Figure 5.9: Distance of the more visible side (LT, T=1.645).

As a measure of accuracy of the proposed algorithms, averaged absolute

error of the measured values, over 1000 time steps, is used. Tables 5.1 - 5.3

show the error of the different methods for different values of the sensor
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Figure 5.10: Orientation angle (convex-hull).
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Figure 5.11: Orientation angle (LT, T=1.645).

range uncertainty σρ. T is the threshold used for the LT algorithm. The

angle is expressed in degrees and lengths in meters.

One may see ( Tables 5.1, 5.2 and 5.3) that none of the methods out-

performs significantly the other in terms of accuracy. However, there are

cases where the methods perform differently. The LT based method is more

accurate in case of distance estimation. This is expected, since LT based

technique takes into account all points to create the contour, when the c-Hull
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Figure 5.12: The more visible side length (convex-hull).
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Figure 5.13: The more visible side length (LT, T=1.645).

based method takes only the most external ones. However, in real urban

environment conditions, c-Hull distance error can be neglected because its

relative value is small. In figure 5.12, between 600 and 700 iteration, one

can see that the estimated length value, in some iterations, is greater that

the real one. This is due to the fact, that we compare the more visible

side length. Even a small difference between estimated and real orientation

angle in the moment when the visibility angles of the two sides are similar
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Table 5.1: Distance error.

σρ LT, T=1.28 LT, T=1.645 LT, T=2.576 convex-hull
1 0.2 0.130 0.157 0.180 0.269
2 0.1 0.081 0.082 0.080 0.138
3 0.01 0.060 0.055 0.065 0.056
4 0.005 0.057 0.056 0.060 0.061

Table 5.2: Angle error.

σρ LT, T=1.28 LT, T=1.645 LT, T=2.576 convex-hull
1 0.2 0.177 0.226 0.275 0.176
2 0.1 0.067 0.064 0.089 0.085
3 0.01 0.022 0.015 0.013 0.010
4 0.005 0.013 0.012 0.009 0.007

Table 5.3: The object’s side length error.

σρ LT, T=1.28 LT, T=1.645 LT, T=2.576 convex-hull
1 0.2 0.216 0.281 0.384 0.195
2 0.1 0.125 0.126 0.152 0.131
3 0.01 0.097 0.095 0.102 0.090
4 0.005 0.099 0.096 0.092 0.094

may case that the different sides are considered to be more visible for ex-

tracted OBB and real object. Results show also that the threshold used in

the LT based method plays an important role the error decrease for higher

range sensor uncertainties. By a good adjustment of the threshold, the LT

method can perform similarly as the c-Hull based one.

The other important aspect related to the real-time algorithms is the

computation complexity. Let us define s as the number of the line segments

and n as the number of the points used to construct the OBB. The on-line

convex-hull based contour finding has the optimistic complexity of O(n),

and pessimistic complexity of O(n2). The algorithm of rotating calipers has

the complexity of O(sc), where sc is the number of the convex-hull segments.

The line segment based contour finding has the complexity of O(sn2).

By taking into consideration the results and real sensor range uncertain-
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ties, the c-Hull based contour finding method is more suitable for real-time

processing. Furthermore, the c-Hull based method gives estimations with

similar error as LT based one with low sensor range uncertainties, corre-

sponding to the most real sensor cases. However, the characteristics of the

two methods could be exploited to build an adaptive approach.

5.1.5 Conclusion

An oriented bounding box representation method for tracking objects is

presented. Two variants, depending on how objects’ contours are deter-

mined, are proposed. The first variant is based on a convex-hull contour

finding. The second one uses line segments extraction. The two variants

are tested and compared in terms of accuracy and complexity. The results

show that the two variants behave similarly in terms of accuracy, while the

convex-hull based variant is more interesting than the line segments based

one considering computation complexity.

5.2 Tracking

The object’s state estimation is obtained by the means of Extended Kalman

Filter (EKF). All values of the track’s state vector are expressed in the local

ego-vehicle coordinate system. Tracks are represented by the augmented

OBB state vector xt :

xt = [cx, ˙cx, cy, ċy, θ, θ̇, dx, dy]T (5.18)

In the model, the odometry information is taken into account to allow

objects tracking from a mobile platform. The state change of the ego-vehicle

is represented as differences of position ∆x, ∆y and angle ∆γ between con-

secutive instants. Thus, the input to the state transition equation is defined

as:

uk = [∆x, ∆y, ∆γ] (5.19)

The Discrete White Noise Acceleration Model (DWNA) [10] is used to

describe objects kinematics and process noise. Thus, taking into account

the odometry information, the track state transition is modelled as follows:

xt|t−1 = A(∆x, ∆y, ∆γ)Fxt−1 + But + Gvt−1 (5.20)
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where A is defined as follows:

A(∆x,∆y,∆γ) =
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(5.21)

The prefixes s and c abbreviate the sin(∆γ) and cos(∆γ).

F is the standard DWNA transition matrix, expressed as follows:

F =
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(5.22)

t is the length of the sampling period,

B is the odometry-input model, expressed as follows:

B =
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(5.23)

G represents the noise gain matrix, which is expressed as follows:

G =




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According to the chosen kinematics model, the process noise is defined

with the Gaussian distribution:

vt−1 = [c̈x, c̈y, θ̈, σ̂dx, σ̂dy], vt−1 ∼ N(0, Q) (5.25)

where

Q = Gvt−1G
T (5.26)

with σ̂dx and σ̂dy are the process errors for the OBB size dx and dy respec-

tively.

The predicted estimation covariance matrix is :

Pt|t−1 =
∂A

∂x
(xt−1)FPt−1

∂AT

∂x
(xt−1)F T + Qt (5.27)

The observation equation can be written as follows:

zt = Hxt|t−1 + wt (5.28)

where H is the observation model, expressed as:

H =


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(5.29)

wt is defined with a Gaussian distribution:

wt ∼ N(0, R),

R = σ2
zI5,5

(5.30)

where I5,5 is the identity matrix.

5.2.1 Size change compensation in velocity estimation

During the tracking, the detected size of the object changes. This is due

to the detection of a new part of the object, or due to the disappearance

of already detected part. The size change can introduce on the object a

”phantom” movement (see Figure 5.14), which influences velocity estima-

tion. This is due to the fact that the object reference point is the center

of the OBB. To avoid this effect, the size change compensation must be

applied.
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Figure 5.14: ”Phantom” movement vector.

The algorithm starts by computing a measurement size change vector

∆dmeas which corresponds to the difference between the measurement size

and the predicted size:

∆dmeas[x] = 1
2
z[dx] − x̂(t|t − 1)[dx]

∆dmeas[y] = 1
2
z[dy] − x̂(t|t − 1)[dy]

(5.31)

After transformation, this vector is used to translate the measurement

before filtering correction stage takes place.

Before the transformation, the direction factor is computed. It expresses

the direction of the size change and the relative position of the tracked object

to the sensor.

dirx = −sign(dmeas[x])sign(x̂(t|t − 1)[cx])

diry = −sign(dmeas[y])sign(x̂(t|t − 1)[cy])
(5.32)

The measurement size change vector ∆dmeas is expressed in the OBB

local coordinate system, and thus, it must be rotated to obtain a translation

vector ∆dego
meas in the ego-vehicle coordinate F system.

In the rotation equation, the direction of the direction factor is taken

into account:

∆dego
meas[x] = dirx| cos(α)∆dmeas[x]| + diry| sin(α)∆dmeas[y]|

∆dego
meas[y] = dirx| sin(α)∆dmeas[x]| + diry| cos(α)∆dmeas[y]|

(5.33)
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where α is the measurement OBB orientation angle.

The obtained vector is then used to translate the measurement centre:

z[cx] = z[cx] + ∆dego
meas[x]

z[cy] = z[cy] + ∆dego
meas[y]

(5.34)

The translated measurement is used in the estimation correction stage of

filtering, while the measurement is translated back to its previous position

z[cx] = z[cx] − ∆dego[x]

z[cy] = z[cy] − ∆dego[y]
(5.35)

After the correction step of the filtering, the center of the track is ill-

positioned, and it should be translated. The size of the track undergoes

the process of filtering, and because of this, the magnitude of the track size

change is not the same as the magnitude of the measurement size change

vector. To translate the track, an estimation size change vector dest is found:

∆dest[x] = 1
2
x̂(t|t)[dx] − x̂(t|t − 1)[dx]

∆dest[y] = 1
2
x̂(t|t)[dx] − x̂(t|t − 1)[dy]

(5.36)

The vector is then rotated to obtain the translation vector, expressed in the

ego-vehicle d
ego
est coordinate system.

∆d
ego
est [x] = −dirx| cos(α)∆dest[x]| − diry| sin(α)∆dest[y]|

∆d
ego
est [y] = −dirx| sin(α)∆dest[x]| − diry| cos(α)∆dest[y]|

(5.37)

where α is the track orientation angle. In the rotation equation, the inverse

values of the direction factors, computed for the measurement size change,

are used.

Finally, the track is translated:

z[cx] = z[cx] − ∆d
ego
est [x]

z[cy] = z[cy] − ∆d
ego
est [y]

(5.38)

5.3 Inter-rays

5.3.1 Side visibility and visibility factor

The information about visibility of the OBB sides is used an Inter-Rays

algorithm. Thus, let us introduce the notion of the side visibility before

describing the Inter-Rays algorithm.
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The simple method to decide which side of the two sides along the OBB

local axis is visible is to compare their visibility angles to right angle. The

side visibility angle is an angle between the OBB’s side normal and its radius

vector. In Figure 5.15, there are examples of visibility angles for minX and

maxX sides. A side for which the visibility angle is smaller than the right

angle is considered to be visible. Since the sides are parallel, the second

side of the same axis is invisible.

Measurement OBB

Laser rays

y
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N maxX
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m
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Figure 5.15: Visibility angles associated with maxX and minX sides of the
OBB.

Another way of determining side visibilities is to compute visibility fac-

tors V Fx and V Fy for the OBB local X axis and local Y axis. The two

approaches are proposed.

The first one is described by the equation:

V Fx =
max(βf

minX , β
f
maxX)

β
f
minX + β

f
maxX

(5.39)

where βminX and βmaxX correspond respectively to the angles between OBB’s

sides minXside and maxXside normals and their radius vectors (see Fig-

ure 5.15). f is a smoothing parameter, which is set experimentally to 4.
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The visibility factor becomes less sensible to the angle difference as the

smoothing parameter value increases. The disadvantage of this approach is

that, to compute a visibility factor, the two sides are taken into account for

each local axis. Since the two sides are parallel, the size and position of the

object can influence greatly the difference between the two side visibility

angles, and thus, influence the value of the visibility factor.

In the second approach, only one side visibility angle, for each local axis,

is used. Considering the OBB local X axis, the smaller angle between the

two visibility angles βminX and βmaxX is chosen: βX = min(βminX , βmaxX).

Than, having the angle βX , the visibility factor for axis X is defined as

follows:

V Fx =











1, if βX < βT (5.40a)

f(x), if βT < βX < 90◦ (5.40b)

0, βX > 90◦ (5.40c)

where f(x) = 1 − a−(βX−90◦), a = b
1

90◦−βT (see Figure 5.16). βT is the max-

imal visibility angle for which a side is considered as completely visible. It

means that if, for a side, βX ≤ βT , than this side is considered as completely

visible. In our experimentations, b = 0.01 and βT = 60◦.

The same principle is considered to compute the visibility factor V Fy

for the OBB local Y axis.

The advantage of this visibility factor function is that it takes into ac-

count only one side orientation. Thus, the size of the object and the OBB

relative position do not influence this factor. In all computations implying

the visibility factor, the second approach is used.

5.3.2 Inter-rays algorithm

An important aspect of the OBB extraction is the fact that the raw data

points representing the extremities of the extracted OBB do not coincide

with the real object’s extremities (see Figure 5.17). This aspect allows to

provide better object’s size and position estimation.

In the Figure 5.17, minX , minY , maxX , maxY are respectively the

minimum x coordinate, minimum y coordinate, maximum x coordinate and

maximum y coordinate of the extracted OBB. The line Lr (respectively Lr+

n) is crossing the point maxX (respectively maxY ) and is perpendicular

to the OBB side to which maxX (respectively maxY ) belongs. The Inter-

Rays (IR) real object’s extremities position estimation and their variances
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Figure 5.16: Visibility factor function for b = 0.01 and βT = 60◦.

are added to the OBB’s size and OBB’s size uncertainty. The real object’s

extremities are situated between the raw data points delimiting the OBB

(maxX , maxY ) and the points Pr and Pr + n. Pr (respecitvely Pr + n)

is the intersection point between the ray r (respecitvely r + n) with the line

Lr (respectively Lr + n).

Considering the OBB’s local X axis, the real object’s extremity position

is uniformly distributed with the mean µIRx, which is equal to the half of

the IR line segment length dIRx. The IR line segment is defined by the point

maxX and Pr. To fulfil Kalman Filter assumption, the distribution of the

real object’s extremity position is approximated by a normal distribution

with the mean µIRx, and the variance σ2
IRx, which is set to (dIRx

Nσ
)2. Nσ is the

number of sigmas and represents the confidence interval of the approximated

distribution, which is equal to the IR line segment length dIRx (see Figure

5.18).

Since the IR values reflect the real object extremity position uncertainty,

it should be calculated only for invisible sides. The visible sides are detected

by many laser rays, and thus, it is useless to estimate the sides extremity

position by Inter-Rays distance. Referring to the Figure 5.17, the IR values

should be calculated for sides maxX and maxY points.

The IR line segment length dIRx is computed differently for visible and

invisible sides of the local X axis. There are two approaches. The first one,

which is the simple is to compute the IR segment length only for invisible

sides along the OBB local axis. This approach has, however, a drawback.

In the cases, where the visibility angle of the visible side is close to the

right angle, the IR values are not calculated. This is not correct since this

side is not detected by enough laser rays using only data points to estimate
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Figure 5.17: Inter-Rays uncertainty paradigm.

its extremity position. In the second approach the IR values are computed

relatively to a visibility factor V Fx. The IR segment lengths dvis
IRx and dinv

IRx

are computed for respectively visible and invisible sides. The dvis
IRx for visible

side is than changed according to the visibility factor:

dvis
IRx = dvis

IRx(1 − V Fx) (5.41)

Finally, the dIRx value for the local X axis is a sum of sides IR line segment

lengths for visible and invisible sides:

dIRx = dvis
IRx + dinv

IRx (5.42)

.

The measurement Inter-Rays values z[µIRx] and z[σ2
IRx] are used in each

iteration of the tracking algorithm to correct the size of the OBB measure-

ment. We introduce two measurements: perceived and corrected. As the

name suggests, the perceived measurement holds perceived OBB parame-

ters: centre position, size, orientation, Inter-Rays mean and their uncertain-

ties. The size and position uncertainties stored in the perceived OBB do not
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Figure 5.18: Normal distribution approximation.

include the Inter-Rays uncertainty. The corrected measurement consists of

corrected values and uncertainties (for example centre position, size). The

introduction of the two types of measurements allows comparison of different

algorithms since the perceived OBB stays unchanged during one iteration

of the tracking algorithm. The other advantage is that it structures the

algorithms, and thus, provides better insight into them.

Before correction stage takes place, all data from the perceived OBB is

copied to the corrected measurement. Then, some of the OBB parameters

are corrected.

The correction equations are expressed as follows:

z[dx] = zperc[dx] + zperc[µIRx] (5.43)

z[σ2
dx] = zperc[σ

2
dx] + zperc[σ

2
IRx] (5.44)

where zperc is the perceived measurement, z is the corrected measurement

used in the track state estimation process.

The measurement center position uncertainty is computed in the same

manner as before (see Section 5.1.3). The obtained center position uncer-

tainty is greater than the uncertainty given in the case of the OBB extracted

without applying the Inter-Rays algorithm. It, however, reflects better the

measurement position uncertainty.

The same process is applied for the OBB’s local Y axis.

In certain raw data point configurations, it happens that the IR line

segment lengths dIRx and dIRy are large. It may cause great overestimation

and tracking instability. To avoid this situation, the IR line segment lengths

dIRx and dIRy are limited to a certain values TdIRx
and TdIRy

.
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5.3.3 Centre translation

After correcting the measurement’s size, the measurement’s centre must be

translated. This is due to the fact that, after size change, the corrected

measurement sides change their position. The new sides positions do not

correspond to the tracked object surfaces (see Figure 5.19(a)). The intro-

duction of the center translation solves this problem (see Figure 5.19(b)).

Figure 5.19: Center translation after OBB size change: (a) size change (b)
center translation.

The centre translation vector ∆c is proportional to the size change vector

∆d. In the case of the IR algorithm, the size change vector ∆d is as follows:

∆d = (zperc[µIRx], zperc[µIRy]) (5.45)

There are two different approaches, which define the relations between

the two vectors.

The first approach is a simple centre translation, in which the relation

is defined as follows:

∆c =
1

2
(DFx · ∆dx

, DFy · ∆dy
) (5.46)

where DFx and DFy are the direction factors:

DFx =











1, if βminX < 90◦ (5.47a)

−1, if βmaxX < 90◦ (5.47b)

0, otherwise (5.47c)

The same expression is used to define DFy by considering the OBB local Y

axis.
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The direction factor allows to translate the centre towards the invisible

sides, for which the IR values are computed. In the case where two parallel

sides are classified as invisible, their visibility angles are greater than 90◦ (see

section 5.3.1). In this case, there is no translation along the corresponding

OBB local axis. Thus, the direction factor is set to 0.

The second approach uses the visibility factor to calculate the translation

vector. In this approach, the translation of the centre is relative to the

visibility of the OBB sides. The visibility factor permits to compute the

centre translation coefficient, which is proportional to the visibility of the

sides. The centre translation vector is computed according to the equation

below:

∆c =
1

2
(V Fx · DFx · ∆dx

, V Fy · DFy · ∆dy
) (5.48)

The introduction of the visibility factor based translation reduces the

effect of ”phantom” object movement. The effect is a quick object posi-

tion change, which can affect object’s velocity estimation since a filter can

smooth these fluctuations only to some extend.

This effect occurs when a transition between the stage with only one

side, classified as visible, and the stage where two sides are classified as

visible (and reversely), takes place. Let us use Figure 5.20 to illustrate the

problem. At the first instant t, only one side is considered as visible. Due

to the rotation of the object, in the second instant t + 1, there are two

sides detected as visible. In the figure, one can see that the corrected OBB

has changed its position rapidly. The tracked object, in the example, has

no linear velocity. However, when a simple centre translation is used, the

linear velocity estimation tends to be visibly greater than the real one. The

greater is the IR mean, the greater the ”phantom” object movement is. So,

the effect becomes more prominent with the increase of the objects distance,

and thus, with the increase of the angular resolution of the sensor.

There is another important point. Due to the transitions, the size of the

extracted OBB changes. This also can cause the effect of ”phantom” object

movement. This problem, however, is covered in section 5.2.1.

To express the centre in the ego-vehicle coordinate system, the last stage

of the OBB centre translation is the rotation of the translation vector by

the OBB orientation angle α:

∆c = R ∗ ∆c (5.49)
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Figure 5.20: Simple centre translation.

where R is a rotation matrix defined as follows:

[

cos α sin α

− sin α cos α

]

(5.50)

5.4 Fixed Size

The idea of the fixed size (FS) assumption is based on the fact that, in

general cases, objects’ size does not change during the tracking. However,

due to the LRF’s limited resolution and change of the relative distance and

orientation of the observed object, measurements of the object’s size vary

in time. The principle of the FS assumption is that the size of the track

representing the tracked object can change depending on the IR uncertainty.

The FS algorithm takes place in each iteration of the tracking after the

track prediction and measurements extraction, and allows to keep the best

object’s size estimation obtained up to the current iteration.

For the following algorithm description, we consider the local OBB’s X

axis. The same process is applied to the local OBB’s Y axis.

We assume that the OBB measurement, with IR values, are available.

The first step of the algorithm is to find a perceived size of the corrected

measurement. The perceived size of the corrected measurement is set to:

z[dx] = min(zperc[dx], x̂perc(t|t − 1)[dx]) (5.51)
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where zperc[dx] is the size perceived in the current iteration. x̂(t|t − 1)[dx]

is the maximum perceived size up to the current iteration. It can be found

by the following equation:

x̂perc(t|t − 1)[dx] = x̂(t − 1|t − 1)[dx] − x̂(t − 1|t − 1)[µIRx] (5.52)

The second step consists of finding the IR mean for the corrected mea-

surement. The general rule is to use the smallest IR mean observed up

to the current iteration. There are, however, cases when the currently ob-

served IR mean should be used. Indeed, when the perspective changes and

the perceived size of the object changes by a great amount, the IR mean ob-

served up to the current iteration becomes invalid, and should not be used

to compute the corrected measurement IR values. To detect this situation

let us define the perceived size difference:

∆dxperc = zperc[dx] − x̂perc(t|t − 1)[dx]) (5.53)

Then, the perceived size difference ∆dxperc is compared to the smallest IR

distance observed up to the current iteration:

x̂(t − 1|t − 1)[dIRx] = 2x̂(t − 1|t − 1)[µIRx] (5.54)

If ∆dxperc > x̂(t−1|t−1)[µdIRx], then the corrected measurement IR mean

is set to the perceived IR mean:

z[µIRx] = zperc[µIRx] (5.55)

else, the corrected measurement IR mean is set to smaller of the perceived

IR mean and the smallest IR mean observed up to the current iteration:

z[µdIRx] = min(zperc[µdIRx], x̂(t − 1|t − 1)[µdIRx]) (5.56)

The obtained corrected measurement IR mean is stored in the track:

x̂(t − 1|t − 1)[µdIRx] = z[µdIRx] (5.57)

Next, the correction stage of IR algorithm takes place (5.43) and (5.44).

Like in the case of the IR algorithm, the size of the measurement OBB

changes, and thus, a centre translation must be applied (see section 5.3.3).

The same centre translation algorithm as in the case of the IR method is

used. The size change vector, however, is different and is defined as follows:

∆d = (z[dx] − zperc[dx], z[dy] − zperc[dy]) (5.58)
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5.5 Results

5.5.1 Simulator based results

To show the interest of using the IR uncertainty and the FS assumption, a

scenario where a tracked vehicle runs in a circle trajectory in front of the

instrumented vehicle is installed. This scenario is chosen because it inte-

grated difficult situations during the tracking process. Indeed, the tracked

object changes its orientation all of the time as well as its linear velocity.

In the graphs presented in this subsection, there are results of four al-

gorithms for the same scenario. All of the compared algorithms are based

on Extended Kalman Filter. The first one, called ”EKF-noComp” consists

of tracking without the application of the size change compensation. The

second ”EKF” consists of tracking with the size change compensation. The

third algorithm, called ”IR” is the previous algorithm with the Inter-Rays

uncertainty. Finally the fourth one, called ”FS” consists of tracking with

the Fixed Size assumption. The X axis the in figures represents the number

of iterations of the tracking algorithm. The frequency of the sensor is set

to 50 Hz, thus one iteration takes 0.1 seconds. This value can be tuned in

the simulator. All the results presented in the graphs are expressed in the

instrumented vehicle local coordinate system.

Figure 5.21 shows the estimated trajectories and the real one of the

tracked vehicle in the tested scenario. From the figure, one can see that

the FS algorithm outperforms the others in terms of position estimation

precision. The position estimation will be further discussed in more details.

The results of angle orientation and its velocity are presented in figures

5.22-5.27. The stage of angle orientation and angular velocity estimation is

identical for all algorithm discussed in this chapter and thus, only a mea-

surement an estimation of the angle and the real value are shown. The first

part, between the beginning and around iteration 130, corresponds to the

moment when only one side of the vehicle is visible. One can see in Figure

5.23 that the standard deviation of the measurement and estimation in the

first part is greater than in the other moments of the tracking. This is

related to the length of the convex-hull segment, found in the calipers algo-

rithm, which is used to compute the orientation uncertainty. The shortest

the segment the more uncertain the orientation angle becomes.

In figure 5.25, presenting angular velocity, one can see that the estima-

tion ”follows” the real value, but never converges with it. This fact can be

explained by the usage of the Discrete White Noise Acceleration kinematic
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Figure 5.21: Trajectory of the tracked vehicles.

model (DWNA), in which acceleration is not estimated. This implies that

in the system model, a transition between the states is done with preserv-

ing the velocity from the previous time. In figure 5.25 one can see that the

real angular velocity is changing all the time, and thus, the estimated value

cannot converge to the real value.

The IR and FS algorithms influence directly the estimation of the tracked

object size. The size estimation results are shown in figures 5.28-5.35. In

figure 5.28 and 5.31, one can see FS based size estimation is stable dur-

ing the tracking. The estimation based on the other algorithms undergoes

oscillations. This is due to the continuous change of detection points con-

figuration. Another aspect is accuracy of the object’s size estimation. One

can see in figures 5.30 and 5.33, representing the size estimation error, that

the FS method gives more accurate results that the other methods. The

places when the estimations present great deviation from the real object

size, correspond to the situations when only one side of the object can be

perceived by the sensor. Thus, only one object’s dimension information is

available. One can see that the usage of the FS assumption, which stores

the object size, allows to obtain reliable estimation, even in the cases when

only one object’s side is seen. Figures 5.29 and 5.32 present the size esti-

mation standard deviation. The IR and FS based values are greater than

values obtained without IR and FS. This is a result of adding IR uncertainty.
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Figure 5.22: Orientation angle estimation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  50  100  150  200  250  300  350  400  450  500

O
ri

en
ta

ti
o

n
 a

n
g

le
 S

T
D

 [
d

eg
]

Time [iterations]

Measured orientation angle STD
Estimated orientation angle STD

Figure 5.23: Orientation angle standard deviation.

However, storing the smallest perceived IR mean in the FS approach ( see

Figures 5.34 and 5.35) leads to much smaller side estimation standard de-

viation when compared with the IR algorithm case.

The results of position estimation can be seen in figures 5.36 - 5.38.

Figures 5.36 and 5.39 show the estimated and real object positions in X
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Figure 5.24: Difference between real and estimated orientation angles.
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Figure 5.25: Angular velocity estimation.

and Y coordinate respectively. Figures 5.38 and 5.41 show the difference

between the estimated position and the real one in X and Y coordinate

respectively.

One can see in the mentioned figures that the FS approach outperforms

the other in terms of object’s center position estimation. The better center

position estimation can be obtained thanks to the more reliable object’s size

estimation. This is due to the proportional relation between the size and
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Figure 5.26: Angular velocity covariance.
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Figure 5.27: Difference between real and estimated angular velocities.

the center of the OBB. Figures 5.37 and 5.40 show the standard deviation

(STD) of the position estimation in X and Y coordinate respectively. One

can see in the mentioned figures that STD values of the IR and FS are

greater than in the other cases. This is due to the introduction of the IR

uncertainty.

Figures 5.42-5.47 show the velocity estimation results. In figures 5.42

and 5.45 the estimated and real object velocities in X and Y coordinate
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Figure 5.28: Size estimation (X coordinate).
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Figure 5.29: Size standard deviation (X coordinate).

respectively are shown. Figures 5.38 and 5.41 show the difference between

the estimated velocity and the real one in X and Y coordinate. One can

see in the aforementioned figures that the tracking without size change

compensations produces bad velocity estimations, especially in places where

size changes for a great deal in very short time.

As in the case of angular velocity estimation, the velocity estimate ”fol-

lows” the real value, but does not converge with it. The explanation is
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Figure 5.30: Difference between real and estimated sizes (X coordinate).
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Figure 5.31: Size estimation (Y coordinate).

identical as in the angular velocity estimation. In the DWNA kinematic

model, the transition equation preserves the velocity estimated in the pre-

vious filtering iteration. In the mentioned figure, one can see that the real

angular velocity is changing all the time, and thus, the estimated value

cannot converge to the real value.
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Figure 5.32: Size standard deviation (Y coordinate).
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Figure 5.33: Difference between real and estimated sizes (Y coordinate).
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Figure 5.34: Inter-Ray mean (X coordinate).
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Figure 5.35: Inter-Ray mean (Y coordinate).
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Figure 5.36: Center position estimation (X coordinate).
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Figure 5.37: Center position standard deviation (X coordinate).
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Figure 5.38: Difference between real and estimated Center positions (X
coordinate).
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Figure 5.39: Center position estimation (Y coordinate).
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Figure 5.40: Center position standard deviation (Y coordinate).
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Figure 5.41: Difference between real and estimated center positions (Y co-
ordinate).
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Figure 5.42: Linear velocity estimation (X coordinate).
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Figure 5.43: Linear velocity standard deviation (X coordinate).
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Figure 5.44: Difference between real and estimated linear velocities (X co-
ordinate).
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Figure 5.45: Linear velocity estimation (Y coordinate).
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Figure 5.46: Linear velocity standard deviation (Y coordinate).
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Figure 5.47: Difference between real and estimated linear velocities (Y co-
ordinate).
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5.5.2 Real vehicle platform based results

We evaluate the FS algorithm on real data. The data were acquired using

the experimental vehicle. In the experiment, we use the same scenario as

in the case of simulator based evaluation. The tracked vehicle is running

in front of the instrumented vehicle following circle trajectory. The instru-

mented vehicle is equipped with laser scanner SICK LMS 221, which it’s

step angle is set to 1◦ with an angle range of 180◦. To obtain the reference

relative position of the tracked vehicle the three GPS-RTK configuration

was used (see section 4.2).

The X axis in the figures represents the number of iterations of the track-

ing algorithm. The frequency of the sensor is set to 4 Hz, thus one iteration

takes 0.25 seconds. The frequency of the sensor is low comparing to the real

capability of the used sensor. This is due to the technical configuration at

the moment of the running the tests. The experimental Intelligent Vehicle

platform is still in evolution.

All the results presented in the graphs are expressed in the instrumented

vehicle local coordinate system.

The lower frequency of the acquisition influences the tracking results,

especially the angular and linear velocities.

Figure 5.48 shows the estimated trajectories and the real one of the

tracked vehicle in the tested scenario. Like in the simulated data case, the

FS algorithm outperforms the others in terms of position estimation pre-

cision. There are, however, places where the estimated trajectory deviates

from the real one (in the extreme x locations)

The results of angle orientation estimation are presented in figures 5.49-

5.51. Again, only the measurement, estimation of the angle and the real

value are shown. In Figure 5.49, one can see that, between the real and

estimated orientation angle, there is almost a constant gap. This is due

to the effect of how the orientation of a real object is calculated. The real

orientation angle was calculated by finding the slope of the line passing by

the current and previous vehicle positions. This slop will never be collinear

with real vehicle orientation when the vehicle is turning. Nevertheless, the

gap between the two discussed values allows to conclude that the orientation

angle is well estimated.

The IR and FS algorithms influence directly the estimation of the tracked

object size. The size estimation results are shown in figures 5.52-5.59. Fig-

ure 5.52 and 5.55 present the size estimation of the tracked object. The FS

produces a stable estimate. In the simulated data case the size was slightly
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Figure 5.48: Trajectories of the tracked vehicle.

overestimated. In the presented case the values are underestimated. This

is due to the fact that in the simulator, a special model of the vehicle has

been prepared. It was prepared in a such manner that the vehicle profile

obtained by cutting the model by a laser plane has the maximal vehicle ob-

servable size. In the real experimentation, however, the estimated value was

compared with information provided by the manufacturer. In other worlds,

we cannot be sure that the profile obtained by cutting by a laser plane has

the maximal size of the vehicle. The estimation error is presented in figures

5.54 and 5.57. The FS algorithm provides most precise estimation. The

places when the estimation deviates from the real object size, correspond

to the situations when only one side of the object can be perceived by the

sensor. Even in this situations, while using the FS, the best size estimate

is available.

Figures 5.53 and 5.56 present the size estimation standard deviation.

The same characteristics, as in the case of the simulated data, can be ob-

served. The usage of the IR uncertainty results in greater STD values for

the IR and FS algorithms. The FS based size STD decreases along the

decrease of the stored IR value.

The results of position estimation can be seen in figures 5.60 - 5.62.

Figures 5.60 and 5.63 show the estimated and real object positions in X

and Y coordinate. Figures 5.62 and 5.65 show the difference between the
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Figure 5.49: Orientation angle estimation.
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Figure 5.50: Orientation angle standard deviation.

estimated position and the real one in X and Y coordinate. The obtained

results, presented in mentioned figures confirm the results obtained with

the simulated data. The FS approach provides the best center estimation.

Figures 5.61 and 5.64 show the standard deviation (STD) of the position

estimation in X and Y coordinate. Since the position uncertainty is related
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Figure 5.51: Difference between real and estimated orientation angles.
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Figure 5.52: Size estimation (X coordinate).

with size the STD, the introduction of the IR uncertainty effects in the

increase of position standard deviation in the IR and the FS algorithms.

In the case of the FS algorithm, the size STD decreases in time (it is well

observable in Figure 5.64). This is due to the decrease of the IR value in

the corrected measurement.

Figures 5.66-5.71 show the velocity estimation results. In figures 5.66

and 5.69 the estimated and real object velocities in X and Y coordinate
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Figure 5.53: Size standard deviation (X coordinate).
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Figure 5.54: Difference between real and estimated sizes (X coordinate).

are shown. Figures 5.62 and 5.65 show the difference between the esti-

mated velocity and the real one in X and Y coordinate. One can see, in

the aforementioned figures that effect of ”phantom” movements on velocity

estimation is visible in the case of ”EKF-noConp” algorithm (the approach

in which no size change compensation was applied). Compared to the sim-

ulated data, there is no gap between the real and estimated velocities. This

is an effect of low frequency of observations. Each a priori covariance of
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Figure 5.55: Size estimation (Y coordinate).
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Figure 5.56: Size standard deviation (Y coordinate).

the velocity is more noisy in this case than in the simulated data case. The

a priori velocity variance is proportional to the process noise (modeled by

the acceleration noise in used the DWNA) and the time passed during the

measurements. In the simulated case, the sensor provides data 50 time per

second, what gives time delta equal to 0.02 seconds. The real sensor has

around 4Hz, what gives time delta equal to 0.25 seconds. The same process

noise values were used in the two cases. Thus, the a priori velocity variance
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Figure 5.57: Difference between real and estimated sizes (Y coordinate).
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Figure 5.58: Inter-Ray mean (X coordinate).

in the real data case is much greater than in simulated case. The greater

variance of the predicted velocity causes, that in the Kalman Filter, the

measurement has more influence on corrected estimate than the predicted

velocity.

To illustrate this effect, we simulated the tracking process with the fol-

lowing frequencies 50Hz and 4Hz, for the same scenario. Figures , and show

the velocity estimation for data frequency 50Hz. Figures and show velocity
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Figure 5.59: Inter-Ray mean (Y coordinate).
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Figure 5.60: Center position estimation (X coordinate).

estimation for frequency 4Hz. One can see that the results of the velocity

estimation with 4Hz are similar to the one obtained in the real data case.

One may have an impression that the lower frequency provides the better

velocity estimation, but this is not the case. To obtain better velocity esti-

mation for data with higher frequencies, the process noise should be changed
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Figure 5.61: Center position standard deviation (X coordinate).
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Figure 5.62: Difference between real and estimated Center positions (X
coordinate).

and adapted to the used frequency. Another solution would be the usage

of other kinematics models, which estimate also acceleration. The Discrete

Wienner Process Acceleration model can be used.
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Figure 5.63: Center position estimation (Y coordinate).
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Figure 5.64: Center position standard deviation (Y coordinate).
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Figure 5.65: Difference between real and estimated center positions (Y co-
ordinate).
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Figure 5.67: Linear velocity standard deviation (X coordinate).
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Figure 5.68: Difference between real and estimated linear velocity (X coor-
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Figure 5.69: Linear velocity estimation (Y coordinate).
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Figure 5.70: Linear velocity standard deviation (Y coordinate).
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Figure 5.71: Difference between real and estimated linear velocity (Y coor-
dinate).
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Figure 5.72: Linear velocity estimation for simulated data obtained with
frequency 50Hz (X coordinate).
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Figure 5.73: Linear velocity estimation for simulated data obtained with
frequency 4Hz (X coordinate).
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Figure 5.74: Linear velocity estimation for simulated data obtained with
frequency 50Hz (Y coordinate).
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Figure 5.75: Linear velocity estimation for simulated data obtained with
frequency 4Hz (Y coordinate).

5.5.3 Conclusions

In the last four sections, the methodology for object representation was in-

troduced. The results, comparing proposed algorithms, was presented. It

was shown that the proposed OBB based object representation method is

suitable for the task of dynamic objects tracking. To increase the reliabil-

ity of the tracking, two algorithms were introduced Inter-Rays based and

Fixed Size based algorithm. By introducing the size uncertainty, the first

algorithm allows to represent better the real size and position uncertainties.

The usage of the Fixed Size assumption allows to obtain better tracking in

terms of size and center position estimation. The results obtained using the

simulator was confirmed by the processing of real data. The better size esti-

mate can be exploited in data association. Combination of a quick method

with the FS algorithm, which results in robust method, is presented in the

next chapter.
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5.6 Two laser scanner fusion

In this section, we propose a two laser scanner based fusion approach that

exploit better the angular resolution of the two laser scanners configuration.

The objective is to increase the tracking accuracy in terms of object size,

angle orientation, velocity estimation.

We have shown, in section 5.1, that representation model performs well

except for objects poorly represented by raw data points. This situation oc-

curs for far objects. Indeed, the number of laser rays colliding with objects

is inversely proportional to the distance and proportional to the LRF angu-

lar resolution. Since the increase of the LRF angular resolution is limited,

the number of laser rays colliding with objects decreases with the distance.

Hence, at a certain range, the objects state estimation becomes very uncer-

tain or even impossible to obtain. To overcome this limitation, more LRF

sensors can be used. A multiple LRF configuration provides a higher per-

ception angular resolution, and thus, a better object state estimation can be

achieved. Furthermore, interlacing rays allows an additional size estimation

refinement by utilizing Inter-Rays uncertainty.

KF based fusion methods can be divided into two groups: measure-

ments fusion and tracks fusion. In the case of far objects, none of general

approaches fits. In [46], two LRF were fused by using Weighted Measure-

ment Fusion (WMF) method [30] is proposed. In this method, OBB mea-

surements are extracted from raw data points for each sensor. The OBB

measurements coming from the two sensors are extracted and then fused.

This method takes into account only the redundancy aspect of the two-LRF

configuration, and does not benefit from the increased perception angular

resolution. Thus, it does not perform well for far objects. A method taking

into account the redundant aspect of the multi-sensor configuration must

operate on raw sensory data.

In this section, we propose a two LRF based fusion approach that takes

advantage from the increased perception angular resolution (more raw data

points per object and lower distance between laser rays). To benefit from

this aspect, the raw data points coming from the sensors must be merged to

extract an OBB measurement. The first step of the whole tracking system

consists of data association. Raw data points association is performed for

each sensor separately, and raw data points are regrouped in clusters. The

number of clusters correlated with a track is equal to the number of sensors.

During the points clustering, the online semi convex-hull construction takes

place (see section 5.1.1). The points constructing each semi convex-hull are
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sorted according to their angular coordinate. To construct the fused semi

convex-hull from the semi convex-hulls correlated with a track, the following

algorithm is performed (see Figure 5.76). It starts by inserting the two

points with the smallest angular coordinates into a new semi convex-hull to

be constructed. To choose a point with the smallest angular coordinate, we

consider only the first points of all the semi convex-hulls, since the points

of each semi convex-hull are sorted. The point being inserted is deleted

from the original semi convex-hull. In each iteration, a new point with

the minimum angular coordinate is inserted into the semi convex-hull being

constructed. For each point insertion, the convexity condition is checked. If

this condition is violated, the existing semi convex-hull recalculation occurs

(see section 5.1.1). The constructed semi convex-hull serves then as an input

for the Calipers based OBB extraction method.

Figure 5.76: Semi convex hulls fusion.

After the OBB extraction, the Inter-Ray (IR) based size refinement

starts. In the case of a single LRF, the distance between rays increases

with the distance from the sensor. In a mulit-sensor case, the inter-rays

distance varies between 0 and dLRF , where dLRF is a inter-rays distance
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for each LRF. This IR distance variation allows to refine the size of the

perceived objects, where the refinement level corresponds to the relative

position between the objects and the sensors.

The IR uncertainty computation for multiple sensors is similar to the

single sensor case (see section 5.3.2). The only difference between the two

configurations is that in the multiple sensor case, the Inter-Rays distance

dIR values are computed for each LRF and than the smallest one is cho-

sen. To correctly choose rays r and r + n of each sensors, the coordinates

of the extreme point (e.g. maxY ) must be expressed in the local sensor

coordination system (see Figure 5.17).

5.6.1 Simulator based results

To test the proposed approach, a single LRF and a two-LRF configurations

are evaluated and compared. In the first configuration, a Laser Range

Finder (LRF) is mounted in front of the instrumented vehicle. In the second

configurations, two LRFs are parallely mounted in front of the vehicle with

a horizontal inter-space of 1m. The step angle for the LRFs is set to 1◦

with an angle range of 180◦ (similarly to the real sensor parameters). The

sensor range is set to 120 m and the range uncertainty σρ is set to 0.05m.

To evaluate and compare the one LRF based tracking with the two

LRFs based one, a second scenario is used. It corresponds to a vehicle

which is travelling towards the instrumented one, according to the trajectory

illustrated in Figure 5.77.

One can see in Figures 5.78, 5.79, 5.82, 5.84, 5.85, 5.88 and 5.89 that the

single LRF based tracking provides bad state estimation, when the vehicle

is far. However, the performance of this method increases with the decrease

of the distance between the sensor and the tracked vehicle.

The two LRFs based method behaves similarly, but with better vehicle’s

state estimation. There is, however, a visible difference between the two

approaches for distant objects (see Figures 5.80, 5.81, 5.83, 5.86, 5.87, 5.90

and 5.91).

One can see in Figures 5.84 and 5.85 that the IR uncertainty µIR stays

constant at the beginning of the tracking (when the vehicle is far). This is

due to the IR line segment length dIRx limitation, as mentioned in section

5.3. In our test, the limit is set to 2 meters.

In Figures 5.78 and 5.79, showing the center position errors for the one

LRF based method, one can see great oscillations. This effect is a result

of the sensor’s low resolution at far distances. To explain the nature of
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Figure 5.77: Vehicle trajectory (in the instrumented vehicle’s local coordi-
nate system).

the problem, let us use the example shown in Figure 5.92. In the example,

the real object moves to the right what can be seen as the change of the

position in the different time instants. The measurement, however, stays at

the same place due to the low laser rays resolution. If the object continues its

movement, it will be detected by a new raw data points configuration and,

hence, the measurement will change its position. This effect takes place all

the time during the tracking of the object. Its intensity is proportional to the

laser rays resolution and the velocity of the object. Lower the resolution and

the velocity are more prominent the effect becomes, since the time period,

when the measurement is static, increases. Thus, in the beginning of the

scenario, when the tracked object is far and its speed is low, the object’s

movement is perceived as a jerking one.

The use of KF smooths the estimated velocity. However, at low speed,

when the position of the measurement stays unchanged for a long time, the

estimated velocity presents great oscillations. The introduction of the sec-

ond LRF allows to increase the laser rays resolution and thus the oscillation

effect is importantly reduced (see Figures 5.93, 5.94, 5.80, 5.81)
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Figure 5.78: One LRF - object’s center position error (X coordinate).
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Figure 5.79: One LRF - object’s center position error (Y coordinate).
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Figure 5.80: Two LRFs - object’s center position error (X coordinate).
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Figure 5.81: Two LRFs - object’s center position error (Y coordinate).
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Figure 5.82: One LRF - object’s orientation angle error.
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Figure 5.83: Two LRFs - object’s orientation angle error.
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Figure 5.84: One LRF - Inter-Rays uncertainty µIR (X coordinate).
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Figure 5.85: One LRF - Inter-Rays uncertainty µIR (Y coordinate).
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Figure 5.86: Two LRFs - Inter-Rays uncertainty µIR (X coordinate).
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Figure 5.87: Two LRFs - Inter-Rays uncertainty µIR (Y coordinate).
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Figure 5.88: One LRF - object’s X side size error.
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Figure 5.89: One LRF - object’s Y side size error.
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Figure 5.90: Two LRFs - object’s X side size error.
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Figure 5.91: Two LRFs - object’s Y side size error.
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Figure 5.92: Example of the measurement OBB extraction for different
object positions for greater distances (small LRF resolutions).
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Figure 5.93: Comparison of the velocity estimation between one LRF and
two LRF fusion (coordinate X).



124 CHAPTER 5. OBJECT REPRESENTATION AND TRACKING

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0  200  400  600  800  1000  1200  1400

Y
 v

el
o
ci

ty
 [

m
/s

]

Time [iterations]

1 LRF - Estimated center Y velocity
2 LRF fusion - Estimated center Y velocity
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5.6.2 Conclusions

A two-LRF based fusion method for objects tracking is presented. The

Oriented Bounding Box model is used to represent the tracked objects. En-

riched by the Inter-Rays uncertainty and Fixed Size assumption paradigms,

the OBB model performs well with a single LRF, except for far objects,

because of the limited angular resolution of the sensor. To overcome this

limitation, we have proposed to use two LRF in order to increase the per-

ception angular resolution. The raw data fusion method leads to a better

object state estimation. Furthermore, interlacing rays allows additional size

estimation refinement using the IR uncertainty. The experimental results

have shown the reliability of the two-LRF based fusion system, especially

for far objects, when compared with the usage of a single LRF.



Chapter 6

Data association

6.1 Introduction

One of the most important tasks of autonomous navigation in urban areas

is tracking of dynamic objects. Data association, which is closely related to

the objects representation and sensory data, is a crucial part of the tracking

process.

Data association algorithms are composed of the following stages (see

Figure 6.1): raw data points clustering, tracks to clusters correlation and

raw data points to track association. The first stage is treated as a lightweight

preprocessing of data to be associated. The third step consists of more pre-

cise, but more time consuming processes, which operate on the first stage’s

output. The decision of which process will be performed depends on the

outcome of the second stage. Tracks, that do not have any raw data points

associated, stay valid for the next iteration with the increasing of their age.

The tracks, that exceed the maximum live span, are deleted.

The first stage (raw data points clustering) is treated as a preliminary

association. It divides the domain of raw data points into subdomains

in form of clusters and do not produces precise objects separation. The

resulting clusters are then processed by more reliable algorithms of data

association. The clustering algorithm is based on a distance threshold. It

means that the Euclidean distance between points belonging to the same

cluster is below a certain threshold.

The second stage is tracks to clusters correlation. A track is correlated

with a cluster if the track’s Oriented Bounding Box intersects with the

cluster’s Axis Aligned Bounding Box. If the track do not intersect any

125
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Figure 6.1: Data association flowchart.

cluster, the track is correlated with the closest cluster. There are three

possible outputs of tracks to clusters correlation. A cluster can be correlated

with zero, one, two or more tracks. These cases represent respectively the

following situations: appearance of a new object, tracking of a separated

object, and multi-object tracking (see Figure 6.1).

Basing on the results of the previous step, raw data points to track

association third stage follows. In this stage, raw data points, positively

associated with a track, create a measurement. Each measurement is in the

OBB format (see (5.1) and (5.2)).

In the first situation (appearance of a new object), all the points of a

cluster are used to create a measurement. In the second one, Mahalanobis

distance based gating is used to associate raw data points with a track. Not

associated points undergo the local process of clustering and create new

tracks.

In the last case, where there are two or more tracks correlated with a

cluster, a method based on the Nearest-Neighbour principle is used. The

method allows to associate raw data points to existing tracks. Two ap-

proaches are proposed. The first one is a simple application of the Nearest-

Neighbour principle to the OBB based object representation. The second

approach uses the additional information about tracking objects, provided

by the Fixed Size (FS) assumption.

As it was already mentioned, in our case, the clustering is only a pre-

association stage of the whole association process. To explain in more details
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the influence of the clustering step on the general association algorithm, let

us define two general cases: an object, which is already tracked and have

well defined size; an object, which appears or does not have well defined size.

We recall that the FS algorithm is used to estimate and store the size of the

objects. In the first case, the clustering process serves only to decrease the

data needed to be treated by third stage of the data association algorithm.

The this stage can correctly associate points to tracks basing on the tracks

state information originating from the previous iteration of the tracking

algorithm. In the second case, however, this information is not available,

and thus, the application of the third stage of the data association algorithm

is useless. This implies that the clustering stage must separate the objects

from the raw data points, and, for each cluster, a new track is initialized.

Thresholding used in the clustering is not an adaptive one, and is chosen

experimentally. Two different thresholds are used: all points threshold and a

consecutive points threshold. The consecutive points are the raw data points

produced by neighbouring laser rays. The first threshold is applied for all

points, without any relationship condition. The second one is considered

only for consecutive points, and is grater then the first one. The introduction

of the consecutive points threshold comes from the observation that, very

often, consecutive points that do not meet all points threshold, and thus,

are put into different clusters, represent the same object (see Figure 6.2).

Figure 6.2: Neighbouring points threshold.

The proposed reasoning has, however, a drawback. The problem is to

find an appropriate value of the neighboring points threshold. Nevertheless,

it is not reliable while used in track initialization. Even if, eventually, the

neighboring points threshold has a correct value it cannot give acceptable
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results for dynamic obstacles like vehicles while the shorter side of the ob-

jects is well visible. Thus, it cannot be applied for general cases. Instead,

one can use on of the existing adaptive thresholding methods [49, 21, 65, 17].

The adaptive thresholding allows to cluster the data points more reliably.

These methods, however, are based on planar surface assumption. This

assumption is relaxed in the proposed earlier OBB based object represen-

tation model and extraction algorithm. What is more, these methods are

vulnerable to missing or erroneous laser measurements, while the adaptive

threshold is applied to consecutive points only. A methods, which uses

stereovision information to increase reliability of the laser data points clus-

tering, in this chapter is proposed and thus is resistant to erroneous laser

measurements.

6.2 Nearest Neighbors principle with the Fixed

Size assumption for data association

In this chapter, an OBB based method for laser scanner data association

is presented. The method resolves the problem of coalescing objects sep-

aration. The usage of the OBB representation introduces the geometrical

aspect for data association. Since the algorithm bases on the geometry

and size of the objects it will work reliably for objects being previously

recognised as separated ones.

6.2.1 Introduction

There are two variants of the proposed clustering approach. The first one

is a direct application of the Nearest-Neighbour (NN) principle to associate

each raw data point, included in the processed cluster, with one of the

correlated tracks. The difference with the standard NN approach is thatm

in this case, the track is assigned to the measurement, instead of assigning

the measurement to the track. It means that each point can originate from

only one track, but track can have many measurements (raw data points).

To increase the NN algorithm reliability, the second variant of the proposed

clustering approach takes into account the object size. The objects size is

available if the FS assumption is used. The FS assumption allows to store

the best size estimation obtained during the tracking. The robustness of

the second variant lies in the correctness of the object size estimation. In

the proposed approach the problem of occlusion is not taken into account.
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This is due to the fact that the FS algorithm, in the case when an object

with only one visible side is occluded, gives wrong position estimation.

6.2.2 Nearest-Neighbour variant

For each pair of a raw data point and an OBB, representing a track corre-

lated with the cluster, Mahalanobis distance is calculated. If the raw data

point is validated by only one track gate, it is assigned with that track. If

the raw data point is situated in the gates of a few tracks, it is assigned

with the closest track, in Mahalanobis distance sense.

The size of the gate is related to the track position prediction covariance

by applying the following gate rule:

Td2 ≥ d2
(ij) = νT

(ij)S
−1ν(ij) (6.1)

where ν(ij) is the Euclidean distance vector defined from the ith raw data

point to the jth track’s prediction OBB, S−1 is the inverse of the track

position prediction covariance matrix. A value of the gate’s threshold Td2 is

taken from χ2 distribution with two degrees of freedom, and expresses the

number of sigmas of the Normal distribution. The track position prediction

covariance matrix S is constructed as follows :

S =

[

σ 2
cx 0

0 σ 2
cy

]

(6.2)

where σ 2
cx, σ 2

cy are the OBB center position prediction uncertainties in X

and Y coordinate.

The advantage of this method is simplicity and low computational com-

plexity. The method, however, does not always give reliable results. It is

stable for the cases where the distance between tracked objects is greater

than the objects gates. The object gate is proportional to the object posi-

tion prediction uncertainty, which depends on the sensor’s range uncertainty

and the object displacement between sensor readouts. Thus, the smaller dis-

tances between the tracked objects are and the greater the displacement is,

the more probable the approach will fail.

6.2.3 Nearest-Neighbour with Fixed Size variant

The second variant combines the Nearest Neighbors principle with the Fixed

Size assumption (NN+FS). The Fixed Size assumption is used to improve

the NN association algorithm. Figure 6.3 shows the schema of the NN+FS
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Figure 6.3: Schema of NN+FS data association algorithm.

Figure 6.4: Classification of raw data points using three classes.

variant. In the first stage of the algorithm, raw data points are classified

into three classes: New Track Points (NTP), One Track Points (OTP),

Ambiguous Points (AP). The classification process is based on the relation

between raw data points and the gates of the tracks in the cluster. The first

class represents the points which are outside all the gates. The second class

consists of sets of points, which are inside only one track (one set per one

track). The last class consists of sets with points, which are inside more

than one gate (see Figure 6.4).
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The points from the first class (NTP) are separated into clusters (using

the same clustering method as in the preliminary association). For each

cluster, a new track is created.

Each OTP class set, associated with a track, serves as a source for obtain-

ing intermediate measurement. In this process, the basic OBB extraction

method, presented in section 5.1, is used.

The aim of the last stage of the proposed NN+FS algorithm is to tackle

ambiguous points association using the AP class set and intermediate mea-

surements. Each ambiguous point P(i) in this set has a list L(i) = {x(j)}

of tracks to which it may belong (point is inside the gate of each track of

the list), where i ∈ [1; N ] is a point number, N is the AP set cardinality,

x(j) is the jth track. For each pair composed by a point P(i) and a track

x(j) from the list L(i), the hypothesis HP(i),x(j)
that the ith point originates

from the jth track is tested. For this point-track pair (P(i), x(j)), we create

a temporary OBB z(ij)temp, constructed by including the point in the track’s

intermediate measurement. If the temporary OBB size is not greater than

the jth track prediction OBB size, the point can be associated with the jth

track. Otherwise, the point is not associated with the track. It happens

that the point P(i) is associated with more than one track. In this case, this

point is associated with the jth track for which the difference:

Diff(ij) = Diff(ij)[dx] · Diff(ij)[dy] (6.3)

is the smallest, where:

Diff(ij)[dx] = |z(ij)temp[dx] − x̂(j)(t|t − 1)[dx]| (6.4)

and

Diff(ij)[dy] = |z(ij)temp[dy] − x̂(j)(t|t − 1)[dy]|. (6.5)

6.2.4 Simulator based results

For the test of the proposed algorithms, a Laser Range Finder (LRF) is

mounted in front of the vehicle. The step angle for the LRF is set to 1◦

with an angle range of 180◦. In the tests, the sensor range uncertainty σρ

is set to 0.05 m.

The proposed algorithm is evaluated using two scenarios, with two tracked

vehicles (see Figure 6.5). The scenarios are chosen to show the reliability

of the proposed algorithm, which stay stable even when two objects touch

themselves.
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Figure 6.5: Objects configurations during the phase of ”multi-track data
association” (a) First scenario, (b) second scenario.

In the first scenario, two vehicles run towards each other by traveling a

symmetrical trajectory with respect to the Y axis of the LRF reference. In

the moment of the vehicles frontal position, the angles between the vehicles’

Y sides and the intersecting LRF rays are close to the right angle. Thus,

only the Y side of the vehicles is seen by the LRF.

In the second scenario, the first vehicle runs towards the second one,

which does not move. When the two vehicles become close to each other,

the angles between the vehicles’ Y sides and the LRF rays are very small.

Furthermore, the X side of the second vehicle becomes occluded by the first

vehicle.

In the second scenario, because of the vehicles orientation, the LRF

range uncertainty makes data association more difficult than in the first

one.

We can see at the end of the two scenarios that the two vehicles collide,

and one vehicle pushes the other one (see Figure 6.5). This part of the

two scenario is considered to show that NN+FS data association algorithm

remains reliable even in this extreme situation.

Three approaches are evaluated. The first one is a pure NN based algo-

rithm with the EKF based filtering. The second approach is the a NN based

algorithm with the EKF based filtering using the IR uncertainty and the

FS assumption. The third approach is a NN+FS (NN enriched by track’s

size information) based algorithm with the EKF based filtering using the

IR uncertainty and the FS assumption.
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Figure 6.6: Trajectories of the tracked vehicles for both scenarios.

To evaluate the approaches, the vehicles’ size estimation (Y side only

- in the local tracks coordination system) is compared. Size information

gives the best insight into the performance of the tested approaches, since

badly associated points influence directly the track’s size. In the proposed

scenarios, the Y side of the vehicles is visible during the phase of ”multi-

track data association” (see Figure 6.5), while the X side is not visible or

occluded, and so, cannot be used for comparison. The estimated trajectories

of the tracked vehicles are presented in figure 6.7.

In figures 6.7-6.12, one can see the real object Y side size (the two tracked

objects are identical in terms of size) and its estimation for each vehicle.

Considering the pure NN algorithm (see Figures 6.7, 6.10), the absence

of the IR uncertainty leads to underestimated object size. Furthermore,

the absence of the FS assumption does not guarantee that the object size

decreases in time (what is different with reality). The integration of the

IR uncertainty allows a better estimation of the objects size. The correct

size estimation is assured by using the FS assumption, despite unfavourable

position and/or orientation of the objects (see Figures 6.8, 6.9, 6.11 and 6.12.

Figures 6.7 - 6.9 show the evolution of the vehicles’ size estimation (Y

side only - in the local tracks coordination system) in the first scenario. The

”multi-track data association” phase starts after about 500 iterations. One

can see that the first approach (pure NN) fails, the objects’ size estimates

get worse with time. The points originally belonging to the track number
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Figure 6.7: First scenario - Evolution of the vehicles’ size (Y side) using
NN method without IR and FS.
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Figure 6.8: First scenario - Evolution of the vehicles’ size (Y side) using
NN method with IR and FS based tracking.

1 are associated with the track number 2. The second approach (pure NN

with IR and FS based tracking) stays stable for a certain period, but finally

it also fails. The result is similar to the results of the first approach. Indeed,

the points originally belonging to the track number 2 are associated with

the track number 1, with the difference that the second track size stays

constant due to the FS assumption. Only the third approach (NN+FS)
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Figure 6.9: First scenario - Evolution of the vehicles’ size (Y side) using
NN+FS method.
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Figure 6.10: Second scenario - Evolution of the vehicles’ size (Y side) using
NN method without IR and FS.

stays stable and manages well to correctly associate points to tracks.

Figures 6.10 - 6.12 show the evolution of the vehicles’ size estimation (Y

side only - in the local tracks coordination system) in the second scenario.

The ”multi-track data association” phase starts after about 300 iterations.
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Figure 6.11: Second scenario - Evolution of the vehicles’ size (Y side) using
NN method with IR and FS based tracking.
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Figure 6.12: Second scenario - Evolution of the vehicles’ size (Y side) using
NN+FS method.

In this scenario, the first approach (pure NN) manages to give the correct

data association. This is due to the favourable raw data points configuration

(see Figure 6.10). However, one can see that the sizes are greatly underes-

timated due to the absence of the IR uncertainty and the FS assumption in

the tracking.

The second approach (pure NN with IR and FS based tracking) fails and

the technique performs as in the first scenario (see Figure 6.11). The third

approach (NN+FS) performs well and all points are correctly associated

(see Figure 6.12).
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6.2.5 Real platform based results

The comparison of simulator based results shows that the NN+FS approach

is the most reliable of the three tested ones. That is why, in real conditions,

we confirm only NN+FS approach. The real data based evaluation consists

of two scenarios. The first one is similar to the first scenario used in the

simulator based evaluation (see Figures 6.5(b) and 6.13). One of the vehicles

approaches to the first stationary one. It stops when the distance between

the vehicles is very small. After a few moments both vehicles move forwards.

Figure 6.18 presents the center trajectory of both cars. In figures 6.15 and

6.17, the evolution of the X and Y sides size of the vehicles are presented.

The results show, that the method is stable and associates correctly the

laser points. This can be concluded from the sides sizes, which does not

change during the maneuver.

Figure 6.13: First scenario - image sequence

In the second used scenario, one of the vehicles passes close to the second

one, which is stationary. The passage is repeated two times: from near to

far and from far to near (see Figure 6.17). In figure 6.18, the estimated

object trajectories of both vehicles are presented. The vehicle number one

is stationary during the experiment, thus, the trajectory is visible as a small

mark. From figures 6.19 and 6.20, one can see that the estimated size of the

two vehicles does not change what confirms the reliability of the proposed

method. In this scenario, the Y side of the first vehicle is not visible, thus,

its size estimation is very underestimated (see Figure 6.20)
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Figure 6.16: First scenario - Evolution of the vehicles’ size (Y side) using
the NN method with the IR and FS based tracking.

Figure 6.17: Second scenario - image sequence
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Figure 6.18: First scenario - vehicles’ trajectories
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Figure 6.19: Second scenario - Evolution of the vehicles’ size (X side) using
the NN method with the IR and FS based tracking.
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Figure 6.20: Second scenario - Evolution of the vehicles’ size (Y side) using
the NN method with the IR and FS based tracking.

6.2.6 Conclusions

In this section, two methods for raw data points association to track were

presented. To evaluate the proposed methods, three approaches were com-

pared: NN for OBB without IR and FS, NN for OBB with FS and NN+FS.

The analysis, based on simulated data, is done with different scenarios to

take into account different objects special configurations. The experimental

results show that the NN+FS method performs more reliably than the other

tested approaches. The robustness of the NN+FS method was confirmed

by evaluating the method on real data.



142 CHAPTER 6. DATA ASSOCIATION

6.3 LRF and Stereovision fusion for raw data

points clustering

6.3.1 Introduction

In section 6.1, it was pointed out that preliminary raw data point clustering

has some drawbacks, and does not give correct results for certain situations.

The first problem is that there is no optimal neighboring points threshold

value for unstructured environments such as urban areas. Additionally, it

cannot be used for track initialization and to solve general cases. It was

mentioned that, in problematic raw data points configurations, it is better,

for more reliability, to leave the decision on points clustering to the third

stage of the association schema. Adaptive thresholding can be used (see

Section2.1.1). Thresholding methods, however, assume that only consecu-

tive scan points can create one surface. In real situations, this assumption

may not be met due to erroneous laser readouts.

It is shown, in the last section, that the NN+FS association method gives

good results for object having well estimated size. The good size estimation

is possible for objects, which are already correctly separated and which

have at least both sides were visible. Without LRF and Stereovision based

approach, an object presented below can be recognized as separate one if

its distance from other objects is greater that threshold used for clustering.

Nevertheless, there are situations where, without additional information,

it is impossible to cluster raw data points correctly. One of these situations

is illustrated in Figure 6.21. The configuration (a) represents the raw data

points corresponding to the rear of a vehicle, seen by the LRF. The con-

figuration (b) could correspond to two possible situations. The first one

”vehicle turning” (c) represents the vehicle, which is turning to the right

from its former position (a). The second situation ”vehicle occlusion” (d)

represents two vehicles: the first one (a) and a second vehicle, which is per-

ceived partially by the LRF.

Using only LRF data threshold based the clustering, it is impossible to

achieve a correct discrimination between different situations. To discard the

ambiguities, it is proposed to fuse LRF data and stereovision information.

To allow real-time algorithm execution, the stereovision information is pro-

duced and analyzed only within region of interests (ROI). ROIs are defined

by projections into the stereo images of the consecutive laser points, which

verify a distance constraint. In other terms, for each two neighbouring laser
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Figure 6.21: Laser data clustering ambiguities.

rays points, for which the distance between them is greater than a certain

threshold, the stereovision analysis is performed. The analysis answers the

question if the points belong to the same object or not. Figure 6.21 shows a

pair of consecutive points (surrounded by circles) for which the stereovision

analysis is necessary.

6.3.2 Clustering algorithm

The proposed clustering algorithm is illustrated in Figure 6.22. The schema

shows the clustering process for each input point Pj . Input points are pro-

cessed consecutively. In the first step, a classical threshold based clustering

is performed. If the point Pj is not assigned to any cluster, the existence

of a consecutive point Pi is checked. If the test fails, the point Pj creates

a new cluster, otherwise a process of point gating is lunched. If the point

Pj is inside of a track’s gate, it is added to the existing track’s cluster, or

creates a new cluster for that track. If the point Pj is outside of all existing

tracks’ gates, the stereovision analysis is performed for the points Pj and

Pi. Basing on the stereovision analysis, the point Pj creates a new cluster

or is added to the cluster of the point Pi.

6.3.3 Disparity map construction

The most difficult part of the disparity map construction is correlation of

pixels in stereoscopic images. Depth information is extracted form matched
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Figure 6.22: Clustering schema.

pixels using geometrical triangulation.

Stereo correlation consists of matching primitives extracted from the pair

of stereoscopic images (left and right images). To remove a large number of

matching ambiguities, a certain number of local and global constraints are

used : epipolar constraint, orientation constraint, constraint of minimal and

maximal disparity, uniqueness constraint, ordering constraint, constraint of

continuity of the disparity, etc. There are many methods of correlation

in the literature [19]. The SAD algorithm (Sum of Absolute Differences)

is one of the most popular correlation methods. It is generally used with

grayscale images [22, 35, 45]:

SAD(fl, fr) = D(fl, fr) = ‖fl − fr‖ (6.6)

where fl and fr denote respectively the vectors containing the pixel values

of the correlation window in the left and right images.

In the context of road environments, brightness changes in the stereo
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images point out some problems during the matching process. To reduce

this effect, we use the ZSAD (Zero mean Sum of Absolute Differences)

method [19], which is less sensitive to illumination changes. Based on pat-

tern comparison, the ZSAD algorithm is an extension of the SAD algorithm.

For each pixel of the image, a correlation window containing the neighbour-

hood of the considered pixel is used to compare the similarity. For each cor-

relation window in the left image, the correlation window with the greatest

similarity is sought in the right image:

ZSAD(fl, fr) =
∥

∥(fl − fl) − (fr − fr)
∥

∥ (6.7)

where fl and fr denote respectively the vectors containing the pixel values

of the correlation window in the left and right images. fl and fr correspond

to the average of the pixel values of fl and fr vectors, respectively.

Figure 6.23 shows the two clustering ambiguous situations (previously

described; see Figure 6.21), where stereovision information is useful to per-

form a correct laser data clustering. The first situation concerns a vehicle,

which is turning to the right (top-left image). The second one concerns a

vehicle partially occluded by another (top-right image). The corresponding

disparity maps in grayscales are presented (middle images). In order to

visualise better the detected regions, labelled images are extracted (bottom

images) from the disparity maps. In these images, each detected region

corresponding to a disparity value is represented by a different color.

It is important to notice that for the clustering task, the stereovision

analysis is performed only in regions of interest (ROI), defined from the

image-projections of pair of consecutive laser points that respect a distance

thresholding rule (see section 6.3.4). This feature allows to work with high

resolution images in real time. The algorithm is tested with images of

resolution 1280 x 960. Considering the example of Figure 6.23, the ROIs

are defined from the image-projections of the pairs of the consecutive laser

points, surrounded by circles.

Figures 6.24 shows two surface maps of two zones corresponding respec-

tively to the two situations presented in Figure 6.23. The zones are defined

by the first and last laser points projected onto the images.

Each surface map is represented by the disparity values (Z-axis) within

the image space (X-axis and Y-axis). Farther is the pixel, smaller is the

disparity value (yellow to purple).
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Figure 6.23: Disparity maps original images (top), their disparity maps in
grayscales (middle) with labelled images (bottom) for the ”vehicle turning”
(left) and the ”vehicle occlusion” (right) clustering ambiguous situation.

In the fist scenario (the vehicle turning to the right), one can notice that

the disparity values are globally constant in the left part. In the right part,

the values decrease gradually. This part corresponds to the ROI defined by

the two projected laser points surrounded by circles in Figure 6.23. The

highlighted laser points introduce ambiguity in the clustering process.

In the second scenario (the vehicle partially occluded by another), the

same remark can be formulated considering the left part of the considered

zone. There are, however, some errors appearing near to the registration

plate. In the right part, a high gap of disparity values is visible. Again,

this area corresponds to the ROI defined by the two projected laser points

surrounded by circles in Figure 6.23.

Figure 6.25 illustrates the zoom of the disparity maps showing the ROIs



6.3. LRF AND STEREOVISION FUSION FOR RAW DATA POINTS

CLUSTERING 147

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 50

 100

 150

 200

 250

 300

 350 80

 90

 100

 110

 120

 130

 140

 150

 0

 5

 10

 15

 20

Z

X

Y

Z

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0

 50

 100

 150

 200

 250

 300 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0

 5

 10

 15

 20

Figure 6.24: Surface maps: the ”vehicle turning” situation (left); the ”ve-
hicle occlusion” situation (right).
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Figure 6.25: Zoom of the surface maps around the ROIs.

6.3.4 Discontinuity test

To decide if two consecutive laser points belong to a same object, the dispar-

ity map of the region of interest (ROI) defined by the projected laser points

is analysed. The disparity map analysis consists of detecting discontinuities

between the projected laser points.

To achieve that, a disparity map exploration process is developed in

order to check if a discontinuity-less path between the projected laser points

exist. If a discontinuity-less path is found, then the two laser points are

considered to belong to the same object. Otherwise, the two points belong

to different objects. Two map exploration algorithms are proposed.

The first algorithm is based on the assumption that points are connected

by planar surface, and is expressed as follows. After projecting the consid-

ered two laser points into the images, the disparity values are calculated

only for pixels lying on the line segment connecting the two laser points.
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In the next step, for each pair of consecutive disparity values, a discon-

tinuity is detected if the absolute value of the difference of the disparity

values (∆Dispij for pixels i and j) is greater than the disparity threshold

Tdisp.

The disparity threshold Tdisp is expressed as follows:

Tdisp =
Tr × Td × ∆Disp0N

d
(6.8)

where Tr is a weighting coefficient and Td is a distance threshold. ∆Disp0N

is the difference of the disparity values of the laser points p0 and pN , defining

the ROI in which the stereovision analysis is performed, and d is the distance

between them. The disparity threshold is a real distance threshold expressed

in disparity values. The weighting coefficient Tr is introduced to allow taking

into account the disparity map imperfections and the fact that disparity

difference does not always represent the same real distance for the same

stereo image. The real distance dij computed from the disparity difference

∆Dispij is related to the absolute values Disp(pi) and Disp(pj) used to

obtain the disparity difference. In the presented work, however, the different

values of the weighting coefficient are not evaluated and Tr is set to 1.

This algorithm is simple and quick, but is vulnerable to the disparity

maps imperfections. In addition, the following assumption must be made:

two laser points representing the same object are connected by the line seg-

ment lying on a planar surface to which the points belong (see Figure (a)).

Figure 6.26: Two laser points lying (left) on a planar surface and connected
by a line segment (right) on not flat surface and connected by a curve.

The second algorithm evolved from the first one. The disparity values

are found for a band of pixels. The band is constructed by expanding in the

top and bottom directions the line segment connecting the two laser points

(see Figure (b)).
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The search is performed according to a disparity rule: two adjacent

pixels pi and pj belong to the path, if the quantity ∆Dispij = |Disp(pi) −

Disp(pj)| is inferior to a disparity threshold Tdisp. Disp(pi) is the pi pixel

disparity value. The disparity threshold Tdisp is calculated according to the

equation (6.8).

Since the disparity maps have always similar topological structure (see

Figure 6.25), to optimise the disparity map exploration, a specific algorithm

is considered. The algorithm tries to find the path between the two laser

points. It must not be the shortest path. The disparity map is considered

as a grid graph, where pixels represent the nodes. Each node is connected

by edge with its eight neighbours. A value is attributed to each edge. The

value, expresses if the edge can be traversed. The values are calculated ad

hoc, during the execution of the path search algorithm, and are computed

as follows :

EV (i, j) =

{

0, if ∆Dispij < Tdisp (6.9a)

inf, if ∆Dispij ≤ Tdisp (6.9b)

Assigning the value 0 to the edge (i, j) means that the edge can be traversed.

Otherwise, the edge in not traversable. The value inf can be interpreted as

an obstacle. Each node in the graph has x (ix) and y (iy) coordinates.

The searching algorithm is an A* pathfinding algorithm [34] adapted

to the treated problem. The algorithm finds a path from a starting node

to a goal node. It must not be the shortest path, and thus, there are less

constraints. The algorithm is faster and less memory demanding compared

with the shortest path A* algorithm.

The initial assumption is that the starting node is situated on the left

border of the graph and the goal node is situated on the right border of the

graph. There are three different graph exploration modes. The first one is

to take the goal node direction for a movement. The movement direction

is found by the slope of the line connecting the current and the goal nodes.

The algorithm starts with the goal node exploration direction. If a non-

walkable edge is found, the algorithm changes to top or bottom exploration

modes.

The heuristic function H(n) for a node n is a diagonal distance, defined

as:

H(n) = max(|ix − goalx|, |iy − goaly|) (6.10)

The path distance F (n) for the node n is always equal 0 since the cost of each

traversable edge is 0. Thus, F (n) = H(n). Each open list of nodes is stored

with the last chosen directory variable nld, and expansion variable nexp. The
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first variable stores the direction by which the current node is reached. The

second one expresses the direction of the expansion, and can takes three

values -1, 0 and 1, which represent respectively the top direction expansion,

the goal direction expansion, and the bottom direction expansion. The

movement direction dir ∈ [0, 1, 2...7]. Due to the assumption of the starting

and goal nodes positions, the directions 0,1 and 7 are considered as goal

exploration directions.

The algorithm description is as follows:

1. Add the starting node to the open list with the last directory variable

ld = 0 and expansion variable exp = 0.

2. Repeat the following:

A Look for the lowest H cost node i in the open list. The edges values

are equal 0, thus F(i) = H(i). This node will be referred as the

current node.

• If there are nodes with the same H cost

Than take the one with the greater y (iy) coordinate.

• If the selected node has a top expansion direction iexp = 1

(respectively a bottom expansion direction iexp = −1) and

has reached the top border of the graph (respectively the

bottom border of the graph)

Than remove it from the open list, and take the other node

with the lowest H cost from the open list.

• If the selected node is a starting node with an expansion

direction iexp 6= 0

Than remove it from the open list and take the other node

with lowest H cost from the open list.

B Switch the current node i to the closed list / Remove the current

node i from the open list.

C Find the node j from the eight nodes, which are adjacent to the

current node, by moving in the direction jdir, indicated by the

Fdir(i) function.

The Fdir(i) function is expressed as follows:

Fdir(i) =











1, if atan(a) ≥ 22.5◦ (6.11a)

0, if −22.5◦ > atan(a) > 22.5◦ (6.11b)

7, if atan(a) ≤ 22.5◦ (6.11c)
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where a is the slope of the line connecting the node i and the

goal node.

• If the edge e(i, j) is walkable

Then add the node j to the open list with jld = jdir and

jexp = 0.

• Else

– Find the two nodes jT , jB from the eight nodes, which

are adjacent to the current node, by moving in the direc-

tion jdir, indicated by the FexpansionDir(i
T ),FexpansionDir(i

B).

Where the node iT is a copy of the node i with iTexp = 1

and iBexp = −1. The variables, of the node j are jT
exp =

iTexp, jT
ld = jT

dir, jB
exp = iBexp, jB

ld = jB
dir.

– Add each node to the open list when jdir 6= (ild+4) mod 8

D Stop when:

• the goal node is added to the open list. In this case, the path

is found

• the open list is empty. In this case, there is no path

The FexpansionDir(i) function returns the first walkable direction from the

list Ldir. Ldir is constructed as follows:

• If ild ∈ (3, 5)

(ild + (2 + k) ∗ iexp) mod 8

• Else

(ild + (1 + k) ∗ iexp) mod 8

where k = 0, 1, 2, ..7.

6.3.5 Simulator based results

To evaluate the proposed approach, we use a scenario where the ego vehicle

follows another one. During its travel (see Figure 6.29), the preceding vehi-

cle avoids a stationary object. At the beginning of the avoidance maneuver,

the clustering ambiguities appear for the two objects seen by the LRF: the

preceding vehicle and stationary object.

Figures 6.27 and 6.28 present the results of the threshold based cluster-

ing for aforementioned clustering ambiguity situations. The gray rectangle

corresponds to the real objects. The gray points represent the LRF raw
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data points. The red rectangle represents the raw data points cluster. In

the case of no-fusion clustering, it is difficult to find a unique threshold

allowing to achieve a correct clustering for all the situations. Indeed, the

threshold is to small in the case shown in the Figure 6.27(a) and is to big

in the case shown in the Figure 6.28(b).

One can see, in Figure 6.28, that the fusion based clustering algorithm

produces correct clusters of all the situations.

Figure 6.27: Data association results of LRF based clustering for the ”ve-
hicle turning” situation (left); and for the ”vehicle occlusion” one (right).

Figure 6.28: Data association results LRF-stereovision fusion based data
clustering for the ”vehicle turning” situation (left); and for the ”vehicle
occlusion” one (right).
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Figure 6.29: Trajectory of the tracked object in absolute coordinate system
- with LRF-stereovision fusion.

The results of tracking using the proposed clustering fusion method are

presented in figures 6.30-6.33. Figures 6.30 and 6.31 show the estimation

errors of the tracked object centre’s position in the X and Y axis respectively.

Figures 6.32 and 6.33 show the estimation errors of the tracked objects size

in the X and Y axis respectively.

One can see that X coordinate centre’s position and objects size esti-

mations are more precise than those associated with the Y coordinate (see

Figures 6.30-6.33). This is due to the fact that, most of the time, only the

X-side of the tracked object is seen. At the beginning of the obstacle avoid-

ance maneuver (around 600th time instant), the Y coordinate related state

estimation becomes more precise thanks to the appearance of the second

side (Y-side) of the tracked object. One can see also that the Y coordi-

nate related state estimation stays almost unchanged in terms of precision,

even if again only one side (X-side) of the object is seen. This is due to

the FS assumption, which allows to exploit the most precise object’s size

estimation, memorized during the tracking. The correct object’s states esti-

mation and tracking is guaranteed thanks to the correct LRF data clustering

by LRF-Stereovision fusion. Indeed, without stereovision information and

when clustering ambiguity situations appear, the tracking fails (creation of

many false tracks). From trajectory graph (see Figure 6.29), one can con-

clude that the points of the stationary object were not put in the same

cluster as points originating from moving one. From graphs representing
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size estimation errors (Figures 6.32 and 6.33) of the moving vehicle, one

can see that all points originating from this vehicle are correctly inserted

into one cluster. If it was not the case, the size estimation would be faulty.

In our case, however, the Y size evolution is correct. The error of the size

reduces when new points appear at the moment of the maneuver.
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Figure 6.30: Tracked object centre’s position error - X coordinate.
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6.3.6 Conclusions

The problem discussed in this section concern clustering of laser data points.

A method which integrates stereovision information for extracting laser data

points cluster is presented. The fusion algorithm allows removing the clus-

tering ambiguities appearing when only LRF data are used. To avoid a

frequent execution of the fusion algorithm, a clustering schema which takes

into account that existing tracks is presented. The presented experimental

results show the effectiveness and the reliability of the proposed approach.
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Conclusions

The aim of the thesis was to propose algorithms that increase the reliability

and robustness of dynamic object tracking. We developed a new object

representation model (OBB) relaxing the linear surface assumption, used in

a lot of methods. Two paradigms consisting of Inter-Rays (IR) and Fixed

Size (FS) assumption are introduced to improve the object state estimates.

We proposed a two laser scanner fusion algorithm in order to increase track-

ing reliability of distant objects. Based on the Nearest-Neighbour principle

and the Fixed Size assumption a data association methods is developed to

associate laser point with track in case of coalescing objects. Finally a stere-

ovision and laser scanner fusion method is proposed to cluster laser data

points.

For in-laboratory experiments, a software simulation platform is devel-

oped to test and evaluate proposed algorithms on virtual scenarios. The

methods were also evaluated on real conditions using a vehicle research

platform.

The OBB representation model and OBB extraction algorithm is based

on rotating calipers and on-line convex-hull creation. Using experiments

based on the simulator and the real vehicle platform, it was shown by sim-

ulator and real vehicle platform base experiments that the proposed object

representation model is adequate to tracking dynamic objects. There are,

however, some points configuration where the orientation angle of the ex-

tracted OBB is not optimal. In the perspective, we propose to use an angle

gating based approach to increase the reliability of rotating callipers based

algorithm. The angle gating could be based on the velocity prediction. For

the angle gating the fact that OBB cannot intersect other lasers ray than

157
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the ones which produced laser points for which OBB was extracted. In the

second angle gating approach, the size estimation obtained by the Fixed

Size principle will be a crucial part. Side visibility detection is another as-

pect of the OBB extraction which should be considered. In the perspective,

we think about a method which will provide information about the visibil-

ity of the object sides basing on the extracted OBB and data points. The

proposed visibility detection approach is based on the orientation relation

between the extracted OBB and the laser scanner sensor.

To increase the reality of the size and position estimation the Inter-Rays

(IR) uncertainty notion was introduced. This algorithm is based on the

fact that the raw data points representing the extremities of the extracted

OBB represent rarely the real object’s extremities. The IR uncertainty

combined with the Fixed Size assumption, allows to increase the accuracy

of the size and position estimation. The Fixed Size (FS) assumption is based

on the observation, that, in general tracked objects do not change their size

during the tracking. The algorithm stores the best size estimation, in terms

of uncertainty, obtained up to the current moment. To achieve this, it

stores the maximal perceived size and the minimal IR uncertainty obtained

in the previous measurements. The characteristics of this approach were

evaluated using both simulated and real data. From a theoretical point

of view, the proposed method is not optimal. Thus, the perspective is to

develop a method which will calculate the size estimation and uncertainty

from theoretical maximal size and maximal perceived size obtained during

the tracking.

The tracking was based on Extended Kalman Filter with Discrete White

Acceleration Noise kinematic model. It will be interesting to test and com-

pare other algorithms like Discrete Wienner Process Noise kinematic model,

Unscented Kalman Filter, interacting multiple model, Particle Filter.

The method of two laser scanner fusion was proposed to increase the

tracking accuracy in terms of object size, orientation angle and velocity

estimation. The method is dedicated to be used with presented earlier

OBB extraction method. Simulator based evaluation showed that the two

laser scanner configuration increase the perception angular resolution of the

system, and thus, allows to obtain more precise estimation of object size,

orientation angle and velocity. It was shown that this approach increases

tracking robustness, especially for distant objects, when compared to the

approach using a single laser scanner.

The aspect of data association was also treated in this thesis. The gen-

eral data association approach was presented, followed by the description
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of two methods. Based on the Nearest-Neighbourhood (NN) principle and

the FS assumption, the first one was proposed for associating the laser data

points with tracks in case of coalescing objects. Combination of the NN

approach with additional size information obtained by FS algorithm results

in quick and effective algorithm adapted to OBB based object representa-

tion. Based on simulated and real data it was shown that the method gives

reliable results even in the cases where objects touch each other. One of the

perspectives is to develop a probability based association method, adapted

to the OBB representation model, for less regular objects like pedestrians.

The second data association method is based on stereovision and laser

scanner. We were interested on the clustering problem, which is generally

the first stage in the data association process. A fusion method, which uses

depth information for laser data points clustering was presented. The addi-

tional stereovision information brings more insight into the observed scene,

and thus, it is possible to cluster correctly ambiguous laser data points con-

figurations. The method does not assume that objects are represented by

planar surfaces and does not assume that only consecutive points can orig-

inate from the same surface. Nevertheless, the performance of the method

depends on the quality of the obtained disparity map and on the images

resolution. Thus, it is planed to perform a more reliable disparity map

generation algorithm, including a method which uses laser scanner data for

reducing the search space during the matching process.

Another problem, emerged during the experiments, is the detection of

low reflective objects (eg. black cars). A three sensor configuration includ-

ing three sensors: milimeterwave radar, stereovision and laser scanner is in

consideration.

The presented works assume that the tracking is performed in flat en-

vironment. It is planned to remove this assumption by integrating the

estimation of the road surface using stereovision and laser scanner data.
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