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Résumé 

 

La réduction des budgets du domaine spatial et les missions scientifiques traditionnelles 
ayant des coûts et une complexité croissants a amené la communauté scientifique à se concentrer 
sur les petits satellites qui fournissent non seulement des résultats scientifiques de valeur, mais 
permettent aussi de nouvelles applications dans le domaine de la télédétection, de la surveillance 
environnementale et des télécommunications. De plus, le concept de vol en formation de petits 
satellites est une technologie-clé pour beaucoup de missions spatiales futures, en améliorant la 
capacité de survie et réduisant le coût des missions. 

Ce travail de recherche a un double but : la proposition de modèles innovants de 
constellations de nano-satellites et de nouvelles approches de routage pour les réseaux de nano-
satellites. 

Cette thèse propose et analyse trois modèles de constellations de nano-satellites 
dénommés NanoDREAM, NanoICE et NanoSPHERE, qui fournissent des services de 
télécommunications aux régions éloignées. Le modèle NanoDREAM est conçu pour le Désert 
Salar de Uyuni en Bolivie, une région qui détient 70% de la réserve mondiale de lithium. Le 
modèle NanoICE est destiné aux Régions Polaires, pour satisfaire les besoins de 
télécommunications de la communauté scientifique. Le modèle NanoSPHERE est conçu pour 
fournir une couverture globale de la Terre pour un marché de télécommunications concurrentiel. 
De plus, nous avons proposé une architecture pour le segment terrestre basée sur la technologie 
sans fil. Cette architecture a été déployée sur la zone d'exploitation du Désert Salar de Uyuni. Ces 
modèles ont été développés analytiquement et mis ensuite en œuvre dans le simulateur SaVi afin 
d’identifier la meilleure constellation satisfaisant les requis de la mission en termes de couverture 
et en réduisant au minimum le nombre de nano-satellites de la constellation. 

Aussi, cette thèse propose une méthode pour estimer le nombre de nano-satellites 
nécessaires pour couvrir une certaine zone. De plus, une méthode basée sur le model de Markov 
est proposée afin d’évaluer les performances de constellations de nano-satellites. 

La Qualité de Service (QdS) dans les réseaux de nano-satellites sera un grand défi pour la 
communauté scientifique, en considérant l'évolution de la technologie multimédia et l'intérêt 
commercial des futurs opérateurs nano-satellitaires pour fournir des services de 
télécommunications de haute qualité au grand public. Pour cette raison, nous avons proposé 
plusieurs approches pour intégrer l’aspect QdS dans les réseaux de nano-satellites. 

En outre, les défis uniques imposés par les réseaux nano-satellitaires exigent que nous 
révisions la conception des protocoles de communication, la gestion de réseau et que nous 
proposons des nouveaux mécanismes de routage qui prennent en considération les ressources 
limitées des nano-satellites. Ce travail de recherche propose de nouvelles approches de routage 
pour les constellations de nano-satellites, basées sur une étude faite sur le routage dans les 
réseaux de satellites traditionnels, les réseaux Ad hoc et les réseaux de capteurs. De plus, cette 
étude a montré que le protocole XSTP (eXtended Satellite Transport Protocol) pourrait être un 
candidat ciblé pour les constellations nano-satellitaires. Une méthodologie pour évaluer les 
performances du protocole XSTP sur des réseaux de satellites traditionnels et des constellations 
de nano-satellites a été mise en œuvre dans le simulateur NS2. Les scénarios de test et les 
approches de simulation sont présentés en détail avec leurs résultats respectifs. La partie finale de 
ce travail de recherche propose plusieurs perspectives d’études complémentaires dans le domaine 
des nano-satellites. 
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Abstract 
 

 
The growth in cost and complexity of traditional scientific missions along with the 

reduction in space budgets have determined space community to focus on small satellites that not 
only provide valuable scientific returns, but also allow completely new applications in remote 
sensing, environmental monitoring and communications. 

Furthermore, small satellite flying in formation is a key technology for many future space 
science missions, by improving mission survivability and reducing mission costs, and offering 
multi-mission capabilities, achieved through reconfiguration of formations. 

The main goal of this thesis is two-fold: proposing innovative nanosatellite constellation 
models and new routing approaches for nanosatellite network telecommunications. 

Therefore, this research work proposes and analyzes three models of nanosatellite 
constellations, named NanoDREAM, NanoICE, NanoSPHERE, that provide telecommunication 
services to remote regions of the Earth. NanoDREAM model is designed for Bolivia’s Salar de 
Uyuni Desert, a region which detains 70% of the global lithium reserve. NanoICE model is 
intended for Polar Regions, in order to meet the voice and data transfer needs of the entire 
Antarctic and Arctic scientific community. NanoSPHERE is aimed to provide global coverage in 
the context of a robust telecommunications market. Additionally, a ground segment architecture 
based on wireless technology and deployed over the exploitation area of Salar de Uyuni Desert 
was proposed. 

Moreover, two new methodologies were proposed: the first one is a method for estimating 
the number of nano-satellites needed to cover a specific region was, and the second one is a 
Markov modeling-based method for evaluating the performance of nanosatellite constellations. 

These models were developed analytically and then implemented in SaVi modeler in 
order to identify the best constellation which meets mission coverage requirements while 
minimizing the number of nanosatellites within the constellation. 

Since the evolution of multimedia technology and the commercial interest of future small 
satellite operators to reach widely public applications will make QoS in nanosatellite networks an 
area of great interest, several approaches for QoS provisioning in nanosatellite networks were 
proposed. 

Furthermore, the unique challenges imposed by nanosatellite networks require us to 
revise communication protocols design, network management, and to consider novel routing 
mechanisms to accomplish “more with less”. New routing approaches for nanosatellite 
constellations were proposed based on a survey of routing mechanisms in traditional satellite 
network, Ad Hoc network and sensor networks. Moreover, this study showed that XSTP 
(eXtended Satellite Transport Protocol) might be a candidate protocol targeted for nanosatellite 
constellations.  

A methodology for evaluating technical performance of XSTP protocol over traditional 
satellite networks and nanosatellite networks was implemented in NS2 simulator. The specific 
scenarios, implementations aspects and simulation approaches are presented in detail along with 
the respective simulation results. A special emphasis is placed on the comparison between 
satellite network and nanosatellite network in terms of XSTP performance. Finally, several 
guidelines for future work within nanosatellite domain are proposed in the last part of this 
research work. 
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Chapitre 1. INTRODUCTION 

 

Le cadre et les objectifs de la thèse 

 
 
Les satellites traditionnels sont extrêmement chers à concevoir, construire, lancer et 

faire fonctionner. En conséquence, les entreprises du domaine spatial et la communauté de 
recherche ont concentré leur attention sur des missions impliquant plusieurs petits satellites, 
peu coûteux, travaillant ensemble pour atteindre les mêmes performances qu'un grand 
satellite. Le concept de vol en formation est devenu populaire ces dernières années grâce à 
son potentiel pour réaliser des mesures coordonnées dans les missions de télédétection et 
grâce à sa flexibilité pour des missions spatiales à long terme. Beaucoup de missions spatiales 
futures (par exemple, l’interférométrie, la radar-graphie ou la cartographie de la Terre) 
exigeront des constellations de petits satellites pour accomplir leurs objectifs scientifiques 
complexes. 

En outre, beaucoup de projets spatiaux développés dans les laboratoires universitaires 
sont concentrés sur le développement de micro-, nano- et pico-satellites. Le nombre de pays 
participants activement aux programmes de nano-satellites grandit considérablement chaque 
année. 

Le standard CubeSat, développé par le Professeur Bob Twiggs de l'Université de 
Stanford et le Professeur Jordi Puig-Suari de California Polytechnic State University, est 
devenu la norme de référence dans le domaine des nano-satellites. Le standard CubeSat a 
augmenté le développement de nano-satellites vers la fin du vingtième siècle et le total de 
projets a grandi à une centaine de projets dans le monde entier jusqu'à août 2009. 

En France, le Centre National d’Etudes Spatiales (CNES) a lancé trois projets 
dénommés EXPRESSO, PERSEUS et RISTRETTO – pour monter l'intérêt pour l'espace 
parmi des étudiants et offrir à chaque étudiant une occasion unique de participer à toutes les 
phases d'un projet spatial concret incluant des créations expérimentales (par exemple, des 
petites fusées pour le lancement de nano-satellites, des systèmes orbitaux et des ballons 
stratosphérique). 

De plus, le programme canadien CanX (Canadian Advanced Nanospace eXperiment) 
développé au sein du Space Flight Laboratory de l’Université de Toronto fournit un accès à 
l'espace peu coûteux pour la communauté de recherche à l'aide de nano- et pico-satellites. Les 
nano-satellites CanX sont conçus par les étudiants du Master de l'Université de Toronto, sous 
la coordination du personnel professionnel du Laboratoire. 

Le Bureau d'Armée de l'Air Américain (AFOSR) avec la Direction de Véhicules 
Spatiaux (AFRL/RV) a annoncé le Programme 2011 University Nanosatellite Program pour 
promouvoir la recherche au niveau des universités et soutenir l'éducation dans le domaine 
spatial, en se concentrant sur les nano-satellites. La NASA a lancé le Programme Nano-
Satellite Launch Challenge avec les objectifs suivants : 

- concevoir un système de lancement peu coûteux, avec un grand niveau de sécurité et 
qui permet des lancements fréquents de petites charges utiles (i.e., pico-satellites, nano-
satellites); 
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- proposer des innovations dans le domaine de la propulsion et d'autres technologies 
pour les systèmes de lancement futurs; 

- le nouveau système de lancement commercial de nano-satellites doit offrir une 
capacité de lancement à un coût comparable avec les actuels lancements de charges utiles 
secondaires. Ainsi, un nouveau marché potentiel avec le Gouvernement, les entreprises 
commerciales et les universitaires sera mis en place. 

La technologie des petits satellites a ouvert une nouvelle ère dans l'ingénierie des 
satellites, en diminuant le coût des missions spatiales, mais sans réduire les performances. 

Cependant, le plus grand défi à long terme pour la communauté des petits satellites est 
de développer un marché commercial robuste étant capable de produire des petits satellites à 
échelle industrielle. 

La fabrication de petits satellites plus rentables exige de nouvelles technologies qui 
doivent être certifiées pour le vol spatial. Ainsi, une mission avec des petits satellites sera la 
meilleure façon d'exécuter une première vérification du fonctionnement dans l’espace. 

À l'état actuel de la technologie, les micro-satellites pourraient fournir les mêmes 
fonctionnalités que les satellites conventionnels, bien qu'ils ne soient pas capables d'avoir la 
même résolution que les télescopes Planck, Herschel ou Hubble. Ils sont néanmoins capables 
de fonctionner aussi bien pour des communications ou des missions d'observation de la Terre. 

Cette thèse se concentre sur un concept relativement nouveau – les constellations de 
nano-satellites – qui exigent toujours une recherche significative au niveau de la conception 
de la mission spatiale. Au moment de la rédaction de ce mémoire, il n'y a encore aucune 
mission spatiale active utilisant des constellations de nano-satellites. Les avantages 
principaux des nano-satellites sont la réduction du temps de production et la réduction du 
coût. Peut-être l’aspect le plus important pour le vol en formation est sa capacité à exécuter 
des mesures coordonnées et distribuées. Cependant, les constellations de nano-satellites ont 
des défis spécifiques, y compris des ressources très limitées en termes de CPU, mémoire, 
énergie, bande passante, adaptabilité, redondance des systèmes, navigation, contrôle, 
autonomie et robustesse par rapport aux missions spatiales avec des satellites conventionnels. 

Une configuration de nano-satellites doit être capable d’atteindre les exigences et les 
contraintes de la mission spatiale pour laquelle elle a été conçue. Actuellement, il y a peu 
d'études de performances pour évaluer l'efficacité des télécommunications des constellations 
de nano-satellites. 

Dans l'histoire des communications par satellite, il y a toujours eu une haute priorité 
pour développer des techniques plus efficaces pour la transmission et la réception de données. 
Il y a beaucoup de défis à résoudre avant que les objectifs ambitieux de communications 
efficaces dans les constellations de nano-satellites puissent être réalisés, y compris la 
conception de protocoles spécifiques prenant en considération les ressources limitées des 
nano-satellites, les types d'erreurs dans les constellations de nano-satellites à orbite basse, 
l'adaptabilité et les problèmes de synchronisation. Tous ces défis exigent que nous révisions 
les stratégies de gestion de réseau et que nous considérions de nouveaux mécanismes de 
routage pour accomplir "plus avec moins". 

Cette thèse a un double but : la proposition de modèles innovants de constellations de 
nano-satellites et de nouvelles approches de routage pour assurer les télécommunications 
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dans les réseaux de nano-satellites. Pour réaliser cet objectif, nous avons considéré l'approche 
de recherche suivante. 

Dans la première partie de ce mémoire, nous introduirons le domaine des petits 
satellites, en définissant des concepts comme le nano-satellite, le vol en formation, le 
”cluster“ et la constellation. 

Nous identifierons les défis des systèmes nano-satellitaires ainsi que des 
complémentarités entre les satellites conventionnels et les petits satellites. Une fois les défis 
des petits satellites identifiés, des approches de routage pour des réseaux de nano-satellites 
seront proposées, basées sur une étude de routage dans les réseaux de satellites classiques, les 
réseaux Ad hoc et les réseaux de capteurs. Nous nous concentrerons sur des réseaux de 
capteurs parce qu'ils partagent des caractéristiques communes avec les réseaux de nano-
satellites : dispositifs très petits, bon marché, faible consommation et avec des capacités de 
calculs et de communications très limitées. Nous tournerons ensuite notre attention vers le 
domaine des réseaux Ad hoc pour trouver des approches de routage qui peuvent être utilisées 
ou adaptées pour les réseaux nano-satellitaires. Nous identifierons des défis communs tant 
pour les réseaux Ad hoc que pour les réseaux de nano-satellites. Finalement, notre étude sur 
le routage dans les réseaux de satellites conventionnels montrera que le protocole XSTP 
(eXtended Satellite Transport Protocol) pourrait être un candidat idéal pour les constellations 
nano-satellitaires. 

Dans la deuxième partie de cette thèse, le cadre des télécommunications des réseaux 
nano-satellitaires sera présenté et discuté avec les défis en termes de Qualité de Service que 
nous trouvons dans ce type de réseau. L'évolution de la technologie multimédia et l'intérêt 
commercial des opérateurs nano-satellitaires futurs pour pénétrer le marché de 
télécommunications, en offrant au grand public des services de télécommunications de haute 
qualité et bon marché, feront que l’aspect Qualité de Service sera très important dans les 
futures constellations de nano-satellites. Pour cette raison, nous proposerons plusieurs 
approches pour implémenter la Qualité de Service dans les réseaux de nano-satellites. 

Dans la troisième partie de ce travail de recherche, l'actuel intérêt considérable pour 
les constellations de nano-satellites à orbite base, capables de fournir une grande gamme 
d'applications comme la surveillance de l’environnement et des désastres (par exemple, des 
inondations, des incendies, des glissements de terre, des déversements accidentels de pétrole), 
la topographie de la Terre ou encore les communications et l’astronomie, sera présenté. Dans 
ce contexte, nous proposerons trois modèles de constellations de nano-satellites pour fournir 
des services de télécommunications aux régions isolées : 

- Le modèle NanoDREAM conçu pour le Désert Salar de Uyuni de la Bolivie, une 
région qui détient 70% de la réserve mondiale de lithium. La mission d'exploitation 
du lithium en Bolivie a reçu une attention spéciale car les futures applications 
envisagées pour la réduction des émissions de CO2 au niveau mondial nécessitent ce 
métal. 

- Le modèle NanoICE destiné pour les Régions Polaires, pour satisfaire les besoins de 
télécommunications de la communauté scientifique de l’Antarctique et de l’Arctique. 

- Le modèle NanoSPHERE conçu pour fournir une couverture globale de la Terre dans 
le contexte d’un marché de télécommunications concurrentiel. 
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Pour assurer les exigences d’une mission impliquant une constellation nano-
satellitaire avec un minimum de ressources, des configurations spatiales optimales de nano-
satellites doivent être conçus. Ainsi, des techniques numériques et des simulations seront 
employées pour déterminer la meilleure constellation de nano-satellites qui répond à deux 
objectifs : la minimisation du nombre de nano-satellites dans la constellation et la 
maximisation de la zone de couverture, étant donné les ressources minimales qui sont 
disponibles. Pour assurer une constellation cohérente, nous considérerons aussi des 
contraintes sur le type d’orbite. 

Ces modèles seront développés analytiquement et mis ensuite en œuvre dans le 
simulateur SaVi afin d’identifier la meilleure constellation satisfaisant les requis de la 
mission en termes de couverture et en réduisant au minimum le nombre de nano-satellites de 
la constellation. 

De plus, nous proposerons une architecture pour le segment terrestre déployé sur la 
zone d'exploitation du Désert Salar de Uyuni. Ce réseau est un réseau maillé sans fil qui 
permet d’interconnecter facilement et efficacement tous les bâtiments, en utilisant une 
technologie peu coûteuse. Notre choix pour cette technologie est basé sur les capacités des 
réseaux maillés sans fil qui sont compatibles avec notre proposition de mission. Le simulateur 
OPNET sera utilisé pour exécuter des simulations afin d’évaluer ses performances pour les 
communications via une constellation de nano-satellites. 

Finalement, le protocole de transport XSTP, identifié comme un candidat possible 
pour les réseaux de nano-satellites, sera implémenté dans le simulateur NS2. Plusieurs études 
de simulations seront conduites, en considérant un scénario de communication 
unidirectionnel et un scénario de communication bidirectionnel. Les performances du 
protocole XSTP sur le réseau de satellites traditionnels et la constellation de nano-satellites 
seront évaluées utilisant quatre paramètres de performances de la QdS : la bande passante 
effective, l’overhead, l’efficacité du canal et la bande passante nécessaire pour le canal 
inverse. Nous détaillerons la comparaison entre un réseau de satellites conventionnels et un 
réseau nano-satellitaire en termes de performances du protocole XSTP. 

Pour conclure, ce travail de recherche propose de nouveaux modèles de constellations 
de nano-satellites et des missions scientifiques innovatrices, implémente des topologies de 
réseaux satellitaires et nano-satellitaires ainsi qu'une architecture d'un segment terrestre dans 
des simulateurs divers (i.e., NS2, SaVi, OPNET) et développe de nouveaux modules logiciel 
pour les protocoles de transport STP and XSTP afin d’évaluer leur performances sur les 
réseaux de satellites traditionnels et de nano-satellites. 

 

Le plan de la thèse 

 

Une fois que l’approche de recherche utilisée et le cadre de cette thèse ont été 
présentés, nous décrivons rapidement la structure de ce mémoire. Ainsi, cette thèse est 
divisée en cinq chapitres, brièvement résumés ci-dessous. 

Le Chapitre 1 présente le cadre de la thèse, les objectifs de ce travail de recherche et 
la structure de ce document. 
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Le Chapitre 2 présente un état de l’art sur le domaine des petits satellites. Dans un 
premier temps, les défis des petits satellites sont examinés et les aspects complémentaires des 
grands et des petits satellites sont discutés. Dans un deuxième temps, les applications des 
petits satellites sont décrits et de nouveaux concepts (i.e., le vol en formation, la constellation, 
le cluster, le trailling) sont définis. En outre, de nouvelles approches de routage dans les 
réseaux de nano-satellites sont proposées, en se basant sur une étude sur le routage dans les 
réseaux Ad hoc, les réseaux de capteurs et les réseaux de satellites conventionnels. De plus, 
deux protocoles de transport (STP – Satellite Transport Protocol et sa version améliorée, 
XSTP) sont brièvement présentés. 

Le Chapitre 3 décrit trois modèles de constellations de nano-satellites (i.e., 
NanoDREAM, NanoICE et NanoSPHERE) conçus pour fournir des services de 
télécommunications aux régions éloignées. Pour chaque modèle, une mission spécifique a été 
proposée. La définition du modèle mathématique est décrite, avec des paramètres de 
couverture et des indicateurs de performances utilisés pour l’évaluation de chaque type de 
constellation. Nous proposons une architecture pour le segment terrestre, basée sur la 
technologie sans fil, afin de fournir des services de télécommunications à la zone 
d'exploitation de lithium. Nous proposons aussi deux méthodes innovantes : la première est 
une méthodologie pour évaluer le nombre de nano-satellites dans la constellation, tandis que 
la deuxième est une méthode basée sur le modèle de Markov, conçue pour évaluer les 
performances des constellations nano-satellitaires.  

Le Chapitre 4 décrit et discute les résultats de simulations. Dans un premier temps, les 
trois modèles de constellations proposés dans le Chapitre 3 ont été évalués en termes de 
couverture, utilisant le simulateur SaVi. Des calculs numériques sont utilisés pour évaluer les 
performances des constellations de nano-satellites en ce qui concerne les paramètres suivants 
: le nombre de nano-satellites, le temps maximal en vue, des paramètres de couverture (i.e., la 
zone de couverture, le taux de couverture, la zone d’accès, le taux d'accès), le délai de 
propagation et la quantité de données transmise sur chaque passage du nano-satellite au-
dessus d’une station terrestre. Cette analyse permet de déterminer la constellation nano-
satellitaire optimale qui répond aux objectifs de mission. La méthode basée sur le modèle de 
Markov, décrite dans le chapitre précédent, est appliquée à la constellation NanoDREAM. 
Dans un deuxième temps, nous avons évalué les performances du protocole de transport 
XSTP sur un réseau de satellites classiques et un réseau de nano-satellites, en utilisant des 
analyses et des simulations dans le simulateur NS2. De plus, nous présentons l'environnement 
de simulation, les paramètres de performances de la Qualité de Service et les scénarios 
envisagés pour des simulations NS2. Une étude intéressante est la comparaison entre les 
performances du protocole XSTP sur le réseau de satellites classiques et les performances du 
XSTP à travers le réseau de nano-satellites. 

Le Chapitre 5 montre un résumé de cette thèse, ses conclusions principales, les 
contributions apportées par ce travail de recherche et les perspectives pour de futurs travaux 
de recherche. 
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1 INTRODUCTION 
 

1.1 Research framework and objectives 

 
Traditional satellites are extremely expensive to design, build, launch and operate. 

Consequently, both the aerospace companies and the research community have started 
directing their attention to missions involving many, small, inexpensive satellites, working in 
formation flying to achieve the same performance as a large, expensive, single satellite. The 
formation flying concept has recently become popular due to its potential in coordinated 
measurements for remote sensing missions and flexible long-term mission capabilities. Many 
future space missions (e.g., interferometry, space-based radar, Earth mapping) will require 
small satellite formation flying to achieve their complex scientific objectives. 

Furthermore, many space projects in universities laboratories are focused on the 
development of micro-, nano- and pico-satellites for both scientific and educational purposes. 
The number of countries actively participating to nanosatellite programs grows substantially 
every year. 

The CubeSat standard, developed by Prof. Bob Twiggs of Stanford University and 
Prof. Jordi Puig-Suari of California Polytechnic State University [1], has become the 
reference standard in the nanosatellite domain. CubeSat standard [2], [3], [4] has boosted the 
development of nanosatellites by the end of the twentieth century and the total amount of 
projects has grown to about a hundred projects worldwide until August 2009. 

In France, the French Space Agency (CNES – Centre National d’Etudes Spatiales) 
has launched three projects – EXPRESSO, PERSEUS and RISTRETTO – in order to rise the 
interest for space among students and to offer each student a unique opportunity to participate 
to all phases of a concrete space project including experimental creations (e.g., very small 
launch vehicles for nanosatellite launching, orbital systems and stratospheric balloons). 

Moreover, the Canadian Advanced Nanospace eXperiment (CanX) program [5], [6], 
[7], [8], [9], [10] at the UTIAS Space Flight Laboratory provides cost-effective access to 
space for the research and development community at home and abroad through the use of 
nanosatellites and picosatellites. CanX spacecrafts are designed and built by Master students 
at the University of Toronto, under the close supervision of professional staff. 

The U.S. Air Force Office of Scientific Research (AFOSR), in conjunction with the 
AFRL Space Vehicles Directorate (AFRL/RV) announces the 2011 University Nanosatellite 
Program to promote and sustain university research and education focused on nanosatellites 
and related technologies. Also, NASA has launched the Nano-Satellite Launch Challenge 
[11] with the following objectives: 

� Safe, low-cost, small payload delivery system for frequent access to Earth orbit; 
� Innovations in propulsion and other technologies as well as operations and 

management for broader applications in future launch systems; 
� A commercial capability for dedicated launches of small satellites at a cost 

comparable to secondary payload launches – a potential new market with 
Government, commercial, and academic customers. 
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The small satellite technology has opened a new era of satellite engineering by 
decreasing space mission cost, without reducing the performance. However, the biggest long-
term challenge for the small satellite community is to develop a robust commercial market 
being able to produce small satellites. 

Making small satellites more cost-effective demands new technologies that must be 
certified for spaceflight. Certainly, there is a higher risk associated with uncertified 
technology. Thus, a small satellite mission is the best way to perform a first flight 
verification. 

At the current state of technology, micro-satellites could provide roughly the same 
functionalities as conventional satellites. Although they will not be able to have the same 
resolution as the Planck, Herschel or Hubble telescopes, they are thought to work well 
enough for communications and Earth observation missions. 

This thesis focuses on a relatively new concept – nanosatellite constellations – which 
still requires significant research in many areas of space mission architecture. Actually, at the 
time of writing this research study, there are no active missions using nanosatellite 
constellations. The main advantages of nanosatellites are decreasing cost and production 
times. Perhaps the most significant driver for formation flying is the ability to perform 
coordinated yet distributed measurements. However, missions that employ a nanosatellite 
constellation have specific challenges, including severely constrained onboard resources, 
limited bandwidth, scalability, redundancy, power availability, navigation, control, 
autonomy, and robustness, as compared to single-spacecraft missions. A nanosatellite 
configuration must be capable of meeting demanding mission requirements and constraints. 
Yet there are little studies in the literature on performance measures for evaluating the 
effectiveness of communications in nanosatellite constellations. 

Throughout the history of satellite communications, there has always been of high 
priority to find more efficient techniques of transmitting and receiving data. There are many 
challenges to be resolved before the ambitious objectives of efficient communications within 
nanosatellite constellations can be achieved, including design of specific protocols that take 
into consideration the limited onboard resources, the types of errors founded in LEO 
nanosatellite environment, scalability and synchronization issues. All these challenges require 
us to revise network management strategies and consider novel routing mechanisms to 
accomplish “more with less”. 

The multidisciplinary aspect of this research study is obvious, since it requires notions 
of orbital mechanics, astrodynamics, constellation design, cost modeling, launch modeling 
and so forth. Addressing any of them in-depth would be a complete project on its own. 

This research work is based on the assumption that nanosatellite constellation design 
is a complex problem that must balance objectives and constraints. We believe that 
nanosatellite constellation architectures resulted from the application of our own 
dimensioning technique prove that the nanosatellite constellation conceptual design problem 
can be properly modeled mathematically. This type of design problem involves the selection 
of a large number of design variables and parameters in order to minimize or maximize an 
objective(s) under a set of constraints. 

The main goal of this thesis is two-fold: proposing innovative nanosatellite 
constellation models and new routing approaches for nanosatellite network 
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telecommunications. To achieve this overall objective, the following research approach was 
considered. 

Firstly, an introduction into small satellite field is made, by defining concepts such as 
nanosatellite, formation flying, cluster, and constellation. Also, the challenges of nanosatellite 
systems were identified along with some complementary aspects of large and small satellites. 
Then, the small satellite challenges were identified and routing approaches for nanosatellite 
networks were suggested, based on a study of routing in conventional satellite network, Ad 
hoc network, and sensor networks. We focus on sensor networks because they share common 
features such as: small, low-power, and low-cost devices with limited computational and 
communication capabilities. We have also turned our attention to Ad hoc network domain to 
find routing approaches that can be used in nanosatellites networks. Thus, we identified 
common challenges for both Ad hoc and nanosatellite networks. Lastly, our survey on 
routing in satellite network showed that XSTP (eXtended Satellite Transport Protocol) might 
be a candidate transport protocol targeted for nanosatellite constellations. 

Secondly, the telecommunication framework of nanosatellite networks is presented 
and discussed along with QoS challenges. The evolution of multimedia technology and the 
commercial interest of future small satellite operators to reach widely public applications will 
make QoS in nanosatellite networks an area of great interest. For this reason, several 
approaches for provisioning QoS in nanosatellite networks were proposed. 

Nowadays, there is a considerable interest in LEO nanosatellite constellations capable 
of providing a large range of applications such as: environment and disaster monitoring (e.g., 
floods, fires, landslides, oil spill), Earth topographic mapping as well as communications and 
astronomy. Therefore, three nanosatellite constellation models were proposed for providing 
telecommunications services to remote regions. 

NanoDREAM model is designed for Bolivia’s Salar de Uyuni Desert, a region which 
detains 70% of the global lithium reserve. Bolivia’s lithium exploitation mission has received 
significant attention considering the new energy policies and the low-carbon technology's 
applications. NanoICE model is intended for Polar Regions, in order to meet the voice and 
data transfer needs of the entire Antarctic and Arctic scientific community. NanoSPHERE is 
aimed to provide global coverage in the context of a robust telecommunications market. 

To ensure that the mission requirements for nanosatellite constellations are met with 
the least amount of resources, optimal configurations must be determined. Thus, numerical 
techniques and simulations are employed to determine the best nanosatellite constellation 
which responds to two objectives: minimizing the number of nanosatellite within the 
constellation and maximizing the coverage area, given the minimal resources that are 
available. To ensure a cohesive constellation, we also consider constraints on the orbits as 
well as some simplifying assumptions. 

These models were developed analytically and then implemented in SaVi modeler in 
order to evaluate nanosatellite constellations in terms of coverage. 

Additionally, a ground segment architecture deployed over the exploitation area of 
Salar de Uyuni Desert was proposed. This ground segment network is a wireless mesh 
network that allows an easily, effectively and wirelessly connection of all the buildings using 
inexpensive technology. Our choice for this technology is based on the capabilities of 
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wireless mesh networks that are consistent with our mission proposal. OPNET modeler was 
used to perform simulations on this ground wireless-based network. 

Finally, XSTP transport protocol, identified as a possible candidate for nanosatellite 
networks, was implemented in NS2 simulator and simulations studies were conducted, by 
considering one-way communication scenario and bidirectional communication scenario. The 
performance of XSTP over traditional satellite network and nanosatellite constellation was 
evaluated using four QoS metrics: effective throughput, transmission overhead, channel 
efficiency and reverse channel utilization. A special emphasis is placed on the comparison 
between satellite network and nanosatellite network in terms of XSTP performance. 

In conclusion, this research has advanced the field of nanosatellite constellations by 
proposing new nanosatellite constellation models and innovative scientific missions, 
implementing nanosatellite network models and ground segment architecture in various 
modelers (i.e., NS2, SaVi, OPNET) and creating software implementations of STP and XSTP 
transport protocols to evaluate their performance over traditional satellite network and 
nanosatellite constellations respectively. 

 

1.2 Thesis outline 

 

This research work is divided into five chapters that are briefly presented below. 
Chapter 1 presents thesis framework, along with the research goals and an outline of 

this document. 
Chapter 2 presents a comprehensive literature review on small satellite domain. 

Firstly, the challenges of small satellites are examined and complementary aspects of large 
and small satellites are discussed. Secondly, the potential applications of small satellites are 
described and new concepts (i.e., formation flying, constellation, cluster) are explained. Then, 
important ongoing and future research directions for small satellites routing are highlighted 
based on a study concerning routing mechanisms and topologies in sensor networks, Ad hoc 
networks and conventional satellite networks. Also, two transport protocols (Satellite 
Transport Protocol and its extended version, XSTP), that are the main focus of our simulation 
studies, are briefly presented. 

Chapter 3 describes three nanosatellite constellation models (i.e., NanoDREAM, 
NanoICE, and NanoSPHERE) designed to provide telecommunications services to remote 
regions. For every model, a dedicated mission was proposed. The formal mathematical 
problem definition is described along with coverage parameters and the performance 
indicators used to assess the performance of each type of constellation. We propose a ground 
segment architecture, based on wireless technology, in order to provide communication 
services to the lithium exploitation area. Also, we propose two innovative methods: the first 
one is a methodology for estimating the number of nanosatellite in the constellation, while 
the second one is a Markov-based method for estimating the performance of nanosatellite 
constellations.  

Chapter 4 describes and discusses the results of simulations. Firstly, the three models 
of constellations proposed in Chapter 3 were evaluated with respect to coverage criterion, 
using SaVi simulator. Numerical calculations are employed to evaluate the performance of 
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nanosatellite constellations with respect to the following parameters: number of 
nanosatellites, maximum time in view, coverage parameters (i.e., antenna footprint, coverage 
rate, access area, access rate), propagation delay and the amount of data transmitted on each 
nanosatellite pass over a ground station. This analysis allows determining the optimal 
nanosatellite constellation which responds to the mission objectives. Also, the Markov 
modeling-based method described in the previous chapter is applied to NanoDREAM 
constellation. 

Secondly, we assessed the XSTP transport protocol performance over conventional 
satellite network and nanosatellite network, by using analysis and simulations in NS2 
modeler. There are also presented the simulation environment, the QoS performance metrics 
and the scenarios envisaged for NS2 simulations. An interesting comparison study of satellite 
network and nanosatellite network in terms of XSTP performance concludes this chapter. 

Chapter 5 shows a summary of this work, its main conclusions and contributions, and 
indicates potential areas for further study. 
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Chapitre 2. ETAT DE L’ART SUR LE DOMAINE DE PETITS 

SATELLITES 
 
 
Ce chapitre présente une vue d'ensemble sur le domaine des petits satellites. La 

première partie de ce chapitre introduit des concepts comme les nano-satellite, le vol en 
formation, la constellation, le cluster, et présente aussi leur avantages et leur inconvénients 
par rapport aux satellites classiques ainsi que leur domaines d’application. Ensuite, les 
avantages et les inconvénients des formations de petits satellites sont soulignés. Les défis de 
petits satellites sont également présentés. 

Le terme nano-satellite est utilisé pour dénommer un satellite avec une masse 
comprise entre 1 et 10 kg. 

Les principaux avantages de petits satellites par rapport aux satellites conventionnels 
sont : 

� la conception plus simple ;  
�  la construction plus rapide ; 
�  le coût réduit de fabrication et de lancement ; 
�  la facilité de fabrication en série ; 
� des opportunités de lancement plus fréquentes ; 
�  la capacité d’être lancé en groupes ("piggyback" ou charge utile secondaire) avec 

de plus grands satellites ; 
�  la perte financière minimale en cas d'échec.  
Parmi les inconvénients de petits satellites par rapport aux satellites traditionnels, 

nous pouvons citer : 
� la durée de vie plus courte ; 
� la capacité d’équipement réduite ; 
� l’impossibilité d’avoir des équipements puissants ; 
� la décroissance orbitale plus rapide. 
Les principaux domaines d’applications de petits satellites sont : les 

télécommunications, l’observation de la Terre, la recherche scientifique, les démonstrations 
de technologie, le domaine militaire et la formation dans le domaine universitaire. 

Le concept de vol en formation est défini comme une formation de deux ou plusieurs 
satellites qui utilisent un mécanisme de contrôle actif pour maintenir leurs positions relatives 
et leurs vitesses. 

Plutôt qu'utiliser un seul satellite grand et coûteux d'effectuer une certaine mission, de 
nombreux petits satellites, peu coûteux, peuvent être mis dans une constellation, de manière 
plus efficace, pour accomplir les mêmes objectifs qu’un satellite conventionnel. Par contre, 
remplacer un satellite traditionnel avec un groupe de petits satellites placés en formation 
pourrait être bénéfique pour certaines missions, mais pas rentable pour d’autres. 

Il y a trois classes de vol en formation : Leader-Follower, cluster et constellation. La 
première classe est constituée d’un groupe de deux ou plusieurs satellites placés sur la même 
orbite, ayant des niveaux hiérarchiques et d’autonomie, en maintenant une distance fixe entre 
eux afin d’attendre des multiples capacités d’observation d’une cible. Le cluster est une 
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formation de plusieurs satellites qui fonctionnent de manière interdépendante et en 
coopération pour accomplir une mission spatiale complexe. Le concept de constellation 
désigne un groupe de satellites similaires, assurant une couverture coordonnée de la Terre, 
fonctionnant ensemble sous contrôle partagé, synchronisés pour qu'ils se chevauchent bien 
dans la zone de couverture et n’aient pas interféré avec la couverture d'autres satellites. 

Les principaux avantages de vol en formation sont : 
� reconfiguration sur orbite qui offre la capacité d’accomplir des missions multiples 

et une flexibilité de conception ;  
� temps de conception et développement réduits en raison de la fabrication en série ; 
� plus bas coût de fabrication pour la même raison ;  
� taille et complexité de satellites réduites ;  
� redondance plus haute dans la formation et une tolérance aux pannes améliorée ;  
� amélioration des missions grâce à la capacité de voir des cibles sous angles 

multiples ou à des instants multiples ;  
� masse individuelle et volume réduisent le coût de lancement et offrent une 

flexibilité de lancement accrue ;  
� perte financière minimale en cas d'échec ;  
� avantages spécifiques : 

• possibilité de créer des synthèses d’ouvertures pour les missions à 
interféromètres ; 

• augmentation de la portée des mesures pour les missions de surveillance.  
Bien sûr que les formations de petits satellites ont aussi des inconvénients comme : 
• chaque satellite exige ses propres sous-systèmes ;  

• l'initialisation et la maintenance de l'emplacement relatif de chaque satellite dans 
la formation (particulièrement, si les satellites sont lancés séparément) ;  

• des conditions sévères pour l'alignement de satellites (par exemple, pour une 
mission interférométrique, un mauvais alignement des détecteurs des télescopes 
peut introduire des erreurs de mesure, s'ils sont montés sur des satellites 
différentes) ;  

• le coût de développement d’une formations de petits satellites peut être égal au 
coût d’un grande satellite si les petits satellites doivent réaliser des missions 
scientifiques très exigeantes ;  

• complexité accrue des opérations pour les stations au sol ;  
• grande quantité de débris à la fin de la durée de vie de la formation.  
  
Les constellations de nano-satellites ont un double défi. Le nano-satellite a des 

ressources très limitées en termes de puissance de calcul, mémoire, énergie, capacité de 
communications. En même temps, le concept de constellation exige le traitement 
simultanément d’un grand nombre de petits satellites et la transmission de données aux 
utilisateurs dans un format compréhensible. 

Un problème-clé dans le domaine de petits satellites est la gestion des risques. 
Puisqu'aucun système complexe ne peut être conçu et évalué contre tous les modes de 
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défaillance, la première expérience de vol est souvent la meilleure et la seule façon de tester 
des différents technologies et les validées pour des missions spatiales plus complexes. 

Le plus important défi, à long terme, pour la communauté de petits satellites est de 
développer un marché commercial robuste capable de fournir des services et des petits 
satellites fiables à bas coût. 

Actuellement, nous ne pouvons pas parler de l'existence d'un marché commercial 
solide pour de petits satellites. Les organismes publics et les agences spatiales continuent à 
être le support financier principal de la communauté de petits satellites. Cette communauté 
est toujours liée avec l'éducation et aux activités de recherche. A notre avis, cette situation 
restera en place jusqu'à l’apparition sur le marche de satellites d’un grande nombre des 
entreprises qui investissent dans le domaine de petits satellites afin de pouvoir produire des 
petits satellites à l’échelle industrielle. Le premier pas a été déjà fait par deux entreprises : 
SSTL et RapidEye. Dans l'avenir, nous pourrions nous attendre à l’apparition de beaucoup de 
vendeurs commerciaux de petits satellites. 

La deuxième partie de ce chapitre introductif présente les résultats d’une analyse de 
lancement de nano-satellites dans la période 2004 - mi 2007. Sachant que le domaine des 
petits satellites s'est imposé comme un domaine particulier dans les deux dernières décennies, 
nous avons mené une étude sur le lancement de nano-satellites dans la période 2004 – mi 
2007 afin d’identifier la tendance future dans ce domaine. Le manque d'information et les 
sources dispersées de documentation quant aux systèmes nano-satellitaires a imposé un défi 
significatif à notre étude. Notre analyse montre que dans la période 2004 – mi 2007, 55 nano-
satellites ont été lancés. L’année 2006 est le leader en termes de lancements de nano-
satellites, avec presque 50% du nombre total de lancements. Aussi, en 2006 a eu lieu le 
premier événement impliquant 16 nano-satellites lancés simultanément. Ce lancement montre 
que les futures constellations de nano-satellites peuvent être rapidement déployées pour 
assurer des services immédiats. La plupart des charges utiles ont été conçues pour conduire 
des missions technologiques (67%); cela signifie que les nano-satellites sont utilisés 
principalement comme des démonstrateurs technologiques, pour évaluer les équipements 
différents qui peuvent être utilisés pour des missions spatiales plus complexes. Ainsi, la perte 
financière en cas d'échec est réduite au minimum. Presque 75% de nano-satellites ont été 
conçus par des étudiants dans des laboratoires de recherche universitaires. Dans le monde 
entier, des programmes de petits satellites permettent de monter l'intérêt pour le domaine 
spatial parmi les étudiants et offrir à chaque étudiant une occasion unique de participer à un 
projet spatial concret incluant des réalisations expérimentales. 

Pour conclure, dans les années suivantes, les nano-satellites accéléreront l'exploration 
spatiale pour des besoins tant civils que militaires. Donc, les scientifiques seront capables 
d'obtenir des vols plus fréquents pour leurs expériences et à plus bas coût. 

La dernière partie de ce chapitre introductif présente le cadre de télécommunications 
pour les réseaux de nano-satellites, en expliquant les raisons pour lesquelles nous nous 
sommes concentrés sur l’aspect de télécommunications dans les réseaux de nano-satellites. 
Les défis en termes de QdS de réseaux de nano-satellites sont également présentés. 

De plus, des nouvelles approches de routage dans les réseaux de nano-satellites ont 
été proposées, en se basant sur une étude que nous avons faite sur le routage dans les réseaux 
de capteurs, les réseaux Ad hoc et les réseaux de satellites traditionnels. Ainsi, le protocole de 
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transport XSTP (eXtended Satellite Transport Protocol) a été identifié comme un candidat 
possible pour les réseaux nano-satellitaires. 

Comme mentionné dans le premier chapitre, nous considérons que cette thèse est une 
fusion de deux domaines : le premier est le domaine des télécommunications, en traitant la 
problématique de routage dans les réseaux nano-satellitaires et l'évaluation des performances 
de protocoles de transport conçus pour ce type de réseau. Le deuxième est le domaine de la 
conception de constellations, en proposant et analysant des modèles de constellations de 
nano-satellites. 

La source de notre intérêt pour le routage dans les réseaux de nano-satellites se trouve 
dans quelques questions que nous avons posées : 

� Quels sont les défis du routage dans les réseaux nano-satellitaires ? 
� Est-ce que les protocoles des réseaux de satellites classiques peuvent être utilisés 

avec succès dans les réseaux de nano-satellites ou une approche différente est-elle 
nécessaire ? 

� Quels types de topologies sont les plus appropriées pour les réseaux de nano-
satellites ? 

� Peuvent d'autres types de réseaux (e.g., les réseaux de capteurs, les réseaux Ad hoc, 
les réseaux de satellites conventionnels) nous fournir de nouvelles idées pour la 
communication dans les réseaux de nano-satellites ? 

� Avons-nous besoin d'outils de simulation dédiés pour évaluer les performances des 
réseaux de nano-satellites en termes de communications ? Les simulateurs de réseaux 
actuels peuvent-ils être adaptés pour supporter ce nouveau type de réseau ? 

� Quels types de protocoles assureront une communication fiable dans les réseaux de 
nano-satellites ? 

�  Existe-t-il des protocoles développés pour les réseaux de  nano-satellites ? 
�  Existe-t-il des protocoles testés sur les nano-satellites déjà présents en orbite ? 
�  Comment pouvons-nous mettre en œuvre des stratégies de QdS dans les réseaux 

nano-satellitaires pour fournir des services de télécommunication efficaces ? Les 
stratégies actuelles de QdS sont-elles adéquates aux nano-satellites ou de nouveaux 
mécanismes de QdS doivent-ils être développés ? 
 
Répondre à toutes ces questions implique un travail considérable et complexe en 

termes d'études et des simulations. Certains de ces sujets peuvent être un projet complet tout 
seul. En considérant cette complexité, cette thèse se propose de répondre a une partie de ces 
questions, le reste étant traité comme des perspectives pour le travail futur. 

La Qualité de Service (QdS) dans les réseaux de nano-satellites sera un grand défi 
pour la communauté scientifique, en considérant l'évolution de la technologie multimédia et 
l'intérêt commercial des futurs opérateurs nano-satellitaires pour fournir des services de 
télécommunications de haute qualité au grand publique. 

De plus, il devrait être souligné qu’à la meilleure connaissance des auteurs, il n'y a eu 
aucune recherche précédente examinant l'aspect QoS de réseaux nano-satellitaires. C'est une 
raison de plus pour prendre l'initiative et nous avons proposé dans ce chapitre plusieurs 
approches pour intégrer l’aspect QoS dans les réseaux de nano-satellites. 
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Dans un premier temps, nous avons étudié les réseaux de capteurs et nous avons fait 
une comparaison entre les capteurs et les nano-satellites. Ainsi, nous avons observé que les 
réseaux de capteurs et les réseaux de nano-satellites ont des caractéristiques communes 
comme :  

• des dispositifs très petits, à faible consommation d’énergie, avec des capacités de 
communication limitées et des ressources très restreintes; 

• fréquent changement de topologie du réseau à cause de la mobilité de nœuds ; 
• des problèmes de sociabilité à cause du grand nombre de nœuds. 
Plusieurs approches de routage ont été proposées en s’inspirant du routage dans les 

réseaux de capteurs. 
Nous avons aussi concentré notre attention sur le domaine des réseaux Ad hoc pour 

trouver des approches de routage qui peuvent être utilisées ou adaptées aux réseaux de nano-
satellites. Nous avons identifié que les deux types de réseaux partagent des défis communs 
comme : 

• des problèmes d'adaptabilité en raison du grand nombre de nœuds; 
• la topologie dynamique; 
• des liaisons de réseau variables en temps; 
• des ressources sévèrement limitées en termes de puissance de calcul, mémoire, 

énergie, capacité de stockage; 
• la bande passante variable; 
• maintenance de la topologie : mise à jour d'information de liaisons dynamiques 

parmi les nœuds mobiles. 
En étudiant les trois types de routage Ad hoc (i.e, le routage actif, le routage réactif et 

le routage hybride), nous avons identifié que le routage réactif est recommandé pour les 
réseaux de nano-satellites avec des ressources restrictives. 

Finalement, le routage dans les réseaux de satellites classiques a été investigué pour 
trouver des nouvelles approches de routage pour les réseaux de nano-satellites. Ainsi, le 
protocole XSTP a été identifié comme possible candidat pour les réseaux de petits satellites ; 
sachant qu’il est spécifiquement optimisé pour des liaisons satellitaires asymétriques, 
caractérisées par des haut taux d’erreurs et des RTT (Round Trip Time) variables. De 
nombreux types de conditions d'erreurs existent et varient dans leur nature. L’incapacité de 
différencier entre ces conditions d’erreurs pour réagir efficacement, est l'un des problèmes 
classiques des protocoles de transport standard. En conséquence, les protocoles de transports 
actuels imposent l’hypothèse que la congestion du réseau est la seule cause de toutes les 
erreurs. Dans les réseaux de satellites, il y a d’autres types d’erreurs, y compris la corruption 
bits, le transfert et la connectivité limitée. Ces erreurs sont interprétées et liés directement à la 
congestion par les protocoles de transport. L’application du contrôle de congestion sur ces 
erreurs implique la dégradation inutile du débit.  

Le protocole XSTP utilise une nouvelle stratégie pour résoudre ce problème. Ainsi, 
grâce à son mécanisme de probing, le protocole XSTP permet de s’adapter aux différents 
types d’erreurs trouvées dans les réseaux de satellites à orbite base. L’objectif principal du 
mécanisme XSTP-probing est d'adapter le taux de transmission de l'émetteur aux différentes 
conditions d'erreur dans le réseau. En général, lors d’une détection d’une perte, le mécanisme 
suspend la nouvelle transmission de données et lance un cycle de probing pour rassembler 
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des statistiques de RTT sur la connexion. Le mécanisme compare ces statistiques de RTT à 
l’estimation RTT disponible lorsque la perte a été découverte. Après la finalisation du 
“probing cycle” et si la congestion est détectée par la comparaison des RTTs, un contrôle de 
congestion est immédiatement appelé. Sinon, les niveaux de transmission sont restaurés sans 
faire aucune action. Enfin, les segments sont immédiatement rapportés disparus et retransmis. 
  



36 

 

2 STATE OF THE ART OF SMALL SATELLITES DOMAIN 
 

2.1 Introduction 

 

Chapter 2 presents an overview of small satellite domain. The first part of this chapter 
introduces the concept of nanosatellite, discusses small satellite challenges and shows some 
complementary aspects of large and small satellites. Then, the advantages and disadvantages 
of small satellites over conventional satellites are underlined. We also reviewed the literature 
to determine nanosatellite applications that need more attention. The launching opportunities 
for small satellites are discussed in Chapter 2.2.6. The general architecture of a nanosatellite 
is described in Chapter 2.2.7, along with a brief explanation of each sub-system. 

The second part of this chapter describes the formation flying concept. We identified 
three types of formation (i.e., Leader-Follower, Cluster and Constellation). Theirs features are 
described along with some relevant examples. Since nanosatellite constellations is the main 
focus of this research, we found important to point out the main advantages and 
disadvantages of formation flying. Thus, we show the huge potential of future nanosatellite 
constellations. 

Considering that small satellite domain has imposed itself as a particular field in the 
last two decades, we found important to make an analysis of nanosatellite launches in the 
period 2004-mid 2007 in order to identify the trend in nanosatellite launching. This survey 
allows us to see if a small satellite market takes shape in the near future. 

The last part of this chapter presents the telecommunications framework of 
nanosatellite networks. The design of efficient communication mechanisms for nanosatellite 
networks is a challenging task, considering all the limited resources of nanosatellites. For 
these reason, we have investigated other types of networks (i.e, sensor networks, Ad hoc 
networks, satellite networks) in search of new ideas that might be used or adapted for 
nanosatellite networks. The new routing approaches resulted from this survey are described. 
Moreover, QoS is a full featured technology that can control or reduce costs and improve 
nanosatellite network performance. It should be stressed out that to the best knowledge of the 
authors, there has been no previous research work investigating the QoS aspect of 
nanosatellite networks. Therefore, we proposed several approaches for QoS provisioning in 
nanosatellite networks. 

Finally, the XSTP (eXtended Satellite Transport Protocol), identified as candidate for 
nanosatellite networks, along with its basic version (i.e., STP - Satellite Transport Protocol) 
are briefly presented. 
 

2.2 Nanosatellite survey 

2.2.1 Introduction 

 
The term "nanosatellite" or "nanosat" is usually applied to the name of an artificial 

satellite with a mass between 1 and 10 kg. Compact and lightweight, the nanosatellites have a 
great potential – they are easier and less expensive to launch into orbit than traditional 
satellites. 
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The small satellite technology has opened a new era of satellite engineering that 
minimizes costs by risk management. 

Table 2.1 presents a classification of satellites, with specifications of mass, cost and 
time of development. 

Category Mass (kg) Cost Time (years) 

Large ≥ 1000 ≥ $500M ≥ 15 

Small 500 - 1000 $100M 5 

Mini 100 - 500 $20M 2-3 

Micro 10 - 100 $10M 1.5 

Nano 1 - 10 $350K – 1M ≈ 1 

Pico 0.1 - 1 ≥ $100K ≥ 1 

Femto < 0.1 - - 

Table 2.1 – Satellite classification 
 
Nowadays, many universities laboratories over the world have developed 

nanosatellites programs in order to design and build low-cost nanosatellites for education and 
research experiments. Appendix 1 [12] presents a list of various nanosatellites programs 
developed worldwide. Also, paper [13] provides the results of a global survey of publicly 
known pico- and nanosatellite projects. 

During the documentation phase of this research work, we have studied several 
microsatellite projects [14], [15], nanosatellite projects, as shown by papers [16], [17], [18], 
[19], [20], [21], [22], picosatellite projects [23], [24], [25], [26], all developed by various 
universities worldwide. 

In Europe, Surrey Satellite Technology Ltd (SSTL), a spin-off company of the 
University of Surrey, now fully owned by EADS Astrium, is an important actor in the small 
satellites domain. Its small satellite program is described in papers [27], [28], [29]. Also, the 
researchers have gone even further in the process of satellite miniaturization by developing 
femtosatellites [30] that are satellite with a mass of 100 g. 

Moreover, the Technical University of Denmark developed its own small satellite 
program, described in papers [31], [32], [33]. 

The French Space Agency (CNES) has launched three projects in the nanosatellite 
domain: PERSEUS, EXPRESSO and RISTRETTO.  

EXPRESSO (EXpérimentations et PRojets Etudiants dans le domaine des SystèmeS 
Orbitaux et ballons stratosphériques) project [34], [35], led by Toulouse Space Center, is a 
request for ideas in the field of orbital systems and balloons. 

This project has two major goals: 
� to rise the interest for aerospace among students and to offer each student a unique 

opportunity to take part in a concrete project including experimental creations. 
� to allow students to participate in the evolution of the technological knowledge of 

the CNES. 
PERSEUS (Projet Étudiant de Recherche Spatiale Européen Universitaire et 

Scientifique) project [36], [37], [38], [39] has three major objectives: 
� to develop a very small launch vehicle for nanosatellite launches; 
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� to serve as an educational tool; 
� to act as a research and innovation program. 
RISTRETTO (Réseau International de Satellites de SysTèmes oRbitaux ETudiants 

basés sur une Technique de développement en Open source), launched in 2009, is part of a 
CNES initiative to assist the emergence and development of small satellites in universities. 
The RISTRETTO concept is based on the development of a generic platform for the study of 
satellites in the range (30kg, 30W, 30L). This platform shall be developed within the context 
of international cooperation between universities with support offered by interested 
organizations (agencies, industrial companies, laboratories, etc.). Another feature of this 
concept is to make the platform available as an open source (technical documents, 
development drawings, databases, software, etc.) following the example of open source 
software. 

According to IAA study [40], small satellite missions are supported by four 
contemporary trends: 

� Advances in electronic miniaturization and associated performance capability; 
� The recent appearance on the market of new small launchers (e.g. using modified 

military missiles to launch small satellites); 
� The possibility of ‘independence’ in space (small satellites can provide an 

affordable way for many countries to achieve Earth Observation and/or defense 
capability, without relying on inputs from the major space-faring nations); 

� Ongoing reduction in mission complexity as well as in those costs associated with 
management. 

As a general conclusion, small satellites, through exploiting advanced technology 
provide an attractive solution in terms of serving the needs of developing countries. 

2.2.2 Small satellite challenges 

 
For information systems, nanosatellite constellations are a double-barreled challenge. 

The nanosatellite constrains the on-board resources for on-board processing and 
communications to the ground, but the constellations also require that the information 
systems simultaneously handle a large number of spacecraft and provide information to the 
users in an understandable format. 

The small mass (1-10 kg) of nanosatellites limits the amount of energy provided by 
solar arrays as well; therefore, power availability is a constraint on both the spacecraft 
processor and the communications systems. 

RF systems of nanosatellites typically radiate only about 0.5 watts of power. In 
addition to this, nanosatellites mostly use omni-directional antennas without gain because no 
tracking is needed for these antennas. 

Depending on the orbit used, the nanosatellite may be out of contact with the ground 
for over a week. The limited communications opportunities and limited bandwidth impose 
constraints on data handling, fault detection and correction and instrument commanding in 
general. Because of this, the nanosatellite needs to operate autonomously and handle any 
anomalies or opportunities that occur. This autonomy must be accomplished within a 
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processing capability that is less powerful than on a bigger satellite. Because of the limited 
resources, use of redundant systems is not possible. 

The most important long-term challenge for small satellite community is to develop a 
robust commercial market capable of providing low-cost, effective services. 

For certain countries, small satellites are a mean to enhance the industrial domain and 
to provide to students a first experience by participating to all the phases of design and 
conception of a space project.  The latter represents only a finite market.  

For developing a robust market for small satellites, the manufacturers must remain 
relevant and cost-effective. A new trend has been observed for many space companies - the 
era of diminishing returns. For example, if we can reach space imaging with a spatial 
resolution of 1 meter, do we gain anything, in term of market, by using a resolution of 10 cm? 
In consequence, more companies will try to offer the same imagining product. This implies 
that more vendors might aspire to provide the same imagery product. Considering that the 
key driver is revisit time, the future small satellite market could support more suppliers of 
imagery products. 

IAA Committee acknowledges in paper [40] that the vertical integration of the 
industry, to provide instruments, data and integrated data products, is likely to spur 
significant growth. 

Nowadays, we cannot speak of the existence of a solid commercial market for small 
satellites. The government continues to be the main financial support of the small satellite 
community. This community is still linked to education and research activities – activities 
that rely on government support. This situation will remain in force until some economies of 
scale can be achieved. Two notable examples of commercial ventures are SSTL and 
RapidEye. In the future, we could expect many small satellite commercial vendors to come to 
live. 

A key issue in small satellite domain is managing risk. Since no complex system can 
be designed and tested against all failure modes, the first fly experience is often the best and 
only way to make trades.  

Large organizations, such as space agencies, impose a high level of restrictions on 
space systems. For example, NASA uses the notion of Technology Readiness Level or TRL 
of a system. A system has a significant flight experience if it has higher TRLs. Considering 
this, small satellites can be effective platforms to raise the TRL of various sub-systems that 
can be used in a latter design for more complex space missions. As mentioned in paper [15], 
IAA Committee considers that the main challenge faced by the small satellite community is 
to gain a broader acceptance of the notion that TRLs can be raised as an integral part of a 
mission rather than by implementing a dedicated mission. 

Making small satellites more cost-effective demands new technologies that must be 
certified for spaceflight. Certainly, there is a higher risk associated with uncertified 
technology. A small satellite mission is the best way to perform a first flight verification. 
Thus, many university small satellite programs are real examples because from an 
educational point of view, even a failure to operate on orbit, or to achieve the orbit, can still 
be a successful demonstration. 
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2.2.3  Advantages and disadvantages of small satellites over conventional 

satellites 

 

The main advantages of small satellite missions are: 
� more frequent mission opportunities that implies faster return of science and 

for application data; 
� larger variety of missions and therefore a greater diversification of potential 

users; 
� more rapid expansion of the technical and/or scientific knowledge base; 
� greater involvement of local and small industry. 

Miniaturized satellites have several advantages over conventional satellites, such as:  
� Lower cost of manufacture; 
� Easiness of mass production; 
� Lower cost of launch; 
� Ability to be launched in groups or "piggyback" along with larger satellites; 
� Ideal test bed for new technologies; 
� Minimal financial loss in case of failure; 
� Faster building times. 

Among the small satellites disadvantages over conventional satellites are:  
• Generally shorter working life; 

• Reduced hardware-carrying capacity; 

• Lower transmitter output power capability; 
• More rapid orbital decay. 

2.2.4 Complementary aspects of large and small satellites 

 
The new technologies such as, formation flying algorithms, constellation self-

reconfiguration, accurate precision algorithms, developed for small satellites are often later 
used on major missions, involving large spacecrafts (e.g., space telescope missions: ESA’s 
Darwin, NASA’s Constellation-X).  

Some applications can be better solved by using distributed systems (e.g. employing 
constellations of micro-satellites or nanosatellites optimally configured to achieve global 
cover). Yet, other space mission need centralized systems (e.g., employing large optical 
instruments, using high power, direct broadcast, communications systems etc.). 

On the other hand, for particular missions with stringent requirements, the cost of 
developing a small satellite constellation could be equal or even greater than a large satellite. 

Through the eyes of NASA philosophy “faster, better, cheaper”, we tend to think that 
small satellites is the “graal” for reducing space mission cost. Generally, space missions are 
design so as to obtain the lowest cost design consistent with the mission requirements and 
constraints. Nearly all missions to date have been “cost effective.” Certainly, not all missions 
have been low-cost and nowadays, many organizations over the world demand reduction of 
mission cost. 

 The questions that rise here are: 
Can we get the same product, with the same performance for less money? 
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Can we achieve reliability throughout simple designing? 
Can we meet the mission objectives with a low-cost, small satellite with respect to a 

traditional mission? 
Can a small satellites constellation accomplish more complex mission than a 

conventional satellite? 
It is a known fact that, by dramatically reducing mission cost, the resulting system 

will be fundamentally different in at least some features. 
In the literature, there are many methods for reducing the cost of space missions. It is 

important to note that there is no single, broad method for reducing mission cost. Even 
though many techniques may be effective, they are not all equally applicable to different 
programs. Each low-cost program need to find a set of solutions to fill its particular 
requirements. Table 2.2 summarizes cost reduction methods which are selectively used by the 
builders of low-cost missions. 

In addition, the main aim of most space agencies, in long term, is to reduce the cost of 
space missions without reducing the performance. 

Considering all these aspects, we cannot state that, in the future, small satellites will 
replace large satellites. Certainly, every type of satellite (i.e., large or small), has its own 
advantages and limitations. Therefore, the choice between small satellites and large satellites 
will depend in large measure on the goals and objectives of the mission, its requirements and 
design. For the purpose of this study, we consider large satellite missions and small satellite 
missions being complementary rather than competitive. 
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Method Mechanism Comments 

Programmatic 

Schedule Compression 

Reduces overhead of standing army; 
forcing program to move rapidly does 
drive down cost 

- it often results in a poor design due to 
lack of up-front mission engineering; 
- it must reduce work required to be 
consistent with schedule 

Reduce Cost of Failure 

Allows both ambitious goals and 
calculated risk in order to make major 
progress 

- fear of failure feeds cost-growth spiral; 
- major breakthroughs require accepting 
the possibility of failure, particularly in 
test 

Continuous, Stable 

Funding 

Maintains program continuity and 
maintains team together 

Program delay will be funding break + 2 
– 4 months 

Minimize Documentation 
Reduces programmatic overhead for 
creating, reviewing and maintaining 

Critical to document reasons for key 
decisions and as-built design 

Personnel 

Improved Interpersonal 

Communications 

Dramatically reduces errors and 
omissions; it conveys understanding as 
well as data. 

Large programs use formal, structured 
communications through specified 
channels 

Small Team 

Clear, nearly instantaneous 
communications; high morale; strong 
sense of personal responsibility 

Could be a problem if a key person drops 
out – but in practice it rarely happens. 

Co-located Team Improves communications 
Best communications are face-to-face, but 
AMSAT and others don’t seem to need it 

Empowered Project Team 

Rapid decision making; strong sense of 
personal responsibility; can make 
“sensible” decisions 

Eliminates a major function of the 
management structure 

Systems Engineering 

Trading on Requirements 
Eliminates non-critical requirements; it 
allows the use of low-cost technology 

Makes traditional competition difficult 

Concurrent Engineering 
Allows schedule compression; reduces 
mistakes; increases design feedback 

High non-recurring cost relative to lowest 
cost programs 

Design-to-Cost 
Adjusts requirements and approach until 
cost goal has been achieved 

Spacecraft has rarely used it 

Large Margins 

Reduces testing; better flexibility; 
reduces cost of engineering, 
manufacturing and operations 

Margins traditionally kept small for best 
performance – it drives up development 
cost 

Technology 

Use COTS Software Immediate availability; very low cost 
May need modification and thorough 
testing; typically not optimal 

Use COTS Hardware Same as software Same as software 

Use Existing Spares 
Reduced cost; rapid availability; meant 
for space 

Only works so long as spares exist – not 
applicable for operational programs 

Use of Non-Space 

Equipment 

Takes advantage of existing designs and 
potential for mass production 

Typically not optimal; it must be space 
qualified 

Autonomy Reduces operations costs Can increase non-recurring cost 

Standardized Components 

and Interfaces 

Reduces cost and risk by reusing 
hardware; standardization is a major 
requirement for other types of 
manufacturing 

Has been remarkably unsuccessful in 
space; sub-optimal in terms of weight and 
power 

Extensive Use of 

Microprocessors 

Minimizes weight; provides high 
capability in a small package; allows on-
orbit reprogramming 

Problem of single-event upsets; high cost 
of flight software; very difficult to 
manage software development 

Common S/W for Test and 

Ops 

Reduces both cost and schedule; avoids 
reinventing the wheel 

May be less efficient, user-friendly than 
ops group would prefer 

Table 2.2 – Cost reduction methods overview [40] 
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2.2.5 Small satellite applications  

 
This chapter presents some small satellite applications drawn from UN Documents. 

Our comments are based on IAA study “Cost Effective Earth Observation Missions” [40]. 
 
a) Telecommunications 

Telecommunications activity potentially involves many applications. Remote and 
mobile communications (including messaging, electronic mail and localization) could be 
established using small satellites in LEO orbit. This solution can be attractive to users in 
remote areas/regions lacking communications infrastructure. 

In the last two decades, various constellations of small satellites in LEO have been 
proposed to provide worldwide communications using only hand-held portable terminals for 
real-time voice/data services (e.g. Iridium, Globalstar) and non-real-time data transfer (e.g. 
Orbcom, VITASat, GEMStar, E-SAT). 

Telemedicine is an application that allows the transmission of information obtained 
by cheap, simple sensors sited in remote areas to complex processing units in large medical 
centers - where these data can be interpreted by specialists. 

An example is provided by the HEALTHNET project which employs a 60 kg micro-
satellite (HealthSat) flown in LEO to relay medical data recorded in a number of African 
countries to North America.  

Also, Colombian Space Agency works on the implementation of a telemedicine pilot 
project for transmission and reception of ECG signals. The main objective of this project is to 
evaluate the performance of a tele-cardiology system on Internet. The principal interest is to 
bring medical services to isolated communities through small satellite networks 

Mobile satellite communications can play an important role in large natural disasters, 
by providing rescue teams with important logistical support. An example is Disaster 
Monitoring Constellation, a network of seven small satellites, which provides emergency 
Earth imaging for disaster situations. 

 
b) Earth Observations 

Earth Observation applications cover activities related to data collection and to 
imagery. Remote sensing using low-cost small satellites which allow direct data downlink to 
various, small, ground stations, eliminates the need for a centralized processing and 
distribution system while yet providing the advantages of:  

� real-time access to the observations concerned;  
� small size databases and, 
� easy information distribution within areas not well served by communications 

systems. 
Furthermore, in the area of disaster prevention, demands exist for earthquake 

forecasts, early detection of tropical storms and predictions of volcanic activity. 
 
c) Scientific Research 

As mentioned by Prof. Martin Sweeting in the lecture [41], nanosatellites can offer a 
very quick turn-around and inexpensive means of exploring well-focused, small-scale science 



44 

 

objectives (e.g.: monitoring the space radiation environment, updating the international geo-
magnetic reference field, etc.) or providing an early proof-of-concept prior to the 
development of large-scale instrumentation. Therefore, scientists could have more 
opportunities to gain 'real-life' experience of satellite and payload engineering and to be able 
to initiate a research program. 

During the last decade of the 20th century, considerable progress was made in the 
northern hemisphere in the matter of studying both the global behavior of the upper terrestrial 
atmospheric regions and in establishing how these regions respond to changes in the 
interplanetary medium. 

Many ongoing co-operative scientific programs in the area of solar and space-plasma 
physics illustrate the advantage of using a coordinated group of satellites to obtain multi-
point measurements of various phenomena.  

A particular case is provided by the International Solar-Terrestrial Physics program, 
which involves the co-ordination of data from the Solar and Heliospheric Observatory 
(SOHO) spacecraft of ESA, the WIND and POLAR spacecraft of NASA and the Geotail 
spacecraft of ISAS. 

Further, the southern hemisphere is an important region for mounting studies of 
significant celestial objects not visible to astronomers in the northern hemisphere. In this 
respect, satellite observations could usefully complement those ground based studies of the 
southern sky already carried out over many years. 

 
d) Technology Demonstrations 

Nanosatellites can provide an attractive and low-cost means of testing, verifying and 
evaluating new technologies or services on a real orbital environment and within acceptable 
risks prior to a commitment to a full-scale, expensive mission. Paper [42] illustrates the 
nanosatellites developed in a two-year project, Delfi-C3, of Delft University of Technology 
in the Netherlands. 

Such technology demonstrations were mounted on Japan’s Hypersat Class [43] 
spacecraft and on ESA’s Project for On-Board Autonomy (PROBA) [64]. 

 
e) Military Applications 

A military version of the SSTL microsatellite platform with deployable solar panels 
has been developed to support various military payloads. 

The main differences between the ‘commercial’ and ‘military’ versions relies on are 
in the specification of components and in the amount of paperwork for hardware and 
procedures. This involves also an increase factor for cost and timescale of approximately 1.5 
when compared to the 'commercial' microsatellite procurement process. 

 

f) Academic Training 

Small satellites programs provide means for the education and training of scientists 
and engineers in space related skills, by allowing them direct, hands-on, experience at all 
stages (technical and managerial) of a particular mission (including design, production, test, 
launch and orbital operations). Development of a low-cost, rapid time-scale, mission within 
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an academic setting provides an approach attractive to countries wishing to establish 
expertise in space technology. 

At present, many universities and schools of engineering in several countries in 
Europe, Japan, U.S.A, etc, had already developed, launched and operated their own small 
satellites. 

 

g) Ground Segment 

The ground segment has three distinct functions:  
1) operations which include status and health monitoring of the satellite, as well 

as necessary command preparation and validation;  
2) tracking telemetry and commanding which are realized by the 

telecommunications station, possibly in association with the operations centre;  
3) data reception and the transmission of data to the user(s) for processing and 

further distribution. 
Generally, the ground station can be based on a simple, very high frequency (VHF), 

antenna (e.g., University of Surrey’s UoSAT satellite series). The complexity of the ground 
station depends on the mission type. For example, an Earth Observation mission can require 
more complex support for collecting a large volume of data. Paper [44] presents a modular 
ground station, specifically designed for nano- and picosatellites.  

Generally, small satellites rely on on-board autonomy and safe modes. This reduces 
their need for continuous ground monitoring, thus simplifying and reducing the cost of the 
ground segment. It was recommended that, although a ground system for a small satellite 
program should feature low cost, its reliability should remain sufficient to ensure that satellite 
data transmissions are not missed. The system should further offer a fast return of critical 
data, as well as a rapid response to critical commanding. 

GENSO (Global Educational Network for Satellite Operations) [45] is an ambitious 
project launched and coordinated by ESA’s Education Office. The main aim is to increase the 
return from educational space missions by forming a worldwide network of ground stations 
and spacecraft which can interact via a software standard. 

 
h) Economic Benefits 

The main benefits within a country from using small satellites include: 
� Improvement of agricultural and animal productivity in medium to large-size 

farms due to better weather predictions, identification of soil characteristics, 
improvements in communications and transportation; 

� Reducing transportation costs, by optimizing truck, bus and ship routing, location 
and early robbery detection, with favorable impact on the price of goods; 

� Communication provision for the basic needs of rural settlements in remote areas; 
� Improvements in natural disaster detection, by using systems that integrate 

scientific communications and remote-sensing satellite networks; 
� Educational programs for populations in remote areas. 
The investments in the space sector determine a significant growth of gross national 

product (by a multiplication factor of the order of seven). Additionally, developing small and 
micro-satellite systems provides a powerful means to acquire national expertise in space 
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domain. When setting up any commercial contract for acquiring a new space system, 
technology transfer, through education programs and formal training, should be built in. 

Figure 2.1 depicts taxonomy of satellite applications, as presented by Thomas Estier 
in paper [46]. A satellite application lies on the exploitation of the characteristics conferred 
by the orbital state. This classification is established on a mission type basis: data 
manipulation (or more generally, energy manipulation) and matter manipulation. In some 
cases, it is not the mission itself that matters, but the deployment of this mission. For this 
reason, the “Essence” category has been defined. The traditional satellite applications (in 
exploitation phase) are represented in black, while the innovative applications (in 
development phase) are in blue and the new concepts are marked in red. 

 

 
Figure 2.1 - Taxonomy of satellite applications [46] 

 

2.2.6 Launching opportunities for small satellites  

 

There are two opportunities for small satellites to access space: 
� launch on a dedicated, expendable launch vehicle; 
� launch as a secondary (piggyback) satellite. Typically, they are launched inert 

(not powered) and are activated on deployment using a separation switch. 
Choosing between different launch opportunities involves weighing up the 

requirements of a desired mission against the capabilities, costs and constraints characterizing 
a particular option. 
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Two important considerations must be mentioned here: 
� the first one refers to a shared launch: flexibility with regard to the date of 

launch/orbit attainment and the value of the spacecraft itself should be 
carefully taken into account by the secondary partner.  

� the reliability record of the potential launch vehicle (those launching a series 
of low-cost payloads might be willing to risk using a relatively low-cost 
vehicle with an unproven record). 

Access to a launch may be achieved in three ways: 
� on a purely commercial basis;  
� on a international agreement basis; or 
� using national launch capability. 

The present experiences in terms of small satellite projects shows that the utilization 
of launch services provided by an international commercial company can be preferable, 
especially for countries preparing for a first launch. 

For microsatellites (10-100 kg), it is more economical to launch them on the larger 
launchers, where the prime payload has procured the launch, and employing the spare 
capacity does not incur significant additional costs. 

Over the past decades, many countries have developed indigenous launch capabilities. 
The small class of expendable launch vehicles can deliver payloads weighing between 25 kg 
and 1500 kg to LEO. The launch of two or more small satellites on the same launcher (“dual 
manifesting”) is also feasible. Long-range and intercontinental missiles from military arsenals 
of the cold-war rival super powers are, in addition, presently available for civilian space 
launches. 

It is important to note that the specific cost per kilogram into orbit of small launchers 
is higher than for larger launch vehicles. However, their absolute cost is much lower. 

Manufacturers of large expendable launch vehicles are interested in offering the 
option of flying secondary (piggyback) payloads on missions where the primary payload does 
not fully utilize the capability of the launcher. For example, United States Delta launcher, 
Russian Federation Soyuz, the European launcher Vega. Also, the Ariane 4 launcher disposes 
of a special supporting structure (the Ariane Structure for Auxiliary Payloads ASAP), which 
is specifically designed to support the simultaneous launch of several small satellites. The 
mass of an individual participating satellite (up to seven per launch can be lofted together) is 
limited to 50 kg. The more powerful Ariane 5 is designed to launch several 50-100 kg 
piggyback satellites into geo-stationary transfer, as well as into low polar orbits. Also, a 
Korean research team proposed in paper [47] a hybrid air-launching rocket for nanosatellites. 

Table 2.3 and Figure 2.2 illustrate the launching cost/kg for various launching 
vehicles. 

 
 
 
 
 
 
 



48 

 

Launch vehicle LEO kg Cost $M Cost/kg ($) 

Pegasus XL 443 13.5 30474 

Rokot 1850 13.5 7297 

Start 632 7.5 11867 

Taurus 1380 19 13768 

Delta 2 5144 55 10692 

Dnepr 4400 15 3409 

CZ 2E 9200 50 5435 

Soyuz 7000 37.5 5357 

Ariane 5 18000 165 9167 

Proton 19780 85 4297 

STS 28803 300 10416 

Table 2.3 – Launching cost for various small launchers (Source: Futron, 2002) 
 

 
Figure 2.2 – Space transportation cost for LEO orbit [48] 
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Figure 2.3 presents some examples of small satellite launchers used worldwide. 

    
a                                        b                                             c 

   
d                         e                                 f 

  
g                                                                      h 

Figure 2.3 – Examples of small satellite launchers: a – first commercial flight of PSLV 
(credit: ISRO); b – Athena 2 (credit: Lockheed Martin); c – DNEPR; d – Taurus I (credit: 
Orbital); e – Rockot; f – Delta II (credit: NASA/MSFC); g – Pegasus launcher carried by 

Lockheed L-1011 “Stargaze”; h – Pegasus XL launching from Lockheed L-1011 
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2.2.7 Nanosatellite general architecture 

 

A nanosatellite has the same sub-systems as a conventional satellite, such as: 
� Science Payload is represented by different types of instruments according to 

mission type. 
� Structural Subsystem: most nanosatellites have the mechanical structure made 

from either aluminum or magnesium alloys, depending on the mass requirements 
of the mission. 

� Attitude Determination and Control (ADAC) Subsystem is responsible for 
handling the orbit control and position determination. 

� Communication Subsystem allows the communication within the constellation 
and between ground segment and nanosatellites. 

� Propulsion Subsystem is used in order to perform thrusting maneuvers required 
for formation flying. 

� Command & Data Handling Subsystem coordinates all activities of the 
nanosatellite. Generally, it communicates with subsystems through an I2C bus. It 
is able to turn off/on each subsystem in order to manage its power absorption, and 
to communicate with ground station. 

� Power Subsystem has the following main functions: to generate and distribute the 
power supply to all subsystems and, to assure the energy storage. 

� Thermal Control Subsystem is charge of assuring the optimal temperature conditions for 
the good functionality of all sub-systems. 

Figure 2.4 presents the architecture of CanX-3 nanosatellite [49]. 

  
Figure 2.4 – External and internal views of one of the four BRITE-Constellation satellites [49] 

 
In order to show the present level of nanosatellite development, we analyzed in paper 

[50], various nanosatellites systems/programs such as, CanX program, ION-F program, 
Munin and QuakeSat nanosatellites. Appendix 2 [51] presents a comparison of the 
nanosatellites described in paper [50]. Appendix 4 [52] summarizes the nanosatellite sub-
systems, showing real examples of electronic components. 
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2.3 Formation flying survey 

2.3.1 Introduction 

 
Across the Formation Flying research community there are a wide range of definitions 

for formation flying and related terms. We will consider some representative definitions that 
are generally consistent with most elements of the community. 

From the perspective of engineering definition, according to Jesse Leitner [53], 
“formation flying involves the control of relative distances or geometric configuration 
between spacecraft.” 

Another definition is presented by F. Bauer et Al. in paper [54] as “the on-orbit 
position maintenance of multiple spacecraft relative to measured separation errors”.  

Also, Nicholas M. Short mentions in [55] a more detailed definition: "groupings of 
duplicate or similar satellites, having sensors in common or are complementary (related), 
that talk to each other and share data processing (onboard and/or by means of utilizing 
comparable ground stations and facilities), payloads, and mission functions." 

The concept of formation flying mission is to replace a large satellite with a "virtual 
satellite" – a cluster of smaller satellites, flying in very precise relative positions. Rather than 
using a single, large, expensive satellite to perform a given mission, many small, inexpensive 
satellites can be flown in a constellation more effectively. 

According to paper [56], the key issues that need to be addressed regarding 
communications in a formation-flying constellation include: 

� The overall architecture and distribution of processing; 
� The type of communication that needs to take place among the sensor spacecraft: 
� Timing and synchronization issues; 
� Whether or not a separate communication channel should be allocated for 

positioning or if positioning can be performed in-band with other communication; 
� The media access required between the Hub and sensor spacecraft. 
Some applications for satellite formations flying are: 

� Large sensor apertures in order to obtain an increased resolution; 
� Servicing, by replacing failed formation elements individually; 
� Upgrade and Maintenance: working on individual components without 

removing whole mission; 
� Change formation geometry: evolving mission sensing requirements. 

Replacing a single satellite with a formation flying system could be beneficial for 
some missions, but uneconomical for others. Many opinions exist in scientific research 
community, and some of the advantages and disadvantages of multiple-satellite systems are 
discussed in Chapter 2.2.2. 

Appendix 5 [57] presents a survey of formation flying missions and reveals the 
numerous applications of formation flying research that would contribute to scientific, 
military and communications mission operations. 
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2.3.2 Types of formations 

 
There are different terms used to describe spacecraft formations. Those encountered 

during the literature survey are listed in Table 2.4. The formation types are illustrated in 
Figure 2.5. 

 
    (a)                                                (b)                                                  (c) 

Figure 2.5 – Types of spacecraft formations:  
(a) Constellation (b) Cluster (c) Leader-Follower [58] 

Formation 

flying type 
Description Examples 

Trailing 

(Leader-

Follower) 

� multiple satellites orbiting on the same 
path 
� satellites are displaced from each other 
at a specific distance to produce either varied 
viewing angles of one target or to view a 
target at different times 
� satellites with a hierarchy of authority 

� Landsat 7 with EO-1 
� CALIPSO with CloudSat 
� Terra with Aqua 

Cluster 

� large numbers of satellite randomly 
distributed in their orbit planes 
� satellites operating interdependently and 
cooperatively 

� no propulsion to maintain relative 
position 

� TechSat-21 
� Constellation-X (NASA) 
� Darwin (ESA) 
� F6 

Constellation 

� group of similar satellites, operating 
together under shared control, synchronized 
so that they overlap well in coverage and 
complement rather than interfere with other 
satellites' coverage 
� coordinated ground coverage 

� GPS 
� Globalstar 
� Iridium 
� Glonass 
� Orbcomm 
� Disaster Monitoring 
Constellation 
� RapidEye 
� Galileo 

Table 2.4 – Types of spacecraft formations 
 
Depending on the application field, there are three formations possible: 
� Trailing (Leader-Follower) 

The Leader-Follower (Figure 2.6) is suited for meteorological and environmental 
applications, such as viewing the progress of a fire, cloud formations, and making 3D views 
of hurricanes. 
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In this type of formation, the satellites have the same orbits and are only separated in 
true anomaly. Thus, they will roughly experience the same perturbations. 

 
Figure 2.6 – EO-1 and Landsat-7 formation flying parameters [59] 

 
� Cluster 

A cluster (Figure 2.7) is constituted of any group of two or more spacecraft whose 
cooperation and knowledge of relative position is essential for completion of the mission. A 
level of spacecraft inter-dependency is demanded, but it doesn’t required precision formation 
keeping. 

  
Figure 2.7 – Darwin's six telescopes look at light from space and analyze the atmospheres of 

Earth-like planets (ESA Illustration by Medialab) 
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� Constellation 
A constellation (Figure 2.8) is a group of similar satellites with coordinated ground 

coverage, operating together under shared control, synchronized so that they overlap well in 
coverage and complement rather than interfere with other satellites' coverage. 

 
Figure 2.8 – An artist's concept depicts the Galileo satellite constellation  

(credit: ESA, J. Huart) 
 
The missions involving formations of satellites can be categorized into three primary 

application areas: communications, military and science. Appendix 3 [60] presents a 
summary of current and planned small satellite formations flying missions, including 
formation type, launch year, and the number of satellites in each formation. 

Appendix 6 [61] includes a short description of various small satellites missions such 
as: 

� e-CORCE project described in papers [62], [63], [64], [65] is an innovative 
satellite remote-sensing system envisaged by French Space Agency (CNES), 
capable of generating a high-resolution picture of Earth on the Web, refreshed 
every week; 

� RapidEye constellation presented by papers [66], [67], [68], [69] is a German 
geospatial information provider focused on assisting in management decision-
making through services based on their own Earth observation imagery. 

� Prisma [70], [71], [72] is a satellite project led by the Swedish Space Corporation 
(SSC) which consist of two satellites that fly in formation to test and qualify novel 
technologies for autonomy, guidance, navigation and control. 

Other examples of formation flying systems are presented in papers [73], [74], [75], 
[76], [77], [121], [122]. 
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2.3.3 Advantages and disadvantages of formation flying 

 
Table 2.5 summarizes the advantages and disadvantages of using multiple satellites, 

based on information from paper [58].  

Advantages 

� On-orbit reconfiguration within the formations offers multi-mission capability, by 

integrating new technology during mission, and design flexibility 

� Inherent adaptability afforded by the ability to add incrementally new or upgrade older 

elements of the formation; 

� Reduced design and development work time due to mass production; 

� Reduced size and complexity of satellites within the formation; 

� Higher redundancy across the formation and improved fault tolerance; 

� Mission improvements through the ability to view research targets from multiple angles or 

at multiple times; 

� Lower individual launch mass and smaller spacecraft volume translates into a reduced 

launch cost and an increased launch flexibility; 

� Minimal financial lost in case of failure; 

� Separating scientific payloads onto several simpler single-string satellites can accomplish 

the same complex missions without the added design and operational overhead, while 

risking only one payload at a time. 

� Lower cost of manufacturing due to mass production techniques; 

� In terms of specific application benefits, the opportunity to create synthetic apertures for 

interferometry or radar surveillance missions and to increase the scope of field 

measurements for survey missions. 

Disadvantages 

• Each cluster satellite requires its own core systems (i.e. there is a minimum overhead 

associated with each small satellite which may in total be more than that of a single large 

spacecraft); 

• Initialization and maintenance of the relative location of formation (especially if component 

satellites are launched separately); 

• Severe conditions for satellite alignment (for example, in case of an interferometry mission, 

a misalignment of telescopes’ sensors may introduce additional measurement errors if they 

are mounted on different platforms); 

• Increased complexity of ground system operations; 

• Small satellite development costs can be equally high compared to large satellites when they 

retain the complexity needed to achieve demanding scientific requirements. A possible 

solution to counter this is the use of commercial off the shelf (COTS) components; 

• Increased quantity of orbital debris at the end of formation’s lifetime, and the introduction 

of potentially complex and expensive de-orbiting systems. 

Table 2.5 – Advantages and limitations of formation flying with respect to single satellite 
 

2.4 Analysis of nanosatellite launches in the period 2004 – mid2007 

 
Knowing that small satellite domain has imposed itself as a particular field in the last 

two decades, we found important to make an analysis of nanosatellite launches in the period 
2004-mid 2007 for two reasons: 

� it allows us to see the evolution of nanosatellites launches and the future trend in 
this domain. The main questions that can be addressed are: 
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� Can we speak about a nanosatellite market that is shaping as a niche 
market? 

� Can we envisage commercial applications for small satellites and when 
there will be available for the public? 

� we think that this period is probative for nanosatellite launches, by showing future 
trends in nanosatellite launching activity. 

For a more detailed analysis of nanosatellite launches, the interest reader could 
consult papers [78] and [79] and Appendix 6 [61]. 

The results of this survey are presented in details in  
Nowadays, there is no database application which gathers the small satellite systems. 

As a consequence, it is very difficult to make analyses concerning the technologies used in 
these systems and to obtain different statistics. The main sources of information existing on 
the nanosatellite systems developed until now are: different Web sites, articles and 
PowerPoint presentations. In other words, the information is spread on different sites and 
there is no centralized application that gathers all information concerning nanosatellite 
systems. Also, some nanosatellite projects are not documented or the information is not 
available for the public. 

The lack of information and the scattered sources of documentation regarding 
nanosatellite systems imposed a significant challenge to our survey. Thus, we tried to collect 
data from different launch logs [80], [81] and the resulting list of nanosatellites is complete to 
the best of the author’s ability. Therefore, we included only the nanosatellites launched 
between 2004 and mid2007 and we analyzed them regarding: 

� owner country of the payload; 
� mission type; 
� mass category; 
� orbit type; 
� launcher type; 
� spaceport; 
� type of activity; 
� mission status. 
According to our analysis, some important ideas can be retained: 
� in the period 2004 – mid 2007, there were recorded 55 nanosatellites launches. 
� 2006 is the leader in terms of nanosatellites launches, accounting almost 50% of 

the total number of launches; 2006 recorded also the first event involving 16 
nanosatellites launched simultaneously. This event shows that future nanosatellite 
constellations can be rapidly deployed in order to assure immediate services. 

� most payloads were designed to conduct Technological missions (67%); this 
means that nanosatellites are used mainly as technological demonstrators, for 
testing different equipments that can be used for much complex space missions. In 
this way, the financial loss in case of failure is minimized. 

� almost 75% of nanosatellite campaigns had an Institutional purpose, which 
explains the great involvement of university’s laboratories in small satellite 
projects. Worldwide small satellite programs allow to rise the interest for 
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aerospace among students and to offer each student a unique opportunity to take 
part in a concrete project including experimental creations. 

In conclusion, in the years to come, nanosatellites will accelerate the space 
exploration for both civil and military needs. Therefore, scientists will be able to obtain more 
frequent flights for their experiments at lower cost. The low cost unit of the small satellites 
will make commercial constellations a practical commercial proposition.  

2.5 Telecommunications framework of nanosatellite networks 
 

2.5.1 Introduction 

 
As mentioned in Chapter 1, the goal of this thesis is two-fold: proposing innovative 

nanosatellite constellation models and, new routing approaches for telecommunications in 
nanosatellite networks. Therefore, we consider that this research work is a merging of two 
fields: the first one is telecommunications, by treating routing problematic in nanosatellite 
networks and evaluating, through simulations, the performance of transport protocols 
designed for this type of network. The second one is constellation design domain, by 
proposing and analyzing nanosatellite constellation models. 

The source of our interest in nanosatellite networks routing is founded in some 
questions that we are asking ourselves, such as: 

Which are the routing challenges of nanosatellite networks? 
Can the conventional satellite network protocols be used with success in nanosatellite 

networks or a different approach is needed? 
What kind of protocols will assure a reliable communication throughout a 

nanosatellite constellation? 
What types of topologies are most suited for nanosatellite networks? 
Can other types of networks (e.g., sensor networks, Ad hoc networks) provide us new 

ideas for nanosatellite communications? 
Do we need dedicated simulation tools for evaluating the performance of 

nanosatellite networks in terms of communications? Can the present network simulators be 
adapted in order to support this new type of network? 

Are there any protocols already developed for nanosatellite networks? 
Is there any communication protocol tested in real, on-orbit nanosatellites? 
How can we implement QoS strategies in nanosatellite networks in order to provide 

efficient telecommunication services? Are the present QoS strategies appropriate for 
nanosatellites or new QoS mechanisms need to be developed? 

Finding answers to all these questions involves a significant and complex work in 
terms of studies and simulations. We also believe that some of this rising topics can be a 
complete project on its own. Considering this complexity, only some of these questions are 
answered in this thesis, the rest being treated as future work directions. 

Furthermore, the context of future small satellite networks communications needs to 
be considered. Internet development and an ever-increasing demand for bandwidth will spur 
the market for small satellite solutions. In the scenario of a robust nanosatellite 
telecommunications market, these networks have to be capable of providing bandwidth at 



58 

 

lower cost and a guaranteed level of QoS, which is a fundamental requirement for a large 
range of services (e.g., conversational voice, video conferencing, voice and video messaging, 
audio and video streaming, etc). 

The design of efficient communication mechanisms for nanosatellite networks is a 
challenging task, requiring the definition and implementations of specific protocols and 
architectures appropriate to space critical conditions. New emerging protocols might deliver 
new and interesting ways for interconnecting nanosatellites networks and sensor/or Ad hoc 
networks. But several different problems are usually encountered on these networks that 
require us to revise communication protocol design, network management, and to consider 
novel routing mechanisms to accomplish “more with less”. For instance, common problems 
of nanosatellite networks are onboard resources, limited communications opportunities, 
limited bandwidth, scalability, redundancy, power availability, high-speed node mobility, the 
type of communication among satellites, assigning or not a separate communication channel 
for positioning, timing and synchronization issues. Finally, a lot of new services via small 
satellite will come into service once small satellite operator comes to live. 

Moreover, the present sub-chapter includes a state-of-the-art of protocols that can be 
used in small satellite networks. In order to identify candidate protocols and network 
topologies that can be used or adapted for small satellite networks, we conducted a study of 
routing mechanisms in traditional satellite network, Ad Hoc network and sensor networks 
[82]. This study is part of PERSEUS (Projet Etudiant de Recherche Spatiale Européen 
Universitaire et Scientifique) program, launched by CNES (Centre National d'Etudes 
Spatiales) in June 2005. Based on this study, some routing approaches have been identified 
for nanosatellite networks. Additionally, XSTP transport protocol performance over 
conventional satellite networks and nanosatellite constellations is evaluated, through 
simulations and analysis, in Chapter 4.  

 
2.5.2 QoS challenges in nanosatellite networks 

 
The evolution of multimedia technology and the commercial interest of future small 

satellite operators to reach widely public applications will make QoS in nanosatellite 
networks an area of great interest. Moreover, QoS is a full featured technology that can 
control or reduce costs and improve nanosatellite network performance. It should be stressed 
out that to the best knowledge of the authors, there has been no previous research work 
investigating the QoS aspect of nanosatellite networks. According to our inquiry, the existing 
literature does not record any paper that discusses this topic. This is a further reason for us to 
take initiative and point out some interesting ideas that could be a solid base for future work. 

Cisco defines Quality of Service (QoS) in the Internetworking Technology Handbook 
[83] as: “the capability of a network to provide better service to selected network traffic over 
various technologies”. 

The primary goal of QoS is to provide priority, including dedicated bandwidth, 
controlled jitter and latency and improved loss characteristics. Moreover, it is important to 
assure that providing priority for one or more flows does not cause the failure of other flows. 
On intuitive level, QoS represents a certain type of requirements to be guaranteed to the users 
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(e.g., how fast data can be transferred, how much the receiver has to wait, how correct the 
received data is likely to be, how much data is likely to be lost, etc.). 

A nanosatellite network, on the other hand, can be seen as an autonomous system, 
having its own routing protocols and network management mechanisms, and most important, 
having specific limitations. 

To support QoS, the link state information such as delay, bandwidth, cost, loss rate, 
and error rate in the network should be available and manageable. However, getting and 
managing these in nanosatellite networks is very difficult because of the resource limitations 
and the complexity associated with the mobility of nanosatellites. 

Although QoS and complexity are terms that usually go together, we must keep 
complexity as low as possible since this may also lead to excessive power consumption 
which is a stringent limitation of nanosatellite networks. Maintaining a low level of 
complexity and providing efficient QoS services is a real challenge of nanosatellite networks. 

Based on our studies, we identified three main constraints in terms of QoS for 
nanosatellite networks are:  

1) the limited bandwidth, since a nanosatellite has usually poor bandwidth resources 
(e.g., 9.6 kbps for uplink and 32-256 kbps for downlink); 

2) the dynamic topology, since nanosatellites are continually moving on their orbit, 
connecting and disconnecting from the network making connections many times 
unreliable; 

3) the limited processing and storing capabilities of nanosatellites, as compared to 
Internet routers.  
Furthermore, all satellite communications systems generate a noticeable delay which 

is known as the main source of communications quality. Nanosatellite network make no 
exception of this rule. The round trip propagation delay for a LEO nanosatellite is 
comparable to the round trip communication time in terrestrial networks due to the low 
altitude of the satellites. This delay is important for two-way, real-time applications such as 
voice or videoconferencing, since these applications are very sensitive to short-term delay 
variation. Numerical calculations in Chapter 4 sustain this observation. For example, if we 
consider a communication between two user terminals by passing through a nanosatellite 
placed at 1500 km of altitude, the propagation delay varies between 20 and 44 ms, not 
counting additional sources of delay. We think that this delay range may be acceptable for 
LEO nanosatellite systems that could provide telecommunication services to remote places. 

One of the most significant challenges of future nanosatellite network 
telecommunications will be provide some type of service guarantees for different types of 
traffic. This will be a particular challenge for streaming video applications, which often 
require a significant amount of reserved bandwidth to be useful. 

For an efficient QoS provisioning in nanosatellite environment, we propose the 
following approaches: 

1) Developing tools that allow an efficient use of nanosatellite network resources; also, 
these tools can show the resources used by nanosatellite network at a certain moment 
and the priority of each type of traffic. 

2) Implementing QoS technologies in nanosatellite networks in order to accommodate 
multimedia services needed in the near future. 
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3) Developing specific methods for identifying the type of traffic carried by nanosatellite 
network. Classification is the first step for providing preferential service to a certain 
type of flow. 

4) Developing congestion-avoidance techniques in order to monitor nanosatellite 
network traffic loads at certain points in the network, in an effort to anticipate and 
avoid congestion before it becomes a problem. If the congestion begins to increase, 
packets are discarded, leading to a slowing down of data transmission at the source 
node, as a result of the early dropped traffic detection. 

5) Developing congestion-management techniques that operate to control congestion 
after it occurs. Congestion-management tools allow raising the priority of a flow by 
queuing and servicing queues in different ways. Congestion-avoidance and 
congestion-management are opposed mechanisms. 

6) Developing traffic shaping and policing techniques for nanosatellite networks. As 
mentioned earlier, fundamentally, QoS provides priority either by raising the priority 
of one flow or by limiting the priority of another. Policing and shaping provide 
priority to a flow by limiting the throughput of other flows. 

7) Defining End-to-End QoS levels that refer to the capability of the nanosatellite 
network to deliver service needed by specific traffic from edge to edge. Every service 
deliver by nanosatellite network has a certain level of QoS strictness which describes 
how tightly the service can be bound by specific bandwidth, delay, jitter, and loss 
characteristics. In terrestrial IP networks, there are three common levels of end-to-end 
QoS:  

� Best-effort service, which means basic connectivity with no guarantees; 
� Differentiated service, where certain traffic is treated better than the rest (e.g., 

faster handling, more average bandwidth); 
� Guaranteed service, which is an absolute reservation of network resources for 

specific traffic. 
Since these QoS levels are relevant only to terrestrial networks, other QoS levels need 
to be developed for nanosatellite networks. We think that a good starting point is to 
investigate if these End-to-End QoS levels can be applied or adapted to nanosatellite 
networks and how can these levels could be implemented. If they are not suited for 
nanosatellite networks, other types of levels need to be defined. 
 
In conclusion, we consider that QoS techniques can provide powerful value added 

service for nanosatellite networks. By using those mechanisms, we hope that the user traffic 
can be controlled and the nanosatellite network resources could be used efficiently. 

2.5.3 Routing approaches for nanosatellite constellations 

 
Firstly, we surveyed sensor networks and we made an analogy between sensors and 

nanosatellites. A sensor network is constituted of small, low-power, and low-cost devices 
with limited computational and wireless communication capabilities. Table 2.6 presents the 
common features of sensor networks and nanosatellite networks. 
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Sensor network features Nanosatellite network features 
Small-scale devices: grams Small satellites:  1 – 10 kg 

Limited resources:  

• CPU 
• memory 
• range 
• wireless comms bandwidth 

Limited resources: 

• CPU 

• memory 

• bandwidth  

(e.g., 4 kbps – uplink; 32 - 256 kbps – downlink, 

1Mbps theoretically) 

• radiated power (0.5 - 1 W) 

• payload 

• propulsion 

• batteries, etc 

High degree of dynamics → frequent network 

topology changes and network partitions 
Topology changes (e.g., nanosatellite reconfiguration in 

order to compensate a lost satellite) 

High level of redundancy Only critical sub-systems are backed up 

Sensor nodes: 
- very limited in the amount of energy 

they can store or harvest from the 

environment; 
- subject to failures due to depleted 

batteries or to environmental 

influences. 

Electronic sub-systems placed on an extreme 

environment 

Scalability issues due to the large number of 

sensor nodes 
High level of cooperation between nanosatellites (inter-

satellite links) 

Table 2.6 – Sensor networks vs. nanosatellite networks 
 
By studying sensor network routing, we identified the following approaches for 

nanosatellites: 
� Sensor networks could be integrated with nanosatellite networks for space and Earth 

monitoring missions. 
� Self-reconfiguration network after initial deployment. Once placed in the orbit, the 

nanosatellite constellation could reconfigure itself in order to compensate for a lost 
nanosatellite without loss of the mission. For doing this, a certain level of artificial 
intelligence is integrated on every spacecraft. Self-reconfiguration is also a way of 
maximizing system’s flexibility. 

� A certain level of redundancy is needed in order to achieve a higher level of 
efficiency. Generally, small satellites have only their critical sub-system backed up. 

� One of the main challenges of sensor network is traffic minimization. This principle 
applies also to nanosatellite networks. Traffic should be minimized so that the 
network won’t be overloaded with unnecessary information. 

� Using MAC routing protocols: 
- TRAMA (Traffic-Adaptive Medium Access) is greatly reducing the energy loss 

caused by packet collisions; 
- STEM (Sparse Topology and Energy Management) allows nodes activation only 

when traffic is generated, thus allowing an energy efficient routing mechanism. 
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� Using routing-based on resources.  
Two types of routing strategies have been identified: energy-aware routing and 
fidelity-aware routing. Routing decisions are made based on the power consumption 
level. Thus, the route which cost less power will have more possibility to be chosen. 

� Using data-centric protocols.  
Query-based protocols depend on the naming of desired data, eliminating this way 
many redundant transmissions. 

� Using location-based protocols.  
By using position information, the data is relayed to the desired regions rather than to 
the whole network; 

� Other sensor network concepts that might be interesting for nanosatellite networks 
are: Intelligent Sensor and Web Sensor. 
Paper [84] presents a retrospective on the use of wireless sensor networks for 

planetary exploration. 
We have also turned our attention to Ad hoc network domain to find routing 

approaches that can be used in nanosatellites networks. We identified common challenges for 
both Ad hoc and nanosatellite networks, such as: 

� scalability issues due to large number of nodes; 
� dynamic topology; 
� time-varying network links; 
� severely limited resources in terms of power, storage capacity, memory; 
� time-varying achievable channel bit rate; 
� topology maintenance: updating information of dynamic links among mobile 

nodes. 
By studying the three types of Ad Hoc routing (i.e., proactive routing, reactive routing 

and hybrid routing), we can state that reactive routing approach is preferred for high-mobility 
small satellite networks with restrictive resources. 

The main benefits of adapting reactive routing to small satellites networks are: 
• Proactive calculation of nanosatellites position reduces delay and control 

overhead. 
• Passive listening allows listening to neighbor’s routing packages in a passively 

manner and updating their local routing table. Thus, broken links can be detected 
easily. 

• Suspend mode allows to a node to suspend and notify its neighbors not to 
communicate with it even though its communication channels are in good 
condition. This mode is a good way of energy saving, a critical aspect in 
nanosatellite networks. 

Paper [85] presents XLP protocol which is a cross-layer protocol for efficient 
communication in wireless sensor networks. We recommend a detailed study of this protocol 
to identify if it can be used or adapted for nanosatellite networks. 

Table 2.7 summarizes the main advantages and limitations for Ad hoc routing types. 
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Routing type Advantages Disadvantages Examples 

Proactive 
routing 

(table driven) 

� successfully combines dynamic 
group with hierarchical level 
concepts 

� routes are calculated 
independent of intended traffic 

� there is little delay until the route 
is determined 

• keeping routes to all destinations up-
to-date, even if they are not used 

• big routing table in order to assure the 
path to all network nodes 

• the periodical control traffic might 
delay data packets, thus reducing the 
effective bandwidth 

• unnecessarily consumption of energy 
and system resources (i.e., CPU time, 
memory space, bandwidth) in case of 
low data traffic 

HSR 
ZHLS 
DSDV 
WRP 
GSR 

Reactive 
routing 

(On Demand) 

� acquisition of routing 
information on a on-demand 
basis → reducing the routing 
overhead in order to save 
bandwidth 

� higher bandwidth 
� no resources wasting 
� smaller routing table 

• rapid network saturation due route 
request flooding mechanism → not 
optimal in terms of bandwidth 
utilization 

• increased latency for sending data 
packets 

LAR 
CBRP 
DSR 
AODV 
TORA 
ABR 
SSR 

Hybrid 
routing 

� provides efficient and fast 
discovery of routes by 
integrating the two radically 
different classes of traditional 
routing protocols: 

- pro-active discovery within a 
node's local neighborhood; 
- reactive mechanism for 
communication between 
neighborhoods. 

� reduced control overhead as 
compared to both proactive and 
reactive routing 

• short latency for finding new routes ZRP 

Table 2.7 – Comparison of Ad hoc routing types 
 
Lastly, we interested on traditional satellites networks to investigate if protocols and 

topologies specific to large satellites can be used or adapted for small satellites. We focus our 
study on LEO satellite networks since low-earth orbit is the common type of orbit used by 
small satellites. 

We start by pointing out the main advantages of LEO satellite routing: 
� Predictable movement and position derived from orbit calculation; this data 

could be a way of reducing control overhead; 
� Low propagation delay: less than 20 ms round-trip; 
� No elements that could obstruct communication path as compared to ground 

communications. 
Among the limitations of LEO satellite routing, we could mention: 

- dynamic change of data rate and Bit Error Rate (BER) which makes the 
communication link unstable; 

- significant transmission overhead; 
- frequent change of network topology due to satellites movement on the orbit; 
- limited resources in terms of CPU, memory, bandwidth; 
- QoS issue: the LEO satellite link is characterized by frequently changes of 

traffic density and data packets with different QoS parameters; 
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- hybrid routing approach: for uplink/downlink transmissions is used an 
infrastructure mode while for inter-satellite communication, an Ad hoc mode. 

From a networking point of view, we identified two fundamentally different 
approaches: 

• ground-based approach, where network functionality is entirely terrestrial; 

• space-based approach, where the space segment possesses network 
functionality. 

The first one considers that each satellite is a space-based re-transmitter of traffic 
received from user terminals and local gateways, returning the traffic to the ground. This 
impose challenges in the space segment for medium access control (MAC), logical link 
control (LLC) and handover. Some examples of commercial satellite networks systems based 
on this approach are: Globalstar, the ICO Global and SkyBridge. 

As Lloyd Wood mention in paper [86], the topology of such a ground-based 
constellation network is entirely arbitrary because the satellites are only used to provide last-
hop connectivity. It can be assumed that all satellite telemetry, tracking and control (TT&C) 
ground stations will be networked, to share information about the state of the constellation. 

However, there are a large number of networking possibilities and a number of 
different ways that the constellation gateways can be integrated with existing terrestrial 
networks, including the Internet. As a result, the design and topology of the terrestrial 
network component of a ground-based constellation is far more arbitrary than that of any 
space-based constellation whose network topology is governed by orbital geometry.  

In the space-based constellation network, each satellite has on-board processing and it 
is considered as a network switch or router which is also able to communicate with 
neighboring satellites by using high-frequency radio or laser intersatellite links (ISLs). Thus, 
a user terminal below the satellite exchanges traffic with gateways to the terrestrial network 
or with users below distant satellites not visible to that terminal, without requiring a local 
gateway information. In this approach, the network layer is integrated into ISLs.  

Furthermore, satellites in such constellations must support onboard routing as well as 
onboard switching. In conjunction with its ground stations, the satellite constellation forms an 
autonomous system. 

Some examples of commercial and proposed systems utilizing ISLs includes: 
Motorola’s LEO Iridium constellation, LEO Teledesic constellation, Hughes’ GEO 
Spaceway, MEO Spaceway NGSO proposal and GEO Astrolink proposal. 

 
Table 2.8 presents a parallel between satellite networking approaches, by emphasizing 

the main advantages and limitations of every approach. 
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Approach Advantages Disadvantages 

Space-based 

network approach 

Satellites communicate directly with each 
other by line of sight. 
 

It decreases ground-space traffic across the 
limited available air frequencies assigned 
to the constellation. 

It provides ubiquitous service in regions 
where the locally-overhead satellites visible 
to a ground terminal are not simultaneously 
visible from a ground gateway station. 

It removes any need for multiple ground-
space hops required for communication 
between distant ground terminals for the 
ground-based constellation. 

 

It requires more complex and sophisticated 
processing/switching/routing onboard 
satellite than the ground-based approach. 
Design restricted by the constraints 
imposed by orbital geometry and the 
difficulties in implementing networking in 
the space segment. 

Networking and space segment issues 
must be considered together. 

Ground-based 

network approach 

It separates network functionality from the 
space segment, allowing network-layer issues 
and space-segment issues to be considered 
separately. 

 
It allows reuse of the satellites for different 
purposes by simply upgrading or replacing 
easy-to-access ground equipment, and of 
reducing system complexity. 

Table 2.8 – Advantages and disadvantages of ground- and space-based network approaches 
 
Hereinafter, we present here a brief introduction on satellite network topologies. The 

highly topological dynamics characterizes the fundamental feature of satellite and 
nanosatellite networks as regard to terrestrial networks. This dynamic is due to the constant 
movement of satellites on the orbit and it determines the permanent changing of satellite 
network topology. 

Unlike terrestrial networks, the frequent and rapid topological changes affects many 
aspects of LEO satellite and nanosatellite networks, such as constellation design, reliable 
transmission control protocols, routing issues and QoS guarantee. 

As A. Ferreira et al. states in paper [87], the dynamic topology of a LEO satellite 
network is characterized by a periodical series of snapshots or fixed constellation topologies. 

The topology of a satellite network can take many forms and there are variations on 
those. The most common satellite network topologies are: Star, Mesh and Hybrid (or Multi-
Star), each one with its own advantages and limitations. 

The Star topology is the simplest way to configure a satellite network. However, it has 
one issue that affects its performance. Star topology delay can become noticeable for voice 
communications. Therefore, this topology is suited when communications is primarily 
between a central system and remote locations in a single hop, or when communications 
doesn’t require immediate response. 

Applications that need direct communications between remote sites can employ the 
Mesh topology. The trade-off is the requirement for a larger antenna and a higher powered 
transmitter, both of which increasing costs. Some Mesh topology networks are demand-
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assigned so that links are set up only when needed. This reduces the steady-state capacity 
requirement on the satellite, thus saving bandwidth and money. 

Hybrid topology provides a mix of Star and Mesh solutions. The reason for going 
hybrid is a trade-off with cost. In this case, some parts of the network might need a mesh 
topology while other sites might only need to talk to one central site thus connecting with a 
Star topology. 

Because of the trade-offs in price and performance, cost-benefit analysis must always 
be performed in order to design the appropriate network topology necessary for each site. 

Nanosatellite networks might use the same types of topologies as satellite networks. 
However, we believe that other types of topologies might be envisioned for nanosatellite 
networks. This topic is not the object of this thesis and it will be considered as a future work 
direction. To the best of our knowledge, there is no previous significant study exploiting the 
topic of nanosatellite network topologies, this being a further reason to be developed in future 
research work. 

In our survey [82], we have analyzed various satellite protocols such as: XTP (Xpress 
Transport Protocol), SCPS (Space Communications Protocol Standards) suite, BGP-S 
(Border Gateway Protocol – Satellite Version), STP (Satellite Transport Protocol) and XSTP 
(eXtended Satellite Transport Protocol). 

According to our study, XSTP (eXtended Satellite Transport Protocol) could be a 
candidate for small satellites communication links, considering that it is specifically 
optimized for asymmetrical satellite networks, characterized by high BER and variable RTTs. 
The simulation results presented in paper [88] shows that XSTP attained higher effective 
throughput, much lower overhead, and better channel efficiency as compare to TCP clones, in 
case of high BER conditions. 

As mention in [5] and [6], XSTP has been used as transport protocol for CanX-2 
nanosatellite launched on April 28th, 2008 from the Satish Dhawan Space Centre (SHAR). 

 
2.5.4 Overview of candidate protocols for small satellite networks 

 
This chapter briefly describes two transport protocols that are the point of interest of 

our research – Satellite Transport Protocol (STP) and its extended version, XSTP. 

2.5.4.1 Satellite Transport Protocol 

 
The Satellite Transport Protocol (STP), proposed by Katz and Henderson [89], [90] is 

a transport protocol, which is specifically optimized for the unique constraints of satellite 
network environment. STP is found to outperform TCP in environments characterized by 
high BER, severe asymmetry and varying RTTs, typically characteristics of LEO satellite 
links. 

Based on paper [91], the main features of STP can be summarized as follows: 
� Enforcing the separation between data and control information in order to 

minimize the control overhead in smaller data segments; 
� Mechanism that adapts to the amount of rate control required in the network, 

ranging from no rate control to explicit rate control. Unlike TCP, which uses a 
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self-clocking property, STP depends on a delayed send timer to pace 
transmissions uniformly over the estimated RTT. The main benefit of the pacing 
mechanism is the reduction of the risk of introducing large bursts to the network. 

� Segment type overloading for supporting a fast connection start mechanism; 
� Efficient acknowledgement strategy. 
STP employs an automatic repeat request (ARQ) mechanism that uses selective 

negative acknowledgements (NACK). By using this mechanism, only segments reported 
missing by receivers are retransmitted. The advantage is lower reverse link traffic when the 
loss is negligible and a speedy recovery when the loss is severe. In contrast with TCP, there is 
no RTO mechanism in STP, which makes it more resilient to RTT variations. 

Finally, it is important to mention that even if STP includes many of the basic 
principles found in TCP, it is only functionally but not semantically equivalent to it. 
Unfortunately, the STP protocol inherits the congestion control bias from its ancestor 
protocols (i.e., TCP, SSCOP [92]). Although the protocol can efficiently recover from 
multiple losses in the same round trip, its error recovery tactics can negatively affect its 
overall performance. 

 
2.5.4.2 eXtended Satellite Transport Protocol (XSTP) 

 

In order to explain the reasons for which we focus on XSTP, we must first describe its 
features and its operating principle. Thereby, we could stress out significant characteristics 
that make this protocol a possible candidate transport protocol for nanosatellite networks. 

XSTP is a software implementation of the STP protocol in the PIX (Protocol 
Implementation Framework for Linux) framework. [93] The protocol is used to host a new 
error control strategy, called XSTP-probing. Typically, XSTP protocol can be deployed on 
top of a network protocol (e.g., IP). The protocol provides a reliable connection-oriented byte 
streaming service to application protocols (e.g., FTP). 

An XSTP session is composed of one lower and one upper session. Figure 2.9 depicts 
a typical configuration for a communication suite including XSTP.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9 – PIX protocol and session configurations including XSTP [94] 
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As Maged E. Elaasar explains in paper [94], when such a suite is initialized, an 
instance of the XSTP protocol is created, configured and then installed in the appropriate 
location in the protocol hierarchy. Once there, application level protocols can use the service 
of the protocol to manipulate XSTP sessions. 

An XSTP session plays double role (sender and receiver), which implies defining two 
new classes: an XSTP sender and an XSTP receiver. An instance of each of those classes is 
created in the private state of the session’s object. As depicted in Figure 2.10, these two 
instances play the sending and receiving roles of the session. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.10 – XSTP class diagram [94] 
 
The aim of developing the XSTP-probing mechanism was to stretch the STP 

protocol’s ability to adapt to the different types of error found in LEO satellite networks. 
There are different kinds of errors in the space channel that need to be considered and 

corrected in order to ensure efficient communications in nanosatellite networks. The first type 
is bit errors. Single and double bit errors are usually simple to correct for using CRC codes. 
The second type is burst errors, where many bits are corrupted at once, occur more frequently 
than single bit errors and cannot be corrected by CRC codes. Depending on the burst length, 
FEC should be able to help with recovery and avoid retransmissions when space channel 
experiences these errors. Another cause of errors is bit slips, where bits are lost due to 
variations in the respective clock rates of the transmitter and receiver.  

There is also the possibility that an entire packet is lost due to incorrect addressing, or 
hardware error because of electrical interference or thermal noise. In this case, it is necessary 
to either retransmit or ignore the lost packet.  

The possibility of link failure, due to a damaged or out of range nanosatellite, also 
must be considered. Also, channels’ asymmetry (forward and return links are not symmetric) 
may generate significant errors. 

Other potential cause of errors resides in space link designs that have to consider 
variable RTTs, increased noise or bursts of noise, limited bandwidth, nanosatellite antenna 
obscurations, limited processing power and memory. 

 According to papers [91], [94], the goal of any error control strategy is to adapt the 
sender’s transmission rate to the varying error conditions in the network. This goal is usually 
accomplished by taking an aggressive attitude when the error is detected to be transient and a 
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conservative one, when it is persistent. The XSTP-probing mechanism makes no exception to 
this principle. It is implemented as a configurable option on the XSTP session and it is 
modeled as a class called XSTPProbing.  

The probing-mechanism is triggered (Figure 2.11) upon detecting a segment loss to 
assess the level of congestion in the network. If congestion is detected, the mechanism 
responds by invoking congestion control; otherwise, it resumes with Immediate Recovery 
(restoring congestion window to the same level as before probing). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11 – Triggering probing mechanism by a false early timeout event [94] 
Additionally, this mechanism evaluates the connection for possible error free 

conditions and only transmitting in those windows. As described in paper [91], it suspends 
new data transmission upon detecting a loss and initiates a probing cycle to collect RTT 
statistics on the connection. Then, it compares these RTT statistics to the RTT estimate 
available when the loss was discovered. It is interesting to observe that the duration of that 
probing cycle is proportional to the level of error in the network, which helps the connection 
sit out the error conditions. After the cycle is finished and if congestion is detected by 
proliferating RTTs, congestion control is immediately invoked. Otherwise, transmission 
levels are restored without taking any action. Finally, the missing segments are immediately 
retransmitted. Figure 2.12 illustrates different phases of a typical probing cycle as they occur 
in the network. 

 
 
 
 
 
 
 
 
 
 

Figure 2.12 – Probing cycle phases [94] 
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We found important for our research to make a comparison of TCP-probing 
mechanism and XSTP-probing mechanism in order to outline the benefits of XSTP protocol 
(Table 2.9). 

TCP-probing mechanism XSTP-probing mechanism Advantages for XSTP-probing 

Changes are introduced to both 

sending and receiving ends of the 

connection 

Sender–only mechanism 

Simple implementation deployment of 

the mechanism to a network with 

nodes running an older version of the 

protocol 

It adds a few new segment types 

and their associated states 

It doesn’t introduce any new 

segment types 
XSTP’s polling cycle reusing  

It introduce states for tracking the 

progress of probing cycle 

It does not introduce several 

states to track the progress of 

the probing cycle 

Scalability in terms of the ability of 

configuring the probing cycle with 

different numbers of probing 

exchanges 

the probing cycle = a number of consecutive exchanges of probes and 

their acknowledgements 
 

A version number is stored and 

reflected by all segments of the 

cycle (two probes and two probe 

acknowledgments) 

� if the first probe exchange is 

successfully completed, the 

other exchange start.  

� if any segment gets dropped: 

- the whole cycle is 

abandoned; 

- a new one cycle is 

initiated with a new 

version number. 

� the previous exchange is not 

ignored but is rather given 

more time (up to one more 

RTT) to complete. 

� if after that time it is still 

not completed, a new 

exchange begins and the old 

exchange becomes obsolete. 

 

Segment loss detected by means of 

a timeout 

� sending a probe segment 

every RTT 

Clear advantage in case of RTT 

extension (common phenomenon in 

LEO satellite networks) 

Table 2.9 – Comparison of TCP-probing mechanism and XSTP-probing mechanism 
 
Figure 2.13 presents the basic algorithm of XSTP-probing mechanism. As described 

in paper [33], the XSTP–probing mechanism implements this strategy by defining an ordered 
map between the sent probe’s (POLL) timestamp and its corresponding acknowledgment’s 
(STAT) RTT measurement. Whenever a probe is sent, its timestamp is reordered in the next 
empty entry in the probing map. Also, whenever a valid probe acknowledgment is received, 
its RTT measurement is saved in the corresponding entry in the map. The probing cycle does 
not complete until two consecutive entries in the map get filled with RTT measurements. 

The probing map has a constant size set as a configuration parameter and it has also a 
policy of deleting the oldest entry to make room for new probe entries; hence the map size 
should be set in proportion to the expected error levels in the network. 

For a more comprehensive overview of STP, XSTP and its probing mechanism, the 
interested reader is directed to papers [91] and [94]. 
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Figure 2.13 – XSTP-probing mechanism [94] 
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2.6 Summary 

 

Chapter 2 presented an overview of small satellite domain, by describing its main 
concepts (i.e., nanosatellite, formation flying, constellation) and their applications. Also, an 
analysis of nanosatellite launches in the period 2004-mid 2007 was presented in order to 
identify the trend in nanosatellite launching. Then, the telecommunications framework of 
nanosatellite networks was described along with new approaches for routing and QoS 
provisioning in nanosatellite networks. Chapter 2 ended with a detailed presentation of XSTP 
protocol, identified as a good candidate for nanosatellite network communications, and its 
basic version, STP protocol. 

In the next chapter, we propose three nanosatellite constellation models, named 
NanoDREAM, NanoICE and NanoSPHERE. For each model, a novel mission is envisaged. 
We adopted a simple constellation design approach which gives us a general idea of the 
constellation’s behavior. For this raison, we consider it as a good starting concept for 
planning remote region exploitation missions. 

NanoDREAM is a nanosatellite constellation deployed over Bolivia’s Salar de Uyuni 
Desert in order to assure telecommunication services for an industrial company in charge of 
lithium resources exploitation. Also, a wireless mesh network aimed to provide efficient 
communications over the exploitation area of Salar de Uyuni Desert is proposed. NanoICE is 
a polar nanosatellite constellation designed for providing telecommunication services for 
Polar Regions scientific community. The last model, NanoSPHERE, is aimed to offer global 
coverage in the context of a robust nanosatellite telecommunications market. For each model, 
the development framework is set up, by pointing out the objectives and the assumptions 
considered for simplifying numerical calculations. 

Moreover, a new method for estimating the number of nanosatellites needed to cover 
a specific area is proposed. Since the coverage is a key element in our nanosatellite 
constellation design, we defined several parameters for Earth coverage assessment. 

Since one of the objectives of this thesis is to study the telecommunication framework 
of nanosatellite networks, we define in Chapter 3, some parameters (i.e., propagation delay 
and its relative variation, latency and the amount of data transmitted at each nanosatellite 
pass) that allow us to evaluate the communication performance of nanosatellite 
constellations. Finally, a novel Markov modeling-based method for assessing nanosatellite 
constellations’ performance is presented along with the reasons for focusing on Markov 
methods. 
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Chapitre 3. LES MODELES DE CONSTELLATIONS DE NANO-

SATELLITES 

 
 
Dans ce chapitre, nous présentons plusieurs principes généraux de conception de 

constellations de satellites afin de développer nos propres modèles de constellations de nano-
satellites. La taille de la constellation et sa structure ont un impact significatif sur le coût du 
système et ses performances, donc il est nécessaire d'évaluer plusieurs configurations de 
constellations et justifier les raisons pour lesquelles la solution finale a été choisie. 

Cette thèse propose trois modèles de constellation nano-satellitaires. Nous avons 
décrit, dans un premier temps, la mission de chaque modèle et ensuite nous avons présenté le 
modèle mathématique. Cette approche aide le lecteur à mieux comprendre le contexte dans 
lequel chaque modèle a été conçu et nos raisons pour se concentrer sur ces types de missions. 
En raison de la complexité du problème de conception de constellations, quelques hypothèses 
doivent être faites pour chaque modèle afin de simplifier les calculs numériques. 

Le premier modèle, nommé NanoDREAM (Nanosatellite Constellation for Desert 
Region ExploitAtion and Monitoring) est conçu pour fournir des services de 
télécommunications à une société industrielle étant responsable de l'exploitation de lithium 
dans le Désert Salar de Uyuni en Bolivie, une région qui détient 70% de la réserve mondiale 
de lithium.  Nous avons envisagé cette mission, en considérant la nouvelle règlementation sur 
la réduction des émissions de CO2 au niveau mondial qui peut entraîner une exploitation 
massive du lithium dans l’avenir. Plusieurs études estiment que la demande mondiale du 
lithium, le plus léger métal utilisé pour construire des batteries très puissantes pour des 
téléphones portables, des ordinateurs portables et des voitures hybrides, triplera dans les 15 
ans à venir. Nous avons étudié les opérateurs mobiles actuels de la Bolivie et nous avons 
observé qu’aucun ne fournit une couverture de ce désert. Dans ce contexte, nous avons pensé 
que le déploiement d’une constellation de nano-satellites peu coûteuse serait la meilleure 
solution. De plus, nous proposons de déployer un réseau maillé de type Ad hoc sur la région 
d’exploitation de lithium afin de connecter les bâtiments de façon simple et efficace, en 
utilisant une technologie peu coûteuse. 

Le deuxième modèle, nommé NanoICE (Nanosatellite Innovative ConstEllation) est 
conçu pour fournir des services de télécommunication à la communauté scientifique des 
Régions Polaires. Notre motivation pour le concept NanoICE réside sur la croissance 
continue de la communauté scientifique des Régions Polaires, soutenue par des projets 
innovants et le progrès technologique. 

Le troisième modèle, nommé NanoSPHERE, est développé dans le contexte d'une 
forte demande des services de télécommunications par des entreprises chargés de 
l’exploitation de ressources minières dans plusieurs régions de la Terre. Nous avons supposé 
qu'un opérateur nano-satellitaire pourrait utiliser des techniques de déploiement partiel pour 
assurer les requis de couverture désirables à un certain moment et progressivement étendre la 
zone de couverture en même temps que la demande de services augmente. 



 

76 

 

En outre, nous avons proposé une nouvelle méthode pour le dimensionnement des 
constellations de nano-satellites, en calculant le nombre de nano-satellites nécessaires pour 
couvrir une zone spécifique. 

Le défi principal de la modélisation de constellations de nano-satellites est de 
formuler le modèle, en utilisant un ensemble d'expressions mathématiques. La formulation 
mathématique d’un modèle de constellation de nano-satellites consiste principalement de 
deux parties : 

- la fonction objectif, qui est une fonction mathématique qui montre "le coût" d'une 
solution ; 

- un ensemble de contraintes, exprimé comme un groupe d'équations 
mathématiques avec une ou plusieurs limitations sur la plage de solutions 
acceptables. Les équations de contrainte définissent la région de solution faisable. 

Une fonction objectif et son ensemble de contraintes constituent un programme 
mathématique, qui permet de trouver une solution optimale qui minimise ou maximise la 
fonction objectif en satisfaisant l’ensemble des contraintes. 

Nous avons montré comment nous pouvons transformer un problème de conception 
de constellation de nano-satellites dans un problème d'optimisation mathématique. Aussi, 
nous modélisons notre problème de conception de constellations de nano-satellites comme 
une « boîte » avec des entrées et des sorties. Donc, certains paramètres sont définis comme 
des données d'entrée pour un module de constellation qui fournira plusieurs données de 
sortie. 

La couverture est un élément clé dans la conception des constellations de nano-
satellites. Pour cette raison, nous avons défini un vecteur de couverture ayant quatre 
paramètres (i.e., le taux de couverture, le taux d'accès, la zone d'accès, la zone de couverture) 
afin d’évaluer les performances en termes de couverture de chaque type de constellation de 
nano-satellites. 

Puisqu'un des objectifs de cette thèse est d’étudier le cadre des télécommunications 
des réseaux de nano-satellites, nous définissons dans ce chapitre, plusieurs paramètres qui 
nous permettent d'évaluer les performances des constellations nano-satellitaires (i.e., le délai 
de propagation et sa variation relative, le délai de bout en bout et la quantité de données 
transmises à chaque passage d’un nano-satellite). 

Finalement, nous proposons une méthode basée sur le modèle de Markov pour 
évaluer les performances des constellations de nano-satellites. Nous avons choisi le modèle 
de Markov parce qu’il a été traditionnellement utilisé pour évaluer les performances et la 
fiabilité de systèmes complexes. Puisqu’une constellation de nano-satellites est un système 
complexe constitué de beaucoup de nano-satellites, chacun ayant plusieurs sous-systèmes, le 
modèle de Markov est adapté pour étudier sa fiabilité et ses performances. Par contre, 
l'inconvénient majeur de la méthode de Markov est la croissance accrue du nombre d'états 
possible du système (i.e., constellation) au fur et à mesure que la taille du système augmente. 
Les diagrammes d'états résultants pour de grands systèmes sont extrêmement compliqués, 
difficiles à construire et à calculer. Pour cette raison, nous avons appliqué cette méthode 
seulement au modèle NanoDREAM. Les modèles NanoICE et NanoSPHERE nécessitent une 
approche différente et d’autres techniques pour évaluer leur performances. 
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3 NANOSATELLITE CONSTELLATION MODELS 
 

3.1 Introduction 

 

In this chapter, we firstly introduced several constellation design principles in order to 
set up a base for developing our constellation models. Then, three nanosatellite constellation 
models are presented. We found appropriate to describe, in the first place, the mission 
envisaged for each model and then to introduce the mathematical model. This approach helps 
the interest reader to better understand the framework in which each model has been designed 
and our reasons of focusing on these types of missions. Due to the complexity of 
constellation design problem, some assumptions have to be made for each model to simplify 
numerical calculations. 

The first model, named NanoDREAM (Nanosatellite Constellation for Desert Region 
ExploitAtion and Monitoring) is designed to provide telecommunications services to an 
industrial company in charge of lithium exploitation in Salar de Uyuni Desert. We focus on 
Bolivia’s Salar de Uyuni Desert where more than half of lithium world’s supply is founded. 
Also, we proposed to deploy a wireless-based network over the exploitation area of Salar de 
Uyuni Desert in order to provide efficient telecommunications services. 

The second model, named NanoICE (Nanosatellite Innovative ConstEllation) is 
designed for providing telecommunication services for Polar Regions scientific community. 

The third model, named NanoSPHERE, is developed in the context of a robust 
nanosatellite telecommunications market. A nanosatellite constellation that provides global 
coverage is needed in case of an increasing demand of telecommunications services by 
several industrial companies in charge of mineral resources exploitation in different remote 
regions of the Earth. 

Furthermore, we proposed a new method for dimensioning nanosatellite constellation, 
by estimating the number of nanosatellite needed to provide coverage over a specific area. 

The coverage is a key element in our nanosatellite constellation design. For this 
reason, we defined a coverage vector with four parameters (i.e., coverage rate, access rate, 
access area, footprint area) in order to evaluate the performance in terms of coverage of every 
type of nanosatellite constellation. 

Since one of the objectives of this thesis is to study the telecommunication framework 
of nanosatellite networks, we define in this chapter, several parameters that allow us to 
evaluate nanosatellite constellations performance (i.e., propagation delay and its relative 
variation, latency and the amount of data transmitted at each nanosatellite pass). 

Finally, a novel Markov modeling method for assessing the performance of 
nanosatellite constellations is proposed, explaining also the reason for choosing a Markov –
based method. We focus on Markov models because they have traditionally been used to 
evaluate the performance and the reliability of complex systems. Since a nanosatellite 
constellation is a complex system constituted of many nanosatellites characterized by a high 
interdependency, Markov model is suited to study its reliability and performance. 
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3.2 Nanosatellite constellation design principles 

 
The design of a nanosatellite constellation is very complex due to all the factors that 

need to be considered, from orbit elements to very limited resources and ending with 
perturbations that act on each satellite. Therefore, nanosatellite constellations are among the 
most challenging systems to design as a large number of variables are involved. Both the total 
number of nanosatellites within the constellation and the orbit drive the selection of the 
launch vehicle, which can be a significant contributor to the system cost. The orbit also 
affects the space segment size and the communication data rate. Likewise, the size of the 
space segment (i.e., total number of nanosatellites) also determines the complexity of the 
ground segment operations, and so forth. There are a lot of trades between system cost, its 
performance and each of the design parameters, both individually and in combination with 
other design parameters.  

For these raisons, we considered that specifying all orbit elements for each 
nanosatellite of the constellation is inconvenient and overwhelming. A reasonable approach is 
to begin with nanosatellite constellation in circular orbits and at common inclination angle 
and altitude. In this case, the period, velocity and node rotation rate will be the same for all 
nanosatellites. The constellation size and structure has a strong impact on the overall system 
cost and its performance, so it is necessary to evaluate various constellation designs and to 
explain the reasons for final choice. The main design variables needed to be defined for a 
satellite constellation are listed in Table 3.1. 

Parameter Effect Selection Criteria 

MAIN DESIGN VARIABLES 

Number of Satellites Principal cost and coverage driver 
Minimize number consistent with 
meeting other criteria 

Constellation Pattern Determines coverage vs. latitude Select for best coverage 

Minimum Elevation Angle 
Principal determinant of single 
satellite coverage 

Minimum value consistent with 
constellation pattern 

Altitude 
It impacts the coverage, 
environment, launch & transfer cost 

System level trade of cost vs. 
performance 

Number of Orbit Planes 
Determines coverage, growth and 
degradation 

Minimize consistent with coverage 
needs 

Collision Avoidance 

Parameters 

Key element for preventing 
constellation self-destruction 

Maximize the inter-satellite 
distances at plane crossings 

SECONDARY DESIGN VARIABLES 

Inclination 
Determines latitude distribution of 
coverage 

Compare latitude coverage and 
launch costs 

Plane Phasing Determines coverage uniformity 
Select best coverage among 
discrete phasing options 

Eccentricity 
Mission complexity and coverage 
vs. cost 

Normally zero; non-zero may 
reduce number of satellite needed 

Size of Stationkeeping Box 
Coverage overlap needed; cross-
track pointing 

Minimize consistent with low-cost 
maintenance approach 

End-of-Life Strategy Eliminating orbital debris 
Any mechanism that allows you to 
clean up the space 

Table 3.1 – Main parameters needed to be defined during constellation design 
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For designing our nanosatellite constellation models, we followed several principles 
explained by James R. Wertz in paper [95] (Table 3.2). 

Step 

1. Establish mission requirements, particularly: 

• Latitude-dependent coverage 

• Goals for growth and degradation plateaus 

• Requirements for different modes or sensors 

• Limits on number of satellites 

2. Do all single satellite trades, excepting coverage 

3. Do trades between swath width, coverage, number of satellites 

• Evaluate candidate constellations for: 

- coverage Figures of Merit vs. latitude; 

- coverage excess; 

- growth and degradation; 

- altitude plateaus; 

- End of Life option. 

• Consider the following orbit types (Walker patterns, Equatorial, Elliptical, 

Polar). 

4. Evaluate ground track plots for potential coverage holes or methods to reduce the 

number of satellites needed. 

5. Adjust inclination and in-plane phasing to maximize the intersatellite distances at 

plane crossings for collision avoidance. 

6. Review the rules of constellation design. 

7. Document reasons for choices. 

Table 3.2 – Constellation design summary 
 

3.3 NanoDREAM model 
 

3.3.1 NanoDREAM mission description 

 

This chapter describes the mission envisaged for NanoDREAM (Nanosatellite 
Constellation for Desert Region Exploitation and Monitoring) model. 

Worldwide, there are a lot of unexploited regions in terms of mineral resources. 
Several minerals, highly significant in the global economy, are mined in deserts, where they 
occur not because of current aridity but rather due to geological history. Indeed, the Simpson 
Desert (in Australia) is rich in uranium, the Sahara Desert is rich in iron ore and salt, the 
Atacama Desert (Chile) is rich in iron and copper ore. Therefore, it is highly likely that in the 
near future, industrial companies will exploit those areas for their precious wealth. 

A study of United Nations Environment Programme [96] states that 38% of the global 
supply of bauxite (an aluminium source) is mined in Australian drylands; 52% of the world's 
copper extraction in 2004 was mined from deserts in Chile, Australia and Mexico; 33% of 
world's diamonds were extracted in the drylands of Botswana and Namibia; and the deserts of 
South Africa, northwest China, Australia, Uzbekistan, and Mali accounted for at least 35%t 
of the world's production of gold. Phosphate rock is mined in the deserts of Morocco (16% of 
world production), Senegal (9%), Tunisia (6%), Jordan (5%), Australia (4%), and Israel 
(3%), adding up to 43% of global production. Finally, half the world's uranium ores are 
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mined in deserts (Kazakhstan, Niger, Namibia, Uzbekistan, and South Africa). The most 
important contribution of deserts to mineral wealth is their deposits of evaporite minerals - 
soda, boron, and nitrates (e.g. Chile saltpetre), which are not found in other ecosystems. 

High in the Andes, in a remote corner of Bolivia, lies more than half the world's 
reserves of a mineral that could radically reduce our reliance on dwindling fossil fuels. Fifty 
to 70 percent of the world’s supply of this critical mineral is contained in Bolivia’s Uyuni salt 
flats, shown in Figure 3.1. 

 
Figure 3.1 – Salar de Uyuni Desert [97] 

 
As mentioned in paper [98], the global demand for lithium, the lightweight metal used 

to make high-powered batteries for cell phones, laptops, and hybrid cars, is expected to triple 
in the next 15 years.  

The geographic distribution of resources and reserves are shown in Figure 3.2 and 
Figure 3.3.  The majority (over 50%) of the world’s lithium reserves exist in Chile, Bolivia 
and Argentina.  Other countries with important resources and reserves are: US, China, 
Russia, Zaire, Australia and Canada. 

 
Figure 3.2 – Lithium resources over the world 



 

81 

 

 
Figure 3.3 – Identified lithium resources 

 
The United States Geological Survey [99] states that 5.4 million tons of lithium could 

potentially be extracted in Bolivia, compared with 3 million in Chile, 1.1 million in China 
and just 410,000 in the United States. 

 
Figure 3.4 – Salar de Uyuni viewed from space, with Salar de Coipasa in the top left corner 

 
Therefore, we focus on the Salar de Uyuni, the world's largest salt flat desert of 

10,582 square kilometers. It is located in the southwest Bolivia (Figure 3.4), near the crest of 
the Andes, and is elevated 3,656 meters above the mean sea level. 

At present, Bolivia’s lithium reserves are at the centre of the attentions of several 
multinationals, as well as the government. The latter intends to build its own pilot plant with 
a modest annual production of 1,200 tons of lithium and to increase it to 30,000 tons by 2012. 
[100] 

Comibol, the state agency that oversees mining projects, is investing about $6 million 
in a small plant near the village of Río Grande on the edge of Salar de Uyuni (Figure 3.5), 
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where it hopes to begin Bolivia’s first industrial-scale effort to mine lithium from the white, 
moonlike landscape and process it into carbonate for batteries. [101] 

 
Figure 3.5 – Pilot lithium plant under construction in Uyuni [99] 

 
Figure 3.6 shows lithium mining process at Salar de Uyuni. [97] 

 
Figure 3.6 - Lithium mining process at Salar de Uyuni [97] 
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Considering this context, we propose to deploy a nanosatellite operator that provides 
communications services (voice, SMS and images) for an industrial company in charge of 
lithium resources exploitation in Salar de Uyuni desert. It is important to mention that this 
small satellites system can be applied to any similar remote area. 

 
Figure 3.7 – Mission concept basic elements 

 
Figure 3.7 presents all the elements of our mission, which implies high-level 

processes from mission analysis and design to cost estimation models. 
Firstly, we have investigated the existing Bolivian mobile operators and theirs 

coverage areas. There are 3 mobile operators in Bolivia: 
- Telefonica Celular De Bolivia S.A. (TELECEL BOLIVIA), operating within 

GSM850 band; 
- Entel SA, operating within GSM1900 band; 
- Nuevatel PCS De Bolivia SA, operating within GSM1900 band. 
As seen in Figure 3.8, Figure 3.9 and Figure 3.10, none of the operators have 

coverage over or close to the Salar de Uyuni desert. 
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Figure 3.8 – TELECEL BOLIVIA coverage map 

 
Figure 3.9 – Entel SA coverage map (Credits : 2009 GSM Association; Europa Technologies 

Ltd.) 
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Figure 3.10 – Nuevatel PCS De Bolivia SA coverage map (Credits : 2009 GSM Association; 

Europa Technologies Ltd.) 
 
Secondly, an analysis of possible needs of the industrial company personnel yields the 

following requirements: 
� Continuous coverage of the target area (24h/24). 
� Mobile terminals with voice and data capabilities (e.g., voice, SMS, imaging). 
� Group Voice communications among on-site personnel. 
The network architecture should be “flexible”, so it has to be able to provide direct 

coverage to the area without having to go through a hierarchical command center. 
Our system architecture is divided into three segments: 
� Space segment is represented by the nanosatellite constellation; 
� Ground segment is represented by Mobile Ground Station (or MGS). Based on the 

same principle as the i-c@r, used to provide WiFi Internet over a certain area via 
satellite, we can consider a similar, modified MGS, with an S-band transceiver to 
ensure the satellite link via a 3m wide satellite dish. 

� User segment is represented by Mobile User Terminals (or MUT) with voice and 
data capabilities. 

 
3.3.2 Ground segment architecture 

 
Based on the lithium extraction and processing technique, we envisaged the following 

structure for a lithium exploitation plant (Figure 3.11): 
• 1 industrial building which contains the pumps bored into the ground that will suck up 

the liquid brine (a mixture of water, lithium, salt and magnesium) and pump it into 
evaporation pools. Another technique is to cut channels into the salt soil in which 
liquid brine is accumulated.  
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• 10 solar evaporation pools; 

• 1 processing building designed for transformation lithium into small bricks that will 
be transported in vacuum-packed packages for preventing it to become unstable. 

• 5 housing buildings that will accommodate the plant’s personnel; 
• 1 canteen; 
• 1 administration office; 

• 1 service building in charge of transport vehicles maintenance. 
 

 
Figure 3.11 – Plant architecture 

 
We propose to deploy a wireless mesh network over the exploitation area in order to 

easily, effectively and wirelessly connect all the buildings using inexpensive technology. Our 
choice for this technology is based on the capabilities of wireless mesh networks that are 
consistent with our mission proposal. In order to justify our choice, we found appropriate to 
enumerate here the main advantages of wireless mesh networks: 

� Easiness to set up 
The cost of the equipment is lower compared to other networking solutions, and the 
ease of installation clearly outscores other methods, since there is no need to mount 
cables around an entire city to obtain a huge network.  

� Good coverage 
A wireless mesh network consists of multiple nodes that communicate with each 
other. If for whatever reason a node is blocked and separated from the network for a 
while, other nodes in its vicinity cover the respective area and take the load.  

� Self-Management 
Once set up, a wireless mesh network can manage its load to avoid clogging a certain 
network node. If one node becomes very busy, the network traffic is redirected 
through other nodes, maintaining a good balance of the network load. The self-
management feature, which allows for the system to find the best traffic paths when 
congestion occurs, provides a system that may experience less failure and downtime.  
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� Speed 
In a wireless mesh network, each node acts as an individual server. This allows for 
greater speeds for local connection, which run directly from the source to their 
destination, without needing to pass through a dedicated server.  

� Interconnectivity 
Since wireless mesh networks use the same protocols as regular wireless network, it is 
easy to establish connectivity between your own local networks and a wireless mesh 
network. A wireless mesh network can be a good method to connect two local 
networks, situated in opposite parts of a region, without using the Internet. This way, 
the data speeds are increased and the chances of a network drop are very low. 

� Flexibility 
The flexibility of the mesh network arises from its self-configuration, self-healing and 
scaling capabilities. Self-configuring means that network automatically incorporates a 
new node into the existing structure without needing any adjustments by a network 
administrator. Self-healing is the network capability to automatically find the fastest 
and most reliable paths to send data, even if nodes are blocked or lose their signal. 
The self-configuration and self-healing capabilities of the mesh network render it 
eminently scalable. 
There are only two communication modes: 
� Ad hoc mode, illustrated in Figure 3.12, is a method for wireless devices to 

directly communicate with each other. Operating in Ad hoc mode allows all 
wireless devices within range of each other to discover and communicate in peer-
to-peer fashion without involving central access points. In addition, all wireless 
adapters on the ad-hoc network must use the same SSID and the same channel 
number.  
Ad hoc networks have the advantage of working well as a temporary fallback 
mechanism if normally-available infrastructure mode gear (access points or 
routers) stop functioning. 

 
Figure 3.12 – Ad hoc mode 

 
� Infrastructure mode, depicted in Figure 3.13, joins a wireless network to a wired 

Ethernet network. It also supports central connection points for WLAN clients. A 
wireless access point (AP) is required for infrastructure mode wireless 
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networking. To join the WLAN, the AP and all wireless clients must be 
configured to use the same SSID. The AP is then cabled to the wired network to 
allow wireless clients access to, for example, Internet connections or printers. 
Additional APs can be added to the WLAN to increase the reach of the 
infrastructure and support any number of wireless clients. 
Compared to Ad hoc mode, infrastructure mode networks offer the advantage of 
scalability, centralized security management and improved reach. Its main 
disadvantage is simply the additional cost to purchase AP hardware. 

 
Figure 3.13 – Infrastructure mode 

 
As communication protocol for our ground segment architecture, we propose AODV 

(Ad hoc On-Demand Distance Vector) protocol, a reactive protocol, meaning that a route is 
established only when it is required by a source node for transmitting data packets. Thus, 
AODV responds to reactive routing approach that needs to be considered for nanosatellite 
networks, as explained in Chapter 2.4.3. 

In order to justify our choice and understand the simulation results, we found 
interesting to briefly describe here the main features of AODV.  

AODV is intended for use by mobile nodes in an Ad hoc network. It offers quick 
adaptation to dynamic link conditions, low processing and memory overhead, low network 
utilization, and determines unicast routes to destinations within the Ad hoc network.  It uses 
destination sequence numbers to ensure loop freedom at all times, avoiding problems such as 
"counting to infinity" associated with classical distance vector protocols. Much of the 
complexity of the protocol is to lower the number of messages to conserve network capacity. 

The main advantage of AODV is that it doesn’t create extra traffic for communication 
among existing links, that’s because routes are established on demand and destination 
sequence numbers are used to find the latest route to the destination. In addition, it doesn't 
require much memory or calculation.  

One of AODV disadvantage is that intermediate nodes can lead to inconsistent routes 
if the source sequence number isn’t updated for a while, hence they don’t have the latest 
destination sequence number. For more information regarding AODV, the interest reader is 
invited to consult the references [102] and [103]. 
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3.3.3 NanoDREAM framework development 

 
In this sub-chapter, the NanoDREAM framework development is set up, by pointing 

out the objectives and the assumptions. Moreover, it describes concepts and ideas that could 
be applied to space segment dimensioning of nanosatellite constellations. Due to the 
complexity of the problem, some assumptions have to be made that simplifies numerical 
calculations.  

We assumed that nanosatellites are placed on an equatorial, sun-synchronous LEO 
type orbit and they are passing over a target represented by Salar de Uyuni Desert. Also, we 
assume that Earth is a perfect sphere, an adequate assumption for most mission geometry 
applications. For precise calculation, a correction for oblateness must be applied. In our 
calculations, we neglected the Earth’s rotation in the short period for which the nanosatellite 
passes over the interested area. 

In paper [95], James R. Wertz states that if the regions of interest do not include the 
poles, then an equatorial constellation may provide all the coverage with a single orbital 
plane, which leads to flexibility, multiple performance plateaus and graceful degradation. 

In this research work, we used this design idea to propose a nanosatellite constellation 
concept, named NanoDREAM. Knowing that our target area is Salar de Uyuni Desert placed 
on 20º S latitude, a constellation having several equatorial nanosatellites placed on a LEO, 
sun-synchronous orbit, with enough altitude to provide the appropriate coverage at the 
smallest elevation angle (ε) is the best solution for our mission. 

NanoDREAM is a simple model which gives a general idea of the system’s behavior. 
For this raison, we consider it as a good starting concept for planning remote region 
exploitation missions. Of course, this model has its own limitation, by not being capable of 
describing real on-orbit behavior of nanosatellite constellations because it does not consider 
all the perturbation effects that act on each nanosatellite. For these raisons, the model should 
be backed up by simulations with more precise and complex models. 

The main goal is to find a nanosatellite constellation with a minimum number of 
nanosatellites, which provides continuous coverage over Salar de Uyuni Desert and maximize 
the data quantity transmitted over ground station on each nanosatellite pass. Providing 
coverage over a specific desert region means that the nanosatellite has to stay as long as 
possible over the target area so, the time in view needs to be maximized. 

Once the objectives have been formulated and the assumptions have been described, 
the next step is to define NanoDREAM model and its parameters. The NanoDREAM concept 
definition involves a specific approach which can be summarized as follows: 

• formal mathematical problem definition; 

• conceptual nanosatellite constellation design problem formulation; 

• design and constant vectors definition; 

• methodology for estimating the number of nanosatellites in the constellation; 
• geometric relationships between nanosatellite and user terminal on Earth; 

• Earth coverage assessment; 

• performance indicators for nanosatellite telecommunications. 
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3.3.4 Formal mathematical problem definition 

 
The main challenge of nanosatellite constellation modeling lies in setting up the 

model in a clear set of mathematical expressions. The procedure for transforming a verbally 
formulated problem into a model includes the following steps: 

1) Determine the object to be optimized and express it as a mathematical function 
(define input variables). 

2) Identify all requirements and limitations, and express them mathematically (define 
constraints). 

In order to understand the behavior of a mathematical model under any 
circumstances, an analytical solution needs to be determined. This involves calculus, 
trigonometry, and other math techniques to write down the solution. 

The NanoDREAM model mathematical formulation mainly consists of two parts: 
� The objective function, which is a mathematical function that shows the “cost” of 

a solution; 
� A set of constraints, expressed as a set of mathematical equations with one or 

more limitations on the range of acceptable solutions. The constraint equations 
define the feasible solution region. 

An objective function and its associated set of constraints is named a mathematical 
program, which once formulated, allows finding an optimal solution that minimizes or 
maximizes the objective function while satisfying the set of constraints. 

A classical single objective linear optimization problem can be formulated as follows: 

����������	 ��������  ���� � ���� � ���� � ���� ��� ���� � ����
��� ��� �1 

  Subject to: ����� � ����� …� ����� �  �  (2) ����� � ����� …� ����� �  �  (3) ! �"��� � �"���…� �"��� �  "   (4) 
  Given: �� � #� ��	 �$$ %    (5) �� & $� ��	 �$$ %    (6) 

The first part is the objective function to be maximized (or minimized). The decision 
variables, noted as yj, % � 1, �(((((, are the parameters whose values vary over a given range to 
minimize or maximize the objective function f. The decision variables in a nanosatellite 
constellation design problem can be real continuous (i.e. constellation altitude between 500 
km and 1500 km), integer (i.e. minimum elevation angle), binary (i.e. whether or not to 
consider inter-satellite links), or any combination of these. In this research, all the decision 
variables are considered static variables (i.e. their values do not change dynamically over 
time). The cost coefficients qj, % � 1, �((((( are associated with each of the decision variables.  

The second part (Eq. 2 to Eq. 4) is the set of constraints, where there are m linear 
constraint equations for the decision variables. These constraint equations place limits bm on 
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certain combinations of the decision variables. The last two inequalities (Eq. 5, Eq. 6) 
represent the upper uj and lower lj limits placed on each decision variable. 

We define a feasible solution as a combination of decision variables’ values yj which 
satisfies all constraint equations as well as the upper and lower limits. 

An optimal solution is a combination of decision variables’ values which includes a 
feasible solution and minimizes or maximizes the objective function. 

The mathematical formulation of the NanoDREAM model could be written as: 
 

Objectives: min Nn and max Cov 

 Constraints: Subject to 

    Altitude 500 Km ≤ h ≤ 1500 Km 

    Minimum elevation angle 5º ≤ εmin ≤ 30º 

              Latitude L = 20º S 

              Sun-synchronous, equatorial orbit i=0º 

    Downlink data rate 9.6 Kbps ≤ r ≤ 1024 Kbps 

 
The objective vector V is summarized in Eq. 7: 

) � *+�,- . � /+#� �	 �� ����0�1�$$�1�0 �� 12� 3��01�$$�1���,��� �� 4��56�1� �#��1�1� 7 �7 
 
The overall objectives for NanoDREAM mission are: 
� Objective 1: minimizing the number of nanosatellites within the constellation: Nn 
� Objective 2: maximizing the time in view (T) spent by each nanosatellite over 

any point of the coverage area 
� Objective 3: maximizing the quantity of data (d) transmitted over each 

nanosatellite pass. 
 
3.3.5 Conceptual nanosatellite constellation design problem formulation 

 
As mentioned in the previous section, a classical optimization problem (Eq. 1) 

contains an objective function, decision variables, constraint equations, and decision variable 
limits. Figure 3.14 illustrates a mapping of classical optimization problem elements onto the 
nanosatellite constellation design problem. This diagram clearly shows the transformation of 
our nanosatellite constellation conceptual design problem into a mathematical optimization 
problem. 
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Figure 3.14 – Mapping of classical optimization problem onto the nanosatellite constellation 
design problem 

 
3.3.6 Design vector and constant vector definition 

 
We model our problem as a box with inputs and outputs. Therefore, some parameters 

are defined as input data for a constellation module (box) that will delivers several output 
data. Figure 3.15 illustrates key inputs and outputs of the constellation module. 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 

Figure 3.15 – Inputs and outputs of constellation module 
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β angle 
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Minimum elevation angle (εmin) 

Number of orbital planes (np) 

Data rate (r) 
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Max. Earth central angle (λmax) 

Max. slant range (Dmax) 

Orbital period (P) 
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Max. time  in view (Tmax) 

Propagation delay (tp) 
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Access area (Aa) 
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Access rate (Ra) 
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Two vectors were defined: design vector and constants vector. The first one contains 
the attributes that will distinguish and differentiate alternative nanosatellite constellations. 
The latter contains attributes that will not differentiate alternative system architectures. For 
example, the latitude of Salar de Uyuni Desert is a constant value of 20º regardless of the 
other attributes of the architecture. 

As Eq. 8 shows, three variables – constellation altitude, downlink data rate and 
minimum elevation angle – make up the design vector.  

V � *W�W�W�. � / X�Y Z0-�[	��07 �8 
Latitude (L), inclination angle (i) and β angle are variables of constant vector, given 

by Eq. 9. 

] � *^�^�^�. � _-�[	��0-�[	��0-�[	��0`  �9 
Table 3.3 summarizes design vector variables while Table 3.4 presents the values for 

constant vector parameters. 

Design vector variable Σ Range 

Constellation altitude σ1 500 km ≤ h ≤ 1500 km 

Downlink data rate σ2 9.6 Kbps ≤ r ≤ 1024 Kbps 

Minimum elevation angle σ3 5º ≤ εmin ≤ 30º 

Table 3.3 – NanoDREAM design vector 
 

Constant vector variable Γ Value 

Latitude γ1 20º 

Inclination angle γ2 0º 

β angle γ3 70º 

Table 3.4 – NanoDREAM constant vector 
 
3.3.7 Methodology for estimating the number of nanosatellites in the 

constellation 

 
In this chapter, we present a method for estimating the number of nanosatellite needed 

to cover a specific area. 
Firstly, we define the coordinates of any point on the Earth surface, by considering a 

3D coordinate system. As depicted in Figure 3.16, the center of Earth is the origin of this 
coordinate system. The z-axis represents the North Pole, and the x-axis represents the 
Greenwich Meridian, or the line of 0 degrees longitude. Let α be the angle between any 
vector and the positive x-axis (i.e., the longitude of any point on Earth). The angle β 

represents the angle between any vector and the positive z-axis (i.e., the difference between 
90º and the latitude of any point on Earth). β is the complement angle of the latitude angle. 
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For example, a point of Salar de Uyuni Desert that lies at 20º S latitude and 67º E 
longitude can be represented by a vector whose length is the radius of Earth (RE=6378 km), 
whose α angle is 67º, and whose β angle is 90º-20º= 70º. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16 – 3D coordinate system 
 

Thus, any point A can be described by a vector ):; � Nbc , d, eP, where RE is the Earth 
radius, α is the longitude angle and β is the complement of latitude angle. 

The relationship between (RE, α, β) and (x, y, z) is as follows: � � 	 sin e cos d  (10) � � 	 sin e sin d  (11) � � 	 cos e   (12) 
Using these relationships, the vector V could be written as follows: 

) � *���. k /	 sin e cos d	 sin e sind	 cos e 7 �13 
In Figure 3.16, the vector of Salar de Uyuni Desert is )m::::; � Nbc , 70°, 67ºP and the 

equatorial orbit (nanosatellite) vector is )p:::; � Nbc � 2, 90°, 0°P. 
Figure 3.17 illustrates the geometry for calculating the number of nanosatellites. The 

projection of the satellite onto the Earth is called the sub-satellite point (SSP) or nadir. The 
maximum Earth central angle measured at the center of the Earth from the sub-satellite point 
to the target is λmax. 

qT::::; 

qr::::; 
β 

y-axis 

x-axis 
(Greenwich Meridian) 

z-axis 
(North Pole) 
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Figure 3.17 – Computational geometry for the number of nanosatellites 

 
Let SEarth be the area of the Earth: sctuvw � 4ybc�    (14) 
, where RE is the Earth radius (6378 km). 
Let Spole be the area of each icecap. We assumed that the two icecaps have an equal 

surface. By applying trigonometric formulas, we obtain: sz{|p � 2ybc� ~ �1 � cose   (15) 

According to Figure 3.17, St is the area of the Earth, excluding icecaps: sv � sctuvw � 2 ~ sz{|p  (16) 

 
By replacing Eq. 14 and Eq. 15 in Eq. 16, we obtain: sv � 4ybc� ~ cos e   (17) 
Sn denotes the nanosatellite coverage area. For a given minimum elevation angle εmin, 

the area covered by the nanosatellite will be: s� � 2ybc� ~ �1 � cos�"t� (18) 
We estimated the minimum number of nanosatellites Nn: +� & ����    (19) 

By replacing Eq. 17 and Eq. 18 into Eq. 19, we obtain the minimum number of 
nanosatellites as a function of maximum Earth central angle (λmax) and β angle: +� & � ��� ������ ����   (20) 

Therefore, a nanosatellite constellation is defined by the vector �NQ>, >I, �, �U@>, @P, 
where Nn is the number of nanosatellites in the constellation, np is the number of orbital 
planes, h is the constellation altitude, εmin is the minimum elevation angle and i is the 
inclination angle with respect to the equatorial plane. 
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3.3.8 Geometric relationships between nanosatellite and user terminal on Earth 

 
Figure 3.18 describes the basic geometric relations between a nanosatellite and a user 

terminal on Earth.  

 
Figure 3.18 – Geometric relationships between nanosatellite, target area and Earth’s center 

 
Five important geometrical parameters can be identified: 
1. The nanosatellite elevation angle ε is defined as the angle measured at the target 

between the nanosatellite and the local horizontal. It is the angle at which a user 
can see the nanosatellite above the horizon. 

2. The nadir angle η is the angle measured at the nanosatellite from the sub-satellite 
point (nadir) to the target. It gives the deflection of the user from nadir as seen 
from the nanosatellite. 

3. The Earth central angle λ is measured at the center of the Earth from the sub-
satellite point to the target. 

4. The angular radius of the Earth ρ is the angle seen from the nanosatellite to the 
horizon. 

5. The slant range D denoting the distance between the user terminal and the 
nanosatellite. 

Because we assumed that Earth is spherical, the line from the nanosatellite to the 
Earth’s horizon is perpendicular to the Earth’s radius.  

Therefore, sin � � cos�� � �����w  (21) 

and � � �� � 90°    (22) 
By applying trigonometric laws in Figure 3.18, we determine the nadir angle η and 

elevation angle ε: tan � � ���� ��� ������ � ����   (23) 
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cos � � ��� ���� �    (24) 

Using the sine and cosine laws for the triangles NTU and OTN, the earth central angle 
and the nadir angle can be given as a function of the elevation angle: bsin � � 6sin � � bc � 2sin�90°� � � bc � 2cos �  �25 

Since � � y � �� � 90°� � k � � 90°� �� � � (26), we can observe that (λ+ε) is 
the complement angle of the η angle. 

Replacing Eq. 26 in Eq. 25, we obtain that: � � �	33�0 � �����w cos �  � �   (27) � � �	30�� � �����w cos �    (28) 

The relationship between η, λ and ε is given by: � � � � � � 90°    (29) 
The distance D at which the satellite will be in view of the ground station is: 6 � bc ��������     (30) 

By replacing Eq. 27 and Eq. 28 in Eq. 30: 6 � ¡bc�0���� � 2bc2 � 2� � bc sin �  (31) 

An important parameter is the total time in view T expressed as: , � ¢180°�	33�0 cos�"t�cos �"£�  �32 
As James R. Wertz states in paper [21], for communications, the satellite must be 

more than 5º above the horizon. In practice, we select a specific value of εmin and we use this 
value. This parameter has a major influence on other computed parameters. 

Given minimum elevation angle εmin, we define the maximum Earth central angle 
λmax, the maximum nadir angle ηmax, measured at the nanosatellite from nadir to the ground 
station and the maximum slant range Dmax at which the nanosatellite will still be in view: sin �"t� � sin � cos �"£�    (33) �"t� � �	33�0 � �����w cos �"£�  � �"£�  (34) �"t� � �	30�� � �����w cos �"£�    (35) �"t� � 90°� �"£� � �"t�    (36) 6"t� � bc ��������������     (37) 

By replacing Eq. 35 and Eq. 36 into Eq. 37, we obtain that the maximum slant range 
is: 6"t� � ¡bc�0����"£� � 2bc2 � 2� � bc sin �"£�  (38) 

 
The maximum time in view Tmax for any point P on the surface of the Earth occurs 

when the nanosatellite passes overhead and λmin=0: ,"t� � ¢ �����¤�°    (39) 
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The orbit period P of each nanosatellite may be calculated as a function of the 
constellation altitude h: ¢ � 1.658669 ~ 10�¦ ~ �bc � 2�/� (40) 
 
3.3.9 Earth coverage assessment 

 
Earth coverage means the area of the Earth that the satellite antenna/instrument can 

see at one instant or over an extended period. Since one of our mission objectives is to 
provide coverage over a specific region of the Earth (Salar de Uyuni Desert), the coverage is 
a key element in our nanosatellite constellation design. 

We define four parameters used for determining the Earth coverage: 
1) Field of view (FOV) or antenna footprint (Fa) is the actual area that the antenna 

can see at any moment; 
2) Access area (Aa) is the total area on the ground that might be seen at any moment 

by directing the antenna; 
3) Coverage rate (Rcov) is the rate at which the antenna accessing new land; 
4) Access rate (Ra) is the rate at which new land is coming into the satellite access 

area.  
In the case of an omni-directional antenna, which is commonly used for CubeSat class 

nanosatellite, the footprint and the access area are always equal. For other instruments such as 
scanning sensors, radar, they are not the same. 

If an antenna covers all of the area available to it as the satellite moves along, the 
coverage rate and the access rate are different. For instruments that continuously select the 
interest region, the coverage rate and the access rate are completely different. 

In order to evaluate the coverage, we propose an analytical method that provides us 
the approximate formulas for coverage parameters. 

The mathematical formulas presented in this section neglect the oblateness effect and 
the rotation of the Earth underneath the orbit, but they do consider the spherical surface of the 
Earth. 

Since we envisaged telecommunication missions for all three models proposed in this 
thesis, we assumed that the instrument will be an antenna whose footprint is a beamwidth 
circular section. 

One of the problems related to nanosatellites is the limited capability of RF section in 
terms of number and quality of available links. The uplink depends on the strength of the 
signal originating on the earth and the manner in which the nanosatellite receives it. The 
downlink, on the other hand, depends on how strongly the nanosatellite can transmit the 
received signal and how good the reception is at the ground station. 

The main feature of nanosatellite antennas is the lightweight structure and the high 
degree of integration. For nanosatellites, it is preferred to use antennas placed on outer walls.  

Nanosatellites need specific antennas (e.g., omni-directional, patch, micro-strip) due 
to their small size. Reflector antennas are inadequate, even if they are small, because they 
need a deployment mechanism. Inflatable antenna is another option, but the technology is 
still in its infancy. A new antenna concept, based on the idea of “structural radiators” 
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borrowed from Avionic and Naval applications, was proposed by G. Marrocco et al. in paper 
[104]. 

Figure 3.19 presents the nanosatellite geometry for computing antenna footprint. 
Let hF be the height of the antenna footprint: 2¨ � ©��{ � �£ ª 6 sin «sin �  �41 
, where δ is the antenna beamwidth and the coefficient Q=111.319 for length 

expressed in km. 
The linear approximation in Eq. 41 is convenient from a computational point of view, 

but it can lead significant error near the horizon where elevation angle ε is small. To improve 
this approximation, we used the center of the antenna beam because the toe is the worst-case 
link budget. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.19 – Nanosatellite geometry for computing antenna footprint 
 
Let wF be the footprint width and it is given by: 5¨ � bc sin�� ¬6 sin «bc  ª 6 sin«  �42 
Assuming that antenna projection is an ellipse on the Earth surface, then the footprint 

area is: ®t � y4 2¨5¨  �43 
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By replacing Eq. 41 and Eq. 42 into Eq. 43, we obtain that footprint area is: ®t � y4 6�0���«sin �  �44 
The instantaneous coverage rate Rcov for an antenna with the beamwidth δ is defined 

as ratio between the footprint area Fa and the antenna exposure time texp: b¯{° � ®t1p�z  �45 
We consider that antenna exposure time is: 1p�z � ±,  (46) 

, where ω=80% for nanosatellites and T is the total time in view of the nanosatellite. 
For general sensing instruments and omni-antennas, the access area Aa is given by: ²t � ³�1 � cos � (47) 
, where the coefficient Y has different values according to the unit of measure: ³ � ´ 2y, ��	 �	�� �� 01�	�-���02.556041 ~ 10¤, ��	 �	�� �� X�� µ 
The access rate Ra is the rate at which new land is coming into the nanosatellite access 

area: bt � 2³ sin �¢  �48 
We define the coverage vector C as: 

¶ � · ®t²tb¯{°bt
¸  �49 

 
3.3.10 Performance indicators for nanosatellite telecommunications 

 
Since one of the objectives of this thesis is to study the telecommunication framework 

of nanosatellite networks, we define in this chapter, some parameters that allow us to evaluate 
nanosatellite constellations performance. 

With the widespread availability of multimedia technology, and an increasing demand 
for electronic connectivity across the world, nanosatellite networks will play an indispensable 
role in providing low-cost, QoS guarantee communication services. Also, nanosatellite 
networks can be effectively used to provide real time as well as non-real time 
communications services to remote areas. 

 
3.3.10.1 Propagation delay and its relative deviation 

 

When sending data over nanosatellite transmission channel, there is always a 
propagation delay, expressed by Eq. 50, which is the time it takes for the signal to travel from 
the transmitting ground station to the nanosatellite. 1z � 63  �50 
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, where D is the distance at which the satellite will be in view of the ground station 
and c is the speed of light (300000 km/s). 

During each nanosatellite orbit, distance D varies between h, the nanosatellite altitude 
and Dmax, the maximum slant range at which the satellite will still be in view: 6 ¹ N2, 6"t�P (51) 

Considering this, the propagation delay variation interval is written as: 1z ¹ N1" , 1ºP (52) 

, where tm is the minimum propagation delay and tM is the maximum propagation 
delay: 1" � 23  �53 1º � 6"t�3  �54 

By replacing Eq. 53 and Eq. 53 into Eq. 52, we obtain: 1z ¹ »23 , 6"t�3 ¼ �55 
 
We define the relative deviation as: ∆� 1º � 1"1" k ∆� 1º1" � 1 �56 
By replacing Eq. 38 in Eq. 56, we obtain: 

∆� ¾¬bc2 � 0����"£� � 2bc2 � 1� bc2 sin �"£� � 1 �57 
We observe that Eq. 57 is a monotone function with the 

��w  argument. Considering 

this, the relative deviation is increasing with altitude decreasing. Therefore, even if LEO 
nanosatellites have the advantage of small propagation delay, their relative deviation is 
significant. 

 
3.3.10.2 Nanosatellite latency 

 
In this chapter, we develop a simple method to estimate the end-to-end delay, more 

commonly known as latency, in a nanosatellite network. 
The end-to-end delay (L) experienced by a data packet passing through a nanosatellite 

constellation is the sum of the propagation delay (tp), the transmission (packetizing) delay (tt), 
the inter-satellite link delay (ti), the on-board processing and switching delay (tr) and the 
buffering delay (tb).  ¿ � 1z � 1v � 1£ � 1u � 1À  (58) 

The propagation delay (tp) has been already introduced in Chapter 3.2.10.1. 
The transmission delay (tt) represents the time required to transmit a single data 

packet at the nanosatellite network data rate. 1v � 6�1� Z�3X�1 0���6�1� 	�1�  �59 
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The inter-satellite link delay (ti) is the sum of the propagation delays of the inter-
satellite links (ISLs) traversed by the connection. 1£ � ∑3	�00 � $��X0 $��[123  �60 

, where c is the speed of light (3*108 m/s). 
There are two types of inter-satellite links (or cross-links): in-plane links connect 

satellites within the same orbital plane and inter-plane links connect satellites in different 
orbital planes.  

In LEO constellations, the ISL delays depend on the orbital radius, the number of 
satellites per plane, the number of orbital planes. Also, the ISL delays change over the life of 
a connection due to constant movement of satellite and adaptive routing techniques applied in 
LEO systems. Thus, LEO constellations can exhibit a high variation in ISL delay. 

The data packets may experience additional delays (tr) at each nanosatellite hop 
depending on the amount of on-board switching and processing capacity. For our model, we 
consider switching and processing delays negligible as compared to the propagation delay. 

Buffering delay (tb) is the sum of the delays that occur at each hop in the network due 
to queuing operation. Buffering delays depend on the congestion level, queuing and 
scheduling policies and connection priority. 

The analysis of delay jitter in nanosatellite network is beyond the scope of this study. 
It could be considered in a more complex model of nanosatellite constellation. 

Latency is one of the most important sources of concern especially in time-sensitive 
applications, since it has a direct impact on the Quality of Service of the network. 

We briefly discuss here the basic qualitative requirements of three classes of 
applications: interactive voice/video applications, non-interactive voice/video applications 
and TCP/IP file transfer. 

According to the ITU’s “End-user multimedia QoS categories” paper [105], 
interactive voice requires very low delay (ITU-T specifies a delay of less than 400 ms to 
prevent echo effects) and delay variation (up to 3 ms specified by ITU-T). Although the 
propagation and inter-satellite link delays of LEOs are lower, LEO systems exhibit high delay 
variation due to connection handovers and high dynamics of satellites.  

Non-interactive voice/video applications are real-time applications whose delay 
requirements are not as stringent as their interactive counterparts. However, these 
applications also have stringent jitter requirements. As a result, the jitter characteristics of 
LEO systems must be carefully studied before they can service real time voice-video 
applications. 

The performance of TCP/IP file transfer applications is throughput dependent and has 
very loose delay requirements. As a result, LEO system with sufficient throughput can meet 
the delay requirements of file transfer applications. 
 
3.3.10.3 Calculating the amount of data transmitted at each nanosatellite pass 

  
In designing nanosatellite communication system, we must determine how fast the 

data rate must be in order to offer the desired telecommunication services and what kind of 
information can be transferred over the communication links. 
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We assumed that all nanosatellite constellation models proposed in this thesis use 
digital communication techniques. 

Let d be the amount of data needed to be transfer from the nanosatellite to the ground 
station, and r, the data rate. The relationship between these two parameters is given by: - � 	� ��°£pÂ,"t� � 1£�£v �61 

, where Tmax is the maximum time in view, which occurs when the nanosatellite 
passes directly overhead (Eq. 39), fview is the fraction of time in view, tinit is the time required 
to initiate a communication during each nanosatellite pass, and m is the margin needed to 
account for missed passes due to ground station down time. 

As mention in paper [95], the average value for fview is 80% for LEO satellites and m 
is estimated to be 1.25, since we assumed a dedicated ground station. Also, we consider that a 
reasonable time for initiate a communication is 1 minute. 

 
3.3.11 A Markov modeling method for performance evaluation of nanosatellite 

constellations 

 

This chapter presents a novel Markov modeling method for evaluating the 
performance of nanosatellite constellations. Firstly, we describe the reason for choosing 
Markov methods for assessing nanosatellite constellation performance. Then, the theoretical 
Markov model is briefly presented. Finally, the Markov method for assessing nanosatellite 
constellations performance is described. Chapter 4 will show how the Markov method has 
been applied to NanoDREAM constellation. 

 
3.3.11.1 Why Markov models for nanosatellites? 

 
Before introducing the theoretical Markov model, we need to justify why did we 

chose a Markov-based approach to evaluate the performance of nanosatellite constellations. 
We focus on Markov models because they have traditionally been used to evaluate the 

performance and the reliability of complex systems. Additionally, they are commonly used to 
study the dependability of complex systems. Since a nanosatellite is a complex system 
constituted of many sub-systems characterized by a high interdependency, Markov model is 
suited to study its reliability and performance. 

Moreover, a nanosatellite constellation is a dynamic complex system, which involves 
many nanosatellites distributed in multiple orbital planes and whose state change over time 
due to nanosatellites movement. For this reason, we used Markov modeling techniques to 
describe how a nanosatellite constellation will perform with respect to time. This involves 
taking into account all of the possible failures that may occur within the nanosatellite 
constellation. As individual nanosatellites might fail over time, the size and the geometry of 
the constellation will also change in time. To take into account potential failures and the 
effect they have on constellation performance, a reliability model is needed. 

In our research study we took benefit of the Markov process capacity of describing 
both the failure of a system and its subsequent repair. In our case, a system is nanosatellite or 
a nanosatellite constellation. Markov process develops the probability of the system being in 
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a given state, at a given time, as a function of a sequence of states previously experienced. 
Thus, it can describe the degradation states of the system operation process. In this states, the 
system has either partially failed or is not perform to the overall capacity (i.e., only few 
functions are performed). 

Furthermore, Markov method has some significant advantages which make it an ideal 
method for nanosatellite constellation performance assessment: 

� Simple modeling approach: the models are simple to develop even if complex 
mathematical approaches are needed. 

� Redundancy management techniques: system reconfiguration required by failures 
is easily incorporated in the model. This feature is very useful for future 
nanosatellite constellations, since nowadays several self-reconfiguration and 
autonomous control techniques are tested on individual nanosatellites in order to 
be further applied to nanosatellite constellations. Nanosatellite constellation can 
be self-reconfigured if a certain degree of autonomy is integrated. Also, future 
nanosatellites can be envisaged as plug&play systems, whose failed sub-systems 
are easily replaced on-orbit.  

� Complex systems: Markov models can easily handle complex system modeling by 
using several simplifying techniques. Nanosatellites are complex systems, 
involving many sub-systems that might failed for many reason during mission 
lifetime. Nanosatellite constellations are complex systems too, since they include 
many nanosatellites distributed in several planes and cooperatively working to 
accomplish a specific mission. Considering the high complexity of these systems, 
it is difficult to model them using classical techniques. For this reason, Markov 
model helps simplifying the modeling process of nanosatellites and nanosatellite 
constellations. 

The major drawback of Markov methods is the boosting of the number of states as the 
size of the system increases. The resulting states diagrams for large systems are generally 
extremely complicated, difficult to construct and computationally extensive. However, for 
high complexity systems, a combined approach is recommended. Thereby, Markov model 
can be used to analyze smaller parts of the large system. Then, other analysis techniques may 
be used to assess the overall performance of the system. 

 
3.3.11.2 Markov model overview 

 
In probability theory and statistics, a Markov model is a stochastic model that 

assumes the Markov property. A stochastic process has the Markov property if the 
conditional probability distribution of future states of the process depends only upon the 
present state. The Markov model assumes that the future is independent of the past given the 
present. A process with this property is called a Markov process.  

The simplest Markov model is the Markov chain which models the state of a system 
with a random variable that changes through time. It is defined as a random process with the 
property that the next state depends only on the current state. Often, the term Markov chain is 
used to mean a Markov process which has a discrete (finite or countable) state-space. 



 

105 

 

Markov analysis looks at a sequence of event and analyzes the tendency of one event 
to be followed by another. Using this analysis, we can generate a new sequence of random 
but related events, which appear similar to the original.  

A Markov chain is a sequence of random variables X1, X2, X3, ... with the Markov 
property, namely that, given the present state, the future and past states are independent. 

The mathematical formal definition of a Markov chain is: ¢u�Ã��� � �ÄÃ� � ��, Ã� � ��, … , Ã� � �� � ¢u�Ã��� � �|Ã� � ��    �62 
, where the possible values of Xi form a countable set S called the state space of the chain. 

 
3.3.11.3 Markov method for nanosatellite constellation performance evaluation 

 
A set of first-order differential equations is developed to model the evolution of the 

nanosatellite constellation, as shown in Eq. 63, where ¢(Æ  and ¢(  are n x 1 column vectors, n is 

the number of states in the constellation, ¢(Æ   is the probability vector of being in any given 

state at any given time, [A] is n x n transition state matrix, and ¢:Ç is the state probability 
vector. ¢(Æ � N²P ~ ¢(      (63) 

The number of first-order differential equations will be equal with the number of 
states of the constellation. The states of the constellation are defined by constellation’s 
elements failures which mean by the nanosatellite failures. The transitional probabilities 
between states are a function of the failure rates of the nanosatellites. 

The solution to this set of differential equations determines the probability of the 
nanosatellite constellation being in any given state at a particular time.  

The performance of the constellation is calculated as: 

¢È � �¶É ~ ¢É        �64"
É��  

, where Ck is the constellation capacity in each state k, Pk is the probability of being in 
each state k, m is the number of operational states. 

The constellation capacity in each state k during one day (24h) is defined as: ¶É � Êm ~ +É ~ -       �65 
, where Od is the number of orbits made by each nanosatellite during one day, Nk is 

the number of nanosatellites available in state k and d is the amount of data transmitted at 
each nanosatellite pass. The amount of data transmitted at each nanosatellite pass is given by 
Eq. 61. 

For calculating the performance of the nanosatellite constellation during the entire 
mission, an integration must be done: 

Z�1 � Ë �¶É¢É�1-1"
É��

Ì¨
�     �66 

, where p(t) is the overall performance of the constellation (i.e., the amount of data 
transmitted by the entire constellation), LF is the constellation lifetime, m is the number of 
operational states, Ck is the constellation capacity in each state k, and Pk(t) is the probability 
of being in each state k as a function of time t. 
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The performance metric measures how well the nanosatellite constellation satisfies 
the mission requirements over the entire mission life time, taking into account the potential 
degradation of nanosatellites which leads to constellation’s degradation. Thus, we determine 
both the probability that a nanosatellite constellation will continue to function over a given 
interval of time and the probability with which the nanosatellite constellation will function in 
different partially failed states throughout the mission. 

Therefore, the overall performance of the constellation is expressed as the overall 
amount of data that the constellation delivers over the mission life time. To calculate this 
amount of data, we must take into account all possible failures that may occur within the 
constellation. As individual nanosatellites within the constellation fail over time, the 
instantaneous data delivery rate of the constellation will decrease. Replacing failed 
nanosatellites with new nanosatellites during the mission will increase the constellation 
performance at the desired availability. The number of operational nanosatellites in the 
constellation decreases when individual nanosatellites fail and increases when renewal 
nanosatellites are placed to orbit. 

 

3.4 NanoICE model 
 

3.4.1 NanoICE mission description 

 
Why Polar Regions? 

 
The Polar Regions are crucial to the stability of the planet due to their unique 

phenomena. Circulatory systems for air and water reach the surface, as do the majority of the 
Earth's magnetic field lines. Thick glaciers have trapped air and water from ancient times.  

Nowadays, many Arctic and Antarctic mysteries have been unraveled. Still, many 
continue to puzzle us to this day. For instance, scientists have not yet calculate the Antarctic 
icecap balance, which is the ratio between the annual snow fallout and the amount of ice lost 
as icebergs thaw out. 

Unfortunately, due to the characteristics of Polar Regions (i.e., very cold, deserted, 
distant regions with sparse infrastructure, rough terrain consisting mainly of ice blocks and 
crevasses), the research activity is very expensive. International cooperative programs share 
the costs and maximize the number of coordinated scientific observations. The IPY is the 
most famous example of such ambitious cooperative program. 

International Polar Year (IPY) 2007-2008 is a project of $1.2 billion, involving 
scientist from 60 countries. Its main goal was to delve into Arctic and Antarctic secrets, by 
exploring the poles and their influence on the rest of the planet, polar region peoples and 
global climate systems. Besides the detailed study of the geophysical and climatic systems of 
the poles, IPY projects studied biodiversity, by covering entire polar ecosystems, 
epidemiology, and even sociological studies. To conclude, there is a huge interest of 
scientific community to unveil the enigmas of Polar Regions. 
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Why a nanosatellite constellation for Polar Regions? 

 
We propose to deploy a polar nanosatellite constellation, named NanoICE 

(Nanosatellite Innovative ConstEllation), that provides a continuous coverage of Arctic and 
Antarctic regions. NanoICE constellation is operated by a nanosatellite operator in charge of 
offering telecommunication services to Polar Regions scientific research communities. Our 
motivation for NanoICE concept resides on the continuous growth of Polar Regions scientific 
community, sustained by innovative projects and technological progress. Figure 3.20 
illustrates the research stations in Antarctica. 

 
Figure 3.20 – Antarctic research stations 

 
Our inquiry shows that new research stations were deployed in Polar Regions in the 

last five years. For example, the Princess Elisabeth Antarctic Research Station (Figure 3.21) 
is the first “zero emission” polar research station pre-built in Brussels and re-assembled in 
Antarctica from November 2007 to February 2008. 
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Figure 3.21 – Princess Elisabeth Antarctic Research Station 

 
Moreover, in August 2010, the Canadian government has chosen Cambridge Bay – a 

hamlet midway along the Northwest Passage in the country's far north – as the site for a 
world-class Arctic research station. 

Since some research stations are built on a floating ice shelf, British scientists are 
examining designs for the world's first walking building (Figure 3.22). It will need to stand 
up to harsh conditions without damaging this unique frozen environment. 

 
Figure 3.22 – Concept of the Antarctic walking research station 

 
Furthermore, innovative vehicles for Arctic and Antarctic exploration are proposed. A 

concept vehicle, named “Ninety Degrees South”, was proposed by the designer James Moon 
[106]. It is designed to meet the specific requirements, logistical challenges and harsh 
conditions of the Antarctic environment (Figure 3.23). Moreover, Remotely Operated 
Vehicles (ROV) remains an efficient technology to uncover the secrets of Antarctic and also 
be of great usefulness for daily operations in the close perimeter of Polar research stations. 
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Figure 3.23 – Ninety Degrees South concept vehicle 

 
Nowadays, there are almost 70 Antarctic research stations and approximately 30 field 

camps are established each austral summer to support specific projects. A total of 30 
countries (as of October 2006) operate seasonal and year-round research stations on the 
continent and in its surrounding oceans. The population of persons doing and supporting 
science on the continent and its nearby islands varies from approximately 4000 persons 
during the summer season to 1000 persons during winter. [107] 

Considering this framework, we believe that a dedicated nanosatellite solution (i.e., 
NanoICE) is the best way to provide Polar Regions scientists with telecommunications 
services that responds to their needs. 

Traditional broadband satellite systems are very expensive to develop, launch and 
operate. Indeed GEO satellites support voice, data, and video services, but they provide 
intermittent coverage since the ground stations at higher than 60º latitude have difficulty 
receiving signals at low elevations. Deploying a wireless network across the icecaps is not 
feasible because the research stations are sparse over large areas. 

NanoICE is aimed to meet the voice and data transfer needs of the entire Antarctic 
community. NanoICE system supports the remote monitoring of scientific experiments, the 
data transfer, and enables scientists to communicate with their colleagues around the world. 
NanoICE takes advantage of the technological advances in small satellite field, by providing 
QoS guarantee services at lower price. 

Our choice of using nanosatellites is sustained by the fact that small satellites have 
already been used as research tools of Polar Regions mysteries. A successful example is the 
Swedish microsatellite Astrid-2 [108], launched in December 1998, which began a new era of 
auroral research.  During its seven month lifetime, Astrid-2 collected more than 26 GB of 
high-quality data of auroral electric and magnetic fields, and auroral particle and plasma 
characteristics from approximately 3000 orbits at an inclination of 83º and an altitude of 
about 1000 km. By achieving both the technological and the scientific mission objectives, 
Astrid-2 has opened entirely new possibilities to carry out low-budget multipoint 
measurements in near-Earth space. 
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NanoICE constellation is placed on a polar orbit, thus being capable of providing the 
best coverage performance at high latitudes, in concentric rings around the poles. The Poles 
turn out to be the only geographic region where continuous coverage may be achieved. As the 
name suggests, polar orbits pass over the Earth’s Polar Regions from north to south. Since the 
orbital plane is nominally fixed in space, the planet rotates below a polar orbit, allowing the 
satellite low-altitude access to virtually every point on the surface. 

We placed NanoICE constellation on a sun-synchronous orbit, which means that each 
successive orbital pass occurs at the same local time of day. Keeping the same local time on a 
given pass implies the choice of the orbit as short as possible, which is to say as low as 
possible. However, very low orbits would rapidly decay due to atmospheric drag. We 
assumed an altitude of 700 km, since this is a commonly altitude used for polar satellites. 

 
3.4.2 NanoICE framework development 

 
In this sub-chapter, the NanoICE framework development is set up, by pointing out 

the objectives and the assumptions. Due to the complexity of the problem, some assumptions 
have to be made that simplifies numerical calculations.  

For covering the Polar Regions, the nanosatellites are placed on a single orbital plane, 
on a polar, sun-synchronous LEO type orbit. We assume that Earth is a perfect sphere, which 
is an adequate assumption for most mission geometry applications. For precise calculation, a 
correction for oblateness must be applied. In our calculations, we neglected the Earth’s 
rotation in the short time interval in which the nanosatellite passes over the target area. 

Since the regions of interest include the Poles, a polar constellation having several 
nanosatellites placed on a LEO, sun-synchronous orbital plane, inclined at 90º with respect to 
equatorial orbital plane and with enough altitude to provide the appropriate coverage at the 
smallest elevation angle (ε) is the best solution for our mission. 

NanoICE is a simple model which gives a general idea of nanosatellite polar 
constellation behavior. For this raison, we consider it as a good starting concept for providing 
telecommunications services to Polar region scientific community. NanoICE model has its 
own limitation, by not being capable of describing real on-orbit behavior of nanosatellite 
polar constellations because it does not consider all the perturbation effects that act on each 
nanosatellite. For these raisons, a high complexity model needs to be developed. 

The main aim is to find a polar nanosatellite constellation which satisfies the 
following objectives: 

� Objective 1: the number of nanosatellites in the constellation (Nn) has to be 
minimized; 

� Objective 2: the time in view (T) spent by each nanosatellite over any point of the 
target regions has to be maximized; 

� Objective 3: the quantity of data (d) downloaded at each nanosatellite pass has to 
be maximized. 

Once the objectives have been formulated and the assumptions have been described, 
the next step is to define NanoICE model and its parameters.  
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3.4.3 Formal mathematical problem definition 

 
In order to calculate the coverage area between 70°- 90° N latitude and 70°- 90° S 

latitude, we use an artifice, by considering the Earth tilted with 90°, as shown in Figure 3.24. 

 
Figure 3.24 – View of the Earth tilted with 90º 

 
Between 70° and 90° N latitude and also between 70º and 90º S latitude, there are 20° 

of latitude. Thus, the Polar Region coverage area can be considered as a coverage band 
delimitated by two red curves, as depicted in Figure 3.25. 

 
Figure 3.25 – Coverage area for NanoICE constellation 
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Considering this geometric translation, the number of nanosatellites in a polar 
constellation can be determined in the same way as for the NanoDREAM model, which 
considers a coverage band of 20º latitude on the Equator. 

By using the Eqs. 1 to 6 from NanoDREAM model (Chapter 3.2.4), the formal 
mathematical problem definition for NanoICE mission could be written as: 

 

Objectives: min Ns and max Cov 

 Constraints: Subject to 

   Altitude 500 Km ≤ h ≤ 1000 Km 

   Minimum elevation angle 5º ≤ εmin ≤ 30º 

              Latitude Í � ÍQABS� Î ÍÏALS� where: 

                                                                                         ÍQABS� � NÐÑ°, ÒÑ°P  
                                                                                         ÍÏALS� � NÐÑ°, ÒÑ°P 
   Sun-synchronous, polar orbit i=90º 

   Downlink data rate 9.6 Kbps ≤ r ≤ 1024 Kbps 

 
The objective vector V is summarized in Eq. 62: 

) � *+�,- . � /+#� �	 �� ����0�1�$$�1�0 �� 12� 3��01�$$�1���,��� �� 4��56�1� �#��1�1� 7 �67 
 
NanoICE-type constellation is defined by the vector �NQ>, >I, �, �U@>, @P, where Nn is 

the number of nanosatellites in the constellation, np is the number of orbital planes, h is the 
constellation altitude, εmin is the minimum elevation angle and i is the inclination angle with 
respect to the equatorial plane. 

 
3.4.4 Design vector and constant vector 

 
For NanoICE model we defined a design vector and a constant vector. As Eq. 68 

shows, three variables – constellation altitude, downlink data rate and minimum elevation 
angle – make up the design vector.  

V � *W�W�W�. � / X�Y Z0-�[	��07 �68 
Latitude (L), inclination angle (i) and β angle are variables of constant vector, given 

by Eq. 69. 

] � *^�^�^�. � _-�[	��0-�[	��0-�[	��0`  �69 
Table 3.5 summarizes design vector variables while Table 3.6 presents the values for 

constant vector parameters. 
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Design vector variable Σ Range 

Constellation altitude σ1 500 km ≤ h ≤ 1000 km 

Downlink data rate σ2 9.6 Kbps ≤ r ≤ 1024 Kbps 

Minimum elevation angle σ3 5º ≤ εmin ≤ 30º 

Table 3.5 – NanoICE design vector 
 

Constant vector variable Γ Value 

Latitude γ1 ¿Ó{uvw � N70°, 90°P ¿�{Ôvw � N70°, 90°P 
Inclination angle γ2 90º 

β angle γ3 70º 

Table 3.6 – NanoICE constant vector 
 
Since NanoICE model can be reduced to NanoDREAM model, we used the same 

methodology for estimating the number of nanosatellites in the constellation, which is 
described in Chapter 3.2.7. Also, the geometric relationships between nanosatellite and user 
terminal on Earth, defined in Chapter 3.2.8, can be applied to NanoICE constellations. The 
parameters used for NanoDREAM coverage assessment (i.e., antenna footprint, access area, 
coverage rate, access rate), presented in Chapter 3.2.9, are also valid for NanoICE 
constellations. 

Moreover, the indicators defined for evaluating the performance of NanoDREAM 
constellation in providing telecommunications services hold true for NanoICE constellations. 

 

3.5 NanoSPHERE model 
 

3.5.1 NanoSPHERE mission description 

 
We envisaged the NanoSPHERE concept in the context of a robust nanosatellite 

telecommunications market, where many nanosatellite operators are in concurrence. We 
assumed that a nanosatellite operator could use partial deployment techniques for assuring the 
desired coverage requirements existed at a certain moment, and to progressively extend the 
coverage area as the service demand is growing. 

Partial deployment options prove to be very useful particularly for Walker 
constellations [109], [110]. A Walker constellation is a symmetric, inclined constellation 
which can provide a higher diversity than a polar constellation. Diversity means the average 
number of satellites simultaneously in view of a user on the ground. A high diversity will 
bring technical benefits such as higher availability, fewer dropped connections and reduced 
multipath fading. Moreover, inclined orbit constellations are capable of providing continuous 
service to bands of latitude near the maximum and minimum latitudes of the satellite ground 
track. For these reason, we based our NanoSPHERE model on Walker-type constellation. 

The scenario proposed for NanoSPHERE constellation deployment implies two 
phases: 
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• Phase 1 
The nanosatellite operator deploys only a portion of the NanoSPHERE constellation 
over a specific remote region. For example, this portion could be represented by a 
NanoDREAM-type constellation deployed over Salar de Uyuni Desert for providing 
telecommunications services to an industrial company in charge of lithium resources 
exploitation. Thus, a segment of the entire NanoDREAM constellation is deployed to 
satisfy the coverage requirements of a restrained, specific remote area.  
By deploying only a portion of the full NanoSPHERE system, the nanosatellite 
operator could begin early revenue operations while the remaining orbital planes are 
progressively populated with nanosatellites. 

• Phase 2 
Due the increasing demand of telecommunications services by some industrial 
companies in charge of mineral resources exploitation in different remote regions of 
the Earth, the NanoSPHERE constellation need to be upgraded, by adding 
nanosatellites into orbit, for extending the coverage area. Global coverage might be 
achieved, by deploying the entire NanoSPHERE constellation, in the context of a 
significant demand of telecommunications services from many industrial companies 
involved in mineral resources exploitation. 
 
Nowadays, we cannot speak of the existence of a commercial telecommunication 

market for nanosatellites. However, there is a solid niche of leading suppliers of 
microsatellites, such as SSTL (UK), OCS (USA), CAST (China), ISS (Russia) and 
nanosatellites based on Cubesat standard, such as Pumpkin Inc. (USA), ISIS (Netherlands), 
Clyde Space (UK), GomSpace (Denmark), Stras Space (Canada), Princeton Satellite 
Systems, Inc. (USA), Adaptive Radio Technologies LLC. (USA). This is the first step – the 
basic pillar – in the effort of establishing, in the near future, a robust telecommunications 
market for nanosatellites. 

 
3.5.2 NanoSPHERE mathematical model 

 
For global coverage, we must determine the number of nanosatellites and their spatial 

arrangement (i.e., how many orbital planes and how many nanosatellites per plane). 
The following assumptions are considered:  

- the Earth is a perfect sphere;  
- the rotation of the Earth underneath the orbit is neglected. 

Let np be the number of orbital planes and nm, the number of nanosatellites per plane. �z � » 360°2�"t�¼ � 1 �70 
�" � » 180°2�"t�¼ � 1 �71 

The maximum Earth angle is defined by the following equation (see Eq. 34): �"t� � �	33�0 ¬ bcbc � 2 cos �"£� � �"£� 
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Thus, the number of orbital planes and the number of nanosatellites per plane are 
written as: �z � 1 � 180°�	33�0 � bcbc � 2 cos �"£�  � �"£�                  �72 

 �" � 1 � 180°2 Ö�	33�0 � bcbc � 2 cos �"£�  � �"£�×            �73 
 
Nn denotes the total number of nanosatellites in the constellation: +� � �z ~ �"  (74) 

Equations 69 to 72 do not take into account for the oblateness and the Earth rotation 
underneath the orbit. 

Once that we defined the formulas for calculating, we need to find a method to 
uniformly distribute the nanosatellites within the constellation. Based on our studies, we 
identified Walker pattern which provides continuous multiple coverage of all Earth’s surface 
with the smallest number of satellites. 

The Walker method is used to obtain an optimal constellation where the constellation 
must follow the followings: 

� the orbits are circular (eccentricity e=0) with the same altitude h; 
� the orbital planes have the same inclination angle with respect to equatorial plane 

in order to have the same perturbation effects acting on all satellites;  
� it provides the same coverage continuously, whether it is zonal coverage or global 

coverage; 
� it consists of minimum numbers of satellites. 
By applying Walker’s method, the NanoSPHERE model is defined by the following 

parameters. Nn is the total number of nanosatellites in the constellation, with nm 
nanosatellites evenly distributed in each of np orbital planes. All orbit planes are placed at the 
same inclination angle i relative to Earth’s equator. The ascending nodes of the orbit planes 

are uniformly distributed around the equator at intervals of 
�Ø�°�Ù . Within each orbit plane, the 

nanosatellites are uniformly distributed at intervals of  
�Ø�°�� .  

Since the pattern unit is defined as � � �Ø�°Ó� , the in-plane spacing between 

nanosatellites is # ~ �zand the node spacing is # ~ �". 

The phase difference between adjacent planes is ∆Ф � # ~ Ú, where µ is an integer 
from 0 to np-1. 

The NanoSPHERE pattern is fully specified by the following vector, which uniquely 
identify the set of orbits and nanosatellites orbital elements: +s � Û+�, �z, �" , �, ÜФ, 2, �Ý  (75) 
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3.6 Summary 

 
This chapter presented three nanosatellite constellation models. All three models were 

designed for providing telecommunications services to remote regions. The difference 
consists in the region on which the coverage is assured. Thereby, NanoDREAM model is 
designed for Bolivia’s Salar de Uyuni Desert, a region which detains 70% of the global 
lithium reserve. Also, we proposed to deploy a wireless-based network over the exploitation 
area of Salar de Uyuni Desert in order to provide telecommunication services via 
nanosatellite constellation. NanoICE model is intended for Polar Regions, in order to meet 
the voice and data transfer needs of the entire Antarctic and Arctic scientific community. 
NanoSPHERE model is aimed to provide global coverage in the context of a robust 
telecommunications market and assuming a significant demand of telecommunications 
services from different industrial companies in charge of mineral resources exploitation in 
many regions of the Earth. 

Moreover, a methodology for calculating the number of nanosatellites in constellation 
has been proposed. The parameters for Earth coverage assessment have been defined in order 
to evaluate nanosatellite constellations in terms of coverage. Several performance indicators 
(i.e., the amount of data transmitted at each nanosatellite passes, propagation delay, end-to-
end delay) have been introduced in order to evaluate nanosatellite constellations in terms of 
their ability to provide telecommunication services. 

A novel Markov modeling method for evaluating the performance of nanosatellite 
constellations has also been proposed, along with the reasons for choosing Markov method as 
a way of assessing nanosatellite constellation performance. 

The next chapter presents and discusses the simulations conducted for these three 
constellation models.  

Firstly, we briefly describe the simulation tools (i.e., SaVi, OPNET) used to evaluate 
the nanosatellite constellations’ performance in terms of coverage and the performance of the 
wireless-based network respectively. 

Secondly, the SaVi simulation results in terms of coverage area for each type of 
constellation (i.e., NanoDREAM, NanoICE, NanoSPHERE) are presented. Also, the 
numerical calculations of Earth coverage parameters and performance indicators (i.e, end-to-
end delay, propagation delay and its variation, the amount of data transferred at each 
nanosatellite pass) for the proposed constellation models are described and interpreted. 

Thirdly, the OPNET simulation results issued from testing our ground segment 
architecture envisaged for a lithium exploitation region are discussed. 

Since XSTP (eXtended Satellite Transport Protocol) has been identified as transport 
protocol targeted for nanosatellite constellations, various simulations were conducted in NS2 
modeler in order to evaluate XSTP performance over traditional satellite network and 
nanosatellite network respectively. As a starter, the simulation environment is presented 
along with simulation scenarios and XSTP software implementation solution. Then, we 
describe the simulation network topologies that were implemented in NS2 modeler. Since 
QoS aspect is an important focus of this thesis, we defined several QoS performance metrics, 
such as effective throughput, transmission overhead, channel efficiency and reverse channel 
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utilization. Thus, the XSTP performance is assessed with respect to QoS metrics and for 
every type of network (i.e., satellite, nanosatellite). The XSTP performance comparison 
between satellite network and nanosatellite network concludes Chapter 4. 
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Chapitre 4. LES RESULTATS DE SIMULATIONS 
 
 
Dans ce chapitre, nous présentons et discutons les résultats de simulations des trois 

modèles de constellations de nano-satellites (i.e., NanoDREAM, NanoICE et NanoSPHERE) 
proposés dans le Chapitre 3. Dans un premier temps, nous présentons une courte introduction 
sur les simulateurs utilisés (i.e., SaVi, OPNET) dans cette étude des performances. 
L'évaluation des performances des constellations de nano-satellites de type NanoDREAM, 
NanoICE et NanoSPHERE en termes de couverture a été faite en utilisant le simulateur SaVi. 
Le but principal était d'identifier la meilleure constellation qui satisfait les requis de mission 
(i.e., maximiser la couverture et minimiser le nombre de nano-satellites). Ainsi, les calculs 
numériques des paramètres de couverture et des indicateurs de performances ont été présentés 
pour chaque type de constellation nano-satellitaire.  

Nos simulations montrent qu'une constellation NanoDREAM ayant 9 nano-satellites, 
placés sur un seul plan orbital équatorial à 1500 km d’altitude et avec un angle d’élévation de 
15º est la meilleure configuration car elle fournit une couverture totale du désert Salar de 
Uyuni, en ayant aussi un nombre minimal de nano-satellites. Pour offrir des services de 
télécommunications pour la communauté scientifique des Régions Polaires, une constellation 
de type NanoICE ayant 15 nano-satellite placés sur une orbite polaire à 700 km d’altitude et 
avec un angle d’élévation de 10º est la meilleure solution. Nous avons aussi identifié qu’une 
constellation de type NanoSPHERE avec 45 nano-satellites placés sur 5 plans orbitaux avec 9 
nano-satellites par plane, à 1500 km d’altitude est la meilleure solution pour fournir une 
couverture globale de la Terre, sauf aux Régions Polaires. Cette constellation peut être 
déployée dans un contexte d’une forte demande de services de télécommunications par des 
entreprises industrielles chargées d’exploitation des ressources minières dans plusieurs 
régions de la Terre. 

De plus, l'architecture du segment terrestre destinée à fournir des services de 
télécommunications dans la zone d'exploitation du désert Salar de Uyuni est implémentée 
dans le simulateur OPNET. Ce réseau est un réseau de type Ad hoc qui permet de connecter 
tous les bâtiments de façon efficace. Nous avons choisi le protocole réactif AODV (Ad hoc 
On-Demand Distance Vector) parce qu’il correspond à l’approche recommandée pour les 
réseaux de nano-satellites, décrit dans le Chapitre 2.4.3. Nous avons conduit plusieurs 
simulations afin d’évaluer son efficacité en termes de communications via un réseau nano-
satellitaire. Les résultats de nos simulations démontrent que l’architecture proposée est 
capable de fournir une bande passante supérieure à la bande passante offerte par les nano-
satellites actuels. 

Puisque le protocole de transport XSTP  a été identifié comme un candidat pour les 
constellations de nano-satellites, nous conduisons une étude des performances pour évaluer sa 
capacité à fournir des services de télécommunications. Ainsi, le protocole de transport XSTP 
a été implémenté dans le simulateur NS2 et plusieurs simulations ont été faites afin d’évaluer 
ses performances à travers un réseau de satellites classiques et un réseau de nano-satellites. 
Deux scénarios de simulation ont été définis : la communication unidirectionnelle, où le canal 
de transmission est symétrique et la communication bidirectionnelle pour considérer le canal 
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asymétrique. De plus, deux topologies de réseau ont été implémentées dans le simulateur 
NS2 : un réseau de satellites traditionnels basé sur la constellation de satellites Teledesic et 
une constellation de type NanoDREAM identifiée comme la meilleure solution pour fournir 
la couverture sur le désert de Salar de Uyuni, avec un nombre minimal de nano-satellites dans 
la constellation. 

La Qualité de Service (QdS) dans les réseaux de nano-satellites sera un grand défi 
pour la communauté scientifique, en considérant l'évolution de la technologie multimédia et 
l'intérêt commercial des futurs opérateurs nano-satellitaires pour fournir des services de 
télécommunications de haute qualité au grand publique. Pour cette raison, nous avons défini 
plusieurs paramètres de performances de QdS, comme la bande passante effective, 
l’overhead, l’efficacité du canal de transmission et la bande passante nécessaire pour la 
transmission en sens inverse. Le but est de comparer les performances du protocole XSTP 
avec celle de clones TCP. Dans un premier temps, nous présentons les résultats des 
simulations pour le réseau de satellites traditionnels et ensuite, les résultats de simulation 
pour le réseau de nano-satellites. 

Une analyse intéressante est la comparaison des performances de XSTP entre le 
réseau satellitaire et le réseau nano-satellitaire. 

Dans le cas du scenario unidirectionnel, les deux types de réseau (i.e, satellites, nano-
satellites) fournissent approximativement le même niveau d’overhead pour chaque catégorie 
de taux d’erreurs définie. Le protocole XSTP a une bonne capacité d’adaptabilité dans des 
conditions caractérisées par un taux d’erreurs faible, mais ses performances dans un 
environnement avec un très haut taux d’erreurs restent un problème qui doit être résolu. De 
plus, les deux réseaux ont des résultats comparatifs en termes d'efficacité pour chaque 
catégorie de taux d’erreurs. Le protocole XSTP a des bonnes performances (96%) dans des 
conditions de bas taux d’erreurs et même pour des haut taux d’erreurs (86%), ce qui signifie 
que le canal de transmission est très bien utilisé pendant la transmission des données. 

Quant au scenario bidirectionnel, les deux réseaux ont les mêmes performances pour 
des conditions de bas taux d’erreurs. Cependant, nous remarquons que le réseau nano-
satellitaire fournit un overhead inférieur au réseau de satellites conventionnels, dans des 
conditions de haut et très haut taux d’erreurs. Par contre, les performances du protocole 
XSTP pour les deux réseaux, dans un environnent de très haut taux d’erreurs, reste un 
problème qui doit être résolu. L’overhead est une mesure qui permet d'évaluer l'efficacité des 
protocoles vis à vis de la puissance des nano-satellites, car la transmission de plus de paquets 
consomme plus d’énergie. En outre, envoyer plus de données augmente la probabilité de 
collision de paquets et peut retarder des paquets dans les files d'attente. À cet égard, nos 
simulations démontrent que le protocole XSTP est un bon candidat pour les réseaux de nano-
satellites parce qu'il considère comme limitée les ressources des nano-satellites. Quant à 
l'efficacité du canal de transmission, les deux réseaux ont des performances comparables dans 
des conditions de bas et haut taux d’erreurs. L’efficacité du protocole XSTP à travers le 
réseau de nano-satellites, dans des conditions de très haut taux d’erreur, est meilleure 
(presque 90%) que celle offert par le réseau de satellites. Cela signifie que le canal de 
transmission est mieux exploité pendant les communications nano-satellitaires. C'est une 
raison de plus pour considérer le protocole XSTP comme une bonne solution pour les 
télécommunications via les réseaux de nano-satellites. 
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4 SIMULATION RESULTS AND ANALYSIS 
 

4.1 Introduction 

 

In this chapter, we present and discuss the simulation results of the three nanosatellite 
constellations models (i.e., NanoDREAM, NanoICE, and NanoSPHERE) proposed in 
Chapter 3. Nanosatellite constellations’ performance evaluation in terms of coverage was 
done using computer simulations in SaVi modeler. The main purpose was to identify the best 
constellation which satisfies mission requirements in terms of coverage and minimal number 
of nanosatellites. Also, the numerical calculations of Earth coverage parameters and 
performance indicators were discussed for each nanosatellite constellation type. Then, the 
ground segment architecture for Salar de Uyuni exploitation site is built in OPNET modeler 
and simulations are run for testing its communication efficiency. 

Since XSTP (eXtended Satellite Transport Protocol) has been identified as transport 
protocol targeted for small satellite constellations, we conduct a simulation study in order to 
assess its ability to provide efficient communications services. Thus, we implemented XSTP 
in NS2 simulator and we run simulations for XSTP communications via traditional satellite 
network and nanosatellite network respectively. Two simulation scenarios were defined: one-
way communication, aiming to meet symmetric channel, and bidirectional communication for 
considering asymmetric channel.  

Moreover, the software implementation of XSTP protocol is described along with 
simulation parameters and data link parameters. For running NS2 simulations, we focus on 
two network topologies: a traditional satellite network based on Teledesic satellite 
constellation and a NanoDREAM-type constellation identified as the best solution for 
providing coverage over Salar de Uyuni Desert, by minimizing the number of nanosatellite in 
the constellation. 

Because of the rising popularity of multimedia applications and potential commercial 
usage of nanosatellite networks, QoS support for nanosatellite networks will become an 
unavoidable task. For this reason, we defined several QoS performance metrics, such as 
effective throughput, transmission overhead, channel efficiency and reverse channel 
utilization, in order to compare XSTP performance to some TCP clones, in case of a high 
BER environment. In the first place, we present the simulation results for traditional satellite 
network and then, the simulation results for nanosatellite network. Finally, a comparative 
study regarding XSTP performance over satellite network and nanosatellite network 
concludes this chapter. 

 

4.2 Simulation results of nanosatellite constellations 

4.2.1 Simulation environment 

 
SaVi (Satellite Visualization) software [111] is a simulator, originally written at the 

Geometry Center, which allows satellite orbits and coverage simulations, in two and three 
dimensions. For real-time 3D animations (i.e., videos, interactive java animations and 
renderings of constellations), SaVi can use Geomview. 
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SaVi runs on Microsoft Windows (under Cygwin, which emulates a Unix 
environment), on Macintosh OS X, Linux and Unix. SaVi requires Tcl/Tk (Tool Command 
Language/ToolKit), an open source programming language. The most common Tcl extension 
is the Tk toolkit, which provides a graphical user interface library for a variety of operating 
systems. 

This simulator is particularly useful to load in simulations of theoretical 
constellations, known satellite constellations (e.g., Globalstar, Iridium, Orbcomm), 
navigation constellations, and various system proposals. 

For simulating the ground segment, we used OPNET [112], a simulator built on top of 
a discrete event system, as NS-2. It is known as the industry’s leading simulator specialized 
for network R&D. It allows users to design and study communication networks, devices, 
protocols, and applications with great flexibility. It also provides a graphical editor interface 
to build models for various network entities from physical layer modulator to application 
processes. 

 
4.2.2 Nanosatellite constellation implementation solution 

 

This chapter presents how nanosatellite constellations were implemented in SaVi 
modeler. Also, some useful explanations concerning SaVi interface are included for a good 
understanding and interpretation of the nanosatellite constellation simulation results 
presented in this chapter. 

In order to define a new constellation in SaVi simulator, a script is created, by using 
the following parameters: 

• SATS_PER_PLANE = the number of nanosatellites on every orbital plane; 

• NUM_PLANES = the number of orbital planes; 
• INTERPLANE_SPACING = the distance (in degrees) between two orbital plans; 
• a = the distance entre between Earth’s center and nanosatellite (= RE + h); 

• e = eccentricity; 

• inc = orbit inclination angle 

• Omega = the distance in longitude measured between two orbital plans; 
• coverage_angle = coverage angle (=εm/2); 
• T_per = orbit period. 
The main window of SaVi simulator is shown in Figure 4.1. This is where satellite 

parameters are edited. The default simulation time interval is 60 seconds for each step.  The 
>> and << buttons allows to run simulation forwards and backwards in time, while > and < 
step forwards a single interval of time; the default time interval is set to sixty seconds for 
each step. 
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Figure 4.1 – Main SaVi window 

 
By clicking the menu File → Load, we could load the script of a constellation (Figure 

4.2). 

 
Figure 4.2 – Script loading in SaVi modeler 

 
Once the file is loaded, we could see the constellation parameters (e.g., number of 

satellite within the constellation, inclination angle, eccentricity, etc.) in the main window 
(Figure 4.3). 

 
Figure 4.3 – Constellation visualization 
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In terms of visualization, the coverage panel is the most used feature of SaVi 
simulator and where most work will be done. For viewing a constellation in 2D, we need to 
access View menu → Global coverage option and to choose map settings (Figure 4.4): 

- the map projection size (600×300 pixels or 1024×512 pixels); 
- the number of coverage shading levels. 

 
Figure 4.4 – Map projection settings window 

 

 
Figure 4.5 – 2D constellation view 

 
Figure 4.5 illustrates a 2D view of a constellation. We observe that various settings 

are available: 
� Show Earth map; 
� Type of map projection; 
� Show satellites; 
� Show coverage; 
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� Use interval decay; 
� Show sunlight. 

A number of different map projections can be chosen: 
� cylindrical view is useful for sending texture maps to Geomview; 
� unprojected map shows high latitudes and poles more clearly than the 

cylindrical view. 
� spherical view is substitute for not using Geomview in order to have an idea of 

“real” coverage on sphere. 
� sinusoidal view is only used for US coverage. 

In our simulations, we have generally used unprojected map to have a clear view of 
constellation coverage. 

Satellite coverage, represented by default in yellow/red, is intended to give an idea of 
the number of satellites visible from a point, or available diversity. The higher the number of 
satellites covering a point, the deeper the shade of red is. 

Interval decay option, which by default is represented with shades of blue, is intended 
to give an idea of where a satellite footprint has been and is going to be, even when you look 
at a still map snapshot. 

By choosing « ground terminal mask elevation » option, the maximum coverage of 
every satellite is shown. 

SaVi software also has the possibility of showing the geographic coordinates (latitude 
and longitude) of any point on the Earth's surface. Bolivia’s Salar de Uyuni Desert 
geographical coordinates are depicted in Figure 4.5. 

 
4.2.3 NanoDREAM results 

 
This chapter presents the simulation results of NanoDREAM constellation model. 

Firstly, the area of Salar de Uyuni Desert has been calculated. Then, several NanoDREAM 
constellations have been evaluated in terms of coverage and number of nanosatellites in the 
constellation. Also, an analysis based on performance indicators (data rate, propagation delay 
and its relative deviation) has been done. 

 
4.2.3.1 Dimensioning target coverage area 

 
Firstly, we need to calculate the target area that our nanosatellite constellation has to 

cover. By using the online calculator [113], we found that Salar de Uyuni Desert is 
delimitated by the following geographic coordinates (Table 4.1 and Figure 4.6): 

Points Latitude (S) Longitude (W) 

A 19º 39’ 13” 67º 38’ 19” 

B 20º 11’ 8” 66º 46’ 35” 

C 20º 50’ 11” 67º 36’ 1” 

D 20º 10’ 22” 68º 21’ 10” 

Table 4.1 – Geographical coordinates of Salar de Uyuni Desert 
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Figure 4.6 – Estimated coverage area of Salar de Uyuni Desert 

Figure 4.7 illustrates the main meridians and parallels that bound the desert.  

 
Figure 4.7 – Main meridians and parallels crossing Salar de Uyuni Desert 

 
Then, by using an online calculator [114], which allows calculating the distance 

between two points of latitude and longitude, we determined the following distances: -��²,¶ ª 132 X� -��Þ,6 ª 164 X� 
We model the coverage area as an ellipse, with semi-major axis of length a: � � -�2 � 164 X�2 � 82 X� 

and semi-minor axis of length b:  � -�2 � 132 X�2 � 66 X� 

Knowing that the ellipse area is: ² � y�  
The area of coverage will gave a surface of: s � 5412y ª 17000 X�� 
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Thus, we estimated that the area of Salar de Uyuni Desert is 17000 km2. This 
parameter is important for ground segment and space segment dimensioning. 

 
4.2.3.2 Numerical calculations for NanoDREAM model 

 

This section presents numerical calculations of NanoDREAM model which 
corresponds to Salar de Uyuni Desert exploitation mission, described in Chapter 3.2.1. 

In our numerical calculations, we consider three different altitudes: 
� 800 km, which is a common altitude for CubeSat launching; in order to validate 

our model, it is very important to use altitudes that correspond to real on-orbit 
nanosatellites. 

� 1000 km and 1500 km, altitudes that allows us to minimize the number of 
nanosatellites within the constellations. Also, for these altitudes, the atmospheric 
drag resulting in satellite re-entry is significantly reduced. 

By using nanosatellite model equations from Chapter 3, we calculate the following 
parameters: 

λmax – maximum Earth central angle; 
ηmax – maximum nadir angle, measured at the satellite from nadir to the ground 

station; 
Tmax – maximum time in view; 
Nmin – minimum number of nanosatellites within the constellation; 
Dmax – maximum slant range at which the satellite will still be in view; 
tp – propagation delay; 
∆ – propagation delay relative deviation; 
P – nanosatellite period; 
v – nanosatellite velocity; 
In this chapter, a nanosatellite constellation is defined by the vector �NQ>, >I , �, �U@>, @P, where Nn is the number of nanosatellites in the constellation, np is the 

number of orbital planes, h is the constellation altitude, εmin is the minimum elevation angle 
and i is the inclination angle with respect to the equatorial plane. 

An important QoS parameter in satellite communication is round-trip propagation 
delay, which has a great impact on multimedia applications that cannot tolerate delay. For our 
study, this metric shows the suitability of our nanosatellite architectures for this type of 
applications. We found appropriate to present here the numerical results of the propagation 
delay because this parameter is calculated for every nanosatellite constellation, as shown in 
the following tables. 

Table 4.2 to Table 4.4 summarizes the main parameters of NanoDREAM-type 
constellations. These parameters were calculated by varying the minimum elevation angle 
between 5 degrees and 30 degrees and considering three altitude values: 800 km, 1000 km 
and 1500 km respectively.  
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Altitude =800 km, P =100.87 min, v=7.4561 m/s �NQ>, >I, �, �U@>, @P εmin 

(º) 

λmax 

(º) 

ηmax 

(º) 

Tmax 

(min) 
Nmin 

DM 

(km) 

tm 

(ms) 

tM 

(ms) 
∆ � NÒ, <, ßÑÑ àU,áº, ÑºP 5 22.72 62.28 12.73 9 2782.73 2.66 9.27 2.48 � N<ã, <, ßÑÑ àU,<Ñº, ÑºP 10 18.95 61.05 10.62 13 2367 2.66 7.89 1.96 � N<ß, <, ßÑÑ àU,<áº, ÑºP 15 15.87 59.13 8.9 18 2032 2.66 6.77 1.54 � N=á, <, ßÑÑ àU,=Ñº, ÑºP 20 13.38 56.62 7.5 25 1767.48 2.66 5.89 1.21 � Nãá, <, ßÑÑ àU,=áº, ÑºP 25 11.36 53.64 6.36 35 1560 2.66 5.2 0.95 � Näß, <, ßÑÑ àU,ãÑº, ÑºP 30 9.69 50.31 5.43 48 1395.07 2.66 4.65 0.75 

Table 4.2 – Numerical results for NanoDREAM constellations placed at 800 km of altitude 
 
In case of a communication via nanosatellite network, the most important latency 

component is propagation delay. Below, we analyze three groups of six NanoDREAM 
constellations each and we point out the “best case” solution and “worst case” solution in 
terms of transmission delay. For every solution, the transmission delay is represented as 1 ¹ N1|; 1ÔP, where l denote low interval limit and u, upper interval limit. 

Based on numerical results from Table 4.2, the following remarks can be made: 
� the constellation ¶ N9,1,800 X�, 5º, 0ºPes is the “worst case” solution, having a 

transmission delay 1 ¹ N10.64;37.08P�0, as shown in the following calculations: 1| � 2 ~ �2.66�0 � 2.66�0 ª 10.64�0 1Ô � 2~ �9.27�0 � 9.27�0 ª 37.08�0 
Therefore, the maximum propagation delay in case of a communication between two 
user terminals, by passing through a nanosatellite of this constellation, is about 37 ms, 
while the minimum propagation delay will be about 11 ms. 

� the constellation ¶ N48,1,800 X�, 30º, 0ºP is the “best case” solution in terms of 
propagation delay, having 1 ¹ N10.64;18.6P�0, as shown in the following 
calculations: 1| � 2 ~ �2.66�0 � 2.66�0 ª 10.64�0 1Ô � 2~ �4.65�0 � 4.65�0 ª 18.60�0 
In case of a communication between two users, by passing through a nanosatellite of 
this constellation, the minimum round-trip propagation delay is around 11 ms while 
the maximum propagation delay is about 19 ms. 
 
The constellations identified as “worst case” and “best case” solutions among the 

nanosatellite constellations placed on circular orbit at 800 km of altitude don’t take into 
account our mission requirements because none of them provides coverage of Salar de Uyuni 
Desert. 
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Altitude =1000 km, P =105.11 min, nanosatellite velocity=7.3507 m/s �NQ>, >I, �, �U@>, @P εmin 

(º) 

λmax 

(º) 

ηmax 

(º) 

Tmax 

(min) 
Nmin 

DM 

(km) 

tm 

(ms) 

tM 

(ms) 
∆ � NÐ, <, <ÑÑÑ àU,áº, ÑºP 5 25.55 59.45 14.92 7 3194.23 3.33 10.64 2.2 � N<Ñ, <, <ÑÑÑ àU,<Ñº, ÑºP 10 21.64 58.36 12.63 10 2762.68 3.33 9.2 1.76 � N<ä, <, <ÑÑÑ àU,<áº, ÑºP 15 18.38 56.62 10.73 14 2408.38 3.33 8.02 1.4 � N<Ò, <, <ÑÑÑ àU,=Ñº, ÑºP 20 15.67 54.33 9.15 19 2120.5 3.33 7.06 1.12 � N=á, <, <ÑÑÑ àU,=áº, ÑºP 25 13.42 51.58 7.83 25 1889.34 3.33 6.3 0.89 � Nãä, <, <ÑÑÑ àU,ãÑº, ÑºP 30 11.52 48.48 6.72 34 1701.22 3.33 5.67 0.7 

Table 4.3 – Numerical results for NanoDREAM constellations placed at 1000 km of altitude 
 
Numerical results from Table 4.3 lead us to the following observations: 

� the constellation ¶ N7,1,1000 X�, 5º, 0ºP is the “worst case” solution, having a 
propagation delay 1 ¹ N13.32;42.56P�0, as shown in the following calculations: 1| � 2 ~ �3.33�0 � 3.33�0 ª 13.32�0 1Ô � 2 ~ �10.64�0 � 10.64�0 ª 42.56�0 
Therefore, the maximum propagation delay in case of a communication between two 
terminals, by passing through a nanosatellite of this constellation, is about 43 ms, 
while the minimum propagation delay is about 14 ms. 

� the constellation ¶ N34,1,1000 X�, 30º, 0ºP is the “best case” solution in terms of 
propagation delay, having 1 ¹ N13.32;22.68P�0, as shown in the following 
calculations: 1| � 2 ~ �3.33�0 � 3.33�0 ª 13.32�0 1Ô � 2~ �5.67�0 � 5.67�0 ª 22.68�0 
In case of a communication between two user terminals, by passing through a 
nanosatellite of this constellation, the minimum round-trip propagation delay is 14 
ms, while the maximum propagation delay is about 23 ms. 
 
The constellations identified as “worst case” and “best case” solutions don’t take into 

consideration our mission requirements because none of them provides coverage of Salar de 
Uyuni Desert. These observations were made only on “propagation delay” basis. 

The constellation ¶ N14,1,1000 X�, 15º, 0ºP provides a coverage band between 0º and 
20º S latitude, including also Salar de Uyuni desert region. This constellation offers a 
propagation delay 1 ¹ N13.32;32.08P�0, according to calculations above: 1| � 2 ~ �3.33�0 � 3.33�0 ª 13.32�0 1Ô � 2 ~ �8.02�0 � 8.02�0 ª 32.08�0 
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Altitude =1500 km, P =115.98 min, nanosatellite velocity=7.1136 m/s �NQ>, >I, �, �U@>, @P εmin 

(º) 

λmax 

(º) 

ηmax 

(º) 

Tmax 

(min) 
Nmin 

DM 

(km) 

tm 

(ms) 

tM 

(ms) 
∆ � Ná, <, <áÑÑ àU,áº, ÑºP 5 31.24 53.76 20.13 5 4101.16 5 13.67 1.734 � NÐ, <, <áÑÑ àU,<Ñº, ÑºP 10 27.12 52.88 17.47 7 3646.28 5 12.15 1.43 � NÒ, <, <áÑÑ àU,<áº, ÑºP 15 23.55 51.45 15.17 9 3258.45 5 10.86 1.172 � N<<, <, <áÑÑ àU,=Ñº, ÑºP 20 20.46 49.54 13.18 11 2930.17 5 9.76 0.952 � N<á, <, <áÑÑ àU,=áº, ÑºP 25 17.8 47.2 11.47 15 2657.28 5 8.85 0.77 � N<Ò, <, <áÑÑ àU,ãÑº, ÑºP 30 15.48 44.52 9.97 19 2427.84 5 8.09 0.618 

Table 4.4 – Numerical results for NanoDREAM constellations placed at 1500 km of altitude 
 
Based on numerical results in Table 4.4, the following observations can be made: 

� the constellation ¶ N5,1,1500 X�, 5º, 0ºP is the “worst case” solution, having a 
propagation delay 1 ¹ N20;54.68P�0, as shown in the following calculations: 1| � 2 ~ �5�0 � 5�0 ª 20�0 1Ô � 2 ~ �13.67�0 � 13.67�0 ª 54.68�0 
Therefore, the maximum propagation delay in case of a communication between two 
terminals, by passing through a nanosatellite of this constellation, is about 55 ms, 
while the minimum propagation delay will be about 20 ms. 

� the constellation ¶ N19,1,1500 X�, 30º, 0ºP is the “best case” solution in terms of 
propagation delay, having 1 ¹ N20; 32.36P�0, as shown in the following calculations: 1| �~ �5�0 � 5�0 ª 20�0 1Ô � 2~ �8.09�0 � 8.09�0 ª 32.36�0 
In case of a communication between two user terminals, by passing through a 
nanosatellite of this constellation, the minimum round-trip propagation delay is 20 
ms, while the maximum propagation delay is about 33 ms. 
The previous remarks concerning the “worst case” and “best case” solutions were 

made only from “propagation delay” point of view. 
The constellation ¶ N9,1,1500 X�, 15º, 0ºP provides a coverage band between 0º and 

22º S latitude, including also Salar de Uyuni desert region. This constellation meets our two 
mission requirements (i.e., minimizing the number of nanosatellites and maximizing the time 
in view) and offers a propagation delay 1 ¹ N20; 43.44P�0, according to calculations above: 1| � 2 ~ �5�0 � 5�0 ª 20�0 1Ô � 2 ~ �10.86�0 � 10.86�0 ª 43.44�0 
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a                                                                             b 

  

c                                                                               d 

  

e                                                                                    f 

 
Figure 4.8 – Number of nanosatellites as a function of εmin for: a) 800 km, c) 100 km, e) 1500 

km; Maximum time in view variation as a function of number of nanosatellites in the 
constellation for: b) 800km, d) 1000 km, f) 1500 km 
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Figure 4.8a to Figure 4.8f illustrates two important diagrams for every altitude value 
considered in this study:  

- variation of the number of nanosatellites with respect to minimum elevation angle; 
- variation of the maximum time in view as a function of the number of 

nanosatellites within the constellation. 
By analyzing these figures, we observe the following types of variations:  
• for the same altitude, the minimum number of nanosatellites is increasing as the 

minimum elevation angle is increasing; 

• for the same elevation angle, the minimum number of nanosatellites is decreasing 
as the altitude is increasing; 

• for the same elevation angle, the maximum time in view of any given point on 
Earth is increasing as the altitude is increasing. 

In Chapter 3.2.9, we have introduced four parameters for Earth coverage assessment: 
antenna footprint, coverage rate, access area and access rate. The first two parameters are 
dependent of the antenna beamwidth while the last two parameters depend only of the Earth 
central angle (λ). 

Below, we presented the numerical results for constellation ¶ N9,1,1500 X�, 15º, 0ºP 
identified as the optimal solution which meets our mission objectives. For calculating the coverage 
parameters for this constellation, we consider five types of antennas, as shown in Table 4.5. 

Antenna type Antenna beamwidth 

Monopole 77.3º 

Single patch 101.4º 

Helical 66º 

Horn 51.4º 

2 element patch 77.2º 

Table 4.5 – Beamwidth values for various nanosatellite antennas 
 
Table 4.6 presents the coverage parameters of the constellation ¶ N9,1,1500 X�, 15º, 0ºP. We observe that monopole, single patch and 2 patch antennas provides a 

comparative footprint area and coverage rate. 

Coverage parameter Monopole Single patch Helical Horn 
2 element 

patch 

Fa (km
2
) 30.66*106 30.96*106 26.89*106 19.67*106 30.63*106 

Rcov (km
2
/min) 2.53*106 2.55*106 2.22*106 1.62*106 2.52*106 

The access area (Aa) and the access rate (Ra) are not dependent of the antenna type used during 
communications.  
Aa=21.28*106 km2 and  Ra=1.76*106 km2/min 

Table 4.6 – Coverage parameters for the constellation of 9 nanosatellites placed at 1500 km 
of altitude and having εmin=15º 

 
We were also interested in evaluating the amount of data that a nanosatellite could 

transmit at each pass. Table 4.7 presents the amount of data transmitted by a nanosatellite 
placed at 1500 km of altitude and having a minimum elevation angle of 15º.  
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In this case, we have considered a downlink data rate between 9.6 Kbps and 1024 
Kbps, which corresponds to the real nanosatellites launched in space. We remark that during 
a pass (time in view) of almost 12 minutes, the maximum amount of data transmitted by a 
nanosatellite to a ground station is 9.1 Mbps if a data rate of 1 Mbps is considered. For a low 
downlink rate (9.6 Kbps), the nanosatellite will be able to transmit only 86 Kbps on each pass 
over the ground station.  

Data rate (Kbps) Data quantity (Kbps) 

9.6 85.52 

16 142.54 

32 285.08 

64 570.16 

128 1140.32 

256 2280.65 

512 4561.3 

1024 9122.61 

Table 4.7 – Amount of data transmitted at each nanosatellite pass 
(altitude=1500 km, εmin=15º) 

 
4.2.3.3 SaVi simulations of NanoDREAM constellations 

 
In this chapter, we discuss SaVi simulation results of four NanoDREAM 

constellations, by considering only the coverage criterion. 

Constellation 
� N<ß, <, ßÑÑ àU, <áº, ÑºP � NÒ, <, <áÑÑ àU,<Ñº, ÑºP 

� N<ä, <, <ÑÑÑ àU, <áº, ÑºP 

� NÒ, <, <áÑÑ àU,<áº, ÑºP 
Number of 

nanosatellites 
18 14 14 9 

Coverage 

latitude 
0º - 18º 0º - 19º 0º - 20º 0º - 22º 

Maximum Time 

in view 
8.9 min 10.62 min 10.73 min 15.17 min 

Minimum 

elevation angle 
15º 10º 15º 15º 

Number of 

orbital planes 
1 1 1 1 

Constellation 

altitude 
800 km 800 km 1000 km 1500 km 

Orbital period 100.87 min 100.87 min 105.11 min 115.98 min 

Number of 

orbits per day 
14.23 14.23 13.66 12.38 

Nanosatellite 

velocity 
7.4561 m/s 7.4561 m/s 7.3507 m/s 7.1136 m/s 

Table 4.8 – Nanosatellite constellations modeled in SaVi simulator 
 
Table 4.8 summarizes the parameters of four NanoDREAM constellations simulated 

using SaVi modeler. We observe that constellation ¶ N9,1,1500 X�, 15º, 0ºP satisfies our 
mission objectives because: 
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• it has a minimum number of nanosatellites (9 nanosatellites); 
• it offers a coverage band between 0º and 22º S latitude, thus assuring a total 

coverage of Salar de Uyuni Desert; 
• the time in view of every nanosatellite is maximized; every nanosatellite will stay 

maximum 15 minutes over each point of the coverage area. 
As shown in Figure 4.9 to Figure 4.12, satellite coverage, represented in yellow/red, is 

intended to give an idea of the number of nanosatellites visible from a point on Earth. The 
higher the number of nanosatellites covering a point, the deeper the shade of red is. Also, 
coverage decay, illustrated in shades of blue, gives an idea of where a satellite footprint has 
been and is going, even when you look at a still map snapshot.  

Constellation ¶ N18,1,800 X�, 15º, 0ºP is constituted of 18 nanosatellites placed on an 
equatorial orbit at 800 km of altitude and having a minimum elevation angle of 15°. As seen 
in Figure 4.9, the coverage area will be between 0º and 18° of S latitude, but our target region 
is situated at 20° S latitude. Thus, this configuration does not satisfy our mission goal in 
terms of coverage. 

 
Figure 4.9 – Coverage of nanosatellite constellation including 18 nanosatellites placed on a 

LEO, equatorial orbit at an altitude of 800 Km and minimum elevation angle of 15º 
In order to obtain the desired coverage, we modified the minimum elevation angle of 

10º and we obtained constellation ¶ N9,1,1500 X�, 10º, 0ºP of 14 nanosatellites placed at 800 
km of altitude. Unfortunately, the coverage area (Figure 4.10) will be between 0º and 19º S 
latitude, solution that still not corresponds to our mission. Additionally, this constellation 
might suffer of bad visibility, given the natural and manmade obstacles that would obstruct 
nanosatellites at lower elevation angles. 



 

137 

 

 
Figure 4.10 – Coverage of nanosatellite constellation including 14 nanosatellites placed on a 

LEO, equatorial orbit at an altitude of 800 Km and minimum elevation angle of 10º 

 
Figure 4.11 – Coverage of nanosatellite constellation including 14 nanosatellites placed on a 

LEO, equatorial orbit at an altitude of 1000 Km and minimum elevation angle of 15º 
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Due to attenuation and terrain shadowing effects, reliable communication is not 
possible at low elevation angles. The low altitude of the satellites and the need for high 
elevation angles for successful communications necessitate small satellite footprints. 

Knowing that Salar de Uyuni Desert has a flat surface, we thought that a minimum 
elevation angle of 15º is sufficient to have visibility at any given point on the desert. Thus, a 
possible solution to our coverage problem seems to be constellation altitude increasing. By 
increasing altitude at 1000 km and for εmin=15º, we obtain constellation ¶ N14,1,1000 X�, 15º, 0ºP of 14 nanosatellites (Figure 4.11). This constellation defines a 
coverage band between 0º and 20º S latitude, solution that satisfy the second mission 
objective (the coverage), but not the first one (minimizing the number of nanosatellites within 
the constellation). 

 
Figure 4.12 – Coverage of nanosatellite constellation including 9 nanosatellites placed on a 

LEO, equatorial orbit at an altitude of 1500 Km and minimum elevation angle of 15º 
 
Our numerical calculations have shown that the number of nanosatellites is decreasing 

with altitude increasing. Considering this type of variation and for minimizing the number of 
nanosatellites, a solution might be to increase constellation altitude to a value that satisfies 
our requirements. Thus, for an altitude of 1500 Km and εmin=15º, we obtain constellation ¶ N9,1,1500 X�, 15º, 0ºP of 9 nanosatellites (Figure 4.12), which is the best nanosatellite 
system configuration that satisfy our two mission goals. 
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4.2.3.4 Applying Markov method for evaluating the performance of NanoDREAM-type 

constellation 

 
In this chapter, we applied the Markov method proposed in Chapter 3.3.11 to a 

NanoDREAM constellation of 9 nanosatellites placed on a single equatorial orbital plane at 
1500 km of altitude. 

We assumed that minimum four nanosatellites are required to maintain a minimum 
level of availability. Thereby, NanoDREAM model contains five possible functioning states, 
as shown in Table 4.9. 

State number 
Number of 

nanosatellites in service 

Number of failed 

nanosatellites 

1 9 0 

2 8 1 

3 7 2 

4 6 3 

5 5 4 

6 4 5 

Table 4.9 – Functioning state of NanoDREAM constellation 
 
The number of failed nanosatellites is identical with the number of nanosatellites that 

need to be replaced. 
The remaining four states in the Markov model state diagram represent system failure 

states as the NanoDREAM constellation will no longer be available for providing the 
minimum service level. These states are: 

• State 7:  three of the nine nanosatellites are working (six have failed); 
• State 8: two of the nine nanosatellites are working (seven have failed); 

• State 9: one of the nine nanosatellites is working (eight nanosatellites have failed); 
• State 10: all nine nanosatellites have failed. 
Figure 4.13 describes the Markov model state diagram for NanoDREAM 

constellation needed for developing the proper set of differential equations. From the Markov 
model state diagram, a set of differential equations can be written to determine the probability 
of the NanoDREAM constellation being in any given state at any given time.  

Let a be the failure rate of a nanosatellite and b, the renewal rate (i.e., the rate at 
which a failed nanosatellite will be replaced by a new nanosatellite). 

 
 
 
 
 
 
 

Figure 4.13 – Markov state diagram for NanoDREAM constellation 

NanoDREAM constellation 

is out of service 

b b b b b b b b b 

8a 7a 6a 5a 4a 3a 2a a 9a 
1 2 3 4 5 6 7 8 9 10 
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Therefore, the NanoDREAM constellation of nine nanosatellites placed on a single 
equatorial orbital plane at 1500 km of altitude requires a set of ten differential equations to 
model this constellation (Eq. 76): 
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 (76) 

In order to find the solution to Eq. 76, the failure rate and renewal rate are required as 
well as the initial conditions of the NanoDREAM constellation. At the beginning of the 
operational mission, the probability to be in state 1 is 100% and the probability of being in all 
nine successive states is 0%. 

We assumed that the failure rate is a=0.00833 and renewal rate is b= 0.2. Thus, the 
exact probability of being in any of the six operational states is given by the probability 

vector ¢(Æ  : 
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Figure 4.14 – NanoDREAM constellation capacity during one day of service 
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Figure 4.14 illustrates the capacity of NanoDREAM constellation during one day of 
service. This capacity was calculated taking into consideration the probability of failure of 
nanosatellites. We considered a set of eight downlink rates (9.6 Kbps to 1 Mbps). We can 
observe that the maximum capacity is attained by a NanoDREAM constellation with 9 
nanosatellites having a downlink rate of 1 Mbps. Thus, it could deliver almost 324 Mbps 
during one day of service. If we consider the low downlink rate (9.6 Kbps) of nanosatellites, 
the same constellation could deliver only 3 Mbps in one day of service. 

 
4.2.4 NanoICE results 

 

4.2.4.1 Numerical calculations for NanoICE constellation 

 

This chapter presents numerical calculations for NanoICE model. For this type of 
model, we chose an altitude of 700 km because it assures a good coverage of icecaps, being 
also a common altitude used by polar satellites. 

Table 4.10 presents the parameters of six NanoICE constellations. Minimum elevation 
angle εmin is varied between 5º and 30º and the altitude is considered fixed (700 km).  

Altitude =700 km, P =98.77 min, nanosatellite velocity=7.5 m/s �NQ>, >I, �, �U@>, @P εmin 

(º) 

λmax 

(º) 

ηmax 

(º) 

Tmax 

(min) 
Nmin 

DM 

(km) 

tm 

(ms) 

tM 

(ms) 
∆ � N<Ñ, <, ÐÑÑ àU,áº, ÒÑºP 5 21.14 63.86 11.6 10 2562.28 2.33 8.54 2.66 � N<á, <, ÐÑÑ àU,<Ñº, ÒÑºP 10 17.45 62.55 9.57 15 2155.24 2.33 7.18 2.08 � N==, <, ÐÑÑ àU,<áº, ÒÑºP 15 14.5 60.5 7.95 22 1834.8 2.33 6.11 1.62 � Nã<, <, ÐÑÑ àU,=Ñº, ÒÑºP 20 12.14 57.86 6.66 31 1584.05 2.33 5.28 1.26 � Näã, <, ÐÑÑ àU,=áº, ÒÑºP 25 10.24 54.76 5.62 43 1388.23 2.33 4.62 0.98 � NïÑ, <, ÐÑÑ àU,ãÑº, ÒÑºP 30 8.7 51.3 4.77 60 1236.16 2.33 4.12 0.76 

Table 4.10 – Numerical results for polar nanosatellite constellations 
 
Since icecaps have a flat surface, so there are not many obstacles as compared to 

habited areas, we considered that an elevation angle of 10º will provide a good visibility in all 
conditions. Therefore, we observe that the constellation ¶ N15,1,700 X�, 10º, 90ºP responds to 
our two mission goals: maximizing the time in view and minimizing the number of 
nanosatellites within the constellation. The orbital period is 98.77 minutes, which means that 
every nanosatellite will pass 15 times per day over any point of the coverage area. The half-
orbit on the sun side takes only 49 minutes, during which local time of day does not greatly 
vary. All nanosatellites will be travelling at a speed of 7.5 km per second. Also, the maximum 
time in view of each nanosatellite is 9.5 minutes. 

In case of a communication between two terminals, by passing through a nanosatellite 
of this polar constellation, the minimum round-trip propagation delay is 10 ms while the 
maximum propagation delay is about 29 ms: 1| � 2 ~ �2.33�0 � 2.33�0 ª 9.32�0 1Ô � 2 ~ �7.18�0 � 7.18�0 ª 28.72�0 
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By considering the same types of antennas as for NanoDREAM constellations, we 
have calculated the coverage parameters of the polar constellation� N<á, <, ÐÑÑ àU,<Ñº,ÒÑºP 
(Table 4.11). 

Coverage parameter Monopole Single patch Helical Horn 
2 element 

patch 

Fa (km
2
) 20*106 20.18*106 17.53*106 12.83*106 19.97*106 

Rcov (km
2
/min) 2.61*106 2.63*106 2.29*106 1.675*106 2.6*106 

The access area (Aa) and the access rate (Ra) are not dependent of the antenna type used during 
communications. 
Aa=11.76*106 km2 and Ra=1.55*106 km2/min 

Table 4.11 – Coverage parameters for the polar constellation of 15 nanosatellites placed at 
700 km of altitude and having εmin=10º 

 
We were also interested in evaluating the amount of data that a nanosatellite placed on 

a polar orbit could transmit at each pass. Table 4.12 presents the amount of data transmitted 
by a nanosatellite placed at 700 km of altitude and having a minimum elevation angle of 10º. 
In this case, we have considered a downlink data rate between 9.6 Kbps and 1024 Kbps, 
which corresponds to the real nanosatellites launched in space. We remark that during a pass 
(time in view) of 7.6 minutes, the maximum amount of data transmitted by a nanosatellite to 
a ground station is 5.3 Mbps if a data rate of 1 Mbps is considered. For a low downlink rate 
(9.6 Kbps), the nanosatellite will be able to transmit only 51 Kbps on each pass over the 
ground station.  

Data rate (Kbps) Data quantity (Kbps) 

9.6 51.11 

16 84.03 

32 168.06 

64 336.12 

128 672.25 

256 1344.51 

512 2689.02 

1024 5378.04 

Table 4.12 – Amount of data transmitted at each nanosatellite pass 
(altitude=700 km, εmin=10º) 

 
4.2.4.2 SaVi simulations of NanoICE constellations 

 
Figure 4.15 shows a sinusoidal view of NanoICE constellation which provides 

coverage for the area situated between 70º S latitude and 90º S latitude, and 70º N latitude 
and 90º N latitude respectively. 
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Figure 4.15 – Polar constellation of 15 nanosatellites (altitude: 700 Km, εm=10°) 

 
4.2.5 NanoSPHERE results 

 
This chapter presents numerical calculations and SaVi simulations for NanoSPHERE 

constellations. NanoSPHERE is a Walker-type constellation model that we propose in order 
to achieve global, permanent and homogeneous coverage of the Earth’s surface. We 
envisaged that coverage extension will be needed in the scenario of an increasing demand of 
telecommunications services by some industrial companies in charge of mineral resources 
exploitation in different remote regions of the Earth. 

 
4.2.5.1 Numerical calculations for NanoSPHERE constellation 

 

Table 4.13 summarizes NanoSPHERE constellation parameters calculated for three 
type of altitudes based (800 km, 1000 km, 1500 km), by varying the minimum elevation 
angle from 5º to 30º. 

εmin(º) 
h=800 km h=1000 km h=1500 km 

np nm Nn np nm Nn np nm Nn 

5 9 5 45 5 8 40 4 7 28 

10 10 6 60 5 9 45 4 8 32 

15 12 7 84 6 11 66 5 9 45 

20 14 8 112 7 12 84 5 10 50 

25 17 9 153 8 14 112 6 11 66 

30 20 10 200 9 17 153 7 13 91 

Table 4.13 – NanoSPHERE constellations parameters  
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Based on Table 4.13, some interesting variation could be noted: 
� for the same altitude, the number of nanosatellites increases as the minimum 

elevation angle increases; 
� for the same elevation angle, the number of nanosatellites decreases as the 

constellation altitude increases. 
Considering these two observations and the fact that for higher altitudes, the footprint 

of each nanosatellite becomes bigger, we chose the altitude constellation of 1500 km.  
Our goal is to minimize the number of nanosatellite in the constellation and 

maximizing the time in view. The constellation which satisfies these requirements is 
constituted of 45 nanosatellites, distributed in 5 orbital planes, with 9 nanosatellites per plane. 
We assumed that a minimum elevation angle of 15º is enough to assure an adequate 
coverage. 

Furthermore, a variety of perturbations acts on the nanosatellites, the most significant 
being the atmospheric drag. All these perturbations tend to alter the relative positions of 
nanosatellites in the constellation. Therefore, some constellation maintenance strategies are 
necessary for maintaining the desired constellation pattern. Most of these strategies rely on 
on-board propulsion resources for occasional boosts, each time adding energy to the orbit in 
order to counteract the atmospheric drag effect. Atmospheric drag removes energy from the 
orbit, thus slowly decreasing the altitude of nanosatellites. Additionally, as the altitude 
decreases, the atmospheric drag effect on nanosatellites increases. Considering the very 
limited power and propulsion resources of nanosatellites, a high altitude is desirable for 
nanosatellite constellations for not spending a lot of power constellation maintenance 
maneuvers. 

Moreover, NanoSPHERE constellation neglects polar coverage. The NanoICE model 
is specifically designed for polar region coverage. NanoSPHERE constellation provides the 
highest degree of coverage at the mid-latitudes. However, the number of nanosatellites per 
plane depends on the altitude. It decreases when the altitude increases in order to maintain 
global coverage. This is another reason for justifying our choice in terms of constellation 
altitude. 

Number of nanosatellites (Nn) 45 

Number of orbit planes (np) 5 

Number of nanosatellites per orbital plane (nm) 9 

Pattern unit (q) 8º 

Phase difference between adjacent planes (∆Ф) 24º 

Constellation altitude (h) 1500 km 

Inclination angle of orbital planes (i) 65º 

Table 4.14 – Optimal NanoSPHERE constellation parameters 
 
As depicted in Table 4.14, NanoSPHERE constellation contains a total number of 45 

nanosatellites with 9 nanosatellites evenly distributed in 5 orbital planes. The orbital planes in 
NanoSPHERE constellation have ascending nodes that are evenly distributed around the 
equator at intervals of 72º. Each nanosatellite in the orbital plane is uniformly distributed on 
intervals of 65º and each orbital plane has the same inclination (65º) with respect to the 
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equatorial plane. NanoSPHERE constellation emphasize symmetry thus, there are 9 
uniformly distributed nanosatellites per plane. The pattern unit is 8º and in-plane spacing 
between nanosatellites is 40º. The phase difference between adjacent planes is 24º. 

The even spacing of the right angles of the ascending nodes across the full 360° of 
longitude means that ascending and descending planes of nanosatellites and their coverage 
continuously overlap. 

 
4.2.5.2 SaVi simulations of NanoSPHERE constellations 

 

This sub-chapter presents SaVi simulations for NanoSPHERE constellation. Figure 
4.16 is a SaVi view of NanoSPHERE constellation of 45 nanosatellites placed at 1500 km of 
altitude and having a minimum elevation angle of 15º. NanoSPHERE constellation coverage, 
represented in yellow/red shades, shows the number of nanosatellites visible from a point on 
the Earth surface. The deeper shade of red means that there are a high number of 
nanosatellites covering a certain point on the Earth surface. We also used the « ground 
terminal mask elevation » option to see the maximum coverage of every nanosatellite. 

 
Figure 4.16 – SaVi view of NanoSPHERE constellation of 45 nanosatellites placed at 1500 

km of altitude and having εmin=15º 
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4.2.6 Simulation results of ground segment architecture for Salar de Uyuni 

Desert mission 

 

This chapter presents simulation results issued from testing our ground segment 
architecture envisaged for a lithium exploitation region. This architecture is an Ad hoc 
network, based on wireless technology, as described in Chapter 3. The simulations were done 
using OPNET modeler. For conducting simulations on our ground segment wireless-based 
network, we considered AODV (Ad hoc On-Demand Distance Vector) protocol, as explained 
in Chapter 3.3.2. 

Taking into considerations the lithium plant architecture and the personal needs in 
terms of communications, we used six access points for an optimal coverage of the 
exploitation area. Figure 4.17 illustrates location of routers within the plant. 

 

Figure 4.17 – Routers placing into the plant 
Every router corresponds to one building and the laptops represent the users who 

access the network. A dedicated computer was considered as server for which we assigned 
the IP address 192.168.1.1. We configured every computer and every router so that they 
inter-communicate, thus creating a wireless mesh network. To accomplish this objective, we 
modified the AODV protocol settings so that it corresponds to our architecture. Thus, we 
defined two new wireless interfaces for every router and we added directional antenna for 
inter-routers links.  

In a plant, most buildings have metal walls, this being an important source of 
interferences on which wireless networks are very sensitive. In order to reduce the 
interferences and for a more reliable communication, it is advisable to use directional 
antennas. 
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Because OPNET modeler does not dispose of directional antennae model 
implementations, we create our own antenna model with a maximum gain of 17 dB, by using 
the module available for creating antennas. Figure 4.18 shows the antenna model used in our 
network. 

 

Figure 4.18 – Directional antenna model implemented in OPNET 
 
We have also added a processor module which allows to direct antenna towards the 

desired router. The logical structure of the modified router is presented Figure 4.19. 

 

Figure 4.19 – Router configuration 
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All computers were configured to generate traffic towards the server (IP: 
192.168.1.1). The time interval of every simulation is 60 minutes.  

According to the Figure 4.20, there are not significant losses over the network, almost 
all traffic generated being received by the destination node. 

 

Figure 4.20 – Global traffic variation over the network 
 
An important parameter to consider in our survey is the delay between the computers 

and the server. As depicted in Figure 4.21, the maximum end-to-end delay is 30 ms, this 
value being attained after few minutes of network simulation. Furthermore, the delay 
recorded for computers which are closer to the server, is even smaller (5 ms). Considering 
this, we can conclude that our network can support VoIP traffic. 

 

Figure 4.21 – End-to-end delay over the ground segment network 
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Another important aspect is the effective throughput that can be attained in this 
network. According to the Figure 4.22, the maximum effective throughput is 2.8 Mbps, 
which is a good value compared to real nanosatellite uplink and downlink rates, that are 
considerable much smaller (i.e., uplink = 9.6 bps; downlink = 32 – 256 Kbps, 1 Mbps 
theoretically). 

 

Figure 4.22 – Effective throughput over the network 
 
As regards to AODV protocol, the global resources used during packet routing are 

very modest compared to maximum effective throughput attained in this network. As shown 
in Figure 4.23, the maximum bandwidth used by AODV protocol is only 9 kbps. 

 

Figure 4.23 – AODV routing traffic 
 
Our OPNET simulations show that this Ad hoc network proposed for a lithium 

exploitation plant of Salar de Uyuni Desert is suited for telecommunications throughout a 
nanosatellite network, by providing an effective throughput superior to nanosatellite uplink 
and downlink rates. 
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4.3 Simulation study of XSTP protocol 

 
This chapter presents and discusses the NS2 simulations conducted for evaluating 

XSTP performance over satellite and nanosatellite networks respectively. Firstly, the 
simulation environment is presented along with simulation scenarios and XSTP software 
implementation solution. Then, we describe the simulation network topologies that were 
implemented in NS2 modeler. Since QoS aspect is an important focus of this thesis, we 
defined in this chapter several QoS performance metrics, such as effective throughput, 
transmission overhead, channel efficiency and reverse channel utilization. Thus, the XSTP 
performance is assessed with respect to QoS metrics and for every type of network (i.e., 
satellite, nanosatellite). The XSTP performance comparison between satellite network and 
nanosatellite network concludes this chapter. 

 
4.3.1 Simulation environment (NS-2) 

. 

NS2 is a discrete event network simulator, developed by Berkeley University, which 
was initially designed for IP network simulations, but it is constantly enriched by new models: 
satellite, Ethernet, mobiles, etc. NS2 provides substantial support for simulation of TCP, 
routing, and multicast protocols.  

NS2 is an object-oriented simulator, written in C++, with an OTcl interpreter as a 
front-end. The simulator supports a class hierarchy both within C++ (compiled hierarchy) and 
within OTcl interpreter (interpreted hierarchy). These two hierarchies are inter-related which 
means that, from the user’s point of view, there is one-to-one correspondence between a class 
in the interpreted hierarchy and one in the compiled hierarchy. 

NS2 includes different transport protocols. The most important is TCP and its”clones” 
which is implemented as an agent (Agent/TCP). The most general implementation of TCP is 
"Tahoe" version of a uni-directional connection. Some specific derivations are the "Reno" and 
"NewReno" agents (with two different versions of fast recovery), the "Sack" agent (with 
selective repeat), the "Vegas" agent, and the "Fack" agent (with forward acknowledgement). 
All these agents are one-way sending agents (i.e., they need an appropriate receiving agent at 
the destination node).  

The most general TCP sink is implemented in Agent/TCPSink. To achieve more 
specific behavior, some subclasses are defined: the selective acknowledgement sink 
TCPSink/Sack1 and TCPSink/DelAck and TCPSink/Sack1/DelAck respectively for a 
configurable delay per acknowledgement. 

Another feature of NS2 is asymmetric links support. Thus, TCP/Asym ("tahoe"), 
TCP/Reno/Asym ("Reno") and TCP/NewReno/Asym ("NewReno") agents are sending their 
packets to the TCPSink/Asym agent. 

Installation guides, documentation and configuration aspects are founded on web links 
[115] and [116]. 

In order to analyze XSTP protocol performance, two new simulation modules for STP 
and XSTP were implemented in NS2. Also, a satellite network module and a nanosatellite 
constellation module were created. These modules enable NS2 to model a traditional LEO 
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satellite network and a LEO, equatorial nanosatellite constellation. Additionally, we have used 
TCP modules corresponding to common variants of TCP (e.g., New Reno, Reno, SACK, 
Tahoe, Vegas) in order to make a comparison study between these TCP “clones” and XSTP. 

 
4.3.2 Simulation scenarios and XSTP implementation solution 

 

Using simulation, XSTP-probing mechanism is tested in various error conditions and 
performance is quantified. 

We defined two scenarios – one-way communication, aiming to meet symmetric 
channel, and bidirectional communication for considering asymmetric channel. Each time, we 
quantify the QoS metrics defined in Chapter 4.2.2.3. 

XSTP protocol is a derived class from STP class, the latter being derived from 
transport Agent class. Firstly, TCP like congestion mechanism is implemented. Then, we 
extended STP to XSTP by implementing the probing mechanism, described in Chapter 
2.4.4.2, with three configuration parameters: 

- Maximum number of trackable probe exchanges (MAX_PROB); 
- Number of requested probe exchanges (REQ_PROB); 
- RTT tolerance ratio (RTT_TOL). 
The simulation configuration consists of two network nodes: source node and 

destination node. In the first scenario, the destination node is considered as a well of data, 
while in the second one, both endpoints are going to play the role of transmitter / receiver at 
the same time. 

As Figure 4.24 shows, we attach an XSTP agent to the source node and a STPSink 
agent to the destination node. Because an XSTP agent does not generate application data, we 
connected it to a FTP traffic generator so that we can send large data packets. 

By using a background HTTP traffic generator, HTTP traffic is added for emulating 
the current use of WWW. The purpose was not to block the network, but to add a variability 
component to simulation. 

 
Figure 4.24 – Nodes configuration 

 
Firstly, the files stp.h, stp.cc, xstp.cc and stp-sink.cc have been added to STP folder. 

Then, the files packet.h, ns-default.tcl and ns-packet.tcl were modified in order to correspond 
to our simulation configuration. 
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In the packet.h file from common folder, the new types of packets specific to STP and 
XSTP need to be defined: 

PT_SD 
PT_POLL 
PT_STAT 
PT_USTAT 
Then, a name was associated for every packet type as follows: 
name_[PT_SD]="sd"; 
name_[PT_POLL]="poll"; 
name_[PT_STAT]="stat"; 
name_[PT_USTAT]="ustat"; 
Furthermore, the file ns-packet.tcl from tcl/lib path is modified by adding the name of 

every new package: 
SD 
POLL 
STAT 
USTAT 
Lastly, we have included in ns-default.tcl file, the configuration parameters for stp.cc 

sender class and stp-sink.cc receiver class: 
Agent/STP set window_ 20   # sender window size 
Agent/STP set windowInit_ 1   # initial congestion window size 
Agent/STP set packetSize_ 1000  # packet size 
Agent/STP set poll_interval_ 0.2  # time interval between POLL messages        
Agent/STP set initial_rtt_ 0.08  # initial RTT 
Agent/STPSink set win_ 100   # receiver window size 
 
The size of packages sent by the source node is 1000 bytes. The size of receiver’s 

window is fixed to 100 and the initial size of transmitter’s congestion window is 1. The 
maximum number of trackable probes is set to 4, and the number of consecutive RTT 
measurements sufficient to finish the probing cycle is set to 2. The polling frequency is set to 3 
per RTT, and when the probing mechanism is triggered, the polling rate becomes 1 per RTT. 
The duration of every simulation is 60 seconds. For traditional satellite network simulations, 
BER varies between 10-8 and 10-3, while for nanosatellite model simulations, we consider a 
BER interval of [10-7, 10-3]. 

Due to the random behavior of the Web traffic, every simulation is repeated four times 
and the final results are calculated by making the average between the intermediate simulation 
results. 

Table 4.15 summarizes the simulation parameters. 
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Parameter Value 

Sender buffer size 64 Kb 

Receiver buffer size 64 Kb 

MSS (maximum segment size) 1000 bytes 

Maximum window size 64 segments 

Sender’s initial congestion window 1 segment 

Maximum burst size 8 segments 

Initial RTT 0.08 s 

Table 4.15 – NS2 simulation parameters 
 
For describing a network and its associated traffic, we need to define in order: 

1) network topology (nodes and arcs); 
2) transport layer (TCP, STP, …) between nodes pairs; 
3) application layer which supplies user data; 
4) timers that specify the moments at which transmission is going to start. 

Below, we describe in details every step of the network implementation procedure. 
We start by creating a simulator in an OTcl file (file_name.tcl): 

set ns [new Simulator] 
We define two files that will preserve the simulation’s history, as follows: 
set f [open out.tr w] 
$ns trace-all $f 
set nf [open out.nam w] 
$ns namtrace-all $nf 
Then, we create the network topology (the nods and the links), by specifying theirs 

rate and delays, the drop technique (in our case, DropTail) and the maximum number of 
packets in the queue. 

set n1 [$ns node]     # creating first node 
set n2 [$ns node]     # creating second node 
$ns duplex-link $n1 $n2 2Mb 5ms DropTail # creating the link between the nodes 
$ns queue-limit $n1 $n2 100                          # queue limit 
Satellite network parameters are implemented as follows: 
set opt(inc)  0;                                                # orbit inclination angle. 
set opt (alt) 1500;                                          # altitude 
Also, the transport agents have been created, attached to nodes and inter-connected. 

Among available agents, we could mention: Agent/Null, Agent/XSTP, Agent/TCP and 
Agent/STPSink. The associated code has the following syntax: 

set xstp1  [$ns _ create-connection XSTP $node_(n1) STPSink $node_(n2) 0] 
$xstp1 set window_200 
The third step defines the application layer that is the traffic sources. In our scenario, 

we use as data source, a HTTP traffic generator. 
Source httpModel.tcl                                 # class definition file  
Set ftp1 [$xstp1 attach-source FTP]        # attaching data source generator to transport agent 
$ns_ at 0.0 ‘$ftp1 start’                            # starting the source generator 
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4.3.3 Simulation network topologies 

 
The conventional satellite network and the nanosatellite network considered in our 

simulations are shown in Figure 4.25 and Figure 4.26 respectively.  
The first one is based upon the LEO satellite constellation proposed by Teledesic 

[117], [118] because the specifications of this system are well documented in the literature. 
Teledesic network uses a “geodesic” or mesh network topology.  

The second one corresponds to the best nanosatellite constellation identified in Chapter 
4.1.3 using SaVi simulations. Precisely, the constellation of 9 nanosatellite placed at 1500 km 
of altitude, having a minimum elevation angle of 15º was implemented in NS2 modeler in 
order to evaluate the performance of XSTP protocol over this type of network. We assumed a 
mesh solution for our nanosatellite network because it is the ideal topology for voice and data 
when direct communication from any site to any site in the network is required. Thus, this 
solution is suited for providing communications over a lithium exploitation plant in Salar de 
Uyuni Desert. 

 
Figure 4.25 - Satellite network topology 

 

 
Figure 4.26 – Nanosatellite network topology 

Table 4.16 presents the main parameters for conventional satellite network and 
nanosatellite constellation, while Table 4.17 summarizes data link parameters. 
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Parameter 
Satellite 

network 

Nanosatellite 

constellation 

Constellation nominal altitude 1375 km 1500 km 

Number of satellites within the constellation 288 9 

No. of planes 12 1 

No. of satellites/plane 24 9 

Planes separation distance in altitude 2 km - 

Nominal inclination angle 84.7 ° 0º 

Minimum Earth elevation angle 40º 15º 

Orbital period 113.25 min 115.98 min 

Table 4.16 – Space segment parameters 

Parameter Satellite network 
Nanosatellite 

constellation 

Uplink frequency 28.6 - 29.1 GHz VHF, UHF 

Downlink frequency 18.8- 19.3 GHz S band (2-4GHz) 

Uplink data rate 2 Mbps 32 Kbps 

Downlink data rate 64 Mbps 1 Mbps 

Inter-satellite link (ISL) rate 100 Mbps 256 Kbps 

ISL propagation delay 10 ms 50 ms 

Ground-to-satellite link propagation delay 5 ms 15 ms 

Table 4.17 – Data link parameters 

4.3.4 QoS performance metrics 

 
The data transmitted in a nanosatellite system has certain transfer requirements, or 

Quality of Service (QoS) parameters. In this thesis, we defined, based on paper [94], four QoS 
parameters: effective throughput, transmission overhead, channel efficiency and reverse 
channel utilization.  

� Effective throughput is defined as the average data rate (bps) as seen by the data link 
session and it is calculated as follows: 

 ð���31�4� 12	�#[2Z#1 �  {u£ñ£�t| ò£ópò£"Ô|tv£{� v£"p  (4.1) 

 
Transmission overhead is defined as the percentage of extra bytes expended in the 
reliable transmission of the original data bytes. The overhead is important to compare 
the scalability of the protocols and their way of adapting to low-bandwidth 
environments. It is also a measure to evaluate protocol efficiency in relation to 
nanosatellite battery power, as sending more packets consumes more power. 
Furthermore, sending more data increases the probability of packet collision and can 
delay data packets in the queues. The transmission overhead is calculated, in %, using 
the following formula: 

 ,	��0��00��� �4�	2��- �  ô{vt| ò£óp�õu£ñ£�t| ò£ópõu£ñ£�t| ò£óp ~ 100  (4.2) 
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� Channel efficiency describes how the channel is used during data transmission 
process. It is defined as the ratio between the packet original size and the total size of 
transmitted data: ¶2����$ ����3���3� �  õu£ñ£�t| ò£ópô{vt| ò£óp   (4.3) 

 
� Reverse channel utilization describes the backwards channel utilization. It shows the 

protocol efficiency on asymmetric links where the bandwidth is not the same in both 
directions. It is calculated using the following formula: 

 b�4�	0� 32����$ #1�$���1��� � öt¯ÉÂtum {u£ñ£�t| ò£óp�£"Ô|tv£{� v£"p   (4.4) 

 
4.3.5 NS2 simulation results for conventional satellite network 

 
In this sub-chapter, simulation results for conventional satellite network are reported 

and discussed. Also, we were interested to compare XSTP performance to some TCP clones, 
in case of a high BER environment. Table 4.18 presents the best performance protocol, the 
worst performance protocol and TCP clone’s best performance in terms of: effective 
throughput, transmission overhead, channel efficiency and reverse channel utilization. The 
main aim of our simulations is to see how the protocols perform in very high BER conditions 
(10-4–10-3). Therefore, we insist on pointing out the parameters values for high BER 
environment. 

Scenario Effective throughput 
Transmission 

overhead 
Channel efficiency 

Reverse channel 

utilization 

One-way 

transmission 

Best 

protocol 

XSTP 
1402 Kbps, BER=10-7 

68,49 Kbps, BER=10-3 

391.85 Kbps, BER=10-4 

XSTP 
3.63%, BER=10-7 

66.36%, BER=10-3 

13.82%, BER=10-4 

XSTP 
96.37%, BER=10-7 

86.18%, BER=10-4 

XSTP 
8.19 Kbps, BER=10-7 

TCP 

clone best 

protocol 

Sack 
1382 Kbps, BER=10-7 
120 Kbps, BER=10-4 

Vegas 
4.49%, BER=10-7 

16.43%, BER=10-4 

Vegas 
95.51%, BER=10-7 

Vegas 
0.01 Kbps, BER=10-3 

Worst 

protocol 
Vegas 

0.13Kbps, BER=10-3 

Vegas 
91.27%, BER=10-3 

Vegas 
8.73%, BER=10-3 

Sack 
31.23 Kbps, BER=10-7 

0.04 Kbps, BER=10-3 

Two-way 

transmission 

Best 

protocol 

XSTP 
1266 Kbps, BER=10-7 

42.59 Kbps, BER=10-3 

234.13 Kbps, BER=10-4 

XSTP 
4.2%, BER=10-7 

6.59%, BER=10-4 

XSTP 
93.41%, BER=10-4 

XSTP 
7.92 Kbps, BER=10-3 

TCP 

clone best 

protocol 

Sack 
1151 Kbps, BER=10-7 

NewReno 
131.07 Kbps, BER=10-4 

Vegas 
4.26%, BER=10-7 

9.15%, BER=10-4 

Vegas 
95.74%, BER=10-7 

Sack 
90.85%, BER=10-3 

Vegas 
11.74 Kbps, BER=10-7 

2.83 Kbps, BER=10-4 

Worst 

protocol 

Vegas 
557 Kbps, BER=10-7 

Sack 
1.02 Kbps, BER=10-3 

Vegas 
28%, BER=10-3 

Vegas 
72%, BER=10-3 

Sack 
26.05 Kbps, BER=10-7 

Table 4.18 – XSTP performance versus TCP clones performance over conventional satellite 
network 
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4.3.5.1 One-way transmission scenario 

 
In this scenario, we consider symmetric channels. Figure 4.27 illustrates effective 

throughput variation with respect to BER. XSTP outperforms all TCP clones mainly due to 
its probing mechanism. Unlike XSTP, STP and TCP clones reduce their transmission rate at 
every error detection.  

While TCP Sack has a comparative throughput to STP and XSTP (roughly, 1400 
Kbps) for low BER, a significant difference is observed as BER increases. As depicted in 
Figure 4.28, XSTP succeed in offering 4 times more throughput for BER=10-4 with respect to 
the average value of TCP clones. Additionally, while TCP clones offers almost zero 
throughput for BER=10-3, XSTP still has a good level of throughput (≈70 Kbps) for the same 
error conditions. 

 
Figure 4.27 – Effective throughput variation for satellite network model (one-way scenario) 

 
Figure 4.28 – Effective throughput variation for satellite network model 

(detail for high BER conditions) 
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Figure 4.29 illustrates transmission overhead variation with respect to bit error rate. 
We can observe all protocols (excepting Vegas) converge to the same level of overhead in 
very high BER conditions (10-3). Considering this, XSTP works well only for low bit error 
rates. As seen in Figure 4.30, STP, XSTP and Vegas transmission overhead is two times less 
than NewReno, Reno, Tahoe and Sack, in case of low BER conditions (10-8–10-6). 

According to Eq. 4.2 and Eq. 4.3, the overhead test is complement to efficiency test. 
Unlike efficiency, the overhead increases with BER increasing. During probing cycle, 
receiver sends one POLL per RTT and stops data transmission in order to avoid data losses. 
At the end of this cycle and if there is no congestion, sender doesn’t reduce its congestion 
window; thus, it gives user the possibility to send much more data over the network. 

 
Figure 4.29 – Transmission overhead variation for satellite network model (one-way 

scenario) 

 
Figure 4.30 – Overhead variation for satellite network model (detail for low BER conditions) 
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One of the most important aspects in satellite networks is energy consumption. 
Researchers have always tried to minimize the energy spend by satellites for data 
transmission.  

Channel efficiency metric shows how transmission channel is used. In case of 
significant amount of data user, efficiency is closed to 1, which means that channel is well 
used. Contrary, if efficiency is closed to 0, the channel is not well exploited. 

According to Figure 4.31, XSTP has roughly the same performance as STP and 
Vegas, providing 5% higher efficiency than the other protocols, for low BER conditions. For 
very high BER environment (10-3), TCP Vegas attains the lowest channel efficiency (8.73%), 
which is four times less than the other protocols. 

 
Figure 4.31 – Channel efficiency for satellite network model (one-way scenario) 
 
Generally, reverse channel is used for ACKs transmission. Reverse channel 

bandwidth varies as a function of the number of ACKs transmitted over the channel, their 
type and size. It is important to mention that reverse channel bandwidth has to be minimized 
at the very most due to satellite link asymmetry.  

As seen in Figure 4.32, XSTP and STP reverse channel bandwidth increases as BER 
increases; this means that XSTP needs a low bandwidth for reverse channel. Instead, reverse 
channel bandwidth for TCP clones decreases with BER increasing. This is explain by the fact 
that receiver sends one or many ACKs for received data packets. If there are no losses, the 
reverse channel bandwidth is increasing as many packets are received. Contrary, in high BER 
conditions, receiver doesn’t transmit many ACKs; therefore, reverse channel bandwidth 
decreases. 

Unlike TCP clones, STP and XSTP send STAT and USTAT messages over the 
reverse channel. When BER is low, receiver sends many small size STAT messages that 
demand a low reverse channel bandwidth. For high BER, receiver sends many large size 
USTAT messages that demand a large reverse channel bandwidth. 
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XSTP needs a lower reverse channel bandwidth than STP because the number of 
STAT messages transmitted during probing cycle is decreasing as the number of POLL per 
RTT decreases (1 STAT message per POLL). 

In case of STP, the number of POLL per RTT remains unchanged (i.e., 3 POLL per 
RTT). Because STP doesn’t suspend transmission, it sends many USTAT messages even 
when BER is high.  

 
Figure 4.32 – Reverse channel utilization for satellite network model (one-way scenario) 

 
4.3.5.2 Bidirectional transmission scenario 

 
In this scenario, data transmission is made in both ways (a node is sender and receiver 

too). As compare to one-way communication case, data rate of all protocols decreases 
because of reverse path transmission. 

XSTP effective throughput has a smoothness decrease with respect to one-way 
scenario results. 

As seen in Figure 4.33, XSTP outperforms all the other protocols in case of low BER 
scenario. Also, XSTP outperforms all TCP clones in case of high BER (10-4), by assuring an 
effective throughput two times more than TCP clones. Even in very high error environment 
(10-3), XSTP provides an acceptable level of effective throughput, while the other protocols 
have a zero level (Figure 4.34). 

We also observed that TCP Vegas is strongly influenced by reverse path transmission, 
having, even in low BER conditions, a data rate two times less than the other protocols. 
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Figure 4.33 – Effective throughput variation for satellite network model (two-way scenario) 

 
Figure 4.34 – Effective throughput variation for satellite network model  

(detail for high BER conditions; two-way scenario) 
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Figure 4.35 – Transmission overhead variation for satellite network model (two-way 

scenario) 
 
From Figure 4.31 and Figure 4.36, we observe a significant improvement of XSTP 

efficiency with respect to the first scenario (78% versus 33%), for high BER conditions. TCP 
clones and also STP attain an efficiency two times higher than in one-way scenario for the 
same error conditions. As for low BER scenario, all protocols maintain the same level of 
efficiency as in one-way scenario. 

 
Figure 4.36 – Channel efficiency for satellite network model (two-way scenario) 
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Figure 4.37 – Reverse channel utilization for satellite network model (two-way scenario) 

 
4.3.6 NS2 simulation results for nanosatellite constellation 

 
This chapter presents simulation results for nanosatellite network scenario. Our main 

interest was to show how protocols behave in high BER environment. Table 4.19 synthesizes 
the simulation results by pointing out the best performance protocol, the worst performance 
protocol and TCP clone’s best performance in terms of: effective throughput, transmission 
overhead, channel efficiency and reverse channel utilization. 

Scenario Effective throughput 
Transmission 

overhead 
Channel efficiency 

Reverse channel 

utilization 

One-way 

transmission 

Best 

protocol 

XSTP 
13.5 Kbps, BER=10-7 

3.9 Kbps, BER=10-4 

XSTP 
3.97%, BER=10-7 

17.2%, BER=10-4 

XSTP 
95.5%, BER=10-7 

85.32%, BER=10-4 

XSTP 
0.09 Kbps, BER=10-7 

TCP 

clone 

best 

protocol 

Sack 
14.4 Kbps, BER=10-7 

Vegas 
1.6 Kbps, BER=10-4 

Vegas 
4.37%, BER=10-7 

19.01%, BER=10-4 

Vegas 
95.45%, BER=10-7 

Reno 
0.035 Kbps, BER=10-3 

Worst 

protocol 
Sack 

1.13Kbps, BER=10-4 

Vegas 
84.5%, BER=10-3 

Vegas 
15.5%, BER=10-3 

Sack 
0.33 Kbps, BER=10-7 

 

Two-way 

transmission 

Best 

protocol 

STP 
13.11Kbps, BER=10-7 

XSTP 
0.63 Kbps, BER=10-4 

XSTP 
4.32%, BER=10-7 

7.95%, BER=10-4 

XSTP 
95.85%, BER=10-7 

89.48%, BER=10-3 

XSTP 
7.68 Kbps, BER=10-7 

TCP 

clone 

best 

protocol 

Sack 
12.32 Kbps, BER=10-7 

NewReno 
1.2 Kbps, BER=10-4 

Vegas 
4.37%, BER=10-7 

10.17%, BER=10-4 

Vegas 
95.81%, BER=10-7 

Reno 
84.16%, BER=10-3 

Vegas 
11.09 Kbps, BER=10-7 

3.014 Kbps, BER=10-4 

Worst 

protocol 

Vegas 
5.28 Kbps, BER=10-7 

Sack 
0.98 Kbps, BER=10-4 

Vegas 
47.43%, BER=10-3 

Vegas 
60%, BER=10-3 

Sack 
0.04 Kbps, BER=10-3 

Table 4.19 – XSTP performance versus TCP clones performance over nanosatellite network 
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4.3.6.1 One-way transmission scenario 

 

The effective throughput variation for one-way scenario is plotted in Figure 4.38. We 
observe that throughput decreases as BER increases, the same variation type as .in traditional 
satellite scenario. XSTP outperforms all TCP clones, by providing the best performance even 
for high BER conditions. This is mainly due to it probing mechanism. As shown in Figure 
4.38, XSTP attained a doubled throughput rate as compared to TCP clones, for high BER 
conditions (10-4). The maximum throughput of XSTP is about 14 Kbps for low BER 
environment (10-7). 

 
Figure 4.38 – Effective throughput variation for nanosatellite constellation model (one-way 

scenario) 
Figure 4.39 shows transmission overhead variation as a function of BER.  

 
Figure 4.39 – Transmission overhead variation for nanosatellite constellation model (one-

way scenario) 
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By analyzing Eq. 4.2 and Eq. 4.3, we observe that overhead metric is complement to 
channel efficiency parameter. As a general rule, overhead must be minimized. 

According to Figure 4.39, STP and XSTP provide two times less overhead than TCP 
clones in case of low BER environment. An explanation of this behavior is found in XSTP 
probing mechanism. During probing cycle, receiver sends one POLL per RTT and stops data 
transmission in order to avoid data losses. At the end of this cycle and if there is no 
congestion, sender doesn’t reduce its congestion window; thus, it gives user the possibility to 
send much more data over the network. 

 TCP Vegas makes an exception by offering a compared overhead as STP and XSTP 
for low BER. 

As for high BER environment (10-3), TCP clones and even XSTP provide an overhead 
higher than 67 % and this need to be reduced. 

The overhead is a metric for comparing the scalability of protocols. As seen in Figure 
4.39, STP, XSTP and TCP Vegas scale well in case of low BER conditions, as compared to 
the rest of TCP clones. 

Sending more packets into the nanosatellite network (which translates in more 
overhead), more power is consumed. Therefore, nanosatellite communications have to be 
based on protocols that provide a minimum level of overhead, by considering low-power 
resources of nanosatellites. XSTP perform very well in low BER conditions (10-7 – 10-5), by 
providing only 5% of overhead, thus being a good candidate for nanosatellite networks. 
However, we need to find a way to improve its performance for high BER environment.  

Nanosatellites have a stringent constraint regarding energy consumption. 
Consequently, the energy spent for data transmission has to be minimized as much as 
possible, by providing in the same time efficient telecommunication services.  

Channel efficiency metric shows how communication channel is used during data 
transmission. In case of significant amount of data user, efficiency is closed to 1, which 
means that channel is well used. Contrary, if efficiency is closed to 0, the channel is not well 
exploited. 

Channel efficiency variation with respect to BER rate is plotted in Figure 4.40. We 
remark that XSTP has roughly the same performance as STP and Vegas, providing 5% higher 
efficiency than the other protocols, for low BER conditions. For very high BER environment 
(10-3), STP and XSTP succeed in providing two times more efficiency (33 %) than TCP 
Vegas which attains the lowest channel efficiency (15.5%). 

In conclusion, XSTP can be a good candidate for nanosatellite network because it 
offers a very good efficiency (95%) in low BER conditions (10-7–10-5) and 85% of efficiency 
in high BER environment (10-4). However, we think that an improvement of its probing-
mechanism can rise its efficiency level in case of very high BER. 



 

166 

 

 
Figure 4.40 – Channel efficiency variation for nanosatellite constellation model (one-way 

scenario) 
 
Generally, reverse channel is used for ACKs transmission. It is important to mention 

that reverse channel bandwidth has to be minimized at the very most due to satellite link 
asymmetry. 

As seen in Figure 4.41, XSTP and STP bandwidth for reverse channel increases with 
BER increasing; this means that XSTP needs a low bandwidth for reverse channel 
transmissions. Instead, reverse channel bandwidth for TCP clones decreases with BER 
increasing.  

 
Figure 4.41 – Reverse channel utilization for nanosatellite constellation model (one-way 

scenario) 
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This type of variation is explain by the fact that receiver sends one or many ACKs for 
received data packets. If there are no losses, the reverse channel bandwidth is increasing as 
many packets are received. Contrary, in high BER conditions, receiver doesn’t transmit many 
ACKs; therefore, reverse channel bandwidth decreases. 

Unlike TCP clones, STP and XSTP send STAT and USTAT messages over the 
reverse channel. When BER is low, receiver sends many small size STAT messages that 
demand a low reverse channel bandwidth. For high BER, receiver sends many large size 
USTAT messages that demand a large reverse channel bandwidth. 

XSTP needs a lower reverse channel bandwidth than STP because the number of 
STAT messages transmitted during probing cycle is decreasing as the number of POLL per 
RTT decreases (1 STAT message per POLL). 

In case of STP, the number of POLL per RTT remains unchanged (i.e., 3 POLL per 
RTT). Because STP doesn’t suspend transmission, it sends many USTAT messages even 
when BER is high. 

 
4.3.6.2 Bidirectional transmission scenario 

 
In this scenario, data transmission is made in both ways (a node is sender and receiver 

too). 
Effective throughput variation as a function of BER is illustrated in Figure 4.42. As 

compared to one-way scenario, we observe a slightly reduction of effective throughput due to 
reverse path transmission. STP provides the best performance for low BER conditions, by 
attaining the same throughput as in one-way scenario. In spite this, all protocols converge to a 
very poor throughput level when BER rate is very high (10-3) because data packet loss 
probability is significant, so the protocols need more bandwidth and resources to recover 
from these losses. 

We also observed that TCP Vegas is strongly influenced by reverse path transmission, 
having, even in low BER conditions, a data rate two times less than the other protocols. 

 
Figure 4.42 – Effective throughput variation for nanosatellite constellation model (two-way 

scenario) 
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Transmission overhead variation is plotted in Figure 4.43.  

 
Figure 4.43 – Transmission overhead variation for nanosatellite constellation model (two-

way scenario) 
 

XSTP, STP and Vegas achieve two times less overhead than the rest of protocols in 
low BER conditions, similar to one-way scenario. As compared to one-way, XSTP provides 3 
times less overhead (from 67% to 20%) in case of very high BER (10-3). 

By considering the scalability criterion, we can state that STP, XSTP and TCP Vegas 
scale well in case of low BER conditions, as compared to the rest of TCP clones. 

As for high BER environment (10-3), TCP clones and even XSTP provide an overhead 
higher than 67 % and this need to be reduced. 

As mentioned before, overhead metric is a measure to evaluate protocol efficiency in 
relation to nanosatellite battery power, as sending more packets consumes more power. 

 Therefore, XSTP performs better as compared to one-way scenario, by providing 
only 4% of overhead in low BER conditions (10-7 – 10-5), 8% of overhead for high BER rate 
(10-4) and 20% of overhead in very high BER environment (10-3). Therefore, XSTP could 
successfully be used for communications within nanosatellite networks. 

Figure 4.44 shows channel efficiency variation as a function of BER rate. XSTP 
outperforms all TCP clones and STP, by achieving an efficiency of more that 90 % even in 
very high BER conditions (10-3). This shows that the transmission channel is very well 
exploited during XSTP-type communications within the nanosatellite network.  

As in one-way scenario, TCP Vegas still remains the worst efficient protocol. 
Interestingly, it is almost 4 times more efficient than in one-way scenario (60% versus 
15.5%). 
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Figure 4.44 – Channel efficiency variation for nanosatellite constellation model (two-way 

scenario) 
 
Reverse channel utilization as a function of BER is plotted in Figure 4.45. We observe 

the same variation trend as in one-way scenario: XSTP and STP bandwidth for reverse 
channel increases with BER increasing; this means that XSTP needs a low bandwidth for 
reverse channel transmissions. Instead, reverse channel bandwidth for TCP clones decreases 
with BER increasing. The explanation given for one-way scenario is valid also for two-way 
scenario. 

STP provides an average reverse channel bandwidth of 8.7 Kbps while XSTP 
achieves a slightly smaller value (7.65 Kbps).  Among TCP clones, Vegas uses only 10 Kbps 
for reverse channel transmission for low BER conditions, which is 2 times and a half less 
than the rest of TCP clones. 

  
Figure 4.45 – Reverse channel utilization for nanosatellite constellation (two-way scenario) 
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4.3.6.3 Confidence interval for nanosatellite network simulations 

 
This chapter presents the confidence interval of QoS parameters for nanosatellite 

network simulations in case of one-way transmission scenario. 
The confidence interval of a population mean µ is expressed by the following 

formula: �÷ ø �ù/� W√� 

where:  
� x ÷÷ ÷÷ is the sample mean 
� n is the sample size 
� σ is the standard deviation 
� the level of confidence required is �1 � d ~ 100% 

Substitution of each of the values in the above formula would create the confidence 
interval required. 

The confidence level, expressed as a percentage, is the probability value (1-α) 
associated with a confidence interval. In our calculations, we consider two levels of 
confidence: α=0.05 (95% confidence) and α=0.1 (90% confidence). 

If we require a 90% confidence interval then zα/2 = z0.05 = 1.64. 
If we require a 95% confidence interval then zα/2 = z0.025 = 1.96. 
In the tables below, we present the confidence intervals for XSTP and STP protocols 

and for each TCP clone (i.e., New Reno, Reno, Tahoe, Vegas, Sack) for low BER (10-7) and 
high BER (10-4) conditions in case of one-way transmission scenario. 

 
Confidence intervals for XSTP protocol for low BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ã. =ï ø <. ï< [11.64; 14.87] <ã. =ï ø <=% 

Channel Efficiency (%) Òá. á ø Ñ. ãäá [95.15; 95.84] Òá. á ø Ñ. ãï% 

Overhead (%) ã.ÒïÐ ø <. =Ð [2.69; 5.24] ã. ÒïÐ ø ã=% 

Reverse channel  

bandwidth (Kbps) 
Ñ.ÑÒï ø Ñ. ÑÑáä [0.09; 0.101] Ñ.ÑÒï ø ï% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ã. =ï ø <. ãá [11.91; 14.61] <ã.=ï ø <Ñ% 

Channel Efficiency (%) Òá.á ø Ñ.=Ò [95.21; 95.79] Òá. á ø Ñ. ã% 

Overhead (%) ã.ÒïÐ ø <. ÑÐ [2.9; 5.04] ã.ÒïÐ ø =Ð% 

Reverse channel  

bandwidth (Kbps) 
Ñ.ÑÒï ø Ñ. ÑÑäá [0.0915; 0.1005] Ñ. ÑÒï ø á% 

Table 4.20 – Confidence interval for XSTP protocol (BER=10-7) 
 
For example, lets consider the effective throughput metric for low BER conditions. 

We obtained a mean value of 13.26 with a standard deviation of 1.64.  
• If we desire a confidence level of 95%, the corresponding confidence interval is ± 

1.61. This means that we are 95% certain that the true mean falls into the range from 
11.64 to 14.87. 
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• If we desire a confidence level of 90%, the corresponding confidence interval is ± 
1.35. This means that we are 90% certain that the true mean falls into the range from 
11.91 to 14.61. 
The rest of the numerical calculations in terms of confidence interval for the three 

other QoS parameters can be interpreted in the same manner. 
 

Confidence intervals for XSTP protocol for high BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) ã.Ò< ø Ñ. =ï [3.65; 4.17] ã.Ò< ø Ð% 

Channel Efficiency (%) ßá. ã= ø Ñ.Òï [84.36; 86.28] ßá. ã= ø <. <ã% 

Overhead (%) <Ð. =< ø <.ãã [15.88; 18.54] <Ð. =< ø ß% 

Reverse channel  

bandwidth (Kbps) 
Ñ.<<Ò= ø Ñ. ÑÑ<ã [0.1178; 0.1205] Ñ. <<Ò= ø <. =% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) ã.Ò< ø Ñ. == [3.69; 4.13] ã.Ò< ø ï% 

Channel Efficiency (%) ßá. ã= ø Ñ.ß< [84.51; 86.13] ßá. ã= ø <% 

Overhead (%) <Ð. =< ø <.<< [16.1; 18.32] <Ð. =< ø Ð% 

Reverse channel  

bandwidth (Kbps) 
Ñ.<<Ò= ø Ñ. ÑÑ<< [0.118; 0.1203] Ñ.<<Ò= ø <% 

Table 4.21 – Confidence interval for XSTP protocol (BER=10-4) 
 

Confidence intervals for STP protocol for low BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <=. Ñï ø Ñ.Òß [11.09; 13.05] <=.Ñï ø ß.<% 

Channel Efficiency (%) Òá. =Ð ø Ñ.ãï [94.92; 95.64] Òá.=Ð ø Ñ.ä% 

Overhead (%) ä. Òá ø Ñ.ä [4.56; 5.36] ä. Òá ø ß. <% 

Reverse channel  

bandwidth (Kbps) 
Ñ. Ñßä ø Ñ. ÑÑ<á [0.082; 0.085] Ñ.Ñßä ø <.ß% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <=. Ñï ø Ñ.ß= [11.25; 12.89] <=.Ñï ø ï.ß% 

Channel Efficiency (%) Òá.=Ð ø Ñ. ã [94.98; 95.58] Òá.=Ð ø Ñ.ã% 

Overhead (%) ä.Òá ø Ñ. ãã [4.63; 5.29] ä. Òá ø ï. ï% 

Reverse channel  

bandwidth (Kbps) 
Ñ. Ñßä ø Ñ. ÑÑ<ã [0.082; 0.085] Ñ.Ñßä ø <.á% 

Table 4.22 – Confidence interval for STP protocol (BER=10-7) 
 

Confidence intervals for STP protocol for high BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) ã.ÑÐ ø Ñ. <ä [2.94; 3.22] ã. ÑÐ ø ä. á% 

Channel Efficiency (%) ß= ø Ñ. == [81.78; 82.22] ß= ø Ñ. =Ð% 

Overhead (%) =<. Òï ø Ñ.ã= [21.64; 22.28] =<. Òï ø <. äá% 

Reverse channel  

bandwidth (Kbps) 
Ñ. <=ï ø Ñ. ÑÑÑä [0.1264; 0.1272] Ñ.<=ï ø Ñ.ã% 
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alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) ã.ÑÐ ø Ñ. <= [2.96; 3.2] ã.ÑÐ ø ä% 

Channel Efficiency (%) ß= ø Ñ. <ß [81.82; 82.18] ß= ø Ñ. ==% 

Overhead (%) =<. Òï ø Ñ.=Ð [21.69; 22.23] =<. Òï ø <. =ã% 

Reverse channel  

bandwidth (Kbps) 
Ñ. <=ï ø Ñ. ÑÑÑã [0.1256; 0.1263] Ñ. <=ï ø Ñ. =ä% 

Table 4.23 – Confidence interval for STP protocol (BER=10-4) 
 

Confidence intervals for NewReno protocol for low BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ã.á< ø Ñ. Ò [12.62; 14.4] <ã. á< ø Ð% 

Channel Efficiency (%) ÒÑ. Ðá ø Ñ.ãï [90.39; 91.11] ÒÑ.Ðá ø Ñ. ä% 

Overhead (%) <Ñ. <Ò ø Ñ.äã [9.76; 10.62] <Ñ. <Ò ø ä% 

Reverse channel  

bandwidth (Kbps) 
Ñ. ã ø Ñ. Ñ= [0.28; 0.32] Ñ. ã ø Ð% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ã. á< ø Ñ.Ðá [12.76; 14.26] <ã.á< ø ï% 

Channel Efficiency (%) ÒÑ.Ðá ø Ñ. ã [90.45; 91.05] ÒÑ.Ðá ø Ñ.ã% 

Overhead (%) <Ñ. <Ò ø Ñ.ãï [9.83; 10.55] <Ñ.<Ò ø ã.á% 

Reverse channel  

bandwidth (Kbps) 
Ñ. ã ø Ñ. Ñ= [0.28; 0.32] Ñ.ã ø Ð% 

Table 4.24 – Confidence interval for NewReno protocol (BER=10-7) 
 

Confidence intervals for NewReno protocol for high BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <. =ß ø Ñ. ÑÐ [1.22; 1.36] <.=ß ø á.á% 

Channel Efficiency (%) ß<. <Ð ø Ñ. Ð [80.48; 81.86] ß<.<Ð ø Ñ.ßï% 

Overhead (%) =ã. = ø <. Ñä [22.16; 24.24] =ã.= ø ä.á% 

Reverse channel  

bandwidth (Kbps) 
Ñ. ÑãÐ ø Ñ. ÑÑ= [0.034; 0.039] Ñ. ÑãÐ ø á. ä% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <. =ß ø Ñ. Ñï [1.23; 1.35] <.=ß ø ä.Ð% 

Channel Efficiency (%) ß<.<Ð ø Ñ.áß [80.59; 81.75] ß<. <Ð ø Ñ. Ð% 

Overhead (%) =ã. = ø Ñ. ßÐ [22.33; 24.07] =ã. = ø ã. Ðá% 

Reverse channel bandwidth 

(Kbps) 
Ñ.ÑãÐ ø Ñ. ÑÑ<ß [0.0352; 0.0388] Ñ. ÑãÐ ø ä. ß% 

Table 4.25 – Confidence interval for NewReno protocol (BER=10-4) 
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Confidence intervals for Reno protocol for low BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <<. Ò< ø <. á< [10.4; 13.42] <<.Ò< ø <ã% 

Channel Efficiency (%) ÒÑ.ï ø Ñ.á< [90.09; 91.11] ÒÑ.ï ø Ñ.á% 

Overhead (%) <Ñ. ãÐ ø Ñ. ï= [9.75; 11] <Ñ. ãÐ ø ï% 

Reverse channel  

bandwidth (Kbps) 
Ñ.=ïï ø Ñ. Ñã [0.24; 0.3] Ñ. =ïï ø <<% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <<. Ò< ø <. =Ð [10.64; 13.18] <<.Ò< ø <<% 

Channel Efficiency (%) ÒÑ.ï ø Ñ.äã [90.17; 91.03] ÒÑ. ï ø Ñ. äÐ% 

Overhead (%) <Ñ. ãÐ ø Ñ. á= [9.85; 10.89] <Ñ. ãÐ ø á% 

Reverse channel  

bandwidth (Kbps) 
Ñ.=ïï ø Ñ. Ñã [0.24; 0.3] Ñ. =ïï ø <<% 

Table 4.26 – Confidence interval for Reno protocol (BER=10-7) 
 

Confidence intervals for Reno protocol for high BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <.= ø Ñ. ÑÒ [1.12; 1.3] <. = ø Ð. á% 

Channel Efficiency (%) ß<.<ä ø <. <ï [80; 82.3] ß<. <ä ø <. ä% 

Overhead (%) =ã.=ï ø <. Ðï [79.38; 82.9] =ã. =ï ø Ð. á% 

Reverse channel  

bandwidth (Kbps) 
Ñ.Ñãá ø Ñ. ÑÑ<Ð [0.03311; 0.3664] Ñ.Ñãá ø á% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <.= ø Ñ. Ñß [1.13; 1.29] <. = ø Ð. á% 

Channel Efficiency (%) ß<. <ä ø < [80.16; 82.12] ß<. <ä ø <. ä% 

Overhead (%) =ã. =ï ø <.á [21.78; 24.74] =ã. =ï ø Ð. á% 

Reverse channel  

bandwidth (Kbps) 
Ñ.Ñãá ø Ñ. ÑÑ<á [0.033; 0.036] Ñ.Ñãá ø á% 

Table 4.27 – Confidence interval for Reno protocol (BER=10-4) 
Confidence intervals for Tahoe protocol for low BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ã.á< ø Ñ. äß [13.03; 14] <ã. á< ø ã. á% 

Channel Efficiency (%) ÒÑ.Ðä ø Ñ. <= [90.62; 90.86] ÒÑ.Ðä ø Ñ.<ã% 

Overhead (%) <Ñ.<Ò ø Ñ. <á [10.05; 10.35] <Ñ. <Ò ø <. á% 

Reverse channel  

bandwidth (Kbps) 
Ñ.ã ø Ñ. Ñ< [0.29; 0.31] Ñ. ã ø ã. ã% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ã. á< ø Ñ.ä [13.11; 13.91] <ã. á< ø ã% 

Channel Efficiency (%) ÒÑ. Ðä ø Ñ.< [90.64; 90.84] ÒÑ. Ðä ø Ñ. <% 

Overhead (%) <Ñ.<Ò ø Ñ. <= [10.07; 10.31] <Ñ. <Ò ø <. <% 

Reverse channel  

bandwidth (Kbps) 
Ñ.ã ø Ñ. Ñ< [0.29; 0.31] Ñ. ã ø ã. ã% 

Table 4.28 – Confidence interval for Tahoe protocol (BER=10-7) 
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Confidence intervals for Tahoe protocol for high BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <. =Ò ø Ñ. ÑÒ [1.2; 1.39] <.=Ò ø Ð% 

Channel Efficiency (%) ß<.ßã ø Ñ. ßß [80.95; 82.71] ß<. ßã ø <% 

Overhead (%) ==. = ø <. ã< [20.9; 23.5] ==.= ø ï% 

Reverse channel  

bandwidth (Kbps) 
Ñ. Ñãï ø Ñ. ÑÑ= [0.034; 0.038] Ñ. Ñãï ø á. á% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <. =Ò ø Ñ. Ñß [1.21; 1.38] <.=Ò ø ï% 

Channel Efficiency (%) ß<.ßã ø Ñ. Ðä [81.09; 82.57] ß<. ßã ø Ñ. Ò% 

Overhead (%) ==.= ø <. < [21.1; 23.3] ==.= ø á% 

Reverse channel  

bandwidth (Kbps) 
Ñ.Ñãï ø Ñ. ÑÑ<Ð [0.034; 0.037] Ñ. Ñãï ø ä. Ð% 

Table 4.29 – Confidence interval for Tahoe protocol (BER=10-4) 
Confidence intervals for Vegas protocol for low BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ä.<ï ø Ñ. ïï [13.5; 14.82] <ä. <ï ø ä. ï% 

Channel Efficiency (%) Òá.ß< ø Ñ. Ñã [95.78; 95.84] Òá.ß< ø Ñ.Ñã% 

Overhead (%) ä. ãÐ ø Ñ. Ñä [4.33; 4.41] ä.ãÐ ø <% 

Reverse channel  

bandwidth (Kbps) 
Ñ. =Ò ø Ñ. Ñ< [0.29; 0.31] Ñ.=Ò ø ã.á% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ä.<ï ø Ñ. áá [13.61; 14.71] <ä. <ï ø ã. ß% 

Channel Efficiency (%) Òá.ß< ø Ñ. Ñã [95.78; 95.84] Òá.ß< ø Ñ.Ñã% 

Overhead (%) ä. ãÐ ø Ñ. Ñã [4.34; 4.4] ä.ãÐ ø Ñ.Ð% 

Reverse channel  

bandwidth (Kbps) 
Ñ. =Ò ø Ñ. Ñ< [0.29; 0.31] Ñ.=Ò ø ã.á% 

Table 4.30 – Confidence interval for Vegas protocol (BER=10-7) 
Confidence intervals for Vegas protocol for high BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <. ï< ø Ñ. ãä [1.27; 1.95] <.ï< ø =<% 

Channel Efficiency (%) ßä.Ñã ø <. <ä [82.9; 85.17] ßä. Ñã ø <. ã% 

Overhead (%) <Ò. Ñ< ø <.ï [17.42; 20.6] <Ò. Ñ< ø ß. á% 

Reverse channel  

bandwidth (Kbps) 
Ñ.ÑäÐ ø Ñ. Ñ< [0.04; 0.06] Ñ. ÑäÐ ø =<% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <. ï< ø Ñ. =ß [1.33; 1.89] <.ï< ø <Ð% 

Channel Efficiency (%) ßä.Ñã ø Ñ. Òá [93.09; 85] ßä. Ñã ø <. <% 

Overhead (%) <Ò. Ñ< ø <.ã [17.68; 20.34] <Ò. Ñ< ø Ð% 

Reverse channel  

bandwidth (Kbps) 
Ñ.ÑäÐ ø Ñ. Ñ< [0.04; 0.06] Ñ. ÑäÐ ø =<% 

Table 4.31 – Confidence interval for Vegas protocol (BER=10-4) 
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Confidence intervals for Sack protocol for low BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ä.ä= ø <. ãá [13.07; 15.77] <ä. ä= ø Ò. ä% 

Channel Efficiency (%) Ò<.áä ø Ñ. <á [91.4; 91.7] Ò<.áä ø Ñ.<ï% 

Overhead (%) Ò. =ä ø Ñ. <ß [9.07; 9.43] Ò.=ä ø =% 

Reverse channel  

bandwidth (Kbps) 
Ñ. ãã ø Ñ. Ñã [0.3; 0.36] Ñ.ãã ø Ò.<% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <ä.ä= ø <. <ä [13.28; 15.56] <ä. ä= ø ß% 

Channel Efficiency (%) Ò<.áä ø Ñ. <ã [91.41; 91.67] Ò<.áä ø Ñ.<ä% 

Overhead (%) Ò. =ä ø Ñ. <á [9.09; 9.39] Ò.=ä ø <.ï% 

Reverse channel  

bandwidth (Kbps) 
Ñ. ãã ø Ñ. Ñ= [0.31; 0.35] Ñ.ãã ø ï% 

Table 4.32 – Confidence interval for Sack protocol (BER=10-7) 
 

Confidence intervals for Sack protocol for high BER conditions 

alpha = 0.05 → 95% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <.<ãá ø Ñ. Ñï [1.08; 1.2] <. <ãá ø á. ã% 

Channel Efficiency (%) ß<.Ðä ø <. Ñá [80.7; 82.8] ß<. Ðä ø <. ã% 

Overhead (%) ==.ãá ø <. áÐ [20.78; 23.92] ==. ãá ø Ð% 

Reverse channel  

bandwidth (Kbps) 
Ñ.Ñãï ø Ñ. ÑÑ<á [0.0344; 0.0375] Ñ.Ñãï ø ä% 

alpha = 0.1 → 90% confidence 

QoS performance metric Confidence interval 

Effective throughput (Kbps) <.<ãá ø Ñ. Ñá [1.09; 1.19] <. <ãá ø ä. ä% 

Channel Efficiency (%) ß<.Ðä ø Ñ. ßß [80.86; 82.62] ß<. Ðä ø <. <% 

Overhead (%) ==.ãá ø <. ã< [21.04; 23.66] ==. ãá ø á. Ò% 

Reverse channel  

bandwidth (Kbps) 
Ñ.Ñãï ø Ñ. ÑÑ<ã [0.0346; 0.0373] Ñ. Ñãï ø ã. ï% 

Table 4.33 – Confidence interval for Sack protocol (BER=10-4) 
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4.4 XSTP performance comparison: satellite network versus 

nanosatellite network 

 
This chapter presents a comparison study between satellite network and nanosatellite 

network in case of XSTP-type communication scenarios. 
Table 4.34 presents the results of the three QoS performance metrics (i.e., effective 

throughput, transmission overhead, channel efficiency) for low BER conditions (10-7), high 
BER (10-4) and very high BER environment (10-3). 

Below, we made some useful observations by considering the results for one-way 
scenario and two-way scenario respectively. 

 Effective throughput 
Transmission 

overhead 
Channel efficiency 

Satellite 

network 

One-way 

scenario 

1402 Kbps, BER=10-7 

392 Kbps, BER=10-4 

69 Kbps, BER=10-3 

3.63%, BER=10-7 

13.82%, BER=10-4 

66.36%, BER=10-3 

96.37%, BER=10-7 

86.18%, BER=10-4 

33.64%, BER=10-3 

Two-way 

scenario 

1266 Kbps, BER=10-7 

234 Kbps, BER=10-4 

43 Kbps, BER=10-3 

4.2%, BER=10-7 

6.6%, BER=10-4 

21.7%, BER=10-3 

95.8%, BER=10-7 

93.41%, BER=10-4 

78.3%, BER=10-3 

Nanosatellite 

network 

One-way 

scenario 

13.5 Kbps, BER=10-7 

3.9 Kbps, BER=10-4 

0.64 Kbps, BER=10-3 

3.96%, BER=10-7 

17.21%, BER=10-4 

66.5%, BER=10-3 

95.5%, BER=10-7 

85.32%, BER=10-4 

31.28%, BER=10-3 

Two-way 

scenario 

11.73 Kbps, BER=10-7 

2.57 Kbps, BER=10-4 

0.4 Kbps, BER=10-3 

4.32%, BER=10-7 

7.95%, BER=10-4 

19.16%, BER=10-3 

95.85%, BER=10-7 

90.77%, BER=10-4 

89.5%, BER=10-3 

Table 4.34 – XSTP performance comparison table: satellite network versus nanosatellite 
network 

 
4.4.1 One-way scenario 

 

First of all, we observe a significant difference between the satellite network 
throughput and nanosatellite network throughput provided in all BER conditions. This is due 
to the high capacity of satellite network, designed to support uplink rates of 2 Mbps and 
downlink rates up to 64 Mbps. In contrast, nanosatellite network provides only 32 Kbps for 
uplink and maximum 1 Mbps for downlink. 

Secondly, both networks roughly provide the same transmission overhead for each of 
BER level previously defined. The overhead is a metric for comparing the scalability of 
protocols. As Table 4.34 results shows, XSTP scales well in case of low BER conditions but 
its performance in very high BER environment need to be improved. 

Thirdly, both networks have comparative results in terms of channel efficiency for 
each category of BER conditions. XSTP protocol offers a good performance (96%) in low 
BER conditions and even for high BER rates (86%), which means that the transmission 
channel is very well used during data transmissions. However, the channel efficiency attains 
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a low level in very high BER conditions, being 3 times less than the efficiency level obtained 
in low BER environment. 

 
4.4.2 Two-way scenario 

 

As regards of effective throughput, we observe a big difference between satellite 
network and nanosatellite network. The same explanation as in one-way scenario is valid 
here. 

In terms of transmission overhead, both networks have the same performance in low 
BER conditions. However, we remark that nanosatellite network provides a lower overhead 
in high and very high conditions, as compared to satellite network. Though, the performance 
of both networks in very high BER conditions remains an issue that need to be solved. 

It is important to mention here that transmission overhead is a measure to evaluate 
protocol efficiency in relation to nanosatellite battery power, as sending more packets 
consumes more power. Furthermore, sending more data increases the probability of packet 
collision and can delay data packets in the queues. In this regard, our simulations demonstrate 
that XSTP is an ideal candidate for nanosatellite networks because it considers the limited 
power resources of nanosatellites. 

As for channel efficiency, both networks have comparable performance in low BER 
and high BER conditions. Interestingly, the nanosatellite network provides a better channel 
efficiency (almost 90%) in very high BER conditions as compared to satellite network. This 
means that the transmission channel is better exploited during nanosatellite communications. 
This is a further reason to consider XSTP protocol as a good solution for nanosatellite 
telecommunications. 

 

4.5 Summary 

 
This chapter yielded some very interesting results. Firstly, the coverage parameters 

and performance indicators of NanoDREAM, NanoICE and NanoSPHERE constellations 
were presented and discussed. Then, these constellations were evaluated with respect to 
coverage criterion, using SaVi simulator. 

According to our results, a NanoDREAM constellation of 9 nanosatellites, placed on a 
single equatorial plane at 1500 km of altitude and having an elevation angle of 15º provides 
the best coverage of Salar de Uyuni Desert. Also, this constellation is design such as the 
number of nanosatellites is minimized. 

Moreover, we have shown that a NanoICE constellation of 15 nanosatellites, placed 
on a polar orbit at 700 km of altitude and having a minimum elevation angle of 10º is the best 
configuration that could provide efficient communication services for the Polar Regions 
scientific community. 

In the context of a high demand of telecommunication services among various 
industrial companies in charge of mineral resources exploitation, we identified that a 
NanoSPHERE constellation of 45 nanosatellites disposed on 5 orbital planes, each plane 
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inclined at 65º with respect to equatorial plane, and having 9 nanosatellites per plane at 1500 
km of altitude, is the best constellation to provide global coverage. 

Secondly, the ground segment architecture, proposed for Salar de Uyuni mission, is 
tested via computer simulations in OPNET modeler. Our results have shown that the ground 
segment architecture could support telecommunications services via a nanosatellite network. 

Thirdly, the NS2 simulation results concerning XSTP performance over satellite 
networks and nanosatellite networks are described and analyzed. Also, the simulation 
scenarios, the XSTP implementation solution and the networks topologies are presented. NS2 
simulations were conducted for two types of scenarios (i.e., one-way scenario, where 
transmission channels are symmetrical and bidirectional scenario, when transmission is made 
in both ways). For each type of network, XSTP performance was evaluated based on four 
QoS metrics: effective throughput, overhead, channel efficiency and reverse channel 
utilization. 

One achievement of this chapter is the comparison between satellite network and 
nanosatellite network in terms of XSTP performance. This analysis has shown that XSTP 
could be a good transport protocol for nanosatellite telecommunications, since it considers 
the limited power resources of nanosatellites. XSTP protocol provides a better channel 
efficiency and lower transmission overhead in very high BER conditions as compared to 
satellite network.  

The next chapter will conclude this thesis and will point out future research directions 
in nanosatellite telecommunication field. 
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Chapitre 5. CONCLUSIONS ET PERSPECTIVES 

 
 
Ce chapitre récapitule les conclusions résultant de ces travaux de recherche. Les 

contributions de la thèse ainsi que les perspectives pour étendre les travaux de recherche dans 
le domaine de nano-satellites sont proposées. 

 

Sommaire des résultats de la thèse 

 

Ce travail de recherche a été plus difficile qu'attendu, en raison du manque ou très peu 
d'études disponibles à ce jour dans le domaine de constellations de nano-satellites. 
Cependant, les caractéristiques de réseaux de nano-satellites ont été examinées en détail. La 
thèse propose également des nouveaux modèles de constellations de nano-satellites, des 
méthodes pour évaluer leurs performances, des nouvelles approches de routage et de la 
Qualité de Service pour les réseaux de nano-satellites. 

En outre, ces recherches font étendre la base de connaissance de réseaux de nano-
satellites, en développant des modèles innovants de constellations de nano-satellites, en 
identifiant un protocole de transport pour les télécommunications par nano-satellites et en 
proposant de nouvelles approches pour implémenter, de façon efficace, la QdS dans les 
réseaux de nano-satellites. 

Cette thèse a un double but : la proposition des modèles innovants de constellations de 
nano-satellites et des nouvelles approches de routage pour les réseaux de nano-satellites. Pour 
réaliser ce but, nous avons utilisé l'approche suivante. 

Dans un premier temps, nous avons fait une introduction dans le domaine de petits 
satellites, en définissant des concepts comme le nano-satellite, le vol en formation, le cluster, 
la constellation. Aussi, les défis de systèmes nano-satellitaires sont soulignés avec quelques 
aspects complémentaires de satellites conventionnels et de petits satellites. Ensuite, les 
avantages et les inconvénients de petits satellites par rapport aux satellites classiques sont 
présentés. Nous avons aussi passé en revue la littérature pour déterminer les plus importantes 
applications de nano-satellites. Pour identifier la tendance dans le domaine de lancement de 
nano-satellites, nous avons réalisé une analyse de lancement de nano-satellites dans la 
période 2004 – mi2007. Cette analyse montre que dans l’avenir, les nano-satellites 
accéléreront l'exploration spatiale qui entraine aussi une augmentation significative de 
lancements de nano-satellites et la conception des petits lanceurs. 

D’autre part, l'évolution de la technologie multimédia et l'intérêt commercial des 
opérateurs nano-satellitaires futurs pour pénétrer le marché de télécommunications, en 
offrant, au grand publique, des services de télécommunications de haute qualité et bon 
marché, feront que l’aspect Qualité de Service soit très important dans les futures 
constellations de nano-satellites. Pour cette raison, nous avons proposé plusieurs approches 
pour implémenter la Qualité de Service dans les réseaux de nano-satellites. 

Dans un deuxième temps, nous avons examiné d’autres types de réseaux (i.e., les 
réseaux de capteurs, les réseaux Ad hoc, les réseaux de satellites conventionnels) à la 
recherche de nouvelles idées qui pourraient être appliquées aux réseaux de nano-satellites. 
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Cette thèse propose et analyse trois modèles de constellations de nano-satellites, 
dénommés NanoDREAM, NanoICE, NanoSPHERE, qui fournissent des services de 
télécommunications aux régions éloignées. Le modèle NanoDREAM est conçu pour le 
Désert Salar de Uyuni de la Bolivie, une région qui détient 70% de la réserve mondiale de 
lithium. La mission d'exploitation du lithium en Bolivie a reçu une attention significative, en 
considérant la nouvelle politique d'énergie et les futures applications envisagées pour la 
réduction des émissions de CO2 au niveau mondial. Aussi, nous avons proposé une 
architecture pour le segment terrestre basée sur la technologie sans fil. Cette architecture a été 
déployée sur la zone d'exploitation du Désert Salar de Uyuni. Le modèle NanoICE est destiné 
pour les Régions Polaires, pour satisfaire les besoins de télécommunications de la 
communauté scientifique. Le modèle NanoSPHERE est conçu pour fournir une couverture 
globale de la Terre dans le contexte d’un marché de télécommunications robuste. Ces 
modèles ont été développés analytiquement et mis ensuite en œuvre dans le simulateur SaVi 
afin d’identifier la meilleure constellation qui satisfait les requis de la mission en termes de 
couverture, en réduisant au minimum le nombre de nano-satellites de la constellation. 

De plus, cette thèse s'est concentrée sur l’évaluation de la capacité des constellations 
de nano-satellites à fournir des services de télécommunications, en mesurant les délais de 
propagation à travers les réseaux nano-satellitaires simulés. Ainsi, nous avons calculé la 
quantité de données transmise chaque fois qu'un nano-satellite passe au-dessus d'une station 
terrestre. 

En outre, nous avons proposé une architecture de segment terrestre pour la mission 
d'exploitation du désert Salar de Uyuni. Ainsi, nous proposons de déployer un réseau maillé 
sans fil sur la zone d'exploitation du lithium pour connecter tous les bâtiments facilement et 
efficacement en utilisant une technologie peu coûteuse. Les simulations OPNET ont montré 
que ce réseau Ad hoc est adapté pour des télécommunications via un réseau de nano-
satellites, en fournissant une bande passante effective supérieure à la liaison ascendante et 
descendante d’un nano-satellite. 

Nous avons aussi étudié les performances des protocoles de transport dans les réseaux 
nano-satellitaires. Le protocole de transport XSTP a été identifié comme un candidat possible 
pour les réseaux de nano-satellites, basé sur une étude sur le routage dans les réseaux de 
satellites conventionnels. Le protocole XSTP a alors été implémenté dans le simulateur NS2. 
Les scénarios unidirectionnel et bidirectionnel ont fourni la base de l'évaluation du protocole 
XSTP sur un réseau de satellite et sur un réseau de nano-satellite. Comme l’aspect Qualité de 
Service est un point important de cette thèse, nous avons défini plusieurs paramètres de 
performances, comme la bande passante effective, l’overhead, l'efficacité du canal et la bande 
passante nécessaire pour la transmission en sens inverse. Ainsi, les performances du 
protocole XSTP sont évaluées en ce qui concerne ces paramètres de performances de QdS et 
pour chaque type de réseau (ie.e, satellitaire, nano-satellitaire). Nos simulations ont montré 
que le protocole XSTP a atteint les meilleures performances en termes de bande passante 
effective, la meilleure efficacité du canal et un overhead plus bas que les clones TCP. 

Une analyse intéressante est la comparaison des performances du protocole XSTP 
entre un réseau de satellites traditionnels et un réseau de nano-satellites. Cette analyse a 
montré que le protocole XSTP pourrait être utilisé avec succès dans les réseaux de nano-
satellites pour les raisons suivantes. Le protocole XSTP atteint une meilleure efficacité 
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(presque 90 %) dans des conditions de haut taux d’erreurs pour les réseaux de nano-satellites 
par rapport aux réseaux de satellites. Cela signifie que le canal de transmission est mieux 
exploité pendant les communications nano-satellitaires. Ainsi, le réseau de nano-satellites 
fournit un overhead inférieur par rapport au réseau de satellites conventionnels, dans un 
environnement caractérisé par haut et très haut taux d’erreurs. Cependant, les performances 
du protocole XSTP dans des conditions de très haut taux d’erreurs reste un problème qui doit 
être résolu. 

En considérant les propositions faites dans cette thèse, nous pouvons conclure que les 
futures constellations de nano-satellites pourraient profiter aux trois modèles de constellation 
décrits dans cette thèse. De plus, nous avons démontré que le protocole de transport XSTP est 
un bon candidat pour les réseaux de communication par nano-satellites. 

 

Les contributions de la thèse 

 

Cette thèse couvre deux champs d'études : la conception de constellation de nano-
satellites et le routage dans les réseaux de nano-satellites en orbite basse. Les contributions 
spécifiques de cette thèse sont les suivantes: 

1) Proposer trois modèles de constellations de nano-satellites, spécifiquement conçus 
pour fournir des services de télécommunications dans des régions éloignées. Une 
mission innovatrice a été proposée pour chacun d'entre eux : 
• le modèle NanoDREAM conçu pour le Désert de Salar de Uyuni en Bolivie ; 

• le modèle NanoICE destiné aux Régions Polaires, afin d’assurer les besoins en 
termes de télécommunications de la communauté scientifique d’Antarctique et 
d’Arctique ; 

• le modèle NanoSPHERE conçu pour fournir une couverture globale de la Terre, 
dans l’hypothèse d'une demande significative de services de télécommunications 
de sociétés industrielles étant responsables de l'exploitation de ressources minières 
dans plusieurs régions de la Terre. 

2) Proposer une méthode pour calculer le nombre de nano-satellites nécessaires pour 
couvrir une région spécifique de la Terre. 

3) Proposer une méthode basée sur le modèle de Markov pour évaluer les performances 
des constellations de nano-satellites. 

4) Proposer une architecture de segment terrestre basée sur la technologie sans fil. 
Comme nos simulations l'ont montré, cette architecture pourrait fournir des services 
de télécommunications via un réseau nano-satellitaire. 

5) Introduire les premières idées et formuler plusieurs questions sur la QdS dans les 
réseaux de nano-satellites, sur laquelle il n'y a eu aucune recherche précédente. Les 
défis de la QdS dans les réseaux de nano-satellites ont été identifiés et nous avons 
proposé plusieurs approches afin d’implémenter la QdS dans ceux-ci. 

6) Proposer de nouvelles approches de routage pour les réseaux nano-satellitaires, en 
étudiant d'autres types de réseaux (i.e., les réseaux de capteurs, les réseaux Ad hoc) 
qui pourraient fournir des idées intéressantes et innovatrices qui seraient appliquées 
aux réseaux nano-satellitaires. 
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7) Identifier le protocole XSTP comme un candidat possible pour les réseaux de nano-
satellites, en se basant sur une étude sur le routage dans les réseaux de satellites 
classiques. 

8) Développer et implémenter deux nouveaux modules (STP, XSTP) dans le simulateur 
NS2 afin d’évaluer les performances de ces protocoles à travers les réseaux de 
satellites et les réseaux nano-satellitaires. 

9) Conduire des d'études de performances, à travers des simulations et des analyses, pour 
évaluer les performances du protocole XSTP sur des réseaux de satellites traditionnels 
et des réseaux de nano-satellites. 
 

Perspectives 

 

Tandis que les méthodes, les modèles et les approches de routage et de la QdS 
proposés dans cette thèse font étendre les connaissances du domaine de nano-satellites, les 
extensions de ce travail de recherche peuvent fournir d'autres avantages. Dans cet esprit, nous 
recommandons les perspectives suivantes : 

Puisque les trois modèles de constellations nano-satellitaires (i.e., NanoDREAM, 
NanoICE et NanoSPHERE) ont été développés en considérant plusieurs hypothèses, des 
modèles plus complexes devront être considérés qui tiennent compte des perturbations qui 
agissent sur les nano-satellites. Notre but était de proposer des modèles simples qui devraient 
être des modèles de base pour la conception de futures constellations de nano-satellites. 

A notre connaissance, il n'y a actuellement aucun outil de simulation spécifiquement 
conçu pour des constellations de nano-satellites. Pour cette raison, développer des outils de 
simulations, basés sur l'approche open-source, pour la conception des constellations de nano-
satellites est un défi adressé à la communauté du logiciel libre. Nous pensons aussi qu'en 
rendant disponible, de façon libre, les implémentations de protocoles, cela permettra d'ajouter 
des améliorations substantielles aux protocoles. Le présent travail de recherche inclut aussi de 
nouvelles implémentations logicielles des protocoles de transport STP et XSTP dans le 
simulateur NS2 pour évaluer leurs performances sur les réseaux de satellites classiques et de 
nano-satellites. 

Malgré tout, le protocole XSTP n'est pas parfait. Pour cette raison, nous proposons 
dans cette thèse, quelques perspectives de recherche futures. Nous avons observé que 
l’overhead est significatif dans des conditions de très haut taux d’erreurs (10-3) et devrait être 
réduit. Aussi, au niveau du mécanisme de probing, le principe de décision doit être amélioré 
pour distinguer les erreurs liées à la congestion du réseau et d'autres types d'erreurs qui 
pourraient être trouvées dans les réseaux de nano-satellites. Un autre aspect important est le 
niveau d'énergie dépensée pendant le cycle de probing. Une perspective intéressante serait de 
trouver une méthode pour mesurer et évaluer quantitativement cette énergie. De plus, une 
évaluation des performances du protocole XSTP en considérant des paramètres de 
performances de la QdS et des scénarios de test plus complexes pourrait être une direction de 
recherche intéressante. 

D'autres études futures pourraient être dirigées vers les performances du protocole 
XSTP sur d'autres types de topologies (e.g., des constellations de type Flower, des clusters, 
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des constellations hybrides composées des satellites classiques et de nano-satellites). Une 
autre perspective est une étude de comparaison entre le mécanisme de probing du protocole 
XSTP et le mécanisme du protocole TCP. Cette comparaison pourrait montrer le mécanisme 
le plus efficace en termes d'adaptation aux différents types d'erreurs des liaisons satellitaires. 
De plus, le mécanisme de probing pourrait être étudié dans un contexte de communications 
sans fil ou dans un domaine similaire caractérisé par des différents types d'erreurs de 
communications. 

Cette thèse a abordé deux sujets fondamentaux sur les réseaux de nano-satellites : le 
routage et la Qualité de Service. Nous avons démontré que le protocole XSTP, initialement 
conçu pour des réseaux de satellites traditionnels, pourra être utilisé dans des réseaux de 
nano-satellites. Les travaux futurs pourront se concentrer sur une étude détaillée d'autres 
protocoles de réseau de satellites traditionnels, en utilisant des techniques d'analyse et des 
simulations. 

De plus, une étude sur les simulateurs de réseau actuels pourrait montrer si ces outils 
pourraient être adaptés afin de réaliser des simulations de réseaux nano-satellitaires. 

Des travaux futurs sont aussi nécessaires pour développer des protocoles 
spécifiquement conçus pour les réseaux de nano-satellites et qui prennent en considération les 
ressources très limitées des nano-satellites. Les premiers pas ont déjà été faits par un groupe 
d'étudiants de l'Université d’Aalborg [68] en 2008 qui a développé, le protocole CSP 
(CubeSat Space Protocol [69]) – un protocole de la couche réseau conçu pour les CubeSats. 

A notre connaissance, il n'y a aucune topologie spécifiquement conçue pour des 
réseaux de nano-satellite. Donc, les topologies de réseaux de satellites traditionnels (i.e.,  
Maillé, Étoile, Hybride) devraient être examinées pour voir si elles sont adaptées aux réseaux 
de nano-satellites ou si de nouvelles topologies sont nécessaires. 

Nous avons identifié dans cette thèse les contraintes principales en termes de QdS 
pour les réseaux de nano-satellites. En outre, nous proposons plusieurs directions de 
recherche afin d’implémenter la QdS dans l'environnement nano-satellitaire : 

1) Développer des outils qui permettent aux utilisateurs une utilisation efficace des 
ressources du réseau de nano-satellites; aussi, ces outils peuvent montrer les 
ressources utilisées par le réseau de nano-satellites à un instant t et la priorité de 
chaque type de trafic. 

2) Développer des technologies de QdS dans des réseaux de nano-satellites afin de 
fournir des services multimédia. 

3) Développer des méthodes spécifiques pour identifier le type de trafic transmis à 
travers un réseau nano-satellitaire. Par exemple, la classification est une méthode pour 
fournir un service préférentiel à un certain type de trafic. 

4) Développer des techniques pour éviter la congestion du réseau afin de pouvoir 
contrôler la charge du réseau nano-satellitaire sur certains segments de réseau. Ainsi, 
la congestion du réseau pourra être prévue et évitée avant que cela ne devienne un 
problème. Si la congestion commence à augmenter, les paquets seront refusés, ce qui 
conduira à un ralentissement de transmission de données au nœud source. 

5) Développer des techniques de gestion de la congestion afin de contrôler la congestion 
avant qu'elle ne se produise. Les outils de gestion de la congestion permettent de 
monter la priorité d'un trafic en utilisant des méthodes de queuing et servicing queues.  
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6) Développer des techniques de traffic shaping et de policing pour les réseaux de nano-
satellites. Le traffic shaping offre un moyen de contrôler le volume du trafic en train 
d’être envoyé à un réseau pendant une période donnée et le débit maximal auquel le 
trafic peut être envoyé. Cependant, le traffic shaping se fait toujours en retardant 
certains paquets (sans aucune perte). 

7) Définir des niveaux de QdS de bout en bout qui se réfèrent à la capacité du réseau de 
nano-satellites à fournir des services nécessaires à certains trafics. Chaque service 
fourni par le réseau nano-satellitaire devrait avoir un certain niveau de priorité sur la 
QdS qui décrit comment le service doit être limité en termes de bande passante, délai,  
gigue et pertes. Puisque les niveaux de QdS (i.e., Best effort, Differentiated service et 
Guaranteed service) sont appropriés seulement aux réseaux IP terrestres, d'autres 
niveaux de QdS doivent être développés pour les réseaux de nano-satellites. Nous 
pensons qu'un bon point de départ serait d’étudier si ces niveaux de QdS peuvent être 
appliqués ou adaptés aux réseaux de nano-satellites. Si cette étude montre qu’ils ne 
sont pas appropriés aux réseaux de nano-satellites, d'autres types de niveaux doivent 
être proposés. 
 
Pour conclure, nous considérons que les techniques de QdS peuvent fournir une 

importante valeur ajoutée aux services fournis par les réseaux de nano-satellites. En utilisant 
ces mécanismes, nous espérons que le trafic peut être contrôlé et les ressources des réseaux 
de nano-satellites pourraient être utilisées efficacement. 
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5 CONCLUSION AND FUTURE WORK 
 
This chapter summarizes the conclusions resulting from this research work. 

Moreover, the contributions of this thesis and specific recommendations to further develop 
and extend this work are pointed. 
 

5.1 Summary of research work 

 
This work has been more difficult than expected, due to the lack of prior work in the 

nanosatellite constellation field, and this has prevented the early creation of realistic 
simulations. However, the features of nanosatellites network have been investigated in depth, 
and the resulting models and QoS concepts appear to be novel and not discussed in prior 
literature. 

Furthermore, this research work has extended the knowledge base of nanosatellite 
networks, by developing a novel set of nanosatellite constellation models, by identifying 
candidate protocols for nanosatellite telecommunications and by proposing new approaches 
for an efficient QoS provisioning in nanosatellite networks. 

The goal of this thesis is two-fold: proposing innovative nanosatellite constellation 
models and new routing approaches for nanosatellite network telecommunications. For 
achieving this goal, we used the following research approach. 

Firstly, an introduction into small satellite field is made, by defining concepts such as 
nanosatellite, formation flying, cluster, and constellation. Also, the challenges of nanosatellite 
systems are emphasized along with some complementary aspects of large and small satellites. 
Then, the advantages and disadvantages of small satellites over conventional satellites are 
underlined. We also reviewed the literature to determine nanosatellite applications that need 
more attention. Since small satellite domain has imposed itself as a particular field in the last 
two decades, we found important to point out the results of an analysis of nanosatellite 
launches in the period 2004-mid 2007. This gives us an idea of the future trend in the 
nanosatellite launching field. 

Moreover, the telecommunication framework of nanosatellite networks is presented 
and discussed along with QoS challenges. The evolution of multimedia technology and the 
commercial interest of future small satellite operators to reach widely public applications will 
make QoS in nanosatellite networks an area of great interest. For this reason, we proposed 
several approaches in order to develop and implement QoS mechanisms into nanosatellite 
networks. 

Secondly, we survey other fields (i.e., sensor networks, Ad hoc networks, satellite 
networks) in search of new ideas that might be applied to nanosatellite networks. Thus, new 
routing approaches were proposed and a transport protocol candidate (XSTP – eXtended 
Satellite Transport Protocol) for nanosatellite networks was identified. 

Thirdly, three mathematical models were developed by considering some basic rules 
of constellation design. In order to evaluate nanosatellite constellation in terms of coverage, 
SaVi simulator was used. SaVi modeler allows satellite orbits and coverage simulations, in 
two and three dimensions. 
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The first model, named NanoDREAM (Nanosatellite constellation for Desert Region 
ExploitAtion and Monitoring), is intended to deploy a LEO, sun-synchronous nanosatellite 
constellation that provides telecommunications services (e.g., voice, SMS and images) for an 
industrial company in charge of lithium resources exploitation in Salar de Uyuni Desert. It is 
important to mention that this nanosatellite system can be applied to any similar remote area 
of the Earth. Three groups of six configurations each of NanoDREAM constellations were 
analyzed, each group corresponding to one of the three altitudes considered in this study: 800 
km, 1000 km and 1500 km. All these configurations were analyzed based on “round-trip 
propagation delay” criterion, pointing out the “best case” solution and “worst case” solution 
in terms of propagation delay. 

Among all 18 configurations, four NanoDREAM-type constellations were selected 
and implemented in SaVi simulator. Then, these four constellations were analyzed based on 
the coverage criterion. Thus, we identified the best constellation which responds to our 
mission objectives (i.e., minimizing the number of nanosatellites and maximizing the 
coverage). It is a nanosatellite constellation of 9 nanosatellites, all disposed on a single 
equatorial orbital plane at 1500 km of altitude and having a minimum elevation angle of 15º. 
Thus, this constellation provides a coverage band between 0º and 22º S latitude, including 
also Salar de Uyuni Desert. 

The second model, named NanoICE (Nanosatellite Innovative ConstEllation), 
designed to provide the best coverage performance at high latitudes (70 °- 90 ° N latitude and 
70 °- 90° S latitude). The Poles turn out to be the only geographic region where continuous 
coverage may be achieved soon. Polar Regions are the primary service areas for conducting 
scientific research in various domains, such as understanding the climate changing, 
monitoring the ozone layer, investigating the impact of solar wind on satellite electronics, 
earth-mapping, earth observation, weather monitoring. NanoICE is aimed to meet the voice 
and data transfer needs of the entire Antarctic community. NanoICE system supports the 
remote monitoring of scientific experiments, the data transfer, and enables scientists to 
communicate with their colleagues around the world. It was shown that a NanoICE 
constellation of 15 nanosatellites placed on a sun-synchronous orbit at 700 km of altitude and 
having an elevation angle of 10º could provide telecommunication services to Polar Regions 
scientific community. 

The last model, named NanoSPHERE, is based on Walker-type method and it is 
intended to provide global coverage. This model was envisaged in the context of a robust 
nanosatellite telecommunications market, where many nanosatellite operators are in 
competition. With more operators, the competition is more severe and market penetration is 
faster. Initially, only a portion of the full NanoSPHERE constellation is deployed to provide 
coverage only for a specific remote region. Thus, the nanosatellite operator could begin early 
revenue operations while the remaining orbital planes are progressively populated with 
nanosatellites. The extension of coverage area is justified by the growing demand of 
telecommunications services in other remote regions of the Earth, exploited for their mineral 
resources wealth. Our simulations showed that a NanoSPHERE constellation of 45 
nanosatellites with 9 nanosatellites evenly distributed in 5 orbital planes could provide the 
highest degree of coverage at the mid-latitudes. Moreover, NanoSPHERE constellation 
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neglects polar coverage, NanoICE model being specifically designed for polar region 
coverage. 

These models were developed analytically and then implemented in SaVi and NS2 
simulators. Based upon these models, several parameters of nanosatellite constellations were 
calculated, such as the number of nanosatellites, the maximum time in view, and the coverage 
parameters (i.e., antenna footprint, coverage rate, access area, access rate). 

In examining nanosatellite constellations in terms of their capability of providing 
telecommunication services, this thesis has focused on measuring propagation delays across 
simulated constellation networks, between ground terminals as endpoints. Also, the amount 
of data transmitted on each nanosatellite pass over a ground station has been assessed as a 
way of characterizing the perceived performance of the constellation. 

Furthermore, a ground segment architecture was proposed for Salar de Uyuni 
exploitation mission. We propose to deploy a wireless mesh network over the lithium 
exploitation area in order to easily, effectively and wirelessly connect all the buildings using 
inexpensive technology. The OPNET simulations showed that this Ad hoc network is suited 
for telecommunications via nanosatellite network, by providing an effective throughput 
superior to nanosatellite uplink and downlink rates. 

We have also studied, through analysis and simulations, the performance of transport 
protocols in nanosatellite networks. XSTP transport protocol was identified as a possible 
candidate for nanosatellite network, based on a survey of routing mechanisms in conventional 
satellite networks. Then, XSTP protocol was implemented in NS2 simulator. One-way 
scenario and two-way scenarios provided the basis for the XSTP protocol assessment over 
satellite network and nanosatellite network respectively. Since QoS aspect is an important 
focus of this thesis, we defined in this chapter several QoS performance metrics, such as 
effective throughput, transmission overhead, channel efficiency and reverse channel 
utilization. Thus, the XSTP performance is assessed with respect to these QoS metrics and for 
every type of network (i.e., satellite, nanosatellite). Our simulations showed that XSTP 
attained higher effective throughput, much lower overhead, and better channel efficiency as 
compare to TCP clones. 

A special emphasis is placed on the comparison between satellite network and 
nanosatellite network with respect to XSTP performance. This analysis has shown that XSTP 
could be a good transport protocol for nanosatellite telecommunications for the following 
reasons. The nanosatellite network provides a better channel efficiency (almost 90%) in very 
high bit error rate conditions as compared to satellite network. This means that the 
transmission channel is better exploited during nanosatellite communications. Also, the 
nanosatellite network provides a lower overhead in high and very high conditions, as 
compared to satellite network. However, its performance in very high BER environment 
remains an issue that need to be solved. 

From this research work, we can conclude that future nanosatellite constellations 
could benefit from the three constellation models described in this thesis. Moreover, we have 
demonstrated that XSTP transport protocol is good candidate to be considered for 
nanosatellite communications networks. 
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5.2 Thesis contributions 

 

This thesis is a joint of nanosatellite constellation design and routing in LEO 
nanosatellite networks. The following specific thesis contributions can be identified: 

1) Proposing three nanosatellite constellation models, specifically designed to provide 
telecommunications services in remote regions. Thereby, an innovative mission has 
been envisaged for each of them: 

• NanoDREAM model is designed for Bolivia’s Salar de Uyuni Desert, where 
an industrial company in charge of lithium exploitation, since this region 
detains 70% of the global lithium reserve; 

• NanoICE model is intended for Polar Regions, in order to meet the voice and 
data transfer needs of the entire Antarctic and Arctic scientific community; 

• NanoSPHERE is aimed to provide global coverage in the context of a robust 
telecommunications market and assuming a significant demand of 
telecommunications services from different industrial companies in charge of 
mineral resources exploitation in many regions of the Earth. 

2) Proposing a methodology for calculating the number of nanosatellites in the 
constellation. 

3) Proposing a Markov modeling method for evaluating the performance of nanosatellite 
constellations. 

4) Proposing a ground segment architecture based on wireless technology. As our 
simulations shown, this architecture could support telecommunications services via a 
nanosatellite network. 

5) Introducing the first ideas and pointing out several questions on “QoS in nanosatellite 
networks” topic, on which there has been no previous research work. QoS challenges 
of nanosatellite networks have been identified and several approaches for an efficient 
QoS provisioning in nanosatellite networks have been proposed. 

6) Proposing new routing approaches for nanosatellite networks, by exploring other 
network fields (i.e., sensor, Ad hoc) that could provide interesting and innovative 
ideas that would be applied to nanosatellite networks. 

7) Identifying XSTP as a possible candidate for nanosatellite network, based on a survey 
of routing mechanisms in conventional satellite networks. 

8) Developing and implementing two new modules (STP, XSTP) in NS2 simulator in 
order to evaluate the performance of these protocols across satellite networks and 
nanosatellite networks respectively. 

9) Carrying out performance studies, throughout simulations and analysis, in order to 
evaluate XSTP performance over traditional satellite networks and nanosatellite 
networks respectively. 
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5.3 Future work 

 
While the current methodology and models provide insight into both the nanosatellite 

constellation design and nanosatellite protocol design problems, extensions of this work may 
provide even more benefit. It is recommended that the following areas be investigated. 

Since the three models (i.e., NanoDREAM, NanoICE and NanoSPHERE) were 
developed by considering several assumptions, more complex models should be considered 
for taking into account the perturbations effects that act on nanosatellites. It is evident that 
there are a lot of parameters and design choices to consider when designing a nanosatellite 
constellation. Our aim was to propose low-complexity models that should be the basic 
models for future nanosatellite constellation designs. 

From our knowledge, there is a little research on developing simulation tools 
specifically designed for nanosatellite constellations. For exemple, a research team from The 
Institute of Astronautics of the Technische Universitaet Muenchen has developed a simulator 
called DySyS [123], to model a small satellite project with respect to the system composition 
and dynamic behavior. We consider that developing nanosatellite constellation modelers 
based on open-source approach is a challenge addressed to open-source community.  

We also think that making protocols software implementations available to research 
community will allow substantial protocols improvements, by adding an innovative 
dimension to them. The present work has involved new software implementations of STP and 
XSTP protocols in NS2 simulator in order to evaluate protocols performance over satellite 
and nanosatellite networks. 

In spite of all performances previously discussed, XSTP protocol is not perfect. For 
this reason, we propose here some future research guidelines. We observed that transmission 
overhead on the return channel is significant in very high BER conditions (10-3) and this need 
to be reduced. Also, at the probing mechanism level, the decision principle needs to be 
improved in order to discriminate between congestion and other types of errors that might be 
found in nanosatellite networks. Another important aspect is the energy level spent during 
probing cycle. An interesting research will be to find how can we measure and quantify this 
energy. Moreover, an assessment of XSTP performance by considering more complex QoS 
metrics and scenarios could be an interesting research direction.  

Other future studies could be directed towards XSTP performance over other types of 
topologies (i.e., Flower constellation, clusters, hybrid constellation – conventional satellites 
and nanosatellites). Another proposal is a comparison study between XSTP probing and TCP 
probing mechanisms, considering that both protocols can be configured with similar set of 
parameters as in our survey. This comparison might show the most effective mechanism in 
terms of adaptation to various satellite links errors. Finally, probing mechanism could be 
studied in wireless communication context or in a similar domain characterized by various 
types of communications errors. 

This thesis has addressed two fundamental topics of nanosatellite networks: “routing 
in nanosatellite networks” and “QoS provisioning in nanosatellite networks” in Chapter 2. 

We demonstrated in this thesis that XSTP protocol, initially designed for traditional 
satellite networks, could be a used in nanosatellite networks. Further work could be 
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concentrated on an in depth study of other traditional satellite network protocols, using 
simulations and analysis techniques.  

Moreover, a study of the present network simulators might show if these tools could 
be adapted for performing nanosatellite network simulations. 

Future work is also needed to develop dedicated protocols for nanosatellite networks 
that take into consideration the very limited resources of nanosatellites. Some first steps have 
already been made by a group of students from Aalborg University [119] in 2008 that 
developed the CubeSat Space Protocol (CSP) [120] – a small network-layer delivery protocol 
designed for CubeSats. 

From our knowledge, there are no topologies specifically designed for nanosatellite 
networks. Therefore, the topologies of satellite networks (i.e. Mesh, Star, Hybrid) should be 
investigated in order to see if they are suited for nanosatellite networks or new topologies are 
needed. 

We identified in this work the main constraints in terms of QoS for nanosatellite 
networks. Furthermore, we propose the following research directions for an efficient QoS 
provisioning in nanosatellite environment: 

1) Developing tools that allow an efficient use of nanosatellite network resources; also, 
these tools can show the resources used by nanosatellite network at a certain moment 
and the priority of each type of traffic. 

2) Developing QoS technologies in nanosatellite networks in order to accommodate 
multimedia services needed in the near future. 

3) Developing specific methods for identifying the type of traffic carried by nanosatellite 
network. Classification is the first step for providing preferential service to a certain 
type of flow. 

4) Developing congestion-avoidance techniques in order to monitor nanosatellite 
network traffic loads at certain points in the network, in an effort to anticipate and 
avoid congestion before it becomes a problem. If the congestion begins to increase, 
packets are discarded, leading to a slowing down of data transmission at the source 
node, as a result of the early dropped traffic detection. 

5) Developing congestion-management techniques that operate to control congestion 
after it occurs. Congestion-management tools allow raising the priority of a flow by 
queuing and servicing queues in different ways. Congestion-avoidance and 
congestion-management are opposed mechanisms. 

6) Developing traffic shaping and policing techniques for nanosatellite networks. 
Fundamentally, QoS provides priority either by raising the priority of one flow or by 
limiting the priority of another. Policing and shaping provide priority to a flow by 
limiting the throughput of other flows. 

7) Defining End-to-End QoS levels that refer to the capability of the nanosatellite 
network to deliver the service needed by specific traffic from edge to edge. Every 
service delivered by nanosatellite network should have a certain level of QoS 
strictness which describes how tightly the service can be bound by specific 
bandwidth, delay, jitter, and loss characteristics. Since the QoS levels (i.e., Best effort, 
Differentiated service and Guaranteed service) are relevant only to terrestrial IP 
networks, other QoS levels need to be developed for nanosatellite networks. We think 
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that a good starting point is to investigate if these End-to-End QoS levels can be 
applied or adapted to nanosatellite networks and how can these levels could be 
implemented. If they are not suited for nanosatellite networks, other types of levels 
need to be defined. 
In conclusion, we consider that QoS techniques can provide powerful value added 

service for nanosatellite networks. By using those mechanisms, we hope that the user traffic 
can be controlled and the nanosatellite network resources could be used efficiently. 
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