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Abstract

This thesis reports on the construction of a new experimental apparatus aiming to
study, at ultracold temperatures, a quantum degenerate gas mixture of two different
atomic species of fermionic nature: 6Li and 40K. A detailed description of the design
and implementation as well as a characterization of the apparatus is presented. We
have realized a very large atom number dual-species magneto-optical trap and a mag-
netic transport of the two species over a large distance. We have used this atomic
mixture to create, for the first time, excited heteronuclear 6Li40K∗ molecules by pho-
toassociation. Despite the small theoretically predicted photoassociation probabilities,
we observed large molecule formation rates of 3.5 × 107s−1. We have recorded and
assigned photoassociation spectra for the most weakly bound states of seven excited
molecular potentials and inferred the shape of the molecular potentials at long range.
Our results pave the way for the production of ultracold bosonic ground-state 6Li40K
molecules which exhibit a large intrinsic permanent electric dipole moment. Finally
we have studied theoretically the motion of quantum particles in rapidly oscillating
potentials and we present and investigate a novel method for their manipulation. This
method consists in inducing an instantaneous change of phase of the driving potential
(a phase hop), which is shown to allow for a controlled manipulation of the particle’s
mean motion. This method has found a first application for Bose-Einstein condensates
trapped in a time-averaged orbiting potential.
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Résumé

Mon projet de thèse a eu pour objectif la construction d’un dispositif expérimental
visant à étudier, à très basse température, un mélange de gaz dégénéré composé de
deux espèces fermioniques: 6Li et 40K. Une description détaillée du montage de sa
mise en place ainsi qu’une caractérisation du dispositif sont présentées. Nous avons
réalisé un piège magnéto-optique à deux espèces avec un très grand nombre d’atomes,
et un transport magnétique sur une grande distance. Les premières expériences avec
le mélange atomique ont permis la première création de molécules hétéronucléaires ex-
citées 6Li40K∗ par photoassociation. En dépit des valeurs théoriques faibles pour les
taux de photoassociation pour ces molécules, nous avons observé des taux de formation
de molécules élevés, allant jusqu’à des valeurs de 3.5×107s−1. Nous avons enregistré et
assigné des spectres de photoassociation pour les états les plus faiblement liés de sept
potentiels moléculaires et nous en avons déduit la forme des potentiels à longues dis-
tances. Nos résultats ouvrent la voie vers la formation de molécules bosoniques 6Li40K
ultra-froides dans leur état fondamental, caractérisé par un grand moment dipolaire
électrique permanent. Sur le plan théorique, nous nous sommes intéressés au mou-
vement de particules quantiques dans un potentiel oscillant rapidement. Nous avons
étudié une nouvelle méthode pour leur manipulation, qui consiste à induire un change-
ment instantané de phase du potentiel (un saut de phase), qui permet de manipuler
le mouvement moyen de la particule de manière contrôlée. La méthode proposée a
trouvé une première application pour les condensats de Bose-Einstein piégés à l’aide
d’un piège magnétique du type “TOP”.
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Chapter 1

Introduction

Since the realization of the first Bose-Einstein condensate in 1995, the study of ul-
tracold dilute quantum gases has evolved into one of the most active research fields
in contemporary physics. The motivation to study these gases is given by their ex-
tremely low temperatures (typically 100 nK), which allow the observation of quantum
mechanical phenomena at low densities, where a remarkable degree of experimental
control exists. Held in free space by electromagnetic forces under ultrahigh vacuum,
the gases can be studied in an extremely clean environment. It is possible to prepare
and analyze them in specific potentials and atomic states and to control the interatomic
interactions. Dilute quantum gases therefore represent ideal model systems with which
quantum phenomena and many-body problems can be studied.

All particles can be divided into two distinct categories depending on their intrinsic
angular momentum, the spin. If the spin is an integer multiple of h/2π a particle
is called a boson, if it is a half-integer multiple it is called a fermion. The resulting
distinct properties become manifest when identical particles get so close to each other
that they can no longer be distinguished because their wave packets overlap. Fermions
then obey Fermi-Dirac statistics and underlie Pauli’s exclusion principle, which forbids
two or more of them to occupy the same quantum state of the confining potential.
In contrary, bosons obey Bose-Einstein statistics at ultralow temperatures and tend
to occupy the quantum state with the lowest energy and to form a Bose-Einstein
condensate (BEC), in which all atoms can be described by a single macroscopic wave
function. The coherence of the atoms in this state leads to the frictionless motion of
the atoms called superfluidity.

The phenomenon of Bose-Einstein condensation has been predicted to occur in an
ideal gas in 1925 by Einstein [1] based on preceding work of Bose [2]. The condensation
is a phase transition which is a purely statistical phenomenon and does not require any
interactions. Bose-Einstein condensation was first discovered in the form of superfluid
liquid 4He in 1938 [3, 4, 5]. BEC in a dilute gas has been realized for the first time
in 1995 with weakly-interacting neutral bosonic alkali atoms [6, 7, 8]. The princi-
pal difficulty of achieving BEC in a gas was the realization of the required ultralow
temperatures. These are associated with the low density, which is a prerequisite for
avoiding cluster formation or solidification before BEC can occur. A comprehensive
introduction to BEC and a review of the exciting experiments which have been carried
out with them can be found in Refs. [9, 10, 11, 12]. The most spectacular results
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8 Chapter 1. Introduction

comprise the observation of macroscopic matter wave interference [13], the creation
of vortices [14, 15], which unambiguously proofs the superfluid character of BECs,
dark [16, 17] and bright solitons [18, 19] and the observation of the superfluid to Mott
insulator transition [20].

Fermions behave fundamentally different from bosons at ultralow temperatures.
Since they cannot occupy the same quantum state, non-interacting fermions at absolute
zero simply fill up the lowest quantum states of the confining potential one by one up to
the so-called Fermi energy—forming the so-called Fermi sea. The transition from the
classical to the quantum degenerate Fermi gas is not accompanied by a phase transition
but occurs gradually. In the presence of attractive interactions, however, fermions can
undergo a phase transition to a superfluid state. For this to happen, the fermions need
to form pairs which then behave like bosons. Fermionic superfluidity occurs in metals
at ultralow temperatures which become superconducting, where the electrons, which
are fermions, form a superfluid.

In the following we give a short review of the research which has been conducted in
the past years with ultracold fermions. Then we present the scientific long-term goals
of our experiment and their motivations. Finally we give an overview of the content of
this thesis.

1.1 Quantum degenerate Fermi gases

A gas of fermions is called quantum degenerate when its temperature is much smaller
than the so-called Fermi temperature TF = EF/kB, where EF is the Fermi energy and
kB the Boltzmann constant. The first degenerate Fermi gas has been realized in 1999
with 40K at JILA [21]. Since then, degenerate Fermi gases have been created also for
6Li [22, 23], metastable 3He* [24], the rare earth element 173Yb [25] and the alkaline
earth element 87Sr [26, 27]. In early experiments the atoms could be cooled to about
one quarter of the Fermi temperature. To date cooling to well below one tenth of TF

has been achieved [28, 29].
Cooling of Fermi gases is more difficult than for Bose gases. In order to achieve

cooling of a gas to the lowest temperatures, a cooling technique called “evaporative
cooling” needs to be applied. This method relies on rethermalization by elastic colli-
sions. Typically atoms in an ultracold gas only collide via s-wave collisions, for which
the colliding partners have no relative angular momentum. Due to Pauli’s exclusion
principle, these collisions are, however, forbidden for indistinguishable Fermi atoms.
In order to make evaporative cooling work for fermions, the gas thus has to be either
prepared in two different internal states, such that collisions between atoms in different
states can take place, or it has to be brought in contact with an actively cooled gas,
typically a Bose gas which is evaporatively cooled. In either case the experimental
cooling procedure is more complicated than for bosons. Another reason why fermions
are more difficult to cool is that the collision rate decreases when they become degener-
ate. This is because scattering into a low-lying momentum state requires this state to
be empty, which becomes less and less probable with decreasing temperature [21, 30].
Furthermore particle losses due to inelastic collisions, which generally limit the evapo-
rative cooling process, are more detrimental for degenerate Fermi gases, since they can
create hole excitations deep in the Fermi sea [31, 32].
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The first realization of a degenerate Fermi gas in 1999 [21] was achieved by evapora-
tively cooling a gas of magnetically trapped 40K atoms in two different internal states.
This single-species evaporative cooling method has also been applied to 6Li [33, 34]
and 173Yb [25], for which the laser-cooled cloud was loaded into an optical trap in
which the mixture of the lowest hyperfine states was prepared. Sympathetic cool-
ing of fermions with bosons has been demonstrated for the following atomic combi-
nations: 6Li-7Li [23, 22], 6Li-23Na [28], 6Li-87Rb [35], 40K-87Rb [36, 37, 38, 39, 40],
3He*-4He* [24], 6Li-40K-87Rb [41] and 6Li-40K-41K [42]. For the Fermi-Fermi mixture
6Li-40K a combination of both cooling methods has been demonstrated. The Innsbruck
group [43] evaporatively cools 6Li in an optical trap in two spin states, sympathetically
cooling 40K along. The Amsterdam group [44] evaporatively cools 40K in a magnetic
trap in two spin states, sympathetically cooling 6Li along.

Early experiments on degenerate Fermi gases concentrated on the study of one-
component systems, which are non-interacting and thus represent realizations of nearly
ideal Fermi gases. Thermodynamic properties of these gases were studied. Their devia-
tions from a classical gas, i.e. Pauli blocking of collisions at ultralow temperatures and
the existence of the Fermi pressure were investigated [21, 45, 22]. Then, interest grew
in studying Fermi gases with interactions. Since most of the properties of real-life ma-
terials are determined by the behavior of interacting electrons, which are fermions, such
systems provide a strong connection between ultracold quantum gases and condensed-
matter systems. An interacting Fermi gas needs to be composed of two components.
At ultralow temperatures interactions can be characterized by the s-wave scattering
length a, which is related to the s-wave collision cross-section via σ = 4πa2. It was
recognized that a type of scattering resonance, known as a Feshbach resonance [46, 47],
could be exploited to change a and thus the strength of the interatomic interactions.
Feshbach resonances occur if two colliding atoms couple resonantly to a bound molec-
ular state. The scattering length can be tuned since the relative energy of the colliding
atoms and of the bound state can be changed by applying, e.g., a magnetic field [48].
This technique was first established in 1998 [49] for bosons and it opened the door for
the study of strongly interacting gases.

The first step of the study of interacting Fermi gases was thus the search and
characterization of Feshbach resonances. Several of such resonances were found in
6Li [50, 51, 52] and 40K [53, 54, 55] which allowed the creation of strongly interacting
Fermi gases. These findings provided the necessary tools to study the pairing which
can lead to superfluidity in degenerate interacting Fermi gases.

The formation of pairs can happen in two different ways, depending on the inter-
action. When the interaction is strongly attractive, the fermions can form diatomic
molecules, in which case they are tightly bound in position space. This superfluid state
is referred to as the superfluid BEC. When the interaction is weakly attractive they
can form so-called Cooper pairs [56]. In contrast to the diatomic molecules, Cooper
pairs are very weakly bound, spread over a large volume and are defined via the strong
correlations between the two components in momentum space. The binding to Cooper
pairs is the type of binding which is observed in superconducting materials, where
the electrons form such pairs to allow for frictionless charge flow, as explained by the
Bardeen-Cooper-Schrieffer theory [57]. This superfluid state is referred to as the BCS
superfluid.
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After Feshbach resonances in fermionic gases had been investigated, they were
exploited to create weakly bound molecules [58], which subsequently were shown to
exhibit exceptionally large lifetimes in the vicinity of a Feshbach resonance even for
large interactions [59, 34, 60, 61]. This is in contrast to bosonic systems, where large
three-body losses occur for strong interactions. The long lifetime of the associated
weakly bound molecules was shown to result from the Pauli exclusion principle, which
prohibits three or more fermions to come sufficiently close to each other to induce vibra-
tional relaxation in the molecule [62]. It allowed the realization of a BEC superfluid in
2003 [63, 64, 34] and subsequently also the realization of a BCS-type superfluid [65, 66].
The stability of strongly interacting fermion pairs then made the study of the crossover
between both superfluid states possible [67, 68]. It was found that the crossover con-
nects the two superfluid states smoothly across the strongly interacting regime.

The superfluid character of a fermionic condensate was unambiguously identified
for the first time by the creation of vortices [69]. More recent experiments with
strongly interacting ultracold Fermi gases comprise the study of fermionic mixtures
with population imbalance and the observation of a phase separation between the
paired and unpaired fermions [70, 71], the measurement of the speed of sound in a
Fermi gas [72], the measurement of critical velocities [73], the realization of a Mott
insulator of fermions [74, 75] and the direct measurement of the equation of state of a
strongly interacting Fermi gas [29, 76, 77].

1.2 Mixtures of Fermi gases

In the field of ultracold Fermi gases the study of mixtures of two different fermionic
species with different mass is gaining interest. Both theoretical and experimental as-
pects motivate this study. Such mixtures allow the study of fermionic pairing in the
case of unmatched Fermi surfaces, which are due to the mass imbalance of the two
species. Symmetric BCS pairing cannot occur and new quantum phases with differ-
ent pairing mechanisms are predicted, such as the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [78, 79] or the breached pair state [80, 81]. Other phenomena such as
a crystalline phase transition [82] and the formation of long-lived trimers [83] are pre-
dicted. Mixtures of two different fermionic species further allow the creation of polar
molecules, which have a long-range dipole-dipole interaction [84, 85]. Two different
atomic species yield additional tunable parameters, such as the mass imbalance and
species-specific potentials. The mass-imbalance can be varied in an optical lattice,
where the effective mass of each species depends on the optical lattice parameters.
Species-specific potentials allow a more convenient way to study impurity physics such
as Anderson localization [86] and the study of systems with mixed dimensions [87].

The mixture 6Li-40K is a prime candidate for these studies. 6Li and 40K are the only
stable fermionic alkali isotopes and thus belong to the experimentally best-mastered
class of atoms. Moreover, both species have bosonic isotopes which can also be used
to create boson-fermion gases. Furthermore, the difference in the electronic structure
of the two species is large leading to a large electric dipole moment for heteronuclear
diatomic 6Li40K molecules (3.6 D) [88].

So far, all research groups working with mixtures of different fermionic species have
chosen the mixture 6Li-40K [89, 43, 44, 42], sometimes with an additional third bosonic
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component. Quantum degeneracy in the mixture has been reported by three groups [41,
43, 42]. Interspecies Feshbach resonances have been observed and characterized [90,
91, 92] and weakly bound molecules have been created by a magnetic field sweep across
a Feshbach resonance [93].

In order to use a Fermi gas to model other physical systems, universal behavior is
required, i.e., a regime in which the behavior of the system is entirely determined by
the fermionic nature of the particles and the scattering length, and does not depend
on the details of the scattering potential. Universal behavior for atoms can typically
only be achieved when the system exhibits strong Feshbach resonances (i.e., resonances
which have a large width). It has so far only been achieved in the single species ensem-
bles 6Li [94] and 40K. It was recently reported [92] that it may be possible to reach the
universal regime for the 6Li-40K-mixture due to the existence of a 1.5 Gauss-wide Fes-
hbach resonance. Recent experiments have already demonstrated strong interactions
between 6Li-40K [95].

1.3 Heteronuclear Fermi-Fermi molecules

One major motivation for studying the mixture 6Li-40K is the formation of ultracold po-
lar molecules. Polar molecules have a long-range, anisotropic dipole-dipole interaction
and thus may provide access to qualitatively new quantum regimes which are inaccessi-
ble for neutral atoms [96, 97, 98]. They have been proposed to be used for the study of
ultracold chemistry [99]. Furthermore, they are considered as excellent candidates for
the realization of qubits for quantum computation [100, 101] or for fundamental tests
like the measurement of the electron dipole moment [102, 103], the proton-to-electron
mass ratio [104, 105] or the fine structure constant [106]. The values of these constants
may drift monotonically over time, or vary periodically with the sun-earth distance in
case of the existence of gravitational coupling [98]. In particular, polar molecules can
be efficiently trapped and their interactions can be controlled by AC and DC electric
fields. The alkali dimer LiK with its large dipole moment is a good candidate for these
studies. The isotopomer 6Li-40K, being composed of two fermions, forms a boson.
Thus, evaporative cooling might be applicable to achieve Bose-Einstein condensation
of polar molecules. Such a BEC would represent a quantum fluid of strongly and
anisotropically interacting particles and thereby greatly enhance the scope for study
and applications of collective quantum phenomena [107, 98].

While atoms are routinely laser cooled to ultracold temperatures, the complex
internal structure of molecules makes this direct method difficult [108, 109]. The only
molecule for which laser cooling could lead to microKelvin temperatures is SrF [110].
The methods which are used today in order to produce ultracold molecules can be
divided in direct and indirect methods. In direct methods preexisting (typically hot)
molecules are actively cooled, e.g., by buffer gas cooling [111], Stark-slowing [112] or
beam skimming with a guide [113]. These techniques currently allow reaching minimum
temperatures of ∼ 1 mK, far too high to achieve molecular quantum degeneracy.

Indirect techniques yield access to much lower temperatures. They are based on
the association of precooled atoms resulting in molecules which are translationally cold
as well. The association can be either done using Feshbach resonances (magnetoasso-
ciation) or photoassociation techniques [114]. However, both methods typically create
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vibrationally excited molecules, which are unstable to collisions or do not have a signifi-
cant dipole moment. In order to prepare deeply bound ground-state molecules, optical
multi-color transfer schemes need to be employed. The transfer scheme with which
the highest efficiencies could be obtained so far is the stimulated Raman adiabatic
passage (STIRAP), based on a pair of continuous wave lasers (for an introduction
see Ref. [115]). It was first introduced in the context of molecular spectroscopy in
1988 [116, 117] and applied to transfer magnetoassociated weakly bound molecules to
very deeply bound molecules in the case of homonuclear Cs2 [118] and even to the
rovibrational ground state in the case of homonuclear Rb2 [119] and heteronuclear
RbK [85]. The transfer efficiencies in these experiments exceeded 80%. It is desirable
to develop similar transfer schemes for 6Li-40K. Those require the precise knowledge of
excited molecular potentials. One of the scientific contributions of this thesis is a study
of the excited molecular potentials of 6Li-40K via photoassociation spectroscopy, which
will allow us to find pathways for the efficient optical transfer of atoms to ground-state
molecules. The fermionic nature of both constituents of the molecule 6Li-40K would be
advantageous for the conversion process, since it leads to small losses in the association
stage of the transfer scheme, which can be either done magnetically by Feshbach reso-
nances [93] or optically by photoassociation, which, for molecules composed of bosons,
typically induces significant loss.

Molecules in their absolute (rovibrational and spin) ground state are stable against
inelastic collisions. However, reactive collisions can still occur. Such collisions have
been studied recently for all pairs of alkali-metal dimers [120]. It has been shown
that the molecule LiK is unstable against the exothermic atom exchange reaction
LiK+LiK→Li2+K2, which holds for any pair of dimers containing a Li atom. Re-
active collisions of this kind have been observed also for the dimer RbK [85]. However,
it has been shown to be possible to reduce these collisions by confining the molecules
in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the
tight confinement direction [121]. Two dimers can then approach each other only in
a “side-by-side” collision, where the chemical reaction rate is reduced by the repulsive
dipole-dipole interaction. Such trap geometries might thus also be required for the
dimer 6Li-40K when the study of dipolar gases is aimed for. On the other hand, the
existence of reactive collisions allows the study of ultracold chemistry [99].

1.4 Outline of this thesis

The most time-consuming part of my thesis work consisted of the construction of a
new experimental apparatus which prepares the mixture 6Li-40K for studies with the
above-mentioned goals. When designing the apparatus special attention was paid to
the creation of large atom numbers. The preparation of atomic clouds at ultracold
temperatures typically requires several steps. First, the atoms have to be prepared
in gaseous form inside an ultra-high vacuum environment. Then the atoms of the
gas need to be captured, trapped and cooled. In our setup this step is efficiently
realized by a magneto-optical trap (MOT), which is a dissipative trap employing an
interplay between magnetic field and light forces. Since the capacity of cooling in this
trap is limited, a conservative trap needs to be employed in which further cooling by
evaporation can be performed. In our setup we transfer the atoms into a magnetic
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trap for this purpose. Since inelastic collisions with the background atoms limit the
efficiency of the evaporative cooling procedure, the atom cloud is additionally transfered
to another part of the vacuum chamber with lower pressure. In our experiment, this
transfer is realized using magnetic forces.

One of the achievements of my thesis work is the creation of a dual-species magneto-
optical trap with large atom numbers as well as a magnetic transport of the cold atoms
over a large distance. The large number of atoms at these stages of the gas preparation
procedure is of interest not only because it allows the anticipation of the losses induced
by the subsequent evaporative cooling procedure, but also because it allows making
the evaporation procedure more efficient. Besides, the Fermi temperatures of the gas
are larger for larger atom numbers and thus quantum phenomena can be observed at
higher temperatures. Finally, a large atom number leads to better signal-to-noise ratios
and a greater robustness in day-to-day operation.

In a dual-species MOT, the atom number is in general reduced compared to single-
species MOTs due to additional interspecies collisions and to experimental constraints,
such as the imperative to use the same magnetic field for both species or common optics.
In other groups working with the 6Li-40K mixture the following system performances
have been achieved: in the Munich group [89] the dual-species MOT is loaded from a
Zeeman slower for 6Li and a vapor for 40K, resulting in ∼ 4 × 107 (6Li) and ∼ 2 × 107

(40K) trapped atoms. In the Innsbruck group [43] the dual-species MOT is loaded
from a multi-species Zeeman slower and atom numbers of ∼ 109 (6Li) and ∼ 107 (40K)
are achieved. In the Amsterdam group [44] two separate two-dimensional (2D) MOTs
allow loading ∼ 3×109 (6Li) and ∼ 2×109 (40K). In the MIT group [42] the dual-species
MOT is loaded from two separate Zeeman slowers and atom numbers of ∼ 109 (6Li)
and ∼ 5 × 107 (40K) are achieved. In our setup, the dual-species MOT is loaded from
a Zeeman slower for 6Li and a 2D-MOT for 40K. It simultaneously contains 5.2 × 109

6Li atoms and 8.0× 109 40K atoms, which represents a substantial improvement in the
performance.

For our application in particular a large atom number in the 40K-MOT is of interest,
since we intend to sympathetically cool 6Li with 40K, where 40K will be prepared
and cooled in two different spin states in a magnetic trap. This approach has been
implemented by Tiecke and coworkers [92] and proved to be an efficient cooling method,
as it can be realized in a magnetic trap, which provides a large trapping volume and
steep confinement. In this cooling process mostly 40K atoms will be lost.

The constructed experimental apparatus is described in chapter 2. We in par-
ticular detail the description of the implemented atom sources (the Zeeman-slower for
6Li and the two-dimensional magneto-optical trap for 40K), as they yield high fluxes
of cold atoms. Furthermore we present the details on the optimum operation of the
dual-species MOT. Besides, we present the implementation of the magnetic transport
system, with which the atom clouds are transferred to an ultra-high vacuum environ-
ment for evaporative cooling to quantum degeneracy. The evaporative cooling will be
performed in an optically plugged magnetic trap whose implementation is in progress.

The characterization of the constructed apparatus is presented in chapter 3. The
performances of the atomic beam sources, the magneto-optical trap and the magnetic
transport are determined and their dependence on a series of parameters are presented.
Furthermore, we present a study of light-induced interspecies collisions in the dual-
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species MOT and describe the applied strategy to minimize these collisions. Parts
of the work presented in chapters 2 and 3 have been published in Ref. [122] (see
Appendix D).

The central scientific result of my thesis is the first creation of excited heteronuclear
6Li40K∗ molecules by single-photon photoassociation. The experiment is presented in
chapter 4. The photoassociative creation of 6Li-40K∗ molecules has been considered
difficult due to the light (reduced) mass of the molecule and its small Franck-Condon
factors. We observed large molecule formation rates of more than 3.5 × 107s−1, which
are shown to be comparable to those for homonuclear 40K∗

2 molecule formation. We
performed photoassociation trap loss spectroscopy of the most weakly bound rovibra-
tional states and identified the observed resonances. The long-range dispersion coef-
ficients of the different excited molecular potentials and the rotational constants are
derived from the spectra. The combination of our spectroscopic results for the weakly
bound molecules with the complementary results from conventional molecular spec-
troscopy for the deeply bound molecules will allow the determination of very precise
overall molecular potential curves and give information about the efficient production
of ground-state molecules. Parts of the work presented in chapter 4 are currently being
prepared for a publication in Eur. Phys. Lett. (see Appendix D).

Another scientific result of my thesis work is the theoretical study of the motion of
quantum particles inside rapidly oscillating potentials, which is described in chapter
5. We present and investigate a novel method to manipulate the mean motion of
quantum particles in such potentials, which consists in instantaneously changing the
potential’s phase. Analytical calculations show that this method allows for a significant
manipulation of the particle’s mean motion in a controlled way. The work presented
in this chapter has been published in Refs. [123, 124] (see Appendix D). The described
method has already been implemented experimentally by another research group using
a Bose-Einstein condensate trapped in a time-averaged orbiting potential [125].



Chapter 2

Construction of the experimental
apparatus

The objective of the current chapter is to give a basic description of the Fermix machine,
whose design and construction represented the most time-consuming part of my thesis
work. When starting my thesis, the Fermix laboratory was completely empty and it
took three and a half years to build up the machine from scratch.

When developing a new machine for ultracold atom experiments a careful analysis
of the possible experimental strategies is very important and decisive for its future
performance. Many techniques to produce ultracold atoms have been developed over
the past years, mostly for single species. For a machine that is designated to produce
mixtures of two different species, combining certain techniques for the two different
species can lead to a significant simplification of the system. However, simplifications
very often have to be paid with a reduction of the achievable atom number. The main
goal of our Fermix machine is to produce degenerate mixtures of ultracold fermions with
large atom numbers and with a reasonable repetition rate. We therefore implemented
for each atomic species the technique which yields the largest amount of atoms and
only then combined certain techniques for simplification if those do not significantly
restrict the atom numbers.

2.1 Design considerations

In order to create a quantum degenerate ultracold gas, the atoms must be cooled and
compressed in a trap until the deBroglie wavelength is of the order of the spacing
between atoms. In order to achieve this the atoms are typically precooled by laser
cooling and the final cooling is realized by forced evaporative cooling. Most of today’s
ultracold atom experiments employ a magneto-optical trap (MOT) as a precooling
stage. We intended to do so as well and the first decision we had to make was how to
load the MOT. In general, a MOT can be either loaded from a beam (continuous or
pulsed) of slow atoms, or from a background vapor. The loading from a background
vapor is very convenient, however, it is typically accompanied by short trap lifetimes,
since the vapor pressure needs to be high in order to obtain sufficient loading rates.
One approach to overcome this limitation is pulsed loading using an alkali getter dis-
penser [126] or ultraviolet light induced absorption [127, 128]. However, the typical

15
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obtainable lifetimes and loading rates can still not compete with those which can be
achieved using a beam of slow atoms. In this scheme the MOT can be loaded in an
ultra-high vacuum environment and large beam fluxes can be obtained. Therefore we
decided to implement this MOT loading scheme. We decided further to implement
a separate source for each species. We implemented a Zeeman slower for 6Li and a
2D-MOT for 40K.

The repetition rates of the experiment and the trap lifetimes can be further in-
creased by transporting the cloud into another chamber with even lower pressure. Since
the experimental procedure is continued in another chamber, the MOT can already be
reloaded before the previous procedure is over. The transport of a cold atomic cloud
can be done either using optical dipole forces [129] or magnetic forces [130]. The trap-
ping potentials induced by optical forces have small volumes compared to the magnetic
case. For an efficient optical transport the atom cloud would therefore first need to be
significantly compressed by an evaporative precooling stage prior to the transport. Due
to the restricted vacuum quality in the chamber of the MOT this leads to significant
atom loss. A transport of the atoms based on magnetic forces makes it possible to
nearly immediately move the atoms into the better vacuum environment of the final
cell, allowing one to perform the time-consuming evaporative cooling procedure there.
Based on these considerations we decided to implement a magnetic transport. Further
we decided to perform the evaporative cooling procedure in an optically plugged mag-
netic quadrupole trap, since that allows for an efficient cooling procedure due to the
large trapping volume and the steep confinement of the trap. Furthermore, the trap
gives a large optical access to the atoms in the final cell.

Currently, four more groups are working with the fermionic mixture 6Li-40K. The
Munich group [89] (now Singapore) has a triple-species machine producing a mixture
of 6Li, 40K and 87Rb. The multi-species MOT is loaded from a Zeeman slower for
6Li and a vapor for 40K and 87Rb. The mixture is transported magnetically to a
UHV chamber and the cloud is transferred into an Ioffe-Pritchard trap, in which it
is evaporatively cooled to quantum degeneracy. The cooling is based on sympathetic
cooling of the species 6Li and 40K with the evaporatively cooled species 87Rb. The
Innsbruck group [43] loads the 6Li-40K dual-species MOT from a multi-species Zeeman
slower, which also allows adding a third fermionic species, 87Sr, to the system. The 6Li-
40K cloud is directly transferred into an optical dipole trap and evaporatively cooled
in the MOT chamber to quantum degeneracy. The cooling is realized by evaporatively
cooling 6Li in two different spin states and sympathetically cooling 40K along. The
group in Amsterdam [44] loads the 6Li-40K dual-species MOT from two separate 2D-
MOTs. The cloud is transferred into an optically plugged magnetic quadrupole trap,
in which it is evaporatively cooled inside the MOT chamber. The cooling is realized by
evaporatively cooling 40K in three different spin states and sympathetically cooling 6Li
along. It is then transferred into an optical dipole trap and transported into a UHV
environment by an optical transport. The group at MIT [42] has a two-species-two-
isotope machine producing a mixture of 6Li, 40K and 41K. The dual-species MOT is
loaded from two independent Zeeman slowers. It is transferred into an optically plugged
magnetic quadrupole trap, where it is evaporatively cooled to quantum degeneracy
inside the MOT chamber (whose vacuum quality is enhanced by a coating with a
thermally activated Titanium-Zirconium-Vanadium alloy which acts as an efficient non-
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evaporable getter). The cooling is based on sympathetic cooling of the 6Li and 40K
with the evaporatively cooled 41K.

2.2 Vacuum manifold

2.2.1 Setup

A three-dimensional view of our vacuum system is shown in Fig. 2.1. It consists of

40K 2D!MOT
6Li Zeeman 

slowerslower

Dual species MOT

S i M tiScience

cell

Magnetic 

transport 50 cm

Figure 2.1: Schematics of the vacuum assembly. The dual-species MOT is loaded from
a 2D-MOT for 40K and a Zeeman slower for 6Li. A magnetic transport allows the
transfer of the cloud to a UHV science cell with large optical access.

two atom trap chambers and three flux regions. The first chamber is a central octag-
onal chamber where the 6Li-40K dual-species MOT is prepared. The second chamber
is a glass science cell, in which we will evaporatively cool the mixture to quantum
degeneracy.

The three flux regions are all connected to the octagonal chamber and are divided
in two parts. First, the atom sources, namely a 2D-MOT for 40K and a Zeeman slower
for 6Li. Second, a magnetic transport connecting the octagonal chamber to the final
science cell. This magnetic transport consists of a spatially fixed assembly of magnetic
coils which creates a moving trapping potential of constant shape by applying time-
varying currents [130].

The octagonal chamber can be isolated from the source regions and the science cell
by all-metal ultra-high vacuum (UHV) valves, which allow for separate baking and
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trouble-shooting. The 2D-MOT and the Zeeman slower region are pumped by one and
three 20 l/s ion pumps, respectively. The octagonal chamber is pumped by a 40 l/s
ion pump and the science chamber by a 40 l/s ion pump and an occasionally launched
titanium sublimation pump. Differential pumping tubes connect the source regions to
the octagonal chamber in order to create a high vacuum environment in the octagonal
cell. In a similar way, the science chamber is connected to the octagonal chamber via
a combination of standard CF16- and homemade vacuum tubes of 1 cm diameter to
further increase the vacuum quality. These tubes were designed to allow most of the
magnetically transported atoms to pass through and to limit the conductance enough
to have an adequate pressure in the science cell.

The science cell was designed by our group and manufactured by Hellma GmbH
(for engineering drawings see Appendix C.1). A photograph of the cell is shown in
Fig. 2.2. It is made out of Vycor, a synthetic fused silicon dioxide. Its glass-to-metal
junction, which allows the attachment of the glass cell to the rest of the vacuum
chamber, is non-magnetic. The walls of the glass cell have a uniform thickness of
4 mm with a manufacturing precision of ±0.01 mm. The inner cell dimensions are
23 mm×23 mm×10 mm. According to the manufacturer’s specifications, at a pressure
difference of ∼ 1 bar the larger surfaced cell walls deform by ∼ 770 nm toward the
inside and the smaller surfaced walls by ∼ 170 nm toward the outside of the cell (this
information will be important for the implementation of a high-resolution imaging
system). The small size of the cell provides large mechanical and optical access. It
permits to place magnetic coils at a close distance from the atoms, with which a
steep magnetic confinement can be achieved, desirable for efficient evaporative cooling.
Furthermore, it permits the installation of an objective with a large numerical aperture
for high-resolution imaging.

3 cm

Figure 2.2: Photograph of the ulra-high vacuum science cell in which the ultracold
atomic mixture is prepared and investigated. It has to be designed to have a small size
in order to provide large mechanical and optical access.
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2.2.2 Assembly, pump down and bake out

Obtaining UHV pressures requires a careful assembly of the vacuum components, and
a baking of the chamber at high temperatures under vacuum. We describe in the
following the crucial steps of the assembly and the subsequent baking process. Prior
to assembly it has to be made sure that all vacuum components are clean. Dirty
components are cleaned in an ultrasonic cleaner. During the assembly powder-free
latex gloves are worn and changed frequently to avoid contamination. The system is
mounted loosely to the optical table to avoid stress on the system’s gaskets during
assembly and the subsequent baking. A turbo molecular pump and a residual gas
analyzer (RGA) are connected to the system for the pumping procedure. When the
system is sealed the turbo molecular pump is run for ∼ 2 hours. If the residual gas
pressure, which is in general determined by the partial pressure of hydrogen, falls below
∼ 5 × 10−7 mbar, it can be concluded that the system has no major leaks. Otherwise
a leak test with helium needs to be performed to find the leak and close it. Then the
baking procedure begins.

First, the glass cells are wrapped with clean fiberglass cloth for protection. Next,
thermocouples are placed on the vacuum system at critical places such as cells, valves,
glass-to-metal seals and pumps in order to control their temperature during the bake
out. Then the system (including the ion pumps with the magnets in place) is wrapped
with several resistive heater tapes, which are powered by variable AC transformers
(Variacs). In addition the system is wrapped loosely with many layers of aluminum
foil in order to obtain a homogeneous temperature around the chamber. The system is
then slowly brought up to the final temperature over at least 12 hours with a maximum
temperature change of 1◦C/min. We heated our system to temperatures between
220 − 250◦C. The ion pumps are off during the warm up to minimize their pollution.
It has to be made sure that temperature gradients, which apply stress to the system,
are kept low across the glass cells, glass windows and glass-to-metal junctions, which
are the most fragile components. Throughout the warming up process, thermocouple
readings and Variac settings are recorded for surveillance and to facilitate future bakes.

Once the system is at the desired temperature, it is baked with just the turbo pump
for 2 days. At this point also the titanium sublimation pump is run several times to
degas the filaments. Our titanium sublimation pump has three filaments to which a
maximum current of 50 A can be applied. They are each subsequently run 2 times for
one minute at 30 A, once for one minute at 40 A and once for two minutes at 40 A and
finally once for 2 h at 30 A. After each titanium sublimation shot the pressure increased
to ∼ 10−4 mbar, which required to wait for the pressure to fall again before launching
the next shot. Then the titanium sublimation pump is kept off, the ion pumps are
turned on and the system is pumped like this for several more days. We start to
cool the system down only when the hydrogen pressure falls below ∼ 10−7 mbar. The
partial pressures of the other gases (H2O, N2, O2, CO2, etc.) are typically two orders
of magnitude less (∼ 10−9 mbar). The system is cooled down slowly over ∼ 8 h to
avoid excessive temperature gradients. After the bakeout the pressure in our system,
as indicated by the RGA, was of the order of 1 × 10−10 mbar. The ion pump currents
can usually be used to determine the pressure. For the low final pressure, however, this
does not work, since each ion pump controller has an (unknown) offset, which slightly
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changes over time. At room temperature the turbo pump and the RGA are valved off
and shut down, which improves the ultimate pressure and minimizes vibrations. The
final pressure in the different parts of the system is most precisely measured in terms
of the inverse lifetime of trapped atoms.

2.3 Laser systems

Our experimental apparatus requires separate laser systems and optics for the two
different atomic transition wavelengths 671 nm (Li) and 767 nm (K). The laser systems
provide several beams with different frequencies and intensities for slowing, trapping
and probing each atomic species. A sketch of the energy levels of the atomic species
and the frequencies of interest are shown in Fig. 2.3. The laser systems of the two
atomic species are set up on separate optical tables and the generated laser beams are
transferred to the main experimental table using optical fibers.
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Figure 2.3: Level diagrams for the 6Li and 40K D2-lines with their respective hyperfine
structures, showing the frequencies required for the dual-species MOT operation. The
diode lasers are locked to the indicated saturated absorption crossover signals 2S1/2(F =
1/2, F =3/2) → 2P3/2 of 6Li and 4S1/2(F =1, F =2) → 4P3/2 of 39K.

2.3.1 Optics

A simplified scheme of the laser systems is shown in Fig. 2.4. Each one consists of a sin-
gle low output-power frequency-stabilized “master” diode laser (DL) and three tapered
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amplifiers (TAs) used for light amplification. Due to the small hyperfine splittings of
both 6Li and 40K, the required frequencies of the various laser beams are conveniently
shifted and independently controlled by acousto-optical modulators (AOMs).
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Figure 2.4: Laser systems for 6Li and 40K. The frequencies and amplitudes of the
various beams are controlled by AOMs in single pass (sp) or double pass (dp) con-
figuration. The EOMs are used to phase modulate a part of the beam for the diode
laser’s frequency stabilization. Single mode polarization maintaining fibers (FI) are
used for beam shaping and spatial filtering. The indicated AOM frequencies allow the
generation of the beam frequencies required for the dual-species MOT (see Fig. 2.3).

In both laser systems the frequency stabilized master laser beam is immediately am-
plified by a first TA and subsequently injected into a single-mode polarization main-
taining optical fiber (FI) for beam shaping and spatial filtering (see Fig. 2.4). The
output beam of the optical fiber is split by a series of polarizing beam splitters into
several beams whose frequencies and intensities are independently shifted and con-
trolled with AOMs in single or double pass configuration. The various beams are then
recombined with a pair of polarizing beam splitters to linearly polarized bichromatic
beams consisting of one cooling and one repumping frequency. Those are then either
directly injected into a fiber or into another TA for further amplification. The fibers
finally transfer the beams to the main experimental table. A photograph of the optical
table for lithium is shown in Fig. 2.5.
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Figure 2.5: Photograph of the optical table for lithium, showing the optical components
required to implement the scheme of Fig. 2.4. In the photograph the laser beams have
been made visible by cigarette smoke.

The injection of a bichromatic beam into a TA, whose gain-medium is non-linear,
is accompanied with the creation of sidebands [131]. The sideband creation is due to
parametric amplification of the gain medium by the beating between the two injected
frequencies. In general, sidebands represent a loss of the power available in the injected
frequencies and can excite unwanted transitions. The power of the sidebands depends
on the difference in power and frequency of the injected beams—it is larger for smaller
differences of both quantities. In our case, where the two injected beam components
have significantly different powers and frequencies (differing by ∼ 228 MHz for 6Li and
by ∼ 1286 MHz for 40K), the power losses to the sidebands are small: for a power
ratio of 1/5 of the injected components, the resulting total power of the sidebands
is ∼ 5% for 6Li and ∼ 0.2% for 40K. The frequency of the sidebands depend on the
difference in frequency of the injected beams. Unwanted transitions are excited when
the sidebands are near-resonant with an atomic transition. For the bichromatic beam
pairs used for the MOTs and the 2D-MOT, no unwanted transitions are excited. For
the bichromatic beam used for the Zeeman slower, however, a sideband would be near-
resonant with the atoms trapped in the 6Li-MOT, as the Zeeman beams are detuned
by approximately an integer multiple of 228 MHz. For this beam the injection of both
frequency components into the same TA was thus avoided (see Fig. 2.4).

Acoustically isolated homemade mechanical shutters are placed in front of each
fiber on the optical tables allowing us to switch off the laser beams when required.
The shutters consist of a low-cost solenoid-driven mechanical switch (Tyco Electronics,
ref. T90N1D12-12) and a razor blade attached to it via a small rigid lever arm. These
shutters typically have a closing time of ∼ 100µs when placed in the focus of a laser
beam and a time delay of the order of 3 ms with a timing jitter of ±1 ms.
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2.3.2 Diode lasers

The diode lasers are homemade tunable external cavity diode lasers in Littrow config-
uration. The laser diode for Li (Mitsubishi, ref. ML101J27) is of low cost due to its
mass production for the DVD industry. Its central free running output wavelength at
room temperature is 660 nm which can be shifted into the range of 671 nm by heating
the diode to ∼ 80◦C. In external cavity configuration its output power is 40 mW at
a driving current of 150 mA. Under these conditions the laser diode reaches a typical
lifetime of 6 months. It can be mode hop-free tuned over a range of 5 GHz.

The laser diode for K is an anti-reflection coated Ridge-Waveguide Laser (Eagle-
yard, ref. EYP-RWE-0790-0400-0750-SOT03-0000), whose central free running output
wavelength at room temperature corresponds to the desired wavelength. In external
cavity configuration its output power is 35 mW at 90 mA and it can be tuned between
750 nm and 790 nm. The mode hop-free tuning range extends over 10 GHz. The diode
has a typical lifetime of one year.

The frequency of each diode laser is stabilized via saturated absorption spectroscopy
for which a small part of the DL’s output is used (see Fig. 2.4). A 20 MHz electro-
optical modulator (EOM) is employed to modulate the phase of the spectroscopy laser
beam yielding the derivative of the absorption signal through a lock-in detection. The
resulting error signal is transferred to both the diode’s current (via a high frequency
bias-tee), and, via a PID-controller, to a piezo that adjusts the external cavity’s length
with a 4 kHz bandwidth. An AOM is used to offset the frequency of the diode laser
with respect to the absorption line used for locking. It allows for fine adjustments of
the frequency while the laser is locked.

The Li diode laser frequency is shifted by −331 MHz from the 6Li 2S1/2(F =
1/2, F = 3/2) → 2P3/2 crossover signal and the K diode laser frequency is shifted
by +240 MHz from the conveniently located 4S1/2(F = 1, F = 2) → 4P3/2 crossover
signal of 39K. Note that the small excited-state hyperfine structures of both 6Li and
39K are unresolved in the spectroscopy. The AOMs are driven by homemade voltage-
controlled oscillators, whose outputs are amplified using rf-amplifiers (Minicircuits,
ref. ZHL-1-2W).

2.3.3 Saturated absorption spectroscopy

The saturated absorption spectroscopy for lithium is realized in a 50 cm-long heat
pipe, in which a natural Li sample (with the isotopic abundances 7Li: 92%, 6Li: 8%)
is heated to ∼ 350◦C to create a sufficiently high vapor pressure for absorption. The
heat pipe consists of a standard CF40 tube which is closed at each end with a window.
The Li-sample is placed at its center. The tube is heated with a pair of thermocoax
cables which are wound around the tube in parallel with opposite current directions
in order to prevent magnetic fields to build up. Condensation of lithium atoms on
the cell windows needs to be inhibited as Li chemically reacts with glass. This is
achieved by adding an argon buffer gas at ∼ 0.1 mbar pressure, as Ar-Li collisions
prevent Li to reach the cell windows in ballistic flight. The optimum argon pressure
was chosen such that it provides enough collisions, but does not substantially collision-
broaden the absorption spectrum. Water cooling of the metallic parts close to the
windows leads to condensation of the diffusing lithium atoms before those can reach
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the windows. To avoid that lithium slowly migrates to the colder surfaces, the inside
of the tube is covered with a thin stainless steel mesh (Alfa Aesar, ref. 013477), which
induces capillary forces acting on the condensed atoms. Since the surface tension of
liquid lithium decreases with increasing temperature [132], the capillary forces cause
the atoms to move back to the hotter surfaces.

The saturated absorption spectroscopy for potassium is realized in a cylindrical glass
vapor cell of 5 cm length, in which a natural K-sample (with the isotopic abundances
39K: 93.36%, 40K: 0.012%, 41K: 6.73%) is heated to ∼ 45◦C. Here, a small non-heated
appendix of the cell serves as a cold point to prevent condensation of K atoms on the
surfaces crossed by the laser beam.

2.3.4 Tapered amplifiers

The tapered amplifiers are commercial semiconductor chips which are mounted on
homemade supports (for engineering drawings, see Appendices C.2 and C.3). We
developed compact support designs with nearly no adjustable parts. The support
designs allow for an easy installation process, which does not require any gluing or
the help of micrometric translation stages for the alignment of the collimation optics,
as that can be accomplished by free hand. Furthermore, the design minimizes the
heat capacity of the support and the produced temperature gradients, allowing for a
quick temperature stabilization that makes the TAs quickly operational after switch-
on. The temperature stabilization is accomplished using a Peltier element (Roithner
Lasertechnik GmbH, ref. TEC1-12705T125) connected to a PID control circuit. The
heat of the chip is dissipated via an aluminum base plate which is economically cooled
by air rather than running water (the base plate reaches a maximum temperature of
∼ 28◦C for diode currents of 2A).

The commercial TA chips are sold on small heat sinks which have different di-
mensions for the two different wavelengths. We thus had to design slightly different
supports for the Li- and K-TAs, which are both schematically shown in Fig. 2.6.

For lithium the semiconductor chip (Toptica, ref. TA-670-0500-5) is delivered on
a heat dissipation mount of type “I” (see Fig. C.8 of the appendix). It is placed
between two axially aligned cylindrical lens tubes (CL1 and CL2 in Fig. 2.6 (a)), each
of which containing an aspheric collimation lens of focal length 4.5 mm (Thorlabs,
ref. C230TME-B). The support of the tubes and the chip are precisely machined such
that the chip’s output beam falls on the center of the respective collimation lens (CL2 in
Fig. 2.6 (a)). The tubes are supported by cylindrically holed tightenable hinges in which
they can move only longitudinally, along the direction of the amplified laser beam. This
restriction of the tube’s motion facilitates the alignment of the collimation lenses. The
support design does not allow for a transverse alignment of the collimation lenses. Since
this alignment is not very critical for the performance of the TA, we found it needless
to allow this degree of freedom and relied on precise machining (possible imperfections
could be compensated utilizing the mechanical play of the large attachment screw holes
of the commercial heat sinks of the chips). When tightened by a screw, the hinges fix
the position of the tubes. Since the tightening applies a force perpendicular to the
longitudinal direction, it does not move the tubes along this (critical) direction. They
might only move slightly along the transverse direction, which does not affect the final
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performance of the TA.
For potassium, the semiconductor chip (Eagleyard, ref. EYP-TPA-0765-01500-

3006-CMT03-0000) is delivered on a heat dissipation mount of type “C” (see Fig. C.2
of the appendix). Placing this mount between two hinges as for the case of lithium
is less convenient since the heat dissipation mount has to be attached by a screw in
the longitudinal direction which requires access from one side. Therefore one hinge
is replaced by a rail which guides a parallelepipedically formed mount for the second
(output) collimation lens (CL4 in Fig. 2.6 (b)). The motion of this mount is also fixed
by tightening a screw applying forces perpendicular to the rail direction, which does
not move the collimation lens along the critical longitudinal direction. For all our TAs,
the positioning of the collimation lenses never had to be adjusted again once they were
aligned.

. 5 cm

CL1
BCM

CL3

CL4

TA Li

TA K

CL2

(a) (b)

Figure 2.6: Sketch of the tapered amplifier supports for (a) Li and (b) K. In the figure,
TA Li and TA K refer to the respective tapered amplifier chips, CL1, CL2, CL3 and
CL4 to the (only longitudinally adjustable) collimation lens supports and BCM to the
isolated mount for the blade connectors used to power the chip for K. The supports
for the output collimation lenses are CL2 and CL4.

The commercial heat dissipation mount of the potassium chip is inconvenient for a
simple powering of the chip. The very fragile gold wire, which has to be connected to
the negative source of the current supply, has to be protected by a mechanical support
before being connected to a cable. Therefore we soldered it to a blade connector that
is fixed by an isolated plastic mount (BCM Fig. 2.6 (b)) and which is connected to the
current supply. To avoid an overheating of the chip during the soldering process we
permanently cooled the gold wire by blowing cold dry air from a spray can on it.

The output beams of the TA chips are astigmatic and thus require additional colli-
mation. The choice of the collimation optics needs to be adapted to the specifications of
the subsequent optical fiber, which in our case requests a collimated circular Gaussian
beam of 2.2 mm 1/e2-diameter for optimum coupling efficiency. The mode-matching
was found optimum for a pair of lenses consisting of one spherical lens (with f=15 cm
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for Li and f=4 cm for K) and a cylindrical lens (with f=8 cm for Li and f=2.54 cm for
K), which are placed outside the TA’s housing. The cylindrical lenses are supported
by rotatable mounts, in order to facilitate the mode-matching into the fibers. For all
our TAs we achieve fiber-coupling efficiencies larger than 50% (Li) and 60% (K).

When injected with 20 mW, the Li-TAs yield an output power of 500 mW at 1 A
driving current and the K-TAs yield an output power of 1500 mW at 2.5 A driving
current. In order to increase the lifetime of the chips, we limit the driving currents to
smaller values and we switch the chips on only for periods of experimentation. When
switched on, the TAs quickly reach a stable functioning (usually within 10 min) due
to the compactness of the mechanical support, which allows for a quick temperature
stabilization.

2.4 6Li Zeeman slower

2.4.1 Principle of Zeeman-tuned slowing

Zeeman-tuned slowing represents one of the earliest and most widely used techniques
to slow down atoms from an oven [133]. Many textbooks nowadays treat this cool-
ing technique and we refer the reader to the literature for an introduction [134]. A
Zeeman slower longitudinally decelerates an atomic beam using the radiative force of
a counter-propagating resonant laser beam. The Doppler effect accumulated during
the deceleration is compensated by the Zeeman effect, induced by an inhomogeneous
magnetic field, which maintains the atoms close to resonance and provides a continuous
deceleration.

Two types of Zeeman slowers are commonly used: the positive-field and the sign-
changing field (“spin-flip”) Zeeman slower [134]. We have implemented a spin-flip
Zeeman slower since it brings about several advantages. First, a smaller maximum
absolute value of the magnetic field is required. Second, the Zeeman laser beam is
non-resonant with the atoms exiting the slower and thus does not push them back into
the slower, neither does it perturb the atoms trapped in the 6Li-MOT. Finally, less coil
windings are required close to the MOT, allowing for a better optical access. However,
the spin-flip Zeeman slower requires repumping light in the region where the magnetic
field changes sign and thus makes the optics system slightly more complicated.

The Zeeman slower consists of two distinct parts: the oven, which creates an atomic
beam of thermal atoms, and an assembly of magnetic field coils. The construction of
both parts is described in the following.

2.4.2 Oven

The design of the oven is based on the one described in the thesis of Florian Schreck [135].
In the oven a nearly pure 6Li sample (5 g) is heated to ∼ 500◦C and an atomic beam is
extracted through a collimation tube. The oven consists of a vertical reservoir tube (di-
ameter: 16 mm, length: 180 mm) and a horizontal collimation tube (diameter: 6 mm,
length: 80 mm), which is attached to it (see rightmost component in Fig. 2.1). The
upper end of the reservoir tube and the free end of the collimation tube are connected
to CF40-flanges. The flange of the reservoir tube is sealed and allows connecting a
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vacuum pump for baking purposes. The flange of the collimation tube connects the
oven to the rest of the vacuum chamber. All parts of the oven are made of stainless
steel of type 302L and connected using nickel gaskets instead of copper gaskets as they
stand higher temperatures and react less with lithium. The heating of the oven is
realized with two high power heating elements (Thermocoax, ref. SEI 10/50-25/2xCM
10), wound around both, the reservoir and the collimation tube.

The temperature of the oven needs to be stabilized precisely, since the atomic flux
critically depends on the temperature. This is accomplished by an active stabilization
circuit and an isolation with glass wool and aluminum foil. Along the collimation tube
a temperature gradient is maintained in order to recycle lithium atoms sticking to the
inner tube walls through capillary action, as explained above. In order to amplify the
effect of capillary action, a thin stainless steel mesh with a wire diameter of 0.13 mm
(Alfa Aesar, ref. 013477) is placed inside the tube. This wire decreases the effective
diameter of the collimation tube to ∼ 5 mm. For the operating temperature of 500◦C,
the vapor pressure of lithium in the oven amounts to 4 × 10−3 mbar.

A computer controlled mechanical shutter (Danaher Motion, ref. BRM-275-03) in
front of the oven allows blocking of the atomic beam during experiments or when the
6Li-MOT is not in operation. Collisions between the atomic beam and the trapped
atoms can thus be inhibited. Furthermore, it allows preventing the lithium atoms
from covering and destroying the entrance window of the Zeeman slower beam, which
is placed opposite to the oven (without having to switch off the oven). Finally, the
shutter facilitates the initial alignment of the Zeeman slower beam, as that is made
visible by reflection on the blocking surface.

The oven is pumped through the collimation tube with a 20 l/s ion pump and
isolated from the main chamber via three differential pumping stages and the tube
of the Zeeman slower. The pressure drop created by the tubes can be calculated as
follows. The conductance C of a tube of circular cross section in the molecular flow
regime (i.e. where the mean free path of a particle is greater than the tube diameter)
is given by [136]

C = 2.6 × 10−4 v
D3

l
L/s, (2.1)

where D and l are, respectively, the diameter and length of the tube in units of cm and
v is the average molecular velocity in units of cm/s. For air at 20◦C, the conductance
is C = 12D3/l in units of L/s. The net pumping speed S of a pump across the tube
is given by S = (1/Sp + 1/C)−1, where Sp is the nominal pumping speed of the pump
and the pressure drop across the tube is given by P1/P2 = Sp/S, with P1, P2 denoting
the pressure on the respective side of the tube. The net pumping speed of the oven’s
collimation tube thus has the value ∼ 0.19 l/s resulting in a pressure drop of a factor
∼ 100. The second and third differential pumping tubes both have a length of 100 mm
and a diameter of 5 mm and 10 mm, respectively. A 20 l/s ion pump is placed after
each tube. In total a pressure drop of a factor of ∼ 2.5× 106 between the oven and the
main chamber is obtained.

The assembly of the oven is a three-step procedure. First, the metallic parts of
the oven are pre-baked at ∼ 600◦C during 48 h. Then, the oven is filled with the
lithium sample under air atmosphere and baked again at ∼ 600◦C during 12 h in order
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to eliminate the impurities in the lithium sample (mostly LiH). Typically 50% of the
sample is lost during this procedure. Then, the oven is connected to the rest of the
vacuum chamber under an argon atmosphere, since argon does not react with lithium.
Since argon damages ion pumps, the vaccum chamber is first pumped by a turbo
molecular pump during 12 h before the ion pumps are finally launched and the oven is
operational.

2.4.3 Coil assembly

The Zeeman slower coils create an inhomogeneous field along the flight direction of the
atoms. The coils are mounted on a 65 cm long standard CF40 tube placed between the
oven and the MOT chamber. A sketch of the coil assembly and the generated axial
magnetic field profile are shown in Fig. 2.7. The coil assembly extends over L = 55 cm
and is separated from the position of the MOT by 16 cm. The coils are connected in
series and were designed such that the desired magnetic field profile is generated for a
moderate driving current of 12 A. The axial magnetic field of the slower is measured
to be 570 G at the entrance and −220 G at the exit.
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Figure 2.7: 6Li Zeeman slower coil assembly (top) and generated axial magnetic field
profile (bottom). The thermal atoms coming from the 6Li-oven enter the coil assembly
at the position 0, and a fraction of them is slowed down and finally captured in the
6Li-MOT, which is located at 71.4 cm. A compensation coil placed on the opposite
side of the MOT (at 84.1 cm) ensures that the magnetic field is zero at the position of
the MOT. The coil assembly extends over 55 cm.

The magnetic field of the Zeeman slower is non-zero at the position of the MOT
and hence compensated by a coil placed opposite to the slower coils at a distance of
12.7 cm from the MOT (see Fig. 2.7). The compensation coil consists of 4 coil layers
wound around a 10 cm long CF40 standard tube. They are powered by a separate
power supply for fine adjustments. When compensated, the magnetic field has an axial
gradient of 0.5 G/cm at the position of the MOT.

The winding of the Zeeman slower coils is cumbersome and cannot be performed on
a set-up vacuum system. Thus, the Zeeman slower needs to stand baking procedures
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after being wound. The cables of the Zeeman slower coils (APX France, ref. méplat
cuivre émaillé CL H 1.60 × 2.50) resist temperatures of up to 200◦C. One layer of a
heating cable (Garnisch, ref. GGCb250-K5-19) is permanently placed underneath the
magnetic field coils for the bake out procedures. To avoid heating of the vacuum parts
during the Zeeman slower’s operation, two layers of water coils were wound underneath
the coil layers (above the heating cable). A photograph of the assembled Zeeman slower
is shown in Fig. 2.8.

20cm

Figure 2.8: Photograph of the assembled 6Li Zeeman slower before its integration into
the vacuum system.

2.4.4 Optics

Slowing and repumping light for the Zeeman slower is derived from a bichromatic
laser beam which is provided by an optical fiber originating from the laser system.
It has a total power of Pfiber = 50 mW and its frequencies are both red detuned by
∆ωslow = ∆ωrep = 75 Γ from the 2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) slowing and the
2S1/2(F = 1/2) → 2P3/2(F

′ = 3/2) repumping transition (see Fig. 2.3). The intensity
Islow of the slowing light is 8 times bigger than the intensity Irep of the repumping light.
Both beam components have the same circular polarization (σ+ at the position where
the atoms enter the slower).

The detuning of the slowing light and the axial magnetic field at the entrance of
the coil assembly define the so-called capture velocity vZee

cap of the Zeeman slower. All
atoms with a velocity smaller than vZee

cap are expected to be decelerated to the same final
velocity vZee

fi , provided that they initially populate the correct internal atomic state.
The resonance condition for the atoms inside the slower yields vZee

cap ∼ 830 m/s and
vZee

fi ∼ 90 m/s. The exit velocity of the slower is thus larger than the capture velocity
of the 6Li-MOT, which is estimated to be ∼ 50 m/s. However, the atoms are still
decelerated significantly in the region between the slower exit and the MOT and are
thus expected to be captured by the MOT. The capture velocity of the Zeeman slower
is smaller than the most probable thermal speed of the atomic beam, which is given
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by [137] vp =
√

2kBT/m = 1464 m/s at T = 500◦C, where kB denotes the Boltzmann
constant and m the mass of the 6Li atoms.

The bichromatic Zeeman slower beam is expanded and focused by a lens pair.
The focusing of the beam accounts for the divergence of the atomic beam and the
loss of beam power due to absorption and thus yields an efficient utilization of the
available laser power. In addition, it induces a small cooling effect along the transverse
direction [134]. The 1/e2-diameter at the position of the MOT is 31 mm and the focus
is at a distance of 120 cm from the MOT, 10 cm behind the oven.

The optimized values of the essential parameters used for the Zeeman slower are
displayed in Tab. 2.1. With these parameters a 6Li-MOT capture rate of ∼ 1.2 × 109

atoms/s is obtained. The capture rate was deduced from the measurement of the
trapped atom number after a very short loading of the MOT (∼250 ms), for which
atom losses can still be neglected.

6Li Zeeman slower

Pfiber [mW] 50
∆ωslow [Γ] -75
∆ωrep [Γ] -75
Irep/Islow 1/8
Bmax [G] 570

Table 2.1: Optimized values for the parameters of the 6Li Zeeman slower, yielding a
6Li-MOT capture rate of ∼ 1.2 × 109 atoms/s at an oven temperature of ∼ 500◦C.
The definition of the symbols is given in the text. The natural linewidth of 6Li is
Γ/(2π) = 5.87 MHz.

The divergence of the atomic beam is an important parameter characterizing the
Zeeman slower. Three factors contribute to it: first, the geometry of the oven’s colli-
mation and the subsequent differential pumping tubes, second the atom’s deceleration
inside the slower, and third the transverse heating due to the scattered photons dur-
ing the slowing process. In order to estimate the divergence of the atomic beam, we
calculate the maximum possible deflection of an atom which exits the oven with a
longitudinal velocity vZee

cap. An atom with this velocity needs ∼ 1.1 ms to reach the exit
of the Zeeman slower and additional ∼ 1.8 ms to reach the MOT. Due to the geometry
of the collimation and differential pumping tubes it can have a maximum transverse
velocity of ∼16 m/s. The change in transverse velocity due to the heating is calculated
to be ∼ 2.5 m/s [138] and is thus negligible with respect to the maximum transverse
velocity determined by the tube geometry. The final transverse displacement of the
atom with respect to the beam axis at the position of the 6Li-MOT would thus be
∼ 5 cm. Therefore 6Li-MOT beams with a large diameter are required.

2.5 40K 2D-MOT

2D-MOTs have been widely used over the past years to produce high flux beams of
cold atoms [139, 140, 141, 142, 143, 43]. In some cases they offer advantages over the
more common Zeeman slowers. Even though Zeeman slowers can produce higher fluxes
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and are more robust, they have the following disadvantages. They produce unwanted
magnetic fields close to the MOT which need to be compensated by additional fields,
they require a substantial design and construction effort and are space consuming.
Zeeman slowers need to be operated at higher temperatures than 2D-MOTs and the
material consumption can be high. In the case of the rare isotope 40K, this drawback
is major: no pure source of 40K exists and enriched 40K samples are very expensive
(4000 Euros for 100 mg of a 4% enriched sample). Therefore a 40K Zeeman slower
would be very costly. A 2D-MOT can be operated at lower pressures and is thus
more economic. In addition it allows separating 40K from the more abundant 39K,
since it produces an atomic beam which nearly only contains the slowed atoms (i.e. no
significant thermal background). These considerations motivated us to implement a
2D-MOT for 40K.

2.5.1 Principle of a 2D-MOT

In a 2D-MOT, an atomic vapor is cooled and confined transversally and out-coupled
longitudinally through an aperture tube. The role of the aperture tube is two-fold.
First, it isolates the 2D-MOT from the MOT chamber by differential pumping, and
second, it acts as a geometric velocity filter, since only atoms with a small transverse
velocity pass through. As the transverse cooling is more efficient for atoms which have
a small longitudinal velocity—since those spend more time in the cooling region—most
of the transversally cold atoms are also longitudinally cold. Thus, the filter indirectly
filters atoms also according to their longitudinal velocity. A 2D-MOT thus produces
an atomic beam which is transversally and longitudinally cold.

The flux of a 2D-MOT can be improved by adding a longitudinal molasses cooling
to the 2D-MOT configuration [139]. Thus, the atoms spend more time in the trans-
verse cooling region due to the additional longitudinal cooling. The longitudinal beam
pair is referred to as the pushing and the retarding beam, where the pushing beam
propagates in the direction of the atomic beam (see Fig. 2.9). We implemented such
a configuration, making use of a 45◦-angled mirror inside the vacuum chamber. This
mirror has a hole at its center which creates a cylindrical dark region in the reflected
retarding beam. In this region, the atoms are accelerated along the longitudinal di-
rection by the pushing beam only, which allows an efficient out-coupling of the atomic
beam.

2.5.2 Experimental setup

The vacuum chamber of the 2D-MOT consists of standard CF40 components and a
parallelepipedical glass cell (dimensions 110 mm×55 mm×55 mm), which is depicted
in Fig. 2.9 (for engineering drawings, see Appendix C.4). Its long axis is aligned
horizontally, parallel to the differential pumping tube and the direction of the produced
atomic beam. The mirror inside the vacuum chamber is a polished stainless steel mirror
with an elliptical surface (diameters 3.0 cm and 4.2 cm). It is attached to the differential
pumping tube inside the vacuum. It allows overlapping the two longitudinal laser
beams whose powers and orientations can thus be independently controlled externally.
The mirror’s material has a reflectivity of only 50%, but is not susceptible to chemical
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reactions with potassium. The differential pumping tube intercepts the mirror at its
center. The tube has a diameter of 2 mm over a distance of 1.5 cm and then stepwise
widens up to 10 mm over a total distance of 22 cm. The 40K-MOT is located 55 cm
away from the 2D-MOT center. Assuming a ballistic flight of the atoms, the geometry
of the differential pumping tube defines an upper limit of the divergence of the atomic
beam, which is calculated to be ∼35 mrad. The atomic beam thus is expected to have
a diameter of ∼ 2 cm when it reaches the 40K-MOT. The differential pumping tube has
a conductance of 0.04 l/s. The generated pressure ratio between the 2D-MOT and the
3D-MOT chambers is ∼ 103.
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Figure 2.9: Sketch of the parallelepipedical glass cell used for the 40K 2D-MOT. A
mirror is placed inside the vacuum chamber to allow an independent control over the
longitudinal beam pair. The mirror has a hole in its center and creates a dark cylindrical
region in the reflected beams.

The potassium source is an isotopically enriched 40K sample (containing 4 mg of
40K, 89.5 mg of 39K and 6.5 mg of 41K, from Technical Glass Inc., Aurora, USA), placed
at a distance of 20 cm from the glass cell. It was purchased in a small ampule which
was broken under vacuum inside a modified stainless steel CF16 bellow. The small
vapor pressure of potassium at room temperature (10−8 mbar) requires heating of the
entire 2D-MOT chamber. We heat the source region to ∼ 100◦C, all intermediate
parts to ∼ 80◦C and the glass cell to ∼ 45◦C. The gradient in temperature ensures
that the potassium migrates into the cell and remains there. The resulting K-pressure
in the glass cell was measured by absorption of a low intensity probe. We found
2.3 × 10−7 mbar, which implies a partial pressure of the 40K-isotope of 1 × 10−8 mbar.
In contrast to lithium, the source lifetime is mainly determined by the pumping speed
of the ion pump. At the measured pressure the lifetime of the source is estimated to
∼ 2 years.

Four air-cooled rectangular shaped elongated racetrack coils (dimensions
160 mm×60 mm) are placed around the glass cell to produce a 2D quadrupole field
with cylindrical symmetry and a horizontal line of zero magnetic field. This racetrack
coil geometry allows an independent control of the transverse position of the mag-
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netic field zero, and minimizes finite coil fringe effects at the coil ends. The coils are
controlled by four separate power supplies. For optimized operation, the transverse
magnetic field gradients are ∂xB = ∂yB = 11 G/cm.

Cooling and repumping light for the 2D-MOT is derived from a bichromatic laser
beam which is provided by an optical fiber originating from the laser system. It has a
total power of Pfiber = 450 mW and its frequencies are red detuned by ∼ 3.5 Γ from the
4S1/2(F = 9/2) → 4P3/2(F

′ = 11/2) cooling and by ∼ 2.5 Γ from the 4S1/2(F = 7/2) →
4P3/2(F

′ = 9/2) repumping transition (see Fig. 2.3). The beam is separated into four
beams and expanded by spherical and cylindrical telescopes to create the transverse
and longitudinal 2D-MOT beams. The transverse beams have an elliptical cross section
(1/e2-diameters: 27.5 mm and 55 mm), are circularly polarized and retro-reflected by
right-angled prisms, which preserve the helicity of the beams. The power losses in the
surface of the glass cell and the prisms weaken the power of the retro-reflected beams
by ∼ 17% (the loss contribution of the absorption by the vapor is negligible due to
the high laser power). This power imbalance is compensated by shifting the position
of the magnetic field zero. The longitudinal beams are linearly polarized and have a
circular cross section (1/e2-diameter: 27.5 mm). 75% of the fiber output power is used
for the transverse beams, 25% for the longitudinal beams. The intensity ratio between
pushing and retarding beam along the atomic beam axis is ∼ 6 (for reasons explained
below).

The optimized values of the essential parameters of the 2D-MOT are displayed in
Tab. 2.2. With these parameters a 40K-MOT capture rate of ∼ 1.4 × 109 atoms/s is
obtained.

40K 2D-MOT

Pfiber [mW] 450
∆ωcool [Γ] -3.5
∆ωrep [Γ] -2.5
Irep/Icool 1/2
Ipush/Iret 6
∂xB, ∂yB [G/cm] 11
K vapor pressure [mbar] 2.3 × 10−7

Table 2.2: Optimized values for the parameters of the 40K 2D-MOT, yielding a 40K-
MOT capture rate of ∼ 1.4 × 109 atoms/s. The definition of the symbols is given in
the text. The natural linewidth of 40K is Γ/(2π) = 6.04 MHz.

2.6 6Li-40K dual-species MOT

Previously, several groups have studied samples of two atomic species in a magneto-
optical trap [144, 145, 146, 147, 89, 43, 44]. We describe here the implementation of
our 6Li-40K dual-species MOT. Its characterization and a study of collisions between
atoms of the different species is presented in chapter 3.
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2.6.1 Principle of a MOT

In a magneto-optical trap six counter-propagating red-detuned overlapping laser beams
cool and magneto-optically confine atoms in a magnetic quadrupole field around its
zero [134]. MOTs for alkali atoms require laser light of two frequencies, namely the
cooling and the repumping frequency. The latter ensures that the atoms stay in the
(almost-) cycling transition used for cooling. Typically the repumping light has a much
lower power than the cooling light as the atoms principally occupy the states belonging
to the cooling transition. For 6Li, however, the power of the repumping light needs to
be relatively high, since 6Li has a very small hyperfine structure in the excited-state
manifold (of the order of the linewidth). When laser cooled, 6Li atoms thus very likely
quit the cooling transition. Therefore, the repumping light needs to contribute to the
cooling process. As a consequence it needs to be present in all six directions with the
same polarization as the cooling light. Therefore, we use bichromatic MOT-beams
containing both cooling and repumping frequencies. We adapt the same strategy also
for 40K.

2.6.2 Experimental setup

Light for the dual-species MOT is derived from two bichromatic laser beams, contain-
ing each a cooling and a repumping frequency, which are provided by two separate
optical fibers originating from the respective laser systems. The beams are superim-
posed using a dichroic mirror and then expanded by a telescope to a 1/e2-diameter
of 22 mm. All subsequent beam reflections are realized by two-inch sized broadband
mirrors (Thorlabs, ref. BB2-E02-10). The beam is separated by three two-inch sized
broadband polarization cubes (Lambda Optics, ref. BPB-50.8SF2-550) into four arms
that form a partially retro-reflected MOT, in which only the vertical beam pair is com-
posed of independent counter-propagating beams. Each retro-reflected MOT beam is
focused with a lens in front of the retro-reflecting mirror, in order to increase the in-
tensity and therefore compensate for the losses in the optics and the light absorption
by the trapped atoms. The distance between the retro-reflecting mirror and the lens
has to be chosen such that the retro-reflected beam is focused at a distance

x =
f −

√

P1/P2m
√

P1/P2 − 1
(2.2)

from the lens, where f is the focal length of the lens, m its distance from the MOT
and P1, P2 the power of the incoming and retro-reflected MOT-beam at the position of
the MOT. In our setup, we have P1/P2 ∼ 1.15 and we use a lens of focal length 10 cm.
The desired focusing is achieved for a distance of ∼ 11 cm between the lens and the
retro-reflecting mirror.

The distribution of the light power over the MOT beams is independently adjusted
for the two wavelengths using a pair of custom-made wave plates, placed in front of
each broad-band splitting cube as illustrated in Fig. 2.10. The wave plate pair consists
of a λ/2 plate of order 4 for the wavelength 767 nm and a λ/2 plate of order 4 for the
wavelength 671 nm. To a very good approximation each of these wave plates can turn
the polarization direction for one wavelength without affecting the polarization for the
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other one (since it is 4.5 × 767 ≈ 5 × 671 and 4.5 × 671 ≈ 4 × 767). The circular
polarization of the MOT beams is produced by first order λ/4 plates for 767 nm, which
work sufficiently well also for 671 nm. All four frequency components thus have the
same circular polarizations in each of the six MOT beams. A mechanical shutter is
placed in the focus of the telescope allowing the production of a total extinction of the
MOT light in addition to the partial and fast switching by the AOMs.

Figure 2.10: Optical setup for the separation of a bichromatic (767 nm+671 nm) linearly
polarized beam into two beams. The custom-made wave plates allow the adjustment of
the light power in the two beams independently for the two wavelengths. This scheme
is employed to create the six MOT beams with the desired powers.

The bichromatic beam for the 40K-MOT has a total power of Pfiber = 220 mW and
its frequencies are red-detuned by ∼ 3 Γ from the 4S1/2(F = 9/2) → 4P3/2(F

′ = 11/2)
cooling and by ∼ 5 Γ from the 4S1/2(F = 7/2) → 4P3/2(F

′ = 9/2) repumping transition
(see Fig. 2.3). The intensity of the cooling light is ∼ 20 times bigger than that of the
repumping light. The bichromatic beam for the 6Li-MOT has a total power of Pfiber =
110 mW and its frequencies are red-detuned by ∼ 5 Γ from the 2S1/2(F = 3/2) →
2P3/2(F

′ = 5/2) cooling and by ∼ 3 Γ from the 2S1/2(F = 1/2) → 2P3/2(F
′ = 3/2)

repumping transition (Fig. 2.3). The power of the cooling light is ∼ 5 times bigger
than that of the repumping light.

The magnetic field for the dual-species MOT is created by a pair of coils in anti-
Helmholtz configuration. Each coil consist of 6 × 14 turns of 4 mm thick copper wire
of circular cross section which has a hole of 2.5 mm diameter in its center to allow
for efficient water cooling. The inner and outer coil diameters are 6.5 cm and 18 cm,
respectively. The two coils are separated by 13.4 cm and their total electric resistance
(when connected in series) is 0.178 Ω. They create an axial magnetic field gradient
of 0.936 G/(cm A). For the optimum dual-species MOT operation the axial magnetic
field gradient is chosen to be ∂zB = 8 G/cm. This gradient yields an optimum atom
number for the 40K-MOT.

The optimum parameters, which lead to atom numbers of Nsingle ∼ 8.9× 109 in the
40K-MOT and Nsingle ∼ 5.4 × 109 in the 6Li-MOT, are displayed in Tab. 2.3 together
with the characteristics of the MOTs (in dual-species operation, the atom numbers
only slightly change due to the additional interspecies collisions to Ndual ∼ 8.0 × 109

in the 40K-MOT and Ndual ∼ 5.2 × 109 in the 6Li-MOT). The (1 − 1/e)-loading times
of the MOTs are ∼ 5 s for 40K and ∼ 6 s for 6Li.
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40K-MOT 6Li-MOT

Pfiber [mW] 220 110
∆ωcool [Γ] -3 -5
∆ωrep [Γ] -5 -3
Γ/(2π) [MHz] 6.04 5.87
Icool per beam [Isat] 13 4

Isat [mW/cm2] 1.75 2.54
Irep/Icool 1/20 1/5
∂zB [G/cm] 8 8
Nsingle [×109] 8.9 5.4
Ndual [×109] 8.0 5.2

nc [×1010 at./cm3] 3 2
T [µK] 290 1400
Dc [×10−7] 1.2 1.3

Table 2.3: Characteristic parameters of the dual-species 6Li-40K-MOT. nc is the atomic
density in the MOT center, T the temperature of the atoms and Dc = ncΛ

3 the peak
phase space density with the thermal de Broglie wavelength Λ =

√

2π~2/(mkBT ). The
definition of the other symbols can be found in the text.

2.7 Magnetic trapping

The phase space density which can be achieved in a MOT is limited by the perma-
nent absorption and reemission of photons. In order to reach the quantum degenerate
regime, a further increase in phase space density is required, which can only be accom-
plished in a non-dissipative trap. To achieve this, we transfer the atoms from the MOT
to a magnetic trap, which is conservative. Once loaded into this trap the atoms are
first transported to another chamber by moving the magnetic trapping potential using
time-varying currents through a fixed coil-assembly. Then, the atoms are evaporatively
cooled inside the magnetic trap in order to achieve the phase space density necessary
for quantum degeneracy.

Another very common conservative trap in which quantum degeneracy can be
achieved is the optical dipole trap. However, due to its limited trapping volume, which
results in small transfer efficiencies for the atoms from the MOT, we decided to use a
magnetic trap for the realization of the evaporative cooling procedure.

Since magnetic trapping is one of the key components of our experimental setup
we first describe its principle. Then we describe the experimental sequence for the
atom transfer from the MOT to the magnetic trap, the magnetic transport and the
planned evaporative cooling inside an optically plugged magnetic quadrupole trap. The
implementation of the latter is still in progress, so we will restrict the description of
this trap to the constructed parts.

2.7.1 Principle of magnetic trapping

Due to their unpaired electron neutral alkali atoms have a sufficiently large magnetic
dipole moment (of the order of a Bohr magneton) to be magnetically trapped. This
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was first demonstrated in 1985 with sodium atoms [148]. The interaction energy of the
magnetic dipole of an atom with an external magnetic field is given by

E(r) = −µm · B(r), (2.3)

where µm is the magnetic moment of the atom. It results in a force that drives the atom
toward a minimum or a maximum of the magnetic field depending on the orientation
of µm with respect to the field direction. In order to trap the atom, the magnetic
field has to have an extremum of field amplitude. Due to Maxwell’s equations [149]
no static magnetic field maximum exists in free space. Minima of the field amplitude,
however, do exist and thus the atom can be trapped if it is in a state with a magnetic
moment antiparallel to the field direction (low field seeker). The condition for its
trapping, however, is that its magnetic moment can follow the direction of the magnetic
field when it changes sign. Thus, to remain trapped, the rate of change of the field
direction experienced by the atom must be much smaller than the Larmor frequency
ωL, i.e. |d(B/B)/dt| = |(v · ∇)B/B| ≪ ωL = µmB/~. If this adiabatic condition is
violated, the atom changes its internal state eventually to a high field seeking state,
and will be repelled from the trap. Such “Majorana spin-flip” transitions mostly occur
at the center of the trap, where the magnetic field changes its direction.

For small magnetic fields, the linear Zeeman regime holds, and the energy levels of
the atom in the magnetic field are E(mF) = gFmFµBB, where gF is the Landé g-factor
of the hyperfine state, mF the quantum number of the z-component of the angular
momentum F of the atom and µB ≈ h × 1.4 MHz/G the Bohr magneton. The states
with gFmF > 0 are the trappable low field seeking states. The dependence of the
energy levels on the magnetic field for arbitrary magnetic fields can be calculated using
the Breit-Rabi formula [150]. They are depicted for the hyperfine ground states of 6Li
and 40K in Fig. 2.11 (the low-field seeking states have a positive slope in the figure).
The extension of the linear Zeeman regime depends on the strength of the hyperfine
interaction of the atom. For 6Li it extends to ∼ 27 G and for 40K it extends to ∼ 357 G.
For the stretched states mF = ±max(F ) the linear Zeeman regime extends to large
magnetic fields.

In our setup we use a magnetic trap in both the MOT chamber and the science
cell. Both magnetic traps are created by a coil pair in anti-Helmholtz configuration,
which approximately generates a magnetic quadrupole field of the form

B(r) =
1

2





−B′x
−B′y
2B′z



 , (2.4)

where B′ is the gradient of the magnetic field in the axial direction z. This axially
symmetric quadrupole field yields an adiabatic potential

V (r) =
1

2
gFmFµBB

′
√

x2 + y2 + 4z2. (2.5)

It is linear in r along the coordinate axes and traps the atoms around its minimum
at r = 0. Since there the magnetic field changes direction, atoms passing too close
to the trap center will undergo a spin-flip. The trap center thus represents a “hole”,
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Figure 2.11: Energy levels of 40K and 6Li in a magnetic field. Note that the hyperfine
structure of 40K is inverted, with F = 9/2 being lower in energy than F = 7/2. This
particularity of 40K allows stable magnetic trapping of two different spin states.

whose effective size depends on the velocity of the atoms. For an atom with velocity
v the adiabaticity condition yields an effective hole size (along the z-direction) of
z0 =

√

~v/(µmB′) [9]. The loss rate induced by the hole is given by the flux of

atoms through its surface (an ellipsoid of radii z0 and z0/
√

2), which is approximately
given by Γ = ~/(ml2) [151], where m is the atomic mass and l the trap extension. This
rate is small as long as z0 ≪ l. For a 6Li-cloud with temperature T = 1 mK and a
magnetic field gradient of B′ = 100 G/cm it is z0 ∼ 10µm and l ∼ 2.7 mm, resulting in
Γ ∼ 1.4×10−3 s−1. For a 40K-cloud with temperature T = 300µK andB′ = 100 G/cm it
is z0 ∼ 5µm and l ∼ 1 mm, resulting in Γ ∼ 1.9×10−3 s−1. The Majorana losses are thus
negligible when the atoms have a temperature which corresponds to the temperature
in the MOT.

When an atom cloud is evaporatively cooled inside a quadrupole magnetic trap,
however, the relative size of the hole with respect to the cloud size increases and will
eventually become so significant that the evaporation stops. The hole thus needs to
be plugged. This can be either done with an additional bias magnetic field (as in the
Ioffe-Pritchard trap [152] or the time-averaged orbiting potential (TOP) trap [151])
or by using the repulsive force of a blue detuned laser beam [153], which is pointed
at the trap center. This “optically plugged magnetic trap” achieves tight confinement
allowing for efficient evaporative cooling and it yields a large optical access. We started
the implementation of this trap, whose current setup is described in Sec. 2.7.5.

2.7.2 Transfer from the MOT to the magnetic quadrupole
trap

As soon as the dual species MOT is loaded with a sufficiently large number of atoms,
we transfer the atom cloud to the magnetic quadrupole trap, which is created by the
coil pair which is also used for the MOT. For an efficient transfer the atom cloud first
needs to be compressed and it needs to be polarized to magnetically trappable states.
This requires two stages termed the “compressed MOT”- and the “optical pumping”-
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stage, which are executed in immediate succession before the magnetic field of the trap
is switched on.

Compressed MOT

The atomic clouds are compressed by temporarily changing the parameters of the
MOTs during the transfer. We optimized the compressed MOT stage for 40K, since
we are essentially interested in a large atom number of 40K in the science cell for
evaporative cooling. It was found optimum to ramp down the magnetic field gradient
to zero within 3.5 ms, to increase the cooling frequency detuning from −3 Γ to −5.5 Γ
and to decrease the repumping frequency detuning from −5 Γ to −Γ. The decrease of
the repumping frequency detuning leads to a more efficient pumping of the atoms to
the hyperfine ground state F =9/2, and the increase of the cooling frequency detuning
leads to a decrease of the light pressure of the rescattered photons in the cloud. The
light intensities are kept unchanged. After this sequence, the temperature decreases
from ∼ 290µK to ∼ 200µK and the peak density increases from ∼ 3× 1010 at./cm3 to
∼ 5 × 1010 at./cm3. No significant loss in atom number is observed. For the magnetic
field gradient imposed by the value chosen for 40K the optimum compressed MOT
stage for 6Li lasts 5.5 ms. During this time, the cooling light intensity is ramped down
to zero and its frequency detuning is decreased from −5 Γ to −3 Γ. The repumping
light intensity is set to 30% of its initial value and its frequency is unchanged. The
temperature of the 6Li cloud descreases from ∼ 1.4 mK to ∼ 1 mK and the peak density
increases from ∼ 2 × 1010 at./cm3 to ∼ 3.5 × 1010 at./cm3.

Higher densities of up to ∼ 1011 at./cm3 could be obtained for both clouds by
increasing the magnetic field gradient during the compressed MOT stage, but this
led to a significant atom loss of about a factor 4 in both clouds. Since the phase
space density of the clouds in the final cell after the transport was found to be only
slightly affected by the parameters of the compressed MOT stage, we optimized its
parameters for the maximum number of atoms in the final cell, which was obtained for
the parameters given above.

Optical pumping

In order to avoid loss of atoms which occupy high field seeking states or states which
are susceptible to undergo spin relaxation, all atoms are optically pumped into the
stretched states before the magnetic trap is switched on. This is accomplished by
shining a pair of counterpropagating near-resonant circular polarized light beams onto
the atoms. For 40K the light beams are bichromatic containing a principal and a
repumping frequency, both on resonance. The beam pair has a peak intensity of ∼
90 Isat per beam (20% of the beam intensity consisting of repumping light) and the light
pulse has a duration of 5µs. For 6Li the beams consist of only one single frequency,
which is detunned by −3 Γ from the repumping transition. The peak intensity is
∼ 30 Isat per beam and the light pulse has a duration of 200µs. Due to the small
ground-state hyperfine structure of 6Li the beams are detuned by only +36 Γ from the
principal transition, leading to a significant number of absorptions for atoms occupying
the principal state. The high intensities used in our optical pumping schemes ensure
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that the optical pumping beams are not significantly attenuated by absorption from
the atoms, resulting in a homogeneous exposure of all atoms in the cloud.

The optical pumping beam pairs for 6Li and 40K are provided by two optical fibers
originating from the respective laser systems. They are combined using a dichroic
mirror and subsequently expanded by a telescope to a 1/e2-diameter of 1.1 cm. The
combined beam is then split into two parts using a broadband polarization cube, and
both parts are shone on the MOTs from opposite directions (in order to avoid an
acceleration of the atoms along the beam direction). The circular polarization of the
beams is created using wave plates for 40K. In order to define the quantization axis for
the atomic spins a small bias magnetic field of 2 G along the beam direction is applied.

The optical pumping stage was found particularly efficient for 40K, as it yields an
atom number gain in the magnetic trap of a factor of ∼ 10. We achieve transfer
efficiencies of nearly 100% for 40K and ∼ 30% for 6Li. For 6Li the efficiency is smaller,
since 6Li has only one single simultaneously trappable spin state (as opposed to five for
40K), such that depolarizing events, which are caused by emission and reabsorption of
randomly polarized photons, more likely lead to trap loss. For 40K the optical pumping
stage was found to lead to a significant heating of the cloud which can be attributed
to the high light intensity used, since it could be entirely cancelled by decreasing the
intensity. For an optical pumping stage which does not induce heating the maximum
transfer efficiency is ∼ 70%.

After the optical pumping stage, it is very important that stray light originating
from the laser sources is completely extinct, as it might provoke spin-flip transitions to
untrapped states induced by optical excitations followed by spontaneous emissions. In
our experiment we therefore switch off all near-resonant light beams using AOMs and
mechanical shutters during periods in which atoms are magnetically trapped. We also
detune the light frequencies far from resonance. Due to the AOM’s fast switching times
(of the order of hundreds of ns), they allow one to quickly attenuate the light beams.
Since the attenuation is not perfect (only of the order of 10−4), mechanical shutters
are employed to accomplish a complete extinction. This is most efficiently done by
placing the shutters in front of the optical fibers which transfer the light beams to
the experimental table. The shutters have typical closing times of the order of 100µs,
when placed in the focus of a beam.

2.7.3 Magnetic transport

After both atomic species have been loaded into the magnetic trap, they are trans-
ported from the MOT chamber into the science cell by means of magnetic forces. This
transport allows us to perform the evaporative cooling stage in the more favorable
vacuum environment of the science cell. Furthermore the evaporative cooling can be
performed more efficiently there due to the better mechanical access to the atoms which
allows placing the magnetic quadrupole coils very close to the atoms, thus creating a
steep confinement.

The magnetic transport mechanism is based on shifting the quadrupole potential
of the magnetic trap adiabatically such that the atomic cloud follows. Two different
possibilities exist to accomplish this: either, the quadrupole coil pair of the magnetic
trap is moved mechanically [154], or a series of overlapping fixed coils is used, which
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create the moving trapping potential by applying time-varying currents [130]. We
decided to implement the latter configuration, since it yields a high reproducibility due
to minimized mechanical vibrations and less stringent geometric constraints.

The basic mechanism of the fixed coil configuration is the following. In principle,
an atom cloud can be moved from the center of one quadrupole pair to the center of its
neighboring (partially overlapping) quadrupole pair by simply increasing the current
in the neighboring quadrupole pair and decreasing it in the first one. During this
transport the atom cloud remains trapped inside a quadrupole potential, since two
partially overlapping quadrupole coil pairs with the same current orientations create
a quadrupole potential again. During this transfer, however, the aspect ratio of the
quadrupole potential changes from A = ∂Bx

∂x
/∂By

∂y
= 1 for the initial position to A > 1

(elongated cloud) back to A = 1 for the final position. Repeating this procedure
for the remaining coil pairs would thus appreciably modulate the potential geometry
which leads to severe heating of the atom cloud. This can be avoided by continuously
applying current to three coil pairs in the transport process, which avoids that the
aspect ratio changes back to A = 1 after each coil pair, but rather stays at a constant
value. A change of aspect ratio is thus only created at the beginning and at the end
of the entire transport. Furthermore, the implication of three coils allows keeping the
field gradients constant during the major part of the transport.

The design of our magnetic transport is based on the one used for its first demon-
stration [130]. In the following we present a brief description of the setup, for details
we refer the reader to the thesis of Thomas Salez [155]. A sketch of the coil assembly
is shown in Fig. 2.12. The atom cloud is transported over a total distance of 50 cm
employing 14 partially overlapping quadrupole coil pairs. The transport path contains
a 90◦ corner (“elbow”) at a distance of 30 cm in order to give additional optical ac-
cess along the final transport direction and to reduce trap loss due to collisions with
background atoms from the MOT chamber. The corner prohibits these atoms to reach
the atoms in the science cell in ballistic flight. Except for the coils at the beginning
and the end of the transport, all coils of the assembly are identical. Since the overlap
of the MOT coils and the first transport coil is limited by the MOT beams an aspect
ratio much larger than in the rest of the transport would be created if the cloud was
moved toward the first transport coil according to the procedure described above. This
excessive aspect ratio can be avoided by the use of an additional so-called “push coil”,
which is placed opposite to the transport coil assembly with its axis oriented parallel
to the transport direction (see Fig. 2.12). It permits to shift the trap center toward
the coil assembly.

The push coil is placed at a distance of 11.1 cm from the MOT, it was wound by
ourselves. It consists of 8 × 4 turns of copper cable with a circular cross section of
2 mm diameter. The inner and outer diameters of the coil are 9.1 cm and 13.2 cm, re-
spectively. It creates a magnetic field of 0.25 G/A at the position of the MOT. The coil
resistance was measured to be 0.06 Ω. The transport coils have been manufactured by
the company Oswald. They have the shape of a flat disc, so as to permit overlapping of
two coils without appreciably changing their distance to the transport path. The coils
are arranged in two layers above and below the transport path (see Fig. 2.12). Each
coil consists of 47 × 2 turns with inner and outer diameters of 2.3 cm and 13.3 cm, re-
spectively. The inner coils are separated by 7-8 cm. They create an axial magnetic field
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Figure 2.12: Schematics of the magnetic transport coil assembly. Time-varying currents
through 14 partially overlapping quadrupole coil pairs (MOT coils, transfer coils and
quadrupole coils) and a single “push” coil transport the atom cloud from the MOT
chamber to the science cell. The transport path has a total length of 50 cm and contains
a 90◦ corner to allow additional optical access to the science cell and to increase the
vacuum quality there.

gradient of 3.2 G/(cm A). Their resistance was measured to be 0.36 Ω. All transport
coils are mounted on separate aluminum holders, made in our workshop. Water from a
cooling system flowing through the holders ensures operation at constant temperature.
Eddy currents are suppressed by numerous slits in the holders. A photograph of the
transport coil assembly is shown in Fig. 2.13.

A computer program was written [155] which calculates the required values of the
current in each coil as a function of the atom cloud position. The temporal dependence
of the currents is then determined by the desired dynamics of the cloud position, which
can be chosen independently. Four different unipolar current sources are used for the
transport, which are controlled by the analog voltages provided from the experimen-
tal control. The current sources are controlled in constant voltage mode rather than
constant current mode as the former allows quicker switching times, minimizing the
time delay between the demanded and the obtained currents. One current source is
used for the pushing coil and the others are used to drive three adjacent coil pairs
in parallel. For an efficient use of the current sources, a control logic was installed
which switches their connections to the appropriate set of three coils during the trans-
port. The switching is realized with a series of metal-oxide semiconductor field-effect
transistors (MOSFET) (Farnell, ref. IXFN200N10P), which open or close the required
connections on demand.

The switching of coil currents creates an induction voltage Uind = −Lİ, where L
denotes the self inductance of the coil, which falls off at the junction of the switch. In
order to avoid that this voltage destroys the MOSFETs, we installed varistors between
their source and drain connectors, which dissipate the energy of the magnetic field
during the switching. The conducting voltage of the varistors needed to be chosen
lower than the break down voltage of the MOSFETS. Also the control logic needs
to be protected from the induction voltage, which is realized with the help of opto-
couplers.
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10cm

Figure 2.13: Photograph of the transport coil assembly before its integration into the
experimental system.

The transport path passes through a series of CF16- and homemade vacuum tubes
of 1 cm diameter (see Fig. 2.12). Those tubes had been designed to allow most of
the magnetically transported atoms to pass through and to sufficiently limit their
conductance to have a low enough pressure in the science cell. However, we realized,
that the transport efficiency significantly suffers from the small tube diameters. Those
make the alignment of the transport coil assembly with respect to the tubes very
critical. It is thus helpful to run high currents through the coils in order to achieve
a substantial confinement of the atom cloud. This also allows the reduction of the
transport time and thus the losses due to collisions with background atoms. With
the initial design, we could achieve transport efficiencies of only 5%. We had to buy
additional power supplies and place an additional coil pair between the MOT and the
first transfer coil pair in order to create a stronger confinement, which finally resulted
in transfer efficiencies of ∼ 15%.

2.7.4 Magnetic quadrupole trap of the final cell

The magnetic transport sequence ends when the atoms arrive in the magnetic
quadrupole trap of the final cell. In this trap the atoms will be evaporatively cooled
until they are sufficiently cold and compressed to be transferred into an optical dipole
trap. The atom loss due to Majorana spin flips during the evaporative cooling will
be avoided by the presence of an optical plug which repels the atoms from the region
where the spin flips occur. We present here the specifications of the final quadrupole
trap, the installation of the optical plug is described in the next section.

The coil pair for the magnetic trap in the science cell was wound by ourselves and
it consists of 4 × 19 turns of 4 mm thick copper wire of circular cross section which
has a circular hole of 2.5 mm diameter in its center to allow for efficient water cooling.
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The inner and outer coil diameters are 3.4 cm and 19.5 cm, respectively. The two coils
are separated by 3.65 cm, leaving a distance of 3.3 mm between the coils and the walls
of the science cell. They create an axial magnetic field gradient of 3.75 G/(cm A). We
will soon replace this coil pair by a new one, which is manufactured by the company
Oswald. The mount for this new coil pair will also support a coil pair which can create
a strong bias field with a high precision which will allow tuning atomic interactions by
means of Feshbach resonances in an optical trap.

The maximum trap depth of a quadrupole trap is defined by the maximum achiev-
able radial gradient and the geometric boundary of the trap, which is defined by the
inner walls of the vacuum chamber when the coils are placed outside the chamber. The
coil pair of the science cell can create a maximum radial gradient of 280 G/cm (for a
coil current of 150 A) and the distance between the trap center and the chamber walls
is ∼ 1 cm, resulting in a maximum achievable trap depth of ∼ 18 mK (for comparison,
the coil pair of the MOT chamber can create a maximum radial gradient of 70 G/cm
for the same coil current and the distance between the trap center and the chamber
walls is ∼ 2.2 cm, resulting in a maximum achievable trap depth of ∼ 10 mK).

In order to allow fast switching times of the magnetic field of the quadrupole
trap, we installed an insulated gate bipolar transistor (IGBT) (Mitsubishi Electric,
ref. CM600HA-24H), which can entirely interrupt a current flow of 150 A through the
coil pair within ∼ 1 ms. The switching speed of IGBTs is superior to that of MOS-
FETs: for example, the MOSFET-model which we employ for the switching of the
transport coils, would require ∼ 13 ms for switching off the above current flow in the
magnetic trap coils. In order to protect the IGBT from induction currents produced
during the switching, we connect a varistor in parallel to its junction, which dissipates
the energy of the magnetic field. In addition, the computer control of the IGBT is
electronically isolated using opto-couplers.

2.7.5 Optical plug

The “optically plugged magnetic trap” configuration was first implemented in 1995
and allowed for the first realization of a Sodium Bose-Einstein condensate [153]. It
generates a steep, linear confinement, which leads to high elastic collision rates and
thus to efficient evaporative cooling. Due to its complicated geometry, it is, however,
not very practical for quantitative studies of atom clouds and we intend to employ
it only in order to cool the atoms. Once sufficiently cold, the atom cloud will be
transferred into an optical dipole trap. It has been demonstrated by the Amsterdam
group [44], that the mixture 6Li-40K can be efficiently cooled inside this trap.

The installation of the optical plug is still in progress. We give here only a brief de-
scription of the constructed parts. Then, we give an outlook on the planned evaporative
cooling strategy.

We have purchased an intracavity-doubled Nd:YVO4 laser (Coherent, ref. Verdi-
V12) of 532 nm wavelength and 12 W output power from which the light for the optical
plug is derived. Heating of the atoms due to photon scattering will be suppressed
due to the large detuning of the laser beam with respect to the resonance frequency
of both atomic species, and due to the repulsion of the atoms from regions with high
intensity. We have installed an optical system which focuses 7 W of power to a size
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of ∼ 20µm. The repulsive barrier induced by the laser beam has a height of ∼ 1 mK
for the two species. For an axial magnetic field gradient of 400 G/cm, the magnetic
field at the trap bottom is ∼ 0.4 G. The optical plug can be switched off by an air-
cooled 110 MHz-AOM (AA optoelectronic, ref. MCQ110-A2 VIS), which is driven by
a homemade voltage-controlled oscillator, whose output is amplified by an rf-amplifier
(Minicircuits, ref. ZHL-5W-1). The beam path from the laser to the science cell is
protected from dust particles by a Thorlabs cage system, which in addition gives a
high mechanical stability to the system, reducing the pointing noise of the beam focus.
The second last mirror in front of the science cell is controlled by an electronic circuit
(Thorlabs, ref. TST001) using two motor actuators (Thorlabs, ref. ZST13), and allows
for the adjustment of the plug position. The plug beam is aligned to the symmetry axis
of the magnetic quadrupole trap. Its focus will be continuously imaged to the same
CCD-camera as the trapped atoms in order to verify its correct alignment at any time.
Since we have not achieved evaporative cooling, we could not verify the functioning of
the optical plug, yet.

2.7.6 Evaporative cooling

As discussed in the introduction of this thesis, evaporative cooling of fermionic species
is more difficult than for bosonic species, due to the suppression of s-wave collisions
for identical particles. While odd partial wave collisions, such as p-wave collisions, are
allowed, they are suppressed at low temperatures (typically below T ≈ 6 mK for 6Li
and T ≈ 300µK for 40K [156]), because of the angular momentum barriers. Therefore,
high rates for elastic collisions are only possible at low temperatures if the colliding
atoms are either of two different species or in at least two different internal states.

Three possibilities exist to evaporatively cool the mixture 6Li-40K. Either, (1) the
mixture is evaporatively cooled relying only on interspecies collisions, or (2) each atomic
species is prepared in two different internal states and evaporatively cooled separately,
or (3) one species is prepared in two different spin states and evaporatively cooled,
sympathetically cooling the other species along.

The first possibility would be relatively inefficient due to the different mass of both
species and the small cross section for 6Li-40K collisions. For this kind of evaporation
to be maximally efficient, an equal number of atoms in each species is required and
the atoms should be prepared in their fully-stretched states, which suppresses spin-
relaxation. The different mass of the colliding particles leads to longer rethermalization
times of about a factor of 2 [44] as compared to colliding particles of the same mass.
The collisions, which take place in the triplet channel, have a s-wave scattering length
of a = 64.41 a0 [91], leading to a collision cross section of σLiK = 1.5 × 10−10 m2.
Furthermore, the different initial temperatures of the 6Li-MOT and the 40K-MOT will
lead to a significant heating of 40K.

The second possibility cannot be realized in a magnetic trap, since 6Li cannot be
magnetically trapped in two different spin states which are stable against inelastic
collisions. This is, because the hyperfine structure of 6Li (see Fig. 2.11) implies that at
least one of the two different magnetically trappable spin states belongs to the higher
F state manifold. Since collisions between any two different trappable spin states of
6Li can lead to two states in the lower F state manifold spin relaxation can occur [135].
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In order to take advantage of the large trapping volume of magnetic traps, evaporative
cooling inside this trap is preferable, thus we do not further consider this possibility.

The third possibility seems to be the most efficient. It has been demonstrated that
40K can be trapped magnetically in the two different spin states |F,mF 〉 = |9/2, 9/2〉
and |9/2, 7/2〉 with suppressed spin relaxation [21]. This suppression is a consequence
of the inverted hyperfine structure of 40K making the state with the larger F (F =9/2)
the hyperfine state with the lowest energy. Therefore, evaporatively cooling 40K in a
magnetic trap is possible. The s-wave scattering length for the intraspecies collisions
between the above-mentioned spin states is a ∼ 170 a0 [157], leading to a collision
cross section of σKK = 1 × 10−9 m2, which is nearly an order of magnitude larger than
that for intraspecies 6Li-40K collisions. The evaporation of 40K using this method is
thus more efficient when the evaporation is based on intra- rather than interspecies
collisions. The sympathetic cooling of 6Li will also be efficient if a small cloud of 6Li
is loaded into the trap. This has been demonstrated by the Amsterdam group [44].
We plan to apply this cooling technique as well. Special care, however, will need to be
taken of the spin-exchange collisions which depolarize the 6Li atoms. Those increase
with the density of the 40K cloud, which thus should be kept low. When the cloud is
transferred to the optical dipole trap, state purification will be required to allow for
the final compression of the sample.

2.8 Diagnostic tools

Several methods exist to probe a cloud of cold atoms. The method we chose in order
to probe the atoms in the two different chambers is the absorption imaging technique,
which we describe in detail in the subsequent section. For the atoms which are trapped
by the MOTs only, we also use other ways for probing which we briefly describe at the
end of this section.

2.8.1 Principle of absorption imaging

In absorption imaging, a near-resonant laser beam of very low intensity (I ≪ Isat) is
shone on the atomic cloud for a short time and its transmission profile is recorded by a
charge-coupled device (CCD) camera. Since the atoms absorb the imaging beam, the
transmission profile contains information about the atomic distribution. However, use-
ful data cannot directly be extracted from the recorded transmission profile Iabs(x, y)
alone. Since the intensity profile of the imaging beam is inhomogeneous and since
background ambient light is always present, the transmission profile needs to be nor-
malized. Therefore two more pictures need to be taken: first, a reference picture, in
which the intensity profile Iref(x, y) of the unabsorbed imaging beam is recorded. This
can be done by either waiting for the atoms to fall off the field of view or by making
them invisible for the imaging beam (see discussion below). Second, a background
picture, in which the background signal Ibg(x, y) is recorded in absence of the imaging
beam. The normalized transmission profile T (x, y) is then obtained from these three
pictures by

T (x, y) =
Iabs(x, y) − Ibg(x, y)

Iref(x, y) − Ibg(x, y)
(2.6)
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(see Fig. 2.14). The subtraction of Ibg(x, y) also accounts for the unavoidable dark
current rate of the CCD pixels, which may vary with temperature.

(a) (b) (c) (d)

Iabs(x, y) Iref(x, y) Ibg(x, y) T (x, y)

Figure 2.14: Obtaining a normalized transmission profile T (x, y) requires to take three
images: (a) an image of the probe beam after passing through the atom cloud, (b) an
image of the probe beam in absence of the atoms and (c) a background image. These
are processed according to Eq. (2.6) to give the normalized transmission image (d).
The picture shows a magnetically trapped cloud of ∼ 3 × 109 40K atoms.

The recorded normalized transmission profile is directly related to the atomic den-
sity distribution n(x, y, z) inside the cloud. Since the imaging beam has a low intensity,
its relative transmission through the atom cloud is independent of its intensity and
T (x, y) is related to n(x, y, z) by

T (x, y) = exp (−OD(x, y)) = exp

(

−σ
∫

n(x, y, z)dz

)

, (2.7)

where OD(x, y) is defined as the optical density, and σ is the scattering cross section.
The integration is performed along the propagation direction z of the imaging beam.
σ is for low beam intensities approximately given by

σ = C2 3λ2

2π

1

(1 + (2∆ωimg/Γ)2)
, (2.8)

where λ is the wavelength of the atomic transition, ∆ωimg the detuning of the imaging
laser from resonance and C the Clebsch Gordan coefficient of the transition, which ac-
counts for the departure from the two-level approximation. It is desired to use a closed
transition for the imaging, since then σ is given by the two-level atom approximation
for which C = 1. For 6Li such a closed transition is given by |F = 3/2,mF = 3/2〉 →
|F ′ = 5/2,mF’ = 5/2〉 and for 40K by |F = 9/2,mF = 9/2〉 → |F ′ = 11/2,mF’ = 11/2〉.
To ensure that one of these transitions is probed, one in principle would have to spin-
polarize the atoms before taking the image and one would have to use an imaging
beam with σ+-polarization (in presence of a small bias magnetic field directed along
the imaging beam propagation to define a quantization axis for the atomic spins).

When the atoms are not spin-polarized before taking the image, the distribution
of the atoms over the possible spin states is unknown. The best estimate for C2 in
Eq. (2.8) is therefore given by the average of the squared Clebsch Gordan coefficients of
all possible transitions, which can be excited by the imaging beam (normalized to the
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one for the cycling transition). For 6Li the average value is calculated to C2 = 0.5 and
for 40K it is C2 = 0.4. When we image the atoms which are trapped in the MOT we use
these average Clebsch Gordan coefficients. In general, the biggest uncertainty in the
determination of the atomic density using absorption images arises from the estimate
of the Clebsch Gordan coefficient. We estimate the uncertainty of the measured atomic
density to be 50%.

The atoms which are trapped in the magnetic quadrupole trap are spin polarized in
their stretched states. When we image these atoms in the science cell, we apply a small
bias magnetic field of ∼ 2 G during the imaging pulse (after switching off the magnetic
quadrupole trap) whose direction is parallel to the axis of the magnetic quadrupole
trap. Since the atoms will adiabatically align their spins to this field, we use C2 = 1.

The bias field for the imaging in the science cell is created by two coils in Helmholtz-
configuration. Each coil consists of 10 turns with 11 cm diameter. They are placed in
a distance of 16 cm from each other. The resulting magnetic field at the position of the
atom cloud is 0.4 G/A.

2.8.2 Evaluation of absorption images

In the previous paragraph we have seen that the measurement of the transmission pro-
file gives access to the density distribution of the atom cloud. In general, all properties
of the atom cloud can be inferred from measurements of density distributions by com-
paring them to the results of models of the atomic gas. We briefly discuss here how to
infer the basic quantities characterizing the atom cloud, such as its total atom number,
its local atomic density and its temperature. The total number N of atoms is deter-
mined by integrating the recorded optical density profile across the two-dimensional
image of the cloud

N =

∫

dx

∫

dy

∫

dz n(x, y, z) =

∫

dx

∫

dy
OD(x, y)

σ
, (2.9)

with the scattering cross section σ given by Eq. (2.8).
The determination of the local atomic density n(x, y, z) from the measured optical

density profile OD(x, y) is a priori not simple, since OD(x, y) contains information
about the integrated atomic density distribution only. In order to have access to
n(x, y, z), the optical density profile would therefore, in principle, have to be recorded
along two different imaging directions. However, when the atom cloud has cylindrical
symmetry (with the symmetry axis along the x-direction), n(x, y, z) can be inferred
from a single optical density profile. In this case n(x, y, z) is given by the inverse Abel
transform of OD(x, y) [158]

n(x, y, z) = n(x, r) = − 1

σπ

∫ ∞

r

(

∂OD(x, y)

∂y

)

dy
√

y2 − r2
, (2.10)

where r =
√

y2 + z2 denotes the distance to the center of the atom cloud. The de-
termination of n(x, y, z) via Eq. (2.10) in general requires a numerical integration. In
some cases, however, a numerical integration can be avoided. This is the case when
n(x, y, z) can be assumed to have a simple form which allows the calculation of the
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corresponding optical density profile analytically. Fitting the measured optical density
profile to the calculated form thus allows one to directly obtain the parameters which
specify n(x, y, z). For example, when the atomic density distribution can be assumed
to be a cylindrically symmetric Gaussian (with widths σx, σyz and peak atomic density
nc, centered around the origin), the optical density profile takes the form [159]

n(x, r) = nce
− x2

2σ2
x
− r2

2σ2
yz ⇐⇒ OD(x, y) = ncσσyz

√
2π e

− x2

2σ2
x
− y2

2σ2
yz , (2.11)

which is also a Gaussian. This atomic distribution assumption is exact for a classical
gas in a cylindrically symmetric harmonic trap, but is also well fulfilled for not too dense
clouds trapped in a MOT. When the atomic density distribution can be assumed to be
constant over a sphere (with radius R), the optical density profile takes the form [159]

n(x, r) =

{

nc for 0 ≤ |y| ≤ R(x),

0 otherwise.
⇐⇒ OD(x, y) = 2ncσ

√

R(x)2 − y2, (2.12)

with R(x) =
√
R2 − x2. This assumption typically holds for clouds trapped in a MOT

with large atom numbers. In order to determine the central atomic density in the
MOT, we used Eqs. (2.11) and (2.12) to fit the measured optical density profile. For
both cases, the fits nearly yielded the same central optical density. In order to allow
the determination of the atomic density of more complicated atomic distributions we
wrote a computer program, which carries out the numerical integration of Eq. (2.10).
This calculation is very sensitive to noise in the optical density profile OD(x, y), be-
cause it contains the derivative of OD(x, y). The optical density profile OD thus was
smoothened before its derivative was calculated. For the MOT, using the full numerical
method and the fitting method yielded nearly the same central atomic density, which
confirms both methods for the given application.

The temperature of an atom cloud can be determined by the time-of-flight (TOF)
method, in which the trapping potential is suddenly switched off and the expansion
of the cloud is measured as a function of the flight time tTOF. For an atom cloud
with an initial atomic density distribution of approximately Gaussian shape and a
Maxwell-Boltzmann velocity distribution, the atomic density distribution maintains
its Gaussian shape during a collisionless expansion. The waist σi of the Gaussian
distribution changes in time according to

σi(tTOF) =

√

σ2
i (tTOF = 0) +

kBT

m
t2TOF, (2.13)

with i ∈ {x, y, z} and T denoting the temperature of the cloud. The assumption of
an initial Gaussian distribution is exact for a classical gas in a harmonic trap. If it
is non-Gaussian a long TOF is required, such that the initial size of the cloud can be
neglected. Since it is not always possible to expand the cloud to much larger than its
initial size due to limited field of view, the temperature of the cloud is most precisely
determined by fitting the time-evolution of the cloud size to Eq. (2.13).

2.8.3 Optical setup

Each atomic species requires its own imaging beam, which is provided by a separate
optical fiber originating from the respective laser system (see Fig. 2.4). The two imaging
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beams are superimposed using a dichroic mirror and expanded by a telescope to a 1/e2-
diameter of 27.5 mm. The bichromatic imaging beam is subsequently divided into two
parts by a polarizing broadband beam splitter. One part serves to image the atoms
inside the MOT chamber, the other one is used to image the atoms in the final cell. In
each part both frequency components have a low intensity of Iimg ∼ 0.01Isat in the beam
center and the circular polarizations are prepared with a λ/4-plate for the potassium
wavelength, which works sufficiently well also for lithium. Both beam components
are near-resonant with respect to the 4S1/2(F = 9/2) → 4P3/2(F

′ = 11/2) and the
2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) cooling transitions of 40K and 6Li, respectively (see
Fig. 2.3). Interference fringes, which are produced by the parallel glass windows of the
respective cell, are minimized by sending the imaging beam with a slight angle through
these windows, which makes the interference period too small to be resolved.

Each of the installed imaging systems has its own CCD camera, whereas the same
camera model is used for both systems (PCO imaging, ref. Pixelfly qe). The camera’s
CCD sensor consists of 1392× 1024 pixels with a pixel size of 6.45× 6.45µm2. Due to
its double shutter mode the camera has a short interframing time of 5µs, allowing to
take two subsequent pictures with this short time delay. A third picture can only be
recorded after the first picture is read out, i.e. after the camera’s readout time, which is
45 ms. The camera has a quantum efficiency of ∼ 45% for the Li wavelength and ∼ 30%
for the K wavelength and a dark background level of 18 counts per pixel. More than
∼ 50 photons thus need to fall on a pixel in order to be detected with a signal to noise
ratio better than 2, which corresponds to a light intensity of ∼ 2.5 × 10−5 µW/cm2.

The atom clouds are imaged on the CCD chip by a single 2-inch diameter lens
of focal length 6 cm for the imaging system of the MOT chamber and 7.5 cm for the
imaging system of the science cell. The lenses are placed at a distance of 21 cm and
26 cm from the respective atom clouds. Their numerical apertures are NAMC = 0.12
and NASC = 0.10, respectively. The magnification of both imaging systems is ∼ 0.4.

2.8.4 Practical aspects

Using Eq. (2.7) for a reliable evaluation of the recorded images requires several condi-
tions to be fulfilled. First, the detuning of the imaging beam needs to be appropriately
chosen. Samples with a high atomic density or large atom numbers can be optically
dense for weak resonant laser beams. The frequency of the imaging beam should thus
be detuned in order to keep the peak optical density well below the maximum de-
tectable value (which is ∼ 6 in our system). However, for non-zero detuning the atoms
refract the imaging light, which can yield false absorptive signals, when the refracted
light is not collected entirely by the imaging system. In our system we indeed observe
such a degradation of the image quality for a large detuning. Since the refraction an-
gle is approximately inversely proportional to the size of the atom cloud, this effect
is particularly important for small clouds. Then, the image should be taken after an
appropriate time of flight, during which the cloud freely expands.

Second, the duration of the imaging pulses needs to be correctly chosen. It is a
compromise between signal to noise ratio and blurring of the recorded image due to
recoil-induced motion of the atoms. In addition, a too long duration might lead to a
depumping of the atoms into a dark hyperfine state, requiring additional repumping
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light. The blurring can be estimated as follows. If an atom scatters N photons during
the imaging pulse of length ∆t, it gains a velocity of Nvrec along the direction of
the imaging beam due to absorption and a mean velocity of

√
Nvrec in a random

direction due to spontaneous emission. The resulting typical longitudinal displacement
is ∆z = (N/2+

√

N/3)vrec∆t. For a proper choice of the imaging duration the Doppler
shift should be negligible and the longitudinal displacement should be smaller than the
depth of field of the imaging system. Also, the transverse displacement should be
smaller than the resolution of the imaging system. In our setup, we chose an imaging
pulse duration of 100µs. For the used imaging beam intensity Iimg ∼ 0.01Isat, each
atom scatters ∼ 15 photons in case of resonant imaging, leading to a longitudinal
displacement of ∼ 75µm for 6Li and of ∼ 10µm for 40K and a maximum Doppler shift
of ∆ωD = 0.3 Γ for 6Li and ∆ωD = 0.03 Γ for 40K. For a longer duration the Doppler
shift for 6Li would significantly affect the absorption. The recoil-induced motion is
much more limiting for 6Li than for 40K, due to the lighter mass of 6Li.

For the chosen imaging beam pulse duration, the depumping of the atoms into
a dark hyperfine state can be negligible. We verified this by comparing the optical
densities in absence and presence of a repumping beam. The optical density was
found larger by only 8% for 6Li in the latter case. For 40K, no significant change was
observed due to the larger hyperfine splitting of the excited state. We thus do not use
repumping light for imaging. Then, however, only those atoms can be detected which
initially occupy the correct hyperfine ground state. When the trapped atoms occupy
both hyperfine ground states before the imaging, it is thus necessary to optically pump
all of them into the correct hyperfine state. We achieve this by exposing the atoms
for 500µs to a repumping light pulse before the image is taken. In our experimental
sequence, this procedure needs to be applied only when imaging the atoms trapped in
the MOT.

For a convenient quantitative analysis of the recorded transmission profiles it is
desired that the imaging beam has the same intensity in both the absorption and the
reference picture. Since the intensity of the imaging beam usually fluctuates, it is thus
important that the time delay between the two imaging pulses is smaller than the time
scale of these fluctuations, which in our setup was found to be of the order of ∼ 50 ms.
We recorded the dependence of the intensity difference of two subsequent imaging
pulses on their time delay for three different time delays (see Fig. 2.15 (a)). The figure
shows that the intensity difference can indeed be significantly decreased by choosing a
small time delay. However, in the imaging sequence a small delay in general leads to an
absorption of both imaging beam pulses by the atoms, since those don’t have the time
to disappear before the second pulse is launched. The absorption of the second pulse
can, however, be circumvented by detuning the imaging beam far off resonance (by
−10 Γ). This is achieved by using an AOM in double-pass configuration, which allows
to change the imaging beam frequency on a time scale of several tens of microseconds
without affecting the intensity of the beam. In our system we implemented this fast
imaging technique. As a result, we obtain a very reliable determination of the optical
density. For example, for a priori identically prepared atom clouds in a (small) 6Li-
MOT, we obtain a standard deviation of σ(OD)/OD = 3.8% for the measured optical
density.

Finally, the imaging optics need to be correctly aligned, i.e. the magnification needs
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Figure 2.15: (a) Standard deviation σ(∆Iimg/Iimg) of the relative intensity difference
of two subsequent imaging beam pulses for three different time delays. The intensity
difference is smaller for smaller time delays. Thus the reliability of absorption images
can be increased by decreasing the time delay between the two imaging pulses. (b)
Detected atom number as a function of the camera position. di denotes the distance
of the image plane from the lens. The atom number is maximum when the camera is
placed in the image plane.

to be precisely known and the CCD chip needs to be placed in the focal plane of the
image. We measured the magnification of our imaging systems with a “printed card”
grid, which was placed at the same distance as the atom cloud. Once the magnification
is known, the atom number can be reliably measured. We studied the sensitivity of
the detected atom number with respect to the positioning of the CCD chip. The result
is shown in Fig. 2.15 (b), which depicts the detected atom number as a function of
the camera’s position. The figure demonstrates that the detected atom number is
maximum when the camera is placed in the image plane.

2.8.5 Auxiliary detection systems

Besides the absorption imaging systems, we installed three additional probing systems
to facilitate the day-to-day operation of the experiment or to do quantitative measure-
ments which allow a continuous measurement process. All three additional probing
systems serve to measure the number of atoms trapped in the MOTs only. Since those
are continuously excited by the MOT beams, they emit fluorescence light, which is
proportional to the atom number. The first probing system collects a part of this fluo-
rescence and records it with a video camera connected to a TV-screen. No quantitative
measurements are done with this system. Its simply yields a convenient way to obtain
approximate information about the positioning of the MOTs, their shape and their size.
The other two probing systems employ each a large area photo diode which records
the power of the emitted fluorescence. Optical frequency filters allow to measure the
fluorescence light of each MOT separately. The photo diodes continuously measure the
atom number in the MOTs without affecting the atoms and are thus mainly employed
for atom number optimization procedures. We also use them for the photoassociation
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experiment described in chapter 4.
The absolute atom number estimation from the measured fluorescence signals of the

MOT is much less precise than the estimation from absorption images. This is, because
the number of excited atoms in the MOT depends on many parameters which are
difficult to determine, such as the effective detuning of the MOT beams (which depends
on the magnetic field) and the intensities of cooling and repumping light. Nonetheless,
when calibrated to the atom number estimates obtained from the absorption images,
the fluorescence yields good estimates, since the fluorescence is in general proportional
to the atom number. However, the proportionality only holds for small clouds (N .
3×109 atoms) as demonstrated by Fig. 2.16, which shows the time evolution of the atom
number in the 40K-MOT measured by absorption images and by the fluorescence signal
(calibrated to a small atom number). We attribute the deviation from proportional
behavior for large atom numbers to reabsorption of the scattered photons by the atoms
and to the increasing absorption of the trap light which leads to a reduced intensity
in the center of the trap. Therefore we use the fluorescence light for atom number
estimations only for small atom numbers.
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Figure 2.16: Number of trapped atoms in the 40K-MOT and corresponding emitted
fluorescence signal as a function of the loading time. For small atom numbers (N .
3×109) the fluorescence signal is approximately proportional to the atom number. For
larger atom numbers the fluorescence signal deviates from a proportional behavior. We
attribute this to reabsorption of the scattered photons by the trapped atoms and to
absorption of the trap light leading to a reduced intensity at the cloud center.

2.8.6 Experiment control and data acquisition

We use two computers to run our experiment. One computer controls all digital,
analog and GPIB commands and the cameras. The other is used for data acquisition
and evaluation. Both computers run Windows XP as an operating system.
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Our experiment requires precise temporal control of a variety of parameters. Most
operations require a timing resolution on the millisecond scale, certain others, such as
imaging, require timing on the microsecond scale. The programming software we chose
is C#, which is convenient to use. Running it in a Windows environment, unfortunately
brings about the disadvantage, that the operating system can interrupt the program
at any time. The resulting timing of the program can thus significantly vary (typically
10 ms shot-to-shot). In order to circumvent this problem, we use an external digital
input/output (DOI) board as the main clock in our system, which has an internal
oscillator with 50 ns time resolution. When the experimental sequence is launched,
the parameters of the sequence are loaded from the program into the buffer of this
board and then executed. From that point on (until the buffer is cleared), the board
no longer communicates with the computer and is thus not susceptible to operating
system interruptions.

The loading of the parameters into the buffer is time consuming and can significantly
decrease the repetition rate of the experiment. Therefore, the number of data points
is kept small by maximally discretizing the time interval of the sequence. Operations
which require timing on a millisecond scale are controlled with a time resolution of
0.5 ms, all others with a time resolution of 10µs.

The DOI board controls three analog output (National Instruments, ref. NI PXI-
6713) and two digital output cards (National Instruments, ref. NI PXI-6533). The
analog output cards have 8 BNC outputs each, which deliver voltages between −10 V
and +10 V and maximum currents of 250 mA. The digital output cards have 24 and 6
BNC outputs delivering either 0 V or 5 V. In order to avoid electronic feedback from
the experiment into the computer, which might be induced by the fast switching of
magnetic coils, most of the digital outputs are isolated from the experiment via opto-
couplers.

The data acquisition program is based on the one described in the thesis of Mar-
tin Teichman [160]. It has been written in the programming language Python. The
program instantaneously evaluates the images recorded during an imaging process. It
displays the density profiles of each image and calculates and displays the normalized
transmission profile. It further calculates the quantities of interest such as the total
atom number, the cloud size, its central optical density, etc.

2.9 Conclusion and outlook

In this chapter we have presented the central parts of the constructed Fermix machine.
These include the vacuum system, two laser systems for the two atomic species, two
sources of high-flux cold atomic beams, a large atom number dual-species magneto-
optical trap, two magnetic traps, linked by a magnetic transport, imaging devices for
probing the atoms and a computer control system for the experimental procedures. To
reach the quantum degenerate regime, evaporative cooling in the final magnetic trap
needs to be performed. For further investigation, the atom clouds will be transfered
into an optical dipole trap. To conclude this chapter we show two pictures of our
laboratory recorded at the beginning and end of my PhD work (see Fig. 2.17).
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September 2007

April 2011

Figure 2.17: Photographs of the laboratory recorded at the beginning (up) and end
(down) of my PhD work.
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Chapter 3

Characterization of the
experimental apparatus

In this chapter we present the characterization of the constructed experimental setup.
We start with a detailed study of the atom sources, i.e. the Zeeman slower for 6Li and
the 2D-MOT for 40K. Then we characterize the dual-species MOT, first in single-species
and subsequently in dual-species operation for which we studied interspecies collisions.
Finally, we describe the implementation of the subsequent stages in the experimental
sequence for the creation of a degenerate mixture, including the transfer of the atomic
clouds into the magnetic quadrupole trap, the magnetic trapping and transport to the
final science cell.

3.1 6Li Zeeman slower

For our application the essential parameter which characterizes the performance of the
Zeeman slower is the capture rate of the 6Li-MOT. We studied its dependence as a
function of several Zeeman slower parameters, such as the temperature of the oven, the
power of the slowing light, the magnitude of the magnetic field and the intensity ratios
between the repumping and slowing light. The optimized values of these parameters
are displayed in Tab. 2.1, leading to a 6Li-MOT capture rate of ∼ 1.2 × 109 atoms/s.

Figure 3.1 (a) shows the dependence of the 6Li-MOT capture rate on the power
of the Zeeman slowing light. The curve increases with increasing beam power and
indicates saturation for higher powers. In the experiment the slowing light power is
45 mW, for which the curve in Fig. 3.1 (a) starts to saturate, demonstrating that, for
the given beam power, the size of the slowing beam is well chosen. In particular it
shows that the beam is not absorbed significantly by the atoms inside the slower.

The dependence of the 6Li-MOT capture rate on the intensity ratio between re-
pumping and slowing light of the Zeeman slower is depicted in Fig. 3.1 (b). The curve
increases with increasing repumping intensity and saturates for higher intensities. For
the intensity ratio Irep/Islow ∼ 0.1 the repumping intensity in the region where the
magnetic field of the Zeeman slower changes sign, is of the order of the saturation
intensity. Therefore the transition probability of the repumping transition saturates
at Irep/Islow ∼ 0.1, explaining the behavior in Fig. 3.1 (b). The graph shows that the
Zeeman slower only requires a small repumping intensity. It is important that the
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Figure 3.1: 6Li-MOT capture rate as a function of (a) the power of the Zeeman slowing
light for a constant repumping light power of 5.6 mW and (b) the intensity ratio between
repumping and slowing light of the Zeeman slower for a constant slowing light power
of 45 mW. The intensities of the superimposed beams depend on the position inside
the slower, since the beams are focused toward the oven. At the position where the
magnetic field changes sign, a power of 10 mW corresponds to an intensity of 2.5 Isat,
with the saturation intensity Isat given in Tab. 2.3.

repumping light has the same circular polarization as the slowing light, since it helps
to optically pump the atoms to the cycling transition used for slowing.

Figure 3.2 (a) shows the 6Li-MOT capture rate as a function of the magnitude of
the axial magnetic field of the Zeeman slower. The position of the maximum depends
on the detuning of the slowing light, which, in the experiment, was chosen to be
∆ωslow = −75 Γ. The experimentally determined optimum value of the magnetic field
is close to the value expected from our numerical simulations. For values which differ
from the optimum one, the profile of the axial magnetic field is less well adapted to
the change in the atoms’ velocity, leading to a less efficient slowing.
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Figure 3.2: 6Li-MOT capture rate as a function of (a) the axial magnetic field of
the Zeeman slower and (b) the temperature of the Li-oven. Circles represent the
experimental data and the solid curve the theoretical prediction from Eq. (3.3).

Figure 3.2 (b) shows the dependence of the 6Li-MOT capture rate on the oven
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temperature T (circles) as well as a (scaled) theoretical prediction (solid curve) for the
experimental data. The curve shows a nearly exponential increase of the capture rate
with the temperature. The theoretical prediction is based on a model which assumes
no collisions between the atoms (i.e., no intrabeam collisions and no collisions between
the beam and the MOT atoms). It is derived as follows.

In the absence of collisions, the normalized velocity distribution of the Zeeman-
slowed atoms exiting the slower does not depend on the temperature of the oven.
Assuming that the 6Li-MOT captures mainly atoms which have been slowed by the
Zeeman slower, the capture rate ṄM of the 6Li-MOT is a temperature-independent
fraction of the flux ṄZ of the Zeeman-slowed atoms: ṄM(T ) = κ1ṄZ(T ). The propor-
tionality constant κ1 depends on the divergence of the atomic beam and the capture
velocity of the 6Li-MOT. The flux of the Zeeman-slowed atoms ṄZ is given by the
flux of the oven atoms which have a speed smaller than the Zeeman slower’s capture
velocity vZee

cap and which are in the correct internal atomic state to be decelerated by
the Zeeman slower (i.e. F = 3/2, mF = 3/2). Assuming the oven to be in thermal
equilibrium, ṄZ is given by [137, 143]

ṄZ(T ) = κ2ns(T )A

∫ ΩZ

0

dΩ
cos θ

4π

∫ vZee
cap

0

vf(v, T )dv, (3.1)

with a temperature-independent constant κ2, which equals the fraction of atoms which
are in the correct internal atomic state. ns(T ) is the atomic density in the oven,
A = 2 × 10−5 m2 the aperture surface of the oven, ΩZ = A′/l2 = 5 × 10−4 the solid
angle of the atomic beam (with A′ the aperture surface of the last differential pumping
tube and l the distance between the two aperture surfaces A,A′) and dΩ = 2π sin θdθ,
with θ the emission angle with respect to the oven axis. f(v, T ) is the normalized speed
distribution function given by

f(v, T ) =

√

2m3

πk3
BT

3
v2 exp

(

− mv2

2kBT

)

. (3.2)

Since the solid angle of the atomic beam is small, it is cos θ ≈ 1 and thus
∫ ΩZ

0
dΩ cos θ ≈

ΩZ.
The explicit temperature dependence of the 6Li-MOT capture rate is then obtained

via ṄM(T ) = κ1ṄZ(T ) by substituting into Eq. (3.1) the ideal gas equation ns(T ) =
ps/(kBT ) and the relation ps = pa exp[−L0/(kBT )] for the saturated vapor pressure ps,
with pa = 1.15 × 108 mbar and the latent heat of vaporization L0/kB = 18474 K [161].
This relation applies to the temperature range 300-500 ◦C with an accuracy of 5%.
Thus, we have

ṄM(T ) = κAΩZpa

√

m3

8π3k5
BT

5
e
−

L0
kBT

∫ vZee
cap

0

v3e
− mv2

2kBT dv, (3.3)

with κ = κ1κ2. Scaling Eq. 3.3 to the experimental data for a given (low) temperature
(T = 350◦C) yields the theoretical prediction for the curve shown in Fig. 3.2. The
scaling yields κ = 10−3, thus 0.1% of the atoms, which enter the Zeeman slower with
a velocity smaller than vZee

cap, are captured by the 6Li-MOT.
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The main contribution to the small value of κ is the large divergence of the slowed
atomic beam: κ is proportional to the ratio of the atomic beam cross section and the
capture surface of the 6Li-MOT, which is estimated to ∼ 10−2 (assuming the 6Li-MOT
capture surface to be a circle of 1.1 cm diameter). Two-dimensional transverse laser
cooling of the atomic beam could vastly increase the value of κ. Still, not all atoms
which enter the Zeeman slower with a velocity smaller than vZee

cap and which reach the
capture surface of the 6Li-MOT will be trapped. The value of κ implies that only 10%
of those atoms will be trapped. This is due to an inefficient capture of the 6Li-MOT
and to a significant fraction of oven atoms occupying the incorrect internal atomic
states.

The obtained theoretical prediction agrees well with the experimental data for tem-
peratures below 475 ◦C (see Fig. 3.2 (b)). For temperatures above 475 ◦C, the exper-
imental data deviate from the prediction indicating that intrabeam collisions or col-
lisions between the atoms in the beam and the MOT become important. We found
that for T=500 ◦C collisions between the thermal 6Li beam and the trapped 6Li-MOT
atoms indeed take place, which we verified by measuring the lifetime of the 6Li-MOT
in presence and absence of the thermal 6Li beam, making use of the mechanical block
placed at the exit of the oven. The lifetime was found 10% larger for the case where
the thermal 6Li beam was blocked. In a similar way the thermal 6Li beam also affects
the lifetime of the 40K-MOT. In order to avoid a reduction of the number of trapped
40K atoms in the dual-species MOT, we therefore limit the 6Li-oven temperature to
500 ◦C.

With the help of Eq. 3.1 the lifetime of the oven can be estimated. Assuming
that the collimation tube of the oven recycles all atoms sticking to its wall and the
vacuum pumps have no impact on the Li pressure in the oven, the total atomic flux
through the collimation tube is obtained by replacing A′ = A, vZee

cap = ∞ and l =
8 cm (the length of the collimation tube) in Eq. 3.1. For the working temperature
T = 500 ◦C the lithium vapor pressure is ps = 4.8 × 10−3 mbar, corresponding to a
density ns = 4.5 × 1019 m−3. Thus, the atom flux through the collimation tube is
ṄO = 3.5 × 1014 s−1=̂3.5 × 10−12 kg/s. With 3 g of 6Li this corresponds to an oven
lifetime of τoven ∼ 25 years. (The importance of the recycling becomes manifest when
comparing this value to the hypothetical lifetime of the oven, would the collimation
tube be replaced by an aperture of the same surface. In this case the atom flux through
this aperture would be Ṅhyp

O = (πl2/A)ṄO ∼ 1000ṄO and thus τhyp
oven ∼ 10 days.)

3.2 40K 2D-MOT

For our purpose the essential parameter which characterizes the performance of the
2D-MOT is the capture rate of the 40K-MOT. We studied its dependence as a function
of several 2D-MOT parameters, such as: the vapor pressure in the 2D-MOT cell,
the total cooling light power, the detuning of the cooling frequency and the intensity
ratios between the repumping and cooling light and between the pushing and retarding
beams. Further, we determined the mean velocity of the atoms in the atomic beam.
The optimized values of the essential parameters of the 40K 2D-MOT are displayed in
Tab. 2.2, leading to a 40K-MOT capture rate of ∼ 1.4 × 109 atoms/s.

The mean velocity of the atoms in the atomic beam can be experimentally estimated
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as follows. Due to the Doppler shift between the atoms in the beam and the pushing
beam, the atoms can be considered to perform a ballistic flight when leaving the 2D-
MOT region. Thus, their mean velocity is approximately given by the average time
required for the atoms to reach the 3D-MOT. This time was measured by recording
the time delay of the onset of the 40K-MOT loading after switching on the 2D-MOT
beams. The time delay is obtained from the loading curve of the 40K-MOT, which is
depicted in Fig. 3.3, and a linear fit of the data points. The intersection of the fit with
the time-axis yields the desired time delay, which is ∼23 ms. The distance between the
centers of the 2D- and 3D-MOT being 55 cm, we deduce a mean longitudinal velocity of
the captured atoms of ∼24 m/s. At this velocity, the displacement due to gravity of the
beam of atoms from the 40K-MOT center is ∼2.6 mm, which is negligible compared to
the size of the 40K-MOT beams and the divergence of the atomic beam. The measured
velocity of the captured atoms is a lower bound of the capture velocity of the 40K-
MOT: vKMOT

cap > 24 m/s. Furthermore, Fig 3.3 allows us to deduce the loading rate of
the 40K-MOT, which is given by the slope of the fitted line and amounts to ∼ 1.4×109

atoms/s.

0 50 100 150 200 250 300
0

1

2

3

4

Slope:
1.4x109 atoms/s

Time delay:
23 ms

N
um

be
r o

f a
to

m
s 

in
 40

K
-M

O
T 

[1
08 ]

Time after switch-on of 2D-MOT [ms]

Figure 3.3: Number of atoms loaded in 40K-MOT as a function of the time after
switch-on of the 2D-MOT. The onset of the loading has a time delay of ∼ 23 ms,
which determines the mean longitudinal velocity of the captured atomic beam atoms
to ∼24 m/s. This velocity further represents a lower bound for the capture velocity of
the 40K-MOT: vKMOT

cap > 24 m/s. The slope of the curve yields the capture rate of the
40K-MOT, which is ∼ 1.4 × 109 atoms/s.

Figure 3.4 (a) shows the dependence of the 40K-MOT capture rate on the detuning
∆ωcool of the 2D-MOT cooling light. The curve has a maximum at ∆ωcool = −3.5 Γ
and a full width at half maximum (FWHM) of 2.7 Γ. The maximum is the result of two
opposing effects: the scattering force of the 2D-MOT beams decreases with increasing
detuning whereas the capture velocity increases [134]. The first effect implies a less
efficient transverse cooling whereas the second leads to a more efficient capture of
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atoms. An additional effect might influence the shape of the curve: since the scattering
force of the pushing beam depends on the detuning, also the mean-velocity of the atomic
beam depends on it [139, 140, 142]. Since we measure the 40K-MOT capture rate rather
than the flux of the 2D-MOT, the mean-velocity might exceed the capture velocity of
the 40K-MOT. However, as shown in Refs. [139, 140, 142], the mean-velocity of the
beam only slightly changes with the detuning, such that we expect this effect to only
weakly influence the curve. In summary, the shape of the curve in Fig. 3.4 (a) shows
that the 40K-MOT capture rate is not very sensitive to changes of ∆ωcool.
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Figure 3.4: 40K-MOT capture rate as a function of (a) the detuning and (b) the total
power of the cooling light used for the 2D-MOT (for a constant intensity ratio between
the cooling and repumping light). The total power refers to the sum of the powers
in the six 2D-MOT beams, where a power of 470 mW corresponds to a total intensity
of ∼ 47 Isat at the center of the 2D-MOT, with the saturation intensity Isat given in
Tab. 2.3.

The dependence of the 40K-MOT capture rate on the total power of the 2D-MOT
cooling light is depicted in Fig. 3.4 (b). The total power refers to the sum of the powers
in the six 2D-MOT beams. According to the chosen beam sizes, the maximum power
of 470 mW corresponds to a total intensity of ∼ 47 Isat (for zero detuning) at the center
of the 2D-MOT, with the saturation intensity Isat given in Tab. 2.3. The curve almost
linearly increases with light power without a clear indication of saturation. The increase
is due to two effects. First, the 2D-MOT capture velocity increases with laser power
due to the power broadening of the atomic spectral lines. Second, the scattering force
increases, resulting in a steeper transverse confinement, which facilitates the injection
of the atoms into the differential pumping tube. At some point, the curve is expected
to saturate. This is, because on the one hand, the optical transition used for cooling
will saturate, and on the other hand, the temperature of the cooled atoms and light-
induced collisions between them increase with light power. The latter effects, however,
are less limiting in a 2D-MOT as compared to a 3D-MOT, since the atomic density
in a 2D-MOT is typically three orders of magnitude smaller due to the absence of
a three-dimensional confinement. Thus, in a 2D-MOT a high light power would be
required to reach the regime of saturation.

Figure 3.5 (a) shows the dependence of the 40K-MOT capture rate on the intensity
ratio between the cooling and repumping light of the 2D-MOT for the two different
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repumping detunings ∆ω
(1)
rep = −2.5 Γ and ∆ω

(2)
rep = −6.5 Γ and for a constant total

cooling light power of 300 mW. The graph shows that for both frequencies the 40K-
MOT capture rate increases with increasing repumping intensity and that it saturates
at high intensities. It also shows that the maximum capture rate is bigger for the
smaller detuning. The intensity dependence of the curves results from the likewise
intensity dependence of the transition probability for an atomic transition. The max-
imum capture rate is bigger for the smaller detuning, since this detuning contributes
more efficiently to the cooling process. In our experiment, a fixed total laser power is
available for both repumping and cooling light. It is distributed such that the result-
ing capture rate is maximized. It was found to be maximum for an intensity ratio of
Irep/Icool ∼ 1/2. For that ratio the detuning ∆ω

(2)
rep = −2.5 Γ also yields the maximum

capture rate.
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Figure 3.5: 40K-MOT capture rate as a function of the intensity ratio between (a)
repumping and cooling light of the 2D-MOT for two different repumping detunings
∆ωrep and a constant total cooling light power of 300 mW (which corresponds to a
total intensity of ∼ 30 Isat) and (b) the pushing and the retarding beams of the 2D-
MOT. The intensities of the pushing and retarding beams refer to the intensities along
the atomic beam axis.

The dependence of the 40K-MOT capture rate on the intensity ratio between push-
ing and retarding beam is depicted in Fig. 3.5 (b). The curve has a maximum at
Ipush/Iretard ∼ 6. It is zero for values of Ipush/Iretard between 0 and 3, then increases un-
til the maximum and falls off again with a smaller slope. This feature is a consequence
of the reflectivity of the mirror inside the vacuum and of the size of its hole. For a
given intensity ratio Ipush/Iretard along the (horizontal) direction of the atomic beam,
the mirror’s reflectivity determines the intensity ratio I∗push/I

∗
retard along the vertical

direction above the reflecting surface of the mirror (see Fig. 2.9). If I∗push/I
∗
retard differs

from 1, the atomic beam can experience a vertical deflection in this region. The hole
inside the mirror creates a dark cylinder in the pushing beam after its reflection, so
that in the region above the hole only light from the retarding beam has a vertical
direction, which can also give rise to a vertical deflection of the atomic beam.

In the following we estimate the deflection of the atomic beam, which is induced by
the unbalanced retarding beam in the small region above the hole. Assuming the atomic
beam to have reached its final longitudinal velocity of 24 m/s when entering into the
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hole, the atoms spend 85µs in the region above the hole. Neglecting Doppler shifts and
the presence of the pushing beam along the horizontal direction (no transverse beams
are present in the region above the mirror), the atoms will scatter Nph = Rsc×(85µs) ∼
75 photons, with Rsc being the scattering rate [134] for the given detuning ∆ωcool =
−3.5 Γ and peak intensity I∗retard = 2.5Isat. The recoil velocity of 40K being given by
vrec = 0.013 m/s, each atom will accumulate a transverse velocity of vdev ∼ 1 m/s. This
leads to a downwards deflection of the atomic beam by an angle of ∼ 40 mrad, which
is more than a factor two bigger than the maximum deflection angle allowed by the
differential pumping tubes. The atoms will thus not reach the 40K-MOT.

This deflection needs to be compensated by an intensity imbalance I∗push > I∗retard
in the region above the reflecting surface of the mirror, as that results in an upwards
deflection of the atomic beam. For the given mirror reflectivity of 50%, I∗push > I∗retard
is equivalent to Ipush/Iretard > 4, which corresponds to the experimental observation
depicted in Fig. 3.5 (b). The deflection of the atomic beam in the region above the
hole could be avoided using a beam block inside the retarding beam which creates a
shadow on the mirror hole. In this configuration the position of the curve optimum
in Fig. 3.5 (b) would change from Ipush/Iretard = 6 to Ipush/Iretard = 4. For mirrors
with a reflectivity close to 100% the position of the curve optimum could thus even be
changed to Ipush/Iretard = 1, for which the longitudinal optical molasses cooling would
be most efficient leading to a maximum 2D-MOT flux. When such a perfect reflectivity
is not available, this optimum ratio could still be obtained, that is, by using two beam
blocks (one per beam), which create shadows on the mirror in the region where it
otherwise reflects parts of the pushing beam onto the atomic beam. The dark region
inside the longitudinal beams, might then, however, restrict the longitudinal cooling
efficiency. We did not implement these configurations since the longitudinal optical
molasses cooling is still very efficient even for the given intensity imbalance of 6 along
the atomic beam axis, due to the polarization gradients generated by the transverse
2D-MOT beams, such that the implementation of the described ideal configurations
might not be very gainful.

We now study the dependence of the 40K-MOT capture rate on the vapor pressure
of potassium (all isotopes) in the 2D-MOT cell, which is shown in Fig. 3.6 (circles)
together with a fit to a theoretical model (solid curve). The vapor pressure was deter-
mined from the absorption profile of a low intensity probe according to the procedure
described in Appendix A. The curve in Fig. 3.6 has a maximum at a vapor pressure
of 2.3 × 10−7 mbar. In the absence of collisions, the curve should increase linearly
with pressure, which is indeed observed for low pressures. For high pressures, colli-
sions become important and limit the 40K-MOT capture rate. The dependence of the
40K-MOT capture rate L on the pressure p can be described by the function [142]

L = L0 exp

[

−
(

Γcoll + β

∫

n2(r)d3r

)

〈tcool〉
]

, (3.4)

where L0 denotes the hypothetical capture rate of the 40K-MOT in the absence of
collisions in the 2D-MOT chamber, Γcoll denotes the collisional loss rate due to collisions
in the 2D-MOT chamber between the cooled atoms and the background atoms, 〈tcool〉
is the average time which the atoms spend inside the 2D-MOT cooling region, n(r)
is the position-dependent atomic density in the atomic beam, and β is the two-body
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loss rate coefficient which describes the cold collisions between the 40K atoms in the
atomic beam. L0 is proportional to the atomic density nK in the vapor cell, and
Γcoll = nKσeff 〈v〉, where σeff is the effective collision cross section, and 〈v〉 ∼ 400 m/s
the mean velocity of the thermal potassium atoms. The term describing the cold
collisions is approximately proportional to n2

K due to the small density obtained in the
2D-MOT. For the investigated pressure range, the ratio p/nK only changes slightly with
temperature and can thus be considered constant. Therefore Eq.(3.4) can be written
as

L(p) = κ1p exp
(

−κ2p− κ3p
2
)

, (3.5)

with the constants κ1, κ2, κ3, which are obtained from the fit shown in Fig. 3.6. At the
curve’s maximum, the fit yields κ2p/κ3p

2 = 8, showing that the collisions which limit
the 40K-MOT capture rate are mainly the collisions with the hot background atoms,
consisting mostly of 39K.
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Figure 3.6: 40K-MOT capture rate as a function of the potassium vapor pressure (all
isotopes). Circles: experimental data, solid curve: fit of the experimental data by
Eq. (3.5). Due to the low abundance of the 40K-isotope in our potassium sample (4%),
the 40K-MOT capture rate is limited by collisions between the 40K atoms and the other
K-isotopes in the 2D-MOT cell. At room temperature the potassium vapor pressure is
1 × 10−8 mbar.

The background atoms are predominantly potassium atoms. These can collide
either with the excited or the non-excited 40K atoms of the atomic beam. Depending
on the isotopes of the colliding partners, these collisions have different cross sections.
Collisions between an excited and a non-excited atom of the same isotope usually have
a very large cross section due to the strong long-range resonant dipole interaction,
described by a C3/R

3-potential. In 2D-MOT systems of other atomic species these
collisions have been identified as the ones which limit the flux of the 2D-MOT [139,
140, 142]. In the case of 40K, the scattering rate for these collisions is reduced by the
small abundance of 40K in the vapor. Therefore other collisions might limit the flux.
In order to identify the flux-limiting collisions we calculate the cross section of different
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possible collisions and deduce the corresponding collision rates. The cross sections can
be calculated using the approach described in Ref. [162] for losses out of a cold atom
cloud. The cross section for collisions involving an excited and a non-excited 40K atom
is given by [162]

σ40,40∗

eff = π

(

4C3

mvesc 〈v〉

)2/3

, (3.6)

where m is the mass of the 40K atom, vesc ∼ 1 m/s is the estimated transverse velocity
kick needed to make an atom miss the 40K-MOT, and C3 = 5.4 × 10−48 Jm3 is the
dispersion coefficient for the resonant dipole-dipole interaction [163]. The cross section
for collisions involving a non-excited 40K atom and a non-excited K atom of the different
isotopes is given by [162] (for a derivation, see also Sec. 3.5)

σ40,39
eff ∼ σ40,41

eff ∼ σ40,40
eff = π

(

15πC6

8mvesc 〈v〉

)1/3

, (3.7)

where C6 = 3.7×10−76 Jm6 is the dispersion coefficient for the underlying van der Waals
interaction [163]. Substituting the experimental parameters, one obtains: σ40,40∗

eff =
2.7 × 10−16 m2 and σ40,39

eff ∼ σ40,41
eff ∼ σ40,40

eff = 1.3 × 10−17 m2. The resulting collision
rates are proportional to the atomic densities n39, n40 and n41 of the corresponding
isotopes in the vapor and the relative number of excited 40K atoms in the atomic beam,
which was estimated to P ∼ 0.1 for the given beam detunings and intensities. One
obtains

Γ40,40∗

coll = Pn40σ
40,40∗

eff 〈v〉 = 4.4 × 10−16nK, (3.8)

Γ40,39
coll = (1 − P )n39σ

40,39
eff 〈v〉 = 4.4 × 10−15nK, (3.9)

Γ40,40
coll = (1 − P )n40σ

40,40
eff 〈v〉 = 2.0 × 10−16nK, (3.10)

Γ40,41
coll = (1 − P )n41σ

40,41
eff 〈v〉 = 3.0 × 10−16nK (3.11)

(nK denoting the atomic density of potassium in the vapor cell). The dominant collision
rate here is Γ40,39

coll (Eq. (3.9)) for collisions involving a non-excited 40K atom and a non-
excited 39K atom from the background. The largest collision rate for collisions between
two 40K atoms, Γ40,40∗

coll , is by a factor of 10 smaller than Γ40,39
coll . Therefore, collisions

involving two 40K atoms are not the collisions which limit the flux of the 2D-MOT. This
is in contrast to 2D-MOT systems of other species. From the difference between Γ40,40∗

coll

and Γ40,39
coll we conclude that the flux of the 2D-MOT for 40K could still be improved by

about a factor of 10 by using a potassium sample of a higher isotopic enrichment.

3.3 6Li-40K dual-species MOT

In this section we characterize the 6Li-40K dual-species MOT. We first present the
characterization of the MOTs in single-species operation and then turn to the charac-
terization of the MOT in dual-species operation. The optimum parameters, which lead
to atom numbers of Nsingle ∼ 8.9 × 109 in the 40K-MOT and Nsingle ∼ 5.4 × 109 in the
6Li-MOT, are displayed in Tab. 2.3 together with the characteristics of the MOTs (in
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dual-species operation, the atom numbers only slightly change due to the additional
interspecies collisions to Ndual ∼ 8.0 × 109 in the 40K-MOT and Ndual ∼ 5.2 × 109 in
the 6Li-MOT). The (1 − 1/e)-loading times of the MOTs are ∼ 5 s for 40K and ∼ 6 s
for 6Li.

3.3.1 Single-species MOTs

In this section we describe the characterization of the single-species magneto-optical
traps using the parameters for the optimized dual-species operation. We determined
the atom numbers, the atomic densities in the cloud center, the loading times and
the temperatures. Furthermore, we studied for each atomic species the dependence of
the steady-state MOT atom number on the following parameters: the magnetic field
gradient, the power and detuning of the cooling light and the intensity ratio between
the repumping and cooling light.

Magneto-optical traps with large atom numbers have a high optical density and are
optically dense for weak resonant laser beams. Therefore, when determining the atom
number via absorption imaging, the frequency of the imaging beam has to be detuned,
so not to “black out” the image.

Figures 3.7 (a,b) depict the detected atom number of the two MOTs (circles) as a
function of the detuning of the imaging beam. The detected atom number was derived
from the measured optical density assuming the imaging beam to be resonant. The
curves are expected to have the shape of a Lorentzian with the peak centered around
zero detuning. The experimental data shown in Figures 3.7 (a,b) clearly deviate from
a Lorentzian behavior—they saturate for small magnitudes of the detuning. This
deviation demonstrates that the MOTs are optically dense in this regime. A correct
estimate of the atom number is obtained from an extrapolation of the experimental
data to zero detuning based on a Lorentzian fit of the curve wings (solid curves). A
reliable extrapolation, however, requires imposing the width of the Lorentzian fit. In
order to determine this width, an additional experiment was done (not shown): the
data in Figs. 3.7 (a,b) were again recorded and fitted by a Lorentzian for a MOT with
a small atom number and a low optical density (obtained by a short loading of 250 ms).
The widths found by this additional measurement were 1.05 Γ for 40K and 1.5 Γ for 6Li.
For 40K this width corresponds to the natural linewidth of the exited state addressed
by the imaging transition. For 6Li the width is larger than the natural linewidth, since
the small excited hyperfine structure is unresolved and thus its width (∼ 0.5 Γ) and the
natural linewidth add up (this line broadening does not occur when a bias magnetic
field is applied and a closed transition is used for imaging). The peak values of the
Lorentzian fits in Figs. 3.7 (a,b) finally yield the atom numbers in the MOTs, given in
Tab. (2.3).

Figures 3.7 (c,d) show images of the MOTs and their doubly-integrated density
profiles n for the case of a resonant imaging beam. The flat top of n as a function of
position shows that the MOTs are optically dense. Their central optical densities for
the resonant imaging beam are determined to be ∼ 20 for 40K and ∼ 15 for 6Li by the
extrapolation technique described above. In addition, the density profiles in Figs. 3.7
(c,d) show that the MOTs have spatial extensions of the order of 1 cm.

Due to the high optical density of the MOTs all images are taken with a detuning
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Figure 3.7: (a,b) Detected atom number in the MOTs as a function of the detuning
of the imaging beams. Circles correspond to the experimental data and solid curves
to Lorentzian fits of the curve wings with an imposed width, which was determined by
another measurement. (c,d) Absorption images of the MOTs and the doubly-integrated
density profile n, recorded with a resonant imaging beam. The graphs (a,c) relate to
the 40K-MOT and (b,d) to the 6Li-MOT. The flat top of n in the graphs (c,d) and
the saturation of the detected atom number for small magnitudes of the detuning in
the graphs (a,b) demonstrate that the MOTs are optically dense for the imaging beam
when the detuning is small. Their (extrapolated) central optical densities for a resonant
imaging beam are ∼ 20 for 40K and ∼ 15 for 6Li.

of −2 Γ. The reference picture (see Sec. 2.8.1) is taken with a detuning of −10 Γ. The
light absorption of the reference picture due to the presence of the atoms is thus ∼ 25
times less than in the absorption picture and can be neglected.

The atomic density in the MOT center is extracted from the recorded
two-dimensional density profile as described in Sec. 2.8.2. We obtain nK

c ∼ 3 ×
1010 atoms/cm3 and nLi

c ∼ 2 × 1010 atoms/cm3, respectively. The temperature of the
MOTs in single-species operation is determined by the time-of-flight method described
in Sec. 2.8.2. The 40K-MOT has a temperature of 290µK and the 6Li-MOT of 1.4 mK.
Both temperatures are higher than the Doppler cooling limit, because of the high inten-
sity in the MOT beams. In addition, for 6Li, the unresolved excited hyperfine structure
(see Fig. 2.3) inhibits sub-Doppler cooling effects. The same temperatures are found
in dual-species operation. The measured temperatures and atomic densities yield the
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peak phase space densities DK = nK
c Λ3

K ∼ 1.2 × 10−7 and DLi = nLi
c Λ3

Li ∼ 1.3 × 10−7

with the thermal de Broglie wavelength Λ =
√

2π~2/(mkBT ), respectively.
The dependence of the MOT atom number on the detuning of the cooling light is

depicted in Figs. 3.8 (a,b). The atom number is maximum at ∆ωK
cool = −3 Γ for 40K

and at ∆ωLi
cool = −5 Γ for 6Li, and has a FWHM of 2.3 Γ and 4.1 Γ, respectively.
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Figure 3.8: MOT atom number as a function of (a,b) the detuning and (c,d) the power
of the cooling light per MOT beam for a constant intensity ratio between the cooling
and repumping light. The graphs (a,c) relate to the 40K-MOT and (b,d) to the 6Li-
MOT. For 40K a power of 45 mW corresponds to an intensity of 13 Isat, for 6Li a power
of 20 mW corresponds to an intensity of 4 Isat, with the respective saturation intensities
Isat given in Tab. 2.3.

Figures 3.8 (c,d) show the dependence of the MOT atom number on the power of the
cooling light per MOT beam. In the figures, a power of 10 mW corresponds to an on-
resonance peak intensity of ∼ 3 Isat (Fig. 3.8 (c)) and ∼ 2 Isat (Fig. 3.8 (d)) in each of the
six MOT beams. The atom number increases with increasing light power and saturates
for higher powers. The saturation is due to several effects. First, the optical transition
used for cooling saturates for high intensities. Second, the repulsive forces between the
atoms due to rescattered photons and the temperature of the cloud increase with light
power [162]. Finally the scattering rate for light-induced cold collisions increases with
light power.

The dependence of the MOT atom number on the axial magnetic field gradient is
shown in Fig. 3.9. For the 40K-MOT the atom number has a maximum for a gradient
of 8 G/cm. This gradient is thus chosen for the dual-species operation. The figure
shows that the atom number in the 6Li-MOT is not optimum for this value, it is larger
for higher gradients.
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Figure 3.9: MOT atom number as a function of the axial magnetic field gradient. The
atom number in the 40K-MOT is maximum for a gradient of 8 G/cm. This gradient is
chosen for the dual-species operation. The 6Li-MOT contains more atoms for higher
magnetic fields.

Figure 3.10 (a) shows the dependence of the 40K-MOT atom number on the inten-
sity ratio Irep/Icool between repumping and cooling light for three different repumping

detunings ∆ω
(1)
rep = −3 Γ, ∆ω

(2)
rep = −5 Γ and ∆ω

(3)
rep = −7 Γ and a constant cooling

light power of 18 mW per MOT beam. The curves have a maximum at different ra-
tios Irep/Icool, the position of the maxima lying at higher ratios for lower detunings.
Furthermore, the maxima have different values for the three curves. The maximum is
biggest for the detuning ∆ω

(2)
rep = −5 Γ. The shape of the curves can be understood as

follows. Each curve increases between Irep/Icool = 0 and the position of the maximum,
because the transition probability of the repumping transition increases with increasing
repumping intensity. Thus the atoms are more efficiently cooled by the cooling light,
as they are more efficiently repumped into the cycling transition. However, when the
intensity of the repumping light becomes too large, the curve decreases again. Then,
due to the strong repumping, the atoms are exposed to the more intense near-resonant
cooling light, which causes light-induced cold collisions, leading to trap loss. At the
maximum, the repumping is sufficiently strong to allow for an efficient cooling, and it is
sufficiently weak to preserve the atoms from cold collisions induced by the strong cool-
ing light. The value of the curve maximum is biggest for the detuning ∆ω

(2)
rep = −5 Γ.

It is situated at Irep/Icool ∼ 1/20, for which, as one can see below, only ∼ 20% of the
40K-MOT atoms occupy the cooling cycle states F = 9/2 or F ′ = 11/2 (see Fig. 3.10
(b)), the others occupying the “dark” hyperfine ground state F = 7/2.

For very small intensity ratios Irep/Icool ≤ 0.01 the atom number in the 40K-MOT
is larger for higher repumping detunings (Fig. 3.10 (a)). This behavior might be a
consequence of the fact that the 40K-MOT is loaded from a slow atomic beam. The
beam atoms, which have a negative Doppler shift of more than 5 Γ with respect to the
counter-propagating MOT beams, might absorb the repumping light more likely when
it has a higher detuning.

Figure 3.10 (b) shows the fraction of atoms in the 40K-MOT (circles) which populate
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Figure 3.10: (a) 40K-MOT atom number as a function of the intensity ratio between
repumping and cooling light for three different repumping detunings ∆ωrep and a con-
stant cooling light power of 18 mW per MOT beam (which corresponds to an intensity
of 6 Isat). (b) Circles: measured fraction of atoms in the 40K-MOT populating the
states F = 9/2 or F ′ = 11/2 (cooling cycle states) as a function of the intensity ra-
tio between repumping and cooling light for the repumping detuning ∆ωrep = −5 Γ
and a constant cooling light power of 18 mW per MOT beam. For the ratio which
maximizes the total atom number in the 40K-MOT, Irep/Icool ∼ 1/20, only 20% of the
trapped atoms occupy the cooling cycle states. Solid curve: a fit based on Einstein’s
rate equations.

the states F = 9/2 or F ′ = 11/2 (i.e. the cooling cycle states, see Fig. 2.3) as a function
of the intensity ratio Irep/Icool between repumping and cooling light. In the experiment,
the cooling light power was fixed to 18 mW per MOT beam, and the repumping detun-
ing was ∆ωrep = −5 Γ. The graph was recorded as follows. The absolute population of
the states F = 9/2 and F ′ = 11/2 was measured by simultaneously switching off both
the repumping and cooling light of the 40K-MOT 600µs before taking the image (with
the imaging beam being near-resonant with the F = 9/2 → F ′ = 11/2-transition).
During the 600µs time delay, all excited atoms relax to one of the ground states. For
the used detunings and intensities of the MOT-beams ∼ 90% of the excited atoms
occupy the state F ′ = 11/2 and thus relax to the ground state F = 9/2, which is
imaged. Therefore, the image approximately yields the sum of the populations of the
states F = 9/2 and F ′ = 11/2. The total population of all states (i.e. the total number
of trapped atoms) was measured as usual by first optically pumping all atoms into the
hyperfine ground state F = 9/2 before taking the image.

The curve in Fig. 3.10 (b) is increasing with increasing ratios Irep/Icool and it satu-
rates for high ratios. For the ratio Irep/Icool = 1/5 about 60% of the 40K-MOT atoms
occupy the cooling cycle states. For this ratio the fluorescence emitted by the 40K-
MOT is found to be maximum. For the ratio Irep/Icool = 1/20, which is used in the
experiment, only ∼ 20% of the atoms occupy the cooling cycle states. Atom losses due
to light-induced collisions are thus reduced.

The solid curve in Fig. 3.10 (b) shows a fit of the experimental data, based on a
simple model, assuming 40K to be a four-level atom (with the states F = 9/2, F = 7/2,
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F ′ = 11/2 and F ′ = 9/2). Einstein’s rate equations yield that the curve obeys the law
Pccs = 1/(1 + a + b/(Irep/Icool)), with the fitting parameters a = −0.1 and b = 0.17,
which depend on the transition probabilities and the used intensities and detunings.
Even though the model describes well the measured data, the model is limited, since
Pccs → 1.1 for Irep/Icool → ∞ and thus serves here merely to guide the eye.

Figure 3.11 shows the dependence of the 6Li-MOT atom number on the inten-
sity ratio Irep/Icool between repumping and cooling light for the repumping detuning
∆ωrep = −3 Γ and a constant cooling light power of 11 mW per MOT beam. In con-
trast to Figure 3.10 (a), the curve does not have a maximum but rather increases with
increasing Irep/Icool and saturates. This behavior is a result of the important contri-
bution of the repumping light to the cooling process, particular to 6Li, as it has an
unresolved excited-state hyperfine structure.
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Figure 3.11: 6Li-MOT atom number as a function of the intensity ratio between re-
pumping and cooling ligh for a constant cooling light power of 11 mW per MOT beam
(which corresponds to an intensity of 2 Isat). In comparison to 40K (Fig. 3.10 (a)), the
optimum atom number requires a larger intensity in the repumping light, which is a
consequence of the unresolved excited hyperfine structure of 6Li.

3.3.2 Heteronuclear Collisions in the dual-species MOT

We now turn to the study of heteronuclear collisions in the dual-species MOT. We
quantified the homo- and heteronuclear collision rates and studied the dependence of
heteronuclear collision rates on the laser power used for the MOT-beams.

In a dual-species MOT, inelastic collisions between atoms of the two different species
can occur and represent an important loss mechanism. Previous studies have shown
that the principal loss mechanisms for heteronuclear collisions in dual-species MOTs
involve one ground-state and one excited atom of different species [145, 146]. Such
atom pairs can undergo radiative escape or fine-structure changing collisions [164].
Both these loss processes require the two atoms to approach each other sufficiently
close such that a large enough interaction energy is gained to make the atoms leave the
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trap. The long-range behavior of the scattering potentials determines if the atoms can
approach each other sufficiently. For LiK, the scattering potentials for a singly excited
heteronuclear atom pair are all attractive for the case where the K atom is excited, on
the contrary they are all repulsive for the case where the Li atom is excited [165]. As a
consequence, a ground-state K atom and an excited Li atom repel each other and are
prevented from undergoing inelastic collisions (optical shielding). Inelastic collisions
involving singly excited heteronuclear atom pairs thus always contain an excited K
atom. In order to minimize the rate of heteronuclear collisions in the LiK-MOT, the
density of excited K atoms must therefore be reduced. Furthermore, the atomic density
in the trap as well as the relative speed of the colliding atoms, i.e. the temperature of
the cloud, need to be reduced.

In our 6Li-40K dual-species MOT the following strategy is applied in order to
minimize inelastic heteronuclear collisions. First the use of low magnetic field gra-
dients (8 G/cm), which decreases the atomic densities (nK

c ∼ 3 × 1010 atoms/cm3 and
nLi

c ∼ 2×1010 atoms/cm3). Second, low intensities in the repumping light for both, 6Li
and 40K, are used in order to decrease the number of excited atoms. Decreasing the
number of excited 6Li atoms here a priori serves to decrease the temperature of the
6Li-cloud. Since that is much larger than the temperature of the 40K-cloud, the relative
speed of two colliding atoms and thus the collision rate can be efficiently decreased by
minimizing the temperature of the 6Li-cloud. Finally a small mutual influence of the
MOTs is obtained: the atom numbers in the MOTs decrease by ∼ 4% in the 6Li-MOT
and ∼ 10% in the 40K-MOT due to the presence of the other species.

The importance of decreasing the magnetic field gradients in order to minimize
the heteronuclear collision rate in the dual-species MOT is demonstrated in Fig. 3.12
(a), which depicts the effect of the 6Li-MOT on the 40K-MOT atom number when a
two-times larger magnetic field gradient (16 G/cm) is used. At this gradient the atomic
density in the 6Li-MOT is by a factor of 4 larger than at the gradient used for the op-
timized MOT. In the experiment, the 40K-MOT was intentionally reduced in size (by
decreasing the 2D-MOT flux) to ensure a better inclosure in the 6Li-MOT. The curve
shows that ∼ 65% of the 40K-MOT atoms leave the trap due to the enhanced heteronu-
clear collisions. Using a low magnetic field gradient is therefore helping significantly
to decrease the heteronuclear collisions.

In the following we determine the trap loss coefficients for the (optimized) dual-
species MOT in order to quantify the heteronuclear collisions. The rate equation for
the atom number in a dual-species MOT (with species A and B) reads [145]

dNA

dt
= LA − γNA − βAA

∫

n2
AdV − βAB

∫

nAnBdV, (3.12)

where LA is the loading rate, γ the trap loss rate due to collisions with background gas
atoms and nA, nB the local atomic densities. βAA and βAB denote the cold collision trap
loss coefficients for homo- and heteronuclear collisions, respectively. LA and γ are de-
termined from the loading and decay curves of the single-species MOTs. The obtained
values for LA are given in Tab. 2.3 and γ is found to be 0.13 s−1. The homonuclear
trap loss coefficients βAA are determined from the steady state atom numbers in single-
species operation using the measured density profiles. For the experimental conditions
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indicated in Tab. (2.3), we obtain

βLiLi = (8 ± 4) × 10−12 cm3s−1, (3.13)

βKK = (6 ± 3) × 10−13 cm3s−1. (3.14)

The determination of the heteronuclear trap loss coefficients βAB for the optimized
dual-species configuration would require the knowledge of the mutual overlap of the
MOTs, which is difficult to estimate when absorption images are taken only along one
direction. We therefore choose a configuration, which makes the determination of βAB

less dependent on assumptions about the mutual overlap (but which does not change
the value of βAB). We reduce the atom flux of species A, in order to decrease the spatial
extension of the trapped cloud of species A and to place it in the center of the cloud of
species B. A video camera which records the fluorescence of the MOTs from a different
direction than that of the absorption imaging verifies that this configuration is indeed
achieved. Then, in Eq. (4.21) it is

∫

nAnBdV ∼ nB
c NA. Comparing the steady-state

atom numbers for the different configurations then yields

βLiK = (1 ± 0.5) × 10−12 cm3s−1, (3.15)

βKLi = (3 ± 1.5) × 10−12 cm3s−1, (3.16)

for the experimental conditions indicated in Tab. (2.3). Comparing all four trap loss
coefficients, the dominant is βLiLi (Eq. (3.13)) for light-induced homonuclear 6Li-6Li
collisions. This is a consequence of the large temperature of the 6Li-MOT and the
unresolved hyperfine structure of 6Li which prohibits the creation of a dark MOT,
leading to a large excited-state population. The much smaller homonuclear trap loss
coefficient βKK for 40K (Eq. (3.14)) is consistent with Fig. 3.10 (a) which shows that, for
40K, small repumping intensities are favorable. The heteronuclear trap loss coefficients
βLiK, βKLi (Eqs. (3.15) and (3.16)) are also much smaller than βLiLi, indicating that our
applied strategy for decreasing the heteronuclear collisions is good. In the Amsterdam
group the heteronuclear trap loss coeffiecients were found by a factor of about 2 larger
than ours [44]. A dark SPOT MOT has been implemented in order to reduce the
excited-state population of the 40K atoms. In the next paragraph we show, however,
that it is also important to reduce the excited-state population of the 6Li atoms.

Figure 3.12 (b) depicts the dependence of the trap loss coefficient βKLi on the rel-
ative excited-state population of the 6Li atoms. The graph was obtained by recording
the influence of the 6Li-MOT on the 40K-MOT as the power of the 6Li-MOT beams
was varied. For each power it was verified that the 40K-MOT was placed in the center
of the 6Li-MOT and the atomic density of the 6Li-MOT was recorded. In the exper-
iment a magnetic field gradient of 16 G/cm was used. The central atomic density of
the 6Li-MOT was found to be approximately constant, when the power was varied
(nLi

c ∼ 8 × 1010 atoms/cm3). The relative excited-state population for a given beam
power was estimated using Einstein’s rate equations (assuming 6Li to be a three-level
atom with the states 2S(F = 1/2), 2S(F = 3/2) and 4P3/2). The predicted variation
of the excited-state population with the beam power was in accordance with the mea-
surements of the fluorescence emitted by the 6Li-MOT and the number of captured
atoms via absorption imaging. The latter changed by a factor of 1.5 in the considered
range of beam powers. The graph in Fig. 3.12 (b) shows that the trap loss coefficient
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Figure 3.12: (a) Evolution of the atom number in the 40K-MOT in the absence (t <
100 s) and presence (t > 100 s) of the 6Li-MOT for an increased magnetic field gradient
of 16 G/cm. (b) Trap loss coefficient βKLi for heteronuclear collisions as a function of
the relative excited-state population of the trapped 6Li atoms.

increases by more than a factor of 2 as the relative excited-state population is increased
from ∼ 7% to ∼ 16%. The error bars shown in the figure refer to statistical errors. The
uncertainty due to systematic errors is estimated to be 50%. The significant increase of
βKLi demonstrates the importance of minimizing the number of excited 6Li atoms (and
not only that of the excited 40K atoms). One reason for this increase is the increase
of temperature of the 6Li-MOT, which changes from ∼ 1 mK to ∼ 1.6 mK when the
beam power is increased. Another reason could be the occurence of collisions involving
doubly excited Li∗K∗ atom pairs, the rate of which increases with the excited-state
populations. The scattering potentials for these collisions are known to be of a long-
range, as they scale with the internuclear separation as 1/R5 [166], whereas they scale
as 1/R6 for collisions involving a singly excited heteronuclear atom pair [163]).

3.4 Transfer of the atoms into the magnetic trap

We now study the transfer of the atoms from the MOT to the magnetic quadrupole
trap of the MOT chamber. After a compressed MOT stage, the atoms are optically
pumped into their stretched states by a short pulse of resonant circularly polarized
light. In the following we characterize this optical pumping stage in more detail. We
focus here on the case of 40K.

Figure 3.13 depicts the number of 40K atoms in the magnetic quadrupole trap as a
function of time for the cases where optical pumping is applied before the transfer and
where not. In the latter case, the number of atoms drastically decreases within the
first ∼ 20 ms by a factor of ∼ 10. The atoms which escape from the trap during this
time are either in a spin state which is repelled from the trap or which is susceptible
to undergo spin relaxation. The fast atom number reduction stops when only atoms
in stable spin states are left. Then, the atom number continues to decrease, but on
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a much larger time scale, which is due to collisions with background gas atoms. In
the case where optical pumping is applied, nearly no atoms are lost within the first
20 ms and the decay of the atom number only happens on a large time scale identical
to the one of the previous case. The figure demonstrates the importance of the optical
pumping stage for the atom transfer efficiency. Furthermore it shows that the transfer
efficiency in our experiment for the case of 40K is close to 100%.

We expect that the optimized optical pumping stage prepares nearly all 40K atoms
in their stretched state. However, since we intend to evaporatively cool 40K in the
magnetic trap of the final cell, the atoms will have to be prepared in at least two spin
states with significant populations, requiring to optically pump less efficiently.
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Figure 3.13: Decay curves of the 40K magnetic trap for the case where optical pumping
is applied before the atoms are transfered from the MOT to the magnetic trap and for
the case where no optical pumping is applied.

In order to optimize the optical pumping stage for 40K, we measured the number
of atoms transfered to the magnetic trap (measured after one second of trapping) for
various parameters, such as: the pulse duration, the intensity of the two frequency
components (principal and repumper), the value of the applied bias magnetic field,
the quality of the beam’s circular polarization and the quality of the power balance
between the two counter propagating optical pumping beams. We found that the
optical pumping stage heats up the atom cloud. We were able to minimize this heating
by shortening the pulse duration to 5µs (short compared to the 200µs-duration used
for 6Li). This short duration requires a large beam intensity. Saturation of the transfer
efficiency was measured to occur for intensities above ∼ 30 Isat per beam. The intensity
of the repumping light, which is responsible for pumping the atoms in the correct
hyperfine state, was found to saturate above ∼ 5 Isat per beam. The large light power
of the optical pumping beams is obtained by deriving them from the light beam used
for the 40K-MOT: the MOT beam passes through a single pass AOM, the first order of
which is used for the MOT. During the optical pumping phase, this AOM is switched
off, providing power in the zeroth order, which is used for the optical pumping. For 6Li
we use a similar strategy: The MOT beam passes through a single pass AOM, the zero
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order of which is used for the MOT. During the optical pumping phase, this AOM is
switched on, providing power in the first order, which is used for the optical pumping.

Another important parameter for the optical pumping is the value of the bias mag-
netic field. Its optimum value was found to be ∼ 2 G. Larger values lead to a decrease
in the optical pumping efficiency, since then the Zeeman effect detunes the different
repumping transitions. Even in the absence of the bias magnetic field the optical pump-
ing is quite efficient: the transfer efficiency then is only ∼ 50% less than its optimum
value. This is probably due to the large intensity of the optical pumping beam, which
can overcome the depolarizing effect of small stray magnetic fields. It was found to
be important to power balance the optical pumping beam by shining it with equal
intensities from two opposite directions on the atoms. Not only an increase of ∼ 30%
in transfer efficiency could thus be gained, but also a significant decrease of the heating
which is created by the light pulse. We still observe a small remaining heating effect,
which is minimized by reducing the used light power.

3.5 Magnetic quadrupole trap

We now investigate the trapping of atoms in the magnetic quadrupole trap. Figure 3.14
shows the time evolution of the number of atoms in both the magnetic trap and the
MOT for the two different atomic species. For each data point the respective trap
was prepared under the same conditions and the atom number was determined by
absorption images which were taken for different times after the end of the trap loading.
The decay of the number of atoms due to collisions with background gas atoms in either
of the trap is approximately described by the equation

dN

dt
= −γN, (3.17)

with the lifetime of the atoms defined as τ = 1/γ. Fitting the data in Fig 3.14
to Eq. (3.17) yields the lifetimes of the different atoms and traps. Since in a MOT
additional light-induced cold collisions can take place, the decay curves for the MOTs
are fitted for larger trapping times only, for which these collisions are insignificant (this
was only done for the 6Li-MOT, since for the 40K-MOT light-induced collisions are
negligible due to the small trap loss coefficient βKK (see Eq. (3.14))). The fits yield the
lifetimes τK

MT = 3.1 s, τK
MOT = 7.5 s and τLi

MT = 3.0 s, τLi
MOT = 7.4 s, respectively. Thus,

about the same lifetimes are obtained for the two species, but significantly different
ones for the two different traps. Before investigating this difference we first discuss the
total value of the measured lifetimes.

The measured lifetimes are of the order of 5 s, which is relatively low, given the fact
that the MOT chamber is isolated from the atom sources. In a previous setup, which
we had used before enlarging the vacuum system by the magnetic transport section,
we could obtain lifetimes of the order of 30 s in the MOT chamber using the same atom
sources. The smaller lifetime of the new setup is not due to a leak, which we verified
by a helium leak test, neither is it due to an insufficient isolation of the atom sources,
as was verified making use of the valves connecting them to the MOT chamber. We
believe that it is due to a contamination of the added homemade parts which have
been soldered to the octagonal MOT cell. Probably the cleaning has not been done
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Figure 3.14: Decay curves of an atom cloud trapped in the magnetic quadrupole trap
in comparison to the decay curves obtained for trapping in the MOT for (a) 40K and
(b) 6Li. Dots represent the experimental data and solid lines represent fits to Eq. (3.17)
from which the respective trap lifetimes τK

MT = 3.1 s, τK
MOT = 7.5 s and τLi

MT = 3.0 s,
τLi
MOT = 7.4 s are obtained. The atom number in the magnetic trap for 6Li decreases

rapidly within the first 200 ms due to an imperfect optical pumping stage.

sufficiently well after the soldering at the machine shop. The low atomic lifetimes in
the MOT chamber unfortunately affect the lifetime in the final cell. We have measured
the atomic lifetime in the magnetic quadrupole trap in the final cell, which was found
to be ∼ 26 s. We hope that this value is large enough to allow for a sufficiently large
ratio between elastic to inelastic collisions necessary for evaporative cooling of the two
atomic species.

We now address the question why the lifetime in the two traps is significantly
different. The measurements yield that the lifetime in the MOTs is larger by a factor
of ∼ 2 than in the magnetic traps. It can be excluded that the smaller lifetime in the
magnetic trap is due to spin relaxation collisions between the trapped atoms, since those
happen during the first 200 ms, leaving behind only atoms which are not susceptible
to those collisions. Also Majorana losses can be excluded as the origin of the smaller
lifetime due to the large temperature of the atoms. We can further exclude that the
larger lifetime in the MOTs results from a non-negligible loading from the background
vapor, since we do not load a detectable number of atoms when the atom sources are
switched off. Differences between atomic lifetimes in MOTs and magnetic traps have
been reported and studied by several groups [162, 167, 168]. It has been argued that
the different lifetimes are the result of the different depths of the traps, which lead to
a different probability for recapture of the collisional products. In our setup, the trap
depth of the MOTs is ∼ 1 K and the trap depth of the magnetic trap is ∼ 15 mK and
thus about two orders of magnitude less. Small-angle elastic collisions between the
background and the trapped atoms are thus more likely to lead to trap loss for the
magnetic trap than for the MOT.

In order to allow for a quantitative comparison between the theoretically predicted
lifetimes which result from the different trap depths, we estimate the cross section for
knock-out collisions between a room-temperature background gas atom and a trapped
cold atom. The estimation is based on the approach described in Ref. [162]. The
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colliding partners interact with each other via the van der Waals interaction which has
a scattering potential of the form U(R) = −Ceff

6 /R
6, whereR is the interatomic distance

and Ceff
6 an effective dispersion coefficient accounting for all the different atomic species

present in the background vapor. The trapped atom will be knocked out of the trap
if its velocity gain due to the collision exceeds the escape velocity vesc of the trap. We
now calculate the impact parameter b, for which the velocity gain just equals vesc, the
cross section for knock-out collisions is then given by σ = πb2. Since the velocity of
the trapped atoms is small compared to the velocity of the background atoms, the
background atom is likely to be hardly affected by the collision and can be considered
as moving at constant velocity along a straight line as illustrated in Fig. 3.15. The
change in velocity of the trapped atom then is

∆v =

∫ ∞

−∞

F /m dt, (3.18)

where

F =
6Ceff

6

R7
, R =

b

cos θ
, tan θ =

vt

b
⇔ dt =

b

v

1

cos2 θ
dθ, (3.19)

where v denotes the speed of the background atom. The component of F along the
flight direction of the fast atom averages to zero and the integral over the remaining
component, F cos θ, is given by

∆v =

∫ π/2

−π/2

6Ceff
6

mvb6
cos6 θ dθ =

15π

8

Ceff
6

mvb6
, (3.20)

Thus, the relations ∆v = vesc and σ = πb2 yield

σ = π

(

15πCeff
6

3mvescv

)1/3

. (3.21)

The scattering cross section is, according to kinetic gas theory, related to the lifetime
via τ = 1/(σnbv), where nb is the density of background atoms and v their mean
velocity (considering the velocity of the trapped atoms to be zero). In our system
the escape velocities of the MOTs are vKMOT

esc ∼ 15 m/s and vLiMOT
esc ∼ 30 m/s and

the escape velocities of the magnetic traps are vKMT
esc ∼ 1.7 m/s and vLiMT

esc ∼ 4.2 m/s,
respectively. According to Eq. (3.21), we thus expect a difference in lifetimes for the
two traps of

τMOT

τMT

=

(

vMOT
esc

vMT
esc

)1/3

∼ 2, (3.22)

which is approximately the same for both species and in accordance with the observed
value of ∼ 2.

3.6 Magnetic transport

The next step in the experimental sequence which follows the magnetic trapping is a
magnetic transport to the science chamber. We have achieved the transport of both



80 Chapter 3. Characterization of the experimental apparatus

b

R

v
q

Figure 3.15: Illustration of a collision between a room-temperature background gas
atom and a trapped atom. Due to the much larger velocity of the background gas
atom, that is nearly not deviated due to the collision.

atomic species with transport efficiencies of ∼ 15% for 40K and ∼ 7% for 6Li. We
believe that we will be able to achieve higher transport efficiencies in future. We found
that the transport efficiency of our system is limited by the small size of the vacuum
tubes through which the transport path is directed. Those have a small diameter of
1 cm and thus require a very good centering of the transport path with respect to the
tube’s axis. Furthermore, the atom clouds need to have small sizes, which requires
small cloud temperatures and a strong confinement of the atomic clouds. We have
recently purchased new current supplies which are able to deliver higher currents in
order to increase the confinement. In the following we briefly describe the cruicial steps
which we followed in order to make the magnetic transport operational.

Before the transport sequence was run for the first time, the setup needed to be
debugged. The first step is to verify the agreement between the demanded and the
observed current flows through the coils. In particular it has to be verified that no
significant time delays and possible fluctuations of those exist between the two signals.
For the typical transport durations of ∼ 3 s and used accelerations of a ∼ 0.75 m/s2,
maximum velocities of the potential minimum position of ∼ 50 cm/s are obtained. So
not to induce a displacement of more than 1 mm between the actual and the demanded
position, the time delay between the actual and demanded coil currents should be less
than 2 ms. These small time delays require the current supplies to be operated in
constant voltage mode. Another important initial check consisted in verifying that no
spikes in the currents were created due to the switching between the coils or the change
of operation mode of the power supplies. The calculated current waveforms sometimes
also needed to be checked, as numerical artifacts in the calculation might introduce
spikes in the waveform, which then need to be manually corrected in the waveform
file. In order to debug the switching mechanism for the coil currents, we installed a
series of LEDs which indicate when current is flowing in the different coil pairs. Each
employed LED has a threshold voltage of 1.6 V and is connected in parallel to one of
the coil pairs together with a 1 kΩ resistor. The voltage drop between the coil ends,
which is present when current flows through the coils, then switches on the LED. The
switching mechanism for the coil currents is realized with a series of MOSFETs, which
are fragile components that occasionally die. The LED system was also found helpful
to immediately identify the MOSFETs which need to be replaced.

The initial optimization of the transport was done by transporting the atom cloud
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forth and back over varying distances. This configuration allows the precise determi-
nation of the transport efficiencies for each transport distance, since the same imaging
system for the atom number determination before and after the transport can be used.
Furthermore it allows us to probe the critical positions on the transport path (such
as the positions where the aspect ratio of the trapping potential changes or where the
vacuum tubes decrease their diameter).

An important parameter of the transport is its total duration. The optimum du-
ration is a compromise between heating of the atom cloud due to nonadiabatic accel-
eration or changes of the aspect ratio of the potential, and atom loss due to collisions
of the transported atoms with the background gas. Since the background gas pressure
changes along the transport path, the efficiency of the transport can be optimized by
adjusting the transport velocity to the local pressures. The transport path consists of
two parts, from the MOT to the elbow and from the elbow to the final cell. Since the
lifetime in the MOT chamber is much less (∼ 3 s) than in the science cell (∼ 26 s), it
is preferable to transport the cloud fast in the first part of the transport and less fast
in the second part. In the experiment we have used an acceleration profile for which
the acceleration magnitude is constant for each of the two parts of the transport and
twice as large in the first part than in the second. The optimum transport time for
this profile was then found to be 2.7 s for both atomic species. Figure 3.16 shows the
dependence of the number of transported 40K atoms as a function of the transport time
for the described acceleration profile.
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Figure 3.16: Number of magnetically transported atoms as a function of the total
transport duration. The initial atom number in the magnetic trap before the transport
was ∼ 5 × 108 at the day when the graph was recorded.

The optimization of the magnetic transport is still in progress. We are convinced
that with a stronger magnetic confinement, which will be made possible by using the
new current supplies, and with a fine-tuning of the alignment of the transport path we
will be able to significantly improve the transport efficiency. Once the atom number
in the final cell is sufficiently large we will start evaporating the atomic clouds in the
plugged magnetic trap.
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3.7 Conclusion

In this chapter we have presented a characterization of the implemented experimental
apparatus. We have demonstrated a very satisfying performance of the constructed
atom sources, and the dual-species magneto-optical trap. The performance of the
magnetic transport still requires some more optimization, but we are convinced that
the constructed apparatus will allow the production of quantum degenerate Fermi-
Fermi mixtures with very large atom numbers in close future.

In the following we summarize the main characteristics of the different subsystems.

• The 6Li Zeeman slower yields a capture rate of ∼ 1.2 × 109 atoms/s in the
6Li-MOT at an oven temperature of 500 ◦C. A higher oven temperature would
yield a higher capture rate, however, we limit it to 500 ◦C, since, as we have
shown, collisions between the atoms in the atomic beam with the atoms in the
MOT become important for higher temperatures. The atomic beam is diverging,
having a radius of ∼ 5 cm at the position of the MOT. The bichromatic laser
beam of the slower has a total power of 50 mW. It is converging toward the oven,
having a 1/e2-diameter of 3 cm at the position of the MOT and of 0.8 cm at
the position of the oven’s collimation tube. The used light power saturates the
6Li-MOT capture rate. 1/10-th of the light power is used for repumping.

• The 40K 2D-MOT yields a capture rate of ∼ 1.4 × 109 atoms/s in the 40K-
MOT. The mean velocity of the atomic beam was measured to be ∼ 24 m/s.
A significant amount of the available light power was found to be required for
repumping (1/3-rd of the power). The capture rate was found optimum for a
potassium vapor pressure of 2.3 × 10−7 mbar in the 2D-MOT cell. For higher
pressures collisions between the vapor atoms and the atoms in the atomic beam
become important, decreasing the capture rate. In contrast to 2D-MOT systems
of other species, we found that the limiting collisions in our system are collisions
between non-excited 40K and non-excited 39K atoms. An analysis of our data
showed that the capture rate could thus be improved by up to a factor of 10 by
using a potassium sample of a higher isotopic enrichment.

• The 6Li-40K dual-species MOT simultaneously traps 5.2× 109 6Li atoms and
8.0×109 40K atoms. The use of small magnetic field gradients and low light powers
in the repumping light for both species were found important to minimize intra-
and interspecies light-induced collisions. The low light powers in the repumping
light lead to a small fraction of excited atoms. We have measured the different
trap loss coefficients and found that for our experimental parameters the trap loss
coefficient for intraspecies 6Li collisions is dominant and about 4 times larger than
the trap loss coefficients for interspecies and intraspecies 40K collisions. The large
trap loss coefficient for intraspecies 6Li collisions results from the need to use a
relatively large repumping power for the 6Li-MOT due to the small excited-state
hyperfine structure. We have studied the dependence of one of the interspecies
trap loss coefficients on the number of excited 6Li∗ atoms. Since the scattering
potential for singly excited 6Li∗-40K collisions is repulsive at long-range, these
collisions are not expected to lead to trap loss. Nonetheless we found that the
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interspecies trap loss coefficient depends on the excited-state population of the
6Li atoms, indicating that maybe collisions involving doubly excited Li∗-K∗ atom
pairs occur.

• The magnetic trap in the MOT chamber is loaded efficiently with the atoms
from the MOT by applying a compressed MOT and an optical pumping stage.
Nearly 100% of the 40K atoms and ∼ 30% of the 6Li can be transferred into
the magnetic trap. For 6Li the efficiency is smaller, since 6Li has only one sin-
gle simultaneously trappable spin state such that depolarizing events, which are
caused by emission and reabsorption of randomly polarized photons, more likely
lead to trap loss. The lifetime of the atoms inside the magnetic trap was found
to be half of that inside the MOTs, which we attributed to the different depths
of both traps. The lifetime in the magnetic trap in the science chamber was
measured to ∼ 26 s.

• The magnetic transport of the atoms to the science chamber allows for a
transfer efficiency of ∼ 15%. We believe that it is limited by atom losses on the
walls of the narrow collimation tubes, through which the transport is directed. In
addition, the long transport time of ∼ 3 s leads to significant loss due to collisions
with the background atoms. New power supplies have recently been installed in
our setup to allow for tighter confinement of the atoms during the transport,
which will decrease the losses on the walls as well as the total transport time.
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Chapter 4

Photoassociation of heteronuclear
6Li40K molecules

In this chapter we investigate, both experimentally and theoretically, the formation of
weakly bound, electronically excited, heteronuclear 6Li40K∗ molecules by single-photon
photoassociation in a magneto-optical trap. We performed trap loss spectroscopy
within a range of 325 GHz below the Li(2S1/2)+K(4P3/2) and Li(2S1/2)+K(4P1/2)
asymptotic states and observed more than 60 resonances, which we identify as rovi-
brational levels of 7 of 8 attractive long-range molecular potentials. The long-range
dispersion coefficients and rotational constants are derived. We find large molecule
formation rates of up to ∼ 3.5×107s−1, which are shown to be comparable to those for
homonuclear 40K∗

2. Using a theoretical model we infer decay rates to the deeply bound
electronic ground-state vibrational level X1Σ+(v′ = 3) of ∼ 5 × 104s−1. Our results
pave the way for the production of ultracold bosonic ground-state 6Li40K molecules
which exhibit a large intrinsic permanent electric dipole moment. In this chapter, we
also present the novel results obtained from photoassociation spectroscopy of 40K∗

2 and
compare them to prior studies with 39K∗

2.

4.1 Introduction

4.1.1 Principle of photoassociation

In the process of photoassociation (PA), two colliding atoms (A and B) absorb a
resonant photon (γ) which excites them to a bound molecular state:

A+B + γ → (AB)∗. (4.1)

This process, which can be considered as a light-induced chemical reaction, is schemat-
ically depicted in Fig. 4.1. Typically the energy of the photon is smaller than the
energy Eat of the atomic transition of one of the colliding atoms. Once excited, the
molecule will soon decay, either into a pair of free atoms or into a bound electronic
ground-state molecule:

(AB)∗ → A+B + γd (4.2)

(AB)∗ → AB + γd. (4.3)

85
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For the PA process to happen, the atoms need to approach each other sufficiently close.
The probability for the PA transition is determined by the overlap of the initial wave
function of the colliding atoms and that of the bound molecule. This so-called “Franck-
Condon” overlap is typically largest at the internuclear separation Rv+ for which the
excited bound state has its classical outer turning point (see Fig. 4.1). Thus, the PA
process most likely occurs at the separation Rv+.

Photoassociation can occur between atoms of the same species (homonuclear PA)
or between atoms of different species (heteronuclear PA). The rates at which PA can
occur in an atomic gas is typically smaller for the heteronuclear case due to the different
range of the excited-state potentials. Whereas two identical atoms in their first excited
state interact via the resonant dipole interaction at long range (with potential V (R) ∝
−C3/R

3, R denoting the internuclear separation and C3 a constant), two atoms of
different species interact via the van der Waals interaction (V (R) ∝ −C6/R

6, with
a constant C6), leading, for the heteronuclear case, to molecule formation at much
shorter distances. Now, in a gas of atoms with a given density the probability to find
two atoms at a distance R is approximately proportional to (1 − e−4πnR3/3), where n
denotes the atom density, supposed to be homogeneous 1. Consequently, fewer atom
pairs with short internuclear distances are available, and the PA rate is smaller for
the heteronuclear case. In this chapter we report on both homonuclear 40K∗

2 and
heteronuclear 6Li40K∗ photoassociation.

Photoassociation can be used as a spectroscopy technique which allows one to probe
the states of the electronically excited molecular potential and, when the decay process
is stimulated coherently with a second laser beam, also the states of the electronic
ground-state potential. It has been proposed by Thorsheim et al [114] to apply PA
to ultracold atoms (which have small thermal energies Eth, see Fig. 4.1) in order to
achieve high precision spectroscopic data for weakly bound molecules. Many more
applications are offered when combining PA and ultracold atoms, which we will briefly
describe in the subsequent section.

4.1.2 Applications of ultracold photoassociation

There is an extensive literature describing ultracold photoassociation and its applica-
tions. We give a brief introduction here, for a more detailed review, we refer the reader
to the articles [169, 170, 171, 172].

One of the principle applications of ultracold PA is molecular spectroscopy. Con-
ventionally, molecular spectroscopy is performed with natural bound ground-state
molecules formed in a high-pressure gas of atoms, typically above room temperature.
These molecules are excited with a probe laser and frequencies for bound-bound tran-
sitions are determined. Ultracold photoassociation spectroscopy (UPAS) differs from
this conventional molecular spectroscopy in several aspects associated with the low
temperature. First, Doppler shifts due to the center-of-mass motion of the colliding

1. This can be seen as follows: the probability for each atom to be located inside a sphere of
volume v = 4πR3/3 around a given atom is p = nv/N , where N denotes the total number of atoms.
Thus, the probability to find at least one of the N atoms inside this sphere is P = 1 − (1 − p)N =

1 − eN ln(1−nv/N) ≈ 1 − e−nv = 1 − e−4πnR3/3. The probability to find two atoms at a distance R is
then proportional to P .
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Figure 4.1: Schematic representation of the PA process. Two colliding atoms (A and
B) are transferred into a bound state of the excited molecular potential by a photon of
the PA laser, which is resonant with this transition. The curves represent the potential
energy of the atoms as a function of their internuclear separation R. The PA process
most likely occurs at the classical outer turning point Rv+ of the bound excited state.
Eth, Eat, Eb denote the thermal energy of the colliding atoms, the energy of the atomic
transition of atom A and the binding energy of the molecule, respectively (not to scale).
Once created, the excited bound molecule will decay, either to a bound state of the
ground-state molecular potential or into a pair of free atoms.

atom pairs (along the direction of the PA laser) are reduced. Second, the thermal
broadening due to the spread in the collision energies is reduced (∼ 20 MHz for a
1 mK cold atom cloud). UPAS thus achieves high resolution for free-bound transitions.
Third, PA allows the measurement of the binding energy of the molecules (it is simply
given by the detuning of the PA laser from the atomic resonance), which is inaccessible
for conventional spectroscopy. Due to the low temperatures, binding energies can thus
be determined with a high precision. Fourth, rotational barriers prevent the low-energy
atoms to approach each other when they are colliding in a higher-order partial wave.
Thus only atoms colliding with very low angular momenta (l = 0, 1 for 6Li-40K colli-
sions at ∼ 1 mK) can approach each other sufficiently close to form an excited bound
molecule. Therefore, UPAS yields spectra with resonances from the lowest rotational
levels only, which eliminates the need to extrapolate when determining a rotation-
less potential. Besides, UPAS allows probing of a larger number of excited molecular
potentials, since the selection rules are less restrictive than for bound-bound transi-
tions, because the initial atomic collision often possesses a mixture of many different
molecular symmetries. Finally, since the free-bound transitions occur at large inter-
nuclear distance, UPAS is particularly powerful to probe long-range, weakly bound
molecular states, which is difficult for conventional molecular spectroscopy, due to the
reduced transition probabilities between tightly and weakly bound molecules. PA and
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conventional molecular spectroscopy can thus be considered as being complementary.
Combining both methods allows the determination of precise molecular potential curves
for the whole range of internuclear separations. In the results section we will present
our recorded spectroscopic data for 40K∗

2 and 6Li40K∗ and we will derive the binding
energies of the most weakly bound states and the corresponding molecular potential
curves at long-range.

Another application of UPAS is the precise determination of the lifetime of excited
atomic states [173]. This application is based on the fact that the single atom dipole
matrix element d = 〈S|µ|P 〉 governs both the atomic state lifetime and the form of the
long-range part of the corresponding homonuclear excited molecular potential. Since
the latter can be determined very precisely with UPAS, precise values for the atomic
lifetimes can be derived. Such lifetime measurements provide a useful check of the
more conventional atomic experiments, since the possible underlying systematic errors
are different. In the results section of this chapter we will make use of our recorded
PA spectra for homonuclear 40K∗

2 molecules to determine the atomic lifetime of the
4P -state of 40K with a 0.3% precision.

PA can also be used to precisely determine the s-wave scattering length for binary
ground-state collisions. This parameter is of central importance, since it contains all
information inherent to the scattering event at ultracold temperatures, where only s-
waves contribute to the elastic collisions. Scattering lengths sensitively depend on the
precise details of the scattering potentials, which makes it difficult to predict them
theoretically and thus assigns a great importance to experimental methods for their
determination. The scattering length is defined as [174]

a = − lim
k→0

(

tan ηl=0
k

k

)

, (4.4)

where k = 2π/λdB is the wave vector, λdB the de Broglie wavelength of the reduced
mass particle and ηk is the s-wave phase shift induced by the scattering potential. The
essential idea is to use PA spectroscopy to probe the phase of the ground-state wave
function with great precision. Two different methods have been established to realize
this. The first consists in the determination of the nodal positions of the ground-state
wave function from the relative line contrasts of single-color PA spectra. The second
is based on the determination of the binding energy of the least bound electronic
ground state by two-color PA. The first method takes advantage of the fact that PA
spectroscopy line intensities are sensitive to the amplitude of the ground-state wave
function for each contributing partial wave in the region where PA occurs. Comparing
the observed oscillations of the line intensities to quantum scattering calculations then
allows the determination of the phase shift of the collision wave function and thus the
scattering length. The second method employs two coherent laser beams, where one
excites the colliding pairs to bound molecules and the other stimulatedly deexcites
them to the last vibrational level of the electronic ground-state potential. The relative
detuning of both lasers yields the binding energy Elast of that level. The scattering
length can then be obtained by utilizing that in the ultracold limit, the scattering length
is simply related to Elast via Elast = −~

2/(2µa2), where µ = mAmB/(mA +mB) is the
reduced mass of the colliding particles [175]. The dependence of the scattering length
on the binding energy of the least-bound state also demonstrates that it is very difficult
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to obtain an estimate for the scattering length from theoretical potential curves, as the
depth of the molecular potentials is typically several orders of magnitude larger than
Elast, such that a determination of Elast would require a very precise knowledge of the
potential curve. Both the above described methods have been successfully applied in
the past for Li [176, 177], Na [178], Rb [179], Cs [180], Yb [181]. Our recorded spectra
which we will present in the results section might allow us to determine the scattering
length using the first method. However, we concentrated the present work on the
resonance assignment and the determination of the potential parameters and did not
attempt to derive the scattering length.

The major long-term application of PA is the formation of ultracold molecules [98,
182]. As mentioned in chapter 1, molecules have a very complex internal level structure
and are thus difficult to cool, since the laser cooling techniques, which work well for
atoms, cannot be extended easily to molecules [108, 109]. PA allows one to circumvent
this difficulty: photoassociating ultracold atoms results in molecules which are trans-
lationally cold as well. This fact is also utilized in the alternative technique of magne-
toassociation via Feshbach resonances [183]. These two techniques represent indirect
methods for creating ultracold molecules in contrast to direct methods, in which pre-
existing (relatively hot) molecules are actively cooled [111, 113, 112]. In order to have
sufficient time for experiments, one is interested in forming stable molecules. Multi-
color PA allows the transfer of the associated atoms to bound ground-state molecules.
In some cases, even single-photon PA followed by spontaneous decay to the lowest
rovibrational level of the electronic ground-state potential can be high enough for an
efficient production of stable molecules [84]. As discussed in chapter 1, the forma-
tion of ultracold molecules is particularly interesting for heteronuclear atoms, since
molecules composed of two different atoms have a permanent electric dipole moment
(as their charge distribution is asymmetric). The alkali dimer LiK has a very large
dipole moment of 3.6 D [88] in its singlet electronic ground state and would thus be a
good candidate for future studies with polar molecules.

4.1.3 Photoassociation of LiK∗ compared to other dimers

The first demonstration of PA of ultracold atoms has been realized in 1993 with sodium
atoms confined in a magneto-optical trap [184]. Since then homonuclear PA has been
demonstrated for all alkali atoms, i.e. Li∗2 [176], Na∗2 [184], K∗

2 [185], Rb∗
2 [186], Cs∗2 [187],

then H∗
2 [188], metastable He∗2 [189], Ca∗2 [190], Sr∗2 [191] and Yb∗

2 [181]. Heteronuclear
PA has been realized later, for the first time for the dimer 7Li6Li∗ [192] in 2002 and
subsequently for RbCs∗ [193], KRb∗ [194], NaCs∗ [195], LiCs∗ [84] and YbRb∗ [196].
In this thesis, we report on the first realization of PA of LiK∗.

It has been argued in the past, that the photoassociative creation of the dimer LiK∗

(as compared to the other heteronuclear dimers) would be more difficult to achieve due
to its small reduced mass and C6 coefficients. Wang and Stwalley [197] have proposed
an estimate for the relative PA probabilities for the different heteronuclear alkali dimers
based on the semiclassical reflection approximation [197]. They showed that for a given
vibrational level number (counted from the dissociation limit) the PA probabilities for
the different heteronuclear alkali dimers scale as µ9/4(C6)

3/4, where µ is the reduced
mass of the dimer. For the LiK∗ molecule this leads to small PA probabilities, of
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e.g. ∼ 400 times less than for RbCs∗ and ∼ 200 times less than for KRb∗. Figure 4.2
summarizes the results of Ref. [197], showing the calculated relative Franck-Condon
factors for the different heteronuclear molecules.

Figure 4.2: Relative values of the Franck-Condon factors for the different heteronuclear
alkali dimers for PA at long-range, based on the reflection approximation [197]. The
small value for LiK indicates that the photoassociative creation of LiK∗ molecules is
expected to be much more difficult than for the other dimers. Figure taken from
Ref. [197].

In the approximation made by Wang and Stwalley, the ground-state molecular po-
tential is considered to have a negligible slope in the region where PA occurs. The
authors justify this assumption by the fact that the ground-state molecular poten-
tial, which is also governed by the van der Waals interaction (with potential V (R) ∝
−C ′

6/R
6, and a constant C ′

6), is of shorter range than the excited molecular potential
due to a C ′

6 coefficient which is typically about ten times smaller than the C6 coefficient
of the excited molecular potential. For homonuclear molecules, the difference in range
of the ground-state and excited molecular potentials is orders of magnitude larger than
for heteronuclear molecules, due to the strong resonant dipole interaction, such that for
the case the assumption is well satisfied. For the heteronuclear case, the assumption
is not sufficiently satisfied. The steepness of the excited molecular potential leads to
molecule formation at small internuclear separations even for small binding energies
where the ground-state potential has a non-negligible slope, as pointed out by Azizi
et al. [198]. The authors of the latter publication computed the PA rates for several
heteronuclear dimers (unfortunately not for LiK∗) in a different way. Their results
are based on full quantum mechanical numerical calculations of the Franck Condon
overlaps considering PA to occur not only near the classical outer turning points of the
excited molecular states. The authors obtained that indeed PA of lighter heteronu-
clear dimers is less probable, however, the difference in probability with respect to the
heavier dimers is a factor of ∼ 4 rather than ∼ 100. Due to this discrepancy, we did
not know which PA rates to expect in our experiment. In their work Azizi et al. [198]
further compare the PA rates for heteronuclear molecules with those for homonuclear
Cs∗2 molecules for given PA detunings, showing that the photoassociative formation of
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heteronuclear molecules for a given atomic density is about 10-30 times less probable
due to the smaller distances at which PA occurs. This hinted that it would be difficult
to observe PA of LiK∗.

In our experiment, we observe PA rates for LiK∗ of the order of ∼ 3.5 × 107s−1.
Given the above theoretical predictions, these rates are surprisingly large, since they
are similar to those observed in a comparable experiment with RbCs∗ [193] and larger
than those observed for other heteronuclear PA experiments [193, 194, 195, 84, 196].
This observation indicates the failure of the reflection approximation for the case of
heteronuclear molecules and confirms the arguments of Ref. [198]. In our experiment
we further observe that the PA rates for LiK∗ are comparable to those found for
homonuclear K∗

2. The large PA rates for LiK∗ encourage future experiments aiming to
create LiK ground-state molecules. In particular, for excited heteronuclear molecules
the transition probabilities for spontaneous decay to ground-state molecules is larger
than for homonuclear molecules due to the similar shape of the excited and ground-
state potentials for the heteronuclear case [198]. Therefore high production rates for
ground-state molecules can be expected.

4.1.4 Detection techniques for photoassociation

There are many techniques for observing photoassociation. One of the most common
methods consists of a measurement of trap loss, where the loss in atom number which
is induced by the molecule formation is recorded. The loss occurs since most of the
excited molecules decay into hot atoms of ground-state molecules which are both not
trapped by the atom trap. This method was used in the first demonstration of PA of
Rb∗

2 [186]. It is particularly convenient to apply it in a MOT, where the atom number
can be continuously recorded via the fluorescence emitted by the atoms. When the
frequency of the PA light is scanned the formation of bound excited states then appears
as a dip in the fluorescence signal. Another very common method consists in making
an additional excitation to an ionizing state—either from the electronically excited
state or from one of subsequently populated states of the electronic ground state—
and to measure the ion rate with an ion detector. This method was used in the first
demonstration of PA of Na∗2 [184]. Another technique, which is adapted to detect
predissociating excited molecular levels is fragmentation spectroscopy [199], which we
will not further consider here.

Each technique has its advantages and disadvantages. The ionization technique
is very sensitive since it has nearly zero background signal. When recording a PA
spectrum the PA laser thus can be scanned very fast. In addition even free-bound
transitions with very low probabilities can be probed, allowing one to record PA spec-
tra for a large range of detunings. Furthermore, a higher spectral resolution can be
obtained as the PA laser can be used at lower intensities decreasing the effect of power
broadening of the resonances. However, the ionization technique requires the instal-
lation of an ionization laser and an ion detector. Furthermore the measurement of
transition probabilities is difficult, since it requires the knowledge of the probabilities
for the spontaneous decay and the ionization, which is not always available.

The trap loss technique has the advantage that its implementation takes less effort
and that in particular it gives access to the formation rates for the excited molecules,
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since only the molecular transition is probed. As we will show in the results section,
the measurement of the formation rates is crucial for the identification of the observed
resonances. On the other hand, the trap loss technique has the following disadvantages.
In our experiment, PA is performed with atoms trapped in a MOT for which the
measurement of trap loss requires the PA laser to be scanned slowly since the response
time of the MOT is rather slow (∼ 1 s). In addition, only resonances with a contrast
larger than the (averaged) fluctuations of the MOT fluorescence can be detected which
requires a stable MOT operation and to record many data for averaging. Besides, only
excited molecules which decay into a bound molecule or dissociate to a pair of atoms
with an energy larger than the depth of the trap can be detected. Recaptured atoms
do not contribute to the trap loss signal. The probability for recapture of dissociating
atoms can be decreased by lowering the depth of the trap. In our experiment we indeed
observed, that the PA-induced trap loss for both 40K∗

2 and 6Li40K∗ could be significantly
increased for some resonances when the capture velocity was lowered (by decreasing
the detuning of the trapping light). Another possibility to circumvent the recapture
problem is the detection of the PA-induced heating of the atom cloud rather than the
loss of atoms, as has been implemented by Leonard et al. [200] with metastable helium
atoms confined in a magnetic trap. This technique is, however, not applicable to a
MOT, since the atoms are continuously cooled very efficiently.

In our experiment we applied the trap loss technique. Most of its disadvantages
could be overcome by carefully adjusting the experimental parameters. Furthermore,
the application of this technique allows us to directly compare the formation rates for
6Li40K∗ molecules with those for 40K∗

2 molecules.

4.1.5 Molecular potentials

In the following we give a short overview of the different possible interactions between
two alkali atoms and the resulting molecular potentials, which are relevant for the
analysis of our spectroscopic data.

For a diatomic molecule a molecular potential curve represents the total electrostatic
energy of the molecule as a function of the distance of the two atoms. The notion of
a molecular potential is justified by the fact that the electrons of the atoms are much
lighter than the nuclei and thus can immediately adjust to the much slower motion
of the nuclei. This is the basis of the well-known Born-Oppenheimer approximation
which allows the calculation of the energy assuming that the wave function of the
molecule separates into a product of a nuclear and an electronic part. The potential
curves which are obtained when only electrostatic interactions and electron exchange
are considered, are in the following referred to as the Born-Oppenheimer potentials.
Additional interactions exist, such as the spin-orbit and hyperfine interactions within
each atom, but shall be neglected for the time being. For small internuclear distances,
where the electrostatic and exchange interactions are the dominant interactions, this
neglect is typically justified.

When the two atoms are in different electronic states the molecular potentials take
different forms. Figure 4.3 (a) shows the Born-Oppenheimer potentials dissociating to
the three lowest electronic asymptotes 2S+4S, 2S+4P and 2P+4S of the LiK molecule.
They have been calculated as described in detail in Ref. [88]. The potentials are labeled
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by quantum numbers indicating the symmetry of the electronic wave functions. Those
can be inferred from the atomic properties at the dissociation limit. When rotation,
spin-orbit and hyperfine interactions are neglected, the total electron spin S = sA +sB

is conserved. For alkali atoms it is s = 1/2, resulting in either S = 1 (triplet states)
or S = 0 (singlet states). In contrast, the total angular momentum L = lA + lB of the
atoms is not conserved, since the molecule is not spherically symmetric. It is, however,
cylindrically symmetric around the internuclear axis, such that the projection of L onto
this axis, Λ = λA + λB, is conserved, where the λi are the respective projections of the
li. For example, for potentials dissociating to the S+P asymptote, it is either Λ = 0
or |Λ| = 1. The molecular potentials are labeled by 2S+1|Λ|, where Λ is represented
as Σ,Π,∆, ... for |Λ| = 0, 1, 2, ..., respectively. The superscript ± indicates a reflection
symmetry of the spatial component of the electronic wave function through a plane
containing the internuclear axis. Homonuclear molecules are labeled with an additional
subscript g/u (for gerade/ungerade), which indicates the parity with respect to an
inversion of all electrons through the center of charge. In addition the potentials are
numbered. Potentials with the same symmetry (which do thus not cross) are numbered
with increasing energy as N = 1, 2, 3, .... The two electronic ground-state potentials
take the “numbers” X and a instead of 1 for historical reasons.

Long-range potential energy curves

The molecular states which are probed by PA spectroscopy are typically of long-range,
and their properties are mainly determined by the long-range part of the molecular
potentials. At large internuclear distances, the potential energy of a diatomic molecule
can be approximately calculated from the properties of the separated atoms alone using
perturbation theory. When the spatial overlap between the charge distributions of the
two atoms can be neglected, the potential energy can be written as a sum of inverse
powers of the internuclear distance R:

V (R) = D −
∑

n

Cn

Rn
, (4.5)

where D is the dissociation energy of the molecule (i.e. approximately the depth of
the potential). The constants Cn are called the dispersion coefficients. Depending on
the interaction between the atoms, different terms in this expression are zero. When
the interaction is of van der Waals type, the two leading order terms are n = 6 and
n = 8. A ground-state or a singly excited heteronuclear atom pair (e.g. K-K, Li-K
or Li-K∗) interact via this interaction. For a singly excited homonuclear atom pair
(e.g. K-K∗) the interaction is of resonant dipole type and the two leading orders are
n = 3 and n = 6. Due to the different molecular symmetries each dispersion coefficient
can assume two values for a given asymptote, one for singlet and one for triplet states.

So far, we have neglected spin-orbit and hyperfine interactions. These interactions
are much smaller than the electrostatic interaction at short range, but they become
dominant for the large interatomic distances, at which PA typically occurs and thus
need to be considered. They lead to a separation of the short-range molecular potential
curves into several long-range potentials. For large internuclear distances the molecular
electronic wave function is approximately given by a product of the single-atom wave
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Figure 4.3: (a) Born-Oppenheimer potentials of the LiK molecule for short inter-
atomic separations R (in units of the Bohr radius a0). The potentials are labeled by
N2S+1|Λ|(±). (b) Long-range potential energy curves including spin-orbit interaction.
The potentials are labeled by Ω(±) and further designated by us by the superscripts
up/down and the classification into the potential groups ”lower triad”,”upper triad”
and “dyad” for unambiguous distinction. For large R the potential curves are approx-
imated by V (R) = D−C6/R

6. Potentials with the same C6 coefficient are thus hardly
distinguishable in the figure. Each of the curves in figure (b) approaches one of the
curves in figure (a) according to Tab. 4.1. The vertical arrows represent the minimum
energy delivered by the PA laser in our experiments.
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functions. The molecular spin-orbit interaction is thus approximately given by the
sum of the atomic spin-orbit interactions. Consequently, the total electronic angular
momentum of the molecule is given by j = jA + jB, where the ji = li + si are the total
angular momenta of the atoms, respectively. j is not conserved since the molecule is
not spherically symmetric. Its cylindrical symmetry, however, results in a conservation
of the projection of j onto the interatomic axis, which is denoted as Ω.

Figure 4.3 (b) shows the long-range potentials dissociating to the asymptotes
2S1/2+4P1/2,3/2 of the LiK∗ molecule, including the spin-orbit interaction. At short
internuclear separations each of these potentials approaches one of the short-range po-
tential curves of Fig. 4.3 (a) according to Tab. 4.1 [201]. The long-range potentials
are labeled by Ω(±). The superscripts ± indicate a reflection symmetry of the total
electron wave function through a plane containing the internuclear axis. The super-
scripts apply only to the states with Ω = 0. Since the labeling is not unambiguous
we here further label the potentials with the superscripts up/down and classify them
into groups for distinction. The potentials 1, 0+, 0− dissociating to the 2S1/2+4P1/2

asymptote are referred to as the lower triad, the potentials 1down, 0+, 0− dissociating
to the 2S1/2+4P3/2 asymptote are referred to as the upper triad and the potentials
2, 1up are referred to as the dyad. Not shown in Fig. 4.3 (b) are the long-range poten-
tials which dissociate to the ground-state asymptote 2S1/2+4S1/2 and the excited-state
asymptotes 2P1/2,3/2+4S1/2. The former is approached by three attractive long-range
potentials 1, 0+, 0−. The latter are approached by eight long-range potentials, which
are all repulsive [197].

Short range Long range Asymptote

11Π 1up 2S1/2+4P3/2

23Σ+ 1down, 0−

21Σ+ 0+ 2S1/2+4P1/2

13Π 2, 0+ 2S1/2+4P3/2

0−, 1 2S1/2+4P1/2

Table 4.1: Correlation table for the molecular potentials dissociating to the asymptotes
2S1/2+4P1/2,3/2 of LiK∗.

The potentials shown in Fig. 4.3 (b) still have the asymptotic behavior given by
Eq. (4.5). The values of the dispersion coefficients are, however affected by the spin-
orbit interaction. For the case of LiK, the dispersion coefficients can, for the relevant
2S1/2+4P1/2,3/2 asymptotes, only assume three (rather than eight) different values due
to the small atomic fine structure of the Li atom [202]. Potentials with the same C6

coefficient are thus hardly distinguishable in Fig. 4.3 (b). The dispersion coefficients
C6 and C8 of the LiK molecule have been calculated theoretically [202, 165, 166] and
are listed in Tab. 4.2 together with the experimentally determined values obtained in
this work, those of K2 can be found in [203, 204].

Mechanical rotation of the molecule

So far, we have neglected the mechanical rotation of the molecule, which we now
consider. Neglecting the internal electronic structure of the two atoms, their relative
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Asymptote Potential C6 [×103] C8 [×105] Reference

2S1/2+4S1/2 1, 0+, 0− 2.27 — [202]
2.55 1.75 [165]
2.29 1.92 [166]

2S1/2+4P1/2 1, 0+, 0− 15.42 — [202]
13.83 34.19 [165]
15.81∗ — [166]

0+ 12.86 ± 0.66 — this work
2S1/2+4P3/2 2, 1up 9.52 — [202]

9.80 0.44 [165]
9.34∗ — [166]

2 9.17 ± 0.94 — this work
1up 9.24 ± 0.96 — this work

1down, 0+, 0− 22.00 — [202]
25.50 11.20 [165]
22.17∗ — [166]

1down 25.22 ± 0.60 — this work
0+ 25.45 ± 0.72 — this work
0− 24.31 ± 1.71 — this work

Table 4.2: Theoretical predictions and experimentally determined values obtained in
this work for the long-range dispersion coefficients for the lowest asymptotes of LiK
given in atomic units (a.u.), where 1 a.u.=1Eha

6
0 for C6 and 1 a.u.=1Eha

8
0 for C8, with

the Hartree energy Eh = 4.35974×10−18 J and the Bohr radius a0 = 5.29177×10−11 m.
The experimental values agree best with the predictions of Ref. [165]. In Ref. [166]
the dispersion coefficients have been calculated for the absence of spin-orbit interac-
tions only. Including the spin-orbit interaction according to the method described in
Ref. [202] yields the values given in the table (marked with an asterisk) [205].

motion is described by the Schrödinger equation

[

− ~
2

2µ
∇2 + V (R)

]

Ψ(R) = EΨ(R), (4.6)

where E is the atoms’ relative kinetic energy, V (R) their interaction potential and R

the vector connecting both atoms. Since V is spherically symmetric and approaches
zero at infinity, the wave function can be separated in radial and angular parts

Ψ(R) =
∞
∑

l=0

m=l
∑

m=−l

ul(R)

r
Yl,m(ϑ, ϕ), (4.7)

with the spherical harmonic functions Yl,m(ϑ, ϕ). The Schrödinger equation for the
radial part becomes

[

− ~
2

2µ

∂2

∂R2
+ V (R) +

~
2l(l + 1)

2µR2

]

ul(R) = Eul(R), (4.8)
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where l is the quantum number of the angular momentum l associated with the atom’s
relative motion. The second and third terms inside the square brackets on the left
hand side can be considered an effective potential Veff(R) = V (R) + ~

2l(l+ 1)/(2µR2).
Thus, the rotation of the molecule changes its potential energy by the simple term
~

2l(l + 1)/(2µR2). For diatomic molecules l is perpendicular to the internuclear axis.
Strictly speaking, l is not a good quantum number since other angular momenta

are present in the molecule, which may cause the molecular axis to nutate and precess.
However, the absolute value J of the total angular momentum J = l+L+S is always a
good quantum number. The rotational energy levels for a given vibrational level of the
molecular potential are given by Erot = BvX(X + 1) + ..., where Bv is the rotational
constant and X an angular momentum quantum number, which is determined by
the way how the different angular momenta of the atoms couple. That in general is
determined by the dominant interaction, which, typically as a function of the distance
R, is classified by Hund’s coupling cases [206]. In general, in the limit of very largeR the
rotational energy is small compared to the electrostatic and spin-orbit interaction and
the valid case is Hund’s case (c). In this case the angular momentum quantum number
which determines the rotational energy is X = J . Neglecting centrifugal distortion,
the rotational energy in Hund’s case (c) is more precisely given by [206, 170]

Erot = Bv[J(J + 1) − Ω2], with J = Ω,Ω + 1,Ω + 2, ... (4.9)

(the relation J ≥ Ω results from the definition of Ω). Neighboring rotational energy
levels will thus be spaced by ∆Erot = Erot(J + 1) − Erot(J) = 2Bv, 4Bv, 6Bv, .... This
formula will be of importance for the assignment of our heteronuclear PA spectra in
the results section.

4.1.6 Selection rules

The knowledge of the selection rules for the electric dipole transitions induced by the
PA laser is another requirement for the assignment of our heteronuclear PA spectra.
On the one hand, the selection rules allow us to infer which excited molecular potentials
are accessible via PA and on the other hand how many rotational lines per vibrational
level are expected. We thus briefly mention the relevant selection rules. Since the
photon carries at most one unit of angular momentum, the total angular momentum
of the atom pair can change by at most one in a PA transition: ∆J = 0,±1. In Hund’s
case (c) this selection rule implies ∆Ω = 0,±1 [206, 170]. Since the photon acts on the
electronic orbital degrees of freedom, it cannot change the electron spin of the molecule:
∆S = 0. In Hund’s case (c), the photon couples states with identical +/−-symmetry.
Besides, for homonuclear molecules, the photon couples g to u states and vice versa
and thus transitions between states of identical g/u-symmetry are forbidden.

4.1.7 Rotational barriers for ultracold ground-state collisions

Earlier we mentioned that in ultracold PA only slowly rotating molecules can be cre-
ated. This is a consequence of the repulsive interaction between two ground-state
atoms at long range which results when they collide in a partial wave of higher-order
(l > 0). This repulsive interaction creates the so-called rotational barriers which can
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prevent the atoms to approach each other sufficiently close for PA to occur. In the
following we calculate the height of the rotational barriers for different partial waves
for two colliding ground-state atoms for the case of K-K and Li-K collisions. From
the obtained heights we derive the highest allowed partial wave order for the given
collisional energies, i.e., the highest allowed value for the angular momentum quantum
number l in order to predict the number of expected rotational levels in our recorded
spectra.

For two colliding ground-state atoms, the interatomic potential V (R) at long range
can be approximated by V (R) = D−C ′

6/R
6, so the effective potential for the colliding

atoms takes the approximate form (see Eq. (4.8))

Veff(R) = D − C ′
6

R6
+

~
2l(l + 1)

2µR2
. (4.10)

This potential is plotted in Fig. 4.4 for different values of l for the relevant collision
partners. The position Rrb and height Erb =V (Rrb) −D of the rotational barriers as
a function of l are given by

Rrb =

(

6µC ′
6

~2l(l + 1)

)1/4

, (4.11)

Erb =

(

~
2l(l + 1)

3µ(2C ′
6)

1/3

)3/2

. (4.12)

For the lowest-order partial waves the position of the rotational barriers lies at large
internuclear distances Rrb ∼ 100 a0. The height of the rotational barriers is for K-K
collisions EKK

l=1 = 0.27 mK, EKK
l=2 = 1.5 mK and EKK

l=3 = 4.1 mK and for Li-K collisions
ELiK

l=1 = 2.6 mK, ELiK
l=2 = 13.4 mK and ELiK

l=3 = 38.2 mK. For the collisional energies
present in the MOTs, which have temperatures of 0.3 mK (K-MOT) and 1.2 mK (Li-
MOT), only atoms colliding in partial waves with l = 0, 1 can thus reach small inter-
nuclear separations (with a reasonable probability) at which PA can occur. Collisions
with higher l will be reflected from the potential at large internuclear distances unless
tunneling occurs or the colliding atoms have a high velocity, which is, however, very
unlikely due to the low temperatures and the large height and width of the rotational
barriers for larger l. In our experiment, the fermionic nature of the atoms 40K and 6Li
does not prevent the scattering to occur in both even and odd partial waves, since the
atoms are trapped in a MOT and are thus not polarized.

We have seen that only atoms with an angular momentum l = 0 or l = 1 can reach
sufficiently small internuclear distances for PA. We now specify the resulting rotational
levels which can be addressed by PA for the case of LiK. In the initial collision, the value
of the orbital angular momentum is L′ = 0, since both atoms are in their electronic
ground state 2. The value of the total spin can take the values S ′ = 0, 1. Thus, the
total angular momentum J ′ of the initial collision can be J ′ = 0, 1, 2. The selection
rule ∆J = 0,±1 for the PA transition now yields that the total angular momentum of
the excited molecule can take the values J = 0, 1, 2, 3.

2. L′ is strictly speaking not a good quantum number, but it is reasonable to consider it to be one
for the current purpose.
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Figure 4.4: Effective long-range scattering potentials (Eq. (4.10), with D set to zero
for convenience) for binary collisions involving (a) two ground-state 40K atoms and (b)
one 6Li and one 40K atom in their ground states for different l. At the collision energies
of ∼ 0.3 mK in the 40K-MOT and ∼ 1.2 mK in the 6Li-40K-MOT only l= 0 (s-wave)
and l=1 (p-wave) collisions reach short distances with significant probability, allowing
photoassociation of the atoms. Higher angular momentum collisions are reflected from
the larger rotational barriers at large internuclear distances.

We can be even more specific. When the excited molecule has a certain symmetry
Ω, the values of J are further restricted. We have already seen in Eq. (4.9) that J has
an Ω-dependent lower bound, i.e., J ≥ Ω. In the same way, J also has an Ω-dependent
upper bound: in the Hund’s case (c) representation, the initial collision has one of
the symmetries 0+ (for X1Σ+), 0− or 1 (for a3Σ+, see Fig. 4.3). Due to l = 0, 1, the
total angular momentum of the initial collision can thus take the values J ′ = 0, 1 for
the initial states with Ω′ = 0 and J ′ = 0, 1, 2 for the Ω′ = 1 state. Therefore, the
excited molecule can take the maximum value J = 3 only, if the state of the initial
collision is Ω′ = 1, J ′ = 2 (since ∆J ≤ 1). Whereas the states Ω = 2, J = 3 and
Ω = 1, J = 3 can be reached from this state, the states with Ω = 0, J = 3 cannot be
reached, as this transition would require ∆Ω = −1 and ∆J = +1 at the same time,
which is contradicting. For the potentials with Ω = 0 the maximum allowed value of
J is J = 2, since Ω = 0, J = 2 can be reached, e.g., from the state Ω′ = 0, J ′ = 1. The
accessible rotational quantum numbers J for the different excited molecular potentials
are summarized in Tab. 4.3. The knowledge of the accessible rotational levels for each
potential will be indispensable for the assignment of our heteronuclear PA spectra in
the results section.

4.1.8 The LeRoy-Bernstein formula

In order to experimentally determine an accurate potential energy curve, in principle
the binding energies of all vibrational bound states have to be measured. In PA, very
often only the most weakly bound vibrational levels of the excited molecular poten-
tials can be probed. The incomplete data set can, nonetheless, be used to determine



100 Chapter 4. Photoassociation of heteronuclear 6Li40K molecules

Ω J ∆Erot

2 2, 3 6Bv

1 1, 2, 3 4Bv, 6Bv

0 0, 1, 2 2Bv, 4Bv

Table 4.3: Accessible rotational quantum numbers J and observable rotational split-
tings ∆Erot = Erot(J+1)−Erot(J) between neighboring rotational levels (see Eq. (4.9))
of the excited LiK∗ molecule for the different molecular potential symmetries Ω for PA
at the given atom temperature.

the long-range part of the potential curve, since the properties of the weakly bound
molecular states are mainly determined by that part of the potential. In 1970 LeRoy,
Bernstein and Stwalley [207, 208] derived a semiclassical formula, which relates the
binding energy of the weakly bound states to the shape of the potential, given that the
potential can be approximated by

V (R) = D − Cn/R
n (4.13)

at long range (i.e., that the higher-order terms in Eq. (4.5) and the exchange energy can
be neglected). Using the Wentzel-Kramers-Brillouin (WKB) semiclassical method the
authors showed that the binding energy D−Ev of the v-th vibrational state (counted
from the dissociation limit D) is given by

D − Ev = An(vD − v)(2n/(n−2)), (4.14)

with

An = Cn

[

π(n− 2)~

B(1/n+ 1/2, 1/2)
√

2µCn

]2n/(n−2)

, (4.15)

where B denotes the Beta-function (with B(5/6, 1/2) ≈ 2.241 for n = 3 and
B(2/3, 1/2) ≈ 2.587 for n = 6), µ is the reduced mass of the system, Cn the leading-
order dispersion coefficient of the molecular potential with n = 3 for excited homonu-
clear and n = 6 for excited heteronuclear molecules. vD is a constant between 0 and 1
which describes the effective vibrational quantum number of an imaginary state whose
energy corresponds to the dissociation limit (the most weakly bound state having
v = 1). Equation (4.14) allows the derivation of the leading-order dispersion coefficient
Cn from the measured binding energies of the weakly bound states. Due to the as-
sumption about the form of the molecular potential (Eq. (4.13)) only vibrational states
with zero rotational energy (J(J + 1)−Ω2 = 0) may be considered. The derivation of
the dispersion coefficient is most conveniently done by plotting the 1/n-th power of the
measured binding energies of the vibrational levels versus their vibrational quantum
numbers v and fitting it to a straight line, whose slope gives access to Cn.

In the results section of this chapter we will make use of the LeRoy-Bernstein (LRB)
formula in order to determine the leading order dispersion coefficient for the different
potentials probed in our experiment. Since the LRB formula (Eq. (4.14)) is based
on several assumptions its validity has to be carefully checked beforehand in order to
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obtain information about its reliability. Typically, the biggest restriction of the validity
of the LRB formula comes from the assumption of the molecular potential to be of the
form V (R) = D − Cn/R

n (Eq. (4.13)). This assumption neglects the exchange energy
and it neglects higher-order terms in the long-range potential function (Eq. (4.5)),
both of which become important for shorter internuclear distances. An estimate for
the smallest distance above which the contribution of the exchange energy to the total
energy of the molecule is less than 10% is given by the modified LeRoy radius [209]

R
(1)
crit = 2

√
3
(

〈z2〉1/2
A + 〈z2〉1/2

B

)

, (4.16)

where 〈z2〉1/2 is the rms distance of the valence electron from its nucleus along the
internuclear axis (for atoms A and B). In our case, we find for the different excited
molecular potentials

R
(1)
crit =



















31 a0 for K∗
2 (|Λ| = 0),

22 a0 for K∗
2 (|Λ| = 1),

28 a0 for LiK∗ (|Λ| = 0),

20 a0 for LiK∗ (|Λ| = 1).

(4.17)

An estimate for the smallest distance above which the contribution of the higher-order
terms in the long-range potential function to the molecule’s total energy is less than
10% is given by

0.1
Cn

(

R
(2)
crit

)n =
Cm

(

R
(2)
crit

)m , (4.18)

where m refers to the second order term in the expansion of Eq. (4.5). Using the
dispersion coefficients given in Ref. [203] (see Tab. 4.2) one obtains

R
(2)
crit =



















20 a0 for K∗
2,

50 a0 for LiK∗ (lower triad),

21 a0 for LiK∗ (upper triad),

7 a0 for LiK∗ (dyad),

(4.19)

where for K∗
2 only the molecular potentials, for which we observe resonances in the

experiment, are considered (which have the same dispersion coefficients at short in-
ternuclear distances where the spin-orbit interaction can be neglected). In order to
judge, whether the assumption (4.13) of the LRB formula is fulfilled, the calculated

critical separations R
(1)
crit and R

(2)
crit have to be compared with the minimum distance

Rmin at which PA occurs in the experiment. An estimate for Rmin can be obtained
from Eq. (4.13), assuming that PA occurs at the classical outer turning point, which
scales with the PA detuning as Rv+ = [−Cn/(h∆PA)]1/n with n = 3 or n = 6, respec-
tively. In our experiment, we have created homonuclear K∗

2 and heteronuclear LiK∗

molecules for PA detunings |∆PA| up to 313 GHz with respect to the corresponding
S+P3/2 dissociation limit. Consequently

Rmin =

{

65 a0 for K∗
2,

24 a0 for LiK∗,
(4.20)
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where the smallest Cn coefficients of the different excited molecular potentials were
considered. One can immediately see that the heteronuclear molecules formed in our
experiment have a much smaller size than the homonuclear molecules for a given de-
tuning. For the case of K∗

2 it is Rmin > R
(1)
crit, R

(2)
crit such that the assumption (4.13) of

the LRB formula is well fulfilled. We therefore expect the LRB formula to give precise
estimates for the potential’s leading order coefficient when applying it to the recorded
data. For the case of LiK∗, due to the much shorter distances at which PA occurs,
the considered assumption is at the limit of being fulfilled. We thus expect the LRB
formula to yield less precise estimates for the leading order dispersion coefficients.

Another assumption of the LRB formula is the validity of the WKB method, which
does not hold for levels very close to the dissociation limit [210, 211]. In addition, the
LRB formula does not consider hyperfine interactions and retardation effects, which
are most pronounced for bound states with a very long range. Besides, since small
binding energies can be measured with less relative accuracy (due to the uncertainties
of the determination of the PA detuning and of the exact line positions which arise
from unresolved hyperfine substructure and light shifts), we will avoid taking the most
weakly bound vibrational levels into account when applying the LRB formula.

4.1.9 Previous work on LiK

Compared to the other heteronuclear alkali dimers, LiK has been studied relatively
little. The first high-resolution spectroscopic results were obtained in 1984 for the
X1Σ+-1(B)1Π transition [212]. Preliminary potential curves for the two involved po-
tentials could be derived. Since then precise investigations of the ground-state po-
tentials X1Σ+ and a3Σ+ [213], as well as for the excited potentials 1(B)1Π [214, 215],
3(C)1Σ+ [214, 215], 2(D)1Π [216] and 41Π [217], which are all accessible form the
ground-state potential X1Σ+, have been made. Only transitions to deeply bound ex-
cited molecular levels could be studied, since small Franck-Condon overlaps prohibit
the excitation of weakly bound states from the deeply bound ground-state molecules
available in the experiment.

Levels in the neighborhood of our PA spectra have been recorded for the 1(B)1Π
potential up to 390 ± 150 GHz below the 2S1/2+4P3/2 asymptote [214]. The authors
recorded the lowest 29 vibrational lines, excited from the X1Σ+(v = 3, J = 14)-level.
The energies of the observed rotationally excited vibrational lines were extrapolated
to J = 0 in order to obtain a potential energy curve for the rotationless molecule.
The bound-bound transition frequencies have been determined with an uncertainty of
±3 GHz. The potential’s dissociation energy was determined from the data via an
extrapolation based on the LRB formula using the energies of the states with smallest
binding energy. The dissociation energy could be determined with an uncertainty of
±h × 150 GHz. At large interatomic separations the potential 1(B)1Π turns into the
1up potential, in which we observed the five most weakly bound vibrational states up
to a PA detuning of 313 GHz. It is likely that the most deeply bound level observed
in our experiment corresponds to the most weakly bound level observed in Ref. [214].
Combining both spectroscopic data would thus allow the derivation of a precise deter-
mination of the 1(B)1Π potential curve and its dissociation energy, similar to what has
been done for LiCs∗ [218]. Since the spectroscopic data of Ref. [214] was recorded for
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the isotopomer 7Li39K and our PA data for the isotopomer 6Li40K, isotopic corrections
will have to be applied [91].

Ultracold 6Li40K molecules in their electronic ground-state potential have recently
been studied via Feshbach spectroscopy [90]. Loss features of 13 Feshbach resonances
were observed and assigned based on an asymptotic bound state model and a full
coupled channels calculation. The heteronuclear singlet and triplet s-wave scatter-
ing lengths have been derived from the spectra and found to be as = 52.1 a0 and
at = 63.5 a0. The measured resonance positions were subsequently used to refine the
electronic ground-state molecular potentials [91]. Weakly bound 6Li40K molecules in
their electronic ground-state potential have been created for the first time in 2009 [93]
by a magnetic field sweep across an interspecies s-wave Feshbach resonance.

4.2 Experimental results

In the previous section we have introduced the general background of ultracold pho-
toassociation and spectroscopic concepts, which provides us with the necessary knowl-
edge to understand the PA spectra recorded in our experiments. In this section we
present first the experimental setup and the applied strategy to obtain and optimize
the spectroscopy signals. Then we present our data and the used procedure to assign
the observed resonances. We derive from it the long-range potential parameters and
the molecule formation rates. We first present the results obtained for 40K∗

2, then for
6Li40K∗. Finally we conclude and give an outlook.

4.2.1 Experimental setup

A sketch of the optical setup for the PA experiment is depicted in Fig. 4.5. A PA
laser beam is directed onto the atoms trapped inside the dual-species 6Li-40K-MOT
(described in chapters 1 and 2) and its frequency is scanned. Simultaneously, the
steady-state atom number of each species is recorded via the emitted trap fluorescence.
The signature of the formation of 6Li40K∗ molecules is a decrease of both the 6Li and the
40K fluorescence. The PA laser is scanned red detuned with respect to one of the atomic
transitions of 40K (see Fig. 4.3) and has no effect on a single-species 6Li-MOT. The 6Li
fluorescence signal thus represents a pure heteronuclear PA spectrum, whereas the 40K
fluorescence signal represents the sum of a heteronuclear (6Li40K∗) and homonuclear
(40K∗

2) PA spectrum. The frequency of the PA laser is recorded by a wavelength meter
(High Finesse, ref. WS-6) with an absolute accuracy of ±250 MHz. Additionally, a
Fabry-Perot interferometer is used to verify the laser’s single-mode operation.

The PA light is derived from a homemade diode laser-tapered amplifier system. It
has a wavelength of 767 nm and a power of 660 mW at the output of a single-mode
polarization-maintaining fiber. The linearly polarized collimated beam has a 1/e2-
diameter of 2.2 mm and passes four times through the center of the MOT (making use
of polarization optics, see Fig. 4.5), with a total peak light intensity of ∼ 100 W/cm2

(taking into account the power losses in the optics). The beam diameter was chosen
to match the size of the 6Li-MOT. The beam frequency is scanned by changing the
length of the diode laser’s external cavity with a piezo actuator. Using the feed-
forward technique [219], the laser’s mode hop free continuous tuning range extends
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over ∼ 35 GHz. In the experiment the PA laser is scanned over a total range of
325 GHz. To cover this wide range manual tunings of the laser cavity were occasionally
required.

DLTA

FPI

WLM

FI

l/2

l/2

MOT

l/4

PD Li

IF

IF

Figure 4.5: Optical setup for the PA spectroscopy experiment. A laser beam originating
from a 767 nm diode laser (DL) is amplified by a tapered amplifier (TA), passes through
a polarization maintaining single-mode optical fiber (FI) and is directed onto the dual-
species MOT. Its frequency is scanned red detuned with respect to one of the atomic
transitions of 40K. PA spectra are recorded by continuously measuring the frequency
of the DL with a wavelength meter (WLM) and a Fabry-Perot interferometer (FPI)
and by continuously recording the atom number in the two MOTs via their emitted
fluorescence using two different photo diodes (PD) and narrow band interference filters
(IF). In order to achieve high PA laser intensities, the PA beam is retro-reflected two
times, such that it passes four times through the MOT.

4.2.2 Optimization of the photoassociation signal

In this section we describe the various procedures we followed in order to optimize the
experimental conditions which lead to the observation of the first PA signal for LiK∗.
We focused on optimizing the PA signal imprinted on the Li fluorescence as that rep-
resents the pure heteronuclear LiK∗ spectrum allowing for an easier analysis. The first
important step was to optimize the stability of the 6Li-MOT fluorescence. We obtained
a fluorescence long term stability of ±3%, which could be achieved mainly by carefully
adjusting the various gains of the feedback electronics used to frequency stabilize the
diode laser used for the 6Li-MOT. The second important step was to slowly scan the
frequency of the PA beam (with ∼ 15 MHz/s) such that a quasi-steady state for the trap
loss can be obtained (see Fig. 4.16 (a)). The cruicial step was to reduce the 6Li-MOT
to a small atom number and volume (by lowering the loading rate by decreasing the
6Li oven temperature) and to place it at the center of the larger 40K-MOT. This could
be achieved by independently adjusting the beam alignment of the MOTs while con-
tinuously imaging the trapped atoms from two different directions and by monitoring
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the collision-induced influence of the 40K-MOT on the atom number in the 6Li-MOT.
When the influence is maximum (for given MOT-light intensities and frequencies) the
overlap is best. Finally, the PA-induced trap loss in the 6Li-MOT needed to be maxi-
mized and all other intrinsic losses that compete with it minimized. An understanding
of how this is achieved can be obtained from the rate equation for the total number
NPA

Li of trapped 6Li atoms. Assuming that the 6Li-MOT is entirely contained inside
the 40K-MOT and that the atom density is uniform (which is a reasonable assumption
for our large atom number MOTs), the rate equation is given by [185]

dNPA
Li

dt
= LLi −

[

γ + βLiLin
Li
c + (βKLi + βPA)nK

c

]

NPA
Li , (4.21)

where nLi
c , n

K
c are the constant central trap densities of the respective MOTs, LLi is the

6Li-MOT loading rate, γ the trap loss rate due to background gas collisions. βLiLi, βKLi

and βPA represent the trap loss coefficients for atom loss induced by the trapping and
the PA light, respectively. We are interested in obtaining a large PA-induced relative
atom loss ∆NPA

Li /NLi, where NLi denotes the 6Li-MOT atom number in the absence of
the PA laser and ∆NPA

Li = NLi −NPA
Li . In steady state (i.e. dNPA

Li /dt = 0), it is

∆NPA
Li

NLi

=
βPAn

K
c

γ + βLiLinLi
c + (βKLi + βPA)nK

c

. (4.22)

Thus, the relative PA-induced trap loss is maximized by increasing the PA loss term
βPAn

K
c and by reducing all other loss terms. The PA loss term βPAn

K
c is maximized by

using a large MOT magnetic field gradient, which increases nK
c

3, and by using a large
light power in the PA beam (by implementing several beam reflections (see Fig. 4.5)),
which increases βPA. The PA beam size was optimized using a variable beam expander
and found to be optimum for a 1/e2-diameter of 2.2 mm which matches the size of the
6Li-MOT.

The loss terms βLiLi, βKLi for light-induced intra- and interspecies collisions are
minimized by reducing the light intensity and increasing the detuning of the trapping
lasers. For the 6Li-MOT cooling light, however, we found it better not to increase but
rather decrease the detuning so as to lower the trap depth of the 6Li-MOT and to
decrease the probability for recapture of dissociating excited molecules.

The optimum light detunings and intensities per MOT beam and axial magnetic
field gradient were found to be ∆νLi

cool = ∆νLi
rep ∼ −3Γ, ∆νK

cool = ∆νK
rep ∼ −4Γ, and

ILi
cool ∼ 1.5ILi

sat, I
Li
rep ∼ 0.5ILi

sat, I
K
cool ∼ 10IK

sat, I
K
rep ∼ 3IK

sat and ∂zB = 20 G/cm, respec-
tively. These parameters result in NLi ∼ 5 × 108 and NK ∼ 2.5 × 109 trapped atoms
with central atomic densities of nLi ∼ 7 × 1010 cm−3 and nK ∼ 5 × 1010 cm−3 and
temperatures of TLi ∼ 1.2 mK and TK ∼ 300µK, respectively. For the chosen detun-
ings and intensities, ∼30% of the ground-state 6Li atoms are expected to populate the
F = 1/2- and ∼70% the F = 3/2-state. For 40K, the relative ground-state populations
are expected to be ∼20% for the F = 7/2-state and ∼80% for the F = 9/2-state.

When looking for the first heteronuclear PA signal, we did not know at which
detunings PA resonances would appear and would have a detectable contrast. We

3. This also increases nLi
c and thus the last three terms in the denominator of Eq. (4.22). However,

due to the presence and significance of the fourth term γ in the denominator, the relative PA-induced
loss generally increases when the atom densities are increased.
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thus strategically chose to scan the PA laser in a region, in which both the density of
resonances is expected to be high and the density of the 40K atoms in the trap. At
very small PA detunings (0-10 GHz) the resonance density is highest, but the density
of the 40K atoms is small since the PA laser pushes the atoms out of the MOT. The
atom density is highest at intermediate detunings (10-20 GHz), where attractive optical
dipole forces [220] due to the intense PA beam outweigh its pushing effect, enhancing
the atom density (see Fig. 4.6). Since at these intermediate detunings the PA resonance
density is still expected to be high, we searched (and also found) the first heteronuclear
PA signal in this region.

1cm

Figure 4.6: Absorption image of the 40K-MOT in presence of the PA beam which is
detuned by ∼ 15 GHz. The red color represents a spatial region with enhanced density
of 40K atoms which results from the attractive optical dipole forces induced by the
PA beam. Due to this density enhancement the PA induced heteronuclear losses are
expected to be large in this region of PA detunings.

Once the heteronuclear PA signal was detected it could be further optimized fol-
lowing the above-mentioned guidelines, finally leading to a heteronuclear PA-induced
trap loss in the 6Li-MOT of up to 35% (see Fig. 4.11).

4.2.3 Photoassociation spectroscopy of 40K∗
2 molecules

In a first experiment, we recorded a homonuclear 40K∗
2 PA spectrum. In this experiment

the 6Li-MOT was not present so not to complicate the recorded spectrum by the
additional resonances due the formation of 6Li40K∗ molecules. Photoassociation of the
fermionic potassium isotope 40K has not been demonstrated in the past. For potassium
PA has been demonstrated only for the isotope 39K [185, 170]. The difference in
mass of the two isotopes leads to different resonance positions in the spectra (see e.g.
Eq. (4.14)). However, the molecular potentials and thus also the long-range dispersion
coefficients are the same for both isotopes, as they result from electrostatic interactions
only. This allows us to directly compare our results to the ones of Ref. [185].
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Photoassociation spectrum and resonance assignment

Figure 4.7 shows the homonuclear PA spectrum of 40K∗
2 near the dissociation limit

4S1/2+4P3/2 for PA detunings between 0 and −220 GHz. The graph represents the
average of approximately five individually recorded spectra for noise reduction and has
been recorded in pieces and stitched together. The spectrum contains more than 130
resonances, belonging to two different vibrational series which have different contrasts.
The inset of Fig. 4.7 shows a zoom of the spectrum, where the two series are clearly
visible. It can be further seen that the vibrational resonances appear in doublets, which
we attribute to a resolved hyperfine structure. A list of all observed resonances and
their assignment is presented in Tab. 4.4.

The resonance assignment is based on the following arguments: ten Hund’s case (c)
potentials dissociate to the asymptote 4S1/2+4P3/2 (see Fig. 4.8), among which only
five potentials support bound states (0+

u , 1g, 0
−
g , 1u and 2u). The potential 2u is not

optically accessible from the three ground-state potentials 0+
g , 0

−
u , 1u due to the Hund’s

case (c) selection rules ∆Ω = 0,±1, g ↔ u mentioned earlier. The potentials 0−g and 1u

are purely long-range potentials [221] whose attractive well is entirely located outside
the range of the chemical bonding. They have small potential depths of D(0−g ) =
h × 194.4 GHz and D(1u) = h × 16.2 GHz [222]. Resonances from these potentials
are thus not expected to appear for PA detunings |∆PA| > 195 GHz. The two series
observed in our experiment can be excluded to belong to these potentials, as they
both contain resonances for PA detunings |∆PA| > 195 GHz (see Fig. 4.7). Thus, the
two observed series must belong to the potentials 0+

u and 1g. We identify the strong
series as belonging to the potential 0+

u and the weak series as belonging to 1g, based
on their different level spacings: the potential 1g has a smaller theoretically predicted
C3 dispersion coefficient and thus its resonances are more widely spaced.

In both vibrational series the resonances appear in doublets of one strong and one
weak line, separated by ∼ 1.2 GHz throughout the spectrum (see inset of Fig. 4.7).
The appearance of the doublets originates from the simultaneous population of 40K
atoms of both hyperfine ground states 4S1/2(F =7/2) and 4S1/2(F =9/2) in the MOT.
The stronger line of each doublet corresponds to an excitation from the 4S1/2(F =9/2)
state as it is located at lower PA detunings (see Fig. 2.3). The contrast of the strong
line is ∼ 5 times larger than of the weak line. Assuming the same oscillator strength
for excitations from each of the hyperfine ground states (which is reasonable due to
the high PA beam intensity), the difference in contrast indicates that ∼ 80% of the
non-excited trapped 40K atoms were occupying the 4S1/2(F = 9/2)-state in the MOT
during the experiment.

The resonances shown in Fig. 4.7 have a width of ∼ 400 MHz (FWHM) and they
do not show a further substructure. Since the spectrum of Fig. 4.7 was obtained by
averaging many recorded spectra, the width of the resonances of the averaged spec-
trum is affected by the uncertainty of the frequency measurement by the wavelength
meter. When no averaging is performed the spectral resolution is better. For example
the measured width of the resonance of the 0+

u potential at −50 GHz detuning when
no averaging is performed is of the order of 150 MHz. The main contributions to this
width are the excited atomic hyperfine structure (∼ 80 MHz) and the unresolved rota-
tional splittings, which we estimate as follows. We have shown in the introduction, that
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Figure 4.7: Partial homonuclear PA trap loss spectrum of 40K∗
2 below the 4S1/2+4P3/2

asymptote. The PA detuning ∆PA is specified relative to the atomic transition
4S1/2(F = 9/2) → 4P3/2(F

′ = 11/2). The spectrum contains two vibrational se-
ries belonging to the potentials 0+

u and 1g, whose assignment is given in Tab. 4.4. The
inset figure shows a zoom on the spectrum showing five vibrational resonances of each
series. Each vibrational resonance is accompanied by a weaker resonance, separated by
∼ 1.2 GHz, due to a significant amount of 40K atoms populating the atomic hyperfine
ground state 4S1/2(F = 7/2). Rotational splittings are not resolved. For small PA
detunings the fluorescence of the 40K-MOT is significantly perturbed by the PA laser,
as that pushes the atoms out of the trap.

the excited molecules can have a total angular momentum of J ≤ 3. The rotational
energies being given by Erot = Bv[J(J + 1) − Ω2], the difference between neighboring
rotational levels progresses as 2Bv, 4Bv, 6Bv. The rotational constant Bv for the de-
tuning of −50 GHz can be estimated by its classical value Bv ∼ ~

2/(2µR2
v+) 4, with

Rv+ ∼ 120 a0, leading to Bv ∼ h× 7 MHz. Thus, the maximum rotational splitting is
of the order of 40 MHz. Another contribution to the width of the resonances is ther-
mal broadening (∼ 6 MHz). The resonances of the 0+

u potential might additionally be
broadened due to predissociation at a short internuclear distance to the lower dissoci-
ation limit 4S1/2+4P1/2 due to spin-orbit mixing with the A1Σ+

u potential [204, 185].
We did not intend to study the widths of the resonances, as our main goal was the

4. This estimation holds only for long-range molecules for which 〈R〉 ∼ Rv+, which is the case for
the K∗

2 molecules created in our experiment, but not for the shorter ranged LiK∗ molecules.
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Figure 4.8: Molecular potentials of the K2 molecule for large interatomic separations
R (in units of Å = 10−10 m = 1.8897 a0) dissociating to the 4S1/2+4P1/2,3/2 asymptotes.
The solid curves are those states which support bound states and are accessible by
dipole transitions from the ground state. The potentials 0+

u and 1g, dissociating to
the 4S1/2+4P3/2 asymptote, are accessed in our experiment. The potential curves have
been taken from Ref. [223].

determination of the long-range part of the excited molecular potentials. For this pur-
pose the averaging of the recorded spectra as described above gives the most precise
determination of the resonance positions.

Determination of the long-range potential

Having assigned all observed resonances, the C3 coefficients for the excited molecu-
lar potentials can be derived. Therefore we employ the LRB formula (Eq. (4.14))
introduced in Sec. 4.1.8, where we have shown that its assumptions are well satis-
fied for the case of K∗

2 for the investigated range of PA detunings (except for very
small PA detunings). We can thus expect to obtain high-precision estimates for the
C3 coefficients. Fig. 4.9 shows the plots of the 1/6-rd power of the measured binding
energies D − Ev = −h∆PA as a function of the relative vibrational quantum number
∆v = v − vmin for the two observed series, where v is the absolute value of the vi-
brational quantum number counted from the dissociation limit and vmin its smallest
observed value (v cannot be determined precisely due to the high density of resonances
close to the atomic resonance). The plots are predicted by Eq. (4.14) to follow straight
lines whose slopes yield: C3(0

+
u ) = 14.20±0.02 a.u. and C3(1g) = 13.37±0.05 a.u. Only

vibrational levels with binding energies larger than h×40 GHz have been considered for
the fit in order to fulfill the assumptions of the LRB formula (see Sec. 4.1.8). The deter-
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Ω ∆v −∆PA Contr. 〈R〉 Ω ∆v −∆PA Contr. 〈R〉
[GHz] [%] [a0] [GHz] [%] [a0]

0+
u 0 2.85 5.0 321 (0+

u ) 37 150.81 4.7 86
1 3.26 8.3 307 38 162.55 3.9 84
2 3.85 7.1 291 39 175.00 4.3 82
3 4.67 8.7 273 40 188.49 3.5 80
4 5.44 11.3 259 41 202.43 3.6 78
5 6.25 9.9 247 42 217.65 4.0 76
6 7.19 9.4 236 43 233.61 3.4 74
7 8.17 10.1 226 44 250.42 4.2 72
8 9.23 11.3 217 45 268.41 2.1 71
9 10.33 12.8 209 46 287.48 2.6 69
10 11.64 10.8 201 47 308.55 2.5 67
11 13.02 10.5 194 1g 0 44.24 1.0 126
12 14.84 8.6 185 1 48.65 1.3 122
13 16.86 7.7 178 2 53.18 1.3 119
14 18.65 6.7 172 3 57.88 1.3 115
15 20.87 8.4 166 4 63.86 1.4 112
16 23.04 7.7 160 5 69.81 0.8 108
17 25.62 4.8 155 6 76.39 1.8 105
18 28.45 6.4 149 7 83.22 2.0 102
19 31.40 4.6 144 8 90.96 1.2 99
20 34.68 3.6 140 9 98.79 1.3 97
21 38.25 3.9 135 10 107.17 1.4 94
22 42.25 3.9 131 11 116.33 1.6 91
23 46.71 8.5 127 12 125.57 1.3 89
24 50.97 6.7 123 13 136.39 1.3 87
25 55.81 7.5 119 14 147.51 1.3 85
26 61.14 6.9 116 15 158.94 1.2 82
27 66.87 5.2 112 16 171.81 1.4 80
28 72.76 4.7 109 17 185.36 1.6 78
29 79.27 5.0 106 18 199.40 1.4 76
30 86.26 5.6 103 19 214.32 1.3 75
31 93.70 5.6 100 20 230.67 1.3 73
32 101.78 5.4 98
33 110.34 4.8 95
34 119.43 5.2 93 Accuracy
35 129.09 5.2 90 ±0.25 ±1.0
36 139.50 4.5 88

Table 4.4: PA resonances of 40K∗
2 observed below the 4S1/2+4P3/2 asymptote. Only the

resonances corresponding to excitations from the hyperfine ground state 4S1/2(F =9/2)
are listed. ∆v = v−vmin denotes the relative vibrational quantum number. The average
radii of the molecules are estimated by 〈R〉 ∼ Rv+ = [−C3/(h∆PA)]1/3.



4.2. Experimental results 111

mined values compare very well with the experimental values CW
3 (0+

u ) = 14.14 ± 0.05
a.u. and CW

3 (1g) = 13.54 ± 0.10 a.u. found by Wang et al. [185] for 39K∗
2. They

also compare well with the theoretical values 14.44 and 13.41 derived from the dipole
matrix element d = 〈4S|µ|4P 〉 for the atomic transition 4S → 4P calculated by Mari-
nescu and Dalgarno [203] using the relations (in atomic units) C3(0

+
u ) = 5d2/3 and

C3(1g) = (
√

7 + 2)d2/3, valid for the observed Hund’s case (c) states [204]. The uncer-
tainties represent the statistical uncertainties for the fits, which are found to be of the
same order as the uncertainty arising from the determination of the PA detuning by
the wavelength meter.
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Figure 4.9: Plot of the 1/6-th power of the measured binding energies D−Ev = −h∆PA

(symbols) as a function of the relative vibrational quantum number ∆v (see Tab. 4.4)
for the two observed vibrational series 0+

u and 1g of 40K∗
2 dissociating to the 4S1/2+4P3/2

asymptote. ∆v has been shifted by 25 for the data of the 1g series for demonstration
purposes. The slopes of the linear fits (solid lines) yield the dispersion coefficients C3

according to the LRB formula (Eq. (4.14)). Only the resonances at large detunings
(−∆PA > 40 GHz) are used for the fit, since the LRB formula is not valid for the most
weakly bound molecular states.

Determination of the lifetime of the excited atomic state 4P

The dispersion coefficients being linked to the dipole matrix element d, they allow the
determination of the lifetime τ of the atomic state 4P of 40K, which is given by the
relation [173, 224]

τ =
3π~ε0c

3

d2ω3
, (4.23)
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where ω = 2.4568 × 1015 s−1 is the angular frequency of the atomic transition [225]
and ε0 the electric constant. The average value of d2 obtained in our experiment is
d2 = 8.577 ± 0.02 a.u., yielding a lifetime of τ = 25.94 ± 0.07 ns (which corresponds
to a linewidth Γ/(2π) = 6.136 ± 0.017 MHz). This value is slightly smaller than the
currently most precise value of 26.34 ± 0.05 ns (which corresponds to a linewidth
Γ/(2π) = 6.042 ± 0.011 MHz), which has been determined by PA spectroscopy of
39K∗

2 [224]. We attribute this discrepancy to a systematic error (not considered by
the uncertainty given above) in our result, which arises from the application of the
LRB formula. In the experiment of Ref. [224], a smaller uncertainty for the dipole
matrix element could be obtained by deriving it from the dispersion coefficient of a
purely long-range potential. Such potentials allow a more precise determination of the
corresponding dispersion coefficient, since they are nearly not affected by exchange
interactions [224]. Furthermore, the PA detuning in this experiment was measured
with an eight-times higher precision of 30 MHz, using two thermally stabilized Fabry-
Perot etalons. We did not invest in an ultra-precise determination of the PA detuning,
which could be realized using femtosecond laser combs. In our experiment we could
not unambiguously identify excitations to purely long-range molecular potentials. The
observation of such excitations is known to be difficult, because on the one hand, the
small depth of these potentials very likely leads to dissociation to low-energy and thus
recapturable atoms, not detectable by the trap loss technique. On the other hand
the potentials only contain weakly bound states, which tend to be hidden in the PA
spectrum as they appear for small PA detunings, where the state density of other
potentials with stronger signals is also high.

Conclusion

In this section we have presented our experimental results on photoassociation of
homonuclear 40K∗

2 molecules. We have observed and identified two vibrational series
and we have determined the leading order dispersion coefficients of the corresponding
excited molecular potentials making use of the LRB formula. The obtained values are
in very good agreement with those found by Wang et al. [185] for 39K∗

2 and with the-
oretical predictions. Using our values we could derive the lifetime of the atomic state
4P of 40K with a precision of 0.3%, close to the currently most precise value [224].

4.2.4 Photoassociation spectroscopy of 6Li40K∗ molecules

In the following, we present our results on photoassociation of heteronuclear 6Li40K∗

molecules. We have recorded two PA spectra: one in which the PA laser is detuned close
to the 2S1/2+4P3/2 asymptote and one in which it is detuned close to the 2S1/2+4P1/2

asymptote (see Fig. 4.3). The first spectrum was recorded for PA detunings between
0 and −325 GHz, the second for PA detunings between 0 and −60 GHz. For higher
detunings, no further resonances could be observed with a contrast large enough to
allow for a clear distinction from noise.
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Photoassociation spectra and resonance assignment

The recorded heteronuclear PA spectrum close to the 2S1/2+4P3/2 asymptote (as ap-
pearing on the Li fluorescence signal) is shown in Fig. 4.10 (the spectrum recorded be-
low the 2S1/2+4P1/2 asymptote is shown in Fig. 4.13 and will be discussed later). The
graph is an average of ∼ 6 recorded spectra for noise reduction and has been recorded
in pieces and stitched together. Two weeks of continuous data acquisition were re-
quired to obtain the spectrum. The spectrum contains 60 resonances whose contrasts
decrease and whose mutual separations increase with increasing detuning. The maxi-
mum contrast amounts to ∼ 35% and is obtained for a detuning of ∆PA = −14.4 GHz.
The observed resonance widths (FWHM) vary between 80 and 300 MHz, primarily due
to unresolved molecular hyperfine structure.

We have also recorded the heteronuclear+homonuclear PA spectrum appearing on
the K fluorescence signal, which contains all the resonances of Fig. 4.10 as well. A
comparison between the two spectra is shown for a small part in Fig. 4.11 (a). This
figure shows comparable contrasts for the heteronuclear 6Li40K∗ and homonuclear 40K∗

2

PA signals. The homonuclear 40K∗
2 resonances visible on the K fluorescence (lower

trace, right axis) are the previously identified resonances belonging to the series 0+
u

(see Tab. 4.4).

In the heteronuclear spectrum of Fig. 4.10 we identify five vibrational series (la-
beled with numbers), corresponding to the five molecular potentials dissociating to
the 2S1/2+4P3/2 asymptote (see Fig. 4.3 b)). Each series contains five resonances,
which appear in doublets or triplets due to resolved rotational structure (see Tab. 4.3).
This structure is shown more clearly in the high-resolution spectrum of Fig. 4.11 (a)
(upper trace, left axis) for the Ω = 1up, v = 3 vibrational state. Some of the ob-
served rovibrational resonances have a substructure resulting from hyperfine interac-
tions, which is shown in the high-resolution spectrum of Fig. 4.11 (b) for the resonance
Ω = 1up, v = 2, J = 1.

Before attempting to assign the observed resonances, it should be verified that all
resonances are due to the formation of singly excited heteronuclear molecules. The
heteronuclear character of the resonances has already been confirmed by their appear-
ance on both the Li and the K fluorescence signal 5. Since in the 6Li-MOT, both
ground-state and excited 6Li atoms are present, it is, however, not a priori excluded
that doubly excited 6Li∗40K∗ molecules are formed [196]. Even though the fraction of
excited atoms in the 6Li-MOT is small (∼ 0.1), the rate of formation of doubly excited
6Li∗40K∗ molecules could be large due to the long-range character of the corresponding
molecular potential, which scales with the internuclear separation as 1/R5 [166]. In
order to show that the observed resonances are only due to the formation of singly
excited molecules, we recorded a second PA spectrum for a different experimental set-
ting, in which both the 6Li-MOT trapping beams (cooling and repumping) and the
PA laser were periodically chopped out of phase with the same frequency, as shown in
Fig. 4.12 (a). The chopping period was chosen large compared to the lifetime of the
excited 6Li atoms but not too large to prevent the atoms from leaving the MOT. In

5. These resonances can be assumed to be due to the formation of diatomic molecules, because the
probability for the creation of molecules containing more than two atoms is negligible for the small
atomic densities in the MOTs.
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Figure 4.10: Heteronuclear PA trap loss spectrum of 6Li40K∗ below the 2S1/2+4P3/2

asymptote. The PA detuning ∆PA is specified relative to the 4S1/2(F =
9/2) →4P3/2(F

′ = 11/2) transition of 40K. The spectrum contains five vibrational
series (labeled N = 1, ..., 5) with resolved rotational structure, whose assignment is
given in Tab. 4.5. For small PA detunings the average fluorescence of the 6Li-MOT is
higher, since it is less influenced by the 40K-MOT, which has a reduced atom number
due to the perturbation induced by the near resonant PA laser.

this setting no excited 6Li atoms are present when the PA laser is on. Figure 4.12 (b)
shows the obtained “pulsed PA” spectrum together with the spectrum of Fig. 4.10 for
comparison. One can see that most of the resonances appear in both spectra. Some
resonances are, however, not present in the “pulsed PA” spectrum. This might, how-
ever, simply be due to the reduced contrast which results from the lower average PA
power, that also hindered us to record the pulsed PA spectrum for higher detunings.
Nonetheless, the experiment allows us to conclude that most of the observed resonances
in the investigated range of PA detunings can be attributed to the formation of singly
excited 6Li40K∗ molecules. Since all of these resonances show vibrational progressions
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Figure 4.11: (a) Zoom on the heteronuclear (upper trace, left axis) and heteronu-
clear+homonuclear (lower trace, right axis) PA spectrum below the 2S1/2+4P3/2

asymptote showing the rotational structure of the Ω = 1up, v = 3 vibrational state
of 6Li40K∗ and three vibrational 0+

u states of 40K∗
2, which show a resolved hyperfine (∗

and ◦) but no rotational structure. (b) Zoom on the Ω = 1up, v = 2, J = 1 resonance
of 6Li40K∗, showing a nearly resolved hyperfine structure.

which correspond to the theoretical predictions for singly excited 6Li40K∗ molecules,
as we will see in the next paragraph, it is very likely that all resonances are due to the
creation of singly excited 6Li40K∗ molecules.
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Figure 4.12: (a) Imposed temporal behavior of the light intensity of the 6Li-MOT
and the PA beams during data acquisition for the “pulsed PA” spectrum shown in
Fig. (b) together with the habitual “continuous PA” spectrum for comparison. The
6Li-MOT and the PA beams being pulsed out of phase, PA can occur only when the
atoms in the 6Li-MOT are in their electronic ground state, preventing the formation
of doubly excited heteronuclear 6Li∗40K∗ molecules. Figure (b) shows that nearly all
resonances of the continuous PA spectrum (lower trace, left axis) appear also in the
pulsed PA spectrum (upper trace, right axis), indicating that the resonances are due
to the formation of singly excited molecules.
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Having verified the character of the observed resonances, we now turn to their
assignment. The heteronuclear spectrum of Fig. 4.10 looks much more complex than
the one obtained for K∗

2 (see Fig. 4.7). The assignment of the resonances is quite
involved. The K∗

2-spectrum could be understood only on the basis of the LRB formula.
This approach is insufficient for the case of LiK∗ for the following reasons. First, the
LRB formula is much less precise due to the small internuclear distances at which
the LiK∗ molecules are formed (see Sec. 4.1.8). Besides, significant discrepancies exist
between the different theoretical predictions for the C6 coefficients (see Tab. 4.2), which
yield an incertitude about the values to be used. Second, due to the small mass of LiK∗,
the rotational splittings are very large and of the order of the observed vibrational
splittings and thus complicate the identification of vibrational series. This identification
is further complicated by the resulting significant perturbations between rotational
levels of different potentials [226] which lead to irregular rotational structures. Finally,
as heteronuclear molecules have less restrictive selection rules, more vibrational series
are observed which increases the complexity of the spectrum.

In Fig. 4.10 and Tab. 4.5 I present an assignment of the observed resonances. The
assignment was made possible by the combination of several assignment rules: first, the
rotational progression law given by Eq. (4.9) combined with our theoretical calculations
of the rotational constants Bv. With the help of this law rotational progressions (see
Tab. 4.3) can be identified and some of the quantum numbers J and Ω can be assigned
based on the observed line spacings. The identification of the lines belonging to the
Ω = 2 vibrational series (series 1 in Fig. 4.10) is particularly easy, because for this series
only two rotational lines per vibrational level are expected, as opposed to three for all
other series (see Tab. 4.3). Second, the LRB law combined with the theoretical predic-
tions of the C6 coefficients. It predicts that potentials with the same C6 coefficient have
the same vibrational progressions (i.e., the difference between the 1/3-rd power of the
binding energies of any neighboring vibrational states is the same for these potentials),
and that the vibrational levels of potentials with smaller C6-values progress faster with
the PA detuning. With the help of the LRB law vibrational progressions can be identi-
fied and some of the quantum numbers v and Ω can be assigned based on the observed
line spacing. Third, the hyperfine structure law Ehfs ∝ Ω/[J(J + 1)] for Ω = 1 and
Ehfs ≈ 0 for Ω = 0 [227, 218]. It predicts small widths for resonances with Ω = 0 and
particularly large widths for those with Ω = 1, J = 1, facilitating their identification.
Fourth, the expected similar contrast pattern of rotational lines belonging to the same
vibrational series, which facilitates to identify vibrational progressions.

The detailed procedure of the line assignment has been carried out as follows. First,
we searched the spectrum for isolated multiplets, which would allow the determination
of the quantum number Ω from its rotational spacing. One such multiplet is found at
a detuning of −41.1 GHz. It consists of only two lines, indicating that it belongs to the
dyad potential Ω = 2. This indication is further confirmed by the spacing of the lines
which corresponds to ∼ 6Bv, where Bv is our theoretical prediction for the rotational
constant for the Ω = 2 potential. Furthermore, the doublet has a partner at −7.9 GHz,
which is separated from it by a value which agrees with the one obtained from the
LRB formula when the C6 coefficient for the Ω = 2 potential is used. Furthermore the
partner is also a doublet and has a rotational spacing according to the one expected
for the Ω = 2 potential. In addition, the LRB formula clearly excludes the doublet
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N Ω v J −∆PA Contr. 〈R〉 N Ω v J −∆PA Contr. 〈R〉
[GHz] [%] [a0] [GHz] [%] [a0]

1 2 1 2 0.37 1.1 – 4 0− 2 2 3.03 21.4 44
2 3 6.60 2.3 40 1 3.66 22.7

2 7.88 9.4 3 2 20.11 25.0 32
3 3 38.00 5.6 26 1 21.48 20.4

2 41.08 10.6 0 22.16 17.4
4 3 118.49 6.3 22 4 2 63.99 14.7 25

2 122.67 6.3 1 66.06 5.0
5 3 251.80 3.7 19 0 67.13 7.6

2 257.81 4.3 6 2 262.37 1.9 22
2 1up 1 2 0.37 1.1 38 0 266.75 1.9

1 1.34 6.1 5 1down 2 3 4.12 23.9 42
2 3 11.27 2.4 33 2 4.85 14.9

2 13.01 18.5 1 5.90 4.6
1 14.40 35.0 3 3 24.52 19.8 32

3 3 49.20 6.5 25 2 26.15 9.8
2 52.47 14.1 1 27.72 3.0
1 54.53 14.8 4 3 72.26 15.4 25

4 2 154.35 5.4 21 2 75.55 10.0
1 157.40 4.7 1 77.87 5.0

5 3 302.50 2.0 18 5 3 156.12 6.1 22
2 308.75 3.9 2 160.20 1.4
1 313.26 4.6 1 162.91 1.9

3 0+ 2 2 1.34 6.1 35 6 2 296.51 1.8 21
1 2.35 11.0 1 299.57 1.8
0 3.03 21.4 6 0+ 2 2 8.66 3.9 34

3 2 17.23 6.2 32 1 9.74 5.8
1 18.51 10.6 0 10.37 0.8
0 19.25 8.4 3 2 41.56 1.6 27

4 2 56.30 2.0 26 1 43.40 5.1
1 58.17 6.6 0 44.31 2.0
0 59.21 5.6 7 1 2 2 20.42 3.6 30

5 2 127.76 4.0 25 1 21.93 2.0
1 129.91 7.8
0 131.80 5.0

6 2 244.13 2.0 20 Accuracy
1 247.07 5.2 ±0.25 ±1.0 ±1
0 249.01 2.2

Table 4.5: PA resonances of 6Li40K∗ observed below the 2S1/2+4P1/2,3/2 asymptotes
and their contrasts. N denotes the number of the vibrational series given in Figs. 4.10
and 4.13, v the vibrational quantum number counted from dissociation. The average
radii of the molecules are determined by 〈R〉 = ~/

√
2µBv using the measured Bv.
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at −41.1 GHz to belong to one of the upper triad potentials 0−, 0+, 1down, since, using
their C6 coefficient, the LRB formula would predict the neighboring vibrational state
to appear at a detuning of −10.8 GHz, whereas no resonance can be found in close
proximity of this value in the spectrum 6. We thus conclude that the doublets at
−7.9 GHz and −41.1 GHz belong to the dyad potential Ω = 2. An extrapolation based
on the LRB formula roughly yields the positions of the remaining resonances of this
series (series 1 in Fig. 4.10), which are then distinguished from resonances found in the
neighborhood by the knowledge of the rotational splittings. Due to the low density of
vibrational states, the LRB formula allows the assignment of the (absolute) quantum
number v 7.

Another isolated multiplet is found at a detuning of −14.4 GHz. It consists of three
lines whose spacing corresponds to ∼ 6Bv and ∼ 4Bv, where Bv is our theoretical
prediction for the dyad potential Ω = 1up potential. The triplet has a partner at
−54.5 GHz, which is separated from it by a value which agrees with the one obtained
from the LRB formula and the C6 coefficient for the Ω = 1up potential. The suggested
assignment to the Ω = 1up potential is further confirmed by the large width of the
rovibrational line at −14.4 GHz (see Fig. 4.11 (b)), which indicates that it is a Ω =
1, J = 1 resonance. An extrapolation with the LRB formula yields the other lines of
this series (series 2 in Fig. 4.10), whereas a consideration of the rotational splittings and
the relative contrasts of the rotational lines is required to unambiguously distinguish
the series from lines of other series in close proximity.

From the already identified series we know that the remaining lines belong to the up-
per triad potentials 0−, 0+, 1down, which have all the same C6 coefficients (see Tab. 4.2).
The spectrum in Fig. 4.10 shows three distinct triplets in the region between −17 and
−27 GHz. Those have each one partner in the region between −56 and −78 GHz, which
is separated by the value expected from the LRB formula. This confirms that these
three triplets and their partners belong to the potentials 0−, 0+, 1down. We number the
obtained series by 3, 4 and 5 and we obtain the remaining lines by using the LRB
formula. The assignment of the lines to the series is further confirmed by the constant
relative line contrasts of the rotational lines within each series: for series 5, the ro-
tational line with J = 3 is the strongest throughout the spectrum and the line with
J = 1 is the weakest (see Tab. 4.5). For series 3, the rotational line with J = 1 is the
strongest throughout the spectrum, the lines with J = 2 and J = 0 being less strong.
For series 4, the rotational line with J = 1 is the weakest throughout the spectrum.

Figure 4.10 shows that series 1 and 2 of the dyad potentials progress faster with
the PA detuning than series 3, 4 and 5 of the upper triad potentials, which is a direct
consequence of their larger C6 coefficients (note how series 1 and 2 “overtake” series 3,
4 and 5).

We now assign the quantum numbers Ω and the partity σ to the series 3, 4 and
5. Series 5 is readily determined as belonging to the potential 1down for the following
reasons. First, it has larger rotational splittings than series 3 and 4, and second the

6. It might be that this resonance is simply suppressed by a node in the initial scattering wave
function, which, however, is unlikely since we observe 15 resonances between −6GHz and −28GHz
(see Tab. 4.5), whereas only one vibrational state per potential is expected in this range, suggesting
that all five vibrational series are observed in this range and that no line suppression occurs.

7. This has not been possible for 40K∗

2, see Tab. 4.4.
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lines clearly have a larger width indicating the appearance of a hyperfine structure,
which is not expected for the potentials 0−, 0+. The remaining series 3 and 4 thus both
belong to potentials with Ω = 0. The determination of their parity is, however, more
delicate, since both series have identical C6, Bv and Ω. It requires an analysis of the
relative strength of the rotational lines. Due to the selection rules, the parity of the
total wave function of the system, i.e. the product of σ and (−)l for the rotational part
(l being the partial wave), changes sign during the transition. Further, the electronic
parity is conserved, namely only X1Σ+(0+) → 0+ and a3Σ+(0−) → 0− are allowed
for parallel transitions. In our experiment, s-wave collisions dominate, such that the
total parity is + (−) for the former (the latter) initial state. The parallel transition
X1Σ+(0+, l = 0) → (0+, l = 1) is thus allowed promoting then the J = 1 line, while
the parallel transition a3Σ+(0−, l = 0) → (0−, l = 1) is forbidden. Under the same
approximation, the perpendicular transition a3Σ+(1, l = 0) → (0−, l = 0) is allowed
and promotes the J = 0 line in the spectrum. Therefore we assign the Ω = 0 series
with pronounced (reduced) J = 1 line to the excited 0+ (0−) state.

In the previous paragraphs we have analyzed the heteronuclear PA spectrum which
has been recorded below the 2S1/2+4P3/2 asymptote. We now turn to the spectrum
near the dissociation limit 2S1/2+4P1/2, which is shown in Fig. 4.13 for PA detunings
from 0 to −60 GHz. The spectrum contains 8 resonances, which have small contrasts of
less than 6%. Averaging of ∼ 20 recorded spectra was required to make the resonances
visible well above noise level. We identify two vibrational series (labeled with numbers)
corresponding to two of the three molecular potentials dissociating to the 2S1/2+4P1/2

asymptote (see Fig. 4.3). Their assignment is presented in Fig. 4.13 and Tab. 4.5 and
based on the above-mentioned rules: series 6 (see Fig. 4.13) consists of two triplets with
vibrational and rotational spacings corresponding to those expected for the potentials
with Ω = 0 from the LRB and rotational progression laws. We identify the series to
belong to the specific potential Ω = 0+, due to the relative strength of the rotational
lines, which is largest for the J = 1 line. Series 7 only contains one doublet whose
rotational spacing indicates that it belongs to the potential Ω = 1. Furthermore, its
J = 1 resonances is significantly broader than all other resonances, indicating the
appearance of a hyperfine structure, which confirms the assignment of this line to the
potential Ω = 1.

Derivation of the long-range potential and the rotational constants

Having assigned all observed resonances, the parameters of the different molecular po-
tentials can be derived. We infer the C6 coefficients from the measured vibrational
binding energies using the LRB formula (Eq. (4.14)). Due to the non-negligible ro-
tational splittings, it is required to subtract the rotational energy from the measured
binding energies, i.e. to take D − Ev = −(h∆PA − Erot). Figure 4.14 shows the plots
of the 1/3-rd power of the binding energies as a function of the vibrational quan-
tum number for the five vibrational series dissociating to the 2S1/2+4P3/2 asymp-
tote. The plots are predicted by Eq. (4.14) to follow straight lines whose slopes yield:
C6 = 9170 ± 940 a.u. and C6 = 9240 ± 960 a.u. for the dyad potentials Ω = 2, 1up,
C6 = 25220± 600 a.u., C6 = 25454± 720 a.u. and C6 = 24310± 1710 a.u. for the upper
triad potentials Ω = 1down, 0+, 0− and C6 = 12860±660 a.u. for the lower triad potential
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Figure 4.13: Heteronuclear PA trap loss spectrum of 6Li40K∗ below the 2S1/2+4P1/2

asymptote. The PA detuning ∆PA is specified relative to the 4S1/2(F =
9/2) →4P1/2(F

′ = 9/2) transition of 40K. The spectrum contains two vibrational series
(labeled N = 6, 7) with resolved rotational structure, whose assignment is given in
Tab. 4.5.

Ω = 0+ (not shown in Fig. 4.14), respectively, where the uncertainties represent statis-
tical uncertainties for the fits. These values are in very good agreement with the respec-
tive theoretical values C6 = 9800 a.u., C6 = 25500 a.u. and C6 = 13830 a.u. predicted
by Bussery et al. [165] (see Tab. 4.2). The agreement with the values C6 = 9520 a.u.,
C6 = 22000 a.u. and C6 = 15420 a.u. predicted by Movre et al. [202] and the similar
ones predicted by Marinescu et al. [166] is not as good. The three theoretical predic-
tions differ in their treatment of the interaction between the two asymptotes 2S+4P
and 2P+4S, which is taken into account in Ref. [165] only. The agreement of our data
with this reference hints that this interaction is significant.

The uncertainty of the experimentally derived C6 coefficients results from the fol-
lowing effects. First, the heteronuclear nature of the LiK molecule and its small C6

coefficients lead to molecule formation at small internuclear separations (see values of
〈R〉 in Tabs. 4.5 and 4.4) at which the exchange interaction and higher-order terms
in the long-range multipole expansion of the molecular potential (see Eq. (4.5)) be-
come important. As the LRB law neglects these contributions systematic errors arise.
Second, the small reduced mass of the LiK molecule leads to a low density of vibra-
tional states 8 and thus to a small number of states with long-range character, causing
statistical errors.

The measured rotational splittings allow us to infer the rotational constants and
to confirm the assignments above. They are shown in Fig. 4.15 for the five vibrational
series below the 2S1/2+4P3/2 asymptote, together with their theoretical predictions,

8. For example, in the investigated range of PA detunings, 5 vibrational levels per potential were
observed for 6Li40K∗, whereas 48 were observed for 40K∗

2.
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Figure 4.14: Plot of the 1/3-rd power of the measured binding energies D − Ev =
−(h∆PA − Erot) (symbols) as a function of the vibrational quantum number counted
from the dissociation limit for the five vibrational series dissociating to the 2S1/2+4P3/2

asymptote. The slopes of the linear fits (solid lines) yield the dispersion coefficients
C6 according to the LRB formula (Eq. (4.14)). The LRB formula indicates that the
least bound vibrational states (v = 1) are observed for the potentials Ω = 2, 1up. The
identically appearing slopes of the three triad potentials and the two dyad potentials
demonstrate the equality of the respective C6 coefficients.

which we have derived from the potential curves of Fig. 4.3. 9. The agreement between
the measured and theoretically predicted values is reasonable. The error bars account
for the imprecision of the wavelength determination and of the resonance positions due
to the unresolved hyperfine structure. Deviations from the theoretical predictions may
be due to perturbations by the 31Σ+ state [214].

In summary, our experimentally obtained values for the C6 coefficients and the
rotational constants are in very good agreement with the theoretical predictions. This
agreement confirms our resonance assignments.

Determination of the molecule formation rate

In the following we determine the formation rate for excited 6Li40K∗ molecules and we
compare it to the one obtained for 40K∗

2 in our experiment and to our own theoretical
estimates. Besides we study the dependence of the 6Li40K∗ molecule formation rate on

9. Even though theoretically calculated potential curves cannot be invoked to predict the binding
energies of weakly bound molecular levels, they are well adapted to the prediction of rotational con-
stants, as those depend on the expectation value of the molecule’s radius, which does not critically
depend on the precise details of the potentials.
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Figure 4.15: Measured rotational constants (symbols) for the observed excited molec-
ular states below the 2S1/2+4P3/2 asymptote and their theoretical predictions for com-
puted vibrational levels (dots, the lines serve to guide the eye), derived from the po-
tential curves of Fig. 4.3.

the intensity of the PA light. Finally, we theoretically predict the probabilities for the
created excited 6Li40K∗ molecules to decay into the different vibrational levels of the
singlet electronic ground-state potential X1Σ+.

An estimate for the molecule formation rate can be obtained by two different
experimental procedures. In the first, the rate is deduced from the steady state
atom numbers in the 6Li-MOT in presence and in absence of the PA beam using
Eq. (4.21). The large asymmetry in the populations of the two MOTs allows one
to consider K a constant background gas, which does not change its density when
PA occurs. For the resonance shown in Fig. 4.11 (b) we obtain (at the maximum
available PA laser intensity of 100 W/cm2) a lower bound for the molecule formation
rate of βPAn

K
c N

PA
Li ∼ 3.5 × 107 molecules/s. The corresponding PA rate coefficient

for the given density nK
c ∼ 5 × 1010 atoms/cm3 of 40K atoms can be estimated to

βPA = (2.2 ± 1.1) × 10−12 cm3/s.

In the second procedure, the molecule formation rate is derived from the time
evolution of the atom number in the 6Li-MOT after the (resonant) PA beam is switched
on. The rate of change of the atom number for small times then yields the molecule
formation rate. Figure 4.16 (a) depicts the atom number in the 6Li-MOT as a function
of the exposure time of the PA light resonant with the transition to the Ω = 1up, v =
2, J = 1 level. The graph was recorded by measuring the minimum value of the atom
number in the 6Li-MOT obtained when scanning the frequency of the PA laser across
the molecular resonance with different scanning speeds. The investigated molecular
resonance has a width of ∼ 300 MHz (FWHM) (see Fig. 4.11 (b)). We thus define
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the ratio of that width and the scanning speed as the PA time tPA. The slope of the
graph at tPA = 0 yields the molecule formation rate ∼ 5 × 107 molecules/s and a PA
rate coefficient of βPA = (3.1± 1.5)× 10−12 cm3/s, which are in accordance with those
obtained in the previously described procedure. Furthermore, the graph demonstrates
the importance of slowly scanning the PA laser for the optimization of the PA-induced
losses.
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Figure 4.16: (a) Atom number in the 6Li-MOT as a function of the exposure time of
the resonant PA light for the resonance Ω = 1up, v = 2, J = 1 at a PA detuning of
−14.4 GHz with a PA beam intensity of 100 W/cm2. (b) 6Li40K∗ molecule formation
rate as a function of the PA beam intensity for the same molecular transition.

The obtained PA rate coefficient is larger by about a factor of two than the one found
in the experiment with RbCs∗ [193], showing that PA rates for LiK∗ are much more
favorable than previously expected [197], confirming the trend discussed in Ref. [198].
Using Eq. (51) of Ref. [228] we compute a coefficient of 4×10−13 cm3/s for the transition
between a continuum level of the X1Σ+ state at 1.2 mK and the singlet component
of a computed 1up level with −21 GHz detuning. Assuming that the corresponding
transition from the a3Σ+ state toward the triplet component of this 1up level has a
comparable strength, and that the X1Σ+ and a3Σ+ states are statistically populated
in the initial collision, we estimate the total PA rate coefficient to 1.6 × 10−12 cm3/s,
in agreement with our measured value.

We now compare the measured molecule formation rate for 6Li40K∗ with the one
obtained simultaneously for 40K∗

2. The highest observed trap loss in the K fluorescence
due to the formation of 40K∗

2 molecules is ∼ 12% (see Fig. 4.11 (a)). Assuming a
constant atom density in the 40K-MOT, the rate equation for the atom number yields
a 40K∗

2 molecule formation rate of βPAn
K
c N

PA
K /2 ∼ 5.3 × 107 s−1, where the division

by 2 accounts for the fact that two atoms are lost from the trap when a molecule is
formed. The 40K∗

2 molecule formation rate is thus comparable with the one obtained
for 6Li40K∗. It has to be noted, however, that a direct comparison of these values is
difficult. First, the overlap between the PA laser and the two MOTs is not the same, as
both MOTs have a different size. Second, both MOTs might have a different behavior
with respect to recapture of atoms leading to a different detection efficiency for both
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molecules. Due to the much larger radii of the created 40K∗
2 molecules compared to that

of the 6Li40K∗ molecules, dissociation of the 40K∗
2 molecules to free atoms is more likely.

As those have a chance to be recaptured the number of actually created K∗
2 molecules

might be underestimated. Third, the assumption about the constant atom density in
the MOTs leads to different errors in the calculation of the molecule formation rate.

Figure 4.16 (b) depicts the 6Li40K∗ molecule formation rate as a function of the
PA laser intensity. The graph was recorded by measuring—for different PA beam
intensities—the maximum relative 6Li atom loss when scanning the frequency of the
PA laser across the molecular resonance. The scanning speed (of 7 MHz/s) was chosen
such that the time scale of the change of the molecule formation rate is small compared
to that of all loss rates appearing in Eq. (4.22) such that the molecule formation rate
for each intensity could be derived from the measured 6Li loss using Eq. (4.22). The
curve shows the onset of a saturation. We attribute this saturation to the saturation
of the molecular transition. As has been argued in Ref. [192], internal MOT processes
such as optical pumping, thermalization or diffusion can be excluded as the origin
of the observed behavior, since those happen on a much smaller time scale than the
losses due to PA. Also, we did not observe significant broadening of the observed
resonance with increasing PA laser intensity. We intend to analyze Fig. 4.16 (a) in
more detail in the future with the approach described in Ref. [229] in order to deduce
a saturation intensity for the investigated molecular transition. The observed onset of
a saturation at reasonable laser intensities already promises efficient coherent multi-
photon population transfers to the molecular rovibrational ground state.

In order to estimate the capacity of multi-photon population transfers to deeply
bound levels of the electronic ground-state potential X1Σ+, we calculated the proba-
bilities for decay of the created excited molecules into these states. Figure 4.17 shows
the relative populations of these states after decay from two computed high-lying vi-
brational levels of the 1up state (v = 1 and v = 3, v being counted from dissociation)
calculated in the coupled state approach. The populations are given by the squared
overlap integral between the radial wave functions of the computed levels with the
wave functions of the X1Σ+ vibrational levels. The computed levels of the 1up state
have binding energies of −3 GHz and −81 GHz and differ from the measured ones, but
their decay pattern is representative for the ones expected in the range of experimental
detunings. Figure 4.17 shows that the decay rates are largest for the the most weakly
bound ground-state level, but that they are still significant for the decay into deeply
bound levels such as the X1Σ+(v′ = 3) level (v′ counted from the potential bottom),
which could thus be reached quite efficiently during a coherent multi-photon popula-
tion transfer. The local maximum of the relative population at v′ = 3 results from a
spatially coincident inner vibrational turning point of the ground and excited levels.
Taking our observed PA rate of ∼ 3.5 × 107 s−1 for the Ω = 1up, v = 2, J = 1 level
at −14.4 GHz detuning, we predict that X1Σ+ state molecules will be formed in the
vibrational level v′ = 3, bound by ∼ −5500 cm−1, at a rate of ∼ 5 × 104 s−1.

4.3 Conclusion

In conclusion, we have demonstrated, for the first time, heteronuclear photoassocia-
tion of LiK∗. We have recorded and assigned photoassociation spectra below the two
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Figure 4.17: Relative populations of the different vibrational levels v′ (v′ being counted
from the potential bottom) of the electronic ground-state potential X1Σ+ of LiK after
decay from two computed high-lying vibrational levels of the 11Π(1up) state (v = 1 and
v = 3, v being counted from dissociation). The populations are given by the squared
overlap integral between the radial wave functions of the computed levels with the wave
functions of the X1Σ+ vibrational levels.

lowest excited atomic asymptotes. We have derived the long-range dispersion coeffi-
cients and found a very good agreement with the theoretical predictions of Bussery
et al. [165]. The measured rotational constants also agree well with our theoretical
calculations based on our calculated potential curves. In particular, we have observed
large formation rates for the heteronuclear 6Li40K∗ molecules which are larger than
those reported for other heteronuclear molecules in the literature [194, 195, 84, 196]
except RbCs∗ [193] and which are comparable to those found for homonuclear 40K∗

2.
The large formation rates demonstrate that the photoassociation probability for LiK∗

is much more favorable than previously expected [197]. Using a theoretical model we
have inferred decay rates to the deeply bound electronic ground-state vibrational level
X1Σ+(v′ = 3) of ∼ 5 × 104s−1. These large rates promise efficient creation of rovi-
brational ground-state molecules via multi-photon population transfers and show that
photoassociation is an attractive alternative to Feshbach resonances, since those have
a very small width for 6Li40K and are thus difficult to control [90].

Our spectroscopic measurements represent the first measurements of binding en-
ergies of weakly bound LiK∗ molecules. Combining our data with data obtained in
conventional molecular spectroscopy experiments for deeply bound molecules will al-
low the derivation of more precise potential energy curves. In particular for the excited
molecular potential 1(B)1Π, which turns into the Ω = 1up potential at long range,
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we believe that we have recorded all of the previously undetermined vibrational level
positions, such that a complete set of vibrational level positions is now available for
this potential. Previously, the dissociation energy of the potential could be determined
only with an uncertainty of ±h× 150 GHz [214]. We believe that the inclusion of our
data will lead to an improvement of this precision of about three orders of magnitude.
The gained information about the potential will allow one to find ways to efficiently
transfer atoms to stable deeply bound ground-state molecules.

Many optical transfer schemes for the production of deeply bound ground-state
molecules have been proposed and realized in the past years for both homo- and het-
eronuclear molecules [201, 98, 182]. Those can be divided into two classes, that is,
single-color and multi-color transfer schemes. In single-color transfer schemes, the
atoms are photoassociated into an excited molecular level which has a large proba-
bility to spontaneously decay into a deeply bound vibrational level of the electronic
ground state. Sometimes, specific interaction properties lead to favorable molecular
potential curves which yield high Franck-Condon probabilities for both the excitation
and decay transitions, such that deeply bound ground-state molecules can be formed
with reasonable efficiency. An impressive demonstration has been given for LiCs [84]:
heteronuclear atom pairs could be transferred to the absolute rovibrational ground
state via a single photoassociation step with an efficiency of ∼ 10−3. The disadvantage
of single-color transfer schemes is that the involved spontaneous decay is an incoherent
process which leads to a wide distribution of vibrational levels in the ground state
and which furthermore heats the gas due to the recoil energy of the emitted photons.
Multi-color transfer schemes allow the coherent population of one single level of the
ground-state potential without heating of the gas. One example is the stimulated Ra-
man adiabatic passage (STIRAP) scheme [116, 117] mentioned in the introduction of
this thesis (see chapter 1). It implicates two laser frequencies and requires three bound
levels. An appropriate time sequence for the two laser fields allows the transfer of the
populations of one molecular ground state to the other by implication of an excited
molecular state, which is never populated. The STIRAP scheme cannot be applied
when the continuum is the starting level [230], such that atoms have to be bound to
molecules before. It has been demonstrated [118, 85, 119] that the use of Feshbach
resonances for this step is very convenient, although not indispensable.

The STIRAP scheme is very promising for the achievement of a quantum degenerate
gas of polar ground-state molecules. The creation of 6Li40K molecules by photoasso-
ciation demonstrated in this thesis as well as the recent realization of weakly bound
ground-state 6Li40K molecules using Feshbach resonances provide a starting point for
the application of the scheme. Our spectroscopic results will help to find pathways
for an efficient STIRAP-based coherent transfer of these molecules into their rovibra-
tional ground state. The large intrinsic electric dipole moment of deeply bound 6Li40K
ground-state molecules would provide access to qualitatively new quantum regimes
inaccessible for neutral atoms [96, 97, 98].



Chapter 5

Particle motion in rapidly
oscillating potentials

5.1 Introduction

Potentials which oscillate rapidly relative to the motion of particles inside them are
widely used to trap charged and neutral particles for various applications. The rea-
sons for this are manifold. Most notably, rapidly oscillating potentials (ROPs) can
allow trapping in cases where static potentials cannot. This is due to a property of
ROPs which is termed dynamic stabilization, which was first demonstrated in 1951
by Kapitza [231], utilizing an inverted pendulum whose suspension point was forced
to oscillate vertically. He showed that for high enough frequencies and large enough
amplitudes of this oscillation the upwards position of the pendulum becomes stable.
Dynamic stabilization is the basic principle of the so-called dynamic traps. Well-known
paradigms are the Paul trap for charged particles [232, 233, 234] and the electro- and
magnetodynamic traps for high-field seeking polar molecules [235, 236] and neutral
atoms [237, 238, 239, 240].

Another reason for the wide use of ROPs is that they allow the realization of
complicated trap geometries. Prime examples are the TOP-trap [151, 241, 242, 243,
244, 245, 246], the optical billiard traps [247, 248] and rapidly scanning optical tweez-
ers [249, 250] for ultracold neutral atoms. The latter are also used in Biophysics to
trap and investigate dielectric particles such as polymers and living cells [251, 252].

Finally, ROPs are attractive for use, because the description of the motion of parti-
cles inside them—as compared to other time-varying potentials—is very simple. This
is because the particles’ mean-motion (averaged over the ROP’s fast oscillations) is in
both the classical and the quantum regime to a good approximation determined by a
static effective potential [253, 254, 255, 256].

Preliminary calculations for the classical regime [123] show that in ROPs with
a vanishing time-average—such as e.g., the Paul trap—the mean motion of trapped
particles is strongly coupled to the phase of the ROP. Consequently, the particles’
mean motion can be appreciably manipulated by changing the phase of the ROP. For
the Paul trap, a phase hop can change the mean-energy of a trapped classical particle
(that is not constantly at rest) by a factor which can take any value between 0.1 and
9.9, independent of the particle’s mean-energy [123], thus offering a powerful tool for
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particle manipulation.

However, often quantum particles are trapped in ROPs [233, 234, 151, 244, 245,
247, 248, 249, 250]. It is not clear how a phase hop affects quantum particles: in the
Paul trap, a classical particle which does not move is not affected by a phase hop [123].
Thus, a quantum particle in, e.g., the ground state of the effective trapping potential
might also not or only weakly be affected by a phase hop. Furthermore, the ability
to dissipate up to 90% of a particle’s mean-energy in a Paul trap by a single phase
hop, which is given in the classical regime independent of the particle’s energy, can not
generally hold in the quantum regime.

During my thesis we derived an independent quantum mechanical treatment of the
effect of phase hops on a particle trapped by a ROP of arbitrary shape. It is shown here
by both analytical and numerical calculations that a phase hop can strongly influence
the particle’s mean motion, even if it is in the ground state of the effective trapping
potential. The results of this work have lead to a publication [124] (see Appendix D)
and are presented in this chapter.

Recently, the proposed method has been implemented experimentally with an en-
semble of quantum particles which form a Bose-Einstein condensate (BEC) trapped
in a time-averaged orbiting potential (TOP) [125]. In this experiment, the BEC was
prepared in a static Ioffe-Pritchard (IP) magnetic trap and subsequently transferred to
the TOP to allow the realization of complicated trap geometries (as e.g. a double-well
potential). The sudden replacement of the IP trap by the TOP induces an unde-
sired oscillating mean motion of the BEC. It was shown that these oscillations could
be nearly entirely quenched by applying a single phase hop to the TOP potential,
supporting the statements which are presented in this chapter. Furthermore, the ex-
periment demonstrated that despite the imperfections given in an experiment, phase
hops can be induced with a high precision.

Throughout this chapter we use one-dimensional formalism, but the results pre-
sented here can be directly applied to two and three dimensions in cases where the
motion is separable [253]. For high dimensional oscillating potentials where the par-
ticle’s motion in not separable and in particular chaotic, new phenomena may occur
that are not discussed here [248]. In Ref. [125], the effect of phase hops in a TOP trap
was generalized to three dimensions.

The remainder of this chapter is organized as follows. In Sec. 5.2 we give an overview
of the classical treatment of the motion of a particle in a ROP and the effect of a phase
hop. We show that in the limit of large driving frequencies of the ROP the time-
dependent equation of motion can be replaced by a time-independent one with a static
effective potential. We show that inducing a phase hop does not change this time-
independent equation of motion. Analytical calculations show that a phase hop can
significantly influence the particle’s mean motion. We demonstrate that the effect of a
phase hop can be visualized as being the result of a collision with an imaginary particle.
In Sec. 5.3 we address the corresponding quantum mechanical problem. Also here, the
equation of motion of the quantum particle can be replaced by a time-independent
one. The particle’s mean motion is found to possess stationary mean-motion states.
We show that a phase hop affects these states in a significantly different way than it
affects classical states: whereas a phase hop can be always induced such that the energy
of a classical particle can be decreased, its effect on a quantum particle in a stationary
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mean-motion state always consists in increasing the particle’s mean energy. Further
we calculate the transition probabilities between stationary mean-motion states which
are induced by a phase hop. Finally the consistency of the quantum mechanical results
with the corresponding classical results is verified using coherent states. For the model
potential of rapidly scanning optical tweezers, we find that a phase hop does not destroy
the coherence of a coherent state, showing that phase hops could be used, in principal,
to decelerate a classical particle until it occupies the mean-motion ground state. For
the model potential of the Paul trap, however, a phase hop is found to destroy the
coherence of coherent states.

5.2 Classical motion in a rapidly oscillating poten-

tial

5.2.1 Time-independent description

The time-independent description of the motion of a particle in a rapidly oscillating
potential has been studied several times in the past [253, 254, 255, 256]. It has been
shown that the mean motion of a classical particle which is moving in a ROP is approx-
imately governed by an equation of motion with a time-independent effective potential.
The derivation is given in the following. The motion of a particle in a rapidly oscillating
one-dimensional potential V (x, t) is described by Newton’s equation

mẍ = −V ′
0(x) − V ′

1(x, ωt), (5.1)

(primes denote derivatives with respect to x) with ω denoting the driving frequency
of the ROP. Here, the last two terms represent a separation of V into a time-averaged
part V0 and an oscillating part V1 with a vanishing period average. Two experimentally
relevant examples for the considered type of potentials are

V PT(x, ωt) =
1

2
mω2

oscx
2 cosωt, (5.2)

V OT(x, ωt) =
1

2
mω2

osc(x− x0 cosωt)2, (5.3)

(shown in Fig. 5.1) for which V PT
0 (x)≡V PT(x, ωt)=0 (the overbar denotes the time-

average over one period) and V OT
0 (x) ≡ V OT(x, ωt) =mω2

osc(x
2−x2

0/2)/2. These po-
tentials are model-potentials for the Paul-trap (5.2) and for rapidly scanning optical
tweezers (5.3), respectively.

The potential V is assumed to oscillate rapidly, that is, its period is inferior to the
characteristic time of the system’s dynamics. One observes that at these large driving
frequencies, the particle’s motion separates into two parts that evolve on the different
time scales t and τ≡ωt [254, 255, 256]. The particle’s motion can thus be written as

x(t) = X(t) + ξ(X, τ), (5.4)

where ξ(X, τ) is a time-periodic function with the same period as V , which has a small
amplitude and a vanishing period average. Accordingly, it is termed micromotion. X(t)



130 Chapter 5. Particle motion in rapidly oscillating potentials

x
0

V
PT

x,
w
t

x

0 x0Kx0

V
O
T
x,
w
t

Figure 5.1: Model-potentials for the Paul-trap (5.2) (left) and for spatially oscillating
optical tweezers (5.3) (right). Solid (red) curves: time-dependent potential, dashed
(blue) curves: time-independent effective potential.

is a slowly varying function of time, which is the solution of a Newton equation with
a time-independent potential and which describes the particle’s mean motion. The
knowledge of this Newton equation allows one to obtain an intuition for the particle’s
mean motion as it does not depend on time. An approximation for this equation can
be obtained in the following two steps [231, 253, 257]. First, Eq. (5.4) is substituted
into Eq. (5.1) and the potential terms are expanded in powers of ξ as far as the first
order terms. Second, ξ is chosen as

ξ(X, τ) = − 1

mω2

∫ (2)τ

[V ′
1(X, τ)], (5.5)

(which implies ξ(X, τ) = 0) and the resulting equation is averaged in time over one
period of V . The integral

∫ τ
[f(τ)] of a periodic function f(τ) is defined as the anti-

derivative of f(τ) which has a vanishing period average [258]:
∫ τ

[f(τ)] ≡
∫ τ

0
f(τ ′)dτ ′−

∫ τ

0
f(τ ′)dτ ′ 1. It can be applied repeatedly. Its multiple application (j times) is denoted

by
∫ (j)τ

[f(τ)] and its evaluation at the point τ0 by [
∫ τ

[· · · ]]τ0 . The choice of ξ implies
that the time-dependent potential term −V ′

1(X, τ) in Eq. (5.1) is canceled by the term
mξ̈ such that only time-dependent terms with a small amplitude remain. The averaging
finally results in

mẌ = −V ′
eff(X), (5.6)

with the effective potential

Veff(X) = V0(X) +
1

2mω2

(∫ τ

[V ′
1(X, τ)]

)2

= V0(X) +
1

2
mξ̇(X, τ)2 (5.7)

(dots denote derivatives with respect to t). The second term on the right hand side
(rhs) of Eq. (5.7) can be interpreted as the mean kinetic energy stored in the micromo-
tion. For the above examples one has V PT

eff (x) =mΩ2x2/2, with Ω≡ω2
osc/(ω

√
2), and

1. For example, it is
∫ τ

[cos(τ)] = sin(τ),
∫ (2)τ

[cos(τ)] = − cos(τ).
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V OT
eff (x)=mω2

oscx
2/2 + c, with an x-independent constant c=mω2

oscx
2
0 (1 + ω2

osc/ω
2) /4

(see Fig. 5.1). In both model potentials the effective potential equals a harmonic oscil-
lator potential, which is capable to trap the particle. For the Paul trap potential (5.2)
this is surprising as it has a vanishing time average 2.

We have seen that the particle’s mean motion inside a ROP is governed by a Newton
equation with a time-independent effective potential. As a result, the mean energy of
the particle in a ROP is conserved. In particular we have seen, that the effective
potential can have a local minimum even in cases where the time-average of the ROP
vanishes.

5.2.2 Coupling between the mean motion and the potential’s
phase

In the following we investigate how the particle’s mean motion is related to the phase
ϕ of the ROP V (x, ωt+ϕ). As the effective potential (5.7) consists only of period-
averaged terms, it is independent of the phase of the ROP and thus also the equation of
motion (5.6) for the particle’s mean motion. In the first instance one might thus naively
expect that the mean motion does not depend on the potential’s phase. However,
the motion of a particle not only depends on its equation of motion but also on its
initial conditions. According to Eq. (5.4) the initial conditions X(0) and Ẋ(0) for the
particle’s mean motion are related to those of the real motion x(0) and ẋ(0) via

X(0) = x(0) − ξ(0) = x(0) +
1

mω2

[

∫ (2)τ

[V ′
1(X, τ+ϕ)]

]

τ=0

, (5.8)

Ẋ(0) = ẋ(0) − ξ̇(0) = ẋ(0) +
1

mω

[∫ τ

[V ′
1(X, τ+ϕ)]

]

τ=0

. (5.9)

Since the micromotion ξ depends on the phase ϕ, also X(0) and Ẋ(0) do and thus the
resulting mean motion of the particle. In the considered limit of very large driving fre-
quencies both, ξ(0) and ξ̇(0), become small as they scale with ω−2 and ω−1, which might
lead one to think, however, that the initial condition transformations (5.8) and (5.9),
which lead to the phase dependence of the particle’s mean motion, are insignificant.
But for certain cases, the transformations can not be neglected [123]. This can be seen
from the following argument. Consider a particle that is trapped inside a ROP with a
vanishing average. According to Eq. (5.7), the potential energy of the particle’s mean
motion is then proportional to the mean kinetic energy stored in its micromotion. For
a trapped particle the potential energy of the particle’s mean motion can be larger
than the kinetic energy of the mean motion and thus, the kinetic energy stored in the
micromotion is not negligible with respect to the kinetic energy of the particle’s mean
motion. Consequently, ξ̇(0) cannot be neglected compared to Ẋ(0) in Eq. (5.9) even
for arbitrarily large driving frequencies ω 3. For particles trapped in ROPs with a van-

2. For the Paul trap potential the oscillation frequency Ω of the effective potential is much smaller
than the maximum instantaneous oscillation frequency ωosc of the oscillating potential. For the optical
tweezers potential (5.3) both these oscillation frequencies are the same.

3. The micromotion position ξ however, can be neglected with respect to the mean position X
for large ω, since this was the basic assumption for the time-independent description of the particle’s
mean motion.
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Figure 5.2: Trajectories of a particle inside (a) the Paul-trap potential V PT(x, ωt+ϕ)
(5.2) with initial conditions x(0) = x0 and ẋ(0) = 0 and the driving frequency ω = 100Ω
and (b) the oscillating tweezers potential V OT(x, ωt+ϕ) (5.3) with initial conditions
x(0) = 0.01x0 and ẋ(0) = 0 and the driving frequency ω = 100ωosc for different phases
ϕ of the potential. The trajectories are obtained from a numerical solution of the
time-dependent Newton equation (5.1).

ishing average, the mean motion is thus strongly coupled to the phase of the potential.
This strong coupling can also exist for ROPs with a non-vanishing average.

A numerical demonstration of the significant dependence of the particle’s mean
motion on the potential’s phase is depicted in Fig. 5.2 for the two model potentials
V PT(x, ωt+ϕ) (5.2) and V OT(x, ωt+ϕ) (5.3). The trajectories in the figure are ob-
tained by numerically solving the time-dependent Newton equation (5.1) for given
initial conditions and very large driving frequencies ω. The trajectories appreciably
differ from each other in phase and amplitude as expected from the derived theory.
Figure 5.2 shows as well, that all trajectories appear to be generated from the same
time-independent effective potential, which thus does not depend on the phase ϕ. Since
the trajectories for different ϕ are not the same although their initial conditions are,
this verifies that the trajectories are determined in addition by a non-negligible trans-
formation of their initial conditions which depends on ϕ. The shown trajectories are
almost indistinguishable from their theoretical predictions calculated from equations
(5.6) and (5.9), which are therefore not shown in the figure.

5.2.3 The effect of a phase hop

In the following we show, that the strong coupling between the particle’s mean motion
and the phase of the ROP can be utilized to significantly manipulate the particle’s mean
motion by modifying the phase of the potential. We focus here on the simple case,
where the phase of the potential V (x, τ) is, at a time tph, instantaneously 4 changed
from τph ≡ ωtph to τph+∆ϕ (a phase hop). In such a case the particle is, for t > tph,
moving in the ROP Vnew(x, τ) ≡ V (x, τ +∆ϕ) and its mean motion is governed by

4. on a time scale smaller than the period of V
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Eq. (5.6) with an effective potential V new
eff (X). As the effective potential of a ROP

consists only of period-averaged terms (Eq. (5.7)), it is independent of the phase of
the ROP, implying V new

eff (X) = Veff(X). Thus the equation of motion for the particle’s
mean motion remains unchanged. However, the mean motion itself changes due to the
continuity of the particle’s real motion x(t) at t= tph: for t 6= tph the latter is the sum of
the micromotion and the mean motion (Eq. (5.4)). As the micromotion depends on the
phase of V (Eq. (5.5)), it changes instantaneously and thus involves a corresponding
change of the mean motion. As we have seen in Sec. 5.2.2, the micromotion velocity
and thus its change, which can be induced by a phase hop, is non-negligible. As a
result, the mean motion of a particle in a ROP can be significantly manipulated by
inducing a phase hop.

We now calculate the instantaneous changes of the particle’s mean-motion variables,
which are induced by a phase hop. The continuity condition for the particle’s real
motion x(t) implies

∆X(tph) = Xnew(tph) −X(tph) = xnew(tph) − x(tph) = 0, (5.10)

∆Ẋ(tph) = Ẋnew(tph) − Ẋ(tph) = ξ̇(tph) − ξ̇new(tph)

=
1

mω

∫ ωtph

0

[V ′
1(X(tph), τ +∆ϕ) − V ′

1(X(tph), τ)] dτ (5.11)

(the notation limt→tph,t<tph
X(x, t) ≡ X(x, tph) and limt→tph,t>tph

Xnew(x, t) ≡ Xnew(x, tph)

is used). Equation. (5.11) shows that ∆Ẋ(tph) equals the change of velocity of the par-
ticle’s micromotion, which is taking place at the same time, demonstrating that the
phase hop causes a momentum transfer between the micromotion and the mean motion.
The fact that the phase hop can change the particle’s mean momentum instantaneously,
but not its mean position, shows that its effect on the particle’s mean motion can be
visualized as being the result of a collision with an imaginary particle 5. The particle’s
mean energy, which is conserved before and after the phase hop, changes by

∆E(tph) = mẊ(tph)∆Ẋ(tph) +
1

2
m[∆Ẋ(tph)]

2. (5.12)

This change can be negative as well as positive.

For the above model potentials the changes of the mean-motion variables take
simple forms. For a particle with (non-zero) total mean energy E and mean kinetic
energy αE (with 0≤α≤1) one obtains for the Paul trap (5.2): ∆Ẋ=Xδω2

osc/ω with
δ ≡ sin(τph+ ∆ϕ) − sin(τph), and ∆E/E =±

√

8α(1 − α)δ + 2(1 − α)δ2, whereas the

±-sign accounts for the possible signs of the product Ẋ(tph)X(tph). Thus, the relative
change of the particle’s mean energy is independent of its mean energy itself and of
the driving frequency ω. It can take any values between −0.9 . ∆E/E . 9, whereas
the extreme values are taken if α ≈ 0.91, Ẋ(tph), X(tph) > 0. It then is ∆E/E ≈ −0.9
for δ=−2 and ∆E/E ≈ 9 for δ=2. For the special case E=0, it is X(t) = 0 and thus
ξ̇(t)=0, such that in this case the particle is not affected by the phase hop.

5. This analogy only approximately holds for the particle’s real motion, since the particle’s micro-
motion is affected differently by a phase hop than by a collision: a phase hop induces an instantaneous
change of the phase of the micromotion, whereas a collision would not [259].



134 Chapter 5. Particle motion in rapidly oscillating potentials

For the oscillating tweezers potential (5.3) one has ∆Ẋ = x0δω
2
osc/ω. Note, that

∆Ẋ is independent of the particle’s position. This means, that if an ensemble of non-
interacting particles moved inside the oscillating tweezers potential, all particles would,
in case of a phase hop, change their velocity by the same amount. A phase hop thus
simply induces a Galilean transformation in this system. The absolute change in the
particle’s mean energy is given by ∆E = ±

√
2mαEx0δω

2
osc/ω+x2

0δ
2ω4

osc/(2ω
2). The

resulting relative change of the mean energy depends on the mean energy itself and
on the driving frequency ω. It is bigger for smaller mean energies and smaller driving
frequencies. Nonetheless, it can still be very large even for the considered limit of very
large driving frequencies: for a particle with mean energy E=0.01mω2

oscx
2
0 and for the

driving frequency ω = 100ωosc one obtains −0.26 . ∆E/E . 0.3. Here the extreme
values are taken if α= 1 (i.e. X(tph) = 0) and Ẋ(tph) > 0. It then is ∆E/E ≈ −0.26
for δ=−2 and ∆E/E ≈ 0.3 for δ=2.

A numerical demonstration of the significant impact that a phase hop can have on
the particle’s mean motion is depicted in Fig. 5.3 for the Paul trap potential V PT(x, τ)
(5.2). The trajectories in the figure are obtained from the time-dependent Newton
equation (5.1) for the large driving frequency ω = 100Ω. Figure 5.3 (a) demonstrates
that the particle’s mean energy can be significantly increased by a phase hop. Figure 5.3
(b) demonstrates that the particle’s mean energy can also be significantly decreased
by a phase hop. In particular it demonstrates, that several phase hops can have
accumulating effects on the particle’s mean motion, even though the time-dependent
Newton equation (5.1) is transformed into its initial one. Since the change of the
particle’s mean energy in the Paul-trap potential does not depend on the particle’s
mean-energy itself, phase hops can be used to decrease the particle’s mean energy
exponentially fast (and within one period of the particle’s mean motion, see Fig. 5.3
(b)). Figure 5.3 (c) demonstrates that the effect of a phase hop can be canceled by
a second one. This is in general always possible in any ROP which has a harmonic
effective potential. Finally, Fig. 5.3 (d) demonstrates that a series of two phase hops
can also be used in order to change the phase of the particle’s mean motion without
changing its energy.

We have seen, that the strong coupling between the mean motion of a particle inside
a ROP and the phase of the ROP can be used to efficiently manipulate the particle’s
mean motion by instantaneously changing the phase of the ROP (a phase hop). We
found that a phase hop does not change the effective potential for the particle’s mean
motion and that it can be visualized as being the result of a collision with an imaginary
particle, which can be controlled. For ROPs with a vanishing time-average, the change
of the particle’s mean energy due to a phase hop was found to be independent of the
particle’s mean-energy itself and of the potential’s driving frequency. We now turn to
the question how a phase hop affects a quantum particle. Obviously, the mean energy
of a particle cannot be infinitely decreased, since a trapped quantum particle has a
finite mean energy due to Heisenberg’s uncertainty relation. In order to answer this
question, we give, in the subsequent section, an independent treatment of the effect of
phase hops on quantum particles.
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5.3 Quantum motion in a rapidly oscillating poten-

tial

5.3.1 Time-independent description

The motion of a quantum particle in a rapidly oscillating potential has been studied
previously [254, 255, 256]. It has been shown that the mean motion of the particle
is governed by a Schrödinger equation with a time-independent Hamiltonian, which is
expected from the classical results presented in the previous section. In the following
we derive this effective Hamiltonian. The Schrödinger equation for a quantum particle
in a ROP V (x, ωt) reads

i~
∂

∂t
ψ(x, t) = Ĥ(x, ωt)ψ(x, t), (5.13)

with the time-dependent and time-periodic Hamiltonian

Ĥ(x, τ) = − ~
2

2m

∂2

∂x2
+ V0(x) + V1(x, τ), (5.14)

with V0(x) = V (x, τ) and V1(x, τ) = 0. If the frequency ω is very large compared to
the other time scales of the system, one expects that the potential term V1(x, τ) in
the Hamiltonian only has little effect on the particle’s mean motion during one period,
since its period-average is zero. In order to understand its effect on the particle’s wave
function ψ(x, t), suppose that the Hamiltonian in Eq. (5.13) consisted only of the term
V1(x, τ). Then, the solution of Eq. (5.13) would be

ψ(x, t) = e−i
∫

V1(x,ωt) dt/~ψ(x, 0). (5.15)

Thus, the dominant effect of the potential term V1(x, τ) is to add an oscillating phase
factor to the wave function ψ(x, t). This suggests that for large driving frequencies the
solutions of Eq. (5.13) approximately have the functional form [254, 255, 256]

ψ(x, t) ≈ e−iF (x,ωt)φ(x, t), (5.16)

where F is a time-periodic function with the same period as V1(x, τ) and φ is a slowly
varying function of time, which is the solution of a Schrödinger equation with a time-
independent effective Hamiltonian and which describes the particle’s mean motion.
This effective Hamiltonian can be obtained as follows. Substituting Eq. (5.16) into
Eq. (5.13) and multiplying both sides by eiF (x,τ) yields

i~
∂

∂t
φ(x, t) =

(

− ~
2

2m

∂2

∂x2
+ V0(x)

)

φ(x, t)

+
~

2

2m

(

iF ′′(x, τ) + 2iF ′(x, τ)
∂

∂x
+ F ′(x, τ)2

)

φ(x, t)

+

(

V1(x, τ) − ~ω

(

∂

∂τ
F (x, τ)

))

φ(x, t). (5.17)
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Choosing

F (x, τ) =
1

~ω

(

∫ τ

0

V1(x, τ
′)dτ ′ −

∫ τ

0

V1(x, τ ′)dτ ′

)

≡ 1

~ω

∫ τ

[V1(x, τ)], (5.18)

precisely cancels the (possibly large) oscillating potential term V1(x, τ) in Eq. (5.17) and
only yields time-dependent terms with a small amplitude (that scale with ω−1 or ω−2).
Further, Eq. (5.18) implies F (x, τ) = 0, such that, since φ(x, t) is a slowly varying
function of time, averaging of Eq. (5.17) in time over one period of the potential’s
oscillation results in an ordinary Schrödinger equation for φ(x, t),

i~
∂

∂t
φ(x, t) = Ĥeff(x)φ(x, t), (5.19)

with the time-independent effective Hamiltonian

Ĥeff(x) = − ~
2

2m

∂2

∂x2
+ Veff(x), (5.20)

which contains an effective potential given by

Veff(x) = V0(x) +
~

2

2m
F ′(x, τ)2 = V0(x) +

1

2mω2

(∫ τ

[V ′
1(x, τ)]

)2

. (5.21)

This effective potential is identical to the one for the classical case (see Eq. (5.7)). Since
the effective Hamiltonian Ĥeff is time-independent, the mean-motion wave function
φ(x, t) is explicitly known for all times,

φ(x, t) = e−i Ĥeff(x)t/~eiF (x,0)ψ(x, 0), (5.22)

where ψ(x, 0) is the particle’s state at the initial time t=0. For the two model poten-
tials V PT(x, ωt) (5.2) and V OT(x, ωt) (5.3), the function F takes the form FPT(x, τ)=
mΩx2 sin τ/(~

√
2) and FOT(x, τ) = mω2

osc(4xx0 sin τ + x2
0 sin τ cos τ)/(4~ω), respec-

tively. φ(x, t) indeed approximately describes the particle’s mean motion, since it
is

〈x〉 ≡ 〈ψ(x, t)|x̂|ψ(x, t)〉 ≈ 〈φ(x, t)|eiF (x,τ)x̂e−iF (x,τ)|φ(x, t)〉
= 〈φ(x, t)|x̂|φ(x, t)〉, (5.23)

〈p〉 ≡ 〈ψ(x, t)|p̂|ψ(x, t)〉 ≈ 〈φ(x, t)|eiF (x,τ)p̂e−iF (x,τ)|φ(x, t)〉
= 〈φ(x, t)|p̂− ~F ′(x, τ)|φ(x, t)〉 = 〈φ(x, t)|p̂|φ(x, t)〉, (5.24)

〈E〉 ≡ 〈ψ(x, t)|Ĥ(x, τ)|ψ(x, t)〉 ≈ 〈φ(x, t)|Ĥeff(x)|φ(x, t)〉, (5.25)

where x̂ = x and p̂ = −i~ ∂/∂x denote the position and momentum operator, re-
spectively. 〈E〉 is referred to as the particle’s mean energy. The difference between φ
and ψ is approximately given by the oscillating phase factor e−iF (Eq. (5.16)), which
has a small amplitude as F scales with ω−1 (Eq. (5.18)), and thus describes a mi-
cromotion [233, 234], since it is 〈ψ|x̂|ψ〉−〈φ|x̂|φ〉≈0 and 〈ψ|p̂|ψ〉−〈φ|p̂|φ〉≈−~〈φ|F ′|φ〉.
In Ref. [256], a more general ansatz than the one given by Eq. (5.16) is made, where
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F (x, τ) is considered to be a Hermitian operator rather than simply a function, re-
sulting in corrections to F and Ĥeff, which scale with a higher power of ω−1 than the
terms calculated here (see Eqs. (5.18) and (5.20)). In the following, ω is assumed to
be sufficiently large such that these correction terms can be neglected.

Being governed by a Schrödinger equation with a time-independent Hamiltonian,
a trapped particle’s mean motion possesses stationary states (the stationary mean-
motion states). For the two model potentials V PT(x, ωt) (5.2) and V OT(x, ωt) (5.3),
the stationary mean-motion states and their energies are explicitly known, since for
these potentials the effective Hamiltonian equals that of a harmonic oscillator. For the
Paul trap potential, the stationary mean motion states φPT

n (x) read

φPT
n (x) =

(

mΩ

π~

) 1
4 1√

2nn!
Hn

(
√

mΩ

~
x

)

e−
1
2

mΩ
~

x2

, (5.26)

where Hn denotes the n-th Hermite polynomial. Their energies, the eigenvalues of
ĤPT

eff , are given by

EPT
n = ~Ω

(

n+
1

2

)

, (5.27)

and scale with ω−1. For the oscillating tweezers potential, the stationary mean-motion
states φOT

n read

φOT
n (x) =

(mωosc

π~

) 1
4 1√

2nn!
Hn

(
√

mωosc

~
x

)

e−
1
2

mωosc
~

x2

. (5.28)

Their energies, the eigenvalues of ĤOT
eff , are given by

EOT
n = ~ωosc

(

n+
1

2

)

, (5.29)

and scale with ω0.

Connection with Floquet’s theory

The motion of a quantum particle in a ROP is governed by a Schrödinger equation with
a time-periodic Hamiltonian. Such systems can in general be treated using Floquet
theory [260, 261], which is not restricted to large driving frequencies. The Floquet
theorem states, that the propagator of any state ψ(x, t0), given at the initial time t0,
can be written in the form

Û(t, t0) = P̂ (t, t0) e
−i(t−t0)Ĝ(t0)/~ (5.30)

with the time-independent, Hermitian, so-called quasienergy operator Ĝ(t0) and a uni-
tary time-periodic operator P̂ (t, t0), which obeys P̂ (t0, t0) = 1, P̂ (t+T, t0) = P̂ (t, t0),
where T = 2π/ω is the period of the Hamiltonian. Ĝ(t0) depends on the initial time t0.
Its eigenvalues are the quasienergies [261] of the system, which do not depend on t0.
The actual calculation of Ĝ(t0) is in general complicated. For very large frequencies ω,
the effective Hamiltonian calculated in the previous section is identical to one of the
quasienergy operators Ĝ(t1) with t0 ≤ t1 ≤ t0+T [255, 256] and the quasienergies can
be interpreted as mean energies.
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5.3.2 The effect of a phase hop

We now address the question how a phase hop affects the mean motion of the quantum
particle. Suppose that a phase hop of ∆ϕ is induced at the time tph. As the effective
Hamiltonian does not depend on the phase of V , the equation of motion (5.19) for the
particle’s mean-motion wave function remains unchanged. However, the mean-motion
wave function itself changes due to the continuity of the particle’s real wave function
at t= tph: for t 6= tph the latter is a product of a phase factor and the mean-motion wave
function (Eq. (5.16)). As the phase factor (e−iF ) depends on the phase of V through
F (Eq. (5.18)), it changes instantaneously and thus involves a corresponding change of
the mean-motion wave function. In the following we calculate the mean-motion wave
function φnew for times after the phase hop and we derive the resulting changes of the
mean-motion observables.

The condition of continuity for the particle’s real wave function yields

φnew(x, tph) = ei∆F (x,τph)φ(x, tph) (5.31)

(the notation limt→tph,t<tph
φ(x, t) ≡ φ(x, tph) and limt→tph,t>tph

φnew(x, t) ≡ φnew(x, tph)
is used), where

∆F (x, τph)≡F (x, τph+∆ϕ)−F (x, τph) =
1

~ω

∫ τph

0

[V1(x, τ+∆ϕ) − V1(x, τ)] dτ.(5.32)

Applying Eq. (5.19) leads to

φnew(x, t) = e−i (t−tph)Ĥeff(x)/~ei∆F (x,τph)φ(x, tph). (5.33)

Combined with Eq. (5.22), Eq. (5.33) allows the entire description of the phase hop,
as the particle’s mean-motion wave function is known for all times.

The effect of the phase hop on φ involves an instantaneous change of some mean-
motion observables, which, for a given mean-motion observable Ô, is given by ∆〈O〉=
〈φnew(x, tph)|Ô|φnew(x, tph)〉−〈φ(x, tph)|Ô|φ(x, tph)〉. Using Eqs. (5.22) and (5.31) we
find

∆〈x〉 = 0, (5.34)

∆〈p〉 = −i~ 〈φ(x, tph)|
[

e−i∆F (x,τph) ∂

∂x
ei∆F (x,τph) − ∂

∂x

]

|φ(x, tph)〉

= ~

∫ ∞

−∞

|φ(x, tph)|2∆F ′(x, τph) dx. (5.35)

Thus, as for the classical case (see Eqs. 5.10 and 5.11), the effect of a phase hop can
be visualized as being the result of an imaginary collision. The particle’s mean-energy,
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which is conserved before and after the phase hop, changes by

∆〈E〉 = 〈φnew(x, tph)|Ĥeff(x)|φnew(x, tph)〉 − 〈φ(x, tph)|Ĥeff(x)|φ(x, tph)〉
= 〈φ(x, tph)|

[

e−i∆F (x,τph)Ĥeff(x)e
i∆F (x,τph) − Ĥeff(x)

]

|φ(x, tph)〉

=
~

2

2m
〈φ(x, tph)|

[

−i∆F ′′(x, τph) − 2i∆F ′(x, τph)
∂

∂x
+ (∆F ′(x, τph))

2

]

|φ(x, tph)〉

= − ~
2

2m
i

∫ ∞

−∞

φ(x, tph)
∗φ(x, tph)∆F

′′(x, τph) dx

−~
2

m
i

∫ ∞

−∞

φ(x, tph)
∗φ′(x, tph)∆F

′(x, τph) dx

+
~

2

2m
i

∫ ∞

−∞

φ(x, tph)
∗φ(x, tph)(∆F

′(x, τph))
2 dx

=
~

2

2m
i

∫ ∞

−∞

[φ′(x, tph)
∗φ(x, tph) + φ(x, tph)

∗φ′(x, tph)] ∆F
′(x, τph) dx

−~
2

m
i

∫ ∞

−∞

φ(x, tph)
∗φ′(x, tph)∆F

′(x, τph) dx

+
~

2

2m
i

∫ ∞

−∞

|φ(x, tph)|2(∆F ′(x, τph))
2 dx

=
~

2

2m
i

∫ ∞

−∞

[φ′(x, tph)
∗φ(x, tph) − φ(x, tph)

∗φ′(x, tph)] ∆F
′(x, τph) dx

+
~

2

2m

∫ ∞

−∞

|φ(x, tph)|2(∆F ′(x, τph))
2 dx (5.36)

(the notation limt→tph,t<tph
φ′(x, t) ≡ φ′(x, tph) is used), where we performed integration

by parts, assuming that the particle is trapped, which implies lim
x→±∞

|φ(x, tph)|2 = 0.

Inspection of the rhs of Eq. (5.36) shows that ∆〈E〉 is always non-negative if the particle
is in a stationary mean-motion state φn (i.e., its mean motion is in an eigenstate φn of
Ĥeff):

∆〈En〉 ≥ 0 , (5.37)

since it is φ′∗
nφn = φ∗

nφ
′
n

6. Using the picture of the imaginary collision, Eq. (5.37) also
directly follows from the fact that stationary mean-motion states have 〈p〉 = 0. For the
Paul trap potential (5.2) the fact that the energy change ∆〈En〉 can be non-zero (and
even be very large as is shown in the subsequent paragraph) marks a difference to the
classical regime, since for a classical particle whose mean motion is at rest, ∆Eclass. is
always zero [123]. This difference is a direct consequence of Heisenberg’s uncertainty
principle which implies that in the quantum regime the particle’s mean-position is
spread around zero, leading—contrarily to the classical regime—to a non-vanishing
micromotion (since e−iF 6≡ 1 for x 6= 0), thus giving rise to an effect of the phase hop.

6. A stationary mean-motion state obeys the relation φ′

n(x, tph)∗φn(x, tph) = φn(x, tph)∗φ′

n(x, tph),
because as an eigenstate of a time-independent Hamiltonian it can be written in the form φn(x, t) =
ξn(x) exp(−iEnt/~). Thus, one has φ′

n(x, t) = ξ′n(x) exp(−iEnt/~) and thus φ′

n(x, tph)∗φn(x, tph) =
ξ′n(x)ξn(x) = φn(x, tph)∗φ′

n(x, tph).
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If the quantum particle is not in a stationary mean-motion state its mean-energy can
due to Eq. (5.36) be both increased and decreased:

∆〈E〉 T 0. (5.38)

This case we will consider in more detail in Sec. 5.4.
Experimentally relevant are particles that are in stationary mean-motion states φn

with mean-energy En. We now calculate how these states are affected by a phase hop.
First we consider the model potentials. For the Paul-trap (5.2) we find

∆〈EPT
n 〉 = [sin(τph+∆ϕ) − sin(τph)]

2EPT
n , (5.39)

where EPT
n = ~Ω(n+1/2) (Eq. (5.27)). Thus, the relative change ∆〈EPT

n 〉/EPT
n is

independent of n and of ω, and it can take values between 0 and 4. This demonstrates
that in the Paul-trap a phase hop can have a strong effect on the particle’s mean
motion, even for arbitrarily large ω. For the rapidly scanning optical tweezers (5.3) we
find accordingly

∆〈EOT
n 〉 =

ω2
ref

ω2
[sin(τph+∆ϕ) − sin(τph)]

2EOT
0 , (5.40)

with EOT
n =~ωosc(n+1/2) (Eq. (5.29)) and the reference frequency ωref≡

√

mω3
oscx

2
0/~.

Note that the absolute change ∆〈EOT
n 〉 of the particle’s mean-energy is independent

of n and thus independent of the particle’s mean-energy itself. The relative change
∆〈EOT

n 〉/EOT
n can take values between 0 and [4/(2n+1)]ω2

ref/ω
2 and thus becomes

negligible for ω→∞. However, ∆〈EOT
n 〉/EOT

n can still be large even if ω is as large as
required by the validity condition of the underlying effective theory (i.e. for ω≫ωosc).

For example, for ω=ωref the energy change ∆〈EOT
0 〉 for the particle in the mean-motion

ground state is identical to the corresponding change ∆〈EPT
0 〉 for the particle in the

Paul-trap, provided that ωref ≫ ωosc. But this requirement can always be fulfilled with
an adequate choice of parameters x0 and ωosc

7.
To generalize the above findings, consider first an arbitrary ROP with a vanishing

time-average. The mean potential energy of a particle in a stationary mean-motion
state φn then is Epot

n = 〈φn|Veff|φn〉 with Veff(x) = ~
2F ′(x, τ)2/(2m) and the following

relation holds:

Epot
n < max

τph

[

〈φn(x)| ~
2

2m
F ′(x, τph)

2|φn(x)〉
]

< max
τph,∆ϕ

[

〈φn(x)| ~
2

2m
(∆F ′(x, τph))

2|φn(x)〉
]

= max
τph,∆ϕ

[

∆〈En〉
]

. (5.41)

Therefore a time τph exists (within each period of V ) for which a phase hop of a size

∆ϕ (with 0≤∆ϕ<2π) induces a change ∆〈En〉 of the particle’s mean-energy En which

7. For example, in a typical ultracold atom experiment [262], in which an optical tweezers is used to
confine (Lithium) atoms in the quantum regime, the experimental parameters are m=1.15 · 10−26 kg,
ωosc = 105 Hz and the waist of the optical tweezers is w0 = 3 · 10−5 m. If one rapidly modulated the
position of such an optical tweezers with an amplitude of x0 =3·10−5 m, the value of the parameter ωref
would be ωref ≈ 100ωosc.
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is greater than its mean potential energy Epot
n . Since Epot

n is in general a significant
fraction of En, Eq. (5.41) shows that the phase hop can always be induced such that
∆〈En〉 is large with respect to En, even for arbitrarily large ω.

In ROPs with a non-vanishing time-average a phase hop can only then lead to a
significant change of the particle’s mean-energy if ω is not too large, since for such
ROPs the fraction of the particle’s mean potential energy which equals the average
kinetic energy stored in the particle’s micromotion scales with ω−2. This is expressed
by Eq. (5.36), which yields that for stationary mean-motion states ∆〈En〉 scales with
ω−2 (see Eq. (5.40)).

We have seen that the phase hop can affect the particle’s mean-motion wave function
and observables. The mean-motion wave function was found to change in a non-
continuous manner (Eq. (5.31)). At the same time we have seen that the effective
Hamiltonian (5.20) of the mean-motion Schrödinger equation (5.19) is not affected by
the phase hop, such that before and after the phase hop the system’s stationary mean-
motion states are identical. However, this does not mean that the particle does not
change its state if it is in a stationary mean-motion state when a phase hop is induced.
The phase hop can indeed induce transitions between stationary mean-motion states,
φn→φm, whose probabilities are given by

pn,m ≡ |〈φnew
(n) (x, tph)|φm(x)〉|2 =

∣

∣

∣

∣

∫ ∞

−∞

φn(x)φm(x) e−i∆F (x,τph) dx

∣

∣

∣

∣

2

, (5.42)

(implying pn,m = pm,n), where φnew
(n) denotes the particle’s mean-motion state after the

phase hop. For the potentials (5.2) and (5.3), the pn,m can be calculated analytically,
since the φn are explicitly known (see Eqs. (5.26) and (5.28)). For the Paul trap,
Eq. (5.42) implies pPT

n,m = 0, for (n+m) = odd. This means that a phase hop induces
only transitions between alternate levels, i.e. the selection rule is n → n±2k (with
integer k). Thus, it cannot mix the populations in even- and odd-numbered levels.

In particular, the p0,m are of experimental relevance as the mean-motion ground
state φ0 can be prepared with a high precision and can be easily probed. For the
Paul-trap (5.2) we find

pPT
0,m =

(

m!

2
3m
2

(

m
2

)

!
(

m
2

)

!

)

δm

(

1 + δ2

2

)
m+1

2

, for m = even, (5.43)

pPT
0,m = 0, for m = odd, (5.44)

with δ= sin(τph+∆ϕ)−sin(τph). In typical single ion experiments, the p0,m could be
directly measured using resolved Raman sideband spectroscopy [233, 234]. Figure 5.4
shows that the probability for a particle to remain in the mean-motion ground state
can be as small as 58%, demonstrating the significance of the effect of the phase hop.
For the rapidly scanning optical tweezers (5.3) we find

pOT
0,m =

1

2mm!

(ωref

ω
δ
)2m

e−
1
2(

ωref
ω

δ)
2

. (5.45)

As pOT
0,0 →1 for ω→∞, the effect of the phase hop becomes negligible for too large ω.

However, Fig. 5.4 shows that for ω=ωref the effect of the phase hop is still significant.
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For weakly interacting bosonic quantum gases, pOT
0,0 could be measured using a Bose-

Einstein condensate [250]. For degenerate atom gases, phase hops could offer a tool to
more quickly increase the energy (see Eq. (5.40)) and thus, after thermalization, the
temperature in a controlled way without having to change or to switch off-and-back-on
the trapping potential and to in-between await an expansion of the gas [263].

Let us also briefly consider the effect of the phase hop on an excited stationary
mean-motion state, e.g. on the state φPT

2 in the Paul trap. The transition probabilities
p2,m are

pPT
2,m =

(

m!

2
3m+4

2

(

m
2

)

!
(

m
2

)

!

)

δm−2(δ2 − 2m)2

(

1 + δ2

2

)
m+3

2

, for m = even. (5.46)

Thus, the transition probability pPT
2,0 from the stationary mean-motion state φPT

2 (x) to
the mean-motion ground state φPT

0 (x), which has a lower mean-energy, can be non-zero.
This is not in contradiction to the previously found result that a particle in a stationary
mean-motion state can only increase (the expectation value of) its energy when a phase
hop is induced (see Eq. (5.37)). It is thus indeed possible that the phase hop dissipates
energy from a particle in a stationary mean-motion state. Another conclusion can be
drawn from Eq. (5.46). pPT

2,2 vanishes for δ=±2, which demonstrates that, for correctly
chosen parameters τph and ∆ϕ, the phase hop can cause the particle to leave its state
φPT

2 (x) with a probability of 100%, and thus that the phase hop can cause events to
occur with an absolute certainty.

The manipulation by phase hops can be made more effective by inducing several
phase hops successively. Figure 5.5 shows the transition probability pPT

0,0 for two succes-
sively induced phase hops of size ∆ϕ=π as a function of their time delay. Although the
effects of the two phase hops on the particle’s (2π-periodic) Hamiltonian (5.14) cancel
each other, their effects on the particle’s mean motion do not necessarily cancel and
can even be more significant as in the case of a single phase hop. As a matter of fact, it
is in general not even true that the effect of the first phase hop can be canceled by the
second. This holds only for ROPs with a harmonic effective potential. The revivals of
pPT

0,0 in Fig. 5.5 show that for the Paul trap the effect of a phase hop is reversible.

5.3.3 Numerical simulations

To countercheck our analytical predictions, we performed numerical simulations for a
particle in the Paul-trap potential (5.2) by integrating the full time-dependent
Schrödinger equation (5.13) using the Shampine-Gordon routine. Figure 5.6 shows
the time-evolution of the experimentally measurable root-mean-square (rms)-deviation
∆x≡

√

〈ψ|x̂2|ψ〉 − 〈ψ|x̂|ψ〉2 of the particle’s position when influenced by a phase hop.
∆x is given in units of its theoretically predicted mean-value before the phase hop is
induced, which is given by

∆x0,eff ≡
√

〈φPT
0 (x)|x̂2|φPT

0 (x)〉 − 〈φPT
0 (x)|x̂|φPT

0 (x)〉2 =

√

1

2

~

mΩ
. (5.47)

The initial state was chosen to be ψ(x, 0) = e−iFPT(x,0)φPT
0 (x), which determines the

particle to be in the mean-motion ground state φPT
0 . Figure 5.6 shows very good
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agreement between numerics and the theoretical mean-motion predictions derived via
computer-algebra from Eqs. (5.22) and (5.33). In particular, Fig. 5.6 confirms that a
phase hop can have a strong effect on the particle’s motion, since it shows that the time-
evolution of ∆x strongly depends on the phase hop size ∆ϕ. As well, Fig. 5.6 shows
that the particle’s motion possesses two time scales—the time scale that is defined by
the small oscillations of ∆x around its mean (which represent the micromotions) and
the time scale defined by the oscillations of its mean. As can be seen in the figure,
the oscillations of the mean of ∆x after the phase hop have a period of 2π/Ω, which
agrees with what has been stated in Sec. 5.3.2 that the particle’s mean motion is not
only before, but also after the phase hop governed by a Schrödinger equation with the
time-independent effective Hamiltonian.

The driving frequency used in the simulation is ω ≈ 70 Ω, and thus the numerics
demonstrate that the theoretical predictions for the limit ω→∞ even hold for finite ω.
For larger ω the agreement between both approaches would even be better. Further, the
numerics allowed us to obtain a practical definition for “instantaneous”: in experiments
the phase-hop must happen on time-scales smaller than the period of V . As has been
demonstrated in the recent experiment in Amsterdam [125], it is indeed possible to
generate such small time-scales, although the period of the ROP is already very small.

In Sec. 5.3.2 we have explicitly calculated the probability for a particle that initially
is in the mean-motion ground state φPT

0 (x) to remain in this state when a phase hop
is induced (see Eq. (5.43)). We obtained that for the phase hop parameter δ = ±2
this probability equals 58%. We now countercheck this prediction by a numerical
simulation. The initial state is again chosen to be ψ(x, 0) = e−iFPT(x,0)φPT

0 (x) and a
phase hop of the size ∆ϕ = π is induced at the time τph = 10.5π (corresponding to
δ=−2). The time-evolution of the above-mentioned probability is then obtained from
the numerically calculated ψ(x, t) and ψnew(x, t) via

pnum
0,0 (τ) =







∣

∣

∣
〈eiFPT(x,τ)ψ(x, τ/ω) | φPT

0 (x)〉
∣

∣

∣

2

for τ < τph,
∣

∣

∣〈eiFPT
new(x,τ)ψnew(x, τ/ω) | φPT

0 (x)〉
∣

∣

∣

2

for τ > τph.
(5.48)

It is depicted in Fig. 5.7 (dashed (blue) curve) for time-intervals of a different length
(left and right). One can see that it approximately changes its value from 1 to ∼ 0.58, at
the time when the phase hop is induced. This agrees with the corresponding theoretical
predition, which is according to Eq. (5.43) given by

ptheor
0,0 (τ) =

{

1 for τ < τph,

0.58 for τ > τph.
(5.49)

In Sec. 5.3.2 we have shown that for the case of rapidly oscillating potentials with
a vanishing mean the real wave function ψ(x, t) of a trapped particle in general differs
appreciably from its corresponding mean-motion wave function φ(x, t)=eiF (x,τ)ψ(x, t)
for arbitrarily large driving frequencies ω, although F (x, τ) tends to zero as ω be-
comes large. To verify this conclusion, we calculate the time-evolution of the modulus
squared overlap of the numerically calculated wave function ψ(x, t) with its correspond-
ing mean-motion wave function, which is given by φPT

0 (x) before the phase hop and by
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φPT,new
(0) (x, t) after the phase hop. The modulus squared overlap is thus given by

onum
(0) (τ) =







∣

∣〈ψ(x, τ/ω) | φPT
0 (x)〉

∣

∣

2
for τ < τph,

∣

∣

∣
〈ψnew(x, τ/ω) | φPT,new

(0) (x, τ/ω)〉
∣

∣

∣

2

for τ > τph,
(5.50)

and shown in Fig. 5.7 (solid (red) curve) for time-intervals of a different length (left
and right). One can see that onum

(0) (τ) is periodic before the phase hop with the same

period as (FPT(x, τ))2, indicating that the corresponding mean-motion state of ψ(x, t)
is the mean-motion ground state φPT

0 (x). After the phase hop, this periodicity is no
longer given, indicating that the corresponding mean-motion state of ψnew(x, t) after
the phase hop, φPT,new

(0) (x, t), is not a stationary mean-motion eigenstate. After the

phase hop, onum
(0) (τ) is only periodic with the much larger period 2π/Ω, which agrees

with what has been stated in Sec. 5.3.2 that the particle’s mean motion is not only
before, but also after the phase hop governed by a Schrödinger equation with the
time-independent effective Hamiltonian. In Fig. 5.7 one can further see that onum

(0) (τ)
performs large oscillations. These large oscillations are not the consequence of a too
small chosen value for the driving frequency ω, since in Fig. 5.7 the same ω was used
as in Fig. 5.6, whereas Fig. 5.6 proved that ω was chosen large enough to validate
the underlying theory. In fact, the phenomenon that a phase hop can have a strong
effect on the particle’s motion, just originates from these large oscillations of onum

(0) (τ)
for τ <τph.

5.4 Consistency between classical and quantum me-

chanical results

The results presented in Sec. 5.3 must be consistent with the classical results presented
in Sec. 5.2. To countercheck this we calculate ∆〈E〉 for the case that the mean motion
of a quantum particle in the model potentials of the Paul-trap and the oscillating
tweezers potential is in a coherent state [233, 234]. We then show that the classical
limit of ∆〈E〉 equals the corresponding classical result ∆E.

5.4.1 Coherent states

A quantum state of a particle in the harmonic oscillator potential

V HO(x) =
1

2
mΩ2x2 (5.51)

is called a coherent state, φCS, if it obeys

∆x ≡
√

〈φCS|x̂2|φCS〉 − 〈φCS|x̂|φCS〉2 =

√

~

2mΩ
,

∆p ≡
√

〈φCS|p̂2|φCS〉 − 〈φCS|p̂|φCS〉2 =

√

~mΩ

2
, (5.52)
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where x̂= x and p̂=−i~∂/∂x denote the position and momentum operators, respec-
tively [264, 265]. Thus a coherent state is a quantum state which minimizes Heisen-
berg’s uncertainty relation ∆x∆p ≥ ~/2. A coherent state can be written in the
explicit form [264, 265]

φCS(x) =

(

mΩ

π~

) 1
4

e
i
~
〈p〉xe−

mΩ
2~

(x−〈x〉)2 , (5.53)

with 〈φCS|x̂|φCS〉= 〈x〉 and 〈φCS|p̂|φCS〉= 〈p〉. It describes a quantum particle whose
position and momentum have the expectation values 〈x〉 and 〈p〉, respectively. For a
coherent state, these expectation values evolve in time according to the laws of classical
mechanics and the minimum uncertainty property ∆x∆p = ~/2 is conserved. Thus a
coherent state yields the most precise quantum mechanical description of the motion
of a classical particle in the harmonic oscillator potential (5.51). An example for a
coherent state is the ground state

φ0(x) =

(

mΩ

π~

) 1
4

e−
mΩ
2~

x2

, (5.54)

for which 〈x〉=〈p〉=0.

5.4.2 Effect of phase hop on a coherent mean-motion state

The mean motion of a quantum particle in both, the model potential (5.2) and (5.3),
is governed by a time-independent harmonic effective potential. Therefore, the mean
motion of a particle in these potentials possesses coherent states.

For the Paul-trap potential (5.2) the coherent mean-motion states are given by
(see Eq. (5.53))

φPT
CS (x) =

(

mΩ

π~

) 1
4

e
i
~
〈p〉xe−

mΩ
2~

(x−〈x〉)2 , (5.55)

where Eq. (5.55) describes a quantum particle with mean-position 〈x〉, mean-momentum
〈p〉 and mean-energy

〈EPT
CS 〉 =

〈φCS|p̂2|φCS〉
2m

+〈φCS|V PT
eff (x̂)|φCS〉 =

〈p〉2

2m
+ V PT

eff (〈x〉) +
1

2
~Ω. (5.56)

When a phase hop is induced the coherent state changes to (see Eq. (5.31))

φPT,new
(CS) (x) = e

imΩδ
~
√

2
x2

φPT
CS (x), (5.57)
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with δ=sin(τph+∆ϕ)−sin(τph) and the particle’s mean-energy changes by (see Eq. (5.36))

∆〈EPT
CS 〉 =

~
2

2m
i

∫ ∞

−∞

φPT
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′(x)∗φPT
CS (x)

(√
2mΩδ

~
x

)

dx
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2

2m
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2mΩδ

~
x
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dx,
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i√
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~
〈p〉 − mΩ
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φPT
CS (x)x dx

+mΩ2δ2

∫ ∞

−∞

|φPT
CS (x)|2x2 dx,

=
√

2 Ω〈x〉 〈p〉δ +mΩ2〈φPT
CS |x̂2|φPT

CS 〉δ2. (5.58)

In comparison, a classical particle that has the mean-positionX and the mean-momentum
P =mẊ would, according to Eq. (5.12), change its mean-energy by

∆EPT =
√

2 ΩXPδ + mΩ2X2δ2. (5.59)

Equation (5.59) is the classical limit of Eq. (5.58), since it is

lim
~→0

〈x〉 = X, (5.60)

lim
~→0

〈p〉 = P, (5.61)

lim
~→0

〈φPT
CS |x̂2|φPT

CS 〉 = lim
~→0

〈φPT
CS |x̂|φPT

CS 〉2 = X2, (5.62)

lim
~→0

〈φPT
CS |p̂2|φPT

CS 〉 = lim
~→0

〈φPT
CS |p̂|φPT

CS 〉2 = P 2. (5.63)

This demonstrates that the quantum mechanical results of Sec. 5.3 agree with the
classical ones presented in Sec. 5.2. Note that a phase hop destroys a coherent state
for the Paul-trap potential, since right after the phase hop it is

∆xPT
new ≡

√

〈φPT,new
(CS) |x̂2|φPT,new

(CS) 〉 − 〈φPT,new
(CS) |x̂|φPT,new

(CS) 〉2 =

√

~

2mΩ
,

∆pPT
new ≡

√

〈φPT,new
(CS) |p̂2|φPT,new

(CS) 〉 − 〈φPT,new
(CS) |p̂|φPT,new

(CS) 〉2 =

√

~mΩ

2
+ ~mΩδ2.

Furthermore, ∆xPT
new and ∆pPT

new are not conserved in time. This can be seen also
from Eq. (5.39), as it implies that the phase hop affects differently the wave function
components of a coherent state, thereby destroying their coherence.

For the oscillating tweezers potential (5.3) the coherent mean-motion states are
given by (see Eq. (5.53))

φOT
CS (x) =

(mωosc

π~

) 1
4
e

i
~
〈p〉xe−(x−〈x〉)2mωosc/(2~). (5.64)
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When a phase hop is induced the coherent state changes to

φOT,new
(CS) (x) = ei[mω2

oscx0xδ/(~ω)+β]φOT
CS (x), (5.65)

with an unphysical constant β = mω2
oscx

2
0 [sin(2(τph+∆ϕ)) − sin(2τph)] /(8~ω). The

particle’s mean-energy in thus found to change by

∆〈EOT
CS 〉 =

ω2
oscx0〈p〉δ
ω

+
mω4

oscx
2
0δ

2

2ω2
(5.66)

which, in the classical limit, goes over into the classical result ∆EPT =ω2
oscx0Pδ/ω +

mω4
oscx

2
0δ

2/(2ω2) derived from Eq. (5.58). Inspection of Eq. (5.65) shows that φOT,new
(CS)

equals φOT
CS of Eq. (5.64) when 〈p〉 is replaced by 〈p〉 + ∆〈p〉, with ∆〈p〉=mω2

oscx0δ/ω
according to Eq. (5.35). Thus, a phase hop transforms a coherent state into a coherent
state. For the oscillating tweezers potential, a phase hop thus conserves the coherence
of coherent states. This conclusion can also be directly drawn from the fact that ∆〈p〉
in Eq. (5.35) is independent of the state of the particle for the oscillating tweezers
potential and thus affects in the same way the wave function components of a coherent
state. This is consistent with the previously mentioned picture that a phase hop in the
oscillating tweezers potential induces a Galilean transformation.

5.5 Conclusion

In this chapter we have presented a classical and quantum mechanical treatment of
the motion of a particle in a rapidly oscillating potential under the influence of phase
hops. We have computed the particle’s mean motion for all times. For the quantum
regime we have calculated the corresponding mean-motion wave function and the tran-
sition probabilities between stationary mean-motion states and we have shown that
the particle’s mean-energy can in general be both increased and decreased, except if it
is in a stationary mean-motion state. Then the mean-energy can only be increased. In
particular we have shown that the effect of a phase hop can be very strong.

Both for classical and for quantum particles, the induction of phase hops provides
a powerful tool for particle manipulation. Besides its strong effect on the particle’s
mean motion, it has the following further appealing properties. First, its experimental
implementation is very simple and does not require a change of an existing setup.
Its feasibility has been demonstrated in the recent experiment in Amsterdam [125].
Second, its application is a controlled operation since a phase hop does not have an
influence on the effective trapping potential, because that is independent of the phase
of the ROP. Finally, it can be applied to any kind of trappable particles, because its
mechanism is simply based on changes of the ROP and does thus not rely on particular
internal properties of the particles as do laser-based manipulation methods.

We have demonstrated that in the Paul-trap potential a phase hop can dissipate
mean energy of a particle by a factor, which is independent of its mean energy itself.
Thus, it can dissipate more energy for particles with a higher energy. Phase hops might
therefore offer a possibility to accelerate evaporative cooling for neutral particles. In
the field of ultracold quantum gases, phase hops could also offer a convenient way to
realize controlled heating.
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The results presented in this chapter might also give an additional motivation for the
use of ROPs in experiments. For example, one could take advantage of the described
tool by inducing a rapid modulation on an existing static trap (modulating either the
trap position or the trap depth). This would not appreciably change the particle’s
motion compared to the unmodulated case, but offer the possibility to significantly
manipulate the trapped particles in a simple way.

In this article we have restricted our considerations to a single particle. Our main
goal was to obtain analytical results, as these directly apply to a widely used and
studied experimental system, the single ion in a Paul-trap [233, 234]. Due to the ex-
perimentally achievable pureness of this system, it can be used to precisely investigate
phase hops and their possible applications experimentally. One of such possible appli-
cations could be to decelerate a single ion, which we here showed to be possible also in
the quantum regime.

For future research, it will be interesting to study the effect of phase hops on
ensembles of (interacting) particles. The extension of single particle effects in time-
periodic systems [266, 267] to multi-particle systems is an active field of theoretical
and experimental physics [268, 269]. An experimental investigation of the schemes
proposed in this chapter has been done by the experiment in Amsterdam [125], where
a Bose-Einstein condensate in a TOP trap was manipulated by inducing phase hops. It
could be shown that the mean energy of the BEC could be decreased by a factor of 15
by inducing a single phase hop. Further investigations could be performed with cold ion
clouds stored in a Paul-trap [234] or ultracold neutral atoms in rapidly scanning optical
tweezers [249, 250] or in optical lattices subject to time-periodic perturbations [269,
270, 267, 271, 272]. In particular, in the latter system phase hops might offer a tool to
manipulate and control the recently observed super-Bloch oscillations [272] as pointed
out by Ref. [273].
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Figure 5.3: Examples of trajectories of a particle inside the Paul-trap potential
V PT(x, ωt) (5.2) when one or more phase hops of the size ∆ϕ = π are induced at
different times. Solid (turquoise) lines: real trajectory, dotted (black) lines: imaginary
continuations of trajectory when no phase hops were induced. (a) One phase hop in-
duced at tph = 95.75(2π/ω), leading to an increase of the particle’s mean energy of

a factor of approximately 9. (b) Three phase hops induced at t
(1)
ph = 119.75(2π/ω),

t
(2)
ph = 137.5(2π/ω), t

(3)
ph = 145.25(2π/ω), leading to a decrease of the particle’s

mean energy of a factor of approximately 150. (c) Two phase hops induced at

t
(1)
ph = 95.75(2π/ω), t

(2)
ph = 145.75(2π/ω), where the effect of the first phase hop

is canceled by the second. (d) Two phase hops induced at t
(1)
ph = 95.75(2π/ω),

t
(2)
ph = 135.75(2π/ω), where the net effect of the two phase hops consists in changing

the phase of the particle’s mean motion without changing its energy. The trajectories
are obtained from a numerical solution of the time-dependent Newton equation (5.1)
with initial conditions x(0)=x0, ẋ(0) = 0 and with ω = 100Ω.
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Figure 5.4: The experimentally measurable [233, 234] probabilities for the transitions
between the mean-motion ground state φ0 and the mean-motion states φm induced by
a phase hop for a particle in the Paul-trap (5.43) (left) and the rapidly scanning optical
tweezers (5.45) (right, with ω=ωref) as a function of the parameter δ=sin(τph+∆ϕ)−
sin(τph).
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Figure 5.5: The experimentally measurable [233, 234] probability for a particle in the
Paul-trap (5.2) to return to the mean-motion ground state φ0 when two phase hops

of size ∆ϕ= π are successively induced (at times τ
(1)
ph = π/2 and τ

(2)
ph = τ

(1)
ph +∆τ) as a

function of ∆τ . Although one might naively expect those two phase-hops cancel each
other, the second phase hop can, in fact, further reduce the probability to return to
the ground state. Even parameters for which pPT

0,0 = 1 are interesting experimentally:
they can be used to verify if the system indeed is described by dissipation-less quantum
mechanics.
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Figure 5.6: Time-evolution of the rms-deviation ∆x for a particle in the Paul-trap (5.2)
which initially is in the mean-motion ground state, affected by a phase hop of dif-
ferent sizes ∆ϕ (normalized to the theoretically predicted initial mean-motion value
∆x0,eff =

√

~/(2mΩ)). Solid (red) curves: results of numerical simulations, dashed
(black) curves: theoretical mean-motion prediction. Driving frequency: ω≈70 Ω.
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Figure 5.7: Dashed (blue) curve: time-evolution of the probability pnum
0,0 (τ) (5.48) for

a particle which initially is in the mean-motion ground state φPT
0 (x) of the Paul-trap

to remain in the mean-motion ground state under the influence of a phase hop of the
size ∆ϕ = π, induced at the time τph = 10.5π, obtained from a numerical simulation.
Solid (red) curve: time-evolution of the modulus squared overlap onum

(0) (τ) (5.50) of
the particle’s real state and its corresponding mean-motion state, obtained from a
numerical simulation. The left and the right graph show the time-evolutions for time
intervals of a different length. The potential’s driving frequency was chosen to be ω ≈
70 Ω.
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Chapter 6

Conclusion

In this thesis a new experimental machine to study ultracold quantum gases composed
of two different fermionic species is presented. It produces large atom number samples
of 6Li and 40K atoms in an ultra-high vacuum environment which allows large optical
access and strong magnetic confinement.

The study of fermionic mixtures composed of two different species is a new branch
of ultracold Fermi gases. So far, only four other experimental groups are working
with such systems [89, 43, 44, 42] (all using the mixture 6Li-40K), such that many
of their aspects are still undiscovered. Furthermore, the mixture 6Li-40K promises
rich physics due to the existence of both bosonic and fermionic stable isotopes for
both species, offering the whole spectrum of possible quantum mixtures (boson/boson,
fermion/boson, fermion/fermion). Once the mixture of our apparatus is brought to
quantum degeneracy exciting experiments can be performed. The study of fermionic
pairing in the mixture is of important interest as it might be relevant for high-Tc super-
conductors [274]. The unmatched Fermi surfaces resulting from the mass imbalance of
the two species make symmetric BCS pairing impossible. New quantum phases with
different pairing mechanisms are predicted, such as the previously mentioned Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [78, 79] or the breached pair state [80, 81].
Other phenomena such as a crystalline phase transition [82] and the formation of long-
lived trimers [83] are predicted. The large mass ratio between 6Li and 40K further
allows the investigation of the influence of disorder on transport properties in optical
lattices. The independent experimental control of the two species would make it pos-
sible to engineer a lattice which is deep enough to freeze the motion of the 40K but
not the 6Li atoms. The 40K atoms would act as random scatterers on the nearly free
6Li atoms, providing a clean realization of the Anderson problem of localization by
disorder [86], and its competition with interactions.

The presented machine has been designed to produce large atom number samples.
This goal was motivated by the fact that many experiments are usually limited by too
small atom numbers, which result in stricter cooling requirements for the observation
of quantum degeneracy and smaller signal-to-noise ratios, making quantitative studies
difficult. We demonstrate in this thesis that the constructed machine is capable of
producing the largest 6Li-40K dual-species MOT which has been reported in the litera-
ture. Two strategies have been applied in order to achieve this. First, the dual-species
MOT is placed in an ultra-high vacuum environment, being continuously loaded from
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cold atomic beams, which originate from independent atom sources with a large flux.
Second, the homo- and heteronuclear collisions have been minimized by using small
magnetic field gradients and low light powers in the repumping light. Besides the large
dual-species MOT, a magnetic transport has been implemented for a transfer of the
atoms to an ultrahigh vacuum environment with large optical access, where evapora-
tive cooling can be efficiently performed. So far the evaporative cooling procedure has
not yet been realized, but is within close reach.

With the constructed apparatus we were able to create, for the first time, elec-
tronically excited weakly bound 6Li40K∗ molecules via photoassociation. The recorded
photoassociation spectra yielded the binding energies of the 5-6 most weakly bound vi-
brational levels of the different molecular potentials. The observed resonances have
been identified, which now allows the combination of our spectroscopic data with
data obtained in conventional molecular spectroscopy experiments for deeply bound
molecules. This will give access to more precise potential energy curves. In particular
for the excited molecular potential 1(B)1Π, we believe that we have recorded all of the
previously undetermined vibrational level positions, such that a complete set of vibra-
tional level positions is now available for this potential. The gained information about
the potential will allow us to find ways to efficiently transfer atoms to stable deeply
bound ground-state molecules, based on the stimulated Raman adiabatic passage (STI-
RAP) technique [118, 85, 119]. The large formation rates for excited 6Li40K∗ molecules
observed in our experiment and the recently reported efficient association of weakly
bound ground-state 6Li-40K molecules via Feshbach resonances [93] promise high trans-
fer efficiencies using this scheme. Once created, deeply bound 6Li40K molecules will,
due to their strong long-range, anisotropic dipole-dipole interaction, give access to
new quantum regimes. The effective coupling of the electric dipoles at moderate dis-
tances and the possibility to control the dipole moments by electric fields makes them
good candidates for the realization of qubits for quantum computation [100]. They
can further be used for fundamental tests like the measurement of the electron dipole
moment [102, 103] or the study of time variation of fundamental constants [106, 275].

Besides the description of experimental work, this thesis contains a theoretical
study of the motion of quantum particles in rapidly oscillating potentials. We have
presented and studied a new method to manipulate particles in such potentials, which
is based on inducing an instantaneous change of the potential’s phase (phase hops).
Phase hops offer the possibility to efficiently manipulate the particle’s mean motion.
Their experimental implementation is very simple and does not require a change of
an existing setup. Its feasibility has been demonstrated in a recent experiment in
Amsterdam [125]. The application of phase hops is a controlled operation since it does
not affect the effective trapping potential, because that is independent of the phase of
the rapidly oscillating potential. It can be applied to any kind of trappable particles,
because its mechanism is simply based on changes of the rapidly oscillating potential
and does thus not rely on particular internal properties of the particles as do laser-
based manipulation methods. For example it could be applied to molecules stored
in dynamic traps [235, 236]. Phase hops might also offer a possibility to accelerate
evaporative cooling for neutral particles.



Appendix A

Determination of vapor pressure by
light absorption

In the following we describe how the vapor pressure of potassium can be determined
from the absorption profile of a resonant light beam. We have applied the presented
method in order to determine the potassium vapor pressure in our 2D-MOT cell.

For low vapor pressures, for which the mean free path of a vapor atom is much
larger than the dimensions of the vapor cell (typically below 10−4 mbar), the vapor
pressure is determined by the temperature of the cell walls and is related to it accord-
ing to the vapor pressure characteristics of the atom [161]. Since the vapor pressure
grows exponentially with temperature, the determination of the vapor pressure via a
temperature measurement of the cell walls would, however, be imprecise. In particular
this method fails when parts of the cell walls have different temperatures. The pressure
in a vapor cell can be more precisely determined from the transmission profile of a low
intensity beam whose frequency is scanned through resonance.

For temperatures of the order of the room temperature the transmission profile
through a vapor of potassium is a superposition of unresolved overlapping Doppler
profiles, since potassium has a hyperfine structure, which is comparable to the Doppler
width. For a correct analysis of the recorded transmission profile, the hyperfine struc-
ture thus has to be taken into account. It is, however, sufficient to consider only the
hyperfine structure of the electronic ground states, since the hyperfine structure of the
excited states is much smaller. Furthermore, the potassium vapor consists of several
isotopes, with isotope shifts which are non-negligible with respect to the Doppler width,
and thus their presence and abundances need to be taken into account also.

In the following we consider each K-isotope to be a three-level atom with one
excited state and two ground states. The ground states are separated by the hyperfine
ground state splittings of 461.7 MHz (39K), 1285.8 MHz (40K) and 254.1 MHz (41K). The
transition frequencies between the ground states and the excited state are referred to as
ν

(i)
1 and ν

(i)
2 , with ν

(i)
1 = ν

(i)
2 + ∆E

(i)
HF, where i ∈ {39, 40, 41} denotes the corresponding

K-isotope and ∆E
(i)
HF the energy difference between the ground states. The transition
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frequencies are given by [276]

ν
(39)
1 = ν0 − 173.1 MHz, (A.1)

ν
(39)
2 = ν0 + 288.6 MHz, (A.2)

ν
(40)
1 = ν0 − 714.3 MHz + 125.58 MHz, (A.3)

ν
(40)
2 = ν0 + 571.5 MHz + 125.58 MHz, (A.4)

ν
(41)
1 = ν0 − 95.3 MHz + 235.0 MHz, (A.5)

ν
(41)
2 = ν0 + 158.8 MHz + 235.0 MHz, (A.6)

where ν0 = 391.01 THz denotes the frequency of the fine-structure transition 4S1/2 →4P3/2

of 39K. The rightmost terms in Eqs.(A.3–A.6) account for the isotope shifts [276].
For a low beam intensity I0 (i.e. I0 ≪ Isat) the relative absorption of the beam is

independent of I0. In this case the intensity of the beam as a function of the covered
distance x inside the vapor cell is described by Lambert-Beer’s law

I(x, ν) = I0e
−
(

0.895 5
8
κ
(39)
1 +0.895 3

8
κ
(39)
2 +0.04 112

387
κ
(40)
1 +0.04 275

387
κ
(40)
2 +0.065 5

8
κ
(41)
1 +0.065 3

8
κ
(41)
2

)

x
, (A.7)

where the κ
(i)
j depend on the beam frequency ν. The prefactors of the κ

(i)
j correspond

to the isotopic abundances in the sample (39K: 89.5%, 40K: 0.04%, 41K: 6.5% in our 2D-
MOT cell) and to the statistical weights of the transitions (derived from the Wigner-6j
symbol [134, 277]). Assuming the vapor to be in thermal equilibrium at a temperature

T 1, the κ
(i)
j are given by

κ
(i)
1 (ν) = κ

(i)
0 e

−(ν−ν
(i)
1 )2/(2σ2

(i)
), (A.8)

κ
(i)
2 (ν) = κ

(i)
0 e

−(ν−ν
(i)
2 )2/(2σ2

(i)
), (A.9)

κ
(i)
0 (ν) = nhν

γ2

4Isatν0

√

m(i)c2

2πkBT
, (A.10)

σ(i) = ν0

√

kBT

m(i)c2
, (A.11)

where m(i) = i × 1.66 × 10−27 kg is the mass of the isotope, n the atom density in
the vapor, and Γ = 2π × 6.04 MHz, h = 6.63 × 10−34 Js, Isat = 1.75 mW/cm2, kB =
1.38 × 10−23 J/K and c = 3 × 108 m/s. Fitting the recorded transmission profile with
Eq. (A.7) yields n and T . The vapor pressure P is then obtained by the ideal gas
equation P = nkT .

Figure A.1 shows different transmission profiles obtained in our 2D-MOT cell for
different cell temperatures. For the measurement a peak intensity of I0 = 0.02Isat is
used and the path of the probe beam inside the 2D-MOT cell has a length of 10.5 cm.
The frequency of the probe beam is calibrated by an additional saturated absorption

1. When different parts of the vapor cell have different temperatures, this assumtion is not a priori

justified. However, in our 2D-MOT cell we find that the recorded transmission profiles (see Fig. A.1)
are well fitted by Eq. (A.7) and we conclude that the underlying assumption is valid in our case. The
temperature T associated with each profile has to be considered an effective temperature.
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spectroscopy experiment. The blue curve in Fig. A.1 (labaled with (f)) corresponds
to a vapor pressure of 2.3 × 10−7 mbar, which is the pressure which maximizes the
flux of the 2D-MOT. It is obtained for an effective temperature of ∼ 45 ◦C. In the
experimental setup, the used probe beam is permanently installed, allowing us to
monitor the pressure in the cell at any time.
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Figure A.1: Transmission profiles of a weak probe beam, which passes through the 2D-
MOT cell with a path length of 10.5 cm for different cell temperatures. The recorded
curves (black and blue) are fitted using Eq. (A.7) (smooth red curves) in order to
determine the corresponding vapor pressure in the cell. In the graph, the frequency
detuning refers to the frequency νmin = ν0 − 0.09 GHz for which the transmission
is minimum (ν0 denoting the frequency of the fine-structure transition 4S1/2 →4P3/2

of 39K.). The vapor pressures corresponding to the curves are: (a) 3 × 10−8 mbar,
(b) 6 × 10−8 mbar, (c) 9 × 10−8 mbar, (d) 1.3 × 10−7 mbar, (e) 1.8 × 10−7 mbar, (f)
2.3×10−7 mbar, (g) 3.7×10−7 mbar, (h) 6×10−7 mbar. The blue curve (f) corresponds
to an effective cell temperature of ∼ 45 ◦C, which maximizes the 2D-MOT flux.
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Appendix B

Saturation spectroscopy of the
violet 4S1/2 → 5P3/2 transition of K

Alkali atoms can be efficiently cooled and manipulated using laser light resonant with
the D2 transition nS1/2 → nP3/2 of the atoms. These dipole transitions have large
oscillator strengths and possess hyperfine sub-transitions which are closed transitions.
Dipole transitions with a higher frequency (e.g. nS1/2 → (n + 1)P3/2) generally have
weaker oscillator strengths according to the Thomas-Reiche-Kuhn sum rule [278, 279].
Furthermore, because of the presence of intermediate transitions, the atom cannot be
described as a two-level atom for these transitions. Nonetheless they can be used for
several interesting applications: the higher transition frequency allows one to image
atom clouds with a higher resolution (as that is limited by the wavelength of the
imaging light). Furthermore, due to the smaller oscillator strengths the transitions
have smaller line widths. Thus they can be used for efficient optical molasses cooling,
as the minimum temperature of this cooling method is limited by the line width of the
atomic transition used for cooling.

Potassium has a dipole transition in the violet frequency range, 4S1/2 → 5P3/2,
which has a wavelength of 404.414 nm and a narrow line width of Γ(404) = 2π×0.2 MHz.
Using this light for imaging could thus a priori yield a two-times higher resolution
than light resonant with the D2 transition 4S1/2 → 4P3/2, which has a wavelength of
766.490 nm and a line width of Γ = 2π × 6 MHz (practical aspects for imaging with
the violet transition have been discussed in Ref. [280]). The line width of the violet
transition is ∼ 30 times narrower than the line width of the infrared (IR) D2 transition,

which leads to a very small Doppler temperature of only T
(404)
D = ~Γ(404)/2kB = 4.8µK

as compared to T
(766)
D = 144µK. These considerations motivated us to study the violet

transition for potassium.
The recent development of laser diodes for the UV light regime makes laser sources

available for such experiments. In particular, laser diodes emitting a wavelength of
404 nm are of low cost due to their mass production for the Blu-ray disc industry. We
bought such a diode and set up an experiment for saturated absorption spectroscopy.
The laser has been frequency stabilized and is ready to be used for future studies. The
line width of the laser has been estimated from the noise of the error signal to be less
than 500 kHz.

Absorption spectroscopy in alkali atom vapor cells using transitions to higher ex-
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cited levels has been demonstrated in the past, in particular for rubidium [281, 282,
283], potassium [284, 285, 286] and lithium [287] for which the wavelength of the tran-
sitions nS1/2 → (n + 1)P3/2 belong to a part of the spectrum, for which laser diodes
exist (420 nm for Rb, 404 nm for K and 323 nm for Li). In the following we present our
spectroscopy results and we compare them to our theoretical calculations. We calcu-
late the populations of the different atomic levels of potassium in case of illumination
with resonant violet light. We further calculate the cross section for the scattering of
resonant violet light and compare it to the case of the IR transition. The calculations
are presented for the case of potassium. We also give the results obtained for rubidium.

The laser diode used for our spectroscopy experiments (Sharp, ref. GH04020A2GE)
emits 20 mW at a driving current of 60 mA and is operated at a temperature of ∼22 ◦C
in external cavity configuration of Littrow-type (on the market, laser diodes with a
higher output power of 120-140 mW are available (Mitsubishi, ref. ML320G2-11 or
Nichia, ref. NDV4313)). The diode mount is homemade and identical to the ones we
use for the other diode lasers of our setup. The external cavity has a length of ∼ 2 cm.
The very small mode-hop free scanning range of ∼ 1 GHz is increased to ∼ 35 GHz
by implementing the feed-forward technique [219]. The output beam of the diode is
collimated with a broadband anti-reflection coated aspheric lens of 8 mm focal length
(Thorlabs, ref. A240TM-A). The diffraction grating of the external cavity (Thorlabs,
ref. GH13-36U) has a groove density of 3600 lines/mm with a diffraction efficiency of
∼ 10% into the first order for the used wavelength and polarisation.

The absorption spectroscopy is performed in a 5 cm long vapor cell (with natu-
ral isotopic abundances) which was heated to a temperature of ∼ 150 ◦C in order to
achieve sufficient light absorption. The optical setup of the spectroscopy corresponds
to the common pump-probe configuration: the laser beam is split into two parts of
different intensities, which are sent through the cell from two opposite directions. The
transmission profile of the weaker beam (the “probe” beam) is measured as the fre-
quency of the laser is scanned. In order to compare the spectroscopy results for the
violet transition with those for the IR transition, we implemented an identical setup
for the IR laser, but with the absorption cell heated to a much lower temperature of
∼ 45 ◦C.

Figures B.1 and B.2 show typical transmission profiles for the IR and violet transi-
tions, respectively, for different intensities of the pump beam. Each transmission profile
consists of a Doppler profile with three sub-Doppler features. The two narrow peaks
correspond to the transitions S1/2(F = 1) → P3/2, S1/2(F = 2) → P3/2 of 39K and
the dip to the corresponding crossover. The hyperfine structure of the excited states
is not resolved. The sub-Doppler features for the violet transition have a significantly
smaller width than those of the IR transition due to the approximately three-times
smaller hyperfine structure of the excited state 5P3/2 [284]. The Doppler profiles of the
violet transition have an approximately two-times larger width for than those of the
IR transition, principally due to the larger transition frequency (Eq. (A.11)). In the
following we are interested in the absorption characteristics of potassium with respect
to resonant violet light. The figures demonstrate that the cross section for violet light
scattering is smaller than for IR light scattering, since the relative light absorption for
both frequencies is the same whereas the temperature of the vapor cell needed to be
chosen much higher for the violet light in order to achieve this. Furthermore the figures
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show that much higher pump intensities (with respect to the corresponding saturation
intensity) are required for the violet transition in order to obtain a reasonable contrast
for the saturated absorption peaks.
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Figure B.1: Saturated absorption profile for the transition 4S1/2 → 4P3/2 at 766.49 nm
for different pump beam intensities Ipump and a fixed probe beam intensity of Iprobe ∼
Isat/6, obtained with a 5 cm long vapor cell that was heated to ∼ 45◦C. (a) Ipump ∼
Isat/3, (b) Ipump ∼ Isat, (c) Ipump ∼ 4 Isat, (d) Ipump ∼ 8 Isat, with Isat ∼ 1.75 mW/cm2.
In the graphs, νc denotes the frequency of the crossover transition 4S1/2(F = 1, 2) →
4P3/2 of 39K.

In the following we characterize the violet transition and we explain the above ob-
servations. We calculate the populations of the different states of a potassium atom
when it is illuminated with light resonant with the 4S1/2 → 5P3/2 transition. In addi-
tion, we derive the cross section for scattering of the resonant violet light. Considering
only the fine structure of the atom, seven energy levels need to be taken into account
for the population analysis. An energy diagram of these levels is shown in Fig. B.3,
with the corresponding spontaneous emission rates and emitted wavelengths given in
Tab. B.1.

The excited state populations are given by the steady state solution of the system’s
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Figure B.2: Saturated absorption profile for the transition 4S1/2 → 5P3/2 at 404.414 nm
for different pump beam intensities Ipump and a fixed probe beam intensity of
Iprobe ∼ 3 I71

sat, obtained with a 5 cm long vapor cell that was heated to ∼ 150◦C.
(a) Ipump ∼ 16 I71

sat, (b) Ipump ∼ 40 I71
sat, (c) Ipump ∼ 80 I71

sat, (d) Ipump ∼ 160 I71
sat, with

I71
sat ∼ 0.39 mW/cm2. In the graphs, νb

c denotes the frequency of the crossover transition
4S1/2(F = 1, 2) → 5P3/2 of 39K.

master equation, that is, the equation of motion for the system’s density matrix ρ.
Within the rotating wave approximation and in the interaction picture, the master
equation for the considered seven-level system reads [288, 289]

ρ̇ = − i

~
[H, ρ] + γ21L21ρ+ γ31L31ρ+ γ42L42ρ+ γ43L43ρ+ γ52L52ρ+ γ53L53ρ

+γ63L63ρ+ γ71L71ρ+ γ74L74ρ+ γ75L75ρ+ γ76L76ρ, (B.1)

with

Lijρ =
1

2
(2σjiρσij − σjjρ− ρσjj), (B.2)

and σij = |i〉〈j| (i, j ∈ {1, 2, 3, 4, 5, 6, 7}), where H is the system’s Hamiltonian given
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γ21 γ31

γ71

γ75

γ76γ74

γ42 γ43
γ52 γ53 γ63

Ω

4S1/2 = |1〉

5S1/2 = |4〉

4P1/2 = |2〉 4P3/2 = |3〉

5P3/2 = |7〉

3D3/2 = |5〉 3D5/2 = |6〉

Figure B.3: Fine-structure energy levels of potassium relevant for the violet transition
4S1/2 → 5P3/2 (energy level splittings to scale).

γ21 = 3.82 × 107 s−1 λ21 = 769.896 nm
γ31 = 3.87 × 107 s−1 λ31 = 766.490 nm
γ42 = 7.90 × 106 s−1 λ42 = 1243.224 nm
γ43 = 1.56 × 107 s−1 λ43 = 1252.211 nm
γ52 = 2.20 × 107 s−1 λ52 = 1169.021 nm
γ53 = 4.34 × 106 s−1 λ53 = 1176.962 nm
γ63 = 2.59 × 107 s−1 λ63 = 1177.283 nm
γ71 = 1.24 × 106 s−1 λ71 = 404.414 nm
γ74 = 4.60 × 106 s−1 λ74 = 2707.395 nm
γ75 = 1.50 × 105 s−1 λ75 = 3141.541 nm
γ76 = 1.40 × 106 s−1 λ76 = 3139.265 nm

Table B.1: Scattering rates and emitted wavelengths obtained from Ref. [225]

by

H = −~

2
Ωσ17 −

~

2
Ωσ71, (B.3)

with the on-resonant Rabi frequency Ω, that is defined as

Ω =
µ71E

~
= γ71

√

I

2I71
sat

, (B.4)

where µ71 denotes the electric dipole moment of the atom in state |7〉, E the electric
field of the incident light and I71

sat the saturation intensity defined by

I71
sat =

2π2
~cγ71

3λ3
71

= 0.39 mW/cm2. (B.5)
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Substituting Eq. (B.3) into Eq. (B.1) yields the optical Bloch equations

ρ̇11 = γ21ρ22 + γ31ρ33 + γ71ρ77 +
iΩ

2
(ρ71 − ρ17), (B.6)

ρ̇22 = −γ21ρ22 + γ42ρ44 + γ52ρ55, (B.7)

ρ̇33 = −γ31ρ33 + γ43ρ44 + γ53ρ55 + γ63ρ66, (B.8)

ρ̇44 = −γ42ρ44 − γ43ρ44 + γ74ρ77, (B.9)

ρ̇55 = −γ52ρ55 − γ53ρ55 + γ75ρ77, (B.10)

ρ̇66 = −γ63ρ66 + γ76ρ77, (B.11)

ρ̇77 = −γ71ρ77 − γ74ρ77 − γ75ρ77 − γ76ρ77 +
iΩ

2
(ρ17 − ρ71), (B.12)

ρ̇17 = −γ71

2
ρ17 −

γ74

2
ρ17 −

γ75

2
ρ17 −

γ76

2
ρ17 +

iΩ

2
(ρ77 − ρ11), (B.13)

ρ̇71 = −γ71

2
ρ71 −

γ74

2
ρ71 −

γ75

2
ρ71 −

γ76

2
ρ71 +

iΩ

2
(ρ11 − ρ77), (B.14)

where ρij = 〈i|ρ|j〉. In the stationary case, ρ̇ij = 0. Utilizing that the trace of the
density matrix is unity,

ρ11 + ρ22 + ρ33 + ρ44 + ρ55 + ρ66 + ρ77 = 1, (B.15)

allows solving the system of Eqs. (B.6-B.15) for the stationary case. One obtains the
following steady state populations of the different states:

ρ11 = 0.414 × s+ 71.03

s+ 29.41
, (B.16)

ρ22 = 0.018 × s

s+ 29.41
, (B.17)

ρ33 = 0.048 × s

s+ 29.41
, (B.18)

ρ44 = 0.081 × s

s+ 29.41
, (B.19)

ρ55 = 0.002 × s

s+ 29.41
, (B.20)

ρ66 = 0.022 × s

s+ 29.41
, (B.21)

ρ77 = 0.414 × s

s+ 29.41
, (B.22)

with s = I/I71
sat. Figure B.4 shows the level populations for the limit of very large

intensity (I ≫ I71
sat) and for the particular intensity I = 22 I71

sat.
For the IR transition the hyperfine peaks of the recorded transmission profiles have

a reasonable size for a pump intensity I = Isat (see Fig. B.1 (b)). For this intensity,
75% of the atoms populate the ground state. For the violet transition, hyperfine peaks
of a comparable size are thus expected for a pump intensity which yields the same
ground state population, i.e. ρ11 = 0.75. According to Eq. (B.16) this is equivalent to

I = 22 I71
sat. (B.23)
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Figure B.4: State population probability for a K-atom that is driven on the violet
transition 4S1/2 → 5P3/2 with (left) very large intensity (I ≫ I71

sat) and (right) the
particular intensity I = 22 I71

sat, for which the atom populates the ground state 4S1/2

with a probability of 75%. In a simple two-level atom approximation, this population
probability would be expected for I = I71

sat.

Thus, a much larger pump intensity is required for the violet transition in order to
induce a relative ground state population of 75%. The difference with respect to the
IR transition is a consequence of the additional decay channels present in the case
of excitation with violet light. According to Eq. (B.23), we expect the contrast of
the hyperfine peaks to be the same for the IR transition with I = Isat and the violet
transition with I = 22 I71

sat. Figures B.1 (b) and B.2 (b) show that the contrast for
the IR transition with I = Isat is obtained for the violet transition with I = 40 I71

sat.
This value is thus by a factor of about two larger than the calculated value. The
difference might be due to the high intensity of the violet probe beam which was used
in the experiment, which is causing significant stimulated emission and thus leads to
a decrease of the peak contrast. Another reason might be that the hyperfine and
Zeeman structures as well as the polarization of the light had been neglected in the
theoretical calculation. However, the intensity profiles of the laser beams being highly
inhomogeneous and the overlap of the pump and probe beams being difficult to control,
a precise quantitative comparison is difficult.

In order to obtain a reasonable absorption of the probe beam by the vapor we
observed in our spectroscopy experiment that a much higher vapor pressure is required
for the violet transition (as we need to heat the vapor cell to ∼ 150 ◦C, compared
to ∼ 45 ◦C for the IR transition). This indicates that the absorption cross section
for scattering with violet resonant light is smaller than that for IR resonant light. In
the following we calculate both cross sections for a comparison. The absorption cross
section σ is defined as the ratio of the total scattered power Psc and the incoming
intensity I:

σ =
Psc

I
, (B.24)
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where Psc for the violet transition is given by (using the notation νij = c/λij)

Psc = h [ρ77(γ71ν71 + γ74ν74 + γ75ν75 + γ76ν76) + ρ66γ63ν63 + ρ55(γ52ν52 + γ53ν53)

+ρ44(γ42ν42 + γ43ν43) + ρ33γ31ν31 + ρ22γ21ν21]

=
s

s+ 29.41
× 1.503 × 10−12 W. (B.25)

Substituting Eq. (B.25) into Eq. (B.24) yields

σ(404) =
1.503 × 10−12 W

I + 29.41I71
sat

. (B.26)

For I ≪ I71
sat, σ

(404) takes the value

σ(404) = 1.31 × 10−14 m2. (B.27)

For the IR transition at 766.490 nm the scattering cross section is given by that of a
two-level atom,

σ(766) =
3 × (766.490 × 10−9)2

2π
= 2.805 × 10−13 m2, (B.28)

such that

σ(404) =
1

21.4
σ(766). (B.29)

Thus the scattering cross section of violet resonant light is 21.4 times smaller than
that of IR resonant light. The suppression factor has two contributions, one coming
from the higher transition frequency of the violet transition (a two-level approximation

would yield σ
(404)
2L = σ(766)/3.6) and the other from the presence of the additional decay

channels.
We also calculated the scattering cross section for the case of a rubidium atom

illuminated by violet light resonant with the transition 5S1/2 → 6P3/2. This transition
has a wavelength of 420.3 nm and a line width of Γ(420) = 2π×1.8 MHz [225, 290]. The
scattering cross section is found to be σ(420) = σ(780)/10.4, where σ(780) = 2.9×10−13 m2

is the cross section for scattering of light resonant with the D2 transition 5S1/2 → 5P3/2.
In conclusion, we have built a diode laser which emits 20 mW of narrow-band light

of 404 nm wavelength, which is resonant with the violet transition 4S1/2 → 5P3/2 of
potassium. We have used this laser to perform saturated absorption spectroscopy in a
vapor cell. High vapor cell temperatures were required to obtain sufficient absorption
of the violet light resulting from the small associated scattering cross section. We
found that the violet atomic transition saturates for an intensity of about an order
of magnitude higher than would be expected from the two-level atom approximation,
due to the additional intermediate atomic energy levels. We verified our experimental
findings by theoretical calculations of the population of the different atomic energy
levels under resonant violet light illumination and the corresponding scattering cross
section.

The built laser system can be used in future experiments for high-resolution imaging
or for efficient optical molasses cooling of potassium atoms. The higher frequency of
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the violet transition as compared to the common IR transition would allow a two-times
better imaging resolution. Optical molasses cooling would be efficient, since the narrow
line width of the violet transition leads to a thirty-times smaller Doppler temperature
of only ∼ 4.8µK as compared to the IR transition. Even sub-Doppler cooling might
be possible using the violet transition. The several cascade-like decay channels might,
however, prevent the necessary polarization gradients from building up and thus limit
the efficiency of sub-Doppler cooling.
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Appendix C

Engineering drawings

C.1 Science cell

Figure C.1: Engineering drawings of the vacuum science cell (from Hellma GmbH). In-
dicated dimensions are in units of mm. Additional specifications are given in Sec. 2.2.1.
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C.2 Tapered amplifier support for potassium

Figure C.2: Engineering drawings of the tapered amplifier chip for potassium (Eagle-
yard, ref. EYP-RWE-0790-0400-0750-SOT03-0000), to be mounted on the homemade
support whose design is detailed in the subsequent figures.

P1 P2 P3 

P5

P4

Figure C.3: Schematic of the support for the tapered amplifier chip. The different parts
include: a base (P1), a laser chip support (P2) and mounts for the output collimation
lens (P3), the isolated blade connectors (P4) and the input collimation lens (P5),
which are detailed in the subsequent figures. The chosen materials are: duralumin
(P1), copper (P2, P3, P5) and teflon (P4).
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P1

P2

Figure C.4: Engineering drawings of the base (P1) and the laser chip mount (P2).
Required precision: ±0.1 mm, except specified otherwise.
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P3

P4

P5

Figure C.5: Engineering drawings of the mounts for the output collimation lens (P3),
the isolated blade connectors (P4) and the input collimation lens (P5). Required
precision: ±0.1 mm, except specified otherwise.
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Figure C.6: Engineering drawings of the collimation lens socket (Thorlabs,
ref. C230TME-B), to be screwed into the mounts P3 and P5 (entirely).
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C.3 Tapered amplifier support for lithium

Figure C.7: Engineering drawings of the tapered amplifier chip for lithium (Toptica,
ref. TA-670-0500-5), to be mounted on the homemade support whose design is detailed
in the subsequent figures.

P1               P2

P3

Figure C.8: Schematic of the support for the tapered amplifier chip. The different
parts include: a base (P1), collimation tube supports (P2) and the collimation tubes
(P3), which are detailed in the subsequent figures. The chosen material for all pieces
is duralumin.
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P1

P2

Figure C.9: Engineering drawings of the base (P1), the collimation tube supports
(P2) and the collimation tubes (P3). Required precision: ±0.1 mm, except specified
otherwise. The dimensions of the collimation lenses are given in Fig. C.6.
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C.4 2D-MOT vacuum parts

  105                 86                  126 

10

  P1       P2         P3      P4      P5

55

Figure C.10: Schematic of the 2D-MOT vacuum parts showing the glass cell, a standard
CF40 cross and homemade stainless steel pieces, including a polished mirror (P1), two
differential pumping tubes (P2, P4) and two support rings (P3, P5), which are detailed
in the subsequent figures. The inner diameter of the glass-to-metal junction of the glass
cell is 32 mm and of the CF40 cross 34.9 mm, the thickness of the walls of the glass
cell is 5 mm. The total differential pumping tube has a diameter of 2 mm over 20 mm,
5 mm over 106 mm and 10 mm over 86 mm.
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Figure C.11: Engineering drawings of the homemade pieces, i.e. the mirror (P1), the
first differential pumping tube (P2), the first support ring (P3), the second differential
pumping tube (P4) and the second support ring (P5). The material is of type 304.
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Manipulation of quantum particles in rapidly oscillating potentials by inducing phase hops
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Analytical calculations show that the mean motion of a quantum particle trapped by a rapidly oscillating

potential can be significantly manipulated by inducing phase hops—i.e., by instantaneously changing the

potential’s phase. A phase hop can be visualized as being the result of a collision with an imaginary particle

which can be controlled. Several phase hops can have accumulating effects on the particle’s mean motion, even

if they transform the particle’s Hamiltonian into its initial one. The theoretical predictions are verified by

numerical simulations for the one-dimensional Paul trap.

DOI: 10.1103/PhysRevA.79.013414 PACS numberssd: 37.10.Ty, 03.65.Ge, 03.75.Ss, 37.10.Gh

I. INTRODUCTION

Potentials which oscillate rapidly relative to the motion of

particles inside them are widely used to trap charged and

neutral particles. Most notably, this is because rapidly oscil-

lating potentials sROPsd allow trapping in cases where static

potentials cannot. Well-known paradigms are the Paul trap

for charged particles f1,2g and electro- and magnetodynamic

traps for high-field-seeking polar molecules f3,4g and neutral

atoms f5–7g. Furthermore, ROPs allow the realization of

complicated trap geometries. Prime examples are the time-

averaged orbiting potential sTOPd trap f8,9g, optical billiard
traps f10,11g, and rapidly scanning optical tweezers f12,13g
for ultracold neutral atoms or even microparticles such as

polymers and cells f14,15g. Another reason is that the de-

scription of the motion of particles in a ROP—as compared

to other time-varying potentials—is very simple: the par-

ticles’ mean motion saveraged over the ROP’s fast oscilla-

tionsd is to a good approximation determined by a static ef-
fective potential f16–19g.

Preliminary calculations for the classical regime show

that in ROPs with a vanishing time average—such as e.g.,

the Paul trap—the mean motion of trapped particles is

strongly coupled to the phase of the ROP f20g. Consequently,
the particles’ mean motion can be appreciably manipulated

by changing the phase of the ROP. For the Paul trap, a phase

hop can change the mean energy of a trapped classical par-

ticle sthat is not constantly at restd by a factor which can take

any value between 0.1 and 9.9, independent of the particle’s

mean energy f20g, thus offering a powerful tool for particle

manipulation.

However, often quantum particles are trapped in ROPs

f1,2,8–13g. It is not clear if this tool would work for quantum

particles: in the Paul trap, a classical particle which does not

move is not affected by a phase hop f20g. Thus, the same

might be true for a quantum particle in, e.g., the ground state

of the effective trapping potential.

In this article, we derive an independent quantum-

mechanical treatment of the effect of phase hops on a particle

trapped by a ROP of arbitrary shape. By both analytical and

numerical calculations we show that a phase hop can

strongly influence the particle’s mean motion, even if it is in

the ground state of the effective trapping potential. The ex-

perimental ability to prepare single f1,2g and ensembles

f8,9,13g of quantum particles in ROPs in specific states

would allow one to apply this tool in a controlled fashion.

The model used to describe both the time-dependent and

effective systems is given in Sec. II. In Sec. III it is shown

that the effect of a phase hop can be visualized as being the

result of a collision with an imaginary particle. In Sec. IV it

is demonstrated that phase hops offer a powerful tool to ma-

nipulate quantum particles, whose application, in particular,

does not affect the effective trapping potential.

II. QUANTUM MOTION IN A RAPIDLY OSCILLATING

POTENTIAL

The Schrödinger equation for a quantum particle in a

time-periodic potential Vsx ,vtd reads

i"
]

]t
csx,td = Ĥsx,vtdcsx,td , s1d

with the time-dependent, periodic Hamiltonian

Ĥsx,vtd = −
"2

2m

]
2

]x2
+ V0sxd + V1sx,vtd , s2d

where the last two terms represent a separation of V into a

time-averaged part V0 and an oscillating part V1 with a van-

ishing period average. Two experimentally relevant examples

for the considered type of potentials are

VPTsx,vtd =
1

2
mvosc

2 x2 cos vt , s3d

VOTsx,vtd =
1

2
mvosc

2 sx − x0 cos vtd2 s4d

sshown in Fig. 1d, for which V0
PTsxd;VPTsx ,vtd=0 sthe

overbar denotes the time average over one periodd and
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V0
OTsxd;VOTsx ,vtd=mvosc

2 sx2−x0
2
/2d /2. These potentials

are model potentials for the Paul trap s3d and for rapidly

scanning optical tweezers s4d, respectively. If the potential’s
driving frequency v is sufficiently large, the particle’s mo-

tion is separable into two parts that evolve on the different

time scales t and t;vt f17–19g. Floquet’s theorem suggests

that therefore the solutions of Eq. s1d approximately have the
functional form f17–19g

csx,t,td < e−iFsx,tdfsx,td , s5d

where F is a time-periodic function f21g with the same pe-

riod as V and f is a slowly varying function of time, which

is the solution of a Schrödinger equation with a time-

independent Hamiltonian and which describes the particle’s

mean motion. The Schrödinger equation for f is obtained by

substituting Eq. s5d into Eq. s1d, choosing

Fsx,td ;
1

"v
SE

0

t

V1sx,t8ddt8 − E
0

t

V1sx,t8ddt8D s6d

fwhich implies Fsx ,td=0g and averaging the resulting equa-
tion in time over one period of V. This results in

i"
]

]t
fsx,td = Ĥeffsxdfsx,td , s7d

with the time-independent effective Hamiltonian

Ĥeffsxd = −
"2

2m

]
2

]x2
+ V0sxd +

"2

2m
F8sx,td2 s8d

sprimes denote derivatives with respect to xd. The last two

terms of Eq. s8d represent a time-independent effective po-
tential Veffsxd;V0sxd+ "2

2mF8sx ,td2. For the above examples

one has Veff
PTsxd=mV2x2 /2, with V;vosc

2
/ svÎ2d, and

Veff
OTsxd=mvosc

2 x2 /2+c, with a constant c ssee Fig. 1d. The
solution of Eq. s7d is

fsx,td = e−iĤeffsxdt/"eiFsx,0dcsx,0d , s9d

where csx ,0d is the particle’s state at t=0. f approximately

describes the particle’s mean motion, since it is kxl
;kcux̂ucl<kfux̂ufl and kpl;kcup̂ucl<kfup̂ufl. The differ-
ence between f and c is approximately given by the oscil-

lating phase factor e−iF fEq. s5dg, which has a small ampli-

tude as F scales with v−1 fEq. s6dg and thus describes a

micromotion f1,2g, since it is kcux̂ucl− kfux̂ufl<0 and

kcup̂ucl− kfup̂ufl<−"kfuF8ufl. In the following we con-

sider the limit v→`, where the approximations become ex-
act. We consider the case of a trapped particle, which can be

expressed in terms of eigenstates of the effective Hamil-

tonian sthe stationary mean-motion statesd—i.e., for the

above examples fEqs. s3d and s4dg—of the harmonic oscilla-

tor.

III. EFFECTS OF PHASE HOPS: COLLISIONS WITH

IMAGINARY PARTICLES

Suppose now that, at a time tph, the phase of the potential
Vsx ,td is instantaneously changed from tph;vtph to tph
+Dw. Then, for t. tph the particle is moving in the ROP

Vnewsx ,td;Vsx ,t+Dwd and its mean-motion wave function
fnew is governed by Eq. s7d with an effective Hamiltonian

Ĥeff
new. As the effective Hamiltonian of a ROP consists only of

period-averaged terms fEq. s8dg, it is independent of the

phase of the ROP, implying Ĥeff
new= Ĥeff. Thus the equation of

motion for the particle’s mean-motion wave function remains

unchanged. However, the mean-motion wave function itself

changes due to the natural continuity of the particle’s real

wave function at t= tph: For tÞ tph the latter is a product of a
phase factor and the mean-motion wave function fEq. s5dg.
As the phase factor se−iFd depends on the phase of V through

F fEq. s6dg, it changes instantaneously and thus involves a

corresponding change of the mean-motion wave function. In

the first instance one might, however, naively expect that this

change is negligible since for large v the change of the phase

factor is very small sF scales with v−1d. But as we show in

the following, the change of the particle’s mean motion can

be indeed significant and even for arbitrarily large v.
To demonstrate this, we calculate fnew and derive the re-

sulting changes of the mean-motion observables. The condi-

tion of continuity for the particle’s real wave function yields

fnewsx,tphd = eiDFsx,tphdfsx,tphd s10d

fthe notation limt→tph,t,tph
fsx , td;fsx , tphd and

limt→tph,t.tph
fnewsx , td;fnewsx , tphd is usedg, where

DFsx ,tphd;Fsx ,tph+Dwd−Fsx ,tphd=
1

"ve0
tphfV1sx ,t+Dwd

−V1sx ,tdgdt. Applying Eq. s7d leads to

fnewsx,td = e−ist−tphdĤeffsxd/"eiDFsx,tphdfsx,tphd . s11d

Combined with Eq. s9d, Eq. s11d allows one to completely

describe the phase hop, as the particle’s mean-motion wave

function is known for all times.

The effect of the phase hop on f involves an instanta-

neous change of some mean-motion observables, which, for

a given mean-motion observable Ô, is given by DkOl
= kfnewsx , tphduÔufnewsx , tphdl− kfsx , tphduÔufsx , tphdl. Using

Eqs. s9d and s10d, we find

Dkxl = 0, s12d

FIG. 1. sColor onlined Model potentials for the Paul trap s3d
sleftd and for spatially oscillating optical tweezers s4d srightd. Solid
sredd curves: time-dependent potential. Dashed sblued curves: time-
independent effective potential.
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Dkpl = "E
−`

`

ufsx,tphdu
2DF8sx,tphddx . s13d

Inspection of the right-hand side srhsd of Eq. s13d shows that
Dkpl equals the change of momentum of the particle’s mi-

cromotion, which is taking place at the same time, demon-

strating that the phase hop causes a momentum transfer be-

tween the micromotion and the mean motion. The fact that

the phase hop can change the particle’s mean momentum

instantaneously, but not its mean position, shows that its ef-

fect on the particle’s mean motion can be visualized as being

the result of a collision with an imaginary particle f22g. The
particle’s mean energy, which is conserved before and after

the phase hop, changes by

DkEl =
"2

2m
iE

−`

`

f8sx,tphd*fsx,tphdDF8sx,tphddx

−
"2

2m
iE

−`

`

fsx,tphd*f8sx,tphdDF8sx,tphddx

+
"2

2m
E
−`

`

ufsx,tphdu
2fDF8sx,tphdg

2dx s14d

fthe notation limt→tph,t,tph
f8sx , td;f8sx , tphd is usedg. In-

spection of the rhs of Eq. s14d shows that DkEl is always

non-negative if the particle is in a stationary mean-motion

state fn si.e., its mean motion is in an eigenstate fn of Ĥeffd,

DkEnl ù 0, s15d

since it is f
n
8*fn=f

n
*fn8 f23g. Using the picture of the imagi-

nary collision, Eq. s15d also directly follows from the fact

that stationary mean-motion states have kpl=0. For the Paul-
trap potential s3d the fact that the energy change DkEnl can
be nonzero sand even be very large as shown in Sec. IVd
marks a difference from the classical regime, since for a

classical particle whose mean motion is at rest, DĒclass is

always zero f20g. This difference is a direct consequence of
Heisenberg’s uncertainty principle, which implies that in the

quantum regime the particle’s mean position is spread

around zero, leading—contrarily to the classical regime—to

a nonvanishing micromotion ssince e−iFò1 for xÞ0d, thus
giving rise to an effect of the phase hop. If the quantum

particle is not in a stationary mean-motion state, its mean

energy can, due to Eq. s14d, be both increased and decreased:

DkEl � 0 s16d

ssee also the Appendixd.

IV. PHASE HOPS CAN HAVE SIGNIFICANT IMPACT

In order to demonstrate that the phase hop can have a

strong effect, we compare DkEl to the particle’s initial mean
energy kEl. Experimentally relevant are particles that are in

stationary mean-motion states fn with mean energy En. For

the Paul-trap potential s3d we find

DkEn
PTl = fsinstph + Dwd − sinstphdg

2En
PT, s17d

where En
PT="Vsn+1 /2d. Thus, the relative change

DkEn
PTl /En

PT is independent of n and of v, and it can take

values between 0 and 4. This demonstrates that in the Paul

trap a phase hop can have a strong effect on the particle’s

mean motion, even for arbitrarily large v. For the rapidly

scanning optical tweezers s4d we find

DkEn
OTl =

vref
2

v2
fsinstph + Dwd − sinstphdg

2E0
OT, s18d

with En
OT="voscsn+1 /2d and the reference frequency

vref;Îmvosc
3 x0

2
/". Here, the relative change DkEn

OTl /En
OT

can take values between 0 and f4 / s2n+1dgvref
2

/v2 and thus

becomes negligible for v→`. However, as an inspection of

vref shows, DkEn
OTl /En

OT can still be large even if v is as

large as required by the validity condition of the underlying

effective theory si.e., for v@vosc; cf. Sec. IId.
To generalize the above findings, consider first an arbi-

trary ROP with a vanishing time average. The mean potential

energy of a particle in a stationary mean-motion state fn then

is En
pot= kfnuVeffufnl with Veffsxd= "2

2mF8sx ,td2 and the follow-
ing relation holds:

En
pot , max

tph

Skfnsxdu
"2

2m
F8sx,tphd

2ufnsxdlD
, max

tph,Dw
Skfnsxdu

"2

2m
fDF8sx,tphdg

2ufnsxdlD
= max

tph,Dw
fDkEnlg . s19d

Therefore a time tph exists swithin each period of Vd for

which a phase hop of a size Dw swith 0øDw,2pd induces
a change DkEnl of the particle’s mean energy En, which is

greater than its mean potential energy En
pot. Since En

pot is in

general a significant fraction of En, Eq. s19d shows that a

phase hop can always be induced such that DkEnl is large

with respect to En, even for arbitrarily large v. An intuitive

explanation of the very fact that in ROPs with a vanishing

time average a phase hop can always significantly change the

particle’s mean energy swhen it is induced in a correct mo-

mentd can be given as follows: For ROPs with a vanishing

time average the particle’s mean potential energy equals the

average kinetic energy that is stored in the particle’s micro-

motion fsince kfuVeffufl= skcup̂2ucl− kfup̂2ufld / s2mdg. A

phase hop causes a momentum transfer between the parti-

cle’s micromotion and mean motion, whose maximum value

is given by the peak-to-peak amplitude of the soscillatingd
momentum of the micromotion fEq. s13dg. Since the momen-
tum of the particle’s micromotion is oscillating around zero,
this momentum transfer can, due to the equivalence of the

micromotion’s average kinetic energy and the mean potential

energy, lead to a change of the particle’s mean energy which

is comparable to its mean potential energy and which thus is

significant.

In ROPs with a nonvanishing time average, a phase hop

can only then lead to a significant change of the particle’s

mean energy if v is not too large, since for such ROPs the
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fraction of the particle’s mean potential energy which equals

the average kinetic energy stored in the particle’s micromo-

tion scales with v−2. This is expressed by Eq. s14d, which
yields that for stationary mean-motion states DkEnl scales

with v−2 fcf. Eq. s18dg.
We have seen that the phase hop can affect the particle’s

mean-motion wave function and observables. The phase hop

thus can induce transitions between stationary mean-motion

states, fn→fm, whose probabilities are given by pn,m

;ukfsnd
newsx , tphd ufmsxdlu2 simplying pn,m=pm,nd, where fsnd

new

denotes the particle’s mean-motion state after the phase hop.

For the potentials s3d and s4d, the pn,m can be calculated

analytically. In particular, the p0,m are of experimental rel-

evance as the mean-motion ground state f0 can be prepared

with high precision and can be easily probed. For the Paul-

trap potential s3d we find

p0,m
PT = 1

m!

23m/2Sm

2
D!Sm

2
D!2

dm

S1 + d2

2
Dsm+1d/2 , for m = even,

p0,m
PT = 0, for m = odd, s20d

with d=sinstph+Dwd−sinstphd. In typical single-ion experi-

ments, the p0,m could be directly measured using resolved

Raman sideband spectroscopy f1,2g. Figure 2 shows that the
probability for a particle to remain in the mean-motion

ground state can be as small as 58%, demonstrating the sig-

nificance of the effect of the phase hop. For the rapidly scan-

ning optical tweezers s4d we find

p0,m
OT =

1

2mm!
Svref

v
dD2m

e−svref/vdd2/2. s21d

As p0,0
OT
→1 for v→`, the effect of the phase hop becomes

negligible for too large v. However, Fig. 2 shows that for

v=vref the effect of the phase hop is still significant. For

weakly interacting bosonic quantum gases, p0,0
OT could be de-

termined by measuring the number of atoms that remain in a

Bose-Einstein condensate f13g, provided that the measure-

ment is performed immediately after the phase hop before a

rethermalization takes place. For an atomic gas of degenerate

fermions, phase hops fcf. Eq. s18dg could offer a tool to more
quickly increase the energy and thus, after thermalization,
the temperature in a controlled way f24g without having to
change or to switch off and back on the trapping potential
and to in between await an expansion of the gas f25g.

The manipulation by phase hops can be made more effec-
tive by inducing several phase hops successively. Figure 3
shows the transition probability p0,0

PT for two successively in-
duced phase hops of size Dw=p as a function of their time
delay. Although the effects of the two phase hops on the
particle’s s2p-periodicd Hamiltonian s2d cancel each other,
their effects on the particle’s mean motion do not necessarily
cancel and can even be more significant as in the case of a
single phase hop.

To countercheck our theoretical predictions, we per-

formed numerical simulations for a particle in the Paul-trap

potential s3d by integrating the full time-dependent

Schrödinger equation s1d. Figure 4 shows the time evolution
of the experimentally measurable root-mean-square srmsd de-
viation Dx;Îkcux̂2ucl− kcux̂ucl2 of the particle’s position

when influenced by a phase hop. The initial state was chosen

to be csx ,0d=e−iFPTsx,0df0
PTsxd, which determines the particle

to be in the mean-motion ground state f0
PT. Figure 4 shows

very good agreement between numerics and the theoretical

mean-motion predictions derived via computer algebra from

Eqs. s9d and s11d (the small oscillations of the solid sredd
curves around their own mean represent higher orders of the

particle’s micromotion f21g, which had been disregarded in

the derivation of the theoretical mean-motion predictions

fdepicted as dashed sblackd curvesg and which disappear for
larger v). The driving frequency used in the simulation is

v<70 V, and thus the numerics demonstrate that the theo-

retical predictions for the limit v→` even hold for such

small v. For larger v the agreement between both ap-

proaches would even be better. Further, the numerics allowed

one to obtain a practical definition for “instantaneous:” in

experiments the phase hop must happen on time scales

smaller than the period of V f26g.

FIG. 2. sColor onlined The experimentally measurable f1,2g
probabilities for the transitions between the mean-motion ground

state f0 and the mean-motion states fm induced by a phase hop for

a particle in the Paul-trap potential s20d sleftd and the rapidly scan-
ning optical tweezers s21d sright, with v=vrefd as a function of the
parameter d=sinstph+Dwd−sinstphd.
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FIG. 3. sColor onlined The experimentally measurable f1,2g
probability for a particle in the Paul-trap potential s3d to return to

the mean-motion ground state f0 when two phase hops of size

Dw=p are successively induced sat times tph
s1d=p /2 and tph

s2d=tph
s1d

+Dtd as a function of Dt. Although one might naively expect those

two phase hops to cancel each other, the second phase hop can, in

fact, further reduce the probability to return to the ground state.

Even parameters for which p0,0
PT =1 are interesting experimentally:

they can be used to verify if the system indeed is described by

dissipationless quantum mechanics.
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The results presented in this article must be consistent

with the classical results of Ref. f20g. To countercheck this

we calculated DkEl for the case that the mean motion of a

quantum particle in the Paul-trap potential is in a coherent
state f1,2g and showed that its classical limit equals the cor-
responding classical result ssee the Appendixd.

V. CONCLUSION

In this article we have presented a quantum-mechanical

treatment of the effect of phase hops in ROPs on a single

trapped particle. We have computed the particle’s mean-

motion wave function for all times and the resulting conse-

quences on its mean-motion observables. We have calculated

the transition probabilities between stationary mean-motion

states and we have shown that the particle’s mean energy can

in general be both increased and decreased, except if it is in

a stationary mean-motion state; then, the mean energy can

only be increased. In particular, we have shown that the ef-

fect of a phase hop can be very strong.

For both for classical and quantum particles, the induction

of phase hops provides a powerful tool for particle manipu-

lation. Besides its strong effect, it has the following further

appealing properties: First, its experimental implementation

would be very simple and would not even require a change

of an existing setup. Second, its application would be a con-

trolled operation since a phase hop does not have an influ-

ence on the effective trapping potential, because that is inde-

pendent of the phase of the ROP. Finally, it could be applied

to any kind of trappable particles, because its mechanism is

simply based on changes of the ROP and does thus not rely

on particular internal properties of the particles as do laser-

based manipulation methods.

In this article we have restricted our considerations to a

single particle. Our main goal was to obtain analytical re-

sults, as these directly apply to a widely used and studied

experimental system, the single ion in a Paul trap f1,2g. Due
to the experimentally achievable pureness of this system, it

can be used to precisely investigate phase hops and their

possible applications experimentally. One of such possible

applications could be to decelerate a single ion, which we

here showed to be possible also in the quantum regime.

For future research, it will be interesting to study the ef-

fect of phase hops on ensembles of sinteractingd particles.

The extension of single particle effects in time-periodic sys-

tems f27,28g to multiparticle systems is an active field of

theoretical and experimental physics f29,30g. An experimen-
tal investigation of the schemes proposed in this article could

be performed with cold ion clouds stored in a Paul trap f2g or
ultracold neutral atoms stored in a TOP trap f8,9g or in rap-
idly scanning optical tweezers f12,13g. In the field of degen-
erate Fermi gases, phase hops could offer a convenient way

to realize controlled heating f24g.
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APPENDIX: EFFECT OF A PHASE HOP ON COHERENT

MEAN-MOTION STATES

Let the mean motion of a quantum particle in the Paul-

trap potential s3d be in a coherent state. This is a quantum

state which describes a wave packet that follows the motion

of a classical particle in a harmonic oscillator potential while

retaining its shape sthus also referred to as quasiclassical
stated. As the effective potential of the Paul trap is harmonic,

the particle’s mean motion possesses coherent states, which

are given by f1,2g

fCSsxd = SmV

p"
D1/4

esi/"dkplxes−mV/2"dsx − kxld2, sA1d

where Eq. sA1d describes a quantum particle with mean po-

sition kxl, mean momentum kpl, and mean energy kECSl
= kfCSup̂2ufCSl / s2md+ kfCSuVeff

PTsx̂dufCSl. When a phase hop

is induced, kECSl changes according to Eq. s14d by

DkECSl = Î2Vkxlkpld + mV2kfCSux̂
2ufCSld

2, sA2d

where d=sinstph+Dwd−sinstphd. A classical particle with

mean position x̄, mean momentum p̄, and mean energy

Ēclass= p̄2
/ s2md+Veff

PTsx̄d would, in the case of the phase hop,

change its mean energy by DĒclass=Î2Vx̄p̄d+mV2x̄2d2 f20g,
which is the classical limit of Eq. sA2d ssince it

is lim"→0kxl= x̄, lim"→0kpl= p̄, lim"→0kfCSux̂2ufCSl
=lim"→0kfCSux̂ufCSl2= x̄2, and lim"→0kfCSup̂2ufCSl
=lim"→0kfCSup̂ufCSl2= p̄2d. This demonstrates that the

quantum-mechanical results presented in this article are con-

sistent with the classical results of Ref. f20g. In particular, it

shows that in the quantum regime and in the classical regime

the particle’s mean energy can in general be both increased

and decreased by inducing a phase hop fcf. Eq. s16dg.
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FIG. 4. sColor onlined Time evolution of the rms deviation Dx
for a particle in the Paul-trap potential s3d which initially is in the

mean-motion ground state, affected by a phase hop of different

sizes Dw fnormalized to the theoretically predicted initial mean-

motion value Dx0,eff=Î" / s2mVdg. Solid sredd curves: results of nu-

merical simulations. Dashed sblackd curves: theoretical mean-

motion prediction. Driving frequency: v<70 V.
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Abstract. We present the design, implementation and characterization of a dual-species magneto-optical
trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains
5.2×109 6Li-atoms and 8.0×109 40K-atoms, which are continuously loaded by a Zeeman slower for 6Li and a
2D-MOT for 40K. The atom sources induce capture rates of 1.2×109 6Li-atoms/s and 1.4×109 40K-atoms/s.
Trap losses due to light-induced interspecies collisions of ∼65% were observed and could be minimized to
∼10% by using low magnetic field gradients and low light powers in the repumping light of both atomic
species. The described system represents the starting point for the production of a large-atom number
quantum degenerate Fermi-Fermi mixture.

1 Introduction

The study of ultracold atomic Fermi gases is an emerg-
ing research field aiming to understand many-body quan-
tum phenomena occurring in various fields, such as con-
densed matter systems, disordered systems, quark-gluon
plasmas or astrophysics (neutron stars) [1,2]. They provide
a unique opportunity to create strongly correlated many-
body systems with a high degree of experimental con-
trol. One intends to realize analog quantum simulators in
Feynman’s spirit [3], with which many-body Hamiltonians
could be solved.

In the field of ultracold Fermi gases the study of mix-
tures of two different fermionic species with different mass
is gaining interest. Both theoretical and experimental as-
pects motivate this study. Such mixtures are predicted to
exhibit a rich phase diagram such as phase separation [4],
crystalline phases [5], exotic pairing mechanisms [6] and
long-lived trimers [7]. They further allow the creation of
polar molecules, which have a long-range dipole-dipole in-
teraction [8,9]. Two different atomic species yield addi-
tional tunable parameters, such as the mass imbalance
and species-specific potentials. The mass-imbalance can
be varied in an optical lattice, where the effective mass of
each species depends on the optical lattice parameters.

The mixture 6Li-40K is a prime candidate for these
studies. 6Li and 40K are the only stable fermionic alkali

a e-mail: armin.ridinger@gmail.com

isotopes and thus belong to the experimentally best-
mastered class of atoms. Moreover, both species have
bosonic isotopes which can also be used to create boson-
fermion gases. Furthermore, the mass difference between
the two species is large leading to a large electric dipole
moment for heteronuclear diatomic molecules (3.6 D) [10].
Finally, many of the above-mentioned predicted quantum
phases require strong interspecies interactions and a uni-
versal behavior of the gas. It was recently reported [11]
that it is possible to reach the universal regime for the
6Li-40K-mixture due to the existence of a 1.5 gauss-wide
Feshbach resonance.

The starting point of most mixture experiments is a
dual-species magneto-optical trap. It is desirable to cap-
ture a large number of atoms at this stage for the fol-
lowing reasons. First, large atom numbers allow to an-
ticipate the losses induced by the subsequent evaporative
cooling procedure, which needs to be applied to reach the
quantum degenerate regime. Second, a large initial atom
number makes the evaporation procedure more efficient.
Third, the Fermi temperatures of the gas are larger for
larger atom numbers and thus quantum phenomena can
be observed at higher temperatures. Finally, a large atom
number leads to better signal-to-noise ratios and a greater
robustness in day-to-day operation.

A dual-species magneto-optical trap with large atom
numbers also allows an efficient creation of ultra-
cold heteronuclear molecules via photoassociation. Us-
ing this technique, we have been able to create excited
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heteronuclear 6Li-40K* molecules with a formation rate of
∼5 × 107s−1. The results of this experiment will be the
subject of a separate publication [12].

In this article we describe the design, implementation
and characterization of a dual-species magneto-optical
trap for 6Li and 40K with large atom numbers. In a dual-
species MOT, the atom number is in general reduced
compared to single-species MOTs due to additional in-
terspecies collisions and to experimental constraints, such
as the imperative to use the same magnetic field for both
species or common optics. In other groups working with
the 6Li-40K mixture the following atom numbers have
been achieved: in the Munich group [13] the dual-species
MOT is loaded from a Zeeman slower for 6Li and a va-
por for 40K, resulting in atom numbers of ∼4× 107 (6Li)
and ∼2×107 (40K). In the Innsbruck group [14] the dual-
species MOT is loaded from a multi-species Zeeman slower
and atom numbers of ∼109 (6Li) and ∼107 (40K) are
achieved. In the group in Amsterdam [15] two separate
2D-MOTs allow to load ∼3 × 109 (6Li) and ∼2 × 109

(40K). In our setup, the dual-species MOT is loaded from
a Zeeman slower for 6Li and a 2D-MOT for 40K. It si-
multaneously contains 5.2 × 109 6Li-atoms and 8.0× 109

40K-atoms, which represents a substantial atom number
improvement.

For our application in particular a large atom number
in the 40K-MOT is of interest, since we intend to sympa-
thetically cool 6Li with 40K, where 40K will be prepared
and cooled in two different spin states. This approach has
been implemented by Tiecke et al. [11] and proved to be
an efficient cooling method, as it can be realized in a mag-
netic trap. In this cooling process mostly 40K-atoms will
be lost.

In future experiments, the atoms stored inside the
dual-species MOT will be polarized and magnetically
transported to an ultra-high vacuum (UHV) environment
with large optical access. There the atom cloud will be
evaporatively cooled to quantum degeneracy in an opti-
cally plugged magnetic quadrupole trap. Finally it will be
transferred into an optical trap to investigate many-body
phenomena in lower dimensions.

This article is organized as follows. In Section 2 the
experimental setup, including the vacuum assembly and
the laser systems, is described. In Section 3 we present the
design and the performance of the atom sources, which are
used to load the dual-species MOT, i.e. a Zeeman slower
for 6Li and a 2D-MOT for 40K. In Section 4, the dual-
species MOT is characterized and a study of light-induced
interspecies collisions is presented.

2 Experimental setup

2.1 Vacuum system

A three-dimensional view of the vacuum system is shown
in Figure 1. It consists of two atom trap chambers and
three flux regions. The first chamber is a central octagonal
chamber where the 6Li-40K dual-species MOT is prepared.

40K 2D!MOT
6Li Zeeman 

slowerslower

Dual species MOT

S i M tiScience

cell

Magnetic 

transport 50 cm

Fig. 1. (Color online) Schematics of the vacuum assembly.
The dual-species MOT is loaded from a 2D-MOT for 40K and a
Zeeman slower for 6Li. A magnetic transport allows to transfer
the cloud to a UHV science cell with large optical access.

The second chamber is a glass science cell, in which we will
evaporatively cool the mixture to quantum degeneracy.

The three flux regions are all connected to the octago-
nal chamber and are divided in two parts. First, the atom
sources, namely a 2D-MOT for 40K and a Zeeman slower
for 6Li. Second, a magnetic transport connecting the oc-
tagonal chamber to the final science cell. This magnetic
transport consists of a spatially fixed assembly of mag-
netic coils which creates a moving trapping potential of
constant shape by applying time-varying currents [16]. It
has already been implemented in our system and will be
described in a separate publication.

The octagonal chamber can be isolated from the source
regions and the science cell by all-metal UHV valves,
which allow for separate baking and trouble-shooting. The
2D-MOT and the Zeeman slower region are pumped by
one and three 20 L/s ion pumps, respectively. The oc-
tagonal chamber is pumped by a 40 L/s ion pump and
the science chamber by a 40 L/s ion pump and a titanium
sublimation pump. Differential pumping tubes connect the
source regions to the octagonal chamber in order to cre-
ate a high vacuum environment in the octagonal cell. In
a similar way, the science chamber is connected to the
octagonal chamber via a combination of standard CF16-
and homemade vacuum tubes of 1 cm diameter to fur-
ther increase the vacuum quality. The glass science cell
has a large optical access and permits the installation of
an objective for high-resolution imaging.

2.2 Laser systems

The dual-species MOT requires separate laser systems and
optics for the two different atomic transition wavelengths
671 nm (Li) and 767 nm (K). The laser systems provide
several beams with different frequencies and intensities
for slowing, trapping and probing each atomic species. A
sketch of the energy levels of the atomic species and the
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Fig. 2. (Color online) Level diagrams for the 6Li and 40K D2-
lines with their respective hyperfine structures, showing the
frequencies required for the dual-species MOT operation. The
diode lasers are locked to the indicated saturated absorption
crossover signals 2S1/2(F = 1/2, F = 3/2) → 2P3/2 of 6Li and
4S1/2(F =1, F =2)→ 4P3/2 of 39K.

frequencies of interest are shown in Figure 2. The laser
systems are set up on separate optical tables and the gen-
erated laser beams are transferred to the main experi-
mental table using optical fibers. A simplified scheme of
the laser systems is shown in Figure 3. Each one consists
of a single low output-power frequency-stabilized diode
laser (DL) and three tapered amplifiers (TAs) used for
light amplification. Due to the small hyperfine splittings of
both 6Li and 40K, the required frequencies of the various
laser beams are conveniently shifted and independently
controlled by acousto-optical modulators (AOMs).

The diode lasers are homemade tunable external cav-
ity diode lasers in Littrow configuration. The laser diode
for Li (Mitsubishi, ref. ML101J27) is of low-cost due to
its mass production for the DVD industry. Its central
free running output wavelength at room temperature is
660 nm which can be shifted into the range of 671 nm by
heating the diode to 80 ◦C. In external cavity configura-
tion its output power is 40 mW at a driving current of
150 mA. Under these conditions the laser diode reaches
a typical lifetime of 6 months. It can be mode hop-free
tuned over a range of 5 GHz. The laser diode for K is an
anti-reflection coated Ridge-Waveguide Laser (Eagleyard,
ref. EYP-RWE-0790-0400-0750-SOT03-0000), whose cen-
tral free running output wavelength at room temperature
corresponds to the desired wavelength. In external cavity
configuration its output power is 35 mW at 90 mA and it
has a typical lifetime of one year. It can be mode hop-free
tuned over a range of 10 GHz.

The tapered amplifiers are commercial semiconduc-
tor chips which are mounted on homemade supports. We
developed compact support designs with nearly no ad-
justable parts, which allow for a quick temperature stabi-
lization, do not require running water for heat dissipation
and allow for an easy installation process. The support
designs are described in detail in the appendix.
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Fig. 3. Laser systems for 6Li and 40K. The frequencies and
amplitudes of the various beams are controlled by AOMs in
single pass (sp) or double pass (dp) configuration. The EOMs
are used to phase modulate a part of the beam for the diode
laser’s frequency stabilization. Single mode polarization main-
taining fibers (FI) are used for beam shaping and spatial fil-
tering. The indicated AOM frequencies allow to generate the
required beam frequencies (see Fig. 2).

We have also developed an all-solid-state laser for
lithium delivering more than 630 mW output power, with
which we intend to increase further the number of laser-
cooled Li atoms. The setup of this light source is described
elsewhere [17].

The frequency of each diode laser is stabilized via satu-
rated absorption spectroscopy for which a small part of the
DL’s output is used (see Fig. 3). A 20 MHz electro-optical
modulator (EOM) is employed to modulate the phase of
the spectroscopy laser beam yielding the derivative of the
absorption signal through a lock-in detection. The result-
ing error signal is transferred to both the diode’s current
(via a high frequency bias-tee), and, via a PID-controller,
to a piezo that adjusts the external cavity’s length with a
4 kHz bandwidth. An AOM is used to offset the frequency
of the diode laser with respect to the absorption line used
for locking. It allows for fine adjustments of the frequency
while the laser is locked.

The Li diode laser frequency is shifted by −331 MHz
from the 6Li 2S1/2(F = 1/2, F = 3/2) → 2P3/2 crossover
signal and the K diode laser frequency is shifted by
+240 MHz from the conveniently located 4S1/2 (F = 1,

F = 2) → 4P3/2 crossover signal of 39K. Note that the

small excited state hyperfine structures of both 6Li and
39K are unresolved in the spectroscopy.

The saturated absorption spectroscopy for lithium is
realized in a heat pipe of 50 cm length, in which a nat-
ural Li sample (with the isotopic abundances 7Li: 92%,
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6Li: 8%) is heated to 350 ◦C to create a sufficiently high
vapor pressure for absorption. The heat pipe consists of
a standard CF40 tube with the Li-sample placed at its
center. The tube is heated with a pair of thermocoax ca-
bles which are wound around the tube in parallel with
opposite current directions in order to prevent magnetic
fields to build up. Condensation of lithium atoms on the
cell windows needs to be inhibited as Li chemically reacts
with glass. This is achieved by adding an argon buffer gas
at ∼0.1 mbar pressure, as Ar-Li collisions prevent Li to
reach the cell windows in ballistic flight. The optimum
argon pressure was chosen such that it provides enough
collisions, but does not substantially collision-broaden the
absorption spectrum. Water cooling of the metallic parts
close to the windows leads to condensation of the diffus-
ing lithium-atoms before those can reach the windows. To
avoid that lithium slowly migrates to the colder surfaces,
the inside of the tube is covered with a thin stainless steel
mesh (Alfa Aesar, ref. 013477), which induces capillary
forces acting on the condensed atoms. Since the surface
tension of liquid lithium decreases with increasing tem-
perature [18], the capillary forces cause the atoms to move
back to the hotter surfaces.

The saturated absorption spectroscopy for potassium
is realized in a cylindrical glass vapor cell of 5 cm length, in
which a natural K-sample (with the isotopic abundances
39K: 93.36%, 40K: 0.012%, 41K: 6.73%) is heated to 40 ◦C.
Here, a small non-heated appendix of the cell serves as
a cold point to prevent condensation of K-atoms on the
surfaces crossed by the laser beam.

In both laser systems the frequency stabilized mas-
ter laser beam is immediately amplified by a first TA
and subsequently injected into a single-mode polarization
maintaining optical fiber (FI) for beam shaping and spa-
tial filtering (see Fig. 3). The output beam of the opti-
cal fiber is split by a series of polarizing beam splitters
into several beams whose frequencies and intensities are
independently shifted and controlled with AOMs in sin-
gle or double pass configuration. The various beams are
then recombined with a pair of polarizing beam splitters
to linearly polarized bichromatic beams consisting of one
cooling and one repumping frequency. Those are then ei-
ther directly injected into a fiber or into another TA for
further amplification. The fibers finally transfer the beams
to the main experimental table.

The injection of a bichromatic beam into a TA, whose
gain-medium is non-linear, is accompanied with the cre-
ation of sidebands [19]. The sideband creation is due to
parametric amplification of the gain medium by the beat-
ing between the two injected frequencies. In general, side-
bands represent a loss of the power available in the in-
jected frequencies and can excite unwanted transitions. In
our case, where the two injected beam components have
significantly different powers and frequencies (differing by
∼228 MHz for 6Li and by ∼1286 MHz for 40K), the power
losses are below 10%. No unwanted transitions are ex-
cited by the amplified bichromatic beams, except for the
Zeeman slower beam, as that is detuned close to an in-
teger multiple of 228 MHz and would thus perturb the

atoms in the MOT. For this beam the injection of both
frequency components into the same TA was thus avoided
(see Fig. 3).

Acoustically isolated homemade mechanical shutters
are placed in front of each fiber on the optical tables al-
lowing to switch off the laser beams when required. The
shutters consist of a low-cost solenoid-driven mechanical
switch (Tyco Electronics, ref. T90N1D12-12) and a razor
blade attached to it via a small rigid lever arm. These shut-
ters typically have a closing time of ∼100 µs when placed
in the focus of a laser beam and a sufficiently reproducible
time delay of the order of 3 ms.

3 Atom sources

Magneto-optical traps can be loaded in different ways.
The most efficient is the loading from a beam of slow
atoms. This scheme allows isolating the MOT from the
atom source region with a differential pumping tube,
through which the beam is directed. The MOT thus
can be located in a UHV chamber where collisions with
the residual gas are minimized. Furthermore, the MOT
will be quickly loaded when the atomic beam is cold
and has a high flux. The most efficient methods to cre-
ate such beams are Zeeman slowers and 2D-MOTs. For
both atomic species 6Li and 40K, both, Zeeman slow-
ers [14,20,21] and 2D-MOTs [22], have been realized in
the past. In our setup we chose to implement a Zeeman
slower for 6Li and a 2D-MOT for 40K.

3.1 6Li Zeeman slower

3.1.1 Introduction

Zeeman-tuned slowing represents one of the earliest and
most widely used techniques to slow down atoms from
an oven [23]. A Zeeman slower longitudinally decelerates
an atomic beam using the radiative force of a counter-
propagating resonant laser beam. The Doppler effect ac-
cumulated during the deceleration is compensated by the
Zeeman effect, induced by an inhomogeneous magnetic
field, which maintains the atoms on resonance and pro-
vides a continuous deceleration.

Two types of Zeeman slowers are commonly used:
the positive-field and the sign-changing field (“spin-flip”)
Zeeman slower [24]. We have implemented a spin-flip
Zeeman slower since it brings about several advantages.
First, a smaller maximum absolute value of the magnetic
field is required. Second, the Zeeman laser beam is non-
resonant with the atoms exiting the slower and thus does
not push them back into the slower, neither it perturbs
the atoms trapped in the 6Li-MOT. However, the spin-
flip Zeeman slower requires repumping light in the region
where the magnetic field changes sign and thus makes the
optics system slightly more complicated.
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3.1.2 Experimental setup

The Zeeman slower consists of two distinct parts: the oven,
which creates an atomic beam of thermal atoms, and an
assembly of magnetic field coils. In the oven a nearly pure
6Li sample (5 g) is heated to 500 ◦C and an atomic beam is
extracted through a collimation tube. The magnetic field
coils create an inhomogeneous magnetic field along the
flight direction of the atoms.

The oven consists of a vertical reservoir tube (diame-
ter: 16 mm, length: 180 mm) and a horizontal collimation
tube (diameter: 6 mm, length: 80 mm), which is attached
to it (see Fig. 1). The upper end of the reservoir tube
and the free end of the collimation tube are connected to
CF40-flanges. The flange of the reservoir tube is sealed and
allows connecting a vacuum pump for baking purposes.
The flange of the collimation tube connects the oven to
the rest of the vacuum chamber. All parts of the oven are
made of stainless steel of type 302L and connected us-
ing nickel gaskets instead of copper gaskets as they stand
higher temperatures and react less with lithium. The heat-
ing of the oven is realized with two high power heating ele-
ments (Thermocoax, ref. SEI 10/50-25/2xCM 10), wound
around both, the reservoir and the collimation tube.

The temperature of the oven needs to be stabilized
precisely, since the atomic flux critically depends on the
temperature. This is accomplished by an active stabiliza-
tion circuit and an isolation with glass wool and aluminum
foil. Along the collimation tube a temperature gradient
is maintained in order to recycle lithium atoms sticking
to the inner tube walls through capillary action, as ex-
plained above. In order to amplify the effect of capillary
action, a thin stainless steel mesh with a wire diameter
of 0.13 mm (Alfa Aesar, ref. 013477) is placed inside the
tube. This wire decreases the effective diameter of the col-
limation tube to∼5 mm. For the operating temperature of
500 ◦C, the vapor pressure of lithium in the oven amounts
to 4× 10−3 mbar.

A computer controlled mechanical shutter (Danaher
Motion, ref. BRM-275-03) in front of the oven allows to
block the atomic beam during experiments or when the
6Li-MOT is not in operation.

The oven is pumped through the collimation tube with
a 20 L/s ion pump and isolated from the main chamber
via three differential pumping stages and the tube of the
Zeeman slower. The pumping efficiency through the colli-
mation tube is ∼0.19 L/s resulting in a pressure drop of
a factor ∼100. The second and third differential pump-
ing tubes both have a length of 100 mm and a diameter
of 5 mm and 10 mm, respectively. A 20 L/s ion pump is
placed after each tube. In total a pressure drop of a factor
of ∼2.5× 106 between the oven and the main chamber is
obtained.

The assembly of the oven is a three-step procedure.
First, the metallic parts of the oven are pre-baked at
600 ◦C during 48 h. Then, the oven is filled with the
lithium sample under air atmosphere and baked again at
600 ◦C during 12 h in order to eliminate the impurities
in the lithium sample (mostly LiH). Typically 50% of the
sample is lost during this procedure. Then, the oven is

Fig. 4. (Color online) 6Li Zeeman slower coil assembly and
generated axial magnetic field profile. The thermal atoms com-
ing from the 6Li-oven enter the coil assembly at the position 0,
and a fraction of them is slowed down and finally captured in
the 6Li-MOT, which is located at 71.4 cm. A compensation coil
placed on the opposite side of the MOT (at 84.1 cm) ensures
that the magnetic field is zero at the position of the MOT.

connected to the rest of the vacuum chamber under an ar-
gon atmosphere, since argon does not react with lithium.
Since argon damages ion pumps, the vacuum chamber is
first pumped by a turbo molecular pump during 12 h be-
fore the ion pumps are finally launched and the oven is
operational.

The Zeeman slower coils are mounted on a 65 cm long
standard CF40 tube placed between the oven and the
MOT chamber. A sketch of the coil assembly and the gen-
erated axial magnetic field profile are shown in Figure 4.
The coil assembly extends over L = 55 cm and is sepa-
rated from the position of the MOT by 16 cm. The coils
are connected in series and were designed such that the
desired magnetic field profile is generated for a moderate
driving current of 12 A. The axial magnetic field of the
slower along the flight direction of the atoms is measured
to be 570 G at the entrance and −220 G at the exit.

The magnetic field of the Zeeman slower is non-zero at
the position of the MOT and hence compensated by a coil
placed opposite to the slower coils at a distance of 12.7 cm
from the MOT (see Fig. 4). The compensation coil consists
of 4 coil layers wound around a 10 cm long CF40 standard
tube. They are powered by a separate power supply for
fine adjustments. When compensated, the magnetic field
has an axial gradient of 0.5 G/cm at the position of the
MOT.

The cables of the Zeeman slower coils (APX France,
ref. méplat cuivre émaillé CL H 1.60 × 2.50) stand bake
out procedures up to 200 ◦C. One layer of a heating cable
(Garnisch, ref. GGCb250-K5-19) is permanently placed
underneath the magnetic field coils for these bake out pro-
cedures. To avoid heating of the vacuum parts during the
Zeeman slower’s operation, two layers of water coils were
wound underneath the coil layers.

Slowing and repumping light for the Zeeman slower
is derived from a bichromatic laser beam which is pro-
vided by an optical fiber originating from the laser system.
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It has a total power of Pfiber = 50 mW and its frequencies
are both red detuned by ∆ωslow = ∆ωrep = 75 Γ from
the 2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) slowing and the
2S1/2(F = 1/2) → 2P3/2(F

′ = 3/2) repumping transi-
tion (see Fig. 2). The intensity Islow of the slowing light
is 8 times bigger than the intensity Irep of the repumping
light. Both beam components have the same circular po-
larization (σ+ at the position where the atoms enter the
slower).

The detuning of the slowing light and the axial mag-
netic field at the entrance of the coil assembly define the
so-called capture velocity vZee

cap of the Zeeman slower. All

atoms with a velocity smaller than vZee
cap are expected to be

decelerated to the same final velocity vZee
fi at the exit of the

slower, provided that they initially populate the correct in-
ternal atomic state. The resonance condition for the atoms
inside the slower yields vZee

cap ∼ 830 m/s and vZee
fi ∼ 90 m/s.

The exit velocity of the slower is thus larger than the cap-
ture velocity of the 6Li-MOT, which is estimated to be
∼50 m/s. However, the atoms are still decelerated signifi-
cantly in the region between the slower exit and the MOT
and are thus expected to be captured by the MOT. The
capture velocity of the Zeeman slower is smaller than the
most probable thermal speed of the atomic beam, which
is given by vp =

√

2kBT/m = 1464 m/s at T = 500 ◦C,
where kB denotes the Boltzmann constant andm the mass
of the 6Li-atoms.

The bichromatic Zeeman slower beam is expanded and
focused by a lens pair. The focusing of the beam accounts
for the divergence of the atomic beam and the loss of beam
power due to absorption and thus yields an efficient uti-
lization of the available laser power. In addition, it induces
a small cooling effect along the transverse direction [24].
The 1/e2-diameter at the position of the MOT is 31 mm
and the focus is at a distance of 120 cm from the MOT,
10 cm behind the oven.

The divergence of the atomic beam is an important pa-
rameter characterizing the Zeeman slower. Three factors
contribute to it: first, the geometry of the oven’s collima-
tion and the subsequent differential pumping tubes, sec-
ond the atom’s deceleration inside the slower, and third
the transverse heating due to the scattered photons during
the slowing process. In order to estimate the divergence
of the atomic beam, we calculate the maximum possible
deflection of an atom which exits the oven with a longi-
tudinal velocity vZee

cap . An atom with this velocity needs
∼1.1 ms to reach the exit of the Zeeman slower and ad-
ditional ∼1.8 ms to reach the MOT. Due to the geome-
try of the collimation and differential pumping tubes it
can have a maximum transverse velocity of ∼16 m/s. The
change in transverse velocity due to the heating is cal-
culated to be ∼2.5 m/s [25] and is thus negligible with
respect to the maximum transverse velocity determined
by the tube geometry. The final transverse displacement
of the atom with respect to the beam axis at the position
of the 6Li-MOT would thus be ∼5 cm, resulting in an
effective beam divergence of ∼90 mrad. This divergence
requires 6Li-MOT beams of a large diameter.

Table 1. Optimized values for the parameters of the 6Li
Zeeman slower, yielding a 6Li-MOT capture rate of ∼1.2 ×
109 atoms/s at an oven temperature of 500 ◦C. The definition
of the symbols is given in the text. The natural linewidth of
6Li is Γ/(2π) = 5.87 MHz. The length of the Zeeman slower
coil assembly is 55 cm.

6Li Zeeman slower
Pfiber (mW) 50
∆ωslow (Γ ) –75
∆ωrep (Γ ) –75
Irep/Islow 1/8
Bmax (G) 570

(a) (b)

Fig. 5. (Color online) 6Li-MOT capture rate as a function
of (a) the power of the Zeeman slowing light for a constant
repumping light power of 5.6 mW and (b) the intensity ratio
between repumping and slowing light of the Zeeman slower for
a constant slowing light power of 45 mW. The intensities of the
superimposed beams depend on the position inside the slower,
since the beams are focused toward the oven. At the position
where the magnetic field changes sign, a power of 10 mW corre-
sponds to an intensity of 2.5 Isat, with the saturation intensity
Isat given in Table 3.

3.1.3 Experimental results

For our application the essential parameter which charac-
terizes the performance of the Zeeman slower is the cap-
ture rate of the 6Li-MOT. We studied its dependence as
a function of several Zeeman slower parameters, such as:
the temperature of the oven, the power of the slowing
light, the magnitude of the magnetic field and the inten-
sity ratios between the repumping and slowing light. The
optimized values of these parameters are displayed in Ta-
ble 1, leading to a 6Li-MOT capture rate of ∼1.2 × 109

atoms/s. The capture rate was deduced from a very short
loading of the MOT, for which atom losses can still be
neglected (∼250 ms).

Figure 5a shows the dependence of the 6Li-MOT cap-
ture rate on the power of the Zeeman slowing light. The
curve increases with increasing beam power and indicates
saturation for higher powers. In the experiment the slow-
ing light power is 45 mW, for which the curve in Figure 5a
starts to saturate, demonstrating that the size of the slow-
ing beam is well chosen. In particular it shows that the
beam is not absorbed significantly by the atoms inside
the slower.

The dependence of the 6Li-MOT capture rate on the
intensity ratio between repumping and slowing light of
the Zeeman slower is depicted in Figure 5b. The curve
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(a) (b)

Fig. 6. (Color online) 6Li-MOT capture rate as a function of
(a) the axial magnetic field of the Zeeman slower and (b) the
temperature of the Li-oven. Circles represent the experimen-
tal data and the solid curve the theoretical prediction from
equation (3).

increases with increasing repumping intensity and sat-
urates for higher intensities. For the intensity ratio
Irep/Islow ∼ 0.1 the repumping intensity in the region
where the magnetic field of the Zeeman slower changes
sign, is of the order of the saturation intensity. There-
fore the transition probability of the repumping transi-
tion saturates at Irep/Islow ∼ 0.1, explaining the behavior
in Figure 5b. The graph shows that the Zeeman slower
only requires a small repumping intensity. It is important
that the repumping light has the same circular polariza-
tion as the slowing light, since it helps to optically pump
the atoms to the cycling transition used for slowing.

Figure 6a shows the 6Li-MOT capture rate as a func-
tion of the magnitude of the axial magnetic field of the
Zeeman slower. The position of the maximum depends on
the detuning of the slowing light.

Figure 6b shows the dependence of the 6Li-MOT cap-
ture rate on the oven temperature T (circles) as well as
a (scaled) theoretical prediction (solid curve) for the ex-
perimental data. The curve shows a nearly exponential
increase of the capture rate with the temperature. The
theoretical prediction is based on a model which assumes
no collisions between the atoms (i.e., no intrabeam colli-
sions and no collisions between the beam and the MOT
atoms). It is derived as follows.

In the absence of collisions, the normalized velocity dis-
tribution of the Zeeman-slowed atoms exiting the slower
does not depend on the temperature of the oven. Assum-
ing that the 6Li-MOT captures mainly atoms which have
been slowed by the Zeeman slower, the capture rate ṄM of
the 6Li-MOT is a temperature-independent fraction of the
flux ṄZ of the Zeeman-slowed atoms: ṄM(T ) = κ1ṄZ(T ).
The proportionality constant κ1 depends on the diver-
gence of the atomic beam and the capture velocity of the
6Li-MOT. The flux of the Zeeman-slowed atoms ṄZ is
given by the flux of the oven atoms which have a speed
smaller than the Zeeman slower’s capture velocity vZee

cap

and which are in the correct internal atomic state to be de-
celerated by the Zeeman slower (i.e. F = 3/2, mF = 3/2).

Assuming the oven to be in thermal equilibrium, ṄZ is
given by [22,26]

ṄZ(T ) = κ2ns(T )A

∫ ΩZ

0

dΩ
cos θ

4π

∫ vZee
cap

0

vf(v, T )dv, (1)

with a temperature-independent constant κ2, which
equals the fraction of atoms which are in the correct in-
ternal atomic state. ns(T ) is the atomic density in the
oven, A = 2 × 10−5 m2 the aperture surface of the oven,
ΩZ = A′/l2 = 5 × 10−4 the solid angle of the atomic
beam (with A′ the aperture surface of the last differential
pumping tube and l the distance between the two aperture
surfaces A,A′) and dΩ = 2π sin θdθ, with θ the emission
angle with respect to the oven axis. f(v, T ) is the normal-
ized speed distribution function given by

f(v, T ) =

√

2m3

πk3
BT

3
v2 exp

(

−
mv2

2kBT

)

. (2)

Since the solid angle of the atomic beam is small, it is

cos θ ≈ 1 and thus
∫ ΩZ

0 dΩ cos θ ≈ ΩZ.

The explicit temperature dependence of the 6Li-MOT
capture rate is then obtained via ṄM(T ) = κ1ṄZ(T )
by substituting into equation (1) the ideal gas equa-
tion ns(T ) = ps/(kBT ) and the relation ps =
pa exp[−L0/(kBT )] for the saturated vapor pressure ps,
with pa = 1.15 × 108 mbar and the latent heat of vapor-
ization L0/kB = 18 474 K [27]. This relation applies to
the temperature range 300–500 ◦C with an accuracy of
5%. Thus, we have

ṄM(T ) = κAΩZpa

√

m3

8π3k5
BT

5
e
−

L0
kBT

∫ vZee
cap

0

v3e
−

mv
2

2kBT dv, (3)

with κ = κ1κ2. Scaling equation (3) to the experimental
data for a given (low) temperature (T = 350 ◦C) yields
the theoretical prediction for the curve shown in Figure 6.
The scaling yields κ = 10−3, thus 0.1% of the atoms, which
enter the Zeeman slower with a velocity smaller than vZee

cap ,

are captured by the 6Li-MOT.
The main contribution to the small value of κ is the

large divergence of the slowed atomic beam: κ is propor-
tional to the ratio of the atomic beam cross section and
the capture surface of the 6Li-MOT, which is estimated to
∼10−2 (assuming the 6Li-MOT capture surface to be a cir-
cle of 1.1 cm diameter). Two-dimensional transverse laser
cooling of the atomic beam could vastly increase the value
of κ. The remaining 10% are due to an inefficient capture
of the 6Li-MOT and to a significant fraction of oven atoms
occupying the incorrect internal atomic states.

The obtained theoretical prediction agrees well with
the experimental data for temperatures below 475 ◦C (see
Fig. 6b). For temperatures above 475 ◦C, the experimen-
tal data deviate from the prediction indicating that in-
trabeam collisions or collisions between the atoms in the
beam and the MOT become important. We found that
for T = 500 ◦C collisions between the thermal 6Li beam
and the trapped 6Li-MOT atoms indeed take place, which
we verified by measuring the lifetime of the 6Li-MOT in
presence and absence of the thermal 6Li beam, making
use of the mechanical block placed at the exit of the oven.
The lifetime was found 10% larger for the case where the
thermal 6Li beam was blocked. In a similar way the ther-
mal 6Li beam also affects the lifetime of the 40K-MOT.
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In order to avoid a reduction of the number of trapped
40K atoms in the dual-species MOT, we therefore limit
the 6Li-oven temperature to 500 ◦C.

With the help of equation (1) the lifetime of the oven
can be estimated. Assuming that the collimation tube of
the oven recycles all atoms sticking to its wall and the vac-
uum pumps have no impact on the Li pressure in the oven,
the total atomic flux through the collimation tube is ob-
tained by replacing A′ = A, vZee

cap = ∞ and l = 8 cm (the
length of the collimation tube) in equation (1). For the
working temperature T = 500 ◦C the lithium vapor pres-
sure is ps = 4.8× 10−3 mbar, corresponding to a density
ns = 4.5×1019 m−3. Thus, the atom flux through the col-
limation tube is ṄO = 3.5× 1014 s−1 =̂ 3.5× 10−12 kg/s.
With 3 g of 6Li this corresponds to an oven lifetime of
τoven ∼ 25 years. (The importance of the recycling be-
comes manifest when comparing this value to the hy-
pothetical lifetime of the oven, would the collimation
tube be replaced by an aperture of the same surface. In
this case the atom flux through this aperture would be

Ṅhyp
O = (πl2/A)ṄO ∼ 1000ṄO and thus τhyp

oven ∼ 10 days.)

3.2 40K 2D-MOT

3.2.1 Introduction

2D-MOTs have been widely used over the past years to
produce high flux beams of cold atoms [14,22,28–31]. In
some cases they offer advantages over the more common
Zeeman slowers. Even though Zeeman slowers can pro-
duce higher fluxes and are more robust, they have the fol-
lowing disadvantages. They produce unwanted magnetic
fields close to the MOT which need to be compensated
by additional fields, they require a substantial design and
construction effort and are space consuming. The atomic
beam source of Zeeman slowers needs to be operated at
higher temperatures than the vapor cell used as source for
2D-MOTs and the material consumption can be high. In
the case of the rare isotope 40K, this drawback is major:
no pure source of 40K exists and enriched 40K samples
are very expensive (4000 Euros for 100 mg of a 4% en-
riched sample). Therefore a 40K Zeeman slower would be
very costly. A 2D-MOT can be operated at lower pressures
and is thus more economic. In addition it allows separat-
ing 40K from the more abundant 39K, since it produces
an atomic beam which nearly only contains the slowed
atoms (i.e. no thermal background). These considerations
motivated us to implement a 2D-MOT for 40K.

3.2.2 Principle of operation

In a 2D-MOT, an atomic vapor is cooled and confined
transversally and out-coupled longitudinally through an
aperture tube. The role of the aperture tube is two-fold.
First, it isolates the 2D-MOT from the MOT chamber by
differential pumping, and second, it acts as a geometric
velocity filter, since only atoms with a small transverse
velocity pass through. As the transverse cooling is more

Mirror hole

Differential

pumping tube

Pushing

beam

Retarding

beam

Transversal

beams

5 cm

Fig. 7. (Color online) Sketch of the parallelepipedical glass
cell used for the 40K 2D-MOT. A mirror is placed inside the
vacuum chamber to allow an independent control over the lon-
gitudinal beam pair. The mirror has a hole in its center and
creates a dark cylindrical region in the reflected beams.

efficient for atoms which have a small longitudinal veloc-
ity – since those spend more time in the cooling region –
most of the transversally cold atoms are also longitudi-
nally cold. Thus, the filter indirectly filters atoms also ac-
cording to their longitudinal velocity. A 2D-MOT thus
produces an atomic beam which is transversally and lon-
gitudinally cold.

The flux of a 2D-MOT can be improved by adding
a longitudinal molasses cooling to the 2D-MOT config-
uration [28]. Thus, the atoms spend more time in the
transverse cooling region due to the additional longitu-
dinal cooling. The longitudinal beam pair is referred to
as the pushing and the retarding beam, where the push-
ing beam propagates in the direction of the atomic beam
(see Fig. 7). We implemented such a configuration, mak-
ing use of a 45◦-angled mirror inside the vacuum chamber.
This mirror has a hole at its center which creates a cylin-
drical dark region in the reflected retarding beam. In this
region, the atoms are accelerated along the longitudinal
direction by the pushing beam only, which allows an effi-
cient out-coupling of the atomic beam.

3.2.3 Experimental setup

The vacuum chamber of the 2D-MOT consists of standard
CF40 components and a parallelepipedical glass cell (di-
mensions 110 mm × 55 mm × 55 mm), which is depicted
in Figure 7. Its long axis is aligned horizontally, paral-
lel to the differential pumping tube and the direction of
the produced atomic beam. The mirror inside the vacuum
chamber is a polished stainless steel mirror with an ellip-
tical surface (diameters 3.0 cm and 4.2 cm). It is attached
to the differential pumping tube inside the vacuum. It al-
lows to overlap the two longitudinal laser beams whose
powers and orientations can thus be independently con-
trolled externally. The mirror’s material has a reflectivity
of only 50%, but inhibits chemical reaction of potassium
with its surface. The differential pumping tube intercepts
the mirror at its center. The tube has a diameter of 2 mm
over a distance of 1.5 cm and then stepwise widens up
to 10 mm over a total distance of 22 cm. The 40K-MOT
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is located 55 cm away from the 2D-MOT center. Assum-
ing a ballistic flight of the atoms, the geometry of the
differential pumping tube defines an upper limit of the di-
vergence of the atomic beam, which is calculated to be
∼35 mrad. The atomic beam thus is expected to have a
diameter of ∼2 cm when it reaches the 40K-MOT. The
differential pumping tube has a conductance of 0.04 L/s.
The generated pressure ratio between the 2D-MOT and
the 3D-MOT chambers is ∼103.

The potassium source is an isotopically enriched 40K
sample (containing 4 mg of 40K, 89.5 mg of 39K and 6.5 mg
of 41K, from Technical Glass Inc., Aurora, USA), placed
at a distance of 20 cm from the glass cell. It was purchased
in a small ampule which was broken under vacuum inside
a modified stainless steel CF16 bellow. The small vapor
pressure of potassium at room temperature (10−8 mbar)
requires heating of the entire 2D-MOT chamber. We heat
the source region to 100 ◦C, all intermediate parts to 80 ◦C
and the glass cell to 45 ◦C. The gradient in temperature
ensures that the potassium migrates into the cell and re-
mains there. The resulting K-pressure in the glass cell was
measured by absorption of a low intensity probe. We found
2.3 × 10−7 mbar, which implies a partial pressure of the
40K-isotope of 1× 10−8 mbar. In contrast to lithium, the
source lifetime is mainly determined by the pumping speed
of the ion pump. At the measured pressure the lifetime of
the source is estimated to ∼2 years.

Four air-cooled rectangular shaped elongated race-
track coils (dimensions 160 mm × 60 mm) are placed
around the glass cell to produce a 2D quadrupole field
with cylindrical symmetry and a horizontal line of zero
magnetic field. This racetrack coil geometry allows an in-
dependent control of the transverse position of the mag-
netic field zero, and minimizes finite coil fringe effects at
the coil ends. The coils are controlled by four separate
power supplies. For optimized operation, the transverse
magnetic field gradients are ∂xB = ∂yB = 11 G/cm.

Cooling and repumping light for the 2D-MOT is de-
rived from a bichromatic laser beam which is provided
by an optical fiber originating from the laser system. It
has a total power of Pfiber = 450 mW and its frequen-
cies are red detuned by ∼3.5 Γ from the 4S1/2(F =
9/2) → 4P3/2(F

′ = 11/2) cooling and by ∼2.5 Γ from
the 4S1/2(F = 7/2) → 4P3/2(F

′ = 9/2) repumping
transition (see Fig. 2). The beam is separated into four
beams and expanded by spherical and cylindrical tele-
scopes to create the transverse and longitudinal 2D-MOT
beams. The transverse beams have an elliptical cross sec-
tion (1/e2-diameters: 27.5 mm and 55 mm), are circularly
polarized and retro-reflected by right-angled prisms, which
preserve the helicity of the beams. The power losses in the
surface of the glass cell and the prisms weaken the power
of the retro-reflected beams by ∼17% (the loss contribu-
tion of the absorption by the vapor is negligible due to the
high laser power). This power imbalance is compensated
by shifting the position of the magnetic field zero. The
longitudinal beams are linearly polarized and have a cir-
cular cross section (1/e2-diameter: 27.5 mm). 75% of the
fiber output power is used for the transverse beams, 25%

Table 2. Optimized values for the parameters of the 40K 2D-
MOT, yielding a 40K-MOT capture rate of ∼ 1.4×109 atoms/s.
The definition of the symbols is given in the text. The natural
linewidth of 40K is Γ/(2π) = 6.04 MHz.

40K 2D-MOT
Pfiber (mW) 450
∆ωcool (Γ ) –3.5
∆ωrep (Γ ) –2.5
Irep/Icool 1/2
Ipush/Iret 6
∂xB, ∂yB (G/cm) 11
K vapor pressure (mbar) 2.3 × 10−7

for the longitudinal beams. The intensity ratio between
pushing and retarding beam along the atomic beam axis
is ∼6 (for reasons explained below).

3.2.4 Experimental results

For our purpose the essential parameter which character-
izes the performance of the 2D-MOT is the capture rate
of the 40K-MOT. We studied its dependence as a function
of several 2D-MOT parameters, such as: the vapor pres-
sure in the 2D-MOT cell, the total cooling light power,
the detuning of the cooling frequency and the intensity ra-
tios between the repumping and cooling light and between
the pushing and retarding beam. The optimized values of
these parameters are displayed in Table 2, leading to a
40K-MOT capture rate of ∼1.4× 109 atoms/s.

The mean velocity of the atoms in the atomic beam
can be estimated as follows. It is approximately given by
the average time required for the atoms of the 2D-MOT
region to reach the 3D-MOT. This time was measured by
recording the time delay of the onset of the 40K-MOT
loading after switching on the 2D-MOT beams. We mea-
sured a time delay of ∼23 ms and deduce a mean longitu-
dinal velocity of the captured atoms of ∼24 m/s. At this
velocity, the displacement due to gravity of the beam of
atoms from the 40K-MOT center is ∼2.6 mm, which is
negligible compared to the size of the 40K-MOT beams
and the divergence of the atomic beam.

Figure 8a shows the dependence of the 40K-MOT cap-
ture rate on the detuning ∆ωcool of the 2D-MOT cooling
light. The curve has a maximum at ∆ωcool = −3.5 Γ and
a full width at half maximum (FWHM) of 2.7 Γ . The
maximum is the result of two opposing effects: the scat-
tering force of the 2D-MOT beams decreases with increas-
ing detuning whereas the capture velocity increases [24].
The first effect implies a less efficient transverse cooling
whereas the second leads to a more efficient capture of
atoms. An additional effect might influence the shape of
the curve: since the scattering force of the pushing beam
depends on the detuning, also the mean-velocity of the
atomic beam depends on it [28,29,31]. Since we mea-
sure the 40K-MOT capture rate rather than the flux of
the 2D-MOT, the mean-velocity might exceed the cap-
ture velocity of the 40K-MOT. However, as shown in ref-
erences [28,29,31], the mean-velocity of the beam only
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(a) (b)

Fig. 8. (Color online) 40K-MOT capture rate as a function of
(a) the detuning and (b) the total power of the cooling light
used for the 2D-MOT (for a constant intensity ratio between
the cooling and repumping light). The total power refers to the
sum of the powers in the six 2D-MOT beams, where a power
of 470 mW corresponds to a total intensity of ∼47 Isat at the
center of the 2D-MOT, with the saturation intensity Isat given
in Table 3.

Table 3. Characteristic parameters of the dual-species
6Li-40K-MOT.

40K-MOT 6Li-MOT
Pfiber (mW) 220 110
∆ωcool (Γ ) –3 –5
∆ωrep (Γ ) –5 –3
Γ/(2π) (MHz) 6.04 5.87
Icool per beam (Isat) 13 4

Isat (mW/cm2) 1.75 2.54
Irep/Icool 1/20 1/5
∂zB (G/cm) 8 8
Nsingle (×109) 8.9 5.4
Ndual (×109) 8.0 5.2

nc (×1010 at./cm3) 3 2
T (µK) 290 1400

slightly changes with the detuning, such that we expect
this effect to only weakly influence the curve. From the
shape of the curve we conclude that the 40K-MOT cap-
ture rate is not very sensitive to changes of ∆ωcool.

The dependence of the 40K-MOT capture rate on the
total power of the 2D-MOT cooling light is depicted in
Figure 8b. The total power refers to the sum of the pow-
ers in the six 2D-MOT beams. According to the chosen
beam sizes, the maximum power of 470 mW corresponds
to a total intensity of ∼47 Isat (for zero detuning) at the
center of the 2D-MOT, with the saturation intensity Isat
given in Table 3. The curve almost linearly increases with
light power without a clear indication of saturation. The
increase is due to two effects. First, the 2D-MOT capture
velocity increases with laser power due to the power broad-
ening of the atomic spectral lines. Second, the scattering
force increases, resulting in a steeper transverse confine-
ment, which facilitates the injection of the atoms into the
differential pumping tube. At some point, the curve is ex-
pected to saturate, since the temperature of the cooled
atoms and light-induced collisions between them increase
with light power. These effects, however, are less limiting
in a 2D-MOT as compared to a 3D-MOT, since the atomic
density in a 2D-MOT is typically three orders of magni-
tude smaller due to the absence of a three-dimensional

(a) (b)

Fig. 9. (Color online) 40K-MOT capture rate as a function
of the intensity ratio between (a) repumping and cooling light
of the 2D-MOT for two different repumping detunings ∆ωrep

and a constant total cooling light power of 300 mW (which
corresponds to a total intensity of ∼30 Isat) and (b) the pushing
and the retarding beams of the 2D-MOT. The intensities of the
pushing and retarding beams refer to the intensities along the
atomic beam axis.

confinement. Thus, in a 2D-MOT a high light power would
be required to reach the regime of saturation.

Figure 9a shows the dependence of the 40K-MOT cap-
ture rate on the intensity ratio between the cooling and
repumping light of the 2D-MOT for the two different re-

pumping detunings ∆ω
(1)
rep = −2.5 Γ and ∆ω

(2)
rep = −6.5 Γ

and for a constant total cooling light power of 300 mW.
The graph shows that for both frequencies the 40K-MOT
capture rate increases with increasing repumping intensity
and that it saturates at high intensities. It also shows that
the maximum capture rate is bigger for the smaller detun-
ing. The intensity dependence of the curves results from
the likewise intensity dependence of the transition prob-
ability for an atomic transition. The maximum capture
rate is bigger for the smaller detuning, since this detuning
contributes more efficiently to the cooling process. In our
experiment, a fixed total laser power is available for both
repumping and cooling light. It is distributed such that
the resulting capture rate is maximized. It was found to
be maximum for an intensity ratio of Irep/Icool ∼ 1/2. For

that ratio the detuning ∆ω
(2)
rep = −2.5 Γ also yields the

maximum capture rate.

The dependence of the 40K-MOT capture rate on the
intensity ratio between pushing and retarding beam is
depicted in Figure 9b. The curve has a maximum at
Ipush/Iretard ∼ 6. It is zero for values of Ipush/Iretard be-
tween 0 and 3, then increases until the maximum and falls
off again with a smaller slope. From the curve we can ex-
tract information about the importance of the reflectivity
of the mirror inside the vacuum and of the size of its hole.
For a given intensity ratio Ipush/Iretard along the (horizon-
tal) direction of the atomic beam, the mirror’s reflectiv-
ity determines the intensity ratio I∗push/I

∗

retard along the
vertical direction above the reflecting surface of the mir-
ror (see Fig. 7). If I∗push/I

∗

retard differs from 1, the atomic
beam can experience a vertical deflection in this region.
The hole inside the mirror creates a dark cylinder in the
pushing beam after its reflection, so that in the region
above the hole only light from the retarding beam has a
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vertical direction, which can also give rise to a vertical
deflection of the atomic beam.

In the following we estimate the deflection of the
atomic beam, which is induced by the unbalanced retard-
ing beam in the small region above the hole. Assuming the
atomic beam to have reached its final longitudinal velocity
of 24 m/s when entering into the hole, the atoms spend
85 µs in the region above the hole. Neglecting Doppler
shifts and the presence of the pushing beam along the
horizontal direction (no transverse beams are present in
the region above the mirror), the atoms will scatter Nph =
Rsc × (85 µs) ∼ 75 photons, with Rsc being the scatter-
ing rate [24] for the given detuning ∆ωcool = −3.5 Γ and
peak intensity I∗retard = 2.5Isat. The recoil velocity of 40K
being given by vrec = 0.013 m/s, each atom will accumu-
late a transverse velocity of vdev ∼ 1 m/s. This leads to a
downwards deflection of the atomic beam by an angle of
∼40 mrad, which is more than a factor two bigger than
the maximum deflection angle allowed by the differential
pumping tubes. The atoms will thus not reach the 40K-
MOT.

This deflection needs to be anticipated by an intensity
imbalance I∗push > I∗retard in the region above the reflecting
surface of the mirror, as that results in an upwards deflec-
tion of the atomic beam. For the given mirror reflectivity
of 50%, I∗push > I∗retard is equivalent to Ipush/Iretard > 4,
which corresponds to the experimental observation de-
picted in Figure 9b. The deflection of the atomic beam in
the region above the hole could be avoided using a beam
block which creates a dark cylinder in the region above
the mirror which overlaps with the one in the pushing
beam. In this configuration the position of the curve opti-
mum in Figure 9b would change from Ipush/Iretard = 6 to
Ipush/Iretard = 4. For mirrors with a reflectivity close to
100% the position of the curve optimum could thus even
be changed to Ipush/Iretard = 1, for which the longitudi-
nal optical molasses cooling would be most efficient lead-
ing to a maximum 2D-MOT flux. Due to the polarization
gradients generated by the transverse 2D-MOT beams the
longitudinal optical molasses cooling is, however, still very
efficient even in case of an intensity imbalance of 6 along
the atomic beam axis.

We now study the dependence of the 40K-MOT cap-
ture rate on the vapor pressure of potassium (all isotopes)
in the 2D-MOT cell, which is shown in Figure 10 (circles)
together with a fit to a theoretical model (solid curve). The
vapor pressure was measured by recording the absorption
profile of a low intensity probe. The curve in Figure 10 has
a maximum at a vapor pressure of 2.3×10−7 mbar. In the
absence of collisions, the curve should increase linearly
with pressure, which is indeed observed for low pressures.
For high pressures, collisions become important and limit
the 40K-MOT capture rate. The dependence of the 40K-
MOT capture rate L on the pressure p can be described
by the function [31]

L = L0 exp

[

−

(

Γcoll + β

∫

n2(r)d3r

)

〈tcool〉

]

, (4)

Fig. 10. (Color online) 40K-MOT capture rate as a function
of the potassium vapor pressure (all isotopes). Circles: experi-
mental data, solid curve: fit of the experimental data by equa-
tion (5). Due to the low abundance of the 40K-isotope in our
potassium sample (4%), the 40K-MOT capture rate is limited
by collisions between the 40K-atoms and the other K-isotopes
in the 2D-MOT cell. At room temperature the potassium vapor
pressure is 1× 10−8 mbar.

where L0 denotes the hypothetical capture rate of the
40K-MOT in the absence of collisions in the 2D-MOT
chamber, Γcoll denotes the collisional loss rate due to col-
lisions in the 2D-MOT chamber between the cooled atoms
and the background atoms, 〈tcool〉 is the average time
which the atoms spend inside the 2D-MOT cooling re-
gion, n(r) is the position-dependent atomic density in the
atomic beam, and β is the two-body loss rate coefficient
which describes the cold collisions between the 40K atoms
in the atomic beam. L0 is proportional to the atomic den-
sity nK in the vapor cell, and Γcoll = nKσeff 〈v〉, where σeff

is the effective collision cross section, and 〈v〉 ∼ 400 m/s
the mean velocity of the thermal potassium atoms. The
term describing the cold collisions is approximately pro-
portional to n2

K due to the small density obtained in the
2D-MOT. For the investigated pressure range, the ratio
p/nK only changes slightly with temperature and can thus
be considered constant. Therefore equation (4) can be
written as

L(p) = κ1p exp
(

−κ2p− κ3p
2
)

, (5)

with the constants κ1, κ2, κ3, which are obtained from the
fit shown in Figure 10. At the curve’s maximum, the fit
yields κ2p/κ3p

2 = 8, showing that the collisions which
limit the 40K-MOT capture rate are mainly the collisions
with the hot background atoms, consisting mostly of 39K.

The background atoms are predominantly potassium
atoms. These can collide either with the excited or the
non-excited 40K-atoms of the atomic beam. Depending
on the isotopes of the colliding partners, these collisions
have different cross sections. Collisions between an ex-
cited and a non-excited atom of the same isotope usually
have a very large cross section due to the strong resonant
dipole-dipole interaction, described by a C3/R

3-potential.
In 2D-MOT systems of other atomic species these col-
lisions have been identified as the ones which limit the
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flux of the 2D-MOT [28,29,31]. In the case of 40K, the
scattering rate for these collisions is reduced by the small
abundance of 40K in the vapor. Therefore other collisions
might limit the flux. In order to identify the flux-limiting
collisions we calculate the cross section of different possi-
ble collisions and deduce the corresponding collision rates.
The cross sections can be calculated using the approach
described in reference [32] for losses out of a cold atom
cloud. The cross section for collisions involving an excited
and a non-excited 40K-atom is given by [32]

σ40,40∗

eff = π

(

4C3

mvesc 〈v〉

)2/3

, (6)

where m is the mass of the 40K-atom, vesc ∼ 1 m/s is
the estimated transverse velocity kick needed to make an
atom miss the 40K-MOT, and C3 = 5.4 × 10−48 J m3

is the dispersion coefficient for the resonant dipole-dipole
interaction [33]. The cross section for collisions involving
a non-excited 40K-atom and a non-excited K-atom of the
different isotopes is given by [32]

σ40,39
eff ∼ σ40,41

eff ∼ σ40,40
eff = π

(

15πC6

8mvesc 〈v〉

)1/3

, (7)

where C6 = 3.7 × 10−76 J m6 is the dispersion coeffi-
cient for the underlying van der Waals interaction [33].
Substituting the experimental parameters, one obtains:

σ40,40∗

eff = 2.7 × 10−16 m2 and σ40,39
eff ∼ σ40,41

eff ∼ σ40,40
eff =

1.3 × 10−17 m2. The resulting collision rates are propor-
tional to the atomic densities n39, n40 and n41 of the
corresponding isotopes in the vapor and the relative num-
ber of excited 40K-atoms in the atomic beam, which was
estimated to P ∼ 0.1 for the given beam detunings and
intensities. One obtains

Γ 40,40∗

coll = Pn40σ
40,40∗

eff 〈v〉 = 4.4× 10−16nK, (8)

Γ 40,39
coll = (1− P )n39σ

40,39
eff 〈v〉 = 4.4× 10−15nK, (9)

Γ 40,40
coll = (1− P )n40σ

40,40
eff 〈v〉 = 2.0× 10−16nK, (10)

Γ 40,41
coll = (1− P )n41σ

40,41
eff 〈v〉 = 3.0× 10−16nK (11)

(nK denoting the atomic density of potassium in the vapor

cell). The dominant collision rate here is Γ 40,39
coll (Eq. (9))

for collisions involving a non-excited 40K-atom and a non-
excited 39K-atom from the background. The largest col-

lision rate for collisions between two 40K-atoms, Γ 40,40∗

coll ,

is by a factor of 10 smaller than Γ 40,39
coll . Therefore, colli-

sions involving two 40K-atoms are not the collisions which
limit the flux of the 2D-MOT. This is in contrast to
2D-MOT systems of other species. From the difference

between Γ 40,40∗

coll and Γ 40,39
coll we conclude that the flux of

the 2D-MOT for 40K could still be improved by about
a factor of 10 by using a potassium sample of a higher
isotopic enrichment.

4 6Li-40K dual-species MOT

4.1 Introduction

Previously, several groups have studied samples of two
atomic species in a magneto-optical trap [13–15,34–37].
Here we report on the implementation and performance
of our 6Li-40K dual-species MOT and on the study of col-
lisions between atoms of the different species. After a de-
scription of the experimental setup, we start with a char-
acterization of the single-species MOTs and then focus on
the collisions in the dual-species MOT.

4.2 Principle of operation

In a magneto-optical trap six counter-propagating red-
detuned overlapping laser beams cool and magneto-
optically confine atoms in a magnetic quadrupole field
around its zero [24]. MOTs for alkali-atoms require laser
light of two frequencies, namely the cooling and the re-
pumping frequency. The latter ensures that the atoms stay
in the cycling transition used for cooling. Typically the re-
pumping light has a much lower power than the cooling
light as the atoms principally occupy the states belong-
ing to the cooling transition. For 6Li, however, the power
of the repumping light needs to be relatively high, since
6Li has a very small hyperfine structure in the excited
state manifold (of the order of the linewidth). When laser
cooled, 6Li-atoms thus very likely quit the cooling transi-
tion. Therefore, the repumping light needs to contribute
to the cooling process. As a consequence it needs to be
present in all six directions with the same polarization
as the cooling light. Therefore, we use bichromatic MOT-
beams containing both cooling and repumping frequen-
cies. We adapt the same strategy also for 40K.

4.3 Experimental setup

Light for the dual-species MOT is derived from two bichro-
matic laser beams, containing each a cooling and a re-
pumping frequency, which are provided by two separate
optical fibers originating from the respective laser systems.
The beams are superimposed using a dichroic mirror and
then expanded by a telescope to a 1/e2-diameter of 22 mm.
All subsequent beam reflections are realized by two-inch
sized broadband mirrors (Thorlabs, ref. BB2-E02-10). The
beam is separated by three two-inch sized broadband po-
larization cubes (Lambda Optics, ref. BPB-50.8SF2-550)
into four arms that form a partially retro-reflected MOT,
in which only the vertical beam pair is composed of inde-
pendent counter-propagating beams. Each retro-reflected
MOT beam is focused with a lens of focal length 10 cm,
placed at a distance of ∼11 cm in front of the retro-
reflecting mirror, in order to increase the intensity and
therefore compensate for the losses in the optics and the
light absorption by the trapped atoms. The distribution
of the light power over the MOT beams is independently
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adjusted for the two wavelengths using a pair of custom-
made wave plates, placed in front of each broad-band split-
ting cube. The wave plate pair consists of a λ/2 plate of
order 4 for the wavelength 767 nm and a λ/2 plate of order
4 for the wavelength 671 nm. To a very good approxima-
tion each of these wave plates can turn the polarization
direction for one wavelength without affecting the polar-
ization for the other one (since it is 4.5 × 767 ≈ 5 × 671
and 4.5 × 671 ≈ 4 × 767). The circular polarization of
the MOT beams is produced by first order λ/4 plates for
767 nm, which work sufficiently well also for 671 nm. All
four frequency components thus have the same circular po-
larizations in each beam. A mechanical shutter is placed
in the focus of the telescope allowing to produce total ex-
tinction of the MOT light in addition to the partial and
fast switching by the AOMs.

The bichromatic beam for the 40K-MOT has a total
power of Pfiber = 220 mW and its frequencies are red-
detuned by ∼3 Γ from the 4S1/2(F = 9/2)→ 4P3/2(F

′ =
11/2) cooling and by ∼5 Γ from the 4S1/2(F = 7/2) →
4P3/2(F

′ = 9/2) repumping transition (see Fig. 2). The
intensity of the cooling light is ∼20 times bigger than
that of the repumping light. The bichromatic beam for
the 6Li-MOT has a total power of Pfiber = 110 mW
and its frequencies are red-detuned by ∼5 Γ from the
2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) cooling and by ∼3 Γ
from the 2S1/2(F = 1/2) → 2P3/2(F

′ = 3/2) repumping
transition (Fig. 2). The power of the cooling light is ∼5
times bigger than that of the repumping light.

The magnetic field for the dual-species MOT is cre-
ated by a pair of coils in anti-Helmholtz configuration.
The magnetic field gradient along the vertically directed
symmetry axis is ∂zB = 8 G/cm. This gradient yields an
optimum atom number for the 40K-MOT.

The atoms in the dual-species MOT are probed by ab-
sorption imaging. In order to obtain a two-dimensional
density profile of the atom cloud, three pictures are taken
and recorded by a CCD-camera (PCO imaging, ref. Pix-
elfly qe). The first picture is taken with the imaging beam
tuned near resonance and thus records the shadow cast by
the atom cloud on the CCD-chip of the camera. The sec-
ond picture is taken with the imaging beam tuned far off
resonance (by −10 Γ ) and records the intensity profile of
the imaging beam. The third picture is taken in absence of
the imaging beam and records the background signal. The
change of frequency of the imaging beam allows to take
the first two pictures with a short time delay (2 ms), while
keeping the imaging beam at the same frequency would
require to wait for the atom cloud to disappear before the
second picture could be recorded. Thus, the intensity fluc-
tuations of the imaging beam during the recording process
are minimized and both pictures can be taken with the
same intensity.

Each atomic species requires its own imaging beam,
which is provided by a separate optical fiber originating
from the respective laser system (see Fig. 3). The two
imaging beams are superimposed using a dichroic mir-
ror and expanded by a telescope to a 1/e2-diameter of
27.5 mm. The imaging beams have low intensity (Iimg ∼

0.01Isat in the beam center), are circularly polarized and
pass through the MOT along the horizontal direction, per-
pendicular to the axis of the quadrupole magnetic field
of the MOT. No bias magnetic field is applied when ab-
sorption pictures are taken. The best atom number esti-
mate from the measured absorption pictures is thus given
by using an averaged squared Clebsch-Gordan coefficient,
which is C2 = 0.5 for 6Li and C2 = 0.4 for 40K. Both
beams are red detuned by 2 Γ from the 4S1/2(F = 9/2)→
4P3/2(F

′ = 11/2) and the 2S1/2(F = 3/2) → 2P3/2(F
′ =

5/2) cooling transitions of 40K and 6Li, respectively (see
Fig. 2), so as to reduce saturation effects. For the chosen
length of the imaging pulses (100 µs) no repumping is re-
quired during the imaging process (we verified for 6Li that
even in the case of a resonant imaging beam, the presence
of a repumping beam would yield an increase of the de-
tected atom number of only 8%, which would be even less
for 40K). In order to image the total number of atoms in
the MOTs the atom clouds are exposed for 500 µs to only
the repumping light before the image is taken in order to
optically pump all atoms to the hyperfine ground state
which is imaged. The overall uncertainty of the absolute
atom number determination is estimated to be 50%.

4.4 Experimental results

In single-species operation we characterized the MOTs
using the parameters for the optimized dual-species op-
eration. We determined the atom numbers, the atomic
densities in the cloud center, the loading times and the
temperatures. Furthermore, we studied for each atomic
species the dependence of the steady-state MOT atom
number on the following parameters: the power and de-
tuning of the cooling light and the intensity ratio between
the repumping and cooling light. In dual-species opera-
tion, we studied the dependence of heteronuclear light-
induced cold collisions on the laser power used for the
MOT-beams. The optimum parameters, which lead to
atom numbers of Nsingle ∼ 8.9 × 109 in the 40K-MOT
and Nsingle ∼ 5.4 × 109 in the 6Li-MOT, are displayed
in Table 3 together with the characteristics of the MOTs
(in dual-species operation, the atom numbers only slightly
change due to the additional interspecies collisions to
Ndual ∼ 8.0×109 in the 40K-MOT and Ndual ∼ 5.2×109 in
the 6Li-MOT). The (1− 1/e)-loading times of the MOTs
are ∼5 s for 40K and ∼6 s for 6Li.

Magneto-optical traps with large atom numbers have
a high optical density and are optically dense for weak
resonant laser beams. Therefore, when determining the
atom number via absorption imaging, the frequency of the
imaging beam has to be detuned, so not to “black out”
the image.

Figures 11a, 11b depict the detected atom number of
the two MOTs (circles) as a function of the detuning of
the imaging beam. The detected atom number was de-
rived from the measured optical density assuming the
imaging beam to be resonant. The curves are expected
to have the shape of a Lorentzian with the peak centered
around zero detuning. The experimental data shown in
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Fig. 11. (Color online) (a), (b) Detected atom number in the
MOTs as a function of the detuning of the imaging beams.
Circles correspond to the experimental data and solid curves
to Lorentzian fits of the curve wings with an imposed width,
which was determined by another measurement. (c), (d) Ab-
sorption images of the MOTs and the doubly-integrated opti-
cal density profile n, recorded with a resonant imaging beam.
The graphs (a, c) relate to the 40K-MOT and (b), (d) to the
6Li-MOT. The flat top of n in the graphs (c), (d) and the sat-
uration of the detected atom number for small magnitudes of
the detuning in the graphs (a), (b) demonstrate that the MOTs
are optically dense for the imaging beam when the detuning
is small. Their (extrapolated) central optical densities for a
resonant imaging beam are ∼20 for 40K and ∼15 for 6Li.

Figures 11a, 11b clearly deviate from a Lorentzian behav-
ior – they saturate for small magnitudes of the detuning.
This deviation demonstrates that the MOTs are optically
dense for small detunings. A correct estimate of the atom
number is obtained from an extrapolation of the experi-
mental data to zero detuning based on a Lorentzian fit of
the curve wings (solid curves). A reliable extrapolation,
however, requires imposing the width of the Lorentzian
fit. In order to determine this width, an additional exper-
iment was done (not shown): the data in Figures 11a, 11b
were again recorded and fitted by a Lorentzian for a MOT
with a small atom number and a low optical density (ob-
tained by a short loading of 250 ms). The widths found
by this additional measurement were 1.05 Γ for 40K and
1.5 Γ for 6Li. For 40K this width corresponds to the natu-
ral linewidth of the exited state addressed by the imaging
transition. For 6Li the width is larger than the natural
linewidth, since the small excited hyperfine structure is
unresolved and thus its width (∼0.5 Γ ) and the natu-
ral linewidth add up (this line broadening does not oc-
cur when a bias magnetic field is applied and a closed

transition is used for imaging). The peak values of the
Lorentzian fits in Figures 11a, 11b finally yield the atom
numbers in the MOTs, given in Table 3.

Figures 11c, 11d show images of the MOTs and their
doubly-integrated optical density profiles n for the case of
a resonant imaging beam. The flat top of n as a function of
position shows that the MOTs are optically dense. Their
central optical densities for the resonant imaging beam
are determined to be ∼20 for 40K and ∼15 for 6Li by the
extrapolation technique described above. In addition, the
density profiles in Figures 11c, 11d show that the MOTs
have spatial extensions of the order of 1 cm.

The atomic density in the MOT center is extracted
from the recorded two-dimensional density profile as fol-
lows. The recorded profile is proportional to the atomic
density n(x, y, z) integrated along the imaging beam di-
rection z: g(x, y) ∝

∫

n(x, y, z)dz. When assuming that
the MOT has cylindrical symmetry (with the symmetry
axis along the x-direction), the local atomic density nc at
the MOT center is given by the maximum of the inverse
Abel transform of g(xc, y), where xc is the x-coordinate
of the MOT center

nc = max
r

(

−
1

π

∫

∞

r

(

∂g(xc, y)

∂y

)

dy
√

y2 − r2

)

, (12)

with r =
√

y2 + z2 denoting the distance to the MOT
center [38]. Since the derivative ∂g/∂y is very sensitive to
noise, the density profile g is smoothened before its deriva-
tive is calculated. We obtain nK

c ∼ 3×1010 atoms/cm3 and
nLi

c ∼ 2× 1010 atoms/cm3, respectively.
The temperature of the MOTs in single-species opera-

tion was determined by the time-of-flight method [24]. The
40K-MOT has a temperature of 290 µK and the 6Li-MOT
of 1.4 mK. Both temperatures are higher than the Doppler
cooling limit, because of the high intensity in the MOT
beams. In addition, for 6Li, the unresolved excited hy-
perfine structure (see Fig. 2) inhibits sub-Doppler cooling
effects. The same temperatures are found in dual-species
operation. The measured temperatures and atomic densi-
ties yield the peak phase space densities DK = nK

c Λ
3
K ∼

1.2×10−7 and DLi = nLi
c Λ

3
Li ∼ 1.3×10−7 with the thermal

de Broglie wavelength Λ =
√

2π~2/(mkBT ), respectively.
The dependence of the MOT atom number on the de-

tuning of the cooling light is depicted in Figures 12a, 12b.
The atom number is maximum at ∆ωK

cool = −3 Γ for 40K
and at ∆ωLi

cool = −5 Γ for 6Li, and has a FWHM of 2.3 Γ
and 4.1 Γ , respectively.

Figures 12c, 12d show the dependence of the MOT
atom number on the power of the cooling light per MOT
beam. In the figures, a power of 10 mW corresponds to
an on-resonance peak intensity of ∼3 Isat (Fig. 12c) and
∼2 Isat (Fig. 12d) in each of the six MOT beams. The atom
number increases with increasing light power and satu-
rates for higher powers. The saturation is due to several
effects. First, the absorption probability for the cooling
light saturates for high intensities. Second, the repulsive
forces between the atoms due to rescattered photons and
the temperature of the cloud increase with increasing light
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Fig. 12. (Color online) MOT atom number as a function of
(a), (b) the detuning and (c), (d) the power of the cooling light
per MOT beam for a constant intensity ratio between the cool-
ing and repumping light. The graphs (a), (c) relate to the 40K-
MOT and (b), (d) to the 6Li-MOT. For 40K a power of 45 mW
corresponds to an intensity of 13 Isat, for 6Li a power of 20 mW
corresponds to an intensity of 4 Isat, with the respective satu-
ration intensities Isat given in Table 3.

power [32]. Finally the scattering rate for light-induced
cold collisions increases with increasing light power.

Figure 13 shows the dependence of the 40K-MOT atom
number on the intensity ratio Irep/Icool between repump-
ing and cooling light for three different repumping detun-

ings ∆ω
(1)
rep = −3 Γ , ∆ω

(2)
rep = −5 Γ and ∆ω

(3)
rep = −7 Γ

and a constant cooling light power of 18 mW per MOT
beam. The curves have a maximum at different ratios
Irep/Icool, the position of the maxima lying at higher ra-
tios for lower detunings. Furthermore, the maxima have
different values for the three curves. The maximum is
biggest for the detuning ∆ω

(2)
rep = −5 Γ . The shape of

the curves can be understood as follows. Each curve in-
creases between Irep/Icool = 0 and the position of the
maximum, because the transition probability of the re-
pumping transition increases with increasing repumping
intensity. Thus the atoms are more efficiently cooled by
the cooling light, as they are more efficiently repumped
into the cycling transition. However, when the intensity of
the repumping light becomes too large, the curve decreases
again. Then, due to the strong repumping, the atoms are
exposed to the more intense near-resonant cooling light,
which causes light-induced cold collisions, leading to trap
loss. At the maximum, the repumping is sufficiently strong
to allow for an efficient cooling, and it is sufficiently weak
to preserve the atoms from cold collisions induced by the
strong cooling light. The value of the curve maximum is

biggest for the detuning ∆ω
(2)
rep = −5 Γ . It is situated at

Irep/Icool ∼ 1/20, for which, as one can see below, only

Fig. 13. (Color online) 40K-MOT atom number as a func-
tion of the intensity ratio between repumping and cooling light
for three different repumping detunings ∆ωrep and a constant
cooling light power of 18 mW per MOT beam (which corre-
sponds to an intensity of 6 Isat).

∼20% of the 40K-MOT atoms occupy the cooling cycle
states F = 9/2 or F ′ = 11/2 (see Fig. 14), the others
occupying the “dark” hyperfine ground state F = 7/2.

For very small intensity ratios Irep/Icool ≤ 0.01 the
atom number in the 40K-MOT is larger for higher re-
pumping detunings (Fig. 13). This behavior might be a
consequence of the fact that the 40K-MOT is loaded from
a slow atomic beam. The beam atoms, which have a neg-
ative Doppler shift of more than 5 Γ with respect to the
counter-propagating MOT beams, might absorb the re-
pumping light more likely when it has a higher detuning.

Figure 14 shows the fraction of atoms in the 40K-MOT
(circles) which populate the states F = 9/2 or F ′ = 11/2
(i.e. the cooling cycle states, see Fig. 2) as a function of
the intensity ratio Irep/Icool between repumping and cool-
ing light. In the experiment, the cooling light power was
fixed to 18 mW per MOT beam, and the repumping de-
tuning was ∆ωrep = −5 Γ . The graph was recorded as
follows. The absolute population of the states F = 9/2
and F ′ = 11/2 was measured by simultaneously switching
off both the repumping and cooling light of the 40K-MOT
600 µs before taking the image (with the imaging beam
being near-resonant with the F = 9/2 → F ′ = 11/2-
transition). During the 600 µs time delay, all excited
atoms relax to one of the ground states. For the used de-
tunings and intensities of the MOT-beams ∼90% of the
excited atoms occupy the state F ′ = 11/2 and thus relax
to the ground state F = 9/2, which is imaged. Therefore,
the image approximately yields the sum of the populations
of the states F = 9/2 and F ′ = 11/2. The total popula-
tion of all states (i.e. the total number of trapped atoms)
was measured as described in the previous paragraph.

The curve in Figure 14 is increasing with increasing ra-
tios Irep/Icool and it saturates for high ratios. For the ratio
Irep/Icool = 1/5 about 60% of the 40K-MOT atoms occupy
the cooling cycle states. For this ratio the fluorescence
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Fig. 14. (Color online) Circles: measured fraction of atoms in
the 40K-MOT populating the states F = 9/2 or F ′ = 11/2
(cooling cycle states) as a function of the intensity ratio be-
tween repumping and cooling light for the repumping detuning
∆ωrep = −5 Γ and a constant cooling light power of 18 mW
per MOT beam (which corresponds to an intensity of 6 Isat).
For the ratio which maximizes the total atom number in the
40K-MOT, Irep/Icool ∼ 1/20, only 20% of the trapped atoms
occupy the cooling cycle states. Solid curve: a fit based on
Einstein’s rate equations.

emitted by the 40K-MOT is found to be maximum. For
the ratio Irep/Icool = 1/20, which is used in the experi-
ment, only ∼20% of the atoms occupy the cooling cycle
states. Atom losses due to light-induced collisions are thus
minimized.

The solid curve in Figure 14 shows a fit of the experi-
mental data, based on a simple model, assuming 40K to be
a four-level atom (with the states F = 9/2, F = 7/2, F ′ =
11/2 and F ′ = 9/2). Einstein’s rate equations yield that
the curve obeys the law Pccs = 1/(1 + a+ b/(Irep/Icool)),
with the fitting parameters a = −0.11 and b = 0.17, which
depend on the transition probabilities and the used inten-
sities and detunings.

Figure 15 shows the dependence of the 6Li-MOT atom
number on the intensity ratio Irep/Icool between repump-
ing and cooling light for the repumping detuning ∆ωrep =
−3 Γ and a constant cooling light power of 11 mW per
MOT beam. In contrast to Figure 13, the curve does
not have a maximum but rather increases with increas-
ing Irep/Icool and saturates. This behavior is a result of
the important contribution of the repumping light to the
cooling process, particular to 6Li, as it has an unresolved
excited state hyperfine structure.

In a dual-species MOT, inelastic collisions between
atoms of the two different species can occur and represent
important loss mechanisms. Previous studies have shown
that the principal loss mechanisms for heteronuclear colli-
sions in dual-species MOTs involve one ground-state and
one excited atom of different species [35,36]. Such atom
pairs can undergo radiative escape or fine-structure chang-
ing collisions [39]. Both these loss processes require the

Fig. 15. (Color online) 6Li-MOT atom number as a function
of the intensity ratio between repumping and cooling light for a
constant cooling light power of 11 mW per MOT beam (which
corresponds to an intensity of 2 Isat). In comparison to 40K
(Fig. 13), the optimum atom number requires a larger inten-
sity in the repumping light, which is a consequence of the un-
resolved excited hyperfine structure of 6Li.

two atoms to approach each other sufficiently close such
that a large enough interaction energy is gained to make
the atoms leave the trap. The long-range behavior of the
scattering potentials determines if the atoms can approach
each other sufficiently. For LiK, the scattering potentials
for a singly-excited heteronuclear atom pair are all at-
tractive for the case where the K atom is excited and all
repulsive for the case where the Li atom is excited [40]. As
a consequence, a ground-state K atom and an excited Li
atom repel each other and are prevented from undergoing
inelastic collisions (optical shielding). Inelastic collisions
involving singly-excited heteronuclear atom pairs thus al-
ways contain an excited K atom. In order to minimize
the rate of heteronuclear collisions in the LiK-MOT, the
density of excited K atoms must therefore be reduced.
Furthermore, the atomic density in the trap as well as the
relative speed of the colliding atoms, i.e. the temperature
of the cloud, need to be minimized.

In our 6Li-40K dual-species MOT the following strat-
egy is applied in order to minimize inelastic heteronu-
clear collisions. First the use of very low magnetic field
gradients (8 G/cm), which decreases the atomic densities
(nK

c ∼ 3×1010 atoms/cm3 and nLi
c ∼ 2×1010 atoms/cm3).

Second, low intensities in the repumping light for both,
6Li and 40K, are used in order to decrease the number
of excited atoms. Decreasing the number of excited 6Li
atoms here a priori serves to decrease the temperature of
the 6Li-cloud. Since that is much larger than the temper-
ature of the 40K-cloud, the relative speed of two colliding
atoms and thus the collision rate can be efficiently de-
creased by minimizing the temperature of the 6Li-cloud.
Finally a small mutual influence of the MOTs is obtained:
the atom numbers in the MOTs decrease by ∼4% in the
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Fig. 16. (Color online) (a) Evolution of the atom number in
the 40K-MOT in the absence (t < 100 s) and presence (t >
100 s) of the 6Li-MOT for an increased magnetic field gradient
of 16 G/cm. (b) Trap loss coefficient βKLi for heteronuclear
collisions as a function of the relative excited state population
of the trapped 6Li atoms.

6Li-MOT and ∼10% in the 40K-MOT due to the presence
of the other species.

The importance of decreasing the magnetic field gradi-
ents in order to minimize the heteronuclear collision rate
in the dual-species MOT is demonstrated in Figure 16a,
which depicts the effect of the 6Li-MOT on the 40K-MOT
atom number when a two-times larger magnetic field gra-
dient (16 G/cm) is used. At this gradient the atomic den-
sity in the 6Li-MOT is by a factor of 4 larger than at
the gradient used for the optimized MOT. In the experi-
ment, the 40K-MOT was intentionally reduced in size (by
decreasing the 2D-MOT flux) to ensure a better inclo-
sure in the 6Li-MOT. The curve shows that ∼65% of the
40K-MOT atoms leave the trap due to the enhanced het-
eronuclear collisions. Using a low magnetic field gradient
is therefore helping significantly to decrease the heteronu-
clear collisions.

In the following we determine the trap loss coefficients
for the (optimized) dual-species MOT in order to quan-
tify the heteronuclear collisions. The rate equation for the
atom number in a dual-species MOT (with species A and
B) reads [35]

dNA

dt
= LA − γNA − βAA

∫

n2
AdV − βAB

∫

nAnBdV, (13)

where LA is the loading rate, γ the trap loss rate due
to collisions with background gas atoms and nA, nB the
local atomic densities. βAA and βAB denote the cold col-
lision trap loss coefficients for homo- and heteronuclear
collisions, respectively. LA and γ are determined from the
loading and decay curves of the single-species MOTs. The
obtained values for LA are given in Table 3 and γ is found
to be 1/7.5 s−1. The homonuclear trap loss coefficients
βAA are determined from the steady state atom numbers
in single-species operation using the measured density pro-
files. For the experimental conditions indicated in Table 3,
we obtain

βLiLi = (8± 4)× 10−12 cm3 s−1, (14)

βKK = (6± 3)× 10−13 cm3 s−1. (15)

The determination of the heteronuclear trap loss coeffi-
cients βAB for the optimized dual-species configuration
would require the knowledge of the mutual overlap of
the MOTs, which is difficult to estimate when absorption
images are taken only along one direction. We therefore
choose a configuration, which makes the determination
of βAB less dependent on assumptions about the mutual
overlap (but which does not change the value of βAB). We
reduce the atom flux of species A, in order to decrease the
spatial extension of the trapped cloud of species A and to
place it in the center of the cloud of species B. A video
camera which records the fluorescence of the MOTs from
a different direction than that of the absorption imaging
verifies that this configuration is indeed achieved. Then,
in equation (13) it is

∫

nAnBdV ∼ nB
c NA. Comparing the

steady-state atom numbers for the different configurations
then yields

βLiK = (1± 0.5)× 10−12 cm3 s−1, (16)

βKLi = (3± 1.5)× 10−12 cm3 s−1, (17)

for the experimental conditions indicated in Table 3. Com-
paring all four trap loss coefficients, the dominant is βLiLi

(Eq. (14)) for light-induced homonuclear 6Li-6Li colli-
sions. This is a consequence of the large temperature of
the 6Li-MOT and the unresolved hyperfine structure of
6Li which prohibits the creation of a dark MOT, lead-
ing to a large excited state population. The much smaller
homonuclear trap loss coefficient βKK for 40K (Eq. (15))
is consistent with Figure 13 which shows that, for 40K,
small repumping intensities are favorable. The heteronu-
clear trap loss coefficients βLiK, βKLi (Eqs. (16) and (17))
are also much smaller than βLiLi, indicating that our ap-
plied strategy for decreasing the heteronuclear collisions
is good. In the Amsterdam group the heteronuclear trap
loss coefficients were found by a factor of about 2 larger
than ours [15]. A dark SPOT MOT has been implemented
in order to reduce the excited state population of the 40K
atoms. In the next paragraph we show, however, that it is
also important to reduce the excited state population of
the 6Li atoms.

Figure 16b depicts the dependence of the trap loss co-
efficient βKLi on the relative excited state population of
the 6Li atoms. The graph was obtained by recording the
influence of the 6Li-MOT on the 40K-MOT as the power
of the 6Li-MOT beams was varied. For each power it was
verified that the 40K-MOT was placed in the center of
the 6Li-MOT and the atomic density of the 6Li-MOT was
recorded. In the experiment a magnetic field gradient of
16 G/cm was used. The central atomic density of the 6Li-
MOT was found to be approximately constant, when the
power was varied (nLi

c ∼ 8 × 1010 atoms/cm3). The rela-
tive excited state population for a given beam power was
estimated using Einstein’s rate equations. In addition the
variation of the excited state population was measured
by recording the fluorescence emitted by the 6Li-MOT
and by measuring the number of captured atoms. The
latter changed by a factor of 1.5 in the considered range
of beam powers. The graph in Figure 16b shows that the
trap loss coefficient increases by more than a factor of 2
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as the relative excited state population is increased from
∼7% to ∼16%. The error bars shown in the figure refer
to statistical errors. The uncertainty due to systematic
errors is estimated to be 50%. The significant increase
of βKLi demonstrates the importance of minimizing the
number of excited 6Li atoms (and not only that of the
excited 40K atoms). One reason for this increase is the
increase of temperature of the 6Li-MOT, which changes
from ∼1 mK to ∼1.6 mK when the beam power is in-
creased. Another reason could be the occurence of colli-
sions involving doubly-excited Li*K* atom pairs, the rate
of which increases with the excited state populations. The
scattering potentials for these collisions are known to be
of a long-range, as they scale with the internuclear separa-
tion as 1/R5 [41], whereas they scale as 1/R6 for collisions
involving a singly-excited heteronuclear atom pair [33].

5 Conclusions

We have produced a dual-species magneto-optical trap
for fermionic 6Li and 40K with large atom numbers. Two
strategies have been applied in order to achieve this re-
sult. First, the dual-species MOT is placed in an ultra-high
vacuum environment, being continuously loaded from cold
atomic beams. The atomic beams originate from separate
atom sources – a Zeeman slower for 6Li and a 2D-MOT
for 40K – which both yield a large flux of cold atoms.
Second, the homo- and heteronuclear collisions have been
minimized by using small magnetic field gradients and low
light powers in the repumping light. The atom loss in each
MOT due to the presence of the other species decreases
by only 4% (6Li) and 10% (40K) due to the heteronuclear
collisions.

We have given a detailed description of the imple-
mented apparatus, which we hope serves as a guideline
for the construction of next generation experiments with
fermionic 6Li and 40K.

The produced dual-species MOT represents the start-
ing point for the production of a large-atom number quan-
tum degenerate Fermi-Fermi mixture. The atoms trapped
in the dual-species MOT have already been transferred
into the magnetic trap and magnetically transported to
the science chamber with large optical access and low
background pressure. The large depth of magnetic traps
as compared to optical traps allows for a large transfer ef-
ficiency, leading to smaller losses of atoms. In the science
cell, the dual-species cloud will be evaporatively cooled in
a plugged magnetic trap to quantum degeneracy and then
transferred into an optical trap for investigation.

The authors acknowledge support from ESF Euroquam
(FerMix), SCALA, ANR FABIOLA, Région Ile de France
(IFRAF), ERC Ferlodim and Institut Universitaire de
France. A.R. acknowledges funding from the German Fed-
eral Ministry of Education and Research and D.R.F. from
Fundação para a Ciência e Tecnologia (FCT) through
grant SFRH/BD/68488/2010 and from Fundação Calouste
Gulbenkian.
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Fig. 17. (Color online) Sketch of the tapered amplifier sup-
ports for (a) Li and (b) K. In the figure, TA Li and TA K
refer to the respective tapered amplifier chips, CL1, CL2, CL3
and CL4 to the (only longitudinally adjustable) collimation
lens supports and BCM to the isolated mount for the blade
connectors used to power the chip for K. The supports for the
output collimation lenses are CL2 and CL4.

Appendix: Tapered amplifier mounts

We developed compact support designs for our tapered
amplifier chips, in order to minimize the costs of the laser
sources of our experimental setup. The TAs are commer-
cial semiconductor chips which are mounted on homemade
compact mechanical supports with nearly no adjustable
parts. The support designs allow for an easy installa-
tion process, which does not require any gluing or the
help of micrometric translation stages for the alignment
of the collimation optics, as that can be accomplished by
free hand. Furthermore, the design minimizes the heat
capacity of the support and the produced temperature
gradients, allowing for a quick temperature stabilization
that makes the TAs quickly operational after switch-on.
The temperature stabilization is accomplished using a
Peltier element (Roithner Lasertechnik GmbH, ref. TEC1-
12705T125) connected to a PID control circuit. The heat
of( the chip is dissipated via an aluminum base plate which
is economically cooled by air rather than running water
(the base plate reaches a maximum temperature of 28 ◦C
for diode currents of 2 A).

The commercial TA chips are sold on small heat sinks
which have different dimensions for the two different wave-
lengths. We thus had to design slightly different sup-
ports for the Li- and K-TAs, which are both schematically
shown in Figure 17.

For lithium the semiconductor chip (Toptica, ref. TA-
670-0500-5) is delivered on a heat dissipation mount of
type “I”. It is placed between two axially aligned cylindri-
cal lens tubes (CL1 and CL2 in Fig. 17a), each of which
containing an aspheric collimation lens of focal length
4.5 mm (Thorlabs, ref. C230TME-B). The support of the
tubes and the chip are precisely machined such that the
chip’s output beam falls on the center of the respective
collimation lens (CL2 in Fig. 17a). The tubes are sup-
ported by cylindrically holed tightenable hinges in which
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they can move only longitudinally, along the direction of
the amplified laser beam. This restriction of the tube’s mo-
tion facilitates the alignment of the collimation lenses. The
support design does not allow for a transverse alignment of
the collimation lenses. Since this alignment is not very crit-
ical for the performance of the TA, we found it needless to
allow this degree of freedom and relied on precise machin-
ing (possible imperfections could be compensated utilizing
the mechanical play of the large attachment screw holes of
the commercial heat sinks of the chips). When tightened
by a screw, the hinges fix the position of the tubes. Since
the tightening applies a force perpendicular to the longi-
tudinal direction, it does not move the tubes along this
(critical) direction. They might only move slightly along
the transverse direction, which does not affect the final
performance of the TA.

For potassium, the semiconductor chip (Eagleyard, ref.
EYP-TPA-0765-01500-3006-CMT03-0000) is delivered on
a heat dissipation mount of type “C”. Placing this mount
between two hinges as for the case of lithium is less conve-
nient since the heat dissipation mount has to be attached
by a screw in the longitudinal direction which requires ac-
cess from one side. Therefore one hinge is replaced by a
rail which guides a parallelepipedically formed mount for
the second (output) collimation lens (CL4 in Fig. 17b).
The motion of this mount is also fixed by tightening a
screw applying forces perpendicular to the rail direction,
which does not move the collimation lens along the critical
longitudinal direction. For all our TAs, the positioning of
the collimation lenses never had to be adjusted again once
they were aligned.

The commercial heat dissipation mount of the potas-
sium chip is inconvenient for a simple powering of the chip.
The very fragile gold wire, which has to be connected to
the negative source of the current supply, has to be pro-
tected by a mechanical support before being connected
to a cable. Therefore we soldered it to a blade connector
that is fixed by an isolated plastic mount (BCM Fig. 17b)
and which is connected to the current supply. To avoid
an overheating of the chip during the soldering process we
permanently cooled the gold wire by blowing cold dry air
from a spray can on it.

The output beams of the TA chips are astigmatic
and thus require additional collimation. The choice of the
collimation optics needs to be adapted to the specifica-
tions of the subsequent optical fiber, which in our case
requests a collimated circular Gaussian beam of 2.2 mm
1/e2-diameter for optimum coupling efficiency. The mode-
matching was found optimum for a pair of lenses con-
sisting of one spherical lens (with f = 15 cm for Li and
f = 4 cm for K) and a cylindrical lens (with f = 8 cm for
Li and f = 2.54 cm for K), which are placed outside the
TA’s housing. The cylindrical lenses are supported by ro-
tatable mounts, in order to facilitate the mode-matching
into the fibers. For all our TAs we achieve fiber-coupling
efficiencies larger than 50% (Li) and 60% (K).

When injected with 20 mW, the Li-TAs yield an out-
put power of 500 mW at 1 A driving current and the K-
TAs yield an output power of 1500 mW at 2.5 A driving

current. In order to increase the lifetime of the chips, we
limit the driving currents to smaller values and we switch
the chips on only for periods of experimentation. When
switched on, the TAs quickly reach a stable functioning
(usually within 10 min) due to the compactness of the
mechanical support, which allows for a quick temperature
stabilization.
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We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K∗

molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss
spectroscopy within a range of 325 GHz below the Li(2S1/2)+K(4P3/2) and Li(2S1/2)+K(4P1/2)
asymptotic states and observed more than 60 resonances, which we identify as rovibrational lev-
els of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and
rotational constants are derived. We find large molecule formation rates of up to ∼ 3.5 × 107s−1,
which are shown to be comparable to those for homonuclear 40K∗

2. Using a theoretical model we
infer decay rates to the deeply bound electronic ground-state vibrational level X1Σ+(v′ = 3) of
∼ 5× 104s−1. Our results pave the way for the production of ultracold bosonic ground-state 6Li40K
molecules which exhibit a large intrinsic permanent electric dipole moment.

I. INTRODUCTION

The recent realization of gases of ultracold polar
molecules in their rovibrational ground state [1, 2] has
opened a new frontier in atomic and molecular physics [3,
4]. Due to their long-range anisotropic dipole-dipole in-
teractions and the possibility to trap and manipulate
these molecules with external electric fields, they offer
fascinating prospects for the realization of new forms of
quantum matter [5, 6]. Applications to quantum infor-
mation processing [7, 8], precision measurements [9, 10]
and ultracold chemistry [3] have been proposed.

The heteronuclear alkali dimer LiK is an excellent can-
didate for these studies. It has a large dipole moment
of 3.6 D [11] in its singlet rovibrational ground state
and both of its constituents, Li and K, possess stable
fermionic and bosonic isotopes with which dipolar gases
of different quantum statistics can be realized.

While atoms are routinely laser cooled to ultra-
cold temperatures, the complex internal structure of
molecules makes this direct method difficult (although
possible [12]). So far the most efficient way to produce ul-
tracold molecules has been to associate pre-cooled atoms.
Two techniques have been established, namely magnet-
ically tunable Feshbach resonances and photoassocia-
tion. Feshbach resonances allow the production of vibra-
tionally excited molecules in the electronic ground state.
In this way, ultracold heteronuclear 6Li40K molecules
could recently be produced [13, 14]. A combination of
Feshbach resonances with a multi-photon state transfer
may give access to the collisionally stable rovibrational
ground state [1, 15]. Photoassociation can directly give

∗Electronic address: ridinger@ens.fr
†Current address: LENS and Dipartimento di Fisica, Università di
Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy

access to this state either via single-photon photoassoci-
ation and subsequent spontaneous decay [2] or by multi-
color photoassociation [16].

In this letter we report on the production of ultracold
heteronuclear excited 6Li40K∗ molecules by single-photon
photoassociation (PA) in a dual-species magneto-optical
trap (MOT). We detect the molecule creation by a loss
in the number of trapped atoms, which results from the
molecules’ spontaneous decay into either a pair of free
untrapped atoms or a bound ground-state molecule.

Heteronuclear PA has so far been demonstrated for
RbCs∗ [17], KRb∗ [18], NaCs∗ [19], LiCs∗ [2] and
YbRb∗ [20]. As compared to homonuclear molecules, the
PA rate for heteronuclear molecules is typically smaller
due to the different range of the excited-state potentials.
Whereas two identical atoms in their first excited state
interact via the resonant dipole interaction at long range
(with potential V (R) ∝ −C3/R3), two atoms of differ-
ent species interact via the van der Waals interaction
(V (R) ∝ −C6/R6), leading, for the heteronuclear case,
to molecule formation at much shorter distances where
fewer atom pairs are available. Besides, it has been ar-
gued that among the heteronuclear dimers, LiK∗ would
be particularly difficult to photoassociate due to its small
reduced mass and C6 coefficients, which should lead to
small PA rates of e.g. two orders of magnitude less than
for the heavier dimers RbCs∗ and KRb∗ [21]. However,
the PA rates we observe in our experiment are similar
to those of the comparable experiment with RbCs∗ [17]
and those found for homonuclear K∗

2. Our theoretical
calculations are able to predict the large rates observed.

We perform PA spectroscopy in order to determine the
long-range part of the excited-state molecular potentials.
Previously, several molecular potentials of LiK have been
determined by molecular [22–24] and Feshbach resonance
spectroscopy [14, 25]. Our measurements give access to
previously undetermined spectroscopic data of high pre-
cision and will allow the derivation of more precise molec-
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ular potential curves facilitating the search for efficient
pathways to produce LiK molecules in the rovibrational
ground state.

Figure 1(a) shows the molecular potentials dissociat-
ing to the three lowest electronic asymptotes 2S+4S,
2S+4P and 2P+4S of the LiK molecule. They have
been calculated as described in ref. [11] and connected
to the asymptotic form given in ref. [26] at large dis-
tances (R > 40 a0). Note that as usual in alkali dimers,
a strong spin-orbit coupling is expected between the 13Π
and the 21Σ+ states due to the crossing of their potential
curves around 7.5 a0. Relevant for our experiment are the
eight Hund’s case c potential curves dissociating to the
2S1/2+4P1/2,3/2 asymptotes. Figure 1(b) displays their
long-range part, which is obtained by diagonalizing the
atomic spin-orbit operator in the subspace restricted to
the Hund’s case a states correlated to 2S+4P , for each
of the symmetries Ωσ = 0+, 0−, 1, 2 (where Ω denotes
the quantum number of the projection of the total elec-
tronic angular momentum on the molecular axis and σ
the parity of the electronic wave function through a sym-
metry with respect to a plane containing the molecular
axis). These potentials are all attractive at long range,
whereas the curves which dissociate to the asymptotes
2P1/2,3/2+4S1/2 are all repulsive [21]. For the relevant
asymptotes the dispersion coefficients C6 assume only
three different values due to the small atomic fine struc-
ture of the Li atom [27]. They have been calculated theo-
retically [26, 27] and they are determined experimentally
in this work.

II. EXPERIMENTAL SETUP

The 6Li40K∗ molecules are created by a PA beam
which is superimposed with the atoms trapped in the
dual-species MOT. The MOT is continuously loaded
from a Zeeman slower for 6Li and a 2D-MOT for 40K, as
described in ref. [29]. We record PA spectra by scanning
the PA beam in frequency, simultaneously recording the
steady-state atom number of each species via the emitted
trap fluorescence. The signature of 6Li40K∗ formation is
a decrease of both the 6Li and the 40K fluorescence. The
PA laser is scanned red detuned with respect to one of
the atomic transitions of 40K (see fig. 1(b)) and has no
effect on a single-species 6Li-MOT. The 6Li fluorescence
signal thus represents a pure heteronuclear PA spectrum,
whereas the 40K fluorescence signal represents the sum
of a heteronuclear (6Li40K∗) and homonuclear (40K∗

2) PA
spectrum. The frequency of the PA laser is recorded by a
wavelength meter (High Finesse, ref. WS-6) with an abso-
lute accuracy of ±250 MHz. Additionally, a Fabry-Perot
interferometer is used to verify the laser’s single-mode
operation.

The PA light is derived from a homemade diode laser-
tapered amplifier system. It has a wavelength of 767 nm
and a power of 660 mW at the output of a single-
mode polarization-maintaining fiber. It is collimated and
passes four times through the center of the MOT with a
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FIG. 1: (a) Molecular potentials of the LiK molecule for short
interatomic separations R (a0 = 0.0529177 nm). The upward
arrow represents the energy delivered by the PA laser and
the downward the spontaneous decay to electronic ground-
state molecules. The vibrational state X1Σ+(v′ = 3) shown
in the figure has a favorable overlap with the addressed ex-
cited states due to spatially coincident classical inner turning
points. (b) Detailed view of the excited-state potentials, la-
beled by their Hund’s case c quantum numbers Ωσ and an
additional classification (“up/down”) for unambiguous dis-
tinction. At short range, each of these potentials approaches
one of those shown in fig. (a) as illustrated in ref. [28].

total peak intensity of ∼ 100 W/cm2. The beam diam-
eter of 2.2 mm (1/e2) was chosen to match the size of
the 6Li-MOT. Using the feed-forward technique [30], the
laser’s mode hop free continuous tuning range extends
over ∼ 35 GHz.

For optimum experimental conditions, the PA-induced
trap loss needs to be maximized and all other intrinsic
losses that compete with it minimized [28]. Besides, the
frequency of the PA beam needs to be scanned slowly
enough (∼ 15 MHz/s) to allow the trap loss to reach
a quasi-steady state. To achieve these conditions the
6Li-MOT is reduced to a small atom number and vol-
ume (by lowering the loading rate) and placed at the
center of the larger 40K-MOT. Further, light-induced
cold collisions are reduced by using small intensities for
the MOT cooling and repumping light (ILi

cool ∼ 1.5ILi
sat,

ILi
rep ∼ 0.5ILi

sat, IK
cool ∼ 10IK

sat, IK
rep ∼ 3IK

sat per beam, re-

spectively). The detunings are ∆νLi
cool = ∆νLi

rep ∼ −3Γ,

∆νK
cool = ∆νK

rep ∼ −4Γ and the axial magnetic field gradi-
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ent is 20 G/cm. These parameters result in NLi ∼ 5×108

and NK ∼ 2.5 × 109 trapped atoms with central atomic
densities of nLi ∼ 7× 1010 cm−3 and nK ∼ 5× 1010 cm−3

and temperatures of TLi ∼ 1.2 mK and TK ∼ 300µK,
respectively. At these temperatures only heteronuclear
collisions of s- and p-wave character (i.e., ℓ = 0, 1, where
ℓ is the rotational angular momentum of the atom pair)
reach sufficiently short internuclear distances to allow for
PA (the height of the d-wave rotational barrier being
13.4 mK). If J is the total angular momentum quantum
number of the atom pair (including electronic angular
momentum and rotation), molecule formation is thus re-
stricted to the rotational levels J = 0, 1, 2 for electronic
states with Ω = 0, J = 1, 2, 3 for Ω = 1 and J = 2, 3 for
Ω = 2.

III. RESULTS

Figure 2 (a-d) shows a compilation of our recorded
spectroscopic data. Figures 2 (a) and (b) depict the
heteronuclear PA spectra near the dissociation limits
2S1/2+4P3/2 and 2S1/2+4P1/2 for PA detunings ∆PA be-
tween 0 and −325 GHz and between 0 and −60 GHz, re-
spectively. The graphs represent, respectively, an average
of ∼ 6 and ∼ 20 recorded spectra for noise reduction and
have been recorded in pieces and stitched together. The
spectra contain 68 resonances whose contrasts decrease
and whose mutual separations increase with increasing
detuning. The maximum contrast amounts to ∼ 35%
and is obtained for a detuning of ∆PA = −14.4GHz (see
Fig. 2 (d)). The observed resonance widths (FWHM)
vary between 80 and 300 MHz, primarily due to unre-
solved molecular hyperfine structure.

We have also recorded the heteronuclear+homonuclear
PA spectra appearing on the K fluorescence signal, which
contain all the resonances of fig. 2 (a,b) as well. A com-
parison between the two spectra is shown for a small
part in fig. 2 (c). This figure shows comparable contrasts
for the heteronuclear 6Li40K∗ and homonuclear 40K∗

2 PA
signals. We identify the observed 40K∗

2 resonances as ex-
citations to 0+

u states [31].
In the heteronuclear spectra of fig. 2 (a,b) we identify

seven vibrational series (labeled with numbers), corre-
sponding to seven of the eight molecular potentials disso-
ciating to the 2S1/2+4P1/2,3/2 asymptotes (see fig. 1 (b)).
Each series contains up to five resonances, which appear
in doublets or triplets due to resolved rotational struc-
ture. This structure is shown more clearly in fig. 2 (c)
for a particular vibrational state. Some of the observed
rovibrational resonances have a further substructure re-
sulting from hyperfine interactions, which is shown for a
particular resonance in fig. 2 (d).

In fig. 2 (a,b) and table I we present an assignment
of the observed resonances, which was obtained by the
combination of different assignment rules: the first is the
rotational progression law Erot = Bv[J(J +1)−Ω2], with
J = Ω,Ω + 1, ... for Hund’s case c molecules [28] com-
bined with our theoretical calculations of the rotational

constants Bv. It allowed us to identify rotational progres-
sions and to assign some J and Ω based on the rotational
spacing. The identification of the Ω = 2 vibrational series
(series 1 in fig. 2 (a)) is particularly easy, because only
two rotational lines per vibrational level are expected, as
opposed to three for all other series. The second is the
semi-classical LeRoy-Bernstein (LRB) law [32, 33] (see
Eq. (1)) combined with the available calculated C6 co-
efficients [26, 27]. It allowed us to identify vibrational
progressions and to assign some v and Ω based on the
vibrational spacing. The third is the hyperfine structure
law Ehfs ∝ Ω/[J(J + 1)] for Ω = 1 and Ehfs ≈ 0 for
Ω = 0 [34, 35]. It predicts small widths for resonances
with Ω = 0 and particularly large widths for those with
Ω = 1, J = 1 making their identification possible. The
fourth is the expected similar contrast pattern of the ro-
tational lines of the same vibrational series, which helped
us to identify vibrational progressions.

An application of the assignment rules allowed us to
identify the observed vibrational series and to assign their
quantum numbers except the parity σ of the Ω = 0 elec-
tronic states. σ can be determined from an analysis of the
relative strength of the rotational lines: due to the selec-
tion rules, the parity of the total wave function of the sys-
tem, i.e. the product of σ and (−)ℓ for the rotational part,
changes sign during the transition. Further, σ is con-
served, namely only X1Σ+(0+) → 0+ and a3Σ+(0−) →
0− are allowed for parallel transitions. In our experiment,
s-wave collisions dominate, such that the total parity is
+ (−) for the former (the latter) initial state. The par-
allel transition X1Σ+(0+, ℓ = 0) → (0+, ℓ = 1) is thus
allowed enhancing then the J = 1 line, while the paral-
lel transition a3Σ+(0−, ℓ = 0) → (0−, ℓ = 1) is forbid-
den. Under the same approximation, the perpendicular
transition a3Σ+(1, ℓ = 0) → (0−, ℓ = 0) is allowed and
enhances the J = 0 line in the spectrum. Therefore we
assign the Ω = 0 series with pronounced (reduced) J = 1
line to the excited 0+ (0−) states.

IV. DISCUSSION

Having assigned all observed resonances, the parame-
ters of the different molecular potentials can be derived.
We infer the C6 coefficients from the measured vibra-
tional binding energies D − Ev = −(h∆PA − Erot) (D
denoting the dissociation energy and Ev the energy of
the vibrational level v), using the LRB formula [32, 33]

D − Ev = A6(vD − v)3, (1)

with A6 = 64π3
~

3C6/
[

B(2/3, 1/2)
√

2µC6

]3
, where B

denotes the Beta-function (B(2/3, 1/2) ≈ 2.587), µ is
the reduced mass, and vD the vibrational quantum num-
ber at dissociation (a constant between 0 and 1 so that
the most weakly bound state has v = 1). Figure 3 shows
the plots of the 1/3-rd power of the binding energies as
a function of the vibrational quantum number for the
five vibrational series dissociating to the 2S1/2+4P3/2
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FIG. 2: Heteronuclear PA trap loss spectra of 6Li40K∗ below the asymptotes 2S1/2+4P3/2 (a) and 2S1/2+4P1/2 (b). The
spectra contain seven vibrational series (labeled N = 1, ..., 7) with resolved rotational structure, whose assignment is given
in table I. (c) Zoom on the heteronuclear (upper trace, left axis) and heteronuclear+homonuclear (lower trace, right axis)
PA spectrum below the 2S1/2+4P3/2 asymptote showing the rotational structure of the Ω = 1up, v = 3 vibrational state

of 6Li40K∗ (v denoting the vibrational quantum number counted from dissociation) and three vibrational 0+
u levels of 40K∗

2,
which show a resolved hyperfine (∗ and ◦) but no rotational structure. (d) Zoom on the Ω = 1up, v = 2, J = 1 resonance of
6Li40K∗, showing a nearly resolved hyperfine structure. The PA detuning ∆PA is specified relative to the 40K atomic transitions
4S1/2(F = 9/2) → 4P3/2(F

′ = 11/2) (a,c,d) and 4S1/2(F = 9/2) → 4P1/2(F
′ = 9/2) (b).

asymptote. The plots are predicted to follow straight
lines whose slopes yield: C6 = 9170 ± 940 a.u. and
C6 = 9240 ± 960 a.u. for the dyad potentials Ω = 2, 1up,
C6 = 25220 ± 600 a.u., C6 = 25454 ± 720 a.u. and
C6 = 24310 ± 1710 a.u. for the upper triad potentials
Ω = 1down, 0+, 0− and C6 = 12860±660 a.u. for the lower
triad potential Ω = 0+ (not shown in fig. 3), respectively,
where the uncertainties represent statistical uncertainties
for the fits. These values are in good agreement with
the respective theoretical values C6 = 9800 a.u., C6 =
25500 a.u. and C6 = 13830 a.u. predicted by Bussery et
al. [26]. The agreement with the values C6 = 9520 a.u.,
C6 = 22000 a.u. and C6 = 15420 a.u. predicted by Movre
et al. [27] is not as good. The two predictions differ
in their treatment of the interaction between the two
asymptotes 2S+4P and 2P+4S, which is taken into ac-
count in ref. [26] only, hinting its significance.

The uncertainty of the derived C6 coefficients results
from the following effects. First, the heteronuc lear na-
ture of LiK and its small C6 coefficients lead to molecule
formation at small internuclear separations (of Reff =
~/

√
2µBv ∼ 18 a0 at ∆PA = −300GHz) at which the

exchange interaction and higher-order terms in the long-
range multipole expansion of the molecular potential be-
come important, which are neglected by the LRB law.
Second, the small reduced mass of LiK leads to a low
density of vibrational states and thus to a small number
of states with long-range character available for fitting.

The measured rotational splittings allow us to infer
the rotational constants and to confirm the assignments
above. They are shown in fig. 4 for the five vibrational
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FIG. 3: Plot of the 1/3-rd power of the measured binding
energies D − Ev = −(h∆PA − Erot) (symbols) as a function
of the vibrational quantum number counted from the disso-
ciation limit for the five vibrational series dissociating to the
2S1/2+4P3/2 asymptote. The slopes of the linear fits (solid
lines) yield the dispersion coefficients C6 according to eq. (1).
The nearly identical slopes of the triad and dyad potentials
demonstrate the equality of the respective C6 coefficients.

series below the 2S1/2+4P3/2 asymptote, together with
their theoretical predictions, which we have derived from
the potential curves of fig. 1. The agreement between
the measured and predicted values is reasonable. The
error bars account for the imprecision of the wavelength
determination and of the resonance positions due to the
unresolved hyperfine structure. Deviations from the the-
oretical predictions are likely to be due to the multichan-
nel character of the vibrational levels.
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N Ω v J −∆PA Contr. N Ω v J −∆PA Contr.

[GHz] [%] [GHz] [%]

1 2 1 2 0.37 1.1 4 0− 2 2 3.03 21.4

2 3 6.60 2.3 1 3.66 22.7

2 7.88 9.4 3 2 20.11 25.0

3 3 38.00 5.6 1 21.48 20.4

2 41.08 10.6 0 22.16 17.4

4 3 118.49 6.3 4 2 63.99 14.7

2 122.67 6.3 1 66.06 5.0

5 3 251.80 3.7 0 67.13 7.6

2 257.81 4.3 6 2 262.37 1.9

2 1up 1 2 0.37 1.1 0 266.75 1.9

1 1.34 6.1 5 1down 2 3 4.12 23.9

2 3 11.27 2.4 2 4.85 14.9

2 13.01 18.5 1 5.90 4.6

1 14.40 35.0 3 3 24.52 19.8

3 3 49.20 6.5 2 26.15 9.8

2 52.47 14.1 1 27.72 3.0

1 54.53 14.8 4 3 72.26 15.4

4 2 154.35 5.4 2 75.55 10.0

1 157.40 4.7 1 77.87 5.0

5 3 302.50 2.0 5 3 156.12 6.1

2 308.75 3.9 2 160.20 1.4

1 313.26 4.6 1 162.91 1.9

3 0+ 2 2 1.34 6.1 6 2 296.51 1.8

1 2.35 11.0 1 299.57 1.8

0 3.03 21.4 6 0+ 2 2 8.66 3.9

3 2 17.23 6.2 1 9.74 5.8

1 18.51 10.6 0 10.37 0.8

0 19.25 8.4 3 2 41.56 1.6

4 2 56.30 2.0 1 43.40 5.1

1 58.17 6.6 0 44.31 2.0

0 59.21 5.6 7 1 2 2 20.42 3.6

5 2 127.76 4.0 1 21.93 2.0

1 129.91 7.8

0 131.80 5.0

6 2 244.13 2.0 Accuracy

1 247.07 5.2 ±0.25 ±1.0

0 249.01 2.2

TABLE I: PA resonances of 6Li40K∗ observed below the
2S1/2+4P1/2,3/2 asymptotes and their contrasts. N denotes
the number of the vibrational series given in fig. 2 (a,b).

We have determined the 6Li40K∗ molecule formation
rate from the steady-state depletion of the 6Li atom num-
ber induced by PA. For the resonance shown in fig. 2 (d)
we obtain a lower bound of βPAnKNPA

Li ∼ 3.5 × 107 s−1

and a PA rate coefficient βPA = (2.2±1.1)×10−12 cm3/s.
This coefficient is larger by about a factor of two than
the one found in the experiment with RbCs∗ [17], show-
ing that PA rates for LiK∗ are much more favorable than
previously expected [21], confirming the trend discussed
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FIG. 4: Measured rotational constants (symbols) for the
observed excited molecular states below the 2S1/2+4P3/2

asymptote and their theoretical predictions for computed vi-
brational levels (dots, the lines serve to guide the eye), derived
from the potential curves of fig. 1.

in ref. [36]. Using the approach described in ref. [37] we
estimate the total PA rate coefficient for a computed 1up

level with −21 GHz detuning to 1.6 × 10−12 cm3/s [31],
in agreement with our measured value. The associated
6Li40K∗ molecule formation rate is also found to be com-
parable to that for 40K∗

2, which is derived from fig. 2 (c)
to be ∼ 5.3 × 107 s−1, despite the much longer range of
the excited 40K∗

2 molecular potential. Using our model,
which reproduces the observed rovibrational structure,
we infer the rates for decay into bound levels of the
X1Σ+ state. The rates are found largest for the decay
into the most weakly bound level, but are still signifi-
cant for the decay into deeply bound levels such as the
X1Σ+(v′ = 3) level (v′ counted from the potential bot-
tom) for which it is 5 × 104 s−1 (see fig. 1). Since the
6Li40K∗ molecule formation rate saturates in our experi-
ment at moderate PA intensities of ∼ 80 W/cm2, efficient
coherent multi-photon population transfers to the molec-
ular rovibrational ground state can be expected.

V. CONCLUSION

In summary, we have investigated single-photon pho-
toassociation of excited heteronuclear 6Li40K∗ molecules.
We have recorded photoassociation spectra and assigned
all observed resonances. We have derived the long-
range dispersion coefficients and rotational constants,
which agree with the theoretical predictions of ref. [26]
and our calculations, respectively. In particular, we
have observed large formation rates for the heteronuclear
6Li40K∗ molecules which are comparable to those found
for homonuclear 40K∗

2. These rates promise efficient cre-
ation of rovibrational ground-state molecules and show
that photoassociation is an attractive alternative to Fes-
hbach resonances, since those have a very small width for
6Li40K and are thus difficult to control [14].

For future research it will be interesting to combine
ours and previously recorded data on LiK and to refine
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the molecular potentials. Spectroscopic data is avail-
able for the potential 11Π [38], which correlates with the
Ω = 1up potential, for which we measured the binding
energies of the five previously undetermined least-bound
vibrational states, such that a complete set of vibrational
levels is now available for a high-precision refinement of
this potential.
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Science 321, 1062 (2008).

[16] J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille,
Phys. Rev. Lett. 94, 203001 (2005).

[17] A. J. Kerman, J. M. Sage, S. Sainis, T. Bergeman, and
D. DeMille, Phys. Rev. Lett. 92, 033004 (2004).

[18] D. Wang, J. Qi, M. F. Stone, O. Nikolayeva, H. Wang,
B. Hattaway, S. D. Gensemer, P. L. Gould, E. E. Eyler,
and W. C. Stwalley, Phys. Rev. Lett. 93, 243005 (2004).

[19] C. Haimberger, J. Kleinert, M. Bhattacharya, and N. P.

Bigelow, Phys. Rev. A 70, 021402 (2004).
[20] N. Nemitz, F. Baumer, F. Münchow, S. Tassy, and

A. Görlitz, Phys. Rev. A 79, 061403 (2009).
[21] H. Wang and W. C. Stwalley, J. Chem. Phys. 108, 5767

(1998).
[22] S. Rousseau, A. R. Allouche, M. Aubert-Frécon, S. Mag-
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phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
Nature, 415:39, 2002.

[21] B. DeMarco and D. S. Jin. Onset of Fermi degeneracy in a trapped atomic gas.
Science, 285:1703, 1999.

[22] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G.
Hulet. Observation of Fermi pressure in a gas of trapped atoms. Science,
291:2570, 2001.

[23] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles,
and C. Salomon. Quasipure Bose-Einstein condensate immersed in a Fermi sea.
Phys. Rev. Lett., 87:080403, 2001.

[24] J. M. McNamara, T. Jeltes, A. S. Tychkov, W. Hogervorst, and W. Vassen.
Degenerate Bose-Fermi mixture of metastable atoms. Phys. Rev. Lett., 97:080404,
2006.

[25] T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi. Degenerate Fermi
gases of Ytterbium. Phys. Rev. Lett., 98:030401, 2007.

[26] B. J. DeSalvo, M. Yan, P. G. Mickelson, Y. N. Martinez de Escobar, and T. C.
Killian. Degenerate Fermi gas of 87Sr. Phys. Rev. Lett., 105:030402, 2010.

[27] M. K. Tey, S. Stellmer, R. Grimm, and F. Schreck. Double-degenerate Bose-Fermi
mixture of strontium. Phys. Rev. A, 82:011608, 2010.



BIBLIOGRAPHY 213

[28] Z. Hadzibabic, S. Gupta, C. A. Stan, C. H. Schunck, M. W. Zwierlein, K. Dieck-
mann, and W. Ketterle. Fiftyfold improvement in the number of quantum de-
generate fermionic atoms. Phys. Rev. Lett., 91:160401, 2003.

[29] S. Nascimbène, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon. Exploring the
thermodynamics of a universal Fermi gas. Nature, 463:1057, 2010.

[30] M. Inguscio, W. Ketterle, and C. Salomon, editors. Proceedings of the Interna-
tional School of Physics Enrico Fermi on Ultracold Fermi Gases, Bologna, Italy,
2006. Societa Italiana di Fisica.

[31] E. Timmermans. Degenerate fermion gas heating by hole creation. Phys. Rev.
Lett., 87:240403, 2001.

[32] L. D. Carr, T. Bourdel, and Y. Castin. Limits of sympathetic cooling of fermions
by zero-temperature bosons due to particle losses. Phys. Rev. A, 69:033603, 2004.

[33] S. R. Granade, M. E. Gehm, K. M. O’Hara, and J. E. Thomas. All-optical
production of a degenerate Fermi gas. Phys. Rev. Lett., 88:120405, 2002.

[34] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker Denschlag,
and R. Grimm. Pure gas of optically trapped molecules created from fermionic
atoms. Phys. Rev. Lett., 91:240402, 2003.

[35] C. Silber, S. Günther, C. Marzok, B. Deh, Ph. W. Courteille, and C. Zimmer-
mann. Quantum-degenerate mixture of fermionic Lithium and bosonic Rubidium
gases. Phys. Rev. Lett., 95:170408, 2005.

[36] G. Roati, F. Riboli, G. Modugno, and M. Inguscio. Fermi-Bose quantum degen-
erate 40K-87Rb mixture with attractive interaction. Phys. Rev. Lett., 89:150403,
2002.

[37] S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin.
Observation of heteronuclear Feshbach resonances in a mixture of bosons and
fermions. Phys. Rev. Lett., 93:183201, 2004.
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O. Dulieu, H. Ritsch, and H.-C. Nägerl. Quantum gas of deeply bound ground
state molecules. Science, 321:1062, 2008.

[119] F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. Hecker Denschlag. Ultracold
triplet molecules in the rovibrational ground state. Phys. Rev. Lett., 101:133005,
2008.

[120] P. S. Żuchowski and J. M. Hutson. Reactions of ultracold alkali-metal dimers.
Phys. Rev. A, 81:060703, 2010.

[121] M. H. G. de Miranda, A. Chotia, B. Neyenhuis, D. Wang, G. Quemener, S. Os-
pelkaus, J. L. Bohn, J. Ye, and D. S. Jin. Controlling the quantum stereodynamics
of ultracold bimolecular reactions. Nature Phys., 2011.

[122] A. Ridinger, S. Chaudhuri, T. Salez, U. Eismann, D. R. Fernandes, K. Mag-
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