Les modes de résonance acoustique dans les fibres optiques microstructurées & Applications aux capteurs distribués.

Michel Dossou

Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM) Centre National de la Recherche Scientifique (CNRS) Université Lille 1 - Sciences et Technologies

Contexte

Applications "capteur"

• La plupart des capteurs utilisant l'interaction acousto-optique, exploitent les modes acoustiques longitudinaux qui se propagent le long de la fibre.

イロト 不得 トイヨト イヨト

-

• La plupart des capteurs utilisant l'interaction acousto-optique, exploitent les modes acoustiques longitudinaux qui se propagent le long de la fibre.

 Mais très peu d'études ont été réalisées sur les modes acoustiques transverses.

イロト 不得 トイヨト イヨト 二日

• La plupart des capteurs utilisant l'interaction acousto-optique, exploitent les modes acoustiques longitudinaux qui se propagent le long de la fibre.

 Mais très peu d'études ont été réalisées sur les modes acoustiques transverses.

• Possibilité de mise au point d'un nouveau type de capteurs de mesure de la déformation de structure.

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivations

 Mettre à profit le large éventail de structures réalisables grâce aux fibres à cristaux photoniques (Photonic Crystal Fibres : PCF).

Incica ---- Incitation

< ロ > < 同 > < 回 > < 回 >

Motivations

• Mettre à profit le large éventail de structures réalisables grâce aux fibres à cristaux photoniques (Photonic Crystal Fibres : PCF).

 Mettre en place un dispositif pouvant permettre de mesurer et de corriger l'homogénéité de la structure de la section de fibre durant sa fabrication.

< ロ > < 同 > < 回 > < 回 >

- Etudier dans les fibres à cristaux photoniques, les modes de résonance acoustique, longitudinaux et transverses.
- Analyser la possibilité de mesurer les modes de résonance acoustique en rétrodiffusion.
- Exploiter leurs propriétés dans la mise au point de capteurs répartis.

Plan

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ●

・ロト・西ト・モート ヨー うべつ

Généralités

Généralités

Microstructuration versus Couleur des ailes.

P. Vukusic et al, Appl. Opt., vol. 40, pp. 1116-1125, 2001

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Généralités

Microstructuration versus Couleur des ailes.

P. Vukusic et al, Appl. Opt., vol. 40, pp. 1116-1125, 2001

 $\begin{array}{l} {\rm d}\simeq 1 \text{ à } 3\,\mu \text{m (diamètre des trous)} \\ {\rm \Lambda}\simeq 1 \text{ à } 3\,\mu \text{m (distance inter-trous : pitch)} \\ {\rm gaine}:\, \textit{n}_{\textit{FSM}}({\rm Fundamental Space-filling Mode}) \end{array}$

A D > A D > A D > A D >

cœur : n_c

8 / 46

$$V = \frac{2\pi}{\lambda} a_{eff} \sqrt{n_c^2 - n_{FSM}^2}$$

 λ : longueur d'onde optique, $a_{\it eff}$: rayon effectif du cœur

V	\geq	2,405	$\operatorname{multimode}$
V	<	2,405	monomode

$$V = \frac{2\pi}{\lambda} a_{eff} \sqrt{n_c^2 - n_{FSM}^2}$$

 $V \ge 2,405$ multimode V < 2,405 monomode

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○

- λ : longueur d'onde optique, $a_{\it eff}$: rayon effectif du cœur Plusieurs théories existent.
 - L'équipe de l'université de Bath en Grande Bretagne, (J. C. Knight et al, *Opt. Lett.*, vol. 21, pp. 1547–1549, 1996) : $a_{eff} = \Lambda$

$$V = \frac{2\pi}{\lambda} a_{eff} \sqrt{n_c^2 - n_{FSM}^2}$$

 $V \geq 2,405$ multimode V < 2,405 monomode

イロト 不得 トイヨト イヨト ヨー ろくで

- λ : longueur d'onde optique, $a_{\rm eff}$: rayon effectif du cœur Plusieurs théories existent.
 - L'équipe de l'université de Bath en Grande Bretagne, (J. C. Knight et al, *Opt. Lett.*, vol. 21, pp. 1547–1549, 1996) : $a_{eff} = \Lambda$
 - Celle de Crystal Fibre A/S au Danemark (N. A. Mortensen et al, *Opt. Lett.*, vol. 28, pp. 1879–1881, 2003) : $a_{eff} = \Lambda$ et $n_c = n_{eff}$

$$V = \frac{2\pi}{\lambda} a_{eff} \sqrt{n_c^2 - n_{FSM}^2}$$

V ≥ 2,405 multimode V < 2,405 monomode

イロト 不得 トイヨト イヨト ヨー ろくで

- λ : longueur d'onde optique, $a_{\rm eff}$: rayon effectif du cœur Plusieurs théories existent.
 - L'équipe de l'université de Bath en Grande Bretagne, (J. C. Knight et al, *Opt. Lett.*, vol. 21, pp. 1547–1549, 1996) : $a_{eff} = \Lambda$
 - Celle de Crystal Fibre A/S au Danemark (N. A. Mortensen et al, *Opt. Lett.*, vol. 28, pp. 1879–1881, 2003) : $a_{eff} = \Lambda$ et $n_c = n_{eff}$
 - Celle formée par K. Saitoh et M. Koshiba de l'université de Sapporo au Japon (K. Saitoh et al, *Opt. Express*, vol. 13, pp. 267–274, 2005) : $a_{eff} = \frac{\Lambda}{\sqrt{3}}$

10 / 46

10 / 46

$$\implies$$
 d = 1,22 μ m.

Exemples de PCF

Exemples de PCF

Simulation numérique (Comsol®)

	T625B	T510A			
a_{eff} (μ m)	2,96	0,74			
<i>w</i> (µm)	2,855	0,903			
Pertes	0,9 dB	7,5 dB			
\overline{SMF} : $w \simeq 3 \mu m$					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	T625B	T510A			
a_{eff} (μ m)	2,96	0,74			
<i>w</i> (µm)	2,855	0,903			
Pertes	0,9 dB	7,5 dB			
$\overline{SME \cdot w} \sim 3 \mu m$					

Réduction des pertes de 3,4 dB.

13 / 46

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

Deux types de modes acoustiques : longitudinaux et transverses

15 /

Les modes acoustiques longitudinaux

イロン イ団 とく ヨン イヨン

3

Les modes acoustiques longitudinaux

イロン イヨン イヨン イヨン

э

Les modes acoustiques longitudinaux

 $\Theta = 0$ ou $\pi \Longrightarrow$ modes longitudinaux.

Ceux correspondant à $\Theta = \pi$ sont à l'origine de la **diffusion** Brillouin.

< 日 > < 同 > < 三 > < 三 > 、

3

Fréquence Brillouin

$$f_{B} = \frac{2n_{eff}}{\lambda_{p}} v_{L} = \frac{2n_{eff}}{\lambda_{p}} \sqrt{\frac{\mathsf{E}(1-\nu)}{(1+\nu)(1-2\nu)\rho}}$$

 n_{eff} : l'indice effectif de mode, v_L : la vitesse d'onde acoustique, λ_p : la longueur d'onde optique incidente, E, ν , ρ module de Young, coefficient de Poisson et densité du matériau.

D. Cotter, J. Opt. Commun., vol. 4, pp. 10-19, 1983

La diffusion Brillouin

Phénomène à seuil

Configuration simple

18 / 46

- P_{seuil} dépend du matériau et de la longueur d'onde du laser
- $\mathsf{P}_{\mathit{seuil}} \searrow \mathsf{quand} \ L \nearrow$
- SMF à $\lambda = 1550$ nm, P_{seuil} $\simeq 10$ mW pour L = 5 km

- Utilisation de plus faibles puissances
- Gain même en deçà du seuil
- Mais nécessité d'avoir accès aux deux extrémités de fibres

イロト 不得 トイヨト イヨト

-

Les modes acoustiques transverses

Confinement dans la section de la fibre.

 R_{om} : variation de la phase (polarisés) / TR_{2m} : variation de la phase et de la polarisation (dépolarisés)

19 / 46

 $\begin{array}{rcl} \mbox{Fréquences} & \simeq & 0 \mbox{ MHz à 1 GHz (SMF)} \\ & \simeq & 0 \mbox{ MHz à 2 GHz (PCF)} \end{array}$

Les modes acoustiques transverses dans les PCF Exemple : T452A

d (μm)	1,77	
Λ(μm)	3,89	
$\frac{d}{\Lambda}$	0,45	
f _B	11,095 GHz	
VL	5971 m.s ⁻¹	
κ	1,9.10 ⁻²	

 κ : ratio surface des trous sur surface totale

 $f_m^{TR} = \frac{v_T}{h_m} y_m$

 $\kappa = 1.9.10^{-2} \ll 1$ N. Shibata et al, *IEEE Photon. Technol. Lett.*, vol. 18, pp. 412–414, 2006

• Application du formalisme proposé par Thurston et al, J. Acoust. Soc. Am., vol. 64, pp. 1–37, 1978

v_T estimée à 3531 m/s (cisaillement) N. Shibata et al, IEEE Photon. Technol. Lett., vol. 18, pp. 412–414, 2006

$$\begin{pmatrix} 3 - \frac{y^2}{2} \end{pmatrix} J_2 \begin{pmatrix} \frac{v_T}{v_L} y \end{pmatrix} \qquad \begin{pmatrix} 6 - \frac{y^2}{2} \end{pmatrix} J_2(y) - 3y J_3(y) \\ J_2 \begin{pmatrix} \frac{v_T}{v_L} y \end{pmatrix} - \frac{v_T}{v_L} y J_3 \begin{pmatrix} \frac{v_T}{v_L} y \end{pmatrix} \qquad \begin{pmatrix} 2 - \frac{y^2}{2} \end{pmatrix} J_2(y) + y J_3(y) \\ \begin{pmatrix} 2 - \frac{y^2}{2} \end{pmatrix} J_2(y) + y J_3(y) \end{pmatrix} = 0 \qquad \text{avec } y_m \text{ la solution de rang } m \\ \text{du système et } b \text{ le diamètre extérieur de la PCF} \\ b = 129, 58 \, \mu \text{m} \end{pmatrix}$$

où $J_k(y)$ est la fonction de Bessel de première espèce d'ordre k.

		$b=129,58\mu{ m m}$			
MHz	42,96	98,88	121,59	127,73	154
				∍ ∽	a a

avec y_m la solution de rang m

a) : Diffusion Brillouin | b) Guided Acoustic Wave Brillouin Scattering (GAWBS) | c) Diffusion Brillouin sur GAWBS

a) : Diffusion Brillouin | b) Guided Acoustic Wave Brillouin Scattering (GAWBS) | c) Diffusion Brillouin sur GAWBS

Mesure des modes TR_{2m}

ヘロト ヘロト ヘヨト ヘヨト

э

1) Modes TR_{2m} dans une PCF : T452A

Mes. (MHz)	Cal. (MHz)
-	42,96
76,58	-
93,09	98,88
103,6	-
-	121,59
126,1	127,73
-	154,83
165,2	169,55
184,7	182,29
213,2	209,63
•	•
-	•

1) Modes TR_{2m} dans une PCF : T452A

Le spectre dépend de la structure de la fibre

L'objectif : mesure en rétrodiffusion

Cal. (MHz)

42.96

98.88

121.59

127,73 154,83

169.55

182.29

209.63

Mes. (MHz)

76,58 93.09

103.6

126.1

165.2

184.7

213.2

Peut-on observer les modes acoustiques transverses en rétrodiffusion ?

< □ > < ≥ > < ≥ > ... ≥

Peut-on observer les modes acoustiques transverses en rétrodiffusion ?

Peut-on observer les modes acoustiques transverses en rétrodiffusion ?

Choix porté sur une **fibre à dispersion décalée** (Dispersion-Shifted Fibre : DSF) pour ses propriétés !

Mesures réparties pour observer les défauts \implies réflectométrie

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

La réflectomértie Brillouin Etat de l'art

Brillouin Optical Time Domain Reflectometer : BOTDR

- T. Kurashima et al, IEICE Trans. Commun., vol. E76-B, pp. 382–390, 1993.
- K. Shimizu et al, Opt. Lett., vol. 18, pp. 185–187, 1993.
- J. Lightwave Technol., vol. 12, pp. 730–736, 1994.

イロト 不得 トイヨト イヨト

-

La réflectomértie Brillouin Etat de l'art

EOM : modulateur électro-optique / RF : amplificateur électrique.

Brillouin Optical Time Domain Reflectometer : BOTDR

- T. Kurashima et al, IEICE Trans. Commun., vol. E76-B, pp. 382–390, 1993.
- K. Shimizu et al, Opt. Lett., vol. 18, pp. 185–187, 1993.
- In the second second

La réflectométrie Brillouin Dispositifs expérimentaux

26 / 46

イロト イボト イヨト イヨト

3

- 2 chemins de détection
- Fonctionnement en continu ou en pulsé.

La réflectométrie Brillouin Démodulation : traitement des données

Transformée de Fourier <>Analyse temps-fréquence.

Les étapes

イロト 不得 トイヨト イヨト 二日

Les étapes

28 / 46

イロト 不得 トイヨト イヨト 二日

La résolution en fréquence :

$$\delta f_{num} = \frac{F_s/2}{Nfft/2} = \frac{F_s}{Nfft}$$

Les résolutions spatiales

$$\Delta z = \frac{c}{n_{eff}} \frac{\tau}{2} \qquad \Delta z_{num} = \frac{Nfft}{F_s} \cdot \frac{c}{n_{eff}}$$

Les étapes

28

La résolution en fréquence :

$$\delta f_{num} = \frac{F_s/2}{Nfft/2} = \frac{F_s}{Nfft}$$

Les résolutions spatiales

$$\Delta z = rac{c}{n_{eff}} rac{\tau}{2}$$
 $\Delta z_{num} = rac{Nfft}{F_s} \cdot rac{c}{n_{eff}}$

Voici un exemple :

Pour $F_s = 5$ GHz, Nfft = 512, $c = 3.10^8$ m/s, $n_{eff} = 1.5$ alors $\delta f_{num} \simeq 10$ MHz, $\Delta z_{num} = 20$ m $\Delta z = 20$ m pour $\tau = 200$ ns

・ロト・西ト・ヨト・ヨー うへの

Les étapes

28

La résolution en fréquence :

$$\delta f_{num} = \frac{F_s/2}{Nfft/2} = \frac{F_s}{Nfft}$$

Les résolutions spatiales

$$\Delta z = rac{c}{n_{eff}}rac{ au}{2}$$
 $\Delta z_{num} = rac{Nfft}{F_s} \cdot rac{c}{n_{eff}}$

Voici un exemple :

Pour $F_s = 5$ GHz, Nfft = 512, $c = 3.10^8$ m/s, $n_{eff} = 1.5$ alors $\delta f_{num} \simeq 10$ MHz, $\Delta z_{num} = 20$ m $\Delta z = 20$ m pour $\tau = 200$ ns

Limite de Fourier

$$\Delta z_{num} \times \delta f_{num} = \frac{c}{n_{eff}}$$
Compromis !

La réflectométrie Brillouin Résultats expérimentaux

Sur deux fibres SMF en cascade

	SMF 1	SMF 2
L	1 km	3,5 km
f _B	10,78 GHz	10,89 GHz

29 / 46

La réflectométrie Brillouin Résultats expérimentaux : Sur DSF

La réflectométrie Brillouin Sur DSF

Mesure en continu.

Dans une boucle non linéaire.

イロト イヨト イヨト

Les deux spectres sont différents. Nous voulons observer les modes transverses en réflectométrie.

La réflectométrie Brillouin Dispositifs expérimentaux

Adaptation du montage

La réflectométrie Brillouin Résultats expérimentaux : Sur DSF

Adaptation du montage

・ロト・日本・日本・日本・日本・日本

33 / 46

La réflectométrie Brillouin Résultats expérimentaux : Sur PCF

La réflectométrie Brillouin Résultats expérimentaux : Sur PCF

P. Dainese et al, Nature Physics, vol. 2, pp. 388-392, 2006

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

L'analyse Brillouin Principe

T. Horiguchi et al, *J. Lightwave Technol.*, vol. 7, pp. 1170-1176, 1989

Configuration pompe-sonde $P_s = 1-10 \text{ mW}$ $P_c = 1-10 \text{ W}$

Amplification de la sonde

L'analyse Brillouin

T. Horiguchi et al, J. Lightwave Technol., vol. 7, pp. 1170-1176. 1989

Configuration po

Configuration pompe-sonde $P_s = 1-10 \text{ mW}$ $P_c = 1-10 \text{ W}$

Amplification de la sonde

Atténuation de la sonde

36 / 46

L'analyse Brillouin BOTDA (Brillouin Optical Time Domain Analysis/Analyser)

L'analyse Brillouin **BOTDA** vectoriel

38 / 46

Résolution spatiale théorique :

$$\Delta z = \frac{c}{n_{\rm eff}} \frac{\tau}{2}$$

Résolution spatiale numérique :

 $\Delta z_{num} = \frac{Nfft}{F_s} \cdot \frac{c}{n_{eff}}$

Résolution en fréquence : δf_{num} égale au pas de balayage de F_{sweep}

M. Dossou et al, Opt. Lett., vol. 35, pp. 3850-3852, 2010

= nar

Spectrogrammes d'intensité et de phase obtenu sur une fibre DSF de 300 m de longueur avec une portion de fibre chauffée.

イロト イボト イヨト イヨト

э

Spectrogrammes d'intensité et de phase obtenu sur une fibre DSF de 300 m de longueur avec une portion de fibre chauffée.

BOTDA vectoriel

 $\delta f_{num} = 1 \text{ MHz}$ $\Delta z_{num} = 32 \text{ cm}$

$\frac{\text{BOTDR}}{\delta f_{num}} \simeq 10 \text{ MHz}$ $\Delta z_{num} = 20 \text{ m}$

Spectrogrammes d'intensité et de phase obtenu sur une fibre DSF de 300 m de longueur avec une portion de fibre chauffée.

BOTDA vectoriel

 $\delta f_{num} = 1 \text{ MHz}$ $\Delta z_{num} = 32 \text{ cm}$

BOTDR

 $\delta f_{num} \simeq 10 \text{ MHz}$ $\Delta z_{num} = 20 \text{ m}$

Diminution de la limite $\Delta z_{num} \times \delta f_{num} = \frac{c}{n_{eff}} d'un \text{ facteur } 600 !$

39 ,

Sections des spectrogrammes d'intensité et de phase au même point (à environ 20 m) dans une fibre DSF

・ 同 ト ・ ヨ ト ・ ヨ ト

э
L'analyse Brillouin Applications possibles

L'analyse Brillouin Applications possibles

イロト イヨト イヨト

э

L'analyse Brillouin Applications possibles

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ の < ⊙

• Proposition d'une méthode de vérification du caractère monomodal de certaines fibres à cristaux photoniques.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Proposition d'une méthode de vérification du caractère monomodal de certaines fibres à cristaux photoniques.
- Calcul des fréquences des modes acoustiques transverses dans certaines fibres à cristaux photoniques.

・ロト・西ト・ヨト・ヨー うらう

- Proposition d'une méthode de vérification du caractère monomodal de certaines fibres à cristaux photoniques.
- Calcul des fréquences des modes acoustiques transverses dans certaines fibres à cristaux photoniques.
- Développement d'un BOTDA vectoriel : première mesure répartie de variation de variation de la structure dans une fibre à cristaux photoniques.

・ロ・・ 日・ ・ ヨ・ ・ ヨ・ ・ クタマ

- Proposition d'une méthode de vérification du caractère monomodal de certaines fibres à cristaux photoniques.
- Calcul des fréquences des modes acoustiques transverses dans certaines fibres à cristaux photoniques.
- Développement d'un BOTDA vectoriel : première mesure répartie de variation de variation de la structure dans une fibre à cristaux photoniques.
- Observation de la diminution des fréquences des modes hybrides avec l'augmentation du diamètre de cœur de la PCF.

- Modèle de calcul du spectre acoustique transverse (fréquences et intensités) dans une PCF quelle que soit sa structure.
- Etude des fibres à bandes interdites photoniques.

イロン イヨン イヨン イヨン 三日

Obstacles de mesure : Automodulation de phase

◆□▶ < @▶ < E▶ < E▶ E のQ@</p>

Obstacles de mesure : Automodulation de phase

Figure: Automodulation de phase $\tau = 20$ ns. $P_c = 50$ W soit 1 μ J. Le canal de détection est celui des basses fréquences.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Technique du temps de vol

Calcul du spectrogramme de phase

Transformée de Fourier \downarrow Nombre complexe : $re^{i\varphi}$

<ロト <四ト <注入 <注下 <注下 <

- $r^2 \Rightarrow$ Spectrogramme d'intensité
- $\varphi \Rightarrow \mathsf{Spectrogramme}$ de phase

BOTDR

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

BOTDA standard

On mesure un signal continu.

 δf_{num} est égal au pas de balayage.

(日) (四) (문) (문)

æ

BOTDA vectoriel

On mesure un signal sinusoidal. δf_{num} est égal au pas de balayage.

$$\Delta z_{num} = \frac{Nfft}{F_s} \cdot \frac{c}{n_{eff}}$$

 Δz_{num} meilleure si *Nfft* \searrow mais la bande spectrale de calcul $\frac{F_s}{Nfft}$ s'élargit, donc un autre compromis à faire.

<ロト <四ト <注入 <注下 <注下 <