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ABSTRACT

Nonlinear system control has been widely concern of the research. At present, the nonlinear
system decoupling control and static feedback linearization that based on the theory of differential
geometry brought the research getting rid of limitation for local linearization and small scale
motion. However, differential geometry control must depend on precise mathematical model. As a
matter of fact, the control system usually is with parameters uncertainties and output disturbance.
In this thesis, nonlinear system of control theory has been studied deeply. Considering sliding
mode variable structure control with good robust, which was not sensitive for parameters
perturbation and external disturbance, the combination idea of nonlinear system and sliding mode
controls was obtained by reference to the large number of documents. Thus, it not only can
improve system robustness but solve the difficulties problem of nonlinear sliding mode surface
structure. As known to all, traditional sliding mode had a defect that is famous chattering
phenomenon. A plenty of research papers focus on elimination/avoidance chattering by using
different methods. By comparing, the document is concerned with novel design method for high
order sliding mode control, which can eliminate chattering fundamentally. Especially, the
approach and realization of nonlinear system high order sliding mode control is presented in this
paper.

High order sliding mode technique is the latest study. This thesis from the theory analysis to
the simulation and experiment deeply study high order sliding mode control principle and its
applications. By comparison, the second order sliding mode control law (also known as dynamic
sliding mode control, DSM) may be effective to eliminate the chattering phenomenon. But it is
still unable to shake off the requirement of system relative degree. Therefore, arbitrary order
sliding mode controller is employed, whose relative degree can equal any values instead of one.
The robot car model adopted high order sliding mode is taken as an example. The simulation
results show that the tracking control is effective.

In the control systems design, it is very often to differentiate the variables. Through the
derivation of sliding mode, the expression of sliding mode differential value is obtained. The
simulation results certificate sliding mode differentiator with robustness and precision. At the
same time, the differentiator for arbitrary sliding mode is given to avoiding conventional complex

numerical calculation. It not only remains the precision of variables differential value, but also
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obtains the robustness. A direct application is simplification for high order sliding mode
controller.

Due to its inherent advantages, the permanent magnet synchronous motor (PMSM) deserves
attention and is the most used drive in machine tool servos and modern speed control applications.
For improving performance, this paper will applied nonlinear high order sliding mode research
achievement to MIMO permanent magnet synchronous motor. It changes the coupling nonlinear
PMSM to single input single output (SISO) linear subsystem control problem instead of near
equilibrium point linearization. Thereby, the problem of nonlinear and coupling for PMSM has
been solved. In addition, Uncertainty nonlinear robust control system has been well-received study
of attention. Because the robust control theory is essentially at the expense of certain performance.
This kind of robust control strategy often limits bandwidth of closed loop, so that system tracking
performance and robustness will be decreased. So, sliding mode control is an effective approach
for improving system robust. This thesis first proposed a robust high order sliding mode controller
for PMSM. The system has good position servo tracking precision in spite of parameters
uncertainties and external torque disturbance.

On this basis, According to the principle of high order sliding mode, as well as differentiator,
the state variables of PMSM are identified online firstly and successfully. The results of
simulation indicate observe value has high precision when sliding mode variable and its
differentials are convergent into zero. The same theory is used in external unknown torque
disturbance estimation online for PMSM. As if, load torque will no longer be unknown
disturbance. System performance can be improved greatly. It establishes theoretical foundation for
the future applications.

At the end of paper, using advanced half-physical platform controller dSPACE to drive a
PMSM, hardware experiment implement is structured completely. The experiment results
illustrate that PMSM adopting precious feedback linearization decoupling and high order sliding
mode controller can realize system servo tracking control with good dynamic and steady

character.

Keywords: Nonlinear system, Differential geometry theory, Precious feedback linearization,

High order sliding mode, Differentiator, Permanent magnet synchronous motor, dSPACE
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Chapter 1 Introduction

In recent years, the robustness control of nonlinear system has already become
one of the main research areas for numerous researchers. At present, the ideas applied
to solve the problem mainly include nonlinear /H _ , adapting control, stepping control,
sliding mode control and so on. The document makes an intensive study into
nonlinear system control theories, and meanwhile combines with a technology named
high order sliding mode, which ensures the accuracy of decoupling control and
improves the robustness of systems.

The contents of chapter 1 are shown as follows. Section 1 simply summarizes the
application of nonlinear system and its technology background. Section 2 introduces
the development and current situation of nonlinear system control theories. Section 3
presents the fundamental principles of sliding mode control technology. Section 4
analyzes the application of sliding mode control in nonlinear system. Section 5 shows

chief research contents, structural arrangement and creative points of the paper.

1.1 Introduction

The historical process in which human beings know and change the world is
always a gradual developing process from low class to top grade, from simplicity to
complexity, from surface to inner. And the same to the aspect of control area, the early
research on control system is all linear. For example, Watt steam-engine regulator,
adjusting the liquid level and so on. It was limited by the current knowledge of human
being on the natural phenomena and the ability to deal with the practical problems, for
the linear system’s physical description and its mathematical solving is much easier to
achieve. In addition, it has already formed a perfect series of linear theories and
research methods. By contrast, for nonlinear systems, except for minority situations,
so far there hasn’t been a feasible series of general methods. Even if there are several
methods that will only solve problems belonging to one category, they can’t be
applied generally. Accordingly, that is to say, how we study and dispose the nonlinear
system control is still staying at the elementary stage on the whole. Besides, from the
viewpoint of the accuracy we need to control the system, it will get a satisfactory
result within limits to utilize the linear system theories to deal with the most

technology problems in engineering at present. Therefore, the nonlinear factors of one



real system are often neglected on purpose or substituted for various linear relations.
To sum up, that is the principal cause which prompts the linear system theories to
develop quickly and become correspondingly perfect day by day and restricts the
nonlinear system theories from getting much attention and developing over a long
term.

The present system has become more and more complicated, integrative and
intelligent, while the request on its performance has become more and more strict.
The research on the motion laws and analytical methods of the nonlinear system has
already become a significant branch in the automatic control theories. Strictly
speaking, the real systems mostly belong to nonlinear system. By contrast, linear
systems are ideal models in order to simplify the mathematic problems. The contrast
between linearity and non linearity is that the last one is a "non propriety". Yet, this
main characteristic is a negation of propriety and cannot be used to have any
unification in the methods or techniques used to analyze and control such systems. As
a result, it determines the complexity on research. For nonlinear systems, in the past
the researchers adopted the method of approximate linearization to linearize them,
such as Taylor unfolding method, Jacobian matrix method and so on. These methods
should be applied to nonlinear systems under the better initial value and the higher
accuracy, which are effective to dispose the systems with the working point moving
on a small scale. At the same time, the working point in practical systems is always
moving. If the point moves beyond the scale or some component works in the
nonlinear area, the output will bring strange phenomenon which can not be explained
by linear theories. In addition, there are still some running behaviors such as
asynchronous suppression, bifurcation, chaos, strange attractors from complicated
systems which belong to nonlinear phenomenon in substance. Obviously, they can’t
be analyzed by means of linear models. Therefore, the nonlinear problems in
mathematics should be solved with the theories and methods in the nonlinear science.

During the last two decades of the 20th century, differential geometry theory and
its applications have developed fast, so that the research on nonlinear system control
theories and their applications got a breakthrough improvement. With the help of
differential geometry theory, necessary and sufficient conditions (Hermann,1977,
Isidori,96) of controllability and observability and were set up systematically via the
research on the dependency relationships among the state, input and output of

nonlinear system, which were studied by the basic tools such as Lie bracket. The



research models of differential geometry control theory get rid of partial linearization
and movement on a small scale and realize the global analysis and synthesization on
the dynamic systems. Nonlinear system control theory based on differential geometry
theory realizes the linearization of nonlinear systems by means of state feedback and
coordinate transformation under some conditions on the control. The point that
doesn’t neglect any high order nonlinear item in the linearization progress is different
from traditional approximate linearization methods. So the linearization is not only
accurate but also global, that is to say, it can be applied to the whole scale with
definitions (Howze,1973). Among others, the linearization based on differential
geometry theory in the algorithm still need the accurate nonlinear system models.
However, it’s impractical to use an accurate mathematic model to describe the
dynamic character for a system. So it’s inevitable to exist the factors such as
parameter uncertainty, time-varying parameters, time delay, external disturbance
which will have an influence on controller design. Accordingly, it’s also considerably
crucial to research on the robustness of nonlinear systems.

In the recent years, nonlinear H_ robust control, the fuzzy control, expert
system, neural nets, adapting control, stepping control, sliding mode control and etc.
have become the main research aspects. In addition, there are still several research
results from some literatures which combine the control technologies together to
improve them. Meanwhile, they are all accomplished under the more restrictive
conditions on mathematic models. Among the researches on various nonlinear control
techniques, each one has its own property. For it’s not sensitive for the changing
structure of sliding mode to react on the perturbation of system parameters and
external elements, while for it’s of strong robustness and its control structure design is
simple to come true, sliding mode control has been an indispensable branch in the
system robustness control theories. How to utilize the nonlinear coordinate change of
diffeomorphism to devise sliding controllers is a point for the sliding mode control of
nonlinear systems. In the process, it’s supposed to ensure sliding mode to be strong
robustness, to realize the linearization easily and to be immune to uncertain system
parameters.

As we known, permanent magnet synchronous motor has so many advantages
such as compact structure, high power density, high air-gap flux, no conversion spark
and high torque inertia ratio, which is widely used in servo systems (Caravani,1998;

Glumineau,1993; Ziribi,2001). Considering permanent magnet synchronous motor is



a nonlinear system with MIMO and coupling, which includes the product term of
angular velocity and d-q axis current, it must achieve decoupling and linearization of
the system to get the accurate control performance. Adopting permanent magnet
synchronous motor as a typical application example in nonlinear kinetic control servo
systems has universal significance. Permanent magnet synchronous motor is a MIMO
and nonlinear time-varying system. In the past, adopting the traditional linearization
can only realize partial approximation to get a mathematic model which can not
describe the dynamic and static process of system accurately. The practice
demonstrates that control method based on approximate linearization is so limited that
it can not adjust to the converting system parameters and satisfy the request of wide
speed regulation. And feedback linearization based on differential geometry
overcomes the shortcoming of traditional linearization that the balance point can only
keep steady on a small scale. So it’s desire to need a control algorithm with good
robustness to adapt the uncertain parameters. Recently, sliding mode control method
which basically overcomes the shortcomings of system in theory is widely used in
control systems of permanent magnet synchronous motor(), for it is not sensitive to
the inner parameters and external interferences when motor runs dynamically and can
avoid the conversion of load and parameters from affecting the dynamic performance
of motor. But chattering problem exists in traditional sliding mode control when
sliding mode surfaces switch, which would affect the stability of system if severe.
Accordingly, experts in each country advance several new type sliding mode control
methods with little or no chatter.

To sum up, the thesis shows that there are still some issues to study and solve in
the applications of nonlinear high order sliding mode control in the kinetic servo
system of permanent magnet synchronous motor as follows.

1. The feedback linearization of nonlinear system state needs the accurate
mathematic model of the system, that is to say, it’s a robustness problem of nonlinear
servo control.

2. If we can’t ensure that chattering exists in sliding mode control system, while
we must assure the global constringency, how to reduce or eliminate the chattering
effect as possible.

3. Permanent magnet synchronous motor is a typical nonlinear system with
MIMO and coupling. To realize the accurate control of motor servo system,

decoupling and linearization should be the main problems in the study of controller
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design.

4. Because of some factors such as surroundings, the parameters of permanent
magnet synchronous motor will not steady. How to devise a strong robustness
controller is so critical under the external load disturbance.

5. Make good use of the advantages of sliding mode control to launch the
research on some key technologies of permanent magnet synchronous motor, such as
parameter identification, state estimation, load disturbance estimation and so on.

6. Adopt the advanced dSPACE semi-physical real-time experimental platform
to accomplish the construction of permanent magnet synchronous motor system based
on high order sliding mode control and demonstrate the validity of high order sliding
mode control and the ability to eliminate chattering.

The paper will make a deep study on the above problems.
1.2 The developing history and present state of nonlinear control theories

1.2.1 The developing history of nonlinear control theories

In the 1930s to the 1940s, so many scholars such as Nyquist, Bode, Weiner,
Nichols, Routh, Hurwitz strived to construct classic control theory based on frequency
domain method and root locus technique. They adopted Laplace conversion as the
mathematic tool and mainly studied the linear time-invariant system of SISO. They
also converted the differential equation and difference equation which describe the
system into complex number field in order to get transfer functions of the system.
Generally speaking, they used feedback control to form the so-called closed loop
control system. But there were still several obvious limitations in classic control
theory. Especially, the theory is very difficult to apply in time-varying systems and
nonlinear systems availably and to show the much deeper -characteristics.
Consequently, the above promote modern control theory to develop.

In modern control theory, the multi input multi output system was studied
thoroughly. And then it is pretty significant to construct basic theory which depicts the
essences of control systems such as controllability, observability, realization theory,
decomposition theory and so on. Meanwhile, it prompts control to develop from a
class of engineering design methods to a new science. Based on state-space method,
modern control theory adopts linear algebra and differential equations as the main

mathematical tools to analyze and design control systems. The state-space method is
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essentially a time domain approach, which not only describes the external
characteristics of the system, but also describes and reveals the internal states and
performances of the system. The goals of analysis and synthesis are to reveal the
inherent laws of the system and then to realize the optimization of the system in a
certain sense. In principle, it can be a single variable, linear, time-invariant and
continuous, and it can also be multi-variable, nonlinear, time-varying and discrete. At
the same time, its existence is to solve many practical control problems at a high level
from theory to application and to promote nonlinear control, adaptive control,
robustness control, etc. to be an independent science branch with fruitful
achievements.

Before the development of nonlinear control theory, nonlinear controller has
been applied in industry, such as a variety of relay control because of its reliable
structure and good performance. Early, the study of nonlinear system control has
made some significant progress. Main methods are describing function method,
phase-plane method and Lyapunov method. These methods have been widely used to
solve the practical problems of nonlinear systems. However, these methods still can
not become a general method to analyze nonlinear systems.

To summarize the study results in the historical stage, the researching problems
principally center on the absolute stability of the system, which limit the nonlinear
term to a fan-shaped domains and allow a linear function to replace the nonlinear

function.

1.2.2  The present state of nonlinear control theories

Since the 1970s, nonlinear control system theory and its application research
have achieved a breakthrough development. The successful application of modern
mathematical tools such as modern differential geometry and differential algebraic
theory played a key role in the area. For the input and output response of a nonlinear
system, Slotine, Khalil, Isidori and others adopted state feedback approach and used
Lie algebra to linearize it accurately.

Feedback linearization: its basic idea is to use algebraic transformation to
convert the motion characteristics of a nonlinear system all or partially into linear
dynamic characteristics. As a result, it can be analyzed by well-known linear control
theory. This approach is completely different from approximate linear method. The

difference is that, feedback linearization is achieved by means of the rigorous state
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conversion and feedback rather than the linear approximation of dynamic
characteristics. Feedback linearization can be considered as a method that transforms
the original system model into the form of a relatively simple equivalent model.

The design method of feedback linearization also has some limitations. For
example, it does not apply to all nonlinear systems, when it only applies to the system
which is a smooth nonlinear system with precise mathematical model. When
parameters are uncertain or model dynamic characteristics are not created, the system
robustness will not be guaranteed. In order to overcome the above shortcomings,
people are launching the ongoing active research to process nonlinear essence and
then use feedback linearization to control, but also extend the feedback linearization
into the non-minimum phase system or the weak non-minimum phase system. At the
same time, we are also introducing robustness control, adaptive control and sliding
mode control to feedback linearization system in order to increase the robustness of

the system with uncertain parameters.

1.3 The basic principle of sliding mode control theory

The concept of sliding mode control first appeared in Russian literature in the
fifties of the twentieth century. The former Soviet Union experts Emelyanov first
proposed the concept of sliding mode variable structure. In fact, before that, 1932, V.
Kulebakin used in variable structure control and DC generator for an aircraft in 1934;
Nikolski used the relay to operate the ship trajectory, these can be considered as
earlier "Sliding Mode Control" (Utkin, 1999). Later, Utkin has written an English
summary of papers on the sliding mode control (Utkin, 1977). Then, the sliding mode
control theory was widely disseminated to the different areas. Seventies, sliding mode
variable structure system with its unique advantages and characteristics attracted
western scholars’ attention, which was subsequently a number of scholars from
different theoretical point of view, using a variety of mathematical tools for their
in-depth research. They make the sliding mode control theory gradually developed
into an independent research branch.

In the linear system control theory, after the single-input single-output (SISO)
and multiple-input multiple-output (MIMO) system establishing standard type, the
sliding mode control strategy had been further in-depth study (Edwards,1998;
Utkin,1992; Utkin,1999). In which, R. A. DeCarlo designed the sliding mode

controller for multi-variable nonlinear system (DeCarlo,1988); Later, the theory of
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nonlinear systems differential geometry had been developed (Isidori,1995). This
theory will soon be applied to sliding mode control and related fields. The sliding
mode control itself is a nonlinear controller, so its application is not limited to linear
systems, also applies to nonlinear systems. If a nonlinear system using approximate
linearization into a linear system, then designing sliding mode controller, the effect is
clearly not as good as designing a controller for nonlinear system directly. However,
for the nonlinear systems, it should be converted to standard affine form usually,
which is not all nonlinear systems can be accomplished. Proceeding from the practical
problems, Slotine, who has designed a sliding mode based on input-output decoupling
controller (Slotine,1983; Slotine,1993), whose sliding mode surface is composed by
the Hurwitz polynomial on output error and error derivatives.

Differential algebraic theory first appeared in Fliess research results in (Fliess,
1990a; Fliess, 1990b). He has opened up a new direction for nonlinear systems sliding
mode control, who proposed a general algorithm about nonlinear system converting
into a controllable standard form. The algorithm used the dynamic system state and
input output decoupling. Sira-Ramirez presented a controllable standards design
approach based on sliding mode control, using this method designed a special sliding
surface (Sira-Ramirez, 1992; Sira-Ramirez, 1993; Sira -Ramirez, 2002). X.Y. Lu and
S.K. Spurgeon also raised the standard model based on general sliding mode control

strategy of nonlinear control system (Lu, 1998).

1.3.1  Basic concepts

The sliding mode control is the essence of high-frequency switching feedback
control. The switching value of its control law switches over according to the system
state. The design the sliding mode controller is composed mainly by two parts, the
sliding surface and control law. So that the dynamic system have been bound at the
sliding mode surface. This kind of state also is known as sliding mode state, which is
only relative with the choice of sliding surface. The dynamic system of the sliding
state is without outside influence.

1. Linear sliding mode and nonlinear sliding mode

The sliding mode control is to make the system slide into the sliding surface, and
thus into the sliding state. In other words, when the system goes into the sliding state,
the sliding mode variable also is able to converge to zero. In engineering applications,

people commonly use the error between control objectives and the reference input and
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its derivative to form the sliding surface. If the sliding surface is the linear
combination of the error and its corresponding differentiation, it becomes a linear
sliding surface. In a similar way, if the sliding surface is the nonlinear combination of
the error and its corresponding differentiation, it becomes a nonlinear sliding surface
(Man, 1997). The linear sliding surface of the system state is an asymptotic
convergence into the reference, while the system requires input relative degree equal
to 1. But the nonlinear sliding surface S(x,7) is a finite time convergence into zero
(Bhatt, 2000; Tang, 1998), it is not restricted by the relative degree.
For demonstration purposes, take an affine nonlinear system as an example.

X =X,

X, = X
: (1.1)
X, = f(x,0) + g(x,Nu(t)

y=Xx

Where, x=(x,x,,--x,)€ R" is the system state vector, u(¢) is the system
input, y is the system output. Both of f(x,7) and g(x,7) are smooth bounded

functions. The control object is to let the system output track the reference trajectory

yr@/' .
Set the sliding mode surface

s=S8(x,1) (1.2)

Here, S(x,t) is differential equation defined on state variable x. And ¢ is the
system running time. Through the sliding mode control law, the system will enter in
sliding mode state on the sliding mode surface. In this way, the system can converge
into origin progressively or within limited time. When the system enters in sliding

mode state, it satisfies
S(x,t)=0 (1.3)
Take linear sliding mode as an example, the design usually is
s=e" V4. 4+ étcetce (1.4)

Where, e=y—y,,. It is the error between system output and reference value.

The coefficients of differential equation ¢, (i=0,1,---,n—1) satisfy Hurwitz
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polynomial. From this expression, when the sliding mode variable s=0, the error
will converge into origin progressively. It means e=0— y =y, . Thus, object track
is achieved. However, the linear sliding mode surface requires the relative degree of

input must equal to 1. The reason is

n-2
§= [0 =y +> ce™ + g(x,tu(r) (1.5)

i=0

The next step of controller design should make the system (1.5) stable. At this
time, the tracking trajectory of n order affine nonlinear system (1.1) is transformed
into the solution of 1 order dynamic system stabilization. Because the linear sliding
mode surface strictly requires the relative degree of system input to equal to 1. The
nonlinear sliding mode surface design will be explained by following chapter.

2. Linear control law and nonlinear control law

The aim of the control law is to drive the system into sliding mode surface (also
called sliding mode manifold). And it retains sliding mode surface without influence
of parameters uncertainty and external disturbance. In other words, the controller
achieves sliding mode state as quickly by adjusting its control parameters. The
method of Lyaponov provides a dynamic system stable analysis approach. If we can
construct a positive definite function ¥ so that its derivative ¥ <0, the system is
stable. This kind of method is usually used to design sliding mode controller.

Suppose the positive definite Lyapunov function selected as
y=lg (1.6)
5 .
Thus,
V=ss (1.7)
So, the convergent condition of sliding mode variable is

5§<0 (1.8)

The equation (1.8) expresses the convergence condition of sliding mode surface.
The general definition about convergence condition is found in (Lu,1997b; /=4
114,1996). In order to let the sliding mode variable s satisfy convergence condition, the
control law can be designed by following equations, where both of &, and £k, are

positive constants.
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s =—k, sgn(s) (1.10)

s =—ks =k, sgn(s) (1.11)

If the control law satisfy above conditions, it guarantees ss<O0 . The
convergence speed is decided by positive constant &, . Equation (1.10) and (1.11) are
nonlinear sliding mode control law, which let the sliding mode variable converges into
origin within finite time. And the convergence time is relevant to constant k&, k,

and system initial state.
3. Equivalent control

The equivalent control is average control in fact. This is not the actual control
applied but represents the average sense of the applied control. Its main idea is to
suppose the system existing ideal sliding mode state s =0. In this case, the solution

of control vector is called equivalent control, written as u,,,.

The expression of equivalent control can be solved from equation (1.5)
n—2 )
oy = g(0) (=f () + 330 = D ce™) (1.12)
i=0

The equivalent control is not control input in actual system, but a mean value of
actual control. The system goes along sliding mode state s =0 to the equilibrium
under the equivalent control. The actual control should be composed by the equivalent

control and sliding mode control.

u=u, +g(x,t)'s (1.13)

For example, if the system adopts nonlinear control law (1.10), the actual control

should be

u=u, —g(x, ) 'k sgn(s) k>0 (1.14)

Now, we can design the parameter &, to converge into origin within limited

time.
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1.3.2  The principle, merits and drawbacks of sliding mode control

In order to clearly illustrate the work principle and advantage of sliding mode

control, a simple 2 order dynamic system is taken as an example to declare.

Xtax+ax=u+ f(t) (1.15)

Where, a, and a, are system parameters; u is control input; x is system
variables; f(¢) is external bounded disturbance, which has || f(¢)|<&. Suppose

X, =x, x,=Xx, the original 2 order dynamic system can be transformed to following

MR ML HAH
= + | |f@) (1.16)
X, -a, —a,|=x 1 1

If the sliding mode surface is selected as

state equations.

s =x,tcx (1.17)
Then,
s=x,+cx,=(c—a,)x,—ax,+ f(t)+u (1.18)
Set the sliding mode control law as
u =—k, sgn(s) (1.19)

According to the Lyapunov Second Law, the function ¥ =s>/2 is constructed,

thus

V=ss= (x, +ex))l(c —a,)x, —ayx + f(1) =k, sgn(s)] (1.20)
=(c—a,)x; —a,ex; +(c* —ca, —a,)x,x, +(x, +cx,) f(t) — k, sgn(s)s .

Suppose system variables x, and x, are bounded, with | x, |<X]
I|x, < X, Where, X, and X

max 2 max
system variables. Then,

max 2

are constants, expressing the maximum of

max *

y 2 2 2
V < (c_aZ)XZmax _GICleaX +(C _caZ _al)leaxXZmax +(X2max +CX1max)g_k1 |S‘

(1.21)
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From the equation (1.21), it can be seen that ¥ <0 if choosing parameter k.
In other word, the new system is stable. The sliding mode control is arriving at sliding
mode surface s=0 from the initial value after a period time ¢ . The sliding mode

trajectory is shown in figure 1-1.

A
Xy

s=cx,+x =0
Fig. 1-1 Phase plane trajectory of system sliding mode control

When the system goes into sliding mode motion, with s=x, +cx, =0, we can

get the solution

x, =x,(t,)e " (1.22)

From the equation (1.22), it is can be seen that the solution has nothing to do
with parameter a,, a, and disturbance f(¢). It also illustrates the controller is
insensitive to system parameter and disturbance with robustness. At the same time,
original 2 order dynamic system is transformed to 1 order system by sliding mode
control, achieving system deflation. The sliding mode controller design is very easy
only with a sign function, which is easy to realize. Because of these advantages, the
sliding mode control is widely spread in control field.

However, from the figure 1-1, the drawback is chattering problem due to the
discontinuous control law acting on the sliding mode when system goes into sliding
mode state. This is harmful in engineering control. For example, it can increase the
loss and reduce the life of component. So it is should be overcome as possible as we
can.

According to the above design step of sliding mode control, we do the simulation
for the 2 order dynamic system. Selecting sliding mode surface as s =x, +x,, we use

the control law u =-5sgn(s). The initialization of system variables are x,(0)=1
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and x,(0)=0. Then, the phase plane of system is shown in figure 1-2. If we amplify
the partial sliding mode surface s =0, the figure 1-3 displays the chattering.
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Fig. 1-2 Phase plane of second order system Fig. 1-3 Partial enlarged drawing SM surface

The figure 1-4 shows that the system variables will converge into origin after a
short time. When the control law converges, the system is stable as well. The figure
1-5 is the sliding mode control law, which is a nonlinear discrete control like a relay.
That’s the reason why the sliding mode control has chattering phenomenon.

In order to illustrate the high robustness of sliding mode control, the system is

—-0.2¢

injected uncertain disturbance f(¢) =5e¢ ' sin(2¢) that is shown in figure 1-6. The
figure 1-7 declares that sliding mode trajectory just is different in spite of the
disturbance. When it reaches sliding mode state, the situation is the same. It illustrates

the system with high robustness.
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Fig. 1-6 Uncertainty bounded disturbance Fig. 1-7 System phase plane with disturbance

1.3.3  Chattering problem and solving

The sliding mode control actually is the structure of feedback controller occur
changes according to certain rules when the system state passes across the different
regions in state space. It makes the control systems has a certain adaptive ability to the
internal parameter variations and external disturbance so that the system performance
achieves the desired targets. However, due to the sliding mode control law with a
discrete switch control, it has chattering. Moreover, the ideal switching frequency of
sliding mode control is infinity, which can not be realized in the actual system. In
addition, in practical applications, the switch with time-delay, discontinuous sampling,
system inertia, and even the error of state measurement will cause the chattering
phenomenon in sliding mode control. In this way, the sliding mode control system is
equivalent to high gain system accompanied by high frequency jitter, which could
bring a very harmful consequence for control systems.

Therefore, the chattering phenomenon has become the biggest developing
obstacle of sliding mode control technology. The academics have continued to
weaken or prevent the chattering without interruption. In order to reduce or eliminate
chattering, a large number of researchers have put a lot of hard work in their
respective areas of research. To sum up, it is mainly in the following several ways.

Pseudo-sliding mode: to reduce the chattering, the first thought is to improve
the control law to weaken the impact of chattering. Literature (Slotine,1983)
introduced a concept of "pseudo-sliding mode" and the "boundary layer". It adopted
saturation function sat(s,0) instead of sign function sgn(s) to realize the sliding

mode control.
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_|sen(s) if'[s|>0
Sat(s’g)_{s/a if |s|< 8

Outside the boundary layer, it uses switch sliding mode control. Otherwise, inside the
boundary layer, it uses continuous state feedback control. In this way, it reduces the
chattering, but loses the finite time convergence. The figure 1-8 is the saturation

function and sign function.

(a) Signum function (b) Saturation function

Fig. 1-8 sign function sgn(s) and saturation function sat(s,0)

After that, many scholars start to study the switch function and boundary layer. Some

of them propose serialization of unit vector.

N

|s|+0

u(s,0)=k (1.23)

Some literature calls it signum-like function. Where, the choose of ¢ can guarantee

precision. Besides, there is power law interpolation.

ksgn(s) if|s|>0
u(s,0)=<k(5/|s )" "sgn(s) 0<sl<d gel0,]) (1.24)
0 s=0

In addition, there are arc tangent function u(s,d)=k-tan"'(s/J), hyperbolic curve
u(s,0) = tanh(s/Jd) and etc. instead of original switch function sgn(s). Their aim is
to reduce or remove the chattering. The various approximate functions are shown in

figure 1-9.

22



(a) Signum-like function (b) Power law interpolation

Fig. 1-9 Approximated function effect schematic plan

The smaller the boundary layer, the control effect will be better. But, at the same time,
this will enlarger the control gain and chattering enhancement; On the contrary, the
greater the boundary layer, the chattering will be smaller. But they will decrease the
control gain, and the effect of control become worse. In fact, this approximate sliding
mode control is the balance between the system performance and robustness.
Approach law: Prof. Gao Weibing proposed approach law (=1 44#,1996) in

1989. Take the exponential approach law s =—&sgn(s)—ks as an example, through
the adjustment of parameter & and &, it can not only guarantee the dynamic quality
of sliding mode arrival procession, but also weaken high frequent chattering of
control signal. But if the & is too great, it will result in chattering. The approach law
is used to study dynamic quality of arrival procession, when the system converges
from the any initialization within limited time. According to the different system, we
can design the various approach law, such as

Uniform approach law s =—¢€sgn(s)

Power approach law s=—k|s|” sgn(s)

Exponential approach law s =—¢€sgn(s)—ks
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General approach law s =—¢€sgn(s)— f(s)

Where, the parameter of these approach law require £€>0, k>0, 1>a>0 and
s+ f(s)>0. The literature (#1:3%,2000) analyzes the chattering reason caused by
approach coefficient, when the exponential approach law is used to the discrete
system. It also made quantitative analysis for the relationship between approach
coefficient and chattering. He proposed self-adaptive adjustment algorithm of
approach coefficient £. And the literature (-J-X{f1,2001) proposed the combinative
control strategy of discrete approach law and equivalent control. The discrete control
law just acts at the approach procession. When the system arrives at sliding mode
state, the discrete control law is used to guarantee good quality of approach sliding
mode state. The literature (Jiang,2002) brought the fuzzy control into exponential
approach control law. Through the analysis of the fuzzy relation between switch
function and coefficient in approach law, he adopted fuzzy rule to adjust coefficient of
exponential approach law, in which the absolute value of switching function is taken
as the fuzzy rules input. The coefficient of exponential approach law k£ and & are
taken as fuzzy rule output. In this way, it ameliorates the quality of sliding mode so
that remove the high frequent chattering. Most of the domestic literature on sliding
mode control techniques are used is this approach.

Filters: through the use of filters, smoothing the control signal is an effective
way to eliminate chattering. Literature (Kachroo,1996; Kang,1997; Yanada,1999)
adopt a low-pass filter to smooth the switch function. It effectively eliminates the
chattering and suppresses high-frequency noise, and to ensures system stability as
well. The literature (Krupp,1999), in order to overcome the chattering caused by
unmodeled dynamics character, designed a new type of sliding mode controller,
whose output achieve a smooth output signal through a second-order filter. Where, the
auxiliary coefficient of sliding mode surface is obtained by sliding mode observer.
Literature (Xu,2000) proposed a new control law, which is consists of three parts:
namely the equivalent control, switching control and continuous control. In the
control law the two low-pass filters are used. A low-pass filter gets the switched gain,
another low-pass filter get the equivalent control. It also analyses the convergence and
stability to effectively restrain chattering and achieve high-performance control of
multi-joint robot. As the filter design parameters more complicated, as well as the
delay and other factors of the filter itself, its application is limited.

Observer: Using the observer to eliminate external disturbance and uncertain
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items has become a study to solve the chattering problem. The literature (Kawamura,
1994) designed a new type observer of disturbance. Through feedforward
compensation for the external perturbation injected, it greatly reduced switching gain
of sliding mode controller, and effectively eliminated the chattering. Y. S. Kim
designed a disturbance observer based on binary control theory. In this paper, the
disturbance observed was used for feedforward compensation to reduce the chattering.
(Kin,1996). In addition, the literature (Edwards,2004) designed a sliding mode
observer to achieve a fault detection and fault-tolerant control.

Neural Sliding: neural network is a nonlinear continuous time dynamic system.
It has a very strong self-learning function and a powerful mapping ability for
nonlinear systems. The neural networks used for the sliding mode control, can reduce
the chattering. The literature (Morioka,1995) used neural network to estimate the
uncertainty and unknown external disturbance, and achieve the equivalent control
based on neural network. It effectively eliminated the chattering as well. The literature
(Ertugrul,2000) proposed a new type neural network method of sliding mode control,
using two neural networks to approach equivalent control and switch control of
sliding mode control respectively without the object model. It effectively eliminates
the chattering, which has been successfully applied to robot trajectory tracking. The
literature (Huang,2003) used the approximation capability of neural networks,
designed a sliding mode controller based RBF neural network. It will take the switch
function as network input. And the controller is realized entirely by continuous RBF
function, which eliminates the switching chattering. In the literature (Da,2000), the
sliding mode controller is divided into two parts. One part is for the neural network
sliding mode controller, the other part is a linear feedback controller. Using fuzzy
neural network sliding mode control to replace the output of the switching function, it
ensures the continuity of the control law, essentially eliminates the chattering.

Fuzzy sliding mode: According to experience, the fuzzy rules design can
effectively reduce the chattering in sliding mode control. Fuzzy sliding mode control
often the control signals, change the discontinuous control signals to continuous one.
It can reduce or avoid the chattering of sliding mode control. The fuzzy logic sliding
mode control can achieve parameters self-adjusting. The input of fuzzy control is not
(e,é) but (s,s). Through the design of fuzzy rule, it drives sliding mode surface to
zero, so that remove the switching part of the sliding mode control. Literature (Ha,

2001) used the equivalent control, switching control and fuzzy control constituting the
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fuzzy sliding mode controller. In the fuzzy controller, the design of fuzzy rules
reduces the impact of the switching control, effectively eliminates the chattering.
Literature (Zhuang,2000) took the use of fuzzy control system to estimate the
uncertainty items online, achieving fuzzy switching gain self-adjust. It guarantees the
sliding mode to reach the condition satisfied as far as reducing the switching gain.
Literature (Ryu,2001) established the chattering indicators of sliding mode control in
order to reduce chattering to design fuzzy rules. The fuzzy rules, input indicators for
the current chattering size of the output of fuzzy rules for the boundary layer thickness,
through the fuzzy reasoning, realize the adaptive adjustment of boundary layer
thickness. Literature (7K K*-,1995) proposed a fuzzy logic based on continuous
sliding mode control method, using continuous fuzzy logic switch instead of
non-continuous sliding mode control to avoid chattering.

Higher-order sliding-mode: the high order sliding mode control is a new
method proposed in last decade (Levant,1993). The switch function in traditional
sliding mode control is generally dependent on the system state, has nothing to do
with the control input. Discontinuous items will be directly transferred to the
controller. But, the high order sliding mode control constitutes a new sliding mode
surface using the sliding mode control variable and its differentiations, transfers the
discrete items to the first order or higher order derivative of sliding mode variable.
That is expressed by S={s=s§=---=s5""" =0}. It should be clear is that when the
differential order of sliding mode variables equals to 2, it is called the second order
sliding mode control in some reference (Koshkouei,2005; 3¢ ZL.4,2001; % & 7,2006).
Sometimes, it also is known as dynamic sliding mode control (dynamic sliding mode ,
DSM). Literature (Bartolini,1998; Bartolini,2001) through the design of the second
order derivative of sliding mode variable, it achieves to sliding mode control without
chattering in the un-modeled dynamics and uncertain systems. And the method is
extended to multiple-input multiple-output system. The high order sliding mode
controller has the advantage of simple design, easy to implement, without precise
mathematical models. It can effectively eliminate the chattering and improve the
convergence precision as well.

Using high order sliding mode control, it not only eliminates the chattering
problems that exist in the traditional sliding mode, but also avoids the requirements of
relative degree that must be equal to 1 in the control law design. In this paper, after

the analysis and comparison of several sliding mode control techniques, high order
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sliding mode control is mainly used to eliminate chattering, implement model
uncertain robust control for nonlinear systems. The thesis also focuses on multi-input

multi-output nonlinear systems robust decoupling control.

1.4 The application and research of nonlinear sliding mode control systems

The sliding mode control system has strong robustness to the uncertainties in the
system. Therefore, there is a great deal of applied research on sliding mode control
theory in aviation, aerospace, electrical motor and power systems, robotics and
industrial control (Shtessel,1996; Galzi,2007; Laghrouche,2003).

Actually, the sliding mode control of nonlinear systems in the industry control
field has received considerable attention. In the initial stage of variable structure, it’s
mainly applied to the field of industry control. With the development of industrial
technologies, the requirements of control precision and robustness to multi-variable,
nonlinear practical equipments has gradually increased day by day and the application
of sliding mode control in the industry control field has prompted step by step
(Corradini,2000; Kim,2004; Rios-Gastelum, 2003). For the first time in 1983, the
sliding mode control was applied into robot control by Slotine, who designed the
sliding mode controller of time-varying referring trajectory. Subsequently, he
combined the sliding mode control and the feedback linearization technique to extend
research results to the sliding mode controller design of more general rigid-body robot
and to achieve the referring trajectory tracking control. Yeh studied the sliding mode
tracking control of satellites (Yeh,2000). Calise learned the robust sliding mode
control of helicopter movement system with uncertain nonlinear system. Lu X.Y.
designed trajectory tracking robust controller for the control problem of large aircraft
from aerospace controller (Lu,1997). Y.B. Shtessel used robust sliding mode control
to achieve the missile guidance control and wing flight control of F18 (Shtessel,2007).
Toumes achieved a high altitude rocket navigation control. McDuffie designed
decoupled sliding mode observer for satellite attitude control (McDuffie,1997). These
controllers must be strong robustness to the system parameter variations and external
disturbances. In recent years, the sliding mode control for nonlinear systems has been
widespread paid much attention and become a research hot spot.

There are so many characteristics for permanent magnet synchronous motor such
as compact structure, high power density, high air-gap flux and high-torque inertia

ratio, which in the servo system has been widely used. But the permanent magnet
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synchronous motor is a nonlinear system, which includes the product term of angular
velocity and d-g axis electric current, it must achieve decoupling and linearization of
the system to get the accurate control performance. So, the feedback linearization in
nonlinear control theory can transform nonlinear systems into linear systems
(Bodson,1993). However, the parameters in motor dynamic model will be affected by
the complex environment and the effect is still changing. Accordingly, the robust
control has become an effective way to improve performances. M. Kadjoudj designed
a high performance permanent magnet synchronous motor with an adaptive fuzzy
controller (Kadjoud;j,2001). J. Xu designed a robust adaptive stepping controller to
improve motor performance (J. Xu,1998). S. Laghrouche adopted second order
sliding mode control to design a nonlinear robustness controller for permanent magnet
synchronous motor (Laghrouche,2004). These high performance robust controllers in
synchronous motors have been very successful in the application. But because
permanent magnet motor is affected by external influences and its own changing
parameters and many other factors, there are still many issues worth studying, such as
motor parameter identification, state estimation, perturbation estimation and so on.
The requirements in the applications to the control performance point out the
direction for further study of sliding mode control theory and should be of great
significance to the development of sliding mode control. As there are a large number
of nonlinear problems in engineering, approximate linear model can not describe the
dynamic characteristics of the system. In the real production, because of the
environment in which a number of nonlinear controlled objects work is very complex,
many internal uncertainties and external disturbance affect the control systems.
Therefore, the robust control of uncertain system is an important research area in

nonlinear sliding mode control.

1.5 The main research contents of the paper

Based on the research of the current sliding mode control theory applied to
nonlinear systems, it chiefly launches an in-depth study and exploration in allusion to
several facing issues of nonlinear sliding mode control theory and gives the
corresponding research findings and results.

1. The thesis shows the research background and systematically introduces the
history and the current development situation of nonlinear control and sliding mode

control theory. At the same time, it describes the control superior advantages of their
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combination. Meanwhile, it analyzes the problems in the current sliding mode control
and sum up various research directions to overcome the chattering. On this basis, it
illustrates the study significance of the topic.

2. It introduces the basic theory of differential geometry as well as the latest
research results of exact feedback linearization field in detail. The decoupling control
of nonlinear MIMO system has always been a critical study of nonlinear problems. In
sequence, decoupling controllers are designed for each nonlinear system. Through
simulation study, it has established a basic theoretical research for further application
of multi-variable complex systems.

3. As the chattering phenomenon which exists in the traditional sliding mode
controller is extremely negative to industrial control, adopting high order sliding
mode control algorithm can not only guarantee the control precision but also eliminate
the chatters. Besides, it uses simulation experiments to demonstrate the validity of
research results.

4. In the controller design, we frequently encounter the problem of solving
variables’ different order differentiations. But the traditional numerical method needs
a large quantity of calculation and its accuracy level is not high. We study the sliding
mode differentiator which uses high order sliding mode algorithm to achieve the
variable derivative of arbitrary order. In engineering, the differentiator with strong
robustness and high accuracy can not only greatly simplify the calculation of the
workload but also ensure the calculation accuracy. At last, the paper designs a precise
sliding mode differentiator and carries out application simulation research for MIMO
nonlinear systems.

5. It takes research results of the sliding mode control for nonlinear systems
studied to apply to servo system of the MIMO permanent magnet synchronous motor
system, and combines the multi-variable nonlinear decoupling control and recent
studied high order sliding mode control with strong robustness. In addition, it designs
the robust sliding mode controller for the system under the parameters uncertain and
external torque disturbance, in order to improve the performances of the motor.
Meanwhile, for several current research focused on synchronous motor, it uses high
order sliding mode control and its differential algorithm to achieve the items of state
estimation, parameter identification and disturbance torque estimation for permanent
magnet synchronous motor.

6. Finally, through real-time physical control platform dSPACE, it makes the
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physical verification to robust sliding mode servo driving control MIMO system of

the permanent magnet synchronous motor, in order to validate the consistency of
experimental and theoretical research.
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Chapter 2 Nonlinear system high order sliding mode control

In the introduction of first chapter, we have known the sliding mode control with
the strong robustness for the internal parameters and external disturbances. In addition,
the appropriate sliding surface can be selected to reduce order for control system.
However, due to the chattering phenomena of sliding mode control, the high
frequency oscillation of control system brings challenge for the application of sliding
mode control. On the other hand, the choice of sliding surface strictly requires system
relative degree to equal to 1, which limits the choice of sliding surface.

In order to solve the above problems, the introduction of first chapter also
illustrates the current developments and research methods in this field. This chapter
focuses on a new type of sliding mode control, that is, higher order sliding mode
control. The technology not only retains advantage of strong robustness in the
traditional sliding mode control, but also enables discontinuous item variables
transmit into the first order or higher order sliding mode derivative to eliminate the
chattering. Besides, the design of the controller no longer must require relative degree
to be 1. Therefore, it is greatly simplified to design parameters of sliding mode
surface.

Emelyanov and others first time propose the concept of high order differentiation
of sliding mode variable, but also provide a second order sliding mode twisting
algorithm, and prove its convergence (Emelyanov,1996). Another algorithm is super
twisting, which can completely eliminate chattering (Emelyanov,1990), although the
relative degree of sliding mode variable is required to equal to 1. In the second order
sliding mode control, Levant proved sliding mode accuracy is proportional to o(z?)
the square of the switching delay time. It has also become one of the merits of high
order sliding mode control (Levant,1993). Since then, the high order sliding mode
controller has been developed and applied rapidly. For example, Bartolini and others
propose a second order sliding mode control applied the sub-optimal algorithm
(Bartolini, 1997; Bartolini,1999). After the concept of high order sliding mode control
was applied to bound operator in (Bartolini,2000). Levant used high order sliding
mode control in aircraft pitch control (Levant,2000) as well as the exact robust
differentiator (Levant,1998). About the summary of high order sliding mode control is
also described in the literature (Fridman,2002).

This chapter is structured as follows: 2.1, introduce a second order sliding mode
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control that eliminate the chattering essentially; 2.2, Give simulation examples of the
actual system against the algorithm of 2.1; 2.3, Introduce the algorithm arbitrary order
sliding model control in detail; 2.4, Take simulation research to the algorithm of 2.3;
2.5, Give a quasi-continuous high order sliding mode control algorithm so that state

variable can be more smooth; 2.6, Summary of this chapter.

2.1 Second order sliding mode control

Strictly speaking, second order sliding mode control is a special kind of high
order sliding mode control actually. But, in the design of the controller, the highest
order of sliding mode variable is 2, so called second order sliding mode control
(SOSM). Some literatures also call it as the dynamic sliding mode control (DSM).

Without losing generality, considering a state equation of single input nonlinear

system as

x=f(x)+g(xu

b= s000) (2.1)

Where, xe R" is system state variable, ¢ is time, y is output, u is control
input. Here, f(x), g(x) and s(x) are smooth function. The control objective is
making output function s=0.

Differentiate the output variables continuously, we can get every order derivative
of s.According to the conception of system relative degree, there are two conditions.

I. Relative degree » =1, ifand only if ais %0
u

II. Relative degree r>2, if ais(i) =0 (i=12,---r—1), and ais(” #0
u u

If the relative degree » =1, traditional sliding mode control can be used to
design controller. Else, it needs to design a second order sliding mode controller.
Second order sliding mode control is able to eliminate chattering.

Suppose system relative degree equals 1, differentiate sliding mode variable
twice continuously, then

s = is(x,t) + is(x,t)[f(x) + g(x)u] (2.2)
ot ox
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S = iS(x, t) +iS(x, HLf(x)+g(x)u] +i$(x, Hu
ot ox Ju 2.3)

o(x) 7(x)

= @(x)+y(x)u

In order to achieve this aim of eliminating chattering, the # derivative of
control input u is made as actual control variable. The discontinuous control law u
will drive sliding mode variable s =0 in the second order sliding mode surface S>.
In this way, chattering is eliminated. Figure 2-2 shows trajectory of second order
sliding mode control. It will convergent into origin point along the intersection of
sliding mode surface s=0 and $=0 in the limited time. Comparing with
traditional sliding mode (Fig. 2-1), second order sliding mode control removes the

chattering.

Fig. 2-1 Traditional sliding mode trajectory Fig. 2-2 Second order sliding mode trajectory

Definition 2.1.1 Suppose given sliding mode variable is s(x,¢), second order

sliding mode surface (or called sliding mode manifold) is defined as

S*={xe X|s(x,t)=5(x,t)=0} xeR" (2.4)

To illustrate the tightness of control algorithm, the following conditions must be
met
a) wu is continuous and bounded norm function;;
b) || f(x)|l, and || g(x)|, are bounded, and y(x)>0;
In meeting the above bounded conditions, there must be positive constants I’ ,

I,,and @ so that

0<T, <y(x)<T,,
| p(x) < @
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Here are some of the control algorithms to make the dynamic system (2.3)
stability. And they ensure that the second order sliding mode convergence in finite

time.

Twisting algorithm:

Owing to the phase trajectories of this algorithm twisting converges to the origin,
as shown in Figure 2-3, it was called Twisting algorithm (Levant,1993) vividly. When
the phase trajectory approaches the origin point, the different amplitude controlled by

the switch decides convergence speed within finite time.

Fig. 2-3 Twisting algorithm phase trajectory

According to the knowledge of nonlinear system coordinate transformation, new
local coordinate z, =s and z, =35 is supposed. Then, original system (2.3) can be

rewritten by

zZ, =12,

. . (2.5)
Z, = @(x,t) + y(x,t)u

At this time, second order sliding mode control is equivalent to solve a second
order system stability. Although function ¢(-) and () in equation (2.5) are
uncertain, but they are bounded, and satisfy condition in (2.4).

The expression of twisting algorithm (Levant,1993; Emelyanov,1996) is
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—u lu>u,
u=+4-V sgn(s) s5>0,|ul<u, (2.6)
-V, sgn(s) ss<0,|ul<u,

Where, u,, V, and V,, are positive constant. The sufficient condition of

m

sliding mode surface convergence within limited time is

V. >max(4T,, /s,,®/T,)
v, >V, 2.7)
LV, -®>T,V, +®

Similarly, if the system relative degree is 2, the control algorithm is

2.8)

-V sgn(s) ss<0
-V, sgn(s) ss>0

Super twisting algorithm:

The phase trajectory of super twisting algorithm is shown in figure 2-4. It is also
twisting convergent to origin, which is similar with twisting algorithm. But only its
control algorithm is continuous. Control input u is composed by two parts
(Levant,1993). One is differentiation of discontinuous item. The other is continuous

functions of sliding mode variable. The expression is

u(t) = u, (1) +u,(2)

i (1) = —u ul>1 (2.9)
1 —Wsgn(s) |ul<1 '

“Als P sgn(s) s,
u,(t) =
“AlsP sen(s)  IslS s,

Where, W, A, s, and p are positive constant. The sufficient condition of

second order sliding mode surface convergence within limited time is

W>q)/l"m

yu zgw (2.10)
r, LT W-®o)

0<p<05

From the equation (2.9), we can see that this algorithm need not differentiate
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sliding mode variable. In addition, if p =1, super twisting algorithm is convergent to
origin exponentially. At the moment, control input # hasn’t requirement of bound.
When s, = oo, Algorithm can be simplified as

u=-A1|s|" sgn(s)+u,

u, =—Wsgn(s) @1

Fig. 2-4 Super Twisting algorithm phase trajectory

From the results of second order sliding mode control algorithm, the design
object of controller u is to make S°={xe X |s(x,t)=5(x,t)=0} in second order

sliding mode surface.

2.2 Simulation example (levant,2003)

Considering a single input single output nonlinear dynamic system of

double-wheel drive motion robot (figure 2-5), the mathematic model is

X=vcosQ
y=vsing
2.12
(pzztanﬁ (2.12)
/
O=u

Where, x and y are Cartesian coordinate, ¢ is orientation angle, v is

forward velocity, / is the length of two axle, @ is drive angle.
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It is known that v=10m/s and [/=5m . The trajectory tracked is
d(x)=10sin(0.05x) + 5. The initial value of state is x(0) = y(0) = ¢(0) =6(0)=0.

The control aim is to drive robot tracking given trajectory y=d(x) from the
initial position. So choosing the sliding mode variable s =y —d(x), according to the
principle of sliding mode control, it achieve the control aim when the sliding mode
variable converge into origin (s=0) finally. However, in the second order sliding
mode, the control law requires the relative degree of sliding mode variable to equal 1.
Obviously, the relative degree of s=y—d(x) doesn’t equal 1. So, under the
requirement of relative degree, the Hurwitz polynomial should be structured. That is
P(z)=z"+A_z""+...+ 4z+ Az, the parameters A(0<i<n-—1) are positive

constant.

Fig. 2-5 Double drive motive robot model

Thus, the sliding surface satisfying relative degree can be redesigned as

s=j—d@x)+ A7 —dx))+ Ay —d(x)) (2.13)

Differentiate sliding mode variable s, then

§=5=d @)+ A= d @)+ 4 (7 —d(x)) (2.14)
Take the numerical calculation into (2.14), then

§=—40sin@-tan” @ +20cos@-sec’ @-u +1.25¢0s(0.05x) - cos’ @
—10sin(0.05x) - sin @ - tan @ — 5sin(0.05x) - cos @ - sin@ - tan &
+20¢0s(0.05x) - cos @ - tan® @ +10cos(0.05x) - sin@-sec* @ - u (2.15)
+A,(20cos @ tan @ + 2.5sin(0.05x) - cos” ¢
+10c0s(0.05x) - sing- tan ) + A, (10sin ¢ — 5¢0s(0.05x) - cos @)
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From the equation (2.15) we can see that the control input u first time appears
in the first order derivative of sliding mode variable s. That means the relative
degree of sliding mode variable to control input is 1. At the moment, according to the
twisting algorithm, controller u can be designed. Here, u is obtained by integral of
u . The value of the parameters ¥, and V,, are smaller, the convergence time is longer.
But the value of the parameters 7, and V), are greater, the chattering is more obvious.
Thus, the parameters in this controller are V, =10 and V,, =30. In addition, the
coefficient of Hurwitz polynomial are 4 =2 and A, =1. The track trajectory curve

of system is shown in figure 2-6.

N
o
N
o
[0}
o
@
o
ol -—-—-—
o
[y
o
) S
o
ol - —-—-—
o
-
ol - - - -
o

Fig. 2-6 Track trajectory curve

From the figure 2-6 we can see that system dynamic effectiveness is good. After
a limited time, second order sliding mode control law converges into origin to
guarantee system track effectiveness. The figure 2-7 is convergence trajectory of
sliding mode variable within limited time. The system converges into origin at the
0.5s, at that time, for the control system s =y —d(x)=0. It achieve dynamic track of
given trajectory.

Figure 2-7 also shows that second order sliding mode control transfer chattering
to a higher order sliding mode surface. It is the biggest difference with the traditional
sliding mode control. Therefore, first order (or lower order) sliding surface become
smooth. So, the second order sliding mode control eliminates the impact of the
chattering essentially. But also precisely because of this reason, a strong impetus to

the second order sliding mode control and high order sliding mode control are greatly
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Fig. 2-8 Twisting algorithm phase trajectory
Figure 2-9 is the curve of second order sliding mode control law. Comparing
39

Figure 2-8 shows the twisting algorithm phase trajectory. From this figure, we
can see that the sliding mode variables converge into zero after finite time, it is
with the figure 2-10 which displays the derivative of sliding mode control law, this

curve also illustrates second order sliding mode control law is smoother.
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Fig. 2-9 Control law curve
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Fig. 2-10 Control law derivative curve

It should be noted that, the regulation of the system controller parameters (also
including a Hurwitz polynomial parameters) is actually not very easy. It need repeat
several times in order to meet the requirements of control. But in the actual system
applications, because of too many parameters to adjust and match, the problem
becomes more difficult. The following section will introduce an arbitrary order sliding
mode control to avoid the strict condition requirements of the relative degree equal to
1. In this case, the relative degree can be arbitrary values. So the corresponding

controller can be designed so as no longer afraid of suitable Hurwitz polynomial
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parameters. And it greatly simplifies the design process and the application.

Here, we should give a summary. Besides the super-twisting and twisting
algorithm, second order sliding mode control law has many else control law algorithm.
In this field, many scholars have invested in a substantial amount of research. For
example, in some literatures (Bartolini,1998; Bartolini,1998b; Bartolini,1998¢) also
introduced the Sub-optimal algorithm, the literature (Emelyanov,1986;Levant,1993)

introduced the Drift algorithm, and so on.

2.3 Arbitrary order sliding mode control

Second order sliding mode control takes the use of the differential role of control
law in the second order sliding surface, within the limited time to convergence, and to
eliminate the chattering in the first order sliding mode surface. However, the second
order sliding mode control algorithm requires the relative degree of system to equal to
1. If the relative degree of system is 2 or more, is there a general algorithm for it?
Fortunately, the answer to this question is yes.

In recent years, because arbitrary order sliding mode control technique not only
retains the traditional sliding mode control simple structure with strong robustness,
but also eliminates the chattering phenomenon in the traditional sliding mode, at the
same time, gets rid of the constraints of system relative degree. Therefore theoretical
research and engineering applications has caused widespread concern and has been
constant development. In arbitrary order sliding mode control, its core idea is the

discrete function acts on a higher order sliding mode surface, making

s(x,t)=s5(x,t) =5, t)=---s""(x,6)=0 (2.16)

Suppose the relative degree of system (2.1) equals to r, generally speaking,
when the control input u first time appears in 7 -order derivative of s, that is
ds"/du # 0, then we take r-order derivative of s for the output of system (2.1),
5,§,5,--s"™" can be obtained. They are continuous function for all the x and ¢.
However, corresponding discrete control law u« acts on s"’. Selecting a new local

coordinate, then
Y=y y,) = (8,8,05") (2.17)

So,
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s =a(y,0)+b(y,0u, b(y,t)#0 (2.18)

Therefore, high order sliding mode control is transformed to stability of r

order dynamic system (2.12), (2.18). Through calculation, it is very easy to verify that

b= LgL;_ls = is(”

du (2.19)
a=Ls
Suppose 7= (¥,,15¥,420"""¥,) » then
n= g(Z,S,S‘,"',S(r_l),ﬂ)+Z(I,S,S‘,"',S(r_l),77)u (220)

Now, equation (2.17), (2.18) and (2.20) are transformed to Isidori-Brunowsky
canonical form. The sliding mode equivalent control is u, =—a( v,0)/b(y,t)
(Utkin,1992). At present, the aim of control is to design a discrete feedback control
u=U(x,t), so that new system converge into origin on the » order sliding mode
surface within limited time. Therefore, in equation (2.18), both a(y,f) and b(y,?)

are bounded function. There are positive constants K, , K,, and C so that

m?

0<K, <b(y,t)<K,,

la(y.0)|=C 220

Theorem 2.1.1 (levant,1998;levant,2003) Suppose the relative degree of
nonlinear system (2.1) to output function s(x,?) is r, and satisfying the condition

(2.21), the arbitrary order sliding mode controller has following expression
u=-o Sgn(l//rfl,r (S:'S'va"'as(ril))) (222)

Where,

WO,r =S
v, =s+ ﬂlNl,r sgn(s)
v, =s"+ BN, sgn(y,,,),  i=l-r-l
N — |S |(r71)/r
1,r
Ni,r - (| S |p/r + | $ |p/(r—l) et | S(i—l) |p/(r7i+1))(r—i)/p ;= 1,‘ . ',7’—1

N*l,r :(|S |P/r +|S |p/(r71) ‘“+|S(r72) |P/2)1/p

r

(2.23)

Properly choose positive parameters f,,[,,---f3._,, the system converge into
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origin on the » order sliding mode surface within limited time. Finally, when s=0,
it achieves control object.
The choice of positive parameters f,/[,,---._, is not unique. Here, r<4

order sliding mode controller is given, which is also tested.

. u=—asgn(s)

1/2

u=—asgn(s+|s|’ " sgn(s))

cu=—asgn(§+2( s +|sH)"°

sgn(s+|s|*” sgn(s)))

(2.24)
U sgnls + ()"

A W N =

cu=—asgn{s +3[(5)° + () +]|s]’]
+|s)" sgn(s+0.5]s " sgn(s)]}

From the above equation (2.24) we can also see that, when r» =1, the controller
is traditional relay sliding mode control; when =2, in fact, the controller is super

twisting algorithm of second order sliding mode.

2.4 Simulation example

In order to explain the problem, arbitrary order sliding mode control law is still
used for the driven robot model. The aim of control is to let the system track the given

trajectory accurately. So, sliding mode variable can be selected for

s=y—d(x) (2.25)

Differentiate sliding mode variable s continuously, then

§=vsing—d(x)
2

§ :VTCOS(ptanﬁ—ézi(x) (2.26)

3 2
5= —‘l}—zsinqotan2 0—d(x)+ (VTCOS¢SGCZ O)u

The control input u appears in the 3 order derivative of s. So the system

relative degree is 3. Here, if we adopt Lie derivative, we can get the same results.
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L‘}.h(x) =h(x)=s=y—d(x)

th(x)—ah(x) f(x)=v-sing—d(x)

e 227
szh(x)— (x) f(x)——COS(ptanH d(x) (2:27)
L;-h(x)—aL h(x)f( )—— s1n(p tan® @ —d (x)

Lie derivative is

L LS h(x) = ah(x) 2(x)=0
L |
L,L h(x)= /a x( )g x)= (2.28)
oL h 2
L, > h(x)= fax(x) g(x)= VTCOS¢ sec’@#0

From the equation (2.28), because r—1=2, the system relative degree r=3.
Then,

s = Lifh(x) + LgLih(x)u

§ L g (2.29)
= —Z—zsinqotan2 0—d(x)+ (TCOS¢SGCZ O)u

According to the theorem 2.1.1, when the relative degree » =3, system (2.26)

should adopt 3 order sliding mode control. The expression is shown in following.

1/6

u=—osgn(§ +2(|s|> +|s")" sgn(s+]|s*” sgn(s))) (2.30)

In equation (2.30), set parameter «=20>0, it is can be seen from the
expression of controller that the value of s, § and § should be calculated. The
sample frequency is 8000Hz in simulation system. The run time is ¢=20s. And the
given trajectory g(x) is displayed in figure 2-6.

From the figure 2-11 we can see that s =y—d(x)=0 after a period time by
using high order sliding mode controller. The motion trajectory of robot can track

given trajectory completely. It has good performance.
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Fig. 2-11 Robot tracking trajectory

The figure 2-12 illustrates 3 order sliding mode control converges into origin

In this case, it

0.

achieves the control object. From the figure 2-10 we can also see that discrete control

within limited time (7<8s), that is s(x,t) =s(x,t) =35(x,?)

So, the chattering is removed in 1

law u acts on 3 order sliding mode surface & .

order sliding mode s surface, which becomes smooth.
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Fig. 2-12 System sliding mode variables s, § and §

Figure 2-13 and 2-14 are the curve of system state variable € and control law
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Fig. 2-13 State variable 6(¢) curve
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u respectively. The control law still is high frequent discrete signal. But the aim of
high order sliding mode makes it act on high order sliding mode surface, so that

eliminate chattering in lower order sliding mode surface.
4
|

time (second)

Fig. 2-14 System control law u
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High order sliding mode controller eliminates chattering existed in traditional

sliding mode essentially. Moreover, the design of controller is no longer restrained by



relative degree. It greatly enhances the applicability of the sliding mode control. In the
design of high order sliding mode controller, we only need to know sliding mode
variable and its corresponding derivatives. This controller has simple structure and is

easy to implement.

2.5 Quasi-continuous high order sliding mode control

In the design of high order sliding mode, the controller adopts high frequent sign
function. Because the relative degree (7 =1) of state variable € to the control input
u is lowest, in the figure 2-8, the chattering phenomenon is the most serious as well.
In order to weaken or remove the effectiveness of chattering, according to the

homogeneous principle of high order sliding mode (Levant,2005), the control law is

U(s,$, 5" ™) = UK s, K75, 150 ™) (2.31)

Where, x>0, it is arbitrary positive constant. When the system (2.18) satisfies
condition (2.21), then

s e[-C,C1+[K,, K, Ju (2.32)

Closed set differential equation (2.32) satisfies Filippov criterion (Filippov,1988).
That is the vector field in right half plane is extended to a special way to meet the
identified convex function and semi-continuous condition. Therefore, within the
limited time, the system (2.32) is stable at the origin. It is equivalent that the original
system (2.18) satisfies the conditions in (2.21) to converge into the origin.
s(x,t)=s5(x,)=--=5""(x,)=0

Sufficiently large choice of parameters f,[,,---fB..,, @ >0, according to the
homogeneous principle of high order sliding mode , a quasi-continuous sliding mode

controller can be designed, which is continuous except the points of

s=§=--=5""=0. The detail expression is following.
u:_a\Prfl,r(Saja"'BS(ril)) (233)

Visually observe quasi-continuous sliding mode control (2.33), comparing with
high order sliding mode controller (2.22), the sign function is cancelled. The discrete

control law is transformed to continuous control law. Where,
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¢O,r =S
NO,r :|S|

lPO,r = ¢0,V/N0,V = Sgn(s)
_ (r=i) /(r—i+l)
¢i,r =S + ﬂtN \Pifl,r

i-1,r

N- :| S(r) |+ﬂAN(r—i)/(r—i+l)
N i

i i-l,r

\Ili"’:¢,',r/Ni,r i=0,1,---r—1

(2.34)

The controller (2.33) doesn’t erase sign function as well, so it is called
quasi-continuous high order sliding mode controller. In order to facilitate the use, let
p=1, B=2, B =3, -+, the expressions of r<4 order is shown following
(Levant,2005).

1. u =—asgn(s)

s+ s|"? sgn(s)

[ $1+]s["

3 g S 2SI+ s L | s sen(s)]

[ S 1428 [+ 7))

g SH3E+ (151405 s P +0.5]s P sgn(sHI[IS | +(| 5| +0.5]sP'*)**17"?
|5 [43[] § [ +( $[+0.5] s [**)*2]"2

If re-design the dynamic robot track trajectory system (2.12) adopting
quasi-continuous sliding mode controller, suppose other conditions unchanged, the

new controller can be written as

2/3)—1/2 2/3

[s+]s]

S+2(s|+]s|
—o 2/3)1/2

sgn(s)] (2.35)
|5 1+2(1s |+ s

The figure 2-15 is tracking curve of robot motion trajectory. From this figure,
adopting quasi-continuous sliding mode control, the system output converges into
origin within limited time as well. In this case, it achieves higher precision tracking
control. In addition, the comparison of Figure 2-12 and 2-16, it is not difficult to find
the use of quasi-continuous high order sliding mode makes the first, second order
derivative of sliding mode variable more smooth than the previous high order sliding

mode control.
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Fig. 2-15 Robot tracking trajectory
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s and §

B

Fig. 2-16 Sliding mode variables s

In high order sliding mode, because relative degree of state variable 6 to

control input u equals to 1, € is effected by discrete control law u greatly. From

the figure 2-13 we can see that the chattering is eliminated obviously. Through the

improvement of control law, without affecting the accuracy of the premise, as far as
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possible to improve smooth, the quasi-continuous high order sliding mode control are

designed. Figure 2-17 is the state variables of the dynamic curve after using a new

type of high order sliding mode controller, it has been improved obviously by

quasi-continuous sliding mode control for the state variables of the system than figure

2-13. The controller plays a role in smoothing, which is very important in practical

engineering applications.
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Fig. 2-17 System state variable 6(t)
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Fig. 2-18 Quais-continuous high order sliding mode control law
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Figure 2-18 is a quasi-continuous high-order sliding mode control law curve.
Comparing with the higher order sliding mode controller, especially before entering

the sliding mode, the switching frequency is reduced.

2.6 Summary

This chapter from a simple beginning of the second-order sliding mode control,
the step by step analyses the causes how the second order sliding mode control
eliminates chattering essentially. The second order sliding mode control algorithm is
still strict requirements of the system relative degree, so design of arbitrary order
controller is necessary. In view of this consideration, this chapter gives a high order
(arbitrary order) sliding mode control algorithm, combined with a simulation example
for the simulation studies. The simulation results show that the high order sliding
mode control achieves higher precious trajectory tracked. At the same time, the
quasi-continuous high-order sliding mode control algorithm is given to smooth the

system state variable.
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Chapter 3 Robust exact high order sliding mode differentiator

To get the differentiation of a given signal is always to be studied. In automatic
control systems, we often need derivative a variable or function. So there are a lot of
numerical algorithms for this issue. The same situation also appears in the design of
high order sliding mode controller (2.24) that needs to calculate the derivative values
of sliding mode variable. In order to be able to accurately calculate, at the same time
simplifying the algorithm, this chapter directly uses own advantages of high order
sliding mode control due to high accuracy and robustness. We can design a high order
sliding mode differentiator used to calculate the numerical derivative of the variables
(Levant,2003).

Presentation in the previous chapter has been explained in detail the principles of
high order sliding mode control and sliding mode controller design method. This
chapter focuses on how to take use of high order sliding mode technique to solve the
differentiation of a given signal or variable function. And their simulation results are
verified.

This chapter is structured as follows: 3.1, derive a robust sliding mode
differentiator; 3.2, verify its feasibility with the numerical simulation; 3.3, give the
high order sliding mode differentiator used to solve arbitrary order derivative; 3.4 take
a simulation example of arbitrary order sliding mode differentiator applications; 3.5,

summary of this chapter.

3.1 Robust sliding mode differentiator

Suppose given signal is  f(¢), now set a dynamic system as

i=u 3.1)

The control object is to make the variable x follow given signal f(¢), that is
x=f(t) (3.2)
Therefore, sliding mode surface is selected as
s=x—f(t) (3.3)
At this moment, according to the principle of sliding mode control, a proper
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controller is designed. When the system enter into sliding mode, s=x— f(¢)=0.

Derivative of sliding mode surface (3.3),
s=x—f(O)=u-f(1) (3.4)

Because control input u first time appears in the derivative of sliding mode
surface s, the relative degree of system is » =1. It satisfies the requirement about
relative degree of second order sliding mode. So the super twisting algorithm (2.8) is

adopted. Let p=1/2, then

u=-Alx=f0)" sgn(x~ f(0) +u,

| (3.5)
i, = —asgn(x— /(1))

Where, A>0, «a>0 are positive constant. Definite a function as
O(a,A,C)=|¥(¢)|, C is Lipschitz constant about derivative of f(x). (Z(2),'¥(¢))
is the solution of equation of (3.6), the initial value are X£(0)=0, ¥(0)=1

S=— |27 +¥
1
o —?m—o,—mWMW>o (3.6)
- 1 1/2
—Zﬂa+CL —|Z["*+P <0

Theorem 3.1.1 (Convergence) (Levant,1998) Let «>C >0, A>0, function
O(a,A,C)< 1. Then, provided f(¢) has a derivative with Lipschitz’s constant C,
the equality u = f(¢) is fulfilled identically after finite time transient process. And
the smaller value of @O, faster convergence; If O(«x,4,C)>1, control input u will
not converge into f ().

Observer parameters should meet the following sufficient condition for

convergence of the second-order sliding mode control,

a>C
o+C (3.7)
a-C

2 >4C

According to the principle of second order sliding mode, after a finite time, the

system will converge into the origin, that is,

s(x,t)=s(x,t)=0 (3.8)
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Then,
u=f(t) (3.9)

Now, observer input u is the estimation of derivative of given signal f(¢).
Using a sliding mode controller achieve differentiation of variable function.

Theorem 3.1.2 (Robustness) (Levant,1998) Let input signal be presented in the
form f(t)= f,(¢) +n(t), where f (¢) is a differentiable base signal, f,(#) has a
derivative with Lipschitz’s constant C >0, and n(¢) is a noise, |n(t)|<&. Then,
there exists such a constant >0 depend on (—C)/A and (a+C)/ A that
after a finite time, the inequality |u(z)— fo(t) l< Abe"? holds.

3.2 Numerical simulation

In order to verify the calculation results of sliding mode differentiator, suppose

given signal is f(¢) =sint+5¢, the parameter of controller is selected as o =8,
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Fig. 3-1 Derivative of f(¢#) and its estimation

The figure 3-1 is the curve of differentiation f(z) and control input u. From
this figure we can see that the system enters in sliding mode after 0.8s, after that
u= f(¢). In other words, we can use the u to estimate f(¢) online. This kind of
sliding mode differentiator not only reserves strong robustness, but also achieves

differentiation of given signal.

54



(O] (D]
= 5
g b
R =
2 B
Q =]
£ =
2 <
° =
! ! ! ! S 2
I I I I % m m
I I I I =t =
| | | | 0 < en
L Bl St i < o m R
I I I
I I I m B m
I I I = 17} )
r\\\\,\\m L < o N
I I g 8| — < <
| | - 2 5] = —
| | 3 2| = . O
R - 0 m 5 &
T | N WM | ] +— A
” s ¥ 5! ~ .8
~ = .
I I o ~ )
r\\\\,\\i [ ® N m m
| I Lol
| | o 3 rw [a+]
| | | m G = e}
I I I I o 8 =) = —
Lt Bl e | o 8 = o =
| | | | ° h 7
o o Q 7]
I I I I £ = = =
| | | | = = o =
Lo o~ m m —
| | | | 5 <
I I I I .
I I I I b mb m [l
I R o w =] w o=
T | T I - o= ko) 193 Wb
| | | | s ) —
I I I I xS 2 o
I I I I w s
[ B R S - = ) o 2
| I | I =1
I 5 £ OB S
o= E o
| | | | o wnn m n 80
Lt Bl B | ;
| | | | ° n/_. = m ﬂ
I I I I o — m
B et N N B o R
o~ ° o ¥ © [ . O
@ puen m m soueqinisip
=T o
B 5 2
s g 3
o -
[P] e 172)
= 8
= = g
g o
.— -
7z 2
(] %]

F@)<107 .

time (second)

55

Fig. 3-3 Disturbance signal n = e "% sin( 2¢)
4 is the error between differentiator estimation and actual derivative

The disturbance signal injected is n(f) = e "* sin(2¢) , which is shown in figure

3-3. The figure 3
of function f(¢). The error is less than 107, thatis |u—
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Fig. 3-4 The error between u and f (t) despite disturbance

To sum up, sliding mode differentiator not only can achieve precious estimation
for derivative of given signal, but also has robust characteristics of its own. Therefore,

the differentiator has a broad application and practical value.

3.3 Arbitrary order sliding mode differentiator

Through the first order sliding mode differentiator description of the working
principle, it will naturally think, whether can design a sliding mode differentiator to
obtain the arbitrary order derivative of given signal. Well, the design of high order
sliding mode controller (2.24) needs to know all sliding mode variables and their
corresponding differentiation. If we can design an arbitrary order sliding mode
differentiator, which can be used to estimate the derivative value of sliding mode
variables, so as to achieve a simplified numerical differential purposes.

The same with first order sliding mode differentiator, suppose given signal is
f(t), te[0,00). It has been known that the n order derivative of f(z) has
Lipschitz constant, recorded as L > 0. Now, the object of sliding mode differentiator
is estimating the value of 7(¢), £(¢),---, f™(¢) in real time.

Arbitrary order sliding mode differentiator has the following recursive form,
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Zy =V

n/(n
Vo =Ry | 2o = F(O) """ sgn(z, - f(0) + z,,
Z =V

==z = [T sen(z - vy) 2, (3.10)

=V

n—1

1/2

v -1 = _ﬂ’n—l ‘ Zn—l - vn—2 ‘ Sgn(zn—l - vn—Z) + Zn ’

z, =—A,sgn(z, —v, )

It can be verified, When n =1, it is first order differentiator. Suppose f,(¢) is
basic value of given signal f(¢), O(¢) is uncertain part, but bounded, satisfying
|o(t) < e, then f(t)= f,(t)+ ().

Theorem 3.3.1 (Levant,2003) If properly choose parameter A,(0<i<n), the
following equalities are true in the absence of input noise after a finite time of a

transient process.

zy = fo(®)

A 3.11
2=y = 00, =l G

The theorem 3.3.1 illustrates that arbitrary order sliding mode differentiator can
use differentiation z,(0<i<n) to estimate any order derivative of input function
f(¢) online within limited time.

Theorem 3.3.2 (Levant,2003) Let the input noise satisfy the inequality
o(t)=| f(¢t)— f,(t)|< €. Then the following inequality are established in finite time
for some positive constants ., 7, depending exclusively on the parameters of the

differentiator

|z = 7O S e i=0,00m

(i+1) (n=i)/(n+1) . (3- 12)
v,— 0 I Te i=0,n-1

By Theorem 3.3.2, we can see that the arbitrary order sliding mode differentiator
has robustness.

The arbitrary order sliding mode differentiator can accurately estimate any order
derivative of a given input. If this differentiator can be used in high order sliding
mode controller (2.24), any order derivative of sliding mode variable s can be

accurately estimated avoiding the complicated calculation, which greatly simplifies
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the controller design. Adopting the differentiator, consider s(¢) in high order sliding
mode controller as given input for differentiator. Then the output of differentiator

z,(0<i<n) can substitute any order derivative of s(¢), that is

=t (3.13)
z,=s" i=l-n .
The sliding mode controller (2.22) can be rewritten by
u :_asgn(l//r—l,r(207zlﬂ'"7Z(r71))) (3.14)

The expression from this controller can also be clearly seen, with high order
sliding mode differentiator, the differentiation of arbitrary order sliding mode variable
will not be difficult to solve, which makes the high order sliding mode controller

design has been simplified greatly.

34 Simulation example

In order to facilitate description and comparison, the system still uses the robot
model (2.21). Owing to system relative degree with » =3, the controller adopted
should be

u=—osgn(5 +2(|s|> +|s*)" sgn(s+| s> sgn(s))) (3.15)

If without sliding mode differentiator, the controller should calculate the value of
s, § and §. Taking use of differentiator, variable s is considered as given input of
the differentiator. Then, the output of differentiator z can be used to estimate
corresponding order derivative of s. The following design of differentiator is given
2, =Vy, Vo =—14.7]z, —s5|*" sgn(z, — ) + z,
2 =v, v,=-30|z,-v, |’
z,=—440|z, —v, |

sgn(z, —v,)+z, (3.16)

Now, according theorem 3.3.1, controller (3.15) can be rewritten by

1/6 2/3

u=-asgn(z, +2(z, [ +1z, )" sgn(z,+| z, [ sgn(z,))) (3.17)

Where, control parameter o =1>0; sliding mode differentiator parameters
A, =147, 4, =30 and A, =440.
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Fig. 3-5 Robot tracking trajectory curve

The figure 3-5 is the robot tracking trajectory curve using arbitrary order sliding

mode differentiator. Compared with figure 2-6, the system has the same tracking

effectiveness, which illustrates sliding mode differentiator with a good performance.

Its main advantage is any order differentiations only based on sliding mode variable

can be obtained. Thus, it eliminates the need of the arbitrary order derivative

calculations in high order sliding mode controller.

12 14 16 18 20

10
time (second)

Fig. 3-6 differentiator output z,, z, and z,
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The figure 3-6 is the output z,, z and z, of sliding mode differentiator.
Comparing with figure 2-7, we get the similar result. It also illustrates that sliding
mode differentiator can preciously estimate the any order derivative of input variable,

The figure 3-7 is the discrete control law which acts on 3 order sliding mode
surface. Because the discrete control law is transferred to higher order sliding mode

surface, the lower sliding mode surface becomes smooth when it converges.

thatis z,=s, z, =5 and z,=5.

~ © © <+ o [S) o < © o

(1)n mej jouod

Fig. 3-7 Control law u(t)
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Summary
The chapter 3 draws into the high order sliding mode differentiator, which enable

Through this example, the work characteristic of arbitrary order sliding mode

accuracy and robustness have been guaranteed. The most direct application is to use a

calculation of controller very simple, and increases system robustness. The future
the calculation of the any order differentiation of a variable or function easier. And its

differentiator is authenticated. It also provides a new way for the derivative of sliding

mode variable in high order sliding mode controller. At the same time, it makes the
3.5

research also provides a theoretical basis.



high order sliding mode differentiator to solve a sliding variable and its any order
derivative value. In this way, the calculation becomes simply, and the high order
sliding mode controller design is facilitating. At the same time, taking advantage of

this differentiator can be implemented with observation online.
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Chapter 4 Application — Nonlinear permanent magnetic

synchronous motor high order sliding mode control

Permanent magnet synchronous motors (PMSM) are receiving increased
attention for electric drive applications due to their high power density, large torque to
inertia ratio and high efficiency over other kinds of motors (Glumineau,1993;
Ziribi,2001; Caravani, 1998).

But the dynamic model of a PMSM is highly nonlinear because of the coupling
between the motor speed and the electrical quantities, such as the d, q axis currents. In
last years, many different control algorithms have been used to improve the
performance of the magnet motor. For example, as the dynamic model of the machine
is nonlinear, a natural approach is the exact feedback linearization control method, by
which the original nonlinear model can be transformed into a linear model through
proper coordinate transformation. However, in general, the dynamics of the
synchronous motors may not be fully known, since some of parameters appearing in
the equations will vary. For instance, the resistance and inductance will be changed
when the temperature alters. As a consequence, nonlinearities can only be partially
cancelled by the feedback linearization technique, and parameters uncertainties act on
the equations of the motion. Then an important aim of the control design is to develop
a robust controller which ensures good dynamic performances in spite of parameters
uncertainties and perturbation.

The sliding mode control is known to be a robust approach to solve the control
problems of nonlinear systems. Robustness properties against various kinds of
uncertainties such as parameter perturbations and external disturbances can be
guaranteed. However, this control strategy has a main drawback: the well known
chattering phenomenon. In order to reduce the chattering, the sign function can be
replaced by a smooth approximation. However, this technique induces deterioration in
accuracy and robustness. In last decade, another approach called higher order sliding
mode (HOSM) has been proposed and developed. It is the generalization of classical
sliding mode control and can be applied to control systems with arbitrary relative
degree r respecting to the considered output. In HOSM control, the main objective is
to obtain a finite time convergence in the non empty manifold

S={xeX|s=s5=§=---=s""=0} by acting discontinuously on r order
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derivatives of the sliding variable s. Advantageous properties of HOSM are: the
chattering effect is eliminated, higher order precision is provided whereas all the
qualities of standard sliding mode are kept, and control law is not limited by relative
degree of the output.

This chapter is structured as follows: 4.1, derive mathematical model of PMSM;
4.2, propose the robust control for permanent magnet synchronous motor using high
order sliding mode control and nonlinear decoupling technique; 4.3, propose an
estimation method by using higher order sliding mode controller with differentiator to
achieve a synchronous motor state variable estimation online; 4.4, according to the
principle of high order sliding mode control and differentiator, the external
disturbance torque of the motor is estimated online successfully; 4.5, Summary of this

chapter.

4.1 Mathematical model of PMSM

The common analysis of permanent magnet synchronous motor is d-g axis
mathematical model. It can be used to analyze not only the permanent magnet
synchronous motor steady state operating characteristics, but also can be used to
analyze the transient performance motor (Tang Ren-Yuan, 2002). In order to establish

sinusoidal PMSM d-¢ axis mathematical model, firstly assume:

L. motor core saturation neglected;
1L Excluding the eddy current and magnetic hysteresis loss of motor;
I11. The motor current is symmetrical three phase sine wave current.

Thereby, the following voltage, flux linkage, electromagnetic torque and
mechanical motion equations can be obtained, where all the values in equations are
transient.

The voltage equation:

u, :%—a)y/q + Ri,
dt
4.1)
u,= . +oy, + L
The flux linkage equation:
v,=Lji +y
d d.d i (4.2)
l//q = quq
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The electromagnetic torque equation:

T, =PW,i,-vi)

o : (4.3)
=P[(L, —L)ii,+y,i,]
The motor motion equation:
JE T 71— (4.4)
dt
Where: u, u, d-q axis stator voltage;
i;~ 1, — d-q axis stator current;
L,~ L,—— d-q axis stator inductance, when L, =L , motor is

non-salient pole; when L, <L, motor is salient pole;

W,~ ¥, d-q axis stator flux linkage;

¥, —— magnetic potential generated by permanent magnet rotor;
@ —— motor’s electrical angular velocity;

R stator phase resistance;

P number of motor pole pairs;

T, electromagnetic torque;

T, load torque;

) —— motor’s mechanical angular velocity, with Q= Pw;

J total inertia of rotor and load;

B viscous friction coefficient.

Set of equations (4.1), (4.2), (4.3) and (4.4), we can get the state equation
expression of PMSM as following.

64



[dQ | P . . B T
E 7[(Ld _Lq)ld +Wf]lq _79 _71
~ L
dig 1o R, pligi v Ly, 4.5)
dt L, L, " L,
di
"y —PﬁQ—PiQid—ﬁi Ly
Ldr Lq Lq Lq ! Lq !

Suppose 6, is the electrical angle between rotor axis and stator A4 phase axis,
0 1is mechanical angular position of motor, with € = P8@,, and following equality is

set up.

0= j Qdt +6, (4.6)

Where, 6, is rotor initial angular position. Considering position control,

equation (4.5) can be rewritten by

a9\ r Q T

dt P . . B T,

dQ 7[(Ld =L)i, +y i, _79_71

L

C?Z-t = —ﬁid +P—LQi, +iud (4.7)
7; d d d

di | |-PYra-plegi, - & 4+ Ly,

— L L L
L dt ] L q q q q _

From the equation (4.7) we can see that PMSM is a multi-variable, coupling,
nonlinear time varying systems. In addition, the variables in d-q axis can be changed

to three phase abc axis by coordinate transformation.

4.2 Robust high order sliding mode control for PMSM

Because of their own advantages of permanent magnet synchronous motor, it is
very suitable for modern industrial control and applications. But the synchronous
motor is a typical nonlinear, multivariable system with coupling. So, in recent years,
there are a lot of algorithms to improve the performance of motor control, For
instance, exact feedback linearization control. But in a dynamic system, it is
impossible to accurately inform of all the parameters of the synchronous motor. The
system parameters in the equation will change due to the environment, such as
resistors and inductors will be changed as different external temperature. Therefore,

the design of robust controller is very important to ensure good dynamic performance
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with the parameter uncertainties and external disturbances. It is based on this
consideration, such as adaptive control, H_ control, and observer control and etc.
proposed and applied.

Another theory with robustness in the control method is the sliding mode control.
In recent years, a new type of high order sliding mode control is proposed, and has
been widely used. The characteristic of the control is high order derivative of sliding
mode variables in place of the original discrete control, so that the chattering
disappears in the high order differentiation. At present, the majority of the use of high
order sliding mode control for single input single output system in the majority of
technical literature. The literature for multi-input multi-output system is rare. This
section will use the high order sliding mode control algorithm with differentiator, in
spite of system parameter uncertainties, external disturbances and other factors, to
design a robust controller for nonlinear multi-input multi-output permanent magnet
synchronous motor. The advantage of this controller is the elimination of the
chattering in standard sliding mode. At the same time, it is still with precision and
robustness of the standard sliding mode control. And its control law no longer subjects
to relative degree constraints.

Firstly, let x denotes the motor state variable x =[x,,x,,x;,x,]" =[6,,i,,i,]",
and control input u =[u,,u,]" =[u,,u,]". The parameters R, L,, L, and B are
considered as uncertain parameters, such as R will change with the temperature rise
of the synchronous motor. Therefore, use R,, L,,, L, and B, to express their
nominal value part of R, L,, L, and B respectively. In order to facilitate the

calculation, the coefficient ,(1<i<10) is used to plan these variable expressions:

ky=ky + =P(L,—L)/J
ky=ky+ &, =Py, J
ky=ky+d,=-B/J
k,=ky+k,=—R/L,

ks =kos+ ks =PL,/L,

kg =ky + 0k, =1/L,

k, =ky, + &, =—Py, /L,

kg =koy + Oy =—PL, /L,

ky =k +ky=-R/L,

kig = koo + Oy =1/ L,

(4.10)
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Where, k,,(1<i<10) is the nominal value of the concerned parameter, &, is
the uncertainty on the concerned parameter such that | ok, |< ok, <k, |, with K, a
known positive bound. The state variable xe R*, such that |x, [<x,,,(2<i<4),
Xy 18 the maximum values of the angular velocity, x,,,, and x,,,, are the
maximum values of the current i, and i, respectively. And control input ue R’
such that |u, |<u,,.,(1<i<2). Where, u,,,, and u,,,, are the maximum values
of the voltage input v, and v, respectively.

Then the state space model of the synchronous motor can be changed as

following nonlinear system.

X, X, 0 0
)icz _ (kyxy +ky))x, +kyx,=T,/J N 0 0 ||u @.11)
X, k,x, +kox,x, kg 0 |u,
X, k,x, +kyx,x; +kyx, 0 k,
S (x1) g(x,0)

The aim is to design an appropriate control which guarantees robust performance
in presence of parameters and load variations. The control objective is double aspect.
First, the rotor angular position x;, =@ must track a reference trajectory angular
position x,,,.. Second, the nonlinear electromagnetic torque must be linearized to
avoid reluctance effects and torque ripple. This objective is equivalent to constrain
xy =1, to track a constant direct current reference x,,, =0.

As we known that PMSM is a multi-input multi-output nonlinear dynamic
system. It is assumed that the position and current are available for measurement. A
first sliding variable s for the tracking of direct current x; towards its equilibrium
point x,,, f is defined from the direct current error. So, the first sliding mode

variable is

sy =h(x) = x5 — Xy, (4.12)

Derivative of s,, we can see that the relative degree of sliding mode variable s,

equals 1, that is
S, =Xy — Xy,
o , (4.13)
= kyX; + koxyx, + kg, — X,
To track the angular position x, =@, another sliding manifold is proposed so
that the error dynamics follows a desired third order dynamic. Denoting x,,,, the

desired trajectory, following form can be obtained.
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5, = M) =%~ X, (4.14)

Considering load torque as external disturbance, derivative of s, continuously
until control input appears.
Sy =X — xlref =X = xlref
8, =X, = X, = (ks + Ky, + ko, =X, (4.15)
s, = kyx, (kyx + ksx,x,) + kkoxyu, + k5 [(kx, + ky)x, + kx|

+ (ks + ke ) (Ko, + kX, + kox,) + (koxs + ey )b gu, — :)‘C‘lref

The control input u appears in the 3 order derivative of s,, so the relative
degree of s, equals 3. Considering sliding mode variable s=[5,5,]" as a new

dynamci system, the space state express can be writtern by
s A B 0 | u
5 4, B, By, |u,

A =kx, + kgx,x, = A, + A

Where,

A, = (kxy + k) )k xy + kg xy xs + kgx,) + [ (ks + k) x, + ks, |
+kox, (fyxs + kegxyx,) — 'x'lref
= A,, + 4,

B, =k, = B, + B,

By, = kkex, = B, +0B,,

By, = (kxy + ky))k,, = By, + 0B,,

A,, 4y, B, B,, and B,,, are the known nominal expressions whereas
the expressions of d4,, 04,, OB,,, OB, and OB,, contain all the uncertainties due
to parameters and load torque variations.

Next, controller should be designed so that sliding mode variable s, achieve to
zero in finite time. Another sliding mode variable s, and its first and second
derivative likewise achieve to zero in finite time. When the sliding mode happens,
then

S, ={xe X |s5,(x,t) =0}

. . (4.17)
S, ={xe X |s,(x,t) =$,(x,t) =5,(x,t) = 0}

The control problem equivalent to the finite time stabilization of the following

MIMO system.
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S u
{..?}:Aw{ 1} (4.18)
S U,

Where,
A A |
A=|"" 1+ =4+ (4.19)
Ay | |4, ]
B 0 B, 0
B{ 1o }+ ! }::BO+éB (4.20)
BZIO B220 _éBZI éBzz

From the equation (4.15), the outputs of this MIMO system are coupled since &,

is affected by u, and u,. So a input-output feedback linearization technique can be
used

u=B"[-4, +w] (4.21)

Now, if considering influence of external disturbance and parameter

uncertainties , equation (4.18) can be rewritten by

s=A+ Bu
=A,+ A+ (B, +B)u (4.22)
= A, + A+ (B, + B)[B,' (-4, + w)]

Al (B 0 {W‘} (4.23)
A2 BZI B22 W2

Evolute and ordinate, then

Where,
~ OB
4, = 5A1 R Ay,
110
A OB OB,.B OB
A2 — §A2 _[B 21 B 228210]A10 _ B 22 A20
110 1102220 220

B, =1 + 9By

110

— 5B21 _ 58228210

21

Bl 10 Bl 10B220
B, =1+ By
BZZO
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In the new dynamic system with w=[w,w,]", it leads to s, equals integrator
of w, and s, equals three time integrators of w,, if the part of uncertainties
04=0 and 6B=0.Then w, and w, are designed to stabilize in this new system.

In fact, the term — B;'4, of (4.21) is the so-called equivalent control in the
sliding mode context. In this new system, due to state variable x,(2<x<4), there

exist three positive constants C,, C,, K,,,,, K,,,,» K1,;» Ky, and K, ,so that

|Al |S Cl’ 0<K11m SBll S]<11M
‘AZ |S CZ’ 0<K22mSB22SK22M
‘ BZI ‘S K21

Then, owing to the relative degree of s, equals 1, the first order sliding mode

algorithm previously presented with control law

w, = —a, sgn(s,) (4.24)

Where ¢, is positive constant.. In the actual system, due to all the state
variables have the bound, selecting parameter ¢, properly to satisfy convergence.
For the motor angular position control, a 3 order sliding mode control law is used. In
this case, only a single scalar parameter ¢, is to be adjusted. Actually, the control
input w, can be chosen as following.

1/6

w, = =0, 3gn(8, +2(/8, [ +[s, [1)" sgn(s, + s, [* sgn(s,))) (4.25)

According to the principle of sliding mode differentiator, the arbitrary order

derivative of s, can be estimated by the output of differentiator z,, z and z,.
Z,=V,, Vy =—150 |z, —s|*" sgn(z, — )+ z,

z=v,, v,==160|z, —v,|"? sgn(z, =v,) + z, (4.26)
z, ==400| z, —v, |

Then, substituting z,, z and z, for s,, s, and §, respectively in

equation (4.25), that is

wy =—a,sen(z, +2( 2, F +12, ) sen(z, 4|z, PP san(z,))  (4.27)

The figure 4-1 is the block graph of control system, the first sliding mode
variable s, is given by the error between direct axis current reference and feedback.
And the second variable s, is idefined by the error between the motor reference
position and actual feedback. According to the Theorem 3.3.1 after finite time, z,,

z, and z, can be used to estimate s,, §, and §,. In system, the state variable
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speed of motor w, is obtained by differentiator of angle position signal €. Finally,
the nonlinear dynamic system must be linearized by input-output feedback
linearization, then the control input u, and u, are used to drive the synchronous

motor.

Arbitrary Order Sliding Mode
b gy S

; |
Larer Sy ! W
< | 1-order SM , 1
— Zo ! u=B; [-4,+w
0. Lo S . Z, 3-order | 1w, o [y vl
> [ Differentiations |7 1
[
[
[

SM

A

. L. w=
Differentiation —(x)

Fig. 4-1 The block graph of dynamic system structure

In the simulation, The PMSM is a DutymAx 95DSC060300 (Leroy Somer Co.)
drive. Two sensors give measurements of phase currents, a optical encoder is used to
measure the position of the motor. The parameters of synchronous motor are P =3,
B=0.0034N-m-s, R=33Q, L,=0.027H, L ,=0.0034H, y,=0341Wb,
J =0.00037kg -m* . A phase current of the maximum accepted value is 6.04, the
load torque maximum value is 6N -m, and angular velocity is 30007pm .

To achieve the efficiency of controller, the parameter in (4.24) and (4.27) are
chosen by o, =5, «,=3300. In the differentiator, the coefficient of (4.26) are
selected by 4, =150, A4, =160, A, =400 in order to allow the convergence of the
differentiator. The system sampling frequency is 8000Hz .

To show the system robustness of the controller, consider permanent magnet
synchronous motor parameters uncertainties (with 0R = £50%R , with oL, = +25%L,
and oL, =125%L, and with +20%B).

The trajectory of motor angular position reference and feedback are shown in
figure 4-2(a) in spit of PMSM parameters uncertainities. From this figure, we can see
that the servo system track trajectory has good performance. The precision can
achieve 107. In addition, using high order sliding mode control, the chattering is
eliminated in lawer sliding mode surface so that the track trajectroy become more

smooth.
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Fig. 4-2 Reference angle positon and actual angle position

Fig. 4-2(b) shows position tracking error, which does not exceed 0.09 rad. It

() °n pue’n

means that the controller has high robust capability versus the parameters variations.

time (second)

Fig. 4-3 The curve of input u#, and u,

The figure 4-3 shows the curve of input u, and u, for PMSM using the

high order sliding mode observer.
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Fig. 4-4 Four quadrant run and quadrature/direct axis currents

The figure 4-4 is the speed and d-g axis current of synchronous motor. The

motor in the four-quadrant operation, with acceleration, deceleration, has good

dynamic performance. In this figure, direct axis current i, is very near reference

iy =0.

Fig. 4-5 Sliding mode variables s,, §, and §,
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The figure 4-5 shows that sliding mode variable s, converge into origin in three

dimensional surface within limited time.
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Fig. 4-6 Tracking error of motor with the load torque disturbance

The Figure 4-6 shows the controller is strong robustness versus the load torque
variations. The error of angular position does not exceed 0.1 rad even though the load
perturbation.

To sum up, this section takes the multiple-input multiple-output nonlinear
permanent magnet synchronous motor as control object, and designs a robust high
order sliding mode controller with differentiator, through the state feedback
linearization to decouple the system. The simulation results show that, despite the
existence of parameter uncertainties and external disturbances, the system still has a
better dynamic performance and robustness, which is due to higher order sliding
mode control converge within limited time. Comparing with the traditional sliding
mode control, high order sliding mode control eliminates the chattering phenomenon.

And the better test results proves the feasibility of the theory.

4.3 State variable estimation for PMSM

The parameters and state estimation of permanent magnet synchronous motor

has been more concerned in motor control. As the motor itself is a typical nonlinear,
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multivariable system with strong coupling, there are a lot algorithms to improve the
motor control performance in recent years. Earlier off-line estimation of the static
dynamic system can not satisfy the control requirements; the use of extended Kalman
filter (EKF) usually have a group of high order nonlinear equations, which is not
conducive to the calculation (Yan,2006), and its stability is also a local stable; In least
squares procedure, the matrix forgotten factor (Poznyak,1999; Poznyak,1999b) is
used to solve non-static parameter identification; as a result of sliding mode control
with strong robustness and global convergence, In recent years, sliding mode observer
(Floret-Pontet,2001; Koshkouei,2002) has been used for dynamic system state and
parameter estimation, but the observer feedback gain is usually not easy to choose.

With the development of nonlinear theory, in order to enhance the performance
of permanent magnet synchronous motor, many advanced control strategies have been
proposed and used in motor control, which requires the state of motor can be
measured, such as mechanical angular position, rotational speed, the electrical current
and so on. Hence mechanical, electromagnetic or photoelectric sensor are needed, as
well known to all, the sensors have many other shortcomings such as drift, friction,
high costs, as well as electromagnetic interference caused by additional conductors.
Therefore, the control system should be as possible as release the use of sensors to
ensure the reliability and stability, which requires the system observer to precisely
estimate the value of the state.

The high order sliding mode control is widely used in last decade, which take
high order derivetives of sliding mode variables to substitute original discrete control,
so that the chattering disappears in the high order differentiation. This section uses a
high order sliding mode observer with differentiator algorithm to estimates the value
of state variables. In this case, it removes the speed and current sensors of motor, and
a better control precision and accurate state estimation are obtained.

In this section, the mathematical model of PMSM is the same with above section
(4.11). In order to make control effectiveness more smooth, the relative order is raised
artificially. Considering control input # as a new input, original sliding mode

variable (4.13) and (4.15) are transformed into
§,=A'+B,'u,

428
sV = A,'+B,,"ti, + B, "ii, (428)

Then, the coefficient matrix of original system 4,, 4,, B,,, B,, and B,

become new matrixes 4,', 4,', B,,", B,,' and B,,'. Where,
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A'= by (kyxes + ks, x, + kg, ) + ks[ (ks + ky)x, + kyx, Ix,
+ ks, (ko + kg, + kox, + kygu, ) — jé3ref

A)'= (kkx; + kkx, + kko +kok, + ko ko, + k[(kxy + k) x, + kyx, ]
+ (kkyx, + kik,x, + 2k kgx,x, + kkox, + k,kox, + kkou, + kkx,)(k,x,
+kx,x, + ko)) + 2k kox,x, + kiku, + kikox, + ko ky + kikyx, + (kkyx,

+ ke ) (ke x, + kg, x; + kox, + kg, ) — nge)f
B'=ks: B,'=kkx,: By'=(kx;+k)k,:

Next, it still is high order sliding mode controller design that make the sliding
mode variables converge into origin within limited time in the sliding mode surface.
In another word, it should satisfy following conditions.

Sl = {XE X | Sl(xat) = jl(xat) = 0}

X .. (4.29)
S, ={xe X |s,(x,t) =$,(x,t) =5,(x,1) =5,(x,t) = 0}

Let s=[5,sY]", u=[u,i,], this control object is equivalent to stable of

following multi-input multi-output system in limited time.
s=A+B'u (4.30)

Due to s{¥ effected by 4, and i,, the output of this system are coupled. Here,

input-output feedback linearization technology is used to decouple system.

1

u =W(W—th(x)) = B [~ A'tw]

After decoupling, the relative degree of s, equals 2, so 2 order sliding mode

control law is adopted

w, =—a, sgn(s,+|s, |'? sgn(s,)) 4.31)

Where, ¢, is a positive constant. Now, we use the output of sliding mode
differentiator z, and z,, to estimate the value of s, and s,.

. _ 1/2
Zoy = Vo, Vo =—Ag 12 =5, |

z, = =4, sgn(z), —vy,)

Sgn(zm _Sl)+le (4 32)

For the motor’s angular position control, 4 order sliding mode control law is

used. In this case, we only adjust a single parameter ¢, to make the system

converge within limited time..
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1/12

w, =—a, sgn{s, "’3[(:5;2)6 +(*§2)4+ |s, |3] sgn[s, +(| 5, |4

(4.33)
sgn(s, +0.5]s, |3/4 sgn(s,))]}

+1s, |3)1/6

Similarly, the output z,,,z,,,z,, of 3 order differentiator is used to estimated
sliding mode variables s,,s,,5, .

3/4 .
2 177 sgn(zg, —5,) + 25

SgN(z), = V) + 25

sgn(zy, —vy,) + 23

Zoy = Vs Vo =gy |29y =8
. _ 2/3
2=V, Vi =—Ay |z, vy, |

Zy =Vys Vi =—Ay | Zy =y |

2y = Ay, sg0(z5, —Vy,)

(4.34)

1/2

Generally speaking, in the actual system not all the state variables is measurable.
Sometimes, due to the limitation of condition, some state variables can not be
measured. Therefore, it requires the controller can estimate state variables of system
as possible as accurate.

PMSM only uses the position sensors, taking the use of high order sliding mode
control techniques, so that its speed and the current state variable is estimated online.
In this way, it avoids the use of other sensors, at the same time ensures the motor
position tracking progress.

In the design of controller, we have obtained that

8, = kyx; + kgx,x, + kg, — x5, (4.35)
Sy =X, = X, (4.36)
8, =X = Xy, = (kyx; + hky)xy + kyx, = X, (4.37)

From the above equations, we can calculate the speed estimation of synchronous

motor X, =S, +X,,,,, s0 the current estimation expressed by

- 1. ~ . )
X3 = k_[SI — kX, (s, + xlref) — kegu, |
4
.. . . . (4.38)
~ SZ - k3 (SZ + xln?f) + xlref

x_ ~
N k%, + k,

For calculating X, and X,, considering sliding mode variables s, s,, § and

u, as known value, adopt recursive algorithm to get

- 1. ~ ) )

X3(nt1) = k_[sl(n) - k5x4(n)(s2(n) + xquf’) - k6u2(n)]
4

.. ) ) N (4.39)

~ _ S T k, (SZ(n) + xlref) + X,

Xanery = ~ n=12,-
kX5 + K,
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Where, n is the nth sample point of system, n+1 1is the next sample point.
Through the above recursive equation, current estimation X; and X, are obtained.
Take these estimation into the control system so that save the sensors. Thereby,
system become more simple and reliability.

In the simulation, we use the DutyMAX95-BSC060300 permanent magnetic
synchronous motor. The parameters of motor are P=3, B=0.0034N-m-s,
R=33Q, L,=0.027H , L,=0.0034H , y, =0.341Wb , J = 0.0037kg - m”. A phase
current of the maximum accepted value is 6.04, the load torque maximum value is
6N -m, and angular velocity is 30007pm .

The parameter of controller are ¢, =5 and o, =50; the parameter of sliding
mode differentiator are A, =2, A4,=15, A4,=25, 4,=25, 4,=33 and
A, =500

From the figure 4-7(a) we can see that the permanent magnet synchronous motor
control system has good performance. This figure shows the permanent magnet
synchronous motor can precisely track the given position. And the error between
reference and the actual position feedback is shown in Figure 4-7(b) below. The

maximal error does not exceed to 0.08 rad.
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Fig. 4-7 Position tracking and error curve of PMSM
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Fig. 4-8 Speed estimation and error curve of PMSM

The figure 4-8(a) shows the motor angular speed by derivative of the motor’s

angular position. The figure 4-8(b) shows the error between the estimation of the

electrical angular speed and the value calculated by the formula (4.36).
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Fig. 4-9 The quadrature/direct axis currents and their estimations
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For permanent magnet synchronous motor, its angular position, speed and
current are system state values. The figure 4-9(a), (b), (¢), (d) shows that the estimated
value and actual current value of direct axis and quadrature axis respectively. The
figure 4-9(e), (f) are the error between actual current value and the estimated value. In
this figure, the error of direct axis current is between 1.0x107*(4), and the error of

quadrature axis is between +1.0x107°(4).
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Fig. 4-10 System sliding mode variables curve

The figure 4-10 is the convergence curve of sliding mode variable and its high
order derivatives. From the figure we can clearly see that the discrete control law acts
on the high order sliding mode surface, which makes the lower sliding mode surface
smooth. That is the reason why high order sliding mode control can eliminate the
chattering.

This subsection focuses on a state estimation of PMSM online. In the practical
systems, not all the state variables are measurable, or because of objective reasons
they are often not easy to measure. In this section, we just use the motor position
sensor, through the high order sliding mode control with differentiator, to achieve the
state variables of motor estimation online. The simulation results show that the

PMSM control system has good dynamic performance, while the electrical angular
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speed, d-g axis current are estimated precisely.

4.4 Disturbance torque estimation for PMSM

In high precious servo control, the disturbance load will impact servo control.
Therefore, the estimation of the disturbance load is very necessary to reduce its
influence. Usually in the actual system, the disturbance load torque is often random
and uncertain. So, this requires the controller can estimate the value of state variables
as accurately as possible. This section will use the arbitrary order sliding mode
differentiator, to calculate the high order derivative of sliding mode variables online,
so as to avoid the complexity of differential calculation. Then, through the expression
of the unknown disturbance load torque, it is estimated. Take the estimation as system
input, thereby enhancing the system performance. In the simulation, the position and
current sensors of PMSM are used. Adopt high order sliding mode control, its
disturbance torque is estimated online. Then, the unknown uncertain external
disturbance torque can be entered as a known value so that improve the motor
position tracking accuracy.

In order to facilitate the description, the mathematical model of motor still use
system state equation (4.7) in d-g axis coordinate. The meaning of the parameters
remains unchanged. Then, from the mathematical model of PMSM, the following

solution can easily get

T = pl(L, — L)x, +y,Ix, — BY, - Jx, (4.40)

In equation (4.40), IN} is the estimation of external torque. X, and ;2 are the
estimation of angular speed and angular acceleration respectively.
From the controller of previous section, the following expression can be obtained

Sy =Xy = Xyt

(4.41)

Sy =X T Xy = X T Xipper

Therefore, the above equation (4.41) can solve the estimation of angular speed

and angular acceleration.

X, =8,+ X ey 442)

Xy =8, + X,

Until now, if we can get the 1 and 2 order derivative of sliding mode variable s,,
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the estimation of state variable X, and its differentiation ;2 can be solved.
According to the principle of high order sliding mode differentiator, s, and §, in

equation (4.42) can be estimated by the output of differentiator z, and z,,.

) 2/3
Zop =V, Vo ==130]z4, —s, |77 sgn(zy, —s,) + 2,

) 1/2

Zp =V, V=150 2, = [ sgn(zy, —vg) + 2y (4.43)
Zyy ==500|z,, -V, |

Available into the equation (4.40)

T; =pl(L, - Lq )X; + v, Jx, = B(z, + xlrg/') —J(zy + jéln;/') (4.44)

Through calculation online, the estimation of disturbance load is obtained. Take
the estimated value into the control system so that the uncertain disturbance load
become the determine input. In this case, the system performance is improved
effectively.

From the figure 4-11 we can see that, taking use of high order sliding mode with
differentiator, disturbance load torque get a better estimation. Disturbance torque is
estimated online successfully so that it is no longer unknown uncertainties factor. It
also improves the performance of the system. The maximum torque value is 2N -m

in the figure. The sliding mode variable converges into origin at the 0.25s.
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Fig. 4-11 External disturbance load torque and its estimation of motor
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Fig. 4-12 Position tracking curve with load torque disturbance

The figure 4-12 shows that the actual angular position track reference of PMSM
with the disturbance load. From the figure we can see that the maximum error of the
angular position is not more than 0.12 rad. The system gets a better control

performance.

4.5 Summary of this chapter

This chapter first time applies the research of nonlinear control and high order
sliding mode control theory in PMSM control, and achieves robust control for a
PMSM in spit of the internal parameter uncertainties and unknown external
disturbance load torque. The simulation results show good performance; in addition,
the estimation online of system state variables is also one of the hot issues in the
control field. In this chapter, the a new design based on high order sliding mode with
differentiator for PMSM, access to the state variable estimation of PMSM; Besides,
unknown uncertain load impacts the performance of motor control. In order to
improve system performance, this chapter also achieves external disturbance load

estimation online. It makes sure the load can be accurately estimated.
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Chapter 5 Experimental system based on dASPACE

dSPACE is a equipment of control exploitation and test system based on
MATLAB/Simulink that is from Germany. It implements seamless link with the
MATLAB/Simulink completely. It can complete the control algorithm design, test and
implementation, overcoming the shortage of the traditional control system, for
example, the difficult to achieve the complex algorithm and the long development
cycle. It has advantages of high speed, ease to use and user-friendly.

This chapter is structured as follows: 5.1, introduce the basic functions of the
dSPACE real time control platform; 5.2, design a permanent magnet synchronous
motor control system based the dSPACE; 5.3, describe development process of the
control system in detail; 5.4 experiment results confirm the feasibility of high order
sliding mode control for the nonlinear permanent magnet synchronous motor, and

compared with the traditional sliding mode control; 5.5, Summary of this chapter.

5.1 Introduction of dSPACE control platform

In the design and development process of permanent magnet synchronous motor
control system, the traditional digital/analog circuit exist the following questions:

(1) In the situation of the control law or control features not yet fully grasped, if
the hardware circuit has been manufactured, but do not know whether the program
can satisfy the requirements, it will result in a waste of hardware costs;

(2) As a result of manual programming, so the code would have the unreliable
problem. If in the course of test, it is difficult to determine the fault reason due to
unsatisfactory control program or software code with an error;

(3) Even if the software does not exist, if control program is not satisfactory,
needed for modification, both of hardware and software must be revised. It is based
on the above considerations, a high-tech company in Germany dSPACE provides
hardware and software platform for development and test of control projects.

Due to the dSPACE with the powerful real time systems, it can be connected to
the actual control object (known as rapid control prototyping), when it played the role
of the main controller; and can be connected to the actual controller (known as
hardware-in-the-loop simulation), when it played the role of the object. Thus the

development cycle is shorted and the development cost is reduced, which based on the
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dSPACE. The dSPACE has a high integration and modularity that allows users to set
up user's system in accordance with the requirements. Whether software or hardware,
the dSPACE provides a number of options. The dSPACE based graphical
development interface, which eliminates the designers to debug complex manual
programming errors, uses in high speed processor, and with a wealth of I/O support.
Furthermore, its software environment is powerful and easy to use, including real time
code automatic generation/download and test/debug tool packages (h151%, 2004 ;
&g, 2004) .

5.2 PMSM control system based dSPACE

Permanent magnet synchronous motor control system based dSPACE, besides
the core of dSPACE for the control, still needs to design and expand the circuits,
including current and voltage signal sample and process circuit, inverter of signal
output, isolation circuit of analog and digital, feedback circuit of position and speed,
power drive and protection circuit.

(1) Current/Voltage sampling circuit

Current detection and voltage detection use LEM modules of Hall-effect sensor.
The current sensor through the magnetic field generated by primary current 7,
equalizes with magnetic field generated by secondary coil current. The Hall devices
and auxiliary circuits generate magnetic compensation current in secondary one, this
current can be accurately reflected in the primary current, the principle is shown in

figure 5-1(a).

(a) (b

Fig. 5-1 Principle structure graph of sensors

The voltage sensor through the series resistance arising from the primary

micro-current will be detected and enlarged. At this point the voltage sensor converts
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as a current sensor to detect current. The current can accurately reflect the primary
voltage. Primary resistance is not the built-in product. It needs to match by the users.
And the principle is shown in figure 5-1(b) below.

At present, voltage and current detection of motor usually use Hall voltage/
current sensors. Its biggest advantage is high accuracy measurement, linearity, and
non-contact detection. The normal sensor can not be attained. The signal adopted by
the Hall sensor through conditioning circuit as shown in figure 5-2 convert to 10V
voltage signal. After that, isolation circuit sends this signal to DS2001AD interface of
dSPACE to deal with the.
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Fig. 5-2 Active filter curcuit

(2) Position/Speed feedback unit

Through acquisition of the position, speed signal, selection of appropriate control
strategies, adjustment of the corresponding controller parameters, the closed-loop
control of position/speed can be achieved. In the experiment, position/speed feedback
signal from the optical encoder and the four frequency counters. The optical encoder
has been installed in the servo motor coaxially. When the motor rotates, there will be
6 channels pulse signal. They are PA, PB, and PZ and the corresponding reverse
signal /PA, /PB and /PZ respectively. The pulses number generated by the optical
encoder reflects the position of servo motor, and the pulse frequency reflects the
speed of servo motor. The pulse phase difference between the PA and PB reflects the
rotation direction of motor. When PA phase advance PB phase up to 90°, the motor
runs in anti-clockwise; when the PB phase advance PA phase up to 90°, the motor
runs in clockwise. In the experiment, the resolution of optical encoder is 2048, that is,
motor generates pulse count of 2048 turning every lap. And then by a four frequency
multiplier, motor has the resolution of 8192 pulses. PZ signal is primarily used for
check. The encoder output signal of a PZ when the motor rotates one cycle. Finally,

the output from the optical encoder is sent to dSPACE's DS3002 interface for
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processing.

(3) Isolation and protection circuit

The current detection of main power uses LT208 —S7 produced by LEM
company. This kind of current senor has rated 200A current. Its peak value can reach
the 300A, and working voltage is £12V ~=+15V, whose interior with feedback
closed-loop control. The output is the current-mode output, corresponding to the rated
output current of 100mA. So, we should pay attention to choose a suitable design of
the precision resistors, making the current-mode output convert into voltage-mode
output. Through the resistor, current-mode output signal can be converted to
voltage-mode output signal. And then after the active filter, we can generate PWM
control circuit enable by setting the threshold.

The voltage detection of main power uses LV25—P produced by LEM company.
The measurement range of this kind of voltage sensor is 10V~500V. Its primary
rated input current is [,, =10mA, secondary output current is [, =25mA, and
peak value is 7, =14mA, and working voltage is +12V~=+15V. Due to this sensor
without series resistance in primary coil, the resistance needs to calculate and adapt.
After then, this voltage signal is sent to active filter and amplifier. Comparing with
setting value, we can know whether this voltage is over-current or over-voltage. In
this way, the whole system can be get the protection.

In order to avoid mutual interference between strong and weak power, especially
in high current circuit interference for analog circuits and digital circuits, the system
mainly uses high speed optical coupling components to isolate interferes. In fact, most
of the signal interface depends on the merits of optical coupling. Assisted pull-up
resistor determines the steep or flat of rising edge and trailing edge, which should be
adjusted in the experiment. Through the experiment, HCPL4504 optical coupling
produced by Hewlett-Packard holds absolute advantage.

53 Development steps of control system

The dSPACE is divided into two types from the hardware structure. One is
complete real time control single board system with integrated I/O such as DS1103.
The other is processor departed from user I/O such as DS1005PPC control board. The
latter one aims to expand the ability of processor and I/O. In addition, the
communication between processor and I/O adopts PHS (Peripheral High-speed Bus).

Taking DS1005PPC control board as the core, with DS2001AD acquisition
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board, DS2002/2003 multi-channel AD acquisition board, CP4002 Multi-I/O board,
DS2102DA output board, DS3002 incremental encoder interface board, we constitute
a standard component hardware parts of dSPACE DS1005 system, which is used in
this experiment.

After the completion of the experimental platform, the development steps of
control system for PMSM based on the dSPACE include the following points:

(1) MATLAB/Simulink modeling and off-line simulation. Take use of
MATLAB/Simulink to establish a mathematical model for the simulation object, and
design control programs. At the same time, complete the system off-line simulation.

(2) Input/output interface (I/O) experimental model. In the MATLAB/Simulink
environment, we need to retain module that is downloaded to the dSPACE. Select the
real-time control required for I/O modules from the RTI library. Replace the original
connection relationship with the hardware interface, and configure I/O parameters. In
some special cases, we also need to set up hardware and software interrupt priority

levels.
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Fig. 5-6 MATLAB/Simulink environment based on dSPACE/RTI control system

The figure 5-6 is a control system in MATLAB/Simulink environment with the
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dSPACE/RTI module. In detail, PWM interface RTI modules produce a variety of
optional items depending on the PWM methods. The PWM output has 8-channel at
most. But for the three phase motor, we only need to select the 3-channel PWM
interface RTI module from DS4002PWM3 OUT. Usually, motor speed can be
obtained by coaxial encoder. The RTI module DS3002POS B1 CI1 can get the
position and delta position signals. The module of DS3002HW_ INDEX Bl CI can
get a zero-position signal. Due to the requirement of current and voltage sample, we
use the AD interface DS2001 B1/ DS2002 B1 /DS2003 Bl. Among them,
DS2001 B1 can sample 5-channel analog signal (+5V or £10V) at the same time. In
addition, for the output analog signals, we can use the DA interface DS2102 B1 that
creates analog signals (£5V, =10V or 0~10V) easily. It's worth noting that the output
value +1 of MATLAB/Simulink corresponds analog output =5V or £10V, and the
output value 0~1 corresponds analog output 0~10V.

(3) The dSPACE/RTW provides tools to automatically generate code and
download. Since MATLAB and dSPACE with seamless connectivity features, a
simple operation can complete real-time C code generation, compile, link and
download for the target system. In other word, model is downloaded into target board
DS1005PPC as running program.

(4) The dSPACE integrated experiment and debugging. The dSPACE provides
real-time ControlDesk software as well, which changes the parameters and real-time

control.

5.4 Experiment results and analysis

I. Content and intention:

1. Validate feasibility of high order sliding mode control in PMSM;
2. Test system using high sliding mode control whether it can release chattering
phenomenon;

3. Test system using high sliding mode control whether it has robustness.

I1. Equipments:

Name Type Unit Amount
dSPACE controller DS1005 Dais 1
DC regulated power WYK-303B, Dais 1
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Slide-wire rheostat BX8D-3/7 Dais 3
Switch regulated power S-100-24 Dais 1
Universal meter LINI-T/UT58A Dais 1
Ondoscope Tektronix/TDS2024 Dais 1
Industrial computer ADLINK Dais 1

ITI. Experimental procession:

Step 1: Off-line simulation. According to the principle of high order sliding mode
control and differentiator, combining with chapter 5 of the application for permanent
magnet synchronous motor, the theoretical simulation is researched in the
MATLAB/Simulink firstly. In detail, set the sampling frequency and differential
equation solution, and save the .mdl model file;

Step 2: After the control algorithm verification, remove the inverter model and
motor model replaced by the physical prototypes of actual system. And then complete
all of the system interface, including the A /D, D/A, /O, PWM and other interfaces of
the dSPACE. Afterwards, compile on-line to generate. cof configuration file;

Step 3: Check all connections are correct. After that, start the dSPACE. Compile
and download files real-time (RTI) in the environment of MATLAB/Simulink. At this
moment, algorithm program code is downloaded to the DSP core program area of
dSPACE controller;

Step 4: Start the dSPACE/ControlDesk. Create an experimental file .prj in the
interface, and design the required .lay layer file. Observe compiler-generated variable
file .sdf in order to facilitate observe the real-time dynamic performance of the
system,;

Step 5: After the completion of the above, check the status of external devices is
good or not. Finally, start bus power, while start system operation in
dSPACE/ControlDesk interface.

IV. Controlled device:

The controlled object in experiments uses non-salient pole permanent magnet
synchronous motor of Delta's ASMT series, whose main parameters are as follows

Table 5-1:

Tab. 5-1 Parameters of PMSM in experiment
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Name  Resistance  Inductance Rating Power Torque

Value R=2.052 L=84 P=1.0 =33
Unit Q mH kW N-m
Name  Pole-pairs Voltage Speed Rotary inertia
Value N,=4 U=300 n,=3000 J=0.00026
Unit — |4 7/ min kg -m’

Host-computer control surface adopts visual man-machine surface the
dSPACE/ControDesk to realize data acquisition and display. Fig. 5-8 is pictorial
diagram based on the dSPACE control system. The system consists of inverter,

isolation circuit, detection circuit, power circuit and etc.

)
A dSPACE board

Ox

AN sensors Power board

Fig. 5-8 Control system hardware circuit with dSPACE interface
V. Waveform:

Because the research of nonlinear system high order sliding mode control theory
still is in primary stage, it is face with much challenge. For example, it strictly
requires all of the system functions are smooth, and norm-bounded. Otherwise, there
is the higher derivative of reference value in control law. In our experiment, 60V DC
regulated power is supplied. Experiment is tested under the conditions above. The

main test results are following.
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Fig. 5-13 Speed reference curve of PMSM Fig. 5-14 Dynamic speed feedback curve

High order sliding mode control law has high derivative of reference signal, so
the reference signal must be smooth and continues enough function. For testing speed
dynamic response of PMSM in the experiment, the reference signal is set as Fig. 5-13.
Actual measurement of speed dynamic response is shown in Fig. 5-14.

By comparing Fig. 5-13 and Fig 5-14, nonlinear PMSM holds good dynamic
tracking character with high order sliding mode control.

Fig. 5-15 is steady speed clockwise/anti-clockwise curve of PMSM. It is can be

seen that the PMSM also takes on good steady performance.
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Fig. 5-15 Steady speed of clockwise/ Anti-clockwize displayed in dSPACE/ControlDesk
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Fig. 5-16 Speed curve of PMSM in MATLAB/Simulink using traditional sliding mode control

The Fig. 5-16 is outline simulation speed waveform of PMSM using traditional
sliding mode control. It displays anti-clockwise speed waveform of PMSM. And the
Fig. 5-17 is outline simulation speed curve of PMSM using high order sliding mode.
After partial amplification, comparing with Fig. 5-16, high order sliding mode control
is provided with the ability of avoidance chattering. But, its algorithm is more

complicated than tradition. The adjusting time is longer, too.
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Fig. 5-17 Speed curve of PMSM in MATLAB/Simulink using high order sliding mode control

To validate experiment intention 2 and 3, show high order sliding mode control
with free chattering and robustness, the experiment designs traditional sliding mode
controller, too. Simulation and actual measurement are recorded in order to compare

with high order sliding mode.
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Fig. 5-18 Speed curve in dSPACE/ControlDesk using traditional (high order) sliding mode control

Due to the traditional sliding mode control uses discontinues control law acting
on sliding mode manifold surface, chattering problem is caused. The great of the
coefficient in sliding mode control law, the faster of convergence, when the system
enter into sliding mode, chattering phenomenon is more obvious. Fig. 5-18(a) is
actual measurement speed curve of PMSM, which adopts conventional sliding mode
control. The control law is u =-K,sgns, in current loop K, =5, in speed loop
K, =8.2. From the Fig. 5-18, we can obtain a conclusion that chattering is released
in high order sliding mode.

Hereto, both of simulation and experiment results prove that high order sliding
mode control can reduce the chattering phenomenon which exists in conventional.

Following experiment will test the robustness of high order sliding mode control.
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Fig. 5-19 Speed curve of 0.5 N - m disturbance load in dSPACE/ControlDesk

The PMSM is a typical complex system because of elevated temperature,
saturation, time delay and a good many elements. These reasons lead to the
synchronous motor is nonlinear, variation parameter, close coupled system. For the

sake of testing high order sliding control, which is insensitive to the parameter
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uncertainness and disturbance, experiment is injected about 0.5 N-m external load
disturbance at the 0.01 second. The speed actual measurement waveform is shown in
Fig. 5-19. From this figure, speed curve is smooth without flutter. The experiment
result illuminates high order sliding mode control reserves robustness of conventional
sliding mode.

Experimentally verified, high order sliding mode control provides an effective

method to improve accuracy and robustness further for nonlinear systems.

5.5 Summary of this chapter

This chapter first described dSPACE physics experiment control platform the
build and development process in detail. Through the dSPACE real-time control
platform, the nonlinear high order sliding mode control theory research is applied to
the control of permanent magnet synchronous motor. The experimental results and
simulation results are consistently indicate that synchronous motor has better dynamic
performance and steady accuracy, proves the feasibility of this technology in practical
application systems; It is also verified by high order sliding mode control technique
that preserves the robustness of traditional sliding mode control. The high order
sliding mode essentially eliminates the chattering caused by discrete control law.
From another point of view, the simulation and physical experiment provide a certain
reference value for the nonlinear systems high order sliding mode control further

application.
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Chapter 6 Summary

This paper focuses on the nonlinear system control theory and high order sliding
mode control theory. The exact feedback linearization technology of nonlinear
systems needs to be applied under the accurate model of the technical requirements,
which is not easy to achieve in the actual system. High order sliding mode control
technology preserves the strong robustness of the traditional sliding mode control,
which is not sensitive to the uncertain parameters of systemic model and the unknown
external disturbances. But in comparison with the traditional sliding mode control,
high order sliding mode control technique uses high order differential of sliding mode
variable to transfer the chattering phenomenon generated in discontinuous discrete
control into higher order sliding surface, making the low order sliding surface
eliminate the chattering and improving the control precision. Considered all above
together, this paper will organically integrate nonlinear control and high order sliding
mode control with their full strengths to improve the overall performances of system.
For permanent magnet synchronous motor is a typical MIMO nonlinear system, we
conduct a high order sliding mode control experiment, mainly including the research
areas of servo control, robustness, state estimation and disturbance estimation so that

it can get a better good application effect.

6.1 The chief work and research results of the paper

1. As the differential geometry theory is based on precise mathematical models,
but in the actual system the uncertain system parameters and the unknown external
disturbances can not be avoided, so the application of exact feedback linearization
theory has been somewhat restricted. In this paper, use the robustness of sliding mode
control on parameter uncertainty and external disturbance to design a high order
sliding mode controller with the combination of exact linearization theory. It can not
only eliminate the chattering in traditional sliding mode control and improve the
control precision, but also circumvent the application condition that the relevant
degree requirement is stringently equal to 1.

2. In the design of high order sliding mode controller, we often need to know
the arbitrary order derivative of sliding variable values, so how to get each variable

differential becomes considerable complex and cumbersome. This paper presents an
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arbitrary order differentiator designed by high order sliding mode observer, which can
avoids the large number of numerical method calculation. From the application
example, it can be seen that the differentiator is not only high accurate but also strong
robust. This paper will also use the differentiator to apply to the on-line observation of
MIMO nonlinear system state and input variables, and consequently get more ideal
control effect. This lays the foundation for the next application of the actual system.

3. For permanent magnet synchronous motor commonly used in industrial
control, taking into account its nonlinear characteristics and the strong coupling
relationship between multiple variables of the system as well as the impact of the
working environment, this paper designs a robust high order sliding mode controller
applied to permanent magnet synchronous motor at the first time. First, it conducts the
exact feedback linearization to the mathematical model of nonlinear MIMO motor
and achieves a decoupling control. In this way, the design of complex nonlinear
systems is converted to control a number of SISO linear subsystems so that control
objectives are easy to implement. Then, based on high order sliding mode control
theory, it designs the double closed-loop robustness controller in position and current
for permanent magnet motor. Through the simulation, it can be seen the position
tracking of the system tracks with high precision and the maximum error is only
0.09rad. Although there are some factors such as the parameter uncertainty and
external unknown torque disturbance in the system, it still has a strong robustness. In
addition, chattering phenomenon has been significantly ameliorated after the
application of higher order sliding mode controller.

4. Taking into account that the arbitrary order sliding mode differentiator has
the role of observer, this paper uses sliding mode differentiator to construct on-line
accurate observation on the motor state variables for the permanent magnet
synchronous motor at the first time. The sliding mode observer is designed to achieve
the observation on motor speed, d-g axis current state variables. From another
viewpoint, the value of state variable feedback for motor controller can not be
obtained only through sensors but be directly obtained from the output of the
observations. Thus it eliminates the effect of mechanical or electronic sensors,
reducing the cost and improving the reliability of the system. Simulation results show
that the high order sliding mode controller with differentiator, its speed and current
values are observed with high accuracy.

5. In the motor control technologies, we often encounter the external unknown
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and uncertain disturbances. The most primary is the external load torque which poses
a severe challenge to the system control performances. The application of robustness
control techniques has become the studying hot point. This thesis uses high order
sliding mode observer to present on-line estimate expression of external torque.
Through the real-time calculation of the expression, we can estimate the more
accurate value of disturbance torque by using high order sliding mode differentiations
and related system variable values. As a result, the external disturbance signal of
system is no longer unknown but can be accurately estimated. Therefore, the system’s
capacity to resist external disturbances has further improved.

6. In order to verify the simulation results, this paper adopts dSPACE
semi-physical simulation experimental platform to complete the physical experiment
at last. Through the results from the MATLAB/Simulink simulation, the system
downloads software programs of nonlinear high order sliding mode control algorithm
into the memorizer of dSPACE's subordinate computer in order to control the motor
drivers to work, and ultimately it achieves on-line and real-time experiment of
synchronous motor. Experimental results show the high order sliding mode control
theory of nonlinear systems can be successfully applied to permanent magnet
synchronous motor control system. The method not only retains the robustness of
traditional sliding mode control, but also effectively eliminates the chattering
problems in the traditional sliding mode control. This lays the foundation for the

widespread application in the future.

6.2 Several issues to be resolved

The study of nonlinear system control theory is one difficult and challenging
topic in present control theories. And the sliding mode control of nonlinear system
develops at the initial stage. In terms of high order sliding mode control of nonlinear
system studied in this paper, there are still some important issues need to be explored
and further studied.

1. Nonlinear control is a subject with relatively broad range and rather deep
content. This paper focuses on the affine and matching high order sliding mode
control of nonlinear system. For non-affine or non-matching non-linear systems, it
doesn’t carry out study, which is to be in-depth study area for nonlinear sliding mode
control.

2. The application of quasi-continuous high order sliding mode control

98



technique with smooth control law has not yet been generalized, because the theory
itself has certain limitations. Its core idea is to minimize discrete sign function items
in the control law. But for some specific practical systems, it is possible to appear
uncertain items when the denominator of control law approaches zero. Nevertheless,
this idea is still very useful, which is the problem to be solved in the future.

3. It is well known that using sliding mode control with differentiator can
achieve state estimation and external disturbance estimation for nonlinear permanent
magnet synchronous motor. With the thought, it should also be able to achieve the
on-line parameter identification of system. In the simulation experiments, it’s showed
that the stator resistances as well as the value of motor flux can be better identified.
For motors, the inductance is undoubtedly a more important parameter. However, the
inductance identification results found in many simulation experiments were
unsatisfactory. It is due to under normal circumstances the unit of the electrical
inductance is millihenry, when we use sliding mode variable and relevant state
variables to estimate it, occurring a zero-zero phenomenon. Specifically, when the
sliding variable is converging to zero in finite time, the molecular and denominator of
the inductance are also converging to zero. Thus, the identification reliability of the
method remains to be further studied.

4. High order sliding mode control technology with higher control accuracy
essentially eliminates the chattering phenomenon and keeps the robustness of the
traditional sliding mode control. However, a fly in the ointment is that the technology
needs to seek high order derivatives under a given reference value. So a given
function is required to be continuously differentiable everywhere in the time domain.
In fact, that is much harsher in a real system. Therefore, how to relax the using
conditions is also an important research area for high order sliding mode control

technology.
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