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Discrete algebra and geometry
applied to the Pauli group and mutually unbiased bases

in quantum information theory

Abstract

A maximal set of mutually unbiased bases (MUBs) in a d-dimensional Hilbert

space is known to have cardinality d + 1 whenever d is a power of a prime. For

a rectangular dimension, this is only known to be an upper-bound, but the actual

maximum is still an open issue. Pauli operators are among the many tools involved

in trying to answer this question: For d a power of a prime, diagonalising particular,

maximally commuting sets of them results in a complete set of MUBs. Moreover, in

order to account for their commutation relations, they were involved into various,

�nite geometrical features. In particular, they were transcribed up to a global phase

as vectors in the Zd-module Z2nd . The basic blocks for their commutation relations
are then projective points in Z2nd .

In our thesis, we begin by giving a way to build MUBs by means of Gauss sums,

in relation with a family of irreducible representations of the Lie algebra su(2).

We then study P(Zmd ), the projective structure derived from Zmd . For m = 2n

and endowed with a symplectic product, this symplectic, �nite geometry appears

as a general framework that encompasses the preceding features as its algebraic or

combinatorial substructures. We also show with the help of P(Z2d) that, to obtain
complete sets of MUBs by means of Pauli operators, tensorial products of them are

mandatory.

The maximally commuting sets of Pauli operators are accounted for by the La-

grangian submodules of Z2nd that we fully classify. The interest in this classi�cation

is twofold. On the one hand, it enables us to discriminate which maximally com-

muting sets of Pauli operators are likely to yield MUBs. These are accounted for by

Lagrangian half-modules. We see them as the isotropic points of the projective line

(P(Mat(n;Zd)2); !). We then establish an isomorphism between Pauli unbiased

bases and distant Lagrangian half-modules, which precises by the way the corre-

spondance between Gauss sums and MUBs. As a mathematical byproduct, we give

an algorithm to perform symplectic diagonalisation. Dynamical considerations are

also addressed with the Cli¤ord group. On the other hand, the classi�cation of La-

grangian submodules is readily applicable to the �nite phase space over Zd, namely
Z2d. We thus answer a technical point in the current problem of setting-up of discrete
Wigner distributions over that phase space.

Finally, we turn our attention from discrete to continuous algebra. We present

various tools inspired by the previous ones and confront them with classical quantum

information objects. Thus we deal with cross-ratio on the Bloch sphere and projec-

tive geometry in higher dimension, Pauli operators with continuous exponents and

we compare von Neumann entropy with a determinantal measure of entanglement.





Résumé

Il est connu qu�un ensemble maximal de bases décorrélées dans un espace de

Hilbert de dimension d compte d+1 bases lorsque d est une puissance d�un premier.

Mais en dimension rectangle, d+1 n�est plus qu�une borne supérieure dont on ne sait

pas si elle est atteinte. Parmi les nombreux outils mis en �uvre pour traiter cette

question �gurent les opérateurs de Pauli : pour d puissance d�un premier, on obtient

des bases décorrélées en diagonalisant des ensembles maximalement commutant de

ces opérateurs. Leurs relations de commutation ont dès lors donné lieu à des études

variées en géométrie �nie, en particulier après qu�ils ont été identi�és, à une phase

globale près, à des vecteurs de Z2nd . L�étude porte alors essentiellement sur les points
projectifs de ce Zd-module.

Dans ce mémoire, nous commençons par donner une construction de bases dé-

corrélées en lien avec une famille de représentations irréductibles de l�algèbre de Lie

su(2) et faisant appel aux sommes de Gauss. Puis nous étudions P(Zmd ), la structure
projective déduite de Zmd . Pour m = 2n et en munissant la structure d�un produit

symplectique, les études précédentes apparaissent comme des propriétés combina-

toires dans les sous-structures de cette géométrie �nie symplectique. Nous montrons

aussi avec P(Z2d) que, pour obtenir des ensembles complets de bases décorrélées au
moyen d�opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels

de ces opérateurs.

Les sous-modules lagrangiens de Z2nd , dont nous donnons une classi�cation com-
plète, rendent compte des ensembles maximalement commutant d�opérateurs de

Pauli. Cette classi�cation présente un double intérêt. D�une part, elle permet de

savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées :

ils correspondent aux demi-modules lagrangiens, qui s�interprètent encore comme les

points isotropes de la droite projective (P(Mat(n;Zd)2); !). Nous explicitons alors
un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules la-

grangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et

bases décorrélées. Comme complément à cette étude, nous donnons un algorithme de

diagonalisation symplectique. Nous traitons également les aspects dynamiques avec

le groupe de Cli¤ord. D�autre part, la classi�cation des sous-modules lagrangiens

s�adapte aussitôt à Z2d, l�espace des phases discret sur Zd. Nous résolvons ainsi un
point technique dans l�élaboration encore inachevée de fonctions de Wigner discrètes

sur cet espace.

En�n, nous quittons l�algèbre discrète pour la continue et présentons quelques

outils inspirés des précédents, avant de les confronter aux objets classiques de l�infor-

mation quantique. Nous traitons ainsi du rapport anharmonique sur la sphère de

Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli

continus et nous comparons l�entropie de von Neumann à une mesure de l�intrication

par calcul d�un déterminant.
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Chapter 1

Introduction

An introduction classically consists of a brief historical account of the domain fol-

lowed by a presentation of the whole work. Without pretention to be exhaustive,

we resolve to enlarge the historical part to give a self-contained introduction to the

�eld. It is only aimed at giving to the nonspecialist a �avour of the background

material of our thesis. The last section about theoretical tools will naturally drive

us to our own matter.

1.1 Quantum physics is needed for the information cul-

ture

It has become commonplace today to talk about the information age. Information is

spread and processed ever faster. More and more people have access to a personnal

computer and to the Internet and in fact are dependent on them for their everyday

work. We even pay less attention to the computer itself than to the softwares we

can run on it.

It was about sixty or seventy years ago that this age arose with both theoretical

and technical breakthroughs. The mathematician Alan Turing launched modern

computer science in a 1936 article by de�ning rigorously what is meant by an al-

gorithmic process in full generality, at a time when the few available calculating

machines were still physically designed for speci�c tasks. This construction was

called a Turing machine and Turing also showed that all these machines can be sim-

ulated by a single universal one, the Universal Turing Machine. Today, even with

slight modi�cations, it still encompasses our conception of an algorithm.

Electrical hardwares were soon designed to embody the conceptual construction

of Turing, after a model by John von Neumann. But these systems came to a

satisfying practical use only as John Bardeen, Walter Brattain and Will Shockley

developed the transitor, in fact the �rst major supply of quantum physics to the

so-called information age. Since then, progress in our computer capacities has been

closely related to our ability in mastering the realisation of that component, making

it always smaller. In 1965, Gordon Moore encoded this progress in a celebrated

13



14 CHAPTER 1. INTRODUCTION

law dubbed after his name. Moore�s law states that computer power will double

approximately every two years. This law is so intimately linked to the story of

the miniaturisation of transitor that it is commonly restated as the doubling in the

number of transitors on a silicon chip. So far, it has been checked in this latter form.

But what as we now come to the atomic scale?

At the atomic level, the e¤ects of quantum physics become unavoidable and

maybe they ought not to be avoided. Instead, if we want to keep on progressing, we

should take advantage of them. The way the computer we use deal with information

is typically based on our common life intuition. While transitor is quantum, it is

only used as a concrete device in order to realise a circuit conceived beforehand

with a classical way of thinking. The trick is to take into account the quantum

laws of nature to elaborate not only more e¢ cient hardwares but also more e¢ cient

algorithms and softwares. Before we take deeper insights in this latter idea, we have

a look at the relevant principles of quantum physics.

1.2 Quantum information fundamental features

At the beginning of the twentieth century, an increasing number of discrepancies be-

tween theory and experience arose in the physics of atoms and light. Independently

of the conceptual revolution brought about by general relativity, classical physics

was progressively and laboriously amended in order to solve them. This endeavour

resulted in a new theory of elementary particles and of their interactions. But it soon

appeared that it was much more than that. It provided a completely new framework

for physics as a whole, namely quantum physics. We stress that quantum physics is

not quite a theory by itself, but rather principles and guidelines for building up new

theories. Thus, if at �rst glance the standard model of particles involved in large

accelerators and the paradigms we seek after to improve computing powers seem

disconnected, they obey the same fundamental rules. We are going to have a look

at those rules from the point of view of quantum information.

Superposition

In our classical conception of encoding and processing information, we use bits, that

is to say variables that can take either one of only two values, 0 or 1. A message is

built up of a series of 0�s and 1�s. Let us denote these two states j0i and j1i for our
purpose. Then in the quantum realm, a bit as the unusual property that it can be

j0i, j1i or any superposition of these two states:

j i = c0 j0i+ c1 j1i : (1.1)

In this formula, j i is a possible state for the bit, described as a weighted sum of

the two fondamental states, with the coe¢ cients c0 and c1 being complex numbers

not both 0. The states j0i and j1i form the computational basis and j i is dubbed
a qubit, a short for quantum bit. Then to the classical series of bits corresponds
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one multiple qubit. If for instance our message is coded over two bits, the four

computational states are

j00i ; j01i ; j10i ; j11i (1.2)

and they give rise to the quantum states of the type

j i = c00 j00i+ c01 j01i+ c10 j10i+ c11 j11i ; (1.3)

where the c�s are again complex numbers not all of them 0. This state j i is made
up of two qubits. In each term, the �rst digit relates to the �rst qubit and the second

one to the second qubit. Then, what does superposition mean experimentally?

Projective measurements and projective structure

We will concentrate only on the case of a single qubit as given in (1.1). If we want

to test the value of j i, we shall get either 0 or 1 as in the classical case. But in fact
the value 0 is to be obtained with probability

p0 =
jc0j2

jc0j2 + jc1j2
(1.4)

and similarly the value 1 is to be obtained with probability p1 as in the preceding

formula after inverting c0 and c1. Of course we have p0 + p1 = 1. It means that

if we prepare a series of qubits all of them in the same state j i and measure on
them in exactly the same way for each one in order to get 0 or 1, these values shall

be obtained in proportions given by p0 and p1. The measurement is in an essential

way probabilistic. After measurement, the qubit is no more in a superposition of

the computational states, but in either state j0i or j1i, in accordance with the result
we got. One says that j i was projected onto j0i or j1i and that a measurement in
quantum physics is also of projective nature.

One may notice with this simple example that if we multiply j i by any nonzero
complex number � to get

� j i = �c0 j0i+ �c1 j1i ; (1.5)

the probabilities p0 and p1 when we perform a measurement on � j i would remain
the same. In fact, no use was ever found since the inception of quantum physics in

distinguishing � j i from j i and they are thus identi�ed:

state � j i = state j i ; 8� 6= 0: (1.6)

One says that the set of quantum states has a projective structure1. So one may

conveniently suppose that jc0j2 + jc1j2 = 1. The state j i is said to be normalised

1This notion of projectivity has historically no bearing on the previous one.
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then and the probabilities reduce to

p0 = jc0j2 and p1 = jc1j2 : (1.7)

Entanglement

An entangled state involves at least two subsystems, as for instance a couple of

photons or of electrons arising from the decay of a nucleus. The subsystems are

described jointly by a single state. If the property we are interested in is the spin

that may be up or down with respect to some measurement apparatus, we may

code arbitrarily code for down with a 0 and for up with a 1. If there are actually

two subsystems, then the state is of the form j i indicated in (1.3). One says that
the subsystems are entangled or that they form an entangled state, if the dynamics

underwent by one of them may have some in�uence as such on the dynamics of the

other. In mathematical words, j i cannot be written as a single tensor product. Let
us give a telling example. The most famous examples of entangled states are the

Bell states for two qubits:

j�00i =
1p
2
(j00i+ j11i); (1.8a)

j�01i =
1p
2
(j01i+ j10i); (1.8b)

j�10i =
1p
2
(j00i � j11i); (1.8c)

j�11i =
1p
2
(j01i � j10i): (1.8d)

If one gets the output 0 after measuring on the �rst qubit in the state j�00i, then
one will also get the output 0 when measuring on the second qubit. Contrary to

appearances at that stage, this is not a classical correlation between the states of

each of the two qubits. In fact, none of the qubits has a state de�ned independently

of the other qubit. To see this, we take say four polarisors in order to measure the

polarisation of two coupled photons in the state j�00i, two polarisors for one of the
photons and the two other ones for the other photon. For each photon, we make use

at random of one the two polarisors dedicated to it and we repeat this experience a

great number of times with other couples of photons prepared in the same state. We

denote A;B the two random variables corresponding to the polarisors of the �rst

photon and C;D the other two ones. Then the function

F = AC +AD +BC �BD (1.9)

has always value �2. So, if the superposition j�00i accounted for our ignorance of
the photons having well-de�ned, separated states, then the mean value of F ,

hF i = hACi+ hADi+ hBCi � hBDi (1.10)
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should lie in the range [�2; 2]. But in 1982, when Alain Aspect and coworkers

realised the experience [1], they found that

hF i = 2
p
2; (1.11)

in agreement with the prediction of quantum physics. This proves that entangled

states do account for physical states.

No-clonable information

Finally, a fourth major di¤erence between classical and quantum informations is the

ability to copy information. In our classical computers, any bit of information is

stored on a magnetic cell and is readable without distroying it. On the contrary,

as we saw above about measurements, any attempt to read some quantum bit of

information, that is to say to measure it in order to get some output, irremediably

modi�es it, without letting know its initial state. So, it is impossible to copy, or

clone, any qubit. This result is known as the no-cloning theorem.

This feature can be used to design secure communication protocols, such as the

BB84 protocol, elaborated in 1984 by Bennett and Brassard [2], by transmitting se-

quences of qubits instead of bits. Without describing such a protocol in details, we

give the idea and connect it with the no-cloning theorem. The two communicating

parties are traditionally called Allice and Bob. Alice sends some coded information

to Bob through a communication channel. If Alice sent classical bits, an eavesdrop-

per on the communication channel could learn about the state of the bits and send

them forward on the channel to Bob. A way to warrant an irremediable, detectable

disturbance in the message due to the presence of the eavesdropper is to relie on the

probabilistic character of any quantum measurement. Indeed, the protocol provides

Alice and Bob with a way to know if, on average, the qubits used in communicating

were disturbed.

1.3 Quantum algorithms and protocols

Can the main features of quantum physics, namely state superposition and entan-

glement be exploited in order to design speci�cally quantum algorithms? The point

in doing so is to enable one to perform impossible tasks with a classical support of

information or deal in reasonable time with classically tedious tasks. The answer

happens to be yes and this was the main incentive for quantum information in the

1980�s. Whereas to date, only a few quantum protocols and algorithms have been

found, some of them are of major importance whenever they can be realised.

As we have already seen, secure communications can be based on quantum in-

formation. In 1985, Deutsch designed the �rst example of quantum algorithm [3].

It was a toy algorithm in order to know whether a function

f : f0; 1g �! f0; 1g (1.12)



18 CHAPTER 1. INTRODUCTION

is constant (f(0) = f(1)) or balanced (f(0) 6= f(1)). Classically one has to perform

two calculations in order to answer the question: f(0) and f(1). With quantum

ressources, its is possible to evaluate the following logical sum, that is to say modulo

2, at once:

f(0)� f(1); (1.13)

which gives the answer after a single calculation. But the next two algorithms

have more serious applications. In 1994, Shor showed by means of an explicit

algorithm [4], that with the help of a quantum computer with su¢ ciently many

ressources, one can factorise large numbers into their prime factors in minute�s time,

or to use the language of complexity theory, in polynomial time. Thus, if it could

be realised, it would break the RSA code on which most of our secure communi-

cations are grounded today, for example credit card transactions. In 1995, Grover

proposed an algorithm [5] to search an item within an unsorted list of N items with

only O(
p
N) requests instead of O(N) as classically. Though the gain in time is less

impressive than in Shor�s algorithm, the constant call on search procedures in our

computing practices shows the interest in this speed-up.

1.4 Theoretical tools

Although few quantum algorithms are available till now, they exhibit a rather con-

stant mathematical feature. As shown for instance by the BB84 protocol and its

generalisations for secure communication or on the contrary by Shor�s algorithm,

that would highly unsecure many transactions, they often rely on the discrete Fourier

transform (DFT). This core transformation is only a particular case of another major

topic in quantum theory, namely mutually unbiased bases (MUBs). The characteris-

tic of such a set of bases is that a state picked out of one of them has equal amplitude

over the states of any other one in the set. In other words, a state in one of the

bases is a kind of optimal superposition or mix of the states in another one. Two

orthonormalised bases of a d-dimensional Hilbert space

A = fjA;�ig; B = fjB; �ig (1.14)

are MUBs i¤ they check the equalities

8�; �; jhA;�jB; �ij = 1p
d
: (1.15)

In the matrix representing the DFT, every entry has the same modulus. Thus the

basis one gets by means of the DFT is unbiased with the computational basis.

Besides Fourier transform, the notion of MUBs is widespread both in classical

and quantum information theory. Schwinger unveiled them as soon as 1960 in a

paper about quantum complementarity and unitary operators, but he did not name

them [6]. They appear in quantum tomography [7] and in quantum games such as

the Mean King problem [8�10]. As to classical information theory, one �nds them
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in the study of Kerdock codes [11] and spherical codes [12] or in the developpement

of network communication protocols [13,14]. Recent investigations upon Feynmann

path integrals also give MUBs a central role.

Since the beginning of their study in the 80�s [7] [15], we know that a set of

MUBs in a d-dimensional Hilbert space contains at most d+1 of them and that this

upper-bound can be reached if d is power of a prime. But whenever d is a composite

integer and despite an extensive range of mathematics involved, no conclusive infor-

mation is available about the achievement of the upper-bound. As a nonexhaustive

list of the mathematical tools that have been used, let us cite Galois �elds and rings

in relation with Gaussian sums [7, 16, 17], combinatorics, latin squares [9], unitary

operator bases [6,18], discrete phase space [19�23] and Wigner functions [10,24,25],

DFT [26,27], �nite ring geometry [28�30] and also SU(n) Lie groups and their corre-

sponding Lie algebras [31�33] with connection to positive operator-valued measures

(POVMs) [34]. Throughout their story, MUBs have also been approached by a num-

ber of numerical tests. We refer to [35, 36] and references therein. All the studies

concerned with dimension 6 converge to the fact that there are no more than 3

MUBs in C6.

Of particular relevance to our thesis are, on the one hand, the works by Bandy-

opadhyay et al. [18] and on �nite phase space cited above and, on the other hand,

the strand of �nite geometry over rings. For d a power of a prime, Bandyopadhyay

et al. give a recipe to �nd maximally commuting sets of Pauli operators that will in

turn provide MUBs, but with no exhaustive correspondance between such sets and

MUBs. Then studies of �nite phase space enrich this construction by putting it into

a geometrical framework that extracts the essential about Pauli operators, namely

their commutation relations. As to �nite geometry, let us cite only the two papers

by Planat and Saniga [37] and jointly with Kibler [38]. These latter papers acted

on us as incentives to supply a general framework encompassing the features therein

together with the previous ones. The notions of neighbourhood and distance will

particularly retain our attention. An extra source of inspiration that also ended in

the same framework is our joint work [33] with our thesis supervisor, about MUBs

and irreducible representations of the Lie algebra su(2).

Thus, we begin by presenting in Chapter 2 a simpli�ed version of that latter work.

We explain how MUBs appear as the diagonalising bases of operators pertaining to

irreducible representations of the Lie algebra su(2), with Gauss sums as a central

calculational feature. We also say why all this will �nally be reduced to the same

�nite geometry as Pauli operators. In fact, Pauli operators prove having a richer

structure than the previous ones.

In Chapter 3, we �rst recall the de�nition and main features of the Pauli group in

relation with MUBs. In particular, it is explained how the problem of MUBs within

the scope of Pauli operators is completely translated in the language of projective and

symplectic geometry over Zd. Hence, we carry on in the strand of �nite geometry
by studying the Zd-module Zmd and its derived projective structure P(Zmd ). We
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generalise the notions of neighbourhood and distance in arbitrary dimension and we

introduce the wedge product in order to quantify neighbourness. Neighbourhood

classes will also turn up to be group orbits. However, we concentrate on picking

out the evidence to show that, to get a complete set of MUBs by means of Pauli

operators, tensorial products of them are mandatory. This result derives from the

structure of the projective line P(Z2d), for which we provide the necessary counting
properties, together with illustrating diagrams.

In Chapter 4, we apply the latter features to the complete classi�cation of maxi-

mally commuting sets of Pauli operators. This is achieved through the classi�cation

of the Lagrangian submodules of Z2nd . From a technical point of view, it consists

in diagonalising speci�c matrices over Zd when only symplectic changes of compu-
tational basis are allowed. In order to know which maximally commuting sets of

operators are likely to yield MUBs, we need a last step. In Chapter 5, we single out

Lagrangian half-modules as the only suitable candidates and we �nd a necessary and

su¢ cient condition for two of them to actually yield MUBs. We also give a geomet-

ric interpretation of this criterion: We see Lagrangian half-modules as the isotropic

points of the projective line over Mat(n;Zd), the set of n� n matrices over Zd, and
we establish an isomorphism between the unbiased bases thus obtained and distant

Lagrangian half-modules, thus completing the study initiated in Bandyopadhyay et

al.�s paper. We go on in the same chapter with an alternative graph interpretation

of the same result and we �nally relate to quantum computation with the Cli¤ord

group. We show how in some sense, our discrete, symplectic geometry accounts for

the symplectic part of the Cli¤ord operators, as separated from their Pauli part.

The classi�cation of Lagrangian submodules is readily applicable to the �nite

phase space over Zd, namely Z2d. In Chapter 6, we thus answer a technical point
in the still in progress setting-up of discrete Wigner distributions over that phase

space. We show that the isotropic lines of Z2d are nothing but its Lagrangian sub-
modules. This identi�cation enables us to count them under various conditions and

in particular to describe their orbits under the action of the symplectic group.

Besides the main stream we have just described, we give another mathematical

byproduct. The classi�cation of Lagrangian submodules is clearly a part of the issue

of symplectic diagonalisation, without any assumption on the submodules or their

representing matrix. We complete this study for its own sake in Section 4.3, which

emphasizes how particular Lagrangian submodules are.

In the last chapter, Chapter 7, we turn our attention from discrete to continuous

algebra. We present various tools inspired by the previous ones and confront them

with classical quantum information objects. In the �rst three sections, we try to

�nd some notions and objects in order to account for any set of mutually unbiased

bases, not only those one can reach with the help of discrete Pauli operators as

above. We �rst answer this question for qubits as points on the Bloch sphere, which

is nothing but the projective line over C: In Section 7.1, we put forward the cross-
ratio and harmonic conjugated points, and in Section 7.2, we try Pauli operators
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with continuous exponents. In Section 7.3, we set out a general tool pertaining to

algebraic geometry, that accounts for every single vector unbiased with respect to a

given basis. However, if we are able to work out the cases d = 2 and d = 3, it is seen

to be clearly more di¢ cult to handle in general. Finally in Section 7.4, we generalise

the idea behind the symplectic product as we explore a determinantal measure of

entanglement for pure states. We compare it with the classical von Neumann entropy

and Schmidt decomposition.

We put in �ve appendices all the discrete mathematics we need. Appendix A sets

the elementary arithmetics in the ring Zd of integers modulo d. The notions of gcd,
lcm, order of an element and above all the Chinese remainder theorem are stated

there. Then, vector spaces have a base �eld. Appendix B presents the analogue

of �nite dimensional spaces over the base ring Zd. Appendix C is about reduction
of vectors and matrices over Zd. In particular, we give an original proof of the
existence of a Smith normal form (or diagonalisation) of a matrix over Zd. The
traditional proof, as given in [39] or [40] for instance, is grounded exclusively upon

algebraic properties involving the notion of ideal. In the particular case of the ring

Zd, we can make it rely upon counting properties in Zd-modules. The developments
contained in that appendix are not readily used in the body of the thesis. So, with

the exception of Gauss algorithm stated at the end of the appendix, we will recall

any results in it when required in the main text. Appendix D is about the wedge

product and its particularities when considered over a ring. Though its material

is simpler than in the previous appendix, it will be treated quite in the same way.

Finally, Appendix E is a brief account of projective geometry over �elds and ring. It

also contains a criterion to know whether a submodule of Zmd is the join of projective
points.

For any details about the quantum physics or quantum communication and quan-

tum information, the reader is refered to classical treatises, such as [41�44].

Our thesis work was partially published in three papers:

� O. Albouy and M. Kibler, SU2 Nonstandard bases: Case of Mutually Unbiased
Bases. SIGMA 3 (2007), 076

� O. Albouy and M. Kibler, A uni�ed approach to SIC-POVMs and MUBs,

Journal of Russian Laser Research, Volume 28, Number 5, 2007

� O. Albouy, The isotropic lines of Z2d, J. Phys. A: Math. Theor. 42 (2009)
072001

� O. Albouy, Determinantal measure for pure states entanglement, submitted to
J. Phys. A: Math. Theor.
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Chapter 2

Operator algebras and Gauss
sums

Gauss sums have been among the �rst tools for building MUBs as they appeared

in 1989 in a paper by Wootters and Fields [7]. After several investigations, they

were recently connected for this purpose with irreducible representations of the Lie

algebra su(2) of the group SU(2), a scheme that was partly brought into form in

a joint article with our thesis supervisor [33]. Though it is not our intention to

work with su(2) representation in this thesis, we will give a very brief idea of the

background that led us to Gauss sums and MUBs. For further details, the reader is

refered to the latter paper. The arithmetical properties of Gauss sums we will come

across in this chapter are a particuliar incarnation of some commutation relations.

Those relations and their consequences will be studied through Pauli operators in

the following chapters.

2.1 Out of two quon algebras

Let us de�ne two quon algebras Ai = fai�; ai+; Nig, i = 1; 2, by

ai�ai+ � qai+ai� = 1; [Ni; ai�] = �ai�; N y
i = Ni; (ai�)

k = 0; (2.1a)

8x1 2 A1; 8x2 2 A2; [x1; x2] = 0; (2.1b)

where1

q = exp

�
2�i

k

�
; k 2 N n f0; 1g: (2.2)

The generators ai� and Ni of Ai are linear operators. As in the classical case where

q = 1, we say that ai+ is a creation operator, ai� an annihilation operator and

Ni a number operator. The case k = 2 corresponds to fermion operators and the

case k ! 1 to boson operators. In other words, each of the algebras Ai describes

fermions for q = �1 and bosons for q = 1. The nilpotency conditions (ai�)
k = 0

1 In any expression of the form qx, q has to be formally replaced by its expression, so as to read
exp(2i�x=k). This is essential as we are to consider fractional values for x.

23
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can be understood as describing a generalised exclusion principle for particles of

fractional spin 1=k (the Pauli exclusion principle corresponds to k = 2).

Let F(i), i = 1; 2, be two truncated Fock�Hilbert spaces of dimension k corre-

sponding to two truncated harmonic oscillators. We endow each space F(i) with an
orthonormalised basis fjni); ni = 0; 1; : : : ; k � 1g. With the notation

[x]q =
1� qx
1� q ; x 2 R; (2.3)

we can give the following representations among many others of the algebras A1 and

A2 over the F(i)�s:

a1+jn1) = [n1 + 1]q jn1 + 1); a1+jk � 1) = 0; (2.4a)

a1�jn1) = [n1]q jn1 � 1); a1�j0) = 0; (2.4b)

a2+jn2) = [n2 + 1]q jn2 + 1); a2+jk � 1) = 0; (2.4c)

a2�jn2) = [n2]q jn2 � 1); a2�j0) = 0; (2.4d)

and

N1jn1) = n1jn1); N2jn2) = n2jn2): (2.4e)

In that framework, we de�ne two linear operators h and va, a 2 R, acting on
Fk = F(1)
F(2):

hjn1; n2) =
p
n1(n2 + 1)jn1; n2); ni = 0; 1; 2; : : : ; k � 1; i = 1; 2 (2.5a)

and

vajn1; n2) = qan2 jn1 + 1; n2 � 1); n1 6= k � 1; n2 6= 0; (2.5b)

vajk � 1; n2) = q�a(k�1�n2)=2j0; n2 � 1); n2 6= 0; (2.5c)

vajn1; 0) = qa(k+n1)=2jn1 + 1; k � 1); n1 6= k � 1; (2.5d)

vajk � 1; 0) = j0; k � 1): (2.5e)

The operator h is Hermitian. va is unitary and has a cyclic action since (va)k = I,

with I is the identity operator. The link with ordinary operators on harmonic

oscillators or angular momentum can be made after Schwinger�s work on angular

momentum [45]. Let us put

J =
1

2
(N1 +N2) ; M =

1

2
(N1 �N2) ; (2.6a)

jj;mi = jj +m; j �m) = jn1; n2): (2.6b)

For a given, admissible value of j, let "(j) be the subspace of Fk spanned by the
corresponding vectors jj;mi, m ranging. MUBs will appear in the "(j) of maximal
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dimension, that is for

j =
k � 1
2

: (2.7)

From now on, we shall assume that j is �xed to the latter particular value. The

label m can thus take k = 2j + 1 values, namely m = �j;�j + 1; : : : ; j. Let us
denote Sj the computational basis of "(j) de�ned by the jj;mi�s:

Sj = fjj;mi; m = �j;�j + 1; : : : ; jg: (2.8)

With this condition, "(j) is stable under the action of h and va and we may restrict

these operators to that space:

hjj;mi =
p
(j +m)(j �m+ 1)jj;mi; (2.9)

vajj;mi = (1� �m;j) q(j�m)ajj;m+ 1i+ �m;j jj;�ji; (2.10)

with �m;j the Kronecker symbol. Once restricted to "(j), h is still Hermitian and va
unitary and cyclic, with (va)

2j+1 = I. We can now connect the operators h and va
with su(2).

Proposition 1 An irreducible representation of the Lie algebra su(2) can be built
out of h and va if one puts

j+ = hva; j� = vyah; jz =
1

2
(h2 � vyah2va): (2.11)

Then one has

j+jj;mi = q(j�m)a
p
(j �m)(j +m+ 1)jj;m+ 1i; (2.12)

j�jj;mi = q�(j�m+1)a
p
(j +m)(j �m+ 1)jj;m� 1i; (2.13)

jzjj;mi = mjj;mi: (2.14)

Indeed, these de�nitions are in agreement with the commutation relations

[jz; j+] = j+; [jz; j�] = �j�; [j+; j�] = 2jz: (2.15)

The operators j+ and j� thus appear in their polar decompositions and the expres-

sion of jz is also tailored so that

j2 = j2z +
1

2
(j+j� + j�j+) =

1

4
(N1 +N2)(N1 +N2 + 2): (2.16)

With this expression of j2, one may check that

j2 = h2 + j2z � jz = vyah
2va + j

2
z + jz (2.17)

j2jj;mi = j(j + 1)jj;mi: (2.18)

The last ingredient in order to understand why the deformed cyclic operator va
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has bearing on MUBs is the operator z de�ned on "(j) by

zjj;mi = qj�mjj;mi: (2.19)

If we now consider the operators va for a = 0; 1; : : : ; 2j only, we can express them as

va = v0z
a; a = 0; 1; : : : ; 2j; (2.20)

and with the group theoretical commutator de�ned by

[x; y]g = xyx�1y�1; (2.21)

they satisfy the commutation relations

[va; z]g = q; (2.22)

[va; vb]g = qb�a: (2.23)

These relations should be compared with the commutation relations of Pauli op-

erators. Indeed, the results we will derive about Pauli operators in the following

chapters are essentially based on their commutation relations and thus will adapt to

the va�s and z. In particular, it will be proved that if 2j + 1 is not prime, then the

va�s and z cannot yield a maximal set of MUBs. But for now, we are going to see

how these results can be partially derived from Gauss sums.

2.2 Gauss sums and MUBs

In this part, we work with a �xed value of j. The eigenvalues and the common

eigenvectors of the complete set of commuting operators fj2; vag can be easily found
by using standard techniques. This leads to the following result.

Proposition 2 The eigenvalues and the eigenvectors of the operators j2 and va are
given by

j2jj�; ai = j(j + 1)jj�; ai; vajj�; ai = qja��jj�; ai; (2.24)

where

jj�; ai = 1p
2j + 1

jX
m=�j

q�(j;m;a;�)jj;mi; � = 0; 1; : : : ; 2j; (2.25)

and

�(j;m; a; �) =
1

2
(j +m)(j �m+ 1)a+ (j +m)�: (2.26)

The spectrum of va is nondegenerate. For �xed j and a, the 2j + 1 eigenvectors

jj�; ai, with � = 0; 1; : : : ; 2j, of the operator va generate an orthonormalised basis

Ba = fjj�; ai; � = 0; 1; : : : ; 2jg (2.27)
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of the space "(j). In addition, we have

jhj;mjj�; aij = 1p
2j + 1

; m = �j;�j + 1; : : : ; j; � = 0; 1; : : : ; 2j; (2.28)

so that the bases Ba and Sj are mutually unbiased.

Let us now consider the overlap between two bases Ba and Bb corresponding to

the schemes fj2; vag and fj2; vbg, respectively. We have

hj�; ajj�; bi = 1

2j + 1

jX
m=�j

q�(j;m;b�a;���): (2.29)

With the help of a generalised quadratic Gauss sum S(u; v; w) de�ned by

S(u; v; w) =

jwj�1X
k=0

ei�(uk
2+vk)=w; (2.30)

where u, v, and w are integers such that uw 6= 0 and uw+ v is an even integer [46],
we have the following result.

Proposition 3 For b 6= a, the overlap hj�; ajj�; bi can be written as

hj�; ajj�; bi = 1

w
S(u; v; w); (2.31)

where

u = a� b; v = (2j + 1)(b� a) + 2(� � �); w = 2j + 1; (2.32)

with a� b = �1;�2; : : : ;�2j and �; � = 0; 1; : : : ; 2j. Furthermore, for 2j +1 prime
we have

jhj�; ajj�; bij = 1p
2j + 1

; (2.33)

with a� b = �1;�2; : : : ;�2j and �; � = 0; 1; : : : ; 2j.

We give a �rst proof involving only arithmetics in the ring Z2j+1 of residual
integers modulo 2j+1. It is an adaptation, in the framework of angular momentum,

of the method developed in [18] in order to construct a complete set of MUBs in Cd

with d prime. Afterwards we will give a second proof involving the same arithmetics,

but more in relation with Gauss sums.

Proof. The proof of (2.31) is straightforward with a translation by j of the index
of the sum in (2.29).

As to (2.33), we start from

vaz
n = vb; n = b� a 2 Z; (2.34)
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which can be derived from (2.20). In view of Proposition 2, the action of the operator

vaz
n on some vector jj�0; bi leads to

vaz
njj�0; bi = qj(a+n)��0 jj�0; bi: (2.35)

Furthermore, if we put

�i = �0 � in; i 2 Z; (2.36)

then formulae (2.19) and (2.25) give

znjj�0; bi = q2jnjj�1; bi: (2.37)

Let us consider the scalar product hj�; ajvaznjj�0; bi. This product can be calculated
in two di¤erent ways owing to (2.35) and (2.37). We thus obtain

jhj�; ajvajj�1; bij = jhj�; ajj�0; bij : (2.38)

Since va is unitary and (va)2j+1 = I, we can write

va = (v
y
a)
2j (va)

2j va = (v
y
a)
2j (va)

2j+1 = (vya)
2j : (2.39)

Finally, the introduction of (2.39) into (2.38) produces

jhj�; ajj�1; bij = jhj�; ajj�0; bij : (2.40)

The number of di¤erent �i modulo 2j+1 that can be reached by repeated translations

of �0 is (2j + 1)=gcd(2j + 1; n). The conclusion follows.

The second proof uses arithmetics in Gauss sums. It is divided into two parts,

whether the �rst argument of the Gauss sum under consideration is even or odd.

But we shall see that in fact, the method for the odd case is general enough to

encompass the even case. The reader may also have a look at the following section

about arithmetics applied to Gauss sums.

Proof. We have

(2j + 1)hj�; ajj�; bi = S(u; v; 2j + 1) =

2jX
k=0

q(uk
2+vk)=2; (2.41)

where u = a� b, v = (2j + 1)(b� a) + 2(� � �), and q = e2�i=(2j+1).

For j = 1=2, the generalised quadratic Gauss sum S(u; v; 2) can be easily calcu-

lated and we then check that (2.33) is satis�ed for 2j + 1 = 2.

We carry on with 2j + 1 equal to an odd prime number. In S(u; v; 2j + 1), the

integer u is such that �2j � u � 2j and, for 2j + 1 prime with j 6= 1=2, the integer
v has the same parity as u. We shall thus consider in turn u even and u odd.
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In the case where u is even, we introduce the two integers � = u=2 and � = v=2.

Then we have

S(u; v; 2j + 1) =

2jX
k=0

q�k
2+�k; (2.42)

where the exponent of q may be taken modulo 2j + 1. A translation of the index k

gives

S(u; v; 2j + 1) =

2jX
k=0

q�(k+t)
2+�(k+t): (2.43)

Since the elements appearing in the exponent of q may be considered to be the

elements of a �eld, there exists t such that 2�t+� = 0 (mod 2j+1). With this value

of t, we get

jS(u; v; 2j + 1)j =
�����
2jX
k=0

q�k
2

����� : (2.44)

The value of the rhs of (2.44) is
p
2j + 1 (see [46]). Therefore, (2.33) is proved for

2j + 1 odd prime and u even.

In the case where u is odd, let us introduce the canonical additive character of

Z=(2(2j + 1))Z

 : (Z=(2(2j + 1))Z;+) �! (C;�); x 7�! qy=2; (2.45)

with y 2 Z a representative of x modulo 2(2j + 1). Consequently, we have

S(u; v; 2j + 1) =

2jX
k=0

 (uk2 + vk); (2.46)

where the argument of  stands for a residue modulo 2(2j + 1). In order to apply

the translation trick and to get rid of the linear term, as in the even case, k has to

range over a complete set of residues modulo 2(2j + 1). For this purpose, we may

for instance consider the extra sum

2(2j+1)�1X
`=2j+1

 (u`2+v`) =

2jX
k=0

 (uk2+2(2j+1)uk+u(2j+1)2+vk+v(2j+1)): (2.47)

The second term of the argument of  in the rhs of (2.47) vanishes under  . More-

over,

u(2j + 1)2 + v(2j + 1) = 2(2j + 1)uj + (u+ v)(2j + 1) � 0 (mod 2(2j + 1)) (2.48)

since u+ v is even. Hence, the extra sum is equal to S(u; v; 2j + 1) so that

S(u; v; 2j + 1) =
1

2

2(2j+1)�1X
k=0

 (uk2 + vk): (2.49)
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Now let us carry out the translation:

u(k + t)2 + v(k + t) = uk2 + (2ut+ v)k + ut2 + vt: (2.50)

Since u is odd and between �2j and 2j, it is invertible modulo 2(2j + 1). Choosing
t � u�1 (mod 2(2j + 1)), we see that

jS(u; v; 2j + 1)j = jS(u; v + 2; 2j + 1)j ; (2.51)

where an increase of v by 2 amounts for an increase of � � � by 1. Therefore,

the moduli in the lhs of (2.33) do not depend on � � �. To show that they are

independent of a � b, we need only remember that the overlaps hj�; ajj�; bi are
coe¢ cients connecting two orthonormalised bases. Consequently

2jX
�=0

jhj�; ajj�; bij2 = 1 (2.52)

and

8� 2 f0; 1; : : : ; 2jg; (2j + 1) jhj�; ajj�; bij2 = 1; (2.53)

so that (2.33) is proved for 2j + 1 prime and u odd.

At this point, it is interesting to emphasize that the method we have developed

to handle the odd case works in the even case too. Suppose u = 2nu0, with u0 not

divisible by 2. In the translation Relation (2.50), the term 2ut should be replaced

by 2n+1u0t, where u0 is invertible modulo 2(2j +1). Thus v+2 in (2.51) is replaced

by v + 2n+1 and an increase of v by 2n+1 amounts for an increase of � � � by 2n.
Since 2n is coprime with 2j+1, all values of ��� will be swept over modulo 2j+1
and the result follows.

We now gather Propositions 2 and 3. It is known that for a d-dimensional

Hilbert space, with d prime (d = p) or a power of a prime (d = ps, with p prime and

s positive integer greater than 1), there exists a complete set of d+1 MUBs. In our

particular context, for d = p = 2j + 1 prime, the orthonormal bases

Ba = fjj�; ai; � = 0; 1; : : : ; p� 1g; a = 0; 1; : : : ; p� 1

satisfy (2.33), so that they constitute an incomplete set of p MUBs. But according

to Proposition 2, the bases Sj and Ba, with �xed a, are also unbiased. Therefore

Proposition 4 For p = 2j+1 prime, the computational basis Sj given by (2.8) and
the bases Ba with a = 0; 1; : : : ; p � 1, given by (2.25), constitute a complete set of
p+ 1 MUBs in Cp.

We close this section with a few remarks concerning the number of bases which

are unbiased with a given basis. In the second proof of Proposition 3, one of the key

arguments is that u or u0 must be invertible modulo 2(2j+1), which was immediately
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checked since 2j +1 was prime. This argument cannot be used when the dimension

d = 2j + 1 is a power of a prime, d = ps (p prime and s integer greater than 1).

However, taking p 6= 2, let us consider the bases Ba (a = 0; 1; : : : ; d � 1) whose
vectors are given by (2.25), with j = (d�1)=2. We remark that the number of bases
Ba (a ranging) that are unbiased with one of them is at least '(ps) = ps � ps�1, a
remark that is also valid for arbitrary dimension. If d = ps11 p

s2
2 � � � psnn , with pi 6= 2

for i = 1; 2; : : : ; n, then the number of bases Ba (a ranging) that are unbiased with

one of them is at least

'(d) =
nY
i=1

psii � p
si�1
i :

These considerations can be expressed in a geometrical way in the case of a prime

power dimension d = ps, with p 6= 2. Any integer a between 0 and ps � 1 can be
written in the form

a = a0 + a1p+ � � �+ as�1ps�1;

with 0 � ai � p � 1 for i = 0; 1; : : : ; s � 1. Thus, any basis Ba corresponds to
the point of coordinates (a0; a1; : : : ; as�1) in an a¢ ne space of dimension s over the

Galois �eld Zp. Moreover, we see that two bases Ba and Bb are mutually unbiased
if a0� b0 6= 0, which excludes a hyperplane of the a¢ ne space. In fact, we will see in
Chapter 5, Theorem 21 p.71 that this is also a necessary condition. Whenever d is

a product of prime powers, all of the primes being di¤erent from 2, a generalisation

is straightforward by the use of the Chinese remainder theorem. We shall �nd again

such a geometrical pattern in Chapter 3.

2.3 Arithmetics and Gauss sums

As a byproduct of our study, it is worthwhile to mention that arithmetical methods

can be used to derive relations between generalised quadratic Gauss sums. We are

going to give an example in order to know whether some Gauss sums are 0 or not

without calculating them. By the way, we �nd and use a result (2.60) which is

usually demonstrated with the help of the reciprocity theorem.

The Gauss sum S(u; v; w) as de�ned in (2.30), with u, v, and w integers such

that w 6= 0 and uw + v even, can be rewritten as

S(u; v; w) = q(ut
2+vt)=2

jwj�1�tX
k=�t

q(uk
2+(v+2ut)k)=2; t 2 Z; (2.54)

with q = e2�i=w. This is again a simple translation in the index k. Moreover, as a

more general version of (2.48), we have

uw2 + vw = (uw + v)w � 0 (mod 2w); (2.55)

which, as we have already learnt, shows that, in spite of the factor 1/2 in the

exponent of q, a translation by w of any of the indices k does not modify the sum
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in (2.54). Hence,

S(u; v; w) = q(ut
2+vt)=2S(u; v + 2ut; w): (2.56)

For t ranging and �xed u, v, and w, the number of di¤erent values of v+2ut modulo

2(2j + 1) is jwj= gcd(u;w); the corresponding Gauss sums are equal up to a phase
factor.

If there exists t such that ut+ v � 0 modulo w, then (2.56) yields

S(u; v; w) = �S(u;�v; w): (2.57)

In details, whenever the equation

tu+ kw = v (2.58)

has an integer solution in (t; k), (2.56) simpli�es to

S(u; v; w) = e�i�ktS(u;�v; w): (2.59)

Besides, by using again the translation method, we see that

S(u; v; w) =
0X

k=�jwj+1
q(uk

2+vk)=2 = S(u;�v; w); (2.60)

a result that also follows by applying twice the reciprocity theorem [46] for gener-

alised quadratic Gauss sums whenever u 6= 0. So if kt is odd, S(u; v; w) = 0.
Let suppose kt is odd, so that k and t are odd, and examine the system(

uw + v even,

tu+ kw = v:
(2.61)

If v is odd, then u and w are odd as well from the �rst condition. Then tu + kw

is even whereas v is odd. Thus v is even. If u is odd, then w is even from the �rst

condition. Then again tu + kw is odd whereas v is even. Thus u is even. u and w

having symmetric roles, w is even as well. In conclusion, we have

Proposition 5 S(u; v; w) = 0 whenever the following conditions are satis�ed:

u; v; w even, (2.62a)

vp(v) � min(vp(u); vp(w)) for all prime p > 2; (2.62b)

and

v2(u) 6= v2(w) =) v2(v) = min(v2(u); v2(w)) (2.62c)

v2(u) = v2(w) =) v2(v) � min(v2(u); v2(w)) (2.62d)

For instance, one may check that they are sati�ed by (u; v; w) = (2; 6; 8). But

not by (4; 10; 12), as both Conditions (2.62b) and (2.62d) are unchecked in that case.



Chapter 3

The projective structure P(Zmd )

In this chapter, we begin by presenting the Pauli group, a subgroup of U(d). Sec-

tion 3.1 recalls all the known features about it that we shall need. The diagonalising

bases of Pauli operators are well-known to provide MUBs, which we will call Pauli

MUBs. Bandyopadhyay et al. gave a recipe for that in [18], resting on Galois �elds

calculations in [7]. However, they did not give a complete isomorphism between

the unbiasedness relation among bases and the various maximally commuting sets

of Pauli operators to diagonalise. In order to establish a suitable relation among

maximally commuting sets of Pauli operators and then the desired isomorphism, we

are �rst led to study the projective structures P(Zmd ). In Section 3.2, we introduce
the wedge product to quantify neighbourness between projective points. We also

derive there the counting properties we shall need to relate to MUBs in Section 3.3.

Section 3.4 is a mathematical complement relating neighbourhood to group theory.

3.1 The Pauli group

Let d be any integer greater than or equal to 2 and put

q = exp

�
2�i

d

�
; (3.1)

the canonical primitive root of unity of order d. The Hilbert space Cd is endowed
with a computational basis which we denote with the classical convention in quantum

information

fj0i ; j1i ; : : : ; jd� 1ig (3.2)

where the indices are taken in Zd, the ring of integers modulo d. We de�ne on Cd

two fundamental unitary operators: the shift operator X by

8i 2 Zd; X jii = ji+ 1i (3.3)

and the clock operator Z by

8i 2 Zd; Z jii = qi jii : (3.4)

33
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For any particular value of d, they may be written in matrix form. For d = 2, we

get the usual Pauli matrices �x and �z of spin 1/2 physics:

X = �x =

 
0 1

1 0

!
; Z = �z =

 
1 0

0 �1

!
: (3.5)

For d = 4, one gets

X =

0BBBB@
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

1CCCCA ; Z =

0BBBB@
1 0 0 0

0 i 0 0

0 0 �1 0

0 0 0 �i

1CCCCA : (3.6)

Thus Z is a diagonal operator with eigenvectors the vectors of the computational

basis and X operates a circular permutation among the eigenvectors of Z. Both

operators are idempotent:

Xd = Zd = Id; (3.7)

with Id the identity operator on Cd. So, in the expressions Xa and Zb with a; b 2 Zd,
the exponents may be counted modulo d, which will be the case from now on. In

the same way, for any integer k, we will consider that k 2 Zd in the expression qk.

We will call the operators of the form qcXaZb, with a; b; c 2 Zd, the elementary
Pauli operators and denote their set

P(d) = fqcXaZb; a; b; c 2 Zdg: (3.8)

This is indeed a subgroup of the group of unitary operators on Cd. The fundamental
ingredient in the study of these operators is the following commutation relation that

can be easily checked from the de�nitions:

XZ = q�1ZX: (3.9)

With the following notation for the group theoretic commutator,

[A;B]g = ABA�1B�1; (3.10)

Relation (3.9) also reads

[X;Z]g = q�1Id: (3.11)

From (3.9), one derives:

8a; b; u; v 2 Zd; (XaZb)(XuZv) = qbu�av(XuZv)(XaZb); (3.12)

or equivalently

8a; b; u; v 2 Zd; [XaZb; XuZv]g = qbu�avId: (3.13)
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We dropped the global phase factor qc that appears in the de�nition of Pauli op-

erators as it is irrelevant for commutation relations. The exponent of q in (3.13) is

nothing but the opposite of the symplectic product of the vectors (a; b) and (u; v)

in Z2d. The symplectic inner product is de�ned by

!((a; b); (u; v)) =

����� a u

b v

����� = av � bu: (3.14)

It is a bilinear form whose representative matrix in the canonical basis of Z2d is

J =

 
0 1

�1 0

!
: (3.15)

Therefore two elementary Pauli operators XaZb and XuZv commute i¤

!((a; b); (u; v)) = 0: (3.16)

As a general rule from group theory, the set of commutators

D(P(d)) = f[XaZb; XuZv]g; a; b; u; v 2 Zdg; (3.17)

called the derived group of P(d), may be used to factorise P(d) into a commutative
group. Namely, D(P(d)) is a normal subgroup of P(d) and P(d)=D(P(d)) is com-
mutative. In the particular case of elementary Pauli operators, the derived group

happens to be the center of P(d), that is to say the subset of operators in P(d) that
commute with any other one in P(d):

D(P(d)) = fqcId; c 2 Zdg; (3.18)

Thus the members of the quotient group P(d)=D(P(d)) depend only on the two
parameters a; b 2 Zd and may be represented by the two component vector (a; b) 2
Z2d. In fact, we get the isomorphism

(P(d)=D(P(d));�) ' (Z2d;+): (3.19)

Since commutation relations in P(d) depend only the exponents of X and Z,

all the information about commutation relations is contained the quotient group.

So, the isomorphism is a kind of logarithm that can be used to investigate these

relations on the basis of algebra in the Zd-module Z2d, endowed with the symplectic
inner product !.

Now we de�ne the Pauli group P(d; n) to be the set of the n-th tensorial products
of elementary Pauli operators in P(d):

P(d; n) =
nO
i=1

P(d): (3.20)
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A quotient group of P(d; n) is still obtained by getting rid of the global phase factor
and we get the isomorphism

class(Xa1Zb1 
 � � � 
XanZbn) ' (a1; b1; : : : ; an; bn) 2 Z2nd : (3.21)

The Zd-module Z2nd is endowed with its canonical symplectic structure so as to

account for the commutation relations of the Pauli operators:

[Xa1Zb1 
 � � � 
XanZbn ; Xc1Zd1 
 � � � 
XcnZdn ]g = I

() !((a1; b1; : : : ; an; bn); (c1; d1; : : : ; cn; dn)) = 0; (3.22)

where the bracket is the group theoretical commutator and ! is now the symplectic

product over Z2nd . In matrix form, ! is de�ned by the 2n�2n block diagonal matrix
Jn with n blocks equal to J :

Jn = diag(J; : : : ; J); n blocks, (3.23)

so that

!((a1; b1; : : : ; an; bn); (c1; d1; : : : ; cn; dn)) =
nX
i=1

aidi � bici: (3.24)

In this thesis, we are to make an extensive use of the latter Zd-module tran-
scription of the quotiented Pauli group. In brief, a Pauli operator on Cdn up to a
complex multiplier can be represented by a vector in Z2nd . The commutation relations
among these operators are transcribed in this algebraic framework into computing

a symplectic product. In particular, two operators commute i¤ the corresponding

symplectic product is 0.

A basic fact is that two colinear vectors have a zero symplectic product. Indeed,

for n = 1 for example, one has

!((ka; kb); (la; lb)) = 0: (3.25)

Since we will be interested in maximally commuting sets of Pauli operators, we are

thus led to consider the projective structure of Z2nd , namely P(Z
2n
d ).

In the forthcoming sections of this chapter, we largely put aside the role of the

symplectic product and get more familiar with the projective structures in �nitely

generated Zd-modules, by comparing with the �eld case. Moreover, in order to be
as general as possible, we will consider Zmd instead of Z2nd , with m either even or

odd. In fact, another idea is behind the features we are going to investigate here, as

we shall see in Section 7.4.

3.2 Neighbourhood and distance

In a vector space, that is to say one uses a base �eld as R or C, any two linearly
independent vectors generate the same structure, namely a 2-dimensional subspace.
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Figure 3.1: Two lines over a base �eld, as R or C

Figure 3.2: Two lines over a base ring, as Zd

Two vectorial lines over a �eld intersect only at the origin (see Figure 3.1). In the

projective language, two distinct points of a vector space generate a projective line

and all the lines thus obtained are isomorphic. This is no more the case in general

over a ring, for instance Zd whenever d is not a prime. There two lines may intersect
at points other than the origin (see Figure 3.2).

We are speci�cally interested in the case of the ring Zd. The results we are going
to present were known in the particular case of qubits (d = 2) and qutrits (d = 3), as

well as for some other particular dimensions. These results were derived in [37, 47�

49], in the framework of extensive computations with the group theoretical software

GAP and comparing with previous studies in projective geometry over various �nite

rings [50, 51]. In this thesis, we concentrate on the overarching projective structure

and prove these results mathematically so that they are valid in any dimension. We

remark that our results are stated in terms of Zd only. We also connect with the
wedge product, as a new tool for characterising neighbour or distant points.

Let d be any integer greater than or equal to 2 and m be a positive integer. We

�rst specialise in the case d a power of prime, say d = ps, with p a prime integer

and s a positive integer. The general case will be deduced from that latter one with

the use of the Chinese remainder theorem. Moreover, �(x) will denote the order of

any element x in a group G and vp(k) the p-valuation of any k 2 Zd.
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3.2.1 Special case: d a power of a prime

We consider Zmd , d = ps, endowed with its canonical structure of Zd-module. A
vector x 2 Zmd is said to be free i¤ �(x) = d, or in other words i¤ the canonical

map f : Zd ! Zmd ; k 7! k � x is injective. If x is free, we say that hxi = Im f , the

submodule generated by x, is a projective point in Zmd . The set of all projective
points in Zmd will be called the projective net built over Zmd and denoted P(Zmd ).
The cardinality of P(Zmd ) is the number of free vectors in Z

m
d divided by the number

of invertible elements in Zd:

Card(P(Zmd )) =
psm � p(s�1)m
ps � ps�1 (3.26a)

=
m�1X
k=0

pskp(s�1)(m�1�k) =
m�1X
k=0

p(s�1)(m�1)+k (3.26b)

= p(s�1)(m�1)
pm � 1
p� 1 (3.26c)

What we said above in comparing "spaces" over �elds and rings show the interest

of the following lemma.

Lemma 6 Let x1; x2 2 Zmd be two free vectors. Then the following three statements
are equivalent:

1. The following map is injective:

f2 : Z2d �! Zmd
(k1; k2) 7�! k1x1 + k2x2:

(3.27)

2. hx1i \ hx2i = f0g

3. x1 ^ x2 is a free vector of
V2 Zmd .

Proof. (1) ) (2) is obvious. If hx1i \ hx2i = f0g, then, according to Lemma 44
p.143 with x = x1 and y 2 hx2i, the map

k 7�! x1 ^ kx2 (3.28)

is injective and so x1 ^ x2 is free. Finally, let us suppose that (3) is true and let
k1; k2 2 Zd such that k1x1 + k2x2 = 0. Then k1x1 ^ x2 = 0 and so k1 = 0. In the
same way k2 = 0. Thus f2 is injective.

With the notations of the lemma, there is in fact a one-to-one correspondance

between Card(Im f2) and �(x1 ^ x2). To see this, one may choose a computational
basis such that x1 has all its coe¢ cients but the �rst one equal to 0 and x2 has all

its coe¢ cients but the �rst two ones equal to 0 (see Lemma 38 p.132). Then it is

obvious that the order of x1 ^ x2 in
V2 Zmd is the order of the second coe¢ cient of

x2 in Zmd and so
Card(Im f2) = �(x1 ^ x2)d: (3.29)
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We can now restate the de�nition of neighbourhood and distance (see Appen-

dix E).

De�nition 7 Let hx1i ; hx2i 2 P(Zmd ). If one of the three properties of Lemma 6
is satis�ed by the vectors x1; x2, then they are said to be distant and so are the

corresponding projective points. Otherwise the two vectors are said to be neighbour

and so are the two projective points, which is denoted V(x1; x2) or V(hx1i ; hx2i).

We have to check that the notion of distance and therefore that of neighbourhood

among projective points are well-de�ned. It has to be independent of the choice of

the free vectors x1; x2 to generate the projective points under consideration. In fact,

Properties 2 and 3 of Lemma 6 are obviously independent of that choice. If one

wished to generalise the notion of distance into a quantitative way, then �(x1 ^ x2)
or �(x1 ^ x2) � d would be possible candidates.

Proposition 8 Whenever d is a power of a prime, the neighbourhood relation V is
an equivalence relation both for vectors and projective points.

Proof. It is obviously re�exive and symmetric. To show that it is also transitive,
let x; y; z 2 Zmd be three free vectors such that V(x; y) and V(y; z) and let us suppose
that x and z are distant. We may suppose that x has all its coe¢ cients but the �rst

one equal to 0 and z has all its coe¢ cients but the �rst two ones equal to 0. By this

assumption and Property 3 of the lemma, x1 and z2 are units of Zd. Hence, according
to V(x; y) and Property 3, the yi�s, i 2 f2; : : : ;mg, have to be noninvertible. Then in
the same way, y1 has to be noninvertible according to V(y; z). But this contradicts
the fact that y is a free vector. The transitivity of V for projective points follows
immediately.

From now on, we will be interested in the neighbourhood relation in P(Zmd ). Let
hxi 2 P(Zmd ). In order to �nd the cardinality of the class of hxi, we may �rst choose
a basis of Zmd such that x reads

x = (1; 0; : : : ; 0) (3.30)

as in the previous proof. Hence the points neighbour to x read hyi with some y of
the form

y = (y1; py
0
2; : : : ; py

0
m), y1 a unit. (3.31)

Therefore the cardinality of any class of V is

Card(class hxi) = (ps � ps�1)p(s�1)(m�1)
ps � ps�1 = p(s�1)(m�1) (3.32)

and according to (3.26c) the number of classes is

Card(P(Zmd )=V) =
pm � 1
p� 1 : (3.33)
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Examples: According to (3.26c), P(Z22) has 3 points (Figure 3.3) andP(Z23) 4 points
(Figure 3.4). Relations (3.32) and (3.33) both shows that in those two projective

structures, no two points are neighbour. More generally, the projective net P(Zmd )
has as many classes as points, with one point per class. But P(Z24) has 6 points, 3
neighbourhood classes and 2 points per class (Figure 3.5). The projective net P(Z24)
is in fact a doubling (p(s�1)(m�1) = 2) of P(Z22). More generally, P(Zmps) can be
arranged into a set of parallel lines where two points are neighbour i¤ they belong

to one and the same line. �

� � �
h(0; 1)i h(1; 0)i h(1; 1)i

Figure 3.3: Neighbourhood relations in P(Z22)

� � � �
h(0; 1)i h(1; 0)i h(1; 1)i h(1; 3)i

Figure 3.4: Neighbourhood relations in P(Z23)

� � �

� � �

h(0; 1)i h(1; 0)i h(1; 1)i

h(2; 1)i h(1; 2)i h(1; 3)i

Figure 3.5: Neighbourhood relations in P(Z24)

3.2.2 General case: d any integer � 2

Now let us deal with the case of a general d =
Q
i p
si
i . With the use of the Chinese

remainder theorem, we �rst see that the points of P(Zmd ) can be arranged into a
multidimensional grid:

P(Zmd ) '
Y
i

P
�
Zm
p
si
i

�
; (3.34)

and so

Card(P(Zmd )) =
Y
i

Card
�
P
�
Zm
p
si
i

��
: (3.35)

Also Lemma 6 is still valid and so we take up the same de�nition of neigbourhood

and distance for a general d. With �i the canonical projections associated to de-

composition (3.34), we have for all hx1i ; hx2i 2 P(Zmd )

V(hx1i ; hx2i)() 9i;V(h�i(x1)i ; h�i(x2)i): (3.36)
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The neighbourhood relation is no more transitive and thus is no more an equivalence

relation. But the Chinese remainder theorem and what we know about the special

case of d a power of a prime are enough to give the structure of the projective net

P(Zmd ) for a general d. If we rule out the case m = 1, each prime factor pi of d

contributes one or two dimensions to the grid whether si = 1 or si > 1, respectively.

Whenever Ci is a class in P
�
Zm
p
si
i

�
, then the hyperplane ��1i (Ci) is a set of pairwise

neighbour points in P(Zmd ). More precisely, two points in P(Z
m
d ) are neighbour i¤

they belong to one and the same of those hyperplanes.

Examples: Starting from the structures of P(Z22) and P(Z23) (Figures 3.3 and 3.4),
one obtains the structure of the projective net P(Z26) (Figure 3.6). Since 6 has no
square factor, this is a grid. More generally, if d =

Qk
i=1 pi has no square factor,

then the projective net P(Zmd ) may be represented by a k-dimensional grid where
two points are neighbour i¤ they belong to one and the same hyperplane. On the

contrary, since 12 has a square factor, the projective structure of P(Z212) is more
complicated (Figure 3.7). It may be represented by a (3 � 2) � 4 grid with only
two families of parallel hyperplanes accounting for neighbour points, namely the

hyperplanes orthogonal to the �rst and third canonical directions. �

h(2; 3)i h(2; 1)i h(0; 1)i h(4; 1)i

h(1; 3)i h(5; 1)i h(3; 1)i h(1; 1)i

h(1; 0)i h(1; 2)i h(3; 2)i h(5; 2)i

Figure 3.6: Neighbourhood relations in P(Z26)
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Figure 3.7: Neighbourhood relations in P(Z212): a is neighbour with b and c, but b
and c are distant.
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3.3 Neighbour points and MUBs

We here relate the features we have just developed to the study of MUBs. We have

to say in anticipation of the results presented in Chapter 5 that if one works with

Pauli operators that are tensorial products of k elementary Pauli operators, then

the maximally commuting sets of interest in order to get MUBs are generated by k

operators. Since in the present chapter, we look only at the projective points and so

at the monogenic sets of operators, we must have m = 2 in order to relate to MUBs.

That is to say we have to rule out any tensorial product. Moreover, Theorem 21

establishes that the key feature in the search for MUBs out of Pauli operators is

a symplectic product. But this notion coincide with the wedge product only for

m = 2.

In particular, it will follow from Theorem 21 that two Pauli operators XaZb and

XcZd de�ne two unbiased bases by diagonalisation i¤ ad�bc is a unit, that is to say
in the projective point language i¤ (a; b) and (c; d) are distant. Thus, the structure

of a projective line over Zd we explicited above shows that if d =
Q
i p
si
i and pj is the

minimum of the prime factors appearing in the decomposition of d, then the number

of MUBs one can get with such nontensorial Pauli operators is at most pj +1. This

is in agreement with the more general, limiting results obtained by Archer in [17]:

We have no grasp on composite dimensions. In addition, we know how to build at

least minifpsii g+1 MUBs in Cd, which shows that if one wants to build this number
of MUBs by diagonalising Pauli operators, then tensorial products are mandatory.

At this stage, we do not know how many factors must be involved in the tensor

product. So, we shall retain

Proposition 9 Let d = ps be a power of a prime, with s > 1. With the help of

P(d), one is able to get only p+1 MUBs, whereas a maximal set of MUBs contains
ps + 1 of them. Thus tensorial products of Pauli operators are mandatory in order

to reach this maximum.

The way to take this into account in a projective, geometrical framework will be

developed in Chapters 4 and 5. We already know after the work by Bandyopadhyay

et al. [18] that P(p; s) is a convenient Pauli group for the purpose of �nding ps + 1
MUBs in Cps . We shall prove that it is indeed the only one.

A �nal remark is in order. In case m = 2n, we may retain from our �rst naive

projective framework a very basic property. There exists a linear form ' :
V2 Z2nd !

Zd such that for all x1; x2 2 Z2nd , their symplectic product is

!(x1; x2) = '(x1 ^ x2): (3.37)

If !(x1; x2) is a unit, then x1 ^ x2 is free. Thus Theorem 21 will show that in order

to build MUBs, one needs a precise number of pairs of distant vectors or points.
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3.4 Neighbourhood classes as orbits

This last section is a mathematical complement relating neighbourhood in a projec-

tive net to group theory. However, its content will not be used in the forthcoming

chapters.

In Section 3.2, we gave a way to know whether two given vectors or projective

points are neighbour or distant. If only one vector or point is given, we are going to

show that its neighbourhood can be characterised in a geometrical way. Namely, the

equivalence classes of V can be obtained as the orbits of a convenient group action.
For simplicity, we take d = ps.

Let G = GL(m;Zd) act naturally on Zmd and also on P(Z
m
d ) by

8g 2 G; 8 hxi 2 P(Zmd ); g � hxi = hgxi : (3.38)

This action is compatible with V (see [52]):

8g 2 G; 8 hx1i ; hx2i 2 P(Zmd ); V(hx1i ; hx2i)() V(hgx1i ; hgx2i): (3.39)

Therefore we build an action of G on the neighbourhood classes and we search for

the kernel K of that latter action. For any � 2 K and any x 2 Zmd , we must have
V(x;�x). In particular with x the canonical basis vectors of Zmd or the sum of two

of them, we see that

1. 8i 2 f1; : : : ;mg; �ii is a unit;

2. 8j 6= i; 9�ij 2 Zd; �ij = p�ij ;

3. 8i; j 2 f1; : : : ;mg; 9�ij 2 Zd; �ii � �jj = p�ij .

Those three conditions obviously de�ne a subgroup K0 of G that contains K. Con-

versely, let � 2 K0, x 2 Zmd and let us denote /p any multiple of p. We may suppose
without loss of generality that x is of the form

x = (u1; : : : ; uk;/p; : : : ;/p); (3.40)

where u1; : : : ; uk are units with k � 1. Then

�x = (�11u1+ /p; : : : ; �kkuk+ /p;/p; : : : ;/p) (3.41)

and with Condition 3 we have, for all i; j 2 1; : : : ; k����� ui �iiui+ /p
uj �jjuj+ /p

����� = (�jj � �ii)uiuj+ /p = /p: (3.42)

Therefore K = K0.

In order to illustrate the use of Condition 3 once again, we can show directly
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that K is normal in G. Indeed, let U 2 G and � 2 K. We have

(�U)kj = �kkukj+ /p (3.43)

and then, with u0ij the coe¢ cients of U
�1,

(U�1�U)ij =
mX
k=1

u0ik(�U)kj =
mX
k=1

�kku
0
ikukj+ /p (3.44a)

= �11

mX
k=1

u0ikukj +
mX
k=1

(�kk � �11)u0ikukj+ /p (3.44b)

= �11�ij+ /p: (3.44c)

Hence U�1�U satis�es the three conditions above.

In general G=K is a proper subgroup of the permutation group of the orbits. If

some g 2 G stabilises the 2m� 1 orbits determined by the canonical basis vectors ei
and the sums e1 + ej , j 6= 1, for instance, then we saw that g 2 K. Let us see when
the following inequality is checked:

pm � 1
p� 1 � (2m� 1) � 2: (3.45)

It also reads

(pm�1 � 2) + (pm�2 � 2) + � � �+ (p2 � 2) + (p� 2) � 2: (3.46)

This inequality is false only for:

� m = 1,

� m = 2 and p = 2,

� m = 2 and p = 3.



Chapter 4

Lagrangian submodules

In the previous chapter, we saw that we have an isomorphism

(P(d; n)=D(P(d; n));�) ' (Z2nd ;+) (4.1)

and that

[Xa1Zb1 
 � � � 
XanZbn ; Xc1Zd1 
 � � � 
XcnZdn ]g = I

() !((a1; b1; : : : ; an; bn); (c1; d1; : : : ; cn; dn)) = 0; (4.2)

where the bracket is the group theoretic commutator and ! is the symplectic product

over Z2nd . Therefore, on the one hand, maximally commuting sets of Pauli operators
are accounted for by special submodules in Z2nd . On the other hand, for any sub-
module M of Z2nd , the notion of interest is the symplectic orthogonal of M de�ned

by

M! = fx 2 Z2nd ; 8y 2M; !(x; y) = 0g: (4.3)

Then a submodule M is called

� isotropic if M �M!,

� coisotropic if M! �M ,

� Lagrangian if M =M!.

� symplectic if M \M! = f0g,

Let M be a Lagrangian submodule. M is isotropic. Let us suppose that there

exists an isotropic submodule N such that M ( N . Then M ( N � N! � M!

and hence M is not Lagrangian. Thus, a Lagrangian submodule is isotropic and

maximal for inclusion restricted to isotropic submodules. Theorem 13 below will

show that the converse is also true. We thus see that maximally commuting sets of

Pauli operators are transcribed in the module language into Lagrangian submodules,

since the corresponding modules are the maximally isotropic ones. Our goal will then

45
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be to characterise Lagrangian submodules and express them in as simple a way as

possible.

The general, arithmetical and algebraic tools we need are set out in the appen-

dices in details. We extract here only the essential features adapted to our particular

context.

Lemma 10 Let d � 2, a1; a2; : : : ; al 2 Zd and � be one of their gcd�s. For any
i 2 f1; : : : ; lg, one can �nd k1; k2; : : : ; kl 2 Zd with ki 2 U(Zd) such that

� =

lX
j=1

kjaj : (4.4)

In the following lemma, �1; �2 are the orders of the vectors a1; a2 2 Z2nd , re-
spectively. Then �1 _ �2 denotes the lcm of �1 and �2, and hx; yi stands for the
submodule generated by x and y. By the way, x^y will denote the gcd of x; y 2 Zd.

Lemma 11 Let a1; a2 2 Z2nd of order �1; �2 respectively. There exists a linear

combination a of a1; a2 of order � = �1 _ �2 and a linear combination b of a1; a2
such that

ha; bi = ha1; a2i : (4.5)

Proof. Refering to the Chinese remainder theorem we may assume that d is a power
of prime, say d = ps. In that case, with i = 1 or 2 such that �i = max(�1; �2), we

simply put a = ai and b equal to the other one of the ai�s.

Note that for any linear combination x = x1a1 + x2a2 of a1 and a2,

�x = x1(�a1) + x2(�a2) = 0: (4.6)

Thus for all x 2 ha1; a2i, the order of x divides �.
Now suppose that we are given a minimal basis b = (b1; : : : ; br) of a submodule

M of Z2nd . That is to say that one cannot �nd a basis of M with less than r vectors

and we shall say that M is a rank-r submodule1. Let B be the matrix of size 2n� r
whose i-th column is bi. The matrix B is called a basis matrix forM and necessarily

r � 2n. Owing to Lemma 11 and associativity of lcm, we may suppose that

�(b1) =
r_
i=1

�(bi); (4.7a)

8m 2M; �(m)j�(b1): (4.7b)

An algorithm which set any matrix M that way will be called A . It consists of an

appropriate right-multiplication by an invertible matrix R(M).

1We use the notion of rank in an extended fashion as here it applies to any submodules, including
those that are not free.
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4.1 A �rst symplectic reduction algorithm

If we put

J =

 
0 1

�1 0

!
(4.8)

then in matrix form, ! is de�ned with respect to the canonical basis by the 2n� 2n
block-diagonal matrix

Jn = diag(J; : : : ; J): (4.9)

A basis (b1; : : : ; b2n) represented by a matrix B with respect to the canonical basis

is called a symplectic basis whenever BTJnB = Jn, where BT is the transpose of B.

For instance, the canonical basis is symplectic. When one looks after the elementary

divisors of a submodule, the �nal computational basis may be any free basis of Z2nd .
We are now interested in reduction of matrices where changes of computational basis

can only be symplectic, so that in the new computational basis, the inner product

! is still to be represented by Jn. Matrices L used for left-mutiplication thus have

to belong to the set of 2n� 2n symplectic matrices de�ned as:

Sp(n;Zd) = fL; LTJnL = Jng; (4.10)

The identity matrix is symplectic. A matrix that represents a symplectic basis

with respect to another symplectic basis is symplectic. Note that in Z, a symplectic
matrix has determinant �1. (In fact, one can prove that the determinant is equal
to 1.) The same is thus true for a symplectic matrix over Zd. This proves that all
symplectic matrices are invertible. Moreover, the inverse of a symplectic matrix is

symplectic.

Our task in this chapter is then the following. Given an r � r basis matrix B
for a submodule of Z2nd , can we �nd a symplectic matrix S and an r � r invertible
matrix such that SBR is as simple as possible, that is to say diagonal. If yes, how

can we �nd S and R?

Example: If we take the following basis matrix of a submodule in Z49:

B =

0BBBB@
3 3 6 3

0 3 0 6

2 8 1 0

8 5 4 0

1CCCCA ; (4.11)

then with

S =

0BBBB@
5 0 6 3

7 2 7 5

4 3 8 0

0 0 4 8

1CCCCA ; R =

0BBBB@
0 3 5 1

1 2 8 6

7 5 6 4

2 3 2 6

1CCCCA ; (4.12)

where S is symplectic and R invertible, one obtains

SBR = diag(3; 3; 1; 0): (4.13)

�
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We �rst address reduction of a single vector and afterwards that of a matrix.

The case n = 1 is trivial and is nothing but substep 2 below. Reduction of a

single vector when n � 2 relies itself on the fondamental case n = 2. The following
substeps are elementary operations that we shall use later on in the various steps of

our symplectic reduction algorithm for matrices. They form a sequence in order to

reduce a vector with four components (x; y; z; t)T using only symplectic changes of

basis.

I Substep 1: Let x; y; z; t 2 Zd and � = x^y^z^t. According to corollary 10,
there exist k1; k2; k3 2 Zd and u 2 U(Zd) such that

0BBBB@
u 0 0 0

k1 u�1 k2 k3

�k3u 0 1 0

k2u 0 0 1

1CCCCA
| {z }

0BBBB@
x

y

z

t

1CCCCA =

0BBBB@
x1

�

z1

t1

1CCCCA
S1

(4.14)

where S1 is symplectic and x1; z1; t1 are byproducts of the choice of k1; k2; k3 and u.

I Substep 2: Then, with Euclid�s algorithm to calculate a gcd, we �nd

v; w; k4; k5 2 Zd such that

vz1 + wt1 = z1 ^ t1 = z2; �k5z1 + k4t1 = 0; vk4 + wk5 = 1 (4.15)

and we perform a second left-multiplication

0BBBB@
1 0 0 0

0 1 0 0

0 0 v w

0 0 �k5 k4

1CCCCA
| {z }

0BBBB@
x1

�

z1

t1

1CCCCA =

0BBBB@
x1

�

z2

0

1CCCCA :

S2

(4.16)

where S2 is symplectic.

I Substep 3: Since

� = x ^ y ^ z ^ t = x1 ^ � ^ z1 ^ t1 = x1 ^ � ^ z2; (4.17)

we also have

� ^ z2 = (x1 ^ � ^ z2) ^ z2 = �: (4.18)
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Thus we can �nd k6 such that k6�+z2 = 0 and we perform a third left-mutiplication0BBBB@
1 0 0 k6

0 1 0 0

0 k6 1 0

0 0 0 1

1CCCCA
| {z }

0BBBB@
x1

�

z2

0

1CCCCA =

0BBBB@
x1

�

0

0

1CCCCA :

S3

(4.19)

where S3 is symplectic.

If n > 2, we apply the process de�ned by this sequence of substeps n� 1 times
in order to end with a vector whose components are null except maybe the �rst two

ones. At Step i, we set the (2n+ 2� 2i)-th and the (2n+ 1� 2i)-th components to
0. For a single vector, we can go further and set the second component to 0 as in

the second substep above. We shall soon de�ne a substep 4 to complete this list of

elementary operations.

It is in general not possible to diagonalise nor to trigonalise a matrix using only

a left-multiplication by a symplectic matrix. For instance, let us try to do even

weaker a job with the matrix B in the following equality over Zps , s � 1:0BBBB@
� �  k1

� � � k2

0 � l1p �
0 � l2p �

1CCCCA
| {z }

0BBBB@
1 0

0 p

0 1

0 0

1CCCCA
| {z }

=

0BBBB@
� �
� �
0 0

0 0

1CCCCA :

L B

(4.20)

Our aim is to �nd a symplectic matrix L so as to get rid of any nonzero term in

the last two rows. The �rst, third and fourth column vectors of L, let us call them

C1; C3 and C4, must be as shown in (4.20). But as L is supposed to be sympletic, C3
must be free and !(C1; C3) = 0. So there exist k3; k4 2 Zd such that k3 + k4� = 1

and �� = �. Hence (�; �) is a multiple of (; �):

� = (k3 + k4�)� = (k3�+ k4�); (4.21a)

� = (k3 + k4�)� = (k3�+ k4�)�: (4.21b)

Since C1 has to be free, (k3�+ k4�) has to be a unit. Then there exists l 2 Zd such
that

!(C1; C4) = k2�� k1� = (k3�+ k4�)(k2 � k1�) = (k3�+ k4�)(!(C3; C4)� lp):
(4.22)

That quantity should be both 0 and invertible and L cannot be symplectic. Then we

shall make use of right-multiplications to complete the reduction. The matrices used

for right-mutiplication need not be symplectic. Still, it is only possible to lower-
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trigonalise that way. Despite that restrictive result, we are to �nd another way of

reducing that will prove su¢ cient to classify Lagrangian submodules in Section 4.2.

We shall also need the

Criterion 12 Let a; x; y; z 2 Zd , a 6= 0, x a multiple of a and

m =

0BBBB@
a x

0 y

0 z

0 0

1CCCCA : (4.23)

There exists a symplectic matrix S such that Sm is upper-triangular i¤ z is a multiple

of y.

Proof. If z is a multiple of y, we can trigonalise m by applying substep 3.

Given a; x; y; z 2 Zd as speci�ed in the criterion, � = y ^ z on the one hand and
k 2 Zd; v 2 U(Zd) on the other hand such that � = ky+vz, we perform the following

left-mutiplication of m by a symplectic matrix S4:0BBBB@
1 0 0 kv�1

0 1 0 0

0 k v 0

0 0 0 v�1

1CCCCA
| {z }

0BBBB@
a x

0 y

0 z

0 0

1CCCCA
| {z }

=

0BBBB@
a x

0 y

0 �

0 0

1CCCCA
| {z }

;

S4 m m0

(4.24)

There exists k0 2 Zd such that y = k0� and let � be the order of � in Zd. In order not
to burden the argument with unessential details, we refer to the Chinese remainder

theorem to suppose that d is a power of a prime, say ps. Let t = vp(a) < s. If m0

is symplectically trigonalisable as set out in the criterion, the symplectic matrix to

use must be as shown in the following equation:0BBBB@
w + k11p

s�t � � �
k21p

s�t w�1 + k22ps�t k23p
s�t k24p

s�t

k31p
s�t �1 ��1k0 + l1� �1

k41p
s�t �2 ��2k0 + l2� �2

1CCCCA
0BBBB@

a x

0 y

0 �

0 0

1CCCCA =

0BBBB@
wa �
0 �
0 0

0 0

1CCCCA ;

(4.25)

with w 2 U(Zd). We leave the checking of that form to the reader. But the

symplectic inner product of the third and fourth columns of that matrix has to be

1, which proves with Bézout�s theorem that k0 and � are coprime. Let �; � 2 Zd be
such that �k0 + �� = 1. Then �y = �k0� = (1� ��)� = �.

We can now state our

I Substep 4: Let x; y; z 2 Zd, � = y ^ z and X = (x; y; z; 0)T with respect to

some symplectic basis. One can �nd a new symplectic basis in which X is written

(x; y; �; 0)T . The way to do so is given in (4.24).
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In what follows, we shall need a re�ned version of the algorithm A . Recall that

for any 2n� k matrix m, k � 1, there exists an k � k invertible matrix R(m) such
that A (m) = mR(m). For any 2n� k matrix m, i 2 f1; : : : ; 2ng, j 2 f1; : : : ; k� 1g,
and m[i;j] the (i; : : : ; 2n; j; : : : ; k) submatrix of m, Ai;j will be the algorithm de�ned

by

Ai;j(m) = m

 
Ij�1 0j�1;k�j+1

0k�j+1;j�1 R(m[i;j])

!
: (4.26)

Ai;j does essentially the same job as A on columns j to k of m, but it takes into

account only the last 2n � i + 1 rows to maximise the order and combines those
columns on the other lines accordingly.

We now go on with the symplectic reduction algorithm for a single Chinese factor.

We suppose that d = ps.

Symplectic reduction algorithm S : Suppose we are given a basis b =

(b1; : : : ; bk) of a submodule M of Z2nd and B is the matrix of size 2n � k whose

i-th column is bi. To reduce B in a symplectic way, the starting point is i = j = 1

and B0 = B, where i and j are some counters. Then while i � 2n� 3 and j � k� 1,
that is to say while there remain at least four lines and two columns to deal with,

do:

1. Apply Ai;j to B0 and perform a �rst left-multiplication by a symplectic matrix

in order to set to 0 all the coe¢ cients in the j-th column sarting from the

(i+ 1)-th line. We obtain a matrix B(1).

2. Apply Ai+1;j+1 to B(1) and perform a second left-multiplication by a symplec-

tic matrix to set to 0 all the coe¢ cients in the (j + 1)-th column sarting from

the (i+4)-th line. Indeed, as we see with the example above (Equation 4.20),

a step further as we planned to make it in the substeps could a¤ect the j-th

column in a wrong way. We obtain a matrix B(2) whose (i; : : : ; i+ 3; j; j + 1)

submatrix is 0BBBB@
b
(1)
i;j b

(1)
i;j+1

0 b
(1)
i+1;j+1

0 b
(2)
i+2;j+1

0 b
(2)
i+3;j+1

1CCCCA : (4.27)

3. Performing substeps 2 and 4, we get a matrix B(3) whose (i; : : : ; i+3; j; j+1)

submatrix is of the form 0BBBB@
b
(1)
i;j b

(1)
i;j+1

0 xb
(3)
i+2;j+1

0 b
(3)
i+2;j+1

0 0

1CCCCA ; (4.28)

with x 2 Zd. Notice the line index on the second line.
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4. If x is a unit, apply substep 3 to get a matrix B(4). If x is not a unit, just take

B(4) = B(3).

5. Since every coe¢ cient in the (i; : : : ; 2n; j + 1; : : : ; k) submatrix of B(4) is a

multiple of b(4)i;j = b
(1)
i;j , right-multiply B

(4) by an appropriate, invertible matrix

R1 to set to 0 the coe¢ cients on the i-th row starting from the (j + 1)-th

column. We obtain a matrix B(5).

6. If x is a unit, since every coe¢ cient in the (i + 1; : : : ; 2n; j + 2; : : : ; k) sub-

matrix of B(5) is a multiple of b(5)i+1;j+1 = b
(4)
i+1;j+1, right-multiply B

(5) by an

appropriate, invertible matrix R2 to set to 0 the coe¢ cients on the (i+ 1)-th

row starting from the (j + 2)-th column. We obtain a new matrix B0. If x is

not a unit, just take B0 = B(5).

7. If x is a unit, increase i and j by 2. If not, increase i by 2 and j by 1 only. In

this latter case, we need not perform Step 1 at the next pass: The new B(1) is

just the new B0.

Once this repeating process is �nished, if i = 2n�1, we may reduce the last two rows
by means of substep 2 and a right-mutiplication, so as to have at most two nonzero

coe¢ cients on them. If i < 2n � 1 and j = k, apply a last left-multilplication by a

symplectic matrix to B0 so as to reduce the last column as far as possible without

modifying the others. As an example, if we started with a 2n � 2n matrix B with

n = 8, we may end up with a matrix of the form

S (B) =

0BBBBBBBBBBBBBBBBBB@

�
�
�
�
�

R � � � � � � � � � �
�
�
�

R � � � � � � �
�
�
�
�
�
�

1CCCCCCCCCCCCCCCCCCA

; (4.29)

where the meaning of the letter R is explained below. �

Horizontal lines of stars in (4.29) beginning with an R will be called rent lines

and places marked with an R rent points. A rent line can occur only on an even

row. Suppose (i; j) is a rent point in the reduced matrix. Every coe¢ cient in the

(i; : : : ; 2n; j; : : : ; k) submatrix is a multiple of the coe¢ cient underneath the rent

point, at position (i + 1; j). So, if this coe¢ cient is 0, we may stop the algorithm.

Last but not least about rents, it was necessary to perform the algorithm in a single

Chinese factor, since a rent may occur at some position in some Chinese factor while

not in another one. This reduction procedure is thus linked in an essential way to

the Chinese remainder theorem.
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Example: We take again the basis matrix B of a submodule in Z49 as de�ned in
(4.11). Since the �rst column vector is free, we may suppose that A1;1 leaves B

unchanged and so Step 1 gives

B(1) = B: (4.30)

Then in Step 2, we reduce the �rst column by applying substeps 1 to 3 plus Euclid�s

algorithm. We have:

S1 =

0BBBB@
1 0 0 0

1 1 8 0

0 0 1 0

8 0 0 1

1CCCCA ; S1B =

0BBBB@
3 3 6 3

1 7 5 0

2 8 1 0

5 2 7 6

1CCCCA ; (4.31)

S2 =

0BBBB@
1 0 0 0

0 1 0 0

0 0 2 3

0 0 7 8

1CCCCA ; S2S1B =

0BBBB@
3 3 6 3

1 7 5 0

1 4 5 0

0 0 0 3

1CCCCA ; (4.32)

S3 =

0BBBB@
1 0 0 8

0 1 0 0

0 8 1 0

0 0 0 1

1CCCCA ; S3S2S1B =

0BBBB@
3 3 6 0

1 7 5 0

0 6 0 0

0 0 0 3

1CCCCA ; (4.33)

S02 =

0BBBB@
0 1 0 0

1 6 0 0

0 0 1 0

0 0 0 1

1CCCCA ; B(2) = S02S3S2S1B =

0BBBB@
1 7 5 0

0 0 0 0

0 6 0 0

0 0 0 3

1CCCCA : (4.34)

We get a matrix B(2) which is already under the form required at the end of Step 3.

Moreover x = 0, so that after Step 4 we get

B(4) = B(2): (4.35)

We then perform Step 5 to get B(5):

R1 =

0BBBB@
1 2 4 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCCA ; B(5) = B(4)R1 =

0BBBB@
1 0 0 0

0 0 0 0

0 6 0 0

0 0 0 3

1CCCCA : (4.36)

In Step 6, we get

B0 = B(5) (4.37)

since x is not a unit. Finally in Step 7, we put

i = 3; j = 2: (4.38)

Since i = 2n� 1, the process go out of the loop and we just have to right-multiply
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B0 to reorder its 2n� j + 1 = 3 last column vectors. We thus get

S (B) =

0BBBB@
1 0 0 0

0 0 0 0

0 6 0 0

0 0 3 0

1CCCCA : (4.39)

There is a single rent with all coe¢ cients on the rent line equal to 0. �

We see with that simple example that we could have reordered the 3 last columns

otherwise so as to get a diagonal matrix. But in case there are several rents or even

a single one with nonzero coe¢ cients, it may be more di¢ cult to see. So we want to

improve our algorithm in order to automatically achieve diagonalisation whenever

possible. Indeed, the algorithm S consists in choosing basis vectors f1; : : : ; f2n one

after the other so as to obtain a basis matrix of a particular form with respect to

the free basis f thus constituted. But can we avoid rents by a judicious choice of

the fi�s so as to get a diagonal basis matrix? Is it a good strategy to choose a

vector of the greatest possible order as we did? If the issue of order has actually

to be addressed, is it of some use to discriminate between the vectors of a given

order? We answer these questions in Section 4.3, but we are now ready to classify

Lagrangian submodules.

4.2 Classi�cation of Lagrangian submodules

We can now use the symplectic reduction algorithm to �nd a very simple form for a

minimal basis matrix of a Lagragian submodule M . As we saw, we are to suppose

that d = ps is a power of a prime. Let B0 be a basis matrix for M . The symplectic

reduction B = S (B0) is still a basis matrix forM . Suppose some coe¢ cient appears

on an even row, say at position (2i; j), without a rent. Since M is isotropic, the

symplectic product of the (2i� 1)-th and the (2i)-th column vectors of S (B) must

be zero, which can be written

vp(S (B)2i�1;j�1) + vp(S (B)2i;j) � s: (4.40)

The maximality of M implies that this is in fact an equality. On the contrary, if

there is a rent point at position (2i; j) and if the coe¢ cient of S (B) at position

(2i� 1; j � 1) has p-valuation t, then, by maximality of M , the vector

C = (0; : : : ; 0; ps�t; 0; : : : ; 0)T (4.41)

with ps�t at the (2i)-th position, is in M . We insert this column at position 2i,

that is to say between the (2i � 1)-th and the (2i)-th columns of S (B). Since M

is isotropic, every coe¢ cient on the (2i)-th line is a multiple of ps�t and we may

set to 0 every coe¢ cient on this line at right of the new column. We apply this

trick to each rent and obtain a diagonal matrix. So there exist k 2 f1; : : : ; ng and
s1; : : : ; sk 2 f0; : : : ; sg so that the diagonal matrix
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D = diag(ps1 ; ps�s1 ; ps2 ; ps�s2 ; : : : ; psk ; ps�sk) (4.42)

is a basis matrix for M . If k < n, then M would not be maximal. One could add

for instance the vector
(0; : : : ; 0; 1; 0; : : : ; 0)T (4.43)

with 1 at the (2k + 1)-th position and get a greater isotropic submodule. So k = n.

By construction of S (B), si � sj whenever i < j. Also note that C, as a vector of

M , has to be a linear combination of the column vectors of S (B). Since our trick

to make good a rent always yields a new basis matrix for M , the same is true for

every additional column. So, whether a diagonal coe¢ cient of D on an even row

appeared while dealing with a rent or not, our use of the algorithm A warrants that

for all i 2 f1; : : : ; ng, si � s� si.
Before we conclude, a remark is in order. Suppose the (2i)-th diagonal coe¢ cient

of D, i 2 f1; : : : ; n � 1g, appeared while applying the algorithm S to B0, that is

to say there was no rent on the (2i)-th line. Then s=2 � si+1 � s � si � s=2 and

so, for j � i, sj = s=2. If s is odd, there is necessarily a rent on every even row of

S (B0) except the last one.

Now, since these results do not depend on the Chinese factor we chose, we have

proved the

Theorem 13 Let M be a submodule of Z2nd and d =
Q
i2I p

si
i be the prime factor

decomposition of d. Then M is Lagrangian i¤ the following two conditions are

satis�ed. There exists a unique family

(d1; : : : ; dn) 2
n
1; : : : ;

Y
i2I

p
bsi=2c
i

on
(4.44)

such that d1jd2j : : : jdnjd and there exists a 2n� 2n symplectic matrix S such that

S � diag(d1; d=d1; d2; d=d2; : : : ; dn; d=dn) (4.45)

be a basis matrix for M .

Example: The reader may check that in the example set out in Relation (4.11) p.47,
the column vectors of B are pairwise orthogonal for the symplectic product. Thus

the submodule M whose basis matrix is B, or equivalently BR, is isotropic. It is in

fact Lagrangian. Indeed, if we take as a new computational basis the column vectors

of S�1, a new basis matrix for M is SBR. Then a vector x = (x1; x2; x3; x4) 2M!

has to verify

3x1 = 0; 3x2 = 0; x4 = 0; (4.46)

so that it is a member of M . Finally,

BR = S�1 � diag(3; 3; 1; 0); (4.47)

in agreement with Theorem 13. This could also be seen in the same way from S (B)

in (4.39). �
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As we have already pointed out, Theorem 13 classi�es the maximaly commuting

sets of Pauli operators. Moreover, we shall see in Chapter 5 that it enables to know

which of these sets are likely to provide one with MUBs. It also �nds a direct

application in the �eld of discrete Wigner distributions over a Zd-phase space as we
develop in Chapter 6.

Note that the proof we gave of Theorem 13 is algorithmic as it is an adaptation of

the algorithmS with the extra information that the input submodule is Lagrangian.

But this is unsatisfactory if we do not know a priori whether a given submodule is

Lagrangian. According to (4.45), the objects of interest are the elementary divisors

of the submodule together with a symplectic matrix S. Since we already know how

to compute the elementary divisors with the help of the algorithm G (see Appendix C

p.140), we need another algorithm to �nd S that involves at most the knowledge of

the elementary divisors.

So, as a mathematical complement to the present study, we expose in the next

section how to diagonalise a given 2n� r matrix by means of a symplectic change of
computational basis. The results we get on symplectic diagonalisation will not be

used in the remaining chapters and may be skipped by the reader interested only in

applications.

4.3 Symplectic diagonalisation

Lagrangian submodules are quite a particular case. In this section, we �rst prove

with an example that it is not always possible, for some submodule M , to �nd a

symplectic basis f and a 2n� 2n diagonal matrix D such that fD be a basis of M .

The diagonal entries of the D need not be arranged by increasing valuations. If such

a pair (f;D) exists, we shall say that M is nearly symplectic. Our aim will then

be to provide a criterion to know if a given M is nearly symplectic. That will be

done with the algorithm D! that also yields the symplectic basis f if any. We shall

eventually see that as Lagrangian submodules, symplectic ones form a particular

kind of nearly symplectic submodules. For the sake of simplicity, we take again in

this section d = ps.

4.3.1 Preliminaries

We �rst recall the

Theorem 14 For any rank-r submodule M of Z2nd , there exist a free basis f of Z
2n
d

and a minimal basis b of M such that:

1. b is represented by a diagonal 2n� r matrix B with respect to f ;

2. for all i; j 2 f1; : : : ; rg, i < j, we have biijbjj.

Moreover, for any pair (f; b) as above, the sequence (d=�(bii))i2f1;:::;rg of the diagonal

entries of B "without unit factors" is the same and therefore is a property of M .

That sequence is called the sequence of the elementary divisors of M .
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The pair (f; b) in Theorem 14 is not unique. For any submodule M of Z2nd , we
denote FM the set of all free bases f of Z2nd such thatM has a diagonal basis matrix

with respect to f as in the theorem. We also put �D(M) the subgroup of GL(n;Zd)
that consists of all the change of basis matrices P between the bases in FM .

Let us study the relation between the various bases f 2 FM . With the notations
of Theorem 14, we will denote �i, i 2 f0; : : : ; s� 1g, the number of diagonal entries
of B of the form upj , u 2 U(Zps), j � i, and as intervals in N

8i 2 f0; : : : ; s� 1g; Ki = f�i�1 + 1; : : : ; �ig; (4.48a)

Ks = fr + 1; : : : ; ng: (4.48b)

Some of these intervals may be empty. Let (f (1); b(1)) and (f (2); b(2)) be two conve-

nient pairs and P the n�n change of basis matrix de�ned by f (1)P = f (2). For any

k 2 f0; : : : ; 2ng, there exists some ik 2 f0; : : : ; sg so that k 2 Kik . So p
ikf

(2)
k 2 M

and hence

8i 2 fik + 1; : : : ; sg; 8j 2 Ki; pi�ik jPjk: (4.49)

Since P is invertible, we also deduce from that latter result that for any i 2 f0; : : : ; sg,
the (Ki;Ki) diagonal block of P is an invertible matrix.

As a converse, for any convenient pair (f; b) and any invertible matrix P satis-

fying Relation (4.49), let b0 be the family represented by the matrix fPD(b) and N

be the submodule of M generated by b0. Since P is invertible, fP is a free family

and (fP; b0) is a convenient pair for N . Hence M and N have the same sequence of

elementary divisors and with the help of corollary 42 of Appendix C, p.140, we see

that they have the same cardinality. So N =M and (fP; b0) is a convenient pair for

M .

Finally, the Gram matrix will be the crux of our symplectic reduction algorithm.

Let c 2 f1; : : : ; 2ng and x = (x1; : : : ; xc) a family of vectors in Z2nd . The Gram
matrix of x, G = Gram(x), is the c� c matrix given by

8i; j 2 f1; : : : ; cg; gij = !(xi; xj): (4.50)

With matrices, if B is the representative matrix of x with respect to the computa-

tional basis e, then G = BTJnB and thus G is antisymmetric, but not necessarily

invertible, even if x is free. Yet, if c = 2n and x is a free basis of Z2nd , then
B;G 2 GL(2n;Zd). The discriminant of x is the determinant of its Gram matrix:

�(x) = det(Gram(x)): (4.51)

By restriction, the Ki�s de�ned above in (4.48a, 4.48b) determine a partition K 0 of

f1; : : : ; cg:
8i 2 f0; : : : ; sg; K 0

i = Ki \ f1; : : : ; cg: (4.52)
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For every (i; j) 2 f0; : : : ; sg2, Gij will be the (K 0
i;K

0
j) block of G. We also put bGij

to be a matrix so that if Gij is not the empty matrix and if sij = vp(Gij), then

vp
� bGij� = 0 and psij bGij = Gij . The matrix bGij thus pointed out is not unique if

sij > 0. If Gij is the empty matrix, then so is bGij .
4.3.2 A counter-example

For now we take c = 2n only. A simpli�ed study upon Gram matrices enables us to

give the simplest example of a non-nearly-symplectic submodule. The pattern we

catch a glimpse of here about those matrices will be seen in its plain form afterwards.

The reader who is interested only in the general case may skip to the next part.

Let f 2 FM . For all i 2 f1; : : : ; 2ng, we de�ne

�M (fi) = min(vp(!(fi; x)); x 2M); (4.53)

�(f; i) = min(j 2 f0; : : : ; sg; 9k 2 Kj ; gik 2 U(Zd)): (4.54)

Since f is a free basis of Z2nd , the matrix G is invertible and hence � is well-de�ned.

The graph on Figure 4.1 illustrates the meaning of �M (fi) and �(f; i). For any k

and v, a plain bullet at position (k; v) indicates that vp(gik) = v.

� � �

� � �

� � �

� � �
- k- -� � -� - -� �

K0 K1 Kl K��1 K� k1

6

vp(!(fi; fk))

0

1

...

�� l

...

�� 1

�

...

f 2 FM , i is �xed
� = �M (fi)

k1 2 Kj ; j = �(f; i)

�

��� ?

Figure 4.1: The functions �M and �

So there must exist l 2 f0; : : : ; �g and k0 2 Kl so that vp(gik0) = � � l. Let
i 2 f1; : : : ; 2ng, j = �(f; i) and k1 2 Kj so that gik1 2 U(Zd). Then �M (fi) �
vp(!(fi; p

jfk1)) = j = �(f; i). This inequality is illustrated by the second plain

bullet at position (k1; 0).
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We then consider a nearly symplectic submoduleM with a convenient pair (f;D).

If (vp(dii))i=1;:::;2n is not an increasing sequence, we use a 2n�2n permutation matrix
Q so that the diagonal coe¢ cients of QTDQ are arranged by increasing valuation.

Let f 0 = fQ 2 FM . On each line of Gram(f 0) = QTJnQ, there is only one nonzero

coe¢ cient which is necessarily invertible, in fact 1 or �1, and it is clear that for all
i 2 f1; : : : ; 2ng, �M (f 0i) = �(f 0; i). On Figure 4.1, the equality �M (fi) = �(f; i) is

checked i¤ k1 2 K�.

We are now ready to �nd the announced non-nearly-symplectic submodule. Let

s > 1 and M be the submodule generated by the column vectors of the matrix B in

the following equation, with respect to e:0BBBB@
1 0 0 0

0 1 1� p 0

0 �1 p 0

0 0 0 1

1CCCCA
| {z }

0BBBB@
1 0 0 0

0 p 0 0

0 1 0 0

0 0 0 0

1CCCCA
| {z }

=

0BBBB@
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1CCCCA
L B

(4.55)

We left-multiply B by an invertible matrix L so as to obtain a diagonal matrix. Here,

the diagonal coe¢ cients of that latter matrix are already arranged by increasing

valuation. K0 = f1; 2g and Ks = f3; 4g are the only nonempty intervals Ki. The

new computational basis is f = eL�1 2 FM and the Gram matrix of f is

G = L�TJnL
�1 =

0BBBB@
0 p �1 + p 0

�p 0 0 1

1� p 0 0 1

0 �1 �1 0

1CCCCA ; (4.56)

with L�T = (L�1)T . Here, any matrix P 2 �D(M) (see de�nition p.4.3.1) is of the

form

P =

 
A1 A2

02;2 A3

!
; (4.57)

with A1; A3 2 GL(2;Zd). Then the Gram matrix of f 0 = fP is of the form

P TGP =

 
pAT1

bG00A1 A4

�A4 A5

!
; with bG00 =  0 1

�1 0

!
(4.58)

and AT1 bG00A1; A4 2 GL(2;Zd). But we see that for any i 2 K0 = f1; 2g, �M (f 0i) =
1 < �(f 0; i) = s. Comparing to the result of the previous paragraph, this proves our

claim that M is not nearly symplectic.

What if s = 1? In that case, the matrix obtained by swapping the second and

third columns of B, namely diag(1; 0; 1; 0), is a convenient diagonal basis matrix for

M with respect to the symplectic basis e.
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4.3.3 General case

Let us now tell how to know in the general case whether a given submodule M is

nearly symplectic or not and how to �nd a convenient pair (f;D) if any. We shall

need a little more vocabulary.

Let b be a free basis of Z2nd , � 2 S2n a permutation of f1; : : : ; 2ng and Q the

representative matrix of �, that is to say the only nonzero coe¢ cients of Q are equal

to 1 and are located at the positions (i; �(i))i=1;:::;2n. We denote b� the free basis

(b�(1); : : : ; b�(2n)) of Z2nd and say that b is �-symplectic if b� = bQT is symplectic. In

that case, the representative matrix of ! in basis b is QTJnQ. A 2n� 2n matrix L
is said �-symplectic if QLQT is symplectic or equivalently if

LT (QTJnQ)L = QTJnQ: (4.59)

Thus the conjugation by L preserves the matrix representative of ! in b, L is in-

vertible and L�1 is still �-symplectic. If b and L are �-symplectic, bL = bQTQL

is still a �-symplectic basis and if B is the representative matrix of b with respect

to a �-symplectic basis f , then B is a �-symplectic matrix. Indeed, fQT and

bQT = (fQT )(QBQT ) are symplectic bases and hence QBQT is a symplectic ma-

trix.

The notions of scalar and set fringe we are going to de�ne involve the Ki�s

and thus are meanigless unless a reference submodule or a suitable partition of

f1; : : : ; 2ng is speci�ed. Let M be a submodule of Z2nd . De�ne the Ki�s accordingly

and let � be the map

� : f1; : : : ; 2ng �! f0; : : : ; sg; such that i 2 K�(i):

i 7�! �(i)
(4.60)

Then for any Gram matrix G of size � 2n and containing at least one unit, we de�ne
the scalar (M -)fringe of G by

frM (G) = min(�(i) + �(j); gij 2 U(Zd)) (4.61)

or equivalently

frM (G) = min(i+ j; vp(Gij) = 0): (4.62)

The (M -)fringe of G is the set of all coe¢ cients gij such that �(i) + �(j) � frM (G).
A block Gij is said to be in the fringe of G if ij = frM (G) � i � j � 0. Whenever
all the blocks Gij in the fringe of G verify vp(Gij) � ij , we shall say that the

(M -)fringe of G is good. If there exists i; j 2 f1; : : : ; 2ng such that

gij 2 U(Zd) while �(i)�(j) = 0 (4.63a)

8k � i; vp(gkj) � �(k)�(j); (4.63b)

8l � j; vp(gil) � �(i)�(l); (4.63c)
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we shall say that the (M -)fringe of G is nice. Of course a good M -fringe is a nice

M -fringe. Let us give an example. If a block Gij with i + j = 3 contains a unit,

then the following (Gram) matrix has a good fringe and scalar fringe 3:

G =

0BBBBBBBBB@

p3 bG00 p3 bG01 p bG02 G03 � � �

p2 bG10 p bG11 pG12

p3 bG20 G21

G30
...

1CCCCCCCCCA
: (4.64)

We shall need the following lemma and corollary.

Lemma 15 Let M be a submodule in Z2nd . Let b be a free basis of Z
2n
d with Gram

matrix G and assume that G has a good M -fringe. Then for any P 2 �D(M),

P TGP has a good M -fringe with the same scalar M -fringe as G.

That is to say the form (4.64), with the particular scalar M -fringe required, is

preserved under conjugation by a matrix in �D(M).

Proof. The reference submodule is M . Let H = GP . For every block Hij of H, we

have

Hij =

j�1X
k=0

GikPkj +GijPjj +
sX

k=j+1

GikPkj : (4.65)

As to the �rst sum, for every k 2 f0; : : : ; j � 1g, we have

vp(Gik) + vp(Pkj) � vp(Gik) � ik � ij + 1 (4.66)

and we refer to Relations (A.29a) and (A.29b) of Appendix A.2 to see that

vp(GikPkj) � min(vp(Gik) + vp(Pkj); s) � ij + 1: (4.67)

Since Pjj is invertible, the lines of GijPjj are of the same order as the lines of Gij
respectively and then

vp(GijPjj) = vp(Gij) � ij : (4.68)

As to the second sum, for every k 2 fj + 1; : : : ; sg, the inequality

vp(Gik) + vp(Pkj) � (fr(G)� i� k) + (k � j) = ij (4.69)

implies that

vp(GikPkj) � ij : (4.70)

So vp(Hij) � ij . Let (i; j) be such that ij = 0 and vp(Gij) = 0. Then the

inequality in (4.69) may be modi�ed as

8k 2 fj + 1; : : : ; sg; vp(Gik) + vp(Pkj) � 0 + (k � j) � 1; (4.71)
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and we see that vp(Hij) = 0. So H has a good fringe with scalar fringe fr(G). In

the same manner, P TGP = P TH has a good fringe with scalar fringe fr(G).

Corollary 16 Let M be a nearly symplectic submodule of Z2nd and f 2 FM . Then
the matrix Gram(f) has a good M -fringe.

Proof. By assumption, there exists � 2 S2n and f 0 a �-symplectic basis in FM .
We have already seen that G0 = Gram(f 0) has a good fringe (with respect to any

submodule). Besides, there exists P 2 �D(M) so that f = f 0P . So, Gram(f) =

P TG0P has a good M -fringe.

We can now give the algorithm for symplectic diagonalisation whenever possible:

Algorithm D!: Let M be a submodule of Z2nd , b a basis of M and B its

representative basis matrix with respect to any computational basis e0.

Let f = e0L(B)�1 2 FM , where L(B) is de�ned within the algorithm D0 (see

page 135), fM = M and b0 be the empty sequence with values in Z2nd . Let also c be
a counter with initial value 0.

While c < n and G = Gram(f) has a nice fM -fringe, do
1. Choose a pair (i; j) 2 f1; : : : ; 2n � 2cg2 that veri�es Conditions (4.63) and
perform the partial Gram-Schmidt orthogonalisation process:

f 0i = fi; f 0j = fj ; (4.72a)

8k 2 f1; : : : ; 2n� 2cg n fi; jg; f 0k = fk � g�1ij gikfj + g
�1
ij gjkfi: (4.72b)

Owing to the nice fringe condition, the corresponding change of basis matrix

R is in �D(M). With i � j and gij = 1, it reads

R =

0BBBBBBBBBBBBBBBBBBB@

1
. . .

1

gj1 � � � gj;i�1 1 gj;i+1 � � � gj;j�1 0 gj;j+1 � � � gj;2n
1

. . .
1

�gi1 � � � �gi;i�1 0 �gi;i+1 � � � �gi;j�1 1 �gi;j+1 � � � �gi;2n
1

. . .
1

1CCCCCCCCCCCCCCCCCCCA

;

(4.73)

where the two special rows are the i-th one and the j-th one respectively.

For any k 2 f1; : : : ; 2n � 2cg n fi; jg, f 0k 2
D
f 0i ; f

0
j

E!
and since R 2 �D(M),

f 0 = fR 2 FM .

2. Let b0 be the concatenation of b0 and (g�1ij f
0
i ; f

0
j).
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3. Rename fM \ Df 0i ; f 0jE! as fM .
4. Rename f 0 n ff 0i ; f 0jg as f .

5. Increase c by 1.

Whenever D!(b) = D!(e
0; B) = b0 has cardinality 2n, then it is a symplectic

basis of Z2nd , M is nearly symplectic and there exists � 2 S2n so that b0� 2 FM . �

Example: Before we give the proof of the algorithm, let us process through an
example. We take over, in Z49, the submodule M de�ned in Relation (4.11) p.47 by

its basis matrix B with respect to the canonical computational basis, e0 = e. We

already know that

K0 = f1g; K1 = f2; 3g; K2 = f4g: (4.74)

Knowing the Ki�s is a requisite in order to apply the algorithm D!. The column

vectors of the following matrix F form a basis f in FM :

F =

0BBBB@
6 0 4 3

6 5 0 7

5 6 7 6

2 6 1 5

1CCCCA ; f = eF 2 FM : (4.75)

Indeed, F�1B is clearly amenable to diag(1; 3; 3; 0) by means of a right-multiplication

by an invertible matrix:

F�1 =

0BBBB@
4 3 8 0

4 2 1 5

8 0 3 3

0 0 4 8

1CCCCA ; F�1B =

0BBBB@
1 4 5 3

0 6 0 6

0 0 0 6

0 0 0 0

1CCCCA : (4.76)

Note that it is not necessary to get P with the help of the algorithm D0. Any basis

f 2 FM is convenient. Then fM , b0 and c are initialised to M , the empty sequence
with values in Z2nd and 0, respectively.

The counter c is less than n = 2 and the Gram matrix of f = eF is

G =

0BBBB@
0 3 3 1

6 0 7 6

6 2 0 3

8 3 6 0

1CCCCA : (4.77)

It obviously has a good M -fringe.
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1. In Step 1 we choose

(i; j) = (2; 3); (4.78)

which gives

g�1ij = g�123 = 4 (4.79)

and for R and f 0:

R =

0BBBB@
1 0 0 0

6 1 0 3

3 0 1 3

0 0 0 1

1CCCCA ; PR =

0BBBB@
0 0 4 6

0 5 0 4

8 6 7 0

5 6 1 8

1CCCCA : (4.80)

Comparing to F , we see that the second and third columns have been left unchanged

in FR.

2. In Step 2, we collect 4f 02 and f
0
3 and �nd in matrix form:

b0 =

0BBBB@
0 4

2 0

6 7

6 1

1CCCCA : (4.81)

3. In Step 3, given the remark at the end of Step 1 in the statement of D!, the

new submodule fM is generated by �1f
0
1 and �4f

0
4:

fM =


�1f

0
1; �4f

0
4

�
(4.82)

for some �1; �4 2 Z9. Since 1 2 K0 and 4 2 K2, we may choose

�1 = 1; �4 = 0: (4.83)

Thus fM =


f 01
�
: (4.84)

4. In Step 4, we simply put, in matrix form,

f = (f 01; f
0
4) =

0BBBB@
0 6

0 4

8 0

5 8

1CCCCA : (4.85)

5. Then in Step 5, c is set to 1.

Since c = n�1 = 1, the forthconing passage in the loop will be the last one after
we check the fringe condition. The new Ki�s are

K0 = f1g; K1 = ;; K2 = f2; 3; 4g (4.86)
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and the new Gram matrix is

G = Gram(f 01; f
0
4) =

 
0 1

8 0

!
; (4.87)

which again has a good fM -fringe. This time, we have nothing to do in Step 1:
R = I2; f 0 = f: (4.88)

Thus in Step 2, we get in matrix form

b0 = P =

0BBBB@
0 4 0 6

2 0 0 4

6 7 8 0

6 1 5 8

1CCCCA : (4.89)

Steps 3 and 4 do not matter: They simply exhaust fM and f 0. Then c is set to 2

and the algorithm stops.

We have

P�1 =

0BBBB@
0 5 1 2

7 0 3 6

4 3 8 0

0 0 4 8

1CCCCA : (4.90)

So, in basis D!(e;B) = b0, we obtain the following basis matrix for M :

P�1M =

0BBBB@
0 6 0 3

3 3 6 3

1 4 5 3

0 0 0 0

1CCCCA ; (4.91)

which is diagonalisable via a right-miltiplication by an invertible matrix:

P�1M

0BBBB@
1 2 3 4

2 1 8 0

0 0 1 1

0 1 2 0

1CCCCA = diag(3; 3; 1; 0): (4.92)

This �nish proving that the algorithm D! works for the particular case we dealt

with. �

We now prove the algorithm in full generality. Since e0L(B)�1 is a free basis of

Z2nd , its Gram matrix is invertible and thus has a well-de�ned M -fringe. Then the

discriminant

�(f 0 n ff 0i ; f 0jg) = g�2ij �(f
0) = g�2ij �(f) (4.93)

being a unit, all the forthcoming matrices G have a well-de�ned fM -fringe and D!
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is a valid algorithm. Now if M is nearly symplectic, does this algorithm yields the

matrix b0 we search for? Besides, in Step 1, the pair (i; j) is not unique. So we are

to prove that if M is nearly symplectic, the algorithm D!, with any choice of the

pairs, builds a symplectic basis b0 that endows M with a diagonal basis matrix.

Let M be a nearly symplectic submodule of Z2nd , � 2 S2n with representative
matrix Q and h a �-symplectic basis in FM . Let also B be a basis matrix of M with

respect to any computational basis e0 and let us carry out the algorithm. Corollary 16

shows that the �rst Gram matrix G has a nice M -fringe. We choose a convenient

pair (i; j) and �nd the �rst two vectors of b0 by performing Steps 1 and 2. Then with

N =M \
D
f 0i ; f

0
j

E!
, we want to show that the Gram matrix of f [ = f 0 n ff 0i ; f 0jg has

a nice N -fringe. From now on, we consider N as a submodule of


f [
�
exclusively.

With that convention, f [ 2 FN , and Corollary 16 tells us that it su¢ ces to show
that N is nearly symplectic.

There exists P 2 �D(M) such that f 0 = hP . For any m 2 f1; : : : ; 2ng, let `(m)
be the index de�ned by !(hm; h`(m)) = �1. Since frM (h) = frM (f

0) as shown by

Lemma 15, we have

�(m) + �(`(m)) � �(i) + �(j) (4.94)

and hence

�(m) < �(i) =) �(`(m)) > �(j); (4.95a)

�(m) < �(j) =) �(`(m)) > �(i): (4.95b)

So, and because !(f 0i ; f
0
j) = gij is a unit, there exist k 2 K�(i) and l = `(k) 2 K�(j)

so that the coe¢ cients pki and plj in P are units. So QP has a unit at position

(��1(k); i). Let L be a symplectic matrix so that the i-th column of LQP has all but

its ��1(k)-th coe¢ cient equal to 0. Since we suppose we know where an invertible

coe¢ cient is in the i-th column of P , the substeps of the symplectic reduction

algorithm are not necessary to �nd L. Instead, we form a symplectic matrix inspired

by the Gaussian reduction. For instance, if ��1(k) = 1, then ��1(l) = 2 and L is of

the form

L =

0BBBBBBBBB@

1
k0 1 �k4 k3 � � � �k2n k2n�1
k3 1
k4 1
...

. . .
k2n�1 1
k2n 1

1CCCCCCCCCA
: (4.96)

Then the i-th column of P 0 = QTLQP has all but its k-th coe¢ cient equal to 0.

The basis h0 = hQTL�1Q is still �-symplectic and f 0 = hP = h0P 0. Moreover, the

matrix Z = QTLQ is in �D(M) and thus P 0 2 �D(M). Indeed, the coe¢ cients in

the k-th column of Z have the right valuations by construction. The coe¢ cients on

the l-th row not in the k-th nor in the l-th columns were determined so that Z is
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�-symplectic. In particular:

8m 2 f1; : : : ; l � 1g n fkg; !(Zm; Zk) = �z`(m);k � zlm = 0; (4.97)

where for all i, Zi is the i-th column vector of Z. And according to Relation (4.94),

8m 2 f1; : : : ; l � 1g n fkg; vp(z`(m);k) � �(`(m))� �(i) � �(l)� �(m): (4.98)

Thus vp(zlm) � �(l) � �(m) and that proves that Z 2 �D(M). The coe¢ cient p0lj
divides gij and hence is a unit. So we apply the same kind of reduction as before to

the j-th column of P 0 while preserving the i-th one and �nd a �-symplectic basis h00

and an invertible matrix P 00 2 �D(M) so that f 0 = h00P 00. We may suppose without

loss of generality that gij = 1. Then the vectors h00k and h
00
l may be rede�ned under

a multiplication by a unit factor so that p00ki = p00lj = 1. If we assume that i < j and

k < l for instance, P 00 is of the form

0BBBBB@

1CCCCCA
� � �
1 0  k

P 00 = � � �
0 1  l

� � �
" "
i j

(4.99)

Let h[ = h00 n fh00i ; h00j g and P [ be the matrix obtained by deleting the k-th and l-th
rows as well as the i-th and j-th columns of P 00. Now f 0i = h00k and f

0
j = h00l so that

f [ = h[P [. By construction, P [ 2 �D(N). So h[ 2 FN . But since h00 is �-symplectic
and !(h00k; h

00
l ) = 1, there exists � 2 S2n�2 such that h[ is �-symplectic. That proves

that N is nearly symplectic.

4.3.4 Symplectic submodules

We end this section with a proposition that shows the di¤erence between symplectic

and nearly symplectic submodules.

Proposition 17 Let M be a submodule of Z2nd . Then M is symplectic i¤ M is

nearly symplectic and such that M +M! = Z2nd . In that case, M is free and of even

rank.

Proof. If M = f0g, both terms of the equivalence are checked and M is obviously

free and of even rank. So letM be a nonzero symplectic submodule and let f 2 FM .
Since ps�1f1 2 M n f0g and M \M! = f0g, there exists x =

P2n
i=2 xifi 2 M such

that !(ps�1f1; x) 6= 0. Thus x is free, !(f1; x) is a unit, there exists j 2 K0 n f1g so
that !(f1; fj) is a unit and f1 2 M . That proves that Gram(f) has a good fringe.
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We then perform the partial Gram-Schmidt process and �nd a new basis f 0 2 FM :

f 01 = f1; f 0j = fj ; (4.100a)

8k 2 f1; : : : ; 2ng n f1; jg; f 0k = fk � g�11j g1kfj + g
�1
1j gjkf1: (4.100b)

Since 2; j 2 K0, we may rename without loss of generality f 0j as f
0
2 and f

0
2 as f

0
j . Let

N =M \ hf 01; f 02i
! and let y be some nonzero vector in N if any:

y =

rX
i=3

yif
0
i 2 N n f0g; (4.101)

with r the rank ofM . SinceM is symplectic, there exists z 2M so that !(y; z) 6= 0:

z =

rX
i=1

zif
0
i 2M: (4.102)

But with z0 = z � z1f 01 � z2f 02 2 N , we also have !(y; z0) = !(y; z) 6= 0. Hence

y =2 N! and N is symplectic. If M is larger than hf 01; f 02i, then N 6= ;. We carry
out again the same reasoning until we �nd a free basis h of Z2nd the �rst r vectors

of which form a symplectic basis of M . Moreover, the last 2n� r vectors of h form
a free basis h[ of M!. Up to now, we proved that M is free, of even rank and such

that M �M! = Z2nd .
Since �(h[) = �(h) is a unit, then in the same manner as we showed the validity

of D!, we see that we can apply the entire Gram-Schmidt orthogonalisation process

to h[. Hence, M is nearly symplectic.

Let us show the converse. Let f be a symplectic basis of Z2nd and D the following

2n� 2n diagonal matrix such that fD is a basis matrix for M :

D = diag(ps1 ; ps2 ; : : : ; ps2n�1 ; ps2n): (4.103)

Then this other diagonal matrix D0 is such that fD0 is a basis matrix for M!:

D0 = diag(ps�s2 ; ps�s1 ; : : : ; ps�s2n ; ps�s2n�1): (4.104)

Under the assumption that M +M! = Z2nd , we have

s1 < s) s� s1 � 1) s2 = 0) s� s2 � 1) s1 = 0: (4.105)

The same reasoning is true starting with any i 6= 1 and thus M is free: Each of

the dii�s is either 1 or 0. For any i 2 f1; : : : ; ng, suppose that f2i 2 M and let

x 2M;y 2M! so that f2i�1 = x+ y. Then

!(x; f2i) = !(x+ y; f2i) = 1: (4.106)

That proves that the component of x along f2i�1 is 1 and hence f2i�1 2M . By the
same token, f2i is in M if f2i�1 is. Therefore M is symplectic and of even rank.



Chapter 5

Lagrangian half-modules and
MUBs

In the �rst section of this chapter, we �nd a necessary and su¢ cient condition to

know whether two maximal commuting sets of Pauli operators yields unbiased bases

or not. This is achieved in Theorem 21. In the following sections, we express this

result as a projective geometrical feature, we translate it into a graph interpretation

and we give some basic properties of that graph. As Pauli operators and their

eigenstates play quite a role in quantum information and quantum communication

theory, and since the notion of a symplectic product appears to be central in their

behaviour, we also show how the symplectic structure relates to the Cli¤ord group.

5.1 A criterion to get unbiased bases

Let d = ps be a power of a prime, n a positive integer and D = psn. A vector

(a1; b1; : : : ; an; bn) 2 Z2nd codes for the tensor product of the n Pauli operatorsXaiZbi

over Cd, i ranging from 1 to n, resulting in an operator on CD. We denote q =
exp (2�i=d) the canonical root of unity of order d. Since the tensor Pauli operators

are unitary and their d-th power is the identity operator, their eigenvalues are integer

powers of q.

In order to determine a basis of CD with the help of such tensor Pauli operators,
we need a maximal set of commuting operators and diagonalise them simultane-

ously. In the vector language over Zd, we need a Lagrangian submodule of Z2nd and

we would like to know a necessary and su¢ cient condition bearing on those sub-

modules in order to check whether the corresponding operators give rise to unbiased

bases of CD. To get such bases, the intersection of the two maximal commuting
sets of Pauli operators has to be reduced to identity and so the intersection of the

two corresponding Lagrangian submodules have to be reduced to f0g. This latter
condition has a strong bearing on the form of the submodules we search for.

De�nition 18 A half-module of the Zd-module Z2nd is a free submodule of rank n,

that is to say isomorphic to Znd .

69
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Proposition 19 Let M and N be two Lagrangian submodules of Z2nd . If M \N =

f0g, then M and N are half-modules.

Proof. We suppose that one of the two Lagrangian submodules is not a half-module,
say N , and we are to show that we can build some nonzero vector x 2M \N . Let
e be a symplectic basis of Z2nd such that M has a diagonal basis matrix with respect

to e as in Theorem 13 p.55 and let B be a basis matrix for N . The matrix B has

r � n+ 1 columns. Let

s2 = min(vp(b2;j); j 2 f1; : : : ; rg) (5.1)

and let us reorder the columns of B so that vp(b2;1) = s2. We may then right-

multiply B by an r�r invertible matrix so as to set to 0 all the b2;j�s, j 2 f2; : : : ; rg.
We call the matrix we get B again. Now we do the same job on every even line from

the fourth line to the 2n-th one. One calculates

s2i = min(vp(b2;j); j 2 fi; : : : ; rg); (5.2)

with i ranging from 2 to n, and reorders the r� i+1 last columns. The coe¢ cients
b2i;j are set to 0, with j ranging from i+1 to r. That way, we �nd in the (n+1)-th

column of B a nonzero vector x0 of N whose coe¢ cients on even lines are all zero.

Let k = vp(x0) and x = ps�1�kx0 6= 0. With es = bs=2c, the �oor part of s=2, we
know that for all i 2 f0; : : : ; n � 1g, the vector pese2i+1 is in M . As x is a linear
combination of them, the intersection of M and N is not reduced to f0g.

Hence, we shall be interested only in Lagrangian half-modules. Secondly, we are

going to check that a Lagrangian half-module actually de�nes a basis of eigenvectors.

Indeed, since we restrict the operators for diagonalisation to be only Pauli operators,

it must be proved that a maximally commuting set of them corresponding to a

Lagrangian half-module yields a well-de�ned basis.

Lemma 20 Let M be a (2n� n) basis matrix of a Lagrangian half-module. Then:

1. M contains an n� n invertible submatrix.

2. There exists a 2n� n matrix N such that NTJM = In.

Proof. (1) Since the �rst column vector of M is free, it contains an invertible

coe¢ cient, say on line i1. We can right-multiply M by an invertible matrix R1 so

that this coe¢ cient becomes 1 and any other coe¢ cient on this line is set to 0. Then,

since the column vectors of M1 = MR1 still generates the same Lagrangian half-

module, the second column vector ofM1 is free and contains an invertible coe¢ cient,

say on line i2. We can right-multiply M1 by an invertible matrix R2 so that this

latter coe¢ cient becomes 1 and any other coe¢ cient on line i2 is set to 0. The line

i1 is unchanged. We repeat this process until we get a matrixMn whose (i; 1; : : : ; n)

submatrix is the identity matrix. Thus the (i; 1; : : : ; n) submatrix ofM is invertible.

Let us call M 0 this submatrix.
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(2) Let N0 be a 2n � n matrix such that NT
0 JM = M 0 and let R =

Qn
k=1Rk.

Then (N0RT )TJM = In and we put N = N0R
T .

With the notations of the lemma , let P1; : : : ; Pn be the Pauli operators corre-

sponding to the column vectors of M and Q1; : : : ; Qn those corresponding to the

column vectors of N . Hence

8i; j 2 f0; : : : ; ng; i 6= j =) QyjPiQj = Pi; (5.3a)

8i 2 f0; : : : ; ng; QyiPiQi = qPi: (5.3b)

Let also k 2 f0; : : : ; ps � 1gn. The operator

�k =
1

dn

nO
i=1

dX
j=1

(q�kiPi)
j (5.4)

is the projector on the common eigenspace of P1; : : : ; Pn with eigenvalues qki , re-

spectively. Then

�k = Qy�0Q, with Q =
nO
i=1

Q�kii , (5.5)

which proves that all the �k�s have the same rank. As a consequence, each set of

eigenvalues (qki)i=1;:::;n does correspond to a one-dimensional eigenspace in CD.
We may now state our central theorem relating Pauli operators and MUBs.

Theorem 21 Let d = ps and D = psn. Then let B and C be the basis matrices of

two Lagrangian submodules MB and MC of Z2nd . The bases of C
D they encode are

unbiased i¤ MB and MC are Lagrangian half-modules and BTJC is invertible.

Proof. Let us suppose that MB and MC are Lagrangian half-modules and that

BTJC is invertible. In particular BTJC is n� n. There exist L;R 2 GL(n;Zd) so
that (BL)TJ(CR) is diagonal (see Theorem 40 p.139 and proof or also algorithm G

at the end of the same appendix). So we may assume that BTJC is diagonal with

diagonal entries di, i 2 f1; : : : ; ng. Let Pi (resp. Qi), i 2 f1; : : : ; ng, be the Pauli
operators encoded in B (resp. in C) and let jB; ki (resp. jC; ki), k 2 f0; : : : ; ps�1gn,
denote the eigenvectors of the Pi�s (resp. the Qi�s) with eigenvalues qki :

8i 2 f1; : : : ; ng; Pi jB; ki = qki jB; ki and Qi jC; ki = qki jC; ki : (5.6)

Then for all i 2 f1; : : : ; ng,

PiQi = q�diQiPi =) Pi jC; li = q�liPiQi jC; li = q�(li+di)QiPi jC; li (5.7)

and so

jhB; k1; : : : ; knjC; l1; : : : ; lnij = jhB; k1; : : : ; knjPi jC; l1; : : : ; lnij (5.8a)

= jhB; k1; : : : ; knjC; l1; : : : ; li + di; : : : ; lnij :(5.8b)
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Therefore, if all the di�s are units, we get two unbiased bases.

If MB or MC is not a half-module, Proposition 19 tells us that we cannot obtain

unbiased bases. Now suppose that they are half-modules and that BTJC is not

invertible. We may still assume that BTJC is diagonal with diagonal entries di,

i 2 f1; : : : ; ng. At least one of the di�s is not a unit. We have already seen that for
all i 2 f1; : : : ; ng,

Pi jC; l1; : : : ; lni = ei� jC; l1; : : : ; li + di; : : : ; lni ; � 2 R: (5.9)

Thus, if we neglect the factor ei�, the Pi�s induce an action on the jC; li�s that now
breaks into several orbits, at least p of them. Let Oj , j ranging, be the orbits and

for each index j and let �j be the orthogonal projection onto the space generated

by the jC; li�s in Oj . Then for all i 2 f1; : : : ; ng,X
j

�j jB; 1; : : : ; 1i = jB; 1; : : : ; 1i = Pi jB; 1; : : : ; 1i =
X
j

Pi�j jB; 1; : : : ; 1i (5.10)

and we �nd that for all j,

�j jB; 1; : : : ; 1i = Pi�j jB; 1; : : : ; 1i : (5.11)

Since the eigenspace of the Pi�s with eigenvalues all equal to 1 is one-dimensional,

�j jB; 1; : : : ; 1i is nonzero for only one j and jB; 1; : : : ; 1i cannot have equal ampli-
tude over all the jC; li�s.

5.2 Geometrical interpertation

In this part and the following, it will be convenient that the matrix representing the

symplectic inner product over Z2nd in the canonical basis be

J =

 
0 In

�In 0

!
: (5.12)

Thus the tensor product of n Pauli operators XaiZbi over Cd, i ranging from 1 to

n, is now represented by the vector

(a1; : : : ; an; b1; : : : ; bn) 2 Z2nd : (5.13)

Let also Mat(n;Zd) denote the set of all n � n matrices over Zd. Then our search
for MUBs by diagonalising Pauli operators can be summed up into two projective

geometrical features.

Theorem 21 states that in order to build MUBs in CD by diagonalising tensorial
products of n elementary Pauli operators over Cd, one has to �nd n pairs of vectors
(xi1; x

i
2) 2 (Z2nd )2, i 2 f1; : : : ; ng, such that for all i, xi1 and xi2 are distant vectors as

de�ned in Section 3.2 and for any i; j, i 6= j, the vectors xi1 and x
j
2 are orthogonal.
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Because this rather peculiar con�guration is only necessary and involves already

many conditions, we would like to restate and complete it into a more compact

form. This is achieved with a second geometrical interpretation:

Proposition 22 The Lagrangian half-modules of Z2nd may be identi�ed with the

isotropic points of the projective line P(Mat(n;Zd)2) endowed with a suitable sym-
plectic product ! to be de�ned in (5.16). Two Lagrangian half-modules yield MUBs

i¤ their corresponding points are distant for this geometry.

The surprise in such a result is that the symplectic product is involved only

in the de�nition of isotropic points standing for Lagrangian half-modules, not in

the MUB condition. In order to alleviate the various reasonings, the reader may

assume that d = p and so Zd is a �eld. They may verify with the help of the p-adic
decomposition that this assumption is harmless. Indeed, we are interested only in

invertibility conditions and whenever we multiply two numbers in Zd, the coe¢ cients
of least degree in p in their p-adic decompositions multiply together. We shall �nd

again such a simpli�cation in the graph interpretation.

Lemma 23 Let M be a 2� 1 matrix with coe¢ cients in Mat(n;Zd). The following
conditions are equivalent:

1. There exists a 2 � 1 matrix N over Mat(n;Zd) such that the 2 � 2 matrix
( M N ) (in block matrix notation) over Mat(n;Zd) is invertible.

2. There exists a 2n�n matrix N over Zd such that the 2n�2n matrix ( M N )

over Zd is invertible.

3. M contains an invertible n� n invertible submatrix.

4. M is left-unimodular inMat(n;Zd), that is to say there exist A;B 2 Mat(n;Zd)
such that

AM1 +BM2 = In: (5.14)

5. There exists a 2� 1 matrix N over Mat(n;Zd) such that NTJM = In.

6. There exists a 2� 1 matrix N over Mat(n;Zd) such that NTJM is invertible

(in Mat(n;Zd)).

Proof. Condition (1)means that ( M N ) is a bijective linear map fromMat(n;Zd)2

onto itself. Condition (2) means that ( M N ) is a bijective map from the set of

2n � n matrices over Zd onto itself. Since matrix products may be calculated by
blocks, Conditions (1) and (2) are obviously equivalent.

(2)) (3) is obvious by the way one can express a 2n� 2n determinant as a sum
of two-factor products of n�n determinants. Conversely, ifM contains an invertible

n � n submatrix, we can suppose without loss of generality that M1 is invertible.

Then

N =

 
0n

In

!
(5.15)
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is a convenient choice to get (2).

If (3) is true, then we have already seen in the proof of Lemma 20 that there

exists a 2n � n matrix K (namely NTJ with the notations of that latter lemma)

such that KM = In. Writing K = ( A B ), we get Condition (4). Conversely, if

the rows of In can be obtained as linear combinations of the rows of M , then the

row vectors of M generates Znd as a whole, which is nothing but (3).

Finally, (5) is a mere rewriting of (4) and (5) , (6) is obvious with the help of

a left-multiplication.

A matrix M satisfying those conditions is an admissible pair for a projective

geometry over Mat(n;Zd). Note that the existence of a complement and unimodu-
larity are equivalent though Mat(n;Zd) is not a commutative ring. Also the map

(Mat(n;Zd)2)2 �! Mat(n;Zd); (M;N) 7�!MTJN (5.16)

de�nes a symplectic product over Mat(n;Zd)2. We still denote this map !. A

Lagrangian half-module is represented by a 2n� n matrix M over Zd up to a right-
multiplication by an n�n invertible matrix. Moreover, this matrix M has to verify

MTJM = 0. Thus, with the help of Lemma 20, a Lagrangian submodule can be

thought of as an isotropic point of the projective line over Mat(n;Zd) endowed with
the symplectic product derived from ! and still denoted in the same way. Conversely,

if we take an admissible, isotropic vector of Mat(n;Zd)2, its column vectors generate
a submodule of Z2nd with rank n and maximal cardinality, that is a Lagrangian

submodule.

Two matrices M and N as in Condition (1) of Lemma 23 are called distant.

We would like to know under which condition the symplectic product !(M;N) of

the same two matrices is invertible as in Condition (6)1. A su¢ cient condition is

provided in the following lemma.

Lemma 24 Let M 2 Mat(n;Zd)2 be an admissible vector. If M is isotropic with

respect to the symplectic product we have just de�ned, then

8N 2 Mat(n;Zd)2; det(MTJN) = det(( M N )): (5.17)

Together with Theorem 21, this lemma proves that two isotropic points in

(P(Mat(n;Zd)2); !) provide one with a pair of MUBs i¤ they are distant. This
latter condition is projectively well-de�ned, since it does not depend on the repre-

sentatives of the two points.

Proof. Let M be an isotropic vector, so that its column vectors generate a La-

grangian half-module. Theorem 13 (p.55) shows that there exist an invertible n�n

1Remark that NTJM = �(MTJN)T so that NTJM and MTJN are simultaneously invertible
or not.
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matrix K over Zd and a 2n� 2n symplectic matrix S over Zd such that

SMK =

 
In

0n

!
: (5.18)

Then

detK � det(MTJN) = det(KTMTJN) = det((SMK)TJ(SN)) (5.19a)

= det((SN)2) (5.19b)

= det(( SMK SN )) (5.19c)

= detS � det(( M N )) � detK (5.19d)

Taking into account that detS = 1, we �nd that

det(MTJN) = det(( M N )): (5.20)

To end this section, we show that whenever d = p and thus Zd is a �eld, the
converse implication in Lemma 24 is true. Let us assume that Condition (5.17) holds

and M is not isotropic. Since M is admissible, we can use the symplectic reduction

algorithm S developed in Section 4.1 p.51 in order to �nd a symplectic matrix S

and an invertible n� n matrix K so that

SMK =

0BBBB@
1

M 0
1

1

M 0
2

1CCCCA ; (5.21)

with M 0
1 and M

0
2 being (n� 1)� (n� 2) matrices. Let us write a 2n� n matrix N

under the form

N = S�1

0BBBB@
`1

N 0
1

`2

N 0
2

1CCCCA ; (5.22)

where `1 and `2 are rows and N 0
1 and N

0
2 are (n� 1)� n matrices. Then we have

det((SMK)TJ(SN)) = detK � det(MTJN) (5.23a)

= detS � det(( M N )) � detK (5.23b)

= det(( SMK SN )) (5.23c)

In det(( SMK SN )), the rows `1 and `2 do not matter and sinceM is admissible,

we can choose N 0
1 and N

0
2 so that this latter determinant is a unit. But the �rst two

rows of (SMK)TJ(SN) are `2 and �`1, so that we get a null determinant whenever
we put `1 = `2, leading to a contradiction.



76 CHAPTER 5. LAGRANGIAN HALF-MODULES AND MUBS

5.3 Graph interpertation

In this part, we still have

J =

 
0 In

�In 0

!
: (5.24)

Let us consider the Lagrangian half-modules as the vertices of a graph. We shall say

that two of them, with basis matrices B and C, are at distance r if BTJC is of rank

r. Two vertices are the ends of an edge if they are at distance n in this latter sense

or in other words if they are distant projective points. From this point of view, our

aim is to �nd a maximal set of vertices pairwise connected on the graph. Such a set

is called a clique and the greatest cardinality a clique can have is the clique-number

of the graph:

clique-number = max
fcliquesg

Card(clique): (5.25)

The clique-number of the graph we are considering is the maximal number of MUBs

one can �nd in dimension dn with Pauli operators. To �nd this number for a given

graph is known to be an NP-complete problem, a kind of problem that cannot be

e¤eciently solved on our present-day computers. We will not try to solve it here,

even under the particular conditions of our problem, but we will give some other

counting properties of interest. Anyway, it must be stressed that we already know

what the clique-number of our graph is whenever d = ps is a power of a prime: ps+1.

So in prime-power dimension, the search for the clique-number is only a incentive to

further investigations with graph theoretical means. As for composite dimensions,

this graph interpretation is liable to the Chinese remainder theorem and so will be

of no help in overcoming the bound we saw in Section 3.3 or in [17].

If we still take d = ps, then according to Theorem 21, any multiple of p is

irrelevant for the question of MUBs and we are only left with a kind of a covering

of the graph one gets with d = p. So we will assume until the end of that part that

indeed d = p and so the coe¢ cient ring Zp is a �eld. With r 2 f0; : : : ; ng, let us also
put:

gr the number of r � r invertible matrices,
�r the number of symmetric, r � r matrices,
�0r the number of symmetric, r � r invertible matrices,
kr the number of r � (n� r) matrices,
lr the number subspaces of dimension r in Znp .

It is easy to show that:

gr = (pr � 1)(pr � p) � � � (pr � pr�1) (5.26a)

�r = pr(r+1)=2 (5.26b)

kr = pr(n�r) (5.26c)

lr =
1

gr
(pn � 1)(pn � p) � � � (pn � pr�1) (5.26d)
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With the notations

[x]p =
px � 1
p� 1 ; x 2 R; (5.27a)

[n]p! = [n]p[n� 1]p � � � [1]p; n 2 N�; (5.27b)

[0]p! = 1; (5.27c)

lr also reads

lr =
[n]p!

[r]p![n� r]p!
: (5.28)

We are going to �nd an expression for �0r by induction. Obviously we have

�00 = 1; (5.29a)

�01 = p� 1: (5.29b)

Then in a symmetric, r� r matrix, r � 2, the upper-left coe¢ cient is either nonzero
or zero. In the �rst case, one may choose this coe¢ cient in p� 1 ways and the other
coe¢ cients on the �rst row and the �rst column in pr�1 ways. In order to know

how to choose the remaining coe¢ cients so as to get a symmetric, invertible matrix,

the upper-left coe¢ cient can be used to perform a bilateral Gauss reduction. One

thus obtains a matrix with nul coe¢ cients on the �rst row and the �rst column

save the upper-left one, without modifying the number of possibilities in choosing

the remaining coe¢ cients. This number appears clearly to be �0r�1. In the case

where the upper-left coe¢ cient is zero, one has pr�1 � 1 ways in choosing the other
coe¢ cients on the �rst row and the �rst column. After choosing a unit among them

and performing a bilateral Gauss reduction with it, it works out that the coe¢ cients

at positions (2; i) and (i; 2), 2 � i � r, may be chosen arbitrarily but in a symmetric
fashion and the remaining coe¢ cients form a symmetric, (r� 2)� (r� 2) invertible
matrix. So we get the induction formula:

�0r = (p� 1)pr�1�0r�1 + (pr�1 � 1)pr�1�0r�2: (5.30)

In particular

�01 = (p� 1)�00; (5.31a)

�02 = (p� 1)2p+ (p� 1)p = (p� 1)p2 = p2�01: (5.31b)

We are to prove by induction that

�02t = p2t�02t�1; t � 1; (5.32a)

�02t+1 = (p
2t+1 � 1)�02t; t � 0: (5.32b)

Relation (5.32a) is true for t = 1 and Relation (5.32b) is true for t = 0. Now we
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perform a double induction. If r = 2t, t � 2, is even, then

�02t = (p� 1)p2t�1�02t�1 + (p2t�1 � 1)p2t�1�02t�2 (5.33a)

= (p� 1)p2t�1�02t�1 + (p2t�1 � 1)p2t�1
�02t�1

p2t�1 � 1 (5.33b)

= p2t�02t�1: (5.33c)

If r = 2t+ 1, t � 1, is odd, then

�02t+1 = (p� 1)p2t�02t + (p2t � 1)p2t�02t�1 (5.33d)

= (p� 1)p2t�02t + (p2t � 1)p2t
�02t
p2t

(5.33e)

= (p2t+1 � 1)�02t: (5.33f)

Thus

�0r =

(
pr(pr�1 � 1)pr�2(pr�3 � 1) � � � p2(p� 1) if r is even,

(pr � 1)pr�1(pr�2 � 1)pr�3 � � � p2(p� 1) if r is odd.
(5.34)

All the ingredients are now gathered in order to count Lagrangian half-modules

under distance conditions.

Proposition 25 Let M be a Lagrangian half-module. The number of Lagangian

half-modules at distance r from M is

br = lr�rkr: (5.35)

In particular, the number of Pauli eigenbases that are unbiased with a given one is

bn = �n: (5.36)

Proof. We know from Theorem 13 (p.55) that we can choose a symplectic compu-

tational basis of Z2nd so that a basis matrix for M be

basis matrix (M) =

 
In

0n

!
: (5.37)

Then we want to �nd the number of admissible and isotropic, 2n� n matrices B of

the form

B =

 
B1

B2

!
; B1; B2 2 Mat(n;Zp); (5.38)

up to a right-multiplication by an invertible n� n matrix so that 
In

0n

!T
� J �

 
B1

B2

!
= B2 (5.39)
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is of rank r. Therefore we get the factor lr, since B2 has to be a basis matrix for an

r-dimensional subspace of Znp . With a right-multiplication by an invertible matrix
and a change of symplectic, computational basis, we may suppose that B is of the

form

B =

0BBBB@
A1 A3

A2 A4

Ir 0

0 0

1CCCCA : (5.40)

In doing so, we replace In by an invertible matrix in (5.37). But we do not need this

expression any more. With the isotropy condition one gets that A1 is a symmetric,

r� r invertible matrix, A2 is any (n� r)� r matrix and A3 = 0. Therefore �rkr. As
to A4, one has to refer to the admissibility condition to see, in the same way as we

did in the proof of Lemma 20, that A4 2 GL(n� r;Zp). Hence a factor gn�r. But,
since we are interested only in the subspace generated by the column vectors of B,

we still have to divide by gn�r. Therefore (5.35).

Proposition 26 For any two Lagrangian half-modules at distance r from one an-

other, there exist

�r = �0rkr�n�r � 1 (5.41)

other Lagrangian half-modules which are distant from both of them. In particular, if

two Pauli eigenbases are unbiased, there exist

�n = �0n � 1 (5.42)

other Pauli eigenbases that are unbiased with those two ones.

Proof. Let B and C be two basis matrices of two Lagrangian half-modules at

distance r from one another. After the previous discussion about br, we may suppose

that

B =

 
In

0n

!
and C =

0BBBB@
A1 0

A2 In�r

Ir 0

0 0

1CCCCA ; (5.43)

with A1 a symmetric, r � r invertible matrix and A2 any (n � r) � r matrix. We
search for a 2n�n matrixM such that BTJM and CTJM are invertible, in addition

of suitable conditions for M to account for a Lagrangian half-module. Let M be of

the form

M =

 
M1

M2

!
: (5.44)

Then M2 has to be invertible since BTJM is invertible and we may suppose that

M2 = In. Thus, the admissibility condition is checked and the number �r we search
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for is the number of suitable matrices M1. With

M1 =

 
M11 M13

M12 M14

!
; (5.45)

we have the condition

CTJM =

 
AT1 �M11 AT2 �M13

0 In�r

!
2 GL(n;Zp): (5.46)

At last, M11 and M14 have to be symmetric and MT
12�M13 = 0 in order to warrant

isotropy. Hence, the number of suitable matricesM11 is �0r. There are kr possibilities

in choosing M12 and M13 and �n�r possibilities in choosing M14. Therefore (5.41).

5.4 The Cli¤ord group

Lagrangian half-modules and distance relations among them are also suitable to have

a grasp on the Cli¤ord group. The results presented in Proposition 27 have already

been studied in the works [19�23] about the discrete phase space or more recently

in [53], though with di¤erent names. However, these studies were concerned with

the phase space over Galois �elds. We will consider the ring space Z2nd with d any

integer. On this basis, Proposition 28 will expose an original, alternative account

for the dynamics among Pauli states.

Let us consider a Pauli group P = P(d; n) with or without tensorial product.
The corresponding Cli¤ord group Cli�(P) is the normaliser of P, that is to say the
set of all unitary operators that stabilise the Pauli group under conjugation:

U 2 Cli�(P) () 8P 2 P; 9P 0 2 P; UPU y = P 0: (5.47)

Since the action of some U 2 Cli�(P) is one-to-one and P is a �nite group, this latter
action is also onto, U y is also in Cli�(P) and hence Cli�(P) is indeed a subgroup of
the unitary group U(dn). Since for any n, the derived group D(P) is isomorphic to

Cd = fqc; c 2 Zdg; (5.48)

we may write the sequence of group inclusions:

Cd C P C Cli�(P) < U(dn): (5.49)

We thus have a group action of Cli�(P) on its normal subgroup P and we are going
to show that this action enables one to fully analyse the structure of Cli�(P). Just
before we do so, let us tell brie�y about a physical application of the Cli¤ord group.

Entanglement is one of the primary resources of quantum information theory.

The entangled states one usually refers to are entirely described as eigenvectors of

Pauli operators. That is to say a state is equivalent to a generating subset of a
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maximally commuting set of Pauli operators, with the convention that the state to

describe has eigenvalue 1 for all Pauli operators in the subset. In the course of a

computation, such a state is made to evolve by means of unitary gates into a state

of the same type. Such an evolution may of course be transcribed as an evolution of

the de�ning set of Pauli operators. If j i is the eigenvector of some Pauli operator
P with eigenvalue 1 and U is a unitary operator, then U j i is an eigenvector of
UPU y also with eigenvalue 1 since

UPU yU j i = UP j i = U j i : (5.50)

This justi�es our consideration for Cli�(P) as de�ned in (5.47). Our aim will also

be to see how the decomposition of Cli�(P) we are about to go through can account
for this physical application. This will be achieved in Proposition 28.

To investigate Cli�(P), we will refer to the following quotient groups:

P 0 = P=Cd; (5.51)

Cli� 0(P) = Cli�(P)=U(1); (5.52)

Cli� 00(P) = Cli� 0(P)=P 0: (5.53)

The quotient P 0 is the group of Pauli operators up to a phase, or projective Pauli
group. It is the quotient set of the equivalence relation

8c 2 Zd; 8P 2 P; P � qcP: (5.54)

Then, the group U(1) being the group of unit modulus complex numbers, Cli� 0(P)
is the group of Cli¤ord operators up to a (continuous) phase. Finally, Cli� 00(P) is
the group of Cli¤ord operators when both phases and Pauli operators are discarded.

So we may identify it with the quotient set of the equivalence relation

8� 2 R; 8P 2 P; 8U 2 Cli�(P); U � ei�PU: (5.55)

We now state and prove the

Proposition 27 Let P be a Pauli group. Any Cli¤ord operator U 2 Cli�(P) analy-
ses into three components: a global phase q(U) 2 U(1) (not nessecarily in Cd), a
projective Pauli operator P (U) 2 P 0 and a symplectic operator �(U) 2 Sp(n;Zd).
Indeed,

Cli� 00(P) ' Sp(n;Zd) (5.56)

and also, the map

� : Cli�(P) �! Sp(n;Zd) (5.57)

is a group homomorphism.

Moreover, the Pauli and symplectic components, P (U) and �(U), are determined

by the action of U on X and Z, whereas q(U) is irrelevant to the action of U . So

we may consider that the maps P and � act on Cli� 0(P).
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To simplify the following discussion, we will consider in any explicit formula

Pauli operators over a Hilbert space Cd without tensorial product:

P = fqcXaZb; a; b; c 2 Zdg: (5.58)

That is to say we will refer to the case n = 1. The generalisation to Pauli operators

with tensorial products is straightforward.

Let U 2 Cli�(P) and let us put

P1 = qc1Xa1Zb1 = UXU y; (5.59a)

P2 = qc2Xa2Zb2 = UZU y: (5.59b)

Relation (5.59b) shows that U diagonalises P2, so that the column vectors Ci of

U are �xed by this relation up to a global phase, one phase 'i for each of them.

Moreover, Relation (5.59a) shows that P1 is a circular shift operator among the Ci�s:

8i; Ci+1 = P1Ci: (5.60)

Therefore, once one of the 'i�s is �xed, all the other ones are. In brief, through

Relations (5.59a) and (5.59b), P1 and P2 characterise U up to one continuous phase

factor q(U).

Remark 1 In particular, if

UXU y = qc1X and UZU y = qc2Z; (5.61)

then U = X�c2Zc1 up to a continuous phase.

Then, by comparing the two following relations

[P1; P2]g = qb1a2�a1b2I; (5.62a)

[P1; P2]g = [UXU y; UZU y]g = q�1I; (5.62b)

we see that

�(U) =

 
a1 a2

b1 b2

!
2 Sp(n;Zd): (5.63)

The matrix �(U) will be called the symplectic part of U .

Conversely, let P1; P2 2 P such that

a1b2 � a2b1 = 1: (5.64)

It is straightforward with what we have already said that we can �nd U 2 Cli�(P)
so as it ful�ls (5.59a) and (5.59b). In details, U is a change of basis matrix that

diagonalises P2: We get U yP2U = Z and thus (5.59b) is checked. The relative phases

of the column vectors of U have then to be �xed, something that can be done with

the help of P1, which we can force to be a circulation operator among those vectors
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as in (5.60). It amounts to setting to 1 every nonzero coe¢ cient of U yP1U so that

it be equal to X and thus (5.59a) is checked. So U is uniquely determined up to the

phase q(U). But what if we are given only �(U) instead of P1 and P2?

Let c1 and c2 vary in the de�nition of P1 and P2. In order to show that the

corresponding degree of freedom in U is nothing else than a projective Pauli operator,

we establish that the symplectic structure involved in Cli�(P) can be expressed as
Cli� 00(P). Since c1 and c2 are dropped out in Relation (5.64), the issue relates to
P 0 and we consider the natural, reduced action � of Cli�(P) on P 0:

� : U � class(P ) = class(UPU y): (5.65)

Then on the one hand, with two explicit elements P3; P4 2 P, we have

class(Xa4Zb4) = class(U) � class(Xa3Zb3) (5.66a)

() Xa4Zb4 � UXa3Zb3U y (5.66b)

() Xa4Zb4 � (UXU y)a3(UZU y)b3 (5.66c)

() Xa4Zb4 � (Xa1Zb1)a3(Xa2Zb2)b3 (5.66d)

()
 
a4

b4

!
= �(U)

 
a3

b3

!
: (5.66e)

On the other hand, we know after Remark 1 that the kernel of the reduced action

is P up to a continuous phase, namely

ker � = fei�P ; � 2 R; P 2 Pg: (5.67)

Thus,

Cli�(P)= ker � ' Cli� 00(P) (5.68)

and two operators U1; U2 2 Cli�(P) act in the same way on P 0, that is to say
�(U1) = �(U2), i¤ they go down to the same class in Cli� 00(P):

�(U1) = �(U2) () 9� 2 R; 9P 2 P; U2 = ei�PU1: (5.69)

Remark 2 Let us give another point of view on the kernel. Due to the commutation
relations among Pauli operators, then for any U 2 Cli�(P) and any P3; P4 2 P, the
unitary operators U and P3UP4 act in the same way on the projective Pauli group.

In particular, both of them diagonalise Xa2Zb2, so that the column vectors of P3UP4
form a permutation of the column vectors of U up to a system of phases. Under the

constraint given by (5.59a), the freedom in �xing that system of phases is reduced to

one parameter. But we will not dwell on the details.

In summary, one �rst has to specify once for all a section from Cli� 00(P) to
Cli� 0(P) and another one from Cli� 0(P) to Cli�(P). Then, any Cli¤ord operator U
is speci�ed with respect to these sections by the triplet

(q(U); P (U); �(U)) 2 U(1)� P 0 � Sp(n;Zd): (5.70)
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At this point, we proved the �rst part of Proposition 27 and we exhibited a

bijection

f : Cli� 00(P) �! Sp(n;Zd) (5.71)

such that if

� : Cli�(P) �! Cli� 00(P) (5.72)

is the canonical projection from Cli�(P) onto Cli� 00(P), then

f � � = �: (5.73)

So we want to check that � is a morphism, that is

8U1; U2 2 Cli�(P); �(U2U1) = �(U2)�(U1): (5.74)

It will show that f is also a morphism and it will be proved that Cli� 00(P) is iso-
morphic to Sp(n;Zd). In fact, if we consider the actions of U1 and U2 on the P 0,
refering to them by the superscripts (1) and (2), respectively, we have

U2U1XU
y
1U

y
2 � U2X

a
(1)
1 Zb

(1)
1 U y2 (5.75a)

� (Xa
(2)
1 Zb

(2)
1 )a

(1)
1 (Xa

(2)
2 Zb

(2)
2 )b

(1)
1 (5.75b)

� Xa
(2)
1 a

(1)
1 +a

(2)
2 b

(1)
1 Zb

(2)
1 a

(1)
1 +b

(2)
2 b

(1)
1 (5.75c)

and similarly for the action on Z. That is nothing but the morphism relation we

were looking for. Whenever we consider the derived action of Cli� 00(P) on P 0, this
can also be written, for any P 2 P,

�(U2U1) � class(P ) = �(U2) � (�(U1) � class(P )): (5.76)

In Figure 5.1, we list the classical examples of Cli¤ord operators for qubits,

together with their symplectic part �(U) and in the last but one column their Pauli

parts P (U). The parametrisation of Pauli operators is the one given in (5.13),

corresponding to J as given in (5.12). As to P (U), the reference section from

Cli� 00(P) to Cli� 0(P) is the natural one that brings for instance �(U) as in (5.63)
to the U de�ned in (5.59) with c1 = c2 = 0, up to an irrelevant continuous phase.

The practical use of the Pauli part P (U) is precisely to de�ne c1 and c2 (see

Remark 1). But the function P : U ! P (U) has the drawback not to be a morphism.

The trick is to replace P (U) by the ci�s or better, as we shall see, by their opposites:

v : Cli�(P) �! Z2nd
U 7�! (�c1;�c2; : : : ;�c2n);

(5.77)

where Z2nd is of course endowed with its additive structure. The map v is a morphism

that in addition is section-free. For instance, we put it for classical Cli¤ord operators

in the last column of Figure 5.1, in column form so as to parallel the Pauli inputs

and outputs.
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Operation
Matrix
form U

Pauli
input

Pauli
output

Symplectic
part �(U)

Pauli
part P (U)

v(U)

CNOT

0BB@
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1CCA
X1
X2
Z1
Z2

X1X2
X2
Z1
Z1Z2

0BB@
1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1

1CCA I2I2

0BB@
0
0
0
0

1CCA
H

1p
2

�
1 1
1 �1

�
X
Z

Z
X

�
0 1
1 0

�
I2

�
0
0

�

S

�
1 0
0 i

�
X
Z

Y
Z

�
1 0
1 1

�
I2

�
0
0

�

X

�
0 1
1 0

�
X
Z

X
�Z

�
1 0
0 1

�
X

�
0
1

�

Y

�
0 �i
i 0

�
X
Z

�X
�Z

�
1 0
0 1

�
Y

�
1
1

�

Z

�
1 0
0 �1

�
X
Z

�X
Z

�
1 0
0 1

�
Z

�
1
0

�

Figure 5.1: Cli¤ord operators with their symplectic and Pauli parts

Any pair
(x; S) 2 Z2nd � Sp(n;Zd) (5.78)

is enough to specify the action of a Cli¤ord operator on P:

9! U 2 Cli� 0(P); (v(U); �(U)) = (x; S); (5.79)

(see the end of Proposition 27; the formulation in terms of Cli�(P) would be a
bit cumbersome). But if we consider the physical application we gave just after the

beginning of the present section, the pair (x; S) also enables us to precise completely

a state j i.

Proposition 28 For any given pair

(x; S) 2 Z2nd � Sp(n;Zd); (5.80)

there exists a unique state j i such that, for every i 2 fn; : : : ; 2ng, it has eigenvalue
qxi with respect to the Pauli operator without phase, de�ned by the i-th column of

S. Such a state is called a Pauli state.

Moreover, the map

(v; �) : Cli� 0(P) �! Z2nd � Sp(n;Zd)
U 7�! (v(U); �(U))

(5.81)

is a componentwise morphism. So the product group Z2nd �Sp(n;Zd) is an alternative
for describing the dynamics among Pauli states.
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For an example, just bring together (5.63) and (5.59): Whenever j i has eigen-
value 1 with respect to qc2Xa2Zb2 , then it has eigenvalue q�c2 with respect to

Xa2Zb2 . Thus j i is determined by the pair  
�c1
�c2

!
;

 
a1 a2

b1 b2

!!
: (5.82)

However, it should be noticed that a1; b1; c1 do not intervene in the determination

of j i, but only in the dynamics from a Pauli state to another one. Thus, in a

series of transformations U1; : : : ; Uk, where Uk is not to be followed by another

transformation, the coe¢ cients a(k)1 ; b
(k)
1 ; c

(k)
1 are of no use.

In fact, in the scheme proposed in the second part of Proposition 28, one may

avoid any reference to vector states, Pauli operators and Cli¤ord operators. Both

the classical amount of entanglement and the way it evolves are captured in the

product group Z2nd � Sp(n;Zd), or in other words in the geometry of Lagrangian
half-modules with an extra set of phases.



Chapter 6

The isotropic lines of a discrete
phase space

In this chapter, we let aside the bearing of discrete geometry over Pauli operators to

apply Theorem 13 (Section 4.2 p.55) to another major tool of quantum mechanics,

namely discrete Wigner distributions. These distributions o¤er a useful, alternative

way besides density matrices of representing pure and mixed states of a quantum

system. But whereas in the continuous phase space those distributions are well-

de�ned [54] [55], there is still a need for a sound mathematical de�nition over a

discrete phase space. In particular, the structure of such a phase space is of some

importance. In 1974, Buot introduced aWigner distribution over an d�d phase space
with d an odd integer [56]. In 1980, Hannay and Berry followed another approach

to build a Wigner distribution over a 2d � 2d lattice [57]. Still in another way, in
2004, Gibbons et al. constructed Wigner distributions over lattices parametrised by

�nite �elds [58].

More recently, in their way to set up discrete Wigner distributions on the discrete

phase space Z2d, Chaturvedi et al. [59] encountered undetermined signs S(q; p), one
at each point (q; p) of the lattice. A natural question then arises: To what extent

can these signs be �xed by demanding that averages of Wigner distributions over

isotropic lines in the lattice yield probabilities, where an isotropic line is a set of

d points on the lattice such that the symplectic product of any two of them is 0

(modulo d). In order to answer this and related questions one needs a detailed

knowledge of the structure of the isotropic lines in Z2d. In particular, it would be
useful to know their number as a whole or with special conditions and also how they

are arranged in orbits under the action of the symplectic group Sp(1;Zd).

We will be concerned only with the mathematical properties of the isotropic

lines in Z2d. In Section 6.1, we derive the number of isotropic lines in Z
2
d and then in

Section 6.2 the number of them through a given point of the lattice. This should be

compared with the results obtained by Havlicek and Saniga in [60] and [61] about the

number of projective points in the lattice and the number of them under the same

condition. In Section 6.3, we give a full description of the orbits of isotropic lines

87
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under the action of Sp(1;Zd) with the help of some parameters. In a fourth part,
we develop two group actions on the group �D(M) relevant to the understanding of

that latter group, whenever M is a submodule of Z2d. To end this introduction, we
note that the results presented here do not depend on the parity of d, contrary to

what happened in [56] and [57].

6.1 The number of isotropic lines

Let ! denote the symplectic product of two vectors of Z2d. In terms of matrices, it
consists in computing a determinant:

!((�; �); (; �)) =

����� � 

� �

����� = �� � �: (6.1)

We have already de�ned at the beginning of Chapter 4 what the orthogonal of a

submodule and an isotropic submodule are. We recall that Lagrangian submodules

are the maximal isotropic submodules for inclusion, which is equivalent toM =M!.

As a �rst step, we are going to �nd the number of isotropic lines in Z2d for d a
power of a prime, say d = ps, s � 1. This leads to a hint for Section 6.4, but we shall
also see that there exists a shortcut. We then address the case where d is arbitrary.

From now on, we shall also make use without further ado of the equality

Sp(1;Zd) = SL(2;Zd); (6.2)

where Sp(1;Zd) was de�ned in (4.10) and SL(2;Zd) is the group of 2 � 2 matrices
with determinant 1. This equality is speci�c to the two-dimensional phase space Z2d.

6.1.1 Special case: d a power of a prime

Let es = bs=2c, the �oor part of s=2. According to Theorem 13 p.55, for any La-

grangian submodule M , there exist S 2 Sp(1;Zd) and k 2 f0; : : : ; esg such that M is

linearly generated by the column vectors of

S �
 
pk 0

0 ps�k

!
: (6.3)

In other words, with S1 and S2 the two column vectors of S, (S1; S2) is a symplectic

computational basis of (Zps)2 and M is the set of all linear combinations of pkS1
and ps�kS2 with coe¢ cients in Zps . As a converse, any submodule thus generated
is Lagrangian. In fact, the number k is a property of M , that is to say for any

convenient pair (S; k0) in order to generate M as in (6.3), we have k0 = k. We will

denote Ok(ps) the set of all Lagrangian submodules thus obtained for a given k and

S varying. The cardinality of any M 2 Ok(ps) is

p(s�1)�(k�1)p(s�1)�(s�k�1) = ps: (6.4)
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Let ` be an isotropic line and h`i the submodule it generates, the set of all �nite
linear combinations of vectors of `. Any two vectors in h`i are orthogonal and hence
h`i is an isotropic submodule containing at least ps vectors. Thus isotropic lines and
Lagrangian submodules are the same.

The number of free vectors x in Zps is p2s � p2(s�1). The number of vectors y
such that for a given free x we have !(x; y) = 1 is ps. The number of pairs (x; y)

such that !(x; y) = 1 is the product of the two previous ones:

n! = jSL(2;Zps)j = p3s � p3s�2: (6.5)

Several symplectic matrices S may give rise to the same submodule in Ok(ps) ac-

cording to the form (6.3). Let k 2 f0; : : : ; esg and M 2 Ok(ps). Let �D(M) be the

matrix group of the changes of computational basis such that if P 2 �D(M) and if

M is generated by the column vectors of the matrix given in (6.3), then M is also

generated by the column vectors of the matrix

SP �
 
pk 0

0 ps�k

!
; (6.6)

where SP need not be symplectic. The reader interested in details about �D(M)

may look at the beginning of Section 4.3.1. In particular, we derive from there that

the group �D(M) is completely determined by the value of k. So, the number of

symplectic matrices that give rise to a given M 2 Ok(ps) is

nD(k) = j�D(M) \ SL(2;Zps)j (6.7)

and hence

jOk(ps)j =
n!

nD(k)
: (6.8)

Let us suppose that 2k < s. In �D(M), the number of matrices with determinant

1 is the same as the number of matrices with any other (invertible) determinant.

Indeed, if u 2 U(Zps) and P = (P1jP2) 2 �D(M) \ SL(2;Zps), with P1 and P2
the �rst and second columns of P respectively, then (uP1jP2) 2 �D(M) but with

determinant u. This transformation is injective so that the number of matrices in

�D(M) with determinant u is greater than or equal to the number of matrices in

�D(M) with determinant 1. The converse inequality may be shown the same way.

So we have

nD(k) =
j�D(M)j
jU(Zps)j

=
(ps � ps�1)2 � p(s�1)�(s�2k�1) � ps

ps � ps�1 = (ps � ps�1)ps+2k (6.9a)

= p2s(p2k � p2k�1) (6.9b)

and so

jOk(ps)j =
ps � ps�2
p2k � p2k�1 = ps�2k�1(p+ 1): (6.10)
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If 2k = s (which supposes that s is even), then �D(M) \ SL(2;Zps) = SL(2;Zps)
and so ��Os=2(ps)�� = n!

n!
= 1: (6.11)

For s odd, then 2es = s� 1,

esX
k=0

p�2k =
1� p�2(es+1)
1� p�2 =

p2(es+1) � 1
p2(es+1) � p2es =

ps+1 � 1
ps+1 � ps�1 (6.12)

and hence the number of isotropic lines is

nL(p
s) =

esX
k=0

jOk(ps)j = ps�1(p+ 1)
ps+1 � 1

ps+1 � ps�1 =
ps+1 � 1
p� 1 : (6.13)

If s is even, then 2es = s,

es�1X
k=0

p�2k =
1� p�2es
1� p�2 =

p2es � 1
p2es � p2es�2 =

ps � 1
ps � ps�2 (6.14)

and hence the number of isotropic lines is again

nL(p
s) =

es�1X
k=0

jOk(ps)j+ 1 = ps�1(p+ 1)
ps � 1

ps � ps�2 + 1

= p
ps � 1
p� 1 + 1 =

ps+1 � p+ p� 1
p� 1 =

ps+1 � 1
p� 1 : (6.15)

6.1.2 General case: d any integer � 2

Now let d be any integer greater than or equal to 2 and

d =
Y
i2I

psii (6.16)

be the prime factor decomposition of d. With the help of the Chinese remainder

theorem, we can study the structure of an isotropic line ` in each of the Chinese

factor (Zpsii )
2. For every i 2 I, let `i = �pi(`) be the i-th Chinese projection of `.

As a subgroup of (Zpsii )
2, h`ii has cardinality a power of pi, say ptii . As an isotropic

submodule of (Zpsii )
2, h`ii is included in a Lagrangian submodule and then ti � si.

So

d = j`j �
Y
i2I
j`ij �

Y
i2I

ptii � d; (6.17)

which proves that ti = si. Moreover, if `i ( h`ii for some i, the second inequality
just above would be strict, which is impossible and so `i = h`ii is a Lagrangian
submodule of (Zpsii )

2. As to the converse, for all i 2 I, let `0i be a Lagrangian

submodule of (Zpsii )
2. The set `0 of all vectors x 2 Z2d such that for all i, �pi(x) 2 `0i,

is an isotropic set with cardinality d, namely an isotropic line. The reader may
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check that the maps ` 7! (`i)i2I and (`0i)i2I 7! `0 thus de�ned are reciprocal of one

another.

So, isotropic lines and Lagrangian submodules are the same sets of Z2d and the
number of isotropic lines of Z2d is

nL(d) =
Y
i2I

nL (p
si
i ) =

Y
i2I

psi+1i � 1
pi � 1

: (6.18)

Remark 1 In (6.3), the left-hand-side factor was a symplectic matrix. But in fact,
any invertible matrix would be convenient since we are to consider all the linear

combinations of the columns in the product. Thus we could have calculated the

cardinality of an orbit as

n! jU(Zps)j
j�D(M)j

instead of
n!

(j�D(M)j = jU(Zps)j)
(6.19)

and the argument between (6.8) and (6.9) could have been avoided.

Remark 2 Let us assume that s is even. It should be noticed that the formula

for the cardinality of Ok(ps) given in (6.10) is not valid for k = s=2. Indeed,

Equation (6.10) gives 1 + 1=p for that particular value of k, which is not even an

integer. Equivalently, nD(k) and j�D(M)j have no unique expression for all values
of k. This must be traced back to the behaviour of �D(M) when k is ranging up to

s=2.

6.2 The number of lines through a given point

We now give the number of isotropic lines through a given point of the lattice. We

suppose that d = ps is a power of a prime. Let x 2 Z2d and let t = vp(x) be the p-

valuation of x. Since all the vectors in an isotropic line ` 2 Ok(ps) have p-valuation
at least k, the vector x cannot be in ` unless k � t. Let us assume that k is such

that s� k � t, which implies that k � t. Then for any computational basis (f1; f2),
symplectic or not, x is a linear combination of pkf1 and ps�kf2. Hence

8k 2 f0; : : : ; bs=2cg; 8` 2 Ok(ps); (k � s� t =) x 2 `): (6.20)

That case can occur only if t � ds=2e, the ceiling part of s=2. Now, let us assume
that k is such that k � t < s � k. Thus 2k < s and we search for the symplectic

computational bases (f1; f2) such that x is a linear combination of pkf1 and ps�kf2.

Let (f1; f2) be a symplectic computational basis and x = af1 + bf2. Since

vp(!(x; f2)) = vp(a) � t � k; (6.21)

we have no extra conditions on the choice of f2. But we must have

vp(!(x; f1)) = vp(b) � s� k; (6.22)
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which shows that in a symplectic basis where x = (pt; 0), f1 must be of the form

f1 = (�; �p
s�k�t); (6.23)

with �; � 2 Zd. The number of suitable vectors f1 is

(ps � ps�1) � p(s�1)�(s�k�t�1) = (ps � ps�1)pk+t: (6.24)

The number of suitable vectors f2 for a given f1 is ps. Then the number of suitable,

symplectic computational bases (f1; f2) is (ps � ps�1)ps+k+t. Moreover, if f is a

convenient basis and D
pkf1; p

s�kf2
E
=
D
pkf 01; p

s�kf 02

E
; (6.25)

then f 0 is convenient too. With (6.9a), we deduce that the number of isotropic lines

in Ok(ps) containing x is

(ps � ps�1)ps+k+t
(ps � ps�1)ps+2k = pt�k: (6.26)

Thus, if t < ds=2e, the number of isotropic lines containing x is

tX
k=0

pt�k = pt � 1� p
�(t+1)

1� p�1 =
pt+1 � 1
p� 1 : (6.27)

If t � ds=2e and es = bs=2c, the number of isotropic lines containing x is
s�t�1X
k=0

pt�k +
esX

k=s�t
jOk(ps)j : (6.28)

The �rst term is equal to

pt � 1� p
�(s�t)

1� p�1 =
pt+1 � p2t�s+1

p� 1 : (6.29)

For s odd, then 2es = s� 1,

esX
k=s�t

p�2k = p�2(s�t) � 1� p
�2(es�s+t+1)
1� p�2 =

p2t�s+1 � 1
ps�1(p2 � 1) ; (6.30)

and the second term in (6.28) is equal to

ps�1(p+ 1)
p2t�s�1 � 1
ps�1(p2 � 1) =

p2t�s+1 � 1
p� 1 : (6.31)

For s even, then 2es = s,

es�1X
k=s�t

p�2k = p�2(s�t) � 1� p
�2(es�1�s+t+1)
1� p�2 =

p2t�s+1 � p
ps�1(p2 � 1) ; (6.32)
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and the second term in (6.28) is again

ps�1(p+ 1)
p2t�s+1 � p
ps�1(p2 � 1) + 1 =

p2t�s+1 � 1
p� 1 : (6.33)

Hence, in any case, the number of isotropic lines containing some given vector x

with p-valuation t is

nL(p
s;x) = nL(p

s; t) =
pt+1 � 1
p� 1 : (6.34)

In particular,

nL(p
s; t = 0) = 1 and nL(p

s; t = s) = nL(p
s): (6.35)

That is to say the sole isotropic line containing a free vector is the submodule it

generates and every isotropic line goes through the null vector.

If d is not necessarily a power of a prime, then with (6.16) and for all i, ti = vpi(x),

we obtain that the number of isotropic lines containing x is

nL(d;x) = nL(d; (ti)i2I) =
Y
i2I

pti+1i � 1
pi � 1

: (6.36)

6.3 Orbits under the action of Sp(1;Zd)

As in Section 6.1, we �rst suppose that d is a power of a prime, say d = ps, s � 1.
Then it is obvious from (6.3) that the orbits of the left-action of Sp(1;Zd) among
the isotropic lines are the Ok(ps). Their number is bs=2c + 1 and we have already
seen what their cardinalities are in (6.10) and (6.11).

Now if d is a composite integer as in (6.16), then the set of the orbits is para-

metrised by

k = (ki)i2I 2
Y
i2I
f0; : : : ; bsi=2cg (6.37)

and the orbit with index k is

Ok(d) =
�
` � Z2d; j`j = d; �pi(`) 2 Oki(p

si
i )
	
: (6.38)

The number of orbits is Y
i2I
(bsi=2c+ 1) ; (6.39)

and the cardinality of one of them is

jOk(d)j =
Y
i2I
jOki(p

si
i )j : (6.40)

Example: Let us suppose that d contains no square factor, that is to say in (6.16),
for all i 2 I, si = 1. According to (6.3), with k necessarily equal to 0, the isotropic
lines are the submodules that can be generated by a single free vector. These
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submodules are called the projective points of Z2d. With (6.18), we �nd that the
number of isotropic lines is

nL(d) =
Y
i2I
(pi + 1): (6.41)

They all belong to the sole orbit under the action of Sp(1;Zd) corresponding to
ki = 0 for all i. �

In conclusion, we counted the isotropic lines of Z2d as a whole or through a given
point and we saw how they are arranged under the action of Sp(1;Zd) = SL(2;Zd).
We used this latter equality between the symplectic group and the special linear

group as a counting argument in Section 6.1.1. But in the higher dimensional phase

space Z2nd , this equality does not hold any more. Thus the case of Z
2
d is quite a

simple one. Whenever Z2nd had to be considered, the method we used would have to

be modi�ed. For the same reason, the content of the next section is also particular

to Z2d.

6.4 Some group actions on �D(M)

In this additional section, we highlight the structure of the group �D(M), whenever

M is a submodule of Z2d, by means of three group actions upon it. We also assume
that d = ps is a power of a prime.

In order to establish Equation (6.9), we showed that the number of matrices in

�D(M) with determinant 1 is the same as the number of matrices in the same set

with any other (invertible) determinant. The simple reasoning we used was enough

in the context of Section 6.1. But we are going to introduce here two other group

actions that are linked to that point and to Remarks 1 and 2. Let �0 be the action

of U(Zps) on �D(M) de�ned by

8u 2 U(Zps); 8P = (P1jP2) 2 �D(M); �0(u) � P = (uP1ju�1P2) (6.42)

and �1 the action of U(Zps)2 on �D(M) de�ned by

8(u1; u2) 2 U(Zps)2; 8P = (P1jP2) 2 �D(M); �1(u1; u2) � P = (u1P1ju2P2):
(6.43)

All the orbits of �0 (resp. �1) have the same cardinality, namely jU(Zps)j = ps�ps�1

(resp. jU(Zps)j2). In a given orbit of �0, every matrix has the same determinant.
Since Zps is a commutative ring, those two actions "commute":

�1(u1; u2) � (�0(u) � P ) = �0(u) � (�1(u1; u2) � P ): (6.44)

Let (u1; u2); (v1; v2) 2 U(Zps)2 such that u1u2 = v1v2, that is to say

8P 2 �D(M); det(�1(u1; u2) � P ) = det(�1(v1; v2) � P ): (6.45)
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With � = u2v
�1
2 = u�11 v1 2 U(Zps), we have

(v1; v2) = (�u1; �
�1u2): (6.46)

Thus we have a kind of a discrete Hopf �bration. It is given by the action h of

U(Zps) on U(Zps)2 de�ned by

8� 2 U(Zps); 8(u1; u2) 2 U(Zps)2; h(�) � (u1; u2) = (�u1; ��1u2): (6.47)

Moreover, the action � = �1=(h; �0) of U(Zps)2=h on �D(M)=�0 is well-de�ned. For

any u 2 U(Zps), let
Du = fP 2 �D(M); detP = ug : (6.48)

Every orbit of � is transversal to Du=�0. Indeed, let P be in some orbit O of �1 with

some determinant v. Then (uv�1P1jP2) is in O with determinant u so that there is

at least one orbit of �0 in Du \ O. Then if P and Q = (u1P1ju2P2) are in O and

have the same determinant, then u2 = u�11 and thus P and Q are in the same orbit

of �0.

As a conclusion, we have the

Proposition 29 The group �D(M) can be partitioned into the family E = fEijg,
where the Eij�s are the orbits of �0, the index i 2 U(Zps) is the determinant of every
matrix in Eij and the index j stands for an orbit of �1 (or equivalently of �).

Let P 2 Ei1j1 and Q 2 Ei2j2. On the one hand, detP = i1 and detQ = i2. On

the other hand, j1 = j2 i¤ Q1 and Q2 are proportional to P1 and P2 respectively.

The number of di¤erent values that j can assume is

n� =
j�D(M)j
jU(Zps)j2

: (6.49)

If 2k < s, then n� = ps+2k according to (6.9a). But if k = s=2, then

n� =
jGL(2;Zps)j
jU(Zps)j2

=
(p2s � p2(s�1)) � (ps � ps�1) � ps

(ps � ps�1)2 = p2s + p2s�1 > p2s: (6.50)

In passing, we �nd again that the number of matrices in �D(M) with some

determinant u is the same as the number of matrices in �D(M) with any other

(invertible) determinant v.
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Chapter 7

Towards continuous algebra and
geometry

Up to now, we have dealt with a discrete set of operators, namely Pauli operators,

and thus we got information only about a discrete set of bases. With this restric-

tion, we were constantly led to reduce the problem to the case of a power of a prime

dimension. The behaviour of Pauli operators is indeed liable to the Chinese remain-

der theorem. Thus, as far as Pauli operators are concerned, the lowest prime power

factor of d is a limiting factor in the number of MUBs. But can one �nd a similar,

algebraic or geometrical framework which would account for any set of bases or at

least for any set of MUBs? Can the limitation be thus removed. In this chapter,

we present some tools that are likely to provide an answer to these questions. In

order to give a �avour of their pertaining to algebraic geometry, we work them out

in dimensions 2 and 3.

7.1 Qubits and the cross-ratio

In this section, we put d = 2. Qubits are normalised vectors in C2 or equivalently
lines through the origin in the same space. From this latter point of view, they

appear as points of the projective line over C which is nothing but the Bloch sphere
of physicists, or the Riemann sphere of mathematicians. It is well-known that or-

thonormal bases of qubits are represented by pairs of opposite points on the sphere.

As is usual, we shall take j0i and j1i to be the north and the south poles of the
Bloch sphere, respectively. In the projective, algebraic language, we �x a system of

homogeneous coordinates so that j0i is 0 and j1i is the point at in�nity, denoted 1:

j0i $ (1; 0) ; j1i $ (0; 1) : (7.1)

This convention corresponds to the stereographic projection from the south pole.

The homogeneous coordinates of a vector are thus nothing but the coe¢ cients of

that vector in the computational basis fj0i ; j1ig up to a nonzero, multiplicative
complex number:

a j0i+ b j1i $ (a; b) $ (ka; kb) for any k 2 C�: (7.2)

97
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Then any basis unbiased with the computational basis is of the form�
j0i0 = 1p

2
(j0i+ ei' j1i); j1i0 = 1p

2
(j0i � ei' j1i)

�
; (7.3)

where ' is the azimuthal coordinate. This basis is represented by two opposite

points on the equator of the Bloch sphere or by the homogeneous coordinates

j0i0 $
�
1; ei'

�
; j1i0 $

�
1;�ei'

�
; (7.4)

so that fj0i ; j1ig and fj0i0 ; j1i0g are harmonic conjugated. In fact, let us calculate
their anharmonic ratio:

(j0i ; j1i ; j0i0 ; j1i0) =

 ����� 1 1

ei' 0

����� �
����� 1 0

�ei' 1

����� ;
����� 1 0

ei' 1

����� �
����� 1 1

�ei' 0

�����
!
(7.5a)

= (�ei'; ei') = (1;�1) (7.5b)

= �1: (7.5c)

Conversely, if some orthonormal basis whose vectors have homogeneous coordi-

nates (a; b) ; (c; d) 2 C2 is harmonic conjugated with fj0i ; j1ig, we have ����� a 1

b 0

����� �
����� c 0

d 1

����� ;
����� a 0

b 1

����� �
����� c 1

d 0

�����
!
= (�bc;�ad) = (1;�1): (7.6)

So ad+ bc = 0. Writing a; b; c; d in terms of the spherical coordinates � and '

a = cos
�

2
; b = ei' sin

�

2
; (7.7a)

c = sin
�

2
; d = �ei' cos �

2
; (7.7b)

we get that � = �=2 with no conditions on '. Then the basis we started from is

of the form (7.3). Since our choice of a computational basis was arbitrary, we have

shown the

Proposition 30 Let (x1; x2) and (y1; y2) be two orthonormal bases of C2. Then the
following properties are equivalent:

1. (x1; x2) and (y1; y2) are unbiased;

2. On the Bloch sphere, the axis de�ned by (x1; x2) and (y1; y2) are orthogonal;

3. (x1; x2; y1; y2) = �1, that is the two bases are harmonic conjugated.

The point is that any possible set of MUBs is accounted for in the latter propo-

sition. However, as we do not have at our disposal a suitable generalisation of the

Bloch sphere or of the anharmonic ratio in any dimension, we still have to �nd an-

other scheme. On the one hand, since in the pair (x1; x2), any one of the two vectors

can be deduced from the other, there is in fact a redundancy and we may search for

a tool that encode a basis in a single object. This is done in the next section where
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we try Pauli operators with continuous exponents. On the other hand, we may think

that the redundancy is speci�c to low dimension cases and so �nd a generalisation

that keeps track of each vector in a basis. We will try this way in Section 7.3.

7.2 Pauli operators with continuous exponents

This section is still devoted to qubits. Indeed, we shall see in conclusion that Pauli

operators with continuous, real exponents are essentially limited to qubits.

The de�nition of Za for instance, with a in R instead of Z, involves a matrix
logarithm, so that we must avoid any negative or null eigenvalue. Therefore, we

consider iP in replacement of any Pauli operator P over C2. Such a replacement
does not modify the eigenbasis under consideration and we may de�ne

8a 2 R; (iP )a = ea ln(iP ): (7.8)

In particular, with

H =
1p
2

 
1 1

1 �1

!
; S =

 
1 0

0 i

!
; (7.9)

the so-called Hadamard and phase matrices respectively, we have

ln(iZ) = ln

 
i 0

0 �i

!
=

 
i�=2 0

0 �i�=2

!
= i

�

2
Z; (7.10a)

ln(iX) = H ln(iZ)H =

 
0 i�=2

i�=2 0

!
= i

�

2
X; (7.10b)

ln(iY ) = S ln(iX)Sy =

 
0 �=2

��=2 0

!
= i

�

2
Y: (7.10c)

As a general feature, one has for any Pauli operator P ,

ln(iP ) = i
�

2
P: (7.11)

With a; b 2 R, one has

(iZ)b = exp
�
ib
�

2
Z
�
= cos

�
b
�

2

�
+ i sin

�
b
�

2

�
Z

=

 
eib�=2 0

0 e�ib�=2

!
; (7.12a)

(iX)a = H(iZ)aH = cos
�
a
�

2

�
+ i sin

�
a
�

2

�
X

=

 
cos(a�=2) i sin(a�=2)

i sin(a�=2) cos(a�=2)

!
(7.12b)
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and hence

(iX)a(iZ)b = cos
�
a
�

2

�
cos
�
b
�

2

�
I + i sin

�
a
�

2

�
cos
�
b
�

2

�
X

+i sin
�
a
�

2

�
sin
�
b
�

2

�
Y + cos

�
a
�

2

�
sin
�
b
�

2

�
Z

=

 
cos(a�=2)eib�=2 i sin(a�=2)e�ib�=2

i sin(a�=2)eib�=2 cos(a�=2)e�ib�=2

!
: (7.12c)

So we may restrict a and b to lie in [0; 4[. The characteristic polynomial of the latter

matrix, with formal variable �, is

(�� cos(a�=2)eib�=2)(�� cos(a�=2)e�ib�=2) + sin2(a�=2)

= �2 � 2 cos(a�=2) cos(b�=2)�+ 1 (7.13a)

with reduced discriminant

�0 = cos2(a�=2) cos2(b�=2)� 1; (7.13b)

negative unless fa; bg � f0; 2g, that is (iX)a(iZ)b = �I. If we exclude that case, we
have two conjugated complex eigenvalues

�� = cos(a�=2) cos(b�=2)� i
p
1� cos2(a�=2) cos2(b�=2) (7.13c)

with corresponding eigenvectors

jab�i =
 

i sin(a�=2)e�ib�=2

� cos(a�=2)eib�=2 + ��

!
: (7.13d)

The basis fjab�ig is unbiased with the computational basis i¤

sin2(a�=2) = (cos(a�=2)eib�=2 � �+)(cos(a�=2)e�ib�=2 � ��); (7.14a)

sin2(a�=2) = (cos(a�=2)eib�=2 � ��)(cos(a�=2)e�ib�=2 � �+): (7.14b)

Equating the right-hand sides of these equations, we get the following necessary

condition:

Re(cos(a�=2)eib�=2�+) = Re(cos(a�=2)e
ib�=2��): (7.15)

If a 6= 1 and 3, we may get rid of the factor cos(a�=2) and for (iX)a(iZ)b nontrivial,
(7.15) reduces to

b = 0 or 2: (7.16)

One may check that Conditions (7.14a) and (7.14b) are then veri�ed. The corre-

sponding Pauli operator is (iX)a.

Now if a = 1 for instance, one gets

j1b�i =
 
ie�ib�=2

�i

!
: (7.17)
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Figure 7.1: Solutions for a and b so that (iX)a(iZ)b provide an unbiased basis with
the canonical one. The points with a = 0; 2; 4 are excluded.

This is nothing but (7.3) up to multiplicative factor with ' = b�=2. The case a = 3 is

similar: It describes the same set of bases but each of them with reverse orientation.

In summary, the solutions for a and b in order that (iX)a(iZ)b provide an unbiased

basis with the canonical one are given by the four red lines in Figure 7.1.

Thus, in dimension 2, Pauli operators provide us with a complete description

of the bases unbiased with a given basis. Unfortunately, when the dimension of

the Hilbert space increases, the dimension of the manifold of unbiased bases with a

given basis also increases, whereas the set of Pauli operators XaZb still depends on

only two parameters. Therefore the pattern of Pauli operators with continuous, real

exponents is again speci�c to qubits.

7.3 MUBs as tori intersection

7.3.1 General set-up

We consider the Hilbert space Cd, with d any integer greater than or equal to 2.
A orthonormal basis of that space consists of the vectors jii, with i ranging from
0 to d � 1 in Zd. As we saw in the historical overview as well as in Section 7.1, a
quantum state can be represented by a point in the corresponding projective space

P(Cd). With this representation, the canonical computational basis is given by

j0i ; j1i ; : : : jd� 2i ; jd� 1i
l l l l
0; 11; : : : ; 1d�2; 1d�1

(7.18)
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A vector x 2 Cd is said to be unbiased with the canonical basis if it has equal
amplitude over the canonical basis vectors:

8i; j 2 Zd; jhijxij = jhjjxij : (7.19)

Since such an x is not 0, in particular

jh0jxij 6= 0 (7.20)

and x can be identi�ed with a vector ex in Cd�1. So a necessary and su¢ cient condi-
tion for x to be unbiased with the canonical basis is that ex have all its coordinates
of unit modulus. That is to say ex has to lie on the unit torus Td�1 in Cd�1.

We pick up a set of d vectors on Td�1 that account for an orthonormal basis f
of Cd. As we have just seen, f is unbiased with the canonical basis. We perform a

change of computational basis that takes the canonical basis to f . This induces a

transformation ' on P(Cd) that is called an orthonormal projectivity. The set of
unbiased vectors with f is represented by '(Td�1) and the set of unbiased vectors
with both the computational basis and f is represented by Td�1 \ '(Td�1). Let T
be the set of all images of Td�1 under such orthonormal projectivities:

T = f'(Td�1); ' orthonormal projectivity in P(Cd)g: (7.21)

Thus the problem of �nding unbiased bases is translated into the study of inter-

sections between elements of T, which is liable to algebraic geometry. Let us say

that two tori are orthogonal if one is the image of the other by an orthonormal pro-

jectivity. This is a symmetric relation and we search for maximal sets of pairwise

orthogonal tori. We treat the cases d = 2 and d = 3.

7.3.2 The case d = 2

For d = 2, we have already seen in Section 7.1 that the canonical basis is represented

by the north and south poles on the Bloch sphere and that, via the stereographic

projection, T1 is the equator of the sphere. Here an orthonormal projectivity is only
a rotation on the sphere. This particularity helps visualize. But we will not prove

it as we are not to use it in our formal reasoning.

Let a 2 [0; 2[ so that �a is the angular coordinate of a point on the equator.
Such a point accounts for a vector unbiased with the canonical basis. We perform

an orthonormal projectivity ' that brings the canonical basis, namely the eigenstates

of Z, to the eigenstates of X on the equator. Then '(T1) is parametrised by a and
it contains the points with projective coordinates 

1 1

1 �1

! 
1

ei�a

!
=

 
1 + ei�a

1� ei�a

!
: (7.22)

Note that the matrix representing ' is the Fourier transform in two dimensions,
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namely H up to multiplicative factor. For a = 0, we get the north pole and for a = 1,

we get the south pole. This could be expected from the fact that unbiasedness is a

symmetric relation, so that '(T1) has to go through the eigenstates of Z. In fact,
'(T1) is also a great circle and thus is orthogonal to the equator in the common
sense of the word orthogonal. So there is only one possibilty for the third unbiased

basis that will complete the two previous ones. Its vectors lie in T1 \ '(T1) which
contains only two points, accounting for the eigenstates of Y . To see this rigourously,

we search for the points of the form given in the right-hand-side of (7.22) that also

belong to the equator. So we need solve

��1 + ei�a�� = ��1� ei�a�� ; (7.23)

which admits only two solutions:

a = �1
2
: (7.24)

The corresponding states are indeed the eigenstates of Y :

1p
2
((1� i) j0i+ (1� i) j1i) : (7.25)

Since the choice of the two �rst bases was in fact arbitrary, we have proved the

Proposition 31 Given an orthonormal basis b0 in C2, one vector unbiased with
respect to this latter basis is enough to determine the two other orthornormal bases

b1; b2 such that (b0; b1; b2) is a complete set of unbiased bases.

7.3.3 The case d = 3

Here we prove, with the help of numerical computations, the following rigidity propo-

sition which is a mere copy of the 2-dimensional case just above.

Proposition 32 Given an orthonormal basis b0 in C3, one vector unbiased with
respect to this latter basis is enough to determine the three other orthornormal bases

b1; b2; b3 such that (b0; b1; b2; b3) is a complete set of unbiased bases.

For d = 3, if we want to build a basis f which is unbiased with the canonical

basis e, we may choose a �rst vector anywhere on T2. So, without loss of generality,
we choose the vector whose every coe¢ cient is equal to 1. In matrix form:

f1 =
�
1 1 1

�T
: (7.26)

Moreover, a vector of f is de�ned only up to a global phase. Thus we may put

f =

0B@ 1 1 1

1 f22 f23

1 f32 f33

1CA : (7.27)
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Then, f being orthonormal,

1 + f22 + f32 = 1 + f23 + f33 = 0; (7.28)

where the fij�s have unit modulus. The order of the vectors in the basis does not

matter as well. So, we have no other choice than to take the Fourrier transform of

the canonical basis:

f =

0B@ 1 1 1

1 j j2

1 j2 j

1CA ; (7.29)

with j the canonical root of unity of order 3. In other words, a basis unbiased with

the canonical one is determined by one of its vectors.

Now we search for unbiased bases with respect to both e and f . We know that

there are only two of them. Let ' be the orthonormal projectivity that brings e to

f . In matrix form, ' is given by the latter matrix f . As in the 2-dimensional case,

we parametrise '(T2) with parameters in T2. Let a; b 2 [0; 3[ so that the generic
point of '(T2) has projective coordinates

f

0B@ 1

e2i�a=3

e2i�b=3

1CA =

0B@ 1 + e2i�a=3 + e2i�b=3

1 + je2i�a=3 + j2e2i�b=3

1 + j2e2i�a=3 + je2i�b=3

1CA (7.30)

In order to describe T2 \ '(T2), we need solve the two equations

j1 + e2i�a=3 + e2i�b=3j = j1 + je2i�a=3 + j2e2i�b=3j (7.31a)

j1 + e2i�a=3 + e2i�b=3j = j1 + j2e2i�a=3 + je2i�b=3j (7.31b)

The solutions of (7.31a) form the set of three red, solid lines displayed in Figure 7.2.

The solutions of (7.31b) form the set of three blue, dashed lines displayed in the

same �gure. This �gure was obtained as an implicit plot by numerical computation.

From a topological point of view, each set of lines is the join of a parallel, a meridian

and a Hopf �ber intersecting in a common point1. The two sets of lines intersect

in six points that account for nothing but the two expected unbiased bases. One

obtains those bases b1 and b2 under transformation by f :

b1 = f

0B@ 1 1 1

j 1 j2

j j2 1

1CA =

0B@ i
p
3 2 + j2 2 + j2

2 + j2 i
p
3 2 + j2

2 + j2 2 + j2 i
p
3

1CA ; (7.32)

b2 = f

0B@ 1 1 1

j2 j 1

j2 1 j

1CA =

0B@ �i
p
3 2 + j 2 + j

2 + j �i
p
3 2 + j

2 + j 2 + j �i
p
3

1CA : (7.33)

1With perhaps a far-fetched argument, we remark that f is symmetric, so that each of the
two intersecting points appears precisely as the point that gave rise to the equation with solutions
passing through it.
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Figure 7.2: Intersection of tori in P(C3)

To conclude the case d = 3, we remark that the parametrisations of b1 and b2 on

T2 can be obtained as translations of f on the discrete, 3�3 net obviously appearing
in Figure 7.2.

In higher dimensions, it can be seen that we have no more the same rigidity. So

the method of investigation has to change or improve.

7.4 Pure states entanglement measure

In Section 3.2, we saw that two lines over a ring may intersect at some point other

than the origin. If two lines intersect only at the origin, they are said distant. Oth-

erwise they are said to be neighbour. We also remarked that the notions of distance

and neighbourhood can be re�ned in considering the set of all linear combinations

of two vectors generating the lines. The greater the cardinality of that set, the more

the lines are distant or, we can say, di¤erent. What is more, the wedge product is a

suitable tool in order to measure that di¤erence.

In a vector space over R or C, we may consider for any two vectors the area of
the parallelogram they determine. We suppose that the angle between the vectors

varies while their norms remain constant. Then the area of the parallelogram is

zero when the vectors are colinear and maximal when they are orthogonal. From

a quantum physical viewpoint and if the vectors are normalised, it means that this

area accounts for how much the states can be distinguished from one another. If we

recall that the area can be calculated as the modulus of the wedge or cross product

of the vectors, this is quite similar to the discrete case.

In the present section, we explore this idea and connect it to two usual tools of

quantum information, the von Neumann entropy and the Schmidt decomposition.
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7.4.1 A determinantal measure

Let us consider a discrete, bipartite quantum system, the �rst and second subsystems

having d1 and d2 levels, respectively:

j i =
X
i;j

cij jiji 2 Cd1 
 Cd2 ; (7.34)

with j i being a normalised vector. In this section, we will restrict to

d1 = d2 = d � 2; (7.35)

but it will be worth thinking of the case d1 6= d2. Moreover, we suppose that the

kets jiji are nondegenerate levels with respect to well-chosen measurements on each
of the subsystems. In particular, the jiji�s have to be orthonormal.

An intuitive way to know how entangled j i is, is to know how much the state of
one of the subsystems varies according to the result of a measurement on the other

subsystem. To do so, we refer to the duality operator D that associates to any ket

the corresponding bra in the dual Hilbert space:

D : Cd ! (Cd)�; jxi 7! hxj : (7.36)

Then the row vectors of the d� d matrix

	 = (I 
D) j i (7.37)

stand for the various states of the second subsystem after a measurement has occured

on the �rst one. Indeed, a row is a bra, but under the action of D one obtains one

of the announced kets. Similarly, the column vectors of 	 are the various states of

the �rst subsystem after a measurement has occured on the second one. Since j i
is normalised, 	 is such that

k	k2 =
q
tr(	y	) = 1: (7.38)

We say that 	 is normalised for norm 2. Then our intuitive measurement of en-

tanglement is nothing but the volume of the parallelepiped whose de�ning edges

are the column vectors of 	, or equivalently its row vectors. Thus we de�ne the

entanglement of j i by
E(j i) = dd jdet	j2 : (7.39)

Since

jdet	yj = jdet	j ; (7.40)

this de�nition is symmetric with respect to the two subsystems. The reasons for the

normalisation factor dd and for the square on the determinant will appear later on.

In the introduction of the section, we took two normalised vectors only. Here we
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take d vectors with a range of norms. The norm of the j-th column vector of 	 is the

probability for the j-th eigenvalue to come out when a measurement is performed

on the second subsystem. Similarly, the norm of the i-th row vector of 	 is the

probability for the i-th eigenvalue to come out when a measurement is performed on

the �rst subsystem. So our determinantal measure of entanglement takes also into

account the statistics.

Example: We take a bipartite, 2-level system

j i = c00 j00i+ c01 j01i+ c10 j10i+ c11 j11i (7.41)

and apply I 
D to it:

	 = (I 
D) j i (7.42a)

= c00 j0i h0j+ c01 j0i h1j+ c10 j1i h0j+ c11 j1i h1j (7.42b)

=

 
c00 c01

c10 c11

!
: (7.42c)

Then

E(j i) = 4 jdet	j2 = 4 jc00c11 � c01c10j2 : (7.43)

�

In what range of values does E(j i) lies? It is of course a nonnegative quantity,
so that we are to determine its upper-bound and show if it can be reached.

Theorem 33 For any bipartite, d-level system j i

0 � E(j i) � 1: (7.44)

Moreover, the upper-bound is reached i¤ there exist two unitary operators U1; U2 2
U(d) such that

(U1 
 U2) j i =
1p
d

dX
i=1

jiii : (7.45)

In that case, we say that j i is maximally entangled.

This result explains the normalisation factor in the de�nition of E.

Proof. For a given j i, we can �nd, by the singular value decomposition of 	, two
unitary matrices U1; U2 corresponding to two changes of basis in local measurements,

such that

	0 = U1	U
y
2 (7.46)

is diagonal with nonnegative entries. Moreover

E(j i) = dd
��det	0��2 ; (7.47)
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where the determinant is now the mere product of the diagonal entries �i of 	0.

Then
dX
i=1

�2i =
	02

2
= k	k22 = 1; (7.48)

which indicates that � = (�i)i is a point on the unit sphere. Let us parametrise the

�i�s with the help of multidimensional spherical coordinates. We put

8i 2 f1; : : : ; d� 1g; �i 2 [0;�=2] (7.49)

and

�1 = cos �d�1 cos �d�2 � � � cos �2 cos �1 (7.50a)

�2 = cos �d�1 cos �d�2 � � � cos �2 sin �1 (7.50b)
...

�d�2 = cos �d�1 cos �d�2 sin �d�3 (7.50c)

�d�1 = cos �d�1 sin �d�2 (7.50d)

�d = sin �d�1: (7.50e)

With the additional notation

f =
��det	0�� ; (7.51)

we have to study

f(�1; : : : ; �n�1) =
d�1Y
i=1

�i =

d�1Y
i=1

sin �i (cos �i)
i: (7.52)

Since f is de�ned on a compact set and is continuous, it reaches its upper-bound.

But f is zero whenever for one i

�i = 0 or �=2 (7.53)

and is positive othewise. So the upper-bound is positive and it is reached at some

point in the open set
d�1Y
i=1

]0;�=2[: (7.54)

At such a point, all the partial derivatives of f annihilate. The partial derivative of

f with respect to �i is

f 0i =
Y
j 6=i
sin �j (cos �j)

j � ((cos �i)i+1 � i(sin �i)2(cos �i)i�1): (7.55)

and it annihilates for

�i = �i = arctan
1p
i
: (7.56)
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We get

sin �i =
tan �ip
1 + tan2 �i

=
1p
1 + i

; (7.57a)

cos �i =
1p

1 + tan2 �i
=

p
ip

1 + i
(7.57b)

and

f(�1; : : : ; �n�1) =
d�1Y
i=1

p
i
i

p
1 + i

1+i
=

1
p
d
d
: (7.58)

So, there exists a unique point on the sphere with positive coordinates such that

E(j i) is maximal. For all i 2 f1; : : : ; dg,

�i(�1; : : : ; �n�1) =
1p
i

d�1Y
j=i

p
jp

1 + j
=

1p
d
: (7.59)

The corresponding state j i is as announced in the theorem. The calculation of the
entanglement with this latter j i is straightforward and gives

E(j i) = 1: (7.60)

Remark 1 In this proof, we used a diagonalisation of 	. But in order to calculate
the entanglement, it is su¢ cient to trigonalise 	.

7.4.2 Comparison with von Neumann entropy

The determinantal measurement of entanglement we have set out is basically con-

cerned with the physical structure of a state, not with the informational using of the

state from the point of view of quantum information theory. So we now compare it

with the notion of entropy. However, we shall limit ourselves to the case of a bipar-

tite, 2-level system as in the example above. It will be obvious that the method we

use is not quite adapted to higher level systems.

The classical Shannon entropy H(X) measures the uncertainty in the outcome

of a random variable X. It depends only on the probability distribution of X. If

(pi)i2I is the probability distribution, one has

H(X) = �
X
i2I

pi log pi; (7.61)

where the logarithm is to be understood throughout this section in basis 2. In

quantum physics, the variable X is replaced by a density matrix � describing a

statistical set of states, also called a state for short. This gives rise to von Neumann�s

entropy de�ned as

S(�) = � tr(� log �): (7.62)
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If (pi)i2I are the eigenvalues of �, one recovers

S(�) = �
X
i2I

pi log pi: (7.63)

In the same spirit as to the de�nition of E(j i), we are interested in the variations
of one of the subsystems when measurements are performed on the other one. So we

will calculate the von Neumann entropy of reduced density matrices and compare

to our measure of entanglement as de�ned in (7.39). Since for a bipartite system,

the eigenvalues of the two reduced density matrices are the same, we may choose

either of these matrices in order to calculate S. In other words, S is symmetric with

respect to the two subsystems.

As a general rule, since the basis for each of the subsystems is assumed orthonor-

mal, then the two reduced matrices of a bipartite, d-level system j i are the Gram
matrices of the row and column vectors of the matrix 	, respectively. If the Li�s are

the row vectors of 	, the density matrix for the �rst subsystem is

�1 = tr2(j i h j) = tr2
� X
i;j;k;l

cikc
�
jl jiki hjlj

�

=
X
i;j;k

cikc
�
jk jii hjj =

X
i;j

jii hLj jLii hjj ; (7.64)

where tr2 denotes the partial trace over the second subsystem. Similarly, if the

Ci�s are the column vectors of 	 and tr1 denotes the partial trace over the �rst

subsystem, the density matrix of the second subsystem is

�2 = tr1(j i h j) =
X
k;l

jki hCljCki hlj : (7.65)

Example: Let us take for j i a separated state

j i = j00i : (7.66)

The density matrix of the �rst subsystem is

�1 = j0i h0j =
 
1 0

0 0

!
; (7.67)

so that the entanglement of j i and the entropy of �1 are both null:

E(j i) = S(�1) = 0: (7.68)

Now if we take for j i a Bell state

j�00i =
1p
2
(j00i+ j11i); (7.69)
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the �rst reduced density matrix is

�1 =
1

2
(j0i h0j+ j1i h1j) =

 
1=2 0

0 1=2

!
; (7.70)

so that the entropy of �1 is

S(�1) = �2
1

2
log

1

2
= 1; (7.71)

which matches the entanglement of j i:

E(j i) = 22
�����det

 
1=
p
2 0

0 1=
p
2

!�����
2

= 1: (7.72)

�

In the case of the general pure state set out in (7.41), the density matrix is

� = j i h j (7.73)

and we consider the density matrix �1 of the �rst subsystem after measurements on

the second one:

�1 =

 
jc00j2 + jc01j2 c00c

�
10 + c01c

�
11

c10c
�
00 + c11c

�
01 jc10j2 + jc11j2

!
: (7.74)

Then �1 has characteristic polynomial, with variable �,

�(�1) = �
2 � � + 1

4
E(j i) (7.75)

and eigenvalues

�� =
1

2
(1�

p
1� E(j i)): (7.76)

The entropy is

S(�1) = ��+ log �+ � �� log ��: (7.77)

It is interesting to compare S(�1) with E(j i) in two ways. In Figure 7.3, we
plot S(�1) and E(j i) as functions of jdet	j, whereas in Figure 7.5, we plot them
as functions of E(j i). In Figures 7.4 and 7.6, we plot the di¤erence S(�1)�E(j i)
as function of the same variables, jdet	j and E(j i), respectively.

We notice that

E(j i) = 4�+��: (7.78)

This is not a coincidence as we are going to see in the next section.
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Figure 7.3: S(�1) (dashed, red) and E(j i) (solid, black) as functions of jdet	j
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Figure 7.4: (S(�1)� E(j i) as function of jdet	j
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Figure 7.5: S(�1) (dashed, red) and E(j i) (solid, black) as functions of E(j i)
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Figure 7.6: (S(�1)� E(j i) as function of E(j i)
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7.4.3 Comparison with Schmidt decomposition

Let j i be a bipartite, d-level system. According to Schmidt decomposition, there
exists an orthnormal basis (j1ii)i for the �rst subsystem, an orthonormal basis (j2ii)i
for the second subsystem and a set of nonnegative real numbers (�i)i such that

j i =
dX
i=1

�i j1ii 
 j2ii : (7.79)

That is to say j i can be written in a suitable basis as a sum of tensorial products.

The �i�s are called the Schmidt coe¢ cients of this decomposition. This is a corollary

of the singular value decomposition we have already used in the proof of Theorem 33.

Then we have

	 =
dX
i=1

�i j1ii h2ij ; �1 =
dX
i=1

�2i j1ii h1ij ; (7.80)

and if we denote �i = �2i the eigenvalues of �1, we obtain

E(j i) = dd
dY
i=1

�i; S(�1) = �
dX
i=1

�i log �i: (7.81)

If one of the �i�s is null, then E(j i) = 0, though j i may contain some entan-
glement as a lower level bipartite sytem. Thus the number of nonzero �i�s is a �rst,

discrete evaluation of the entanglement, which is nothing but the rank of 	, ranging

from 1 to d. Whenever it is d, but unfortunately only in that case, the determinan-

tal measure precises the amount of entanglement. In turn, von Neumann entropy

measures the entanglement continuously but does not supply obvious information

about the rank. So, in order to detect and evaluate localised entanglement in j i,
we have also to consider the minors of 	.

There are many ways to do so and indeed this is an intricate topic of algebraic

geometry. We here consider only an example as to 2� 2 minors. If �2 is the set of
all 2� 2 minors, let us de�ne

E2(j i) =
1

2

X
�2�2

j�j2 : (7.82)

A factor 1/4 corrects for multiple counting of identical terms and an extra normali-

sation factor 2 that will be explained below is included. E2(j i) is invariant under
local unitary transformations (see [52]), that is

8U1; U2 2 U(d); E2((U1 
 U2) j i) = E2(j i) (7.83)

Moreover, it is zero i¤ the rank of 	 is 1. Therefore, E2(j i) is nonzero i¤ j i
is entangled in the common meaning of the word, that is to say j i cannot be
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written as a tensorial product. In a way, this is the most basic measurement in

the determinantal family. It can be applied to any bipartite system, even if the

subsystems do not have the same number of levels, i.e. d1 6= d2. In the formal case

where d1 = d2 = d, if we take j i in its Schmidt decomposition form, E2(j i) reads

E2(j i) =
� dX
i=1

�i

�2
�

dX
i=1

�2i = 1� tr(�21): (7.84a)

which is nothing but the linear entropy of j i.
If we set aside Schmidt decomposition, this can be proved in a way that relates

to scalar and wedge products in a simple manner. One may prove by induction on

d that, for any two x; y 2 Cd,

jhxjyij2 + kx ^ yk2 = kxk2 kyk2 ; (7.85)

which is nothing but an analogue in higher dimension of

cos2 � + sin2 � = 1: (7.86)

So, denoting by Li the row vectors of 	 and taking into account (7.64), we have

E2(j i) =
dX

i;j=1

kLi ^ Ljk2 =
dX

i;j=1

kLik2 kLjk2 � jhLijLjij2 (7.87a)

=

� dX
i=1

kLik2
�2
�

dX
i;j=1

jhLijLjij2 (7.87b)

= k	k22 � k�1k
2
2 (7.87c)

= 1� tr(�21) (7.87d)

A similar sequence of equalities is obtained if we consider the column vectors of 	.

The quantity tr(�21) is well-known to range in ]0; 1]. Moreover, it is equal to 1 i¤

the reduced state whose density matrix is �1 is pure. We thus see that the measure

of localised entanglement at scale 2 (as we consider 2 � 2 minors) is related to the
amount of mixture in each of the subsystems. The localised entanglement measure

E2(j i) is 0 i¤ the subsytems of j i appear as pure states whenever they are looked
at independently of one another, and we saw that this is equivalent to j i being a
separable state.

Remark 2 For a bipartite, two-level system, one has

E(j i) = 2E2(j i): (7.88)

To conclude this section, a �nal remark is in order. There are many other ways

of qualifying or quantifying entanglement, but the search for a convenient, universal

tool (if any) is still an open issue. In connection with determinants, one may see [62,
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63] for two other viewpoints. The relation between symplectic transformations and

entanglement is approached numerically in [64].In the previous section, we evoked

a Hopf �ber in the search for MUBs. Hopf �bers also intervene in the study of

entanglement [65]. But to date, all these tools are quite limited. For a review of more

classical tools, as entanglement witnesses, positive maps and partial transposition,

one may see [66].



Chapter 8

Conclusion

Quantum information theory requires a tremendous range of mathematics. But

if one looks at the educational treatises about basic quantum physics or quantum

information and communication, one can see nowhere a word on MUBs. As we

wrote in the introduction, only speci�c applications involve them. Nevertheless, as

a theoretical feature, they appear to be tied up to very common objects, such as

irreducible representations of the Lie algebra su(2) or the quite as much wide-spread

Pauli group, a discrete version of the Weyl-Heisenberg group. Any endeavour in

order to understand MUBs better is not only worth being carried on for the sake of

MUBs themselves, but also to enlight those objects in a new fashion. We note that

the crux in those tools, whether they are considered for themselves or in connection

with physical applications, is the commutation relations of operators.

So, our thesis was concerned mainly, in Chapters 3, 4 and 5, with the connection

between maximally commuting sets of Pauli operators and the unbiasedness relation

among their diagonalising bases. The relevant mathematical framework was known

to be projective geometry over the ring Zd of integers modulo d. In Chapter 3,
we recalled how Pauli operators are encoded up to an irrelevant global phase as

the vectors of Z2nd . Besides, their commutation relations are transcribed as the

symplectic product of the vectors. Maximally commuting sets are thus unions of

projective points. In that framework, we �rst generalised the notions of distance

and neighbourhood in arbitrary dimension and introduced the wedge product in

order to quantify neighbourness between two vectors or points. We then provided

counting properties in P(Zmd ) with respect to the neighbourhood relation. With
these properties applied to the projective line P(Z2d), we proved that, in order to
build a complete set of MUBs in dimension d = ps a power of prime, with s > 1, by

means of Pauli operators, tensorial products of them are mandatory.

In Chapters 4 and 5, we fully classi�ed Lagrangian submodules of Z2nd and se-

lected among them Lagrangian half-modules, as we showed that the latters are the

only ones for which the corresponding Pauli operators can yield MUBs. We estab-

lished an isomorphism between distant Lagrangian half-modules and Pauli unbiased

bases. The isomorphism was presented in three ways: 1) with regards to symplectic

algebra in Z2nd , 2) with regards to symplectic geometry in (P(Mat(n;Zd)
2); !), 3)

embeded in a graph interpretation with various counting results.

117



118 CHAPTER 8. CONCLUSION

This mainstream study arose with �ve byproducts.

1) It completed the investigation of an alternative derivation of MUBs by means

of Gauss sums and in relation with a family of irreducible representations of the Lie

algebra su(2). In Chapter 2, we exposed the mechanism of this derivation and gave a

su¢ cient condition to get MUBs. Since the operators of interest satisfy commutation

relations analogous to those of Pauli operators, our main study enabled us to turn

this condition into also a necessary one.

2) As to pure mathematics, we gave in Section 4.3 an algorithm in order to

diagonalise a 2n�r matrix by means of a symplectic change of computational basis.
We also gave an example where such a reduction is impossible and we compared

with the case of symplectic submodules.

3) As to quantum information theory, we related in Section 5.4 to the Cli¤ord

group in any dimension and exposed how it analyses into three parts: a phase,

a Pauli part and a symplectic part. We called Pauli states those states that are

obtained by diagonalising Pauli operators, and we showed that the product group

Z2nd � Sp(n;Zd) accounts for any dynamics among these states, thus providing an
alternative to the classical Cli¤ord group expression of such a dynamics.

4) In Chapter 6, physical systems were addressed, as the classi�cation of La-

grangian submodules was readily applicable to the �nite phase space over Zd, namely
Z2d. We counted the isotropic lines in that space, not only as a whole but also under
the condition that they go through a given point. The way they arrange under the

action of Sp(1;Zd) = SL(2;Zd) was described in full. We thus answered a technical
point in the current problem of setting-up of discrete Wigner distributions over Z2d.

5) Finally, as we showed in Chapter 7, the ideas we developed in the framework

of discrete algebra and geometry were partially suitable for generalisation in con-

tinuous mathematics. Pauli operators with real exponents showed up to be speci�c

to qubits. But other tools adapt to higher dimensions. On the one hand, in pro-

jective geometry, harmonic conjugation accounts for unbiasedness among bases of

qubits, with an obvious geometrical translation on the Bloch sphere as orthogonal

great circles. A picture that we generalised in any dimension with the notion of

orthogonal tori. The cases d = 2 and d = 3 were worked out and thus we exhibited

a rigidity condition in those cases: once a basis is given, one vector unbiased with

respect to it is enough to determine the entire remaining bases in order to form a

complete set of MUBs. On the other hand, the symplectic and wedge products were

completed by the use of determinants. Measuring volumes is the counterpart of the

idea of distance in discrete geometry. But quite surprisingly, whereas the notion of

discrete distance related to unbiasedness, the use of determinants related to entan-

glement. We thus compared our determinantal measure of entanglement with the

von Neumann entropy and the Schmidt decomposition. The resemblance is striking

but in need for further investigations. We also saw that mixture of statistical states

can this way be approached. It will be uttermost interesting to ful�l this study, for

bipartite systems as well as in general for multipartite systems.
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The question of the celebrated upper-bound to the number of MUBs, d + 1 in

dimension d, remains an open one. The most recent numerical tests by Brierley

and Weigert [36] tend to show that there are no more than 3 MUBs in dimension

6, that is the limiting factor 2 plus 1, a fact that have theoretical counterparts. In

our thesis, we refered to the perhaps best-known group theoretical tool in order to

build MUBs, namely the Pauli group. Since it is liable to the Chinese remainder

theorem, the building of MUBs with it is bound to prime power dimensions. This is

in agreement with the expression of MUBs issued from Pauli operators [18] and the

theoretical conclusion of Archer [17]. So, the problem was reduced to prime power

dimensions, that is to say in our case from Zd, with a general d, to Zps , with p a
prime. Moreover, all the conditions we found relate to invertibilty, so that only the

terms of lowest valuation are of interest. The problem thus reduced further to Zp as
the base ring. A recent paper by Kibler [67] investigates the connection between the

Heisenberg group and MUBs, with the same stubborn restriction on the base ring.

All this should be compared fruitfully to a work by Howe [68] connecting Lagrangian

submodules to the Heisenberg group, MUBs and nice error bases. He starts from a

general group theoretical point of view and �nally comes to the conclusion that "In

some sense, the Heisenberg group over the �eld Z=p, of integers mod p, is the best

group for constructing mutually unbiased bases".
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Appendix A

Arithmetics in Z and Zd

A.1 gcd, lcm and order

In Z, the notion of greatest common divisor (gcd for short) has an intuitive meaning.
But it is equivalent to a little bit more abstract property which will generalise to

residue class rings Zd = Z=dZ, d � 2. This equivalence is called Bézout�s theorem.
To see how it works, note that the sets of the form kZ, k 2 Z, are the sole subrings
of Z. Bézout�s theorem states that if � is the gcd of a1; : : : ; an 2 Z:

� =

n̂

i=1

ai; (A.1)

then � is characterised up to its sign by the set equation

�Z =
nX
i=1

aiZ; (A.2)

that is to say �Z is the set of all linear combinations of the ai�s over Z. We im-
mediately deduce from that theorem Gauss�s theorem for integers: If a divides the

product bc and is coprime with b then a divides c. It is also quite obvious from

Bézout�s theorem that the following three properties are equivalent:

1. a is coprime with d;

2. The residue class a in the quotient ring Zd is invertible. In that case, we also
say that a is invertible modulo d;

3. a is a generator of Zd:

aZd = fax; x 2 Zdg = Zd: (A.3)

The invertible elements of Zd are also called its units and hence their set is denoted
U(Zd), or Z�d.
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In the case of Zd, Equation (A.2) is retained in order to de�ne a notion of gcd.
A residue � 2 Zd is a gcd for a set of ai�s in Zd if

�Zd =
nX
i=1

aiZd: (A.4)

So, if � is the gcd of the ai�s, � is a gcd for the ai�s. As for Z, this gcd is determined
only up to an invertible mutiplier as will be shown in Appendix A.2. The compu-

tation of a gcd is still associative and commutative. As is the case for Z, the ai�s
will be said coprime if � is invertible. In this case, �Zd = Zd. The interpretation in
terms of linear combinations is still valid. The intuive one in terms of prime factor

decomposition or division order is also still valid if one takes into account the slight

modi�cation indicated by the following property:

� =

n̂

i=1

ai in Zd i¤ � ^ d =
 

n̂

i=1

ai

!
^ d in Z. (A.5)

Indeed, if we come back to representatives of residue classes, de�nition (A.4) reads

�Z+ dZ =

 
nX
i=1

aiZ

!
+ dZ; (A.6)

which is nothing but the second member of equivalence (A.5). So, there is an

additional d in each member of that latter expression. It means that the power k of

a prime factor in � or in any one of the ai�s must �rst be replaced by the minimum

of k and the power of the same prime factor in d. Light is shed on that recipe in

Appendix A.2 with the Chinese remainder theorem and p-adic decomposition.

If � is a gcd for the ai�s, we shall call � ^ d the gcd of the ai�s. In fact, it is a gcd
and if �1 and �2 are two gcd�s then according to (A.5)

�1 ^ d = �2 ^ d: (A.7)

That gcd is also the �rst one according to the lexicographic order from 0 to d� 1
since for any positive � such that � is a gcd, � ^ d � �.

In the same manner, one de�nes a lowest common multiple (lcm for short) of

a1; : : : ; an 2 Z (resp. a1; : : : ; an 2 Zd) to be an element �1 (resp. �2) such that

�1Z =
n\
i=1

aiZ

 
resp. �2Zd =

n\
i=1

aiZd

!
: (A.8)

The lcm operation is associative and commutative in both case and is denoted by

the vee symbol _:

�1 =
n_
i=1

ai

 
resp. �2 =

n_
i=1

ai

!
: (A.9)
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Those two notions of lcm are related by

� =
n_
i=1

ai in Zd i¤ � ^ d =
 

n_
i=1

ai

!
^ d in Z. (A.10)

Indeed, since the map x 7! x is onto, the �rst equality means

�Z+ dZ =
n\
i=1

(aiZ+ dZ) (A.11)

and the second one means

�Z+ dZ =

 
n\
i=1

aiZ

!
+ dZ: (A.12)

We are thus to prove that

n\
i=1

(aiZ+ dZ) =

 
n\
i=1

aiZ

!
+ dZ: (A.13)

Since all operations involved here are associative and the intersection of two subrings

is still a subring, we can prove this equality by induction. So let us suppose that

n = 2 and let x be in the �rst set:

x = k1a1 + l1d = k2a2 + l2d: (A.14)

Divide each member by a1 ^ a2 ^ d:

x0 = k1a
0
1 + l1d

0 = k2a
0
2 + l2d

0: (A.15)

Then a01 ^ a02 divides k1a01� k2a02 = (l2� l1)d0 and is coprime with d0. So there exist
n1; n2 2 Z such that n1a01 � n2a02 = l2 � l1. Let us call y = n1a

0
1 + l1 = n2a

0
2 + l2.

We have

x0 � yd0 = (k1 � n1d0)a01 = (k2 � n2d0)a02 (A.16)

and eventually

x� yd 2
n\
i=1

aiZ: (A.17)

The converse inclusion for (A.13) is trivial.

Note that (A.13) was quite obvious with the prime factor decomposition inter-

pretation of gcd and lcm since each of those two operations in Z is distributive with
respect to the other.

Finally, the order �(a) of a 2 Zd is the cardinality of the subring aZd = fka; k 2
Zdg. This is also the �rst positive natural number n such that na is a multiple of
d. The only residue whose order is 1 is 0, a is invertible modulo d i¤ �(a) = d, and
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�(a)Z is the kernel of the linear map

Z �! Zd
k 7�! ka: (A.18)

It is well known from group theory that the cardinality of a subgroup H of a �nite

group G is a divisor of the cardinality of G. For any a 2 Z, since aZd is a subgroup
of Zd, x = d=�(a) is a well-de�ned integer such that the order of x is �(a). Let us

carry out the Euclidean division of a by x: a = qx+ r with 0 � r < x and suppose

that r 6= 0. From the de�nition of r and according to that latter assumption,

�(r) > �(x) = �(a). But �(a)r = �(a)a � q(�(a)x) = 0 so that �(r) � �(a) and

hence there is a contradiction. Thus a 2 xZd and aZd � xZd. Since those two sets
have the same cardinality they are equal and we have just seen that no residue class

r with 0 � r < x can generate this set, except for the case when a = x = r = 0. We

deduce that x is the gcd of the one-element family (a). We shall say that it is the

gcd of the element a.

So, we can compute the order of a as

�(a) =
d

a ^ d: (A.19)

It means that if

d =

nY
i=1

psii and a =

nY
i=1

p
s0i
i

mY
j=1

p
s00j
j (A.20)

are the prime factor decompositions of d and a, then

�(a) =
nY
i=1

p
si�min(si;s0i)
i : (A.21)

Hence one can �nd again the equivalence we �rst deduced from Bézout�s theorem.

A.2 The Chinese remainder theorem

In the previous section of this appendix, we saw that aZd = xZd with x = a^d. One
may wonder from �(a) = �(x) and from (A.20) and (A.21) if there is no invertible

factor � 2 Zd such that a = �x. Moreover, it will prove the claim after (A.4) that

the gcd is determined up to an invertible factor. Since if �1 and �2 are two possible

gcd�s, then there shall exist two invertible �1 and �2 such that

�k = �k

�
d

�(�k)

�
for k = 1; 2; (A.22)

and so �2 = �2�
�1
1 �1. It will also proves that for any gcd � of the ai�s, d=�(�) is the

gcd of the ai�s.

If for any i, s0i � si, the existence of � is obvious: � = q answers the question. But
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it is not any more so obvious when there is one i for which s0i > si. A fundamental

idea to refer to and that we use many other times in this thesis is to prove a property

for d a power of prime (d = ps) and then deduce that it is true for any composite d

as in (A.20). This idea is carried out by the so-called Chinese remainder theorem.

Theorem 34 (Chinese remainder) If d =
Qn
i=1 p

si
i is the prime factor decompo-

sition of d, then we have the following isomorphism of rings:

� : Zd
��!

Qn
i=1 Zpsii

a 7�! (a1; : : : ; an)
(A.23)

where ai = �pi(a) is the residue class of a modulo p
si
i . Addition and multiplication

on the right-hand side of (A.23) are componentwise:

(a1; : : : ; an) + (b1; : : : ; bn) = (a1 + b1; : : : ; an + bn); (A.24a)

(a1; : : : ; an)(b1; : : : ; bn) = (a1b1; : : : ; anbn): (A.24b)

The Zpsii in the theorem are called the Chinese factors of Zd. According to

(A.24b), a is invertible i¤ all its Chinese components ai are. Thus, to solve our

problem, we can equivalently search for a �i in each Chinese factor such that ai =

�ixi. Moreover, we are going to give a �rst cumbersome proof of the existence of �i
to show the necessity for the p-adic decomposition in each Chinese factor. Let us

suppose that d = ps, let � = �(x) = �(a) and suppose that both q and q + � are

noninvertible modulo d, that is to say p divides q and q+ �. We are to prove this is

impossible and thus there exists an invertible � modulo d such that a = �x. Indeed,

since a = qx and pjq (p divides q) the properties pnja and pn�1jx are true for n = 1.
Suppose they are true for some positive integer n. We know that x is a multiple

of a in Zd and thus there exist k; l 2 Z such that x = ka + ld = ka + l�x. Since

pj(q+ �)� q = � and pn�1jx, pnj�x and then pnjx due to the induction hypothethis
and to the previous expression for x. And since pjq and a = qx, we deduce that

pn+1ja. Hence the property pnja should be true for all positive integer n, which is
clearly nonsense when a 6= 0. If a = 0, we can just replace it by d. We are now

going to introduce the p-adic decomposition in Zps and compare with a proof using
it.

Let a be a nonnegative integer and p be prime number. Writing a in numeration

basis p, we get the numbers r 2 N and �0; : : : ; �r 2 f0; : : : ; pg such that

a = �0 + �1p+ � � �+ �rpr: (A.25)

This is the p-adic decomposition of a. The p-valuation of a is

vp(a) =

(
min(i 2 f0; : : : ; rg;�i 6= 0) for a 6= 0;
+1 for a = 0:

(A.26)

For instance, if a =
Qn
i=1 p

si
i 6= 0 is the prime factor decomposition of a then for any

i 2 f1; : : : ; ng, vpi(a) = si.
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Every class a 2 Zps is uniquely represented by an integer a 2 f0; : : : ; ps� 1g. So
there exist one single (�0; : : : ; �s�1) 2 f0; : : : ; pgs such that

a = �01 + �1p+ � � �+ �s�1ps�1: (A.27)

This is the p-adic decomposition of a. The p-valuation of a is

vp(a) =

(
min(i 2 f0; : : : ; s� 1g;�i 6= 0) for a 6= 0;
s for a = 0:

(A.28)

The order of a is then ps�vp(a) and a is invertible i¤ its valuation is 0. Moreover, for

all a; b 2 Zps ,

vp(a+ b) � min(vp(a); vp(b)); (A.29a)

vp(ab) = min(vp(a) + vp(b); s); (A.29b)

where equality in the latter formula relies on the fact that p is prime.

To check their understanding of p-adic decomposition, the reader should be able

to literally see the following equalities, for any �nite set fa1; : : : ; ang � Z of divisors
of some d � 2: �^n

i=1
ai

��_n

i=1
d=ai

�
= d; (A.30a)�_n

i=1
ai

��^n

i=1
d=ai

�
= d: (A.30b)

Now, let us hark back to our search for �i. Since they are of the same order,

ai and xi are both zero or nonzero. If they are nonzero, then according to (A.29b)

applied to ai = qixi, qi is of pi-valuation 0. Hence it is invertible in Zpsii and we

take �i = qi. If they are null, then �i = �pi(�) = 1 and either qi or qi + �i is of

pi-valuation 0 so that we get our �i. That is a simple proof of the

Lemma 35 Let d � 2 and a; b 2 Zd. The two following assertions are equivalent:

1. a; b are of the same order.

2. There exist � 2 U(Zd) such that a = �b.

If one of them is sati�ed, a and b are said to be associated. This is the case in

particular if a and b are two gcd�s of a same set of elements in Zd.

What about the computation of the gcd of given a1; : : : ; am 2 Zd using the
Chinese remainder theorem. Let aij = �pj (ai) for any i 2 f1; : : : ;mg and j 2
f1; : : : ; ng. In order to lighten notations, we avoid the bar over residue classes

in this paragraph. The set to which any element belongs will be known from the

context. Let also � =
Vm
i=1 ai in Zd and �j = �pj (�). It is quite obvious that in the
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j-th Chinese factor of Zd the gcd of the aij�s is

m̂

i=1

aij = p
kj
j ; with kj = min(vpj (aij); i 2 f1; : : : ;mg) � sj : (A.31)

Indeed, if i0 is an index for which vpj (ai0j) = kj , then ai0j = p
kj
j u, where u is

invertible. Thus pkjj may be obtained as a linear combination of the aij�s and any

linear combination of them is a multiple of pkjj . Moreover p
kj
j = p

kj
j ^ p

sj
j in Z.

Since � is a linear combination of the ai�s, �j is a linear combination of the aij�s

and so vpj (�j) � kj . Then, ai0 being a multiple of �, ai0j is a multiple of �j and so

vpj (�j) = kj . Hence � =
Qm
j=1 p

kj
j . All this is nothing but the usual way to compute

gcd�s by means of prime factor decomposition.

Another useful lemma is the following one. It is not often found in literature

maybe for the crux is easy to see.

Lemma 36 Let d � 2 and a; b; � 2 Zd such that � is a gcd for a and b. If one of
the following conditions is veri�ed:

� d is odd,

� d is even and v2(a) 6= v2(b),

� d is even and v2(a) = v2(b) = v2(d);

then one can choose u; v 2 U(Zd) such that � = ua + vb. If not, then only u or v

can be chosen invertible.

Proof. In this proof, in order to distinguish classes and representatives, we shall note
a; b; � instead of a; b; � as in the terms of the lemma. Using the Chinese remainder

theorem, we search for u and v in each Chinese factor separately. So suppose d = ps,

with p odd to begin with. Also note that owing to of Lemma 35, it su¢ ces to prove

Lemma 36 for any gcd � of a and b. So we will choose � = a^ b, taking into account
the remark just following (A.4). By de�nition, there exist u0; v0 2 Z such that

� = u0a+ v0b, and dividing by � we obtain

1 = u0a
0 + v0b

0 (A.32)

where a0 = a=�, b0 = b=�. We see that u0 and v0 cannot be both multiples of p. At

least one of u0 and v0, say u0, is a unit. Suppose v0 is not a unit, that is to say v0
is a multiple of p. If v0 + a0 were a multiple of p, then so would a0, which would

contradict (A.32) once more. So v0+ a0 is a unit and so is v0� a0. Besides, if u0� b0

were both mutiples of p, so would be 2b0, b0 and then u0. We may now conclude that

at least one of the three pairs

(u0; v0); (u0 + b0; v0 � a0); (u0 � b0; v0 + a0) (A.33)

is in U(Zd)2. That proves the lemma as to the �rst condition.
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If p = 2 and v2(a) 6= v2(b), then in (A.32), one of a0 and b0 is odd, say a0, and

the other is even, say b0. Moreover, u0 has to be odd too. Then one of the two pairs

(u0; v0); (u0 + b0; v0 � a0) (A.34)

is in U(Zd)2.
If p = 2 and v2(a) = v2(b) = v2(d), then a = b = � = 0 and u = v = 1 suit the

lemma.

Still with p = 2, if v2(a) = v2(b) 6= v2(d), we have already seen that at least one

of u0 and v0, say u0, is a unit. But v0 cannot be a unit, since in that case u0a0+v0b0

should be even. Because we only need u0a0 + v0b
0 to be odd, we can choose which

one of u0 and v0 is invertible.

By induction and associativity of gcd, we have the

Corollary 37 Let a1; a2; : : : ; an 2 Zd and � be one of their gcd�s. For any i 2
f1; : : : ; ng, one can �nd k1; k2; : : : ; kn 2 Zd with ki 2 U(Zd) such that

� =

nX
j=1

kjaj : (A.35)



Appendix B

Finitely generated modules over
Zd

Let d and n be two positive integers with d � 2. The set product Znd is endowed with
its canonical structure of Z-module and its elements will be called vectors. Addition
is componentwise:

Znd � Znd �! Znd
((a1; : : : ; an); (b1; : : : ; bn)) 7�! (a1 + b1; : : : ; an + bn)

(B.1)

and the product map is

Z� Znd �! Znd
(k; (a1; : : : ; an)) 7�! (ka1; : : : ; kan):

(B.2)

This can also be denoted k � (a1; : : : ; an) or even k(a1; : : : ; an) without a symbol.
Obviously, such a product depends only on the residue class of k modulo d, so that

we may consider Znd either as a Z-module or a Zd-module. So, when the context is
clear or the distinction useless, one can avoid the bar to denote residue classes.

A submodule of Znd is a module over Zd included in Z
n
d . When n = 1, submodules

are called ideals of Zd. Let I be a �nite index set and x = (xi)i2I be a family of

vectors in Znd . The submodule those vectors generate is the set of all their linear
combinations over Zd and is noted hxi, or hx1; : : : ; xri whenever I = f1; : : : ; rg. It is
the tiniest submodule that contains all the xi�s. The family x is a generating system

or basis of that submodule. Moreover, any submodule of Znd is generated by some
basis, since the whole submodule itself is such a basis. The family x is free if for all

family (ci)i2I of elements of Zd,X
i2I

cixi = 0 =) 8i 2 I; ci = 0: (B.3)

129
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In other words, the linear map

fx : ZId �! Znd
(ci)i2I 7�!

P
i2I cixi

(B.4)

has kernel 0. A basis of a submodule which is also free is called a free basis of

that submodule, and a submodule for which there exists a free basis is called a free

submodule. The computational basis of Znd is of course a free basis and it will be
denoted by e = (ei)i=1:::n. For any vector a, e�i (a) = ai is the i-th component of a

with respect to e.

A vector a such that the one-element family (a) is free is called a free vector. If

moreover n = 1, then a is just said regular.

A submodule M is said to be of rank r if the minimal number of vectors needed

to generate it is r. This notion of rank should not be confused with the rank of the

matrix whose columns are a set of generating vectors ofM with respect to some free

basis of Znd (see [40]). Those two notions of rank for submodules and matrices do
not overlap.

A minimal basis for a rank-r submodule M is a basis of M with r elements.

Such a basis need not be free. For instance in Z24, ((2; 0)) is a basis for the rank-1
submodule f(0; 0); (2; 0)g but is not free. But if M is free, minimal and free bases

are the same ones. Indeed, let (mi)i=1;:::;r be a minimal basis of M and (m0
i)i2I be a

free basis of M . By minimality of m, r � jIj and by freedom of m0, jIm fm0 j = djIj.

So

jM j = jIm fmj � dr � djIj = jIm fm0 j = jM j : (B.5)

Thus on the one hand jIm fmj = dr and fm must be injective, so that m is free. On

the other hand, jIj = r implies that m0 is minimal.

Let a = (a1; : : : ; an) 2 Znd . The order �(a) of a is the cardinality of the set
Zd � a = fka; k 2 Zdg. The only vector whose order is 1 is the null vector and a is a
free vector i¤ �(a) = d. Endly, we note that �(a)Z is the kernel of the linear map

f : Z �! Znd
k 7�! ka:

(B.6)

This kernel is the intersection of the ker(e�i � f) = �(ai)Z and thus

�(a) =

n_
i=1

�(ai): (B.7)

With (A.19) and (A.30a) we also deduce that

�(a) =
d

(
Vn
i=1 ai) ^ d

: (B.8)
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Matrix reduction

Let d be any integer � 2. As is the case for vector space theory over a �eld, vectors in
�nitely generated modules and linear maps between such modules can be represented

by matrices. The canonical computational basis for vectors will be denoted e. A

k � l matrix m is upper-triangular (resp. lower-triangular) if for all i 2 f1; : : : ; kg,
j 2 f1; : : : ; lg, i > j (resp. i < j), we have mij = 0. The matrix m is diagonal if for

all i 2 f1; : : : ; kg, j 2 f1; : : : ; lg, i 6= j, we have mij = 0. The mii�s of any matrix

will be called its diagonal coe¢ cients. We extend to matrices the factor projections

�p de�ned in the Chinese remainder theorem (see Appendix A.2): If m is a k � l
matrix over Zd and p is a prime factor of d, then �p(m) is the k � l matrix over
Zps , s = vp(d), whose (i; j) coe¢ cient is �p(mij). Also p-valuation is extended to

matrices:

vp(m) = min(vp(mij); i 2 f1; : : : ; kg; j 2 f1; : : : ; lg): (C.1)

We will also adopt the conventions that a � in a matrix denotes an arbitrary or
unknown coe¢ cient or submatrix, and a blank denotes a null coe¢ cient or subma-

trix. The k � k indentity matrix will be written Ik and the k � l null matrix 0k;l if
necessary.

In this appendix we address trigonalisation and diagonalisation of matrices whose

columns are basis vectors of a submodule of Znd . A left-multiplication by an invertible
matrix is to be interpreted either as an active transformation, that is to say an

automorphism of Znd , or as a passive transformation, that is to say a change of
computational (free) basis. A right-multiplication by an invertible matrix stands for

a change of basis of the submodule under consideration. The structure of the given

submodule will be much easier to study after reduction. The reader interested in

a more abstract treatment of matrix reduction and in particular diagonalisation of

matrices over more general rings may have a look to [39,40,69]. By the way, we shall

also have an insight into generalisation over Zd of the "Incomplete basis theorem".
The set of invertible matrices over Z is denoted GL(n;Z) and the set of invertible
matrices over Zd is denoted GL(n;Zd). Note that left-multiplication by an invertible
matrix does not modify the order of a column vector and hence does not modify the

gcd of its coe¢ cients. The same is true for right-multiplication and row vectors.
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The only preliminary result we shall admit is that a square matrix with coe¢ -

cients in a commutative ring is invertible i¤ its determinant is an invertible element

of that ring (see [40]). In fact, the proof is a mere copy of the �eld case, using the

comatrix of the matrix under consideration.

Before we go on, a general remark is in order about the algorithms presented

here. Except the algorithm G , they are "blind" algorithms, that is to say we do

not suppose we know where invertible coe¢ cients are located in the matrices, which

would be mandatory to use the classical Gaussian reduction for instance.

Lemma 38 Let a 2 Znd be an n-dimensional vector. Then

9L 2 GL(n;Zd); 9k 2 Zd; La = ke1: (C.2)

The column vectors C1; : : : ; Cn of L�1 form a free basis of Znd such that kC1 = a.

Proof. Our calculations to prove this lemma will be in Z. The results will only
have to be sent onto residue classes at the end. Let a 2 Zn, �n�1 = an�1 ^ an,
a0n�1 = an�1=�, a0n = an=�. There exist k1; l1 2 Z such that k1an�1 + l1an = �n�1

so that we have the active transformation on a:0B@ In�2

k1 l1

�a0n a0n�1

1CA
| {z }

0B@ �
an�1

an

1CA
| {z }

=

0B@ �
�n�1

0

1CA
| {z }

:

L(n�1) 2 GL(n;Z) a a(n�1)

(C.3)

Repeating this trick on a(n�1) with components n� 1 and n� 2 and so on, we bring
the vector a onto a multiple of e1. Of course, the order of k in Zd is the same as the
order of a in Znd . In details:

a(n) = a; �n = an;

8i 2 f1; : : : ; n� 1g;

8>>>>><>>>>>:
�n�i = an�i ^ �n�i+1
a0n�i = an�i=�n�i

�0n�i+1 = �n�i+1=�n�i

9ki; li 2 Zd; kian�i + li�n�i+1 = �n�i

;

0BBBB@
In�i�1

ki li

��0n�i+1 a0n�i
Ii�1

1CCCCA
| {z }

0BBBB@
�

an�i

�n�i+1

0i�1;1

1CCCCA
| {z }

=

0BBBB@
�

�n�i

0

0i�1;1

1CCCCA
| {z }

:

L(n�i) a(n�i+1) a(n�i)

(C.4)

Each L(i) has determinant 1, so that the complete transformation given by the

product L =
Qn�1
i=1 L

(i) also has and therefore is an automorphism. So we have
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shown what we were looking for:

9L 2 GL(n;Z); 9k 2 Z; La = ke1: (C.5)

Lemma 39 Let a1; a2 2 Znd of order �1; �2 respectively. There exists a linear com-
bination a of a1; a2 of order �1 _ �2. Moreover, if d is odd, we can build a such
that

ha; a1i = ha; a2i = ha1; a2i : (C.6)

If d is even, then in general we can have only

ha; a1i or ha; a2i = ha1; a2i : (C.7)

Proof. If a1 or a2 is equal to 0, the lemma is obvious. We now suppose that they
are not and that d is odd. Let A = (a1ja2) be the n� 2 matrix whose columns are
a1; a2 and with the help of Lemma 38, left-multiply A by an invertible matrix L such

that La1 has all but its �rst coe¢ cient equal to 0. The matrix L is to be interpreted

as a change of basis. If k1; : : : ; kn are the coe¢ cients of the second column of LA,

let � = k ^ k1. According to Lemma 36 of Appendix A.2, there exist u; v 2 U(Zd)
such that

� = uk + vk1: (C.8)

Then we put

(a01ja) = LA

 
0 u

�u�1 v

!
and (aja02) = LA

 
u 0

v u�1

!
(C.9)

or

(a01ja) = LA

 
v�1 u

0 v

!
and (aja02) = LA

 
u �v�1

v 0

!
: (C.10)

In any case, a answers the lemma since, with Lemma 35 and Equations (A.19),

(A.30a) and (B.8), the order of a is

�(a) =
d

� ^ (
Vn
i=2 ki) ^ d

=
d

(k ^ d) ^ (
Vn
i=1 ki ^ d)

=

�
d

k ^ d

�
_
�

dVn
i=1 ki ^ d

�
= �(a1) _ �(a2): (C.11)

And for i = 1; 2,

ha; aii =


a; a0i

�
= ha1; a2i : (C.12)

To complete the proof, let us deal with the case where d = 2s. With i = 1 or 2

such that �(ai) = max(�(a1); �(a2)), we simply put a = ai.
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Note that for any linear combination b = b1a1 + b2a2 of a1 and a2,

�(a)b = b1(�(a)a1) + b2(�(a)a2) = 0: (C.13)

Thus for all b 2 ha1; a2i, �(b) divides �(a).

Given two minimal bases f = (f1; : : : ; fr) and g = (g1; : : : ; gr) of a submodule

M , it is in general not possible to �nd an automorphism of M that brings fi onto

gi for all i, even if �(fi) = �(gi) for all i. Indeed in Z6, we cannot �nd a 2 Z6 and
b 2 U(Z6) so that  

1 a

0 b

! 
1 1

0 3

!
=

 
1 2

0 3

!
: (C.14)

We can take b to be 1 or 5. But a should be such that 1+3a = 2, which is impossible.

As to diagonalisation, left-multiplication is still not su¢ cient, especially because the

order of respective column vectors from one basis to the other is not preserved: 
1 a

0 b

! 
1 1

0 3

!
6=
 
1 0

0 3

!
: (C.15)

We shall make use of Lemma 39 to perform diagonalisation with left- and right-

multiplications. For instance, the latter inequation is solved trivially: 
1 0

0 1

! 
1 1

0 3

! 
1 �1
0 1

!
=

 
1 0

0 3

!
: (C.16)

Suppose that we are given a minimal basis b = (b1; : : : ; br) of a submodule M

of Znd and B is the matrix of size n � r whose i-th column is bi. The matrix B is

called a basis matrix for M . With the help of Lemma 38, we could easily put B

in an upper-triangular form by means of left-multiplications. But we are going to

transform it into a new, diagonal matrix whose column vectors still generate M .

Because of Lemma 39 and associativity of lcm, we may suppose that

�(b1) =
r_
i=1

�(bi); (C.17a)

8m 2M; �(m)j�(b1): (C.17b)

An algorithm which set any matrix that way will be called A . It consists of an

appropriate right-multiplication by an invertible matrix. We left-multiply B by a

matrix L1 with determinant 1 so that L1b1 has all but its �rst coe¢ cient equal to

0. Let eB = L1B. If one of the coe¢ cients of eB but in the �rst column, say ebij ,
j � 2, were not a multiple of the upper-left coe¢ cient eb11, then � �ebij� would not be
a divisor of �

�eb11� = �(b1) and according to Relation (B.7) of Appendix B and to

Lemma 39 again, there would exist a linear combination of b1 and bj of order greater

than �(b1), which is impossible by assumption. Since we are only interested in a
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basis of M we can put all but the �rst coe¢ cient of the �rst row to 0 and obtain a

matrix B1. This is equivalent to a right-multiplication by an appropriate invertible

matrix. Carrying on this process, we obtain a diagonal matrix Br whose column

vectors still form a minimal basis of M . Let us describe the algorithm in details.

Algorithm D0: The starting point is the empty matrix D0 with no lines and

no columns, and as an argument a k � l matrix B. Let B0 = B. Then for i from 0

to � = min(k � 1; l � 1), we go on the following steps:

1. R(1)i+1 =

 
Ii 0

0 R0

!
with R0 a (l � i) � (l � i) invertible matrix such that

A (Bi) = BiR
0.

2. Li+1 =

 
Ii 0

0 L0

!
with L0 an (k � i) � (k � i), determinant-1 matrix given

by Lemma 38 such that B0 = L0A (Bi) has all its �rst column coe¢ cients but

the �rst one equal to 0.

3. R(2)i+1 =

 
Ii 0

0 R00

!
with R00 a (l� i)�(l� i) invertible matrix such that B0R00

has all its �rst line coe¢ cients but the �rst one equal to 0.

4. Di+1 =

 
Di 0

0 b011

!
.

5. Bi+1 is given from B0 by deleting the �rst row and the �rst column of this

latter one.

The results of the algorithm are the change of basis matrices L(B) =
Q�+1
i=1 L�+2�i,

R(B) =
Q�+1
i=1 R

(1)
i R

(2)
i and the k � l diagonal matrix D0(B) de�ned to be 

D�+1

0k�l;l

!
or

�
D�+1 0k;l�k

�
(C.18)

whether k � l or k � l respectively. For all i; j 2 f1; : : : ; rg, i < j, we have

(D�+1)iij(D�+1)jj . �

As to the minimal basis b, the second case for D0(B) is impossible and thus

r � n. The minimality of b also implies that none of the diagonal coe¢ cients of

D�+1 = Dr is 0. Hence, the column vectors of D0(B) still form a minimal basis

of M . Additionally, note that if we replace every diagonal entry of D0(B) by 1,

the column vectors of the matrix we obtain form a free basis bb of a free, rank-r
submodule Mbb containing M .

The remaining features stated in Theorem 40 below are already known from the

classi�cation of �nite, commutative groups and general commutative ring theory.

However, we prove them in a new way as an illustration of the material above, with

counting properties in Zd-modules.
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If we start with a nonminimal basis of M , say b0 with r + r0 vectors, r0 � 1, the
algorithm D0 yields a matrix of the form

D0(B
0) =

�
D 0n;r+r0�k

�
; (C.19)

whereD is a diagonal matrix with k columns, all of them nonzero. SinceM is of rank

r, we have k � r. Suppose k > r and let eD be the (1; : : : ; n; 1; : : : ; r + 1) submatrix

of D. There exists an r � (r + 1) matrix E whose j-th column, j 2 f1; : : : ; r + 1g,
contains the components of the j-th column vector of eD with respect to the free

basis bb. A linear combination of the column vectors of eD with some factors is null i¤

the linear combination of the respective column vectors of E with these same factors

is null. In other words, eD and E have the same kernel as linear maps. Applying

the algorithm D0 to E, we construct a null linear combination of its column vectors

the factors of which are located in the last column C of R(E). Now, let us choose a

prime factor p of d such that t = vp(dr+1;r+1) < vp(d), so that no diagonal entry of

�p
� eD� is null. There exists such a p because dr+1;r+1 6= 0. Since R(E) is invertible,

at least one of the factors contained in �p(C) is a unit. But in that case, �p
� eDC�

cannot be null as expected. So k = r. Thus we may add to the algorithm D0 a �nal

step to get the

Simple reduction algorithm D : LetM be a rank-r submodule of Znd , b a basis
of M containing s � r vectors and B the corresponding basis matrix. By deleting

the last s � r null columns of D0(B), one gets a minimal basis matrix for M . The

matrix D(b) = D(B) thus obtained is called the simple reduction of the basis b or

of the basis matrix B. �

Let b(1) and b(2) be two bases of M . In the next three paragraphs, we are going

to work in a single Chinese factor, say with prime factor p, and we are to prove

that for every i 2 f1; : : : ; rg, the i-th diagonal entries of D(b(1)) and D(b(2)) are

associated. In order to make notations lighter, we even suppose that d is a power

of a prime, say ps. There is a slight di¤erence, since in the latter case, r may vary

with the Chinese factor one chose initially. The reader may check that such a trick

is allowed. Let B(a) = L(b(a))�1D(b(a)), a 2 f1; 2g, bB be the representative matrix

of bb with respect to the computational basis and P 12, P 21 and E be three r � r
matrices such that

B(1)P 12 = B(2); B(2)P 21 = B(1); bBE = B(1): (C.20)

So we have bBEP 12P 21 = B(1)P 12P 21 = B(1) = bBE (C.21)

and then

D(E)P = D(E); with P = R(E)�1P 12P 21R(E): (C.22)
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If some diagonal entry of D(E) were zero, then the column vectors of B(1)R(E) =bBL(E)�1D(E) would form a basis of M with at most r � 1 elements, which is
impossible. So there exists an r � r matrix Q such that P = Ir + pQ. Hence P is

invertible, and so are P 12 and P 21. For a 2 f1; 2g, consider the maps

f (a) : (Zps)r �! M

X 7�! B(a)X
(C.23)

where elements of (Zps)r are presented as column vectors and let n
(a)
i , i 2 f0; : : : ; sg,

be the number of vectors X so that f (a)(X) is of order ps�i. For every X such that

B(1)X is of order ps�i, the vector Y = P 21X is such that B(2)Y is of order ps�i

as well. Since P 21 is injective as a linear map, we have n(2)i � n
(1)
i . The converse

inequality can be shown the same way and so n(1)i = n
(2)
i .

Now let b be any basis ofM and ri, i 2 f0; : : : ; s�1g, be the number of diagonal
entries of D = D(b) of the form upi, u 2 U(Zps). We also de�ne the following two
related objects

8i 2 f�1; : : : ; s� 1g; �i =
iX
j=0

rj ; (C.24)

and as intervals in N

8i 2 f0; : : : ; s� 1g; Ki = f�i�1 + 1; : : : ; �ig: (C.25)

The cardinality of a Ki is of course ri. We are to prove by induction on i that the

ri�s do not depend on the choice of b and so are properties of M . As in the previous

paragraph, consider the map

f : (Zps)r �! M

X 7�! DX:
(C.26)

The number of vectors X such that f(X) is of order ps�i, i 2 f0; : : : ; s� 1g, is

ni =
iX
j=0

("
j�1Y
k=0

p((s�1)�(i�k))rk

#
�
h
p((s�1)�(i�j�1))rj � p((s�1)�(i�j))rj

i
�

�

24 iY
k=j+1

p((s�1)�(i�k�1))rk

359=;�
s�1Y
l=i+1

psrl : (C.27)

Indeed, one can consider the bar graph in Figure C.1 to see where that latter ex-

pression comes from.

The individual positions on the horizontal axis have not been displayed. Instead,

only the relevant intervals of them have been. For any X 2 (Zps)r and any a 2
f0; : : : ; rg, the vertical bars in plain or dashed lines and the horizontal dotted line
above the a-th position show lower bounds for the p-valuation of the a-th coe¢ cient

of f(X). Thus as a property of D, if a 2 Kl, we have vp(f(X)a) � l as shown by
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� � � � � �- - -� � � - - -� � � - -� �
K0 K1 K2 Ki�1 Ki Ki+1 Ks�2 Ks�1

6

Valuation

0

1

2

...

i� 1

i

i+ 1

...

s� 2

s� 1

Figure C.1: How to calculate the ni�s

the plain line bars. Since the order of f(X) is prescribed to be ps�i, vp(f(X)a) � i

as shown by the dotted line. Finally, we put

j = min(k 2 f0; : : : ; sg; 9l 2 Kk; vp(f(X)l) = i): (C.28)

There exists such a j (j = 2 in the example on the graph) and if a � j � 1,
vp(f(X)a) > i as shown by the dashed line bars. These various lower bounds

partition f0; : : : ; rg into four subintervals corresponding to the four factors in the
above expression of ni. The sum amounts for all the possibilties for j.

For i = 0, we have

n0 = (p
sr0 � p(s�1)r0)ps(r�r0) = psr

�
1� 1

pr0

�
: (C.29)

This quantity, which is a property of M , would increase strictly with r0. Hence r0
does not depend on the choice of b. For i � 1, we suppose that for j � i�1, the rj�s
do not depend on b. Then there exist a nonnegative integer � and a positive integer

� such that

ni = (�p
sri + �(psri � p(s�1)ri))ps(r��i�1�ri) = ps(r��i�1)

�
�+ � � �

pri

�
: (C.30)
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Again, we conclude that ri does not depend on b. The number n0i of vectors of order

ps�i inM , i 2 f0; : : : ; sg, would have been much more obvious a property ofM: But

for i 2 f0; : : : ; s� 1g:

n0i =
iX
j=0

("
j�1Y
k=0

p((s�k�1)�(i�k))rk

#
�
h
p((s�j�1)�(i�j�1))rj � p((s�j�1)�(i�j))rj

i
�

�

24 iY
k=j+1

p((s�k�1)�(i�k�1))rk

359=;�
s�1Y
k=i+1

p((s�k�1)�(�1))rk

=
iX
j=0

8<:
"
j�1Y
k=0

p(s�i�1)rk

#
�
h
p(s�i)rj � p(s�i�1)rj

i
�

24 iY
k=j+1

p(s�i)rk

359=;�
s�1Y
k=i+1

p(s�k)rk ;

(C.31)

with a cumbersome
Ps�1
k=i+1 krk appearing as an exponent in the last factor. Even

if we looked at n0i=n
0
i�1 to handle the induction, that exponent would stay for the

initialisation at i = 0.

Finally, harking back to the case where d is not necessarily a power of a prime,

the number rs = r � (r0 + : : : + rs�1) of diagonal entries of D(b) with p-valuation

vp(d) is a property of M . We sum up our results about simple reduction in the

Theorem 40 For any rank-r submodule M of Znd , there exist a free basis f of Z
n
d

and a minimal basis b of M such that:

1. b is represented by a diagonal n� r matrix B with respect to f ;

2. for all i; j 2 f1; : : : ; rg, i < j, we have biijbjj.

Such a pair of bases (f; b) can be found from any basis b0 ofM by the simple reduction

algorithm D . Moreover, for any pair (f; b) as above, the sequence (d=�(bii))i2f1;:::;rg
of the diagonal entries of B "without unit factors" is the same and therefore is a

property of M . That sequence is called the sequence of the elementary divisors of

M .

The pair (f; b) is not unique and with the notations of the theorem, M is free

i¤ for all i 2 f1; : : : ; rg, bii is a unit in Zd, or in other words i¤ its sequence of
elementary divisors contains only 1�s.

Corollary 41 Let �0 = (b1; : : : ; br) be a free family of Znd . Then r � n and there

exist n � r vectors br+1; : : : ; bn 2 Znd so that � = (b1; : : : ; br; br+1; : : : ; bn) is a free

basis of Znd .

Proof. Indeed, with D the (1; : : : ; r; 1; : : : ; r) submatrix of the r�n diagonal matrix
D(�0), a representative matrix for such a � with respect to the computational basis

is

L(�0)
�1 diag(DR(�0)

�1; In�r): (C.32)



140 APPENDIX C. MATRIX REDUCTION

Corollary 42 For any two submodules M and N of Znd with the same elementary
divisors, which implies that they have the same rank, there exists an automorphism

of Znd that brings M onto N .

Proof. Let (f; b) (resp. (h; c)) be a convenient pair forM (resp. N) as in theorem 40.

Then the automorphism of Znd de�ned by bi 7! ci, i 2 f1; : : : ; ng, brings M onto N .

To close this appendix, we give a simple algorithm G , which is in fact a adaptation

of Gaussian reduction of matrices, in order to �nd the elementary divisors of a given

submodule M together with a diagonalising basis f of Znd .

Algorithm G : Let B be a basis matrix for M . The following steps must be

performed in each Chinese factor separately.

1. Swap two rows on the one hand and two columns of the other hand so that

the new upper-left coe¢ cient has p-valuation vp(B). This consists in a left-

and a right-multiplication by invertible matrices, respectively.

2. Apply the next step of classical Gaussian reduction so as to set to 0 every

other coe¢ cient on the �rst column and on the �srt row. It consists again in

left- and right-multiplication by invertible matrices.

3. Repeat the process with the submatrix obtained by deleting the �rst column

and the �rst row.

Each left-multiplication has to be interpreted as a change of computational basis

so that f can be deduced from the sequence of these multiplications. The right-

mutiplications only stands for a change of basis of M . �



Appendix D

Submodules and wedge product

As we shall see with the lemmas and claim below, the notion of wedge product is

intimately related to that of a submodule and its bases on the one hand, and on the

other hand it can be a tool to show whether a vector is in a given submodule or not.

For that, we shall need the notion of a Zd-algebra.

De�nition 43 A Zd-algebra A is a Zd-module endowed with an extra operation �
such that:

1. � is distributive over addition in A;

2. 8� 2 Zd; 8x; y 2 A; �(x � y) = (�x) � y = x � (�y):

Over a vector space E, a �rst way to de�ne the wedge product is to completely

antisymmetrise tensor products. But that requires to divide by some factorials in

order to warrant associativity for the wedge product. A second way is to de�ne in

a �rst place the exterior algebra
V
E as a quotient of the tensor algebra

N
E by a

well-chosen ideal of it. If e is a basis of E, this ideal is generated by

fei 
 ej + ej 
 ei; ei; ej 2 eg: (D.1)

In the case of the Zd-module Znd , we have to prevent ourselves from refering to any

de�nition involving divisions and thus we retain the second one. So let us build up

the exterior algebra over Znd . But our construction will not use the notion of an ideal
nor of a quotient ring. We opt for an equivalent logical way.

Let F (Znd ) be the free Zd-module a free basis of which consists of all �nite se-
quences with values in Znd , including the empty sequence. This means that F (Z

n
d )

is the set of all formal, �nite linear combinations of those sequences and is by the

same token endowed with a natural structure of Zd-module. Within F (Znd ), for any
k 2 N, we single out the �nitely generated submodule F k(Znd ) which is generated by
the sequences with values in Znd of length k. Thus, the rank of F

k(Znd ) is d
nk and

for instance

F 0(Znd ) ' Zd; F 1(Znd ) ' Znd : (D.2)

141
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We endow F (Znd ) with a strucuture of Zd-algebra. Restricted to sequences, the

extra operation � is just concatenation. It is then extended to F (Znd ) as a whole by
linearity. For instance:

(x1; : : : ; xk) � (�1(y1; : : : ; yl) + �2(z1; : : : ; zm))

= �1(x1; : : : ; xk; y1; : : : ; yl) + �2(x1; : : : ; xk; z1; : : : ; zm): (D.3)

If one prescribes the following scheme of equalities among vectors of F (Znd ) (resp.
F k(Znd )),

8�1; �2 2 Zd; 8x1; x2 2 Znd ; (: : : ; �1x1+�2x2; : : :) = �1(: : : ; x1; : : :)+�2(: : : ; x2; : : :);

(D.4)

one obtains the tensor algebra
N
Znd (resp. the k-th tensor power

Nk Znd ) of Z
n
d . In

the tensor algebra, the operation � is called the tensor product and is noted with the
tensor symbol 
. Any �nite sequence (x1; : : : ; xk) with values in Znd is then denoted

x1 
 � � � 
 xk: (D.5)

The rank of
Nk Znd is n

k and a free basis for it is the set of all

ei1 
 � � � 
 eik ; (D.6)

with e = (e1; : : : ; en) the computational basis of Znd and i any sequence of length k
with values in f1; : : : ; ng. If in addition, one prescribes the following antisymmetry
scheme of equalities,

8x1; x2 2 Znd ; (: : : ; x1; : : : ; x2; : : :) = �(: : : ; x2; : : : ; x1; : : :); (D.7)

then one obtains the exterior algebra
V
Znd (resp. the k-th exterior power

Vk Znd ) of
Znd . In the exterior algebra, the operation � is called the wedge product and is noted
with the wedge symbol ^. Any �nite sequence (x1; : : : ; xk) with values in Znd is then
denoted

x1 ^ : : : ^ xk: (D.8)

The rank of
Vk Znd is �nk�, the number of subsets of cardinality k within a set of n

elements, and a free basis for it whenever 1 � k � n is the set of all

ei1 ^ : : : ^ eik ; (D.9)

with i any strictly increasing sequence of length k with values in f1; : : : ; ng. ThenceV
Znd is �nitely generated with rank

rank
�^

Znd
�
=

1X
k=0

�
n

k

�
= 2n: (D.10)
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Let m be an n � k matrix over Zd, 1 � k � n, and mi that of its square k � k
submatrices with j-th line the (ij)-th line of m. The reader may check that the

component on ei1 ^ : : : ^ eik of the wedge product of the column vectors of m is

det(mi).

Lemma 44 Let x; y 2 Znd with x a free vector. Then

y 2 hxi () x ^ y = 0 (D.11)

Proof. Since x =
Pn
i=1 xiei is free, there exists (k1; : : : ; kn) 2 Znd such that

nX
i=1

kixi = 1: (D.12)

Besides, with y =
Pn
i=1 yiei, we suppose

x ^ y =
X
i<j

(xiyj � xjyi)ei ^ ej = 0 (D.13)

and then

8i; j 2 f1; : : : ; ng; xiyj = xjyi: (D.14)

So

8j 2 f1; : : : ; ng; yj =

 
nX
i=1

kiyi

!
xj : (D.15)

The converse implication is obvious.

Lemma 45 Let x1; x2; y; z 2 Znd so that y is a free vector of hx1; x2i. Then

z 2 hx1; x2i () 9k 2 Zd; y ^ z = kx1 ^ x2: (D.16)

Proof. There exists (k1; k2) 2 Z2d such that y = k1x1 + k2x2. Then, if we suppose

that the right-hand side of the latter equivalence holds,

y ^ (k1z � kx2) = 0 (D.17)

and according to Lemma (44), there exists l1 2 Zd such that k1z = l1y + kx2 =

k1l1x1 + (k2l1 + k)x2 2 hx1; x2i. By the same token, k2z 2 hx1; x2i. Since y is free,
gcd(k1; k2) = 1 and hence z 2 hx1; x2i. The converse is obvious.

Thus, Lemma (44) gives an equation for vectors in a free rank-1 submodule,

whereas Lemma (45) characterises vectors in a rank-2 submodule containing a free

vector.

Claim 46 Let r 2 f1; : : : ; ng and x1; : : : ; xr 2 Znd . Then x = (x1; : : : ; xr) is a free
basis of M = hx1; : : : ; xri i¤ x1 ^ : : : ^ xr is a free vector of

V
Znd .

Proof. Contrary to what happens to the sympletic product, a change of computa-
tional basis never changes the way of computing a wedge product. Hence we choose
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a computational basis f so that the representative matrix of x be upper-triangular.

x is a free basis for M i¤ all the diagonal coe¢ cients of that matrix are invertible.

But this is equivalent to the fact that their product k is invertible. The conclusion

arises from the facts that x1 ^ : : : ^ xr = kf1 ^ : : : ^ fr and that f1 ^ : : : ^ fr is free
according (D.9).

These lemmas and claim are enough to see the importance of the notion of a free

vector in the use of the wedge product, in contrast to the �eld case.



Appendix E

Projective geometry

In this thesis, we make use of the notion of a projective structure over the rings

Zd and Mat(n;Zd). In order to show the di¤erence of projective geometry over a
ring compared with the �eld case, we �rst recall brie�y how a projective geometry

is build over a vector space. By the way, we also recall the notion of anharmonic

ratio (or cross-ratio) in projective geometry over a �eld.

E.1 The �eld case

Let | be a �eld and n 2 N. One de�nes the colinearity relation over |n n f0g by

8x; y 2 |n n f0g; x � y () 9� 2 |�; x = �y: (E.1)

This is an equivalence relation whose classes are the vectorial lines of |n deprived
of 0. They are called the (projective) points of the projective structure P(|n). A
projective point is often identi�ed with any of its representatives

class(x)  ! x = (x0; x1; : : : ; xn�1): (E.2)

For convenience, the coordinates of x are indexed by intergers ranging from 0 to

n� 1. Then the following notations are classical for projective points:

0 = (1; 0; : : : ; 0); (E.3)

1i = (0; : : : ; 0; (xi =) 1; 0; : : : ; 0); i 2 f1; : : : ; n� 1g: (E.4)

Finally, the projective points x of the form

(1; x1; : : : ; xn�1) (E.5)

are in bijective correspondance with the vectors of an (n � 1)-dimensional vector
space over |, namely |n�1, so that they are classically identi�ed with those vectors
and denoted

(x1; : : : ; xn�1): (E.6)

Accordingly, the corresponding subset of P(|n) is identi�ed with |n�1 and its com-
plement P(|n) n |n�1 is called the hyperplane at in�nity in P(|n).
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Whenever n = 2, one calls P(|2) the projective line over |. Let xi = (x0i ; x1i ) 2
|2, i 2 f1; : : : ; 4g, be the representatives of four points on that line and let us denote

!ij =

����� x0i x0j
x1i x1j

����� ; i; j 2 f1; : : : ; 4g: (E.7)

The anharmonic ratio of the xi�s is denoted (x1; x2; x3; x4) and is de�ned to be the

point in P(|2) with representative

( !31!42 ; !32!41 ): (E.8)

With the classical notations �1 for (1;�1) 2 P(|2), one says that the xi�s are
harmonic conjugated if

(x1; x2; x3; x4) = �1: (E.9)

E.2 The ring case

Now let R be a (not necessarily commutative) ring with unity and n 2 N. Let also
e1 be the �rst canonical basis vector of the R-module Rn. A vector x 2 Rn is called
an admissible vector i¤ there exists an invertible n� n matrix M over R such that

x =Me1. In other words, one can �nd n� 1 vectors such that together with x they
form a free basis of Rn. Then a projective point in Rn is any set of the form xR,

with x an admissible vector. In this thesis, we call the set of all projective points

the projective net derived form Rn, which is denoted P(Rn).

A vector x = (x0; x1; : : : ; xn�1) 2 Rn is said unimodular if there exist a0; : : : ; an�1 2
R such that

a0x
0 + � � �+ an�1xn�1 = 1: (E.10)

If R is commutative, then admissibility is equivalent to unimodularity. If R is a local

ring, that is to say unitary and commutative with only one maximal ideal, then the

admissiblity of x is also equivalent to one of the coordinates xi being a unit. Indeed,

the sole maximal ideal of a local ring is the set of the noninvertible elements of that

ring.

One the one hand, Zd, with d = ps a power of a prime, is a local ring. This is the

simplest case one can encounter in projective geometry over a ring. On the other

hand, though Mat(n;Zd) is not even commutative, admissibility is still equivalent
to unimodularity, as we see in Section 5.2. Besides, for k 2 N n f0; 1g, Mat(n;Zd)k

contains admissible vectors no coordinates of which are invertible.

If an arbitrary commutative ring R is given, two admissible vectors (a; b) and

(c; d) in R2 are said to be distant if the matrix 
a c

b d

!
(E.11)

is invertible. In fact, this condition is equivalent to unimodularity of any of the two
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vectors: A vector (a; b) is admissible i¤ there exists another vector (c; d) which is

distant from it; in that case, both (a; b) and (c; d) are admissible. Two vectors that

are not distant are said to be neighbour. In Section 3.2 of the thesis, we take up

these de�nitions of distance and neighbourhood. We generalise and extend them in

a quantitative way with the help of the wedge product.

We close this section by connecting projective geometry over Zd with Theorem 40
on elementary divisors. The following proposition is quite simple, which may explain

that it is not found in literature. As a consequence, we coined the name of a saturated

submodule. This latter notion and also that of an outliner the proposition refers to

are not used elsewhere in the thesis.

Proposition 47 Let M be a Zd-submodule of Zmd . Then M is the join of the pro-

jective points it contains i¤ for any prime factor p of d and any elementary divisor

x of M ,

vp(x) = 0 or vp(d). (E.12)

In that case, we will say that M is saturated. Otherwise, the points that are not

parts of projective points are called the outliners of M .

Proof. Let us assume without loss of generality that d = ps is a power of a prime.

According to Theorem 40, there exists a computational basis f of Zmd such that M
has the following diagonal basis matrix with respect to f :

diag(ps1 ; : : : ; psm); (E.13)

with

s1 � s2 � � � � � sm: (E.14)

If there is an i 2 f1; : : : ;mg such that 0 < si < vp(d), then psifi 2 M but is

colinear to no free vector in M . On the contrary, if Condition (E.12) holds, let x be

a vector of M :

x =
mX
i=1

ptifi with ti � si. (E.15)

If we put

k = max(i; si = 0); (E.16a)

t = min(ti; i 2 f1; : : : ;mg); (E.16b)

then

ex = kX
i=1

pti�tfi (E.17)

is a free vector in M and x = ptex 2 hexi.
The reader with further interest in projective geometry over rings may consult

[70] and also [71,72].
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