
HAL Id: tel-00608838
https://theses.hal.science/tel-00608838

Submitted on 15 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Context as a Resource: A Service-Oriented Approach
for Context-Awareness

Daniel Romero

To cite this version:
Daniel Romero. Context as a Resource: A Service-Oriented Approach for Context-Awareness. Soft-
ware Engineering [cs.SE]. Université des Sciences et Technologie de Lille - Lille I, 2011. English.
�NNT : �. �tel-00608838�

https://theses.hal.science/tel-00608838
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École doctorale SPI Lille

UFR IEEA

Context as a Resource: A
Service-Oriented Approach for

Context-Awareness

THÈSE

présentée et soutenue publiquement le 4 Juillet 2011

pour l’obtention du

Doctorat de l’université des Sciences et Technologies de Lille

(spécialité informatique)

par

Daniel Francisco Romero Acero

Composition du jury

Rapporteurs : Yolande Berbers, Katholieke Universiteit Leuven, Belgium
Noël de Palma, Université de Grenoble, France

Examinateurs : Françoise André, Université de Rennes I, France
Hausi A. Müller, University of Victoria, Canada
Ernesto Exposito, Institut National des Sciences Appliquées (INSA), France

Directrice : Laurence Duchien, Université Lille I, France

Co-directeur : Lionel Seinturier, Université Lille I, France

Co-encadrant : Romain Rouvoy, Université Lille I, France

Laboratoire d’Informatique Fondamentale de Lille – UMR USTL/CNRS 8022 – INRIA Lille Nord Europe

Mis en page avec la classe thloria.

Contents

List of Tables vii

Chapter 1 Introduction 3

1.1 Understanding the Problem . 5

1.2 Goals of this dissertation . 7

1.3 Contribution . 7

1.4 Dissertation Roadmap . 9

1.5 Publications . 10

Part I State of the Art 13

Chapter 2 Concepts and Background 15

2.1 Approaches for the Integration of Information 16

2.1.1 SOAP . 16

2.1.2 REpresentational State Transfer (REST) 18

2.1.3 Integration via SOAP Framework vs. Integration via the REST Archi-

tectural Style . 19

2.2 Component Models for SOA Applications . 20

2.2.1 OSGi Framework Specification . 20

2.2.2 Service Component Architecture (SCA) Model 20

2.2.3 Choosing the Component Model . 21

2.3 SCA Platforms . 22

2.3.1 The Fabric3 Platform . 22

2.3.2 The Tuscany Platform . 22

2.3.3 The FraSCAti platform . 23

2.3.4 Selecting an SCA Platform . 27

2.4 Service Discovery Protocols . 29

2.4.1 Universal Plug and Play (UPnP) . 30

2.4.2 Service Location Protocol (SLP) . 30

i

Contents

2.5 Summary . 31

Chapter 3 Ubiquitous Approaches 33

3.1 Definitions and Concepts . 34

3.2 Middleware Solutions for Context-Awareness 35

3.2.1 Gaia . 36

3.2.2 Gaia Microserver . 36

3.2.3 Aura . 37

3.2.4 CORTEX . 37

3.2.5 CARISMA . 37

3.2.6 MobiPADS . 38

3.2.7 MiddleWhere . 38

3.2.8 SOCAM . 39

3.2.9 CAPNET . 39

3.2.10 Reconfigurable Context-Sensitive Middleware (RCSM) 40

3.2.11 CARMEN . 40

3.2.12 Cooltown . 40

3.2.13 A Large Scale Peer-to-Peer Context Dissemination Middleware 41

3.2.14 A Peer-to-Peer based infrastructure for Context Distribution in Mobile

and Ubiquitous Environments (MUSIC Peer-to-Peer) 41

3.2.15 Summary of Middleware Solutions . 42

3.3 Service Discovery Solutions for Ubiquitous Environments 42

3.3.1 INDISS: Interoperable Discovery System for Networked Services . . . 42

3.3.2 ReMMoC: A Reflective Framework for Discovery and Interaction in

Heterogeneous Mobile Environments 43

3.3.3 A Multi-protocol Framework for Ad-hoc Service Discovery 43

3.3.4 Service Discovery Solution Summary . 44

3.4 Data-Oriented Architectures in Context-Mediation 44

3.5 Limitations of the existing approaches . 45

3.6 Summary . 46

Chapter 4 Autonomic Computing Approaches 49

4.1 Feedback Control Loops (FCLs) . 50

4.2 Relation Between the Autonomic Computing and the Context-Aware Com-

puting . 51

4.3 Autonomic Solutions . 52

4.3.1 JADE: A Middleware for Self-Management of Distributed Software En-

vironments . 52

4.3.2 Agent-based Middleware for Context-Aware Services 53

4.3.3 Framework for Autonomic Context-Aware Service Composition 53

4.3.4 Adaptation Platform for Autonomic Context-Aware Services 54

4.3.5 The ANS (Autonomic Network Services) Framework 54

ii

4.3.6 MIddleware DemonstrAtor Server (MIDAS) Framework 55

4.3.7 AutoHome: an Autonomic Management Framework for Pervasive

Home Applications . 55

4.3.8 MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and

Service-Oriented Environments . 56

4.3.9 Rainbow . 56

4.3.10 Distributed Autonomous Component-Based ARchitectures (DACAR)

Solution . 57

4.4 Limitation of the Existing Approaches . 58

4.5 State-of-the-Art Synthesis . 58

4.6 Dissertation Challenges . 60

4.7 Summary . 60

Part II Contribution 63

Chapter 5 Enabling Context Mediation In Ubiquitous Environments 65

5.1 Properties for Context Mediation . 67

5.2 SPACES Overview . 70

5.3 Modeling Context as Resources: The SPACES Metamodel 71

5.4 SPACES Fundamentals . 72

5.5 Supporting Spontaneous Communications in SPACES 76

5.6 SPACES Connectors Detailled Architecture . 77

5.7 Integrating SPACES Connectors into SCA . 79

5.7.1 Information Exchange between SCA Services: The case of the

Resource-Oriented Bindings . 80

5.7.2 Bringing Service Discovery in SCA: The case of Ubiquitous Bindings . 81

5.8 Summary . 86

Chapter 6 Building Ubiquitous Feedback Control Loops 87

6.1 Properties for Context-Based Adaptation . 88

6.2 Context-based Adaptation as a Process . 89

6.3 Building Ubiquitous Feedback Control Loops 92

6.4 Determining the Required Reconfiguration for the Applications 95

6.4.1 Example: The MOBIHOME Application 95

6.4.2 Modeling the Selection Problem . 96

6.4.3 Optimizing The Resource Consumption 98

6.4.4 Optimizing The Provided QoS . 99

6.4.5 Optimizing The Reconfiguration Cost 99

6.4.6 Decision Maker Architecture . 99

6.5 Planning the Required Actions for Reaching the New Configuration 100

iii

Contents

6.6 Instrumentation of the Adaptation in the FraSCAti Platform with the person-

alized SCA Bindings . 101

6.7 Local Feedback Control Loops . 103

6.8 Summary . 106

Part III Validation 109

Chapter 7 CASE STUDIES 111

7.1 A Caching Off-Loading Situation . 112

7.1.1 Description . 112

7.1.2 COSMOS: COntext entitieS coMpositiOn and Sharing 112

7.1.3 Distribution of the Context Policy . 114

7.1.4 Quantitative Evaluation: Measuring the Performance of the Approach 115

7.1.5 Results Discussion . 116

7.1.6 Qualitative Evaluation . 117

7.2 The TRACK.ME Platform . 118

7.2.1 Platform Description . 118

7.2.2 Quantitative Evaluation . 120

7.2.3 Results Discussion . 121

7.2.4 Qualitative Evaluation . 122

7.3 The DIGIHOME Service-Oriented Platform . 122

7.3.1 Smart Home Scenario Description . 122

7.3.2 Platform Description . 124

7.3.3 Quantitative Evaluation . 125

7.3.4 Results Discussion . 127

7.3.5 Qualitative Evaluation . 129

7.4 Limitations of the Approach . 130

7.5 Summary . 130

Part IV Conclusions and Perspectives 133

Chapter 8 Conclusions 135

8.1 Summary of the Dissertation . 135

8.2 Contributions of the Dissertation . 136

8.3 Perspectives . 137

8.3.1 Short Term Perspectives . 137

8.3.2 Long Term Perspectives . 138

Bibliography 141

iv

List of Figures

1.1 Approach for Building Context-Aware Solutions . 8

2.1 SOAP Message Structure . 17
2.2 Web Service Architecture Stack . 17
2.3 RESTful Service Metamodel . 19
2.4 OSGi Layers . 20
2.5 SCA Graphical Notation and Assembly Language 21
2.6 Domains in the Fabric3 Platform . 23
2.7 The TUSCANY SCA Java Runtime . 24
2.8 FraSCAti Platform Architecture . 25
2.9 Run-time Level . 27
2.10 Protocol Stack in UPnP Architecture . 31

4.1 Overview of the MAPE-K Autonomic Control Loop. 51

5.1 Properties Searched in the SPACES Conception . 68
5.2 Context as a Resource Metamodel . 73
5.3 SPACES Connectors . 74
5.4 SPACES Published Resource-side and Request-side Architectures. 78
5.5 Example of an SCA Definition for Resource-oriented Bindings. 80
5.6 Resource-oriented Binding Integration into the FRASCATI Platform 82
5.7 SCA Definition of the Ubiquitous Bindings. 83
5.8 Ubiquitous Binding Integration into the FRASCATI Platform. 84
5.9 Discoverer and Advertiser Architecture. 85

6.1 Context-Aware Adaptation Process Definition . 92
6.2 Example of a Ubiquitous Feedback Control Loop . 94
6.3 The MOBIHOME Application . 96
6.4 Architecture of the Decision Maker Component . 100
6.5 Simple ECA Rule Example and its Associated Script 104
6.6 Context Policy for Entities Hosting a Local Feedback Control Loop 106

7.1 Overview of a Distributed Context Policy. 113
7.2 Architecture of a COSMOS Context Node. 114
7.3 SPACES Architecture Based on COSMOS Context Nodes 115
7.4 TRACK.ME Server-Side Architecture . 120
7.5 Example of an Activity Trace Policy . 121
7.6 Interactions Between the Smart Home Devices. 123
7.7 Conception of DIGIHOME as a Ubiquitous Feedback Control Loop. 126

v

List of Figures

vi

List of Tables

2.1 SCA Personality Level API. 26
2.2 Comparison Between the Different SCA Open Source Platforms 28

3.1 Some QoC Attributes . 35
3.2 Different Ubiquitous Middleware . 47

4.1 Different Autonomic Approaches . 59

5.1 Comparison of Different Approaches Regarding the Properties for Context Medi-
ation . 69

6.1 Comparation of Ubiquitous FCLs with Different Approaches for Adaptation 90
6.2 Definitions for Modeling the Selection Problem as a CSP 97

7.1 Overhead Introduced by SPACES Connectors in the Context Mediation 116
7.2 Performance of the DIGIHOME Platform Using a) the Resource-Oriented and Ubiq-

uitous Bindings and, b) the Social Bindings . 127
7.3 Performance of the Context-Based Adaptation . 128

vii

List of Tables

viii

Abstract

Nowadays, ubiquitous environments become part of our daily lives. At home, work, cars,
hotels, supermarkets and others public spaces we find technologies (electronics and computa-
tional elements) that try to make our life simpler and easier in a transparent way. In recent years,
the potential of these environments is more and more exploited with the advent and widespread
usage of smartphones. This kind of devices enables the execution of applications that are able
to adapt seamlessly to the current environment state. These applications, called context-aware
applications, benefit from the context information and services that are present in ubiquitous
environments to improve and change automatically their behavior. However, such adaptations
require the integration of information regarding heterogeneity in terms of devices, execution
platforms, and communication protocols as well the mobility of applications so that the different
responsibilities of the adaptation can be distributed.

In order to face these issues, and considering the limitations of existing solutions, we provide
two major contributions in this dissertation: i) SPACES, a middleware approach to integrate con-
text information and ii) Ubiquitous Feedback Control Loops (Ubiquitous FCLs), as an approach
to adapt context-aware applications. In particular, in SPACES we define a metamodel inspired
on REST (REpresentational State Transfer) for fostering the exchange of context information as
resources, which represents the keystone of our approach. Then, we define SPACES Connectors
modularizing the different concepts and concerns identified by the metamodel. The connectors
are designed by using Component Based Software Engineering (CBSE) principles and then they are
incorporated into the Service Component Architecture (SCA) model to be used in different kinds of
applications, not only context-aware applications.

With the SPACES definition we are able to state the second major contribution— i.e., Ubiq-
uitous FCLs. Inspired on concepts from Autonomic Computing, this kind of FCLs provides the
flexibility required to integrate new participants in the adaptation process (e.g., context-aware
applications, services and legacy systems) by supporting mobility and the incorporation of new
communication mechanisms when required. In the core of the Ubiquitous FCLs—i.e., the deci-
sion making— we employ constraint programming techniques to optimize the selected configu-
ration regarding aspects for providing a better user experience, such as the cost associated with
the adaptation, the resources consumed or the QoS offered by the new configuration.

Finally, we validate our proposal with three case studies: i) a Caching or Off-Loading situation,
where the application behavior is modified at runtime, ii) TRACK.ME, a platform for supporting
tracking-based scientific experimentations and iii) DIGIHOME, a smarthome platform. These
scenarios demonstrate the suitability of our approach when different kinds of devices, protocols
and implementation technologies are involved in the adaptation process.

Résumé

Aujourd’hui, les environnements ubiquitaires font partie de notre vie quotidienne. À la mai-
son, au travail, dans les voitures, dans les hôtels, les supermarchés et autres espaces publiques,
nous rencontrons des technologies qui visent à rendre notre vie plus simple et plus facile d’une
façon transparente. Durant ces dernières années, le potentiel de ces environnements a été de plus
en plus exploité, notamment avec l’avènement et l’utilisation généralisée des smartphones. Ce
type de dispositifs permet l’exécution d’applications qui ont la capacité de s’adapter parfaite-
ment à l’état courant de l’environnement. De telles applications, appelées "applications sensibles
au contexte", bénéficient de l’information du contexte et des services qui sont présents dans leur
environnement pour améliorer et changer automatiquement leur comportement. Toutefois, ces
adaptations nécessitent une intégration d’informations qui doit être effectuée en tenant compte
de l’hétérogénéité en termes de dispositifs, de plateformes d’exécution, et de protocoles de com-
munication ainsi que la mobilité des applications de sorte que les différentes responsabilités de
l’adaptation peuvent être distribuées.

Pour faire face à ces défis, et compte tenu des limitations des solutions existantes, nous four-
nissons deux contributions majeures dans cette dissertation. Tout d’abord nous introduisons
l’intergiciel SPACES comme une solution d’intégration des informations contextuelles et ensuite
nous définissons le paradigme de "boucles de contrôle ubiquitaires" pour adapter les applications
sensibles au contexte. En particulier, dans SPACES, nous définissons un méta-modèle inspiré du
style architectural REST (REpresentational State Transfer) pour favoriser l’échange des informa-
tions contextuelles en tant que ressources, ce qui représente le fondement de notre approche. En-
suite, nous définissons les connecteurs SPACES pour modulariser les différents concepts et préoc-
cupations identifiés par le méta-modèle. Ces connecteurs sont conçus en utilisant les principes
de la programmation orientée composant et ils sont incorporés dans le modèle Service Component Ar-
chitecture (SCA) pour être utilisé dans différents types d’applications, et ainsi indépendamment
des applications sensibles au contexte.

Grâce à la définition de SPACES, nous sommes en mesure d’élaborer la seconde contribu-
tion de la dissertation—i.e., les boucles de contrôle ubiquitaires. Inspiré par les concepts de
l’informatique autonome, les boucles de contrôle offre la flexibilité nécessaire pour intégrer de nou-
veaux participants dans le processus d’adaptation (par exemple, des applications sensibles au
contexte, des services et des systèmes existants) tout en fournissant un support pour la mobilité
et l’intégration de nouveaux mécanismes de communication en cas de besoin. Dans le noyau
des boucles de contrôle ubiquitaires—i.e., la prise de décision— nous employons des techniques
de programmation par contraintes pour optimiser la configuration courante de l’application en
intégrant des critères qui garantissent une meilleure expérience à l’utilisateur final, tels que les
coûts associés à l’adaptation, les ressources consommées ou encore la qualité de service offerte
par la nouvelle configuration.

Enfin, nous validons notre proposition avec trois études de cas: Tout d’abord une poli-
tique de Caching or Off-Loading, dans laquelle le comportement de l’application est modifiée lors
de l’exécution, ensuite TRACK.ME, une plateforme pour effectuer des expérimentations scien-
tifiques et enfin DIGIHOME, une plateforme pour la création des maisons intelligentes. Ces scé-
narios démontrent la pertinence de notre approche lorsque différents types de dispositifs, des
protocoles et des technologies de mise en œuvre sont impliqués dans le processus d’adaptation.

Chapter 1
Introduction

Contents
1.1 Understanding the Problem . 5
1.2 Goals of this dissertation . 7
1.3 Contribution . 7
1.4 Dissertation Roadmap . 9
1.5 Publications . 10

Motivation

Nowadays, computers are pervasive and resides in the periphery of our daily lives. This
means that in different places we find technologies that make our lives simpler and we do not
even notice. Cars that help people to reach the destination, smart houses that prevent domes-
tic accidents, malls that provide customized advertisements on smartphones are some exam-
ples of this kind of places. These environments, called ubiquitous environments [Weiser, 1999,
Weiss and Craiger, 2002], provide a great richness in terms of sensors giving information about
the environment (e.g., temperature, occupancy and light level), actuators that act on the environ-
ment (e.g., closing the blinds, activating the alarm, and changing the temperature) and services
(e.g., for accessing multimedia content and querying the current magazine promotions). There-
fore, computing power has became "invisible" and transparent for people.

In the last years, the potential of ubiquitous environments have been more exploited
with the increasing usage of smartphones [Stefan Sidahmed, 2010]. These smart ob-
jects are powerful enough to interact with the environment and process information lo-
cally [Bellavista and Corradi, 2006]. In particular, smartphones execute applications that bene-
fit from services and environmental information to improve their behavior [Schilit et al., 1994].
This information, called context information, includes: i) physical conditions such as tem-
perature, noise level and light level, ii) computational conditions, e.g., battery level, band-
width and available memory and, iii) social conditions, i.e., where you are and who you are
with [Schilit et al., 1994, Chen and Kotz, 2000]. Consequently, the application exploiting this in-
formation are called context-aware applications. They require the information retrieval and pro-
cessing for adapting them according to current environmental conditions. This context-aware
applications search to provide a better user experience and thank to that they provide a compet-
itive advantage in the business world [Beth Schultz, 2009]. Therefore, approaches enabling the
adaptation of context-aware applications are required.

Software Adaptation. Nowadays, user and business requirements evolve constantly making
modifications on software systems necessary. It would be possible to develop new systems from

3

Chapter 1. Introduction

scratch in order to satisfy the new requirements. However, in several cases, systems are complex,
having different subsystems interconnected between them. Therefore, the development from
scratch becomes an expensive task and unsuitable option. To deal with software changes, new
ideas have emerged consisting in the reuse of systems parts by means of their composition and
extension [McKinley et al., 2004]. These ideas provide the foundations for software adaptation,
which consists in the modification or extension of system structure and/or behavior improving
its interaction with the environment [Kell, 2008]. For adapting applications and fostering reuse
of their different parts, they have to satisfy two properties: i) provide a modularized architec-
ture and ii) promote loose coupling between the different parts. Paradigms such as Component
Based Design [Szyperski, 2002], Services Oriented Architectures (SOA) and Service Component
Architecture (SCA) [OASIS Open CSA, 2007, Open SOA, 2007b] have emerged to achieve these
properties. The former provides the notion of software components, which are software entities
that can be implemented and deployed independently. Examples of component models include
OpenCOM [Coulson et al., 2008], OSGi Declarative Service [The OSGi Alliance, 2009], CORBA
component model [Group, 2006a] and Fractal component model [Bruneton et al., 2006b]. On the
other hand, SOA aims to integrate applications that have been separately implemented, without
rewriting them from scratch [Arsanjani, 2004]. Finally, SCA structures SOA applications by ap-
plying Component Based Design. The goal of this component model is to get the best of the two
worlds—i.e., the isolation of concerns and modularization from Component Based Design and
the loose coupling and reuse fostered by SOA applications.

The adaptations achieved by means of the usage of these paradigms can be static or dy-
namic [McKinley et al., 2004]. Static adaptations occur at development, compile, or load time,
whereas dynamic adaptations take place at execution time. The dynamic adaptations can be trig-
gered because of changes on social, physical or/and computational conditions— i.e., regarding
the context information. Context-aware Computing deals with this kind of adaptation.

Context-aware Computing. As stated in [Dey, 2001], context-awareness or context-aware com-
puting consists in "the use of context to provide relevant information and/or services to the user, where
relevancy depends on the user’s task." Context is "any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves" [Dey, 2001]. From
the previous definitions, we can see that there is an implicit notion of dynamic adaptation, where
application functionality and/or behavior need to be modified according to the current context
information. The applications that are tuned or changed regarding context are called context-
aware applications [Cohen et al., 2004] and the adaptation process taking place is the context-based
adaptation. The context-based adaptation requires context mediation (also called context integra-
tion or context exchange in this dissertation). This context mediation consists in the collection
and processing of usage data from different resources (e.g., sensors, databases, network devices
and Web Services), to compute pertinent indicators and deliver them to applications programs
(e.g., Web Services, enterprise applications and monitoring tools) [Coutaz et al., 2005]. The re-
alization of context-based adaptation requires to face several issues. First, the environments
where context-applications are executed (i.e., the already mentioned ubiquitous environments)
constantly change. In particular, services and applications can join and leave at anytime. This
makes necessary a flexible infrastructure [Zhu et al., 2005] supporting volatility. Second, the re-
sponsibilities associated with adaptation can be distributed in order to benefit from the most
powerful devices in the environment, requiring a clear isolation of these responsibilities. Finally,
context mediation has to be done considering the diversity in terms of devices, development
technologies, execution platforms and communication mechanisms. Thus, heterogeneity, mobility
and distribution of concerns make the context-based adaptation a challenge.

Autonomic Computing. The previous issues associated with adaptation have to be faced in a
transparent way for final users. In other words, the intervention from users in the adaptation
process should be minimum or not required at all in the best case. The satisfaction of this feature

4

1.1. Understanding the Problem

needs the design of applications able to make decisions by themselves. The Autonomic Comput-
ing [Ganek and Corbi, 2003] focuses in the development of this kind of applications. In particular,
this computing paradigm conceives self-managing applications that are able to heal, protect and
optimize by themselves. To achieve these properties, Autonomic Computing reifies the different
phases that composes the adaptation process as Feedback Control Loops. These phases include the
Monitoring and collection of information from the environment, the Analysis of such information
and the determination of the goals to reach, the Planning of actions for achieving the goals, and
the Execution of these actions.

The different responsibilities associated with Feedback Control Loop phases can be located
at the application or middleware levels, or divided between both levels. In particular, the func-
tionality required for retrieving and processing the context information can make part of the
application itself. This means that the application developer focuses not only in the business
logic but also in the context integration concern. On the other hand, all the adaptation respon-
sibilities can rest on the middleware level. In this case, developers only have to provide the
required flexibility points enabling the modifications on applications at runtime. An intermedi-
ary solution consists in dividing the responsibilities between the two levels. In this solution, the
middleware deals with the distribution issues and makes the context available for applications
adapt according to it. Regarding these alternatives of dealing with context-based adaptation, in
this dissertation we choose to provide a middleware approach encapsulating the feedback con-
trol loops concerns. This selection is motivated because we consider that the development of
context-aware applications has to focus in the business logic and the flexibility points enabling
changes on the application. By isolating the feedback control loops associated with applications
in the middleware level, we achieve this goal.

Chapter Organization

The rest of this introductory chapter is organized as follows. We start by presenting the problem-
atic that we tackle (cf. Section 1.1) and then we discuss our research goals (cf. Section 1.2). We
conclude the chapter with an overview of the dissertation’s contributions (cf. Section 1.3) and a
roadmap to assist the reader in browsing the document (cf. Section 1.4).

1.1 Understanding the Problem

In this dissertation, we deal with the context-based adaptation and the implicit context medi-
ation associated with it. In particular, we have identified that approaches facing such kind of
adaptation are confronted to the following issues:

1. Hardware Heterogeneity: In general, context-aware applications and services1 run on de-
vices (e.g., laptops, servers, smartphones, and sensors) with different kinds of computa-
tional resources (e.g., processor, memory and storage capabilities). These aspects restrict
the way in which the different tasks associated with adaptation can be distributed. This
means that most powerful devices will take responsibility for the processing load and the
tiny devices will be limit to simpler tasks such as information provision.

2. Software Heterogeneity: The diversity is not only present at the hardware level. We also
find heterogeneity in terms of operating systems (Mac OS X, Windows, Linux, Android,
etc.), execution environments (Java, .NET framework, etc.) and development technologies
(Java, C++, Smalltalk, etc.). This heterogeneity makes the interoperability between service
providers and consumers difficult and therefore limits the benefits that can be obtained
from ubiquitous environments in terms of computational resources.

1In this dissertation we make the distinction between applications and services. For us, a service is a specific func-
tionality available in the environment (e.g., actuators allowing the control of home appliances in smart houses such as
blinds, TVs and air conditioner) and that can be remotely accessed by applications. Consequently, these applications, and
specifically context-aware applications, benefit from environment in order to help users in the execution of specific tasks.

5

Chapter 1. Introduction

3. Heterogeneity of Protocols: In ubiquitous environments several standards are employed
for exchanging information and locating available services. This means that different
providers select the most suitable communication mechanisms according to their needs. No
consensus exists about the protocols that should be applied in different situations. Context-
aware applications that only interact via specific protocols limit the user satisfaction degree
that they are able to provide. This restriction make a flexible mechanism allowing them to
use different kinds of interaction solutions necessary.

4. Heterogeneity of Services and Context Providers: This heterogeneity results from the soft-
ware and protocol heterogeneity. In other words, we find services implemented with dif-
ferent technologies and using several mechanisms to offer their functionalities. Further-
more, the services can provide complex APIs following a function-oriented approach that
assumes that all clients apply the same model and promotes a high coupling between
providers and consumers. In the particular case of context providers, the diversity means
context information with different representations, syntax and semantic. Once again, this
heterogeneity restricts the exploitation of resources in the environment.

5. Mobility of Devices: In ubiquitous environments the devices running context-aware ap-
plications and services can move from one location to another. In this way, the ancient
distributed programming model that assumes a static infrastructure, in which the different
elements are stable, is not suitable. Therefore, the approach used to build this kind of ap-
plications should promote loose coupling between applications and services as well as the
possibility of dealing with spontaneous communications.

6. Distribution of Adaptation Concerns: The changing nature of ubiquitous environments
and the heterogeneity in terms of devices make the distribution of the adaptation concerns
necessary. This means that the context gathering and processing as well as the identification
of required configurations and the execution of the adaptation itself can be spread between
different entities. With this distribution, we need to face the different kinds of heterogeneity
and the mobility already mentioned. Therefore, a global approach allowing adaptation of
context-aware applications and considering these issues is required.

For dealing with the previous issues, today, we can find several middleware solu-
tions [Bellavista et al., 2003, Ranganathan et al., 2004, Debaty et al., 2005, Román et al., 2002a] pro-
viding support for context-based adaptation. However, most of them are difficult to reuse in
different situations because they are not easily configurable and customizable. In general, the
existing solutions lack flexibility in terms of communications, context information representa-
tions and modularization of the adaptation concerns. Moreover, they are not suitable to work
on devices with restricted capabilities (e.g., smartphones) and fail to integrate existing legacy
applications.

The approach introduced by this dissertation deals with the issues associated with context-
based adaptation. In particular, we consider this kind of adaptation as a process, where the
different participants are heterogenous in terms of capabilities and can integrate the process at
runtime. More concretely, we provide a middleware solution integrating different entities, which
is based on simple and well accepted standards and paradigms. Then, we incorporate this inte-
gration mechanism into the adaptation process, which we defined by exploiting concepts from
Feed Back Control Loops [Hariri et al., 2006a, Parashar and Hariri, 2005] and constraint program-
ming techniques [Apt, 2003]. This results in the definition of "Ubiquitous Feedback Control Loops"
(Ubiquitous FCLs), which present the flexibility required to easily integrate new participants
in the adaptation process (e.g., context-aware applications, services and legacy systems). Our
Ubiquitous FCLs support mobility, the incorporation of new communication mechanisms when
required and the optimization of the selected application configuration. In the following section
we discuss the goals associated with our approach.

6

1.2. Goals of this dissertation

1.2 Goals of this dissertation

As explained in the previous section, the development of context-aware applications implies to
consider several issues associated with heterogeneity, dynamism and mobility. Therefore, the
main goal of this dissertation is to provide an approach for context-based adaptation by inte-
grating heterogenous entities and resources in ubiquitous environments. To achieve this, we
decompose this goal in the following subgoals:

1. Consider what exists: We will leverage our solution on existing standards and paradigms.
This choice is motived because we want to propose a simple but at the same time complete
solution that can be applied in different context-aware adaptation situations. In practice,
we find several paradigms and technologies that have proved their suitability in the design
and implementation of applications. Paradigms such as the component-based design, SOA
architectures and the REpresentational State Transfer (REST) [Fielding, 2000] are widely ap-
plied for building reusable applications and services. In particular, we can exploit the con-
cern isolation (i.e., the separation between business logic and non-functional requirements)
and modularization fostered by the Component Design, the loose coupling and reuse pro-
moted by SOA and the data centric vision from REST. Consequently, standard protocols
such as HTTP, UPnP [UPnP Forum, 2008] and SLP [Guttman et al., 1999] are applied in the
industry as well as in research. The usage of such protocols in communications fosters the
integration with already existing services and enables a better exploitation of the environ-
ment. Therefore, we pretend to benefit from the advantages provided by these technologies
and paradigms in order to conceive our approach.

2. Provide a simple and flexible solution: The cornerstone of our proposal are simplicity and
flexibility. By simple we mean easy to understand and apply. The application of standards
help us in this purpose. The flexibility refers to the possibility of modifying and extending
the approach according to developer needs as well as its usage in different situations. The
fulfillment of this property rests on the analysis and study of the different elements having a
role in context-based adaptation and in the already mentioned usage of existing paradigms.
Thus, our objective is to provide a solution easy to use and flexible enough to be extended
when required.

3. Identify relevant elements in context mediation: The integration of context becomes a
key issue when we consider the realization of context-based adaptation. Therefore, before
building a suitable solution enabling such kind of adaptation, we need to identify the dif-
ferent concepts and elements impacting the exchange. The identification of these elements
will allow us to conceive a mechanism for context mediation to deal with the typical adap-
tation distribution concerns in ubiquitous environments.

1.3 Contribution

In order to provide a better understanding of this dissertation, in this section we present an
overview of the contributions. In short, our work focuses on the domain of ubiquitous comput-
ing for the purpose of making the adaptation of context-aware applications easier. Figure 1.1
summarizes our proposal. As observed, our two main contributions—i.e., SPACES and Ubiq-
uitous FCLs provide solutions for context mediation and context-based adaptation, respectively.
Below we discuss these contributions.

1. SPACES: Our middleware approach fostering the notion of context in order to enable con-
text integration in ubiquitous environments. SPACES makes this possible by defining:

(a) The SPACES Metamodel: We define a metamodel that clearly states the relationships
between relevant concepts and elements that make part of the context information
exchange. In particular, this metamodel considers context information as resources

7

Chapter 1. Introduction

SPACES

Application

Ubiquitous FCLs

REST

Context- Based
Adaptation

Context-
Mediation

M
id

d
le

w
a
re

 S
o

lu
ti

o
n

SCA

 Application
Developer

Middleware
Developer

FR
A
S
C
A
TI

U
bi

qu
it
ou

s
En

vi
ro

nm
en

ts

Caching or Off-Loading
Situation

Track.Me

DigiHome

Figure 1.1: Approach for Building Context-Aware Solutions

that can be accessed by different kinds of clients and using different communication
mechanisms. The metamodel reifies relevant elements in context mediation helping
us to conceive a solution for context integration.

(b) The SPACES Connectors: In order to modularize the context exchange concerns,
we define SPACES connectors (also called Ubiquitous Connectors in this dissertation)
enabling the integration of participants in context exchange. These connectors ex-
ploit standards paradigms for supporting the notion of context as a resource defined
by the metamodel. They foster simple access of context resources by means of uni-
form interfaces and identifiers and providing flexibility in terms of representations.
Furthermore, SPACES connectors support the discovery of resources considering as-
pects such as the Quality of Context (QoC) [Razzaque et al., 2006, Sheikh et al., 2008,
Manzoor et al., 2008, Bu et al., 2006, Buchholz et al., 2003].

(c) The SPACES Architecture: We propose a generic architecture respecting the princi-
ples stated by the ubiquitous connectors in terms of the context information integra-
tion. The defined architecture is reified by exploiting a component model that com-
bines CBSE and SOA principles.

2. Ubiquitous Feedback Control Loops (Ubiquitous FCLs): By applying autonomic com-
puting principles [Ganek and Corbi, 2003, Kephart and Chess, 2003, Hariri et al., 2006b,
Kephart and Chess, 2003, Menascé and Kephart, 2007], we define Ubiquitous Feedback Con-
trol Loops (Ubiquitous FCLs). These FCLs support the adaptation of applications based on
the context information by exploiting SPACES connectors. The volatility of adaptive appli-
cations and services is considered by the Ubiquitous FCLs in order to provide flexibility in
the adaptation process. In this kind of loops, the adaptation decisions (that correspond to
analysis and planing phases in autonomic computing) are delegated to the most powerful
entities in the environment. However, the flexibility of these Ubiquitous FCLs enables the
definition of Local FCLs on the devices hosting the adaptive applications. These local loops
are executed when problems appear in the global ones.

As part of Ubiquitous FCLs, we define an strategy based on constraint programming tech-
niques [Apt, 2003] for determining the new application configuration. The new configu-
ration is stated considering that applications have flexibility points, which are used for
bringing new functionality into them. This functionality can be implemented by one or
several components. Once the potential configurations are estimated according to the con-
text changes, we select an optimized configuration regarding dimensions such as reconfig-
uration costs and resource consumption. In this process, we consider the different depen-
dencies existing between the flexibility point implementations. Therefore, the application
configuration at the end of the FCL execution is valid but is also the most suitable for the

8

1.4. Dissertation Roadmap

current conditions and expectations of the costumer.

3. Evaluation: The contributions are evaluated by means of three case studies: i) A Caching
Off-Loading Situation illustrating the suitability of our solution in terms of context ingration,
ii) TRACK.ME, a service-oriented platform for tracking activities of mobile users and iii)
DIGIHOME, an smart platform enabling adaptation in home environments. Concretely, we
measure the performance of our approach when there are adaptation situations and context
exchange involved.

1.4 Dissertation Roadmap

The dissertation is divided in four parts. The first part encloses the State of Art. The second part
presents the contribution of this dissertation, and the third one the validation of our proposal.
Finally, the last part includes the conclusions and perspectives of this dissertation. Below we
present an overview of the chapters that compose the different parts.

Part I: State of the Art

Chapter 2: Concepts and Background

In this chapter we discuss concepts that make part of the foundation of our proposal. In partic-
ular we discuss two kinds of approaches: i) general approaches for dealing with the conception
of service-oriented solutions and, ii) specific approaches for service discovery in ubiquitous en-
vironments. General approaches include the architectural styles such as Representational State
Transfer (REST) [Fielding, 2000] and SOAP [W3C, 2007]. In this kind of approaches we also in-
troduce the Service Component Architecture (SCA) [OASIS Open CSA, 2007, Open SOA, 2007b,
SCOrWare Project, 2007] and the OSGi Framework [The OSGi Alliance, 2009], which are used in
the development of middleware platforms. Associated with these component models, we discuss
some platforms supporting the execution of applications based on the SCA component model.
In the specific approaches we introduce some Service Discovery Protocols (SDPs) enabling spon-
taneous communications.

Chapter 3: Ubiquitous Approaches

Chapter 3 provides an overview of middleware solutions dealing with context-aware applica-
tion issues. This chapter also includes some solutions for service discovery in ubiquitous envi-
ronments and data-oriented architectures enabling context mediation. The main issues associ-
ated with the presented approaches are described. The chapter also specifies concepts related to
context-awareness that will be used throughout the dissertation.

Chapter 4: Autonomic Computing Approaches

In this chapter we provide an overview of the main concepts of Autonomic Computing. We
also discuss the relationships between context-awareness and autonomic computing, which can
be considered as complementary approaches. Several autonomic solutions dealing with context
adaptation are presented as well as their main issues. At the end of the chapter we summarize
the challenges faced by the dissertation.

Part II: Contribution

9

Chapter 1. Introduction

Chapter 5: Enabling Context Mediation In Ubiquitous Environments

Throughout this chapter we discuss the first three contributions of this dissertation: i) SPACES
metamodel, ii) SPACES connectors and iii) the SPACESarchitecture for context mediation. Before in-
troducing the contribution, we define the properties expected in our solution in order to satisfy
the goals identified in the introduction. We finish the chapter by integrating our solution into the
SCA Component Model in order to foster its reuse.

Chapter 6: Building Ubiquitous Feedback Control Loops

Chapter 6 presents the contributions associated with the approach for context based adaptation
(called Ubiquitous Feedback Control Loops) and the strategy for selecting the new configuration. The
Ubiquitous FCLs are conceived by considering the adaptation as a process where the different
tasks are associated to autonomic computing responsibilities.

Part III: Validation

Chapter 7: Case Studies

This validation chapter presents three case studies used to provide a qualitative and quantitative
evaluation of our contribution. The first case study is a caching off-loading situation requiring
the context information collection in order to decide the parametrization of mobile applications.
In the second one we exploit TRACK.ME, a distributed platform that respect the principles of
the cloud computing [Grossman, 2009]. The last case study defines DIGIHOME, a platform that
enables the adaptation of mobile applications for controlling home appliances as well as changes
in room configuration.

Part IV: Conclusions and Perspectives

Chapter 8: Conclusions and Perspectives

In the last chapter we provide a summary of the contribution discussed in the dissertation. We
focus in the advantages and provide an overview of the limitations. We conclude the chapter and
the dissertation by describing the identified research directions associated with the contribution.

1.5 Publications

Below we cite the different publications associated with the dissertation.

International Journals

• Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rou-
voy, and Frank Eliassen. The Digihome Service-Oriented Platform. Softw. Pract. Exper., 2011
(To appear) [Romero et al., 2011]

• Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio Schiavoni, and
Jean-Bernard Stefani. A Component-Based Middleware Platform for Reconfigurable Service-
Oriented Architectures. Softw. Pract. Exper., 2011 (To appear) [Seinturier et al., 2011]

• Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Daniel Romero, Kevin Sénéchal,
Ales Plsek. An Aspect-Oriented Framework for Weaving Domain-Specific Concerns into
Component-Based Systems. Journal of Universal Computer Science (J.UCS) (To ap-
pear) [Loiret et al., 2010a]

10

1.5. Publications

International Conferences

• Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Frédéric Loiret. Integration of
Heterogeneous Context Resources in Ubiquitous Environments. In Michel Chaudron, ed-
itor, Proceedings of the 36th EUROMICRO International Conference on Software En-
gineering and Advanced Applications (SEAA´10), page 123-126, Lille France, 2010.
ACM [Romero et al., 2010d]

• Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel Nzekwa, Romain Rou-
voy, and Frank Eliassen. RESTful Integration of Heterogeneous Devices in Pervasive Environ-
ments. In Proceedings of the 10th IFIP International Conference on Distributed Applications
and Interoperable Systems (DAIS´10), volume 6115 of LNCS, pages 1-14. Springer, June
2010 [Romero et al., 2010a]

• Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Pierre Carton. Service Discovery in
Ubiquitous Feedback Control Loops. In Proceedings of the 10th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS´10), volume 6115 of LNCS,
pages 113-126. Springer, june 2010 [Romero et al., 2010b]

Book Chapters

• Amirhosein Taherkordi, Daniel Romero, Romain Rouvoy and Frank Eliassen. RESTful Ser-
vice Development for Resource-constrained Environments. In "REST: From Research to Practice",
Springer (To appear) [Taherkordi et al., 2011]

• Daniel Romero, Romain Rouvoy, Lionel Seinturier, Sophie Chabridon, Denis Conan, and
Nicolas Pessemier. Enabling Context-Aware Web Services: A Middleware Approach for Ubiq-
uitous Environments. In Michael Sheng, Jian Yu, and Schahram Dustdar, editors, Enabling
Context-Aware Web Services: Methods, Architectures, and Technologies. Chapman and
Hall/CRC, 05 2010 [Romero et al., 2010c]

Workshops

• Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier. Supporting Perva-
sive and Social Communications with FraSCAti. In 3rd DisCoTec Workshop on Context-aware
Adaptation Mechanisms for Pervasive and Ubiquitous Services, Amsterdam, The Nether-
lands, 06 2010 [Mélisson et al., 2010b]

• Daniel Romero, Carlos Parra, Lionel Seinturier, Laurence Duchien, Rubby Casallas. An
SCA-based middleware platform for mobile devices. In Middleware for Web Services (MWS
2008) at EDOC2008 , Munich, Germany, 2008 [Romero et al., 2008]

Tool Demonstrations

• Rémi Mélisson, Philippe Merle, Daniel Romero, Romain Rouvoy, and Lionel Seinturier.
Reconfigurable Run-Time Support for Distributed Service Component Architectures. In Auto-
mated Software Engineering, Tool Demonstration, pages 171-172, Antwerp Belgique, 09
2010 [Mélisson et al., 2010a]

Electronic Magazines

• Daniel Romero. Context-Aware Middleware: An Overview. In Revista Electrónica Paradigma
en Construcción de Software , Bogota, Colombia, 2008 [Romero, 2008]

11

Chapter 1. Introduction

12

Part I

State of the Art

13

Chapter 2
Concepts and Background

Contents
2.1 Approaches for the Integration of Information 16

2.1.1 SOAP . 16
2.1.2 REpresentational State Transfer (REST) 18
2.1.3 Integration via SOAP Framework vs. Integration via the REST Ar-

chitectural Style . 19
2.2 Component Models for SOA Applications 20

2.2.1 OSGi Framework Specification . 20
2.2.2 Service Component Architecture (SCA) Model 20
2.2.3 Choosing the Component Model . 21

2.3 SCA Platforms . 22
2.3.1 The Fabric3 Platform . 22
2.3.2 The Tuscany Platform . 22
2.3.3 The FraSCAti platform . 23
2.3.4 Selecting an SCA Platform . 27

2.4 Service Discovery Protocols . 29
2.4.1 Universal Plug and Play (UPnP) . 30
2.4.2 Service Location Protocol (SLP) . 30

2.5 Summary . 31

State-of-the-Art Presentation

In order to discuss different technologies, paradigms and proposals associated with this disser-
tation, we have divided the presentation of state of the art in three different chapters. In the
first one (Concepts and Background), we discuss different elements and concepts applied in our
proposal, including the Representational State Transfer principles, the Service Component Ar-
chitecture model and Service Discovery Protocols. These elements represent the foundations of
our approach. In the second chapter (Ubiquitous Approaches) we introduce some basic concepts of
context-awareness as well as middleware solutions dealing with context-based adaptation and
its associated problems. Some of the presented approaches exploit the concepts introduced in the
Concepts and Background chapter, e.g., service oriented architectures and discovery elements. The
last chapter (Autonomic Computing Approaches) provides an overview about autonomic concepts
and introduces some solutions that also face the problems related to context-aware applications
by applying such paradigm.

15

Chapter 2. Concepts and Background

Chapter Organization

In this chapter we introduce concepts that make part of the foundation of our proposal. In partic-
ular we discuss two kinds of approaches: i) general approaches for dealing with the conception of
service-oriented solutions and, ii) specific approaches for discovery in ubiquitous environments.
General approaches include the architectural styles enabling the creation of APIs services (cf. Sec-
tion 2.1) and component models for the development of middleware platforms (cf. Section 2.2).
Associated with these component models, we discuss some platforms supporting the execution
of applications based on the SCA component model (cf. Section 2.3). On the other hand, in the
specific approaches we introduce the Service Discovery Protocols (cf. Section 2.4) enabling spon-
taneous communications. Furthermore, we specify and justify our selection between the different
discussed approaches. Finally, we summarize the different elements and choices described in the
chapter (cf Section 2.5)

2.1 Approaches for the Integration of Information

In this section, we discuss and compare some existing paradigms employed for dealing with ap-
plication heterogeneity and therefore that we can exploit in our solution for dealing with context
integration. In particular, we consider the Web Services, which have the objective of enabling in-
teroperability between applications. We find two main approaches for the conception of this kind
of services [Przybilski, 2005]: SOAP (cf. Section 2.1.1) and the REST architectural style (cf. Sec-
tion 2.1.2). In next sections we present them.

2.1.1 SOAP

SOAP [W3C, 2007] provides an extensible messaging framework based on XML technologies
for exchanging information in a structured and decentralized way. The framework has been
conceived to be independent from programming models and implementation specific semantics.

According to the specification [W3C, 2007], SOAP fosters simplicity and extensibility by provid-
ing a minimal messaging framework. This means that SOAP does not consider features found in
distributed systems such as reliability, security, correlation and routing. However, the framework
can be extended with new specifications to support such features.

In SOAP, messages are exchanged between SOAP nodes representing information consumers
or producers. Typically a SOAP message is composed by an envelope, headers, and body. Figure 2.1
depicts this structure. The SOAP envelope encloses the headers and body. The headers, which
are optional, provide a mechanism for extending SOAP messages in a decentralized and modular
way. For its part, the body contains the current information being exchanged and it must be
structured following the XML 1.0 rules.

In SOAP, the messages can be exchanged using different Message Exchange Patterns (MEPs)
such as one-way messages, request/response interactions, and peer-to-peer conversations. These
MEPs are incorporated into the messaging framework as SOAP features, which represent exten-
sions to the framework.

Additionally, the SOAP framework enables the message transmission by employing different
protocols. The underlaying protocols are stated by means of binding specifications. These spec-
ifications define how the contract are respected and how the potential failures can be handled.
The contracts are formed by the features being employed.

Web Services

The Web Services (WSs) provide an standard for enabling the interoperability between software
applications running on the top of a variety of platforms and frameworks [Booth et al., 2004].
Figure 2.2 (taken from [Booth et al., 2004]) illustrates the different elements employed in the Web
Service conception. In particular, WSs use the framework provided by SOAP as well as the

16

2.1. Approaches for the Integration of Information

SOAP Message

SOAP Part

SOAP Envelope

SOAP Header (optional)

Header

Header

...

SOAP Body

XML Content

SOAP Fault

(optional)

Figure 2.1: SOAP Message Structure

underlying protocols for the message exchange. The SOAP selection is motived because of the
extensibility capabilities that it promotes.

Messages

SOAP Extension
(Reliability, Correlation, Transactions...)

...
SOAP

Descriptions
(WSDL)

Processes
(Discovery, Aggregation, Choreography...)

B
ase Technologies: XM

L, D
TD

, Schem
a

Communication
(HTPP, SMTP, FTP, JMS, IIOP...)

S
E
C
U
R
I
T
Y

M
A
N
A
G
E
M
E
N
T

Figure 2.2: Web Service Architecture Stack

Additionally, the WSs employ the XML technologies for defining the Web Service Description
Language (WSDL). This language is employed for describing the functionalities exposed by the
service provider or agent. These functionalities can be advertised using a registry (called UDDI)

17

Chapter 2. Concepts and Background

that the potential clients can access for retrieving the WSDLs. Complementary specifications exist
for dealing with aspects such as security (WS-Security), transactions (WS-Transaction), reliable
message delivering and service orchestration (BPEL).

2.1.2 REpresentational State Transfer (REST)

REpresentational State Transfer (REST) is a resource-oriented software architecture style identi-
fied by R. Fielding for building Internet-scale distributed applications [Fielding, 2000]. Typically,
the REST triangle defines the principles for encoding (content types), addressing (nouns), and ac-
cessing (verbs) a collection of resources using Internet standards. Resources, which are central
to REST, are uniquely addressable using a universal syntax (e.g., a URL in HTTP) and share a
uniform and simple interface for the transfer of application states between client and server (e.g.,
GET/POST/PUT/DELETE in HTTP). REST resources may typically exhibit multiple typed repre-
sentations using, for example, XML, JSON, YAML, or plain text documents. Thus, RESTful sys-
tems are loosely-coupled systems which follow these principles to exchange application states as
resource representations. This kind of stateless interactions improves the resources consumption
and the scalability of the system.

According to R. Fielding [Fielding, 2000], “REST’s client-server separation of concerns simplifies
component implementation, reduces the complexity of connector semantics, improves the effectiveness of
performance tuning, and increases the scalability of pure server components. Layered system constraints
allow intermediaries—proxies, gateways, and firewalls—to be introduced at various points in the commu-
nication without changing the interfaces between components, thus allowing them to assist in commu-
nication translation or improve performance via large-scale, shared caching. REST enables intermediate
processing by constraining messages to be self-descriptive: interaction is stateless between requests, stan-
dard methods and media types are used to indicate semantics and exchange information, and responses
explicitly indicate cacheability.” Below we summarize the key REST properties:

1. Simplicity: REST is based on standards and enables interaction by defining uniform and
simple interfaces.

2. Lightness: The stateless interaction, the self-descriptive messages and the possibility of us-
ing Web Intermediaries reduce the charge supported by the interacting entities.

3. Reusability: The loosely-coupling between entities and the application of Web Intermedi-
aries foster the reusability.

4. Extensibility: The exchanged messages can be extended by adding new headers without
loosing backward compatibility.

5. Flexibility: In terms of resource representations and the logical URLs definition to access the
resources.

RESTful Web Services

The use of REST for designing Web Services begins to be widely accepted because of the
loosely-coupling and the easy deployment of services (thanks to the usage of standards) con-
ceived in this way [Alarcón and Wilde, 2010]. These services are called RESTful Web Ser-
vices [Richardson and Ruby, 2007, Tyagi, 2006, Rodriguezi, 2006]. In REST, the RESTful Web Ser-
vices are considered as resources accessible by means of standards URLs and expressing the sup-
ported operations on these resources by means of simple interfaces. The main advantages with
the RESTful Web Services are traduced in a low learning curve for consumers and a low support
overhead for producers [Cowan, 2005]. Thus, RESTful services represent an attractive alternative
to the traditional Web Services created by applying SOAP and WSDL (cf. Section 2.1.1).

The boom of REST as a Web Service design model has required the conceptions of languages
and metamodels supporting the description of RESTful Web Services such as Web Application De-
scription Language (WADL) [Hadley, 2006]. In particular, as it will be presented in Chapter 5, in

18

2.1. Approaches for the Integration of Information

name
description

Service

name
description
URI: URI

Resource

name
description
schema
mediaType

Representation

minOccurs
maxOccurs

Link

type
request
response

Protocol

expression
type

Selector

0..*

1

name
description

Link Type0..*

0..*

0..*

0..* 1

target

0..* collection

0..*

1

0..*

0..*

1 0..*

1

0..1
type

Figure 2.3: RESTful Service Metamodel

this dissertation we exploit the REST metamodel defined by [Alarcón and Wilde, 2010] for sup-
porting the notion of context as a resource. Figure 2.3 depicts this metamodel. In the metamodel,
a Service can offer several Resources, which can provide the URI patterns for the unique
identifiers. The Resources have 0 or more Representations expressing the encoding syntax
to exchange the resources. The Representations can contain Links to other target resources,
which are retrieve by means of Selectors. These Selectors are defined depending on the
concrete representation. For example, if XML is selected as representation, the XML Path Lan-
guage (XPath) can be used for specifying the Selectors. The Links also have LinkTypes
associated, which represent the type of the link. Finally, the Links are defined according to the
rules stated by Protocols.

2.1.3 Integration via SOAP Framework vs. Integration via the REST Archi-
tectural Style

SOAP and REST provide elements enabling the conception of services accessed and provided by
heterogenous entities. The strong points of SOAP are the extensibility, the usage of standards
and the rigorous specification of different issues typical in distributed systems. However, SOAP
tends to be complex and not very flexible because it imposes the usage of XML technologies. In
SOAP, the usage of a service requires the knowledge of the different method names and proto-
cols supported for the service access. This knowledge is necessary because SOAP is a messaging
framework providing the possibility of choosing between several protocols for the message ex-
change. Therefore, SOAP introduces a high dependency between service consumer and provider.
As already stated in the introduction of this dissertation, the ubiquitous environments are char-
acterized by the presence of devices that have different resources and capabilities. Thus, the
imposition of an specific model for exchanging the context information with a high coupling
between interacting entities will limit the applicability of the solution.

On the other hand, REST simplicity, flexibility and resource centric nature enable the easy
development of services. These services can be exposed by means of standard and simple pro-
tocols and a generality of interfaces. Unlike SOAP, REST makes the interaction of clients and
servers possible without any further configuration, when application protocols such HTTP are
employed. This interaction focuses in the data, which can be represented in several ways. Fur-
thermore, the loose-coupling promoted by self-contained messages fosters the reuse of web in-
termediaries. Thus, the REST versatility in terms of resources dissemination makes it a suitable
option for exchanging the context information in ubiquitous environments.

19

Chapter 2. Concepts and Background

2.2 Component Models for SOA Applications

In this section we present two component models for the development of SOA applications. In
particular, we focus in the OSGi framework (cf. Section 2.2.1) and the SCA Component Model
(cf. Section 2.2.2).

2.2.1 OSGi Framework Specification

OSGi Framework [The OSGi Alliance, 2009] provides an open and dynamic component model,
based on Java, for the service development, deployment and management. In OSGi, the applica-
tions, called bundles, can be dynamically deployed and updated. Bundles are JAR files containing
Java classes and the required resources for providing functionalities to end users. The different
bundles can share functionalities between them.

Bundle

Hardware/ OS

Execution Environment

Module

Life cycle

Service

Se
cu

rit
y

register
unregister

get
unget

start
stop

class load

execute

manage

install
uninstall

Figure 2.4: OSGi Layers

The functionalities of OSGi are organized in several layers, which are depicted in Figure 2.4
(taken from [The OSGi Alliance, 2009]). Below we discuss briefly the different layers.

1. Security Layer: This layer extends the Java 2 Security Architecture specification in order to
limit the functionalities provided by bundles to pre-defined capabilities.

2. Module Layer: Establishes rules for the dependency declaration of bundles. In other words,
the layer states how the bundles can import and export functionalities.

3. Life Cycle Layer: Provides a life cycle API to manage the bundles. In particular, this layer
specifies how the bundles are started, stopped, installed, uninstalled and updated.

4. Service Layer: Defines a dynamic programming model that simplifies the bundle develop-
ment. The proposed model decouples the service’s specification (Java interface) from its
concrete implementations. The concrete implementation of services can be selected at run-
time.

2.2.2 Service Component Architecture (SCA) Model

SCA [Open SOA, 2007b] is a set of specifications for building distributed applications based on
SOA and Component-Based Software Engineering (CBSE) principles [SCOrWare Project, 2007]. In

20

2.2. Component Models for SOA Applications

SCA, the basic construction blocks are the software components, which have services (or provided
interfaces), references (or required interfaces) and exposed properties. The references and services
are connected by means of wires. SCA also specifies a hierarchical component model, which
means that components can be implemented either by primitive language entities or by subcom-
ponents. In the latter case the components are called composites. Figure 2.5 provides a graphical
notation for these concepts as well as a XML-based assembly language to configure and assemble
components.

Application

View
Controller

Legend:

Composite ServiceReference

Wire

Component Property

<composite name="application.composite">
 <service name="run" promote="View/run"/>
 <component name="View">
 <implementation.java class="app.gui.SwingGui"/>
 <service name="run">
 <interface.java interface="java.lang.Runnable"/>
 </service>
 <reference name="control" target="Controller/control">
 <interface.java interface="app.ControllerService"/>
 </reference>
 <property name="orientation">landscape</property>
 </component>
 <component name="Controller">
 <implementation.java class="app.ctrl.Controller"/>
 <service name="control">
 <interface.java interface="app.ControllerService"/>
 </service>
 </component>
</composite>

Application.composite

Figure 2.5: SCA Graphical Notation and Assembly Language

SCA is designed to be independent from programming languages, Interface Definition Lan-
guages (IDL), communication protocols and non-functional properties. In this way, an SCA-based
application can be built, for example, using components in Java, PHP, and COBOL. Furthermore,
several IDLs are supported, such as WSDL and Java Interfaces. In order to support interaction
via different communication protocols, SCA provides the concept of binding. For SCA references,
bindings describe the access mechanism used to call a service. In the case of services, the bindings
describe the access mechanism that clients use to call the service.

2.2.3 Choosing the Component Model

The component model to be employed in our proposal has to be extensible, provide a clear con-
cern separation and support for heterogeneity. The discussed component models have advan-
tages that can be exploited in ubiquitous environments. In the case of the component model
defined by OSGi, its main strong points are the dynamic deployment and update of the installed
applications. In SCA, the concerns modularity and the distribution support represent relevant
characteristics of the model. The two component models have desirable properties for our solu-
tion and they could be combined to get the both of them.

Because SCA promotes the integration of different technologies, including OSGi [SOA, 2007],
we choose this component model. In this way we can obtain the advantages of the two compo-
nent models if required. The selection of SCA is also motivated by the separation of bindings
and policies from business logic, which foster the extensibility of the model, as well as by the
native support for distribution. Furthermore, by using SCA, it is easier to integrate legacy appli-
cations and develop new services. However, SCA does not address the runtime management of
the application, which typically includes monitoring and reconfiguration.

In the next sections we focus on platforms for the selected component model, (i.e., SCA) and
how some of them complement the SCA component model for dealing with runtime manage-
ment issues. The discussion of platforms for OSGi such as Apache Felix [Foundation, a], Eclipse
Equinox [Foundation, b] and Knopflerfish [Project,] will be not discussed in the dissertation.

21

Chapter 2. Concepts and Background

2.3 SCA Platforms

In this section we present some open source platforms for executing SCA-based applications.
In particular we focus the discussion in Fabric3 (cf. 2.3.1), Tuscany (cf. 2.3.2) and the FraSCAti
platform (cf. 2.3.3).

2.3.1 The Fabric3 Platform

Fabric3 [Systems, 2010] is an open source platform for developing SCA applications. The plat-
form offers dynamic reconfiguration capabilities, high availability and reliability capabilities
and, extensibility capabilities. These capabilities are explained below.

1. In terms of dynamic reconfiguration, Fabric3 can be extended in order to provide introspec-
tion of applications. Moreover, it is possible to update at runtime the wires between the
applications. The policies associated with non-functional services are applied at develop-
ment time, deployment or during the execution.

2. Fabric3 runtimes are organized by domains. They can be embedded (e.g., Ant, Maven or an
IDE), consist of a single Virtual Machine (VM) or span multiple clusters. Figure 2.6 depicts
the architecture of a Fabric3 domain. The Controllermonitors and manages the available
services. The Zones are clusters containing the different runtimes that participate in the
domain. The high availability in Fabric3 leverages on this Zone concept. When a runtime
crashes, it is synchronized with the Zone.

3. Concerning the reliability, the platform provides it at two levels: application-level
and runtime-level. The former provides support for the Java Transaction API
(JTA) [Microsystems, 2005]. The latter is based on a compensation model.

4. Fabric3 provides a kernel that can be extended with additional functionalities. Each runtime
contains a local domain that has the basic functionalities. During the execution, it is pos-
sible to deploy extensions or contributions, which are implemented as components. Such
contributions are loaded in separate classloaders by means of OSGi. Besides providing
contributions isolation reducing conflicts, the usage of OSGi allows versioning.

Summary. The Fabric3 platform provides attractive functionality in terms of availability and
reliability, which are relevant issues in the development of distributed system. Furthermore,
the platform supports extensions for dealing with the dynamic modification of SCA wires and
policies by means of OSGi.

2.3.2 The Tuscany Platform

The TUSCANY Platform [Foundation, 2010, Laws et al., 2010] provides an infrastructure for de-
velopment and management of SCA applications. Besides supporting the component imple-
mentations based on OSGi, TUSCANY is able to run in both non-OSGi and OSGi environment.
This property makes the developing, building, launching, running and testing of Tuscany easier.
The platform offers a modular and pluggable architecture enabling its customization. Figure 2.7
shows this architecture. The different elements that compose it are discussed below:

1. Composite Applications: Represents the business applications running on the top of the TUS-
CANY runtime. Of course, these applications are described using the assembly language
stated by the SCA specification.

2. SCA API and TUSCANY API: Situated between the applications and the runtime, the SCA
API enables applications for interacting with the platform. The API is language specific.
TUSCANY provides a version for the Java language. Furthermore, the platform extends the
SCA API via the TUSCANY API.

22

2.3. SCA Platforms

Domain

Controller

...

SCA
composite

Legend:

Zone Runtime

Figure 2.6: Domains in the Fabric3 Platform

3. Core: Supports the component instantiation, the assembly of component into composite
applications and the management of the resulting applications.

4. Extensions: The platform provides plug points for allowing the incorporation of new func-
tionalities. In particular, it is possible to add new bindings, implementation types, policies,
interfaces and data bindings. The first four correspond to the SCA concepts discussed in
Section 2.2.2. The data bindings provide support for different formats of the information
exchanged between services. Conversions between formats are supported in a transparent
way.

5. Contribution Service SPI: Allows the easy implementation of new extensions of the platform.

6. Hosting Platforms: These modules provide the possibility of executing the TUSCANY run-
time on the top of different hosting platforms such as Apache Tomcat and Geronimo. TUS-
CANY can be extended to include others execution environments.

Summary. TUSCANY supports the addition of new bindings, implementation types, policies,
interfaces and data bindings by using a plugin-based architecture. This means that the platform is
easily customizable. Furthermore, TUSCANY can run on the top of OSGi environments. However,
the platform does not provide mechanisms for the dynamic adaptation of SCA applications.

2.3.3 The FraSCAti platform

The FraSCAti platform [Seinturier et al., 2011, Seinturier et al., 2009, Mélisson et al., 2010a] allows
the development and execution of SCA-based applications. The platform itself is built as an
SCA application—i.e., its different subsystems are implemented as SCA components. FraSCAti
provides an homogeneous view of a middleware software stack where the platform, the non-
functional services, and the applications are uniformly designe7d and implemented with the
same component-based and service-oriented paradigm.

To do it, the platform is composed by four layers (cf. Figure 2.8):

23

Chapter 2. Concepts and Background

Core

Hosting Platforms

Contribution
Service SPI

SCA API

Binding Type

Databinding Type

Implementation Type

Policy Type

Interface Type

Composite Application

Extensions

J2SE Web
Container JEE ...

Tuscany API

Figure 2.7: The TUSCANY SCA Java Runtime

1. The Kernel Level is based on FRACTAL [Bruneton et al., 2006a], a lightweight and
open component framework with basic dependency injection, introspection and re-
configuration capabilities. FRACTAL is conceived by applying concepts from software
architecture [Shaw and Garlan, 1996], distributed configurable systems, and reflective sys-
tems [Smith, 1984]. In particular, this component model exploits the modularization and
encapsulation fostered by the software architecture. The reflective systems provide the idea of
defining meta-level activities as well as the reification of part of the component structure
using control interfaces. From distributed configurable systems, FRACTAL inherits explicit
component connections across multiple address spaces, and the ability to define meta-level
activities for run-time reconfiguration.

FRACTAL enables the customization of the execution policy associated with compo-
nents. A concrete execution policy implemented in FRACTAL is called personality.
In [Bruneton et al., 2006a] are described two personalities of the component: JULIA, a gen-
eral purpose personality for components with reconfiguration facilities and, DREAM, a
personality for implementing message-oriented middleware solutions.

The definition of controllers and interceptors enables the definition of personalities. The in-
terceptors modify or extend the behavior of components when calls are done or received.
For its part, each controller represents a facet of the personality (e.g., the lifecycle or binding
management) and exposes its services by means of an interface called a control interface.

The FRACTAL components are equipped with a control interface that has the same role as
the IUnknown interface in the COM component framework [Box, 1998]. This means that
this interface allows the dynamic discovery of component capabilities and requirements.
The low part of Figure 2.8 depicts this interface. As observed, the control interface includes
methods for retrieving the component interfaces and type.

2. The Personality Level, which customizes the component kernel by providing the execu-
tion semantics for components and implementing the SCA API and principles based on
the FRACTAL component model. Table 2.1 presents the six controllers that make part of
the FraSCAti personality. Each one of these controllers implements a particular facet of the
execution policy of an SCA component. For this reason, the different controllers are im-

24

2.3. SCA Platforms

Personality Level

Run-time Level

2) assemble
components

Application Level

View
Model

Non-functional Level
...

Logging
Service

Transaction
Service

Security
Service

@intent and
policy sets

@intent
and policy sets

Component Interceptor
Part

Kernel Level

Component

+getFcInterface(in name) : Object
+getFcInterfaces() : Object[]
+getFcType() : Type

«interface»
Component

Description
ParserAssembly

Factory

Controller Part

Interceptor
Part

Personality
Factory

1) generate
personsalities

A
pp

lic
at

io
n

In
fr

as
tr

uc
tu

re

Figure 2.8: FraSCAti Platform Architecture

plemented as FRACTAL components. These controllers collaborate to provide the overall
execution logic to the hosted component instance.

The Personality Level also extends SCA by allowing changes in application reconfigura-
tion at runtime. In other words, FraSCAti enables the dynamic introspection and mod-
ification of an SCA application. This feature is important for designing and implement-
ing agile SCA applications, such as context-aware applications and autonomic applica-
tions [Kephart and Chess, 2003]. In particular, it is possible to modify wires, properties, and
hierarchies.

3. The Run-time Level instantiates SCA assemblies and components and defines a flexible
configuration process, which is inspired by the extender and whiteboard [OSG, 2004] design
patterns of OSGi. Figure 2.9 depicts the three composites that make part of the run-time
level: Description Parser, Personality Factory, and Assembly Factory. The
Description Parser loads and checks the SCA descriptors and creates the run-time
model. The descriptors must be conform to a meta-model providing separation of the SCA

25

Chapter 2. Concepts and Background

Interface Methods Definition
bindFC(in cltltfName: String, in srvltf: Object): void Creates new wires
listFc(): String[] Retrieves the existing wires
lookupFc(in cltltfName: String): Object Queries the existing wires
unbindFC(in cltltfName: String): void Removes the specified wire

Creates component instances according to the four modes defined
by the SCA specification:

1. STATELESS: All instances of a component are equivalent

2. CONVERSATION: An instance is created per conversation with
a client

3. COMPOSITE: Singleton wrt. the enclosing composite
4. REQUEST: An instance is created per request

getFcValue(in name: String): Object Retrieves the value of the specified property
putFcValue(in name: String, in value: Object): void Defines the specified property
addFcSubComponent(in comp: Component): void Adds the specified subcomponent to the composite
getFcSubComponents(): Component[] Retrieves the list of subcomponents of the composite
removeFcSubComponent(in comp: Component): void Removes the specified subcomponent of the composite
startFc(): void Allows application request to be processed

stopFc(): void Brings a component to quiescent state to enable safe
reconfiguration operations

addFcIntentHandler(in intent: Object): void Adds the specified non-functional service to the component
listFcIntentHandler(): Object[] Retrieves the list of non-functional services of component
removeFcIntentHandler(in intent: Object): void Removes the specified non-functional service of the component

Intent Controller

Lifycycle Controller

Wiring Controller

Property Controller

Hierarchy Controller

getFcInstance(): ObjectInstance Controller

Table 2.1: SCA Personality Level API.

Metamodel and the FraSCAti Metamodel. The former contains all the elements specified
in the SCA specification. The latter includes extensions, which are not part of the specifica-
tion. The separation in two metamodels fosters the integration of new features that are not
defined by the SCA specification such as new binding types.

The Personality Factory generates the personality of the SCA components. The na-
ture of the code generated by the personality depends on the implementation type of the
component. FraSCAti supports two different generation techniques: bytecode and source
code generation.

The Assembly Factory creates the component assemblies that correspond to the
run-time model created by the Description Parser. The different components in
Figure 2.9 that make part of the Assembly Factory (i.e., Component, Property,
Implementation, Service, Reference, Interface and Binding) modularize the
key concepts of the SCA model. Moreover, these components provide the modularity re-
quired for easily extending the supported bindings, interface language and component im-
plementations.

4. The Non-Functional Level supports the SCA Policy Framework specifica-
tion [Open SOA, 2007a] in order to provide non-functional services. This specification
states the attachment of annotations to component assemblies for triggering the execution
of non-functional services. For example, the @Confidentiality, @Integrity, and
@Authentication annotations ensure confidentiality, integrity and authentication of
service invocation, respectively.

In order to integrate the non-functional services, FraSCAti implements them as SCA com-
ponents. Then, FraSCAti offers an interception mechanism for connecting these non-
functional services to application services.

26

2.3. SCA Platforms

Run-time
Assembly Factory

Description Parser

SCA
Parser

SCA
Metamodel

FraSCAti
Metamodel

Composite

Component

Assembly

Service

Reference

Property

Interface

Implementation

SCA
Resolver

Personality Factory

Factory

Binding

BPEL

Tinfi
Tinfi

Tinfi

XSD
XSD

BPEL
BPEL

BPEL
BPEL

BPEL
BPEL

SOAP
SOAP

SOAP
SOAP

SOAP
SOAP

SOAP
SOAP

WSDL
WSDL

WSDL

Figure 2.9: Run-time Level

Summary. FraSCAti represents a uniform SCA middleware platform where the applica-
tions, platform and non-functional services are development respecting the SCA standard.
This property along with different levels provided by the platform make its customization
and extensibility easier when required. Furthermore, FraSCAti brings reflexion capabilities
into the SCA component model, functionality required for building SCA adaptive applica-
tions. Thus, the modularity, the usage of a uniform approach and the reflexion capabilities
represent the principal advantages of the FraSCAti platform.

2.3.4 Selecting an SCA Platform

In order to work in our proposal, we require an SCA platform that satisfies the following prop-
erties:

• Dynamic Reconfiguration Capabilities: The purpose of context-based adaptation is to enable
the dynamic reconfiguration of applications according to the current context. Therefore,
the platform supporting the execution of these applications have to provide mechanisms
for modifying their structure.

• Extensibility: The target platform has to enable the incorporation of the new functionalities
necessary in the implantation of our proposal.

• Support for Mobile Devices: In this dissertation we target the adaptation of applications run-
ning on smartphones. This means that the runtime platform has to be customizable in order
to execute such applications on devices with restricted capabilities.

Table 2.2 summarizes and compares the different SCA platforms in terms of these properties
as well as considering the supported functionalities. As it can be observed, TUSCANY does not

27

Chapter 2. Concepts and Background

A
pp

lic
at

io
n

Le
ve

l
Pl

at
fo

rm

Le
ve

l
D

es
cr

ip
tio

n
ID

L
B

in
di

ng
s

C
om

po
ne

nt
s

Fr
aS

CA
ti

1.
3

O
W

2
Co

ns
or

tiu
m

6.
9

M
B

!
!

W
ire

s,

pr
op

er
tie

s
an

d
hi

er
ch

ie
s,

po

lic
ie

s

Pl
ug

in
 b

as
ed

m

ec
ha

ni
sm

 e
na

bl
in

g
th

e
in

co
rp

or
at

io
n

of
 n

ew

Bi
nd

in
gs

, I
nt

er
fa

ce

La
ng

ua
ge

s
an

d
Co

m
po

ne
nt

Im

pl
em

en
ta

tio
ns

!
Ja

va
, W

SD
L,

UP

nP

SO
AP

, R
ES

T
HT

TP
,

JS
O

N-
RP

C,
 J

av
a

RM
I,

UP
nP

, U
Pn

P,

SL
P,

 O
SG

i,
JN

A

Ja
va

, J
av

a
Be

an
s,

Sc

al
a,

 S
pr

in
g,

 O
SG

i,
FR

AC
TA

L,
 B

PE
L,

sc

rip
ts

 b
as

ed
 o

n
th

e
Ja

va
 S

cr
ip

tin
g

AP
I

Fa
br

ic3
 1

.6
M

et
af

or
m

Sy

st
em

s
10

.2
 M

B
!

!
Ex

te
ns

io
ns

 a
re

re

qu
ire

d
fo

r
de

al
in

g
wi

th

re
co

nfi
gu

ra
tio

n.
W

ire
s

an
d

po
lic

ie
s

M
od

ul
ar

 a
rc

hi
te

ct
ur

e
en

ab
lin

g
th

e
in

te
gr

at
io

n
of

 B
in

di
ng

s
an

d
Co

m
po

ne
nt

Im

pl
em

en
ta

tio
ns

"

Ja
va

, W
SD

L

W
eb

 S
er

vic
es

 (W
S-

*
wi

th
 fu

ll .
NE

T
in

te
ro

pe
ra

bi
lity

),
JM

S,
 H

TT
P

(s
yn

c/
as

yn
c,

 J
SO

N,

He
ss

ia
n,

 J
AX

B)
, J

AX
-

RS
, T

CP

(s
yn

c/
as

yn
c)

, F
TP

Ja
va

, J
AX

-R
S/

RE
ST

,
Ti

m
er

s,
 J

un
it,

 M
oc

k,

W
eb

 C
om

po
ne

nt
s

Tu
sc

an
y

2.
0

Th
e

Ap
ac

he

So
ftw

ar
e

Fo
un

da
tio

n
2.

1
M

B
"

"
N/

A

Pl
ug

 p
oi

nt
s

fo
r B

in
di

ng
s,

Da

ta
 B

in
di

ng
s,

 P
ol

ici
es

,
In

te
rfa

ce
 L

an
gu

ag
es

 a
nd

Co

m
po

ne
nt

Im

pl
em

en
ta

tio
n

"
Ja

va
, W

SD
L

W
eb

 S
er

vic
es

, J
av

a
RM

I,
 H

TT
P,

 J
SO

N-
RP

C,
 A

TO
M

Ja
va

, S
pr

in
g,

 O
SG

i

Pl
at

fo
rm

D
ev

el
op

er
Ex

te
ns

ib
ili

ty

C
ap

ab
ili

tie
s

D
yn

am
ic

 R
ec

on
fig

ur
at

io
n

C
ap

ab
ili

tie
s

C
or

e
Si

ze
Su

pp
or

t f
or

M

ob
ile

D

ev
ic

es

Su
pp

or
te

d
Fu

nc
tio

na
lit

y

Table 2.2: Comparison Between the Different SCA Open Source Platforms

28

2.4. Service Discovery Protocols

offer reconfiguration functionality. Therefore we can not consider it as a suitable platform for the
implantation of our proposal.

On the other hand, FraSCAti and Fabric3 offer runtime reconfiguration capabilities based on
introspection. However, we select the FraSCAti platform because it provides an integral solution
where the different elements that compose the platform are also implemented following the SCA
paradigm. This feature makes the extensibility of the platform easier as well as the development
of applications with a clear and natural separation of non-functional concerns. Furthermore,
FraSCAti provides a lightweight version for mobile devices.

2.4 Service Discovery Protocols

Spontaneous interoperability or communication is an important issue in ubiquitous environ-
ments to deal with dynamicity and unpredictability [Zhu et al., 2005, Sivavakeesar et al., 2006].
This allows the interaction with resources that are dynamically discovered in the environment
without requiring the deployment of new functionality. The Service Discovery Protocols (SDPs)
have been conceived to enable this spontaneity. These protocols are designed considering several
aspects. Some of them are presented briefly below:

1. Service Description: In order to describe the name and attributes of services, some SDPs (e.g.,
Apple’s Rendezvous [Inc., 2009]) employ a template-based approach. Other protocols, such
as Bluetooth SDP and Jini, establish a predefined list of attributes and service names that are
frequently used.

2. Service Advertisement Searching: The advertisement and searching of services is supported
via an announcement-based approach or a query-based approach. In the former, the interested
entities (e.g., clients or service registries) listen on a channel in which the services announce
their presence. In the latter, a service client sends a query associated with the searched
service and it receives an immediate response. In this approach, clients do not process
unrelated announcements.

3. Service Registry Infrastructure: The registration of services can be done via a directory-based
model or a nondirectory-based model. In the directory-based model there is a central entity
called directory that maintains service information and processes queries and announce-
ments. In the nondirectory model, each service replies to the queries that match it.

4. Service Selection: When a service client searches for a service, it can find multiples services
that match its requirements. In this case, the SDP can offer a manual or automatic selection.
In the manual selection, the client has the responsibility of choosing one service between
the list of matching services. In the automatic selection, the protocol provides a mechanism
for select the service.

5. Service Invocation: Once the service is selected, the client needs to consume it. The discovery
protocol can define the underlying interaction mechanism. If the protocol does not specify
how to consume the service, the client and provider have the responsibility of deciding
how to do it.

In the state of the art we find several discovery protocols developed by the research
community, the industry and software vendors. Research conceived protocols include Nin-
jaSDS [Czerwinski et al., 1999, Gribble et al., 2001] and DEAPspace [Hermann et al., 2000]. In
the industry we find Salutation [Consortium, 1999], SLP [Guttman et al., 1999] and Bluetooth
SDP [SIG, 2001]. Jini [Microsystems, 2003], UPnP [UPnP Forum, 2008] and Rendezvous [Inc., 2009]
make part of the group of protocols defined by software vendors. In the following sections we
give an overview of UPnP and SLP.

29

Chapter 2. Concepts and Background

2.4.1 Universal Plug and Play (UPnP)

UPnP provides an architecture enabling the connectivity of intelligent appliances and wireless
devices [UPnP Forum, 2008]. The protocol is intended to be used in ad-hoc or unmanaged net-
works in home, public places or small business.

With the UPnP architecture, the Devices (or service providers) and Control Points (or
service consumers) can dynamically join the network, advertise their capabilities and learn about
the presence of others devices. To do that, UPnP leverages on standard protocols and technolo-
gies. In particular the architecture exploits Internet protocols such as IP, TCP, UDP, HTTP and
SOAP (for service invocation) and XML for describing services functionalities and capabilities.
Figure 2.10 depicts the protocol stack employed by UPnP. Below we discuss briefly the relevant
layers.

1. UPnP-vendor: In this layer the messages contain vendor specific information about its de-
vices.

2. UPnP-Forum: This layer complements the vendor information with content provided by
the UPnP Forum working committees2.

3. Simple Service Discovery Protocol (SSDP): Defined by Microsoft Corporation and Hewlett-
Packard Company for the discovery of simple services such as printers or external disk
drives, this protocol is the basis of UPnP. SSDP [Goland et al., 1999] enables the discov-
ery and advertisement of services without requiring previous configuration. The protocol
leverages on UDP and HTTP protocols for the messages exchange and applies unicast and
multicast routing schemes. The multicast is used for advertising the arrival or withdraw of
services as well as for sending the service searched by clients. The unicast is employed by
service providers for sending individual responses to clients.

4. General Event Notification Architecture (GENA): UPnP defines the GENA protocol to notify
the devices state in a asynchronous or polled way. The notifications are done using HTTP
over TCP/IP.

Concrete uses of UPnP include the UPnP AV MediaServers and MediaRenderers. The Medi-
aServers are computer systems storing and sharing multimedia content such as movies, music
and photographs. DVD players, VCRs, PCs, Personal video recorders, CD players, MP3 players,
Satellite set-top boxes and NAS (Network-Attached Storage) devices are examples of UPnP AV
MediaServers. On the other hand, UPnP AV MediaRenderers render content and exposes an in-
terface to control the playback. Televisions, PCs, digital media adapters, stereo systems and MP3
players represent MediaRenderers.

2.4.2 Service Location Protocol (SLP)

SLP defines a platform independent framework [Guttman et al., 1999, Microsystems, 2000] for the
discovery and provisioning of SLP-enabled services. Besides these functionalities, the protocol
permits the organization of services and users into logical or functional groups and the recovery
from basic server failures. All these functionalities are provided by default but SLP can be tuned
according to the application needs.

In SLP, the services providers are called Service Agents (SAs) and the client are User Agents
(UAs). Additionally, the protocol defines optional Directory Agents (DAs), which keep the registry
of the available services in the environments. Furthermore, when present, a DA processes UAs
requests. If there is no DA in the environment, the SAs agents advertise their capabilities (via
multicast routing) and answer the requests from UAs.

To advertise services, the protocol defines Service URLs. These URLs indicate the service host
and type following the format service:<srvtype>://<hostname>. The advertisement

2http://upnp.org/membership/committees/

30

http://upnp.org/membership/committees/

2.5. Summary

IP

UDP TCP

HTTPMU (multicast) HTTPU (unicast) HTTP HTTP

SOAP GENASSDP

UPnP Device Architecture

UPnP Forum

UPnP Vendor

Figure 2.10: Protocol Stack in UPnP Architecture

also includes a collection of attribute/value describing the services and a lifetime. When the
lifetime expires, the advertisement is no longer valid unless the service is reregistered.

Examples of SLP usages including the location of printers, file sharing in MAC OS, the find-
ing of a variety of services on SUSE Linux3, and the location of home actuators such as intelligent
lights in the ACN protocol [Entertainment Services and Technology Association (ESTA),] for en-
tertainment control. Additionally, the Distributed Management Task Force4 (DMTF) defines SLP
as the standard protocol employed by Web-Based Enterprise Management5 (WBEM).

Choosing the Service Discovery Protocols

The discovery protocols employed in our solution have to be extensible and flexible enough for
allowing us to exchange the context information with the required metadata. Moreover, they
have to be widely used to guarantee a high integration level with legacy services and at the same
time. Searching to satisfy these properties, in this dissertation we employ UPnP and SLP pro-
tocols as part of our solution for dealing with mobility issues in ubiquitous environments. The
selection of UPnP is motivated because it is a well-accepted standard in the home entertainment
industry to create, for example, TVs and NAS devices. Furthermore, the protocol is also lan-
guage independent, allowing the implementation and interoperability of service providers and
service consumers. Other attractive feature of UPnP is the support of its usage by the Digital Liv-
ing Network Alliance (DLNA)6, which ensures interoperability between devices from different
manufacturers. On the other hand, we choose SLP because of its simplicity and flexibility. Fur-
thermore, this protocol is also a standard employed by different operative systems (e.g., Mac OS
and SUSE Linux), the ACN protocol and the Storage Networking Industry Association7) (SNIA).

2.5 Summary

In this chapter we have given an overview of some existing approaches for the creation of SOA
solutions and service discovery. We have also specified which of these approaches we employ
in our solution. In particular, we have discussed REST architectural style and SCA advantages,
which we will combine in order to provide our solution for dealing with context-based adapta-
tion in ubiquitous environments (cf. Chapters 5 and 6). Additionally, we discuss some platforms

3SUSE Linux: http://www.opensuse.org/en/
4Distributed Management Task Force (DMTF): http://www.dmtf.org/
5Web-Based Enterprise Management (WBEM):http://www.dmtf.org/standards/wbem
6Digital Living Network Alliance: http://www.dlna.org/home
7Storage Networking Industry Association: http://www.snia.org/home/

31

http://www.opensuse.org/en/
http://www.dmtf.org/
http://www.dmtf.org/standards/wbem
http://www.dlna.org/home
http://www.snia.org/home/

Chapter 2. Concepts and Background

that provide runtime support for SCA-based applications. Between them, we select the FraSCAti
platform because of the reflection capabilities that it brings into the SCA component and its flex-
ibility for being extended. Finally, we introduce UPnP and SLP discovery protocols, which we
use in our proposal.

In the next chapter, we present some concepts and approaches from the ubiquitous comput-
ing that are essentials for a better understanding of the contribution of this dissertation. In par-
ticular, some of the addressed solutions employ the component and service discovery concepts
introduced in this chapter in order to provide support for adaptation of applications.

32

Chapter 3
Ubiquitous Approaches

Contents
3.1 Definitions and Concepts . 34
3.2 Middleware Solutions for Context-Awareness 35

3.2.1 Gaia . 36
3.2.2 Gaia Microserver . 36
3.2.3 Aura . 37
3.2.4 CORTEX . 37
3.2.5 CARISMA . 37
3.2.6 MobiPADS . 38
3.2.7 MiddleWhere . 38
3.2.8 SOCAM . 39
3.2.9 CAPNET . 39
3.2.10 Reconfigurable Context-Sensitive Middleware (RCSM) 40
3.2.11 CARMEN . 40
3.2.12 Cooltown . 40
3.2.13 A Large Scale Peer-to-Peer Context Dissemination Middleware . . . 41
3.2.14 A Peer-to-Peer based infrastructure for Context Distribution in Mo-

bile and Ubiquitous Environments (MUSIC Peer-to-Peer) 41
3.2.15 Summary of Middleware Solutions 42

3.3 Service Discovery Solutions for Ubiquitous Environments 42
3.3.1 INDISS: Interoperable Discovery System for Networked Services . . 42
3.3.2 ReMMoC: A Reflective Framework for Discovery and Interaction in

Heterogeneous Mobile Environments 43
3.3.3 A Multi-protocol Framework for Ad-hoc Service Discovery 43
3.3.4 Service Discovery Solution Summary 44

3.4 Data-Oriented Architectures in Context-Mediation 44
3.5 Limitations of the existing approaches . 45
3.6 Summary . 46

Motivation

Ubiquitous computing proposes a world where computers are everywhere and help people in
their daily activities but at the same time are practically invisible. As stated by Mark Weiser,

33

Chapter 3. Ubiquitous Approaches

father of the term, the ubiquitous computing ideal is "to make a computer so imbedded, so fit-
ting, so natural, that we use it without even thinking about it" [Weiser, 1999]. To achieved it,
the ubiquitous computing is grounded in the Moore’s Law, which states that the number of
transistors per chip, and consequently the power of microprocessors, doubles about every 18
months [Moore, 2000]. This means that increasingly tinier processors may become part of the en-
vironment (so called ubiquitous environments) and be incorporated in different kinds of objects
connected together by means of wireless networks [Mattern, 2004, Mattern, 2005].

Although the ubiquitous computing tries to make computers more helpful and easier to use,
the existence of spread and interconnected devices in the environment is not enough. The de-
vices, and more specifically the applications running on them, should sense the environment
and change their behavior according to it. For this reason, within the ubiquitous computing,
we find the context-aware computing, which deals with these concerns [Weiss and Craiger, 2002,
Schilit et al., 1994]. This paradigm aims to build context-aware applications, which are applica-
tions benefiting from the pervasive computational resources available in the environment. How-
ever, in order to do it, several issues associated with heterogeneity, distribution and dynamic-
ity have to be tackled. These problems, combined with the increasing popularity of ubiquitous
computing in the last years, have arisen the interest in context-aware applications. Thus, in the
literature we find several proposals [Román et al., 2002b, Sousa and Garlan, 2002, Gu et al., 2004,
Gu et al., 2005] dealing with context-awareness and the associated problems.

Chapter Organization

The goal of this chapter is to provide an overview on context-awareness. Therefore, the rest of
this chapter is organized as follows. In Section 3.1 we introduce concepts associated with context-
awareness that are relevant for this dissertation. Then, we describe some existing solutions for
dealing with the building of context-aware applications (cf. Sections 3.2, 3.2 and 3.4) as well as
their limitations (cf. Section 3.5). We finish with a summary of the elements presented in the
chapter (cf. Section 3.6).

3.1 Definitions and Concepts

In this section we discuss some concepts associated with context-awareness. In particular, we
introduce the terminology that we employ in this dissertation.

Context Information. In the literature, we can find several definitions of context informa-
tion [Hirschfeld et al., 2008, Coutaz et al., 2005]. In this dissertation, when the term context is
employed we mean "any information that can be used to characterise the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a user and an ap-
plication, including the user and applications themselves" [Dey, 2001]. Context information includes
(but is not limited to) current location, relative location (e.g., proximity to stores in a mall), phys-
ical environment (e.g., temperature, time, light level, sound level, available bandwidth), device
characteristics (e.g., battery level from a laptop or smartphone), user preferences and user’s ac-
tivity [Mascolo et al., 2002].

Quality of Context (QoC). QoC attributes [Razzaque et al., 2006], indicators [Sheikh et al., 2008]
or parameters [Manzoor et al., 2008, Bu et al., 2006] specify the quality of the information that is
used as context information [Buchholz et al., 2003]. Precision, probability of correction, reputa-
tion and trust-worthiness are examples of QoC attributes. Table 3.1 shows the definition of some
of these attributes.

34

3.2. Middleware Solutions for Context-Awareness

Update frequency/Refresh Rate How often the information is updated

Lifetime When the information becomes obsolete

Precision/Resolution The granularity of the provided information

Probability of Correction Margin of error, accuracy

Reputation and Trust-worthiness The confience level in the provider (subjective
and based on expirience)

QoC Attribute Explanation

Table 3.1: Some QoC Attributes

Information Sources. Any entity providing raw data that can be used potentially as context
information. Sensors, wireless sensor networks (WSNs) and mobile devices (e.g., providing in-
formation about the battery, memory and user preferences) are examples of information sources.

Context Sources or Context Providers. A context source or context provider is an entity that
processes data for producing high level context information and makes it available to different
context consumers. Web Services, publish-subscribe systems, instant-messaging systems, repos-
itories, and smartphones are examples of context sources [Cohen et al., 2004]. Depending on the
context consumer, the context providers can also be considered as information sources.

Context Consumers. Entities employing the context information provided by context sources.
Examples include (but not are limited to) context-aware applications, context-aware middleware
and context-sources.

Context-aware Application. In this dissertation, we use the term context-aware application to
refer to applications that benefit from context information for deducing the most suitable way
to serve the final user. This deduction is made with a minimal or no intervention of the
user [Cohen et al., 2004].

Context-aware Middleware. Middleware platforms can exploit the context information in or-
der to improve their behavior. In a similar way, these platforms can provide services for retriev-
ing the context information and adapt applications according to it. These middleware platforms
providing and/or exploiting the context information are called context-aware middleware in this
dissertation.

Context Mediation. As already stated in Chapter 1, mediation is the process of collecting and
processing usage data from different data resources (databases, Web Services, networked devices,
etc.), to compute pertinent indicators and to deliver them to application programs (Web Services,
enterprise applications, monitoring tools, etc.) [Coutaz et al., 2005]. This context mediation is a
keystone in the adaptation of context-aware applications and therefore it has to be treated care-
fully.

3.2 Middleware Solutions for Context-Awareness

In this section, we present some existing middleware platforms that deal with the issues associ-
ated with context-awareness. We focus the discussion on the main functionalities of the platforms
in terms of context management and adaptation. In particular, we characterize these platforms
by considering the following dimensions:

35

Chapter 3. Ubiquitous Approaches

1. Technology and Paradigms Applied: In this dimension we include the most relevant ele-
ments employed in the conception of the approach.

2. Communication Mechanisms: Here we consider the interaction and discovery mechanisms.
When supported, we specify the protocols and/or models for each dimension.

3. Context Information: This dimension indicates if the approach is flexible in terms of context
representations (i.e., the support for different formats of information) and if it provides
support for QoC.

4. Loose Coupling: We characterize the loose coupling promoted by the approaches in terms
of mobility support and dependency definition. Mobility support refers to the platform capacity
for allowing the dynamic arrival and departure of entities (e.g., context providers, clients,
servers, sensors, etc.) that can be part of the platform ecosystem. Therefore, discovery capa-
bilities are required for mobility support. For its part, the dependency definition expresses
how the entities are related to each other.

5. Independent Communication Mechanism: In this dimension we indicate if the approach
provides flexibility for selecting and/or adding new interaction and discovery mechanisms.

6. Adaptation: With this dimension we indicate if the platforms support static or dynamic
adaptation and if the adaptation is at the platform and/or application levels.

3.2.1 Gaia

Gaia [Román et al., 2002b] is a distributed middleware that provides similar functionality to an
operating system. This middleware platform allows the coordination of software entities and
heterogeneous networked devices in physical spaces (so called active spaces). Gaia provides ser-
vices for event management and distribution (via event channels), context information query (for
the context-based adaptation of applications), detection of digital and physical entities, storage
of the information associate with entities, and file management. Gaia also provides a framework
to build or adapt existing context-aware applications.

Characterization in Terms of the Dimensions. Gaia is conceived by using component-based
design. The interactions between entities can be synchronous or asynchronous and are done via
events and RPC. The already mentioned event channel allows service discovery and represents
the dependency point. However, Gaia does not provide flexibility for selecting different com-
munication protocols for discovery and interaction. Dynamic and static adaptation capabilities
are provided at the application and middleware levels. Regarding the context information di-
mension, even if Gaia provides context processing, it does not consider QoC and the support for
multiple context representations.

3.2.2 Gaia Microserver

Gaia Microserver [Chan et al., 2005] is an extension of the Gaia middleware written in
J2ME [Topley, 2002], which provides access to the native capabilities of mobile devices. To do
this, the extension exports the functionality of these devices as Gaia components. In other words,
the J2ME middleware acts as a proxy from the software running on mobile devices to Gaia. The
Microserver also enables the interoperation of C++ native code with Java code. Gaia uses the
Microserver platform to deliver dynamic software components and multimedia contents to users
through their mobile devices.

36

3.2. Middleware Solutions for Context-Awareness

Characterization in Terms of the Dimensions. Gaia Microserver brings into the Gaia plat-
form the possibility of exploiting mobile devices. The interaction between these devices and other
entities uses bluetooth [SIG, 2001] and GPRS [TelecomSpace,]. The J2ME proxy enables the dis-
covery of the mobile devices and the communication is done via events as in Gaia. The provided
adaptation is dynamic but only at the application level.

3.2.3 Aura

Aura [Sousa and Garlan, 2002] is an architectural framework for ubiquitous computing applica-
tions. This middleware platform provides services for the management of tasks, applications
and context. In Aura, the tasks are abstract representations of a collection of services. When a
user moves from one environment to another, a Task Manager migrates the task representations
and instantiates the service providers in the new location. The services are provided by existing
applications. Aura gives support for registry and access of services via an Environment Manager
based on Jini technology [Waldo, 2000]. On the other hand, to manage context, Aura defines
Context observers, which collect and notify changes on the context information to the Task and
Environment Managers. In Aura, this context information enables the derivation of user intents.

Characterization in Terms of the Dimensions. Defining a component-based architecture, Aura
develops software connectors that benefit from Jini technology for interaction and service reg-
istry. However, the platform does not support mobility. In a similar way, the mechanism as-
sociated with the context retrieval and processing does not consider the QoC dimensions and
multiple context representations. Finally, regarding the adaptation dimension, Aura only pro-
vides dynamic adaptation at the middleware level.

3.2.4 CORTEX

CORTEX [Sorensen et al., 2004, Blair et al., 2004] is a context-aware middleware for pervasive and
ad hoc environments. The platform is based on the concept of Sentient Objects (SOs) and Com-
ponent Frameworks (CFs). SOs are autonomous entities that can get data from the environment
and share information between them. They consume and produce events. SOs are able to make
decisions and perform actions based on the information sensed. On the other hand, the CFs offer
services to the SOs, such as publish-subscribe, group communication, context retrieval, service discov-
ery (via protocols such as SLP and UPnP) and QoS management. CORTEX can be reconfigured at
runtime using a reflective API.

Characterization in Terms of the Dimensions. CORTEX is built on the top the OpenCom com-
ponent model. The usage of such component model makes the support of dynamic adaptation
at the application and middleware levels easier. On the other hand, by encapsulating the context
distribution concerns on the SOs, CORTEX has the flexibility for supporting different discovery
protocols. However, the SOs do not consider QoC as a relevant aspect of the context information.
Furthermore, the interactions are based only on the SOAP messaging framework.

3.2.5 CARISMA

CARISMA [Capra et al., 2003] (Context-aware Reflective mIddleware System for Mobile Applica-
tions) applies the reflection paradigm to enhance the development of adaptive and context-aware
mobile applications. The idea behind CARISMA is to customize the platform considering the ap-
plications needs. In order to do that, the middleware behavior with respect to an application is
reified as meta-data in a profile. This profile contains the description of associations between the
service that the middleware customizes, the policies that can be used in the service invocation
and the context configuration that allows the use of the policies. In each service invocation, the
client application passes its profile to the platform and determines the policies that can be applied

37

Chapter 3. Ubiquitous Approaches

according to the current context. CARISMA provides a reflective API for modifying at runtime the
associations described by the profile. The conflicts that may arise between profiles are resolved
using a micro-economic approach. In this approach, the system is modeled as an economy where
the consumers (applications) reach an agreement about a limited set of goods (the policies) using
the middleware platform like auctioneer.

Characterization in Terms of the Dimensions. CARISMA provides adaptation at the middle-
ware level by exploiting reflection mechanisms. The dependency between the middleware plat-
form and the applications customizing it is stated via the profiles. The context information is just
used for determining the profiles that can be applied. CARISMA does not include QoC dimen-
sions in this analysis. In terms of communications, the platform does not consider the discovery
capabilities as a relevant issue in context-based adaptation.

3.2.6 MobiPADS

MobiPADS [Chan and Chuang, 2003] (Mobile Platform for Actively Deployable Service) is a sys-
tem for mobile environments. In this middleware platform, the services, called mobilets, can mi-
grate between MobiPADS environments. Each mobilet consists of a slave and a master. The slave
resides in the server side, and the master in the client side. The mobilets are configured as chained
objects to provide augmented services and protocols to the mobile applications. MobiPADS
achieves context-awareness with the utilization of an event model. The platform monitors the
status of the interested context and notifies the changes to the subscribed entities. By means of
the event model, the primitive events are composed in an event graph. In this way, when an
event service is built and subscribed, it has to monitor and analyze the basic events and to match
them according to the event graph structure.

Characterization in Terms of the Dimensions. MobiPADS employs a service channel for mak-
ing the mobilets available. However, despite the existence of this service channel, spontaneous
communications are not possible. Considering adaptation, it is supported in the platform level,
by means of system profiles, and in the mobilets, by allowing them to change according to the
events that they receive (i.e., it is possible to adapt applications and the middleware platform
dynamically). Finally, the event graph allowing the context management does not include the
analysis of QoC dimensions.

3.2.7 MiddleWhere

MiddleWhere [Ranganathan et al., 2004] is a distributed middleware architecture for location
built on the top of Gaia (cf. Section 3.2.1). This means that the main goal of the platform is to pro-
vide advantages in the development of location-aware applications. To do that, MiddleWhere
defines a hierarchical location model that deals with three kinds of location: points, lines, and
polygons. The location, which is stored in a spatial database, can be expressed in coordinates
and a symbolic way. This location information is characterized in terms of Quality of Context
attributes such as freshness, confidence and resolution. The applications can use the location data
in two ways: i) Querying the location of the interested objects and, ii) Subscribing to be notified
when a location condition becomes true.

Characterization in Terms of the Dimensions. Based on CORBA [Group, 2006a] and Gaia,
the most relevant property of this platform is the usage of quality attributes associated with
context information. Nevertheless, Middleware does have a direct support for adaptation at the
platform and application levels. On the other hand, the interaction between MiddleWhere and
applications is done via adapters. In the interaction, the discovery capabilities are not offered
and therefore there is not mobility support.

38

3.2. Middleware Solutions for Context-Awareness

3.2.8 SOCAM

Service-oriented Context-Aware Middleware (SOCAM) [Gu et al., 2004, Gu et al., 2005] is a plat-
form to build context-aware mobile services. SOCAM uses ontologies to model the context. The
platform can support semantic representation, context reasoning and context-knowledge shar-
ing. SOCAM architecture consists of:

(a) Context Providers giving context information, which is represented as context events in the
form of OWL descriptions;

(b) Context Interpreters that provide high-level context information and therefore they are also
considered context providers. The Context Interpreters include Context Reasoners, containing
rules that trigger actions associated with context changes, and Context Databases, containing
instances of the current ontology;

(c) A Location Service for registry and discovery of context providers and others services;

(d) Context-aware Mobile Services that adapt their behavior according to context information. They
obtain this information by querying or listening specific events from context providers.

Characterization in Terms of the Dimensions. As already stated, SOCAM employs ontologies
in order to model context information. Nevertheless, this modeling does not consider as rele-
vant the QoC information. The location service enabling discovery is based on a SLM service
discovery and the interaction is event-based. There is not support for several communications
mechanisms. Regarding the adaptation, it is only provided at the application level.

3.2.9 CAPNET

CAPNET [Davidyuk et al., 2004] is a context-aware middleware for mobile multimedia applica-
tions. CAPNET offers a component based architecture, which core components are:

1. Component Manager, which controls the components and their stubs;

2. Connectivity Manager that manages and monitors the connection of the mobile devices;

3. Messaging, which creates channels and supports asynchronous communication, remote pro-
cedure calls and channel-related operations;

4. Service Discovery for locating services and available components.

CAPNET also has others components to deal with context-awareness: Context-Based Storage,
Context, User Interface and Media. The Context-Based Storage component stores and retrieves con-
text data by request. The Context component provides context information acting as a wrapper
for context sensors. The User Interface component supports the design and implementation of
UI applications. In order to do that, the UI allows three different techniques: abstract UIs (XML),
plug-in UIs (downloadable Java code) and Web-based UIs (HTML). The media components pro-
vide functionality to capture images, audio and video, facilitating the portability and scalability
of native media capabilities across the various devices.

Characterization in Terms of the Dimensions. CAPNET enables its customization at deploye-
ment time. The communications between the middleware platform and applications is based on
events and several interaction protocols are supported. The Service Discovery component that
allows the discovery of services uses the Jini Technology. In CAPNET, the context management
does not include the support for multiple representations and QoC attributes.

39

Chapter 3. Ubiquitous Approaches

3.2.10 Reconfigurable Context-Sensitive Middleware (RCSM)

Reconfigurable Context-Sensitive Middleware[Yau et al., 2004, Yau et al., 2002] (RCSM) provides
an object-based framework for developing and supporting context-sensitive applications. In
RCSM, the context-aware applications are modeled as context-sensitive objects with two parts:
i) A context-sensitive interface that encapsulates the description of the applications’ context-
awareness and ii) A context-independent implementation, which remains context free. To allow
ad-hoc communications, RCSM employs an Object Request Broker (R-ORB) that has function-
alities for context discovery, collection and propagation. A R-ORB is able to establish context-
triggered communication channels (CTCs) between remote R-ORBs based on application-specific
context. To maintain CTCs with remote devices, the R-ORB uses R-GIOPs (RCSM General Inter-
ORB Protocols).

Characterization in Terms of the Dimensions. RCSM exploits the object paradigm for enabling
the dynamic and static adaptation of context-aware applications. Even if the platform does not
provide discovery capabilities, its R-ORB brings into play flexibility in terms of interaction and
discovery protocols. However, the platform does not consider the quality of the context informa-
tion as a relevant issue.

3.2.11 CARMEN

CARMEN [Bellavista et al., 2003] (Context Aware Resource Management ENvironment) is a mid-
dleware to manage resources in wireless settings assuming temporary disconnections. The mid-
dleware supports the design, development and deployment of context dependent services for
the wireless Internet. CARMEN uses metadata for representing the context characteristics and the
choices in the service behavior. Two types of metadata are used: profiles and policies. The profiles
describe users, devices, service components and sites. The policies specify bindings, migration
and access control. Each user is associated with a single proxy or Mobile Agent (MA) through
which the resources can be accessed. When the user moves from an environment to another one,
the proxy is migrated (using wired connections). This MA is responsible for making the resources
available in the new location. The resource migration can be done using one of the next strate-
gies (specified in the profile of the device): moving the resources with the agent, copying the
resources, using remote references or rebinding to new services with similar functionality. The
middleware solution also provides an articulated naming system with identification, discovery,
and directory facilities.

Characterization in Terms of the Dimensions. CARMEN uses reflection techniques for enabling
its adaptation at runtime. The interaction based on Mobile Agents does not provide flexibility
for selecting different protocols. In a similar way, CARMEN discovery facility does not consider
the usage of different mechanisms. The metadata approach for context description excludes the
context quality treatments.

3.2.12 Cooltown

Cooltown [Debaty et al., 2005] is a distributed software framework to integrate the physical
world with the Web. Each physical entity (i.e., people, things or places) is represented as a Web
Presence with a URL associated. The URLs are passed between devices for interactions. The Web
Presences have the following core modules for modeling physical entities on the Web: i) the de-
scription module containing information about the characteristics and capabilities of the identity,
ii) the directory module that manages the relationship of the Web Presence, iii) the discovery module
allowing the automatic update of the relationships, iv) the autobiographer module, which is a log
of the Web Presence, v) the observer module for observing the discovery module and triggering
actions when specific criteria are met and vi) the control module that enables interactions with

40

3.2. Middleware Solutions for Context-Awareness

the physical world. The relationships between the Web Presences include Contains, isContainedIn,
isNextTo and isCarriedBy, and new types can be added. The relationships are directional, they
have properties and can be subtypes of other relationships. Cooltown offers also tools to build
the Web Presences.

Characterization in Terms of the Dimensions. Cooltown considers each entity as a web re-
sources, which have URLs enabling their access by means of HTTP. The discovery module of the
platform is extensible, meaning that different discovery mechanisms can be used. Furthermore,
Cooltown is able to support the joining and leaving of the Web Presences. The directory module
is the mechanism for stating the dependencies of the Web Presences. Finally, the platform can be
easily customized at deployment time.

3.2.13 A Large Scale Peer-to-Peer Context Dissemination Middleware

In [Yasar et al., 2010] authors propose a middleware solution enabling the optimization of con-
text information dissemination by defining virtual groups that share some common contextual
information (i.e., location, direction, interest). The goal of the middleware platform is to reduce
irrelevant communications between nodes in a large scale peer-to-peer network. In the approach,
the context information is modeled by using an ontology which contains specification of context
artifacts and their relations. The context-aware groups are composed by a criteria such as loca-
tion, a set of contextual information interests (e.g., traffic or parking information), and a set of
sub-interests (e.g., traffic jams or accidents). The group exchanging only relevant information
are formed by using a backpropagation algorithm [Preuveneers and Berbers, 2007] for inter and
intra-group communication. Finally, the middleware platform is evaluated with a large scale
vehicular network [Yasar et al., 2008].

Characterization in Terms of the Dimensions. The approach focuses in the dissemination of
context information and their optimization by reducing the exchange message between context-
based groups, an important aspect in context mediation. Furthermore, with the applied back-
propagation algorithm consider the quality of the context information. The discovery mecha-
nism exploits broadcasting for discovering context-aware groups and notifying the groups join
and leaving. Nevertheless, there is not flexibility in terms of communications.

3.2.14 A Peer-to-Peer based infrastructure for Context Distribution in Mobile
and Ubiquitous Environments (MUSIC Peer-to-Peer)

In [Hu et al., 2007], the authors propose a peer-to-peer infrastructure dealing with context medi-
ation. Context-aware peers are grouped into three categories according to their resources and
functionalities: sensors peers, disseminators peers, and consumer peers. This classification configures
the deployment of the infrastructure components on the context-aware peers. The approach uses
two key services to retrieve the context information: the Context Service and the Distribution
Service. The Context Service stores context information in a local repository and processes the
queries. The Distribution Service is used by the context service to retrieve context information
from peers (when the information is no in the local repository). The approach therefore exploits
the collectiveness property of the peer-to-peer paradigm to provide context fault tolerance.

Characterization in Terms of the Dimensions. The most relevant property of this approach is
the usage of the peer-to-peer paradigm for interaction and discovery. The context integration is
the focus of the approach. Nevertheless, in the peer-to-peer based infrastructure adaptation and
context management issues are not considered.

41

Chapter 3. Ubiquitous Approaches

3.2.15 Summary of Middleware Solutions

The set of middleware solutions that we just presented can be grouped in four categories:

1. General Solutions for Context-Awareness: This category refers to the middleware platforms
searching to face the different issues associated with context-based adaptation, i.e., hetero-
geneity, mobility and the adaptation itself. In this category we include Gaia and RCSM.
The advantage with this kind of solutions is the functionality richness for the development
of context-aware applications. The problem with them is that they tend to be inflexible in
terms of relevant aspects such context management (i.e., context integration and processing)
and communications. Furthermore, although some of their functionality can be improved,
the extensibility becomes a difficult task because of the same complexity associated with
platform.

2. Solutions for Context Processing and Integration: In this category we find CORTEX, CARISMA,
Music Peer-to-Peer and the Large Scale Peer-to-Peer Context Dissemination Middleware.
This kind of solutions focuses in the exchange and processing of context by means of ef-
ficient mechanisms. The strong point of this category is the simplicity and easy usage of
the solutions. The drawback is associated with the not consideration of adaptation at the
application level.

3. Solutions for User Mobility: In this category we include the middleware platforms support-
ing service migration or replacement between environments and considering the usage of
mobile devices. Therefore, in this category we classify Aura, MobiPADs, CARMEN, Gaia
Microserver and SOCAM. The interesting aspect of this approaches is the possibility given
to user of benefiting from the same services even if the user is nomad. However, service
migrations/replacement requires highly controlled environments, where it is required to
provide homogenous services and/or entities supporting the migration of the functional-
ity.

4. Specific Purpose Solutions: In this category we include the solutions conceived for develop-
ing an specific kind of context-aware adaptation. For example, CAPNET enables the de-
velopment of multimedia applications, MiddleWhere of location-aware applications, and
Cooltown the conception of Web presences integrating the physical world with the web.
These specific solutions allow the clear identification of the different concerns associated
with context mediation in ubiquitous environments such as the need for QoC information.

The previous classification enables us to identify the main strengths and weaknesses of the
different approaches and to confirm the properties that we will offer in our proposal in terms
of context mediation: independent representation of context information, independent communication
mechanisms, loose-coupling between context producers and consumers, and flexibility and extensibility.
We provide more detail about these properties in Chapter 5.

3.3 Service Discovery Solutions for Ubiquitous Environments

In Section 2.4, we have introduced the basic concepts about service discovery. In this section
we discuss some middleware approaches dealing with the problem of mobility in ubiquitous
approaches. As it will be presented, these approaches focus in the interoperability between SDPs
and not on the flexibility in terms of extensibility and adaptation.

3.3.1 INDISS: Interoperable Discovery System for Networked Services

INDISS [Bromberg and Issarny, 2005] is a system based on event-based parsing techniques to
provide SDP detection and full service discovery interoperability. The detection of protocols is

42

3.3. Service Discovery Solutions for Ubiquitous Environments

done by using a Monitor Component. This component joins different multicast groups (asso-
ciated with different discovery protocols) and waits for multicast messages or reply messages
depending if the SDP is passive or active, respectively. The data arrival on an specific port and
multicast address indicates the usage of the SDP associated with them.

Once the used protocols are identified, the next step is enabling the interoperability of SDPs.
With this purpose, a Parser component extracts semantic concepts as events from the SDPs
messages. Then, a Composer component transforms the events into messages of the underlying
SDP used by the client application.

Characterization in Terms of the Dimensions. INDISS focuses in the interoperability be-
tween discovery protocols. Therefore, this platform provides flexibility in terms of discovery
mechanism but it does not consider the possibility of using diverse interaction protocols. The
component-based architecture of INDISS can be easily configure at deployment time but mecha-
nism for dynamic adaptation are not considered.

3.3.2 ReMMoC: A Reflective Framework for Discovery and Interaction in
Heterogeneous Mobile Environments

ReMMoC [Grace et al., 2005] is a Web-Service based reflective middleware for discovery and ac-
cess of services in mobile clients. This middleware platform has two main functionalities: i)
the detection of the available services in the environment independently of the protocol used in
their advertisement and ii) the interoperability with services implemented upon different inter-
action types. To provide these functionalities, ReMMoC exploits the Component Framework (CF)
architecture promoted by the OpenCOM model [Coulson et al., 2004]. In this way, the ReMMoC
architecture is composed by the the Service Discovery CF and Binding CF. The former is
associated with the functionality i) and the latter with the ii). The two CFs allow the incorpora-
tion of new protocols by defining personalities. The Service Discovery CF is able to reconfigure
itself to work with the current discovery protocols being used in the environment. Furthermore,
this CF executes service lookup by employing different SDPs in parallel. For its part, the Binding
CF can adapt itself to become a client of a service discovered at runtime.

Characterization in Terms of the Dimensions. ReMMoC provides flexibility in terms of inter-
action and discovery mechanisms. In terms of adaptation, dynamic reconfigurations are possible
at the middleware and application levels thanks to the use of the OpenCOM model. However,
the platform is not context-aware meaning that there is not support for context-based adaptation.

3.3.3 A Multi-protocol Framework for Ad-hoc Service Discovery

In [Flores-Cortés et al., 2006], authors propose a component-based framework for the develop-
ment of an adaptive multi-personality service discovery middleware, which operate in fixed and
ad-hoc networks. The solution, based on the OpenCOM model, has an architecture composed by
6 components:

1. The Advertiser component has the role of a Service Agent, i.e., this ad-
vertises the services descriptions to neighbor nodes. The supported discov-
ery protocols are SSD [Sailhan and Issarny, 2005], GSD [Chakraborty et al., 2002], AL-
LIA [Ratsimor et al., 2002] and SLP [Guttman et al., 1999].

2. The Request component is a User Agent enabling the transmission and processing of
request messages. Additionally, this component matches the requested service descriptions
with descriptions stored in the local cache.

3. The Reply component generates and sends service replies when the request component
detects that a service description matches.

43

Chapter 3. Ubiquitous Approaches

4. The Cache component stores information that protocols require for working. This infor-
mation includes key messages, service descriptions and routing tables.

5. The Policies component provides three functions: i) The retrieval of policies from XML
files, ii) the application of these policies to components connect to the Policies component
and, iii) the change of policies values according to user preferences and application needs.
The policies include caching preferences, advertisement preferences, directory preferences
and forwarding preferences.

6. The Network component provides different routing schemes such as unicast, multicast
and bordercast.

This architecture promotes component re-use and simplifies configuration and dynamic re-
configuration of multiple concurrent protocols.

Characterization in Terms of the Dimensions. This platform supports the usage of multiple
discovery protocols. However, it does not consider the flexibility in terms of interaction mecha-
nisms. The platform can be customized at deployment time but despite the use of OpenCOM, it
does not provide dynamic reconfiguration capabilities.

3.3.4 Service Discovery Solution Summary

The discussed solutions for service discovery provide two different mechanism for dealing with
the protocol heterogeneity: i) interoperability of protocols and ii) middleware adaptation accord-
ing to the current protocol configuration and protocol functionality reuse. Both of them provide
the flexibility in terms of discovery protocols for context based adaptation. However, the mon-
itoring of available protocols and reconfigurations according to them can become an expensive
task considering that the focus of the adaptation is the user application. Moreover, the develop-
ment of parsers and composers for the interoperability is a difficult task considering that some
protocols define also the underlying interaction mechanism and some information is lost in the
translation process.

3.4 Data-Oriented Architectures in Context-Mediation

The data-oriented paradigm promotes loose coupling between interacting entities by exposing
data as first class entities. This means that the communication between consumers and producers
focuses on the data exchange via messages. These messages are sent using an interoperable
protocol. The interfaces are defined by means of a data model, participant roles and metadata
describing the data structure and including QoS information. The interfaces hide the interaction
entities code. Furthermore, the data-oriented paradigm promotes the separation of data handling
and data processing for making the modification of applications easier.

A popular data-oriented paradigm is the REST architectural style, which we have already
discussed in Section 2.1.2. Because of its simplicity and the already mentioned advantages of
data-oriented approaches, REST represents an attractive alternative for the exchange of context
information in ubiquitous environments. However, in the state of art we do not find a lot of
works dealing with this issue by applying such architectural style. In [Christensen, 2009], for
example, the authors analyze the potential of combining Cloud Computing and RESTful Web
Services for the creation of a new generation of mobile applications that exploits the context in-
formation. Other REST related works exploit the paradigm for integrating mobile devices in
distributed systems. In particular, [Riva and Laitkorpi, 2009] describe a methodology for build-
ing mobile services based on REST. Authors in [Ulmer et al., 2009] propose the combination of
REST and WSDL for providing a distribute object model working with mobile devices. In
[Antila and Mantyjarvi, 2009] describe a resource-centric architecture for sharing information be-
tween mobile devices. Other usages of REST in literature include the exposition of databases

44

3.5. Limitations of the existing approaches

by means of RESTful based connectors [Marinos et al., 2010] and the modeling of widgets from
application interfaces as REST resources in order to enable the adaptation of these interfaces ac-
cording to the devices look and feel [Stirbu, 2010].

New Generation of Mobile Applications

As already stated, [Christensen, 2009] considers the potential of smartphones for building
context-aware applications. In particular, the author considers the possibility of a customer al-
ways connected thanks to the support of connection modes such as 3G and 802.11x. This always
connected capability open up for benefiting from architectural advantages of cloud computing.
Furthermore, the GPS combined with the different connection modes foster the development of
new kinds of applications such as Location Based Services (LBS) [LaMarca et al., 2005] and spatial
augmented reality (SAR) [Marsal, 2009]. Regarding the limited capabilities of the smartphones,
the cloud computing provides off-device storage, processing and queuing capabilities, and mech-
anisms to secure the integration of the device within the cloud environment. Finally, the RESTful
Web Services act as a bridge between the smartphones and the cloud environment. These ser-
vices are suitable for this integration because of their simplicity and easily consumption. The
RESTful Web Services are memory friendly and they can be processed by means of event-based
parsers. Moreover, the flexibility for encoding the body with different formats (binary, XML,
plain text, HTML) reduces the time, processor and memory resources required for processing the
REST requests and responses.

3.5 Limitations of the existing approaches

In the previous sections we gave an overview of the existing solutions for dealing with context-
awareness in ubiquitous environments. Now, in this section we provide an analysis of the main
limitations of these approaches. To do that, we summarize in Table 3.2 the discussed solution. In
this table, we consider the dimensions introduced in Section 3.2.

Observing Table 3.2, we deduce that one of the main limitations of the existing approaches
is the lack of flexibility in terms of the context information and independent communication mech-
anisms dimensions. In general, the proposed platforms support several kinds of protocols and
mechanisms for interaction and discovery. However, most of them only provide a determined
communication method and do not consider the possibility of adding new ways of doing it. This
restriction represents a problem in ubiquitous environments, where we find a plethora of com-
munication mechanisms used by the present entities. We also see that there is a lack of flexibility
regarding context representations. The satisfaction of this property is important because the re-
source variability of the different entities in the environment. Even platforms, such as ReMMoC
and GAIA Microserver, conceived for working in mobile devices do no offer multiple context
representations.

Other limitation associated with the existing proposals is the absence of consideration for
the quality of the context information (cf. Section 3.1). If the exchanged information does not
respect a minimum of requirements, the triggered adaptations based on such information will
lead to unexpected application behaviors. In terms of dependency definition and implementation
technologies, we observe that several proposals tend to impose RPC approaches and specific
development models. The problem with this kind of restrictions is that they make the integration
of new entities difficult. In particular, the integration of legacy systems can become an expensive
task. Furthermore, the usage of a particular implementation technology restricts the type of
devices that can be exploited for executing the context-aware applications.

Considering the adaptation capabilities, the static and dynamic adaptations are equally impor-
tant in ubiquitous environments. The possibility of reconfigurations at deployment time of ap-
plications and the underlying platforms are required because of the diversity of devices available
in the environment. In a similar way, the adaptation at runtime enables the usage of the context
information for improving applications and platforms behavior. Therefore, it is desirable to have

45

Chapter 3. Ubiquitous Approaches

dynamic and static adaptation at the application and middleware levels. However, in Table 3.2
we see that only GAIA and MobiPADS offer support for adaptation at both levels. The other ap-
proaches make available the information and then applications have the responsibility of using
the context information for reconfiguring themselves. This means that application developers
not only have to provide flexibility points in their applications but they also have to conceive an
additional layer exploiting the context information. Additionally, if the programming model or
the platform itself do not offer adaptation capabilities, the development of such context-aware
applications becomes a real challenge. Thus, the lack of support for adaptation represents an-
other limitation of existing approaches.

3.6 Summary

In this chapter we have discussed three kinds of ubiquitous approaches: context-aware mid-
dleware, solutions for service discovery and REST-based approaches. We have summarized the
principal functionalities and characteristics of the different approaches and then we have identi-
fied the existing limitations motivating our work. In particular we find that the lack of flexibility
related to communication and context information, the limited support for adaptation, the im-
position of RPC for dependency definition, the imposition of a single development technology
and the minor importance given to the QoC represent the principal problems associated with
the existing approaches. From these limitations we derive the following challenges that we need
to face in order to provide a middleware solution for ubiquitous environments:

1. How to deal with communication heterogeneity: The plethora of devices, services and applica-
tions available in ubiquitous environments promote the proliferation of different kinds of
interaction and discovery paradigms. A solution integrating context information and en-
abling application adaptation have to provide the flexibility for selecting the most suitable
mechanisms in different situations. This has to be done considering the hardware and soft-
ware variability of client and service providers. Therefore, flexibility is key in a middleware
solution dealing with this kind of heterogeneity.

2. How to deal with context heterogeneity: As already stated, in ubiquitous environments the
heterogeneity is the rule and not the exception. This heterogeneity also covers the context
information available in the environment. In particular properties that characterize the in-
formation such as the freshness and precision can be relevant for the application adaptation.
Therefore, a mechanism dealing with this issue have to be provided.

3. How to provide support for adaptation: The integration of context information is the first step
for enabling context-based adaptation. A solution dealing with such kind of adaptation has
to enable not only the reconfiguration of application but also of the platform itself.

In the next chapters we discuss others approaches that also deal with context-awareness is-
sues. However these approaches have the particularity of applying principles from the auto-
nomic computing for providing the adaptation of applications.

46

3.6. Summary

In
te

ra
ct

io
n

D
is

co
ve

ry
Su

pp
or

t f
or

M

ul
tip

le

R
ep

re
se

nt
at

io
ns

Q
oC

M
ob

ili
ty

Su

pp
or

t
D

ep
en

de
nc

y
D

efi
ni

tio
n

In
te

ra
ct

io
n

D
is

co
ve

ry
St

at
ic

D
yn

am
ic

Le
ve

l

IN
DI

SS
Co

m
po

ne
nt

s
De

pe
nd

in
g

on
 th

e
un

de
rla

yin
g

di
sc

ov
er

y
pr

ot
oc

ol

In
te

ro
pe

ra
bi

lity

be
tw

ee
n

pr
ot

oc
ol

s,

SL
P,

 U
Pn

P
!

!
N/

A
Ev

en
ts

!
"

"
!

M
id

dl
ew

ar
e

Re
M

M
oC

Co
m

po
ne

nt
s,

 C
om

po
ne

nt

Fr
am

ew
or

ks
 (C

Fs
),

O
pe

nC
O

M

CO
RB

A,
 S

O
AP

,
ev

en
t p

ub
lis

he
r a

nd

su
bs

cr
ib

er

SL
P,

 U
Pn

P
!

!
N/

A
W

SD
L

"
"

"
"

M
id

dl
ew

ar
e

A
m

ul
ti-

pr
ot

oc
ol

fra

m
ew

or
k

fo
r a

d-
ho

c
se

rv
ice

 d
isc

ov
er

y
Co

m
po

ne
nt

s,
 O

pe
nC

O
M

De
pe

nd
in

g
on

 th
e

un
de

rla
yin

g
di

sc
ov

er
y

pr
ot

oc
ol

SS
D,

 G
SD

, A
LL

IA
,

SL
P

!
!

N/
A

Co
m

po
ne

nt

In
te

rfa
ce

s
!

"
"

!
M

id
dl

ew
ar

e

G
AI

A
CO

RB
A,

 C
om

po
ne

nt
s

As
yn

ch
ro

no
us

 a
nd

sy

nc
hr

on
ou

s
co

m
m

un
. v

ia
 E

ve
nt

s
an

d
RP

C

Ev
en

ts
 (c

ha
nn

el
s,

pr

od
uc

er
s

an
d

co
ns

um
er

s)
!

!
"

Ch
an

ne
ls

!
!

"
"

Ap
pl

ica
tio

n,

M
id

dl
ew

ar
e

G
AI

A
M

icr
os

er
ve

r
J2

M
E,

 C
om

po
ne

nt
s

Bl
ue

to
ot

h,
 G

PR
S

J2
M

E
Pr

ox
y,

Ev
en

ts

(c
ha

nn
el

s,
 p

ro
du

ce
rs

an

d
co

ns
um

er
s)

!
!

N/
A

J2
M

E
Pr

ox
y/

Ch

an
ne

ls
!

!
!

"
Ap

pl
ica

tio
n

M
US

IC
 P

ee
r-t

o-
Pe

er
JX

TA
, J

XM
E

Pe
er

 C
om

m
un

ica
tio

n
Se

rv
ice

Di
sc

ov
er

y
Se

rv
ice

!
!

"
Pe

er
 G

ro
up

!
!

!
!

N/
A

Co
rte

x
Co

m
po

ne
nt

s,
 R

efl
ec

tio
n,

O

pe
nC

O
M

Ev
en

ts
, S

O
AP

SL
P,

 U
Pn

P
(s

en
tie

nt

ob
je

ct
s)

!
!

!
Se

nt
ie

nt

O
bj

ec
ts

!
"

"
"

M
id

dl
ew

ar
e

CA
RM

EN
Co

m
po

ne
nt

s,
 R

efl
ec

tio
n

Pr
ox

ie
s

(M
As

)
Di

sc
ov

er
y

Fa
cil

ity
!

!
!

Pr
ox

ie
s

(M
As

)
!

!
!

"
M

id
dl

ew
ar

e

Au
ra

Co
m

po
ne

nt
s,

 J
in

i
Co

nn
ec

to
rs

Jin
i

!
!

!
En

vir
on

m
en

t
M

an
ag

er
!

!
!

"
M

id
dl

ew
ar

e

CA
RI

SM
A

Re
fle

ct
io

n
St

ub
s,

 C
on

ne
ct

or
s

!
!

!
!

Pr
ofi

le
s

!
N/

A
!

"
M

id
dl

ew
ar

e

Co
ol

to
wn

Co
m

po
ne

nt
s

HT
TP

, U
RL

s
Di

sc
ov

er
y

M
od

ul
e

!
!

"
Di

re
ct

or
y

M
od

ul
e

!
"

"
!

M
id

dl
ew

ar
e

M
id

dl
eW

he
re

Co
m

po
ne

nt
s,

 C
O

RB
A,

G

AI
A

m
id

dl
ew

ar
e

Ad
ap

te
rs

!
!

"
!

Ad
ap

te
rs

"
N/

A
!

!
N/

A

M
ob

iP
AD

S
Re

fle
ct

io
n,

 C
om

po
ne

nt
s

Ch
an

ne
l S

er
vic

e
(T

CP
 c

on
ne

ct
io

n)
!

!
!

!
Ch

an
ne

l
Se

rv
ice

,
M

ob
ile

ts
!

N/
A

"
"

Ap
pl

ica
tio

n,

M
id

dl
ew

ar
e

SO
CA

M
O

nt
ol

og
ie

s,
 S

O
A

Ev
en

ts
SL

M
 s

er
vic

e
di

sc
ov

er
y

(fo
r c

on
te

xt

pr
ov

id
er

s)
!

!
!

Lo
ca

tio
n

Se
rv

ice
!

!
!

"
Ap

pl
ica

tio
n

RC
SM

O
bj

ec
ts

, C
om

po
ne

nt
s

R-
O

RB
R-

O
RB

!
!

!
Ch

an
ne

ls
(C

TC
s)

"
"

"
"

Ap
pl

ica
tio

n

La
rg

e
Sc

al
e

Pe
er

-to
-

Pe
er

 C
on

te
xt

Di

ss
em

in
at

io
n

M
id

dl
ew

ar
e

O
nt

ol
og

ie
s

Re
le

va
nc

e
ba

ck
pr

op
ag

at
io

n
al

go
rit

hm

Pe
er

-to
-P

ee
r b

as
ed

!
"

!
Co

nt
ex

t-b
as

ed

gr
ou

ps
!

!
!

!
N/

A

CA
PN

ET
Co

m
po

ne
nt

s,
 J

in
i

 E
ve

nt
s,

 C
ha

nn
el

s,

RP
C,

 T
CP

/U
DP

,
HT

TP
 M

ul
tic

as
t

SD
 C

om
po

ne
nt

 th
at

lo

ca
te

s
se

rv
ice

s
co

m
po

ne
nt

s
!

!
!

M
es

sa
gi

ng

Co
m

po
ne

nt
"

!
"

!
M

id
dl

ew
ar

e

Te
ch

no
lo

gy
 a

nd

Pa
ra

di
gm

s
ap

pl
ie

d

C
om

m
un

ic
at

io
n

M
ec

ha
ni

sm
s

A
da

pt
at

io
n

Service Discovery
Solutions Middleware Solutions for Context-Awareness

C
on

te
xt

 In
fo

rm
at

io
n

Lo
os

e
C

ou
pl

in
g

In
de

pe
nd

en
t

C
om

m
un

ic
at

io
n

M
ec

ha
ni

sm

M
id

dl
ew

ar
e

A
pp

ro
ac

h!

D
Im

en
si

on
!

Table 3.2: Different Ubiquitous Middleware
47

Chapter 3. Ubiquitous Approaches

48

Chapter 4
Autonomic Computing Approaches

Contents
4.1 Feedback Control Loops (FCLs) . 50
4.2 Relation Between the Autonomic Computing and the Context-Aware

Computing . 51
4.3 Autonomic Solutions . 52

4.3.1 JADE: A Middleware for Self-Management of Distributed Software
Environments . 52

4.3.2 Agent-based Middleware for Context-Aware Services 53
4.3.3 Framework for Autonomic Context-Aware Service Composition . . 53
4.3.4 Adaptation Platform for Autonomic Context-Aware Services 54
4.3.5 The ANS (Autonomic Network Services) Framework 54
4.3.6 MIddleware DemonstrAtor Server (MIDAS) Framework 55
4.3.7 AutoHome: an Autonomic Management Framework for Pervasive

Home Applications . 55
4.3.8 MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and

Service-Oriented Environments . 56
4.3.9 Rainbow . 56
4.3.10 Distributed Autonomous Component-Based ARchitectures

(DACAR) Solution . 57
4.4 Limitation of the Existing Approaches . 58
4.5 State-of-the-Art Synthesis . 58
4.6 Dissertation Challenges . 60
4.7 Summary . 60

Motivation

Nowadays the Information Technology (IT) Industry has to face the rapidly growing complexity
of operating, managing, and integrating computing systems [Ganek and Corbi, 2003]. In gen-
eral, these systems are heterogenous infrastructures composed of different kinds of applications,
components and tuning parameters. Consequently, the maintenance of such systems is a diffi-
cult process prone to errors, which requires skilled IT professionals. Therefore, the complexity
of systems has a double impact on the companies: i) the affectation of the business operation in
case of system failures and ii) the maintenance has a high operation cost. To deal with these is-
sues, the IT Industry introduces a new paradigm for developing software systems, the Autonomic
Computing [Ganek and Corbi, 2003].

49

Chapter 4. Autonomic Computing Approaches

The objective of the Autonomic Computing is the development of self-managing systems,
which are able to configure, heal, protect and optimize by themselves. The idea is inspired by the
properties of natural systems such as the autonomic nervous system [Kephart and Chess, 2003].
In particular, this system governs low-level functions, such as the body temperature and heart
rate, freeing the brain from these responsibilities. In a similar way, autonomic systems search
to reduce the work of system managers by automatizing, whenever possible, the maintenance
tasks. The idea behind this is to build systems that require a minimal human intervention to
work properly.

Chapter Organization

The goal of this chapter is to provide an overview of the main concepts of Autonomic Comput-
ing (cf. Section 4.1) employed throughout this dissertation, state the relation between this kind
of computing and context-awareness (cf. Section 4.2) and discuss some existing Autonomic Solu-
tions (cf. Sections 4.3 and 4.4). We also present a summary of the foundations of this dissertation
(cf. Section 4.5) and the challenges derived from the discussed approaches (cf. Section 4.6). In
Section 4.7 we finish with a summary of the different elements addressed during the chapter.

4.1 Feedback Control Loops (FCLs)

Autonomic systems are characterized by their ability to devise and apply counter-measures when
necessary, including the ability to detect adaptation situations. These self-management systems
can perform such activities based on situations they observe or sense in the IT environment
rather than requiring human intervention to initiate the task. In general, the following prop-
erties characterize the self-management systems [Hariri et al., 2006b, Kephart and Chess, 2003,
Menascé and Kephart, 2007]:

Self-configuration stipulates that the system shall be capable of adapting its behavior to the ex-
ecution context. For instance, it should be possible to add or remove some functionalities
(e.g., a business component providing a service) without a complete interruption of all the
services. Moreover, system parts that are not directly impacted by the changes should pro-
gressively adapt themselves to these changes;

Self-optimization states that the system should control and monitor the system resources it con-
sumes. The system should then detect a degradation of service and cater with the necessary
reconfigurations to improve its own performance and efficiency;

Self-healing establishes that the detection, analysis, prevention, and resolution of damages
should be managed by the system itself. The system should overcome hardware and soft-
ware failures;

Self-protecting aims at anticipating, detecting, identifying and protecting against threats. Sys-
tem automatically defends against malicious attacks or cascading failures. It uses early
warning to anticipate and prevent system-wide failures.

The four self properties enclose the main concerns associated with system maintenance. By
automatizing their achievement, the burden of system managers is considerably reduced. How-
ever, the building of fully autonomic systems remains a challenge. As it will presented in Sec-
tion 4.3, most of the existing solutions focus only in providing partially some of these properties.
In this dissertation, we contribute in the conception of this kind of applications by combining
Autonomic Computing concepts with resource-oriented approaches, SOA and CBSE principles.

50

4.2. Relation Between the Autonomic Computing and the Context-Aware Computing

MAPE-K Model

The properties present in self-management systems are reached by clearly identifying the dif-
ferent phases that compose the adaptation of applications, which is materialized as Feedback
Control Loops. These phases are stated in the MAPE-K model (cf. Figure 4.1). MAPE-K states
for Monitoring, Analysis, Planning, Execution and Knowledge. The first four names are the con-
trol loops phases. The last one represents the standard data shared among these phases, such
as symptoms and policies, which must be complete (i.e., including the whole aspects influencing
adaptation decisions), modifiable (i.e, following the application changes), and at a high-level of
abstraction (i.e, comprising only relevant information). The Monitoring phase encloses the mech-
anisms that collect, aggregate, filter and report details (such as metrics and topologies) retrieved
from a managed resource. In the Analysis phase the information retrieved in the previous one is
correlated in order to model complex adaptation situations. The Planning phase encloses the mech-
anisms that determine the actions for achieving the goals and objectives identified in the analysis.
The Planning uses adaptation policies information to guide its work. The Execution phase groups
the mechanisms that control the execution of an adaptation plan with considerations for dynamic
updates. The MAPE-K model also defines the Managed Resources as entities that exist in the run-
time environment of an IT system and that can be managed. These resources include the Exe-
cution Environment, Supporting Platform, and Application entities. All these managed resources
provide Sensors to introspect the entity states, and Effectors to reconfigure them dynamically.

 Monitoring

 Analysis Planning

 Execution

Execution Environment

Supporting Platform

adaptation
policyadaptation

situation
adaptation

plan

Application

EffectorsSensors

Autonomic
Manager

Managed Resources

Knowledge

Figure 4.1: Overview of the MAPE-K Autonomic Control Loop.

4.2 Relation Between the Autonomic Computing and the
Context-Aware Computing

As already said, the autonomic computing states the development of applications that have self-*
properties. These properties reduce the responsibilities of the system administrator, who just has
to specify high level policies indicating how the system can be adjusted at runtime. To achieve it,
this kind of computing clearly identifies the different tasks that compose the adaptation process
as well the data required in the different tasks. As in any process, the flow of information is vital
for reaching the adaptation goal.

For its part, the ubiquitous computing, and more specifically, the context-aware computing
proposes the development of applications that have the ability of reacting by themselves to the
environment changes. In this computing, context information is the key for the adaptation. The

51

Chapter 4. Autonomic Computing Approaches

rules that determine the changes according to this information can be expressed as high level
policies. These rules can be also considered as context information. In autonomic computing, the
adaptation actions are also inferred according to the current situation. Therefore, we can consider
that the two kinds of computing are complementary approaches [Klein et al., 2008].

In particular, context-aware applications can be conceived by following the feedback control
loop principles. The data exchanged in the different steps in the loop corresponds to the context
information collected from the environment. In each phase of the FCL, this information is pro-
cessed for producing higher level information that will be used in the next phase. The result of
the FCL is the execution of context-based adaptation of applications running in the environment
with a minimal human intervention. In the next section we present some approaches combining
context-awareness and principles from autonomic computing.

4.3 Autonomic Solutions

In this section we present some of the existing solutions dealing with the adaptation of applica-
tions by applying the autonomic computing principles. In order to identify the advantages and
limitations associated with these solutions, we use the same dimensions defined in Section 3.2:

• Technology and Paradigms Applied,

• Communication Mechanisms,

• Context Information,

• Loose Coupling,

• Independent Communication Mechanism,

• Adaptation.

4.3.1 JADE: A Middleware for Self-Management of Distributed Software En-
vironments

JADE [Boyer et al., 2005, Bouchenak et al., 2006, Depalma et al., 2008] is a middleware solution en-
abling the autonomous reconfiguration of distributed applications. In particular, the platform
combines the FRACTAL Component Model and Control Loops principles in order to enable the
software management by programs. JADE wraps legacy systems into FRACTAL components to
provide a management layer, which provides introspection and reconfiguration capabilities. Such
functionality is provided by a uniform interface for the managed resources. This means that the
control interface is the same for all the encapsulated software but the wrapper implementation is
specific to each legacy system. The specified functionality defined by the interface includes the
management of attributes, bindings and the system lifecycle.

The implementation of the autonomic behavior is materialized by means of feedback con-
trol loops. Autonomic Managers are introduced for the realization of the loops. JADE pro-
vides generic sensor (for event detection), actuator (for execution of reconfigurations) and
analysis/decision (that represents the reconfiguration algorithm) components for the build-
ing of Autonomic Managers. Specifically, the platform provides managers for self-optimization
and self-healing of J2EE based applications.

Characterization in Terms of the Dimensions. JADE control loops enables adaptation of J2EE
applications at runtime. The interaction between the different elements of the loop is done via
HTTP. The middleware solution does not deal with context processing and discovery issues.

52

4.3. Autonomic Solutions

4.3.2 Agent-based Middleware for Context-Aware Services

In [Soldatos et al., 2007] authors present a middleware solution that makes context-aware service
creation easier by enabling developers to focus on the service logic and not on the middleware
concerns. The platform provides reusable functionality for controlling sensors and actuators in
smart rooms, management of user access to services and modeling of contextual states. To do
this, [Soldatos et al., 2007] proposes an agent-based architecture with the following elements:

1. Core Agents: They allow communications between the distributed entities of the system as
well as the extensibility of the platform. Further, they are independent from the concrete en-
vironment where the platform is deployed. Core agents include the Device Desktop Agents,
Device Agents, Personal Agents and Agent Manager. The Device Desktop Agents implement
the user interface for service access. The Device Agents enable the communication between
the different devices and the framework. The Personal Agents permit interaction between
users and the Agent Manager, which provides support for incorporating new services in
the platform.

2. Basic Service Agents: Represent basic services that are tightly coupled with the smart rooms.
Basic Agents include agents for situation recognition (Situation Watching Agents) and control
of sensor and actuators (Smart Room Agents).

3. Ubiquitous Service Agents: Implement the non-intrusive service logic of various context-
aware services.

According to authors, this middleware solution provides typical autonomic features of agent-
based platforms such as persistence, cloning and migration of components to other hosts. Ad-
ditionally, based on JADE platform (cf. Section 4.3.1), the different agents in the platform are
extended with capabilities for querying the status of other agents. This characteristic is exploited
for downgrading and upgrading the agents functionality according to the availability of other
agents. The described platform also provides self-healing functionality, which is achieved by
means of agent migration.

Characterization in Terms of the Dimensions. The agent-based architecture of the middleware
solution enable its adaptation at deployment and runtime. To deal with discovery issues, JADE
introduces a Knowledge Base Server that has the role of service registry. The NIST Smartflow
middleware [Fillinger et al., 2006] is exploited for interactions. Even if the middleware solution
pretends to make the development of context-aware services easier, it does not consider issues
associated with the context such the QoC properties and its representation.

4.3.3 Framework for Autonomic Context-Aware Service Composition

[Bottaro et al., 2007] propose a framework for building home services. The proposal benefits from
service-oriented computing and autonomic managers concepts for enabling context-aware ser-
vice compositions. The principal elements of the framework include a Service-Oriented
runtime, a Context Service processing information from context sources and Autonomic
Handlers attached to the business services. The employed Service-Oriented runtime is
IPOJO [Cervantes and Hall, 2004], an OSGI-based service-oriented component framework. On
the other hand, the Autonomic Handlers monitor the execution context in order to modify
the bindings or life cycle of the application components. The handlers are configured at runtime
by using high-level policies.

In order to identify the required reconfiguration actions and guarantee service continuity, an
autonomic handler confronts the requirements specified by a binding policy to the list of avail-
able services. If one of the requirements of the policy is not respected, the handler invalids the
component (i.e., the handler un-publishes the service and announces its departure) and unbinds
the used providers. When there is more than one service satisfying the requirements, the handler
ranks and selects the best one according to a ranking policy.

53

Chapter 4. Autonomic Computing Approaches

Characterization in Terms of the Dimensions. The described framework combines CBSE and
SOA by means of IPOJO. The runtime adaptation capabilities of the platform are limited to the
application level. The Context Service of the approach excludes the QoC properties. Regard-
ing the communication aspects, the autonomic handlers enable the usage of different discovery
mechanisms. However, information about the interaction mechanisms is not specified.

4.3.4 Adaptation Platform for Autonomic Context-Aware Services

[Cremene et al., 2008] proposes a solution for dynamically discovering the context structure and
the adaptation strategies. To do this, authors defines general Application-Context (A-C) descrip-
tions that are specialized for producing Specific A-C descriptions that can be reconfigured by
means of strategies discovered at runtime. The different components of the applications must
be described in terms of their structure, syntax, semantic and behavior. The solution defines an
architecture based on Feedback Control Loops composed by the following elements:

1. Adapted part: Represents the application to be adapted. This application is executed on a
reflective platform that provides introspection and reconfiguration functionalities.

2. Observer: This module extracts information about the context and the services by means
of dedicated components called observers. To do this, the module has the Context Discovery
Manager and the A-C Description Manager submodules. The former decides the aspects to be
considered and searches for observer components. The latter creates and updates the A-C
descriptions at runtime.

3. Controller: Is divided in two modules. An Adequacy Verifier, which checks the suitability
between the application and the context, and a Strategy Search Engine for searching the
correct strategy when the application does not fit its context.

4. Component repository: Stores reusable components including observers. The Controller com-
ponent uses these components to adapt applications when required.

Characterization in Terms of the Dimensions. The presented middleware solution, based on
the Corba Component Model [Group, 2006b] (CCM), supports dynamic adaptation of applica-
tions. Considering the context aspect, the specified context processing does not include the QoC
properties. The found description about the approach does not provide information about the
flexibility in terms of communications

4.3.5 The ANS (Autonomic Network Services) Framework

ANS [Huebscher et al., 2007, Huebscher and McCann, 2005] is a framework for the monitoring of
medical patients at home. The framework applies autonomic principles to adapt itself to differ-
ent activities carried out by the user, which depends on temporal and locational aspects. ANS
is executed on sensor nodes spread in home. Each node can have many functions in order to
increase reliability. These functions are materialized as components implemented with the most
suitable language according to the task. On the other hand, the logic determining the function-
ality of reconfiguration is implemented by means of Tesserae, a lightweight language that makes
part of the framework.

In ANS, the context information and its quality enable autonomic intelligence throughout
the architecture. In particular, the autonomic rules defining the required configurations (i.e., the
binding/unbinding of context services) exploit QoC information for selecting the most suitable
context services for applications. The framework identifies precision, probability of correction, reso-
lution, up-to-dateness and refresh rate (cf. Section 3.1) as common QoC attributes for different kinds
of context information. These attributes have to be provided by the context services and updated
regularly because they can eventually change.

54

4.3. Autonomic Solutions

Considering the autonomic properties (cf. Section 4.1), the platform supports self-healing and
self-optimization in terms of context providers. The self-healing is guaranteed because the frame-
work can identify the failures of context services and replace them. The self-optimization is given
by exploiting the QoC of the available context providers. The most suitable context provider is
selected using utility functions. Each application type has its own utility function.

Characterization in Terms of the Dimensions. The ANS component based architecture enables
its dynamic and static adaptation. The keystone of the autonomic intelligence in the approach is
the QoC properties. ANS also supports discovery in order to monitoring the context providers.
For interactions, low level protocols are used. In both aspects, interactions and discovery, ANS
permits the addition of new protocols.

4.3.6 MIddleware DemonstrAtor Server (MIDAS) Framework

MIDAS [Mohyeldin et al., 2005] is a service-based framework for building context-aware appli-
cations that adapt their behavior according to dynamic radio resource restrictions like available
bandwidth and link interruptions. In MIDAS, the architecture is self-descripting, i.e., the system
model is part of the system. The framework identifies four basic service types: i) Sensors, for
data retrieval; ii) Interpreters for data processing; iii) Actuators for deploying instructions; and iv)
Context elements representing distributed buffers decoupling the sensors and interpreters. This
context elements buffer information about the system states, the system model itself and the sys-
tem environment. The framework also defines a model activator service that makes the adaptation
decisions within the system model. As the activator is also part of the system model, it can be
affected by such adaptation decisions.

Characterization in Terms of the Dimensions. The MIDAS framework provides support for
mobility and flexibility in terms of interactions. However, the framework description does not
provide information about the discovery capabilities as well as the interaction protocols. In terms
of adaptation, the framework enables static and dynamic adaptations at the application and mid-
dleware levels.

4.3.7 AutoHome: an Autonomic Management Framework for Pervasive
Home Applications

AutoHome [Bourcier et al., 2010] is a service-oriented framework for building autonomic home
applications. The goal of the platform is to separate the implementation of autonomic functions
from the application itself. To to this, AutoHome framework proposes an architecture composed
by the following elements:

1. A Middleware for Autonomic Service-Oriented Applications: This element contains a context
facility and an Autonomic Service-Oriented Component Runtime. This component runtime
proposes generic touchpoints for monitoring and control of pervasive applications. These
touchpoints represent the interface between autonomic managers and applications. In
other words, they allow the dynamic reconfiguration meaning the replacement of services
at runtime. AutoHome identifies touchpoints for monitoring and reconfiguration activi-
ties. The touchpoints for monitoring include property value, method invocation, and con-
tainer’s state. The touchpoints associated with reconfiguration activities are the property
value modification, method invocation and container’s state reconfiguration.

2. Service-Oriented Applications: Are the applications built on the top of the framework, which
will be managed in an autonomic way.

3. Autonomic Managers: Organized in a hierarchy, the framework offers Gateway Managers,
Application Managers and Service Managers as autonomic managers. The

55

Chapter 4. Autonomic Computing Approaches

Gateway Managers manage the gateway performance and solve conflicts between ap-
plications. The Application Managers controls the life cycle of applications, i.e., they
can start, stop, add or withdraw applications. Finally, the Service Managers deals with
the instance configurations and their behavior adaptation.

Characterization in Terms of the Dimensions. The AutoHome framework is an extension of
iPOJO [Escoffier et al., 2007], a service-oriented component runtime built on the top of OSGi. The
framework offers the dynamic reconfiguration of the service-oriented applications by allowing
service replacement. At the middleware level, static adaptations are supported via the config-
urations of the autonomic manager hierarchies. The interaction and discovery mechanisms of
services are the responsibility of the iPOJO component containers and they can be modified at
runtime. Regarding the context management, even if the framework provides a context facility,
it does not consider the QoC properties.

4.3.8 MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and
Service-Oriented Environments

MUSIC [Rouvoy et al., 2009] is a component-based planing framework for context-aware adap-
tations, that extends the functionalities offered by the MADAM platform [Floch et al., 2006,
Hallsteinsen et al., 2004]. MUSIC models applications as component frameworks, which define
the functionalities that can be modified at runtime. The selection of a new configuration in re-
sponse to context changes is done by using an utility function that determines the QoS (Quality
of Service) for the alternative configurations. To do this, applications have a QoS-aware model
that focuses on the QoS properties of the different components that make part of them. The val-
ues of these properties can be static (i.e., they are not modified according to the current status
of the service) or dynamic (i.e., they can change over the time). The existence of dynamic QoS
properties makes the negotiation of the Service Level Agreement [Dan et al., 2003] (SLA) neces-
sary. The MUSIC platform provides a negotiation protocol that is inspired by the WS-Agreement
specification [Andrieux et al., 2005].

The architecture of the platform includes the following components: i) the Context
Manager that monitors context changes, ii) the Adaptation Controller which coordinates
the adaptation process, iii) the Adaptation Reasoner supporting the execution of planning
heuristics, iv) Plan repository that keeps plans associated with the different interfaces, v)
the QoS Manager that provides the QoS values required for evaluating the utility of each con-
figuration, vi) the Configuration Executor handling the reconfiguration process, vii) the
Service Discovery that advertises and discovers services by using different discovery proto-
cols, and viii) the Remoting Service creating the bindings between service clients and service
providers.

Characterization in Terms of the Dimensions. The MUSIC platform exploits OSGi, which
makes the provisioning of adaptation at the middleware and application level easier. Flexibility
in terms of discovery protocols is done by means of the Service Discovery component. The
support for mobility is guaranteed thanks to the the SLA monitoring executed by the platform
and the associated service replacement. The interactions employ HTTP as underlaying protocol.
In terms of context processing, the platform excludes the QoC properties management.

4.3.9 Rainbow

Rainbow [Garlan et al., 2004] is a generic framework for supporting self-adaptation of software
systems. The framework defines a control loop to monitor properties of systems at runtime,
detect constrains violation and performs global or module level adaptations when required. The
loop is divided in two parts: i) the Adaptation Infrastructure that reifies the reusable functionality

56

4.3. Autonomic Solutions

of the framework, and ii) the System-Specific Adaptation Knowledge that is specific to each system.
The Adaptation Infrastructure is composed by the following layers:

• The System-layer Infrastructure that represents the system access point. This layer provides a
monitoring mechanism, implemented as probes, that measures properties of different sys-
tems. The measurement information is published and consumed by probes. Additionally,
the layer provides a resource discovery mechanism and an effector mechanism for executing
the system modifications.

• The Architecture-Layer Infrastructure aggregates the information from the probes and up-
dates the system architectural model via a model manager. A constrain evaluator checks for
restrictions violation and triggers adaptation by using an adaptation engine that decides the
required actions to execute.

• The Translation Infrastructure allows the mapping of information between the system and
the model in both senses. This layer has a translator component sharing mappings that are
stored in a translation repository.

In order to use the functionalities from the Adaptation Infrastructure, systems have to specify
information such as the operation model (including component types and properties), behav-
ioral constrains, and adaptation strategies. This information is the System-Specific Adaptation
Knowledge that composes the Rainbow control loops.

Characterization in Terms of the Dimensions. Rainbow is built on the top of the Acme archi-
tectural style toolset [Garlan et al., 2000]. The interactions employ XML messages and are done
via Java RMI. The provided discovery facility is based on resource types and is limited to re-
sources controlled by the platform. Regarding the adaptation, the Rainbow control loop enables
dynamic adaptation at the application level. The middleware can be customized by adding the
required information for adaptation of the concrete systems. In the adaptation process, context
information is not considered.

4.3.10 Distributed Autonomous Component-Based ARchitectures (DACAR)
Solution

DACAR [Dubus and Merle, 2006] is a solution, based on OpenCCM [Briclet et al., 2004], for the
development of control loops adapting CORBA component-based applications. The solution
defines a metamodel that combines OMG Deployment and Configuration (D&C) specifica-
tion [Group, 2006c] and Event-Condition-Action (ECA) rules. The metamodel has a platform
part, a knowledge part and third part describing high level autonomic policies. The platform part is
encapsulated in a software component providing operations for monitoring and instantiation of
applications. The implementation of such component depends on the platform selected to exe-
cute the applications. The knowledge part is modeled by using OMG D&C descriptors, which
are reified as Java objects that represents the executable model of running applications. The rules
are implemented as lightweight components by exploiting the Fractal Component Model.

For modeling the ECA rules, DACAR considers two kinds of events: endogenous events and
exogenous events. The endogenous events are associated with the knowledge part of the control
loop. The knowledge part is represented as model that produces events when concepts or values
are modified. The exogenous events comes from the execution platform.

DACAR defines three kinds of rules:

• Monitoring Rules, which are triggered by exogenous events. These rules act on the knowl-
edge part of the control loop when changes are detected in the running platform. Monitor-
ing Rules are generic, meaning that they can be used in different kinds of applications.

57

Chapter 4. Autonomic Computing Approaches

• Deployment Rules that are executed when endogenous events are generated. They update
the execution platform when the knowledge part is modified. As Monitoring Rules, De-
ployment Rules are also generic.

• Architectural Rules triggered by endogenous events. They perform actions on the knowl-
edge part modifying it according to the properties that this knowledge part has to fulfill.

Characterization in Terms of the Dimensions. DACAR provides dynamic adaptation at the ap-
plication level by defining ECA rules. The adaption at the middleware level is not considered. All
the communication issues are delegated to the execution platform—i.e., OpenCMM. Therefore,
the flexibility in terms of interactions and discovery depends on the concrete implementation of
the approach.

4.4 Limitation of the Existing Approaches

In this section we discuss the main drawbacks associated with the approaches that we have pre-
sented in the previous sections. Table 4.1 summarizes the characteristics of such approaches.

Regarding the adaptation capabilities, we observe that thanks to the autonomic principles the
different approaches provide dynamic configuration at the platform or application level. How-
ever, as discussed before, the reconfigurations at runtime in both levels are key in ubiquitous
environments in order to deal not only with the heterogeneity in terms of communications but
also for improving application behavior benefiting from the context information. Therefore, there
is a lack of flexibility in terms of where the adaptation is supported at runtime.

Other important issue with the autonomic approaches is the low priority given to the infor-
mation integration. Although the provision of autonomic adaptation is the focus of the described
approaches, the information flow is a keystone for this adaptation. Therefore, considering the dif-
ferent communication paradigms as well as hardware executing the applications, it is necessary
to provide a solution dealing with interaction and discovery concerns. In particular, the solu-
tion supporting the context-based adaptation should be aware of limitations of devices running
the adaptive applications. These limitations do not only affect the non-functional aspects of the
adaptation but also the decision making of the Feedback Control Loops.

Associated with the issue mentioned in the previous paragraph, we find the lack of relevance
given to context information. Dimensions such as the QoC and multiple representation are not
considered. Only the ANS framework exploits Quality of Context in order to trigger reconfig-
uration processes. This omission is not suitable because the adaptation is based on the context
information. Therefore, if the correct information can be not retrieved, the resulting adaptation
can not reflect the expected behavior according to the current environment state.

Finally, although some of the approaches provide self-configuration
(cf. [Huebscher et al., 2007, Bottaro et al., 2007]) in a certain degree, they assume a controlled
environment where the different Feedback Control Loop’s participants are always present
or at least one replacement. This property is not suitable when the adaptation logic is not
necessarily centralized in one entity. If the different responsibilities of the adaptation process
are spread between entities (e.g., in the concrete case of mobile devices running the adaptive
applications), interaction problems should be not a problem for executing the adaptation. This
autonomy should also make part of the self-configuration property of the solution. Thus, a high
dependency level between the entities that compose the Feedback Control Loop represents a
key issue in the presented autonomic approaches.

4.5 State-of-the-Art Synthesis

In the state of the art of this dissertation, we have presented the principal concepts, technolo-
gies, and elements that we apply in our approach. In particular, we focused our discussion on

58

4.5. State-of-the-Art Synthesis

In
te

ra
ct

io
n

D
is

co
ve

ry
Su

pp
or

t f
or

 M
ul

tip
le

R

ep
re

se
nt

at
io

ns
Q

oC
M

ob
ili

ty

Su
pp

or
t

D
ep

en
de

nc
y

D
efi

ni
tio

n
In

te
ra

ct
io

n
D

is
co

ve
ry

St
at

ic
D

yn
am

ic
Le

ve
l

Ag
en

t-b
as

ed

M
id

dl
ew

ar
e

fo
r

Co
nt

ex
t-A

wa
re

Se

rv
ice

s
Ag

en
ts

, C
om

po
ne

nt
s

NI
ST

 S
m

ar
tfl

ow

m
id

dl
ew

ar
e

(N
SF

S)

Kn
ow

le
dg

e
Ba

se

Se
rv

er
 fo

r t
he

re

gi
st

ry
/u

nr
eg

ist
ry

 o
f

se
rv

ice
s

!
!

!
Co

m
po

ne
nt

In

te
rfa

ce
s

!
!

"
"

M
id

dl
ew

ar
e

AN
S

Co
m

po
ne

nt
s,

 s
en

so
rs

,
te

ss
er

ae
 la

ng
ua

ge
, u

tili
ty

fu

nc
tio

ns
Lo

w
le

ve
l p

ro
to

co
ls

Ap
pl

ie
d

in
 th

e
m

on
ito

rin
g

of
 c

on
te

xt

pr
ov

id
er

s
!

"
!

Q
oC

"
"

"
"

M
id

dl
ew

ar
e

Ad
ap

ta
tio

n
Pl

at
fo

rm

fo
r A

ut
on

om
ic

Co
nt

ex
t-A

wa
re

Se

rv
ice

s
G

ra
ph

s,
 C

CM
, S

O
A

N/
S

N/
S

!
!

N/
S

Co
m

po
ne

nt

In
te

rfa
ce

s
N/

S
N/

S
!

"
Ap

pl
ica

tio
n,

M

id
dl

ew
ar

e

Fr
am

ew
or

k
fo

r
Au

to
no

m
ic

Co
nt

ex
t-

Aw
ar

e
Se

rv
ice

Co

m
po

sit
io

n

Se
rv

ice
 C

om
po

ne
nt

 M
od

el
,

SO
A,

 iP
O

JO
, P

ol
ici

es
N/

S
Se

rv
ice

 a
dv

er
tis

em
en

t
wh

en
 it

 is
 v

al
id

!
!

!
Co

m
po

ne
nt

In

te
rfa

ce
s

N/
S

"
!

"
Ap

pl
ica

tio
n

JA
DE

J2
EE

, F
ra

ct
al

HT
TP

N/
A

N/
A

N/
A

N/
A

N/
A

!
N/

A
"

"
Ap

pl
ica

tio
n

M
ID

AS
Co

m
po

ne
nt

s
N/

S
N/

S
!

!
"

Pr
ox

ie
s

(C
on

te
xt

el

em
en

ts
)

"
N/

S
"

"
Ap

pl
ica

tio
n,

M

id
dl

ew
ar

e

Au
to

Ho
m

e
iP

O
JO

 (C
om

po
ne

nt
s

an
d

SO
A)

Co
m

po
ne

nt
 C

on
ta

in
er

Co
m

po
ne

nt
 C

on
ta

in
er

!
!

!
Cl

ie
nt

 a
nd

Se

rv
er

In

te
rfa

ce
s

"
"

"
"

Ap
pl

ica
tio

n,

M
id

dl
ew

ar
e

M
US

IC
O

SG
i,

SO
A,

 W
S-

Ag
re

em
en

t,
ut

ilit
y

fu
nc

tio
ns

HT
TP

Se
rv

ice
 D

isc
ov

er
y

Co
m

po
ne

nt
!

!
"

Co
m

po
ne

nt

In
te

rfa
ce

s,

Se
rv

ice

De
sc

rip
tio

ns
!

"
"

"
Ap

pl
ica

tio
n,

M

id
dl

ew
ar

e

Ra
in

bo
w

Co
m

po
ne

nt
s,

 A
cm

e,
 R

M
I,

XM
L

XM
L

m
es

sa
ge

s
ov

er

RM
I

Re
so

ur
ce

 D
isc

ov
er

y
M

ec
ha

ni
sm

N/
A

N/
A

!
Sy

st
em

-L
ay

er

In
fra

st
ru

ct
ur

e
!

!
"

"
Ap

pl
ica

tio
n

(d
yn

am
ic)

,
M

id
dl

ew
ar

e
(s

ta
tic

)

DA
CA

R
O

M
G

 D
&C

, E
CA

 ru
le

s,

O
pe

nC
CM

, F
ra

ct
al

Pr
ov

id
ed

 b
y

O
pe

nC
CM

CO
RB

A
Tr

ad
in

g
Se

rv
ice

N/
A

N/
A

!
Co

m
po

ne
nt

In

te
rfa

ce
s

!
!

!
"

Ap
pl

ica
tio

n

A
da

pt
at

io
n

C
om

m
un

ic
at

io
n

M
ec

ha
ni

sm

Te
ch

no
lo

gy
 a

nd

Pa
ra

di
gm

s
ap

pl
ie

d

C
on

te
xt

 In
fo

rm
at

io
n

Lo
os

e
C

ou
pl

in
g

In
de

pe
nd

en
t

C
om

m
un

ic
at

io
n

M
ec

ha
ni

sm
M

id
dl

ew
ar

e
A

pp
ro

ac
h!

D
Im

en
si

on
!

Table 4.1: Different Autonomic Approaches

59

Chapter 4. Autonomic Computing Approaches

paradigms for the construction of SOA based applications (cf. chapter 2), ubiquitous computing
(cf. chapter 3) and autonomic computing.

In the SOA part we have introduced some mechanisms for service API conception and the
structuring of service-oriented applications. We have chosen the REST architectural style and
the SCA component model as pillars to define an elegant and suitable approach for integration
in ubiquitous environments. In the context of ubiquitous computing we have defined key el-
ements in our approach such as the QoC information and discussed some existing approaches
for context integration as well as for service discovery. Regarding the autonomic computing,
we have defined Feedback Control Loop principles that we will exploit for enabling the adapta-
tion of applications. The reconfiguration capabilities of our approach are based on the reflection
capabilities of the FraSCAti platform, which supports execution of SCA applications.

4.6 Dissertation Challenges

Considering the approaches and concepts discussed in this chapter, in this section we include
and complement the challenges defined in chapter 3. These challenges are presented below:

1. How to deal with communication heterogeneity: The plethora of devices, services and appli-
cations available in ubiquitous environments promote the proliferation of different kinds
of interaction and discovery paradigms. A solution integrating context information and
enabling application adaptation has to provide the flexibility for selecting the most suit-
able mechanisms in different situations. This has to be done considering the hardware and
software variability of clients and service providers. Therefore, flexibility is vital in a mid-
dleware solution dealing with this kind of heterogeneity.

2. How to deal with context heterogeneity: As already stated, in ubiquitous environments the
context information is a key for the adaptation of applications. However, this information
is affected by the heterogeneity that becomes the rule and not the exception in this kind
of environments. In particular, the context provider can make the information available
in different ways and the context can be characterized by different properties such as the
freshness and precision (maybe relevant for the adaptation of applications). Therefore, the
approaches dealing with context-based adaptation should consider the relevance of context
and focus on it in order to provide a suitable result.

3. How to provide support for adaptation: The integration of context information is the first step
for enabling context-based adaptation. A solution dealing with such kind of adaptation has
to enable not only the reconfiguration of application but also of the platform itself. In a sim-
ilar way, the solution should consider that the changing nature of ubiquitous environments
makes the distribution of the adaptation concerns necessary. This means that the different
adaptation responsibilities identified by the autonomic computing, i.e., context gathering
and processing, the determination of required reconfigurations and the execution of the
adaptation itself, can be spread between different entities. With this distribution, we need
to face the different kinds of heterogeneity and the mobility already mentioned. Therefore,
a global approach allowing adaptation of context-aware applications and considering these
issues is required.

4.7 Summary

One of the objectives of this chapter was to present some approaches dealing with context-based
adaptation by applying principles from the autonomic computing. We have also discussed some
issues associated with these approaches such as the lack of flexibility and, the low priority given
to the integration and context information. Other objective of this chapter was to show that

60

4.7. Summary

context-aware computing can benefit from autonomic computing for the conception of context-
aware applications. On the other hand, we have summarized the three chapters of the state of
the art in order to illustrate how they will be used in our proposal. Finally, we have presented
again the challenges associated with adaptation and heterogeneity in terms of communications
and information that we need to tackle for building context-aware applications. In the following
chapters we introduce our proposal in order to face these different challenges.

61

Chapter 4. Autonomic Computing Approaches

62

Part II

Contribution

63

Chapter 5
Enabling Context Mediation In
Ubiquitous Environments

Contents
5.1 Properties for Context Mediation . 67
5.2 SPACES Overview . 70
5.3 Modeling Context as Resources: The SPACES Metamodel 71
5.4 SPACES Fundamentals . 72
5.5 Supporting Spontaneous Communications in SPACES 76
5.6 SPACES Connectors Detailled Architecture 77
5.7 Integrating SPACES Connectors into SCA 79

5.7.1 Information Exchange between SCA Services: The case of the
Resource-Oriented Bindings . 80

5.7.2 Bringing Service Discovery in SCA: The case of Ubiquitous Bindings 81
5.8 Summary . 86

In order to present the contribution of this dissertation, we divide it in two parts: i) the ap-
proach enabling the integration of context information and, ii) the approach for context-based
adaptation in ubiquitous environments. This chapter focuses on the first part of contribution.
The second one will be addressed in Chapter 6.

Motivation

In ubiquitous environments, the development of context-aware applications, which are adapted
according to the current environment conditions, requires to consider several issues in terms of
heterogeneity, mobility and distribution. The developer of this kind of applications should focus
only in providing the modularity and flexibility points required for adapting the applications as
well as in the business logic. However, this is not always possible. In particular, considering
the challenges described in Section 4.6, the context-aware application developers need to face the
following issues:

1. Heterogeneity of Services and Context Providers: The available services in ubiquitous
environments can be conceived using different architectural styles and developed with dif-
ferent technologies. In a similar way, they are running on several kinds of computational
devices. This freedom becomes a problem when we need to integrate different kinds of
service providers in order to enable context-based adaptation. In particular, this hetero-
geneity makes the interoperability difficult, and requires that the applied implementation

65

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

technologies be transparent as possible. However, it is not always the case: depending on
the selected architectural style, the consumers and providers can be more or less coupled
and more or less aware of how each one is implemented. Furthermore, although a com-
mon model for interaction is always required, it is not always the most suitable to make the
development and evolution of consumers and providers easier.

2. Heterogeneity of Protocols: The heterogeneity in terms of services is also due to the lack of
standard protocols for locating services and interacting with them. In general, each service
provider selects the most convenient communication mechanisms for its context. Therefore,
when a client can only communicate via certain protocols, its service access is limited. This
means that some context information can be missed in the adaptation of context-aware
applications, and can result in an unexpected behavior.

3. Mobility of Service Consumers, Providers and Context-Aware Applications: The pro-
liferation of smartphones makes ubiquitous environments highly changing. Thanks to the
presence of these devices, service consumers, providers and context-aware applications can
join and leave the environment at anytime. Hence, smartphones increase the available re-
sources that can be (or must be) used in the adaptation of applications. However, if this
mobility is not managed at all, the dynamic nature of ubiquitous environments is wasted
and the developed applications are not completely context-aware.

These issues are mainly associated with the integration of context information in the adapta-
tion process. For this reason, before enabling adaptation we need to deal with such issues.

Contributions of the Chapter

In this chapter, we focus on the description of our contribution, which enables transparent inte-
gration of heterogenous context providers and consumers. To do this and regarding the hetero-
geneity in terms of protocols, we define a generic and simple approach based on software con-
nectors, standards and resource-oriented principles [Romero et al., 2010c, Romero et al., 2010a,
Romero et al., 2010d]. Software connectors provide the elements for isolating communication
concerns from context processing. As stated in the introductory chapter, the usage of standards
supports reuse and portability of the application in different situations. Finally, the resource-
oriented principles foster simplicity by focusing on the exchange data, i.e., context information.

Our approach provides versatility in terms of communication mechanisms and supports the
advertisement of context information as resources to deal with mobility. In particular, we pro-
pose a mechanism for accessing context information on demand. This information is advertised
using QoC properties [Buchholz et al., 2003] that context consumers use to select the most suitable
provider according to their requirements [Romero et al., 2010b]. We also make the concretization
of the approach by incorporating it into the SCA component model. As we will present in Chap-
ter 6, we benefit from the combination of SCA and our approach for building ubiquitous feedback
control loops, which adapt context-aware applications. In this way, we summarize the contribu-
tions discussed in this chapter as follows:

1. Metamodel Supporting the Notion of Context as a Resource: The integration of context
information requires the consideration of the heterogeneity and mobility issues already
mentioned. In particular, we need to identify the different elements and concepts that will
help us in the conception of our approach. Concepts such as context providers, context
consumer, protocols and their relationships have to be considered. Therefore, regarding
the relevance of context information in the adaptation of applications, we model this infor-
mation as resources that can be provided and accessed by different kinds of devices. By
using the notion of context as a resource, we are able to provide a simple but still elegant
and complete solution for the integration of context information. Therefore, the metamodel
represents the keystone of our proposal.

66

5.1. Properties for Context Mediation

2. Generic Connectors Enabling the Integration of Context Providers and Consumers: Us-
ing the context as a resource metamodel, we introduce the notion of ubiquitous connectors,
which encapsulate the integration responsibilities. These connectors have the particular-
ity of employing standards and simple approaches for integrating context providers and
consumers. In particular, we exploit REST principles and well defined protocols in their
conception.

3. Architecture for Interaction and Discovery of Context Resources: By leveraging on the
ubiquitous connectors, we define a generic and extensible architecture that includes and
modularizes the different elements from the metamodel. This architecture is specialized by
extending the SCA component model with the required functionality for supporting simple
exchange of context information.

Chapter Organization

Considering the previous contributions, the rest of this chapter is organized as follows. We start
by presenting the properties that our approach has to respect (cf. Section 5.1) before giving an
overview about this approach (cf. Section 5.2). We continue with the keystone of the approach—
i.e., the metamodel that we use to support the notion of Context as a Resource (cf. Section 5.3). Then,
we define the software connectors for dealing with the issues mentioned before (cf. Section 5.4),
which bring support for QoC-based discovery (cf. Section 5.5). After that, we introduce the archi-
tecture associated with these connectors (cf. Section 5.6) as well as its incorporation into the SCA
for supporting the context changes (cf. Section 5.7). Finally, we summarize the contributions of
the Chapter (cf. Section 5.8).

5.1 Properties for Context Mediation

Before discussing our approach, we describe what we expect from a solution dealing with the
exchange of context information. Therefore, regarding the heterogeneity and dynamism of the
different entities that interact in the context-based adaptation, we identify the properties that our
solution exhibits:

1. Independent representation of context information: The heterogeneity of the interacting entities
requires the information exchange via different formats. However, the use of a specific
representation should not impact producers implementation;

2. Independent communication mechanisms: The underlying protocols should be transparent for
consumers as well as for producers;

3. Loose-coupling between context producers and consumers: Because of the dynamicity of ubiq-
uitous environments, the producers should be able of interacting with different consumers
and vice versa. This means that the hard-wired associations should be avoided. Further-
more, because context managers and context-aware applications focus on the exchange of
context information, the association should be at the data level and not at the interfaces
used to share this information. In fact, the interaction mechanisms should be selected ac-
cording to resource constraints of computational entities;

4. Flexibility and Extensibility: This property is required in order to provide the previous ones.
The heterogeneity in terms of technology and communication requires an adaptive solution
allowing the inclusion of new context representations, communication protocols as well as
the possibility of its customization. Figure 5.1 summarizes the goal, challenges (cf. Sec-
tion 4.6) and properties searched in our solution.

Our approach satisfies these principles by combining existing standards and technologies.
In particular, respecting the goals defined in Section 1.2, we apply CBSE and SOA principles as

67

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

Si
m

pl
ic

ity
 a

nd
 F

le
xi

bi
lit

y

Independent
Context

Representation

Independent
Communication

Mechanisms

Low Coupling

Enabling
Context-based

Adaptation
Providing

Means to
deal with

Devices

Heterogeneity

Technologies

Protocols

Mobility

Providers

Consumers

Adaptation Logic

Distributed

Figure 5.1: Properties Searched in the SPACES Conception

well as a resource-oriented approach. The combination of these paradigms allows us to provide
a clear concern modularization, which is vital for providing a flexible and extensible solution.
Regarding the existing middleware solutions (cf. Sections 3.2 and 4.3), we see that they precisely
lack this flexibility.

On the other hand, several solutions provide support for the principal functionalities in
context-awareness—i.e., discovery, interaction and some kinds of adaptation (in the application
or/and middleware levels). However, as discussed in Chapters 3 and 4, there are some limita-
tions associated with these functionalities. For instance, several solutions fail to support the us-
age of new interactions and discovery protocols. Even some of them define their own protocols,
restricting the incorporation of third part service providers. In a similar way, some approaches
are not easily customizable. This means that it is not possible to have different personalities of
the platform for deploying it on devices with distinct specifications and capabilities. Further-
more, the way these solutions are conceived makes the integration of services or applications
that are not part of the platform difficult. Regarding the offered adaptation, some approaches do
not provide support for reconfiguration at the application level. This means that the developer
has to worry for exploiting the available context information in order to adapt the application
using this information. Finally, almost all the solutions do not consider the relevance of context
information, omitting the support for the QoC properties and different representations as im-
portant issues in the integration of this kind of information. The context consumers should be
able to select the available information according to their needs and not just because it is avail-
able. Table 5.1 summarizes the satisfaction of the properties for context mediation by different
state-of-the-art approaches. For more details about the different dimensions considered in this
table see Section 3.2. In the rest of this chapter, we provide more details about our approach and
how it deals with the integration issues. The contribution associated with the adaptation will be
introduced in the next chapter.

68

5.1. Properties for Context Mediation

Support for Multiple
Representations QoC Mobility Support Dependency

Definition Interaction Discovery Static Dynamic Level

Agent-based
Middleware for
Context-Aware

Services
! ! ! Component

Interfaces ! ! ! " Middleware

ANS ! " ! QoC " " " " Middleware

Adaptation Platform
for Autonomic
Context-Aware

Services
! ! N/S Component

Interfaces N/S N/S ! " Application,
Middleware

Framework for
Autonomic Context-

Aware Service
Composition

! ! ! Component
Interfaces N/S " ! " Application

JADE N/A N/A N/A N/A ! N/A " " Application

MIDAS ! ! " Proxies (Context
elements) " N/S " " Application,

Middleware

AutoHome ! ! ! Client and Server
Interfaces " " " " Application,

Middleware

MUSIC ! ! "
Component
Interfaces,

Service
Descriptions

! " " " Application,
Middleware

Rainbow N/A N/A ! System-Layer
Infrastructure ! ! " "

Application
(dynamic),
Middleware

(static)

DACAR N/A N/A ! Component
Interfaces ! ! ! " Application

INDISS ! ! N/A Events ! " " ! Middleware

ReMMoC ! ! N/A WSDL " " " " Middleware

A multi-protocol
framework for ad-hoc

service discovery ! ! N/A Component
Interfaces ! " " ! Middleware

GAIA ! ! " Channels ! ! " " Application,
Middleware

GAIA Microserver ! ! N/A J2ME Proxy/
Channels ! ! ! " Application

MUSIC Peer-to-Peer ! ! " Peer Group ! ! ! ! N/A

Cortex ! ! ! Sentient Objects ! " " " Middleware

CARMEN ! ! ! Proxies (MAs) ! ! ! " Middleware

Aura ! ! ! Environment
Manager ! ! ! " Middleware

CARISMA ! ! ! Profiles ! N/A ! " Middleware

Cooltown ! ! " Directory Module ! " " ! Middleware

MiddleWhere ! " ! Adapters " N/A ! ! N/A

MobiPADS ! ! ! Channel Service,
Mobilets ! N/A " " Application,

Middleware

SOCAM ! ! ! Service Locating
Service ! ! ! " Application

RCSM ! ! ! Channels (CTCs) " " " " Application

Large Scale Peer-to-
Peer Context
Dissemination

Middleware
! " ! Context-based

groups ! ! ! ! N/A

CAPNET ! ! ! Messaging
Component " ! " ! Middleware

Context Information Loose Coupling

Independent
Communication

Mechanism
Adaptation

A
ut

on
om

ic
 A

pp
ro

ac
he

s
Se

rv
ic

e
D

is
co

ve
ry

So

lu
tio

ns
M

id
dl

ew
ar

e
So

lu
tio

ns
 fo

r C
on

te
xt

-A
w

ar
en

es
s

Ubiquitous Feedback
Control Loops " " " Data " " " " Application,

Middleware

Middleware
Approach!

DImension!

Table 5.1: Comparison of Different Approaches Regarding the Properties for Context Mediation

69

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

5.2 SPACES Overview

The three contributions presented in this chapter, i.e., the metamodel, the connectors and the
generic architecture, enable us to build a flexible and simple solution to integrate heterogenous
resources in ubiquitous environments. We call the result of combining the three contributions
SPACES. The simplicity of this solution rests on the goal of not reinvent the wheel by reusing and
combining standards and widely accepted technologies (cf. Section 1.2). For its part, the flexi-
bility leverages on three main keystones: i) separation of mediation concerns [Taylor et al., 2009]
enabling the customization of the solution, ii) application of a resource-oriented approach for
focusing in what really matters, i.e., the context integration and iii) the application of CBSE and
SOA principles to reduce coupling and foster reuse of the different elements that make part of
the solution.

The separation of concerns strategy fosters spliting the problem into parts as independent as
possible. With this idea in mind and regarding the already mentioned problems associated with
context-aware applications development, we identify the following issues as relevant in context
mediation:

1. Discovery: The discovery capability is important because we need to detect or find the
available context sources in the environment. When we know in advance all the available
sources, this capability is not required. However, as already stated in Chapter 3, the ubiq-
uitous environments are highly dynamic and therefore we cannot assume the existence of
a static infrastructure configuration. Thus, the possibility of becoming aware of the ser-
vices that are currently available in the environment constitutes an important advantage in
context mediation and therefore it is present in our solution.

2. Interaction: Once the available context providers are discovered, the next step is to interact
with them. This means the retrieval of the information from the sources using different
kinds of representations according to the consumer needs. If we can not ask for or retrieve
the information, we cannot used it in the adaptation process of context-aware applications.

3. Support for Several Representations: As already stated, flexibility is key for solutions pro-
viding context integration. The flexibility encloses the provision of different ways for repre-
senting the information, which is an important property when dealing with heterogenous
devices.

4. Context Processing: Once the information is retrieved, it has to be processed to produce
higher level information or make decisions related to the required adaptation. In SPACES,
we delegate the context processing to existing context managers such as the COSMOS
framework [Rouvoy et al., 2008, Conan et al., 2007]

5. Adaptation: The final step in context-awareness is the dynamic reconfiguration of applica-
tions. The data associated with these reconfigurations (e.g., scripts and new functionality)
can be also considered as context information that requires to be exchanged. Therefore, we
see the adaptation as a process where the context information flow is important. We use this
idea to build Ubiquitous Feedback Control Loops enabling the adaptation of context-aware
applications. We provide more details about these feedback control loops in Chapter 6.

In order to consider these different issues, in SPACES we propose a metamodel (cf. Section 5.3)
that helps us to clearly extract and define the elements that make part of context mediation. In
particular, we materialize the first four issues (i.e., discovery, interaction, multiple representa-
tions and context processing) and include other relevant aspects, such as the QoC properties.
Therefore, the objective of the so-called SPACES metamodel is to foster the modularization of the
different responsibilities and concerns associated with the exchange of context information.

From the SPACES metamodel, we derive resource-oriented connectors, which focus in the
exchange of context. These connectors expose the context as resources and hide the current im-
plementations associated with context producers and consumers. To do that, the SPACES con-
nectors promote the usage of simple and standard interfaces and leave the establishment of the

70

5.3. Modeling Context as Resources: The SPACES Metamodel

dependency between clients and servers at the data level. The connectors support a clear sepa-
ration between the resources (i.e., the context information), their representation (i.e., the format
used to exchange the information) and how they are retrieved (i.e., the current operations and
protocols). This separation favors the use of simple communication mechanisms, which can be
selected regarding the variable characteristics of devices hosting the consumers as well as the
presence of legacy applications. Thus, in SPACES, we offer the possibility of customizing our
solution by allowing the incorporation of interaction mechanisms at design time and at runtime.

Considering the independence of different responsibilities that we can obtain of component
based approaches, we propose a generic architecture that provides a detailed view of the different
elements that conform the SPACES connectors. Then, and by benefiting from the loose-coupling
and reuse promoted by SOA applications, we bring SPACES into the SCA component model. In
this way we can keep the best of CBSE and SOA together and still provide a reusable and simple
solution for context integration.

5.3 Modeling Context as Resources: The SPACES Metamodel

To meet the different properties introduced in Section 5.1, we apply in SPACES a resource-
oriented approach. Solutions following this kind of approach consider resources as first class en-
tities, which control interactions between resource producers and consumers. For context-aware
systems, context is key [Coutaz et al., 2005], but context also represents resources that need to be
propagated. Therefore, we start the design of our solution by modeling context information as
resources. In this section we present the metamodel that makes it possible.

Figure 5.2 depicts the SPACES metamodel representing context as a resource. This metamodel
is inspired in the REST service metamodel introduced in Section 2.1.2. The metamodel provides
the foundations to build our solution since it includes all the elements and their relationships,
which we consider relevant in context mediation. Below we discuss the different elements.

1. Context Element: We introduce the notion of Context Element in order to iden-
tify the different entities participating in the context mediation that have to be consid-
ered as first class citizens. Context elements include Context Provider, Context
Information, Context Consumer and Representation. The different context ele-
ments are characterized by their name and description. We also introduce other entities
that are not context elements, but that we consider for providing a suitable solution.

2. Context Provider: In context mediation, there are always producers and consumers
of information. In the SPACES metamodel, the Context Provider represents the
producers—i.e., entities generating relevant information for Context Consumers. In
the REST metamodel, these entities are the Services. A Context Provider has QoS
attributes [Aurrecoechea et al., 1998, Comuzzi and Pernici, 2009] describing non-functional
aspects of the producer as well as connectors for exchanging the information. We decided
to reify the context providers in the metamodel in order to make clear the separation be-
tween these entities and the context mediation concerns. This consideration is relevant
because the processing of context should be not impacted by the mechanisms for retrieving
the information.

3. Context Consumer: This entity represents the clients of the context providers. In the REST
as a service metamodel there is no entity associated with the Context Consumer. How-
ever, we include it to express the associations with other concepts of context integration.
Furthermore, the consumers of context make necessary the development of solutions deal-
ing with the exchange of information and therefore also motivate the contributions pre-
sented in this dissertation.

4. Context Information: This context element refers to the actual resources that need to be ex-
changed. The Context Information is associated with properties providing additional

71

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

descriptions, such as its quality (i.e., the QoC attributes) or type. This information has a URI
suffix attribute expressing the local identifier of the context information. This suffix in com-
bination with the URL prefix from the Connector element represent the unique identifier
associated with the context resource.

5. Properties: These properties are associated with QoC attributes (cf. Section 3.1) that
are useful in the selection of context information. The Property element is also used
to characterize Context Providers in terms of QoS information [Aurrecoechea et al., 1998,
Comuzzi and Pernici, 2009], which can be used for the establishment of Service Level
Agreements (SLAs) [Berberova and Bontchev, 2009]. However, the property representation
is generic enough for expressing other kinds of properties. In our metamodel, a property
has a nature indicating if the value of the property can change at execution time—i.e., if the
property is static or dynamic. The Measure element associated with the property models
how it is measured. In this way, this class contains a type that represents the property’s data
type (e.g., long, integer, boolean). This measure also has a Unit that refers to the current
unit used to measure the property. The units are related to ConversionFormulas allow-
ing the conversion between them. The property representation used in the SPACES meta-
model simplifies and generalizes concepts from the Amigo-S QoS [Ben Mokhtar et al., 2006]
ontology to represent any property (functional or not) of context providers. In particular,
we modify the concept of QoSParameter introduced by the Amigo-S QoS ontology in order
to define simple properties. We preserve the concepts of Metric (Measure, in our meta-
model), Unit, and ConversionFormula from this ontology.

6. Representation: In order to provide a flexible solution dealing with devices heterogeneity
(cf. Section 5.1), we consider the representations associated with context resources. The
Representation element reifies these representations. Each representation is associated
with a type, such as XML schema or a media type. Unlike the REST metamodel, in the
SPACES metamodel we separate the representations from the context information via the
Connector entity. This separation helps us to keep resources independent from concerns
associated with context mediation.

7. Connector: In our metamodel we also find a Connector entity tying the Context Provider
and Context Consumer and hiding the mediation concerns from them. This entity encap-
sulates the discovery, interaction and support for different representations responsibilities. The
connectors enable us to reduce the impact on the processing of the context information.

8. Protocol: This element is the communication mechanism for enabling the information ex-
change. In context mediation, we consider protocols for interaction and discovery. As
already stated in Section 2.4, the discovery protocols can offer the interaction protocol. To
express this possibility, we create the interactionProtocol association. On the other hand, a
protocol can be built on the top of different protocols. For this reason we specify the rela-
tionship buildOn. For example, the UPnP protocol uses SSDP, HTTP and GENA (cf. Sec-
tion 2.4.1) as part of its protocol stack.

The presented metamodel states the different elements that should be reified and modular-
ized in a solution providing flexibility in context mediation. In the next section we discuss how
we build SPACES connectors by applying the notions considered by our metamodel.

5.4 SPACES Fundamentals

In this section, we define the SPACES connectors for dealing with integration in ubiquitous envi-
ronments and conceived by derived from the metamodel.

72

5.4. SPACES Fundamentals

Context Provider

1..*

0..*

0..*-URI: string
Connector

Context Consumer

Interaction
Protocol

Discovery
Protocol

0..*

0..*

1..*

measures

0..1 unit

conversions
0..*

qocAttributes
0..*

-nature: string
-name: string

Property

-type: string
-value: string

Measure

-name: string
ConversionFormula

-mimeType: string
Representation

-name: string
Unit

-URISuffix: string
Context Information

0..*

qosAttributes

interactionProtocol

0..1

-name: string
-description: string

Context Element

offers
requires

1..*

-name: string
-version: string

Protocol buildsOn
0..*

Figure 5.2: Context as a Resource Metamodel

SPACES Connectors

In CBSE, software connectors foster the separation and modularization of concerns. In particular,
they encapsulate the transfer of control and data, and non-functional services (e.g., persistency,
messaging and invocation) [Taylor et al., 2009, Crnkovic, 2002] helping to keep the application
functionality focused on the domain specific concerns. Therefore, we leverage on this concept to
support independence of context information and communication mechanisms as well as loose-
coupling between producers and consumers (cf. Section 5.1) in our solution.

Following the context as a resource metamodel, the SPACES connectors (also called ubiquitous
connectors in this dissertation) expose information as resources accessible via different protocols
and formats and using logic identifiers. This means that the ubiquitous connectors separate the
distribution concerns from the context management tasks but they still keep a clear division of
the different responsibilities associated with such distribution. Therefore, by encapsulating the
context mediation in these connectors, we do not impact the process of the context information.

Figure 5.3 illustrates the ubiquitous connectors. As it can be seen, these connectors follow a
Client-Server style and thus they are composed by two entities:

1. SPACES Server: Associated with the context provider, the server exposes the context infor-
mation as SPACES provided resources accessible via simple protocols. This element also

73

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

advertises the resources using different services discovery protocols and accepts subscrip-
tions from interested clients.

2. SPACES Client: This entity allows a context consumer to retrieve or send context informa-
tion. In other words, a SPACES Client produces requests for exchanging information (i.e.,
the SPACES required resources). Furthermore, this element permits spontaneous commu-
nications by discovering the required context resources at runtime and the subscription to
sources providing these resources.

X host

Y host
Environment

SPACES Provided Resource
SPACES Required Resource

SPACES Server

SPACES Client

Legend:

Context Producer or/and
Z host

Environment

SPACES Protocol
C

ontext-aw
are Application

SPACES Connector

Consumer

Figure 5.3: SPACES Connectors

In Figure 5.3, we also include the context providers and consumers from the SPACES meta-
model. They are context-middleware or context managers (cf. Section 3.1). As observed, by
means of our connectors an entity can be provider and consumer at the same time in a transpar-
ent way.

Besides providing a clean isolation between context distribution and business logic, SPACES
connectors promote multiple implementations of the interaction mechanisms to deal with proto-
col heterogeneity in ubiquitous environments. For example, the SPACES connectors can support
the message-oriented [Leclercq et al., 2005] paradigm as well as a peer-to-peer [Hu et al., 2007] mid-
dleware approach.

Promoting Low Coupling between the Interacting Entities

The modularization of mediation concerns in the SPACES connectors is a first step for uncoupling
the interacting entities. We hide the remote interactions from the context processing in order to
integrate entities in a transparent way. However, it is not enough. Analyzing the context as a
resource metamodel presented in Section 5.3, we see that it is still necessary to define how we
can use the context resources. In other words, we need to establish how to identify, find, access
and represent these resources by means of the SPACES connectors. To do that, we combine the
REST architectural style (cf. Section 2.1.2), the existing discovery mechanism (cf. Section 2.4) and
the concept of QoC attributes (cf. Section 3.1), all referenced in our metamodel. In particular, we
define SPACES nouns, verbs and context types, which are inspired in the triangle of nouns, verbs,
and content types from REST, as well as the support for spontaneous communications. Below we
discuss the first three issues and postpone the presentation of the discovery issues to Section 5.5.

SPACES Nouns. The exposition of context information as resources via the ubiquitous con-
nectors requires the definition of context identifiers. Following the REST principles, in SPACES
these identifiers are unique nouns described using the Uniform Resource Identifier (URI) for-
mat [Berners-Lee et al., 2005]. Therefore, context identifiers include a communication scheme, a
server address, a context path, and a sequence of request parameters:

scheme://context-server/context-path?request-parameters

74

scheme://context-server/context-path?request-parameters

5.4. SPACES Fundamentals

The communication scheme describes the communication protocol used by SPACES con-
nectors to transfer the resource representation between the hosting server and the request-
ing client. Examples of communication protocols include HTTP, FTP (File Transfer Protocol),
RTSP (Real Time Streaming Protocol), and file. Then, the server address description is specific
to a given scheme. For example, an HTTP server address can be specified using the syntax
user:password@host:port to describe the web server host and port as well as the credentials
for accessing the published resources. The context path identifies the context information corre-
sponding to the published resource. Depending on the context provider, the resources can be hi-
erarchically organized as context domains using the syntax parent-domain/child-domain/context

(e.g., in COSMOS [Conan et al., 2007] or WildCAT [David and Ledoux, 2005]). Finally, the request
parameters can be used to specify the representation of the requested context information using
the MIME type syntax [IANA, 2007] as well the query to retrieve the context information if there
is no context path or if this functionality is available.

SPACES Verbs. In SPACES connectors, we apply the REST verbs—i.e., GET, PUT, POST,
DELETE— to represent the operations typically offered by context providers. The usage of these
simple and standard interfaces allows us to focus on the exchange of resources. Below, we present
these operations and the associated REST verbs.

1. Retrieve (GET): This operation represents the pull mechanism to obtain spontaneously con-
text information from a source. The operation can be synchronous or asynchronous.

2. Notify (PUT): The “notify" is used to push automatically context information to interested
entities.

3. Subscribe (POST): The “subscribe" operation allows clients to show interest in context in-
formation and receive it via the notify operation.

4. Unsubscribe (DELETE): This operation stops the automatic notifications from context man-
agers.

5. Publish (POST): This operation makes available a new context information.

6. Unpublish (DELETE): This is the inverse operation of “publish".

7. Update (PUT): The “update" operation enables the modification of context information.

As it can be noted, different context operations can be mapped to the same REST verb (e.g.,
subscribe and publish). However, this is not a problem is SPACES because each operation and
the associated resource have a unique and logic URI that avoids any ambiguity.

The following HTTP request shows an example for retrieving the context information battery
level from a mobile device via ubiquitous connectors:

GET /mobile-info/battery_level HTTP/1.1
Host: device.inria.fr:8080
Accept: application/xml, application/json
...

Context information can also be pushed into a remote entity by using an HTTP PUT request.
In this case, the HTTP request is sent to the server-side associated with the context consumer. For
example, the HTTP request:

PUT /alice-mobile-info/adjust_bitrate HTTP/1.1
Host: server.inria.fr:8080
Content-Length: 1368
Content-Type: application/xml, charset=utf-8

<?xml version="1.0" encoding="utf-8"?>
<spaces:message name="adjust_bitrate"

xmlns:spaces="http://www.spaces.org/XMLSchema"

75

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="www.spaces.org/XMLSchema

http://picoforge.int-evry.fr/projects/svn/cosmos/spaces/spaces.xsd">
<spaces:chunk name="current" type="xsd:int">128</chunk>
<spaces:message name="qoc">

<spaces:chunk name="timestamp" type="xsd:int">0904081100</chunk>
<spaces:chunk name="unity" type="xsd:string">kbps</chunk>

</spaces:message >
</spaces:message >
...

notifies the context consumer that the uploaded XML document refers to a change of the
context information adjust bitrate.

SPACES Content Types. SPACES connectors supports various types of content for representing
the context information. These types are described using the MIME media types classification.
The selection of the appropriated format depends mainly on the capabilities of the device that
consumes it. In particular, the SPACES connectors implementation reported in this dissertation
supports the Java object serialization (application/octet-stream), XML (application/xml) and
JavaScript Object Notation-JSON [Crockford, 2006] (application/json) documents as resource
representations.

The presented connectors provide a simple solution for context integration leveraging on a
resource-oriented architectural style. They provide the mechanisms for accessing, address-
ing and representing the context resources as well as for modularizing the communications.
However, because of the context providers and consumers mobility, we also need to consider
the establishment of interactions at runtime. In the next section, we discuss this issue in our
approach.

5.5 Supporting Spontaneous Communications in SPACES

The SPACES metamodel provides the notions for transparent context handling, which refers to
the independence from representations and communication mechanisms (cf. properties for con-
text mediation 1 and 2). By applying a resource-oriented paradigm in our approach, we are also
promoting loose-coupling (property 3) between context producers and consumers since we fo-
cus the interaction in the required context resources. Furthermore, in the context as resource
metamodel we also include discovery protocols and QoC information, which are necessary to
satisfy the property for context mediation 3. These elements permit the discovery and selec-
tion of context providers at runtime when required. Thus, by including the discovery and QoC
notions in the SPACES metamodel, we give the possibility of establishing spontaneous communi-
cations [Zhu et al., 2005] to deal with mobility of services and clients in ubiquitous environments.

In SPACES connectors we promote the usage of existing discovery protocols such as UPnP,
SLP and Bluetooth SDP (cf. Section 2.4). By using standard protocols, we make the location of
providers easier since it is not necessary to develop new and complex discovery protocols. Fur-
thermore, we foster interoperability with legacy services, which can be advertised with standard
protocols in the environment. On the other hand, to benefit from the metadata describing the con-
text information (i.e., QoC attributes) and mantain the SPACES connectors flexibility (property 4)
in terms of interactions, we consider three design aspects of the SDPs [Zhu et al., 2005]:

1. Provider invocation: In general, the process for using located services at runtime has different
steps, which include discovery, selection and access of remote providers (cf. Section 3.3).
Regarding the access step, some protocols define the underlying communication mecha-
nisms. For example, UPnP states SOAP [Box et al., 2000] in order to invoke operations (i.e.,
actions in the UPnP vocabulary) on the available services. However, the imposition of a

76

5.6. SPACES Connectors Detailled Architecture

single communication mechanism in ubiquitous environments, where variability in terms
of resources and protocols is the rule rather than the exception, limits the applicability of
this kind of protocols. Hence, to face this lack of flexibility, SPACES connectors modify the
discovery protocols by making context resources accessible via different interaction mech-
anisms. In this way, we offer the possibility to choose the most suitable protocols for ex-
changing in both, the consumer and provider sides. Furthermore, if the discovery protocol,
such as SLP or Bluetooth SDP, does not define the communication mechanism, we comple-
ment it by using the supported protocols by the connectors.

2. Description and attribute definition: A provider description gives information about the type
and operations supported by the service. Protocols, such as SLP, provide an additional ser-
vice characterization by means of attributes. Therefore, in SPACES connectors we benefit
from these attributes definition for expressing interaction protocols that can be used to ac-
cess the provider as well as QoC information. This additional information is used in the
provider selection phase.

3. Provider selection: In order to select the required service, SDPs apply a basic filter that con-
sider the service type and name. Others protocols offer more specialized searches by defin-
ing restrictions on the attributes of the required providers. In ubiquitous connectors, we use
these specialized searches to select providers by considering relevant properties for con-
text information consumers—i.e., QoC attributes. If the SDP does not offer the specialized
search option, SPACES connectors include an additional filter to ensure that the discovered
providers will satisfy the requirements.

Until now we have characterized the SPACES connectors in order to satisfy the properties
introduced in Section 5.1. To do that, we have used the different elements and concepts specified
by our context as a resource metamodel (cf. Section 5.3). Now, in the next section we materialize
the connectors in a generic architecture for context mediation.

5.6 SPACES Connectors Detailled Architecture

In this section we provide a detailed view of SPACES connectors for client (i.e., context consumer)
and server (i.e., context provider) sides. The discussed architecture represents the third contri-
bution of the chapter and it is also conceived considering the simplicity and flexibility that are
key for dealing with the issues associated with context integration such as heterogeneity and
mobility.

Figure 5.4 depicts the abstract architecture of SPACES connectors. Following CBSE and REST
principles we have encapsulated the responsibilities of discovery, resource representations and
communication in different components. This modularity enables the use of several implementa-
tions of the components as well as it provides the flexibility to choose the required functionality
in consumers and providers. In particular, the required and provided resources identified by
SPACES connectors are reified in the architecture as the SPACES Published Context Request
and the SPACES Published Context Resource components, respectively (cf. Figure 5.4).

SPACES Published Context Resource Architecture.

A Published Context Resource is a skeleton receiving and processing context requests sent by
remote context consumers (right side in Figure 5.4). This component embeds a Verb Server com-
ponent isolating the communication protocol used to exchange the context information. This
component can have different implementations to support protocols, such as HTTP, FTP and file,
and to use REST-based services such as Twitter [Makice, 2009]. The Verb Server also receives the
context requests and delegates the processing of the context operation to the respective Handler.
The different handlers implement the same interface and are associated with a specific SPACES

77

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

SP
A

C
ES

 P
ub

lis
he

d
C

on
te

xt
 R

eq
ue

st

C
on

te
xt

M
an

ag
er

R
ES

T
N

am
e

D
is

co
ve

re
r

Context
Processing

su
bm

it

re
tri
ev
e

N
am

e
D

is
co

ve
re

r
na
m
e

su
bm

it

m
ar
sh
al

re
tri
ev
e

un
m
ar
sh
al

O
bs

er
va

tio
n

R
eq

ue
st

H
an

dl
er

(G
ET

)

N
ot

ifi
ca

tio
n

R
eq

ue
st

H
an

dl
er

(P
U

T)

Ve
rb

C
lie

nt

SP
A

C
ES

 P
ub

lis
he

d
C

on
te

xt
 R

es
ou

rc
e

Context
Processing

su
bm

it
R

ES
T

Ve
rb

Se
rv

er
Ve

rb
Se

rv
er

re
tri
ev
e

na
m
e

N
am

e
Ad

ve
rti

se
r

su
bm

it

un
m
ar
sh
al

N
ot

ifi
ab

le

R
es

ou
rc

es
H

an
dl

er
(P

U
T)

re
tri
ev
e

O
bs

er
va

bl
e

R
es

ou
rc

es
H

an
dl

er
(G

ET
)

m
ar
sh
al

Le
ge

nd
:

C
on

ta
in

er

C
om

po
si

te
C

lie
nt

In
te

rfa
ce

Se

rv
er

In
te

rfa
ce

C
on

te
nt

 T
yp

e
M

ar
sh

al
le

r

✱ ✱

✱

C
on

te
xt

R

eq
ue

st
s

A
dv

er
tis

em
en

ts
/

Se
ar

ch
 q

ue
rie

s

✱ ✱

✱

In
te

rfa
ce

Bi
nd

in
g

C
om

po
ne

nt
(s

ha
re

d)

✱

✱

C
on

te
xt

M
an

ag
er

C
on

te
nt

 T
yp

e
M

ar
sh

al
le

r

D
iff

er
en

t i
m

pl
em

en
ta

tio
ns

of
 th

e
co

m
po

ne
nt

 a
re

 p
os

si
bl

e

Figure 5.4: SPACES Published Resource-side and Request-side Architectures.
78

5.7. Integrating SPACES Connectors into SCA

operation. For simplicity and clarity we include only the handlers for dealing with context ob-
servation and notification—i.e., the Notifiable Resources Handler and the Observable Resources
Handler.

When required, the Handler components use the Content Type Marshaller component to mar-
shal (resp. unmarshal) the requested (resp. posted) context information. SPACES connectors
implementation provides a distinct implementation of this component for each of the supported
content types—i.e., Java objects, XML, and JSON documents.

The different handlers delegate the context operation to the Context Manager. In the concrete
case of the Observable Resources Handler component, it delegates the requested observation to
Context Manager and returns the marshaled context information to the Verb Server. Similarly,
the Notifiable Resources Handler component unmarshals the submitted context information be-
fore notifying the Context Manager. For its part, the Context Manager encapsulates the current
context manager being used. This component maps the SPACES operations to the operations of
the current context manager.

The Name Advertiser component advertises the available context information via standards
service discovery protocols such as UPnP and SLP. This component adds QoC properties describ-
ing the context information and the supported access protocols into the advertisement messages.

SPACES Published Context Request Architecture.

A Published Context Request component is a stub generating and sending context requests to
a remote context provider (left side in Figure 5.4). In this architecture, the Published Request is
associated to a Verb Client component, which acts as a local representative of the resources acces-
sible remotely via a specific communication protocol. The Handlers components are employed
when the execution of a remote operation is required. In Figure 5.4 we include the Observation
Request Handler and Notification Request Handler components, which enable remote observa-
tions and notifications, respectively. In particular, the Observation Request Handler component
requests a context observation and unmarshals the received context information via the Con-
tent Type Marshaller component. On the other side, the Notification Request Handler component
marshals the context information notified by the Context Manager before posting it to a remote
resource.

Finally, the Name Discoverer locates the potential context providers in the environment. This
component selects the providers regarding the QoC attributes and the supported access proto-
cols.

5.7 Integrating SPACES Connectors into SCA

In the previous section we discussed the generic architecture for the ubiquitous connectors. In
this section we complete the third contribution of the chapter by presenting the reification of such
architecture by means of SCA [Open SOA, 2007b] (cf. Section 2.2.2).

As already stated, SPACES connectors promote loose-coupling between context managers
and consumers by following a simple approach inspired by the context as a resource metamodel.
This solution is suitable to enable the integration of context information regarding heterogeneity
in terms of communications and representations. Our solution has been defined in a technology
independent way, which means that connectors can be implemented with the required program-
ming language. The interoperability of heterogenous implementations is granted because we are
promoting the usage of standards interaction mechanism. However, the scope of the approach
could be extended to allow the interaction of different kinds of applications, not only context-
aware.

To complement our approach and enable the building of distributed entities implemented
with different technologies, we extend the SCA standard. In particular, we benefit from the clear
concerns isolation that promotes SCA, which is reflected in its independency from communica-
tions protocols and implementation technologies. In this way, we group the SPACES connectors

79

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

concepts in integration and discovery, which are materialized in SCA by means of two new kinds
of bindings: Resource-Oriented Bindings and Ubiquitous Bindings. In the following
sections we present these bindings.

5.7.1 Information Exchange between SCA Services: The case of the Resource-
Oriented Bindings

In Section 5.4, we have presented the principles of the SPACES connectors. From this kind of con-
nectors, we derive the Resource-Oriented Bindings, which support information exchange
via different representations and communication protocols. These bindings therefore apply the
SPACES metamodel and provide the same functionality of the ubiquitous connectors except for
the discovery.

<composite name="context-producer.composite">
 <service name="battery-level-info" promote="battery-level-node/battery-level-info"/>
 ...
 <component name="battery-level-node">
 <implementation.java
 class="examples.smarthome.server.src.main.java.BatteryLevelChangeDetectorCO"/>
 <service name="battery-level-info">
 ...
 <resource.xml schema="battery-level.xsd"/>
 <resource.json schema="battery-level.json"/>
 ...
 <binding.http uri="/device_info/battery_level"/>
 ...
 </service>
 ...
 </component>
 ...
</composite>

Service (server-side)

<composite name="context-consumer.composite">
 ...
 <reference name="mobile-battery-level-info" promote="mobile-device-resources-
 analyzer/mobile-battery-level-info">
 ...
 <component name="mobile-device-resources-analyzer">
 <implementation.java class="examples.smarthome.client.src.
 main.java.ResourcesAnalyzerCO"/>
 ...
 <reference name="mobile-battery-level-info">
 <resource.xml schema="battery-level.xsd">
 ...
 <binding.http uri="http://device.inria.fr:8080/device_info/battery_level"/>
 ...
 </reference>
 </component>
 ...
</composite>

Reference (client-side)

Figure 5.5: Example of an SCA Definition for Resource-oriented Bindings.

Figure 5.5 depicts a resource-oriented binding definition example for services (upper part)
and references (lower part). Unlike the SCA typical bindings, the SCA services and references
using resource-oriented bindings do not need to expose interfaces. Instead, the services (resp.
references) specify the provided (resp. required) resources. To do this, we add a new element,
<resource.representation>, that expresses the required or provided information including its
representation (e.g., XML, JSON) and type (defined by a schema). In the service-side, this element

80

5.7. Integrating SPACES Connectors into SCA

describes the different formats used to offer the information. For its part, the <binding.protocol>

element specifies the protocol supported to exchange the information as well as the path to access
it (via the uri attribute).

In the reference-side, the <resource.representation> element defines the required information
and the <binding.protocol> expresses how the device can retrieve it—i.e., the supported commu-
nication protocol. The uri attribute in the <binding.protocol> element is optional (because the
uri can be defined at runtime, for example, if discovery protocols are activated) and contains
the address for retrieving the information. In this way, by encapsulating the resource retrieval
as SCA bindings, we enable the development of applications following a resource-oriented ap-
proach and the integration of not only context information, but also of any kind of data (e.g.,
streams and events).

Implementation of the Resource-Oriented Bindings in the FRASCATI platform

We have integrated our resource-oriented bindings into the FRASCATI plat-
form [Seinturier et al., 2009, Mélisson et al., 2010a] (cf. Section 2.3.3). The FRASCATI selection is
motived by two main reasons: i) the reflective capabilities that the platform introduces in the
SCA programming model to allow dynamic introspection and reconfiguration of SCA based
context consumers and producers, and ii) we can run the lightweight version of the platform
(FRASCAME) on the mobile devices with limited capabilities [Romero et al., 2010c].

We bring the resource-oriented bindings into FRASCATI following the ContainerComposite

architectural pattern promoted by the HULOTTE platform [Loiret et al., 2009, Loiret et al., 2010b].
This pattern states the definition of a container for a functional component as a composite compo-
nent. Therefore, we encapsulate the context-aware applications in a container composite hosting
the components to intercept the operations (cf. Section 5.4) that require context mediation. In
this way, we respect the SPACES connectors isolation of distribution concerns as well as the no
impact of the context processing logic.

Figure 5.6 depicts the containers implementing the resource-oriented bindings for context
provider and context consumer composites (cf. Figure 5.5). As it can be seen, we follow the
SPACES connectors architecture introduced in Section 5.6 for SPACES Published Context Requests
and SPACES Published Context Resources. The producer’s container exposes context as REST re-
sources, having the Published Context Resource role in the SPACES architecture. On the other
hand, the container associated with the consumer provides the functionality to publish context re-
quests in order to retrieve the required context information. By respecting the ubiquitous connec-
tors architecture in container composites that implement resource-oriented bindings, we modu-
larize the different SPACES principles—i.e., representation, access, and addressing. In this way,
we foster the components reuse, the flexibility to choose different component implementations,
and the reduction of memory footprint.

5.7.2 Bringing Service Discovery in SCA: The case of Ubiquitous Bindings

The resource-oriented bindings promote loose coupling by enabling resource access via standard
and simple operations. This loose-coupling is enhanced with the inclusion of discovery capabil-
ities that permit spontaneous communications at runtime. However, we exclude the SPACES
connectors responsibility associated with context discovery from resource-oriented bindings
to encourage reuse of both functionalities independently. Therefore, we define Ubiquitous
Bindings [Romero et al., 2010b], which provide spontaneous communications in a transparent
way. This new type of binding integrates state-of-the-art Service Discovery Protocols (SDPs) and
enables the establishment of communication wires at execution time.

Figure 5.7 depicts the definition of ubiquitous bindings for services (upper part) and refer-
ences (lower part). The definition of an Ubiquitous Binding has a filter attribute in the client-
side. This attribute specifies a LDAP filter expressing restrictions of the required service in terms
of its properties. For its part, in the server-side, the Ubiquitous Binding can have properties
that provide additional information about the service, such as QoC attributes. Each property is

81

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

Se
rv

er
 D

ev
ic

e
C

lie
nt

 D
ev

ic
e

C
on

te
xt

-p
ro

du
ce

r
C

on
ta

in
er

C
on

te
xt

-c
on

su
m

er
C

on
ta

in
er

co
nt

ex
t-c

on
su

m
er

O
bs

er
va

tio
n

R
eq

ue
st

H

an
dl

er
(G

ET
)

N
ot

ifi
ca

tio
n

R
eq

ue
st

H

an
dl

er
(P

U
T)

C
on

te
nt

 T
yp

e
M

ar
sh

al
le

r
C

on
te

nt
 T

yp
e

M
ar

sh
al

le
r

C
on

te
nt

 T
yp

e
M

ar
sh

al
le

r

pu
sh

pu
ll

re
tri

ev
e

su
bm

it

m
ar

sh
al unmarshal

C
lie

nt
C

lie
nt

Ve
rb

C
lie

nt
co

nt
ex

t-p
ro

du
ce

r

C
lie

nt
C

lie
nt

Ve
rb

Se
rv

er
N

ot
ifi

ab
le

R

es
ou

rc
es

H

an
dl

er
(P

U
T)

O
bs

er
va

tio
n

R
eq

ue
st

H

an
dl

er
(G

ET
)

C
on

te
nt

 T
yp

e
M

ar
sh

al
le

r
C

on
te

nt
 T

yp
e

M
ar

sh
al

le
r

C
on

te
nt

 T
yp

e
M

ar
sh

al
le

r

m
ar

sh
al unmarshal pu

ll

pu
sh

Le
ge

nd
:

R

C
on

ta
in

er

C
om

po
si

te
C

lie
nt

In
te

rfa
ce

Se

rv
er

In
te

rfa
ce

R
R

in
te

ra
ct

io
n

pr
ot

oc
ol

Figure 5.6: Resource-oriented Binding Integration into the FRASCATI Platform

82

5.7. Integrating SPACES Connectors into SCA

described by a property element. Figure 5.7 shows examples of an Ubiquitous Binding with
the SLP protocol. The precision and probabilityOfCorrection are QoC attributes that describe the
context provided by the service (cf. Section 3.1). These attributes and the contextType property are
used in the definition of the LDAP filter in the reference. The bindings in the service side corre-
spond to the different communications that can be used to access the context information. Thus,
with the definition of Ubiquitous Bindings in this way, we can support spontaneous com-
munications with SCA services via different discovery protocols and then access these services
using the most suitable interaction mechanism according to the application needs.

<composite name="context-producer.composite">
 <service name="battery-level-info" promote="battery-level-node/battery-level-info"/>
 ...
 <component name="battery-level-node">
 <implementation.java
 class="examples.smarthome.server.src.main.java.BatteryLevelChangeDetectorCO"/>
 <service name="battery-level-info">
 ...
 <resource.xml ..."/>
 ...
 <binding.http .../>
 ...
 <binding.slp>
 <property name="probabilityOfCorrection">medium</property>
 <property name="reputation">medium</property>
 <property name="contextType">batteryLevel</property>
 </binding.slp>
 </service>
 ...
 </component>
 ...
</composite>

Service (server-side)

<composite name="context-consumer.composite">
 ...
 <reference name="mobile-battery-level-info" promote="mobile-device-resources-
 analyzer/mobile-battery-level-info">
 ...
 <component name="mobile-device-resources-analyzer">
 <implementation.java class="examples.smarthome.client.src.
 main.java.ResourcesAnalyzerCO"/>
 ...
 <reference name="mobile-battery-level-info">
 <resource.xml ...>
 ...
 <binding.http .../>
 ...
 <binding.slp filter="(&(probabilityOfCorrection=high)(reputation=medium)
 (contextType=batteryLevel)(protocol=rest))"/>
 </reference>
 </component>
 ...
</composite>

Reference (client-side)

Figure 5.7: SCA Definition of the Ubiquitous Bindings.

QoC-based selection

As already stated, in the provider selection we consider additional information about the service.
In the particular case of context providers, we filter them regarding the QoC attributes (cf. Sec-
tion 3.1).

83

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

In ubiquitous bindings, these QoC attributes are incorporated in context advertisements to
enable the selection of suitable information. Protocols, such as SLP, support the addition of new
attributes in a straightforward way and do not need any kind of modification. Other protocols
(e.g., UPnP) need to be extended to support the attribute definition. In order to support selection
of context providers based on QoC attributes, we use the model introduced in Section 5.3.

Although our QoC model combined with LDAP filters allow selection of context providers
according the customer needs, there is no guarantee that only one of the suppliers will satisfy
the filter. Therefore, to deal with this issue, we assume that all the discovered context sources
of the same information are equivalent—i.e., any of them can be used as context provider. This
assumption is valid regarding the limited capabilities of some mobile devices and the importance
of the latency time for context-aware systems. In the current implementation of the ubiquitous
bindings, we select the first context found and keep the others in a context pool to replace the
selected one if it fails. Nevertheless, as we mentioned before, the ubiquitous bindings are flexible
enough to allow more complex selection techniques if needed.

Implementation of the Ubiquitous Bindings in the FRASCATI platform

As with resource-oriented bindings, ubiquitous bindings are also integrated into the FRAS-
CATI platform. Figure 5.8 depicts this integration. As it can be seen, we also follow the
containerComposite pattern used in the resource-oriented binding definition (cf. Section 5.7.1).
In the client side, the container provides discovery functionalities—i.e., it is responsible for grant-
ing spontaneous access of services discovered at runtime. In other words, the container detects,
selects and enables interactions with required services. In the server side, the container com-
plements the discovery capabilities of clients by advertising the services whose bindings are de-
clared as ubiquitous. If the encapsulated component has both roles—i.e., client and server, the
container will provide the discovery and advertisement functionalities.

The proposed architecture for these components modularizes different concerns of service
discovery (i.e., search, selection, and provider monitoring) and introduces some optional opti-
mizations (in the client side). In this way we foster the reuse of the different components (in
particular for selection of providers), the flexibility to use different implementations and choose
the required components (not all the components are mandatory). Below, we present the detailed
architecture of the container in the reference and service sides.

Client runtime

Legend:

Container Client
Interface

Server
Interface

context-
consumer

Provider Selector

Active Stub

Binding Factory

Stub Registry

U

Server runtime

discovery
protocol

Skeleton context-
producer

U

Figure 5.8: Ubiquitous Binding Integration into the FRASCATI Platform.

Container with Discoverer Role. When SCA references in a component are declared with ubiq-
uitous bindings, the container will provide the required functionality for binding establishment
at runtime. Benefiting from the different steps in the discovery process (cf. Section 2.4), we mod-
ularize and externalize the common functionalities to different container composites to reduce

84

5.7. Integrating SPACES Connectors into SCA

the memory footprint. In particular, the implementations of different discovery protocols can
share components for provider selection, active stubs (that encapsulate the communication with
remote services) and the stub registry (which keeps a list of the stubs already instantiated). Thus,
the container in the reference-side has a discoverer role in the context of SDPs.

A container with discoverer role (left side in Figure 5.9) has a Discoverer Orchestrator that co-
ordinates the discovery of the requested SCA service. The Finder component sends the requests
to detect the potential providers in the environment. If the filters with attributes are supported
(e.g., SLP), the Finder translates the LDAP filters to the protocol scheme. If the SDP does not
support automatic service selection and it is needed (e.g., UPnP), the Finder uses a provider se-
lector for choosing the service. When the provider is selected, the Discovery Orchestrator dis-
ables the Finder and uses the Provider Monitor for monitoring the service availability. When
the service is invoked the first time, the Discovery Orchestrator verifies in the stubs registry if
there is a stub for the service provider. When this happens, the Discovery Orchestrator selects
the registered stub as Active Stub. Otherwise, the Orchestrator uses the FRASCATI binding fac-
tory [Romero et al., 2010c] (which is used to create wires and bindings in the platform) in order to
instantiate and configure the Active Stub. When the provider becomes unavailable, the Provider
Monitor notifies the Discovery Orchestrator that actives again the Finder and asks it to find a new
provider.

Server Device

Context-consumer Container

Client Device

Context-consumer
Container

context-consumer Discoverer
Orchestratorpush

pull

context-consumer

Legend:
Container
Composite

Client
Interface

Server
Interface

Finder

Provider
Monitor

U

selectProvider

findProvider

createStub

sendRequest

getStub

Promoter

Service
Registry

Udiscovery
protocol

pull

push

monitor

getServices

Figure 5.9: Discoverer and Advertiser Architecture.

Container with Advertiser Role. In the service-side, the container of an SCA component ex-
posing services with ubiquitous bindings, has a Promoter component with the following respon-
sibilities:

1. Advertise the available SCA services in the Service Registry. Each entry in the Service
Registry contains the required information for the published service (e.g., name, type) that
is required to advertise the service. This information can be updated at runtime.

2. Listen and process discovery requests.

3. Notify events associated with the SCA component state.

A given container hosts only one Advertiser of an ubiquitous binding type. This means that
all the services with a same ubiquitous binding type may be exported using the same advertiser
instance.

85

Chapter 5. Enabling Context Mediation In Ubiquitous Environments

5.8 Summary

In this chapter we introduce our solution to deal with context integration in ubiquitous environ-
ments. In our approach, we consider the importance of independence from context representations
and communication mechanisms, loose-coupling, flexibility and extensibility (called properties for con-
text mediation in this dissertation) to deal with heterogeneity in this kind of environments. We
reach these properties by basing our solution in well-defined standards characterized by their
simplicity and wide acceptance, promoting the separation of mediation concerns, applying a
resource-oriented approach and, using principles and concepts from CBSE and SOA.

The three contribution that make part of our approach, which have been presented in this
chapter, can be summarized as follows:

1. SPACES Metamodel: As the cornerstone of our approach we define a metamodel provid-
ing the elements for exposing context information as resources. In particular, in the meta-
model we state the relationships between the principal concepts that have to be considered
in context mediation. The SPACES Metamodel have two kinds of concepts: i) Context El-
ements that reify relevant entities in context mediation and, ii) Complementary elements
that we consider important for defining a simple but complete solution. Thus, our SPACES
Metamodel, inspired in the REST architectural style, provides the foundations to build solu-
tions enabling the integration of context information considering the different participants
and concerns as first class entities.

2. SPACES Connectors: From the previous metamodel, we propose SPACES connectors,
which constitute our middleware solution for dealing with context integration. These con-
nectors foster the separation of context mediation concerns and context processing tasks by
applying concepts from CBSE and the REST architectural style.

3. Generic Architecture for Context Mediation: By following the principles stated by the
SPACES Connectors, we introduce a generic architecture respecting the modularity from
the context as a resource metamodel for context processing—i.e., the discovery, address-
ing, access and representations. Then, we reified this architecture by extending the SCA
standard. The combination of SPACES Connectors and SCA promotes the usage of our
approach in the integration of different kinds of applications (not only context-aware). To
achieve it, we classify the ubiquitous connectors functionality in two categories: integra-
tion and discovery, which are materialized in SCA as resource-oriented bindings and ubiquitous
bindings, respectively. Both, this separation and the clean concerns isolation from SCA allow
the combined or independent usage of these functionalities. Thus, by putting together SCA
and our SPACES connectors, we provide support for mobility, heterogeneity and, context
flow in context-based adaptation in ubiquitous environments.

In the next chapter we present ubiquitous feedback control loops, which illustrate a concrete
application of SPACES connectors concepts and allow the building of adaptable context-aware
applications.

86

Chapter 6
Building Ubiquitous Feedback
Control Loops

Contents
6.1 Properties for Context-Based Adaptation 88

6.2 Context-based Adaptation as a Process . 89

6.3 Building Ubiquitous Feedback Control Loops 92

6.4 Determining the Required Reconfiguration for the Applications 95

6.4.1 Example: The MOBIHOME Application 95

6.4.2 Modeling the Selection Problem . 96

6.4.3 Optimizing The Resource Consumption 98

6.4.4 Optimizing The Provided QoS . 99

6.4.5 Optimizing The Reconfiguration Cost 99

6.4.6 Decision Maker Architecture . 99

6.5 Planning the Required Actions for Reaching the New Configuration . . . 100

6.6 Instrumentation of the Adaptation in the FraSCAti Platform with the per-
sonalized SCA Bindings . 101

6.7 Local Feedback Control Loops . 103

6.8 Summary . 106

In this dissertation we identify two main issues associated with the development of ubiqui-
tous systems: context integration and context-based adaptation. In this chapter we focus in the
second part of the contribution, which focuses on the adaptation issue.

Motivations

The context-aware applications have be adapted with a minimal intervention from users. The
different adaptation tasks—i.e., the context gathering, the context processing, the identification of re-
quired configurations and the execution of the adaptation have to be as transparent as possible to the
application users. As already stated in Chapter 4, Autonomic Computing provides the founda-
tions for developing self-management systems. In this chapter we exploit such foundations for
building Feedback Control Loops that enables transparent adaptation of context-aware applica-
tions and the same time helps developers un the development of such applications.

87

Chapter 6. Building Ubiquitous Feedback Control Loops

Chapter Contributions

In Chapter 5 we have discussed the SPACES Connectors architecture and its incorporation into
SCA for dealing with context integration. Now, we need to employ it for making the adaptation
of applications easier. To do that, we consider this kind of adaptation as a process where the
integration of the context information is fundamental. This process starts with the data collec-
tion from context sources and finishes in the execution of the required configuration of applica-
tions. Throughout this process, context information is always flowing between the participants.
SPACES Connectors can be applied to enable this flowing. Hence, the contributions of this chap-
ter can be summarized as follows:

1. A general approach for dealing with the adaptation process: Following the principles of
the autonomic computing (cf. Chapter 4) and exploiting SPACES connectors, we define
Ubiquitous Feedback Control Loops (Ubiquitous FCL), our approach supporting the adapta-
tion of applications based on context information. This approach allows the mobility of
adaptive applications as well as the dynamic incorporation of new services in the adap-
tation process. In the Ubiquitous FCLs, we include the notion of Local Feedback Control
Loops, which support simple local decisions when the global (or ubiquitous) loop cannot
make the adaptation decisions. Fostering simplicity and reuse (cf. Section 1.2), the different
participants in FCLs are interconnected by respecting the SPACES Connectors principles.

2. A mechanism for determining the required adaptions: By applying constraint programming
techniques [Apt, 2003], we define a mechanism for determining the required configurations
in Ubiquitous FCLs. The required reconfiguration is stated by regarding the context infor-
mation as well as additional dimensions such as resource consumptions, Quality of Service
(QoS) and adaptation cost. Therefore, the new application configuration is not only valid
but also the most suitable for the current conditions and expectations of the costumer.

Chapter Organization

The remainder of this chapter is organized as follows. We start by presenting the properties
expected in context-based adaptation (cf. Section 6.1) as well as our modeling of this kind of
adaptation as a process (cf. Section 6.2). Then, we discuss the Ubiquitous FCL, our general ap-
proach for context-awareness (cf. Section 6.3). We continue providing details about how we deal
with some parts of the Feedback Control Loop. In particular, we describe our proposal for deter-
mining the required configurations (cf. Section 6.4) and we give an overview of the mechanism to
plan the actions for reaching such configurations (cf. Section 6.5). In a similar way, in Section 6.6
we explain the orchestration of the adaptation execution. Besides that, in Section 6.7 we com-
plement the Ubiquitous Feedback Control Loops description by introducing the notion of Local
Feedback Control Loops. Finally in Section 6.8 we provide a summary of the chapter.

6.1 Properties for Context-Based Adaptation

In ubiquitous environments, the variability in terms of computational resources and technologies
makes the adaptation of context-aware applications a real challenge. Depending on devices ca-
pacities and required context information some adaptation decisions can be made locally. How-
ever, the adaptation decision can be complex—i.e., information from several sources using differ-
ent kinds of discovery protocols, interaction mechanisms and representations has to be retrieved
and processed. Moreover, the available services in the environment must be considered in order
to provide a better user experience. To deal with these issues, we can benefit from the most pow-
erful devices for assigning the responsible entities of the different adaptation tasks. Therefore, to
distribute the adaptation responsibilities we need to consider the following properties:

1. Flexible context integration: Context providers differ in their capabilities and therefore in the
mechanisms used to advertise and access the information. Normally, providers select the

88

6.2. Context-based Adaptation as a Process

most convenient protocols and context representations according to their computational
resources, such as available memory and battery level. Then, a solution enabling context-
based adaptation should be flexible enough to deal with the integration of context informa-
tion regarding this heterogeneity.

2. Clear definition of the different adaptation roles and tasks: The identification of different tasks
and entities responsible in the adaptation process has several advantages. First, it is possi-
ble to establish who must do what. A well defined task attribution is key for the successful
execution of a system. Second, the modularization of the different responsibilities fosters
the improvement and evolution of adaptation functionalities. And third, this same mod-
ularization makes the detection of problems easier. Therefore, the proposed mechanism
should enable a clear definition of the different tasks.

3. Dynamic Detection of Adaptive Applications and Services: The distribution of the adaptation
concerns and the dynamism from ubiquitous environments mean that some of the process
participants can join and leave at anytime. In particular, the adaptive applications running
on mobile devices and some services satisfy this property. Hence, the solution supporting
the adaptation should provide support for dynamic discovery.

4. Suitable mechanism for identification of adaptation situations: Once all the context information
is collected, the approach enabling the adaptation has to provide a way for identifying the
cases requiring the application adaptation as well as the determination of required actions
to do it. The underlying mechanism has to consider, of course, the context information.
Moreover, the adaptation should be optimal regarding additional dimensions that improve
the user satisfaction. Therefore, the result of the adaptation has to produce a working ap-
plication configuration that satisfies the user expectations.

5. Simple execution mechanism of the required reconfigurations: The offered approach should allow
the execution of the adaptation respecting the flexibility principle for context integration.
To do that, the reconfigurations can be considered as context information and therefore a
similar mechanism for dealing with heterogeneity issues should be applied.

As stated in Section 4.4, the main drawbacks of approaches dealing with context-based adap-
tation are associated with the lack of flexibility for supporting reconfiguration at the application
and runtime levels, the low priority given to the information integration, the lack of relevance given to
context information and the high dependency between the different entities participating in the adap-
tation process. In order to face these drawbacks and satisfy the mentioned adaptation properties,
we propose the concept of Ubiquitous Feedback Control Loops. These Ubiquitous loops enable the
adaptation of context-aware applications in an semi-autonomic way. To do that, we leverage on
the combination of SPACES Connectors and SCA presented in Chapter 5. Table 6.1 compares
our Ubiquitous FCLs with different autonomic approaches in terms of context mediation prop-
erties and adaptation issues. In this table we also include the ubiquitous and service discovery
approaches, because with the Ubiquitous FCLs we complete the contribution of this disserta-
tion. As observed, the FCLs inherit the different advantages from SPACES Connectors. In the
following sections, we provide more detail about these loops and how we meet the properties for
adaptation.

6.2 Context-based Adaptation as a Process

In order to meet the property "Clear definition of the different adaptation participants and tasks"
(cf. Section 6.1) we employ the MAPE-K model (cf. Section 4.1) as well as the notion of busi-
ness process [Coalition, 1999, Coalition, 1999]. In particular, regarding the definition of process,
we can see that the realization of context-based adaptation requires the execution of a series of
tasks, in a specific order to meet the goal of changing the structure or/and behavior of applica-
tions according to the environment state. Furthermore, the distributed nature of the adaptation

89

Chapter 6. Building Ubiquitous Feedback Control Loops

Support for Multiple
Representations QoC Mobility Support Dependency

Definition Interaction Discovery Static Dynamic Level

Agent-based
Middleware for
Context-Aware

Services
! ! ! Component

Interfaces ! ! ! " Middleware

ANS ! " ! QoC " " " " Middleware

Adaptation Platform
for Autonomic
Context-Aware

Services
! ! N/S Component

Interfaces N/S N/S ! " Application,
Middleware

Framework for
Autonomic Context-

Aware Service
Composition

! ! ! Component
Interfaces N/S " ! " Application

JADE N/A N/A N/A N/A ! N/A " " Application

MIDAS ! ! " Proxies (Context
elements) " N/S " " Application,

Middleware

AutoHome ! ! ! Client and Server
Interfaces " " " " Application,

Middleware

MUSIC ! ! "
Component
Interfaces,

Service
Descriptions

! " " " Application,
Middleware

Rainbow N/A N/A ! System-Layer
Infrastructure ! ! " "

Application
(dynamic),
Middleware

(static)

DACAR N/A N/A ! Component
Interfaces ! ! ! " Application

INDISS ! ! N/A Events ! " " ! Middleware

ReMMoC ! ! N/A WSDL " " " " Middleware

A multi-protocol
framework for ad-hoc

service discovery ! ! N/A Component
Interfaces ! " " ! Middleware

GAIA ! ! " Channels ! ! " " Application,
Middleware

GAIA Microserver ! ! N/A J2ME Proxy/
Channels ! ! ! " Application

MUSIC Peer-to-Peer ! ! " Peer Group ! ! ! ! N/A

Cortex ! ! ! Sentient Objects ! " " " Middleware

CARMEN ! ! ! Proxies (MAs) ! ! ! " Middleware

Aura ! ! ! Environment
Manager ! ! ! " Middleware

CARISMA ! ! ! Profiles ! N/A ! " Middleware

Cooltown ! ! " Directory Module ! " " ! Middleware

MiddleWhere ! " ! Adapters " N/A ! ! N/A

MobiPADS ! ! ! Channel Service,
Mobilets ! N/A " " Application,

Middleware

SOCAM ! ! ! Service Locating
Service ! ! ! " Application

RCSM ! ! ! Channels (CTCs) " " " " Application

Large Scale Peer-to-
Peer Context
Dissemination

Middleware
! " ! Context-based

groups ! ! ! ! N/A

CAPNET ! ! ! Messaging
Component " ! " ! Middleware

Context Information Loose Coupling

Independent
Communication

Mechanism
Adaptation

A
ut

on
om

ic
 A

pp
ro

ac
he

s
Se

rv
ic

e
D

is
co

ve
ry

So

lu
tio

ns
M

id
dl

ew
ar

e
So

lu
tio

ns
 fo

r C
on

te
xt

-A
w

ar
en

es
s

Ubiquitous Feedback
Control Loops " " " Data " " " " Application,

Middleware

Middleware
Approach!

DImension!

Table 6.1: Comparation of Ubiquitous FCLs with Different Approaches for Adaptation

90

6.2. Context-based Adaptation as a Process

and the consequent modularization of the adaptation responsibilities (i.e., monitoring, analysis
and execution) bring into play different participants as well as the roles that they need to hold.
Therefore, to build our solution, we start by modeling this kind of adaptation as a process.

Figure 6.1 depicts this process following the BPMN notation [White, 2004]. As it can be seen,
we identify four main roles: Information Source, Context Provider, Adaptation Orchestrator and Ap-
plication Client. The Information Source role is held by entities in the environment providing rel-
evant information for the adaptation process (cf. Section 3.1). Mobile devices and sensors are
examples of entities having this role. For its part, the Context Provider role has responsibilities
associated with the collection of data from the different sources, the processing of this data and
the production of context information that will enable the Adaptation Orchestrator for determin-
ing the required configurations on the Client Application. Depending on how the adaptation is
tackled, the roles of Context Provider and Adaptation Orchestrator can be held by the same entity.
Consequently, the functionality for executing the adaptation can be distributed between different
entities.

Figure 6.1 also shows the general tasks that make part of the adaptation process. These tasks
are discussed below:

1. Data Gathering: Consists in the collection of raw data from information sources. Once the
data is gathered, it is determined if there is a significant change in order to trigger the
adaptation. The Data Gathering belongs to monitoring phase of the MAPE-K model.

2. Context Processing: In this task, the data collected in the Data or Context Gathering tasks
is processed in order to produce high level information that will be used to decide the
required reconfigurations. The context-based adaptation process can include multiple in-
formation sources and context providers, which means that the Data Gathering and Context
Processing tasks can be execute several times before reaching the Context Gathering task. In
the Adaptation Orchestrator the Context Processing task is optional.

3. Context Gathering: This task consists in the retrieval of the context information for identi-
fying adaptation situations. The information can be explicitly requested from the context
provider (pull mechanism) or the context consumer can be notified (push mechanism).

4. Identification of the New Configuration: Using the collected context information, this task
identifies the new configuration that is required in the adaptive application. The Context
Processing, Context Gathering and Identification of the New Configuration tasks constitute the
analysis phase.

5. Determination of the required actions to meet the configuration: Once the required configuration
is established, it is necessary to determine the changes to be done on the application in order
to meet this new configuration. In other words, we need to decide what components must
be added, deleted and/or replaced. The result of this task will be reconfiguration scripts.
This task is part of the planning phase of the MAPE-K model.

6. Adaptation Information Gathering: This task allows the collection of reconfiguration scripts.
The task makes part of the execution phase together with the Adaptation Execution task.

7. Adaptation Execution: This task is the final task of the adaptation process. The task consists
in the reconfiguration of the context-aware application, i.e., the execution of the reconfigu-
ration script.

As in any process, in the context-based adaptation process the flow of information between
the tasks is vital for its execution. In particular, in the context-based adaptation process we find
two types of information: context information and information associated with the adaptation. As
already stated in Section 3.1, context information is data characterizing the situation of a per-
son, place or object, which are considered relevant in the interaction between users and applica-
tions [Dey, 2001]. Examples of context information include location, user preferences, and data

91

Chapter 6. Building Ubiquitous Feedback Control Loops

describing the environment state (e.g., temperature, sound level and available bandwidth). On
the other hand, the information associated with the adaptation is any information derived di-
rectly or indirectly from the context information. This information includes adaptation rules,
reconfiguration scripts and the functionality that has to be deployed.

C
on

te
xt

 P
ro

vi
de

r
C

lie
nt

Ap

pl
ic

at
io

n

Adaptation
Execution

Get data

Ad
ap

ta
tio

n
O

rc
he

st
ra

to
r

Adaptation
Information
Gathering

yes

M
on

ito
rin

g
An

al
ys

is

Data Gathering
Significant
Changes?

no

M
on

ito
rin

g

Identification of the
New Configuration

Context
Processing

Context
Processing

Retrieve context information Send context
information

Determination of the
Required Actions to

Meet the Configuration

Context
Gathering

Adaptive
Application
Detection

Ex
ec

ut
io

n

Send adaptation information

Continue
Processing?

no

Continue
Processing?

yes

noPl
an

ni
ng

An
al

ys
is

In
fo

rm
at

io
n

So
ur

ce

To
uc

h
Po

in
t

FC
L

To
uc

h
Po

in
t

To
uc

h
Po

in
t

Figure 6.1: Context-Aware Adaptation Process Definition

6.3 Building Ubiquitous Feedback Control Loops

The model introduced in the previous section gives us the elements for defining Ubiquitous
Feedback Control Loops. In particular, considering the different roles and responsibilities in the
context-based adaptation process and the need for distributing those responsibilities between
several entities, we need a mechanism enabling the flow of information. This mechanism should
consider the heterogeneity at different levels in ubiquitous environments. Then, SPACES Con-
nectors, our approach discussed in Chapter 5, is a suitable option to deal with this issue. Further-

92

6.3. Building Ubiquitous Feedback Control Loops

more, to benefit from the variability in terms of services and support the mobility of applications,
our Ubiquitous Feedback Control Loops exploit the discovery capabilities present in Ubiquitous
Connectors. Therefore, this kind of control loop respects the flexible context integration, clear def-
inition of the different adaptation roles and tasks and dynamic adaptation of adaptive applications and
services properties discussed in Section 6.1.

In order to build the Ubiquitous Feedback Control Loops we also use the SCA component
model (cf. Section 2.2.2). This means that the applications that we aim to adapt are conceived as
SCA applications. As already stated, the SCA selection is motivated because it structures SOA ap-
plications keeping the advantages of this approach in terms of loose-coupling and reuse. Further-
more, as we will discuss in Section 6.4, by using a unified model approach, such as SCA, we pro-
vide support for adaptation at platform and application levels. The SCA usage also fosters the in-
corporation of the RESOURCE-ORIENTED BINDINGS (RBs) and the UBIQUITOUS BINDINGS (UBs)
(cf. Sections 5.7.1 and 5.7.2, respectively), which bring discovery capabilities and a data-centric
approach into SCA. In particular, these bindings support the notion of Context as a Resource
(cf. Section 5.3). Now, given that the Software as a Service (SaaS) [Association, 2001, Nitu, 2009]
becomes a reality and the widespread use of SOA, we benefit from our UBs and RBs to connect
the different entities in the Ubiquitous FCLs. This means that we enable dynamic discovery of
adaptive applications and services using standard protocols, such as UPnP and SLP, and access
via the most suitable interaction protocols. This approach makes the integration of legacy appli-
cations as well as different kinds of service possible.

As already stated, our vision of the adaptation as a process helps us to conceive our Ubiqui-
tous FCLs. In particular, we benefit from this vision in three aspects:

1. Responsibilities Distribution: In Section 6.2, we have identified the different roles considered
relevant in the adaptation process as well as their associated responsibilities. This role
definition together with the tasks modularization help us to decide who must do what in
the Ubiquitous FCLs.

2. Architecture Definition: The clear definition of responsibilities allows us to conceive a simple
architecture reifying the different phases of the control loop. This architecture modularizes
the adaptation responsibilities fostering reuse and customization of the different elements.

3. Usage of the SPACES Connectors Concepts: The identification of the data that must flow
through the adaptation participants makes the usage of concepts from SPACES Connectors
easier. In particular, we can determine where the UBs have to be employed for enabling
spontaneous interactions.

To illustrate our approach, we employ the generic example depicted in Figure 6.2. In this
figure we use the SCA graphical notation introduced in Section 2.2.2. In particular, we have in-
cluded three entities and several services that are available in the environment to show the distri-
bution of the different responsibilities and roles of the adaptation process depicted in Figure 6.1.
The Entity 1 has two roles: Decision Maker and Context Provider. This means that the Adaptive
Server contained by this entity has responsibilities associated with monitoring, analysis and
planning phases. The monitoring responsibilities include the detection of the available context
information, services and adaptive applications. This data is used by the Adaptive Server in
order to determine the new application configuration for better exploiting the available services
in the environment. More details about this analysis activity is provided in Section 6.4. Once the
new configurations and the actions to reach them are defined, they are executed on the Entity
2 and Entity 3, which hold the role of Client Application from Figure 6.1. The two entities pro-
vide the required services for fulfilling the planned actions on context-aware applications. The
Entity 2 contains an adaptive application and the Entity 3 hosts an adaptive service. Ad-
ditionally, Entities 2 and 3 are Information Sources (cf. Figure 6.1) providing data about the
application configuration.

93

Chapter 6. Building Ubiquitous Feedback Control Loops

En
tit

y
3

Se
rv

er
 R

un
tim

e

SC
A

Pl
at

fo
rm

C
on

te
xt

Po
lic

y
Se

rv
ic

e
Pr

ov
id

er

R
ec

on
fig

ur
at

io
n

Se
rv

ic
e

M
od

ul
e

St
or

e

Se
rv

ic
e

1

En
tit

y
2

M
ob

ile
 R

un
tim

e

SC
A

Pl
at

fo
rm

C
on

te
xt

Po
lic

y

C
lie

nt
-s

id
e

A
pp

lic
at

io
n

R
ec

on
fig

ur
at

io
n

Se
rv

ic
e

En
tit

y
1

A
da

pt
at

io
n

R
un

tim
e

A
da

pt
at

io
n

Se
rv

er

C
on

te
xt

C
ol

le
ct

or

 S
C

A
Pl

at
fo

rm
R

ec
on

fig
ur

at
io

n
Se

rv
ic

e

D
ec

is
io

n
M

ak
er

A
ct

io
n

Pl
an

ne
r

R
ec

on
fig

ur
at

io
n

Ex
ec

ut
or

SC
A

w
ire

 (l
oc

al
)

SC
A

w
ire

 (r
em

ot
e)

SC
A

se
rv

ic
e

SC
A

re
fe

re
nc

e

A
SC

A
co

m
po

ne
nt

B
SC

A
co

m
po

si
te

Th
ird

-p
ar

ty
 p

ro
vi

de
r

Le
ge

nd
:

U
B

 U
bi

qu
ito

us
 B

in
di

ng

Se
rv

ic
e

n

Lo
ca

l A
da

pt
at

io
n

Se
rv

er

R
ul

e
Ev

al
ua

to
r

A
ct

io
n

Pl
an

ne
r

R
ec

on
fig

ur
at

io
n

Ex
ec

ut
or

...

U
B

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SCA

SC
A

SC
A

SC
A

U
B

U
B

UB

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

U
B

R
PC

R
PC

R
PC

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SCA

Figure 6.2: Example of a Ubiquitous Feedback Control Loop
94

6.4. Determining the Required Reconfiguration for the Applications

6.4 Determining the Required Reconfiguration for the Applica-
tions

In the previous section we gave an overview of our Ubiquitous FCLs and the different elements
that compose them. In this section, we focus on the analysis phase of the FCL, which is associ-
ated with the Decision Maker from Figure 6.2. In particular, we propose a mechanism based on
Constraint Satisfaction Problems (CSPs) techniques [Apt, 2003]. This mechanism selects a new
valid configuration regarding, for example, the cost associated with resource consumption (e.g.,
memory or energy), the adaptation (e.g., in terms of bindings that we need to add or remove) or
QoS [Xiao, 2008] (e.g., user satisfaction or response time). In this way, we provide adaptation con-
sidering not only the current context but also dimensions for providing an optimized application
that guarantees a better user experience.

Our mechanism for selecting the most suitable configuration, inspired
on [Beauvois et al., 2007, Neema and Ledeczi, 2003], assumes that an application provides a
set of functionalities, each of which is reified by one or several components. Some of these
functionalities are mandatory, i.e., they have to be always present in the application and therefore
the components that implement them represent the application kernel. The optional functionalities
are the flexibility points (or variation points) of the architecture. We exploit these variations points
in order to determine the functionalities that have to be added or modified according to the
context changes.

In order to make the decision related with the new configuration, we also require some infor-
mation provided by entities holding the Client Application and Decision Maker roles. The former
has to keep the list of flexibility points associated with the current application configuration. This
information is deployed with the application and updated each time that it is reconfigured. The
latter has the list of mandatory components that define the application kernel and the different
component configurations associated with each flexibility point. Furthermore, the entity holding
the Decision Maker also includes the list of dependencies between the flexibility points. These
dependencies define exclude and require relationships.

In our mechanism, we associate with each adaptation situation a context policy that identifies
a concrete need for changing a flexibility point or functionality in the application. The results
of different context policies are aggregated for defining the new required configuration—i.e., the
variation points that need to be modified. In Ubiquitous FCLs, several policies can be associated
with the same functionality. Such policies can be triggered at the same time by context changes
and can select different implementations of the point. In these cases, we need to apply our mech-
anism in order to decide the final new configuration of the application. Thus, by modularizing
the changes of each flexibility point in context policies we simplify the selection of the new con-
figuration.

In the next section, we present a simple application example that we use for illustrating the
usage of our selection mechanism.

6.4.1 Example: The MOBIHOME Application

MOBIHOME is a simple application that enables mobile devices for controlling and accessing dif-
ferent services in home environments. The application has a module for each service. The differ-
ent modules can be added, removed or replaced depending on the service availability. Therefore,
they represent the flexibility points of the application architecture.

Figure 6.3 depicts the architecture of the application. As observed, MOBIHOME includes the
View and Controller components, which represent the kernel of the application. The archi-
tecture also presents two modules: TV Control Module and Multimedia Module. The for-
mer allows the mobile device to control a UPnP television via our ubiquitous bindings (cf. Sec-
tion 5.7.2). This module only has a possible implementation. The latter accesses a multimedia
server available in home. This component has an implementation allowing the display of mul-
timedia content such as videos and photos (called MultimediaI1). This implementation exploits

95

Chapter 6. Building Ubiquitous Feedback Control Loops

MobiHome

View

Controller
Multimedia

Module

TVControl
Module

UB

SCASCASCA SCA

UB

UBUB

SCA

VideoRendererSCA SCA
SCA

SCA SCA

Figure 6.3: The MOBIHOME Application

the Video Renderer component for video processing. Other implementation of the component
only permits the exploring of the multimedia files (called MultimediaI2).

In the following sections we use this example to present the modeling of our mechanism
for selecting the most suitable configuration. In this model we consider the already mentioned
assumptions regarding the application architecture as well as the different dimensions (resource
cost, adaptation cost and QoS) for optimizing the configuration selection.

6.4.2 Modeling the Selection Problem

In this section we present the modeling that will enable the selection of the optimized configu-
ration. To do that, we define C = {C1, · · · , Cm} as the set of configurations that can be stated
from the different implementations of the flexibility points selected with the context policies. For
example, in MOBIHOME we have the following configurations:

. C1 = {ViewI,ControllerI}

. C2 = {ViewI,ControllerI,TVControlModuleI}

. C3 = {ViewI,ControllerI,VideoRendererI}

. C4 = {ViewI,ControllerI,TVControlModuleI,VideoRendererI}

. C5 = {ViewI,ControllerI,MultimediaI1,VideoRendererI}

. C6 = {ViewI,ControllerI,MultimediaI2,VideoRendererI}

. C7 = {ViewI,ControllerI,TVControlModuleI,MultimediaI1,VideoRendererI}

. C8 = {ViewI,ControllerI,TVControlModuleI,MultimediaI2,VideoRendererI}

On the other hand, FP = {FP1, · · · , FPn} denotes the flexibility points of the application
and Ij = {I1, · · · , Io} refers to the implementations associated with the FPj flexibility point.
In the context of our example we have two flexibility points associated with the two mod-
ules. For the TV Control Module and the Video Renderer, we have one implementation
and for the Multimedia Module we have MultimediaI1 and MultimediaI2. We also introduce
FPCi as a subsets of FP representing the selected variation points for the ith configuration.
For example FPC8 = {TV ControlModuleFP,MultimediaModuleFP, V ideoRendererFP} cor-
responds to the selected points in configuration 8 of MOBIHOME. The expressions in the set
SFPi = {sfp(FP1), · · · , sfp(FPn)} indicates if the ith flexibility point is used (1) or not (0) in Ci.
For C8 in MOBIHOME, sfp(TV ControlModuleFP) = 1, sfp(MultimediaModuleFP) = 1 and
sfp(V ideoRendererFP) = 1. For its parts, ICj

i represents the group of implementations that
can be potentially chosen for the jth flexibility point in the ith configuration. The expressions in
SIij = {si(I1), · · · , si(Iq)} express the selected and discards implementations of the jth flexibility
point in configuration Ci.

To state require and exclude constrains between flexibility points, we define the sets
R = {(FPi, FPj) ∈ FP × FP : FPi requires FPj} and E = {(FPi, FPj) ∈

96

6.4. Determining the Required Reconfiguration for the Applications

FP × FP : FPi excludes FPj}, respectively. In the MOBIHOME example, R =
{(MultimediaModuleFP, V ideoRendererFP)}. The only element in this set indicates that the
usage of the MultimediaModuleFP point in the configuration always needs the presence of one
implementation associated with the VideoRendererFP point. On the contrary, there are not ex-
clude relationships and therefore E = ∅. Table 6.2 summarizes these definitions.

Explanation
(d1) C = {C1,..., Cm}, 1≤ m Possible Configurations
(d2) FP = {FP1,..., FPn}, 1 ≤ n Flexibility Points

(d3) Ij = {I1,..., Iq}, 1 ≤ q Implementations of the jth variation
point

(d4) FPC i ! FP Selected flexibility points in the ith

configuration

(d5)
SFPi = {sfp(FP1),..., sfp(FPn)}, 1 ≤ n ⋀ (sfp(FPj)= 1 !
FPj " FPC i) ⋀ (sfp(FPj)= 0 # FPj $ FPC i)

Expressions indicating the selected
and excluded variation points for
the ith configuration

(d6) IC i ! Ij

Selected implementations of the jth
variation point for the ith
configuration

(d7)
(d7) SIij = {si(I1),..., si(Iq)}, 1 ≤ q ⋀ (si(Ij)= 1# Ij "
IC i) ⋀ (si(Ij)= 0 # Ij $ ICi)

Expressions indicating the selected
and excluded implementations of
the jth flexibility point for the ith
configuration

(d8) R = {(FPi, FPj) " FP !FP: FPi requires FPj}, i ≠ j ⋀
1 ≤ i ≤ n ⋀ 1 ≤ j ≤ n

Require constrains between the
flexibility points

(d9) E = {(FPi, VPj} " FP ! FP: FPi excludes FPj}, i ≠ j
⋀ 1 ≤ i ≤ n ⋀ 1 ≤ j ≤ n

Exclude constrains between the
flexibility points

(d10) RE = {R1,..., Rq}, 1 ≤ q Resources consumed by the
implementations of a point

(d11) QSD = {Q1,..., Qt}, 1 ≤ t QoS dimensions offered by the
implementations of a point

(d12) RCONSVk = {rconsr1 (Ik),..., rconsrq(Ik)}, 1 ≤ q Consumption of the different
resources by the Ik implementation

(d13) QOSVk = {qosq1(Ik),..., qosqt(Ik)}, 1 ≤ t QoS dimensions offered by the Ik
implementation

(d14)
WEIGHTexp = {weightexp(expelement)}, (exp = rcons #
element " RE) ⋀ (exp = qos # element " QSD)

Importance associated with the
resource consumption and the
QoS parameters

(d15) MVP ! VP Mandatory flexibility points

(d16) C i = { �IC i
j} ith configuration

Definition

j=q#

j=1#

Table 6.2: Definitions for Modeling the Selection Problem as a CSP

As already said, we need to establish some criteria for choosing the new configuration,
when different alternatives are possible with the current context changes. In our approach,
we include the resource consumption, the adaptation cost and the QoS as selection criteria
in the analysis mechanism. These criteria enable the optimization of the new configuration
and improve the result of the adaptation process. For this reason, we need to introduce some
expressions permitting the measure of such criteria. In particular, we define two new sets:
i) RE = {R1, · · · , Rq} as the sets of resources, the use of which we can measure or know

97

Chapter 6. Building Ubiquitous Feedback Control Loops

and, ii) QSD = {Q1, · · · , Qt} indicating quality of service dimensions. We also introduce
the sets RCONSIj = {rconsr1(Ij), · · · , rconsrq (Ij)}, QOSIj = {qosq1(Ij), · · · , qosqt(Ij)} and
RCONFIj = {reconf(I0 → Ik, · · · , Is → Ik)}. The expressions in the first set denote the con-
sumption of the resource rk by the jth implementation. The qos expression indicates the QoS
offered by Ij . The expressions in the later set define the cost of replacing the uth implementation
by the kth implementation. In this expression, the I0 refers to the absence of an implementation
for the variation point, which is valid when the flexibility point is optional—i.e., the point is not
part of the application kernel. In the current implementation of the Decision Maker, we pa-
rameterize the component with the values of the resource consumption and QoS dimensions. For
its part, the reconfiguration cost is estimated in terms of the required operations for moving from
one implementation to another.

So far, we have introduce the basic concepts and expressions that we use in the selection
problem modeling. In the following sections we introduce the different functions and restrictions
associated with the criteria that we consider in our approach, i.e.—QoS, resource consumption
and reconfiguration cost.

6.4.3 Optimizing The Resource Consumption

In order to foster flexibility, in our Ubiquitous FCLs we provide different mechanisms for se-
lecting the most suitable configuration. The simplest of the provided mechanisms searches for
a valid configuration by using the implementations selected for each flexibility point. In this
mechanism, restrictions are not considered and therefore the first valid configuration found will
be chosen. If there is no a valid configuration, there will be no reconfiguration. On the other
hand, we also give the possibility of applying three optimizations: resource consumption, provided
QoS and reconfiguration cost. In this section we focus in the first optimization. The others will be
addressed in the following sections.

Regarding the resource consumption, we define the following function to optimize:

(F1) min

i=#FP∑
i=1

j=#Ii∑
j=1

k=#RE∑
k=1

(rconsrk(Ij)× si(Ij)× sfp(FPi)× weightrcons(rconsrk))

The previous function calculates the total resource consumption for a given configuration. We

use the d12 definition for determining the consumption associated with each point implementa-
tion and we guarantee that it will be only considered if the implementation and, of course, the
respective flexibility point make part of the considered application configuration (by using d5
and d7 definitions). Additionally, we use the weightrcons expression to include in the calculation
the importance associated with the resource. These values are extracted from user preferences
stating the relevance of different resources for the user, such as battery and memory consump-
tion. If a resource is no relevant in the optimization process, its weightrcons should be 0.

Considering the exclude and include relations, for minimizing (F1) we have to satisfy the
following restrictions:

(R1) {∀ FP ∈ MFP : (∃ I ∈ Ci/ I ∈ IFP ∧ si(I) = 1)}: All the mandatory variation points—
i.e., the application core, make part of the configuration.

(R2) {∀ Ij , Ik ∈ Ci : (Ij , Ik) /∈ E}: All the exclude constrains are respected.

(R3) {∀ (Ij , Ik) ∈ Ri : Ij ∈ Ci → Ik ∈ Ci}: All the require constrains are respected.

(R4) {∀ FP ∈ FP : sfp(FP) = 1 → #IC = 1}: Each selected flexibility point has one and
only one implementation that has been choosen.

98

6.4. Determining the Required Reconfiguration for the Applications

6.4.4 Optimizing The Provided QoS

Other dimension that we use for improving the result of the adaptation process is the QoS. Ap-
plying quality of service for selecting the new configuration is a suitable alternative since we
search to improve the user experience by means of the context-aware adaptation. Therefore, it is
logical that we try to maximize the value associated with the following expression:

(F2) max

i=#FP∑
i=1

j=#Ii∑
j=1

k=#QSD∑
k=1

(qosqk(Ij)× si(Ij)× sfp(FPi)× weightqos(qosqk))

In this function, we use the d13 expression to estimate the QoS offered by each variant. This

value is only considered in the calculation if the implementation as well as the flexibility point
are part of the configuration. Similarly to the minimization of resources, we use d14 to obtain the
weight associated with each QoS dimension. In the optimization of the QoS we also apply the
R1, R2, R3 and R4 restrictions introduced in Section 6.4.3.

6.4.5 Optimizing The Reconfiguration Cost

The last aspect that we use for selecting a new configuration is the reconfiguration cost. To calcu-
late this cost we define the following function:

(F3) min reconf(Cc → Ci)

Where reconf represents the costs of changing the current configuration (Cc) by the con-
figuration Ci. To calculate the reconfiguration cost we use the set difference Ci − Cc. With
this difference we can obtain the implementations of the points that must be added. We
also apply the operation Cc − Ci for determining the implementations to remove. For
example, to replace C1 by C8 in MOBIHOME (cf. Section 6.4.2), we have C8 − C1 =
{TV ControlModuleI,MultimediaI2, V ideoRendererI}, which indicates that need to add the
implementations for the TV Control Module, Multimedia Module and Video Renderer
component. On the contrary we do not need to remove functionality because C1−C8 is empty. As
it will be presented in Section 6.5, we use these differences for choosing the required scripts that
materialize the current reconfiguration. Depending on the components that have to be added and
removed we determine the reconfiguration cost. We specific an arbitrary value for the add and
delete operations of components in the architecture, which can be modified at runtime if required.
In this optimization we also need to satisfy the R1, R2, R3 and R4 restrictions.

6.4.6 Decision Maker Architecture

In the previous sections, we modeled the configuration selection considering different aspects
that we estimate relevant for context-based adaptations. In this section, we provide an overview
of the architecture that reifies the previously introduced modeling.

In order to enable the selection of the new required configuration, we propose the simple
architecture depicted in Figure 6.4. In this architecture, the Context Policies represent the
different adaptation situations that require the modification or elimination of flexibility points im-
plementations. The Configuration Collector component retrieves the decisions from these
policies and delegates the configuration selection to the Selection Orchestrator. This last
component uses a plugin-based mechanism to support the incorporation of several Selectors
representing different selection criteria. In particular we define the Selectors for the optimiza-
tion proposed in Sections 6.4.3, 6.4.4 and 6.4.5. Additionally, we introduce a Simple Selector,
which selects the first valid configuration calculated from the point implementations stated by
the context policies.

99

Chapter 6. Building Ubiquitous Feedback Control Loops

In our architecture, Selectors employ the Restriction Manager for retrieving the re-
strictions that must be fulfilled. This manager exploits different Holders, which are associated
with one or more restrictions. Figure 6.4 includes a Core Restriction Holder component
that guarantees the satisfaction of the R1, R2 and R3 restrictions. Furthermore, we provide the
flexibility for incorporating other Restriction Holders (as well as different implementations
for the Core Restriction Holder), which can be applied according to the Selector needs.
The Selectors and Holders are optional, but at least one of them have to be present in the
deployed Decision Maker. If no valid configuration is found, the resulting configuration is
the current configuration of the application.

We propose this architecture because we want to modularize the different as-
pects associated with the constraint satisfaction problem. Unlike other solu-
tions [Krishnakumar and Sloman, 2002, Neema and Ledeczi, 2003, Padmanabhuni et al., 2006,
Davidyuk et al., 2008], we reified in our architecture the restrictions and optimizable dimensions
in the Holders and Selectors respectively. With this modularization we enable the inde-
pendent modification of each one and, when required, it is possible to easily incorporate new
restrictions or optimizations. Thus, with the Decision Maker architecture we foster flexibility
and extensibility, properties that we search in our solution allowing context-based adaptation
(cf. Section 1.2).

 Decision Maker

Context
Policy 2

Context
Policy n

Restriction
Manager

Selection
Orchestrator

Reconfiguration
Cost Selector

Resource
Consumption

Selector

QoS
Selector

FP Configuration
Collector

...
Context
Policy 1

Simple
Selector

Core
Restrictions

Holder

...

Figure 6.4: Architecture of the Decision Maker Component

6.5 Planning the Required Actions for Reaching the New Con-
figuration

The output of the Decision Maker component is the new configuration as a list of implemen-
tations. Each implementation is associated with a specific flexibility point. In order to determine
the required actions for reaching this configuration, we apply the set differences between the cur-
rent and the new configurations. We use the difference Cc −Ci to identify the optional flexibility
points which implementation has to be removed. In a similar way, with Ci − Cc we determine
the implementation points to be added. Then, thanks to the isolation of flexibility points fostered
by the context policies, we select the scripts that must be executed. In particular, each flexibil-
ity point is associated with a reconfiguration script that specifies the components to be added
(resp. removed) for incorporating (resp. eliminating) a specific implementation. In the planning
we also determine the order to apply the configuration. To do it, we consider the require rela-
tionships between the flexibility points for deciding what script should be applied first. In this
analysis we assume that there is no loops in the require dependencies between the points. If this
case appears, we consider it that it is a design problem in the application and therefore we can
not guarantee the application consistency. Then, in the presence of loop dependencies, we do not
execute any reconfiguration.

100

6.6. Instrumentation of the Adaptation in the FraSCAti Platform with the personalized SCA Bindings

6.6 Instrumentation of the Adaptation in the FraSCAti Platform
with the personalized SCA Bindings

The FraSCAti platform provides a run-time API for enabling the modification and introspec-
tion at runtime of SCA applications [Seinturier et al., 2009]. The reconfiguration capabilities are
based on the FScript language [David, 2005, David et al., 2008], which enables the structural re-
configuration of component-based applications. Considering reconfigurations as transactions,
FScript offers atomicity, state consistency, isolation, and termination as consistency criterions in
the adaptation process. The satisfaction of these criterions ensures the behavioral integrity of
applications after the reconfiguration. Therefore, the FScript usage in our approach guarantees
that the application always will work in a suitable way after the Ubiquitous FCL execution.

The reconfiguration capabilities of the current FraSCAti platform version can be only accessed
locally. However, our Ubiquitous FCLs foster the distribution of different tasks of the adaptation
process. In particular, as already presented in Section 6.3, the analysis, planning and execution
responsibilities are effectuated by different entities. Therefore, we provide a mechanism enabling
the remote usage of the reconfiguration service. As we mention previously, our objective of
keeping the approach simple (cf. property 5 in Section 6.1) motivates the SPACES connectors
selection for the integration of the different entities in the FCL. Consequently, it is natural to
keep a uniform mechanism and we give to the FraSCAti platform the possibility of offering its
reconfiguration capabilities by applying SPACES principles.

To allow the remote access of the reconfiguration capabilities in FraSCAti, we introduce the
Reconfiguration Service (cf. Figure 6.2). This service is deployed as an SCA applica-
tion together with the FraSCAti runtime on the entity hosting the adaptive application. The
Reconfiguration Service encapsulates the FScript Engine providing introspection and in-
terception capabilities on the SCA applications. These functionalities are exposed by using the
Resource-Oriented bindings presented in Section 5.4. In particular, this component has the fol-
lowing responsibilities:

1. Processing the reconfiguration requests: the Reconfiguration Service receives the
SPACES requests indicating the execution of a script. These requests are specified using
the POST interface from REST. The script is embedded in the REST request body as it can
be seen below:

POST /alice-mobile-reconfiguration-service/app1/reconf1 HTTP/1.1
Host: server.inria.fr:8080
Content-Length: 1390
Content-Type: application/xml, charset=utf-8

<?xml version="1.0" encoding="utf-8"?>
<reconfiguration-service:message name="reconf1"

xmlns:rs="http://www.spaces.rs.org/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="www.spaces.org/XMLSchema

http://picoforge.int-evry.fr/projects/svn/cosmos/spaces/rs.xsd">
<rs:adaptation-decision-time>100</rs:adaptation-decision-time>
<rs:flexibility-point-list>

ViewFP ControllerFP TVControllerModuleFP MultimediaModuleFP VideoRendererFP
</rs:flexibility-point-list>
<reconfiguration-service:script name="VideoRenderer">
action add-video-renderer(mobihomeApp) {

var vr = adl-new("mobihome.video.renderer.vr");
controller = $mobihomeApp/child::controller;
bind($controller/interface::videoRenderer, $vr/interface::videoRenderer);

}
</reconfiguration-service:script>
<reconfiguration-service:script name="multimediaModule2">
action add-multimediaI2(mobihomeApp) {

var mm = adl-new("mobihome.multimedia.module.mm2");

101

Chapter 6. Building Ubiquitous Feedback Control Loops

var tvm = adl-new("mobihome.tv.controller.module.tvm");
controller = $mobihomeApp/child::controller;
vr = $mobihomeApp/child::vr;
bind($controller/interface::TVControllerModule, $mm/interface::multimediaModule);
bind($controller/interface::multimediaModule, $mm/interface::multimediaModule);
bind($controller/interface::videoRenderer, $mm/interface::videoRenderer);

}
</reconfiguration-service:script>

</reconfiguration-service:message >

In the two specified scripts we include the necessary actions for replacing configuration C1

by C8 in our MOBIHOME example (cf. Section 6.4.1 and 6.4.2). The Reconfiguration
Service triggers the execution of these actions on the correct application by using the URI
associated with the request. The actions are executed in the same order they are defined in
the request. The adaptation decision time (used for triggering local loops execution) and
flexibility point implementations list (already discussed in Section 6.4), are informations
kept in the client-side for adaptation purposes.

2. Processing the introspection requests: Respecting the REST principles, the information associ-
ated with the structure and different states of the component from an SCA applications can
be retrieved using the GET operation. Below, we define a request example for introspecting
the vr component:

GET /alice-mobile/mobiHome/vr HTTP/1.1
Host: device.inria.fr:8080
Accept: application/xml, application/json
...

The associated response would look like that:

HTTP/1.0 200 OK
Date: Thu, 7 Dec 2010 14:24:44 GMT
Content-Type: application/xml
Content-Length: 621

<?xml version="1.0" encoding="utf-8"?>
<introspection-service:message name="c1_request"

xmlns="http://www.osoa.org/xmlns/sca/1.0"
xmlns:is="http://www.spaces.is.org/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="www.spaces.org/XMLSchema

http://picoforge.int-evry.fr/projects/svn/cosmos/spaces/is.xsd">
<is:component-info name="vr" status="active">

<component name="vr">
<implementation.java class="mobihome.renderer.lib.VideoRenderer"/>
<service name="videoRenderer">

<interface.java interface="mobihome.renderer.api.IVideoRenderer"/>
<binding.sca/>

</service>
</component>

</is:component-info>
</introspection-service:message>

3. Management of the applications waiting for a reconfiguration: The Reconfiguration
Service component keeps the information of the applications waiting for a reconfigu-
ration. Each configuration can be considered as a REST resource, which is accessible once
the execution of the Ubiquitous FCL is triggered. Therefore, each resource has a unique
identifier associated that guarantees the execution of the reconfiguration on the correct ap-
plication. When the adaptation is executed, the resource becomes unavailable until the next
execution of the loop.

102

6.7. Local Feedback Control Loops

4. Collection of the adaptation decision times and new implementations of flexibility points composing
an application: When the Adaptation Server requests the execution of a reconfiguration,
it sends the time that took the analysis and planning as well as the list of the implementa-
tions of the points that compose the application after the reconfiguration. This adaptation
decision time is used for deciding the waiting time for the reconfiguration script (cf. Sec-
tion 6.7). On the other hand, the list of implementations associated with each flexibility
point is required for executing again the FCL.

By defining the Reconfiguration Service as an SCA application, we keep the clear sepa-
ration of this concern from the adaptive applications and enable the use of the service by different
Ubiquitous FCLs adapting the applications on the client entity. Furthermore, the application of
REST in the last phases of the adaptation process allows us to keep a coherent approach, fostering
simplicity and resuse of the different elements and mechanisms that make part of it.

6.7 Local Feedback Control Loops

In the previous section, we have introduced the mechanisms for supporting adaptation decisions
in the Ubiquitous FCLs. The idea of having these FCLs is to benefit from the most powerful
entities in the environment in order to determine the required reconfigurations considering the
context information and available services in the environment. However, in these global control
loops we need to consider the possible communication problems between the devices hosting the
adaptive application and the entities deciding the reconfigurations. In particular, the following
issues should be considered:

1. What happen if the context information cannot be sent to the Adaptation Server?

2. What happen if the adaptation takes a lot of time?

3. What happen if the reconfiguration service of the adaptive application is not more available
when the required configuration is decided?

4. If the adaptation of several applications is managed at the same time, how to guarantee the
correspondence between a determined reconfiguration and an application?

To deal with the first two issues we define Local Feedback Control Loops. These loops intro-
duce a certain autonomy degree in the entities hosting the adaptive applications because they
provide support for making local decisions based on reactive ECA (Event-Condition-Action)
rules. The idea is to keep as simple as possible the local decisions because they are conceived
as an auxiliary mechanism for the Global Feedback Control Loops. Furthermore, the entities
hosting the applications have a limited knowledge about the environment. This means that these
entities have not access to all the available context sources and are not aware of the available ser-
vices. Therefore, the decision-based on an incomplete knowledge should not have an important
impact on the application structure. The changes should be limited to component parametriza-
tion and the disabling and enabling of functionalities of the application.

The decisions that can be made by local loops include simple application recovery and appli-
cation deactivation. The data used in these simple decisions are the resource information (e.g.,
battery level, available memory), connection state and user preferences (if they are stored in the
device). These informations are independently processed and there is no consolidation of the
adaptation decision as in the ubiquitous FCLs. As already stated in Section 6.4, the global loops
aggregate the decisions from the different context policies. These policies, running on the most
powerful devices in the environment, collect information from different sensors, devices and con-
sider the service availability in order to determine the application configuration. Therefore, the
global loops have the capability of determining the addition, elimination or modification of the
flexibility points that make part of the applications.

103

Chapter 6. Building Ubiquitous Feedback Control Loops

Figure 6.5 depicts a snippet of code for a simple ECA rule (upper part) and its associated
script file (lower part). As it can be seen, the condition (line 7 and 8) includes the evaluation
of the facts as well as the presence of some components that are involved in the script. On the
other hand, the script file also shows that we are just disabling the components associated with
multimedia functionalities in MOBIHOME.

1 @Service(IBatteryRule.class)
2 public class BatteryRules implements IBatteryRule{
3 ...
4 @Property private String scriptName;
5
6 public String batteryLowRule(){
7 if(batteryLevel<50 &&
8 validConfiguration()){
9 return scriptName;
10 }
11 return null;
12 }
13
14 private boolean validConfiguration()
15 {
16 return ids.contains("vr") &&
17 ids.contains("mm");
18 }
19 }

1 action disable-multimedia-components(mobiHome) {
2 mm = $mobiHome/child::mm2;
3 vr = $mobiHome/child::vr;
4 controller = $mobiHome/child::controller;
5 stop($controller);
6 stop($vr);
7 unbind($controller/interface::multimediaModule[client(.)]);
8 unbind($controller/interface::videoRenderer[client(.)]);
9 }

Figure 6.5: Simple ECA Rule Example and its Associated Script

Entity 2 in Figure 6.2 contains a Local FCL. As it is depicted, a Local Control Loop follows the
same structure of the global one. The monitoring part used in the global FCL is also exploited
in the local one. In fact, entities hosting Local FCLs have additional functionality for determin-
ing when the decision is made locally. Figure 6.6 depicts the detailed monitoring part for these
entities. The presented architecture is inspired by the context policy concept from the COSMOS
context manager [Conan et al., 2007, Rouvoy et al., 2008]. In particular, we include the nodes that
compose the core of the context policy8—i.e, all the required components for executing the adap-
tation. Below we describe these components.

1. Adaptation Trigger: Decides, based on the adaptation orchestrator availability and
the waiting time for the reconfiguration decision in the global loop, if the decision has to
be done locally. If the component delegates the adaptation decision to the global loop, it

8The context policy, the ECA rules and their reconfiguration scripts are deployed together with the applications on the
host devices.

104

6.7. Local Feedback Control Loops

will send the information collected by the Adaptation Info Aggregator as well as the
waiting time estimated by the Delay Monitor;

2. Adaptation Info Aggregator: The main responsibility of this node is the aggrega-
tion of the information required in the adaptation process. This information includes the
current application configuration (i.e., the different components that make part of the ap-
plication), the flexibility points associated with the current functionality as well as other
context information (e.g., battery level, connection quality, and available memory);

3. Delay Monitor: This component supervises the time of the global loop execution. In
other words, the Delay Monitor receives (from the Adaptation Trigger) the time when
the request with the context information was sent and starts a timer for waiting the re-
ception of the associated reconfiguration actions. If the timer expires, it notifies to the
Adaptation Trigger component. The waiting time can be determined in three ways:
i) Using an arbitrary value (that can me modified at runtime when required), ii) cal-
culating the median historical value of the reconfiguration and iii) employing the ap-
plication complexity. The first time that the ubiquitous FCL is successfully executed,
there is no way to calculate the median historical value. The component estimating this
value (the Historical Estimator component in Figure 6.6) therefore has a property
for specifying a default media value. When several executions of the ubiquitous FCL
are done, the Historical Estimator component uses the "adaptation decision time"
values from reconfiguration requests to make the calculation. On the other hand, the
Complexity-Based Estimator component employs the number of components mul-
tiplied by an arbitrary value representing the weight associated with each component. Be-
cause we apply a plugin-based mechanism for the waiting time calculation, new ways of
doing it can be added easily. Finally, the Delay Monitor component has a property for
specifying how to calculate the waiting time.

4. Adaptation Server Monitor: Verifies the presence of the entity orchestrating the
Ubiquitous FCL activity.

5. Application Configuration Monitor: This component collects the information
about the application structure upon demand. This information is required in the local
FCL for deciding the new application configuration.

6. Implementations Collector: Stores the different flexibility points that characterize
the current application configuration. As it was explained in Section 6.4, these points rep-
resent a set of functionality currently offered by the application. This information is vital in
the ubiquitous FCL for determining the required actions in planning phase that will allow
the reaching of the new application configuration.

The generic part of the context policy architecture serves to deal with the already mentioned
Adaptation Server (cf. Section 6.2) unavailability and delays in the arrival of the global de-
cision. However, associated with the last issue we find two additional problems: i) the local
FCL can be in execution while the global adaptation decision arrives and, ii) the decided local
adaptation may have already been executed or be in progress. For dealing with these two is-
sues, we follow a simple strategy establishing that the first configuration that arrives is executed
and the other one is discarded. This strategy is valid because the local or global decisions are
valid for dealing with the identify adaptation situation. Furthermore, we guarantee that there
will be no conflicts between the execution of the reconfigurations. To implemented the strat-
egy, the Adaptation Trigger assigns a unique identifier following the URI format (called
adaptation identifier) to the triggered adaption that will be used to receive the reconfiguration.
This adaptation identifier is used in the Reconfiguration Service component for creating a
REST resource enabling the execution of the adaptation. When the local or global reconfiguration
arrives, this resource is deleted. In this way, only one of the reconfigurations will be executed.

105

Chapter 6. Building Ubiquitous Feedback Control Loops

Application
Configuration

Monitor

Implementations
Collector

Adaptation
Information

Collector

Adaptation
Server Monitor

Delay
Monitor

Simple
Estimator

Historical
Estimator

Complexity-
based Estimator

Adaptation
Trigger

Context
Information 1

Context
Information n

...

Context Policy

Figure 6.6: Context Policy for Entities Hosting a Local Feedback Control Loop

So far we have considered the adaptation issues associated with the entities hosting the local
FCLs. However, as we already mentioned, it is also necessary to deal with the unavailability
of the reconfiguration service of the application and the management of the adaptation of sev-
eral applications. Both of them concern the entity orchestrating the Ubiquitous FCL—i.e., the
Adaptation Server in Figure 6.2. To deal with the unavailability of the reconfiguration ser-
vice, the waiting time for the apparition of this service can be arbitrarily stated or calculated.
The calculation is done by using the waiting time transferred with the adaptation information
and the elapsed time between the information reception and the end of the adaptation decision.
Therefore, if the service is not available, several attempts are done until the transfer is successful
or the waiting time expires. For its part, the management of the several adaptive applications
at the same time is not a problem because we are using unique adaptation identifiers following
the REST principles. In fact, we use these identifiers in order to select the correct reconfiguration
service.

6.8 Summary

In this chapter, we have described how we build Ubiquitous Feedback Control Loops, our approach
for providing context-based adaptation. In this approach we apply the elements introduced by
SPACES connectors in order to provide a simple solution for dealing with the context discovery
and dissemination until the execution of the reconfigurations. The Ubiquitous FCLs consider the
adaptation as a process, where the tasks composing it can be spread between several entities. The
approach provides certain autonomy level for dealing with adaptation by enabling the discovery
of new services and adaptive applications that can be integrated into the process. This autonomy
is enhanced with the possibility of including Local Feedback Control Loops that make simple local
decisions.

In order to deal with the core tasks of the adaptation process—i.e., the Identification of New
Configurations and the Determination of the required actions to meet the configuration, we define a
strategy that applies CSP techniques. In particular, this strategy provides the flexibility to select
the new application configuration by considering not only the context information but also addi-
tional dimensions to optimize such as QoS, reconfiguration cost and resource consumption. Our
strategy provides the extensibility required for adding new optimization dimensions as well the
associated restrictions.

In this chapter and in the previous one, we have introduced the major contributions of this
dissertation—i.e., the SPACES metamodel, the SPACES Connectors concepts, the generic archi-

106

6.8. Summary

tecture of these connectors and the Ubiquitous FCLs enabling context-based adaptation. In the
following chapter we present different scenarios that we apply in order to provide the qualitative
and quantitative evaluations of our contribution.

107

Chapter 6. Building Ubiquitous Feedback Control Loops

108

Part III

Validation

109

Chapter 7
CASE STUDIES

Contents
7.1 A Caching Off-Loading Situation . 112

7.1.1 Description . 112
7.1.2 COSMOS: COntext entitieS coMpositiOn and Sharing 112
7.1.3 Distribution of the Context Policy . 114
7.1.4 Quantitative Evaluation: Measuring the Performance of the Approach 115
7.1.5 Results Discussion . 116
7.1.6 Qualitative Evaluation . 117

7.2 The TRACK.ME Platform . 118
7.2.1 Platform Description . 118
7.2.2 Quantitative Evaluation . 120
7.2.3 Results Discussion . 121
7.2.4 Qualitative Evaluation . 122

7.3 The DIGIHOME Service-Oriented Platform 122
7.3.1 Smart Home Scenario Description . 122
7.3.2 Platform Description . 124
7.3.3 Quantitative Evaluation . 125
7.3.4 Results Discussion . 127
7.3.5 Qualitative Evaluation . 129

7.4 Limitations of the Approach . 130
7.5 Summary . 130

In this chapter, we introduce three case studies validating our proposal—i.e., SPACES Con-
nectors as well as the Ubiquitous Feedback Control Loops. The presented case studies enable
us to confirm the suitability of our approach in ubiquitous environments by using different kinds
of devices and communication protocols.

The first case study describes a caching or off-loading situation for choosing between two ap-
plication configurations. This case shows the simplicity fostered by SPACES Connectors allowing
the distribution of a context policy in a easy and transparent way.

We also introduce the TRACK.ME platform as second case study, a service-oriented platform
for tracking the activities of mobile users. We use this platform for illustrating the advantages of
applying SPACES Connectors concepts into SCA.

Finally, in the third case study we introduce the DIGIHOME platform, which allows the adap-
tation of mobile applications by exploiting the Ubiquitous FCL concepts. The last case study
allows us to provide a validation of the complete approach.

111

Chapter 7. CASE STUDIES

Chapter Organization

In the rest of the chapter we introduce the caching or off-loading scenario in Section 7.1,
TRACK.ME in Section 7.2 as well as the DIGIHOME platform in Section 7.3. In the three cases
we present the experimentation and the advantages of our approach that we can confirm with it.
Section 7.4 discusses the drawbacks associated with our approach. We conclude the chapter with
a summary of the discussed case studies (cf. Section 7.5).

7.1 A Caching Off-Loading Situation

In this section we introduce a simple scenario that serves us as a starting point for the validation
of our proposal. The experience from the SPACES Connectors implementation as well as the
executed tests confirm the simplicity and flexibility of our approach.

7.1.1 Description

This case study, adapted from the scenario proposed in [Conan et al., 2007], introduces some chal-
lenges in terms of device heterogeneity for deploying distributed context policies in ubiquitous
computing environments.

In particular, we assume that the user of a mobile device executes a distributed application
for analyzing the smartphone usage while roaming. The WiFi connection of the mobile device
is subject to fluctuations. Thus, in order to tolerate such fluctuations, the middleware platform
executing the application can be augmented with the capabilities i) of caching application entities
into a software cache and ii) of off-loading application treatments on (more powerful) hosts of the
wired network. In order to choose between caching and off-loading, we use the context policy
depicted in Figure 7.1. This policy computes the memory capacity 4 as the sum of the average
free memory 2 plus the average free swap 1 . The context policy also monitors the WiFi network
connectivity. The context nodes configuration detects fluctuations and computes the adjusted bit
rate (average bit rate during periods of strong connectivity) 5 . When the memory capacity is
sufficient, but the adjusted bit rate low, caching is preferred. When the memory capacity is low,
but the adjusted bit rate sufficient, off-loading is preferred. In the two other cases, the end-user or
the middleware platform gives their preferences (caching or off-loading) 3 . Once the decision is
taken, connectivity information is used to detect the activation instants for caching/off-loading
when the connectivity mode evolves (from strongly connected to disconnected and vice versa).

In order to create a solution dealing with the caching or off-loading decision, we employ the
COSMOS context manager. In the next section we provide an overview of this context manager
before discussing how we employ the notion of SPACES Connectors in the case study.

7.1.2 COSMOS: COntext entitieS coMpositiOn and Sharing

COSMOS is a component-based framework for managing context information in context-aware
applications [Conan et al., 2007, Rouvoy et al., 2008]. In particular, COSMOS identifies the con-
textual situations for which a context-aware application is expected to react. These situations are
represented as context policies that are hierarchically decomposed into fine-grained units called
context nodes. Figure 7.2 depicts the structure of a context node.

In COSMOS, a Context Node is context information modeled by a software component. The
relationships between context nodes are sharing and encapsulation. The sharing of a context
node—and, by implication, of a partial or complete hierarchy—corresponds to the sharing of
part or all of a context policy. Context node leaves (the bottom-most elements, with no descen-
dants) encapsulate raw context data obtained from collectors, such as operating system probes,
sensors near the device, and user preferences in profiles. Context nodes should provide all the
inputs necessary for reasoning about the execution context. This is why COSMOS considers user
preferences as context information. Thus, the role of a context node is to isolate the inference of

112

7.1. A Caching Off-Loading Situation

Client-side
(Mobile
Device)

Server-side

cachingoff-loading Legend:
free
size

context node

local dependency
remote dependency

Server-
side context location

active notification
(resp. observation)

blocking notification
(resp. observation)

memory
manager

swap
size

user preference
manager

swap
manager

WiFi
manager

caching/off-loading
preference

free
size

average
swap

free
memory

average
memory

WiFi link
quality

WiFi
bit rate

is bit rate
variable?

average link
quality

connectivity
detector

average bit rate
if variable

memory
capacity

user's preferences
change detector

WiFi adjusted
bit rate

caching or
off-loading

decision
stabilization

System CallSystem CallSystem CallRegistry Call

3

1 2

4 5

6

7 8

Figure 7.1: Overview of a Distributed Context Policy.

high-level context information from lower architectural layers responsible for collecting context
information.

Each context node can tune its behavior by configuring the following properties:

Active/Passive. An active node is associated with a thread of control (attached to the Activity
Manager). Typical examples of active nodes include a node in charge of the centralization
of several types of context information, a node responsible for the periodic computation
of higher-level context information, and a node to provide the latter information to upper
nodes. A passive node obtains context information upon demand.

Observation/Notification. Communication into a context node’s hierarchy can be top-down or
bottom-up. The former—implemented by the interface Pull—corresponds to observations
that a parent node triggers. The latter—realized by the interface Push—corresponds to
notifications that context nodes send to their parents.

Pass-through/Blocking. Pass-through nodes propagate observations and notifications while
blocking nodes stop the traversal. For observations, COSMOS transmits the most up-to-

113

Chapter 7. CASE STUDIES

Context
Node A

Activity
Manager
Message
Manager

Context
Operator

pull-out
push-out

pull-in
push-in

✱

Context
Node Cpull-out push-out

push-out✱CB

A

pullpush
✱

Context
Node B

pull-out

✱

component

component
(shared)

Legend:

required interface
(singleton)

provided interface

required interface
(collection)✱

interface binding

Figure 7.2: Architecture of a COSMOS Context Node.

date context information without polling child nodes. For notifications, COSMOS uses
context data to update the node’s state, but it does not notify parent nodes.

The context nodes exchange messages that are created and manipulated by the Message Man-
ager. The context nodes send and receive these messages through the Pull and Push interfaces.
Each Message is composed of a set of Chunks and encloses a set of sub-messages. Each chunk
reflects a context information as a 3-tuple (name,value,type).

7.1.3 Distribution of the Context Policy

The context policy defined in [Conan et al., 2007] for the given scenario is based on the COSMOS
framework. However, this framework lacks of distribution capabilities. Therefore, the context
policy for the caching off-loading situation is defined and implemented as a local policy. To apply
the SPACES Connectors concepts and in this way spreading the policy, we split the context nodes
between two entities: the application server and the mobile device. As depicted in Figure 7.1, the
mobile device (Client-side) exploits both the context information caching 7 and off-loading 8 ,
while the application server only requires to access the context information off-loading in order
to provision the appropriate resources for the mobile device when needed. Furthermore, in order
to reduce the burden in the mobile device, we assign the decision stabilization mechanism 6 to
the application server (Server-side). Thus, the mobile device has to send the context information
to the application server, which will decide the best strategy to apply and will notify back the
decision to the mobile device.

In order to implement the remote dependencies in the context policy in a transparent way,
we concretize the generic SPACES connectors architecture presented in Section 5.6 following the
notion of COSMOS context nodes (cf. Section 7.1.2). Figure 7.3 depicts the SPACES Connectors
architecture as context nodes. As observed, we apply different concepts offered by COSMOS.
In particular, benefiting from the Fractal Component Model support for component hierarchies
and sharing, we include in the node operator the functionality for dealing with context requests
and resources. Furthermore, to finely control the resource consumption we share the Activity
Manager and Message Manager components. By defining the SPACES connectors in this way,
we foster reuse and the clear separations between context processing and context dissemination.

Implementation details

We can materialize SPACES Connectors as an extension of any legacy web
servers [Wikman and Dosa, 2006, Nokia, 2008, Pham and Gehlen, 2005, Srirama et al., 2006,

114

7.1. A Caching Off-Loading Situation

Context Node Z

Request Node X

pull-out

Request Operator

Activity
Manager

Request
Sender

PUT
Encoder

GET
Encoder

push-outContext
Node Y ✱

Context
Operator

pull-in

✱

push-in

pull-out

Message
ManagerResource

Marshaling
✱

Context Node C

Resource Node A

Resource
Operator

Activity
Manager

Message
Manager

GET
Decoder

PUT
Decoder

✱

Request
Receiver Context

Node Bpull-out

Context
Operator

push-in

pull-in

✱

Resource
Marshaling

✱

B

A
pull

C
push

push

Y

X

Z
pull

R
eq

ue
st

-s
id

e
R

es
ou

rc
e-

si
de

push-out

push-out

✱

✱

component

component
(shared)

Legend:

required interface
(singleton)

provided interface

required interface
(collection)✱

interface binding
✱

✱

setUrl, setInteractionType

Figure 7.3: SPACES Architecture Based on COSMOS Context Nodes

The Apache Software Foundation,] (or any other communication stack). The implementa-
tion of SPACES Connectors reported in this case study is based on the COMANCHE9 web
server [Bruneton et al., 2006b] and the COSMOS framework 0.1.5. Both COSMOS and CO-
MANCHE are based on the FRACTAL component model and use the JULIA10 implementation
of the FRACTAL runtime environment [Bruneton et al., 2006b]. The choice of these technologies
provides an elegant way of integrating both frameworks at an architectural level by means of
the FRACTAL ADL toolset [Leclercq et al., 2007]. In this way, the configuration and the evolu-
tion of SPACES context policies consist in the selection, addition, or replacement of software
components and the tuning of their associated parameters.

7.1.4 Quantitative Evaluation: Measuring the Performance of the Approach

The objective of the benchmark associated with this first case study is to show the cost introduced
in the context mediation by the SPACES Connectors implementation based on Fractal Compo-
nent Model and the COSMOS Framework. To do this, we have measured the time for context
processing by executing the context policy with and without distribution. In the tests we employ
laptops as well as mobile devices. Furthermore, we illustrate the versatility of our approach by
executing the benchmark with different resource representations. In particular, we evaluate the
performance by using the Java Object Serialization as well as JSON and XML documents.

Context Aggregation

To reduce the number of exchanged messages and measure the actual overhead introduced by
SPACES Connectors, context nodes published with the same properties—i.e., active/passive ob-
server or notifier, can automatically aggregate and separate in each device the context informa-
tion they exchange. For testing purposes, we make all the context nodes in the context policy
active observers (cf. Section 7.1.2). In this way, we need to introduce just two new context nodes

9COMANCHE web server: http://fractal.ow2.org/tutorials/comanche.html
10JULIA: http://fractal.ow2.org/julia

115

http://fractal.ow2.org/tutorials/comanche.html
http://fractal.ow2.org/julia

Chapter 7. CASE STUDIES

in the policy: i) The first one aggregates the context information user’s preferences, memory ca-
pacity and adjusted bit rate information on the client-side and, ii) the second node separates this
information in the server-side. The aggregated context information is therefore published instead
of the individual context nodes.

Test Bed Configuration

We have tested several configurations of the scenario using two MacBook Pro laptops, with the
following software and hardware configuration: 2.4 GHz processor, 2 GB of RAM, AirPort Ex-
treme card, Mac OS X 10.5.6 (kernel Darwin 9.6.0), Java Virtual Machine 1.6.0, and JULIA 2.5.2.
The mobile client is a Nokia N800 Internet Table with 400 Mhz, 128 MB of RAM, interface WLAN
802.11 b/e/g, Linux Maemo (kernel 2.6.21), CACAOVM Java Virtual Machine 0.99.4, and JULIA
2.5.2. We used the libraries XStream 1.3.111 and JSON-lib 2.2.312 to serialize context information
as XML and JSON documents, respectively.

Measurement Collection

Table 7.1 summarizes the results we obtained when executing the configurations of the context
policy we introduced in Section 7.1.3. The reported values correspond to the observation delay—
i.e., using the pull mechanism—for retrieving the context information off-loading. The values
represent the average of 1000 successful observations.

Objects JSON XML
a) No Provider N/A MacBook Pro
b) No Provider N/A N800
c) 1 Local Provider N/A MacBook Pro 8.25 8.33 10.6
d) 1 External Provider MacBook Pro MacBook Pro 37.5 42.25 48.25
e) 1 External Provider N800 MacBook Pro 317.4 391.3 N/A

8.8

Providers
Configuration Provider

Retrieval Latency (ms)
Server

3

Table 7.1: Overhead Introduced by SPACES Connectors in the Context Mediation

In each test, two messages are actually exchanged between the client and the server. The
first message aggregates the context information user preferences, memory capacity, and WiFi
adjusted bit rate according to the already discussed context aggregation. For its part, the second
message corresponds to the result of evaluating the entire context policy.

7.1.5 Results Discussion

In configurations a and b we execute the policy locally using a laptop and a mobile device re-
spectively. From these first two evaluations, we observe that the mobile device almost triples the
processing of the context policy. We exploit these informations for determining the actual over-
head introduced by our SPACES Connectors implementation. In particular, considering that the
context processing is locally performed in 3ms in configuration a, we can observe that the over-
head introduced by SPACES for mediating context information costs around 2.6ms per message
compared to configuration c with the java serialization. This time includes the marshalling and
unmarshalling of the message as well as its transmission.

11XStream: http://xstream.codehaus.org
12JSON-lib: http://json-lib.sourceforge.net

116

http://xstream.codehaus.org
http://json-lib.sourceforge.net

7.1. A Caching Off-Loading Situation

We also observe that the network introduces an additional transport cost of 350% approxi-
mately regarding the configuration c and d. The former uses two different virtual machine in-
stances, one of them having the server role and the other the provider role. On the other hand,
we notice that the deployment of the distributed context policy on a mobile device (configuration
e, object representation) introduces an additional overhead of 750% compared to the deployment
on two laptops (configuration d, object representation). This overhead is mostly due to the limited
processing capacity of the mobile device as illustrated by the deployment of the context policy in
configuration b. Furthermore, in this experimentation, the deployment of the XML version of the
distributed context policy was not possible due to a limitation of the Java Virtual Machines used
on the mobile device (CACAOVM & JamVM).

Although the overhead introduced by SPACES is reasonable, the flexibility offered by the pro-
posal supports the interoperability of context policies with a wide range of mobile devices, such
as Symbian, Android, and iPhone platforms. Furthermore, the support for multiple resource
representations leverages the integration of context-awareness support into legacy systems. In
particular, XML documents generated by SPACES Connectors can easily be processed by tools,
such as XQuery or XSLT to query or transform the context information requested by an applica-
tion.

7.1.6 Qualitative Evaluation

The realization of the SPACES connectors for this first study case enables us to confirm the advan-
tages of our approach. In particular, respecting the SPACES architecture, we provide isolation,
simplicity, flexibility, extensibility, reusability and transparent context integration. These advan-
tages are discussed below.

1. Functionality isolation based on CBSE and REST principles: As several proposals pre-
sented in Chapter 3, we apply in the SPACES Connectors architecture the encapsulation, ab-
straction and modularity promoted by CBSE [Taylor et al., 2009]. In practice, thanks to these
properties, the concrete SPACES architecture discussed in Section 7.1.3 provides a clear
separation of the REST triangle of nouns, verbs and representations. This separation is a
keystone for problem detection as well as for reuse purposes.

2. Simplicity, flexibility and extensibility: the core of our solution is based on REST. There-
fore, it is logic that the concrete implementation of SPACES reflects the simplicity as-
sociated with this architectural style. Some middleware platforms [Román et al., 2002b,
Bellavista et al., 2003, Gu et al., 2004, Gu et al., 2005, Davidyuk et al., 2004, Yau et al., 2004,
Yau et al., 2002] promote the usage of specialized and complex architectural elements that
make their application difficult. Unlike these platforms, and respecting the objective of
"consider what exists" (cf. Section 1.2) in SPACES we foster the application of existing stan-
dards and elements, which facilitates not only its use for context mediation but also its
development. Due to this, in the SPACES implementation based on Fractal Component
Model we have reused existing functionalities for dealing with the context request and the
marshalling and unmarshalling of the context information. On the other hand, the func-
tionality isolation brings flexibility in our approach. In particular, according to the context
mediation needs, it is possible to customize the protocols and marshallings that will be
integrated in SPACES Connectors in their deployment. In a similar way, the well defini-
tion of responsibilities between the different components of the architecture supports the
integration of new interaction ways and representations.

3. Reusable solution: the SPACES connectors based on the notion of context nodes do not
depend on the context policy of the case study. These connectors have been conceived for
being used in different kinds of context policies requiring distribution as well as integration
with legacy systems or applications.

4. Transparent context integration: the realization of SPACES as context nodes does not im-
pact at all the development of context policies. In fact, the SPACES implementation based

117

Chapter 7. CASE STUDIES

on COSMOS enables the distribution of context nodes without affecting the logic dealing
with the context processing. The application of the context node concepts makes the appli-
cation of SPACES natural in this specific kind of context manager.

7.2 The TRACK.ME Platform

In the second case study we present TRACK.ME, a service-oriented platform that allows scientists
to easily set up tracking experiments. With this platform we want to illustrate the advantages
associated with the introduction of the SPACES Connectors concepts into the SCA component
model. Furthermore, TRACK.ME is conceived to deal with the already mentioned heterogeneity
in terms of information, data representation and implementation technologies from ubiquitous
environments.

7.2.1 Platform Description

TRACK.ME is a distributed platform designed as a modular assembly of services, called
TRACK.ME apps, to foster reuse and sharing. Based on the SCA component model and FraSCAti
(cf. Section 2.3.3), the services of the platform and their assembly can be customized regarding
the scientific needs and dynamically reconfigured along the experiments. Below we describe the
generic services for collecting activity traces that make part of the service-side of the platform.

1. Trace database: Represents the root app of the TRACK.ME platform since it is
in charge of ensuring the durability of the experiences. This app is configured
with the XML schema used during the experience (e.g., GPX [TopoGraphix,] or
KML [Open Geospatial Consortium,]) and creates a new database upon deployment. This
database will be fed by the activity traces of mobile users and then accessed by the scientist
to consult the collected datasets.

2. Trace manager: Is a configuration app, which can be used to create a new experiment.
In particular, this app is used to configure the time and geographic filtering mechanisms,
which are used in the platform to preserve the privacy of the participants.

3. Trace resource: This app is the entry point of the participants involved in a TRACK.ME ex-
periment. The trace resource app is remotely exposed as a REST resource supporting various
representations of activity traces to be posted. Thus, this app is in charge of i) converting
the activity trace into its XML representation if needed and ii) checking the conformance of
the submitted document before delegating its processing to another app.

4. Trace anonymizer: Represents an example of trace processing app that preserves anonymity
of the collected activity traces. This includes the actual filtering along the time and space
dimensions and the clearing from non-relevant informations. Although the privacy of the
participants can be ensured by client-side filtering mechanisms, we also provide a dedi-
cated app, which can be used when the mobile device only offers limited processing capa-
bilities.

5. Trace visualizer: This app is used by the scientist to visualize the activity traces, which have
been already collected by the platform. Depending on the type of activity traces, this app
offers various visualizations of the information. For example, when considering GPX or
KML activity traces, the trace visualizer app can represent the activity traces using the Google
Map API.

6. Trace exporter: Provides an interface to the scientist for extracting a dataset from the trace
database. In particular, this app exploits XQuery to extract a document containing a subset
of the collected activity traces. Given the variety of scientists using the TRACK.ME plat-
form, standard extraction queries are also provided by the app to extract the activity traces

118

7.2. The TRACK.ME Platform

according to participant identifiers, date interval, period of the day, and geographic area
parameters.

7. Trace archiver: Is an app for archiving a given dataset of activity traces in a public archive.
Therefore, this trace archiver app makes the connection with third party archives like the
CRAWDAD initiative [Kotz and Henderson,].

8. Trace mutation: This app is an example of exploitation app that uses genetic algorithms to
mutate the collected activity traces. Mutated activity traces are useful to evaluate scientific
models and algorithms against alternative scenarios randomly generated from real activity
traces.

9. Trace appstore: Provides a private appstore service to leverage on the deployment of client-
side tracking applications. This approach avoids the publication of the client-side tracking
applications on dedicated platforms (e.g., the AndroidMarket platform) and rather provides
a private app factory to easily install the tracking applications on the participant devices.
Once installed, the client-side application can download the experiment configuration ex-
posed by the trace resource app.

Figure 7.4 depicts the SCA-based architecture of the TRACK.ME platform. In this architec-
ture, Track.Me instances are hosted by the Track.Me cloud. Each instance reifies the environment
provided to the scientist for creating and managing the tracking of activity traces. Therefore, a
Track.Me instance is an SCA composite isolating the TRACK.ME apps selected by the scientist.
These apps are designed and implemented as SCA components, which expose their services as
SCA bindings. In particular, the proposed architecture offers the Trace Resource, Trace Visu-
alizer and Trace Manager services as REST resources by using the resource-oriented bindings
introduced in Section 5.7.1.

TRACK.ME Client-Side

Considering the variability in terms of devices providing the trace information and benefiting
again from the COSMOS context framework concepts we introduce Activity Trace Policies. These
policies are composed by three parts: the Device Part, the Generic Part and the Experiment Part.
Figure 7.5 illustrates these distinct parts. The Device Part contains the data collectors, which
are specific to the tracking device, and can be selected by the scientist to describe the activity
traces. The Generic Part corresponds to the specification of a generic piece of software deployed
on the tracking device to aggregate, store, encode, and upload the collected data. Finally, the
Experiment Part includes the configuration built by the scientist when creating a new tracking
experiment and specifies the data to be collected by the participants.

The Activity Trace Policy example in Figure 7.5 shows a configuration where the scientist
is interested in tracking the position of the participants as well as the list of wireless networks
and bluetooth devices available in their surroundings. This configuration is deployed within the
smartphone for describing how the collected data is composed. In the TRACK.ME case, local
processing can be exploited to filter out the undesired activity traces on the smartphone prior to
their upload on the TRACK.ME platform server-side to preserve the privacy of the participants.
The Activity Trace Policy specifies also whether the data is computed through periodic observa-
tions or spontaneous notifications of the client device. In Figure 7.5, upon change in the physical
position of the participant 1 , the GPS coordinates of the device are filtered according to space
and time constraints 2 . If the collected data are not discarded by the filters, they are aggregated
with the list of networks and Bluetooth devices available in the surrounding 3 before being
transmitted to the TRACK.ME platform 4 . This transmission is performed asynchronously in
order to tolerate network disconnections. Thus, the applied strategy aggregates and stores lo-
cally the dataset and waits upon the availability of the TRACK.ME platform. When the platform
is available, the collected data are encoded according to the selected representation and sent over
the network.

119

Chapter 7. CASE STUDIES

Track.Me Cloud

Track.Me
Platform

SCA
Platform

Reconfiguration
Engine

HTTP/XML

Track.Me
Admin

TrackMe InstanceTrackMe Instance

Track.Me
User

Track.Me
Instance

Trace
Resource

Trace
Anonymizer

Trace
Database

HTTP/HTML

HTTP/JSON

Trace
Manager

Trace
Visualizer

User #1

HTTP/HTML

SCA

SCASCA

SCA

SCA

SCA

SCA SCA

SCA SCAROB

HTTP

ROB

HTTP

User #1
Track.Me

Participant

SCA wire (local)

SCA wire (remote)

SCA service

SCA reference
A

SCA component

B
SCA compositeUser Platforms

Legend:

ROB Resource-Oriented Binding

Figure 7.4: TRACK.ME Server-Side Architecture

Implementation Details

We have implemented the Activity Trace Policy in Figure 7.5 by using the various types of An-
droid components. In particular, we define the different nodes in the trace policy as Android
services, which can be shared at execution time by different Android applications. Besides, this
choice preserves the modules defined in the different parts of the trace policy. For its part, the
server-side of the TRACK.ME Platform has been developed using the FraSCAti platform version
1.2 and the resource-oriented bindings presented in Section 5.7.1.

7.2.2 Quantitative Evaluation

In order to measure the efficiency of our approach and confirm its suitability when it is incorpo-
rated into the FraSCAti platform, we execute the tests by using two configurations: i) local with
the traces provider and TRACK.ME server running on the same laptop and, ii) distributed includ-
ing the usage of an Android phone as provider and a laptop as server. In both sides the location
information is manipulated using the GPX format and it is exchanged as JSON documents.

With the performance tests we want to confirm that the integration of SPACES Connectors
concepts into FraSCAti does not impact the efficiency of the approach and we also get all the
advantages associated with SCA and of course the FraSCAti platform.

Test Bed Configuration

For testing the TRACK.ME platform we employ the ADT Plugin for Eclipse 0.9.7 and BaseX
6.1 [Grün et al., 2009]. In the testbed we include the Android application, the TRACK.ME server

120

7.2. The TRACK.ME Platform

Experiment Part

Generic Part

Device Part

Activity Traces Aggregator

Time Filter

Area Filter

Activity Trace

Activity Traces Sender

Activity Traces Encoder

Location
Manager

GPS
Coordinates

System call

Bluetooth
Manager

Detected
Devices

System call

Average
Link Quality

Connectivity
Detector

Tracke.Me
Availability

Connectivity
Manager

System call

Link Quality
Available
NetworksDate

Time
Manager

System call

Preference
Manager

System call

Area Period User

Wifi
Manager

System call

4

3

2

1

Figure 7.5: Example of an Activity Trace Policy

and the database, which run on a MacBook Pro Laptop with 2.4 GHz processor, 2 GB of RAM,
AirPort Extreme card, Mac OS X 10.5.6 (kernel Darwin 9.6.0) and Java Virtual Machine 1.6.0. We
have also executed some tests on a HTC Magic Android phone based on the version 1.5 of the
platform (API level 3) with 528 MHz, 192 MB of RAM and interface WLAN 802.11 b/g.

Measurement Collection

In order to measure the TRACK.ME performance, we have performed 100 tests on the laptop run-
ning the client and the server. We have obtained an average cost of 772.48ms of which 419.2ms
corresponds to the information processing (collection, filtering and storage) and 353.28ms to
communication cost (using HTTP). The average size of the exchanged messages is 122 bytes,
including the location information (longitude and latitude), the timestamp and the user name
associated with the client application.

In a similar way, we ran the same tests using the HTC Magic Android phone to execute the
TRACK.ME client application. With this configuration, we got an average cost of 793.47ms, with
432ms for information processing and 361.47ms for communication.

7.2.3 Results Discussion

Comparing the results from the first case study including mobile devices (cf. Section 7.1), configu-
ration e with the JSON representation), and the performance results with TRACK.ME we observe
that we keep approximately the same efficiency of SPACES when it is integrated in FraSCAti.

121

Chapter 7. CASE STUDIES

Furthermore, regarding the two kinds of test developed with TRACK.ME, the usage of the mo-
bile device introduces a minor overhead in the processing and the communication costs. Thus,
the two testbeds demonstrate the suitability of the platform and of course of our approach, in
particular when it is used with mobile devices.

7.2.4 Qualitative Evaluation

The Caching Off-Loading Situation introduced in Section 7.1 allowed us to illustrate the suitability
of SPACES concepts for building an elegant and effective solution in order to integrate context
information by using context policies. Although the different components of the implementation
isolate the responsibilities fostering reuse, the usage of the global solution becomes impractical
if we do not require to apply COSMOS as context manager. In the concrete case of TRACK.ME,
the application of the COSMOS-based implementation would require the definition and usage of
COSMOS nodes in both sides. However, in this platform we require a loose coupling between the
client and server sides. Furthermore, we do not want to impose the usage of an specific context
manager because the heterogeneity of mobile devices. Therefore, to deal with this limitation we
bring the SPACES concepts into SCA.

By combining SPACES and SCA we still preserve the already mentioned advantages of the
approach in terms of reusability, transparent context integration and concerns isolation. But
we also achieve the generalization of the solution, which can be now used in the conception of
different kinds of application based on SCA. The TRACK.ME platform is a suitable use case for
illustrating the generalization of the approach. In the TRACK.ME implementation, we focused
only on the development of the different services. The exposition of these services was transpar-
ent because we exploit the already existing resource-oriented bindings in the FraSCAti platform.
Moreover, by benefiting from our approach, the TRACK.ME platform can interact with different
kinds of clients, running on heterogenous devices. The fact of applying standards and a simple
solution permits that client and server can interact without knowing the concrete implementation
of each other.

On the other hand, the modularization of concerns makes the changes in terms of business
logic and communication independent. Furthermore, the reflexion capabilities of the FraSCAti
platform can be exploit to modify the application at runtime. Therefore, the so conceived solu-
tions can be easily adapted at design as well as at runtime.

7.3 The DIGIHOME Service-Oriented Platform

In the third case study, we propose a scenario based on smart home environments. The objective
of the case study is to illustrate the usage and versatility of all our proposal—i.e., the Ubiquitous
Feedback Control Loops. We do that by building DIGIHOME, a service-oriented platform that
enables the adaptation of mobile applications for controlling home appliances as well as changes
in room configuration.

7.3.1 Smart Home Scenario Description

A smart home generally refers to a house environment equipped with several types of computing
entities, such as sensors, which collect physical information (temperature, movement detection,
noise level, light, etc.), and actuators changing the state of the environment [Abowd et al., 2003].
In this scenario, we consider a smart home equipped with occupancy, smoke detection, and tem-
perature sensors. These tiny devices have the ability to collect context information and to com-
municate wirelessly with each other, in order to identify the context situation of the environment.
In addition to that, we can also use actuators to physically control lights, TV, and air conditioning.
Figure 7.6 illustrates the integration of these sensors and actuators in our scenario. As depicted
in this Figure, the different entities use heterogeneous protocols to interact. In the scenario, the

122

7.3. The DIGIHOME Service-Oriented Platform

smartphones provide information about the user preferences for the home configuration. Con-
flicts between the user preferences are resolved by giving priority to the person who arrived first
to the room. The mobile devices also have an application, callled MOBIHOME (cf. Section 6.4.1),
that enables the control of the actuators present in the different rooms. This application has sev-
eral modules (one for each appliance) that are activated or deactivated according to the current
battery level, the battery saving preference and activation of modules preference (these informations
are also provided by the mobile device). The modules also are installed/uninstalled regarding
the changes in the appliance configurations. Finally, there is a Controller, which is able to gather
information, and interact with the other co-located devices.

On/Off, Channel,
Volume

On/Off

Adjust
Temperature

User's
Preferences

Smart Phone

Air Conditioner

Bulb

TV

HTTP,
SLP

Current
Temperature

Temperature Sensor

Light Sensor

Light State

Occupancy Sensor

People in the
Room

ACN

HES

ZigBee

UPnP

HOME

ZigBee

ZigBee

 SOAP

Legend
Information SourceActuator

Client
ApplicationMultimedia

Provider

Smart Phone

Multimedia Server

Adaptive Application

RPC,
UPnP

Controller

RPC,
UPnP

HTTP,
SLP

Figure 7.6: Interactions Between the Smart Home Devices.

To show how the different elements of our scenario interact, we present four different situa-
tions:

Situation 1: Alice arrives to the living room. The occupancy sensor detects her presence and
also notifies the Controller that the room is occupied by somebody, which in turn tries to identify
the occupant by looking for a profile in her mobile device. When Alice’s profile is found, the
Controller loads it and adjusts the temperature and lightening level of the room according to
Alice’s preferences.

Situation 2: The sensors detect smoke and notify the Controller, which using the occupancy
sensor, detects that the house is empty. The Controller therefore sends an MMS to Alice, including
a picture of the room captured using the surveillance camera. After checking the picture, Alice
decides to remotely trigger the sprinklers using her mobile device. She also tells the system to
alert the fire department about the problem. If Alice does not reply to the Controller within 5
minutes, the system activates automatically the sprinklers and alerts the fire department.

123

Chapter 7. CASE STUDIES

Situation 3: Alice installs a new TV in the bedroom. The Controller detects the presence of the
new device, identifies it, and downloads the corresponding control software from an Internet
repository. The platform tries to locate the available mobile devices, using a discovery mecha-
nism, and finds Alice’s mobile device. The Controller proposes to update the mobile device with
the components for controlling the new TV.

Situation 4: Alice uses her mobile device to look for stored videos in her Multimedia
Server. She receives a call and then she has to leave home unexpectedly. Outside, the
application running on the mobile phone continues trying to access the Multimedia Server
unsuccessfully. The mobile device has the capacity to detect this irregular behavior and stops
the module in the application accessing the Multimedia Server.

The previous situations allow us to identify several key challenges. In particular, we can see
that the integration of multi-scale entities is a key issue in the scenario. The mobile devices
and sensors have different hardware and software capabilities, which make some devices more
powerful than others. Therefore, the integration of these entities requires a flexible and simple
solution that supports multiple interaction mechanisms and considers the restricted capabilities
of some devices.

The mobility of entities represents another issue that have to be tackled. In the scenario,
computational entities join and leave constantly. In particular, mobile devices providing user
profiles are not always accessible (they can be turned off or the owner can leave the house with
them). In a similar way, the actuators can be replaced or new ones can be added. Thus, we need
to discover new entities dynamically as well as to support device disconnections.

Finally, we need to deal with the information processing and adaptation. In order to support
adaptation, we first need to identify the situations in which the adaptation is required. We have
a lot of information that is generated by the different devices in the environment. Therefore,
we need to define which part of this information is useful to identify relevant situations and
react accordingly. In our scenario, those situations include the load of Alice’s profile and the
adjustment of the temperature, the sending of an alert via MMS in case of an emergency, the
adaptation of Alice’s mobile device to control the new TV in her bedroom and the absence of the
Multimedia Server.

The previous issues are related to the already identify challenges in Chapter 6. Therefore,
we can deal with these issues by applying the Ubiquitous FCLs. To do that we propose the
DIGIHOME platform for dealing with context-based adaptation in smarthomes.

7.3.2 Platform Description

The DIGIHOME platform [Romero et al., 2011, Romero et al., 2010a] is a simple but efficient
service-oriented middleware solution to facilitate context-awareness in ubiquitous environments.
Conceived by applying our Ubiquitous Feedback Control Loops approach (cf. Chapter 6), DIGI-
HOME provides support for the integration, information processing and adaptation of the context-
aware applications. This means that the platform enables the integration of heterogeneous com-
putational entities by relying on the SCA model, REST principles and, standard discovery and
communication protocols. As already stated in Chapter 6, the combination of SCA and REST
fosters reuse and loose-coupling between the different services that compose the platform.

Figure 7.7 depicts the architecture of the DIGIHOME platform regarding the introduced smart
home scenario. As it can be seen, we respect the structure of the Ubiquitous FCLs. In particular,
the Controller governs the FCL execution by means of the DigiHome Core, which extends
the Adaptation Server (cf. Chapter 6) with the components encapsulating the actuators con-
trol. Following a plug-in mechanism, these components grant access to the available actuator
services in the environment. This means that the different actuator components are optional and
deployed according to the current service configuration. For its part, DigiHome Objects are
SCA components providing and/or consuming context information to/from others DigiHome

124

7.3. The DIGIHOME Service-Oriented Platform

Objects. In our Ubiquitous FCL, a DigiHome Object represents an application. In our sce-
nario, the mobile device executes a DigiHome Object enabling the control of home appliances
(that also consumes context information indirectly in order to be adapted). The DigiHomeME
Core is a lightweight version of the DigiHome Core allowing simple reconfigurations on the
mobile device when the global loop is not available, as for example, in the situation 4 of the
scenario. In this way DIGIHOME deals with the kind of situations presented in Section 7.3.1.

Implementation Details.

We built a prototype of the DIGIHOME platform based on FraSCAti 1.2. As already stated in
Section 2.3.3, the selection of this platform is motivated by two main reasons: i) The platform
brings reflection and reconfiguration capabilities at runtime into SOA systems and, ii) The FraS-
CAti customization capabilities according to the developer needs. The former is necessary in
order to enable the dynamic adaptation of DIGIHOME applications. The latter allows us to easily
deploy lightweight versions of DIGIHOME for executing them on devices with restricted capabil-
ities, such as the mobile devices in the smarthome scenario. In order to implement the ubiquitous
bindings, we have used CYBERLINK for Java version 1.713 for UPnP and the jSLP library14 for SLP.
Once the services are discovered, the DIGIHOME platform uses the resource-oriented bindings for
interacting with them. As stated in Chapter 5, these bindings follow a RESTful approach in order
to exchange information and use the HTTP protocol. Finally, in the Decision Maker (cf. Sec-
tion 6.4.6 for a detailed description of the architecture of this component) implementation we
benefit from the JaCoP (Java Constraint Programming) solver [Kuchcinski and Szymanek, 2010]
version 3.1 for implement the logic associated with the selection problem. The selection of this
library is motivated because of its simplicity and spread usage in the scientist community.

Social Bindings.

In addition to the bindings discussed in Chapter 5, we also introduce in SCA another kind of
binding, the Social Bindings [Mélisson et al., 2010b], in order to provide several benchmarks with
DIGIHOME for validating our approach. These bindings are based on the micro-blogging ser-
vices, which provide the sharing of information in real-time by reaching a lot of people in just
a few seconds. One of the main advantages of these services is the short and simple nature
of the posted messages. Furthermore, there are no restrictions on the subject associated with
the messages. In general, this kind of informal communications was conceived for broadcast-
ing simple events in the daily life, such as what people are doing, thinking, and experienc-
ing [Zhao and Rosson, 2009, McFedries, 2007]. However, nowadays the micro-blogging services
are also used for collaborative work in organizations [Zhao and Rosson, 2009], publicity pur-
poses, and even for broadcasting real-time news updates for recent crisis situations. Therefore,
the simplicity and flexibility as well as the real-time notification property of micro-blogs make
them another suitable option to enable context exchange between the participants of the DIGI-
HOME platform.

The social bindings allow the notification of situations identified by the system that may re-
quire human intervention, e.g., the detection of an intruder in home. To do that, the defined
social bindings benefit from a simple but widely used micro-blog service: Twitter. Further-
more of the advantages of any micro-blogging service, the Twitter messages (so called tweets)
can be posted using different formats (e.g., JSON, XML, RSS and ATOM) and a simple RESTful
API [Makice, 2009]. For purposes of our validation, we employ these bindings for exchanging
the context information between the mobile device and the Controller.

13CYBERLINK for Java: http://cgupnpjava.sourceforge.net/
14 JSLP: http://jslp.sourceforge.net/

125

http://cgupnpjava.sourceforge.net/
http://jslp.sourceforge.net/

Chapter 7. CASE STUDIES

M
ul

tim
ed

ia
 S

er
ve

r

Se
rv

er
 R

un
tim

e

SC
A

Pl
at

fo
rm

C
on

te
xt

Po
lic

y
M

ul
tim

ed
ia

 P
ro

vi
de

r

R
ec

on
fig

ur
at

io
n

Se
rv

ic
e

M
od

ul
e

St
or

e

M
ob

ile

D
ev

ic
e

M
ob

ile

R
un

tim
e

SC
A

Pl
at

fo
rm

C
on

te
xt

Po
lic

y
R

ec
on

fig
ur

at
io

n
Se

rv
ic

e

ST
B

R
un

tim
e

D
ig

iH
om

e
C

or
e

C
on

te
xt

C
ol

le
ct

or

 S
C

A
Pl

at
fo

rm
R

ec
on

fig
ur

at
io

n
Se

rv
ic

e

D
ec

is
io

n
M

ak
er

A
ct

io
n

Pl
an

ne
r

H
om

e
M

od
ul

e
R

ec
on

fig
ur

at
io

n
Ex

ec
ut

or

SC
A

w
ire

 (l
oc

al
)

SC
A

w
ire

 (r
em

ot
e)

SC
A

se
rv

ic
e

SC
A

re
fe

re
nc

e

A
SC

A
co

m
po

ne
nt

B
SC

A
co

m
po

si
te

Th
ird

-p
ar

ty
 p

ro
vi

de
r

Le
ge

nd
:

U
B

 U
bi

qu
ito

us
 B

in
di

ng

U
B

U
B

ZB
ZB

TC
P

TC
P

Te
m

pe
ra

tu
re

Se

ns
or

En
vi

ro
nm

en
ta

l
In

fo
rm

at
io

n

Sp
rin

kl
er

A
ct

ua
to

r

Li
gh

t
A

ct
ua

to
r

TC
P

R
PC

Sp
rin

kl
er

Li
gh

tin
g

Le
ve

l

X1
0

X1
0

A
C

N
A

C
N

U
Pn

P
TV

U
B

U
B

U
B

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SCA

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SC
A

SCA

R
PC

R
PC

U
B

U
B

U
B

U
B

U
B

U
B

UB

U
BU
B

U
B

U
B

U
B

U
B

ZB
 Z

ig
Be

e
Bi

nd
in

g

A
C

N

D
ig

iH
om

eM
E

C
or

e

R
ul

e
Ev

al
ua

to
r

M
od

ul
e

R
ec

on
fig

ur
at

io
n

Ex
ec

ut
or

SC
A

SC
A

SC
A

SC
A

SC
A

U
B

U
B

D
ig

iH
om

e
O

bj
ec

tVi
ew

C
on

tr
ol

le
r

M
ul

tim
ed

ia

M
od

ul
e

TV
C

on
tr

ol

M
od

ul
e

U
B

SC
A

SC
A

SC
A

SC
A

U
BU
B

U
B

SC
A

Vi
de

oR
en

de
re

rSC
A

SC
A

SC
A

SC
A

Figure 7.7: Conception of DIGIHOME as a Ubiquitous Feedback Control Loop.

126

7.3. The DIGIHOME Service-Oriented Platform

a)

b)

Objects JSON XML Objects JSON XML

a) 1 38 31 39 101 108 112 8 11 34 45

b) 2 46 45 62 160 174 179 17 22 58 75

c) 5 65 90 93 361 377 380 39 52 119 148

d) 10 145 149 309 418 425 444 77 102 238 315

e) 50 504 556 622 1954 1997 2039 361 481 1060 1410

f) 100 933 1449 1500 2269 2286 2305 730 974 2194 2912

g) 1 (N800) N/A N/A N/A 340 376 N/A N/A N/A 129 136

SLP UPnP SLP UPnP

 Discovery
Latency- Remote

Providers (ms)

Retrieval Latency- Local
Providers (ms)

Retrieval Latency-
Remote Providers (ms)Config.

HTTP ProtocolCommunication
Mechanism

Number of
Providers

Discovery
Latency- Local
Providers (ms)

JSON XML

a) 1 (Local) 948.2 951.55
b) 1 (Remote) 965.2 971.44

Retrieval Latency (ms)

Twitter

Config. Number of Providers

Communication Mechanism

Table 7.2: Performance of the DIGIHOME Platform Using a) the Resource-Oriented and Ubiqui-
tous Bindings and, b) the Social Bindings

7.3.3 Quantitative Evaluation

Table 7.2 reports the media latency for the context dissemination and discovery in the DIGIHOME
platform. We have executed 10000 successful tests, of which the first 100 were considered as part
of the warm-up. In this setup, we retrieve the user preferences from multiple local and dis-
tributed providers and use multiple formats for the context information (i.e., XML, JSON, and
Java Object Serialization). We also measured the delay for discovering the information provided
by the sources. For discovery, we selected the UPnP and SLP protocols (cf. Section 2.4). In the
tests, the platform aggregates the user’s preferences to reduce the number of messages exchanged
between the provider and the consumer. The measured time corresponds to the context policy
processing, the exchange of messages as well as the marshalling/unmarshalling of the informa-
tion. We have used REST messages (cf. Table 7.2 a) and tweets (cf. Table 7.2 b) for exchanging the
context information. The cost of executing others protocols, such as ACN and ZigBee was not
considered. More information about the overhead introduced by these protocols can be found
in [Zigbee Alliance, 2007].

In order to show the overhead introduced by our Ubiquitous FCL in terms of analysis in the
decision making, we separately measure the cost of this responsibility. Table 7.3 summarizes
the results. We applied of course, the strategy introduced in Section 6.4. In particular, we opti-
mized the QoS dimension. In the different tests, we varied the mandatory and optional flexibility
points as well the number of QoS dimensions and required constrains to determine how they
impact the performance of our solution. For the optional flexibility points we also use a different
number of implementations. In the case of the mandatory flexibility points, we associated only
one implementation.

127

Chapter 7. CASE STUDIES

Config. Mandatory
FPs FPs

Number of
Implementations

by FP

Number of
QoS

Dimensions

Number of
Required

Constrains

Decision
Making

Latency (ms)

a) 2 3 1 5 1 0.882
b) 10 10 10 5 10 6.446
c) 2 10 1 5 1 0.887
d) 2 100 1 5 1 2.838
e) 2 1000 1 5 1 77.066
f) 10 1000 1 5 1 83.44
g) 100 1000 1 5 1 86.119
h) 1000 1000 1 5 1 268.767
i) 100 1000 1 5 10 90.213
j) 100 1000 1 5 100 98.749
k) 100 100 10 5 100 542.372
l) 10 10 100 5 10 715.837

m) 10 10 100 10 10 715.869
n) 10 10 100 100 10 724.059
o) 10 10 100 1000 10 725.882

Table 7.3: Performance of the Context-Based Adaptation

7.3.4 Results Discussion

Regarding the tests including REST messages (cf. Table 7.2 a)), we can see that there is a linear
increase of the latency with the different formats. This is a good characteristics of our solution,
because we can integrated several entities with an acceptable overhead. We also observe that
there is not a big variation in the communication cost between the different formats when the
number of providers is low (until approx. 10). As expected, when the providers are increased,
the context exchange with object serialization is more efficient than the JSON and XML represen-
tations. Furthermore, the network usage introduces an overhead of approximately 300%.

In the case of the Social Bindings (cf. Table 7.2 b), the indirection introduced by the micro-
blogging service increments the event exchange by approximately 30 times compared to the con-
figuration a for the two mechanisms with the JSON representation. However, despite of this
overhead, the simplicity of this interaction mechanism makes it still a suitable alternative to share
context information in an asynchronous way. Furthermore, the context notification rests less than
one seconds, which is a reasonable overhead to communicate relevant situations in smart homes
environments.

On the other hand, the experiences with the mobility support (that includes the discovery
time as well as the cost associated with the ubiquitous binding configuration), evidence that
the discovery cost is negligible compared to the context information retrieval when there are not
many providers (cf. Table 7.2 a) configurations e), f), g), with the HTTP, SLP and UPnP protocols).
Our tests show that the usage of SLP or UPnP for discovery does not have a big impact on the
discovery time. In a similar way to the retrieval case, the measures including the network are
bigger. Furthermore, we tested our solution using a Nokia Internet Table (N800) as a preference
provider (cf Table 7.2 a) and b), configuration c)). As it can be seen, the use of this mobile device
introduces a considerable overhead for discovery and information exchange. This additional cost
is mostly due to the limited resources of this kind of devices.

Analyzing the adaptation costs provided by Table 7.3, we see that in configuration a) we ob-
tained a cost of 0.882ms for the MOBIHOME application and in configuration b), 6.446ms. From

128

7.3. The DIGIHOME Service-Oriented Platform

these results, we observe that our approach has a good performance for simple applications hav-
ing a reasonable quantity of constrains, flexibility points and implementations. On the other
hand, considering more complex applications, we see that the overhead increases considerably.
In particular, comparing the time for reconfiguring a simple application such as in configuration
b) with a more complex application as in the reconfiguration k), we observe that the analysis
cost increases 84 times approximately. This increment is mostly due to the number of required
constrains and implementations by optional points, which impose more restrictions on the con-
strain satisfaction problem as also confirmed by configurations i, j, k, l. However, considering
that DIGIHOME is mainly focused on the adaptation for mobile applications which tend to be
simple, applications with too many restrictions are difficult to find. Finally, regarding the impact
of the QoS dimensions, which utility function we are optimizing, we see that they do not have a
relevant impact on the analysis cost. This is confirmed by the results obtained in configurations
m, n and o, where we only vary the quantity of QoS dimensions.

7.3.5 Qualitative Evaluation

In the previous section we have reported the efficiency of our approach—i.e., the Ubiquitous
FCLs, in the particular case of smart homes. Now, in this section we describe the advantage of
the approach in terms of its design and usability.

A key advantage of our approach is the openness. Below we analyze the Ubiq-
uitous FCLs in terms of the integration, extensibility and modification dimensions stated
by [Anvaari and Jansen, 2010, Sim et al., 2006] to clarify the openness of our approach.

1. Integration: According to [Anvaari and Jansen, 2010], in the context of openness, the in-
tegration of a software solution refers to the "usage of its components by means of, for
example, APIs, service calls and source code inclusions". Applying this notion to the Ubiq-
uitous FCLs, we can see that different elements provided for monitoring, analysis, plan-
ning and execution can be integrated for adapting new applications. The different bindings
(resource-oriented, ubiquitous, social, etc.) as well as the reconfiguration service used in
DIGIHOME are generic and therefore reusable. Furthermore, the exposition of the different
functionalities by means of well defined and accepted mechanisms enables other appli-
cations (that are not part of the loop) to benefit from the services offered by entities that
compose the FCL.

2. Extensibility: This concept is associated with enhancing the functionality of the compo-
nents that are part of the solution [Anvaari and Jansen, 2010]. Because we conceive the
Ubiquitous FCLs by using standards and hiding the service implementation with SCA, we
can easily incorporate other services that are not originally part of the infrastructure. In the
DIGIHOME case, we can add new services exposed by means of standard protocols such as
UPnP.

3. Modification: Is the replacement or change of components of the solu-
tion [Anvaari and Jansen, 2010]. The isolation of the different responsibilities of the
adaptation thanks to the autonomic computing, SOA and component paradigms guaran-
tees a loose-coupling between the different elements in the Ubiquitous FCLs architecture.
Therefore, in DIGIHOME we can replace all the functionality associated with a specific
phase of the feedback control loop or some parts of it.

Besides this openness„ the possibility of defining Local Feedback Control Loops provides
certain self-healing (cf. Section 4.1) degree in DIGIHOME. This property is offered because simple
adaptation situations can be managed even if the orchestrator of the global loop is not available.
In the concrete case of the situation 4 in the scenario (cf. Section 7.3.1), in the absence of the
Controller, the mobile device has still the capacity of dealing with the unavailable Multimedia
Server. Furthermore, as stated in Section 6.7, depending on the defined ECA rules, the triggered
reconfigurations can correct simple problems associated with the application behavior by means

129

Chapter 7. CASE STUDIES

of the start, stop, activation or deactivation of the application components. In the situation 4 of
our scenario we stop the Multimedia Server, which makes that the application tries to access
a service that is not more available. Therefore, the global control loops rest on the local ones when
the first ones are unable to make the decisions because of communication issues.

7.4 Limitations of the Approach

In this section we present the shortcomings of our approach, which have been identify when
working in the presented case studies.

Mobility Support and Adaptation

Our Ubiquitous Feedback Control Loops are conceived by applying the SPACES Connectors con-
cepts. They provide support for the mobility of the adaptive applications as well as the services
that are considered in their adaptation. In the particular case of DIGIHOME, we support the
mobility of the applications running on the smartphones and services using standard discovery
protocols such as the UPnP TV. However, even if we are able to identify the presence of new ser-
vices in the environment and reconfigure the mobile application for using these services, we still
need to develop the modules to exploit this functionality. In other words, we need beforehand to
know what specific services potentially will arrive to the environment. Therefore, it will be use-
ful a mechanism for retrieving the components that provide the client functionality for different
kinds of services. This mechanism could be an SCA repository available on Internet. However
the challenge with the different client components is that they should be generic enough for being
reused in any kind of SCA applications that can require them.

Scope of the Local Feedback Control Loops

As already explained, the local feedback control loops in our approach have a support role inside
the Ubiquitous FCLs. This decision has been mainly made for resource saving purposes on the
mobile devices. This results in a limitation for the autonomy degree of the applications. To
overcome this shortcoming, the local feedback control loops need to have a more participative
role in the adaptation process. In particular, these local loops should take more complex decisions
and be executed only if the device has enough resources (battery, memory, etc.) to do it. For
its part, the global loops now will have a monitoring role of the local ones in two ways. The
former includes the update of the adaptation rules on the mobile device according to the current
service configuration. This means that the mobile device does not have to know explicitly all the
available services. The latter refers to the observation of the local feedback control loop execution.
If it is not executed, the global loop has the responsibility of adapting the application running on
the device.

7.5 Summary

In this chapter, we have introduced three case studies: a caching or off-loading situation, the
TRACK.ME platform and the DIGIHOME platform. We use these case studies for illustrating
the usage concrete of SPACES and the Ubiquitous FCLs that we build by applying its concepts.
The three cases are complementary since they enable the evaluation of different aspects of the
approach. Below we summarize these approaches.

1. The caching or off-loading situation represents a proof of concept of SPACES. In this situa-
tion, we define a context policy for deciding what to do with the collected information—i.e.,
if (remotely) processing it or (locally) storing it. The context policy is distributed between

130

7.5. Summary

two entities, a client, providing information related to preferences, device resources and
network connection, and a server making the decision. By means of the context policy
distribution, we shows the flexibility and simplicity of our approach.

2. The TRACK.ME platform exemplifies a concrete application of SPACES requiring its gen-
eralization. With the platform we provide the possibility of defining experiences by means
of traces collected from mobile devices. The tracking of activities associated with mobile
users serves us like an elegant situation where the modularity and loose-coupling from the
combination of SOA and CBSE as well as flexibility in terms of integration are required.

3. With the last case study, the DIGIHOME platform, we provide a global evaluation of the
approach including the realization of Ubiquitous FCLs. This scenario integrates different
situations including the processing of context information and its associated reconfigura-
tions, heterogeneity and mobility.

131

Chapter 7. CASE STUDIES

132

Part IV

Conclusions and Perspectives

133

Chapter 8
Conclusions

Contents
8.1 Summary of the Dissertation . 135
8.2 Contributions of the Dissertation . 136
8.3 Perspectives . 137

8.3.1 Short Term Perspectives . 137
8.3.2 Long Term Perspectives . 138

In this concluding chapter we provide an overview of the entire dissertation, including the
main contributions and the publications resulting of our work.

8.1 Summary of the Dissertation

Ubiquitous environments provide several computational resources that can be exploited in order
to build adaptive applications improving the user experience. These resources include sensors,
actuators, laptops, mobile devices and other electronic devices using different kinds of proto-
cols and implementation technologies in order to offer functionalities and information associated
with the environment state (so called context information). The mentioned adaptive applications,
also knows as context-aware applications, benefit from the current environment configuration for
changing their behavior. However, the developers of such kind of applications must face several
issues before creating suitable context-aware applications, including:

• Heterogeneity in terms of devices capabilities, communication mechanisms and implemen-
tation technologies. This heterogeneity is critical because different applications select the
most suitable standards according to their capabilities, making the integration of the dif-
ferent entities a real challenge.

• Mobility of devices and therefore of the services that they provide. The consideration of the
issue is key in the design of context-aware applications because, by definition, these adap-
tive applications are potentially roaming between different environments. Furthermore,
the current environment configuration can change anytime, meaning the join and leave of
new services and context sources used in the adaptation process. Then, the realization of
context-aware application requires to consider this variability.

• Distribution of Adaptation Concerns between several entities. This issue arises because
of two reasons: i) the limited capabilities of some entities in the environment and ii) the
possibility of exploiting the most powerful devices. Therefore, different participants in
the adaptation process have to be integrated regarding, of course, the heterogeneity and
mobility issues.

135

Chapter 8. Conclusions

In order to face these issues and make the work of context-aware application developers eas-
ier, we propose a simple but still complete solution based on well accepted and defined tech-
nologies and standards. In particular, we propose a solution at the middleware level, called
SPACES, to integrate context and adapt applications using this information. SPACES proposes
a metamodel reifying the most relevant elements in context mediation, which are exploited for
defining SPACES connectors. These connectors enable the integration of heterogeneous context
providers and consumers in ubiquitous environments. Then, we exploit in the autonomic com-
puting the elements and concepts that allow us to model the context-based adaption as a process
where the context flow becomes a keystone. We use the different tasks identified in this process
for modularizing the adaptation responsibilities in Ubiquitous Feedback Control Loops, which
have an SCA-based architecture that supports the adaptation of context-aware applications. The
proposed architecture fosters the reuse of their different elements as well as their customization.
Finally, in the adaptation process we apply constraint programming techniques for selecting the
required reconfigurations when multiple options are eligible according to the current context.
This paradigm can optimize the resulting adaptation regarding dimensions that provide a better
user experience. In the next section we present an overview of the contributions associated with
our middleware solution.

8.2 Contributions of the Dissertation

In this dissertation we have considered the adaptation of applications as a process, where the dif-
ferent roles and tasks are held and executed by different entities in the environment. Regarding
the integration of the different participants as a critical aspect before the realization of the adap-
tation process, we propose a first part of the contribution dealing with this aspect. In particular,
our approach for context integration—i.e., SPACES, is divided in the following contributions:

1. SPACES Metamodel: This metamodel introduces the concept of context as a resource
(cf. Section 5.3) by reifying relevant elements and concepts in context mediation. Context
Information, Context Consumer, Context Provider, Context Representations and QoC are
defined as first class entities. The clear establishment of the different integration concerns
composes the foundations of our approach for context mediation—i.e., SPACES Connectors.

2. SPACES Connectors: These architectural artifacts encapsulate the distribution concerns
in order to provide a clear separation between context processing and context dissemina-
tion. By following a data centric approach, the SPACES Connectors define the principles
for exposing and using the context information as resources (cf. Section 5.4). To do that,
we propose the usage of simple mechanisms enabling the advertisement and retrieval of
the information, which are integrated in a generic architecture. Then, this architecture is
integrated into the SCA component model [OASIS Open CSA, 2007] to be used in differ-
ent kinds of applications, not only context-aware applications (cf. Section 5.7). The usage
of standards and existing paradigms fosters simplicity, extensibility and flexibility in our
approach.

By using SPACES and considering the different data exchanged by participants in the adap-
tation process as context information, we introduce the second part of the contribution enabling
such adaptation. Specifically, this part of the contribution is composed by Ubiquitous Feedback
Control Loops that represents an SCA-based solution for dealing with mobility of the adaptive
applications. This solution is summarized below.

3. Ubiquitous Feedback Control Loops: We apply concepts from the autonomic computing
for identifying the different tasks associated with the context-based adaptation. Then, we
use the modularization and loose-coupling from the SCA component model in order to
conceive Ubiquitous Feedback Control Loops (cf. Section 6.3) supporting the mobility of
adaptive applications. These FCLs also allow the incorporation at runtime of new services

136

8.3. Perspectives

into the adaptation process. In the FCLs, we use context policies to recognize adaptation
situations (cf. Section 6.4), which are also implemented as SCA components. The usage of
an unified component model makes natural the customization, extension and reuse in the
Ubiquitous FCLs. Moreover, in this approach we also provide a certain degree of autonomy
in devices hosting the adaptive applications by defining Local Feedback Control Loops
(cf. Section 6.7) for making simple decision (when there is some communication or latency
issues associated with the global or Ubiquitous FCLs).
In the Ubiquitous FCLs we based the adaptation of applications on the retrieved context in-
formation. However, considering that multiple application configurations can be suitable
for the new environment configuration, we apply constraint programming techniques in
order to optimize the selected configuration (cf. Section 6.4). The selection is optimized con-
sidering the cost associated with the adaptation, the resource consumed or the QoS offered
by the new application configuration. Respecting the principles of flexibility and extensi-
bility, the Ubiquitous FCLs can be easily configured for including different optimization
dimensions.

Finally, we validate our contribution by applying three case studies with different complexity
levels:

a) Caching or off-loading situation: A simple scenario for resource saving on mobile devices.
In particular, in this example we define a simple context policy requiring distribution and
therefore we apply a Fractal-based implementation of the SPACES Connectors to deal with
the integration concerns. This case study allow us to confirm the flexibility of simplicity of
our approach;

b) TRACK.ME Platform: A platform helping scientists to set up tracking experiments. In this
scenario, we exploit the integration of SPACES Connectors into SCA. In particular, we use
the resource-oriented bindings (cf. Section 5.7.1) for integrating the collected traces. With
TRACK.ME we show the versatility of our approach and its generalization by means of its
incorporation into the SCA model;

c) DIGIHOME Platform: With this case study we provide the validation of the overall
approach—i.e., the Ubiquitous Feedback Control Loops. DIGIHOME adapts applications run-
ning on mobile devices and changes room configuration according the user preferences.
The case study enable us to show the suitability of our mechanism for selecting the new
configuration via constrain programming techniques.

8.3 Perspectives

In this section, we discuss some perspectives associated with this dissertation. In particular we
present short and long term perspectives.

8.3.1 Short Term Perspectives

• Increase the flexibility in terms of mobility: In Section 7.4, we discussed the drawback of our
approach associated with the mobility support. We stated that the offered discovery capa-
bilities in ubiquitous FCLs are limited because we need to know in advance what potential
services will arrive and then develop the components accessing them. Therefore, it will be
useful to have a mechanism enabling the use of services that are not completely expected.
For example, we can benefit from service descriptions for identifying the service type and
then selecting, according this type, the component(s) allowing the access to the service. The
interesting aspect to consider is the development of generic components that can be reused
in different kinds of applications and situations. Then, these components will be published
in a repository service. By using the SCA component model, we have several facilities to
achieve this task.

137

Chapter 8. Conclusions

• Recovery from simple failures even if there are not defined policies associated with them: In some
cases, we can benefit from the service monitoring and the service type (obtained from ser-
vice descriptions) for recovering from issues associated with service availability. In par-
ticular, we can search for equivalent services in the environment and then apply scripts
enabling the service replacement. In this way, we provide a certain self-healing degree for
applications.

• Improve the exploitation of the Local Feedback Control Loops: As stated in Section 6.7, the lo-
cal FCLs only provide support when there is a problem with the global ones (e.g., delay
in communications or mobility of the adaptive application loosing the connection with the
global loop orchestrator). Therefore, simple decisions can be only made, for example, for
activating or deactivating functionalities. In order to improve our approach and regarding
the increasing capabilities of mobile devices hosting the adaptive application, more respon-
sibilities can be delegated to local loops. In particular, local FCLs can be used for deciding
on the different adaptations if the device resources allow it. For its part, the global or ubiq-
uitous loops will monitor the service configuration in the environment and consequently
they will adapt the context policies of local FCLs—i.e., they adapt now the local loops and
not directly applications. If the device does not support the decision making because of
resource restrictions, the ubiquitous FCL keeps the analysis and planning responsibilities.

• Bring behavioral adaption support: In our Ubiquitous FCLs, the planned actions are materi-
alized in reconfigurations scripts (cf. Section 6.5). These scripts reify compositional adap-
tation [Smith, 1982] of applications. However, it would be interesting to complement the
action planning in our approach for enabling behavioral adaptation [Smith, 1982] on ap-
plications. This support provides a better customization of applications regarding the user
expectations as well as other context information.

• Incorporate notions from Software Product Lines (SPLs) in Ubiquitous FCLs: In Section 6.4,
we proposed a simple modeling for representing the different configurations of applica-
tions in terms of their flexibility points as well as the relationships between such points.
However, we can improve this modeling by exploiting concepts from SPLs engineer-
ing [Pohl et al., 2005]. In particular, we can represent the different configurations as mem-
bers of a product family, where flexibility points are associated with features and implemen-
tations of the different points with variants. The establishment of these relations enables
us to benefit from the strategy proposed by [Parra, 2011] for dealing with the making deci-
sion. In this strategy are combined SPL Engineering and Aspect Oriented Modeling (AOM)
principles for deciding the new configuration of the application. The changes of different
variation points are modularized in aspects simplifying the realization of the adaptation.
The problem with this strategy is that reconfigurations are not applied when several imple-
mentations can be chosen for the same variation point. Therefore, with our CSP mechanism
for selecting the new configuration, we can complement this strategy and incorporate it in
our Ubiquitous FCLs.

8.3.2 Long Term Perspectives

• Support Adaptation of Ubiquitous FCL: In ubiquitous environments, we are dealing with the
dynamic adaptation of context-aware applications. Then, we can also consider Ubiquitous
FCLs as entities requiring the adaptation according to the sense information. In particular,
the resulting adaptation can become context information for adapting the ubiquitous FCL.
For example, we can determine the frequency of use of different policies, implementations
associated with flexibility points and communication bindings. This analysis can be used
to optimize the decision making and action planning by removing unnecessary evaluations
and communications in the adaptation process. Furthermore, we can benefit from the mod-
ularity of the decision making to identify cases in which we should remove, replace or add

138

8.3. Perspectives

new selection mechanisms. Thus, it would be interesting to explore the notion of FCLs for
FCLs.

• Support for Large-scale adaptations: Large-scale Information Systems are difficult to adapt re-
garding new business conditions, such as process evolution. The usage of our Ubiquitous
FCLs can be explored in order to make the adaptation of such systems easier. In particular,
considering the complexity of large-scale information systems, it is possible to conceive hi-
erarchies of FCLs that must be orchestrated in order to adapt the whole system successfully.
Furthermore, the ubiquitous FCLs should provide different granularity levels for reconfig-
urations. In other words, it should be possible to make from high level service composition
to low level resource-tuning. Finally and regarding the distributed nature of large-scale
information systems, a solution for adapting such system should provide support for load
balancing in terms the different FCLs responsibilities. These different concerns already start
to be studied as part of the SALTY project [UNS et al.,].

• Support for Security: The realization of large-scale adaptations require the consideration of
security issues. In particular, the identity of the different FCLs to be orchestrated has to be
confirmed. If the systems being adapted are managed by different organizations, different
authentication alternatives have to be explored such as certificated-based identifications.
Even in the smart home case, the identity issue have to be considered. For example, bio-
metric [Ratha et al., 2001] and IMEI-based authentications [Europe, 2003] can be suitable in
this case. Other aspect to consider is the privacy issue. In the orchestrated Ubiquitous FCLs
for large-scale systems, the decision making can required the usage of sensible information.
This information should not be shared or accessed by not authorized entities. In the best
case, the sensible information does not need to be exchanged. However, it is necessary to
very if there are situations that required such exchange. If such situations exist, the applica-
tion of encryption mechanisms ensuring the information privacy has to be explored. This
have to be done considering that the execution time of the large-scale adaptations can not
be highly impacted.

139

Chapter 8. Conclusions

140

Bibliography

[Abowd et al., 2003] Gregory Abowd, Keith Edwards, and Beki Grinter. Smart homes or homes
that smart? SIGCHI Bull.: suppl. interactions, 2003:13–13, 2003. 122

[Alarcón and Wilde, 2010] Rosa Alarcón and Erik Wilde. Restler: crawling restful services. In
Michael Rappa, Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors, WWW, pages
1051–1052. ACM, 2010. 18, 19

[Andrieux et al., 2005] Alain Andrieux, Karl Czajkowski, Asit Dan, Kate Keahey, Heiko Ludwig,
Toshiyuki Nakata, Jim Pruyne, John Rofrano, Steve Tuecke, and Ming Xu. Web Services Agree-
ment Specification (WS-Agreement). Technical report, Global Grid Forum, Grid Resource Al-
location Agreement Protocol (GRAAP) WG, September 2005. 56

[Antila and Mantyjarvi, 2009] Ville Antila and Jani Mantyjarvi. Distributed restful web services
for mobile person-to-person collaboration. Next Generation Mobile Applications, Services and
Technologies, International Conference on, 0:119–124, 2009. 44

[Anvaari and Jansen, 2010] Mohsen Anvaari and Slinger Jansen. Evaluating architectural open-
ness in mobile software platforms. In ECSA ’10: Proceedings of the Fourth European Conference
on Software Architecture, pages 85–92, New York, NY, USA, 2010. ACM. 129

[Apt, 2003] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press,
New York, NY, USA, 2003. 6, 8, 88, 95

[Arsanjani, 2004] Ali Arsanjani. Migrating to a service-oriented architecture with web services:
Beyond the hype. Web Services, IEEE International Conference on, 0:xxxi, 2004. 4

[Association, 2001] Software & Information Industry Association. Software as a service: Strategic
backgrounder. Technical report, Software & Information Industry Association, 2001. 93

[Aurrecoechea et al., 1998] Cristina Aurrecoechea, Andrew T. Campbell, and Linda Hauw. A
survey of qos architectures. Multimedia Syst., 6(3):138–151, 1998. 71, 72

[Beauvois et al., 2007] Mikaël Beauvois, Djamel Belaïd, and Guy Bernard. A planning framework
for dynamic configuration in mobile environments. In GIIS’07: 1st International Workshop on
Seamless Services Mobility (SSMO), 2007. 95

[Bellavista and Corradi, 2006] Paolo Bellavista and Antonio Corradi. The Handbook of Mobile Mid-
dleware. Auerbach Publications, Boston, MA, USA, 2006. 3

[Bellavista et al., 2003] Paolo Bellavista, Antonio Corradi, Rebecca Montanari, and Cesare Ste-
fanelli. Context-aware middleware for resource management in the wireless internet. IEEE
Trans. Softw. Eng., 29:1086–1099, December 2003. 6, 40, 117

141

Bibliography

[Ben Mokhtar et al., 2006] Sonia Ben Mokhtar, Anupam Kaul, Nikolaos Georgantas, and Valérie
Issarny. Efficient semantic service discovery in pervasive computing environments. In Mid-
dleware ’06: Proceedings of the ACM/IFIP/USENIX 2006 International Conference on Middleware,
pages 240–259, New York, NY, USA, 2006. Springer-Verlag New York, Inc. 72

[Berberova and Bontchev, 2009] Diana Berberova and Boyan Bontchev. Design of service level
agreements for software services. In CompSysTech ’09: Proceedings of the International Conference
on Computer Systems and Technologies and Workshop for PhD Students in Computing, pages 1–6,
New York, NY, USA, 2009. ACM. 72

[Berners-Lee et al., 2005] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identi-
fier (URI): Generic Syntax. http://www.ietf.org/rfc/rfc3986.txt, January 2005. 74

[Beth Schultz, 2009] Beth Schultz. Context-aware mobility: What is it and how will it change the
business world? http://www.computerworld.com/s/article/9134587/Context_aware_

mobility_What_is_it_and_how_will_it_change_the_business_world_, July 2009. 3

[Blair et al., 2004] Gordon S. Blair, Geoff Coulson, and Paul Grace. Research directions in re-
flective middleware: the lancaster experience. In ARM ’04: Proceedings of the 3rd workshop on
Adaptive and reflective middleware, pages 262–267, New York, NY, USA, 2004. ACM. 37

[Booth et al., 2004] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Mike Champion,
Christopher Ferris, and David Orchard. Web services architecture. World Wide Web Consor-
tium, Note NOTE-ws-arch-20040211, February 2004. 16

[Bottaro et al., 2007] André Bottaro, Johann Bourcier, and Clement Escoffier. Autonomic context-
aware service composition. In 4th IEEE International Conference on Pervasive Services (ICPS’07),
Istanbul, Turkey, july 2007. 53, 58

[Bouchenak et al., 2006] Sara Bouchenak, Noel De Palma, Daniel Hagimont, and Christophe
Taton. Autonomic Management of Clustered Applications. In IEEE International Conference
on Cluster Computing, Barcelona, Spain, sept 2006. 52

[Bourcier et al., 2010] Johann Bourcier, Ada Diaconescu, Philippe Lalanda, and Mccann Julie. Au-
toHome: an Autonomic Management Framework for Pervasive Home Applications. ACM
Transactions on Autonomous and Adaptive Systems (TAAS), 2010. 55

[Box et al., 2000] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendel-
sohn, Henrik Frystyk, Satish Thatte, and Dave Winer. Simple Object Access Protocol (SOAP)
1.1. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, May 2000. 76

[Box, 1998] Don Box. Essential COM. Addison-Wesley, 1998. 24

[Boyer et al., 2005] Fabienne Boyer, Daniel Hagimont, Vivien Quema, and Jean-Bernard. Stefani.
Architecture-based autonomous repair management: Application to j2ee clusters. In ICAC’05:
Proceedings of the Second International Conference on Automatic Computing, pages 369–370, Wash-
ington, DC, USA, 2005. IEEE Computer Society. 52

[Briclet et al., 2004] Frédéric Briclet, Christophe Contreras, and Philippe Merle. OpenCCM :
une infrastructure à composants pour le déploiement d’applications à base de composants
CORBA. In IMAG/LSR, editor, DECOR04, ISBN : 2-7261-1276-5, pages 101–112, 2004. 57

[Bromberg and Issarny, 2005] Yérom-David Bromberg and Valérie Issarny. Indiss: interopera-
ble discovery system for networked services. In Middleware ’05: Proceedings of the ACM/I-
FIP/USENIX 2005 International Conference on Middleware, pages 164–183, New York, NY, USA,
2005. Springer-Verlag New York, Inc. 42

142

http://www.ietf.org/rfc/rfc3986.txt
http://www.computerworld.com/s/article/9134587/Context_aware_mobility_What_is_it_and_how_will_it_change_the_business_world_
http://www.computerworld.com/s/article/9134587/Context_aware_mobility_What_is_it_and_how_will_it_change_the_business_world_
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[Bruneton et al., 2006a] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in java: Experiences with
auto-adaptive and reconfigurable systems. Softw. Pract. Exper., 36:1257–1284, September 2006.
24

[Bruneton et al., 2006b] Éric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The FRACTAL component model and its support in Java. Software: Prac-
tice and Experience – Special issue on Experiences with Auto-adaptive and Reconfigurable Systems,
36(11-12):1257–1284, August 2006. John Wiley & Sons. 4, 115

[Bu et al., 2006] Yingyi Bu, Tao Gu, Xianping Tao, Jun Li, Shaxun Chen, and Jian Lu. Managing
quality of context in pervasive computing. In QSIC ’06: Proceedings of the Sixth International
Conference on Quality Software, pages 193–200, Washington, DC, USA, 2006. IEEE Computer
Society. 8, 34

[Buchholz et al., 2003] Thomas Buchholz, Axel Küpper, and Michael Schiffers. Quality of context:
What it is and why we need it. In OVUAÕ03: Proceedings of the 10th International Workshop of
the HP OpenView University Association (HPOVUA 2003), Geneva, Switzerland, 2003. 8, 34, 66

[Capra et al., 2003] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Carisma: Context-
aware reflective middleware system for mobile applications. IEEE Trans. Softw. Eng., 29:929–
945, October 2003. 37

[Cervantes and Hall, 2004] Humberto Cervantes and Richard S. Hall. Autonomous adaptation
to dynamic availability using a service-oriented component model. In ICSE ’04: Proceedings of
the 26th International Conference on Software Engineering, pages 614–623, Washington, DC, USA,
2004. IEEE Computer Society. 53

[Chakraborty et al., 2002] Dipanjan Chakraborty, Anupam Joshi, Yelena Yesha, and Tim Finin.
GSD: A Novel Group-based Service Discovery Protocol for MANETS. In In 4th IEEE Conference
on Mobile and Wireless Communications Networks (MWCN, pages 140–144, 2002. 43

[Chan and Chuang, 2003] Alvin T. S. Chan and Siu-Nam Chuang. Mobipads: A reflective mid-
dleware for context-aware mobile computing. IEEE Trans. Softw. Eng., 29:1072–1085, December
2003. 38

[Chan et al., 2005] Ellick Chan, Jim Bresler, Jalal Al-Muhtadi, and Roy Campbell. Gaia mi-
croserver: An extendable mobile middleware platform. In PERCOM ’05: Proceedings of the
Third IEEE International Conference on Pervasive Computing and Communications, pages 309–313,
Washington, DC, USA, 2005. IEEE Computer Society. 36

[Chen and Kotz, 2000] Guanling Chen and David Kotz. A survey of context-aware mobile com-
puting research. Technical report, Dartmouth College, Hanover, NH, USA, 2000. 3

[Christensen, 2009] Jason H. Christensen. Using restful web-services and cloud computing to
create next generation mobile applications. In OOPSLA ’09: Proceeding of the 24th ACM SIG-
PLAN conference companion on Object oriented programming systems languages and applications,
pages 627–634, New York, NY, USA, 2009. ACM. 44, 45

[Coalition, 1999] Workflow Management Coalition. Workflow management coalition terminol-
ogy glossary, 1999. 89

[Cohen et al., 2004] Norman H. Cohen, James Black, Paul Castro, Barry Leiba Maria Ebling,
Archan Misra, and Wolfgang Segmuller. Building context-aware applications with context
weaver. Technical report, IBM Research, oct 2004. 4, 35

[Comuzzi and Pernici, 2009] Marco Comuzzi and Barbara Pernici. A framework for qos-based
web service contracting. ACM Trans. Web, 3(3):1–52, 2009. 71, 72

143

Bibliography

[Conan et al., 2007] Denis Conan, Romain Rouvoy, and Lionel Seinturier. Scalable Processing of
Context Information with COSMOS. In Proceedings of the 7th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS’07), volume 4531 of LNCS, pages 210–
224, Paphos, Cyprus, June 2007. Springer. 70, 75, 104, 112, 114

[Consortium, 1999] Salutation Consortium. Salutation architecture specification, version 2.0c.
http://www.osgi.org/Specifications, 06 1999. 29

[Coulson et al., 2004] Geoff Coulson, Gordon Blair, Paul Grace, Ackbar Joolia, Kevin Lee, and
Jo Ueyama. A component model for building systems software. In In Proc. IASTED Software
Engineering and Applications (SEA ’04), 2004. 43

[Coulson et al., 2008] Geoff Coulson, Gordon Blair, Paul Grace, Francois Taiani, Ackbar Joolia,
Kevin Lee, Jo Ueyama, and Thirunavukkarasu Sivaharan. A generic component model for
building systems software. ACM Trans. Comput. Syst., 26:1:1–1:42, March 2008. 4

[Coutaz et al., 2005] Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. Context
is key. Commun. ACM, 48(3):49–53, 2005. 4, 34, 35, 71

[Cowan, 2005] John Cowan. Restful web services presentation. http://home.ccil.org/

~cowan/, 2005. 18

[Cremene et al., 2008] Marcel Cremene, Michel Riveill, and Costin Miron. Adaptation platform
for autonomic context-aware services. In Proceedings of the 2008 IEEE International Conference
on Automation, Quality and Testing, Robotics - Volume 01, pages 298–303, Washington, DC, USA,
2008. IEEE Computer Society. 54

[Crnkovic, 2002] Ivica Crnkovic. Building Reliable Component-Based Software Systems. Artech
House, Inc., Norwood, MA, USA, 2002. 73

[Crockford, 2006] Douglas Crockford. RFC 4627 - The application/json Media Type for
JavaScript Object Notation (JSON). IETF RFC, 2006. 76

[Czerwinski et al., 1999] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph,
and Randy H. Katz. An architecture for a secure service discovery service. In Proceedings of
the 5th annual ACM/IEEE international conference on Mobile computing and networking, MobiCom
’99, pages 24–35, New York, NY, USA, 1999. ACM. 29

[Dan et al., 2003] Asit Dan, Heiko Ludwig, and Giovanni Pacifici. Web Services Differentiation
with Service Level Agreements, 2003. 56

[David and Ledoux, 2005] Pierre-Charles David and Thomas Ledoux. WildCAT: a generic
framework for context-aware applications. In Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing (MPAC’05), pages 1–7, Grenoble, France, 2005.
ACM. 75

[David et al., 2008] Pierre-Charles David, Thomas Ledoux, Marc LÃ c©ger, and Thierry Coupaye.
FPath & FScript: Language support for navigation and reliable reconfiguration of Fractal ar-
chitectures. Annals of Telecommunications: Special Issue on Software Components – The Fractal
Initiative, 2008. 101

[David, 2005] Pierre-Charles David. Développement de composants Fractal adaptatifs : un langage
dédié à l’aspect d’adaptation. PhD thesis, Université de Nantes / École des Mines de Nantes, July
2005. 101

[Davidyuk et al., 2004] Oleg Davidyuk, Jukka Riekki, Ville-Mikko Rautio, and Junzhao Sun.
Context-aware middleware for mobile multimedia applications. In MUM ’04: Proceedings of
the 3rd international conference on Mobile and ubiquitous multimedia, pages 213–220, New York,
NY, USA, 2004. ACM. 39, 117

144

http://www.osgi.org/Specifications
http://home.ccil.org/~cowan/
http://home.ccil.org/~cowan/

[Davidyuk et al., 2008] Oleg Davidyuk, Istvan Selek, Jon Imanol Duran, and Jukka Riekki. Algo-
rithms for Composing Pervasive Applications. International Journal of Software Engineering and
Its Applications, 2:71–94, 2008. 100

[Debaty et al., 2005] Philippe Debaty, Patrick Goddi, and Alex Vorbau. Integrating the physical
world with the web to enable context-enhanced mobile services. Mob. Netw. Appl., 10(4):385–
394, 2005. 6, 40

[Depalma et al., 2008] Noel Depalma, Sara Bouchenak, Fabienne Boyer, Daniel Hagimont, Syl-
vain Sicard, and Christophe Taton. Jade : un environnement d’administration autonome.
Technique et Science Informatiques, 27(9-10):1225–1252, 2008. 52

[Dey, 2001] Anind K. Dey. Understanding and using context. Personal Ubiquitous Comput., 5(1):4–
7, 2001. 4, 34, 91

[Dubus and Merle, 2006] Jérémy Dubus and Philippe Merle. Applying omg d&c specification
and eca rules for autonomous distributed component-based systems. In MoDELS Workshops,
pages 242–251, 2006. 57

[Entertainment Services and Technology Association (ESTA),] Entertainment Services
and Technology Association (ESTA). Architecture for Control Networks (ACN).
http://www.engarts.eclipse.co.uk/acn. 31

[Escoffier et al., 2007] Clément Escoffier, Richard S. Hall, and Philippe Lalanda. ipojo: an exten-
sible service-oriented component framework. In IEEE SCC, pages 474–481, 2007. 56

[Europe, 2003] GMS Europe. GMSE Proposals Regarding Mobile Theft and IMEI Security, june
2003. 139

[Fielding, 2000] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine, 2000. 7, 9, 18

[Fillinger et al., 2006] Antoine Fillinger, Stéphane Degré, Imad Hamchi, and Vincent Stanford.
The nist smart data flow system ii multimodal data transport infrastructure. In Proceedings of
the 8th international conference on Multimodal interfaces, ICMI ’06, pages 128–128, New York, NY,
USA, 2006. ACM. 53

[Floch et al., 2006] Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund,
and Eli Gjorven. Using architecture models for runtime adaptability. IEEE Software, 23:62–70,
2006. 56

[Flores-Cortés et al., 2006] Carlos A. Flores-Cortés, Gordon S. Blair, and Paul Grace. A multi-
protocol framework for ad-hoc service discovery. In MPAC ’06: Proceedings of the 4th interna-
tional workshop on Middleware for Pervasive and Ad-Hoc Computing, page 10, New York, NY, USA,
2006. ACM. 43

[Foundation, a] The Apache Software Foundation. Apache Felix. http://felix.apache.org.
21

[Foundation, b] The Eclipse Foundation. Eclipse Equinox. http://eclipse.org/equinox. 21

[Foundation, 2010] Apache Software Foundation. Apache tuscany. http://tuscany.apache.

org/home.html, 2010. 22

[Ganek and Corbi, 2003] Alan G. Ganek and Thomas A. Corbi. The dawning of the autonomic
computing era. IBM Systems Journal, 42(1):5–18, 2003. 5, 8, 49

145

http://felix.apache.org
http://eclipse.org/equinox
http://tuscany.apache.org/home.html
http://tuscany.apache.org/home.html

Bibliography

[Garlan et al., 2000] David Garlan, Robert T. Monroe, and David Wile. Acme: architectural de-
scription of component-based systems. In Gary T. Leavens and Murali Sitaraman, editors,
Foundations of component-based systems, pages 47–67. Cambridge University Press, New York,
NY, USA, 2000. 57

[Garlan et al., 2004] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley Schmerl, and
Peter Steenkiste. Rainbow: Architecture-based self-adaptation with reusable infrastructure.
Computer, 37:46–54, 2004. 56

[Goland et al., 1999] Yaron Y. Goland, Ting Cai, Paul Leach, and Ye Gu. Simple service discovery
protocol/1.0. http://quimby.gnus.org/internet-drafts/draft-cai-ssdp-v1-03.txt,
1999. 30

[Grace et al., 2005] Paul Grace, Gordon S. Blair, and Sam Samuel. A reflective framework for
discovery and interaction in heterogeneous mobile environments. SIGMOBILE Mob. Comput.
Commun. Rev., 9(1):2–14, 2005. 43

[Gribble et al., 2001] Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David
Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R. H. Katz, Z. M. Mao,
S. Ross, B. Zhao, and Robert C. Holte. The ninja architecture for robust internet-scale systems
and services373423. Comput. Netw., 35:473–497, March 2001. 29

[Grossman, 2009] Robert L. Grossman. The case for cloud computing. IT Professional, 11(2):23–27,
March 2009. 10

[Group, 2006a] Object Management Group. Corba component model 4.0 specification. Specifi-
cation Version 4.0, Object Management Group, April 2006. 4, 38

[Group, 2006b] Object Management Group. Corba component model 4.0 specification. Technical
Report Version 4.0, Object Management Group, April 2006. 54

[Group, 2006c] Object Management Group. Deployment and Configuration of Distributed
Component-based Applications Specification, Version 4.0, april 2006. 57

[Grün et al., 2009] Christian Grün, Sebastian Gath, Alexander Holupirek, and Marc H. Scholl.
XQuery Full Text Implementation in BaseX. In 6th International XML Database Symposium on
Database and XML Technologies (XSym), volume 5679 of LNCS, pages 114–128. Springer, 2009.
120

[Gu et al., 2004] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A middleware for building
context-aware mobile services. In IEEE Vehicular Technology Conference, 2004. 34, 39, 117

[Gu et al., 2005] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented middleware
for building context-aware services. J. Netw. Comput. Appl., 28(1):1–18, 2005. 34, 39, 117

[Guttman et al., 1999] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Proto-
col, Version 2. RFC 2608 (Proposed Standard). http://tools.ietf.org/html/rfc2608, june
1999. 7, 29, 30, 43

[Hadley, 2006] Marc J. Hadley. Web application description language (wadl). Technical report,
Sun Microsystems, Inc., Mountain View, CA, USA, 2006. 18

[Hallsteinsen et al., 2004] Svein O. Hallsteinsen, Jacqueline Floch, and Erlend Stav. A middleware
centric approach to building self-adapting systems. In SEM, pages 107–122, 2004. 56

[Hariri et al., 2006a] Salim Hariri, Bithika Khargharia, Houping Chen, Jingmei Yang, Yeliang
Zhang, Manish Parashar, and Hua Liu. The Autonomic Computing Paradigm. Cluster Com-
puting, 9(1):5–17, 2006. 6

146

http://quimby.gnus.org/internet-drafts/draft-cai-ssdp-v1-03.txt
http://tools.ietf.org/html/rfc2608

[Hariri et al., 2006b] Salim Hariri, Bithika Khargharia, Huoping Chen, Jingmei Yang, Yeliang
Zhang, Manish Parashar, and Hua Liu. The autonomic computing paradigm. Cluster Com-
puting, 9(1):5–17, 2006. 8, 50

[Hermann et al., 2000] Reto Hermann, Dirk Husemann, Michael Moser, Michael Nidd, Christian
Rohner, and Andreas Schade. Deapspace: transient ad-hoc networking of pervasive devices.
In Proceedings of the 1st ACM international symposium on Mobile ad hoc networking & computing,
MobiHoc ’00, pages 133–134, Piscataway, NJ, USA, 2000. IEEE Press. 29

[Hirschfeld et al., 2008] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-
oriented programming. Journal of Object Technology, March-April 2008, ETH Zurich, 7(3):125–
151, 2008. 34

[Hu et al., 2007] Xiaoming Hu, Yun Ding, Nearchos Paspallis, Pyrros Bratskas, George A Pa-
padopoulos, Paolo Barone, and Alessandro Mamelli. A Peer-to-Peer based infrastructure for
Context Distribution in Mobile and Ubiquitous Environments. In Proceedings of 3rd Interna-
tional Workshop on Context-Aware Mobile Systems (CAMS’07), Vilamoura, Algarve, Portugal,
November 2007. 41, 74

[Huebscher and McCann, 2005] C. Huebscher and A. McCann. An adaptive middleware frame-
work for context-aware applications. Personal Ubiquitous Comput., 10:12–20, December 2005.
54

[Huebscher et al., 2007] Markus C. Huebscher, Julie A. McCann, and Asher Hoskins. Context as
autonomic intelligence in a ubiquitous computing environment. Int. J. Internet Protoc. Technol.,
2:30–39, December 2007. 54, 58

[IANA, 2007] IANA. MIME Media Types. http://www.iana.org/assignments/media-types,
March 2007. 75

[Inc., 2009] Apple Inc. Bonjour. http://www.apple.com/support/bonjour/, 2009. 29

[Kell, 2008] Stephen Kell. A survey of practical software adaptation techniques. J. UCS,
14(13):2110–2157, 2008. 4

[Kephart and Chess, 2003] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36(1):41–50, January 2003. 8, 25, 50

[Klein et al., 2008] Cornel Klein, Reiner N. Schmid, Christian Leuxner, Wassiou Sitou, and Bernd
Spanfelner. A survey of context adaptation in autonomic computing. In ICAS, pages 106–111,
2008. 52

[Kotz and Henderson,] David Kotz and Tristan Henderson. Community Resource for Archiving
Wireless Data At Dartmouth (CRAWDAD). http://crawdad.cs.dartmouth.edu. 119

[Krishnakumar and Sloman, 2002] Krish T. Krishnakumar and Morris Sloman. Constraint based
network adaptation for ubiquitous applications. In Proceedings of the 6th International Enterprise
Distributed Object Computing Conference, pages 258 – 269, Washington, DC, USA, 2002. IEEE
Computer Society. 100

[Kuchcinski and Szymanek, 2010] Krzysztof Kuchcinski and Radoslaw Szymanek. Jacop - java
constraint programming solver, 2010. 125

[LaMarca et al., 2005] Anthony LaMarca, Jeff Hightower, Ian Smith, and Sunny Consolvo. Self-
mapping in 802.11 location systems. In Michael Beigl, Stephen Intille, Jun Rekimoto, and
Hideyuki Tokuda, editors, UbiComp 2005: Ubiquitous Computing, volume 3660 of Lecture Notes
in Computer Science, pages 87–104. Springer Berlin / Heidelberg, 2005. 45

147

http://www.iana.org/assignments/media-types
http://www.apple.com/support/bonjour/

Bibliography

[Laws et al., 2010] Simon Laws, Mark Combellack, Raymond Feng, Haleh Mahbod, and Simon
Nash. Tuscany in Action. Manning Publications, 2010. 22

[Leclercq et al., 2005] Matthieu Leclercq, Vivien Quéma, and Jean-Bernard Stefani. DREAM: A
Component Framework for Constructing Resource-Aware, Configurable Middleware. IEEE
Distributed Systems Online (DSO), 6(9):1–12, September 2005. 74

[Leclercq et al., 2007] Matthieu Leclercq, Ali Erdem Özcan, Vivien Quéma, and Jean-Bernard Ste-
fani. Supporting Heterogeneous Architecture Descriptions in an Extensible Toolset. In ICSE’07:
Proceedings of the 29th International Conference on Software Engineering (ICSE’07), pages 209–219,
Minneapolis, USA, May 2007. ieee. 115

[Loiret et al., 2009] Frédéric Loiret, Michal Malohlava, Ales Plsek, Philippe Merle, and Lionel
Seinturier. Constructing Domain-Specific Component Frameworks through Architecture Re-
finement. In 35th EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA), pages 375–382, 2009. 81

[Loiret et al., 2010a] Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Daniel Romero, Kevin
Sénéchal, and Ales Plsek. An Aspect-Oriented Framework for Weaving Domain-Specific Con-
cerns into Component-Based Systems. Journal of Universal Computer Science (J.UCS), 10 2010.
To appear. 10

[Loiret et al., 2010b] Frédéric Loiret, Lionel Seinturier, Laurence Duchien, and David Servat. A
Three-Tier Approach for Composition of Real-Time Embedded Software Stacks. In 13th In-
ternational SIGSOFT Symposium on Component-Based Software Engineering (CBSE), LNCS, pages
37–54. Springer, June 2010. 81

[Makice, 2009] Kevin Makice. Twitter API: Up and Running Learn How to Build Applications with
the Twitter API. O’Reilly Media, Inc., 2009. 77, 125

[Manzoor et al., 2008] Atif Manzoor, Hong-Linh Truong, and Schahram Dustdar. On the evalu-
ation of quality of context. In Proceedings of the 3rd European Conference on Smart Sensing and
Context, EuroSSC ’08, pages 140–153, Berlin, Heidelberg, 2008. Springer-Verlag. 8, 34

[Marinos et al., 2010] Alexandros Marinos, Erik Wilde, and Jiannan Lu. Http database connector
(hdbc): Restful access to relational databases. In WWW ’10: Proceedings of the 19th international
conference on World wide web, pages 1157–1158, New York, NY, USA, 2010. ACM. 45

[Marsal, 2009] Katie Marsal. Augmented reality in iphone 3.1; new snow leopard build.
http://www.appleinsider.com/articles/090724/augmented_reality_in_iphone_3_1_

new_snow_leopard_build.html, 2009. 45

[Mascolo et al., 2002] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Middleware for
mobile computing (a survey). In E. Gregori, G. Anastasi, and S. Basagni, editors, Neworking
2002 Tutorial Papers, volume 2497 of lncs, pages 20–58. springer, 2002. 34

[Mattern, 2004] Friedemann Mattern. Wireless future: Ubiquitous computing. In Proceedings of
Wireless Congress 2004, Munich, Germany, nov 2004. 34

[Mattern, 2005] Friedemann Mattern. Ubiquitous Computing: Scenarios from an informatised world,
pages 145–163. Springer-Verlag, 2005. 34

[McFedries, 2007] Paul McFedries. Technically speaking: All a-twitter. Spectrum, IEEE, 44:84–84,
2007. 125

[McKinley et al., 2004] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H. C.
Cheng. Composing adaptive software. Computer, 37:56–64, July 2004. 4

148

http://www.appleinsider.com/articles/090724/augmented_realit y_in_iphone_3_1_new_snow_leopard_build.html
http://www.appleinsider.com/articles/090724/augmented_realit y_in_iphone_3_1_new_snow_leopard_build.html

[Mélisson et al., 2010a] Rémi Mélisson, Philippe Merle, Daniel Romero, Romain Rouvoy, and Li-
onel Seinturier. Reconfigurable Run-Time Support for Distributed Service Component Ar-
chitectures. In Automated Software Engineering, Tool Demonstration, pages 171 – 172, Antwerp
Belgique, 09 2010. 11, 23, 81

[Mélisson et al., 2010b] Rémi Mélisson, Daniel Romero, Romain Rouvoy, and Lionel Seinturier.
Supporting Pervasive and Social Communications with FraSCAti. In 3rd DisCoTec Workshop
on Context-aware Adaptation Mechanisms for Pervasive and Ubiquitous Services, Amsterdam Pays-
Bas, 06 2010. 11, 125

[Menascé and Kephart, 2007] Daniel A. Menascé and Jeffrey O. Kephart. Guest editors’ intro-
duction: Autonomic computing. IEEE Internet Computing, 11(1):18–21, 2007. 8, 50

[Microsystems, 2000] Sun Microsystems. Service location protocol administration guide. http:
//dlc.sun.com/pdf/806-1412/806-1412.pdf, 2000. 30

[Microsystems, 2003] Sun Microsystems. Jini technology core platform specification. http://

www.sun.com/jini/specs/jini1_1spec.html, 2003. 29

[Microsystems, 2005] Sun Microsystems. Java transaction api (jta). http://www.oracle.com/

technetwork/java/javaee/tech/jta-138684.html, 2005. 22

[Mohyeldin et al., 2005] Eiman Mohyeldin, Michael Fahrmair, Wassiou Sitou, and Bernd Span-
felner. A generic framework for context aware and adaptation behaviour of reconfigurable
systems. In 16th Annual IEEE International Symposium on Personal Indoor and Mobile Radio Com-
munications (PIMRC’05), 2005. 55

[Moore, 2000] Gordon E. Moore. Cramming more components onto integrated circuits. Readings
in computer architecture, pages 56–59, 2000. 34

[Neema and Ledeczi, 2003] Sandeep Neema and Akos Ledeczi. Constraint-guided self-
adaptation. In Proceedings of the 2nd international conference on Self-adaptive software: applications,
IWSAS’01, pages 39–51, Berlin, Heidelberg, 2003. Springer-Verlag. 95, 100

[Nitu, 2009] Nitu. Configurability in saas (software as a service) applications. In ISEC ’09: Pro-
ceedings of the 2nd India software engineering conference, pages 19–26, New York, NY, USA, 2009.
ACM. 93

[Nokia, 2008] Nokia. Mobile Web Server, 2008. http://wiki.opensource.nokia.com/

projects/Mobile_Web_Server. 115

[OASIS Open CSA, 2007] OASIS Open CSA. Service Component Architecture (SCA), March
2007. http://www.oasis-opencsa.org/sca. 4, 9, 136

[Open Geospatial Consortium,] Open Geospatial Consortium. OGC KML Standard - Version
2.2. http://www.opengeospatial.org/standards/kml. 118

[Open SOA, 2007a] Open SOA. SCA Policy Framework, March 2007. Version 1.0. 26

[Open SOA, 2007b] Open SOA. Service Component Architecture Specifications, November 2007.
http://www.osoa.org/display/Main/Service+Component+Architecture+Home. 4, 9, 20,
79

[OSG, 2004] OSGi Alliance. Listeners Considered Harmful: The Whiteboard Pattern, August 2004. 25

[Padmanabhuni et al., 2006] Srinivas Padmanabhuni, Bijoy Majumdar, Mohit Chawla, and Ujval
Mysore. A constraint satisfaction approach to non-functional requirements in adaptive web
services. In Proceedings of the International Conference on Next Generation Web Services Practices,
pages 109–116, Washington, DC, USA, 2006. IEEE Computer Society. 100

149

http://dlc.sun.com/pdf/806-1412/806-1412.pdf
http://dlc.sun.com/pdf/806-1412/806-1412.pdf
 http://www.sun.com/jini/ specs/jini1_1spec.html
 http://www.sun.com/jini/ specs/jini1_1spec.html
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html
http://www.oracle.com/technetwork/java/javaee/tech/jta-138684.html
http://wiki.opensource.nokia.com/projects/Mobile_Web_Server
http://wiki.opensource.nokia.com/projects/Mobile_Web_Server
http://www.oasis-opencsa.org/sca
http://www.opengeospatial.org/standards/kml
http://www.osoa.org/display/Main/ Service+Component+Architecture+Home

Bibliography

[Parashar and Hariri, 2005] Manish Parashar and Salim Hariri. Autonomic Computing: An
Overview. Unconventional Programming Paradigms, pages 257–269, 2005. 6

[Parra, 2011] Carlos Parra. Towards Dynamic Software Product Lines: Unifying Design and Runtime
Adaptation. PhD thesis, Université Lille 1, march 2011. 138

[Pham and Gehlen, 2005] Linh Pham and Guido Gehlen. Realization and Performance Analysis
of a SOAP Server for Mobile Devices. In Proceedings of the 11th European Wireless Conference,
volume 2, pages 791–797, Nicosia, Cyprus, April 2005. VDE Verlag. 115

[Pohl et al., 2005] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005. 138

[Preuveneers and Berbers, 2007] Davy Preuveneers and Yolande Berbers. Architectural back-
propagation support for managing ambiguous context in smart environments. In UAHCI’07:
Proceedings of the 4th international conference on Universal access in human-computer interaction:
ambient interaction, pages 178–187, Berlin, Heidelberg, 2007. Springer-Verlag. 41

[Project,] The Knopflerfish Project. Knopflerfish. http://www.knopflerfish.org. 21

[Przybilski, 2005] Michael Przybilski. Rest - representational state transfer, 2005. 16

[Ranganathan et al., 2004] Anand Ranganathan, Jalal Al-Muhtadi, Shiva Chetan, Roy Campbell,
and M. Dennis Mickunas. Middlewhere: a middleware for location awareness in ubiquitous
computing applications. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX interna-
tional conference on Middleware, pages 397–416, New York, NY, USA, 2004. Springer-Verlag New
York, Inc. 6, 38

[Ratha et al., 2001] Nalini K. Ratha, Jonathan H. Connell, and Ruud M. Bolle. Enhancing security
and privacy in biometrics-based authentication systems. IBM Syst. J., 40:614–634, March 2001.
139

[Ratsimor et al., 2002] Olga Ratsimor, Dipanjan Chakraborty, Anupam Joshi, and Timothy Finin.
Allia: alliance-based service discovery for ad-hoc environments. In Proceedings of the 2nd inter-
national workshop on Mobile commerce, WMC ’02, pages 1–9, New York, NY, USA, 2002. ACM.
43

[Razzaque et al., 2006] M. A. Razzaque, Simon Dobson, and Paddy Nixon. Categorization and
modeling of quality in context information. In Proceedings of the IJCAI 2005 Workshop on AI and
Autonomic Communications, 2005, 2006. 8, 34

[Richardson and Ruby, 2007] Leonard Richardson and Sam Ruby. Restful web services. O’Reilly,
2007. 18

[Riva and Laitkorpi, 2009] Claudio Riva and Markku Laitkorpi. Designing web-based mobile
services with rest. In Elisabetta Di Nitto and Matei Ripeanu, editors, Service-Oriented Comput-
ing - ICSOC 2007 Workshops, volume 4907 of Lecture Notes in Computer Science, pages 439–450.
Springer Berlin / Heidelberg, 2009. 44

[Rodriguezi, 2006] Alex Rodriguezi. Restful web services: The basics. http://www.ibm.com/

developerworks/webservices/library/ws-restful/, 2006. 18

[Román et al., 2002a] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganathan,
Roy H. Campbell, and Klara Nahrstedt. Gaia: a middleware platform for active spaces. SIG-
MOBILE Mob. Comput. Commun. Rev., 6(4):65–67, 2002. 6

[Román et al., 2002b] Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. Gaia: A Middleware Infrastructure to
Enable Active Spaces. IEEE Pervasive Computing, pages 74–83, Oct–Dec 2002. 34, 36, 117

150

http://www.knopflerfish.org
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.ibm.com/developerworks/webservices/library/ws-restful/

[Romero et al., 2008] Daniel Romero, Carlos Parra, Lionel Seinturier, Laurence Duchien, and
Rubby Casallas. An SCA-Based Middleware Platform for Mobile Devices. In EDOC Confer-
ence EDOCW ’08: Proceedings of the 2008 12th Enterprise Distributed Object Computing Conference
Workshops, pages 393–396, Munich Allemagne, 2008. 11

[Romero et al., 2010a] Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel
Nzekwa, Romain Rouvoy, and Frank Eliassen. RESTful Integration of Heterogeneous Devices
in Pervasive Environments. In Proceedings of the 10th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS’10), volume 6115 of LNCS, pages 1–14. Springer,
June 2010. 11, 66, 124

[Romero et al., 2010b] Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Pierre Carton. Ser-
vice Discovery in Ubiquitous Feedback Control Loops. In Proceedings of the 10th IFIP Interna-
tional Conference on Distributed Applications and Interoperable Systems (DAIS’10), volume 6115 of
LNCS, pages 113–126. Springer, june 2010. 11, 66, 81

[Romero et al., 2010c] Daniel Romero, Romain Rouvoy, Lionel Seinturier, Sophie Chabridon, De-
nis Conan, and Nicolas Pessemier. Enabling Context-Aware Web Services: A Middleware
Approach for Ubiquitous Environments. In Michael Sheng, Jian Yu, and Schahram Dustdar,
editors, Enabling Context-Aware Web Services: Methods, Architectures, and Technologies. Chapman
and Hall/CRC, 05 2010. 11, 66, 81, 85

[Romero et al., 2010d] Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Frédéric Loiret. In-
tegration of Heterogeneous Context Resources in Ubiquitous Environments. In Michel Chau-
dron, editor, Proceedings of the 36th EUROMICRO International Conference on Software Engineer-
ing and Advanced Applications (SEAA’10), pages 123–126, Lille France, 2010. ACM. 11, 66

[Romero et al., 2011] Daniel Romero, Gabriel Hermosillo, Amirhosein Taherkordi, Russel
Nzekwa, Romain Rouvoy, and Frank Eliassen. The digihome service-oriented platform. Softw.
Pract. Exper., 2011. To appear. 10, 124

[Romero, 2008] Daniel Romero. Context-Aware Middleware: An overview. Paradigma, 2, 12
2008. 11

[Rouvoy et al., 2008] Romain Rouvoy, Denis Conan, and Lionel Seinturier. Software Architecture
Patterns for a Context-Processing Middleware Framework. IEEE Distributed Systems Online
(DSO), 9(6), June 2008. 70, 104, 112

[Rouvoy et al., 2009] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein O. Hall-
steinsen, Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz. Music: Middleware support
for self-adaptation in ubiquitous and service-oriented environments. In Software Engineering
for Self-Adaptive Systems, pages 164–182, 2009. 56

[Sailhan and Issarny, 2005] Francoise Sailhan and Valerie Issarny. Scalable service discovery for
manet. In Proceedings of the Third IEEE International Conference on Pervasive Computing and Com-
munications, pages 235–244, Washington, DC, USA, 2005. IEEE Computer Society. 43

[Schilit et al., 1994] Bill N. Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In In Proceedings of the Workshop on Mobile Computing Systems and Applications,
pages 85–90. IEEE Computer Society, 1994. 3, 34

[SCOrWare Project, 2007] SCOrWare Project. SCA Platform Specifications - Version 1.0. http:

//www.scorware.org/projects/en/deliverables, 2007. 9, 20

[Seinturier et al., 2009] Lionel Seinturier, Philippe Merle, Damien Fournier, Nicolas Dolet, Vale-
rio Schiavoni, and Jean-Bernard Stefani. Reconfigurable SCA Applications with the FraSCAti
Platform. In 6th IEEE International Conference on Service Computing (SCC’09), pages 268–275,
Bangalore Inde, 2009. IEEE. CORE A. Acceptance rate: 1823, 81, 101

151

http://www.scorware.org/projects/en/deliverables
http://www.scorware.org/projects/en/deliverables

Bibliography

[Seinturier et al., 2011] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Vale-
rio Schiavoni, and Jean-Bernard Stefani. A component-based middleware platform for recon-
figurable service-oriented architectures. Softw. Pract. Exper., 2011. To appear. 10, 23

[Shaw and Garlan, 1996] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996. 24

[Sheikh et al., 2008] Kamran Sheikh, Maarten Wegdam, and Marten van Sinderen. Quality-of-
context and its use for protecting privacy in context aware systems. Journal of Software, 3(3):83–
93, 2008. 8, 34

[SIG, 2001] Bluetooth SIG. Specification of the bluetooth system, core v1.1. http://www.

bluetooth.com/dev/specifications.as, 2001. 29, 37

[Sim et al., 2006] N. Sim, R. Turnbull, and M. D. Walker. Open devices – their role in supporting
converged services. BT Technology Journal, 24(2):200–204, 2006. 129

[Sivavakeesar et al., 2006] S. Sivavakeesar, O.F. Gonzalez, and G. Pavlou. Service discovery
strategies in the ubiquitous communication environments. In IEEE Communications Magazine,
volume 44(9), pages 106 – 113, Antwerp Belgium, 09 2006. 29

[Smith, 1982] Brian Cantwell Smith. Procedural Reflection in Programming Languages. PhD thesis,
Massachusetts Institute of Technology, 1982. 138

[Smith, 1984] Brian Smith. Reflection and Semantics in Lisp. In Proceedings of the ACM Symposium
on Principles of Programming Languages (POPL’84), pages 23–35, 1984. 24

[SOA, 2007] Open SOA. Power combination: Sca, osgi and spring, March 2007. 21

[Soldatos et al., 2007] John Soldatos, Ippokratis Pandis, Kostas Stamatis, Lazaros Polymenakos,
and James L. Crowley. Agent based middleware infrastructure for autonomous context-aware
ubiquitous computing services. Comput. Commun., 30:577–591, February 2007. 53

[Sorensen et al., 2004] Carl-Fredrik Sorensen, Maomao Wu, Thirunavukkarasu Sivaharan, Gor-
don S. Blair, Paul Okanda, Adrian Friday, and Hector Duran-Limon. A context-aware mid-
dleware for applications in mobile ad hoc environments. In MPAC ’04: Proceedings of the 2nd
workshop on Middleware for pervasive and ad-hoc computing, pages 107–110, New York, NY, USA,
2004. ACM. 37

[Sousa and Garlan, 2002] Joa̋o Pedro Sousa and David Garlan. Aura: an architectural framework
for user mobility in ubiquitous computing environments. In WICSA 3: Proceedings of the IFIP
17th World Computer Congress - TC2 Stream / 3rd IEEE/IFIP Conference on Software Architecture,
pages 29–43, Deventer, The Netherlands, The Netherlands, 2002. Kluwer, B.V. 34, 37

[Srirama et al., 2006] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile Web
Service Provisioning. In International Conference on Advanced International Conference on Telecom-
munications / Internet and Web Applications and Services, page 120. IEEE, 2006. 115

[Stefan Sidahmed, 2010] Stefan Sidahmed. iPhone Market Share: The Rest of the Story. http://
seekingalpha.com/article/187212-iphone-market-share-the-rest-of-the-story?

source=email, February 2010. 3

[Stirbu, 2010] Vlad Stirbu. A restful architecture for adaptive and multi-device application shar-
ing. In WS-REST ’10: Proceedings of the First International Workshop on RESTful Design, pages
62–66, New York, NY, USA, 2010. ACM. 45

[Systems, 2010] Metaform Systems. Fabric3. http://www.fabric3.org/, 2010. 22

[Szyperski, 2002] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002. 4

152

http://www.bluetooth.com/dev/specifications.as
http://www.bluetooth.com/dev/specifications.as
http://seekingalpha.com/article/187212-iphone-market-share-the-rest-of-the-story?source=email
http://seekingalpha.com/article/187212-iphone-market-share-the-rest-of-the-story?source=email
http://seekingalpha.com/article/187212-iphone-market-share-the-rest-of-the-story?source=email
http://www.fabric3.org/

[Taherkordi et al., 2011] Amirhosein Taherkordi, Daniel Romero, Romain Rouvoy, and Frank
Eliassen. Restful service development for resource-constrained environments. In REST: From
Research to Practice. Springer, 2011. To appear. 11

[Taylor et al., 2009] R. N. Taylor, Nenad Medvidovic, and Irvine E. Dashofy. Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, January 2009. 70, 73, 117

[TelecomSpace,] TelecomSpace. General Packet Radio Service. http://www.telecomspace.

com/datatech-gprs.html. 37

[The Apache Software Foundation,] The Apache Software Foundation. HTTP Server Project.
http://httpd.apache.org. 115

[The OSGi Alliance, 2009] The OSGi Alliance. OSGi service platform core specification, release
4.2. http://www.osgi.org/Specifications, 2009. 4, 9, 20

[Topley, 2002] Kim Topley. J2ME in a nutshell. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2002. 36

[TopoGraphix,] TopoGraphix. GPX: the GPS Exchange Format - Version 1.1. http://www.

topografix.com/gpx.asp. 118

[Tyagi, 2006] Sameer Tyagi. Restful web services. http://www.oracle.com/technetwork/

articles/javase/index-137171.html, 2006. 18

[Ulmer et al., 2009] Cedric Ulmer, Gabriel Serme, and Yohann Bonillo. Enabling web object ori-
entation with mobile devices. In Mobility ’09: Proceedings of the 6th International Conference on
Mobile Technology, Application & Systems, pages 1–4, New York, NY, USA, 2009. ACM. 44

[UNS et al.,] UNS, INRIA ADAM, LIP6/MoVe, Paris 8, EBM WebSourcing, Deveryware, MAAT,
and Thales. The SALTY Project. https://salty.unice.fr/. 139

[UPnP Forum, 2008] UPnP Forum. UPnP Device Architecture 1.0. http://www.upnp.org/

resources/documents.asp, april 2008. 7, 29, 30

[W3C, 2007] W3C. Soap version 1.2 part 0: Primer (second edition). online, April 2007. W3C
Recommendation. 9, 16

[Waldo, 2000] Jim Waldo. The Jini Specifications. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000. 37

[Weiser, 1999] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob. Comput. Com-
mun. Rev., 3(3):3–11, 1999. 3, 34

[Weiss and Craiger, 2002] R. Jason Weiss and J. Philip Craiger. Ubiquitous computing. Leading
Edge, 39(4), april 2002. 3, 34

[White, 2004] S.A. White. Introduction to bpmn. Technical report, Object Management Group,
2004. 91

[Wikman and Dosa, 2006] Johan Wikman and Ferenc Dosa. Providing HTTP Access to Web
Servers Running on Mobile Phones, 2006. 115

[Xiao, 2008] XiPeng Xiao. Technical, Commercial and Regulatory Challenges of QoS: An Internet Ser-
vice Model Perspective. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008. 95

[Yasar et al., 2008] Ansar-Ul-Haque Yasar, Davy Preuveneers, and Yolande Berbers. Adaptive
context mediation in dynamic and large scale vehicular networks using relevance backpropa-
gation. In Mobility ’08: Proceedings of the International Conference on Mobile Technology, Applica-
tions, and Systems, pages 81:1–81:8, New York, NY, USA, 2008. ACM. 41

153

http://www.telecomspace.com/datatech-gprs.html
http://www.telecomspace.com/datatech-gprs.html
http://httpd.apache.org
http://www.osgi.org/Specifications
http://www.topografix.com/gpx.asp
http://www.topografix.com/gpx.asp
http://www.oracle.com/technetwork/articles/javase/index-137171.html
http://www.oracle.com/technetwork/articles/javase/index-137171.html
https://salty.unice.fr/
http://www.upnp.org/resources/documents.asp
http://www.upnp.org/resources/documents.asp

Bibliography

[Yasar et al., 2010] Ansar-Ul-Haque Yasar, Yves Vanrompay, Davy Preuveneers, and Yolande
Berbers. Optimizing information dissemination in large scale mobile peer-to-peer networks
using context-based grouping. In 13th International IEEE Conference on Intelligent Transportation
Systems, pages 1065–1071. IEEE, September 2010. 41

[Yau et al., 2002] Stephen S. Yau, Fariaz Karim, Yu Wang, Bin Wang, and Sandeep K. S. Gupta.
Reconfigurable context-sensitive middleware for pervasive computing. IEEE Pervasive Com-
puting, 1(3):33–40, 2002. 40, 117

[Yau et al., 2004] Stephen S. Yau, Dazhi Huang, Haishan Gong, and Siddharth Seth. Develop-
ment and runtime support for situation-aware application software in ubiquitous computing
environments. In COMPSAC ’04: Proceedings of the 28th Annual International Computer Soft-
ware and Applications Conference, pages 452–457, Washington, DC, USA, 2004. IEEE Computer
Society. 40, 117

[Zhao and Rosson, 2009] Dejin Zhao and Mary Beth Rosson. How and why people twitter: the
role that micro-blogging plays in informal communication at work. In GROUP ’09: Proceedings
of the ACM 2009 international conference on Supporting group work, pages 243–252, New York,
NY, USA, 2009. ACM. 125

[Zhu et al., 2005] Fen Zhu, Matt W. Mutka, and Lionel M. Ni. Service discovery in pervasive
computing environments. IEEE Pervasive Computing, 4(4):81–90, 2005. 4, 29, 76

[Zigbee Alliance, 2007] Zigbee Alliance. ZigBee and Wireless Radio Frequency Coexistence.
http://www.zigbee.org/imwp/download.asp?ContentID=11745, June 2007. 127

154

http://www.zigbee.org/imwp/download.asp?ContentID=11745

	Couverture
	Contents
	List of Tables
	Abstract
	Résumé
	Chapter 1 Introduction
	1.1 Understanding the Problem
	1.2 Goals of this dissertation
	1.3 Contribution
	1.4 Dissertation Roadmap
	1.5 Publications

	Part I State of the Art
	Chapter 2 Concepts and Background
	2.1 Approaches for the Integration of Information
	2.1.1 SOAP
	2.1.2 REpresentational State Transfer (REST)
	2.1.3 Integration via SOAP Framework vs. Integration via the REST Architectural Style

	2.2 Component Models for SOA Applications
	2.2.1 OSGi Framework Specification
	2.2.2 Service Component Architecture (SCA) Model
	2.2.3 Choosing the Component Model

	2.3 SCA Platforms
	2.3.1 The Fabric3 Platform
	2.3.2 The Tuscany Platform
	2.3.3 The FraSCAti platform
	2.3.4 Selecting an SCA Platform

	2.4 Service Discovery Protocols
	2.4.1 Universal Plug and Play (UPnP)
	2.4.2 Service Location Protocol (SLP)

	2.5 Summary

	Chapter 3 Ubiquitous Approaches
	3.1 Definitions and Concepts
	3.2 Middleware Solutions for Context-Awareness
	3.2.1 Gaia
	3.2.2 Gaia Microserver
	3.2.3 Aura
	3.2.4 CORTEX
	3.2.5 CARISMA
	3.2.6 MobiPADS
	3.2.7 MiddleWhere
	3.2.8 SOCAM
	3.2.9 CAPNET
	3.2.10 Reconfigurable Context-Sensitive Middleware (RCSM)
	3.2.11 CARMEN
	3.2.12 Cooltown
	3.2.13 A Large Scale Peer-to-Peer Context Dissemination Middleware
	3.2.14 A Peer-to-Peer based infrastructure for Context Distribution in Mobile and Ubiquitous Environments (MUSIC Peer-to-Peer)
	3.2.15 Summary of Middleware Solutions

	3.3 Service Discovery Solutions for Ubiquitous Environments
	3.3.1 INDISS: Interoperable Discovery System for Networked Services
	3.3.2 ReMMoC: A Reflective Framework for Discovery and Interaction in Heterogeneous Mobile Environments
	3.3.3 A Multi-protocol Framework for Ad-hoc Service Discovery
	3.3.4 Service Discovery Solution Summary

	3.4 Data-Oriented Architectures in Context-Mediation
	3.5 Limitations of the existing approaches
	3.6 Summary

	Chapter 4 Autonomic Computing Approaches
	4.1 Feedback Control Loops (FCLs)
	4.2 Relation Between the Autonomic Computing and the Context-Aware Computing
	4.3 Autonomic Solutions
	4.3.1 Jade: A Middleware for Self-Management of Distributed Software Environments
	4.3.2 Agent-based Middleware for Context-Aware Services
	4.3.3 Framework for Autonomic Context-Aware Service Composition
	4.3.4 Adaptation Platform for Autonomic Context-Aware Services
	4.3.5 The ANS (Autonomic Network Services) Framework
	4.3.6 MIddleware DemonstrAtor Server (MIDAS) Framework
	4.3.7 AutoHome: an Autonomic Management Framework for Pervasive Home Applications
	4.3.8 MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-Oriented Environments
	4.3.9 Rainbow
	4.3.10 Distributed Autonomous Component-Based ARchitectures (DACAR) Solution

	4.4 Limitation of the Existing Approaches
	4.5 State-of-the-Art Synthesis
	4.6 Dissertation Challenges
	4.7 Summary

	Part II Contribution
	Chapter 5 Enabling Context Mediation In Ubiquitous Environments
	5.1 Properties for Context Mediation
	5.2 SPACES Overview
	5.3 Modeling Context as Resources: The SPACES Metamodel
	5.4 SPACES Fundamentals
	5.5 Supporting Spontaneous Communications in SPACES
	5.6 SPACES Connectors Detailled Architecture
	5.7 Integrating SPACES Connectors into SCA
	5.7.1 Information Exchange between SCA Services: The case of the Resource-Oriented Bindings
	5.7.2 Bringing Service Discovery in SCA: The case of Ubiquitous Bindings

	5.8 Summary

	Chapter 6 Building Ubiquitous Feedback Control Loops
	6.1 Properties for Context-Based Adaptation
	6.2 Context-based Adaptation as a Process
	6.3 Building Ubiquitous Feedback Control Loops
	6.4 Determining the Required Reconfiguration for the Applications
	6.4.1 Example: The MobiHome Application
	6.4.2 Modeling the Selection Problem
	6.4.3 Optimizing The Resource Consumption
	6.4.4 Optimizing The Provided QoS
	6.4.5 Optimizing The Reconfiguration Cost
	6.4.6 Decision Maker Architecture

	6.5 Planning the Required Actions for Reaching the New Configuration
	6.6 Instrumentation of the Adaptation in the FraSCAti Platform with the personalized SCA Bindings
	6.7 Local Feedback Control Loops
	6.8 Summary

	Part III Validation
	Chapter 7 Case Studies
	7.1 A Caching Off-Loading Situation
	7.1.1 Description
	7.1.2 COSMOS: COntext entitieS coMpositiOn and Sharing
	7.1.3 Distribution of the Context Policy
	7.1.4 Quantitative Evaluation: Measuring the Performance of the Approach
	7.1.5 Results Discussion
	7.1.6 Qualitative Evaluation

	7.2 The Track.Me Platform
	7.2.1 Platform Description
	7.2.2 Quantitative Evaluation
	7.2.3 Results Discussion
	7.2.4 Qualitative Evaluation

	7.3 The DigiHome Service-Oriented Platform
	7.3.1 Smart Home Scenario Description
	7.3.2 Platform Description
	7.3.3 Quantitative Evaluation
	7.3.4 Results Discussion
	7.3.5 Qualitative Evaluation

	7.4 Limitations of the Approach
	7.5 Summary

	Part IV Conclusions and Perspectives
	Chapter 8 Conclusions
	8.1 Summary of the Dissertation
	8.2 Contributions of the Dissertation
	8.3 Perspectives
	8.3.1 Short Term Perspectives
	8.3.2 Long Term Perspectives

	Bibliography

