

Soutenance de thèse R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Réalisation, étude et exploitation d'ensembles d'ions refroidis par laser stockés dans des pièges micro-fabriqués pour l'information quantique

Romain Dubessy

12 Octobre 2010

Contexte

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Lumière "quantique"

- spectroscopie
- pompage optique

Brossel, Kastler et Winter, 1952

lasers

Maiman, 1960

Matière "quantique"

refroidissement

Chu, Cohen-Tannoudji et Philips, 1997

- état vibrationnel
- condensats

Cornell et Wieman, 1995

Etape plus récente

- intrication lumière matière
- calculateur quantique?

Soutenance de thèse R. Dubessy

Introduction Tutoriel ions

piégés

Microfabrication Dispositif expérimental

Chauffage anormal

Conclusion

Intrication

Intérêt des ions piégés

- confinement & cohérence,
- opérations élémentaires (adressage),
- couplage déterministe (intrication).

Cirac et Zoller, PRL 74, 4091 (1995)

Intrication

Intérêt des ions piégés

- confinement & cohérence,
- opérations élémentaires (adressage),
- couplage déterministe (intrication).

Cirac et Zoller, PRL 74, 4091 (1995)

\rightarrow Jusqu'à 8 ions intriqués

Haffner et al., Nature 438, 643-646 (2005)

de thèse R. Dubessy

Soutenance

Introduction Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Intrication

Soutenance de thèse

R. Dubessy

Introduction

- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Intérêt des ions piégés

- confinement & cohérence,
- opérations élémentaires (adressage),
- couplage déterministe (intrication).

Cirac et Zoller, PRL 74, 4091 (1995)

\rightarrow 64 ions adressables \rightarrow Jusqu'à 14 ions intriqués !

Monz et al., arXiv :1009.6126 (2010)

Intrication

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Intérêt des ions piégés

- confinement & cohérence,
- opérations élémentaires (adressage),
- couplage déterministe (intrication).

Cirac et Zoller, PRL 74, 4091 (1995)

\rightarrow 64 ions adressables \rightarrow Jusqu'à 14 ions intriqués !

Monz et al., arXiv :1009.6126 (2010)

Communication quantique

Soutenance de thèse

R. Dubessy

Introduction

- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Moehring et al., Nature, 449, 68 (2007)

Intrication

- état quantique "macroscopique",
- Longue distance ?
- Communication quantique ?

PRA, 79, 042340 (2009)

Pièges intégrés

Soutenance de thèse

R. Dubessy

Introduction

- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Intégrabilité ?

- miniaturisation
- problématique expérimentale : Boulder, Maryland, Oxford, Ulm, Innsbruck ... Paris.

Pièges intégrés

Soutenance de thèse

R. Dubessy

Introduction

- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Intégrabilité ?

- miniaturisation
- problématique expérimentale : Boulder, Maryland, Oxford, Ulm, Innsbruck ... Paris.
- 2002-2005 : Piège semi-conducteur (Maryland),

Stick et al., Nat. Phys. 2, 36-39 (2006)

Prototype MPQ (2005) :

S. Ducci & P. Filloux

Thales - RT (Palaiseau)

Pièges intégrés

Soutenance de thèse

R. Dubessy

Introduction

- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Intégrabilité ?

- miniaturisation
- problématique expérimentale : Boulder, Maryland, Oxford, Ulm, Innsbruck ... Paris.
- 2002-2005 : Piège semi-conducteur (Maryland),
- 2005-2006 : Piège planaire (Boulder).

Seidelin et al., PRL 96 253003 (2006)

Deslauriers et al., PRL 97 103007 (2006)

Plan

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

2 Micro-fabrication

Oispositif expérimental

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

TUTORIEL IONS PIÉGÉS

Piégeage d'une particule chargée

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Pièges radiofréquence

- $\vec{E}(t)$:
 - pseudo-potentiel,micro-mouvement.

Paul, 1989

Piégeage d'une particule chargée

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Pièges radiofréquence

• $\vec{E}(t)$:

pseudo-potentiel,micro-mouvement.

Paul, 1989

 $\begin{array}{l} V_{\textit{rf}}\simeq 200 \text{ V},\\ \Omega_{\textit{rf}}\simeq 2\pi\!\times\!5.7 \text{ MHz} \end{array}$

Refroidissement laser

Principe

v

- Effet Doppler favorise absorption,
- Emission spontanée redistribue l'impulsion,
- Effet net : friction,
- Limité par émission spontanée.

$$T_{lim} \sim \frac{\hbar\Gamma}{k_B} \sim 500 \ \mu K$$

L'ion Strontium

Photo-ionisation

Plan

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

- Chauffage anormal
 - Micro-fabrication
 - Dispositif expérimental

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal Microfabrication Dispositif expérimental Conclusion

Potentiel fluctuant

Champ parasite "dynamique"

- oscillateur forcé F = eE(t),
- règle d'or de Fermi
- transfert d'énergie (= chauffage).

$$\dot{n} = \frac{e^2}{4m\hbar\omega_x}S_E(\omega_x,r)$$

Piège surfacique

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Piège surfacique

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Potentiel électriques

- simulations numériques,
- potentiel connu analytiquement.

House, PRA 78, 033402 (2008)

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Potentiel aléatoire ?

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Potentiel aléatoire ?

• $\phi(t,r) = \sum_i V_i(t)\phi_i(r)$

R. Dubessy, T. Coudreau et L. Guidoni, PRA 80 031402 (2009)

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Potentiel aléatoire ?

• $\phi(t,r) = \sum_{i} V_{i}(t)\phi_{i}(r)$ • $S_{E}(\omega,r) \sim |\nabla\phi(\omega,r)|^{2} = S_{V}(\omega) \langle \nabla\phi_{S}(r)\nabla\phi_{S}(r') \rangle$ • $\langle \nabla\phi_{S}(r)\nabla\phi_{S}(r') \rangle = e^{-|r-r'|/\zeta}$

R. Dubessy, T. Coudreau et L. Guidoni, PRA 80 031402 (2009)

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Modèle & données

Soutenance de thèse R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

- taux de chauffage dans des pièges surfaciques (Or),
- normalisés à 1 MHz (bruit rose ω^{-1}).
- ζ : taille de grain du métal.

Modèle & données

Soutenance de thèse R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

- taux de chauffage dans des pièges surfaciques (Or),
- normalisés à 1 MHz (bruit rose ω^{-1}).
- ζ : taille de grain du métal.

Modèle & données

 \rightarrow comparaison directe des régimes $d \gg \zeta$ et $d \ll \zeta$.

Plan

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Chauffage anormal

- 2 Micro-fabrication
 - Dispositif expérimental

Protocole de fabrication

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Collaboration avec M. Woytasik, IEF (Orsay)

Technologie

- (a) substrat poli (SiO₂),
- (b) dépôt (Cu/Ti),
- (c) enrésinement,
- (d) lithographie optique,
- (e) micro-moulage (Cu),
 - (f) nettoyage.

- Soutenance de thèse
- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

- largeur de piste : 150 μm,
- épaisseur : ~ 4 μ m,
- rugosité : 40 nm (RMS),

- Soutenance de thèse
- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

- largeur de piste : 150 μm,
- épaisseur : ~ 4 μ m,
- rugosité : 40 nm (RMS),
- $V_{rf} \simeq 50V$, $\Omega_{rf} = 2\pi \times 15 \text{ MHz}$, $U_T \simeq 0.05 \text{ eV}$

- Soutenance de thèse
- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

- largeur de piste : 150 μm,
- épaisseur : ~ 4 μm,
- rugosité : 40 nm (RMS),
- $V_{rf} \simeq 50$ V, $\Omega_{rf} = 2\pi \times 15$ MHz, $U_T \simeq 0.05$ eV

•
$$V_{end} \simeq 1 V$$
,

- Soutenance de thèse
- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

- largeur de piste : 150 μm,
- épaisseur : ~ 4 μm,
- rugosité : 40 nm (RMS),
- $V_{rf} \simeq 50V$, $\Omega_{rf} = 2\pi \times 15 \text{ MHz}$, $U_T \simeq 0.05 \text{ eV}$

•
$$V_{end} \simeq 1 V$$
,

•
$$V_{dc} \simeq 0.1 V_{c}$$

Plan

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

- Chauffage anormal
 - Micro-fabrication
- Oispositif expérimental

Montage

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Montage

Soutenance de thèse R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

Mesures de taux de chauffage

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Spectroscopie

- prépare l'état $\langle n \rangle \simeq 0$,
 - mesure p(n).

Turchette et al., PRA 61, 063418 (2000)

Méthode plus simple

• Fluorescence,

Epstein et al., PRA 76, 033411 (2007)

Taux de chauffage

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Mesure préliminaire

- sur une réalisation,
- sur un ion unique,
- *T* ~ 12 K/s.

Spectre de refroidissement

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Séquence

 $S_{\frac{1}{2}}$

- vapeur atomique,
- photo-ionisation,
- refroidissement.
- $\Gamma \simeq 2\pi \times 20 \text{ MHz}$

ion unique

Spectre de refroidissement

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Séquence

- vapeur atomique,
- photo-ionisation,
- refroidissement.
- $\Gamma \simeq 2\pi \times 20 \text{ MHz}$

Modèle

- atome à deux niveaux,
- équations de Bloch,
- oscillateur 1D.

Dynamique de refroidissement

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Séquences identiques Non contrôlé : état initial

Dynamique de refroidissement

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Séquences identiques Non contrôlé : état initial Modèle : ajustement énergie initiale.

Dynamique de refroidissement

Piège surfacique "mésoscopique"

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Conclusion

- Soutenance de thèse
- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Résultats

- modèle microscopique du chauffage anormal,
- pièges micro-fabriqués,
- mesures préliminaires du taux de chauffage,
- étude quantitative des spectres de refroidissement.

Conclusion

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Résultats

- modèle microscopique du chauffage anormal,
- pièges micro-fabriqués,
- mesures préliminaires du taux de chauffage,
- étude quantitative des spectres de refroidissement.

Autres études théoriques

- protocole de communication,
- modélisation de la photo-ionisation fs,
- protocole de manipulation d'états protégés.

Conclusion

Soutenance de thèse

- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Résultats

- modèle microscopique du chauffage anormal,
- pièges micro-fabriqués,
- mesures préliminaires du taux de chauffage,
- étude quantitative des spectres de refroidissement.

Prochaines étapes

- démonstration du fonctionnement de micro-pièges,
- mesures AFM électrique,
- optimisation de la surface des électrodes.

Soutenance de thèse

R. Dubessy

Introduction

Tutoriel ions piégés

Chauffage anormal

Microfabrication

Dispositif expérimental

Conclusion

MERCI POUR VOTRE ATTENTION

Piège Thalès

- Soutenance de thèse
- R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Difficultés techniques

- Irrégularités de la gravure,
- présence de Silice.

Difficultés pratiques

- pertes dans le silicium (RF),
- effet "FET".
 - \rightarrow changement de technologie

- Soutenance de thèse R. Dubessy
- Introduction
- Tutoriel ions piégés
- Chauffage anormal
- Microfabrication
- Dispositif expérimental
- Conclusion

Choix du substrat

- pertes radio-fréquence,
- puissance dissipée (à 100 V) ?

→ substrat en silice !