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Notations

• M denotes a smooth surface

• MS denotes a set of samples onM

• p is a point of the smooth surface

• n is the normal to the surface at p

• Br and Cr are two different types of neighborhoods of p (that will be defined

in section ..)

• r is the radius of the neighborhood

• m is a point of the neighborhood Br or Cr

• o is the barycenter of the Br or Cr

• k1 and k2 are the principal curvatures of the surface at p

• t1, t2 are the principal directions of the surface at p

• H is the mean curvature of the surface at p

• V is a mesh and v, vi vertices of V , T is the set of triangles of V .

• g is a polynomial
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Chapter 1

Introduction

Context

This thesis started as a part of a collaboration between two laboratories of the Ecole

Normale Supérieure de Cachan, the CMLA (Centre de Mathématiques et Leurs Ap-

plications) and the LURPA (Laboratoire Universitaire de Recherche en Productique

Automatisée). This project was named Géométrie Inverse Pour l’Industrie (Inverse

Geometry for the Industry) and aimed at building a closed loop acquisition system.

This thesis deals with the data analysis side of this project.

The LURPA high precision scanner is an experimental device delivering very

large high precision raw data point sets with up to 35 million points, usually made

of about 300 different scan sweeps.

In the course of the project it was progressively realized that the size of the raw

point sets, and their precision (nominally about 20µm) raised questions which did

not seem to have been addressed before. A first serious problem was that most state

of the art techniques were actually too complex to be even tested on the data in

reasonable time. Furthermore, the current meshing and analysis techniques were

not designed for the conservation and visualization of high precision clouds, and

usually lost accuracy and re-sampled or under-sampled the data. Smoothing and

re-sampling were acceptable with noisy and only approximately registered clouds

obtained by older generation scanners. Yet it seems that new opportunities for the

visual exploration and conservation of valuable objects are opening up with future

more precise scanners. As usual with better tools the first question is linked to the

data proliferation.

This situation led us to a complete rewriting of the processing chain starting

with a raw data set consisting of many scans with very irregular sampling and holes.

While the end result remains a meshed surface, the steps leading to it have obeyed

new requirements aimed at preserving the high accuracy throughout the processing

chain:

• to be able to safely orient the raw cloud before meshing (raw orientation);

• to be able to mesh the raw point could itself, thus obtaining a raw mesh (raw

meshing);
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 Chapter . Introduction

• to be therefore able to visualize all scanning artifacts in the raw mesh (raw

visualization);

• to correct the merging artifacts with minimal resolution loss (merging of raw

scans) ;

• to delineate all missing parts (holes) to guide the laser head toward them, or,

at the very least, to detect and fill them up automatically;

• to propose a raw cloud scale space analysis and segmentation method, based

on the very same process leading to the surface construction.

A last problem arising in the course of this work and worth mentioning has been

the scarcity of a shared data base of raw data point sets on which experiment sharing

and performance benchmarks could be performed. Most available point clouds are

meshed, which usually means that they are already smoothed and re-sampled. Thus

most experiments were made on industrial objects and molded copies of archeo-

logical objects with fine texture and detail scanned at LURPA. Fortunately, we were

also able to test our algorithms on a few raw data point sets provided by Stanford

University (Forma Urbis Romae Project).

The main contributions of the thesis are reviewed in the next sections. For the

sake of clarity, the contributions of the thesis are listed dryly, without the neces-

sary bibliographic analysis. Of course, the bibliographic analysis and experimental

comparison will be extensive in the other chapters.

Thesis summary

The problem of surface reconstruction from raw points is considered as essentially

solved. Indeed, many commercial devices acquire objects and reconstruct their

surface. Nevertheless, the reconstructed surface is usually very smooth as a result

of the scanner internal de-noising process and the fusion of different scans. The

precision loss is obvious in that all pieces look polished and glossy, having visibly

lost their grain and texture. By looking at the academic data sets available on the

web, a similar conclusion can be drawn. Surface reconstruction is, in fact, far from

being adequately addressed in the context of high precision data.

This thesis has adopted the somewhat extreme conservative position, not to

loose nor alter any raw sample throughout the whole processing pipeline. There

are two main reasons to try to see directly the raw input samples. First, this could

and will serve to control the acquisition loop. The input raw points have to be

visualized, to point out all surface imperfections (holes, offsets) and correct them

immediately. Second, since high precision data can capture the slightest surface

variation, any smoothing, any sub-sampling can loose textural detail. Although
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

of course further compressing steps may become necessary, building and seeing

first the highest quality reference data set before any compression seems to be a

sound precaution. It also raises the hope of getting a real D microscope, enlarging

considerably D objects and revealing their details.

The thesis attempts to prove that one can triangulate the raw point cloud with

almost no sample loss, and solves the exact visualization problem for large data sets.

Although this triangulation process performs remarkably well on accurate data sets,

we shall see that it actually can be applied safely on any data set, even on extremely

noisy point clouds.

As mentioned, the typical point sets treated here contain around 15 million

points (up to 35 million points) and are made of some 300 different scan sweeps. To

the best of our knowledge, the bibliographical analysis and numerical comparison

will show that no reliable method existed yet for the exact visualization of all the

input raw points: most methods either build a mesh by discarding a large part

of the input samples, or simply create new vertices and loose the input samples.

Large data sets have already been acquired and considered in the literature (Stanford

Digital Michelangelo and Fragment Urbis Romae Project). Yet the available models

resulting from these acquisitions are smoothed and re-sampled. They are generally

not the initial scans.

To achieve the high precision triangulation which is the main goal of this thesis,

two major problems will be solved. The first is the orientation of the complete raw

point set, previous to meshing. The second one is the correction of tiny scan mis-

alignments leading, nonetheless, to strong high frequency aliasing and hampering

completely a direct visualization. Another outcome is the accurate delineation of

scanning holes. The final result aimed at is an accurate visualization of the surface

containing all raw points, with low frequencies slightly corrected to avoid aliasing

effects, and intact high frequencies.

The second development of the thesis is a general low frequency-high frequency

decomposition algorithm for any point cloud. This permits D extensions of the

level set tree and of the MSER representations, which are classic image analysis

tools, and an intrinsic mesh segmentation method.

The underlying mathematical development focuses on an analysis of discrete

differential operators acting on raw point clouds which have been proposed in the

literature. By considering the asymptotic behavior of these operators on a smooth

surface, a classification by their underlying curvature operators is obtained.

Of particular interest is the discrete operator which ends up being the numerical

spinal chord of the chain. It is, in one sentence, the iterated projection of each point

on the local regression plane of its Euclidean neighborhood. This iterated operator

will be proved to be consistent with the mean curvature motion (the intrinsic heat

equation). It therefore defines a remarkably simple and robust numerical scale space

analysis. By this intrinsic heat equation (using its numerical reversibility), all of the
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 Chapter . Introduction

above mentioned different and difficult problems (point set orientation, raw point set

triangulation and scan merging), usually solved by separated techniques, are solved

in a unified framework. Inasmuch as they can handle large amounts of points, the

existing methods have been compared to the new algorithms (see for example fig

.).

The next sections review one by one the chapters of the thesis and their contri-

butions.

The thesis by chapters

State of the art (chapter )

This chapter gives an overview of the whole D surface processing field from the

early acquisition to the final model rendering and post processing that can be done

on the mesh models. It also reviews the multiple ways of acquiring D surfaces,

acquisition methods being mainly divided into passive light acquisition methods

and active light acquisition methods.

High precision point set orientation and meshing (chapter )

As stated above, the first goal is to visualize the initial raw point cloud including

its very small details and its imperfections. All existing methods either smooth the

shape or can simply not handle large data sets. Two major problems for D data

set processing are solved using a new scale space implementation: the raw point

set orientation, and the mesh construction. The result is a mesh whose vertices are

almost all (in all examples more than .%) of the input samples. It follows that

the input data can be properly visualized.

(a) Picture of the Logo (b) Scale space mesh (c) Direct mesh (d) Poisson Mesh (e) MLS + BPA

Figure .: Comparison between several meshing methods on a 1 cm high logo. See

chapter  for more details

The main tool that will be used to solve these problems is the operator project-

ing each point into the local regression plane of its Euclidean neighborhood. An

asymptotic interpretation of this operator will be proved: This operator is consis-

tent with the mean curvature motion
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

∂p

∂t
= Hn

where p is a point of the surface, and H and n are the mean curvature and normal

to the surface at p. The iterated projection provides a perfect reversible numerical

scale space, able to push the points toward a smooth surface or, once reversed, to

transport back on the initial cloud a structure which was easily computed on the

smoothed one.

Orienting a raw point set is not considered an easy problem: although normal

directions are easy to compute, the ambiguity lies in finding a coherent orientation

for the whole surface. Each point must be oriented consistently with its neighbors

normals. This chapter proves the scale space method to work directly and reliably

with the simplest implementation. The whole process is completely summarized in

the following sentences. The point cloud is first smoothed by the scale space iter-

ation, then the orientation of a seed point is chosen and its neighbors are oriented

consistently with this normal. The orientation is then propagated from neighbor-

hood to neighborhood. The final normals are transported back to the original po-

sitions of the points. Since sharp features are removed by scale space iterations, the

propagation of normals is numerically straightforward.

Once a consistent orientation is found for the raw point cloud, the next step

is to build a mesh from the scans. A mesh is the right shape model to generate

efficient visualization. Chapter  shows that, again, the scale space method is self-

sufficient to the task. The smoothed point cloud is easily meshed using any direct

meshing algorithm such as the Ball Pivoting Algorithm ([BMR∗]). The resulting

connectivity information (faces and edges of the mesh) can be transported back

by reversing the scale space to the original point positions. As shown on figure

., this method permits to recover the tiniest details of an object acquired by a

high precision laser scanner, which are lost by other methods. Since this operator

recovers the exact initial point positions, the final mesh is not smoothed and scan

superposition artifacts can also be visualized.

These results will be published in Scale Space Meshing of Raw Data Point Sets

[DMMSL].

High fidelity scan merging (chapter )

Using the scale space meshing method, even the slightest scan misalignment is im-

mediately visible (see fig .(b)). Smoothing the shape, for example by a bilateral

filter, would suppress such artifacts, yet it would also remove detail and texture and

make the whole meshing method useless, since it was devised precisely to preserve

and see exactly the initial data. A new way for merging different scans without

smoothing them was therefore necessary.
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 Chapter . Introduction

(a) Input scans (b) Artefacts (c) Smooth base (d) Final merging

Figure .: The scan merging problem and its solution . 38 scans cover the Tanagra

head, represented in a different colors in .(a).

Again, the scale space method proves sufficient to the task. Indeed, in a spirit

similar to the low-high frequency decompositions in signal and image processing,

the scale space operator can be used to decompose the shape into a low frequency

base, the shape filtered by mean curvature motion (see fig. .(c)), and a high fre-

quency component (the scale space motion vectors). This decomposition can also

be seen as a smooth base + height decomposition: the smooth base is the shape

obtained after smoothing and the height function associates to each point its dis-

placement vector.

Thus, it is shown that all scans can be decomposed separately but consistently

into their smooth bases and their intrinsic high frequencies. But they can also re-

ceive a common base by applying the scale space to their joint cloud. Adding the

scans high frequencies to the common smooth base yields a final merging where

all details of all scans are preserved and merged together. This process preserves

integrally the high frequencies, but slightly moves the smooth bases (see Fig .(d)).

The method proposed in this chapter is not a registration method: it only merges

scans which are already well registered. But this process is essential to avoid very

strong aliasing effect arising with even the slightest offset between scans.

The results of this chapter are published in High Fidelity Scan Merging

[DMAL].

Filling holes in scale space meshes (chapter )

This chapter makes a review of mesh hole filling methods and deduces an adap-

tation of the Liepa [Lie] method to scale space meshes. Again, the method is

based on the same scale space framework. It first detects and fills in the holes in

the coarse scale mesh (the mesh built after the scale space iterations). In the reg-

ular scale space process, the backward operator should then be applied to get the

fine scale mesh. Yet the backward scale space operator is not defined for the patch

points. The patches can then be very conspicuous because of their smooth aspect.
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

To avoid this, a texture noise is added to the patch points in their normal direc-

tions. The texture properties are deduced from the motion amplitude of the first

scale space iteration. Indeed, as stated above, the first iteration captures the local

variations and this is what these patches lack. Implicitly the hypothesis is that the

patches contain no feature but are textured as the rest of the shape.

The level set tree on meshes (chapter )

A third contribution deals with the problem of mesh segmentation and feature ex-

traction. Most feature detection methods focus on crest lines (also called ridge and

valley lines), yet this kind of feature detection requires the computation of an or-

der 3 surface derivative and leads to a local detection similar to the edge detection

paradigm in image analysis. To get a real segmentation method, a more global mesh

feature is introduced : the level lines of a proper function defined on the mesh.

Here the analogy with image analysis is useful. Given a real function defined on

its triangles, the mesh can be seen as the support of an image, the triangles as its

pixels, and the function as the image values. Then level lines and level sets of this

function can be considered as mesh features and be used to segment it. To extract

the most significant image level lines, the Maximally Stable Extremal Region algo-

rithm was extended to meshes, yielding a time-efficient reliable level set selection.

But the obvious question is: which real function can be chosen to intrinsically char-

acterize the mesh? It turns out that the mesh curvature is the simplest lower order

local intrinsic function that can be deduced from the mesh itself. By (again!) the

scale space method, this curvature can be computed at any scale of smoothing and

transported back on the raw pixels. Thus the image defined on the raw mesh sim-

ply is its own curvature at some fixed scale. As this chapter shows, segmenting this

image defined on the mesh yields a mesh segmentation into smooth parts and high

curvature parts. The scale space operator therefore permits to define an intrinsic

mesh segmentation.

Experimental results show the segmentation and line extraction working as well

on mechanical parts (fig .) as on fine arts objects (fig .).

These results are published in The Level Set Tree on Meshes [DMAMS].

A numerical analysis of raw point cloud smoothing (chapter )

For the sake of continuity in the exposition, this chapter comes late and is placed

after the thorough description of the D scale space method and its application to

the synthesis and analysis of raw point clouds.

But the chapter contains, nonetheless, the main mathematical results and the

mathematical method to analyze the local discrete operators proposed in the liter-

ature and in the present thesis.

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



 Chapter . Introduction

Figure .: Line extraction (left) and segmentation (right) obtained by Mesh-MSER

(a) Picture of fragment g (b) Obtained Mesh (c) Mesh-MSER Selection

Figure .: Example of the Mesh-MSER selection on an archaeological object

Indeed, the definition and mathematical analysis of a raw numerical scale space

contributed in Chapter  leads to a general methodology for analyzing discrete

methods. These methods attempt to compute differential operators on irregu-

larly sampled surfaces by discrete schemes based on the local point cloud statistics.

Many such methods have been proposed for meshed D data. However, computing

directly differential operators on the raw point clouds as they are acquired (e.g.)

by triangulation scanners is crucial because this can be done before any mesh re-

sampling and can in particular bring decisive information into a meshing loop.

This chapter proposes a method to analyze and characterize these raw point

cloud local operators. It reviews a half dozen basic discrete algorithms which have

been proposed to compute discrete curvature-like shape indicators on raw point

clouds. It shows that all of them can actually be analyzed mathematically in a uni-

fied framework by computing their asymptotic form when the size of the neighbor-

hood tends to zero. Assuming that the underlying manifold is smooth enough, the

asymptotic form of these operators is obtained in terms of the principal curvatures

or of higher order intrinsic differential operators which characterize the discrete

operators. This analysis, completed with numerical experiments, permits to clas-

sify the discrete raw point cloud operators, to rule out several of them, and to single

out others.
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

Furthermore, by analyzing asymptotically two very simple moving least squares

operators, namely the operator MLS1(p) that projects each point p to the local

regression plane (our favorite scale space operator) and the very common operator

MLS2(p) that projects each point onto the local degree 2 polynomial regression

surface, it is shown that only the first is consistent with the mean curvature motion.

More precisely, one has:

< MLS1(p)− p,n >=
r2

8
(k2 + k1) +O(r3),

where r is the radius of the neighborhood used for the surface regression, k1 and

k2 are the principal curvatures and n is the normal to the surface at p, oriented

towards the concavity.

On the contrary, one has

< MLS2(p)− p,n >= −
r4

48
(3a04 + a22 + 3a40) +O(r5)

where a40 =
1
4!

∂4f
∂x4 , a04 =

1
4!

∂4f
∂y4

, a22 =
1
4!

∂4f
∂x2∂2y

are the fourth derivatives of the

graph function of the manifold in the intrinsic coordinates system at p and x, y are

the coordinates along the principal directions.

These results will be published in [DM]

Color cloud visualization (chapter )

Figure .: An image and two views of its filtered color cloud

This last chapter shows that the scale space meshing method is able to triangulate

even very noisy open surfaces. Such surfaces are given by another type of data: the

color clouds. Color clouds are the set of RGB color values of the set of pixels of an

image. They are contained in a D cube and can be filtered by the same scale space

algorithm, revealing a D structure. The filtered data can then be meshed by scale

space meshing and visualized. The idea is taken from [BLM] where it was shown

that color clouds have dimensionality 2. This chapter shows that the scale space
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 Chapter . Introduction

meshing algorithm can handle very different types of data. It also comforts the idea

that color clouds are a set of potentially folded sheets in D. More importantly, the

triangulation allows once again a precise visualization.

Publications linked to the thesis

• Scale Space Meshing of Raw Data Point Sets, Julie Digne, Jean-Michel Morel,

Charyar Mehdi-Souzani, Claire Lartigue, currently under minor revision for

Computer Graphics Forum. [DMMSL]

• High Fidelity Scan Merging, Julie Digne, Jean-Michel Morel, Nicolas Audfray,

Claire Lartigue, Computer Graphics Forum, vol , number , pp -,

Proceedings Symposium on Geometry Processing . [DMAL]

• The Level Set Tree on Meshes, Julie Digne, Jean-Michel Morel, Nicolas Aud-

fray, Charyar Mehdi-Souzani, Proceedings of the Fifth International Sympo-

sium on. D Data Processing, Visualization and Transmission, Paris, France,

. [DMAMS]

• Neighborhood filters and the recovery of D information, Julie Digne, Mariella

Dimiccoli, Neus Sabater, Philippe Salembier, chapter in Handbook of Math-

ematical Methods in Imaging, Springer, to appear in . [DDSS]

• A Numerical Analysis of Raw Point Cloud Smoothing, Julie Digne, Jean-Michel

Morel, to be submitted,  [DM]

• Feature extraction from high-density point clouds: toward automation of an

intelligent D contact less digitizing strategy, Charyar Mehdi-Souzani, Julie

Digne, Nicolas Audfray, Claire Lartigue, Jean-Michel Morel, proceedings of

the CAD  conference. [MSDA∗]

Outline of the thesis

The present thesis is divided as follows:

• Chapter  reviews state of the art work related to data acquisition, represen-

tation and extraction of characteristics.

• Chapter  describes the first applications of the new scale space: the robust

orientation of surface point clouds and the construction of a high fidelity

mesh whose vertices are the raw points.
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

• Chapter  introduces a method to merge scans to prevent the appearance of

D aliasing due to scan misalignment.

• Chapter  describes a postprocessing step to detect and fill the holes in the

built meshes.

• Chapter  describes the extension of the image level set tree theory to surface

meshes.

• Chapter  reviews and analyzes mathematically the standard ways of comput-

ing the curvatures and curvature directions for raw point clouds.

• Chapter  describes another application of the projection filter: the filtering

of color clouds extracted from color images.
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Chapter 2

State of the Art

Contents
. D Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Stereoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Time-of-flight laser scanner . . . . . . . . . . . . . . . . . 

.. Triangulation laser scanner . . . . . . . . . . . . . . . . . 

. Some acquisition projects . . . . . . . . . . . . . . . . . . . . . . 

. LURPA acquisition system . . . . . . . . . . . . . . . . . . . . . . 

. Representation of D data . . . . . . . . . . . . . . . . . . . . . . 

. From a point cloud to a mesh . . . . . . . . . . . . . . . . . . . . 

.. Merging multiple views . . . . . . . . . . . . . . . . . . . 

.. Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Remeshing . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Post-processing and line detection . . . . . . . . . . . . . . . . . 

. The difference between Image Processing and D surface processing 
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 Chapter . State of the Art

Abstract: This chapter reviews the whole D surface processing field

from the early acquisition to the final model rendering and post pro-

cessing that can be done on the mesh models.

. D Acquisition

There are multiple ways of acquiring D surfaces. We shortly explain how these

data can be acquired. Acquisition methods are mainly divided into passive light

acquisition methods and active light acquisition methods. Passive light acquisition

methods do not project any light onto the object. This is the case of stereo acqui-

sition for example. On the other side, active light scanner use light projection to

acquire the geometry. There exist contact D scanners that acquire a surface by

physical touch, yet here we will only consider non-contact D scanners.

.. Stereoscopy

Stereo acquisition is the principal passive light acquisition method: it creates a dis-

parity map by considering two images in epipolar geometry and using the y axis

difference between matching points to deduce a depth map. This is very useful in

satellite imaging for creating digital elevation models for example (see chapter  fig

.)

.. Time-of-flight laser scanner

These range lasers measure the elapsed time between the emission of a pulse of light

and the detection by a sensor of the light reflected by the surface. They are used for

acquiring large objects. See Fig. . for an example of an object acquired by a range

laser scanner. Time-of-flight scanners measure the surface one point at a time.
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.. D Acquisition 

Figure .: A Peugeot car acquired by a range laser scanner (acquisition made by

Délégation Générale de l’Armement).
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 Chapter . State of the Art

.. Triangulation laser scanner

Triangulation laser scanner are named this way because of the triangle formed by

the laser emitter, the camera optic center and the laser impact point on the surface.

Despite the name, triangulation laser scanners do not automatically produce a tri-

angulation. They initially produce data points in a D coordinate system without

any other information than the coordinates. Normal information could be deduced

easily from the laser emitter position, yet being able to reliably process un-oriented

points widens the application field of the algorithms. The most famous acquisition

projects, Digital Michelangelo and Forma Urbis Romae (see section .), have been

done using triangulation laser scanner. For example, the laser system used for the

David range acquisition “ employed a  mW -nanometer laser diode, a  x 

pixel CCD sensor, and a fixed triangulation angle” ([LPC∗]).

Figure .: Scheme of a triangulation laser scanner acquisition system (copyright

Wikipedia)

Efforts have been made to combine information of various kind during the ac-

quisition process to improve the reconstruction quality:[NRDR] combines nor-

mals computed by photometry and range images and [MYF] integrates shape

from shading and range images (see also [Jas],[DSGV]).
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.. Some acquisition projects 

. Some acquisition projects

Over the past years, some acquisition projects have been completed yielding new

data sets for the geometry processing community. In particular, the Stanford Digital

Michelangelo Project aimed at building D models from some of Michelangelo’s

most important sculptures, including the David ([LPC∗], [BRM∗]).

The Stanford Forma Urbis Romae Project dealt with a marble map of Rome

designed in the early rd. century. This marble map was broken into several pieces,

some of which were lost or came to us only through drawings. Trying to solve the

jigsaw puzzle and putting back all the pieces together is a challenging task. The

remaining pieces were therefore acquired by triangulation laser, which yielded an-

other data set that is partly available for research ([KTN∗]). This data set will be

used for experimentation in this thesis.

Most data used in this thesis come from the acquisition done by another lab-

oratory: the Laboratoire Universitaire de Recherche en Productique Automatisée

(LURPA). The next section shortly describes the acquisition system.

. LURPA acquisition system

The LURPA acquisition system is a triangulation laser scanner with high precision

(around 20µm). It is composed of a granite table, a revolving arm and a laser scan-

ner head (fig .). The system projects a laser pencil on the surface whose position

is captured by a CCD camera. The device is calibrated so that it can translate posi-

tion coordinates given in the CCD coordinate system into the machine coordinate

system. This process of registering scans together will be detailed in ... Scans

are registered to a very high precision but there is always a remnant offset which,

as we shall see on the raw mesh, creates strong aliasing effects (see chapter ). The

output of this device is a set of unorganized un-oriented points given only by their

D coordinates as can be seen on Fig. ..

. Representation of D data

The acquired shape comes usually as a set of points sampled with more or less

precision on the object surface. A natural question is then to find a way to rep-

resent the surface in a more handy way than a list of D coordinates. The usual

choice is to build a mesh: i.e., a set of connected triangles. This makes a piece-

wise linear approximation of the surface. The more vertices, the finer the ap-

proximation. Other surface representation include splines and NURBS surfaces

http://www-graphics.stanford.edu/data/dmich-public/
http://formaurbis.stanford.edu/docs/FURproject.html
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 Chapter . State of the Art

Figure .: Picture of the LURPA scanner laser and its output: a raw point set

Figure .: LURPA scanner device
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.. From a point cloud to a mesh 

([PT],[MK],[Pet]). An alternative to meshes was presented in [LP], where

the shape is represented by a set of triangle fans. A triangle fan is a set of triangles

sharing a vertex. This representation allows for faster computations because of the

localness of the fans.

In this thesis, we show that meshes can be built on the original data points,

thus loosing no information whatsoever on the raw data point set. In that way all

scanning artifacts are revealed and can be carefully corrected, in a way that does not

loose the initial point accuracy.

There are previous methods attempting to keep the point cloud information all

along the process and to perform the final rendering on the point set itself, without

meshing [LMR], yet this is not our choice here. The whole theory of Moving

Least Squares Surfaces [Lev] also aimed at processing surfaces by local surface

regression, without any previous meshing (see chapter ). [MMS∗] proposed

a meshless subdivision framework based upon the idea that point-based surface

processing relies on intrinsic surface properties instead of intermediary represen-

tations. This idea of raw point processing is also at the bottom of our methods.

Defining geodesics on point clouds has been investigated in [MS] and [MSa]

where theoretical results are given for computing the distances on point clouds.

[MSb] and [MS] use the Gromov-Hausdorff distances to compare manifolds

given by point clouds. Another formulation was proposed in [BBK]. [MS] use

geometric distance distributions on point clouds to recognize shapes.

Other works on point clouds include [BSW] where an algorithm for building

a Laplacian operator on point clouds is given and [MTSM] which computes the

visibility of a point cloud from a viewpoint.

The next section discusses how to go from an input raw point set to a mesh.

. From a point cloud to a mesh

We assume that the scans are already registered, i.e., that all the scans are given

in a global coordinate system, obtained by the device calibration or by previous

registration algorithm (in the case of most data processed here the global coordinate

system is given by the scanning device itself). Other acquisition systems do not

necessarily provide this initial registration. This is why much work has been done

on registering shapes to merge multiple view (fig .).

.. Merging multiple views

The registration of multiple views is usually done by finding correspondences be-

tween the views and by finding a rigid or non-rigid transform mapping the set of

points from the first view to the corresponding set of points in the second view.

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



 Chapter . State of the Art

Figure .: Registering multiple views (Image from David Laser Scanner Website)

Finding these initial correspondences requires a good shape descriptor. This

topic has generated a huge literature. Famous shape descriptors include spin im-

ages ([JH],[JH], [Joh]), snapshot descriptors ([Mal]), regional point de-

scriptors [FHK∗], spherical representations ([HID], [KFR]), harmonic maps

([ZH]), point signatures ([CJ],[YF]) and D point’s fingerprints ([SA]).

The heat kernel was also used to produce a point signature ([SOG]).

Registration has also been studied in the shape matching context (e.g. to com-

pare a shape to models in a database) [BBK∗], [BBK], [BBBK]. This is par-

ticularly difficult when dealing with deforming surfaces, for example, to recognize

faces in spite of expression change. Specific surface descriptors had to be introduced

([BBK], [BBKa], [BBKb],[BBK]).

Once the initial registration has been found, the optimization is done by itera-

tively finding the registration that minimizes the distance between the overlapping

parts of the scans and updating the point positions ([BM],[RL], [Hor]).

Since scans may contain warps, a rigid transform might not be enough to gen-

erate a good model, this is why non rigid transforms were considered ([ZZW∗],

[CR], [BR], [BR]). More specifically the transformation is not a rotation

and translation anymore, but a thin plate spline allowing for distortions inside each

scan.

Once scans are registered in the same coordinate system, points must be turned

into a single mesh. The next subsection reviews the details of meshing.

.. Meshing

As soon as a set of points is given and we look for a suitable model, the interpola-

tion/approximation dilemma comes in. Should the model include the initial data

(i.e. the mesh vertices remain the input data set) or should it approximate the shape

(the mesh is close to the initial points but does not necessarily contain the data)?

First, a mesh can be built by creating triangles between input samples. This is
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.. From a point cloud to a mesh 

(a) Initial oriented

point set
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0

0

0

0

0

(b) Indicator function

0

0

0

0
0

0

0
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0

(c) Indicator gradient (d) Final surface

Figure .: Level set method for reconstructing a surface.

the case of all Voronoi/Delaunay based reconstructions. Indeed by building the De-

launay tetrahedralization of a point set and labeling inside and outside tetrahedra,

a set of frontier triangles can be extracted which are “on” the surface ([ACK],

[Boi], [ABK], [AB]). Yet these methods do not handle properly large input

point sets. Edelsbrunner and Mecke introduced the concept of α-shapes ([EM],

[Ede], [BB]). The α-shapes are based on the Delaunay diagram of the input

samples and are used to build a sub-complex of the Delaunay simplicial complex.

A triangle of the Delaunay triangulation is kept iff there exists a ball with empty

interior or the complement of a ball of radius α that contains the whole pointset

and such that the three vertices are on its frontier. The Ball-pivoting algorithm

[BMR∗]) is based on this principle but avoids building the Delaunay triangu-

lation. It simply rotates a ball of radius r on a set of points and builds triangles

whenever the ball has three vertices on its frontier and none inside. For α-shapes as

well as for ball-pivoting reconstruction, the problem is setting the ball radius which

is a good compromise between detail loss and hole filling.

Over the past few years, another family of shape reconstruction methods has

taken over the field. It is based on finding the level set of a function that more or less

corresponds to the distance to the underlying shape (see Fig .). Some methods

assume that the points are consistently oriented, and use various function family

to approximate the signed distance field: Fourier basis or radial basis functions for

example ([HDD∗], [Kaz], [KBH], [ACSTD], [CBC∗], [OBA]), while

more recent methods deal with unoriented point sets ([MDGD∗]). An inter-

esting method uses the Voronoi diagram in the level set framework: the distance

function is approximated by radial basis functions centered at the voronoi cell cen-

ters ([SAAY]). Once the distance function is built, the level set is extracted using

the Marching Cubes algorithm ([LC]) or its extension ([KBSS]). Other possi-

bilities include [WH], [CA] and [LGS].
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 Chapter . State of the Art

.. Remeshing

Meshes built from raw scans might have a high number of vertices. Therefore, re-

ducing the number of vertices (compressing the mesh data) is of crucial importance

for practical uses. Though remeshing will not be addressed in this thesis (it will only

be used in the hole filling process), we summarize briefly the remeshing field (a re-

view of remeshing techniques can be found in [AUGA]). Decreasing the number

of vertices and triangles while keeping the shape as close as possible to the orig-

inal was investigated in [HDD∗], [PGK] and [CSAD] among others. The

aim of remeshing can also be to improve the mesh regularity ([AMD],[BK],

[AVDI]). Usually the remeshing is done to satisfy a remeshing criterion and

many such criteria exist (see [ABE]). Another popular remeshing topic is to

transform a triangle mesh into a quadrangle mesh. Indeed quadrangles are at-

tractive because of their tensor-product like nature, which is useful for mapping

textures (e.g.) [ACSD∗],[AUGA],[SLI] or NURBS patch fitting in reverse

engineering. Other methods have been proposed to redistribute vertices according

to a density function ([PC], [PC], [PC]).

In a related domain, [LCOLTE] proposed a projection algorithm to project an

arbitrary point set onto an input point-set which can be used to resample surfaces

by point sets.

. Rendering

Once the mesh is built, the object must be rendered to be visualized. This can be

done by Ray Tracing methods. The idea is to trace a ray from the optic center of

a virtual camera through each pixel in a virtual screen, and computing the color

of the object that this ray intersects (see fig .). It requires computing mesh-ray

intersections which can be very slow in case of large meshes. Models can be textured

and various types of lights can be set to get realistic renderings.

. Post-processing and line detection

When surfaces are built, their geometry can be analyzed. For example, we might

want to extract high curvature lines. This is always a very delicate part since high

curvature lines, crest and ridge lines would actually need computing zero crossing

of principal curvatures derivatives. This is an order 3 derivative of a surface we

know only by a few sampled points. In case of a very smooth surface it could actu-

ally work, but it proves very unstable. Chapter  will introduce a new, global way

for extracting geometry from a shape.
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.. Post-processing and line detection 

Figure .: Scheme of ray tracing (copyright Henrik, Wikipedia)

In accordance with the edge detection paradigm in image processing, it is com-

mon to perform a D shape analysis by extracting the crest lines (the real edges)

on meshes or point clouds. Ridge lines are the loci of points where the maximal

curvature takes a positive maximum along its curvature line. Valley lines are the

loci of points where the minimal principal curvature attains a negative minimum

along its curvature line. These points can be linked to form lines (see among oth-

ers [OBS], [BA], [LFM], [YBS], [SF]). Most methods use a quadric or

polynomial regression. In [GWM], the lines are detected by neighborhood co-

variance analysis. Indeed, from a point neighborhood, the centroid and centered

covariance can be computed. Comparing the ratios of the covariance matrix eigen-

values gives the geometry of the neighborhood (see also [MOG]). In [HMG],

edges of a mesh are first classified according to their importance (this importance

is an increasing function of the adjacent faces angle).

A multiscale approach was proposed in [PKG]. Nearby feature points are first

detected. In the neighborhood of these points surfaces are fitted, and depending on

the number of fitted surfaces, points are projected to the nearest surface. Inter-

section points of these surfaces are finally classified as edge or corner points. By

increasing the processing radius, one could track feature lines and keep only the

ones at a given scale. Though dealing with scales, this method does not introduce a

scale space framework. A similar idea for points classification and point projection

was used in [DIOHS].

Although these papers introduce a ridge/valley line detection, none of them

proposes a ridge and valley segmentation. In [IFP] the idea was suggested,
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 Chapter . State of the Art

though: points lying near ridges or near valleys were labeled and this labeling was

used to obtain a better rendering of the ridge and valley lines. But crest lines as de-

fined by these methods require the computation of degree three surface derivatives.

Chapter  focuses on other interesting and well defined line features: namely the

curvature level lines and level sets, analogous to the image gray level lines. Of par-

ticular interest are the zero-crossings of the curvature, which are technically similar

to the zero-crossings of the Laplacian in image processing. These zero-crossings

define inflexion lines, easy to compute from the raw data point set. They reliably

segment the surface into ridges and valleys.

. The difference between Image Processing and D

surface processing

Both subjects are very related and indeed share common ideas. Nevertheless, there

is a major difference: there is no equivalent of the Shannon sampling theory for

D surfaces embedded in three dimensions, no Fourier analysis, and no notion of

frequency domain.

This is why so many algorithms cannot be easily adapted to surfaces. For ex-

ample, the very powerful non local means algorithm [BCM] was considered for

adaptation to meshes by Yoshizawa et al. ([YBS]) yet the sampling problem was

not really handled. It was once more adapted in [WZZY], more properly so that

neighborhoods were better defined, yet it made the whole algorithm much more

complicated. As will be seen in Chapter , however, a (non linear) high frequency-

low frequency decomposition of the surface is actually possible thanks to the scale-

space method developed in the present thesis. It provides a way to create for each

surface a smooth base on which the high frequency component can be defined as a

refinement field. This (simple) decomposition will be used for both the processing

(chapter ) and the analysis of the surface (chapter ).
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Chapter 3

Scale Space Meshing of Raw Data
Point Sets
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 Chapter . Scale Space Meshing of Raw Data Point Sets

Abstract: This chapter develops a scale space strategy for orienting and

meshing exactly high resolution very large raw data point sets. The

scale space is based on the intrinsic heat equation, also called mean cur-

vature motion (MCM). A simple iterative scheme implementing MCM

directly on the raw points is described, and a mathematical proof of

its consistency with MCM is given. Points evolved by this MCM im-

plementation can be trivially backtracked to their initial raw position.

Therefore, both the orientation and mesh of data point set obtained at

a smooth scale can be transported back on the original. The gain in

visual accuracy is demonstrated on archaeological objects by compar-

isons with other meshing methods. The method permits to visualize

raw data point sets coming directly from a scanner, and to put in evi-

dence all scanning artifacts (aliasing, holes,...), thus permitting to cor-

rect them (chapters , ) and to evaluate the quality of the correction.

The robustness of the method will also be demonstrated on very noisy

point clouds coming from color histograms (chapter ).

. Introduction

A growing number of applications involve creating numerical models for existing

objects acquired by triangulation laser scanner or other devices. Commercial scan-

ners can directly produce a direct triangulation of points sampled on the surface,

but this triangulation is derived from a raw set of points with no connectivity infor-

mation. Only raw input data will be considered here, namely sets of unorganized

and non-oriented points given by their x, y, z coordinates. The proposed method

orients and meshes directly the complete raw data set, thus allowing for the visu-

alization of the finest surface details, and an accurate delineation of the scanning

holes. The processed point data have a typical acquisition error of 20µ, allowing in

principle to recover the finest texture and details.

The main tool introduced here is a raw data set point smoothing operator con-

sistent with the intrinsic heat equation. The intrinsic heat equation, or mean cur-

vature motion (MCM), is the simplest intrinsic method to smooth out a surface.

The mean curvature motion writes

dp

dt
= Hn (.)

where H is the mean curvature at p (whose sign depends on the normal orien-

tation), and n the normal. This motion will be given a robust implementation

working directly on raw data points, which can be summarized in few words: it is

the iterated projection of each point on the regression plane of its radial neighborhood.
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.. Introduction 

Mathematical and experimental arguments will show that this iterated planar re-

gression consistently implements the MCM and actually permits to compute an

accurate denoised curvature. Indeed, Theorem  states that, by these iterations,

each raw data set point moves forward at the speed of the surface mean curvature

in the direction of the surface normal.

By the iterated projection algorithm each initial raw data point can be tracked

forward and backward in the surface smoothing process. As a consequence, the

surface structure established at a smooth scale can be transported back on the raw

data set point. This back transportation yields a topologically faithful orientation

at each raw point, and subsequently a mesh whose vertices are almost all raw data

points. It also permits an accurate detection of holes in the raw data, useful for

further scanning attempts. Comparative experiments will show that a direct mesh-

ing gives poor results, while the back transported mesh allows for the uttermost

accurate rendering of the surface, the mesh vertices being more than % of all ini-

tial raw points. Obviously, such a complete mesh is not economical, but it permits

an accurate rendering of fine art or archaeological pieces at 20µ precision and a

detection by visual inspection of the tiniest scanning defects.

The use of the mean curvature motion, forward and backward, is a direct D

extension of the scale space paradigm in image processing introduced in the found-

ing Witkin paper [Wit]. It consists of applying the heat equation ∂u
∂t

= ∆u to the

image u, which entails a rapid image simplification. The main image features (for

example the edges) are detected at a coarse scale (large t) and then tracked back

to their fine scale position. The next subsection reviews the methods computing

curvatures and normals on raw data.

.. Building a mesh

Given an initial oriented point cloud, most meshing methods start by defining a

signed distance field to the inferred surface [HDD∗],[KBH]. The signed dis-

tance function can be estimated at any point by computing the distance between

the point and the regression plane of its k-nearest neighbors [HDD∗]. Since the

neighbors are assumed previously oriented, the sign of this distance is straightfor-

ward. Other successful methods approximate the distance function using its de-

composition on a local radial basis functions [KBH]. Once the distance function

is defined, extracting the surface corresponds to extracting the zero level set of the

distance function. This can be done using the marching cubes algorithm [LC] or

any other other contouring algorithm.

These methods yield meshes that approach well the shape, but the approxima-

tion entails an implicit surface smoothing and the loss of fine texture. Acquisition

holes are also filled in by those methods, the signed distance function giving a nat-

ural close up of the surface. Nonetheless, for scanning applications, the acquisition
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 Chapter . Scale Space Meshing of Raw Data Point Sets

holes should be detected rather than filled in. The smoothing can be desirable if

there are noise and scanning artifacts. However, in the cases we shall examine, tex-

ture actually dominates noise. A guarantee that no detail is lost is granted only

when almost all raw data points are mesh vertices. [AMD] introduces a remesh-

ing method based on mappings of the mesh onto a plane. Meshing a planar projec-

tion will also be used here, but this projection will only be local.

In a way the scale space meshing method is not far from [GKS], where the

triangulation is found by locally projecting the points onto a regression plane and

performing a D triangulation. Our method will also consider meshing a simpler

point set yet it uses a D triangulation method and is done in the scale space frame-

work defined below.

.. Raw data point set processing

Yet, it has been termed impossible to mesh directly the raw data point set. The

literature has therefore considered more and more sophisticated smoothing and

interpolation methods. The “Moving Least Square Surface” (MLS) introduced in

[Lev] is defined as the set of stationary points of an operator projecting each raw

point on a local quadratic regression of the surface. The order n MLS algorithm

estimates at each point a degree n polynomial surface from a set of weighted neigh-

bors. The obtained surface can be used to project the point on the MLS surface, or

to sub-sample the surface by removing step by step the points with least influence

[ABCO∗]. Variations of the MLS algorithm for denoising point sampled surfaces

and preserving edges were proposed in [FCOS], [GTE∗],[OGG],[LCOL],

[GG]. Interpolatory point set surfaces can be achieved using a singular weighting

function ([OGG], [AA],[SOS]), but extracting the isosurface via marching

cubes will loose the input point positions

At first sight applying MCM to a data point set requires the separate compu-

tations of the surface intrinsic Laplacian (mean curvature) and of the normal. For

meshes, the standard discretization of the Laplacian operator is done through the

cotangent formula [MDSB]. For point clouds, [BSW] proposed the construc-

tion of a laplacian operator for functions defined on point clouds (yet no result on

real noisy shapes was presented). In [PKG], the curvature is either estimated by

a polynomial regression or by projection on a fitted least square surface (in other

terms, by MLS). The reverse operator is built by storing the displacements of each

point at each step. A similar scale space approach will be used here, but with quite

different scopes: in [PKG], the proposed applications were shape morphing and

shape editing.

In [UH], another raw data point set MCM discretization was proposed. The

surface Laplacian is computed by building an operator Aθ at each point position

and for every direction θ in the tangent plane. Aθ moves a point p proportionally
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.. Introduction 

to the curvature Hθ of the section curve in direction θ. By integrating over θ, it

yields a mean curvature motion.

.. Computing curvatures

Computing the principal curvatures reliably on a given surface is crucial for various

applications, in particular the anisotropic filtering preserving sharp edges [HP],

[MDSB], or the sampling methods adapting the density to the surface curvatures

[PGK]. On meshes, the curvature estimation problem has already been investi-

gated in [MDSB] where the cotangent formula is proven and extended. [Taua]

derived an analytic expression for estimating the directional curvatures in the edge

directions. In [Rus], [TRZS], the tensor curvature was estimated on each face

of a mesh surface. Other mesh curvature computation techniques include the use of

the normal cycle theory [CSM]. For a summary and comparison of mesh curva-

ture estimation methods, see [MSR]. It is also possible to estimate curvatures by

building curves contained in the surface and passing through the considered point

[Tan].

To determine the curvature of a given point, direct methods fit a surface (a

polynomial or a quadric) locally to each neighborhood and then compute the fun-

damental forms in their explicit form. This permits to compute the Weingarten

map whose eigenvalues and eigenvectors are the principal curvatures and princi-

pal directions ([LFM] among others). In [BC] the principal curvatures are

computed from an oriented raw data set without surface fitting by expressing the

fundamental forms of a D surface as covariance matrices. Indeed, the covariance

matrix of the point normals projected on the regression plane yields the principal

curvatures and their directions. Other approaches avoiding surface regression in-

clude the computation of integral invariants [PWHY],[PWY∗]. They are based

on the idea that differentiation is not robust in a discrete and potentially noisy data

set, whereas integration is much more resistent to noise. The proofs link the com-

putation of the area of the intersection of the surface with a ball to the principal

curvatures. Another possibility is to adapt the curvature estimation of [Taua] to

the case of point clouds, like in [LP]. Instead of considering the edge direction,

since no edge information is given for the point cloud, they consider all directions

from the center point to one of its neighbors. MLS surfaces were also used to de-

rive analytic expressions for the curvatures of point set surfaces [YQ]. As far as

meshes are concerned, a comparison of various curvature estimations can be found

in [SMS∗].

Mathematical results are given in chapter  proving the consistency of the pro-

posed scale space algorithm. This chapter is divided as follows: section . analyzes

the discretization problem. Sections ., . describe the two main applications of

the scale space: a point cloud orientation method and a faithful mesh construction
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 Chapter . Scale Space Meshing of Raw Data Point Sets

Spherical Neighborhood

Regression Plane

Cylindrical Neighborhood

P

M

Figure .: Comparison between cylindrical and spherical neighborhoods

for the raw data set. Comparative experiments are presented in section ..

. Continuous theory

This section investigates a new way of implementing the mean curvature motion

by the iteration of a planar surface regression. The surfaceM supporting the data

point set is assumed to be at least C2. The samples on the surfaceM are denoted

byMS .

Let p(xp, yp, zp) be a point of the surfaceM. At each non umbilical point p,

consider the principal curvatures k1 and k2 linked to the principal directions t1

and t2, with k1 > k2 where t1 and t2 are orthogonal vectors. (At umbilical points,

any orthogonal pair (~t1,~t2) can be taken.) Set n = t1 × t2 so that (t1, t2,n) is an

orthonormal basis. The quadruplet (p, t1, t2,n) is called the local intrinsic coordi-

nate system. In this system we can express the surface as a C2 graph z = f(x, y).

By Taylor expansion,

z = f(x, y) =
1

2
(k1x

2 + k2y
2) + o(x2 + y2). (.)

Notice that the sign of z depends on the arbitrary surface orientation.

.. Spherical neighborhoods vs cylindrical neighborhoods

Consider two kinds of neighborhoods in M for p defined in the local intrinsic

coordinate system (p, t1, t2,n):

• a neighborhood Br = Br(p) ∩M is the set of all points m ofM with coor-

dinates (x, y, z) satisfying (x− xp)
2 + (y − yp)

2 + (z − zp)
2 < r2

• a cylindrical neighborhood Cr = Cr(p)∩M is the set of all points m(x, y, z)

onM such that (x− xp)
2 + (y − yp)

2 < r2.

For the forthcoming proofs the cylindrical neighborhood will prove much handier

than the spherical one. The next technical lemma justifies its use.
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.. Continuous theory 

Lemma . Integrating on M any function f(x, y) such that f(x, y) = O(rn) on

a cylindrical neighborhood Cr instead of a spherical neighborhood Br introduces an

O(rn+4) error. More precisely:

∫

Br

f(x, y)dm =

∫

x2+y2<r2
f(x, y)dxdy +O(r4+n). (.)

Proof. The surface area element of a point m(x, y, z(x, y)) on the surfaceM, ex-

pressed as a function of x, y, dx and dy is dm(x, y) =
√

1 + z2x + z2ydxdy. One

has zx = k1x+O(r2) and zy = k2y +O(r2). Thus

dm(x, y) =
√

(1 + k2
1x

2 + k2
2y

2 +O(r3))dxdy

which yields

dm(x, y) = (1 +O(r2))dxdy. (.)

Using (.), the integrals we are interested in become

∫

Cr

f(x, y)dm = (1 +O(r2))

∫

Br

f(x, y)dxdy; (.)

∫

Br

f(x, y)dm = (1 +O(r2))

∫

Cr

f(x, y)dxdy (.)

= (1 +O(r2))

∫

x2+y2<r2
f(x, y)dxdy.

This last form is amenable to analytic computations. Consider polar coordinates

(ρ, θ) such that x = ρ cos θ and y = ρ sin θ with −r ≤ ρ ≤ r and 0 ≤ θ ≤ π.

Then for m(x, y, z) belonging to the surface M, we have z = 1
2
ρ2(k1 cos

2 θ +

k2 sin
2 θ)+O(r3). Fixing θ we obtain a curve with equation z = 1

2
ρ2k(θ)+O(r3),

where k(θ) = k1 cos
2 θ + k2 sin

2 θ. The condition that (x, y, z) belongs to the

neighborhood Br(p) can therefore be rewritten as ρ2 + z2 < r2, that is

ρ2 +
1

4
k(θ)2ρ4 < r2 +O(r5)

Computing the boundaries ±ρ(θ) of this neighborhood yields ρ(θ)2 +
1
4
k(θ)2ρ(θ)4 − r2 +O(r5) = 0. Thus

ρ(θ)2 =
−1 +

√

1 + k(θ)2(r2 +O(r5))
1
2
k(θ)2

.
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 Chapter . Scale Space Meshing of Raw Data Point Sets

This yields ρ(θ) = r− 1
8
k(θ)2r3+O(r3). We shall use this estimate for the error

term E appearing in
∫

Br

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]

f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]

f(x, y)ρdρdθ − E

=

∫

Cr

f(x, y)dxdy − E,

with E =:
∫

[0,2π]

∫

[ρ(θ),r]
f(x, y)ρdρdθ. Thus

|E| ≤
π

4
sup

x2+y2≤r2
|f(x, y)|k(θ)2r4,

which yields |E| ≤ π|k1|2

4
supx2+y2≤r2 |f(x, y)|r

4. In particular if f(x, y) = O(rn),

then |E| ≤ O(r4+n). Finally we have
∫

Br

f(x, y)dxdy =

∫

Cr

f(x, y)dxdy +O(r4+n). (.)

Combining (.), (.) and (.) yields (.).

.. Curvature estimation

Theorem  states that projecting a point onto the neighborhood barycenter approx-

imates the mean curvature motion. We shall discuss later on why it cannot be used

for implementing the mean curvature motion.

Theorem . In the local intrinsic coordinate system, the barycenter of a neighborhood

Br where p is the origin of the neighborhood has coordinates xo = o(r2), yo = o(r2)

and zo =
Hr2

4
+ o(r2), where H = k1+k2

2
is the mean curvature at p.

Proof. By Lemma  applied to the numerator and denominator of the following

fraction, we have

zo =

∫

Br
zdm

∫

Br
dm

=

∫

x2+y2<r2
z(x, y)dxdy +O(r5)

∫

x2+y2<r2
dxdy +O(r3)

=

∫

x2+y2<r2

[

1
2
(k1x

2 + k2y
2) + o(x2 + y2)

]

dxdy
∫

x2+y2<r2
dxdy

+O(r3)

=
1

2πr2

∫ r

ρ=0

∫ 2π

θ=0

ρ2(k1 cos
2 θ + k2 sin

2 θ)ρdρdθ + o(r2)

=
r2

8π
(k1π + k2π) + o(r2) =

Hr2

4
+ o(r2).

A similar but simpler computation yields the estimates of xo and yo.
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.. Continuous theory 

.. Surface motion induced by projections on the regression
plane

The main tool of the proposed scale space will be simple projection of each surface

point p on the local regression plane. This PCA regression plane is defined as the

plane orthogonal to the least eigenvector of the centered local covariance matrix,

and passing through the centroid of the neighborhood. The projection of p on this

plane will be called p′. The next lemma compares the normal to the PCA regression

plane with the normal to the surface, n.

Lemma . The normal v to the PCA regression plane at p ∈M is equal to the surface

normal at point p, up to a negligible factor: v = n+O(r).

Proof. The local PCA regression plane of point p is characterized as the plane pass-

ing through the barycenter of the neighborhoodBr and with normal v minimizing:

I(v) =

∫

Br

|〈v, pm〉|2dm s.t. ‖v‖ = 1

Denoting by (vx, vy, vz) the coordinates of v,

I(v) =

∫

Br

(vxx+ vyy + vz
1

2
(k1x

2 + k2y
2) + o(r2))2dxdy.

Considering the particular value v = (0, 0, 1) shows that the minimal value Imin

of I(v) satisfies Imin ≤ O(r6). In consequence the minimum (vx, vy, vz) satisfies

vx ≤ O(r) and vy ≤ O(r). Thus vz ≥ 1−O(r) and therefore v = n+O(r).

By Lemma , projecting p onto the regression plane induces a motion which

is asymptotically in the normal direction: p′p is almost parallel to n. The simple

projection of each surface point p onto its local regression plane approximates a D

scale space (mean curvature motion) as shown in the next theorem.

Theorem . Let Tr be the operator defined on the surfaceM transforming each point

p into its projection p′ = Tr(p) on the local regression plane. Then

Tr(p)− p =
Hr2

4
n+ o(r2). (.)

Remark More extensive formal calculations (too long to be included here) prove

that the error term in Theorems  and  is in fact O(r4).
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 Chapter . Scale Space Meshing of Raw Data Point Sets

Proof. By Theorem  the barycenter o of Br has local coordinates −→po =

(o(r2), o(r2), Hr2

4
+ o(r2)). On the other hand

−→
pp′ is proportional to the normal

to the regression plane, v. Thus by Lemma 
−→
pp′ = λ(O(r), O(r), 1 − O(r)). To

compute λ, we use the fact that p′ is the projection on the regression plane of p, and

that o belongs to this plane by definition. This implies that
−→
pp′ ⊥

−→
op′ and therefore

λ2O(r2) + λ(1−O(r))(H
r2

4
+ o(r2) + λ(1−O(r))) = 0,

which yields λ = Hr2

4
+ o(r2) and therefore

−→
pp′=(O(r3), O(r3),

Hr2

4
+ o(r2))=

Hr2

4
n+ o(r2).

. The discrete algorithm

The previous theorems assume that the surface is a uniform Lebesgue measure.

A constant sampling density is therefore necessary. This constant density will

be approximated on discrete data by weighting each point by a weight inversely

proportional to its initial density. More precisely, let p be a point and Br =

Ms ∩ Br(p). Each point m should ideally have a weight 0 ≤ w(m) ≤ 1 such

that
∑

m∈Br
w(Q) = 1. This amounts to solve a huge linear system. For this rea-

son, we shall be contented with ensuring
∑

m∈Br
w(Q) ≃ 1 by taking w(p) = 1

♯(Br)
,

as proposed in [UH]. Let o be the weighted barycenter of this neighborhood. In

R
3, the coordinates are written with superscripts, e.g. the coordinates of a point u

are (u1, u2, u3). Thus, for i = 1, 2, 3, oi = 1∑
m∈Br

w(m)

∑

m∈Br
w(m)mi. The cen-

tered covariance matrix Σ = (mij)i,j=1,··· ,3 is defined as mij =
∑

m∈Br
w(m)(mi−

oi) · (mj − oj) for i, j = 1, 2, 3. Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of Σ with

corresponding eigenvectors v0, v1, v2. For k = 0, 1, 2,

λk =
∑

m∈Br

w(m)〈(m− o),vk〉
2. (.)

Each eigenvalue gives the variance of the point set in the direction of the corre-

sponding eigenvector. Since v1 and v2 are the vectors that capture most variations,

they define the PCA regression plane. The normal v to this plane is the direction v

minimizing
∑

m∈Br
w(m)〈(m− o),v〉2.

Effectiveness of Theorems  and . Both Theorems permit a priori to implement

the mean curvature motion on the raw data point set without any previous orien-

tation. Nevertheless, the numerical application of these theorems depends on the
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.. The discrete algorithm 

assumption that a uniform Lebesgue measure on the surface is well represented by

a uniform sample density. This is not true for the barycenter method of Theorem

. Iterating the barycenter method with a small neighborhood and a slightly vary-

ing sample density leads to a local clustering of the samples. Indeed, the barycenter

method provokes a normal motion, but also a non negligible tangential motion to

the surface. This motion is precisely the one used in the Mean Shift method [Che]

for data clustering. This undesirable clustering effect is illustrated in fig. .. Even

though the point distribution on the sphere is probabilistically uniform, local clus-

tering occurs by taking local barycenters. In contrast, for the projection filter there

is no observable tangential shift on the right image of fig. .. Theorem  is in that

case consistent with its numerical implementation. This follows from the obvious

fact that any (non aligned) irregular sampling of a plane permits to exactly recover

the plane by linear regression.

(a) Original samples on a

sphere

(b) 4 barycenter iterations (c) 4 projection filter itera-

tions

Figure .: Comparison of the iterated barycenter and of the iterated projection

filter on a randomly sampled sphere. Both motions are consistent with the mean

curvature motion, but the iterated barycenter provokes clustering. See text for an

explanation.

Back propagation A normal motion by mean curvature can be defined for every

point p0 on the initial surface as a solution of (.) (dp
dt

= Hn) considered as an or-

dinary differential equation with initial point p0. Thus, the backward scale space is

trivial, provided the forward MCM implementation actually implements the evo-

lution of each raw data set point p0. Let us consider a point pt and its evolution

pt+1 at steps t and t+1. Now, we can build the sequence dp(t) = pt+1− pt and the

reverse scale space operator P−1
t (pt+1) = pt+1 − dp(t), this operator allows to go

backward in the scale space evolution from step t + 1 to 0. This is exactly the con-

struction proposed in [PKG]. If we only need to go from step t to the initial data

0, without any intermediate step, the operator is even simpler to build, since we

only need to store for each point pt its initial position P−1
t (pt) = p0. This reverse
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 Chapter . Scale Space Meshing of Raw Data Point Sets

scale space operator will be called back propagation, or back transportation.

.. Higher order regression surfaces

The authors of [CP] proved that a degree n polynomial fitting estimates all

kthorder differential quantities to accuracy O(hn−k+1). In [PKG] an order 

Moving Least Squares (MLS) method projecting the point onto the locally fitted

least squares surface was actually proposed as a scale space operator. Yet these it-

erated projections cannot be consistent with MCM, because by definition they do

not evolve degree two surfaces. Furthermore, the first step of MLS is always to

compute a regression plane, which gives the estimate of the normal. We have just

shown (Theorem ) that this computation by itself is sufficient to get directly not

only the normal, but also the surface motion by mean curvature.

Can iterated MLS give a better estimate of the curvature than the projection

filter? Comparative experiments were performed on a randomly and uniformly

sampled sphere with added gaussian noise. The point samples were filtered four

times by Tr. By Theorem , each filtering step gives an estimate of the mean curva-

ture. The same sampled sphere was filtered by MLS, the surface mean curvature

being computed as the mean curvature of the approximating surface at each point.

This estimate is very exact, since the difference on a C4 surface between a point and

its MLS estimate can be proved to be O(r4). Both mean curvature estimates are

compared by their mean and standard variations in the table of fig. .. The result

shows that when the noise level increases the planar projection yields a much more

stable computation (see the fast decay of the standard variation for the curvature

estimate). This experiment is also coherent with the MCM consistency theorem.

Indeed, the planar projection yields a point set with (slowly) increasing curvatures

(once the noise is removed, i.e., once the standard variation is stable).

Fig. . is another illustration in D of the same phenomena: a circle with ra-

dius 1 and added gaussian noise with variance 0.05 is denoised by iterated Tr and

by an iterated MLS projection using the same neighborhood radius. In D, Tr be-

comes a simple line regression and the MLS surface a degree  polynomial curve.

The simplest MLS method is used: it merely performs a weighted least squares

polynomial regression on the local neighborhood. The neighbors weights are equal

to G(d) where G is a gaussian and d is the distance between the neighbor and the

center point. The standard variation of G is equal to the neighborhood radius.
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.. First application: scale space raw data point orientation 

Noise 0.01 0.05 0.1

Plane 1 1.00/1.95 1.15/5.57 1.27/4.76

Plane 2 0.99/0.07 1.02/2.16 1.17/4.89

Plane 3 1.00/0.02 1.01/0.16 1.05/2.10

Plane 4 1.01/0.01 1.01/0.05 1.02/0.27

Plane 10 1.04/0.01 1.05/0.01 1.09/0.04

MLS 1 0.94/0.22 0.11/2.58 −0.42/2.99

MLS 2 1.01/0.13 1.02/0.49 0.62/1.36

MLS 3 1.01/0.10 1.02/0.36 1.06/0.68

MLS 4 1.00/0.08 1.02/0.30 1.05/2.19

MLS 10 1.00/0.04 1.01/0.14 1.02/0.74

Figure .: Comparison of mean curvature estimates on a noisy sphere with radius

1 (mean/standard variations) given by iterated planar projection and iterated MLS

regression. The curvature is evaluated at all points as the displacement along the

normal induced by the planar projection (as stated in Thm ) for the planar case,

and by the explicit computation of the MLS surface mean curvature in the MLS

case. The same radius is used for both iterations and both regressions.

. First application: scale space raw data point orien-

tation

Given an initial non oriented raw point cloud the surface orientation is a much

needed information before meshing. The eigenvector of the least eigenvalue of the

local covariance matrix is a classic approximation of the normal. We must then

pick one of two possible orientations, and this choice must be globally coherent.

The idea is to start by picking a random orientation for one point and to propagate

it to the neighboring points. Now, sharp edges or a noisy surface could fool such

a propagation. If, however, the surface is smooth enough, the propagation of the

normal is safe. Thus the overall technique to orient the raw data set will be to

smooth it by the scale space, to orient the smoothed surface, and to transport back

this coherent orientation to the initial data points.

The first tool to realize this program is a simple propagation method for a point

p whose neighborhood Br contains some previously oriented points. The orienta-

tion is transmitted from one point to the next if their normal directions are similar,
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 Chapter . Scale Space Meshing of Raw Data Point Sets

Figure .: Denoising a noisy circle with 1, 50, 100 iterations of Tr (top) and MLS

(bottom). Even after 100 iterations the oscillations removed by Tr persist with

MLS. The sphere radius decreases with Tr, which is consistent with the mean

curvature.
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.. First application: scale space raw data point orientation 

i.e., their angle is below a certain threshold (algorithm ).

Algorithm : OrientateFromNeighbors(p,r,t)

Data: p an unoriented point, a threshold 0 < t < 1, a radius r, the set Br of

p’s neighbors within radius r

Result: true if the point was oriented, false otherwise

 Compute p’s normal direction n by local PCA;

 n̄← normalized mean of already oriented neighbors’ normals;

 if (n̄ · n)2 > t then
 if n̄ · n > 0 then
 n(p) = n;

 else
 n(p) = −n;

 Return true;

 else
 Return false;

Algorithm : Scale space Orientation

Data: A point cloudMS , a radius r, an update parameter α > 1

 Iterate the projection filter Tr and keep track of each raw data point sample

(mean curvature motion);

 Find a point p0 in a flat area, pick its orientation and mark it as oriented.

Add its neighbors to the stack S ;

 while S is not empty or S does not become constant do
 Take p0 the first point in S ;

 if orientateFromNeighbors(p,r,t) then
 Mark the point as oriented and remove p from S ;

 Add p’s neighbors to S ;

 Add all remaining unoriented points to S ;

 while S is not empty and ♯S does not become constant do
 r = αr;

 for p in S do
 Perform orientateFromNeighbors(p,r,t);

The input parameters for the scale space orientation (algorithm ) are the radius

r and a threshold 0 ≤t≤ 1. Steps from  to the end are necessary because adding

neighbors of points to the stack might not be enough to cover the entire cloud due

to sampling irregularities. Once this procedure is over, there might remain non

oriented points. These points are usually isolated points, and we choose to ignore

them. In all our experiments the number of remaining non oriented points was
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 Chapter . Scale Space Meshing of Raw Data Point Sets

Figure .: A raw point set (left) and its orientation (right). Points in the right figure

are simply given a gray value depending on the scalar product of their normal and

the lighting orientation

below 0.1%. At each step the radius is multiplied by an α > 1 factor. In step , the

radius r is changed. Thus all normals are not computed with the same radius. This

is why we must reverse the scale space to come back to the original point cloud.

At scale 0, the normal direction is recomputed by local PCA for all points and the

chosen orientation is the one which has positive scalar product with the previous

normals. This is an application of the scale space paradigm, where the information

is computed at a coarse scale and propagated back to the finest scale.

A result of this orientation algorithm is shown on a car point set (Fig. .).

. Second application: scale space meshing

We now discuss how to build a mesh on the raw point cloud. Direct meshing is

not possible because of the surface oscillation due to fine texture and noise (see

Fig. .(c)). The idea is again to perform meshing on the smoothed surface and

to transport this mesh back on the original point cloud. An efficient triangula-

tion technique, the ball pivoting method [BMR∗] is used in all experiments. The

crucial faithfulness requirement is that the final vertices of the mesh must be an

overwhelming majority of the raw data set points. This conservative requirement,

incompatible with level set methods ([KBH], [HDD∗], [LC]) is described in

Algorithm .

Fig. . illustrates why scale space meshing allows one to recover those details:

standard meshing at a smooth scale is simply easy because details have been un-

folded. It is then trivial to propagate back the vertices of the smooth mesh to their

initial positions. This yields a direct triangulation of the original raw data set.

Parameters of scale space meshing The radius can be set automatically while com-
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.. Second application: scale space meshing 

Algorithm : Scale space meshing

Data: A point set with computed normals

Result: A mesh of the original D data point set

 Iterate (four times) the projection filter Tr and keep track of each raw data

point sample: this is the forward mean curvature motion;

 Mesh the smoothed samples;

 Transport the mesh back to the original points (thus reverting the mean

curvature motion).

(a) Original samples (b) Projection motion (c) Resulting samples

(d) Mesh of the resulting

samples

(e) Scale space Mesh

Figure .: D example of the steps performed by the scale space meshing algorithm

puting the octree to sort the points. Indeed the root of the octree is the bounding

box of all points. Let us call Lmax the length of its largest side. Then, each cell

represents a D cube with size Lmax/2
d where d is the depth of the cell. Count-

ing the number of points in that cell gives an approximation of the number of

neighbors of a point contained in this cell for a spherical neighborhood of radius

rd = Lmax/2
d+1. Performing this approximation in all non empty cells at the same

depth gives an approximation of the number of neighbors for spherical neighbor-

hoods with radius rd. The projection filter requires at least three neighbors per

point to estimate a regression plane, but a robust estimate is experimentally attained

with 30 neighbors. Of course, since the same radius is used for all points, it may

occur that there are not enough neighbors to perform the plane regression. Those

points must be eliminated, but in all the experiments less than 0.1% of points were

removed this way. These points are mostly outliers, or isolated points in folds of the

acquired object. Although their relative number is low, nonetheless this represents

some thousands points that are eliminated.

Once the minimal number of neighborhood points has been fixed (and it has

been fixed once and for all on all experiments to ), the radius is also fixed and the
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 Chapter . Scale Space Meshing of Raw Data Point Sets

meshing scale space only depends on the number of scale space iterations. When

setting the radius automatically as described above, it was found that four iterations

were always enough to smooth the point cloud and build the mesh. Thus, the

scale space is conceived as a very local motion securing a reliable tangent space.

In all experiments the points barely moved (less than 40µ for the Tanagra point

set). The scale space and the ball pivoting reconstruction use the same ball radius.

The parameter of the Poisson reconstruction (namely the octree depth) was set to

be the largest allowed by our computing equipment (namely a 8 3Ghz processors

computer with 48 Go RAM).

Transporting back the connectivity information (step 3) can in theory lead to a

self intersecting mesh. Indeed, if two points lie too close to each other they may

"switch position" in the scale space iterations, leading to a complicated surface

topology. This problem can be solved by detecting all pairs of intersecting trian-

gles. Then any remeshing algorithm can solve the problem by switching edges in

quadrilaterals. However, this additional step was not implemented for two good

reasons. First, the existence of a few intersecting triangles would be no serious vi-

sual inconvenience. Second, no such crossing was found in any of about twenty

experiments on very large data point sets.

. Comparative experiments on high resolution data

The algorithms were devised for highly accurate point clouds acquired by a laser

scanner. A typical example of the scanned objects is a mould of a fourth century

B.C. Tanagra figurine acquired at the Museum of Cycladic Arts, Athens (Fig. .(a)).

It is cm high and the point cloud contains 6 · 106 points.

Thanks to a very accurate calibration of the laser scanner device, the output

is a well registered non oriented point cloud containing a negligible warp. Tests

were also made on objects of the Stanford Fragment Urbis Romae database. In

that case a registration of the raw sweeps is needed to have a point cloud represent-

ing the whole object. Preferring not to address the sweep registration problem in

this chapter, we will use single sweeps for our meshing experiments and show that

considerable texture information can be recovered from each sweep. Figs. . and

. show the application of scale space meshing with a mesh rendering at fine and

coarse scale. We can see on Figs. . and . that the surface texture is lost at a coarse

scale, but completely and accurately recovered by scale space meshing. Comparing

the back projected mesh to the result of a direct meshing of the initial samples (Fig.

.) shows that the scale space triangulation is much more precise. In fact, a di-

rect meshing is not applicable. It creates, among other artifacts, many spurious

triangles. Tr has been proposed as the simplest smoothing operation implement-

ing the mean curvature motion. It may be objected that the surface could also be
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.. Comparative experiments on high resolution data 

directly approximated by the classic order  moving least square method (MLS).

The most objective way to compare Tr and MLS2 was to implement them with

exactly the same neighborhood radius. Fig. .(f) shows the comparative result on

one of the finest details of the Tanagra data set. The results are similar in terms of

detail quality, yet the computation time was doubled, and we have seen (Fig. .)

that MLS does not deliver a scale space and keeps the smoothed out noise. Fig.

. shows a comparison between the reconstruction obtained by the VRIP recon-

struction method (see [CL]) and scale space meshing. The scale space method

produces a significantly more precise mesh, as can be seen on the close up of Fig

..

Fig. . shows the scale space reconstruction of one scan of a fine scale object

(i.e. the mesh back-projected at all scales).Fig . compares the mesh reconstruc-

tion by several meshing algorithm with scale space meshing. The experiment clearly

rules out both Ball Pivoting algorithm and Poisson Reconstruction. Two MLS

methods are also tested. APSS ([GG]) and RIMLS ([OGG]). APSS builds an

implicit function by evaluating the distance between each evaluation point and an

algebraic spherical fit of the surface. Though the method is not explicitely deviced

for meshing, the isosurface can be extracted using the marching cubes. RIMLS is

another modification of the standard MLS procedure. It is based on minimizing an

objective function that gives less weight to spatial and normal outliers (i.e., sparse

points and features). Here, marching cubes are explicitely mentioned for extract-

ing the surface. For both methods, the resolution depends on the marching cubes

grid resolution: it was set so that increasing it would not change much the visual

aspect. Though both methods are visually close to scale space meshing, our method

is much simpler and does not use an isosurface extraction at all. It is also the only

method which preserves input samples and does not add additional vertices (both

APSS and RIMLS use more than twice the number of input samples). Another

problem is that the isosurface extraction by marching cubes introduces strong arte-

facts which are avoided by scale space meshing (Fig. .).

Fig. . displays the many acquisition holes at the bottom of the Tanagra fig-

urine, in the folds of the tunic or near the right foot. By the scale space meshing

these holes are not filled in and can be detected. Since the ball pivoting algorithm

is used for triangulation, no triangle larger than a given threshold has been created.

Indeed, to form a triangle, three points must lie on a sphere of given radius r. Thus,

low density areas are considered as holes.

Fig. . illustrates the loss of detail with level sets methods. Level set meth-

ods create a smoothed zero level surface of the signed distance to the raw data set

point. They do not contain the raw data set points and lose track of them. Fig.

. shows that not only these methods, but even direct meshing methods can miss

small details.

The quantitative performance of each algorithm can be evaluated by meshing

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



 Chapter . Scale Space Meshing of Raw Data Point Sets

(a) Initial object (b) Coarse scale mesh (c) Scale space mesh

Figure .: Multi-resolution mesh reconstruction of the Tanagra point set (22 cm

high) illustrating the recovery of fine texture. All back propagated textures are

present on the original
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.. Comparative experiments on high resolution data 

(a) Picture of the back

side

(b) Detail selection

Figure .: Close ups on the details () (left) and () (right) selected on fig. .(b)

simple shapes. Test point sets were built by sampling perfect geometric shapes

(for example a sinusoidal surface). The root mean square distance of the trian-

gle barycenters of the mesh to the real surface were compared for each mesh-

ing method. This distance is computed by the Newton-Raphson method. The

first surface "Wave " has equation z = 0.2 cos(5x), "Wave " has equation z =

0.2 cos(5x)∗cos(5y), the third surface is a regularly sampled sphere and the last one

is a sum of two close and narrow Gaussians z = − exp− (x−0.1)2

0.01
− exp− (x+0.1)2

0.01
.

The RMSE results are shown in the table of fig. .. It is obvious from these results

that the Poisson reconstruction or any level set method cannot be applied to re-

cover a surface with very thin details. On shapes containing no sharp edges, direct

BPA and scale space meshing perform comparably. On the thin structure created

by adding two very close Gaussians, the loss of precision of BPA is clear. This phe-

nomenon is similar to the one observable in Fig. .(c) where BPA does not recover

thin details.
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 Chapter . Scale Space Meshing of Raw Data Point Sets

(a) Picture of the Logo (b) Scale space mesh (c) Direct mesh

(d) Poisson Mesh (e) MLS + BPA (f) MLS scale space

Figure .: Comparison between several meshing methods. The width of this logo is

approximately 1cm. The direct mesh (.(c)) creates many spurious triangles. The

Poisson reconstruction [KBH] clearly smoothes out all details (.(d)). Filtering

the logo by order two MLS and meshing the points by the ball pivoting algorithm

(.(e)) also creates a smooth mesh. Compare the details in .(b) and .(c). Fig

.(f) shows the result of applying the same scale space strategy with the projection

on the order 2 MLS surface instead of the regression plane projection operator. The

result is alike in detail quality but the computation time is double. See figs .-.

for an explanation of this difference.
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.. Complexity analysis and computation time measures 

Figure .: Back-projecting the mesh of a single scan of a fine-scale object (engrav-

ings are around 0.1mm deep). From left to right: mesh built after 4 scale space

iterations; back-projection of the mesh to levels 3, 2, 1; back-projected mesh (final

mesh)

. Complexity analysis and computation time mea-

sures

One scale-space projection requires the following operations: look for neighbors

within radius r, build their covariance matrix and their centroid, perform PCA of

this 3 × 3 covariance matrix. Therefore, once the neighbors are found, they are

sequentially scanned in order to build the covariance matrix and the centroid. This

yields 6 multiplications and additions per point for the covariance matrix update

and 3 additions per point for the centroid update. The PCA complexity does not

depend on the number of neighbors: it requires 9 operations. Knowing the least

eigenvector, the projection is only 12 operations. There is one list scan (9 operations

per processed point) and 21 operations once the covariance and centroid are built.

Assuming we have 30 neighbors, this yields a total of 200 operations per point.

Finally finding the neighbors in an octree structure is O(logN) (average) and one

scale space iteration therefore is O(N(logN + 200)) operations, where N is the

total number of points in the point cloud.

The computation time needed for meshing the Tanagra point set with six mil-

lions points was as follows: Sorting the points in the octree takes 1.2s. The scale

space iterations requires 3 min. This leads to a total computation time of 19min

for the scale space point cloud orientation and of 27min for the whole scale space

meshing on an 8 3Ghz processors computer with 48 Go RAM. The maximum

memory usage was less than 2Go. These figures should be compared with the time

required for directly meshing the oriented point set by the ball pivoting method

without any scale space iterations, which took 25min. Therefore, only a two addi-

tional minutes were used to get a much more faithful mesh.
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 Chapter . Scale Space Meshing of Raw Data Point Sets

(a) Picture (b) BPA (c) Poisson

(d) RIMLS (e) APSS (f) Scale space meshing

Figure .: Comparison of the Rosette reconstruction (Picture (a)) using Ball Piv-

oting Algorithm (b), Poisson Reconstruction (c), RIMLS (d), APSS (e), and scale

space meshing (f). APSS and RIMLS yield results that are really close to ours, yet

both methods need an isosurface extraction done with the marching cubes, which

creates strong artefacts (see a closeup Fig .). Besides, RIMLS and APSS meshes

contain around 268500 vertices whereas the scale space mesh contains 132203 ver-

tices. Notice also that APSS and RIMLS introduce some denoising (visible espe-

cially in the nearly flat parts). Scale space meshing is the only method that preserves

exactly the input data.
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.. Conclusion 

(a) RIMLS (b) APSS (c) Scale space meshing

Figure .: Detail of the mesh built using (from left to right) RIMLS, APSS and

scale space meshing. Notice the horizontal artefacts created by the isosurface ex-

traction for both APSS and RIMLS methods.

. Conclusion

The increasing accuracy of D triangulation scanners requires an effort to recon-

sider the whole rendering chain, and to obtain high quality visualization, actually

better than what is obtained by photography. The present chapter has proposed a

strategy to mesh the raw original surface, therefore ensuring a faithful rendering.

Future work will test a closed scanning loop with our experimental scanner to scan

the detected holes.
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 Chapter . Scale Space Meshing of Raw Data Point Sets

(a) Picture of the fragment (b) Scale space mesh (c) Reconstructed Mesh avail-

able on the FUR website

Figure .: Comparison on a piece of the Fragment Urbis Romae (FUR) database.

Texture and details are better recovered on the back-propagated mesh (middle).

Compare with the VRIP reconstruction method available on the FUR website

(right)

(a) Original Fragment (b) Scale space mesh (c) Level Set mesh

Figure .: Closeup of a piece of the (FUR) database reconstructed by Scale Space

Meshing and by the Poisson Reconstruction Method.

(a) Original samples (b) Level set method (c) Direct Meshing (d) Scale space mesh-

ing

Figure .: Comparison of three meshing methods
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.. Conclusion 

Method Wave  Wave  sphere sharp
Scale space 0.19 0.28 0.04 0.04

BPA 0.18 0.24 0.04 1.2

Poisson 1.5 43 0.24 4

Figure .: Quantitative comparison of three meshing methods, scale space mesh-

ing, ball pivoting, and the Poisson reconstruction: RMSE of the distance from the

triangle barycenters to the real surface. All results are multiplied by 103 for read-

ability
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Chapter 4

High Fidelity Scan Merging
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 Chapter . High Fidelity Scan Merging

Abstract: For each scanned object D triangulation laser scanners de-

liver multiple sweeps corresponding to multiple laser motions and ori-

entations. The problem of aligning these scans has been well solved by

using rigid and, more recently, non-rigid transformations. Neverthe-

less, there are always residual local offsets between scans which forbid

a direct merging of the scans, and force to some preliminary smooth-

ing. Indeed, the tiling and aliasing effects due to the tiniest normal dis-

placements of the scans can be dramatic. This chapter proposes a gen-

eral method to tackle this problem. The algorithm decomposes each

scan into its high and low frequency components and fuses the low fre-

quencies while keeping intact the high frequency content. It produces a

mesh with the highest attainable resolution, having for vertices all raw

data points of all scans. This exhaustive fusion of scans maintains the

finest texture details. The method is illustrated on several high resolu-

tion scans of archeological objects.

. Introduction

Recent high precision triangulation laser scanners can scan surfaces of medium size

objects with a precision of less than 10µ. Yet, although each scan has a very high

precision, this precision can be lost again when merging multiple scans and mesh-

ing them together. This loss of precision entails a loss of visible texture, which ex-

plains the smooth and glassy aspect of most rendered scanned objects. On the other

hand the merging of the multiple scans (often called super-resolution) is absolutely

necessary. A patch of the object may well be acquired tens and even hundreds of

times on well exposed parts. Indeed, many sweeps with varying trajectories are nec-

essary to acquire the less exposed parts of the object. The main goal of the merging

considered here is not to gain more detail and texture or to denoise the data point

cloud by super-resolution: recent triangulation scanners yield scan sweeps with ex-

cellent quality. Unfortunately this quality is at risk of being damaged by the merging

procedure itself. Thus, more trivially, the goal is to secure that the texture of each

scan is not lost again due to slight matching errors which force a smoothing before

a joint meshing. Fig. . illustrates the problem. With two overlapping shifted scan

grids, as seen in (a), the aliasing risk is high. Meshing each scan separately yields

two almost identical surfaces and textures (b, c). Nevertheless, a joint meshing (d)

provokes strong tiling and aliasing effects, due to very small local offsets between

both scans, in spite of the fact that they have been globally well registered. The

challenge is therefore to merge both scans in such a way that the rendering quality

does not decrease. The numerical problem is made more acute by two facts. First,

not just two, but up to hundred scans may overlap in some region. Second, scans
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.. Previous Work 

boundaries appear everywhere, as illustrated in fig. . and make the fusion near

these boundaries still more problematic.

Each point of each scan has three-dimensional coordinates given either in a

global coordinate system if the acquisition device is calibrated, or in a local coor-

dinate system if the device is not calibrated. In the case of non-calibrated devices,

the scans must be registered in a common coordinate system, and the registration

problem becomes a rigid transform estimation. This problem has been widely in-

vestigated and has found efficient solutions [BM] [RL]. Yet if the scans had

some internal local warping (which is usually the case), the rigid transform frame-

work is not sufficient. A whole theory of non-rigid scan registration has therefore

been developed [BR],[BR]. If the acquisition device is well calibrated the deliv-

ered scans are well registered, up to a given precision. Yet, as we already mentioned,

a tiny residual mismatch can provoke strong artifacts similar to aliasing patterns

(see fig. .) and forbids a direct meshing of the union of all data point clouds. This

problem is generally solved by applying a method which meshes an implicit zero

level set of a distance function to the raw points. The distance function is approxi-

mated by its Fourier coefficients [Kaz] or by radial basis functions [KBH]. The

problem is that these methods result in a serious loss of accuracy when the final

result is compared to each scan separately.

This chapter experiments on sets of scans of an object that have been either pre-

viously optimally registered by rigid or non-rigid methods, or registered through a

high precision calibration of the acquisition tool. To demonstrate that no texture

content will be lost, the goal is to mesh the entire point cloud. This means that all

raw acquired points of all scans will ideally be vertices of the mesh. This require-

ment guarantees a complete preservation of all the acquired information, including

noise and fine textures. Of course such a mesh is not numerically economic, but it

is necessary for two goals: first to get high quality rendering of complex shapes such

as archeological objects, and second to precisely explore all remanent artifacts such

as the holes, inherent in any scanning process. For scanning control purposes, it is

anyway quite rewarding to be able to see exactly what has been scanned.

. Previous Work

.. Rigid Scan registration

When the scans contain no warp, the registration problem sums up to estimat-

ing a rigid transform between scan coordinate systems by minimizing the distance

between the reference scan and the transformed scan. The estimation of the trans-

form in the quaternion form was proposed in [Hor]. The Iterative Closest Point

(ICP) Registration procedure introduced in [BM] and [CM] matches a point
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 Chapter . High Fidelity Scan Merging

(a) Overlapping scans (b) Mesh of scan 1 (c) Mesh of scan 2 (d) Mesh of scans 1&2

Figure .: Example of two overlapping scans (a), points of each scan are first

meshed ((b)-(c)) separately. The result can be compared to the meshing of points

of both scans together (d)

Figure .: Example of overlapping scans. This head is such a complex structure

that not less than 35 scans were acquired to fill in most holes.
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.. Previous Work 

from one scan to the closest point of the other scan and computes the transform

based on these matchings. ICP was very successful and many variants were intro-

duced ([RL],[BS]). A study of the optimal sampling for the ICP algorithm was

proposed in [GIRL].

Since ICP converges to a local minimum, the initial scan position must be close

to optimal. Thus, some robust initial matches are needed to initialize the algorithm.

This robust match search has also been investigated. The common idea is to find

features easily identifiable on the scans (usually linked with highly curved points)

and to match them. Spin Images, introduced in [JH], represent potential feature

points by images. The spin image associated with point p is the function that maps

a D point to (α, β), where α is the distance to the tangent plane and β the distance

to the line parallel to n and passing through p. A linear correlation coefficient

is used as a similarity coefficient between images to find the correspondences. In

[SA] another feature carrier is introduced. It is based on computing geodesic

circles around a point and projecting them onto the tangent plane. This gives a

1D 2π-periodic function parameterized by the angle. Feature matching is done by

sampling the contours and computing a similarity measure between the contours.

Other popular descriptors were described in [YF], [VSR], [ZH] or [KFR].

Another approach was proposed in [AMCO]: all coplanar -point sets that

are approximately congruent are extracted on both shapes and matched using the

fact that the distance ratios relatively to the intersection point are invariant to rigid

motions.

Rigid scan registration methods assume that the scans must fit perfectly using

only rigid transforms. Yet, if the scans have some warping, the method does not

apply. Another problem is that the registration error might cumulate when regis-

tering multiple scans (see [BR] for examples of bad registrations). These consid-

erations led to modeling the registration transform by a non rigid transform as will

be shown in the next subsection.

.. Non-rigid scan registration

The method for non rigid registration using thin plate splines [BR] first applies

a hierarchical ICP to find good features: the source mesh is iteratively divided

through the middle of its longest axis and each half is realigned separately. This

yields good feature correspondences at the cost of substantial discontinuities in the

source mesh. These point matches are then used to compute the thin plate spline

that best approximates all pairs of points. The spline being continuous, any discon-

tinuity introduced in the scan splitting process is removed by the spline approxi-

mation. Once the scans are registered they must be merged. This is done using the

VRIP method [CL], which will be described below.

An extension of this method was introduced in [BR]: the same thin plate
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 Chapter . High Fidelity Scan Merging

spline non rigid deformation model is applied using an improved earlier point

matching: features are found and matched in a process which rejects outliers. Other

methods include [CR] where the non rigid registration is done using as input soft

assignment between point pairs. This yields a functional minimization comprising

a term of soft assignment.

.. Super-resolution from several scans

Recently, the problem of achieving super-resolution from multiple scans has been

raised, mostly for improving range image resolutions ([KMA]) where various

low resolution scans with the same depth direction are acquired and registered by

ICP. Depth values at each point of a high resolution grid are then interpolated with

depth values of points falling in the neighboring cells. [AKSA] used rotating

scans around the depth axis to build for each orientation high resolution range im-

ages. These high resolutions range images were registered and combined by consid-

ering the image gradient and the angle between the baseline and the image gradient

to weight each point. Other methods building hybrid scanners to achieve high res-

olution include [NRDR] where positions and normals are acquired and used to

improve the resolution.

Once scans have been computed and registered, a mesh must be built to allow a

fast visualization of the surface model. The next section reviews methods to build

the mesh.

.. Meshing

Meshing methods can be divided into two categories: methods that approximate

the point cloud and methods that mesh directly the point set. Approximating meth-

ods usually build a function defined on R
3 whose 0-level set is the shape surface.

A mesh is then built on the 0 level-set by the marching cubes algorithm [LC].

These methods include [KBH],[Kaz], among others. A very interesting variant

of these methods is the VRIP algorithm ([CL]). VRIP considers an implicit func-

tion taking into account not only point positions but also their reliability. Nonethe-

less, two drawbacks common to the mentioned methods are the automatic filling

in of holes, and the implicit low pass filtering performed by the level set method.

These methods usually compute the distance to the surface as an average of the

signed distance of the point to its k-nearest neighbors. Thus initial points are dis-

carded and de facto replaced by local averages. This removes noise in the cloud, but

also loses fine details and textures.

Direct meshing methods include [ABK] or [AB]. We shall use the incre-

mental ball-pivoting method [BMR∗], which is fast and does not fill holes. The

method is based on pivoting a ball of fixed radius r around edges. Three points
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.. Scan Merging 

are triangulated if they lie on a ball with radius r and empty interior. The ball is

then pivoted around all three edges of the triangle, until it meets a point and has

still empty interior. If no such point is met then the edge is the boundary of a hole.

The parameter r is a bound for the creation of triangles: no triangle edge can have

length above 2r. Thus low density areas are considered as holes.

In short, the dilemma is as follows: the approximating methods are not sensitive

to a slight registration error, but can loose detail and texture. On the contrary,

aliasing-like artifacts become visible when a direct meshing method attempts to

keep all raw points of several scans. The best choice is to preserve the raw points

and to apply a direct meshing method. But this requires eliminating all traces of

inaccurate registration.

. Scan Merging

.. Principle

The general idea behind the scan merging method experimented here is to preserve

point positions in non overlapping areas, and to make a fusion of the scans on

overlapping regions while keeping all raw points. The fusion involves a smooth-

base/height-function decomposition for each scan. The decomposition of a surface

as the sum of a smooth base and of a height function was proposed for a different

purpose in [KST], and [ZTS], where the height function was used to segment

the mesh and extract features as contours of the height function. The underlying

idea is that a surface S can be decomposed into a smooth base B and a height

function h, so that:

S = B + h

B can be seen as the low frequency surface and h can be seen as the high frequency

term. Given several surfaces S1 = B1 + h1, S2 = B2 + h2, · · · ,SN = BN + hN ,

the idea is to fuse the bases, but to keep exactly the hi terms, thus preserving all

fine details. In other terms, a common basis B for all surfaces must be found, the

high frequencies of all scans adopting this common basis thereafter. This strategy

is comparable to the one used for morphing applications in [PKG]. In a way, the

idea is similar to [SCOT], where the high frequency error due to quantization

was transformed into a low frequency error much less noticable.

The data merging using a high/low frequency decomposition has long been a

classic method in image processing [BA]. This article introduced the idea of sep-

arating each image into various frequency bands by a Gaussian pyramid. The low

frequency bands were merged separately to obtain a smooth blending of different

images. The method has been successfully used to create panoramas from mul-

tiple images [BL] and texture D models [Bau]. Two major differences are
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 Chapter . High Fidelity Scan Merging

that in [BA] all frequency bands are merged, whereas the method proposed here

only merges the low frequencies while keeping the high frequencies intact. Another

important difference is the usage of a nonlinear heat equation instead of a linear

frequency decomposition.

The next section addresses the robust decomposition of a surface into a base

and a height.

.. Low/High frequency surface decomposition

Since the pioneering article [Taub] it is known that mesh high frequencies are re-

moved by the application of the intrinsic heat equation ∂p
∂t

= ∆p. Yet, our scanned

surfaces are given as point clouds and not as meshes. A numerical scheme of the

heat equation for raw point clouds must be used. This question has been addressed

in [BSW] and [PKG]. We shall use the simple implementation of the intrinsic

heat equation proposed in [DMMSL]: this chapter proves that the intrinsic heat

equation can be implemented by iterating a projection of each point onto the lo-

cal cloud regression plane. Consider the projection operator Tr that projects each

point p onto the regression plane of the neighbors of p enclosed in a ball of radius r.

Then it can be proven that this motion is tangent to the intrinsic heat equation. The

iteration of Tr yields a scale space (a representation of the shape at various smooth-

ing scales). In all experiments r is set so that the ballBr centered at p contains about

30 neighbors at almost all points, and the number of scale space iterations n is set

to 4. The first parameter () is fixed so that a reliable regression plane is always

computed. The second parameter, namely the number of iterations , is chosen to

guarantee a smooth enough basis in all cases. It can be increased without damage.

When iterating the projection operator with an initial surface S0, the surface St is

iteratively smoothed. To each point pt of St corresponds a point p0 of S0, and the

height function can be taken to be the vector h(pt) = pt − p0.

An alternative definition for the height would be the scalar function h(pt) =

(pt − p0) · n, where n is the normal to St at pt. Yet, the results with both height

variants being fairly identical, the simplest definition was kept: it separates each

data point into a smooth base point and a high frequency vector.

.. Finding a common smooth basis for all surfaces

Choosing a common basis for all scans is the next question. A natural constraint

on the method is to keep fixed the points belonging to regions where only one scan

is available. Finding the common basis then becomes straightforward: It is enough

to apply the same number n of iterations of Tr with the same parameter r to all the

sets after they have been put together. This global filtering assumes that the high
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.. Scan Merging 

Figure .: The unmerged head with aliasing artifacts (left), its smooth base (mid-

dle) and the merged result (right)

frequency term of the set S = ∪iSi contains the registration error: when filtering

S the registration error is filtered away (see fig. .).

.. Algorithm

The method is summarized in Algorithm . The algorithm is based on two appli-

cations of the intrinsic heat equation scheme (here the iterated projection on the

regression plane) with the same parameters and the same number of iterations. All

registered scans are given in the same global coordinate system. The first applica-

tion (Line ) is done on the separate scans yielding the intrinsic high frequencies

of each scan. The second application (Line ) is done on all scans together. When

filtering all scans together (lines  and ) the registration error is suppressed and we

get a common low scale registration or basis, the set of points b(p). Adding back to

them the high frequency component
−−−→
bi(p)p restores all details from all scans.

An important feature of the method is that each region A of the shape that has

been acquired by one scan only is not altered. Indeed, inside such a region, applying

the separate scale space or the common scale space is strictly equivalent, since there

is only one scan in the neighborhood of the points of A. Then the point is first

filtered to bi(p) = b(p), and therefore moved back to its original position p at Line

. So in areas with only one scan, point positions are not changed. The only effect

of the algorithm is the merging of overlapping scans.
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 Chapter . High Fidelity Scan Merging

Algorithm : Scale Space Merging

Data: N point sets (scans) (Si)i=1···N , a number of projection filter iterations

n and a radius r

Result: The set of merged scans: Q
 for i = 1 · · ·N do
 Apply n steps of the projection filter Tr to the set Si ;

 Store for each point p ∈ Si with corresponding filtered point bi(p) the

high frequency vector ~δ(p) =
−−−→
bi(p)p;

 S ← ∪N
i=1Si;

 Apply for each p ∈ S n steps of the projection filter Tr, yielding a point b(p) ;

 for p ∈ S do

 Q = b(p) + ~δ(p);

 Add Q toQ;

 ReturnQ;

RMSE Both lines Line A Line B

Before Merging X 9.95e− 04 9.76e− 04

After Merging 9.85e− 04 9.94e− 04 9.75e− 04

Figure .: Noise estimates on each separate scan A and B before and after their

merging.

.. One-dimensional study

It is easy to illustrate the method in 1-D on simple 1D shapes. Our goal was to

check that the proposed method superimposes two simulated scans without any

smoothing effect. To do so, two noisy straight lines A and B were synthesized from

the same model and then merged by the algorithm. The noise of each set A, B,

A ∪ B was estimated as the root mean square error to their regression lines before

and after merging. The results in Tab. . show that the merging did not cause any

denoising. Indeed, the RMSE does not decrease by the merging procedure. Figs

. and . show other D examples of the merging procedure where the bases are

actually slightly different, in accordance with the real situation encountered on real

scans.
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.. Scan Merging 

(a) Without Merging (b) With Merging

Figure .: Two noisy sine functions before and after merging.

(a) Without Merging (b) With Merging

Figure .: Two noisy edges before and after merging.
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 Chapter . High Fidelity Scan Merging

. Implementation and Results

The inputs of the merging algorithm are the outputs of our laser triangulation scan-

ner. This device being accurately calibrated, the scans are in principle already reg-

istered so that no extra software registration is needed. Nevertheless, the ICP algo-

rithm is applied to see if it can remove the aliasing and tiling artifacts. In this case

ICP failes: the positions computed by ICP oscillate around the input scan positions,

and the resulting meshes are no better. The registration process was implemented

on a 1.5 Ghz processor with 48GB RAM. An octree structure was first built to allow

for fast access to the neighbors of each given point. Table . gives the computation

times for various shapes of various sizes with varying numbers of scans. Notice the

high number of scans necessary to get a good covering of the object. It entails that

several dozens of scans have to be merged on the more exposed parts.

Point set points scans Time(s) height
Dancer 5, 524, 627 94 321 17cm

Mime 8, 611, 522 102 140 11cm

Greek Mask 8, 961, 736 78 106 12cm

Nefertiti 15, 554, 528 115 819 18cm

Tanagra 17, 496, 999 160 1258 22cm

Rosetta 36, 201, 537 32 45min 30cm

Figure .: Computation time for the proposed merging. It is significantly faster

than the scanning time itself

Figs ., . and . present the results on these data. For all point sets, two

different renderings are displayed: the first one is a ball pivoting [BMR∗] meshing

of all raw scan points without any merging. The scans were preregistered by the

calibrated acquisition device and no software post-registration was needed. The

second rendering is again a ball-pivoting meshing, but applied to the merged point

set. The rendering was made using the POV-RAY ray-tracer. The conclusion is

common to all experiments: even if the scans are actually very accurately registered,

the tiny warps of the grids always create some aliasing visible as grid or tiling effects.

After the merging procedure (which only slightly affects the low frequencies), these

undesirable effects disappear almost completely. In the procedure more than .%

of the raw points were kept. Thus, the final result indeed is highly faithful to the raw

scan. Yet a careful attention shows some remains of aliasing (Fig. ., last column).

The area of these is actually small, being inferior to the area of the holes. They

could easily be removed by a selective local smoothing. Some of the bigger pieces,

like Nefertiti, show no defect at all.
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.. Implementation and Results 

Figure .: Merging of the mask scans seen from the back side (top row) and left

side (bottom row). Left: picture, middle: without merging, right: with merging
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 Chapter . High Fidelity Scan Merging

Figure .: Merging of the Dancer With Crotales. From left to right: picture, with-

out merging, with merging, an example of merging failure taken from the back of

the object (top: unmerged, bottom merged)
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.. Implementation and Results 

Figure .: Merging of the Nefertiti (st: picture, nd,th: without merging,

rd,th: with merging)
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 Chapter . High Fidelity Scan Merging

Figure .: Comparison of a rendering of a single scan (ground truth) and the

merging of all scans that overlap in the same region (Left: ground truth, middle:

joint mesh of all scans without merging, right: joint mesh with merging).

Comparison To better judge the texture preservation, the rendering of a scan

alone (ground truth) was computed and compared to the rendering of all scans

in the same region on Fig .. This shows that the visual information loss after

scale space merging is very low compared to the one due to a simple joint meshing.

It is crucial to compare the raw merging method results with results obtained by

the level set reconstruction method of the unmerged scans point set. The result of

the level set method applied to the Tanagra head (fig. . b), obviously introduces

an important smoothing and loses texture in comparison to the merging result (fig.

., a). But even with that smoothing the result still keeps several artifact lines due

to the scan offsets: these offsets become visible at the scans boundaries. See the

nearly straight long lines on the surface, mostly vertical and horizontal. It can also

be asked if an efficient denoising method could actually restore the raw set. Fig.

.-c, shows the result of the application of the bilateral filter [FDCO] to the

union of the scans. This iterated filtering was applied up to the point where aliasing

artifacts were no more visible. Clearly, this entails a much too strong smoothing of

detail and texture.

The scan merging is a very local method which is therefore computationally

efficient (see Tab. .). Yet, if the input data are not already well registered the

merging could obviously fail. The method corrects the slight misalignments only in

the normal direction. A tangential drift in the original registration could therefore

cause a loss of sharpness or a loss of small details. Nevertheless, this degradation

seems to pass unnoticed. Indeed, for last generation triangulation scanners like the

one used for the experiments in this chapter, the registration error is very small.

For a point cloud with side-length 99mm the observed average point offset after

merging was 0.081mm, with standard deviation 0.012. The tangential offset could

not be measured. The explanation of the relative visual success of the method is

that even a tiny normal offset causes a dramatic change in triangles orientation,
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.. Conclusion 

(a) Merged Result (b) Poisson Mesh (c) Bilateral filter

Figure .: Comparisons of the merging (a) with a level set reconstruction method

([KBH]) of the unmerged scans point set (b) and a filtering of the unmerged

scans point set (c). The level set method obviously introduces a serious smoothing,

yet does not eliminate the scanning boundary lines. The bilateral filter, applied until

all aliasing artifacts have been eliminated, over-smoothes some parts of the shape.

and therefore completely jeopardizes the visual quality of the triangulation. An

equally small tangential offset seems to be visually undetectable. Thus, the merging

method corrects the normal error, and makes the tangential error unnoticeable.

The proposed merging can be seen as a local non rigid registration. Therefore

it can be compared to the result given by state of the art non rigid registration

methods [BR]. To perform the comparison, the problem arose that the scans did

not systematically contain strongly identified features. Most scans of the mask point

set were simply rejected by the non rigid registration method described in [BR].

In order to perform a serious comparison anyway, two sweeps of the fragment u

of the Stanford FUR project were used. The computation times were, however,

considerably different: it took more than 2h30 to register non rigidly these meshes.

On the same computer, using only the raw points and not the meshes, the merging

took only 84s. The final meshes were built using Poisson Reconstruction [KBH]

in both cases. The registration artifacts (two horizontal lines limiting the overlap

area, fig .) are much less visible with the scan merging than with the non rigid

registration.

. Conclusion

The main conclusion of the study is that it is possible to fuse multiple raw scans

with minimal accuracy loss, provided an accurate previous registration has been

performed. Future work will focus on the detection and handling of remaining

holes, and on the automatic assessment of surface quality to replace a visual inspec-

tion.
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 Chapter . High Fidelity Scan Merging

Figure .: Comparison of registration of two scans (colored in different colors on

the first figure) using Global Non Rigid Alignment [BR] and scale space merging.

Meshes were reconstructed using [KBH].

(a) Result of the merging (b) Result of the Poisson reconstruction

Figure .: Comparison of the mesh obtained by merging and by Poisson recon-

struction on a detail of nefertiti’s cheek. In this case, Poisson Reconstruction sup-

presses registration artefacts but smoothes out the details.

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



.. Conclusion 

(a) Picture of the object (b) Poisson Reconstruction of the input sets

(c) Without merging (d) With merging

Figure .: Comparison of rosetta meshes. A characteristic of this object is that

the engravings in this object are very shallow (around 50µ), which is why Poisson

fails. The artefacts in fig .(c) are due to the D aliasing (this is fixed by scale space

merging) but also to the resolution variation. Indeed the borders of the object were

acquired using multiple orientations while the middle was acquired using only one

orientation. This is why we have such a precision difference that is not fixed by the

algorithm.
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 Chapter . High Fidelity Scan Merging

Figure .: Details of the Rosetta object without merging (top row) and with fusion

(bottom row)
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Chapter 5

Filling Holes in Scale Space Meshes
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 Chapter . Filling Holes in Scale Space Meshes

Abstract: In this chapter, a method to fill holes in scale space meshes is

presented. The method uses two key features of the scale space mesh-

ing method: first the fact that it permits to detect accurately the holes,

second that it permits to work at a coarse smooth scale and then to

transport back the result onto the meshed raw cloud. The goal is to

fill holes so that the missing patches blend nicely with the rest of the

object. The holes are first detected in coarse scale meshes, the filling

patches are refined, and a mesh fairing method is applied so as to blend

the patch in the surrounding mesh. The back propagating operator is

eventually used to transport the patches to the fine scale mesh.

. Previous Work

The problem of filling holes in meshes is crucial because all D acquisition systems

have a limited access to hollow parts of objects. Even a very careful scanning pro-

cess leaves behind a number of holes corresponding to shadowed parts of the ob-

ject. Thus many solutions have been proposed to fill in the holes. First, one should

note that meshes built by approximation of a signed distance function ([KBH],

[Kaz], [ACSTD] and [HDD∗] among others) automatically fill the holes, so

that no postprocessing hole filling technique is required. This is actually a problem:

The holes are not really detected. In consequence no exploration and no improve-

ment of the quality of the restoration in these parts is possible. In agreement with

the methodology developed in this thesis, given a mesh with holes the goal will be

to fill in the holes without altering the other parts of the mesh.

The existing methods to actually fill in detected holes can be divided in two

categories: the volumetric methods and the triangle patch methods.

.. Volumetric methods

These methods use ideas similar to the level set mesh reconstruction methods

([KBH],[HDD∗]...) to determine in unknown areas (holes) a plausible sur-

face.

In [DMGL], the problem of filling holes is treated by building a signed dis-

tance function, whose zero level set is the surface. The goal is to preserve the geom-

etry when it exists and to create smooth transitions to plausible geometry in unob-

served areas. The surface is first converted to a volumetric representation: a D grid

of values of a signed distance function defined only in a narrow band around the

surface. An associated weight function measuring the confidence in the distance

value is built. The distance values are diffused from known areas to adjacent unob-

served areas. Once the diffusion is complete the zero set is extracted via marching
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.. Previous Work 

cubes ([LC]). The diffusion is done by convolution with a low pass filter (see also

[GLWYT]). Many approaches based on a similar voxelization have been pro-

posed. For instance [CBC∗] uses Radial Basis Functions (RBF) to approximate

the distance and extract a watertight surface. The method in [VCBS] extends the

inpainting technique over the voxel grid to “inpaint” the implicit representation of

the surface and extract the level set. [NT] gives value 0 and 1 to voxels inside and

outside the surface. Determining whether a cube is inside or outside the surface

is done by projecting the shape onto k random planes. Each plane votes for the

inside or outside position and a majority count yields the classification. In [Ju]

the cube labeling is deduced from the definition of a dual surface. In [PR], be-

sides the voxels labeling, cubes intersecting the surface are split in tetrahedra and

the tetrahedra are also labeled. Then a graph-cuts algorithm is used to deduce the

final labels.

In [ZGL], a method that mixes patch filling and volumetric methods is pre-

sented. First holes are identified and filled with triangles using the advancing front

mesh technique. Normals of the newly created triangles are estimated and used as

vector field for solving a Poisson equation and obtaining the new coordinates of

every vertex. Positions are then updated and the result is a smooth based patch.

An advantage of volumetric methods is that complicated hole topologies are not

a problem. On the contrary patch filling methods mostly consider holes that do not

contain islands. The next section reviews patch filling methods.

.. Patch filling methods

Detecting the holes in a mesh is a trivial task as their boundaries are closed loops of

boundary edges (edges adjacent to only one triangle). All methods start by such a

detection. Triangulating a D polygon is a problem with many solutions proposed

in the past years. Nonetheless there is no simple method to fill a D polygon with

triangles, indeed, [BDE] proved that the problem of filling a D polygon is NP-

complete. It also proved that if a perspective projection of a -dimensional polygon

P from some point onto some plane Q is simple then P is triangulable. An algo-

rithm for finding a suitable projection plane is proposed. For all pairs of edges, if

the projection direction is inside the sphere region that sees the two edges inter-

secting, then the direction is invalid. A region of admissible projections can then

be computed.

Many heuristics have been developed to fill the D mesh holes. [BS] fills

cracks in meshes by matching points on the crack boundary one with another and

then stitching the borders with triangles (see also [TL]). In [BNK], vertex-

vertex and vertex-edge correspondences are found on the hole boundary. The dis-

tance between the correspondences is used as an error to sort the pairs into a pri-

ority queue. The queue is processed in descending order: pairs are linked, new
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 Chapter . Filling Holes in Scale Space Meshes

correspondences created, and the priority queue is maintained up to date.

Since triangulating a D polygon is quite easy, the idea of projecting the polygon

on a plane and triangulating has been extensively used. In [PSM∗], the surface is

projected onto planes and standard image hole filling techniques are applied to the

projection. Then the surface is back projected to D. Yet, a plane selection is possible

because this method considers only range images. In [Jun], a method was intro-

duced to divide a complex hole (a hole that self intersects when being projected on

a plane) into several simple sub-holes. If two projected edges intersect, the inter-

section points on both edges are found and projected back on real  edges. These

points are used as splitting points and connected, separating the hole in two parts.

Finally the inner mesh is refined to obtain regular triangles. In [LYZ], a modifi-

cation of [Jun] is presented. The PCA regression plane is found and the hole is

projected onto it. If the hole is not self-intersecting, it is simply filled. Otherwise,

intersecting edges are found, and a parallelepiped-like region around the intersect-

ing edge and orthogonal to the neighboring triangle is built. Inside this region, the

algorithm looks for boundary points and selects one of them to create a new triangle

adjacent to the orthogonal edge. The selection is done for example by comparing

the angles between the initial triangle and the created triangle. The new triangle

provides a natural splitting of the hole. In [BWS∗], a different method to unfold

the hole boundary on a plane is introduced. The hole unfolding aims at making 4

consecutive vertices planar. Thus, for a loop of n points vi, it minimizes the energy

E =
∑n−1

i=0 ∠ti, t(i+1) mod n where ti = (vi−vi+1 mod n)×(vi+2 mod n−vi+1 mod n). The

minimization is done subject to the constraint that the minimum distance between

two segments of the boundary loop should remain above a threshold ε. Simulated

annealing is used to perform the minimization. After the unfolding the obtained

polygon is triangulated by constrained Delaunay triangulation. The mesh is em-

bedded in R
3 by moving each of the boundary edge back to their original D posi-

tion. The resolution of the inner mesh is then refined simply by standard Delaunay

refinement algorithms. Inner vertices are added so that they minimize the area of

the inner mesh. This is done by applying repeatedly a Laplacian smoothing.

Hole triangulation is not the only problem that arises. Indeed patches must

blend nicely into the shape. For example in [PS], holes are filled using splines.

In [Lie] a popular geometric method for filling holes in meshes is proposed.

Holes are filled by D polygon triangulation minimizing a given weight. Instead of

using an area minimization weight, a weight that takes into account the dihedral

angle between adjacent triangles is used. Thus, large dihedral angles are penalized.

The patching mesh is refined so that its density matches the one of the surrounding

mesh. Mesh fairing is applied to get a smooth enough surface.

In [PMV], a topological grid is inserted into the hole (by mapping the grid of

a disk onto the hole), and the inserted mesh is deformed to satisfy blending criteria.

A bar network coupled to a geometric model is used to deform the inner mesh while
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.. Previous Work 

keeping the outside mesh identical. The mesh is deformed so that it minimizes the

curvature variation while satisfying additional user-supplied constraints.

Only one of the patch filling methods explicitly addresses the problem of holes

with islands: [LMW] first determines the hole position and an “influence” area.

If there is an island in the hole, the influence area and possible island is searched

for feature points. Those feature points are linked accross the hole, creating feature

curves that divide the hole into sub-holes. Each sub-hole is then filled. Yet the

computation of the influence area is not explained.

Finally, Moving Least Square surfaces were also used to fill holes. In [WO],

planes are fitted to the set of the hole boundary points and a height for each bound-

ary point is found. Finally new samples are interpolated by MLS interpolation on

the height field. The use of MLS guarantees that new samples will fit smoothly into

the mesh. Yet if the hole is not planar then it may fail dramatically.

Extending the idea of image inpainting has also been considered. The idea is

that hole filling patches should look like other parts of the surface. The next section

reviews the few surface inpainting methods that have been proposed.

.. Inpainting for surfaces, hole filling based on similarity

A review of mesh hole filling can be found in [BPK∗]. In [SACO], the aim is

to complete missing parts of the surface by transferring appropriately sampled and

fitting regions of the shape. The surface is approximated by fitting a trivariate low

degree polynomial. The space is divided into cells. A surface cell is called valid if it

contains at least m points (there are enough points for surface representation in the

cell) and invalid otherwise. For each invalid surface cell, the idea is to import and

paste the content of a valid surface cell that matches the surface approximation in

and around the invalid cell. The best matching cell is found by computing a vector

valued signature for each cell and comparing them.

In [PMG∗], shape completion is made by combining geometric information

from different context models. This is done by database retrieval, non rigid align-

ment of the candidate models and blending the aligned segmented models to get a

consolidated model. For each missing region the best fitting model in the database

has to be found. The shape is aligned to the shape database and information must

be extrapolated from the models to region where data is missing. This is done by

copying vertices from the model patches. The warping function is then recomputed

for each model in the database to conform with the enhanced point set. After up-

dating the alignment context patches are enlarged and the process is iterated until

the hole is closed.

In [BSKa] and [BSKb], a multiscale inpainting method for surfaces is pre-

sented. Holes and a scale space is built from the input surface. By projecting the

neighborhood onto its regression plane and resampling the neighbor’s height on a
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 Chapter . Filling Holes in Scale Space Meshes

rectangular grid, a neighborhood descriptor is built. Thus the comparison between

neighborhoods is easier. The -level inpainting is then defined as finding for every

bounding point b an appropriate candidate point from the surface and to copy-

paste its neighborhood. Multi level inpainting is done by considering the next level

filling surface as a guidance surface for the filling of the current level surface.

[VCBS] (see section ..) is also based on inpainting, yet the inpainting is

performed on a implicit surface formulation.

.. Point clouds

Holes in point clouds have not been really investigated yet. A noticeable effort was

made in [CJ]. First, hole boundaries need to be found. In this work boundary

points are characterized as being much farther from the barycenter of their neigh-

borhood than other points. Since this would also detect points on sharp edges,

another criterion is added taking into account the point distribution on the local

tangent plane. Then a triangulation of the boundary curve is found and a set of

points sampled on this triangulated surface is generated. In [BSK], several crite-

ria are combined to give to each point a boundary probability and extract boundary

loops using this probability and coherence properties of the boundary.

. A hole filling algorithm

.. Filling the hole: finding an initial patch

In [Lie], an algorithm for finding the initial patch is proposed that aims at min-

imizing the angles between the patch triangles. Yet it requires storing a n3 array

for a hole with n border points. Some holes in our meshes contain more than

5000 border points, which makes this method intractable. Therefore, we shall use

a simpler triangulation by projecting the contours on a D plane and detecting self

intersections due to projections. This kind of triangulation can produce sharp an-

gles between triangles. Better initial patch finding algorithms could be found, yet

it is a first scale space mesh hole filling investigation. The proposed algorithm is

summed up in Alg. . (The definitions of terms used in the algorithm are given be-

low). Note that this algorithm works only for connected meshes. This means that

the input mesh should contain a single connected component (the mesh is easily

cleaned from remaining “islands” after singular triangles have been removed). This

can lead to the loss of some samples.

A few explanations are necessary. Let a “border point” (resp. “border edge”) be

a point (resp. and edge) of a hole contour. Edges that are not border edges will be

called inner edges.
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.. A hole filling algorithm 

Algorithm : Mesh Hole Filling

Data: A mesh with holes, each point is endowed with an oriented normal

Result: A hole-free mesh

 Clean the mesh by removing all singularities (see definition below);

 Find all boundaries as closed loops of boundary edges;

 Remove the hole self intersections by splitting the boundaries ;

 for each hole do
 Add the hole to a list of subholes;

 while subholes is not empty do
 h← first hole in subholes;

 if the projected boundary does not self intersect then
 Triangulate the D hole;

 else
 Split the hole in two subholes;

 Add the resulting holes to the list of subholes;

 remove h from the set of subholes;

 Uplift the hole patch;

• Singularities: (line ), all triangles having a inner edge with two border end-

points should be removed.

• Connected mesh: a mesh will be called connected if there is a path from one

triangle to another composed of edge-adjacent triangles.

• Hole contour: Since we know the normal at each point position, we can easily

find the triangle normal orientation. A contour point ordering is defined by

setting that two successive points of the contour vi, vi+1 adjacent to triangle

t = (vi, vi+1, v
′) with oriented normal ⋉(t) should verify: (

−−→
v′v′′ ⊗ −−−→vi+1vi) ·

~n(t) > 0 where v′′ is the projection of v′ on (vi, vi+1).

• D self-intersection: (line ) In the case of manifold meshes, no edge can

intersect with another edge except at the endpoints. In this case removing

the singularities means checking that the hole border contains each point

only one time. If this is not the case the hole is split into two holes at the

intersection point.

• Filling a D hole: (line ) There exist many methods triangulating a D poly-

gon. Here we used Seidel’s method ([Sei]). It simply finds triangles that

cover the interior of the polygon. Triangle vertices are vertices of the bound-

ary polygon so that no inner vertex is added in the initial patch finding step.
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 Chapter . Filling Holes in Scale Space Meshes

• D self-intersection: (line ) When projecting a hole on its regression plane

the boundary might self-intersect. Thus the hole should be split into parts

that project without intersection. Call vivi+1 and vjvj+1 the edges that in-

tersect when projecting the hole boundary. Triangles (vi, vi+1, vj+1) and

(vj, vj+1, vi+1). This two triangles split the hole boundary in two closed

loops. At the end all the patches of the split holes, as well as the splitting

triangles, are added back to the initial self intersecting D hole patch.

• Uplift: (line ) Uplifting the patch only means creating a D patch from the

set of D triangles. Each D point is the projection of a D point, thus we

simply create a D triangle whenever the vertices projections are linked by a

D triangle.

.. Refining the patch

The created patches have very large triangles (since no vertex is added) and are

not smooth. Therefore in a second step the patch is refined. The same refinement

method as in [Lie] is applied. We briefly sum up this refinement in algorithm .

The idea is to continue adding inner vertices, while the density of the patch is below

the density of the surrounding mesh. To do that a density value σ is computed for

each point (called the scale attribute), σ(v) is simply the average length of all edges

adjacent to v. Then for each triangle the centroid c is computed along with its

estimated scale attribute σ(c) as the average of the scale attributes of the triangle’s

vertices.

Our experiments led us to consider α = 1.75 as a good value. As a matter of

fact, we consider this value as fixed and will not change it anymore.

The algorithm makes use of a well-known algorithm which is the edge-swap or

edge-flip method. Consider a patch composed of two triangles (pqr) and (pqs).

Edge pq is adjacent to two triangles: (pqr) and (pqs). Flipping (swapping ) pq

means destroying those triangles and creating (prs) and (qrs).

Relaxing an edge (Algorithm , lines  and ) means that for two adjacent

triangles, we check that the non-mutual vertices are outside the opposite triangle

circumsphere. If this is not the case and if an edge swap can fix this, the edge is

swapped destroying two triangles and an edge and creating two new triangles and

the swapped edge.

This edge relaxation is necessary to avoid triangles with sharp angles (though

there will be triangles like this near the hole boundary, since we do not add any

additional vertices).
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.. A hole filling algorithm 

Algorithm : Patch refinement

Data: A set of holes with patches

Result: Refined patches

 changed← true;

 while changed do
 changed← false;

 Compute the scale attributes of hole boundary points;

 for each triangle t = (vi, vj, vk) in the patch do
 Compute the triangle centroid c and its scale attribute σ(c);

 if σ(c) < α‖vm − c‖ and σ(vm) < α‖vm − c‖ for m = i, j, k then
 changed← true;

 Split the triangles into (c, vi, vk), (c, vi, vj) and (c, vj, vk);

 Relax edges (vi, vk),(vi, vj),(vj, vk);

 if changed then
 while edges are swapped do
 Relax all interior edges;

 Update the list of triangles;

.. Giving shape to the patch

Finally the patch should blend nicely into the surrounding surface. Therefore a

standard mesh fairing is applied to the patch inner vertices so that the final mesh

is smoothed. [Lie] proposed to minimize a thin plate spline energy to obtain C2

continuity. This approach was first proposed in [KCVS]. The idea is to minimize

the energy:

ETP (f) =

∫

f 2
uu + 2f 2

uv + f 2
vv.

Let the umbrella operator U be defined for each vertex v by

U(v) =
1

#N (v)

∑

vi∈N (v)

(vi − v)

whereN (v) is the one ring neighborhood of v.

[KCVS] showed that this umbrella operator is a discrete analogon to the sur-

face Laplacian.

Recursively this gives

U2(v) =
1

#N (v)

∑

vi∈N (v)

(U(vi)− U(v))
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 Chapter . Filling Holes in Scale Space Meshes

A way of solving for the thin plate energy minimization is to iterate the following

v′ = v −
1

ν
U2(v)

where ν = 1 + 1
#N (v)

∑

vi∈N (v)
1

#N (v)
.

This leads to an inflation or deflation of the patch to match the normal of the

boundary triangles.

.. Special holes

In some cases we do not want to fill the holes, in particular the base holes (the base

of a statue for example). This is why in some cases we exclude the base from the

set of holes to fill. This base is detected by finding the hole with lowest coordinate

in one specified direction. In the case of our acquisition device, this direction was

always z.

. Results on synthetic data

.. Sphere example

The following is an implementation of Liepa’s method ([Lie]) with the single

difference that a different initial patch finding algorithm is used as discussed in

section ...

Figure .: Initial hole (left), intial patch (middle) and refined patch (right).
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.. Results on synthetic data 

Figure .: Thin plate spline minimization iteration , and .

Figure .: Thin plate spline minimization iteration ,  and .

Figure .: Thin plate spline minimization iteration ,  and .
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 Chapter . Filling Holes in Scale Space Meshes

. Scale space meshes

Scale space meshes are a special case. Indeed they have (at least) two resolutions:

the coarse scale mesh and the fine scale mesh. At which scale should the hole filling

take place?

Since the hole filling technique assumes a C2 continuity, it seems wiser to apply

the hole filling to the coarse scale mesh and then to use the back propagating oper-

ator to go back to the fine scale. Yet no such operator is defined on the hole filling

patches.

Each patch point is consistently oriented with the rest of the mesh (this normal

computation and orientation is done when adding the vertices). An estimation

of the fine scale variations is easily obtained by the scale space decomposition: the

amplitude of the first iteration motion gives exactly the local texture and noise of the

shape. If we assume that the missing part of the surface do not include any sharp

feature then we can just add noise to the patch points in their normal direction.

The noise addition is an estimation of the backward scale space operator for patch

points. It implicitly assumes that holes do not contain sharp features but only fine

scale variations.

The amplitude of the directional noise is gaussian and it has the variance mean

of the first iteration motion. This is enough for the patch to “blend in” the rest of

the surface. Figures ., ., ., .,., .,., ., . show results of the hole

filling method. It appears that it works well for small holes, yet is not good enough

to fill large holes satisfyingly (see the bottom of the mask, fig. .).
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.. Scale space meshes 

(a) Original object (b) Filled object

(c) Detail of the original object (d) Detail of the filled object

Figure .: first test object, a mire (left) and the same object with filled holes (right),

here the base is not removed

Table . gives the computation time for various point sets.

Conclusion

This chapter is clearly exploratory and it is not published. Its goal was to make a first

review of hole filling algorithms and to define a first method to detect and fill holes

taking advantage of the scale space meshing method. Several improvements are

still necessary. In particular, a better initial patch should be found. An important

improvement would also be to handle holes with islands.
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 Chapter . Filling Holes in Scale Space Meshes

Figure .: Dancer with Crotales: fine scale mesh (left), fine scale mesh with filled

holes (right) , here the base hole patch is removed
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.. Scale space meshes 

(a) Fine scale mesh

with holes

(b) Coarse scale mesh

with holes

(c) Hole filling of the

coarse scale mesh

(d) Backprojection to

the fine scale mesh

(e) Fine scale mesh

with holes

(f) Coarse scale mesh

with holes

(g) Hole filling of the

coarse scale mesh

(h) Backprojection to

the fine scale mesh

Figure .: Dancer with Crotales: fine scale mesh (left), fine scale mesh with filled

holes (right) . Here the base hole patch is removed.

Figure .: Mask: coarse scale mesh (left), coarse scale mesh with filled holes (mid-

dle), fine scale mesh with filled holes (right) . Here the base hole patch is removed.
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 Chapter . Filling Holes in Scale Space Meshes

(a) Fine scale mesh with holes (b) Coarse scale mesh with holes

(c) Hole filling of the coarse scale mesh (d) Backprojection to the fine scale mesh

Figure .: Hole filling of the mask mesh (details)
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.. Scale space meshes 

Figure .: Hole filling on the mime
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 Chapter . Filling Holes in Scale Space Meshes

(a) Fine scale mesh

with holes

(b) Coarse scale mesh

with holes

(c) Hole filling of the

coarse scale mesh

(d) Backprojection to

the fine scale mesh

(e) Fine scale mesh

with holes

(f) Coarse scale mesh

with holes

(g) Hole filling of the

coarse scale mesh

(h) Backprojection to

the fine scale mesh

(i) Fine scale mesh with

holes

(j) Coarse scale mesh

with holes

(k) Hole filling of the

coarse scale mesh

(l) Backprojection to

the fine scale mesh

Figure .: Hole filling on the mime (details)
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.. Scale space meshes 

Figure .: Hole filling on the Tanagra
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 Chapter . Filling Holes in Scale Space Meshes

(a) Fine scale mesh with holes (b) Coarse scale mesh with holes

(c) Hole filling of the coarse scale mesh (d) Backprojection to the fine scale mesh

Figure .: Hole filling on the Tanagra (details)

Model Number of Number of Number of Computation time
points triangles holes

Crotales 5, 496, 386 10, 988, 071 27 246.13s

Mask 8, 938, 478 17, 874, 326 108 548.66s

Mime 8, 571, 061 17, 139, 634 30 270.08s

Mire  1, 436, 303 2, 866, 460 117 76.87s

Tanagra 16, 211, 676 32, 385, 734 630 37min20s

Figure .: Computation times for various models . All computation times are

given for filling the holes in the fine scale mesh
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Chapter 6

The Level Set Tree on Meshes
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 Chapter . The Level Set Tree on Meshes

Abstract: Given a scalar function defined on a meshed surface, its level

set component tree can be computed by a fast algorithm. This tree

structure allows for an adaptation to meshes of the Maximally Stable

Extremal Regions (MSER) method. Applied to the mesh curvature,

this algorithm extracts significant curvature level lines and segments

D surfaces into smooth parts separated by curves with high curva-

ture. Segmentation results are shown on high resolution meshes of ar-

chaeological and industrial pieces. They compare favorably with MSER

segmentations of pictures of the same objects.

. Introduction

Segmenting meshes or point clouds into their significant parts is a basic but still

challenging problem. Robust shape descriptors are required for most applications

such as facet classification, shape registration, mesh simplification or shape re-

trieval. To this aim, the “crest lines” detection plays a role analogous to edge de-

tection in image analysis. Crest lines are usually defined as the loci of directional

extrema of curvature. Ridge (resp. valley) points can be defined as points where

the maximum principal curvature takes a positive maximum (resp. negative mini-

mum) along the line tangent to its eigenvector.

This notion being closely linked to the surface curvature, robust curvature es-

timators are needed. Curvatures can be computed by surface regression [CP],

by discrete schemes using the mesh triangle geometry [MDSB], or by comput-

ing the surface tensor [Rus]. One of the most used curvature estimation method

is [Taua], where curvatures are estimated by drawing curves on the mesh sur-

face (see [LP] for an adaptation to point clouds). Other mesh based meth-

ods use the angles between adjacent mesh triangles to determine the curvature

[DVVR],[HMG].

Most crest extraction methods detect and link the points where the deriva-

tive of the curvature crosses zero. These methods are usually defined on

meshes, but can be adapted to raw point clouds [LFM],[BA],[YBS],[OBS],

[DIOHS],[HPW]. In [DIHOS], potential features are extracted by regress-

ing surfaces near those points, estimating the number of fitted surfaces, and de-

ducing the feature type. The idea of using feature lines for surface segmentation

was investigated in [SF] and suggested in [IFP]. Regression free methods in-

clude [GWM], where the analysis of the surface local covariance matrix leads to

point classification, or [PKG] where a multi-scale approach is introduced, yield-

ing good results for mechanical shapes. Indeed, texture features are detected at fine

scale, whereas at coarse scale the features describe shape geometry and are more

robust. Recent research has also made huge progress in the rendering of viewpoint
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.. Introduction 

dependent apparent edges [DFRS], [JDA].

Crest lines have, however, two limitations. The first is that these lines are often

obtained by computing degree three derivatives, which is not an easy task for noisy

or textured surfaces. The second is that crest points must be connected by some

heuristic linkage. The final crest lines being often open or broken, they do not

provide a surface segmentation.

Analogous problems arise in image analysis with edge detection. Image analysis

therefore also uses segmentation methods dividing the image into regions separated

by closed curves. One of the most reliable ways to define such closed curves is to

extract the contrasted level lines. The level lines are the boundaries of connected

components of upper (or lower) level sets. They inherit from these connected com-

ponents an inclusion tree structure (fig. .). This structure was called Tree of

Shapes in [BCM], and a fast algorithm computing them, the Fast Level Set Trans-

form is given in [MG].

For an image I defined on a domain D and with values in R the level sets with

level λ are

F λ = {x ∈ D|I(x) ≥ λ} (upper level set)

Fλ = {x ∈ D|I(x) ≤ λ} (lower level set)

If λ′ > λ, then F λ′

⊂ F λ and each connected component of F λ′

is contained in

one connected component of F λ. The set of connected components of upper (resp.

lower) level sets partially ordered by inclusion is therefore a tree. The shape tree

proposed in [MG] is a fusion of both trees.

The level sets can be represented by their borders ∂F λ and ∂Fλ which are

unions of closed Jordan curves, the image level lines. Several methods have been

proposed to select the relevant level lines. A definition of meaningful level lines

is given in [CMS], [DMM]. More recently the MSER method introduced the

same objects with different names: the connected components of upper or lower

level sets are called extremal regions (ER). The ones with best contrasted level lines

are called maximally stable extremal regions (MSER) [MCUP]. The extraction of

significant level lines to segment data is so useful that it has been extended to D

medical imaging to extract meaningful level surfaces [CSA],[MZFC], and to

video analysis [DB], where extremal regions are tracked from frame to frame.

To the best of our knowledge these level line techniques have not yet been ex-

tended to meshes. The reason could be the lack of straightforward intrinsic scalar

functions linked to a mesh, (such as the grey level for images). But there are actu-

ally such functions on meshes, the simplest one being the mean curvature. Several

methods have already considered the curvature level lines and the umbilical points,

but mostly from a theoretical point of view [KNSS],[CPZ] and [MWP]. Un-

til now, curvature level lines have not been studied as valuable feature lines, or used

for surface segmentation. The goal of the present chapter is to describe an algo-

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



 Chapter . The Level Set Tree on Meshes

rithm computing all conspicuous curvature level lines, and to give experimental

evidence that the method detects valuable mesh features.

In a way, the present work extends [KST] and [ZTS]. In these works, the

surface is (implicitly) decomposed into a smooth base and a height value in the

normal direction. Then the edges or iso-contours of this height are extracted. The

Mesh-MSER framework considers this same situation in a more general setting :

a surface with any scalar function defined on it. As shown on Fig. ., results

comparable to the results of [ZTS] can be obtained by a significantly simpler and

more general procedure.

The remainder of this chapter is divided as follows: Section . recalls the image

MSER method, discusses its adaptation to meshes, and gives the algorithm building

the level set component tree. Section . describes the algorithm extracting maxi-

mally stable extremal regions from this tree. Section . shows results on various

simple and complex scanned objects, discusses strategies for level line selection, and

compares D Mesh-MSER results to D MSER results on pictures of the scanned

objects.

. Mesh Extremal Regions

.. Definition of MSER for D images [MCUP]

Let I be a real function defined on an image domain D ⊂ Z
2. MSER needs an

adjacency relation A for elements of I , and usually chooses a  or  connectivity.

The boundary ∂N of any set N ⊂ D is defined as {q ∈ D \ N | ∃p ∈ N, pAq}.
An Extremal Region N is a region such that for every p ∈ N and every q ∈ ∂N one

has I(p) > I(q) (maximum extremal region) or I(p) < I(q) (minimum extremal

region). To define Maximally Stable Extremal Regions (MSER), consider a sequence

(Ni)i of nested extremal regions (Ni+1 ⊂ Ni). A region Ni∗ in the sequence is

maximally stable iff its area change rate q(i) = |Ni−δ|−|Ni+δ |
|Ni|

has a local minimum at

i∗. The small variation δ > 0 is a parameter of the method.

The detection of MSER proceeds by:

. sorting pixels by intensity;

. iteratively placing pixels in the image and updating the list of connected com-

ponents and their areas;

. selecting intensity levels that are local minima of the area change rate as

thresholds, producing MSERs.

In a more formal way, the method uses the fact that upper level sets Fk = {p|I(p) ≥
k} are ordered by inclusion: Fk+1 ⊂ Fk. One calls extremal region any connected
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.. Mesh Extremal Regions 

component of some level set. For each connected component Nk of the level set

Ek, either k = kmin, in which case Nk is the whole image domain, or there exists a

connected component Ni of the upper level set Fi such that i < k and Nk ⊂ Ni.

Thus the set of extremal regions is a rooted tree [BCM] called (upper) level set

component tree. Its dual tree is the (lower) level set component tree. The fastest

component tree method seem to be [NC]. It is its tree structure that allows the

fast selection of MSERs [DB].

Recently the question of the interest of MSER features was raised in [KZBB].

An improvement of the stability was proposed that took the perimeter of MSER

nodes into account. This improvement avoids favoring regions with rounder con-

tours during MSER selection. A similar computation could be done here. Yet the

simple extension proved to work well without this improvement.

We now adapt these definitions to the case of meshes.

.. Level set trees: an extension to D mesh surfaces

Let (V, T ) be a set of vertices and triangles sampled from a 2-manifoldM embed-

ded in the D Euclidean space R3. Points v ∈ V are linked to other points of V by

edges forming triangles t ∈ T . We will assume that each edge is adjacent to either

one or two triangles, so that each point belongs to at least one triangle. This means

that there is no orphan edge and no orphan point, and that the mesh has no edge

adjacent to three triangles. In other terms, the mesh is a manifold.

To define a level set tree we need a real function defined on the mesh. The

function H : V → R associating with each vertex v its mean curvature H(v) is

chosen as our example throughout the chapter. Mesh regions will be defined as

unions of mesh triangles. A level set tree requires a topology and therefore an ad-

jacency relation on the mesh. Two triangles will be called adjacent if they share an

edge. With this definition, analogous to -connectivity on D images, two regions

sharing a vertex but no edge are disconnected. The main differences with the two-

dimensional case are that the mesh itself can be disconnected, and that it usually

contains scanning holes. If the mesh is disconnected the component tree is a forest.

The algorithm will process independently each tree. Section .. explains how to

handle scanning holes.

As for images, connected components of upper level sets can contain topologi-

cal holes which are themselves connected components of lower level sets (Fig. .).

Monasse [MG] therefore proposed to build a shape tree, which is a fusion of the

upper level set component tree with the lower level set component tree. Since an

upper component tree is faster to build, and since it is the appropriate object to

perform MSER extraction on the mesh, we limit ourselves to the upper component

tree.
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 Chapter . The Level Set Tree on Meshes

N 1

255
= {E}

N 0

125
= {B, C,D}

N 0

255
= {D}

N 0

0
= {A, B, C, D, E}

Figure .: Example of an image (left) and its level set tree (right). Node A is the

father of B and B contains a hole
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.. Mesh Extremal Regions 

.. Building the component tree for meshes

Set Λ = {h1 < h2 < · · · < hn} a set of quantized values of H on V . The trian-

gles t ∈ T will be ordered by setting Level(t) = max{k|minv∈t(H(v)) ≥ hk}.
Referring to the D case, we can say that the triangles play the roles of pixels and

that the real function used for building the component tree is Level(t). Algorithm

 describes the construction of the tree of level set components on T .

Algorithm : Building the Component Tree Forest

Data: A list of the mesh triangles F tagged with their levels

Result: The component tree forest {F(M)}
 Compute the levels of all triangles;

 Sort F in decreasing level order;

 Set all triangle markers to active;

 for t ∈ F and t is active do
 k = t→ level;

 Create an empty node Nnew;

 E = {t};
 while E is not empty do
 Remove and return the first element t of E;

 Get t1, t2, t3 the neighbors of t;

 for i = 1 · · · 3 do
 if ti is active and ti → level == k then
 Add ti to the set E;

 if ti → level > k then
 Get the node N containing ti;

 Get Na the last built ancestor of N ;

 if Na → level = k then
 Merge node Na into Nnew;

 else
 Na.father = Nnew;

 Add Na to Nnew’s children;

 |Nnew| ← |Nnew|+ |Na|;

 Mark t as inactive;

 Add t to the set of triangles of Nnew;

 |Nnew| ← |Nnew|+ Area(t);

Theorem . Assume that the mesh (V, T ) is a manifold (meaning that each edge is

shared by at most two triangles). Then the list of nodes and father-child relations
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 Chapter . The Level Set Tree on Meshes

created by Algorithm  gives the graph of connected components of level sets of H a

mapping defined onM. This graph is a forest (meaning that the constructed graph

has no cycles).

Sketch of Proof . For simplicity, in the algorithm and in the comments below, k

denotes the level hk. Only the order of the levels matters, and it is reflected by k.

Algorithm  is strongly based on the triangle processing order from higher to lower

levels. Indeed, while the algorithm is building nodes at level k, the only previously

built nodes have a higher level. This fact is used for expanding the node: the expan-

sion of a level k node is performed by successively adding the not previously added

neighboring triangles of level k to the node triangle set. When expanding a new

node Nnew, we may encounter triangles already processed (line ) and belonging

to a node N at level l (then necessarily l > k; otherwise the node would not have

yet been created). By going up in the parent-child relation, we can retrieve Na (line

), the last created ancestor of N (which can be N itself if it has no parent). For

the same reason as before, Na’s level must be superior or equal to k. If Na has the

same level as k, then it belongs to the same node, and one can merge both nodes

(line ) by merging their triangle sets and adding Na’s children to the set of Nnew’s

children (and then deleting Na). If Na has a level larger than k, then Na is a child

of Nnew (line ), and we can set Na’s father to be Nnew and add Na to the set of

Nnew’s children.

During the construction of each node, track is kept of the triangles which are

contained in this node, but not in its children. This way, each triangle belongs

to a single node. The algorithm also keeps track of the area A (sum of the areas of

triangles belonging to the node and to its descendants) while building the tree. This

information is used in Mesh-MSER.

Algorithm  being similar to [NC], the complexity of building the forest is

also quasi-linear. Indeed, it starts by sorting the triangles, an O(N logN) step.

When expanding a node, the computationally demanding case is when the encoun-

tered triangle belongs to an already created node. This requires finding the last cre-

ated ancestor, which entails some traversing node operations, merge triangle lists

(constant time) and add areas (1 operation). Since each triangle is processed only

once, the total complexity is roughly N logN .

There are as many trees in the forest as nodes with no parent. By arguments

similar to [MG] one can prove:

Theorem . Any quantized scalar function H on a manifold mesh (V, T ) can be re-

constructed from its component tree. This means that no information is lost on H in

the component tree.

Assume the quantized levels of H are hk, k = 1, · · · , n. We want to extract

local maximal elements (in the MSER sense) in the level set tree of H . Call δ > 0
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.. Extracting maximally stable regions from the component tree 

the level step used for computing the stability coefficient of a node Nhk
at level hk.

The set of test levels h1 < · · · < hn must therefore be complemented with all levels

(hi + δ) and (hi − δ). For each node Nhi
, going up in the tree hierarchy yields

its descendant Nhi+δ with level hi + δ, and going down yields its ascendant Nhi−δ

with level hi − δ. Once these nodes are at hand, the stability coefficient is simply

q(Nhi
) =

|Nhi−δ|−|Nhi+δ|

|Nhi
|

. For simplicity, we assumed in the previous relation that

Nhi
only has one descendant with level hi + δ, which is not necessarily true. In the

case of multiple descendants with level hi+ δ, the sum of their areas is used instead

of |Nhi+δ|. Remark that Nhi−δ is not necessarily the father of Nhi
, since there is no

condition on the size of δ relatively to mini(hi+1 − hi). For the same reason Nhi+δ

is not necessarily a son of Nhi
. This is why we must go up and down father-son

relations in the component tree.

. Extracting maximally stable regions from the com-

ponent tree

.. Mesh-MSER: the algorithm

Algorithm  describes how to extract maximally stable extremal regions (MSERs).

Starting from the component tree, this is an easy task. The tree structure gives a

quick access to the area variations between Nhi+δ ⊂ Nhi
⊂ Nhi−δ. When comput-

ing the stability coefficient, topological changes are authorized by the algorithm,

whereas the original image-MSER technique only compares nodes on branches

with no bifurcation. This way more lines are found than in the original D image

method. The node merging procedure () is also standard. It generates a subtree

whose nodes are exclusively the maximally stable regions. Merging a node Nhi+1

into its father Nhi
requires a) removing Nhi+1

from the set of Nhi
’s children, b)

adding all of Nhi+1
’s children to Nhi

’s children, c) setting their father to be Nhi
, d)

merging the list of triangles and e) updating the areas accordingly.

.. Triangle classification

Each selected node being given an index l, algorithm  yields a triangle classification

L which, with any triangle t of the mesh, associates the label of the highest node

containing the triangle (i.e., the label of the node with highest level containing the

triangle). Because of the tree structure, it may occur that two triangles with label

l are not connected by triangles with label l. Then the node must be split into

different parts with different labels.
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 Chapter . The Level Set Tree on Meshes

Algorithm : Mesh-MSER

Data: δ a step for computing stability coefficients and a set of levels

h1 < · · · < hn

Result: A labeling of the triangles and the borders of the detected MSERs

 Build the component tree with levels hi ± δ;

 for each tree node Nhi
(where hi is the node level) do

 Look for all descendants of Nhi
with level hi + δ and the sum of their

areas Ahi+δ;

 Look for the ascendant of Nhi
with level hi − δ and its area Ahi−δ;

 q(Nhi
) =

Ahi−δ−Ahi+δ

A(Nhi
)

;

 for each node Nhi
do

 Get qhi+1
the minimal stability of the descendants of Nhi

with level hi+1;

 Get qhi−1
the stability of the Nhi

’s ascendant with level hi−1;

 if q(Nhi
) < qhi+1

and q(Nhi
) < qhi−1

then
 Select Node Nhi

;

 for all non selected tree nodes N do
 Merge the node N with its father;

 Associate to each triangle the index of the node with highest level containing

it;
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.. Implementation and results 

Figure .: Extracting the border of a region (the region border with no interpo-

lation at all is shown in the blue, and the interpolated region border is the dotted

green line). Notice that a part of both borders coincide with the mesh border

.. Border extraction from selected region

Extracting the borders of each selected region is a simple task using the available

list of triangles for each node. From this list one can extract those which share an

edge with a triangle of lesser level. This yields a set of border edges which can be

linked. Since we are dealing with meshes built on raw point sets with a triangulation

method which does not fill in the scanning holes, the component border line may

encounter a scanning hole. To extract the line, we first extract the set B of edges

belonging to at least one triangle of the connected component which is either a

hole border or a component border. Starting from an edge of B which is not a hole

border, a line is extended by linking edges from B. This way only closed contour

lines are built, which are not hole borders, but can partially coincide with hole

borders.

. Implementation and results

In the experiments herewith, the function H on the mesh will be the mean curva-

ture. Choosing the levels hi is another question. Since curvatures are real numbers

and are estimated only up to a given estimation error depending on the curvature

estimation method, using all levels for the hi would not be a good solution. The

adopted solution is to use equally spaced bins and δ equal to the quantization step.

The Mesh-MSER algorithm was implemented in C++. On a 1.5 GHz dual core

laptop, without any particular effort on code optimization, the whole process lasts
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 Chapter . The Level Set Tree on Meshes

Figure .: Classification by Mesh-MSER Analysis of a diamond shaped pattern

(k triangles).

for less than one minute for a 500000 vertices mesh. All shapes presented in this

section (with the exception of the Stanford Urbis Romae pieces) were acquired us-

ing a triangulation laser scanner which yields a high precision dense point cloud

(with some acquisition holes though, as can be noticed on fig. .). The non-

oriented point cloud was first oriented, its curvature computed at all raw points,

and an interpolating mesh built using the method described in [DMMSL].

.. Results on mechanical and geometrical shapes

The first experiment is a sanity check on simple a diamond shaped volumetric pat-

tern (fig. .) with 150k vertices and 400k triangles. Mesh-MSER surrounds all

geometrically relevant areas, namely the facets and a single connected region con-

taining all vertices. It could be objected that a single threshold on the curvature

would have sufficed to obtain the facets. But, even in that simple case, it was not

obvious to predict the right curvature threshold. Furthermore, a simple curvature

threshold would have delivered many small extremal regions due to noise inside the

facets, which are actually fused to the facets by Mesh-MSER. The second industrial

example is a mesh acquired from a water pump (2.5 million vertices, 4 million tri-

angles), whose the mesh was again built directly on the raw data. This object has

many acquisition holes (see fig. .). The final classification gives 200 regions. For

better visualization random colors were given to the regions. The algorithm auto-

matically separates edges from plane or curved parts. The segmentation of such a

huge cloud into only  regions promises to enable a further model analysis, facet

by facet.

.. Archeological pieces: comparative results

The next test (fig. .) was performed on a good quality mould of an archaeolog-

ical piece, which was subjected to a massive scan followed by Mesh-MSER. Mesh
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.. Implementation and results 

Figure .: Classification by MSER Analysis (From top to bottom: picture of the

object; obtained mesh; MSER segmentation; MSER borders)

Figure .: Line extraction (left) and segmentation (right) obtained by Mesh-MSER
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 Chapter . The Level Set Tree on Meshes

(a) Picture (b) MSER (c) Picture (d) MSER

Figure .: Maximally stable curvature level lines of “La dame de Brassempouy”.

Some lines on the above figure appear to be open because of the cropping into

front and back part)

and curvatures were obtained using [DMMSL]. This small prehistorical figurine

(. B.C.), “La Dame de Brassempouy” is only  centimeters tall. The mesh has

approximately 300k vertices and 500k triangles. Notice how each detail of the hair

dress is segmented out.

This preliminary exploration of the capabilities of Mesh-MSER was continued

on the Stanford Forma Urbis Romae database, containing hundreds of archaeologi-

cal artifacts coming from a broken stone map of Roma (see [KTN∗]). A challenge

of this project is to solve the jigsaw puzzle and rebuild the map. It is a crucial test for

the Mesh-MSER method to check whether or not it extracts the engraved symbols

and drawings figuring the town map, and whether it does it better than what can be

done with D-MSER or with a Canny edge detector from simple photographs. Pic-

tures of fragments g and u are given along with the result of MSER extraction on

figs . and .. The experiment of fig. .(b) shows Mesh-MSER working on these

engravings with a high performance, comparable to the best D image MSER per-

formance on pictures containing high contrasted trademarks and logos [MCUP].

Indeed, all visible symbols and all features of the map plan are faithfully extracted,

with very few outliers.

This experiment can be pushed further. Indeed, the pieces being rather flat, a

direct comparison of D- and Mesh-MSER on their main facet makes sense. The

Mesh-MSER result compares advantageously to D level line or edge extraction

methods applied to a picture of the same object (fig. . (a)). The comparison

shows that it is far more reliable to detect boundaries on the D mesh.
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.. Implementation and results 

(a) Original picture of fragment u (b) Obtained Mesh

(c) Meaningful level lines [DMM] of the orig-

inal picture

(d) Canny edge detector on the original picture

(e) Mesh-MSER result

Figure .: Picture (a) of fragment u of Stanford FUR database, D mesh (b),

Mesh-MSER result (d). This result can be compared with the D-MSER result (b)

on a good quality picture of the same fragment [DMM], and with the result of a

Canny edge detector applied to the same picture (c). The comparison gives a sweep-

ing advantage to Mesh-MSER. Indeed, D-MSER misses parts and keeps noisy level

lines. Canny’s detector has many outliers and yields anyway no segmentation. Sim-

ilar experiments on artificial renderings of the mesh gave no better results
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 Chapter . The Level Set Tree on Meshes

Finally, several strategies for extracting curvature level lines on meshes are com-

pared on fig. . with fragment g of the Stanford Urbis Romae database. Here

again the Mesh-MSER results seem to be complete, accurate, and without outliers.

The experiment compares the choice of curvature level lines made by MSER with

a simple threshold based on level line length. Although this choice indeed removes

noisy level lines, it also loses many meaningful ones, and adds anyway a spurious

threshold parameter.

To compare the obtained results with those presented in [ZTS], the same data

set point (a fragment of antique vase) was used. The mentioned reference is very

similar in scopes to MSER: it proposes a two scale analysis on a mesh by defining

a “base” and “height function”. The lines shown in [ZTS] are level lines of the

height function. The base is implicitly defined by its gradient, by a sophisticated

variational procedure. Here we used a similar height function to get a relevant

comparison. The height function is defined as the difference between the surface

and its smoothed out version by a large scale mean curvature motion. The Mesh

MSER method can then be directly applied (fig. .) on this scalar function.

. Using the same approach with other functions

Other functions can be used for extracting valuable informations on surfaces. Let

us for example consider the case of a digital elevation model. There are two ways

of considering the data: either as an image and process it as gray-valued image

using D-MSER or as a set of grid points with height values giving a set of D

coordinates with a mesh structure. Then the process takes into account a much

finer information since it adds precise triangle areas (which depend on the height)

instead of adding a constant 1 area to compute node areas.

Figure .: Rendering of a digital elevation model .
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.. Using the same approach with other functions 

(a) Picture of fragment g (b) Obtained Mesh

(c) Selecting only lines with length above 100 (d) Selecting only lines with length above

10000

(e) MSER Selection

Figure .: Comparison between several strategies for extracting level lines: a) Pic-

ture of fragment g of Stanford FUR database ; b) and c) level lines with length

above a given threshold; d) Mesh-MSER: its selection is definitely much more ac-

curate, misses no apparent detail and gives very few outliers
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 Chapter . The Level Set Tree on Meshes

(a) Original object (b) Mesh-MSER selection

Figure .: Result of Mesh-MSER on a vase model. Compare with results provided

in [ZTS] and [KST]: results segment the shape into the relief and the base .

(a) Mesh-MSER Selection (b) Zatzarinni et al.

Figure .: Result of Mesh-MSER on the pump mesh and comparison with the

method by Zatzarinni et al. ([KST]).
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.. Conclusion 

Figure .: D-MSER on the gray-level image (left) and Mesh-MSER applied to

the corresponding mesh (right)

. Conclusion

This chapter introduced a fast level set tree method, Mesh-MSER, applicable to any

scalar function defined on a mesh. This method is a direct extension of classic D

image analysis tools building trees of level sets components or of level lines. Us-

ing the fact that the curvature is the most straightforward scalar function defined

from and on a mesh, the method was used to segment meshes into maximally stable

extremal regions (MSERs) of the curvature. Future work will focus on the exploita-

tion of this structure. Indeed the experiments clearly point out the possibility of

using the detected curves and regions to perform pattern recognition of complex

objects such as the Urbis Romae fragments. On the other hand the method pro-

vides automatic segmentations of industrial objects into edge parts and parts with

constant or slowly varying curvature, for which spline or conical models should

easily be estimated.
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Chapter 7

A numerical analysis of raw point
cloud smoothing

Contents
. Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Curvature estimation and surface motions defined on meshes 

.. Curvature estimation and surface motions defined on point

clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Curvature estimation using covariance techniques . . . . . 

.. Moving Least Squares Surfaces . . . . . . . . . . . . . . . . 

. Tools for numerical analysis of point cloud surface motions . . . . 

. Regression-free curvature estimates . . . . . . . . . . . . . . . . 

.. A discrete “second fundamental form” [BC] . . . . . . . 

.. Another discrete “second fundamental form” . . . . . . . 

.. A third discrete “fundamental form” . . . . . . . . . . . . 

.. A fourth discrete fundamental form: the surface variation . 

. The MLS projection . . . . . . . . . . . . . . . . . . . . . . . . . 

. Asymptotics of MLS and MLS . . . . . . . . . . . . . . . . . . . 

.. The asymptotic behavior of MLS . . . . . . . . . . . . . . 

. Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . 
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 Chapter . A numerical analysis of raw point cloud smoothing

Abstract: D acquisition devices acquire object surfaces with growing

accuracy. Preserving this accuracy means conserving a very irregular

sampling and requires also a numerical methodology to compute dif-

ferential operators on irregularly sampled surfaces. Many such meth-

ods have been proposed for meshed D data. However, computing

directly differential operators on the raw point clouds as they are ac-

quired (e.g.) by triangulation scanners is crucial because this can be

done before any mesh re-sampling and can in particular provide useful

information for the meshing process itself. There are therefore several

classic methods proposing to compute analogues of differential oper-

ators directly from the raw data point set. This chapter proposes a

method to analyze and characterize these raw point cloud local op-

erators. It reviews a half dozen basic discrete algorithms which have

been proposed to compute discrete curvature-like shape indicators on

raw point clouds. It shows that all of them can actually be analyzed

mathematically in a unified framework by computing their asymptotic

form when the size of the neighborhood tends to zero. Assuming that

the underlying manifold is smooth enough, the asymptotic form of

these operators is obtained in terms of the principal curvatures or of

higher order intrinsic differential operators which characterize the dis-

crete operators. This analysis, completed with numerical experiments,

permits to classify the discrete raw point cloud operators, to rule out

several of them, and to single out others.

Introduction

The output of laser scanners or any surface acquisition system is usually a set of

points sampled with more or less precision on the surface. In some cases the result

comes as a mesh, i.e., as a set of triangles linking points. In other cases, no such

information is given and the machine data is simply an unorganized point cloud.

In this chapter we focus on the mathematical processing of the surfaces defined as

point clouds. We also explain in terms of differential operators what happens in

some of the most common surface regularization processes.

The field of numerical surface analysis has been widely studied over the fifteen

past years, due to the development of computer graphics. Yet, in most cases the

starting surface representation is a mesh, for the simple reason that meshes are

much easier to handle than a point cloud. Indeed, numerically processing a surface

always involves finding the neighbors of a surface sample, and a mesh is oriented

and has a surface topology. The neighbors of a vertex are all points linked by a spec-

ified number of edges to the center vertex. Yet in case of highly irregular meshes the

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



.. Previous work 

processing can be problematic because then, triangle areas vary a lot. The most

common mesh reconstruction methods from a raw point cloud define a signed

function over R3 representing the distance to the object, and then extract the 0 level

set which approximates the object surface. See (e.g.) [CL], [HDD∗], [CBC∗],

[Kaz], [ACSTD], and the most popular such method [KBH], which solves a

Poisson equation to build the indicator field. These methods vary in the approach

to compute the distance function, but all extract the 0-level set by using the march-

ing cubes algorithm ([LC], [KBSS]). In such a meshing process, the initial raw

points are irremediably lost, and this incurs into a loss of resolution. This explains

why it may be relevant to process directly an unstructured raw point cloud. If no

mesh is given as input data, then looking for neighbors means looking for points

within a given distance of the query point. This neighborhood definition raises

other problems: if the neighborhood is too large then we risk including two differ-

ent parts of the surface in the neighborhood, and in the normal case of an irregular

sampling empty neighborhoods can happen. Therefore the radius choice is crucial

in the numerical implementation of any local operator.

The reminder of this chapter is divided as follows: section . reviews surface

operators and motions previously defined on meshes and on point clouds, section

. gives the necessary definitions and tools. Section . analyzes regression free

curvature estimates. Section . and . analyze and compare the motions given by

the projection on simple regression surfaces: a plane and a degree 2 polynomial

surface. Finally, section . shows comparative numerical experiments.

. Previous work

.. Curvature estimation and surface motions defined on
meshes

Reviews for curvature estimation on surfaces can be found in [Rus], [MSR]

or [MSR]. Curvature tensor estimation methods were pioneered by Taubin

[Taua] who presented a simple approximation for computing the directional cur-

vature in any tangent direction. Then the curvature is computed in all incident

edge directions and a covariance matrix of the edge direction weighted by their di-

rectional curvatures and the area of the two incident triangles is built. Eigenvectors

and eigenvalues of this covariance matrix yield a simple expression of the principal

curvatures and curvature directions.

Other curvature tensor estimation methods include [Rus] where the tensor

is estimated by building a linear system over the tensor coefficients. This linear

system expresses the constraints that multiplying the tensor by an edge direction

should give the difference of the edge’s endpoints normals. The same method is
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 Chapter . A numerical analysis of raw point cloud smoothing

applied to find the curvature derivatives. Normals are also used in [TRZS] to

give a piecewise linear curvature estimation (see also [TT])

To avoid computations of derivatives, a new kind of curvature estimation

method has been proposed, based on domain integration. In [YLHP], [PWY∗]

and [PWHY], the intersection of the surface with either a sphere or a ball cen-

tered at a vertex is analyzed: the covariance matrix of this domain is computed and

eigenvalues are expressed in terms of principal curvatures. By increasing the neigh-

borhood radius, the curvature estimate can be made multiscale. A very interesting

feature of these methods is that they do not rely on high order derivatives and are

therefore more stable. Other methods to compute the curvature include the normal

cycle theory [CSM].

Surface motions have also been studied as a part of a mesh fairing process. A key

method was introduced by Taubin in [Taub] who considered a discrete Laplacian

for a mesh V with vertices vi
∂V
∂t

= λL(V ),L being a discretization of the Laplacian

L(vi) =
1

cardN(vi)

∑

j ∈ N(vi)(vj − vi) where N(vi) is the set of vertices linked by

an edge to vi (1-ring neighborhood). This formulation is widely used. Indeed

[DMSB] uses a similar “umbrella” operator. [GH] also computes the discrete

Laplacian for all mesh vertices and the eigenvector and eigenvalues of the Laplacian

are computed. By removing the smallest eigenvalues, a fair mesh is obtained.

A well known formulation of the Laplace Beltrami operator is the famous cotan-

gent formula ([MDSB]). This formula writes:

∆vi =
1

2

∑

j∈Nvi

(cotanαij + cotanβij)

where vi is a vertex of the mesh, N1(vi) its one ring neighborhood, αij and βij

are the angle opposite to edge vivj in the two triangles adjacent to vivj . This has

been used to compute the surface intrinsic equation.

.. Curvature estimation and surface motions defined on point
clouds

We now discuss the rare approaches dealing directly with point clouds.

In [UH], a scale space decomposition method for point clouds is introduced.

At a point p, the intersection of the surface with a plane containing the normal to p

is a curve. The curvature of these curves can be easily computed. An operator is de-

fined that moves each point in the normal direction by a factor equal to this curve

curvature. Averaging over all possible planes yields a mean curvature motion. The

non-uniform sampling problem is then solved by using a density normalized ker-

nel which removes the dependence of the result on variations in sampling density.

The scale space is then used to select "scale-space extrema". At each scale the point
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.. Previous work 

motion is considered. Introducing a scalar function on the displacement norm, the

authors claim that they recover the characteristic scales of the surface (the intro-

duced function is extreme for the characteristic scales).

More theoretical work which is not tested on real raw surfaces can be found in

[MOG] where a method to compute curvatures and normals based on voronoi

covariance matrix is introduced.

In [Tan], the proposed framework for curvature estimation at a particular

point is based on a set of curves representing the local neighborhood of the point

under consideration. By considering the neighbors of p, one can have the set of

triplets (pi, pj, p) and those triplets can be used to define parametric space curves

by quadratic polynomial interpolation with p(0) = pi, p(1) = pj and p(t) =

p where t = |p−pi|
|p−pi|+|pj−p|

. This allows to approximate maximum and minimum

curvature values as the minimum and maximum normal curvature values for all

possible point triplets. This method can be used either on meshes or point clouds.

In [KSNS], the authors propose a statistical estimation of curvature of point

sampled surfaces based on IRLS (iteratively reweighted least squares) and M-

estimators. Position difference vector ∆p and normal difference vector ∆n are

used to define a linear system yielding a first estimate of the curvature tensor. Then

residuals are computed and used to weight the samples and the objective function is

minimized by iterative reweighting of point samples. This yields the final curvature

tensor estimate. This procedure is rather time-consuming.

Finally in [BSW], an algorithm to compute the Laplacian of a function de-

fined on point clouds in R
d is proposed along with convergence proofs. Yet the

model is not tested on real surfaces.

Neighborhood covariances being used already for normal estimation, the idea

to express fundamental forms as covariances matrices was introduced. Next section

reviews the different covariance techniques considered in the literature.

.. Curvature estimation using covariance techniques

There are few covariance approaches and none of them has been analyzed math-

ematically yet. Nevertheless, covariance methods can be an elegant alternative to

surface regression. This chapter performs this analysis linking the various covari-

ances to surface curvatures. Three papers use covariance matrices for curvature

estimation: [BC],[LT] and [PGK].

[BC] considers the neighbors (pi) of a point p. The second fundamental form

is then defined as the covariance matrix of vectors ppi projected onto the tangent

plane of the surface at p. An equivalent of the Gauss map is also introduced: it

is the covariance matrix of the neighbors unit normals projected onto the surface

tangent plane at point p. The eigenvectors are said to give the principle directions.

In fact these two covariance matrices are inspired from [LT]. Indeed, [LT] first
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 Chapter . A numerical analysis of raw point cloud smoothing

proposed to compute the covariance matrix of the normals of point p’s neighbors,

to extract the principal eigenvalues which correspond to the principal curvatures of

the surface at p. The last covariance method, introduced in [PGK], is not claimed

to be explicitly linked to surface curvatures or fundamental forms, yet it is used to

account for the surface geometric variations. Consider the covariance matrix of

vectors pi where is the barycenter of the neighborhood of p. The surface variation

is then defined as the ratio of the least eigenvalue over the sum of all eigenvalues

of this covariance matrix. This quantity has the nice property that it is bounded

between 0 (flat case) and 1/3 (isotropic case).

All these methods will be described in more details and analyzed in section ..

Another interesting technique for surfaces defined by point clouds is the Moving

Least Squares Surfaces.

.. Moving Least Squares Surfaces

[LS] first introduced MLS surfaces as follows. Given a data set of points {pi}i
(possibly acquired by a D scanning device), a smooth surfaceM based on the in-

put points is defined. The goal is to replace the points p definingM with a reduced

set R = {ri} defining an MLS M′ surface which approximates M. The surface

given by the point cloud is expected to be a -manifold, C∞ smooth. The authors

also define a bounding error ε such that d(M,M′) < ε, where d is the Hausdorff

distance.

The projection of a point on MLS surface is defined as follows: given a point p,

find a local reference domain (plane) for p. The local plane H is computed so as

to minimize a local weighted sum of square distances of the points pi to the plane.

(Thus is is a weighted regression plane). The weights attached to pi are defined as

functions of the distance from pi to the projection of p on plane H , rather than the

distance from pi to p.

Assume q is the projection of p onto H , then H is found by locally minimizing

N
∑

i=1

(< n, pi > −D)2θ(‖pi − q‖),

where θ is a smooth, monotone decreasing function, which is positive on the whole

space. We can set q = p+ tn for some t ∈ R, which gives

N
∑

i=1

(< n, pi − p− tn >)2θ(‖pi − p− tn‖)

The local reference domain is then given by an orthonormal coordinate system on

H so that q is the origin of this system. The reference domain for p is used to
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.. Previous work 

compute a local bivariate polynomial approximation to the surface in a neighbor-

hood of p. Let qi be the projection of pi onto H , and fi =< n, pi − qi >. In

this local coordinate system, let (xi, yi) be the coordinates of qi on H . The co-

efficients of the polynomial are computed by minimizing the least square error:
∑N

i=1(g(xi, yi)− fi)
2θ(‖pi − q‖)

The projection of p ontoM is defined by the polynomial value at the origin,

i.e., q+ g(0, 0)n = p+ (t+ g(0, 0))n. Thus, given a point p and its neighborhood,

its projection onto the MLS surface can be computed.

The approximation power of MLS surfaces was shown in [Lev] and the first

applications were introduced in [ABCO∗], [AK] and [Lev].

MLS surfaces turned out to be not only theoretically powerful but provided

fine implementations for either rendering or up-sampling and down-sampling

point sets ([ABCO∗],[PGK]). Variants of MLS were proposed mostly for a

better preservation of sharp edges in surfaces defined by point clouds ([OGG],

[LCOL], [FCOS]).

The same framework to build a scale space for point clouds in [PKG]. The

surface is evolved through a diffusion process ∂p
∂t
−λ ·∆p = 0, where p is a point of

the surface, λ a diffusion parameter and∆p = Hn is the Laplace Beltrami Operator

(H is the curvature and n the normal at point p, this is the decomposition process).

By remembering the set of displacements Di(p) of each point p we have a recon-

struction operator. The choice of the Laplacian discretization is very important: a

first possibility is to use the standard mesh Laplacian techniques ([Taub]) adapted

for point clouds using the k-nearest neighbors instead of the one ring neighbor-

hood. Another possibility is to use the weighted least squares projection ([HG],

[KG]): the surface is iteratively projected onto the plane defined by the weighted

barycenter o and the normal estimated using the weighted neighborhood covari-

ance matrix. Weights are a simple gaussian ponderation on the distance to p and

the size of the gaussian kernel is a parameter that controls the amount of smooth-

ing. This projection process is in fact an order 1 projection motion (MLS) that

is analyzed in this chapter. To make the projection more efficient, [PKG] pro-

posed to subsample the point cloud. It yields a scale space decomposition where at

each level the surface is smoothed and sub-sampled. The scale space decomposi-

tion is then applied to the multi-scale freeform deformation and to the morphing

problem, with satisfactory results.

The moving least squares (MLS) were used to estimate curvatures. For example,

in [YQ], the authors use the MLS framework to build a closed form solution for

curvature estimation. Indeed, surfaces implied by point clouds can be seen as the

zero level set of an implicit function f . The gradient and Hessian Matrix of f is

built. Finally, using formulas for the Gaussian and the mean curvature depending

on the Hessian and gradient of f , those curvatures are computed.

In [CP], the problem of estimating differential quantities on point clouds is
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 Chapter . A numerical analysis of raw point cloud smoothing

recast to that of fitting the local representation of the manifold by a jet. A jet is sim-

ply a truncated Taylor expansion. A n jet is a Taylor expansion truncated at order n.

A jet of order n contains differential information up to the n-th order. In particular

it is stated that a polynomial fitting of degree n estimates any kthorder differential

quantity to accuracy O(hn−k+1). This implies that the coefficient of the first fun-

damental form and unit vector normal are estimated with O(hn) precision and the

coefficients of the second fundamental form and shape operator are approximated

with accuracy O(hn−1), and so are the principal directions. In order to characterize

curvature properties, the method resorts to the Weingarten map A of the surface,

also called the shape operator, that is the tangent map of the Gauss map. Recall that

the first and second fundamental forms I , II and A satisfy II(t, t) = I(A(t), t)

for any vector t of the tangent space. Second order derivatives are computed by

building the Weingarten map of the osculating jet whose eigenvalues are the princi-

pal curvatures. Note that the described methods can be used either with a mesh or

with a point cloud. Jets are in fact very related to MLS surfaces. Indeed, to estimate

differential quantities a polynomial fitting of degree n is done, which is exactly what

MLS does. Therefore the analyzis given in section . giving the equation governing

MLS and MLS motions are valid for the jets too.

In this chapter, we give the exact partial differential equation that governs the

MLS projection motion for order 1 and 2 MLS surfaces. We then link these PDEs

to the surface curvatures.

Next section provides some tools to analyze numerically point cloud motions.

The following analysis is in spirit very close to the image filter analysis performed

in [BCM].

. Tools for numerical analysis of point cloud surface

motions

We always assume the existence of a smooth surfaceM supporting the point set.

These surfaces are the boundaries of solid objects and can therefore be assumed to

be locally Lipschitz graphs. However, for a mathematical analysis of smoothing al-

gorithms and curvature estimations on the surface, we shall always assume that the

surface is a C∞ embedded manifold, known from its samples denoted byMS . This

is not a limitation, in the sense that any finite sample set can be anyway interpolated

by an arbitrarily smooth surface. Let p(xp, yp, zp) be a point of the surfaceM. At

each non umbilical point p, consider the principal curvatures k1 and k2 linked to the

principal directions t1 and t2, with k1 > k2 where t1 and t2 are orthogonal vectors.

(At umbilical points, any orthogonal pair (t1, t2) can be taken.) Set n = t1 × t2 so

Some theorems are in fact already in chapter , we rewrite them for clarity.
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.. Tools for numerical analysis of point cloud surface motions 

Spherical Neighborhood

Regression Plane

Cylindrical Neighborhood

P

M

Figure .: Comparison between cylindrical and spherical neighborhoods

that (t1, t2,n) is an orthonormal basis. The quadruplet (p, t1, t2,n) is called the

local intrinsic coordinate system. In this system we can express locally the surface

as a C2 graph z = f(x, y). By Taylor expansion,

z = f(x, y) =
1

2
(k1x

2 + k2y
2) + o(x2 + y2). (.)

Notice that the sign of the pair (k1, k2) depends on the arbitrary surface orientation.

Points where k1 and k2 have the same sign are called parabolic, and points where

they have opposite signs are hyperbolic. Consider two kinds of neighborhoods in

M for p defined in the local intrinsic coordinate system (p, t1, t2,n):

• the spherical neighborhood Br = Br(p) ∩M is the set of all points m ofM
with coordinates (x, y, z) satisfying (x− xp)

2 + (y − yp)
2 + (z − zp)

2 < r2

• the cylindrical neighborhood Cr = Cr(p)∩M is the set of all points m(x, y, z)

onM such that (x− xp)
2 + (y − yp)

2 < r2.

The spherical neighborhood in the sampled surfaceM2 is the only neighborhood

to which there is a direct numerical access, and the discrete operators is defined with

it. Nevertheless, for the forthcoming asymptotic numerical analysis, the cylindrical

neighborhood will prove much handier than the spherical one. The next technical

lemma justifies its use in theoretical calculations.

Lemma . Integrating on M any function f(x, y) such that f(x, y) = O(rn) on

a cylindrical neighborhood Cr instead of a spherical neighborhood Br introduces an

o(rn+4) error. More precisely:
∫

Br

f(x, y)dm =

∫

x2+y2<r2
f(x, y)dxdy +O(r4+n). (.)

We could use z = f(x, y) = − 1

2
(k1x

2 + k2y
2) + o(x2 + y2) at the cost of changing the

orientation and sign of k1,k2.
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 Chapter . A numerical analysis of raw point cloud smoothing

Proof. The surface area element of a point m(x, y, z(x, y)) on the surfaceM, ex-

pressed as a function of x, y, dx and dy is dm(x, y) =
√

1 + z2x + z2ydxdy. One

has zx = k1x+O(r2) and zy = k2y +O(r2). Thus

dm(x, y) =
√

(1 + k2
1x

2 + k2
2y

2 +O(r3))dxdy

which yields

dm(x, y) = (1 +O(r2))dxdy. (.)

Using (.), the integrals we are interested in become
∫

Cr

f(x, y)dm = (1 +O(r2))

∫

Br

f(x, y)dxdy; (.)

∫

Br

f(x, y)dm = (1 +O(r2))

∫

Cr

f(x, y)dxdy (.)

= (1 +O(r2))

∫

x2+y2<r2, (x,y,z)∈M

f(x, y)dxdy.

This last form is amenable to analytic computations. Consider polar coordi-

nates (ρ, θ) such that x = ρ cos θ and y = ρ sin θ with −r ≤ ρ ≤ r and

0 ≤ θ ≤ π. Then for m(x, y, z) belonging to the surface M, we have z =
1
2
ρ2(k1 cos

2 θ + k2 sin
2 θ) + O(r3). Fixing θ we obtain z = 1

2
ρ2k(θ) + O(r3),

where k(θ) = k1 cos
2 θ + k2 sin

2 θ. The condition that (x, y, z) belongs to the

neighborhood Br can therefore be rewritten as ρ2 + z2 < r2, that is

ρ2 +
1

4
k(θ)2ρ4 < r2 +O(r5)

Computing the boundaries ±ρ(θ) of this neighborhood yields ρ(θ)2 +
1
4
k(θ)2ρ(θ)4 − r2 +O(r5) = 0. Thus

ρ(θ)2 =
−1 +

√

1 + k(θ)2(r2 +O(r5))
1
2
k(θ)2

.

This yields ρ(θ) = r − 1
2
k(θ)2r3 + O(r4). We shall use this estimate for the error

term E appearing in
∫

Br

f(x, y)dxdy =

∫

[0,2π]

∫

[0,ρ(θ)]

f(x, y)ρdρdθ

=

∫

[0,2π]

∫

[0,r]

f(x, y)ρdρdθ − E

=

∫

Cr

f(x, y)dxdy − E,
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.. Regression-free curvature estimates 

with E =:
∫

[0,2π]

∫

[ρ(θ),r]
f(x, y)ρdρdθ. Thus

|E| ≤ 2π sup
x2+y2≤r2

|f(x, y)|max(k2
1, k

2
2)r

4 +O(r5).

In particular if f(x, y) = O(rn), then |E| ≤ O(r4+n). Finally we have

∫

Br

f(x, y)dxdy =

∫

Cr

f(x, y)dxdy +O(r4+n). (.)

Combining (.), (.) and (.) yields (.).

This lemma will prove very useful for the rest of the chapter and in particular

in the next section where analysis are given for various curvature estimates.

Lemma , as well as all theorems in the remainder of this chapter will assume

that the surface is a uniform Lebesgue measure. A constant sampling density is

therefore necessary. This constant density is approximated on discrete data by

weighting each point by a weight inversely proportional to its initial density. More

precisely, let p be a point and Nr(p) = Ms ∩ Br(p). Each point q should ide-

ally have a weight 0 ≤ w(q) ≤ 1 such that
∑

q∈Nr(p)
w(q) = 1. This amounts to

solve a huge linear system. For this reason, we shall be contented with ensuring
∑

q∈Nr(p)
w(q) ≃ 1 by taking w(p) = 1

♯(Bp(r))
, as proposed in [UH].

. Regression-free curvature estimates

This section finds the form of the differential operators underlying four different

discrete schemes based on local cloud point statistics, and proposing discrete ana-

logues of the “second fundamental forms” or of the “principal curvatures”. These

discrete schemes have very simple and robust form, being based on the compu-

tation of local moments and eigenvalues of the point cloud. We shall see that they

actually compute nonlinear differential operators linked to the principal curvatures.

.. A discrete “second fundamental form” [BC]

Let(pi)i∈1···N be the set of neighbors of a point p with normal n. This paper pro-

poses to build the “second fundamental form matrix” as follows. (Although this

covariance matrix is not, as we shall see, consistent with the second fundamental

form, it is thus called in this paper, and actually has, as we shall see, the principal

directions as eigenvectors.) Let si = (pi − p)T · n, let t1, t2 be two orthonormal

vectors of p’s tangent plane, and

αi = si ·

(

(pi − p) · t1
(pi − p) · t2

)

= ((pi − p)T · n) ·

(

(pi − p) · t1
(pi − p) · t2

)

.
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 Chapter . A numerical analysis of raw point cloud smoothing

The αi are projections of the vectors (pi − p) onto the tangent plane to p, weighted

by their distance to this plane. The “second fundamental form matrix” is the co-

variance of these vectors, namely

Σd =
N
∑

i=1

(αi − αm) · (αi − αm)
T (.)

where αm = 1
N

∑N
i=1 αi and in Σd the d stands for “discrete”. To compute the un-

derlying differential operators, two assumptions are made throughout this chapter.

The first one is that the surface sampling is uniform with respect to the area mea-

sure on the surface. The second one is that this sampling is dense enough, so that

the averages taken on neighborhoods can be interpreted as integrals. Under this

interpretation, we can reinterpret the sum in (.) as an integral on a cylindrical

neighborhood of p, assuming the data point set to be a locally smooth manifold. In

the local intrinsic surface coordinate system at point p, (p, t1, t2,n), the surface can

be written as a graph z = 1
2
(k1x

2 + k2y
2) + o(r2). Thus the vectors αi are replaced

by a continuous vector α(x, y) defined by

α(x, y) =
1

2
(k1x

2 + k2y
2) ·

(

x

y

)

=
1

2
·

(

k1x
3 + k2y

2x

k1x
2y + k2y

3

)

+ o(r3). (.)

Under the interpretation taken above the “second fundamental matrix” rewrites

Σ =

∫

Br

(α(x, y)− αm) · (α(x, y)− αm)
Tdm(x, y) (.)

where

αm =
1

meas(Br)

∫

Br

α(x, y)dm(x, y). (.)

The proposition made in [BC] is to extract the surface principal curvatures and

their corresponding directions at p from this covariance matrix, as its eigenvalues

and eigenvectors. The next theorem checks if this works asymptotically in the con-

tinuous model.

Theorem . The eigenvectors of the “second fundamental form matrix” Σ give the

principal directions with error o(r8). But the eigenvalues of Σ are not the principal

curvatures as they satisfy

λ1 =
1

4

r8

8

π

8
(5k2

1 +2k1k2+k2
2)+ o(r8) and λ2 =

1

4

r8

8

π

8
(k2

1 +2k1k2+5k2
2)+ o(r8)

where k1 and k2 are the principal curvatures at p
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.. Regression-free curvature estimates 

Proof. In the continuous model αm therefore is close to zero because the integrated

function is odd on a symmetric domain. More precisely, using Lemma  in (.)

and writing αm = (αmx, αmy),

αmx =
1

2πr2

∫

x2+y2<r2
(k1x

3 + k2y
2xi + o(r5))dxdy = o(r3)

and similarly

αmy = o(r3).

By Lemma  again, the covariance matrix (.) satisfies Σ =
∫

x2+y2<r2
α(x, y) ·

α(x, y)Tdxdy + o(r8), and, using (.), we can calculate its four components as

follows.

Σ11 =
1

4

∫

x2+y2<r2
(k1x

3 + k2y
2x)2dxdy + o(r8)

=
1

4

∫

x2+y2<r2
(k2

1x
6 + 2k1k2x

4y2 + k2
2y

4x2)dxdy + o(r8)

=
1

4

∫

θ∈[0,2π],ρ∈[0,r]

ρ6(k2
1cos(θ)

6 + 2k1k2cos(θ)
4 sin(θ)2 + k2

2 cos(θ)
2 sin(θ)4)ρdρdθ + o(r8)

=
1

4

r8

8

∫

θ∈[0,2π]

(k2
1cos(θ)

6 + 2k1k2cos(θ)
4 sin(θ)2 + k2

2 cos(θ)
2 sin(θ)4)dθ + o(r8)

=
1

4

r8

8
(k2

1

5π

8
+ 2k1k2

π

8
+ k2

2

π

8
) + o(r8)

=
1

4

r8

8

π

8
(5k2

1 + 2k1k2 + k2
2) + o(r8)

By exchanging the roles of k1, k2, and x, y respectively, we get

Σ22 =
1

4

r8

8

π

8
(k2

1 + 2k1k2 + 5k2
2) + o(r8).

Σ being a symmetric matrix, Σ12 = Σ21 and the integrated function being odd,

Σ12 =
1

4

∫

x2+y2<r2
(k1x

3 + k2y
2x)(k1x

2y + k2y
3)dxdy + o(r8)

=
1

4

∫

x2+y2<r2
(k2

1x
5y + 2k1k2x

3y3 + k2
2y

5x)dxdy + o(r8)

= o(r8).
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 Chapter . A numerical analysis of raw point cloud smoothing

Thus, Σ is equivalent to a diagonal matrix whose principal directions are t1
and t2, which validates the theoretical requirements, t1 and t2 being the principal

directions at point p. However, the corresponding eigenvalues are

λ1 =
1

4

r8

8

π

8
(5k2

1 + 2k1k2 + k2
2) + o(r8)

λ2 =
1

4

r8

8

π

8
(k2

1 + 2k1k2 + 5k2
2) + o(r8)

which are definitely different from λ1 = k1 and λ2 = k2. Only the absolute values

of k1 and k2 can actually be deduced from Σ.

.. Another discrete “second fundamental form”

Another method is also introduced in [BC] which, in a nutshell, computes the

covariance matrix of the unit normal vectors projections onto the local tangent

plane. By applying again the continuous asymptotic analysis of section .., we

shall see in Theorem  that this method actually computes discrete approximations

of the squares of the principal curvatures. The discrete algorithm is as follows. Let

M be a C2 surface and p be a point of M. Let (pi)i be the neighbors of p in a

ball neighborhood of radius r. Denote by ni the normal at pi and define vi as the

projection of ni onto the tangent plane at p, then the computed “curvatures” are

defined as the eigenvalues of the covariance matrix of the vectors vi. The vector vi
being the projection of ni onto the tangent plane, we have:

vi =

(

ni · t1
ni · t2

)

Set vm = 1
N

∑N
i=1 vi. Then this new discrete covariance matrix writes Σd =

∑N
i=1(vi − vm) · (vi − vm)

T . In the continuous framework, the local points on

the surface have coordinates m(x, y) = (x, y, 1
2
(k1x

2 + k2y
2) + o(r2)) and the

normal vector to this surface is ∂m
∂x

(x, y) ∧ ∂m
∂y

(x, y) = (−k1x,−k2y, 1) + o(r). It

follows that

v(x, y) =
1

√

1 + k2
1x

2 + k2
2y

2

(

−k1x
−k2y

)

+ o(r),

vm =
1

meas(Br)

∫

v(x, y)dm(x, y),

and the continuous covariance matrix is

Σ :=

∫

Br

(v(x, y)− vm) · (v(x, y)− vm)
T .
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.. Regression-free curvature estimates 

Theorem . The eigenvalues of the covariance matrix Σ of the vectors v(x, y) in the

spherical neighorhood Br are

k2
1r

4π

4
+ o(r4) and

k2
2r

4π

4
+ o(r4).

Proof. Let us compute the mean vm of v(x, y) on the spherical neighborhood. By

Lemma  the integral on a spherical neighborhood is asymptotically equivalent to

the integral on a cylindrical neighborhood and more precisely,

(πr2)vm · t1 =

∫

x2+y2<r2

−k1x
√

1 + k2
1x

2 + k2
2y

2
dxdy + o(r3)

=

∫

x2+y2<r2
−k1x(1−

1

2
k2
1x

2 −
1

2
k2
2y

2)dxdy + o(r3)

= −

∫

θ∈[0,2π],ρ∈[0,r]

k1ρ cos(θ)(1−
ρ2

2
(k2

1 cos
2 θ + k2

2 sin
2 θ))ρdρdθ + o(r3)

= −

∫

θ∈[0,2π],ρ∈[0,r]

k1ρ
2 cos(θ) + Aρ4dρdθ + o(r3) where A is a bounded constant

= −
k1
3

∫

θ∈[0,2π]

r3 cos(θ)dθ + o(r3)

= o(r3)

and similarly

(πr2)vm · t2 =

∫

x2+y2<r2

−k2y
√

1 + k2
1x

2 + k2
2y

2
dxdy + o(r4)

= o(r3)

Thus the coefficients of Σ satisfy, again by Lemma ,

Σ11 =

∫

x2+y2<r2

k2
1x

2

1 + k2
1x

2 + k2
2y

2
dxdy + o(r4)

=

∫

x2+y2<r2
k2
1x

2(1− k2
1x

2 − k2
2y

2)dxdy + o(r4)

= k2
1

∫

θ∈[0,2π],ρ∈[0,r]

ρ3 cos2 θ(1− ρ2(k2
1 cos

2 θ + k2
2 sin

2 θ))dρdθ + o(r4)

=
k2
1r

4

4

∫

θ∈[0,2π]

cos2 θdθ + r6A+ o(r4) with A bounded

=
k2
1r

4π

4
+ o(r4)
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 Chapter . A numerical analysis of raw point cloud smoothing

Similarly,

Σ22 =

∫

x2+y2<r2

k2
2y

2

1 + k2
1x

2 + k2
2y

2
dxdy + o(r4)

=
k2
2r

4π

4
+ o(r4)

and

Σ12 = Σ21 =

∫

x2+y2<r2

k1k2xy

1 + k2
1x

2 + k2
2y

2
dxdy + o(r4)

=

∫

x2+y2<r2
k1k2xy(1− k2

1x
2 − k2

2y
2)dxdy + o(r4)

= k1k2

∫

θ∈[0,2π],ρ∈[0,r]

ρ3 sin(θ) cos(θ)− ρ5 sin(θ) cos(θ)(k2
1 cos

2 θ + k2
2 sin

2 θ)dρdθ + o(r4)

=
k1k2
4

∫

θ∈[0,2π]

sin(θ) cos(θ)r4dθ + Ar6 + o(r4) where A is bounded

= r4
k1k2
4

∫

θ∈[0,2π]

sin(θ) cos(θ)dθ + o(r4)

= o(r4)

Thus at order 4, Σ can be considered diagonal and its eigenvalues are Σ11 and

Σ22 in the principal directions t1 and t2. They asymptotically give an approximation

of each of the squared principal curvatures, but not their sign.

.. A third discrete “fundamental form”

The methods analyzed in sections .. and .. are akin to the original method

introduced in [LT]. Indeed, in [LT] it was proposed to compute the covariance

matrix of the normal vectors of the neighborhood (without projecting them in the

local regression plane) and therefore get a 3 × 3 matrix instead of a 2 × 2 matrix.

This is actually the simplest imaginable method and we shall see that it gives a result

similar to section ...

Theorem . LetM be a C2 surface, let p be a point ofM. Then the three eigenvalues

of the covariance matrix C of the unit normals in a neighborhood of radius r around p

are asymptotically respectively equal to  and to the squares of the principal curvatures

at p.

Proof. A normal vector writes
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.. Regression-free curvature estimates 

N =
1

√

1 + k2
1x

2 + k2
2y

2





−k1x
−k2y
1



+ o(r).

As in the previous sections, we easily obtain by Lemma , Nmx = o(r), Nmy =

o(r), Nmz = 1 + o(r). Thus again by Lemma ,

C=

∫

x2+y2≤r2

1

1 + k2
1x

2 + k2
2y

2





k2
1x

2 k1k2xy k1x(1−Nmz)

k1k2xy k2
2y

2 k2y(1−Nmz)

k1x(1−Nmz) k2y(1−Nmz) (1−Nmz)
2



dxdy+o(r4)

and, by calculations exactly analogous to Section .., C11 =
k2
1
r4π

4
+ o(r4), C22 =

k2
2
r4π

4
+ o(r4), C12 = C21 = k1k2

∫

x,y
xydxdy = o(r4), C13 = C31 = C23 = C32 =

C33 = o(r4).

Thus the eigenvalues are asymptotically equal to
k2
1
r4π

4
and

k2
2
r4π

4
, which also

gives back the squares of the principal curvatures of the surface, but not their sign.

.. A fourth discrete fundamental form: the surface variation

We shall now analyze a last variant introduced in [PGK], the so called surface

variation. It is again based on a local covariance analysis. Unlike the previous

methods, the surface variation was not claimed to be a curvature estimate, but to

be a measure of the neighborhood shape. This subsection establishes again a link

between this discrete quantity and the principal curvatures of the surface.

Let p be a point with given neighborhood Br. Let o be the barycenter of the

neighborhood. In R
3, the coordinates are written with superscripts e.g. the coordi-

nates of a point u are (u1, u2, u3). Thus, for i = 1, 2, 3, oi = 1
cardBr

∑

pk∈Br
pik. The

centered covariance matrix Σ = (mij)i,j=1,··· ,3 is defined as mij =
∑

pk∈Br
(pik −

oi) · (pjk − oj) for i, j = 1, 2, 3. Let λ0 ≤ λ1 ≤ λ2 be the eigenvalues of Σ with

corresponding eigenvectors v0, v1, v2. For k = 0, · · · , 2,

λk =
∑

pi∈Br

〈(pi − o), vk〉
2. (.)

Each eigenvalue gives the variance of the point set in the direction of the corre-

sponding eigenvector. Since v1 and v2 are the vectors that capture most variations,

they define the PCA regression plane. The normal v0 to this plane is the direction

v minimizing
∑

pi∈Br
〈(pi − o), v〉2. [PGK] defines the surface variation by

σ =
λ0

λ0 + λ1 + λ2

. (.)
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 Chapter . A numerical analysis of raw point cloud smoothing

This quantity measures the ratio of variance along the normal to the total variance.

If the neighborhood is highly curved, its surface variation will be high and if the

neighborhood is flat the surface variation will be small. This quantity has the prop-

erty to be bounded between 0 (flat case) and 1/3 (isotropic distribution case).

Lemma . In the local intrinsic coordinate system, the barycenter of a neighborhood

Br of point p has coordinates xo = o(r2), yo = o(r2) and zo = Hr2

4
+ o(r2), where

H = k1+k2
2

is the mean curvature at p.

Proof. By Lemma  applied to the numerator and denominator of the following

fraction, we have

zo =

∫

Br
zdm

∫

Br
dm

=

∫

x2+y2<r2
z(x, y)dxdy +O(r5)

∫

x2+y2<r2
dxdy +O(r3)

=

∫

x2+y2<r2

[

1
2
(k1x

2 + k2y
2) + o(x2 + y2)

]

dxdy
∫

x2+y2<r2
dxdy

+O(r3)

=
1

2πr2

∫ r

ρ=0

∫ 2π

θ=0

ρ2(k1 cos
2 θ + k2 sin

2 θ)ρdρdθ + o(r2)

=
r2

8π
(k1π + k2π) + o(r2) =

Hr2

4
+ o(r2).

A similar but simpler computation yields the estimates of xo and yo.

Theorem . In the local coordinate system the surface variation σ satisfies

σ =
r2

16

(

k2
1 + k2

2

2
−

1

3
k1k2

)

+ o(r2) (.)

Proof. We need to explain what the covariance eigenvalues stand for. Each eigenvec-

tor vi and associated eigenvalue λi represent a principal direction and the variation

along this principal direction:

λi =

∫

m∈Br

〈om, vi〉
2dm

Since we have λ0 ≤ λ1 ≤ λ2, we can see that λ0 is associated to the direction

with the least variation namely the normal direction to the surface oz. Since the

eigenvectors form an orthonormal basis, we have

λ0 + λ1 + λ2

=

∫

m∈Cr

〈om, v0〉
2 + 〈om, v1〉

2 + 〈om, v2〉
2dm

=

∫

m∈Cr

‖om‖2dm
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.. Regression-free curvature estimates 

This yields

λ0 + λ1 + λ2 =

∫

x2+y2<r2
x2 + y2 + (z − zo)

2dxdy

and

λ0 + λ1 + λ2 =
πr4

2
+ λ0 + o(r6) (.)

We first compute λ0, applying again Lemma  to get back to the easy cylindrical

neighborhood.

λ0 =

∫

x2+y2≤r2
(z − zo)

2dxdy

=

∫

x2+y2≤r2
z2dxdy + z2o

∫

x2+y2≤r2
dxdy − 2zo

∫

x2+y2≤r2
zdxdy

=

∫

x2+y2≤r2
z2dxdy +

H2r4

16
∗ πr2 − 2

Hr2

4

r4

4
πH + o(r6)

=
1

4
(k2

1

∫

x2+y2≤r2
x4dxdy + k2

2

∫

x2+y2≤r2
y4dxdy + 2k1k2

∫

x2+y2≤r2
x2y2dxdy

−
H2r6

16
π + o(r6)

=
1

4

r6

6
(
3π

4
(k2

1 + k2
2) + k1k2

π

2
)−

H2r6

16
π + o(r6)

where H = k1+k2
2

is the mean curvature. Thus

λ0 =
πr6

32
(
k2
1 + k2

2

2
−

1

3
k1k2) + o(r6) (.)

Using . and . we get:

σ =
r2

16
(
k2
1
+k2

2

2
− 1

3
k1k2) + o(r2)

1 + r2

16
(
k2
1
+k2

2

2
− 1

3
k1k2) + o(r2)

which finally yields:

σ =
r2

16

(

k2
1 + k2

2

2
−

1

3
k1k2

)

+ o(r2)

The formula of the surface variation given by Theorem  indeed measures a sort

of curvature. To interpret it we can notice that
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 Chapter . A numerical analysis of raw point cloud smoothing

• the surface variation is symmetric in k1,k2;

• in the case of a point lying on a sphere, k1 = k2 = k so σsphere =
r6

24
k2;

• in the case of a saddle point k1 = k = −k2, σsaddle = r6

12
k2 so σsphere <

σsaddle;

• in the case of a cylinder k1 = k, k2 = 0, σcylinder =
r6

32
k2.

It follows from that the surface variation is not a discriminant information on the

surface curvature, being unable to discriminate between very different local shapes.

. The MLS projection

We shall now explore a more efficient way of computing locally at least the mean

curvature, and to use it as a scale space. The main tool of the scale space proposed

in [DMMSL] is a simple projection of each surface point p on the local regres-

sion plane. This PCA regression plane is defined as the plane orthogonal to the least

eigenvector of the centered local covariance matrix, and passing through the cen-

troid of the neighborhood. The projection of p on this plane will be called p′. This

projection method is the simplest instance of the moving least square method (MLS)

by which each point of a surface is projected to a polynomial regression. The local

barycenter can be considered as an MLS of order , MLS, and the present projec-

tion on a plane is an order  MLS, which we shall denote by MLS. The next lemma

compares the normal to the PCA regression plane with the normal to the surface,

n at p.

Lemma . The normal v to the PCA regression plane in a spherical neighborhood

Br at p ∈ M is equal to the surface normal at point p, up to a negligible factor:

v = n+O(r).

Proof. The local PCA regression plane of point p is characterized as the plane pass-

ing through the barycenter of the neighborhoodBr and with normal v minimizing:

I(v) =

∫

Br

|〈v, pp′〉|2dp′ s.t. ‖v‖ = 1

Denoting by (vx, vy, vz) the coordinates of v,

I(v) =

∫

Br

(vxx+ vyy + vz
1

2
(k1x

2 + k2y
2) + o(r2))2dxdy.

Considering the particular value v = (0, 0, 1) shows that the minimal value Imin

of I(v) satisfies Imin ≤ O(r6). In consequence the minimum (vx, vy, vz) satisfies

vx ≤ O(r) and vy ≤ O(r). Thus, since ||v|| = 1, vz ≥ 1 − O(r) and therefore

v = n+O(r).
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.. Asymptotics of MLS and MLS 

By Lemma , projecting p onto the regression plane induces a motion which is

asymptotically in the normal direction: p′p is almost parallel to n. Lemma  stated

that sending each point onto the barycenter of its neighborhood approximates the

mean curvature motion. We shall discuss later on why this result cannot be used

for implementing the mean curvature motion. Nevertheless, the simple projection

of each surface point p onto its local regression plane approximates a D scale space

(mean curvature motion) as shown in the next theorem, and this discrete approxi-

mation will show very efficient.

Theorem . Let Tr be the operator defined on the surfaceM transforming each point

p into its projection p′ = Tr(p) on the local regression plane. Then

Tr(p)− p =
Hr2

4
n+ o(r2). (.)

Proof. By Lemma  the barycenter o of Br has local coordinates −→po =

(o(r2), o(r2), Hr2

4
+ o(r2)). On the other hand

−→
pp′ is proportional to the normal

to the regression plane, v. Thus by Lemma 
−→
pp′ = λ(O(r), O(r), 1 − O(r)). To

compute λ, we use the fact that p′ is the projection on the regression plane of p, and

that o belongs to this plane by definition. This implies that
−→
pp′ ⊥

−→
op′ and therefore

λ2O(r2) + λ(1−O(r))(H
r2

4
+ o(r2) + λ(1−O(r))) = 0,

which yields λ = Hr2

4
+ o(r2) and therefore

−→
pp′=(O(r3), O(r3),

Hr2

4
+ o(r2))=

Hr2

4
n+ o(r2).

. Asymptotics of MLS and MLS

There is some particular interest in MLS, because the recent meshing method uses

it as a very simple and reversible smoothing tool for point clouds ([DMMSL]

and chapter ). On the other hand many cloud point processing methods involve

some variant of the MLS method to smooth, interpolate, or sub-sample a point

cloud. MLS and MLS are smoothing operators and therefore could be used as

scale spaces, that is, as iterative smoothing operators. But, following [DMMSL]

MLS indeed is a scale space and MLS is not, as illustrated in the experiments of

Section .. The theorems of this section clarify what happens, by first showing that
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 Chapter . A numerical analysis of raw point cloud smoothing

MLS implements very accurately a mean curvature motion, and second that MLS

is insensitive to first, second, and third order intrinsic derivatives and has an order

 difference to the original surface. Thus, it is to be expected that by MlS a smooth

surface will have only a very small motion. This is verified in the experimental

section. We start with the asymptotic analysis of MLS.

Theorem . Consider a smooth manifold and its intrinsic coordinates at a point

p(0, 0), so that the Taylor expansion in a neighborhood of p satisfies

z = f(x, y) =
1

2
k1x

2 +
1

2
k2y

2 + f3(x, y) + f4(x, y) + f5(x, y) +O(r6)

where fi are homogeneous polynomials in x, y of global degree i. The order  MLS

approximation MLS1(p) of p in a radial neighborhood of p with radius r satisfies

< MLS1(p)− p,n >=
r2

8
(k2 + k1) +O(r3)

where x and y are the coordinates, k1 and k2 are the principal curvatures and n is the

normal to the surface at p, oriented towards the concavity.

Lemma . One can choose the coordinates x and y in the regression plane at p so

that, z being the coordinate in the direction of the normal plane, the equation of the

manifold around p has the form z = f(x, y) =
∑5

i,j=1 aijx
iyj + o(|x2 + y2|3), and

in addition aij = ãij(1+O(r)), where z = f̃(x̃, ỹ) =
∑5

i,j=1 aijx̃
iỹj+o(|x̃2+ ỹ2|3)

is the equation of the manifold in the coordinates (x̃, ỹ, z̃) defined by the normal at p

and the directions of the principal curvatures.

Proof. Consider (x̃, ỹ, z̃) the coordinates in the intrinsic frame such that x̃ and ỹ

are the coordinates associated with the principal curvatures at p, and the plane

x̃pỹ is the tangent plane. Consider now coordinates (x, y, z) associated with the

regression plane in a spherical neighborhood. Because the normal at the regression

plane tends to the real normal when the spherical neighborhood shrinks, we can

choose the coordinate axes (x, y) in the regression plane so that the rotation R

which sends one frame to the other is close to the identity, namely

(x̃, ỹ, z̃) = R(x, y, z) (.)

is close to the identity: R → Id when r → 0. More precisely, by Lemma , the

normal v(r) to the PCA regression plane in a spherical neighborhood Br at p ∈M
is equal to the surface normal at point p, up to a negligible factor: v(r) = n+O(r).

Thus we also have

R = R(r) = I +O(r). (.)
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.. Asymptotics of MLS and MLS 

Consider now the asymptotic expansion of z̃ as a function of x̃, ỹ. (We assume

the manifold to be at least C5):

z̃ − g̃(x̃, ỹ)−O((x̃2 + ỹ2)
5

2 ) = 0.

Because of the relation (.) we can consider the above equation as an implicit

equation in z, x, y, R, namely

Q(x, y, z, R)−O((x2 + y2 + z2)
5

2 ) = 0. (.)

However, by the chain rule we have ∂Q
∂z
(0, 0, 0, Id) = 1. Thus by the implicit func-

tion theorem, there is a function h of class C5 such that in a neighborhood of

(0, 0, 0, Id), (.) is equivalent to

z = h(x, y, R).

Since h is C5 we can make a Taylor expansion and therefore get

z = g(x, y, R) +O(||R− Id||5 + (x2 + y2)
5

2 ).

In particular for R = Id we obtain by identification of the terms with degree lower

than  that g(x, y, Id) = f̃(x, y). Thus, all monomials aij(R)xiyj in the expansion

of f with respect to x, y satisfy ai,j(R) = ãi,j(Id)+O(I−R), which by (.) yields

ai,j(r) = ãi,j +O(r).

Proof of Theorem  In the local coordinate system, the surface can be described

as the graph

z = f(x, y) = f1(x, y)+ f2(x, y)+ f3(x, y)+ f4(x, y)+ f5(x, y)+ o(|x2+ y2|5/2)

where

f1(x, y) = a10x+ a01y, f2(x, y) = a20x
2 + a11xy + a02y

2

f3(x, y) = a30x
3 + a21x

2y + a12xy
2 + a03y

3,

f4(x, y) = a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4;

f5(x, y) = a50x
5 + a41x

4y + a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5.

Let us find the order 1 polynomial g that best fits this surface in the least squares

sense. Set g(x, y) = αx + βy + θ Then we must find the parameters Θ =
(

α β θ)
)

which minimize

∫

x2+y2<r2
(g(x, y)− f(x, y))2dxdy =

∫

x2+y2<r2
(XΘT − f(x, y))2dxdy,
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 Chapter . A numerical analysis of raw point cloud smoothing

where X =
(

x y 1
)

. This is a quadratic minimization and the derivation yields

∫

x2+y2<r2
XT (XΘT − f(x, y))dxdy = 0,

and therefore

ΘT =

(∫

x2+y2<r2
(XTX)

)−1 ∫

x2+y2<r2
(XTf(x, y)).

Let us compute the matrix M =
∫

x2+y2<r2
(XTX).

M =

∫

x2+y2<r2





x2 xy x

xy y2 y

x y 1



 dxdy =
πr4

4





1 0 0

0 1 0

0 0 4
r2



 ;

M−1 =
4

πr4





1 0 0

0 1 0

0 0 r2

4



 .

We also have

XTf1(x, y) =
πr4

4





a10
a01
0



 , XTf2(x, y) =
πr4

4





0

0

a20 + a02





XTf3(x, y) =
πr4

4





r2

6
(3a30 + a12)

r2

6
(a21 + 2a03)

0



, XTf4(x, y) =
πr4

4





0

0
r2

6
(3a40 + a22 + 3a04)



,

XTf5(x, y) =
πr4

4





r4

16
(5a50 + a32 + a14)

r4

16
(a41 + a23 + 5a50)

0





Thus the parameter Θ satisfies

Θ = M−1XT

∫

x2+y2<r2
f(x, y) =





a10 +
r2

6
(a12 + 3a30) +

r4

16
(5a50 + a32 + a14) +O(r5)

a01 +
r2

6
(3a03 + a21) +

r4

16
(a41 + a23 + 5a05) +O(r5)

(a20 + a02)
r2

4
+ r4

24
(3a04 + a22 + 3a40) +O(r6)



 .

This means that the projection on the plane generates a motion of amplitude

r2

4
(a20 + a02) +

r4

24
(3a04 + a22 + 3a40) +O(r6),

Finally, Lemma  permits to replace aij by ãij(1 + O(r)) where ãij are the coeffi-

cients in the frame defined by the principal curvature eigenvectors and the normal.
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.. Asymptotics of MLS and MLS 

In this frame ã20 =
1
2
k1 and ã02 =

1
2
k2. So that the final formula for the projection

on the regression plane is:

(
r2

8
(k2 + k1)+

r4

24
(3ã04 + ã22 +3ã40)+O(r6))(1+O(r)) =

r2

8
(k2 + k1)+O(r3)

�

.. The asymptotic behavior of MLS

We need to specify a simple version of MLS, prone to an asymptotic analysis, but

in agreement with the literature. The following version seems to be a sort of com-

mon denominator of all versions. The first difficulty of MLS is the fact that a first

reference frame must be found, and that then the mean square approximation by

order  polynomials is made in this reference frame. The most natural frame is

found by applying MLS, and the coordinates (x, y) is therefore the coordinates in

the regression plane in a spherical neighborhood Br. The second step is to find the

mean square closest order  polynomial in the spherical neighborhood. Because of

Lemma  we can specify without loss of generality or precision that the minimiza-

tion is made in the cylindrical neighborhood Cr. In that way, all integrals computed

in the approximation process are integrals on the disk x2+y2 ≤ r2, which is numer-

ically and formally convenient. Thus the MLS algorithm specified for the analysis

works in the two steps:

. compute the regression plane of the manifold in the spherical neighborhood

Br = Br(p) ∩M;

. call (x, y) the reference coordinates in the regression plane. Consider the

restriction of the smooth manifold to the disk Dr := x2 + y2 ≤ r2, z =

f(x, y). Then find the order  polynomial g(x, y) that best approximates f

for the L2(Dr) distance;

. set (in the reference frame) MLS2(p) := (0, 0, g(0, 0)).

The next theorem shows that unlike MLS which reveals the mean curvature,

the difference between a point smoothed by MLS and its original position is very

small (of order ) and actually only reveals a fourth order intrinsic operator. The

result is actually interesting because the revealed fourth order operator is a kind of

bilaplacian. The evolution by MLS is a fourth order equation that is intuitively

well-posed at least for short times. Viewed that way, the next theorem finds a very

simple and efficient numerical scheme for at least one fourth order intrinsic evolu-

tion.
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 Chapter . A numerical analysis of raw point cloud smoothing

Theorem . Consider a smooth manifold and its intrinsic coordinates at a point

p(0, 0), so that the Taylor expansion in a neighborhood of p satisfies

z = f(x, y) =
1

2
k1x

2 +
1

2
k2y

2 + f3(x, y) + f4(x, y) + f5(x, y) +O(r6)

where fi are homogeneous polynomials in x, y of global degree i. The order  MLS

approximation MLS2(p) of p in a cylindrical neighborhood of p with radius r satisfies

< MLS2(p)− p,n >= −
r4

48
(3a04 + a22 + 3a40)) +O(r5)

where x and y are the coordinates of the principal curvatures, a40 = 1
4!

∂4f
∂x4 , a04 =

1
4!

∂4f
∂y4

, a22 = 1
4!

∂4f
∂x2∂2y

are the fourth derivatives of the intrinsic equation at p in the

directions of x, y and x, y respectively, and n is the normal to the surface at p, oriented

towards the concavity.

Proof. Let us write f(x, y) = f1(x, y) + f2(x, y) + f3(x, y) + f4(x, y) + f5(x, y) +

o(|x2 + y2|5/2) where

f1(x, y) = a10x+ a01y, f2(x, y) = a20x
2 + a11xy + a02y

2

f3(x, y) = a30x
3 + a21x

2y + a12xy
2 + a03y

3,

f4(x, y) = a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4,

f5(x, y) = a50x
5 + a41x

4y + a32x
3y2 + a23x

2y3 + a14xy
4 + a05y

5.

We look for the order 2 polynomial g that best fits this surface in the least squares

sense,

g(x, y) = αx2 + βy2 + γxy + δx+ εy + θ.

We therefore must find the parameters Θ =
(

α β γ δ ε θ)
)

which minimize

∫

x2+y2<r2
(g(x, y)− f(x, y))2dxdy =

∫

x2+y2<r2
(XΘT − f(x, y))2dxdy

where X =
(

x2 y2 xy x y 1
)

. This is a quadratic minimization and differ-

entiating this integral with respect to Θ yields

∫

x2+y2<r2
XT (XΘT − f(x, y))dxdy = 0.

Writing M =
∫

x2+y2<r2
XTX, finally:

ΘT =

(∫

x2+y2<r2
(XTX)

)−1 ∫

x2+y2<r2
(XTf(x, y));
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.. Asymptotics of MLS and MLS 

ΘT = M−1

∫

x2+y2<r2
XT (f1(x, y)+f2(x, y)+f3(x, y)+f4(x, y)+f5(x, y)+O((x2+y2)3);

XTX =

















x4 x2y2 x3y x3 x2y x2

x2y2 y4 xy3 xy2 y3 y2

x3y xy3 x2y2 x2y xy2 xy

x3 xy2 x2y x2 xy x

x2y y3 xy2 xy y2 y

x2 y2 xy x y 1

















.

When integrating on the disk, most terms vanish and we get

M =
πr4

4



















r2

2
r2

6
0 0 0 1

r2

6
r2

2
0 0 0 1

0 0 r2

6
0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 1 0 0 0 4
r2



















;

M−1 =
4

πr4

















9
2r2

3
2r2

0 0 0 −3
2

3
2r2

9
2r2

0 0 0 −3
2

0 0 6
r2

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

−3
2
−3

2
0 0 0 r2

















.

Therefore

ΘT =M−1

∫

x2+y2<r2
XTf1(x, y) +M−1

∫

x2+y2<r2
XTf2(x, y)

+M−1

∫

x2+y2<r2
XTf3(x, y) +M−1

∫

x2+y2<r2
XTf4(x, y)

+M−1

∫

x2+y2<r2
XTf5(x, y) + +M−1

∫

x2+y2<r2
XTO((x2 + y2)4)

When computing
∫

x2+y2<r2
XTf1(x, y) most terms vanish, leaving

∫

x2+y2<r2
XTf1(x, y) =

πr4

4













0

0

0

a10
a01













.
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 Chapter . A numerical analysis of raw point cloud smoothing

Again computing
∫

x2+y2<r2
XTf2(x, y) most terms vanish and we get

∫

x2+y2<r2
XTf2(x, y) =

πr4

4



















r2

6
(3a20 + a02)

r2

6
(a20 + 3a02)

r2

6
a11
0

0

a20 + a02



















.

Similarly,

∫

x2+y2<r2
XTf3(x, y) =

πr4

4



















0

0

0
r2

6
(3a30 + a12)

r2

6
(a21 + 3a03)

0



















;

∫

x2+y2<r2
XTf4(x, y) =

πr4

4



















r4

16
(5a40 + a22 + a04)

r4

16
(a40 + a22 + 5a04)

r4

16
(a31 + a13)

0

0
r2

6
(3a40 + a22 + 3a04)



















.

Finally,

∫

x2+y2<r2
XT (f5(x, y)) =

















0

0

0
∫

a50x
5 + a32x

4y2 + a14x
2y4dxdy

∫

a41x
4y2 + a23x

2y4 + a05y
6dxdy

0

















=
πr4

4



















0

0

0
r4

16
(5a50 + a32 + a14)

r4

16
(a41 + a23 + 5a05)

0



















;
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.. Asymptotics of MLS and MLS 

∫

x2+y2<r2
XT (x2 + y2)3 =

πr4

4



















2r6

5
2r6

5

0

0

0
r4

2



















.

Multiplying all of these results by the matrix M−1, we get

M−1

∫

x2+y2<r2
XTf1(x, y) =

















0

0

0

a10
a01
0

















; (.)

M−1

∫

x2+y2<r2
XTf2(x, y) =

















a20
a02
a11
0

0

0

















; (.)

M−1

∫

x2+y2<r2
XT (f3(x, y)) =



















0

0

0
r2

6
(3a30 + a12)

r2

6
(a21 + 3a03)

0



















; (.)

M−1

∫

x2+y2<r2
XT (f4(x, y)) =



















r2

8
(6a40 + a22)

r2

8
(a22 + 6a04)

3r2

8
(a31 + a13)

0

0

− r4

48
(3a40 + a22 + 3a04)



















; (.)

M−1

∫

x2+y2<r2
XT (f5(x, y)) =



















0

0

0
r4

16
(5a50 + a32 + a14)

r4

16
(a41 + a23 + 5a05)

0



















; (.)
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 Chapter . A numerical analysis of raw point cloud smoothing

M−1

∫

x2+y2<r2
XT (x2 + y2)3 =



















33r4

20
33r4

20

0

0

0

−7r6

10



















, (.)

and combining equations (.), (.), (.), (.), (.) and (.) we finally

obtain the parameter Θ

ΘT =



















a20 +
r2

8
(a22 + 6a40) +O(r4)

a02 +
r2

8
(a22 + 6a04) +O(r4)

a11 +
3r2

8
(a13 + a31) +O(r4)

a10 +
r2

6
(a12 + 3a30) +

r4

16
(5a50 + a32 + a14) +O(r5)

a01 +
r2

6
(3a03 + a21) +

r4

16
(a41 + a23 + 5a05) +O(r5)

− r4

48
(3a04 + a22 + 3a40) +O(r6)



















so that the MLS projection satisfies

g(0, 0) = −
r4

48
(3a04 + a22 + 3a40) +O(r6).

Finally Lemma  permits to replace

g(0, 0) = −
r4

48
(3a04 + a22 + 3a40) +O(r6).

by

−(
r4

48
(3ã04 + ã22 +3ã40) +O(r6))(1+O(r)) = −

r4

48
(3ã04 + ã22 +3ã40) +O(r5)

. Numerical experiments

This section shows experiments with the most significant algorithms described in

the previous sections. A simulated randomly sampled sphere plays the role of nu-

merical pattern. In particular we evaluate the curvatures given by MLS on the

sphere, and the curvatures given by MLS projection, by polynomial regression.

We also compute the curvature estimated by the method described in [BC] and

by the surface variation of [PGK]. The results are compared by giving the mean
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.. Numerical experiments 

estimated curvature and its standard variation. The input data is a randomly sam-

pled sphere with radius 2 corrupted with added centered Gaussian noise of variance

0.1.

Iteration
MLS MLS

mean standard variation mean standard variation

0 0.5828 2.8609 0.052 1.2879

1 0.5158 1.2434 0.4920 1.0053

2 0.5079 0.3196 0.5083 0.1259

3 0.5102 0.0253 0.5073 0.1001

4 0.5136 0.0189 0.5068 0.0855

5 0.5171 0.0165 0.5065 0.0749

10 0.5356 0.0156 0.5058 0.0489

Figure .: Comparison of the curvature estimation by iteration of the MLS pro-

jection and iterations of the MLS projection

By comparing the values in tab. ., two conclusions can be drawn: first, MLS

is much more stable than the MLS projection, which can be observed by the stan-

dard variation on the estimates. Second, the MLS projection does not implement

a mean curvature motion. The MLS projection instead yields an increase of the

mean curvature (i.e., the sphere radius decreases, which is expected from a mean

curvature motion). The standard deviation of the radius of the sphere gets smaller

by MLS than by MLS, meaning that MLS is a better curvature estimator. The sur-

face variation of this point set is 0.1419 with standard variation 0.009. Finally, the

mean curvature computed by normal covariance analysis is 2.4565 with variance

0.1026.

On real surfaces (Figs ., . and .), we present various curvature distribution

and surface variation distributions. Intuitively, a mean curvature motion corre-

sponds well to the MLS projection.

To better judge of the smoothing effect of the projection on the regression plane

operator, we show the following experiment. First a consistently oriented point set

is built (see [DMMSL] or chapter  for an efficient way of doing so). This normal

orientation yields the sign of the mean curvature, by computing the scalar product

of the oriented normal and the displacement vector. Each point is then plotted in

a different color according to its sign, blue for positive and red for negative (see

Fig .). This experiment shows that, at the beginning, the sign captures noise and

small textures (i.e., small scale variations), and after some iterations, the shape is

smoothed and the sign captures the geometry of the shape (large scale variations).
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 Chapter . A numerical analysis of raw point cloud smoothing

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure .: Curvature evolution by iterative projection on MLS

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3 (d) Iteration 4

Figure .: Curvature evolution by iterative projection on MLS .

Conclusion

In this chapter, we analyzed several proposition of discrete operators computing

curvatures or curvature-like operators computed on surfaces defined by raw point
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.. Numerical experiments 

(a) Surface variation (b) Curvature by nor-

mal covariance analysis

Figure .: Other curvature estimates .

Figure .: Evolution of the motion direction with projection iterations.

clouds. We showed that these clever methods unfortunately only at best recover

the squared principal curvatures, and loose their signs. The analysis of MLS led

us to a new intrinsic partial differential equation whose theoretical analysis could

prove interesting. Computing k1 and k2 with their signs by a local statistical filter

remains an open problem. Another problem arising from the present study can be

called the constant sampling density problem: starting from an irregular sampling, is

it possible to compute weights associated with each sample, in such a way that the
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 Chapter . A numerical analysis of raw point cloud smoothing

sum of weights is constant over all discrete Euclidean neighborhoods with a fixed

size? To the best of our knowledge, there is no answer to this question yet, although

this problem appears crucial to the field of numerical surface motion. Finally the

simplest analysis performed in this chapter (the analysis of the MLS projection)

yields a mean curvature motion, and this operator, proven very robust to irregular

sampling, has already multiple practical applications (see chapters  and  which

are detailed versions of [DMMSL] and [DMAL]).
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Chapter 8

Color Cloud Visualization

Contents
. Color clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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 Chapter . Color Cloud Visualization

Abstract: This chapter shows a striking illustration of the robustness

of the scale space meshing method. The authors of [BLM] have re-

cently shown that the color histograms of natural images are essentially

two-dimensional. Their main tool to prove this fact was to apply the

projection on regression plane filter to the color histogram, a D point

cloud, and to show that after a few iterations the point cloud stabilizes

on a D surface. This occurs in general without any visible alteration of

the image when replacing the original color by the filtered colors. But

to do so, the projection filter must be applied at a quite different scale

than for high quality point clouds. The numerical situation is much

more involved, the size of the neighborhoods for the projection fitter

being about % the point cloud diameter. In this chapter, the scale

space meshing method is optimized to handle such very large neigh-

borhoods, which raises serious memory management issues. While in

[BLM] the point clouds are only filtered by the projection filter, here

we show that they can also be meshed. This reveals better the fascinat-

ing topology of color point clouds and the improved implementation

permits to handle very large color images, confirming and revealing

their D structure. Processing the color coulds (which have a very low

signal noise ratio), proves that scale space meshing can not only handle

high precision but also noisy data.

Introduction

Color images are functions defined on Ω ⊂ R
2 with values commonly clipped in

[0, 255]3 in the RGB color space. By dissociating pixel values from pixel positions,

we get a set of D values in the color cube [0, 255]3. These values constitute the

color histogram of the image, a “color cloud” that will be filtered by the algorithm.

The idea behind the projection on the regression plane is that the underlying struc-

ture of the color cloud is essentially 2-dimensional, otherwise the whole procedure

would be pointless. The question of the dimensionality of color clouds has been in-

vestigated: [OW] proposed a linear model to account for the color clouds struc-

tures. In [BLM], it is shown that the D model accounted much better for the

colors in the image. By a statistical analysis and numerical comparison between a

D filtering and D filtering, this paper confirms that the color clouds are essentially

D, roughly up to a % error. In other terms the clouds can be modeled as a (thick)

D manifold. By the projection filter, the color clouds can be filtered to become

really D surfaces, whose visualization is no more obscured by a few stray color

points. Here, thanks to a careful numerical analysis, we were able to test this D hy-

pothesis on far larger color images (2048× 1536 or 3648× 2736 pixels) than those
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.. Color clouds 

studied in [BLM]. In addition, the filtered color clouds could then be meshed by

scale space meshing to get a visualization of the color sheets at any smoothing scale.

. Color clouds

Each pixel stores a five dimensional information (2 parameters for space informa-

tion and 3 parameter for color information: red, green and blue channel). As stated

before, if we consider only the color information, then we have a D point cloud

contained in the ([0, 255]3) cube. An example of a natural image and its color cloud

can be seen on figure ..

(a) Fish image (b) Fish color cloud

Figure .: Example of a color cloud .

. Implementation

The main difference with usual point cloud surfaces coming from triangulation

scanners is that such data bring us close to the complexity worst case. Indeed the

points are much more spread out in the color cube than they are in a good quality

scan. This means that many more octree cells are actually occupied. As a result

an acceleration of the code must be introduced. A difference is that the octree size

stays always the same: S = 255 (in fact we set it to 265 to allow for a small error).

Given a filtering radius r specified by the user (which according to [BLM] goes

from 5, 10 to 20), an octree depth d can be inferred so that the leaf size l is:

S

2l+2
< r <

S

2l+1
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 Chapter . Color Cloud Visualization

Because of the order of magnitude of the radius, this would mean an octree

depth of less than 4, and would therefore make the neighbor search intractable.

In order to accelerate the search, we use the fact that we do not need the neigh-

bors individually. Indeed, we only need to compute their covariance matrix and

barycenter. If each cell (be it leaf or not) stores its barycenter, number of points and

un-centered covariance, then each time the cell is entirely included inside the ball

centered at the query point p and with radius r, the cell barycenter and coefficients

should be considered instead of computing the covariance from the set of neighbor-

ing points. More specifically, when computing the local regression plane, we only

need to compute the neighborhood covariance Σ and the barycenter o from the set

of Nr neighboring points. The covariance being a symmetric matrix, we only store

its upper coefficients.

When building a tree, values must be stored in each cell. Each time a point p

is added to the octree, each cell C it traverses when going down in the tree until

reaching the leaf, updates part of the un-centered covariance matrix A and the un-

normalized barycenter q:

a00 = a00 + p.x2

a01 = a01 + p.x · p.y

a02 = a02 + p.x · p.z

a11 = a11 + p.y2

a12 = a12 + p.y · p.z

a22 = a22 + p.z2

and unnormalized barycenter coefficients

q.x = q.x+ p.x

q.y = q.y + p.y

q.z = q.z + p.z,

and the number of points N = N + 1. When a query point p is given and we look

at cells intersecting its r-ball, then the following alternative decisions can be made

• If the cell is included in the ball neighborhood, the coefficients of A (respec-

tively q) are added to the coefficients of Σ (resp o) and the number of neigh-

bors Nr = Nr +N ;

• If the cell is not included in the ball neighborhood and does not intersect the

ball neighborhood, discard it;
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.. Results 

• If the cell is not included in the ball neighborhood but intersects the ball then:

– If the cell is a leaf then look individually at the points it contains and

update Σ, o, Nr accordingly;

– If the cell is not a leaf then process all of its children cells using the same

method.

At the end we have the upper coefficients of the un-centered covariance matrix Σ,

the sum of all neighbor coordinates O and the number of neighbors and the final

values can be deduced as

o.x = o.x/Nr

o.y = o.y/Nr

o.z = o.z/Nr

Σ00 = Σ00 −Nr · o.x
2

Σ01 = Σ01 −Nr · o.x · o.y

Σ02 = Σ02 −Nr · o.x · o.z

Σ11 = Σ11 −Nr · o.y
2

Σ12 = Σ12 −Nr · o.y · o.z

Σ22 = Σ22 −Nr · o.z
2

Remembering that Σ is symmetric, we obtain the final centered covariance and

barycenter. This simplification explains why when using a high depth value, the

computation time can be reduced. Its drawback is that high depth values require a

larger memory use (by increasing the octree depth by 1, 8 times more pointers are

created!).

. Results

Result of color cloud filtering are shown on figs ., ., ., ., ., ., ., .,

..

One can see on fig . that the perception of the image barely changes, over the

iterations. By looking closely, however, one can notice that some colors disappeared

(fig. .).

Conclusion

This chapter verified on numerous examples that applying the regression plane pro-

jection operator to a color cloud did not change a lot the perception of the image
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 Chapter . Color Cloud Visualization

(a) Original Image (b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

(f) Iteration  (g) Iteration 

Figure .: Evolution of image “Turin”: original image and image evolution (top

row) and two views of its color cloud (two last rows) after 1 and 10 iterations.

therefore comforting the theory of [BLM]. The filter is very fast when applied to

small size images (below 1000 × 1000), yet when the image size increases, a good

compromise must be found between time efficiency and memory use. A useful

addition to [BLM] is that now the noisy color cloud can even be meshed at all

scale by scale space meshing. Experimental evidence shows that the mesh is already

visible after only one filtering iteration.
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.. Results 

(a) Detail of the initial image (b) Detail of the filtered image

Figure .: Color loss in the image filtering.

(a) Original Image (b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

(f) Iteration  (g) Iteration 

Figure .: Evolution of a color image with iterative projection filter (radius )

(top row) and color cloud (bottom row)
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 Chapter . Color Cloud Visualization

(a) Original Image

(b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

(f) Iteration  (g) Iteration 

Figure .: Evolution of a color image with iterative projection filter (radius ).
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.. Results 

(a) Original Image (b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

(f) Iteration  (g) Iteration 

Figure .: Evolution of image “fish” with iterative projection filter (radius ).

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



 Chapter . Color Cloud Visualization

(a) Original Image (b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

Figure .: Evolution of image “flowers” with iterative projection filter (radius ).

(a) Original Image

(b) Iteration , radius



(c) Iteration , radius



(d) Iteration , radius



(e) Iteration , radius



(f) Iteration , radius  (g) Iteration , radius



(h) Iteration , radius



(i) Iteration , radius



(j) Iteration , radius  (k) Iteration , radius



(l) Iteration , radius  (m) Iteration , radius



Figure .: Comparison of the filtering between  iterations of the projection filter

with radius 10 and 20.
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.. Results 

(a) Original Fresco Image

(b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

(f) Iteration  (g) Iteration 

Figure .: Evolution of image “fresco” with iterative projection filter (radius ).
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 Chapter . Color Cloud Visualization

(a) Original “Orange tree” Im-

age

(b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

(f) Iteration  (g) Iteration 

Figure .: Evolution of image “Orange tree” with iterative projection filter (radius

).
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.. Results 

(a) Detail of the initial image (b) Detail of the filtered image

Figure .: Color change.
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 Chapter . Color Cloud Visualization

(a) Original Image (b) Iteration  (c) Iteration 

(d) Iteration  (e) Iteration 

(f) Iteration  (g) Iteration 

Figure .: Evolution of image “road” with iterative projection filter (radius ).
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Chapter 9

Conclusion

In this thesis, a whole point cloud processing pipeline from the acquisition to the

final mesh segmentation and extraction was studied. Yet the field of high precision

shape representation is still wide open. Here we summarize some of the possible

improvements and future work.

The method introduced proved to be very versatile because it was not only able

to process high precision surfaces, but was also able to deal with more noisy data

such as color clouds. In the continuation of this work, different types of data and

improvements could be made to get a still better virtual representation of the ac-

quired object. It seemed to us that, little by little, this work was clearing the road

toward the high precision visualization and exploration of fine arts and archae-

ological objects acquired by a high precision laser. The field of cultural heritage

digitization is already a very active (through the d-coform project for example),

but not to the precision we now get. This work opens, in some sense, the hope of

a digital conservation and of an improved and more versatile display to amateurs

and professionals of these sometimes fragile small pieces In particular the digital

magnification seems to be an efficient visualization tool for high precision scans.

. Another type of data: D from stereo

The existence of passive light acquisition device was already mentioned in this work.

From a set of stereo-rectified images, one can extract points on the surface of the

object, either by calibrating one camera and rectifying several images, or by using

directly a stereo camera. An interesting goal would be to build the stereo recon-

struction for the same objects that we used with the laser scanner. Then precisions

of active and passive light acquisition devices could and should be compared and,

hopefully, lead to technologically very needed cross-calibration tools of D devices.

. High precision registration

Our laser scanner was somewhat limited in terms of the size of the acquired ob-

jects. In order to be still able to acquire larger objects with the same precision,

http://www.dcoform.eu/
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 Chapter . Conclusion

we would need to move the object between different acquisitions. All the acquired

parts should then be registered. The problem of shape registration has been studied

already, yet in most cases the mesh was then built by the Poisson method, which

actually hides the registration artifacts rather than it corrects them. A reason-

able question is: can we register point sets well enough so that our reconstruction

method can be used? Many good descriptors have been proposed to perform the

registration and this could lead to test their precision.

. Color reprojection

If the final goal is a high precision digital reproduction of art pieces, in other terms

a digital Tanagra process, the visual information (the object’s texture) will have

to be fused with its D shape. It is therefore a stimulating problem to realize a

very accurate reprojection of the color on the virtual object from a set of pictures.

However, the pictures should be first registered to the D object, leading to another

type of registration: the D-D registration, which has already been investigated but

never for data of this accuracy. The color information should also not be perturbed

by shadows nor by geometric textures (such as those are acquired by the laser).

While these problems seem to be still wide open, considering them raises the

hope of a quality virtual representation.
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Appendix A

Computational Issues
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 Appendix A. Computational Issues

Abstract: This appendix shortly explains the implementation choices

of the algorithms presented in the thesis.

A. Classifying points

All along this work an efficient fixed-radius neighbor finding algorithm was needed.

Indeed this is one of the trickiest problems in surface processing: given a point p

find the coordinates of all samples lying within a given distance of p. Because of

sampling irregularities it may happen that this neighborhood contains either no

other point than p or the whole set.

The very naive implementation would need to traverse once the whole set of

N points for each of the N points, yielding an algorithm with N2 complexity. In

case of point sets with more than a million points it yields prohibitive computation

time. This is why, tree structures are usually used to partition the space into cells.

In a nutshell, this partition permits to avoid traversing cells that are too far away

from the query point ([Sam]).

Here an octree was used: it simply divides the bounding box of side L into eight

cells of size L/2. The splitting point is of course the center of the parent cell. All

points are included in leaf cells, i.e. cells with no child that have depth d, where d is

the octree depth specified by the user.

Figure A.: An octree

Given a set of points and a depth d, the octree building proceeds as follows:

• An initial root node is built so that it contains all points;

• When a point p is added to a cell C :

– If the cell has depth d it is a leaf and the point is simply added to the list

of point of C ;

– Otherwise, look for the cell child Ci that would contain the point;

te
l-0

05
57

58
9,

 v
er

si
on

 1
 - 

19
 J

an
 2

01
1



A.. Iterating over the octree 

– If Ci does not exist create it and add the point to it.

This way, only nodes actually containing points are created.

A. Iterating over the octree

Iterating over the octree means from a given point position find a set of neighbors.

In this work radius fixed neighborhoods are used meaning that given a point p and a

point setMS , the set of p’s neighbors is the subset ofMS such that:

{m ∈MS|‖p−m‖2 < r}

.

The iterating method is basically the one from [FP]. Given a point p, a radius

r and a setMS it proceeds as follows:

• In case it is not given, the leaf cell C containing p is found.

• Going upwards in the tree, it finds the cell C0 containing C and whose length

L is such that L
4
< r ≤ L

2

• Then the set of neighbors is included in C0 and C0’s neighboring cells at the

same depth.

• For each of those cells:

– Look at all non-empty children nodes

– If the hypercube maximum distance to p is below r then all points in-

cluded in its descendants are added to the set of neighbors

– If the hypercube maximum distance to p is above r and the minimum

distance is below r then, if the node is not a leaf, the node’s children

are explored recursively. If it is a leaf then all the point distances are

computed and compared to r.

– If the hypercube minimum distance to p is above r the cell is not ex-

plored any further.

The whole neighboring cell search is made faster using Location Codes (see

[FP] for details).
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 Appendix A. Computational Issues

A. A single octree to deal with an evolving point set

Since the pointset evolves with filtering iterations, an evolving structure has to be

built. This is done by simply considering that each cell contains more than 1 set

of points. Since the initial pointset must be remembered, it is necessary to store 

sets per leaf: the set of initial points, the set of points filtered at iteration N and the

set of points filtered at step N + 1. Then when performing neighbor-search, the

appropriate set should be chosen.

• When filtering set 0, the results are stored in set 1

• When filtering set 1, neighbor-search is done in set 1, the results are stored in

set 2 and set 1 is emptied

• When filtering set 2, neighbor-search is done in set 2, the results are stored in

set 1 and set 2 is emptied

Each point links to the point of set 0 from which it originated.

A. Implementation

All the algorithms presented in this thesis were implemented using C++ and the

Standard Template Library (STL). It uses the Template Numerical Toolkit and

JAMA-C++ libraries for Principal Component Analysis and system solving.

Reading/Writing images for color cloud filtering for example was done using

the CImg library .

Finally, reading and writing mesh in Stanford PLY format used rply .

For perenity reasons, files are always written in ascii PLY and not binary PLY, in

order to be able to access the information on any computer in the next years, at the

cost of bigger files.

Throughout this thesis renderings have been computed using the POV-RAY

program. No texture was used (the triangles were colored in white) and a sim-

ulated diffuse light was set.

http://math.nist.gov/tnt/index.html
http://cimg.sourceforge.net/
http://w.impa.br/ diego/software/rply/
Persistence of Vision Raytracer http://www.povray.org
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Inverse Geometry: From the raw point cloud to the D surface
Theory and Algorithms

Abstract:
Many laser devices acquire directly D objects and reconstruct their surface. Nevertheless, the

final reconstructed surface is usually smoothed out as a result of the scanner internal de-noising

process and the offsets between different scans.

This thesis, working on results from high precision scans, adopts the somewhat extreme con-

servative position, not to loose or alter any raw sample throughout the whole processing pipeline,

and to attempt to visualize them. Indeed, it is the only way to discover all surface imperfections

(holes, offsets). Furthermore, since high precision data can capture the slightest surface variation,

any smoothing and any sub-sampling can incur in the loss of textural detail.

The thesis attempts to prove that one can triangulate the raw point cloud with almost no sample

loss. It solves the exact visualization problem on large data sets of up to 35 million points made

of 300 different scan sweeps and more. Two major problems are addressed. The first one is the

orientation of the complete raw point set, an the building of a high precision mesh. The second one

is the correction of the tiny scan misalignments which can cause strong high frequency aliasing and

hamper completely a direct visualization.

The second development of the thesis is a general low-high frequency decomposition algorithm

for any point cloud. Thus classic image analysis tools, the level set tree and the MSER representa-

tions, are extended to meshes, yielding an intrinsic mesh segmentation method.

The underlying mathematical development focuses on an analysis of a half dozen discrete dif-

ferential operators acting on raw point clouds which have been proposed in the literature. By con-

sidering the asymptotic behavior of these operators on a smooth surface, a classification by their

underlying curvature operators is obtained.

This analysis leads to the development of a discrete operator consistent with the mean curva-

ture motion (the intrinsic heat equation) defining a remarkably simple and robust numerical scale

space. By this scale space all of the above mentioned problems (point set orientation, raw point set

triangulation, scan merging, segmentation), usually addressed by separated techniques, are solved

in a unified framework.

Keywords: D surface reconstruction, high precision point clouds, point cloud scale space
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