
HAL Id: tel-00614269
https://theses.hal.science/tel-00614269v2

Submitted on 25 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Domain Engineering: From Specification to
Validation
Atif Mashkoor

To cite this version:
Atif Mashkoor. Formal Domain Engineering: From Specification to Validation. Software Engineering
[cs.SE]. Université Nancy II, 2011. English. �NNT : �. �tel-00614269v2�

https://theses.hal.science/tel-00614269v2
https://hal.archives-ouvertes.fr

Université Nancy 2
———————————————————————————————————–

DOCTORAL SCHOOL IAEM
Department of Doctoral Formation in Informatics

Formal Domain Engineering:

From Specification to Validation

Ph.D. Thesis

presented and defended publicly on July 12, 2011

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Informatics

by

Atif Mashkoor

Prepared at LORIA in team Dedale

Jury
President : Prof. Patrick Heymans - Université de Namur (Belgium)

Examiner : Prof. Maritta Heisel - Universität Duisburg-Essen (Germany)

Reviewers : Prof. Marc Frappier - Université de Sherbrooke (Canada)

Prof. Marie-Laure Potet - Université Joseph Fourier (France)

Advisors: Prof. Jeanine Souquières - Université Nancy 2 (France)

Dr. Jean-Pierre Jacquot - Université Henri Poincaré (France)

———————————————————————————————————Laboratoire Lorrain de Recherche en Informatique et ses Applications

Abstract

The main theme of this research is to study and develop techniques for modeling
of software-controlled safety-critical systems. The area we focus in this thesis is
the specification of a domain, where such systems are supposed to operate, and
its validation. The contribution of this thesis is twofold: First, we model the
land transport domain, a good candidate for this study because of its safety-critical
nature, in the formal framework of Event-B and propose some guidelines for it.
Second, we present an approach, based on the technique of animation and low-cost
transformations, for stepwise validation of formal specifications.

Keywords: Domain engineering, Requirements engineering, Formal methods, Soft-
ware testing, Event-B, Brama

Le thème principal de cette recherche est d’étudier et développer des techniques
pour la modélisation des systèmes où la sécurité est critique. Cette thèse est focalisé
sur l’étape de la spécification du domaine où de tels systèmes vont fonctionner, et de
sa validation. La contribution de cette thèse est double. D’abord, nous modélisons
le domaine des transports terrestres, un bon candidat pour cette étude en raison de
sa nature critique vis-à-vis de la sécurité, dans le cadre formel de B événementiel
et proposent quelques directives pour cette activité. Ensuite, nous présentons une
approche, basée sur les techniques de l’animation et des transformations, pour la
validation par étapes des spécifications formelles.

Mots-clés: Ingénierie de domaine, Ingénierie des besoins, Méthodes formelles,
Testing de logiciel, B événementiel, Brama

i

In the sweet memories of my loving parents
who sacrificed their present

for the future of their children.

Acknowledgments

All praise belongs to ALLAH, the almighty, on whom ultimately we depend for
sustenance and guidance.

Foremost, I would like to express my sincere gratitude to my co-advisor Dr. Jean-
Pierre Jacquot for the continuous support during my Ph.D. study and research.
I appreciate his patience, motivation, enthusiasm, and immense knowledge. His
guidance helped me to shape my goals, both in my research and life. I would always
remember him as the best advisor and the mentor for the lifetime. I would also like
to thank Prof. Jeanine Souquières, my main advisor, for supporting me financially,
administratively and technically.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof.
Marc Frappier, Prof. Marie-Laure Potet, Prof. Patrick Heymans and Prof. Maritta
Heisel, for their encouragement, insightful comments, and positive criticism. I would
also like to extend my gratitude to Prof. Dominique Méry and Dr. John Fitzgerald
for their advices and time.

I owe my deepest gratitude to my friends, Sarah, Ehtesham, Dawood, Bilal, Us-
man and Mumtaz for being there for me physically, spiritually and morally whenever
I needed them.

Lastly, and most importantly, I wish to thank my family: My eldest brother
Kashif, my sister Rabia, my three nieces, Aliza, Mouniza and Arisha, and notably
my beloved brother Rashid. They have supported me unconditionally and unprece-
dentedly. They gave me the choices I wanted, the time I needed, the strength I
required, the support I wished; they gave me everything I demanded. Thank you
guys for all of your support!

Atif Mashkoor
August 8, 2011

Vandœuvre lès Nancy

v

Contents

1 Prologue 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Contributions . 2

1.3.1 Specification level . 2
1.3.2 Validation level . 3

1.4 Publications . 3
1.5 Structure of the thesis . 4

I BACKGROUND 7

2 Domain engineering, requirements engineering & formal methods 9
2.1 Introduction . 9
2.2 Domain engineering . 10

2.2.1 Domain . 10
2.2.2 Domain engineering . 10
2.2.3 Domain engineering methods 11

2.3 Requirements engineering . 14
2.3.1 Requirement . 14
2.3.2 Requirements engineering . 14
2.3.3 Classification of requirements 15
2.3.4 Phases of requirements engineering 16
2.3.5 Requirements engineering methods 20

2.4 Formal methods . 21
2.4.1 Advantages of formal methods 22
2.4.2 Disadvantages of formal methods 22
2.4.3 Myths of formal methods . 23
2.4.4 Guidelines for formal methods 24

2.5 Summary . 25

3 Domain specification, verification & validation 27
3.1 Introduction . 27
3.2 Domain specification . 28
3.3 Domain verification . 29

3.3.1 Model checking . 30
3.3.2 Theorem proving . 30

3.4 Domain validation . 31
3.4.1 Prototyping . 31
3.4.2 Animation . 32

Contents

3.4.3 Reviews . 33
3.4.4 Structured walkthroughs . 33

3.5 Summary . 34

II SPECIFICATION 35

4 Event-B 37
4.1 Introduction . 37
4.2 Structuring mechanism . 38
4.3 Refinement . 39
4.4 Proofs . 39

4.4.1 Proof of invariant preservation 40
4.4.2 Proof of event refinement . 40
4.4.3 Proof to introduce new events 40

4.5 Decomposition . 41
4.6 Tool . 42
4.7 Related work . 43

4.7.1 Event-B versus RAISE . 43
4.7.2 Event-B & goal models . 44
4.7.3 Modeling of transportation domain in Event-B 44
4.7.4 Refinement mechanisms in Event-B 45
4.7.5 Specification of timing & temporal properties in Event-B . . . 45

4.8 Summary . 46

5 Engineering of a domain 47
5.1 Introduction . 47
5.2 Domain overview . 48

5.2.1 Locations . 49
5.2.2 Nets, hubs & connections . 49
5.2.3 Junctions & stations . 49
5.2.4 Paths & routes . 49
5.2.5 Properties . 49

5.3 Stepwise Event-B specification . 50
5.3.1 Initial model . 52
5.3.2 First refinement . 54
5.3.3 Second refinement . 54
5.3.4 Third refinement . 55
5.3.5 Fourth refinement . 56
5.3.6 Fifth refinement . 58
5.3.7 Sixth refinement . 60
5.3.8 Seventh refinement . 61

5.4 Hierarchy of the model . 65
5.5 Verification of the model . 68

viii

Contents

5.6 Summary . 69

6 Guidelines for domain engineering with Event-B 71
6.1 Introduction . 71
6.2 What to specify? . 72

6.2.1 Model assumptions . 72
6.2.2 Define protocols . 73
6.2.3 Specify time . 74
6.2.4 Express temporal properties 75

6.3 How to refine? . 77
6.3.1 Refine slowly . 78
6.3.2 Refine unconventionally . 79

6.4 How to verify? . 80
6.4.1 Beware of easy proofs! . 80
6.4.2 Beware of obvious truth! . 81
6.4.3 Use animation to complement provers 81

6.5 Observations on tool & language . 81
6.6 Summary . 82

III VALIDATION 85

7 Validation of specifications by animation 87
7.1 Introduction . 87
7.2 Validation by animation . 88
7.3 Stepwise animation . 89
7.4 Brama: The animator . 89

7.4.1 Working principle . 89
7.4.2 Structure . 90
7.4.3 Related animators . 91

7.5 Classes of specifications . 92
7.6 Limitations of Brama . 93
7.7 Changing the class of a specification 94

7.7.1 Approximation . 95
7.7.2 Refinement . 95
7.7.3 Rewriting . 96
7.7.4 Inlining . 96

7.8 Summary . 97

8 Transformational heuristics & formal semantics 99
8.1 Introduction . 99
8.2 Transformational heuristics . 100
8.3 Formal semantics of the transformations 105

8.3.1 State names . 105
8.3.2 State values . 106

ix

Contents

8.3.3 States . 106
8.3.4 Event . 106
8.3.5 Behavior . 106
8.3.6 Specification . 106
8.3.7 Relation between specifications 106
8.3.8 Shared state values . 107
8.3.9 Shared states . 107
8.3.10 Shared behaviors . 107
8.3.11 Behavioral equivalence . 108

8.4 Proofs of the heuristics . 110
8.5 Summary . 113

9 Application of the heuristics on case studies 115
9.1 Introduction . 115
9.2 Case study 1: The land transport domain model 116

9.2.1 Machine Movement0 . 117
9.2.2 Machine Movement1 . 117
9.2.3 Machine Movement2 . 117
9.2.4 Machine Movement3 . 119
9.2.5 Machine Movement4 . 121
9.2.6 Machine Movement5 . 123
9.2.7 Machines Movement6 & Movement7 123

9.3 Case study 2: The platooning system 123
9.3.1 Machine Platoon . 125
9.3.2 Machine Platoon_1 . 125
9.3.3 Machine Platoon_2 . 125
9.3.4 Machine Platoon_3 . 130
9.3.5 Machine Platoon_4 . 130

9.4 Summary . 134

IV EPILOGUE 135

10 Stepwise validation of formal specifications 137
10.1 Introduction . 137
10.2 VTA: The framework . 138

10.2.1 Verification step . 139
10.2.2 Transformation step . 140
10.2.3 Animation step . 140

10.3 Animation: A reflection . 140
10.4 Summary . 141

11 Conclusion & future work 143

Bibliography 145

x

Contents

A Original Event-B specifications 159
A.1 The land transport domain model . 160
A.2 The platooning system . 161

xi

Chapter 1

Prologue

Contents
1.1 Introduction . 1

1.2 Motivation . 2

1.3 Contributions . 2

1.3.1 Specification level . 2

1.3.2 Validation level . 3

1.4 Publications . 3

1.5 Structure of the thesis . 4

1.1 Introduction

The principle of understanding the domain before the specification of requirements
is crucial to software engineering. The idea of having enough details about the
environment in which designed products are assumed to operate is well established in
other engineering disciplines. Engineers belonging to disciplines other than software,
such as aeronautics, electronics, and chemistry, know the domains of their respective
fields. Though, in software engineering, a system is sometimes developed by people
with an incomplete knowledge of its particular domain. Unsurprisingly, requirements
of such systems may be flawed and their correctness is a crucial issue.

[Bjørner 2007] also attests this assumption and believes that formal expression
of requirements and domain models is essential for software correctness. This prac-
tice ensures safety which is one the major concerns which cannot be overlooked
while designing complex and critical systems. The point is that the use of formal
methods from domain modeling to implementation can help us ensure the safety
and correctness of software in contrast to traditional methods which may lead to
erroneous systems.

However, despite decades of advocacy, success stories, and good proof systems,
formal methods are still not popular in software development. One of the reasons
may be that tools and techniques may still have some deficiencies which impede
their penetration into the industry. This thesis aims at hinting and (where possible)
providing solutions to some of those hindering factors for at least one formal method,
Event-B [Abrial 2010].

Chapter 1. Prologue

This chapter is organized as follows: Section 1.2 presents the main motivation
for this research. Section 1.3 discusses the main results which we have obtained
during this work. The peer-reviewed publications of this research are mentioned in
section 1.4. Finally, section 1.5 discusses the organization of the thesis.

1.2 Motivation

Most customers express their requirements either in natural language or in terms of
scenarios. Most of the requirements engineering methodologies are therefore non-
formal or semi-formal. One of the problems with less formal techniques is that they
may be ambiguous, which makes the requirements engineering phase error-prone.

With the help of well-defined syntax and semantics, formal specifications can
concisely express the software requirements. However, due to their complex struc-
tures and mathematical contents, they are difficult to read and understand for cus-
tomers. Actually, formal specifications may sometimes not be able to intuitively
reflect the concepts and behaviors of systems in the real world. The conventional
issue of validation may therefore impair the requirements engineering phase.

An earlier involvement of customers and the use of formal techniques in software
development may be a solution to the aforementioned requirements engineering
problems and a domain model is the right artifact to start with. A formal domain
model precisely specifies the domain facts and with the help of techniques, such as
animation, we can demonstrate the model to customers for their timely feedback.
Thus, we can build a “mental-bridge” between complex formal specifications and
their perception in the real-world. Our rigorous validation technique, discussed
later in the thesis, is based on animation and involves customers in the software
development process right from the start; consequently errors can be detected right
on the spot.

1.3 Contributions

We work on two levels: specification and validation. Following is the list of contri-
butions at each level:

1.3.1 Specification level

The results obtained at specification level are as follows:

Guidelines for domain engineering with Event-B

We critically analyze the capability of Event-B as a domain engineering tool. We
identify its shortcomings and (where possible) suggest solutions for improvement.
We primarily answer three fundamental questions pertaining to domain modeling:
what to specify? how to refine? and how to verify? The proposed general-purpose
(domain-engineering) guidelines can be leveraged across the board.

2

1.4. Publications

Formal domain model of land transport

We provide a formal, consistent, and effective domain model of land transportation,
written in Event-B. The stepwise refinements of the model express the intrinsic facts
and laws of the domain along with two properties: collision avoidance and timing.
We use theorem proving technique in order to ensure the verifiability of the model.
The prescribed core functionality of the domain can be utilized for the emersion of
several transportation systems.

1.3.2 Validation level

The results obtained at validation level are as follows:

Transformational heuristics for animation

Animation is one of many effective techniques for specification validation but not
all specifications are directly animatable; some need to be transformed. In order
to do so, we propose some heuristics which are designed with a strong constraint:
they must preserve the behavior of the specification. Based on precise semantics,
these heuristics guarantee that “anything that is observed during the animation of
the transformed specification would have been observed on the animation of the
original specification.” We test our results on two case studies: the land transport
domain model and a platooning system.

VTA

We propose VTA (Verify-Transform-Animate), a framework for stepwise validation
of formal specifications. This breaks the requirements validation process into small
steps and integrates it into the stepwise development of specifications. Our frame-
work, based on cheap transformations, reduces the overall cost and time of the
validation process.

The original and fully-verified Event-B specification of the transportation domain
written by us is available at the following web address: http://dedale.loria.
fr/?q=en/transport-domain. The specification of the platooning system which is
used as a case study in this thesis is available at: http://dedale.loria.fr/?q=
en/platooning-system.

1.4 Publications

The obtained results of this research have been published in the following form:

Journal

• A. Mashkoor and J. P. Jacquot, Utilizing Event-B for Domain Engineering: A
Critical Analysis, In: Requirements Engineering (REJ), Springer, 2011

3

http://dedale.loria.fr/?q=en/transport-domain
http://dedale.loria.fr/?q=en/transport-domain
http://dedale.loria.fr/?q=en/platooning-system
http://dedale.loria.fr/?q=en/platooning-system

Chapter 1. Prologue

Conferences

• A. Mashkoor and J. P. Jacquot, Domain Engineering with Event-B: Some
Lessons We Learned, In: 18th International Requirements Engineering Con-
ference (RE’10), Sydney, Australia, 2010

• A. Mashkoor and A. Matoussi, Towards Validation of Requirements Models,
In: 2nd International Conference on Abstract State Machines (ASM), Alloy,
B and Z (ABZ’10), Orford, Canada, 2010

Workshops

• A. Mashkoor, F. Yang and J. P. Jacquot, Validation of Formal Specification:
The Case for Animation, In: 3rd Workshop on Security and Reliability (Sec-
Day’11), Trier, Germany, 2011

• A. Mashkoor and J. P. Jacquot, Branimation, In: 1st RODIN User and De-
veloper Workshop (RUDW’09), Southampton, United Kingdom, 2009

• A. Mashkoor, J. P. Jacquot and J. Souquières, Transformation Heuristics for
Formal Requirements Validation by Animation, In: 2nd International Work-
shop on the Certification of Safety-Critical Software Controlled Systems (Safe-
Cert’09), York, United Kingdom, 2009

Miscellaneous

• A. Mashkoor, Formal Domain Modeling: From Specification to Validation,
In: Doctoral Symposium of 16th International Symposium on Formal Methods
(DS-FM’09), Eindhoven, The Netherlands, 2009

• A. Mashkoor, J. P. Jacquot and J. Souquières, B Événementiel pour la Mod-
élisation du Domaine: Application au Transport, In: 9th Approches Formelles
dans l’Assistance au Développement de Logiciels (AFADL’09), Toulouse, France,
2009

1.5 Structure of the thesis

This thesis is organized into five parts. Part I presents the introduction of the thesis.
We present the main motivation to initiate this research along with the contributions
in this direction.

Part II of the thesis is dedicated to the state-of-the-art. This work revolves
around three fundamentals of software engineering: domain engineering, require-
ments engineering, and formal methods. In this part, we discuss what is the main
idea behind them and how they can be performed. We explicitly define the process
of domain specification, verification and validation, which form the basis of this
thesis.

4

1.5. Structure of the thesis

Part III of the thesis illustrates the specification level of this work. We first
introduce the formal method Event-B and then use it to model the transportation
domain. Later, we present our experience gained as guidelines for domain engineer-
ing in the formal framework on Event-B.

Part IV of the thesis is devoted to the process of validation. We define the
technique of validation by animation along with its limitations. We, then, propose
some heuristics with a formal semantics which provide a bridge for the animator
Brama [Servat 2006] in order to help it animating specifications. We also show their
effects on two different case studies.

The thesis is finally concluded in part V which presents our proposed framework
for stepwise validation of specifications VTA along with a conclusion and some future
works.

5

Part I

BACKGROUND

Chapter 2

Domain engineering, requirements

engineering & formal methods

Contents
2.1 Introduction . 9
2.2 Domain engineering . 10

2.2.1 Domain . 10
2.2.2 Domain engineering . 10
2.2.3 Domain engineering methods 11

2.3 Requirements engineering . 14
2.3.1 Requirement . 14
2.3.2 Requirements engineering . 14
2.3.3 Classification of requirements 15
2.3.4 Phases of requirements engineering 16
2.3.5 Requirements engineering methods 20

2.4 Formal methods . 21
2.4.1 Advantages of formal methods 22
2.4.2 Disadvantages of formal methods 22
2.4.3 Myths of formal methods . 23
2.4.4 Guidelines for formal methods 24

2.5 Summary . 25

2.1 Introduction

Domain engineering is a methodology to document the facts of a particular domain.
A domain model, which is the outcome of the domain engineering phase, defines the
key concepts of a particular domain: the major entities and their inter-relationships,
the static and dynamic properties, the functions, the events, and the behaviors.

Requirements engineering is a methodology to specify all the known requirements
related to the development of a particular system. There are numerous reasons to
perform domain engineering prior to requirements engineering. For instance, it
identifies, models, constructs, catalogs, and disseminates the system scope, it helps
stakeholders understand the system requirements better, it can be effectively used to

Chapter 2. Domain engineering, requirements engineering & formal
methods

verify that the requirements conform to essential properties, and so on. Furthermore,
domain engineering in a formal framework gives practitioners an effective grasp on
notions, such as verifiability and validity of domain facts.

In this chapter, we present a short survey about three very important pillars
of software engineering: domain engineering, requirements engineering and formal
methods. We present their general philosophies along with their supporting meth-
ods.

The chapter is organized as follows: Section 2.2 presents what is a domain,
how to engineer it, and what are the different methods of this engineering. Section
2.3 answers the questions related to requirements engineering, such as what are
requirements, how to engineer them, and how to classify them. Section 2.4 presents
a brief introduction to formal methods, their advantages, disadvantages, myths, and
guidelines. The chapter is finally concluded in section 2.5.

2.2 Domain engineering

2.2.1 Domain

In literature, we find two different point of views towards the notion of domain. We
present them in the following as definition 1 and 2. Please note that the definition
1 has been subsequently used throughout this thesis unless stated otherwise.

Definition 1: In the first point of view, a domain is a universe of discourse, an
area of nature subject to the laws of physics, or an area of human activity subject
to its interfaces with other domains and to nature [Bjørner 2009b]. In this context,
a domain can be seen as the real-world [Simos 1997]. A domain therefore incorpo-
rates the processes of an environment irrespective of specific system requirements.
A model of a domain behaves as the conceptual model and identifies the facts, ter-
minologies, laws, behaviors and functionalities of the particular domain. This defi-
nition corresponds to the vertical domains as defined by Czarnecki [Czarnecki 2000].
Examples of such domains are transportation, financial service industry, banking,
insurance, health care, etc.

Definition 2: In the second point of view, a domain can be seen as a set of
systems and application families [Simos 1997]. The scope of the domain, in this
fashion, is drawn according to the similarities between the applications falling into
the domain. It models their commonalities which later contributes to product-line
engineering. Czarnecki [Czarnecki 2000] calls them horizontal domains. Examples
of such domains are word-processors, database systems, code libraries, workflows,
etc.

10

2.2. Domain engineering

2.2.2 Domain engineering

Domain engineering is an activity that concerns the documentation of facts related
to one domain. It is a discipline to identify, model, construct, catalog, and dissemi-
nate a set of software artifacts that can be applied to existing and future software in
a particular application domain [Pressman 2005]. The activity of domain engineer-
ing helps understand the environment where these systems are assumed to operate
so that later on this understanding can be transformed into better requirements
specification. In addition, it also makes possible to deliver new products in shorter
time and at lower costs.

Domain engineering helps in several aspects, such as acquiring better insight of
the environment where systems are supposed to work, better specification of system
requirements, engineering of reusable software, i.e., libraries, frameworks or tools,
knowledge management, i.e., continuous maintenance and update of knowledge in a
domain, etc.

The process of domain engineering starts with the identification of the domain to
be analyzed. This process of identification includes the activities, such as examina-
tion of existing applications, consultation with domain experts and different stake-
holders. Based on these elements of information, a domain model is constructed.
A domain model, which is the deliverable of the process of domain engineering, de-
scribes the key concepts and vocabulary pertaining to the domain being engineered.
This document has numerous advantages: it describes and constrains the system
boundary, it helps verify and validate that the problem domain is well understood,
and it acts as a communication tool between various stakeholders of the system.

2.2.3 Domain engineering methods

Surveys, like [Wartik 1992], [Ferr’e 1999], [Harsu 2002], and [Ahmad 2004], intro-
duce many techniques and methods for engineering domains. In this subsection,
we present four such methods: Draco, Feature-Oriented Domain Analysis (FODA),
Organization Domain Modeling (ODM), and Formal domain engineering. While the
first three methods dominantly relate to the second definition of domain discussed
earlier in this section, the last method is related to the first definition of domain
and has been later employed in this thesis. Following is an abridged introduction to
these domain engineering methods:

Draco

Draco [Neighbors 1980], considered as the first domain engineering method, was
proposed by James Neighbors in 1980. The key idea of this approach is to organize
the knowledge helpful to construct software into related domains.

The resulting domains of Draco consist of the following items: Parser to trans-
form a system description to an internal form in a domain language, domain lan-
guage which is implemented by a parser, pretty printer which is used to describe
certain aspects of an application, display which describes how to display internal

11

Chapter 2. Domain engineering, requirements engineering & formal
methods

forms as texts and graphics for implementation purposes, optimizations which de-
scribe the rules of exchange between statements in the domain language and may
be procedural or source-to-source, components which specify the semantics of the
domain through implementation of the domain language constructs in the domain
language of other domains and provide refinements for these constructs, generators
which describe transformational programs for the statements in a domain language
for their conversion into another statement in the same domain, analyzers which
describe programs that gather information about the internal form for use by the
other domain parts, and strategies and tactics which describe refinement plans based
on available refinements and domain interconnections [Neighbors 1989].

Draco domains, which encapsulate the knowledge for solving certain class of
problems, can be classified into application domains, modeling domains, and ex-
ecution domains. Application domains gather knowledge for building specific ap-
plications, e.g., transportation, finance, health, etc. Modeling domains encapsulate
knowledge which is required for producing parts of systems. These reusable artifacts
are further sub-divided into application-support domains, e.g., navigation, account-
ing, numerical control, etc., and computing technology domains, e.g., multitasking,
transactions, communications, graphics, databases, user interfaces, etc. Execution
domains are the refinements of application domains into more specific areas. Con-
crete target languages, such as C, C++, or Java are part of these execution domains
and are used to realize application domains into targeted systems [Neighbors 1989].

FODA

FODA [Kang 1990] is a domain engineering method which is centered around feature
modeling. The actual concept is to represent the standard features and their inter-
relationship of a particular domain in the systems of the domain. Features are the
desirable functionalities of the applications and span over both common (mandatory)
and variable (optional) parts of the system families. The domain model produced
by FODA also includes the differences between related applications along with their
standard ingredients.

There are two major stages for FODA: context analysis, and domain modeling.
The phase of context analysis is used to draw the boundaries of the domain and its
relationship with the external environment. The outcome of the context analysis
phase is a context model which states these phenomena with the help of structure
and data-flow diagrams.

The stage of domain modeling is further divided into feature analysis, informa-
tion analysis, and operational analysis. Feature analysis helps finding the features,
i.e., modeling end users’ perception about the core capabilities in the domain along
with its optional and alternative capabilities. This later helps in the identification
of families of features. The main purpose of information analysis is to capture do-
main knowledge in the form of domain entities and the relationships between them.
The result of information analysis is an information model. Operational analysis
produces the operational model which shows the workflow of the application by

12

2.2. Domain engineering

documenting the relationships between the objects in the information model and
the features in the feature model. Another important artifact of this phase is the
domain dictionary which defines the terminology used in the domain.

ODM

ODM [Simos 1995], is generally considered as a method for domain engineering of
legacy systems, but can also be applied to the modeling of new systems. It is a
customizable and configurable process which can be integrated with other software
engineering stages. The main phases of this method are planning, modeling a do-
main, and engineering asset-base.

The phase of planning is further divided into three sub-phases which are setting
objectives, i.e., determining who the stakeholders are and what their objectives are;
domain scoping, i.e., characterizing and selecting the focus of a domain based on
stakeholders’ objectives; and domain definition, i.e., setting domain boundaries and
identifying the main features of the domain.

Domain modeling includes acquiring domain information, i.e., planning, acquir-
ing and integrating the data; describing domain, i.e., developing a lexicon, and
modeling concepts and features; and refining domain, i.e., integrating descriptive
models, feature selection rationale and interpretation of domain models.

The phase of engineering asset-base includes scoping the asset-base, i.e., correla-
tion of features to customers, their priorities and their selection for implementation;
architecting the asset-base, i.e., determining internal and external architecture con-
straints, and defining an asset-base architecture based on these constraints; and
implementing the asset-base, i.e., planning asset base implementation, and imple-
mentation of assets and supporting infrastructure [Simos 1996].

Formal domain engineering

The use of formal specification, which is based on a formal language, axiomatic
constraints and inference rules, is famous in software engineering since many years.
For the specification of domain models, it was probably first used by [Srinivas 1991].
The principle idea of this approach is to document domain knowledge with the help
of formal notations, such as mathematical models and algebraic specifications.

The idea of stepwise development, verification and validation of models is the
main highlight which differentiates formal domain engineering from others. With the
help of mathematical constructs, we can precisely document the facts of a domain.
The mathematical model also helps us in assessing its correctness by various means,
such as proving the consistency for verification or executing the model for validation.

The formal approach of modeling domains is similar to Draco in nature apart
from the difference that this approach is based on mathematical theories, such as
the algebraic specification theory, or the category theory. The idea of refinements
and rigorous development towards implementation are common features of both
approaches [Czarnecki 2000].

13

Chapter 2. Domain engineering, requirements engineering & formal
methods

Formal specifications can also be related one to another using specification mor-
phisms. Specification morphisms define translations between specification languages
which preserve the theorems that can be derived from the axioms using the infer-
ence rules. Therefore, in the formal approach, a domain model can be represented
in a number of formal languages including translations between them. The for-
mal models can later also be directly translated into codes in several programming
languages.

In recent times, Dines Bjørner’s work is most notable in the field of formal do-
main engineering. He has authored many articles on domain engineering using
this approach, e.g., [Bjørner 2010, Bjørner 2009a, Bjørner 2009b, Bjørner 2008b,
Bjørner 2008a, Bjørner 2007, Bjørner 2006, Bjørner 2005, Bjørner 2004]. He uses
RAISE Specification Language (RSL) [rai 2002] for the description of domains and
concentrates towards the formalization of as much domain facts as possible. His
main areas of interest are transportation, oil pipelines, container line industry, etc.

Our research differs from his work on two main fronts. First, we head towards
the enrichment of domain models while paying as much attention to verification and
validation as to specification. Second, our concerns are also to check the capability of
Event-B as a domain engineering tool and to point out and address (where possible)
the issues with which we are confronted during this exercise. The choice of the
formal method can be another difference. We compare both of them, Event-B and
RAISE [Group 1993b], in section 4.7.

2.3 Requirements engineering

2.3.1 Requirement

The IEEE standard glossary of software engineering terminology [IEEE 1990] defines
requirement as “a condition or capability needed by a user to solve a problem or
achieve an objective.” Alternatively, it is defined as “a condition or capability that
must be met or possessed by a system or system component to satisfy a contract,
standard, specification, or other formally imposed documents.”

Requirements express the needs of stakeholders (system users, organization, com-
munity, government bodies and industry standards). They identify the attributes,
capabilities, characteristics, or quality of an operational system so that it can provide
some utility to stakeholders.

Ideally, requirements are independent of design, i.e., they shall only demonstrate
that “what” the system should do, rather than “how” it should be done. However,
in reality, this is not always the case. Drawing the line between “what” and “how”
has always been considered as a challenge of requirements engineering. One of
several reasons for this is that the meanings of “what” and “how” vary from person
to person [Davis 1990].

14

2.3. Requirements engineering

2.3.2 Requirements engineering

In a broader sense, the overall goal of the requirements engineering process is to
create and maintain system requirements documents. It is a process to understand
what are the customers’ requirements, analyzing these requirements, assessing their
feasibility, negotiating a reasonable solution in case of any conflict, specifying these
requirements unambiguously, validating them, and managing them until they are
transformed into an operational system [Thayer 1997].

According to [Zave 1997b], “requirements engineering is the branch of software
engineering concerned with the real-world goals for, functions of, and constraints
of software systems. It is also concerned with the relationship of these factors to
precise specifications of software behavior, and to their evolution over time and
across software families.”

Laplante [Laplante 2009] defines the phase of requirements engineering as a sub-
discipline of system and software engineering which is related to determining the
goals, functions, and constraints of hardware and software systems.

According to [Sommerville 2006], the requirements refer to the services provided
by the system and its operational constraints and requirements engineering is a
process to discover, analyze, document and assure these services and constraints.

According to [Loucopoulos 1995], requirements engineering is a systematic pro-
cess of developing requirements through an iterative co-operative process of analyz-
ing the problem, documenting the resulting observations in a variety of representa-
tion formats, and checking the accuracy of the understanding gained.

2.3.3 Classification of requirements

Sommerville [Sommerville 2006] classifies software requirements into two categories:
user requirements and system requirements. User requirements, which are the high
level abstract requirements, describe, either in plain language or graphically, the
services and constraints of the system. Whereas, system requirements, which are
the detailed description of the system, precisely describe the functions, services and
operational constraints of the system in details, and acts as an agreement between
users and developers. Following is the brief classification of the different software
system requirements:

Functional requirements

A functional requirement is a software requirement that specifies the function of a
system or of on of its component. The primary objective of functional requirements
is to define the behavior of the system, i.e., the fundamental processes or transfor-
mations that software and hardware components of the system perform on input to
produce output. The plan for implementing functional requirements is detailed in
the system design. Example of functional requirements of a transportation system
may be: vehicles move, they cross hubs, they traverse path, etc.

15

Chapter 2. Domain engineering, requirements engineering & formal
methods

Non-functional requirements

A non-functional requirement is a software requirement that specifies the criterion
to judge the behavior of a system, i.e., it describes how the software should perform
rather than what it performs. The plan for implementing non-functional require-
ments is detailed in the system architecture. Non-functional requirements become
part of requirements documents under several names, such as quality requirements,
quality attributes, quality goals, quality of service requirements, quality constraints,
and non-behavioral requirements. Examples of non-functional requirements are col-
lision avoidance, fuel efficiency, timing, etc. The figure 2.1 shows a detailed classifi-
cation of non functional requirements.

Figure 2.1: Types of non-functional requirements [Sommerville 2006]

Functional versus non-functional requirements

The notion of non-functional requirement may become quite fuzzy sometimes. The
functional requirement of one system may be the non-functional requirement of an-
other. For instance, a system requirement states that a vehicle moves from one place
to another. An adjunct non-functional requirement may be associated to this which
states that this movement should be collision free. However, in another system the
functional requirement may state that a vehicle moves from one place to another
without having any collision with another vehicle. In this case, the property of
collision avoidance becomes the functional requirement of the system. In another
scenario, a user requirement of security may be a non-functional requirement. How-
ever, when the system is developed this requirement may give birth to a requirement
related to user authentication which may be a functional requirement. The bottom
line is that the line which separates requirements from functional to non-functional
is very thin and their classification sometimes becomes not as clear-cut as the defi-
nitions suggest.

16

2.3. Requirements engineering

2.3.4 Phases of requirements engineering

Different authors include different sub-processes as part of requirements engineer-
ing but the common primary activities during different requirements engineering
processes are elicitation, analysis and documentation, negotiation, verification and
validation, change management, and requirements tracing. Following is a brief in-
troduction to each of them:

Requirements elicitation

Requirements elicitation or requirements gathering is the process of obtaining the re-
quirements of a system from different stakeholders. Apart from stakeholders, which
are the main source of requirements, requirements may also come from engineering
needs, safety constraints, legislation, cultures, lessons learnt, etc. An additional
process of context analysis [Ross 1977], which highlights the main motives behind
the construction of the system, may also give new insights about the system.

The common activities during the requirements elicitation phase, according
to [Zowghi 2005], are understanding the application domain, identifying the source
of requirements, analyzing the stakeholders, selecting the techniques, approaches,
and tools to use, and eliciting the requirements from stakeholders and other sources.
The gathered requirements may be collected in several forms, such as pictures,
sketches, scenarios, uses cases, goals, natural language statements, and formal mod-
els. The common methods used to gather requirements from stakeholders are inter-
views, questionnaires, observations, workshops, brainstorming, use cases, prototyp-
ing, ethnography, etc.

Besides the problem of completeness, i.e., the acquisition of all necessary re-
quirements, according to [Christel 1992], there are also few other notable problems
associated with the phase of requirements elicitation, such as scoping, i.e., ill-defined
boundary of the system or un-necessary technical details from customers, under-
standing, i.e., customers’s lack of assurance with respect to his requirements, poor
understanding towards capabilities and limitations, insufficient understanding of the
problem domain, trouble in communicating needs to the system analysts, etc, and
volatility, i.e., change in requirements over the period of time.

Requirements analysis & negotiation

Requirements analysis is a process of categorization and organization of requirements
into related subsets, exploration of relationships among requirements, examination
of requirements for consistency, omissions and ambiguity, and ranking requirements
based on the needs of customers [Pressman 2005]. The structured analysis of the
requirements can be achieved by analysis techniques, such as requirements anima-
tion, automated reasoning, knowledge-based critical analysis, consistency checking,
analogical and case-based reasoning.

It is common during the requirements analysis phase that different customers
propose conflicting requirements, which from their point of view are essential for the

17

Chapter 2. Domain engineering, requirements engineering & formal
methods

system. The analyst must reconcile these conflicts through a process of negotiation.
During the process of requirements negotiation, stakeholders are asked to rank their
requirements, risks associated with each requirement are identified and analyzed,
rough cost estimates are made for each conflict, and then, depending upon the
requirement priorities, requirements are eliminated, combined or modified.

Requirements specification1

Once requirements have been elicited, analyzed and negotiated, they need to be doc-
umented. The phase of requirements specification serves this purpose. There are
several ways to specify software requirements, either through a document written
in natural language, a graphical model, a formal mathematical model, a collection
of usage scenarios, a prototype, or any combination of these. The three most com-
mon classes of languages for requirement specifications are informal, semi-formal
and formal languages. Informal languages, such as natural language, pictures, etc.,
are expressive and can be understood by all stakeholders including non-technical
customers but are ambiguous. Semi-formal languages, such as Entity Relationship
Diagrams (ERD) [Chen 1976], Data Flow Diagrams (DFD) [Yourdon 1979], State
Transition Diagrams (STD) [Booth 1967], etc., are easy to understand and pro-
vide a good overview of the system. Formal languages, such as B [Abrial 1996],
Z [Spivey 1989], Vienna Development Method (VDM) [Jones 1986], specify require-
ments very precisely but are costly and hard to read for non-technical stakeholders.

Any language of specification can be chosen depending upon the project’s needs
however it should be noted that expressiveness and precision should be the key fac-
tors while making this choice. Each of these languages is popular for the development
of particular systems: for large systems, a written document in natural language sup-
ported by few graphics may be the best approach, for relatively smaller systems,
scenario based approaches may provide better results, and for safety-critical systems,
use of formal methods is considered as industry standard. IEEE [IEEE 1998b] sug-
gests a standard template for writing software specifications in a consistent and
understandable manner. However, these are just guidelines and sometimes remain-
ing flexible during system specification is advisable.

Software requirements specification is a part of the overall system specification
document. The former is the foundation for software and the latter serves as the base
for the whole system including software, hardware, database, etc. It constrains the
computer-based system and define its operations. System specification also describes
the information (data and control) that is input to and output from the system. Both
requirements engineers and system analysts participate in the development of this
document.

1A detailed discussion on the subject of specification can be found in chapter 3.

18

2.3. Requirements engineering

Requirements verification & validation2

Correctness, as defined by [McCall 1977], is the extent to which a program satisfies
its specifications and fulfills the customer’s mission objectives. Verification and
Validation (V&V) are the means to establish that a specification is correct with
respect to customer’s requirements.

According to the IEEE Standard Glossary of Software Engineering Terminol-
ogy [IEEE 1990], verification is defined as “the process of evaluating a system or
component to determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase.”

Validation, as defined by IEEE Standard Glossary of Software Engineering Ter-
minology [IEEE 1990], is “the process of evaluating a system or component during
or at the end of the development process to determine whether it satisfies specified
requirements.”

V&V is an ongoing process throughout the software life cycle, however its in-
corporation earlier during the development has always been a good idea. V&V
activities examine the specification to ensure that all system requirements have
been stated unambiguously, consistently, completely, and correctly. A comprehen-
sive V&V process includes both static and dynamic techniques. Static techniques
correspond to analysis of requirements documents, design documents and the pro-
gram source code. Dynamic techniques, commonly known as testing, corresponds
to the execution of the artifacts, such as prototyping, animation, simulation, etc.
Its task is to show that requirements model in some easily comprehensible form to
customers. IEEE [IEEE 2004] proposes a comprehensive verification and validation
plan for the software development life-cycle.

Requirements management

Requirements engineering is an ongoing process. But then a question arises, if this
process is ongoing, then when can we start building the system? The problem
is hard to define “fully,” therefore requirements of most of the systems are also
incomplete. The understanding of the stakeholders constantly change as we proceed
with software development. Even when the software is installed, new requirements
may emerge.

The answer to all aforementioned problems lies in requirements management.
Requirements management is a set of activities during which we identify, control,
and track any possible changes to requirements at any time during the life of the
project. A track list must be kept for new requirements and also between dependent
requirements because if one requirement changes, it may have effect on several other
related requirements. During elicitation, requirements can be classified as enduring
requirements, i.e., relatively stable requirements or volatile requirements, i.e., likely
to change requirements. With this classification it becomes relatively easy to predict
which requirement is prone to change. Since change management is quite expensive,

2A detailed discussion on the subject of V&V can be found in chapter 3.

19

Chapter 2. Domain engineering, requirements engineering & formal
methods

it must be guided by a standard and well-defined process, and it should be planned
at the beginning of the requirements elicitation phase. Use of traceability policy
to define and maintain the relationships among requirements is often advised along
with Computer Aided Software Engineering (CASE) tool support for requirements
management.

2.3.5 Requirements engineering methods

Viewpoint-oriented approaches

The development of a complex system description or model involves many agents,
i.e., participants, actors, etc. These agents have different views of the system under
consideration. These views are, in general, partial and incomplete pictures of the
system because these agents have different responsibilities and roles. These responsi-
bilities and roles may be organizationally defined, following some defined structure,
or may reflect different modeling or descriptive capabilities. The combination of
the agent with his views of the system is termed a viewpoint. The study of view-
points embraces the relations between views, between views and agents, and between
agents [Finkelstein 1996]. The notable viewpoint-oriented requirements engineering
methods are COntrolled Requirements Expression (CORE)) [Mullery 1979], Struc-
tured Analysis and Design Technique (SADT) [Marca 1987], Process and REquire-
ments VIEWpoints (PREview) [Sommerville 1997], etc.

Goal-oriented approaches

A goal is an objective that the system under construction should achieve [Lamsweerde 2001].
Goals represent intended properties and can cover both functional concerns that the
new system should provide, and non-functional concerns related to its quality of ser-
vice, such as security, safety, etc. Contrary to requirements, there are multiple agents
involved in the achievement of a goal. Goals can be used for multiple tasks, for in-
stance, a goal can provide rationale for some requirements, it can be used to assess
the completeness and relevance of a requirement, or it can be used for requirements
identification. For instance, a requirement is justifiable and relevant if it leads to
satisfaction of a goal, and requirements are complete if all goals are satisfied with the
set of defined requirements. Some notable goal-oriented requirements engineering
methods are the NFR Framework [Mylopoulos 1992] or Knowledge Acquisition in
autOmated Specifications (KAOS) [Dardenne 1993], i∗ [Yu 1997].

Scenario-based approaches

According to [Sutcliffe 2003], scenarios are descriptions of the real-world and stories
narrated by stakeholders used for modeling and specifying system requirements.
From the point of view of requirements, scenarios are examples of real-world ex-
periences, expressed in natural language, pictures, etc. From the point of view of

20

2.4. Formal methods

specification, scenarios are like models, such as use cases, threads through use cases,
and other descriptions of sequence of events.

By another definition [Jarke 1998], a scenario is a description of a possible set
of events that might happen. The main goal for constructing scenarios is to stim-
ulate thinking about possible occurrences, assumptions relating these occurrences,
possible opportunities, possible risks, and possible courses of action.

Some notable scenario-based requirements engineering approaches are Unified
Modeling Language (UML) [Booch 1998], Class-Responsibility-Collaboration (CRC)
card approach [Beck 1989], Scenario Based Requirements Elicitation (SBRE) [Holbrook 1990],
and Negative Scenarios and Misuse Cases Method [Alexander 2003] [Alexander 2004].

Problem frames

The Problem Frames (PF) approach is based on the decomposition of complex prob-
lems into structured sets of simpler interacting subproblems with understandable
interfaces in order to deal with their complexity. The solution to the original prob-
lem then lies in the combined descriptions and solutions of these sub-problems. The
rationale behind the key point of the PF approach, i.e., decomposition of complex
problems into familiar sub-problems, is that if a similar problem has been solved in
the past, it is beneficial to use it in solving the current problem. Thus, the approach
sets out to identify the common simple problems which can be used as patterns
onto which the complex problems should be decomposed. These classes of common
problems are identified from the body of work on problem analysis for software devel-
opment, in the same way as design patterns are identified from software design work.
The PF mostly target the specification of functional requirements [Jackson 2001].

2.4 Formal methods

The term formal methods refers to the particular kind of mathematical techniques
which are employed for the specification, verification and validation of software
requirements. Formal methods are based on a variety of theoretical computer science
fundamentals, such as formal languages, automata theory, program semantics, logic
calculi, algebraic data types, etc.

The use of formal methods enables software engineers to produce software ar-
tifacts (domain models, requirements specifications) which can be considered con-
sistent and unambiguous as compared to those produced using other conventional
software engineering methods. Once specified, these artifacts then undergo a series
of verification and validation steps, in order to ensure their consistency, correctness,
and completeness. The use of refinement further strengthens the prescription power
of formal methods. This natural style of specification development, in which the
understanding of the system by the specifier increases with the passage of time,
also helps correct specification of the models. The power of automated tools fa-
cilitates developers on issues like learning curves, time to market, automated code
generation, etc.

21

Chapter 2. Domain engineering, requirements engineering & formal
methods

Formal methods are generally considered as expensive. One of the cost-effective
way to use them may be to specify a system formally and then to develop programs
from this informally. However, in high-integrity systems where safety or security
is of utmost importance, a software can be developed in in more formal way. For
example, proofs of properties or refinement from the specification to a program may
be undertaken. Theorem provers or model checkers can then be used to ensure
program verification.

Like for programming languages, the semantics of formal methods can also be
classified into denotational, operational and axiomatic. In denotational semantics,
the meaning of a system is expressed in the mathematical theory of domains. For
example, a system might be represented by partial functions, by actor event diagram
scenarios, or by games between the environment and the system. In operational
semantics, the meaning of a system is expressed as a sequences of computational
steps. These sequences are then the meaning of the program. For example, in the
context of functional programs, the final step in a terminating sequence returns the
value of the program.

In axiomatic semantics, which we use to model our domain, the meaning of a
system is expressed in terms of preconditions and postconditions which are true
before and after the system performs a task, respectively. Such formal specifica-
tion typically consists of state variables, constraints on these variables known as
invariants, and functions/operations/events. The variables of the system contains
the latest state information which can only be altered by defined operations. The
invariant specify the conditions for variables which must remain valid throughout
the execution of a function.

2.4.1 Advantages of formal methods

Following are the main advantages to employ formal methods in software develop-
ment:

• Formal methods help better specification of requirements. Formal specifica-
tions are consistent and unambiguous, thus making the overall requirements
engineering process better than conventional methods.

• Formal methods are compatible with several phases of software engineering.
From domain models to testing, the integration of formal methods make soft-
ware more dependable.

• Formal methods are supported by tools. The supporting tools operate on formal
specifications and assist in automated verification, testing and code generation.

• Formal methods help better construction of software. They also increase its
efficiency. Better software means its requirements are consistent, complete
and chances of bugs are less, thus increasing software’s productivity.

22

2.4. Formal methods

• Formal methods help execute the specifications. It means customers can be
involved into the development right from the start and requirements errors
can be rectified right on the spot.

2.4.2 Disadvantages of formal methods

Besides their several advantages, the use of formal methods are still not popular in
industry. Some of the possible reasons for their unpopularity are:

• The use of formal methods is expensive. It requires lots of time, skilled labor
and changes in development attitude.

• Formal methods are difficult. Not all stakeholders feel comfortable with the
complexity of formal methods, not even software engineers, let alone cus-
tomers.

• Not all formal methods enjoy good tool support. Even if the tools are there,
they are still crude, may contain bugs and are difficult to use.

• Formal methods lack success stories. Apart form safety-critical systems, there
are not much success stories in other domains of software which certainly
impede the penetration of formal approach in industry.

• The expressiveness of formal methods is questionable. It is difficult to specify
the complete behavior of the system with formal methods; non-functional
properties of performance and reliability are vivid examples of this.

• Formal methods are notorious. Different people have different prejudices to-
wards formal methods. Most of these preconceived opinions are myths which
are covered in the following section.

2.4.3 Myths of formal methods

In two separate papers, Hall [Hall 1990] and Bowen [Bowen 1995a] present several
myths associated to the use of formal methods. Some of these myths are concisely
discussed as follows:

• Formal methods can guarantee perfect software. This assumption is wrong as
formal methods only model real-world phenomena and system requirements.
The model can still contain many misunderstandings, errors and omissions.
However, if applied carefully and in proper fashion, formal methods can sig-
nificantly improve the process of specification, verification and testing.

• Formal methods are all about program proving. This assumption is also wrong
as the role of formal methods is evident in domain modeling, requirements
specification, testing, etc. Yes, verification is one of the powerful facet of
formal methods, but it’s not the only one.

23

Chapter 2. Domain engineering, requirements engineering & formal
methods

• Formal methods are unacceptable to users. This myth is also not correct as
visualization techniques, such as animation can be used to demonstrate the
requirements to users to get their feedback.

• Formal methods are not used on real, large-scale software. The use of formal
methods is actually recommended for large-scale software because of their
time-scale and high costs. The development of some software, like mission
and safety-critical software, nowadays, is not complete without the use of
formal methods.

• Formal methods increase the cost of development. It depends! Using formal
methods for design of an inventory control system may not be the best idea
where time to market is short and requirements are relatively straightforward.
However, in safety-critical systems, formal methods can help managing the
costs by investing less on flawed requirements, design change and bug fixing.

• Formal methods are not supported by tools. Most of the formal methods, nowa-
days, are supported by tools. However, this is another debate whether these
tools are suitable for industrial usage or not. In fact, tools like Safety Critical
Application Development Environment (SCADE) 3, Isabelle [Paulson 2008],
etc. are quite successful in industry.

• Formal Methods only apply to software. In fact, the use of verification tech-
niques is very popular in hardware industry too, such as the use of Isabelle
at Hewlett-Packard in the design of the HP 9000 line of server’s runway
bus [Camilleri 1997], or the use of HOL at Intel’s lines of processors [Harrison 2003].

2.4.4 Guidelines for formal methods

In a famous paper “Ten commandments of formal methods,” Bowen et al. [Bowen 1995b]
present some general guidelines, which they reassert after a decade in the pa-
per [Bowen 2006], to be employed while using formal methods. A brief summary of
their papers is discussed here:

• Choose appropriate notation. Since a modeling notation plays a very important
role in the formal specification of requirements, therefore it must be chosen
carefully while keeping in mind its advantages, as well as its limitations. Some
desirable language features could be vocabulary, tool support, relevance with
the system under consideration, etc.

• Do not over formalize. Not every component of the system needs to be for-
malized mathematically. The modeler should assess the nature of require-
ments and should take a decision about the specification procedure. Generally,
safety-critical and fault-tolerance aspects of the system are given priority for
formal specification.

3http://www.esterel-technologies.com/products/scade-suite/

24

2.5. Summary

• Estimate costs. Formal methods are notorious for higher startup costs, staff
training, acquisition of supporting tools, consultants, etc., which increase the
overall cost of the project. A feasibility study and cost analysis must be done
at the start of the project against the expected Return On Investment (ROI).

• Have a supervised formal development. Development of projects with formal
methods sometimes become tricky. For novices, it is recommended to have it
supervised under the guidance of some expert, consultant, guru, etc. Desired
results are hard to reap with un-supervised first time experience with formal
methods.

• Document sufficiently. Formal methods are known for their concise, unam-
biguous, and consistent specification documents. However, it is recommended
that a natural language explication of formal specifications should also be
there for further reinforcement of the reader’s understanding of the system.

• Do not compromise on quality. The use of formal methods is not a “silver bul-
let” [Brooks 1987] for software crisis. However, if applied in the appropriate
way, formal methods can achieve higher system integrity but still, perfect soft-
ware can not be guaranteed. Therefore, it is better to employ other measures
too to ensure that software complies with its quality standards.

• Do not be dogmatic. Formal methods are no panacea either, therefore it must
be clear that their employment would not provide 100 percent assurance of
correctness. So, a formal development may also contain small omissions, minor
bugs, and other attributes that do not meet expectations.

• Do not abandon traditional development methods. The best results can be
obtained by the incorporation of formal methods into the existing traditional
software development, object-oriented, for example.

• Test sufficiently. Testing has always been considered as a successful manner
to find bugs in a software. This integral part of traditional software develop-
ment should be continued as a standard operating procedure even during the
development inspired by formal methods. It will further improve its quality.

• Reuse. In the longer run, when it comes to cost of development and quality,
the only rational answer to this question is reusability. This is the same case,
even with formal software development.

2.5 Summary

In this chapter, we have presented the triptych of modern software development
which is based on the pillars of domain engineering, requirement engineering and
formal methods. We have defined what are domains and how to model them. We
then relate domain engineering with requirements engineering because in a broader

25

Chapter 2. Domain engineering, requirements engineering & formal
methods

spectrum the former is the part of the latter. We saw the different types of require-
ments, and phases and methods for their modeling. In the last section of the chapter,
we shed some light on formal methods and discuss their advantages, disadvantages,
myths and guidelines.

26

Chapter 3

Domain specification, verification

& validation

Contents
3.1 Introduction . 27
3.2 Domain specification . 28
3.3 Domain verification . 29

3.3.1 Model checking . 30
3.3.2 Theorem proving . 30

3.4 Domain validation . 31
3.4.1 Prototyping . 31
3.4.2 Animation . 32
3.4.3 Reviews . 33
3.4.4 Structured walkthroughs . 33

3.5 Summary . 34

3.1 Introduction

The three important phases of a software development life cycle, inspired by formal
methods, are specification, verification and validation. While the purpose of the
specification is to document the requirements of the system to be built either in
natural language, graphically or formally, the later two are employed to measure
the correctness of the system. As the complexity of software systems keeps increas-
ing, we clearly see two paradigm shifts. First, traditional verification and validation
methods goes from informal to semi-formal or fully formal. Second, they are in-
troduced in development as early as possible. Since domain engineering precedes
requirements engineering, it may be the first phase subjected to all these software
quality assurance activities.

Though both verification and validation amount to measure the correctness of
software, yet they are distinct activities. One simple difference between them, ac-
cording to [Boehm 1978], is that verification answers the question “are we building
the product right?”, whereas validation answers “are we building the right prod-
uct?” The outcome of each activity is a different artifact. Figure 3.1 explains this

Chapter 3. Domain specification, verification & validation

fact where a verification technique, proving, yields a verified specification and a
validation technique, animation, produces a validated specification. However, the
desired result is to produce a unique document which is amenable to both verifica-
tion and validation. This is one of the scientific questions which we later address in
this thesis.

Figure 3.1: Verification vs. Validation

In this chapter, we explain, in detail, the phenomena of domain specification,
verification and validation as well as different approaches towards these techniques.
The organization of the chapter is as follows: Section 3.2 describes the process of
domain specification. Section 3.3 discusses the idea of domain verification and its
two techniques: model checking and theorem proving. Section 3.4 introduces the
technique of domain validation and its supported methods. The chapter is finally
summarized in section 3.5.

3.2 Domain specification

Domain specification is a complete description of the behavior and properties of
a domain. This document intends to specify the domain’s intrinsic and extrinsic
properties, facts, laws, enforceable requirements, etc. While the specification of a
domain can be written in natural language, it may be ambiguous, error-prone and
difficult to verify and validate.

Formal methods come to the rescue at this point as formal specifications, written
in some precise formal and mathematical language, express domains at same level of
abstraction for all stakeholders. The precise description of its facts gives stakeholders
a deeper understanding of the domain being specified. This practice is helpful for
uncovering design flaws, inconsistencies, ambiguities and incompletenesses. Such
specifications contribute to closing down the communication gap between customers,
analysts, designers, developers, and testers.

In order to specify domains, according to [Lamsweerde 2000], a formal specifica-
tion language must be composed of three integral components: a syntax, i.e., rules
for determining the grammatical well-formedness of sentences, a semantics, i.e., rules
for interpreting sentences in a precise way, and a proof theory, i.e., rules for inferring
useful information from the specification. Structuring relationships, such as special-
ization, aggregation and instantiation, in addition to integral components, are also
highly recommended. The other desirable properties of a good specification lan-
guage are: adequacy, i.e., its ability of stating the problem adequately, consistency,

28

3.3. Domain verification

i.e., its ability of semantic interpretation that makes true all specified properties
taken together, etc.

The use of formal methods for the specification of domains depends upon the
nature of the systems it models. Some formal methods, such as B, Event-B, Z,
VDM, focus on specifying the behavior of sequential systems. States of the sys-
tem are expressed in terms of mathematical structures like sets, relations, axioms,
functions and events, and transitions among states are expressed with pre and post-
conditions. Some formal methods, such as Communicating Sequential Processes
(CSP) [Hoare 1985], Calculus of Communicating Systems (CCS) [Milner 1982], Stat-
echarts [Harel 1987], Temporal Logic [Pnueli 1981], Language of Temporal Ordering
Specification (LOTOS) [Logrippo 1990], focus on specifying the behavior of concur-
rent systems. States of the system are either expressed by simple domains like
integers or are left uninterpreted, and behavior is expressed with sequences, trees
or partial orders of events. Some formal methods, such as RAISE, facilitate the
description of richer state spaces in combination with concurrency mode. These
specification languages are usually closer to programming languages.

Some specification languages (not strictly formal though), such as UML and
Specification and Description Language (SDL) [Olsen 1994] are sometimes consid-
ered for the specification of general purpose or process-based concurrent systems
respectively.

3.3 Domain verification

Domain verification is a process which is employed to judge the ability of the do-
main specification to comply with regulations/conditions incepted at the time of its
writing. Used in a broader sense, i.e., related to the overall software development,
the goal of verification is to assure that the software fully satisfies all the expected
requirements. Techniques for such kind of verifications are classified into two cate-
gories: dynamic verification which is also known as testing and is good for finding
bugs, and static verification which is also known as analysis and is useful for proving
correctness of a domain.

Prior to domain verification, it is imperative to determine the verification ap-
proach and that the facts are adequate. Once a desirable verification technique has
been selected then it is applied over the specification to check if the facts defined in it
are consistent. The purpose of verification at this phase is to verify the correctness,
completeness and consistency of the domain model. Inspections or reviews can be
performed to determine that all the facts have been stated (this is more related to
validation than verification and would be discussed in detail later in the chapter).

The process of formal verification, based on mathematical techniques, verifies
that a specification conforms to some precisely expressed notion of functional cor-
rectness [Bjesse 2005]. In formal verification, the goal is to search for some input
patterns that the environment could generate that will violate the given properties
that must hold.

29

Chapter 3. Domain specification, verification & validation

Formal verification, which proves or disproves the correctness of a model with
respect to certain formal specification or property using formal methods, is equally
suitable for a variety of software and hardware systems ranging from cryptographic
protocols and safety-critical systems to digital and combinational circuits. The un-
derlaying rationale, as described above, is to provide a formal proof of the correctness
of an abstract mathematical model of the system.

According to [Huth 2000], formal verification techniques generally consist of
three main components: a framework for modeling, i.e., a specification language,
a property specification language, i.e., a temporal logic, and a verification method
supporting the checking of properties in the model. The verification techniques em-
ployed, such as model checking or theorem proving, depend upon certain factors,
such as tools which are sometimes completely automated or sometimes require hu-
man intervention, specification of the model which ranges from high-level to very
fine grained, and application domains, i.e., concurrent systems, sequential systems,
reactive systems.

According to [Clarke 1996], two well established formal verification approaches
are model checking, i.e., the exploration of the whole state space to verify a property,
and theorem proving, i.e., rigorous mathematical reasoning about system properties.
These formal verification techniques, though effective, also have some limitations,
such as the problem of state space explosion with model checking, and the problem
of complexity and noticeable human interaction with theorem proving. Following is
a brief introduction to both techniques.

3.3.1 Model checking

To employ the technique of model checking, a formal model of the domain is con-
structed in the first place and then it is checked if certain properties hold in this
model. This is done by an exhaustive search of the state space, therefore some kind
of finiteness is mandatory. A finite model of large size is still a problem, there-
fore states of the model must be reduced to some reasonable size. Two general
approaches widely practiced in model checking, according to [Clarke 1996], are tem-
poral model checking [Clarke 1982], i.e., modeling with state transition diagrams
where properties are specified by temporal logic [Pnueli 1981], and automata where
both the model and its properties are specified as automata and are compared for
property verification by notation, such as refinement orderings [Cleaveland 1993],
observational equivalence [Roy 1992], etc.

The advantages of the technique of model checking are the automated tool sup-
port, relatively fast verification, generation of counter examples, support for partial
specifications, ease of use, etc. The disadvantages of this technique are that it may
not scale up because of state explosion (there also exists some solutions to this
problem like Binary Decision Diagrams [Bryant 1986]), etc.

Some notable model checkers are Simple Promela INterpreter (SPIN) [Holzmann 1997],
KRONOS [Bozga 1998], Software, Languages, Analysis, and Modeling (SLAM) [Ball 2004],
and Berkeley Lazy Abstraction Software verification Tool (BLAST) [Henzinger 2003].

30

3.4. Domain validation

3.3.2 Theorem proving

To employ the technique of theorem proving, the domain and its properties are first
documented using (first or higher-order) logical statements and then it is shown
through mathematical proofs that some of the statements, such as conjectures, are
logical consequences of a set of other statements, such as axioms and hypotheses.
These statements, defined with precise semantics, i.e., there is no ambiguity in
problem statement, are complemented by inference rules. The technique of theorem
proving can be used for domain verification either in automated mode, i.e., with
automated tools, or interactive mode, i.e., proofs by hand. The technique of theorem
proving is more popular in the domain of safety-critical systems for both of the
hardware and the software designs [Clarke 1996].

The advantages of the technique of theorem proving are its application to infinite
state space, the existence the proof object, etc. The disadvantages of this approach
are considerable human interaction, slower results, learning curves, the problem of
deciding the validity of a formula (depending upon the underlying logic), etc.

Some notable theorem provers are Isabelle [Nipkow 2002], Higher Order Logic
(HOL) [Gordon 1993], A Computational Logic for Applicative Common Lisp (ACL2) [Kaufmann 1996],
and Coq [Dowek 1993].

3.4 Domain validation

Once a specification is written and verified, the next step to consider is its valida-
tion. Verification alone is not sufficient to guarantee the correctness of the model
because verification does not check whether the specification documents the useful
requirements. Here is the point where validation comes into action and answers
the correctness and completeness problems in the specification and demonstrates
that the domain is fully expressed. The process of validation is an interrelated and
complementary process to verification. Also, it provides comprehensive approach
towards the testing in general and evaluation, review, inspection, and assessment in
particular.

The process of domain validation is similar to the process of software validation
where it is established by examination and provision of objective evidence that all
the user, system, software and other requirements have been captured correctly and
completely in the requirements specification document.

Following is a brief introduction to some of well-known validation techniques.
See Gemino [Gemino 2004], Yousuf et al. [Yousuf 2008], and Raja [Raja 2009] for
more details.

3.4.1 Prototyping

Domain prototypes are representations, simulations or demonstrations of a particu-
lar domain which help stakeholders discover problems in the model. The underlaying
rationale behind domain prototyping is to understand the domain requirements as

31

Chapter 3. Domain specification, verification & validation

they are. This method is equally good for domain elicitation as well as its validation.
A well-designed prototype helps engineers understand the intended behavior of the
domain. This exercise also pays off in the form of reduction of development efforts
by the integration of these prototypes into the final product.

Prototypes provide a channel for communication between developers, users and
management. Customers which become part of the domain validation process, help
in discussing particular problems, clarifying particular questions or preparing par-
ticular decisions. Explaining the requirements to implementers, which is generally
considered as a difficult task, becomes relatively simplified by employing the tech-
nique of prototyping [Budde 1990].

3.4.2 Animation

Animation, according to [Marc 1993], is a form of domain visualization that is
related to dynamic and interactive graphical displays of its specification’s funda-
mental operations. This technique is well-adapted for the concept of validation
where animation demonstrates the behavior of a domain through a visual interface
which reflects the state of events in graphical and (where appropriate) textual for-
mats [Lalioti 1993]. It is a kind of rapid prototyping. The benefit over here is that
we can convert the specification into a prototype without translating it into code.

In a typical animation session, some scenarios are created and then a walk-
through of a specification fragment is conducted in order to follow the scenario and
analyze the behavior of the domain. Any event and conceptual information are
abruptly reported to the user through the animator. Animation, like this, can be
used to determine causal relationships embedded in the specification or simply as
a mean of browsing through the specification to ensure adequacy and accuracy by
reflection of the specified behavior back to the user [Lalioti 1993].

The technique of animation focuses on the behavior of the system [Van 2004].
The principle is to simulate an executable version of the model and to visualize
the simulation in some form appealing to stakeholders. This point of view is well
adapted to the paradigm of events and event-based specification languages, such
as Event-B. Animators use finite state machines to generate a simulation process
which can be then observed with the help of UML diagrams, textual interfaces, or
graphical animations [Ponsard 2007]. If deployed for the validation of event-based
systems, animation checks if the events are fired in a sequence that follows the
protocol described by the original requirement document. When applicable, the
computation of values can also be used to check that the state of the model evolves
in a way consistent with the desired intentions.

Animation can be used early during the elaboration of the specification; there is
no need to wait until it is finished. As a relatively low-cost validation activity, ani-
mation can be frequently used during the process to validate important refinement
steps. It is a validation process which is consistent with the refinement structure of
the specification languages. This property of animation is of interest due to several
reasons. One of them is the fact that problems are detected close to the point where

32

3.4. Domain validation

their cause was introduced. This facilitates the understanding of the cause. Another
reason is the fact that an unforeseen behavior may be associated with a specific re-
finement. If refinement is seen as the formalization of a requirement, then it hints
an indication that some interactions between requirements need to be investigated.

The concept of visualizations of domains is not new. Program visualizations have
been previously used for designing, developing, monitoring and debugging software.
Some notable visualization environments spanning across different areas of inter-
est are graphics interface development [Clemons 1985], visualization of concurrent
processes [Roman 1989], etc.

3.4.3 Reviews

Review is a process during which domain models are reviewed by a group of people
(e.g., users, customers, analysts, specifiers). These reviews are either formal, al-
though not in the mathematical sense, i.e., governed by agreed rules, such as walk-
throughs, technical reviews, software inspections, or informal, i.e., relatively unstruc-
tured activities, such as “buddy checking.” IEEE Standard 1028-1997 [IEEE 1998a]
defines formal structures, roles, and processes for each of the aforementioned formal
review processes.

Formal reviews are generally preferred over informal reviews because they are
more cost-effective, less time-consumption, and better focused on the discovery of
real defects and their repair. These reviews help customers and developers to resolve
problems at early stages of development. The time consumed during this activity
eventually pays back by minimizing the changes and alteration in the software.

Though [IEEE 1998a] defines a set of general activities around formal reviews,
yet there is no standard review process for domain engineering. Customized review
processes can be designed according to needs, customers and markets. However, as
mentioned by [Kotonya 1998], the review process may consist of steps, such as plan-
ning a review by the selection of a team, a time and a place for the review meeting,
distributing documents among review team members, holding review meeting by
discussing problems and their possible solutions, follow-up actions to check if the
agreed upon actions are taken place or not, and revising the final document for the
acceptance or re-reviews.

While each review technique has its merits, the extent to which an informal ap-
proach can be applied to a large complex specification is questionable. Furthermore,
the use of formal technique, sometimes, requires the modeler to take certain design
decisions for implementation of the domain.

A validation method very similar to reviews, known as inspection [Fagan 1976],
is also used for validation purposes. However, it is not a common practice in industry
due to the cost which is associated to it.

33

Chapter 3. Domain specification, verification & validation

3.4.4 Structured walkthroughs

Structured walkthrough [Yourdon 1978] is a validation method for identifying in-
accurate and inconsistent facts present in the specification. A walkthrough is a
meeting for evaluation where domain specifications are inspected for inconsisten-
cies. It can be effectively utilized for the validation of informally defined textual
specifications and small-scale formal specification documents. The main ingredients
of a walkthrough are the review body including independent experts of the domain,
the distribution of review material, the problems identification, and the follow-up
meeting (if required). A walkthrough is generally organized and supervised by the
modeler, however any interested or technically qualified person can be part of the
review process. The detailed process of walkthrough is documented in [IEEE 1998a].

Walkthroughs, often also known as design reviews, differ from technical reviews
because of their flexibility in the structure of the method and objectivity. They are
also different from inspections because of their ability to hint about explicit changes
in the model. Lack of direct focus on training and process improvement is another
measure which differentiates them from inspections and makes them a less popular
validation method.

3.5 Summary

The three very important cornerstones of domain engineering are domain specifi-
cation, verification and validation. While the former captures and documents the
domain facts, laws and properties, the latter two are used to prove their correctness.
This chapter throws light on these three activities. We have defined what they are,
how they can be used and what are the different techniques to perform them. The
techniques of theorem proving and animation, which have been used extensively in
this thesis, are also discussed.

34

Part II

SPECIFICATION

Chapter 4

Event-B

Contents
4.1 Introduction . 37
4.2 Structuring mechanism . 38
4.3 Refinement . 39
4.4 Proofs . 39

4.4.1 Proof of invariant preservation 40
4.4.2 Proof of event refinement . 40
4.4.3 Proof to introduce new events 40

4.5 Decomposition . 41
4.6 Tool . 42
4.7 Related work . 43

4.7.1 Event-B versus RAISE . 43
4.7.2 Event-B & goal models . 44
4.7.3 Modeling of transportation domain in Event-B 44
4.7.4 Refinement mechanisms in Event-B 45
4.7.5 Specification of timing & temporal properties in Event-B . . 45

4.8 Summary . 46

4.1 Introduction

Formal development can be complex; that is why sophisticated and easy-to-use tools
are needed. They facilitate the application of formal methods by abstracting away
some of the difficulties behind convivial interfaces and also by making easier the
specification, verification and validation processes.

Event-B [Abrial 2007] is a formal language for modeling and reasoning about
large reactive and distributed systems. Event-B is based on set theory with the abil-
ity to use standard first-order predicate logic. Event-B is provided with tool support
in the form of a platform for writing and proving specifications called Rodin1.

In this chapter, we discuss the formal language Event-B. It is organized as fol-
lows: Section 4.2 presents Event-B’s structuring mechanism. Section 4.3 introduces
its concept of refinement. Section 4.5 discusses its idea of decomposition. Section 4.6

1http://rodin-b-sharp.sourceforge.net

Chapter 4. Event-B

discusses its tool support, Rodin. Section 4.7 compares Event-B with RAISE, a for-
mal method often used for domain engineering, discusses its previous involvement
in transportation sector and presents some reflections about its limitations. The
chapter is summarized in section 4.8.

4.2 Structuring mechanism

An Event-B model is composed of two constructs: machine and context. A typical
machine, as shown by figure 4.1, defines the dynamic element of the model and
contains the system variables, invariants, variants, and events. Variables are typed,
their values may be integers, sets, relations, functions or any other set-theoretic con-
struct. Invariants define the state space of the variables and their safety properties.
Variants are related to the correction of refinements.

An event, which defines a transition from one state to another, can be defined as
a binary relation built on the state set. This relation is composed of the guards and
actions of the event. A guard is a predicate and all the guards together construct
the domain of the corresponding relation. An action is an assignment statement to a
state variable and is achieved by a generalized substitution. Combined together, all
the actions form the range of the corresponding relation. The actions of a particular
event are executed simultaneously and non-deterministically. A typical context, as
shown by figure 4.2, defines the static elements of the model and contains carrier
sets, constants, axioms, and theorems. The last two are predicates expressed within
the notation of first-order logic and set theory.

MACHINE
Movement0

SEES
StartState

VARIABLES
location

INVARIANT
inv1 location ∈ Vehicles → GlobalLocations

EVENTS
INITIALISATION �=
BEGIN

act1 location := startVehicleLocation
END

travel �=
ANY

vehicle , newLocation
WHERE

grd1 vehicle ∈ Vehicles
grd2 newLocation ∈ GlobalLocations
grd3 newLocation �= location(vehicle)

THEN
act1 location (vehicle) := newLocation

END
END

Figure 4.1: Machine Movement0

CONTEXT
Location

EXTENDS
Net

SETS
GlobalLocations

CONSTANTS
hubLocations, obsHubLocations, connectionLocations,
obsConnectionLocations

AXIOMS
tec1 GlobalLocations �= ∅

typ1 hubLocations ⊆ GlobalLocations
typ2 connectionLocations ⊆ GlobalLocations
typ3 obsHubLocations ∈ Hubs → P(hubLocations)
typ4 obsConnectionLocations ∈ Connections →

P(connectionLocations)

pro1 hubLocations �= connectionLocations
pro2 hubLocations ∪ connectionLocations =

GlobalLocations
pro3 ∀ h1, h2 . h1∈ Hubs ∧ h2 ∈ Hubs ∧ h1 �=h2 ⇒

obsHubLocations(h1) ∩ obsHubLocations(h2)=∅
END

Figure 4.2: Context Location

38

4.3. Refinement

There are several relationships between machines and contexts: refinement, ex-
tension, and visibility. A machine can be a refinement of one, and only one, machine.
It then contains a more detailed and concrete description of the model. A context
can extend multiple contexts. It contains the static pieces of information of a model
associated to a refinement. A machine can see, that is, use the names and properties
of several contexts and a context can be seen by several machines.

4.3 Refinement

Refinement is a process to add details to a model in a stepwise manner. The ad-
vantage of this technique is that it allows the analysis of the model at reduced
complexity. Event-B embeds the notion of refinement as the basic element of a
specification development process. The abstract-refinement relationship needs to be
proved when a new refinement step is introduced to the model.

A refinement consists of introducing either new variables, new events, or new in-
variants. When appropriate, an abstraction invariant, often called gluing-invariant,
relates the new variables to the abstract ones. Individual events can be refined too
by strengthening their guards and adding actions on the new variables. The same
abstract event can be refined into several concrete ones. When a concrete event
refines an abstract one which is parameterized, then all abstract parameters must
receive a value in the concrete event. Such values are called the witnesses.

New events can also be introduced in the refinement process. Formally, they
are refinements of the SKIP event. Most often, new events express how an abstract
event is realized by a sequence of more concrete events. Such a decomposition may
lead to a divergent model: a model where the sequence of concrete events never
reaches its end and then prevent the abstract event from firing. Variants may be
explicitly introduced to guarantee the absence of divergence. They are natural
number expressions on the state of the model. When declared as “convergent,”
concrete events must strictly decrease the variant; when declared as “anticipated,”
they must not increase the variant.

4.4 Proofs

The correctness of refinement is assessed with the help of proof obligations. Proving
a refinement correct amounts to proving that concrete events maintain the invariant
of the abstract model, maintain the abstraction invariant, and, when appropriate,
decrease variants.

Proofs also ensure that specifications meet essential system properties, such as
safety and well-definedness. The proof obligations generated by Rodin are required
to be discharged using proof tools, either automatically or interactively.

The typical proofs related to a context are about well-definedness of an ax-
iom or a derived axiom. Proofs for the verification of a machine are more varied.
They are about the well-definendness of invariant, derived invariant, guard, and

39

Chapter 4. Event-B

action, invariant preservation, feasibility of a non-deterministic event action, etc.
The proofs related to refinement are guard strengthening, action simulation, equal-
ity of a preserved variable, etc. The proofs related to variants and witnesses are
well-definedness of variant, decreasing of variant, well-definedness of witness, etc.

4.4.1 Proof of invariant preservation

In order to prove that a machine maintains the invariant, we need to prove the
following condition:

P (s, c) ∧ I(s, c, v) ∧G(s, c, v) ∧R(s, c, v, v�) ⇒ I(s, c, v�)

Here v denotes the variables of the machine (v� is the value after execution) which
sees the context C with sets s and constants c. The properties of the constants are
denoted by P (s, c) and the invariant by I(s, c, v). G(s, c, v) is the guard of an event
whose before-after predicate is defined by R(s, c, v, v�).

4.4.2 Proof of event refinement

In order to prove that an event refines an abstract event, we need to prove the
following condition:

P (s, c) ∧ I(s, c, v) ∧Q(s, t, c, d) ∧ J(s, t, c, d, v, w)∧
H(s, t, c, d, w) ∧ S(s, t, c, d, w,w�) ⇒

G(s, c, v) ∧ ∃v�.(R(s, c, v, v�) ∧ J(s, t, c, d, v�, w�))

Here d, t, w represent new constants, sets and variables respectively, J(s, t, c, d, v, w)
and Q(s, t, c, d) are the gluing invariant and new axiom respectively, and H(s, t, c, d, w)
is the guard of new event with before-after predicate S(s, t, c, d, w,w�).

4.4.3 Proof to introduce new events

In order to introduce a new event in the refinement, we need to prove the following
three conditions:

1. Skip refinement

In Event-B, every new event must be the refinement of the SKIP event. The
following condition needs to be checked:

P (s, c) ∧ I(s, c, v) ∧Q(s, t, c, d) ∧ J(s, t, c, d, v, w)∧
H(s, t, c, d, w) ∧ S(s, t, c, d, w,w�) ⇒ J(s, t, c, d, v�, w�)

2. Non-divergence

New events should not prevent older events from happening. The following
condition needs to be checked:

40

4.5. Decomposition

P (s, c) ∧ I(s, c, v) ∧Q(s, t, c, d) ∧ J(s, t, c, d, v, w)∧
H(s, t, c, d, w) ∧ S(s, t, c, d, w,w�) ⇒

V (s, t, c, d, w) ∈ N ∧ V (s, t, c, d, w�) < V (s, t, c, d, w)

Here V (s, t, c, d, w) represents a variant.

3. Deadlock

Concrete machine must not deadlock before its abstraction. The following
condition needs to be checked:

P (s, c)∧I(s, c, v)∧Q(s, t, c, d)∧J(s, t, c, d, v, w)∧(G1(s, c, v)∨...∨Gn(s, c, v)) ⇒
(H1(s, t, c, d, w) ∨ ... ∨Hn(s, t, c, d, w))

Here Gi and Hi represent the abstract and concrete guards respectively.

4.5 Decomposition

The process of refinement can significantly enlarge the model because several new
state variables and events are introduced as part of the refinement. The complexity
of the model thus becomes hard to manage and the model needs to be cut into
smaller and manageable units.

The idea of decomposition is to divide the large event system into smaller pieces;
each piece is easily manageable as compared to the whole system and can be refined
independently. However, the constraint that must be satisfied by the process of de-
composition is that these independently refined pieces must be, later, transformable
into q single large unit. Recomposition is then the process which results into the
reunification of decomposed pieces into a system that could have been obtained
directly without the decomposition.

Models in Event-B can be decomposed on two bases: event-based [Butler 1996]
and state-based [Abrial 2007]. In event-based decomposition, a model is separated
on the basis of its events. We encapsulate the events or part of them (in the form of
new events), and their related variables in a separate component. The split events
are then synchronized in order to recreate the functionality of the original model.
This idea is also known as parallel composition.

In state-based decomposition, variables are split between different components;
some of them are shared which are then duplicated. Events are added to components
to simulate how the shared variables are used in other components. The components
are then refined while keeping shared variables and events synchronized. The system
can be rebuilt into a single model at the end of the refinement process.

41

Chapter 4. Event-B

4.6 Tool

Rodin is the tool that supports modeling in Event-B. Rodin is built upon the Eclipse
platform2 which allows it to be extended by plug-ins. Rodin supports the specifi-
cation of machines and contexts, their refinement, and their consistency checking
by automatically generating the proof obligations. Proofs can be discharged either
automatically, or with the help of third-party theorem provers, or interactively.

A snapshot of the Rodin platform is illustrated in figure 4.3. On the left hand
side, we have the projects of several specifications including machines (blue) and
contexts (violet). In the middle, we have the main window. Here, we can write
specifications in Edit mode or can see them in Pretty Print mode. On the right
hand side, we can see the elements of a particular machine in the Outline menu.
The menu Proving on the top right side enables the verification mode where proof-
obligations can be seen and discharged. The section under the main window is
used to show the errors and warnings. On the base of the right hand side, we have
mathematical symbols which ease specification writing.

Figure 4.3: Rodin platform

There are several plug-ins available for the Rodin platform, such as model check-
ers, animators, theorem provers, decomposition plug-ins, etc. The Rodin plat-
form does not inherently support decomposition/recomposition. This is work under
progress.

2http://www.eclipse.org

42

4.7. Related work

4.7 Related work

4.7.1 Event-B versus RAISE

Rigorous Approach to Industrial Software Engineering (RAISE) [Group 1993b] aims
to provide facilities for the industrial usage of formal methods in the development
of software systems. RAISE consists of RSL which is a powerful specification and
design language, a comprehensive development method [Group 1993a], and an ex-
tensive tool support. Its method is based on the stepwise refinement paradigm which
produces each refinement step using a posteriori verification, i.e., a refinement step
is developed and then the relation with previous step is verified. Verification under
RAISE is generally obtained by the technique of formal proof which is assisted by
tools. However, less formal techniques, such as rigorous arguments, can also be used
if this suits the practical and economic constraints.

Just as B [Abrial 1996] evolved into Event-B, RAISE is considered as extended
version of VDM. It includes the enhanced features of several formal techniques, such
as model oriented features of VDM, algebraic features of OBJ [Futatsugi 1985], con-
currency features of CSP, modularity features of Meta Language (ML) [Paulson 1996],
real time, etc.

The algebra-theoretic nature of most of its constructs is the basis of its structur-
ing mechanisms. Its states are specified via types and predicates, like other formal
methods but a change in state can be specified in several ways, such as imperative,
axiomatic, algebraic notations, etc. Event-B, on the other hand, is based on events
which are controlled by guards. State transitions are defined via generalized substi-
tutions. These guards and substitutions are similar to the concept of pre and post
conditions.

Event-B enjoys a much more liberal refinement mechanism as compared to
RAISE. In RAISE, a refinement must have a signature that includes the signature
of the abstract model. It is a tight 1-1 relation. Event-B, on the other hand, relaxes
this strict 1-1 relation in a way that its syntax allows abstraction to be refined in
more than one way. An abstract event can be refined by several events within the
same refining machine. The refinement mechanism of Event-B has been explained
in section 4.3.

RAISE achieves the notion of correctness of refinement through standard prin-
ciple of refinement consistency, i.e., at any time if an abstract operation is available,
any refinement of it must also be available (enabledness-preservation). Event-B,
adds the idea of non-divergence to it. So, in Event-B a refinement is correct if it is
enabledness-preserving as well as non-divergent.

In RAISE, it is theoretically possible to express and prove liveness [Lamport 1977]
of each machine separately, but authors like [Erasmy 1995, Gørtz 1994] have re-
ported different experiences. According to [Gørtz 1994], the concurrent style in
RSL cannot be used to specify pure progress properties, e.g., fairness, which is one
of the liveness properties. According to Erasmy et al [Erasmy 1995], the justification
editor of RAISE lacks rules for some important schemas to prove liveness, such as

43

Chapter 4. Event-B

parallel or sequential combinators. The poor ability of Event-B to describe temporal
properties is discussed in details in the section 6.2.

The tool support for RAISE is commercially available since 1991. These tools
revolve around the activities of writing specifications, type checking, performing jus-
tifications, translations of specifications into imperative languages like C++, Ada,
etc., and documentation. Plugins for translations into Standard ML (SML) [Milner 1997]
and Prototype Verification System (PVS) [Owre 1992], and generation of RSL from
UML class diagrams are also available. Although RAISE is sometimes criticized for
its incomplete set of rules for the justification editor, such as absence of rules for
parallel combinator, interaction of channel hiding and the parallel combinator, etc.,
yet overall its toolset is easy to use, uniform and relatively fast.

The extensive tool support for Event-B is one of its powerful aspects. Event-B is
supported by the platform Rodin which helps the writing and proving of specifica-
tions. The Atelier-B [Cle 2009] provers provide additional automated proof facilities
to the existing Rodin provers. Animators like ProB [Bendisposto 2008], AnimB3 and
Brama make possible the execution of specifications for their validation. UML-B
plugin [Snook 2006] allows users to translate UML models into Event-B specifi-
cations for verification and validation. B2Latex plugin allows for the printing of
Event-B specifications into latex for documentation purposes. One can also run B
models into the Rodin platform with the help of B2Rodin plugin. There are also
plugins for model decomposition, recomposition and code generation.

4.7.2 Event-B & goal models

The relation between KAOS [van Lamsweerde 2009] and Event-B is an active re-
search field. [Bisztray 2008, Aziz 2009] propose a syntactic extension and patterns
to model the notion of obligation introduced by a temporal model into Event-B.
[Matoussi 2008, Mashkoor 2010b] explore a similar approach. Both approaches rely
on systematic transformation rules to derive an Event-B model from a KAOS model.
They are consistent with the idea of gradual introduction of formal elements during
the specification process. They provide a tool that clarifies the relationship between
Event-B and KAOS.

4.7.3 Modeling of transportation domain in Event-B

Previously, Event-B has been employed for the development of transportation sys-
tems, see for instance [Papatsaras 2002, Butler 2002, Essamé 2004], but most of the
time the role of this language was limited to system modeling of a particular prob-
lem. Our work is different in the sense that we are modeling the domain where
such systems are assumed to operate. The specifications of these aforementioned
railway systems do contribute towards the completion of the land transport domain
model, but as a part of the whole. Our transportation domain model, which will be

3http://www.animb.org

44

4.7. Related work

presented later in the thesis, is more general and could be used for different kinds
of transportation systems, such as road, railways, conveyors, etc.

4.7.4 Refinement mechanisms in Event-B

Linear refinements are the de facto standard of specification development in Event-B.
Its counter parts, other than observation levels [Mashkoor 2010a], discussed later in
the thesis, are Retrenchments [Banach 1998], Feature development [Poppleton 2007]
and Parallel refinements [Abrial 2007].

Retrenchment was proposed as a liberalization of the notion of refinement to
capture more informal aspects of development within a formal framework. A re-
trenchment step from an abstract to a concrete level of abstraction allows strength-
ening of the precondition, weakening of the postcondition, and mixing of state and
I/O information between the levels of abstraction by mediation of two extra pred-
icates per retrenchment. In particular, it allows non-refinement-like behavior to
be expressed via the weakened postcondition. This allows the specification of low
level details of the model without cluttering up the formal text by unnecessary code
which is mandatory to discharge proofs.

Feature oriented specification development is a mechanism to specify behavioral
variability of the model. A feature, in this case, is a simple B machine which is
atomic with respect to other functionalities. The composition of several machines,
each highlighting a distinctive feature, will form the final model. Composition of
these features is an issue. A Rodin plugin for this approach has been proposed
by [Gondal 2009].

Parallel refinements is another idea of model decomposition to handle the com-
plexity introduced by linear refinements. In this technique, a large model is cut into
several smaller components. The model decomposition is either based on shared
variables [Abrial 2007] or shared events [Butler 2009]. The supporting tool is pre-
sented by [Silva 2010].

Our view towards refinement of Event-B models by grouping them into obser-
vation levels is different from all of the aforementioned methods. They require
intricate proof obligations to measure the correctness of the model and a change in
the language. Our approach can be adopted without touching the semantics of the
formalism and by just providing a visual modification at the level of the tools.

4.7.5 Specification of timing & temporal properties in Event-B

The specification of timing and temporal properties in Event-B is known to be a
challenging task. The expression of such properties, a key element for utilization
of formal methods in the automotive sector, is currently unsupported by existing
Event-B tools. Correctness of such specifications thus becomes an issue.

In this work, we have used the timing pattern of Event-B proposed by [Cansell 2007].
Like us, [Bryans 2010] also reuses the same pattern with minor modifications. Sim-
ilarly, the pattern of Joochim et al [Joochim 2010], proposes the use of global time

45

Chapter 4. Event-B

and also interacts with a number of active times. This pattern formalizes the Timing
Diagram of UML rather than considering timing properties in general. In addition,
its usage is recommended at abstract stages rather than in later refinements.

Abrial et al. [Abrial 1998] proposed the use of temporal properties to model the
dynamic elements of a model in Event-B specifications. In its continuation, [Groslambert 2006]
proposed the use of Linear Temporal Logic (LTL) for such modeling. Like oth-
ers, [Bicarregui 2008] also proposes an extension of Event-B to incorporate three
LTL operators: next, eventually, and bounded eventually. In this work, standard
Event-B structures, WHEN, THEN and END are modified to represent these three
LTL operators. Such models deviate from the standard Event-B notations and
their verification and validation become a major challenge. The point is that the
expression of temporal properties is still a challenge in Event-B.

4.8 Summary

Event-B is a formal method for modeling and analysis. It uses set theory as a nota-
tion, refinement for incremental specification development and technique of theorem
proving to verify the model.

In this chapter, we have discussed Event-B in details and described its struc-
turing mechanism, its process of refinement, its proof system, its decomposition
structure, and its tool support, Rodin. We have also compared this with RAISE,
another formal method often used for domain engineering. Along with other related
work, some of its limitations have also been discussed.

46

Chapter 5

Engineering of a domain

Contents
5.1 Introduction . 47
5.2 Domain overview . 48

5.2.1 Locations . 49
5.2.2 Nets, hubs & connections . 49
5.2.3 Junctions & stations . 49
5.2.4 Paths & routes . 49
5.2.5 Properties . 49

5.3 Stepwise Event-B specification 50
5.3.1 Initial model . 52
5.3.2 First refinement . 54
5.3.3 Second refinement . 54
5.3.4 Third refinement . 55
5.3.5 Fourth refinement . 56
5.3.6 Fifth refinement . 58
5.3.7 Sixth refinement . 60
5.3.8 Seventh refinement . 61

5.4 Hierarchy of the model . 65
5.5 Verification of the model . 68
5.6 Summary . 69

5.1 Introduction

An engineered system never works in isolation. On the contrary, it must operate
within an environment which has its own laws, properties and constraints. Thus, a
complete specification should include both descriptions: the system and the domain.
Techniques, tools, methods are analogous in both types of specifications, but they
also differ on important aspects.

In this chapter, we focus on the specification of a domain and we describe the
environment which provides laws and constrains behaviors of systems of the domain.
We provide a consistent, formal and effective domain model of land transportation,
written in the Event-B formal specification language. The stepwise refinements of

Chapter 5. Engineering of a domain

the model deal with independent motions of vehicles and specify two properties: col-
lision avoidance and travel time. A special attention is devoted to the verification of
the model. Consequently, we provide a model with all proof obligations discharged.

The chapter is organized as follows: Section 5.2 presents an overview of the
transportation domain. Section 5.3 specifies the Event-B model of the domain. Sec-
tion 5.4 illustrates the hierarchy of the model. Section 5.5 discusses the verification
of the domain. The chapter is finally concluded in section 5.6.

5.2 Domain overview

Our work takes place within the framework of the projects TACOS1 and CRISTAL2.
These projects aim at studying new transportation systems using autonomous and
self-service vehicles known as CyCabs [Baille 1999]. CyCabs are small computer-
controlled electric cars. They can move in three modes: driven by a human, driven
by their inboard computer, or within a platoon. In the last mode, several CyCabs
assemble as a train without material connections between the cars. Except for the
leader which can be manually driven, platoon members are controlled by systems
which aim at keeping cars as close as possible to each other and at following as
closely as possible the trajectory of the leader. CyCabs can be used as the basis of
a car-sharing system in urban areas. There are several scenarios on the operation
of such systems. All share two important features. CyCabs will move in the public
space, possibly on dedicated lanes, and will have strong interactions with other
road users. Driverless moving modes and platooning are necessary for providing
customers with new services, such as transient buses, relocation of CyCabs between
stations in order to adjust vehicles and parking availability during the course of the
day. These features imply that systems and vehicles need to be certified.

The certification of a vehicle or a system is a process where it is verified that
the vehicle meets minimal requirements which allow it to operate within a certain
domain. These requirements are derived from the expression and formalization of
desirable properties that the whole transportation system must incorporate. The
issue for software-controlled vehicles is to have an expression of these properties
amenable to the use of formal verification. The model of the land transportion
domain is aimed at providing us with the formal expression of these properties.

The term “transportation” refers to the movement of people or goods by vehicles
from one location to another. Many important concepts appear in this definition of
transportation, which must be addressed during the transportation domain descrip-
tion, such as vehicles, locations, movement, etc. Following are the intrinsic concepts
of the transportation domain which relate to the movement of vehicles:

1http://tacos.loria.fr
2http://www.projet-cristal.org

48

5.2. Domain overview

5.2.1 Locations

Each vehicle captures a location at any given moment. In this work, a location
refers to the logical localization of a vehicle in contrast to its physical localization
with geographical coordinates.

5.2.2 Nets, hubs & connections

We assume the transportation network which is constituted of a set of hubs con-
nected by connections. A hub is the abstraction of a place roods meet (junctions) or
where a vehicle can stop (stations). A connection is an abstraction of a directed road
link between two hubs. Figure 5.1 shows a typical net with hubs and connections.

5.2.3 Junctions & stations

We consider two kinds of hubs: junctions and stations. Junctions model road in-
tersections and other crossings where safety requires special attention. Stations
model places where passengers can hop in and off vehicles, and where vehicles can
be parked. Stations, but not junctions, are valid destinations of a travel.

5.2.4 Paths & routes

Operative connections between hubs are built on top of a physical network. At
a physical level, adjacent hubs are connected through paths, which are, in fact,
directed edges connecting vertices. A connection will then often be realized as a
sequence of paths, which is called a route.

5.2.5 Properties

The general properties we want to express concerning transportation are collision
avoidance and travel time. They are defined as follows.

Collision Avoidance

The term collision refers to the situation where two vehicles are at the same place
at the same time. Collisions can be classified in three types: front, rear and side.

Time

Time is a very important notion in the domain of transportation. This is related to
the fact that travel time is at the root of nearly all decisions made around trans-
portation, either individually or socially. In fact, our domain suggests the existence
of several flavors of time. One flavor is the travel time, where a clock is only ob-
served at the beginning and at the end of a travel. Another flavor is the time used
in modeling the kinematics which controls the behavior of vehicles.

49

Chapter 5. Engineering of a domain

Figure 5.1: An abstract transportation network

5.3 Stepwise Event-B specification

The model of the transportation domain has been defined with the Event-B specifi-
cation language employing its refinement principles. We used the ability of Event-B
to combine refinement and incremental enrichment of the specification. First, a gen-
eral definition of transportation network and the act of moving was given. Then,
we introduced properties, one at a time.

Our current domain model contains one abstract machine and seven refinements.
In parallel with the machines, two contexts are being refined. The first is the context
Net, which models the static properties of the network (its topology, quantities
associated to its elements, etc.). The second is the context StartState which helps
to set and prove the INITIALISATION event of the machines.

It is easier to read and understand the specification when the refinements are
grouped into what we call “observation levels.” A leap from one level to the next
occurs when we decompose an abstract event into several ones, corresponding to a
finer grain analysis. For instance, the decomposition of the most abstract travel
event into a sequence of path traversing and hub crossings events corresponds to a
change of observation level. Figure 5.2 summarizes the four levels:

1. The first level of observation contains the definition of a travel event and is
specified by machines Movement0, Movement1 and Movement2.

2. The second level of observation decomposes travel events into crossHub and
traversePath events. This is specified by machine Movement3.

3. The third level of observation decomposes crossHub events into enterHub,
leaveHub, and wait events. This is specified by machines Movement4 and
Movement5.

4. The fourth level of observation decomposes traversePath events into waitToEnterOnPath,
leaveHub, moveOnPath and waitToMoveOnPath events. This is specified in

50

5.3. Stepwise Event-B specification

Movement6 and Movement7.

Figure 5.2: Levels of observations

New observation levels were introduced when a property could not be expressed
within the existing levels. We can also go back and forth between these levels when
we feel that a new property to be introduced is better suited to some other level
of observation. This practice helps us to better integrate new properties into the
existing model. For example, when we wanted to introduce the notion of time into
the model, we did that in two steps. First, the vocabulary and abstract constraints
(time is ever increasing, for instance) were defined at the first level of observation
because this concerned only travels. Then, we jumped directly to the fourth level to
define the computation because durations could be associated to events at this level.
On the other hand, the property of collision avoidance was the reason to go from
the second to the third and then from the third to the fourth level of observation.

The first level of observation is about setting up the main domain vocabulary
and defining the basic properties of the domain. In the context Net and in its
refinements we define the basic vocabulary of the transportation network, such as
nets, hubs, stations, junctions, connections, paths, routes, etc. In the machine
Movement0, we abstractly define the travel event as relocation of a vehicle from
one place to another. Further refinements at this level introduce a finer topology of
the network (junctions, stations, paths, routes) and express the property that travel
only occurs between connected stations. We also introduce the notion of travel time
at this level.

The second level of observation is about the property that a travel is constrained
by the topology of the network. The abstract event is then decomposed into three
events (startTravel, crossHub and traversePath) which must occur in a unique
sequence to realize a travel.

The third level of observation is motivated by the introduction of the property
of non-collision at hubs. Such collisions are abstractly defined as the presence of too
many vehicles on a hub at the same time. This leads us to decompose the crossHub

51

Chapter 5. Engineering of a domain

event as a sequence of wait, enterHub and leaveHub events. The choice between
wait and enterHub is controlled by the notions of hubLoad (the number of vehicles
present on the hub) and hubCapacity (the maximal number of vehicles that can be
safely present on the hub).

The fourth level of observation is associated with the introduction of the property
of non-collision on paths (rear-end type of collision). The event traversePath is
decomposed into a sequence of waitToEnterOnPath, leaveHub, moveOnPath and
waitToMoveOnPath events. This models the abstract kinematics of vehicles. We
also associate the notion of time to each event at this level.

It should be noted that Event-B lacks an explicit notion of time. We then decided
to use the timing patterns for Event-B proposed by Cansell et al [Cansell 2007]. In
this technique one use natural numbers to represent units of time and events to
simulate a clock.

To specify contexts, three types of axioms have been used in the model: typing
axioms, which set the type of the constants, property axioms, which specify the
constraints and properties of the constants, and technical axioms, which specify the
technical axioms required to discharge proof-obligations.

5.3.1 Initial model

This abstract model of the specification is based on contexts Vehicle, Location,
StartState, Net, and machine Movement0.

At this level, the context Vehicle only introduces the notion of vehicles into
the model. Later, when the model will evolve, properties related to vehicles will be
added to this context.

The context Location introduces the concept of locations into the model. Lo-
cations are places which are occupied by vehicles. For our work, we consider two
kinds of locations: hubLocations and connectionLocations. Both of these loca-
tions are subset of GlobalLocations, a set which models all locations of a net-
work. All locations, either on a hub or on a connection, are observable via functions
obsHubLocations and obsConnectionLocations respectively. Context Location is
shown in figure 4.2.

Context StartState and its refinements are defined for ease of proofs; they do
not bring new information into the model. They define the initialization statements
for the variables of the machines which see them. For example, at this level, context
StartState simply defines a constant startVehicleLocation which states that
every vehicle has a starting global location and is then assigned to the variable
location in machine Movement0.

Context Net, shown by figure 5.3, is modeled to specify the general transporta-
tion network facts, which are the following: A transportation net contains the no-
tions of hubs and connections. This fact is represented in the context, for a hub,
with the help of a relation between the sets of hubs and nets (typ1), and for a con-
nection, with the help of a total function between the sets of connections and nets
(typ2). The origin and the destination of each connection is always a hub (typ3

52

5.3. Stepwise Event-B specification

and typ4). The constant hubConnection refers to the fact that each hub has one
or more connections attached to it, i.e., disconnected hubs are not possible in the
domain (typ5). Reflexive connections are not permitted in the domain, so both
the origin and destination hubs of the connections should be different (pro3). Each
network is composed of at least two hubs and one connection (pro4). All hubs and
connections connected to each other must belong to the same net (pro5 and pro6).
A connection always belong to the same net (pro7), whereas a hub may belong to
more than one net (pro8).

The basic definition of movement is “change in position.” Machine Movement0,
shown by figure 4.1, specifies this fact in an abstract event, called travel, in which
a vehicle changes its current position to a new position. The position of a vehicle
is specified with the variable location. An invariant is specified over this variable
which states that a vehicle can hold any GlobalLocation over a net. As this is an
abstract event, so we do not add any further information to it.

CONTEXT
Net

SETS
Nets, Hubs, Connections

CONSTANTS
obsNetHubs, obsNetConnections, connectionOrigin, connectionDestination ,
hubConnection

AXIOMS
tec1 finite (Nets)
tec2 finite (Hubs)
tec3 finite (Connections)
tec4 finite (obsNetConnections)
tec5 finite (obsNetHubs)
tec6 Nets �= ∅
tec7 Hubs �= ∅
tec8 Connections �= ∅

typ1 obsNetHubs ∈ Hubs ↔ Nets
typ2 obsNetConnections ∈ Connections → Nets
typ3 connectionOrigin ∈ Connections → Hubs
typ4 connectionDestination ∈ Connections → Hubs
typ5 hubConnections ∈ Hubs → P(Connections)

pro1 dom(obsNetHubs) = Hubs ∧ ran(obsNetHubs) = Nets
pro2 dom(obsNetConnections) = Connections ∧ ran(obsNetConnections) = Nets
pro3 ∀ c . c ∈ Connections ⇒ connectionOrigin(c) �= connectionDestination(c)
pro4 ∀ n . n ∈ Nets ⇒ card(obsNetHubs−1[{n}]) ≥ 2 ∧

card(obsNetConnections−1[{n}]) ≥ 1
pro5 ∀ c . c ∈ Connections ⇒ obsNetConnections[{c}] ⊆

obsNetHubs[{connectionOrigin(c)}] ∧
obsNetConnections[{c}] ⊆ obsNetHubs[{connectionDestination(c)}]

pro6 ∀ h, c . h ∈ Hubs ∧ c ∈ hubConnections(h) ⇒ obsNetConnections[{c}] ⊆
obsNetHubs[{h}]

pro7 ∀ c . c ∈ Connections ⇒ card(obsNetConnections[{c}]) = 1
pro8 ∀ h . h ∈ Hubs ⇒ card(obsNetHubs[{h}]) ≥ 1

END

Figure 5.3: Context Net

53

Chapter 5. Engineering of a domain

5.3.2 First refinement

The goal of this first refinement step is to add more constraints to the basic travel
event. The movement is now seen as a change in the position from one hub to
another. Since our model permits only stations to be the starting and the ending
points of the vehicles, so in our opinion, this is the next logical step we should take.
Therefore, travel is refined to state that a vehicle changes its location from an
origin hub to a destination hub as a consequence of this event. The following guards
are added to the event, where both origin and destination are stations:

location(vehicle) ∈ obsHubLocations(origin)
newLocation ∈ obsHubLocations(destinations)

The definition of stations and junctions is given by context Net1 which is a
refinement of context Net. In this refinement, we state that hubs can be partitioned
into two categories: stations and junctions. Stations are places where goods and
passengers enter or leave a vehicle. Junctions, on the other hand, model the idea
of intersections and crossings. We also state that a net is composed of two of more
stations. Context Net1 is shown in figure 5.4.

CONTEXT
Net1

EXTENDS
NET

CONSTANTS
junctions , stations , obsNetJunctions, isJunction , obsNetStations

AXIOMS
typ1 junctions ⊆ Hubs
typ2 stations ⊆ Hubs
typ3 obsNetJunctions ∈ Nets → P(junctions)
typ4 isJunction ∈ Hubs → B
typ5 obsNetStations ∈ Nets → P(stations)

pro1 junctions ∩ stations = ∅
pro2 junctions ∪ stations = Hubs
pro3 ∀ h . h ∈ Hubs ∧ card(hubConnections(h)) = 1⇒ isJunction(h) = FALSE
pro4 ∀ h . h ∈ stations ⇒ isJunction (h) = FALSE
pro5 ∀ h . h ∈ junctions ⇒ isJunction (h) = TRUE
pro6 ∀ n . n ∈ Nets ⇒ card(obsNetHubs−1[{n}] ∩ stations) ≥ 2

END

Figure 5.4: Context Net1

5.3.3 Second refinement

Vehicles in our transportation domain follow a route in order to reach their desti-
nation from their origin. This fact is the basis to introduce this refinement step. In
this refinement, it is assumed that the starting location of the vehicle is the origin
of the route and the destination of the vehicle is the last hub of the route. In other

54

5.3. Stepwise Event-B specification

words, a vehicle is moving along a route in this refinement from origin to destination
hub. The following guards are added to strengthen the travel event:

r ∈ routes
origin = connectionOrigin(r(1))

destination = connectionDestination(r(card(r)))

In order to give the definition of routes, we refine context Net1 into Net2. This
context introduces the concept of path, a connection between two adjacent hubs,
and route, which is defined as a sequence of adjacent, connected and non-cyclic
paths. Context Net2 is shown by figure 5.5.

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes , isRoute , seqPaths

AXIOMS
typ1 paths ⊆ Connections
typ2 seqPaths = { seq | ∃ n . n ∈ N1 ∧ seq ∈ 1..n � paths ∧ finite (seq) ∧ card(seq) = n}
typ3 isRoute ∈ seqPaths → B
typ4 routes = {sp | sp ∈ seqPaths ∧ isRoute(sp) = TRUE}

pro1 ∀ r . r ∈ seqPaths ∧ ((connectionOrigin(r (1)) ∈ stations ∧
connectionDestination (r(card(r))) ∈ stations ∧
(obsNetHubs[{connectionOrigin(r(1))}] ∩
obsNetHubs[{connectionDestination(r(card(r)))}] �= ∅) ∧
(∀ i . i ∈ 2.. card(r) ∧ connectionDestination(r(i−1)) = connectionOrigin(r(i))) ∧
connectionOrigin(r (1)) �= connectionDestination(r(card(r))) ∧
(∀ i1 , i2 . i1 ∈ 1.. card(r) ∧ i2 ∈ 1.. card(r) ∧ i1 �= i2 ⇒
connectionOrigin(r(i1)) �= connectionOrigin(r(i2))) ∧
(∀ i1 , i2 . i1 ∈ 1.. card(r) ∧ i2 ∈ 1.. card(r) ∧ i1 �= i2 ⇒
connectionDestination (r(i1)) �= connectionDestination(r(i2)))) ⇔
isRoute(r) = TRUE)

pro2 ∀ c . c ∈ Connections ⇒ (connectionDestination(c) ∈ stations ∧
connectionOrigin(c) ∈ stations ⇒ (∃ r . r ∈ routes ∧
connectionOrigin(c) = connectionOrigin(r (1)) ∧ connectionDestination(c) =
connectionDestination (r(card(r)))))

END

Figure 5.5: Context Net2

5.3.4 Third refinement

This refinement corresponds to the second level of observation of the model. Here,
the model is witnessing an abstraction leap. Previous refinement stated that a
vehicle travels from an origin hub to a destination hub following a route. Naturally,
using a route means that a vehicle must traverse many intermediate hubs and paths
in order to reach its destination. Thus, modeling the phenomena of crossing hubs
and traversing paths is the main reason for introducing this observation level.

55

Chapter 5. Engineering of a domain

In machine Movement3, three new events startTravel, crossHub, and traversePath
are added. While the event startTravel is introduced as the responsible event for
initiating travel, crossHub and traversePath are convergent events and direct de-
compositions of travel. The protocol for traveling now looks like this:

travel ≡ (startTravel; (crossHub; traversePath)+)3

The event startTravel, as the name suggests, is responsible event for starting
the travel of a vehicle. The condition to trigger this event is that a vehicle should
be at the starting hub of a particular route which is not already assigned to it. If
this condition is met then we assign the particular route to this vehicle in the form
of hubs to cross and connections to traverse.

The specification of crossHub event is trivial. The following guards can be set
in order to trigger this event: The vehicle should currently be positioned on the hub
which it needs to cross and, moreover, that hub should not already be crossed by
this vehicle. If these guards are true then this hub will be subtracted from the list
of those hubs which need to be crossed by this vehicle.

The event traversePath is expressed with the help of the following guards: The
vehicle is currently positioned on the origin hub of a path and that hub has already
been crossed. The destination hub of the path has not already been crossed. The
path connecting both hubs is the member element of the route the vehicle needs to
travel and has not already been traversed by the vehicle. If all of these guards are
true then the position of the vehicle will be set as destination hub of the path and
the path will be subtracted from connectionsToTraverse variable.

A variant is also specified to prevent these convergent events from happening
forever:

card(hubsToCross) + card(connectionsToTraverse)

Figure 5.6 shows machine Movement3 and its events. Notice that a variable
position has replaced the variable location in these events. Though, the same
phenomenon is represented by both variables, yet two different variables have been
chosen. The reason is simple: level of observation has been changed. At the abstract
level, location refers to the initial and final positions of vehicles, and at the lower
level of abstraction, the variable position is used to represent the intermediate
positions of a vehicle on a net.

5.3.5 Fourth refinement

This fourth refinement step corresponds to the third level of observation. The ratio-
nale for this leap in observation level is to specify crossHub event at a fine grained
level. In fact, we want to express the collision avoidance property on hubs and for
this, we control the entrance of vehicles to it. In order to do so, the crossHub event
is decomposed into three further events:

3See 6.2.2 for the discussion on defining protocols

56

5.3. Stepwise Event-B specification

MACHINE
Movement3

REFINES
Movement2

SEES
StartState3

VARIABLES
connectionsToTraverse, hubsToCross, position , location

INVARIANT
inv1 connectionsToTraverse ⊆ Vehicles X Connections
inv2 hubsToCross ⊆ Vehicles X Hubs
inv3 position ∈ Vehicles → GlobalLocations

VARIANT
card(hubsToCross) + card(connectionsToTraverse)

EVENTS
...
traversePath �=

ANY
vehicle , r , p, newPosition

WHERE
grd1 vehicle ∈ Vehicles
grd2 r ∈ routes
grd3 p ∈ ran(r)
grd4 position (vehicle) ∈ obsHubLocations(connectionOrigin(p))
grd5 newPosition ∈ obsHubLocations(connectionDestination(p))
grd6 newPosition �= position(vehicle)
grd7 vehicle �→ p ∈ connectionsToTraverse
grd8 vehicle �→ connectionOrigin(p) /∈ hubsToCross

THEN
act1 position (vehicle) := newPosition
act2 connectionsToTraverse := connectionsToTraverse \ {vehicle �→p}

END
crossHub �=

ANY
vehicle , hub

WHERE
grd1 vehicle ∈ Vehicles
grd2 hub ∈ Hubs
grd3 position (vehicle) ∈ obsHubLocations(hub)
grd4 vehicle �→ hub ∈ hubsToCross

THEN
act1 hubsToCross := hubsToCross \ {vehicle �→hub}

END
startTravel �=

ANY
vehicle , r

WHERE
grd1 vehicle ∈ Vehicles
grd2 r ∈ routes
grd3 position (vehicle) ∈ obsHubLocations(connectionOrigin(r(1)))
grd4 vehicle /∈ dom(connectionsToTraverse)
grd5 vehicle /∈ dom(hubsToCross)

THEN
act1 hubsToCross := hubsToCross ∪ {i . i ∈ 1.. card(r) | vehicle �→ connectionOrigin(r(i))}
act2 connectionsToTraverse := connectionsToTraverse ∪ {p . p ∈ ran(r) | vehicle �→ p}

END
END

Figure 5.6: Machine Movement3

57

Chapter 5. Engineering of a domain

crossHub ≡ (wait∗; enterHub; leaveHub)

To facilitate the specification of these events a new invariant is specified which
is called hubLoad. hubLoad indicates the current number of vehicles on a hub. It
is specified that each hub is capable of hosting, simultaneously, a certain number
of vehicles which is given by constant hubCapacity. The invariant specified with
the help of hubLoad guarantees that a vehicle would not enter into a hub, if the
hub is already full. A state marker vehicleState is also initialized at this level to
track and control the movement of vehicles on and off hubs. This marker reflects
the current state of a vehicle on a hub, such as entering, onHub, leaving, etc.

The context Net4, at this level, defines the notion of hubCapacity for hubs and
junctions. The capacity of a junction is always 1, i.e., only one vehicle can be present
on a junction at any given time, and the capacity of a hub can be initialized with
any natural number which corresponds to the capability of the hub to host vehicles.
A set States is also defined in this context. This set is composed of states which
are used in the model as state markers for vehicles, i.e., vehicleState. Whereas,
the context StartState4 initializes the load of the hubs according to the vehicles
which are currently present on them.

The event enterHub is triggered when the state of a vehicle allows it to enter into
a particular hub whose hubLoad is lower than its capacity and it is not previously
traversed by the vehicle. Once the event is triggered, the load of the hub is increased
by 1 and the state of the vehicle is marked as onHub. A vehicle must not enter a
hub if the load of the hub is equal to its capacity. In this scenario, it must wait for
its turn. This case is modeled with the help of the event wait.

In the transportation domain, situations like gridlocks, i.e., traffic jams, occur
often which may prevent all vehicles from moving. Since we are modeling the do-
main, so we allow them in the specification. The aim of introducing wait is to let
vehicles wait in such situations, in order to avoid collision which may occur if they
proceed in these situations.

The event leaveHub triggers when a vehicle leaves a hub which is already crossed
by it. Upon the triggering of this event, the load of the hub is decreased by 1 and
the state of the vehicle for this hub is marked as crossed.

Figure 5.7 shows the invariants and the newly introduced events of machine
Movement4.

5.3.6 Fifth refinement

This refinement introduces the notion of time into the model. This is a small
refinement step and in this refinement we do not add much details to the model. In
this machine, we introduce three new variables: time, travelTime and startTime.
The variable time represents the actual time in the model. The variable startTime
shows the starting time of the vehicle and is noted when a vehicle starts its travel.
The variable travelTime is noted when a travel is complete. It is calculated as the
difference between the actual time of the clock and the starting time of the vehicle.

58

5.3. Stepwise Event-B specification

MACHINE
Movement4

...
VARIABLES

hubLoad, vehicleState , connectionsToTraverse, hubsToCross, position , location
INVARIANT

inv1 hubload ∈ Hubs → N
inv2 ∀h.h ∈ Hubs⇒hubLoad(h) ≤ hubCapacity(h)
inv3 vehicleState ∈ Vehicles X Hubs → States
inv4 ∀v.card({h. vehicleState (v�→h) = onHub ∨ vehicleState(v �→ h)= leaving | h}) ≤ 1
inv5 ∀v,h. vehicleState (v�→h)=onHub ⇒ position(v) ∈ obsHubLocations(h)
inv6 ∀v,h. vehicleState (v�→h) = leaving ⇒ position(v) ∈ obsHubLocations(h)

EVENTS
...
enterHub �=

ANY
vehicle , hub

WHERE
grd1 vehicle ∈ Vehicles
grd2 hub ∈ Hubs
grd3 position (vehicle) = obsHubLocations(hub)
grd4 hubLoad(hub)<hubCapacity(hub)
grd5 vehicleState (vehicle �→ hub) = entering

THEN
act1 position (vehicle) := position(vehicle)
act2 hubLoad(hub) := hubLoad(hub) + 1
act3 vehicleState (vehicle �→ hub) := onHub

END
leaveHub �=

ANY
vehicle , hub, r

WHERE
grd1 r ∈ routes
grd2 vehicle ∈ Vehicles
grd3 hub ∈ Hubs
grd4 position (vehicle) ∈ obsHubLocations(hub)
grd5 vehicle �→hub /∈ hubsToCross
grd6 vehicleState (vehicle �→hub) = leaving
grd7 hubLoad(hub)≥1

THEN
act1 hubLoad(hub) := hubLoad(hub)−1
act2 vehicleState (vehicle �→hub) := crossed

END
wait �=

ANY
vehicle , hub

WHERE
grd1 vehicle ∈ Vehicles
grd2 hub ∈ Hubs
grd3 position (vehicle) ∈ obsHubLocations(hub)
grd4 hubLoad(hub) ≥ hubCapacity(hub)
grd5 vehicleState (vehicle �→hub) = entering

THEN
act1 position (vehicle) := position(vehicle)
act2 vehicleState (vehicle �→hub) := entering

END
END

Figure 5.7: Machine Movement4

59

Chapter 5. Engineering of a domain

In order to do so, event travel is refined as shown in figure 5.8. A global clock is
introduced into the model with the event ticTac which is shown in figure 5.9.

travel �=
REFINES

travel
ANY

vehicle , newLocation, r , origin , destination
WHERE

grd01 r∈routes
grd02 vehicle∈Vehicles
grd03 origin∈stations
grd04 destination ∈stations
grd05 origin �=destination
grd06 origin =connectionOrigin(r(1))
grd07 destination =connectionDestination(r(card(r)))
grd08 location (vehicle)∈obsHubLocations(origin)
grd09 newLocation∈obsHubLocations(destination)
grd10 newLocation �=location(vehicle)
grd11 position (vehicle)=newLocation
grd12 vehicleState (vehicle �→destination)=onHub
grd13 time ≥ startTime(vehicle)

THEN
act1 location (vehicle):=newLocation
act2 travelTime(vehicle):= time−startTime(vehicle)

END

Figure 5.8: Event travel

ticTac �=
ANY

t
WHERE

grd1 t ∈ N
grd2 t > time

THEN
act1 time := t

END

Figure 5.9: Event ticTac

5.3.7 Sixth refinement

This refinement introduces the fourth level of observation into the model. It specifies
the protocol to traverse a path. Event traversePath is decomposed as follows:

traversePath ≡ (waitToEnterOnPath∗; leaveHub;

(waitToMoveOnPath| moveOnPath)∗)

In order to traverse a path, we must avoid the risk of collision between ve-
hicles. In order to do so, we introduce two new variables: vehiclePath and
vehiclePosition. The first denotes the path on which a vehicle is currently run-
ning and the latter refers to the position the vehicle is currently occupying on the
path. Then, with the help of these two variables, we define our non-collision prop-
erty. The intention is that two vehicles must not occupy the same position on the
same path at the same time. To ensure this, we introduce the notion of critical
distance among vehicles which is the idea that a vehicle must maintain some safety
distance, criticalDistance, with the vehicle in front of it. The following invariants
are introduced:

60

5.3. Stepwise Event-B specification

vehiclePath ∈ V ehicles �→ paths
vehiclePosition ∈ V ehicles �→ N1

dom(vehiclePath) = dom(vehiclePosition)
∀v1, v2.v1 ∈ V ehicles ∧ v2 ∈ V ehicles ∧ v1 �= v2∧
v1 ∈ dom(vehiclePosition) ∧ v2 ∈ dom(vehiclePosition)∧

vehiclePath(v1) = vehiclePath(v2) ⇒
vehiclePosition(v1) �= vehiclePosition(v2)

As the protocol for traversing a path has been enriched, so the following new
events are added to the specification:

• Event waitToEnterOnPath, which is similar to event wait. The difference
is that event wait allows a vehicle to wait if the hub is full, whereas event
waitToEnterOnPath allows a vehicle to wait on a hub if the distance between
this vehicle and the vehicles already present on the path does not fulfill the
safety requirement. This safety condition is given by grd11 of this event. The
event waitToEnterOnPath is shown in figure 5.10.

• Event moveOnPath, which is triggered when the vehicle is in the position to
move on a path safely, i.e., the distance between this vehicle and its predecessor
is always more than the allowed safety distance. The vehicle continues moving
until it is stopped by safety concerns or the end of the path, pathLen, is
reached. A local variable move is added to its position at the end of the event
which shows its current position on the path. The event moveOnPath is shown
in figure 5.11.

• Event waitToMoveOnPath, which allows a vehicle to wait on a path if its dis-
tance from its predecessor is less than the safety distance. In this case, the
vehicle waits until there is room on the path for a safe movement. The event
waitToMoveOnPath is shown in figure 5.12.

The event leaveHub also goes under refinement at this level. The property
we check, like all other newly introduced events of this refinement, is that when a
vehicle leaves a hub there should be enough distance between this vehicle and all
other vehicles currently present on the path. If this vehicle has no predecessor then
it can choose its position arbitrarily. This is shown by figure 5.13.

5.3.8 Seventh refinement

The rationale for this refinement is to properly integrate the timing property into
the model. In refinement 5, we introduced the notion of time. At that level, we
could not fully express this property because the protocol of traversing a path was
not fully described. In the previous refinement, we defined this behavior and now
we are able to fully express the timing property.

In order to integrate the notion of time with events, we modeled the tech-
nique used in simulating queue systems. We introduced a timed event queue,

61

Chapter 5. Engineering of a domain

waitToEnterOnPath �=
ANY

vehicle , path, route , vehiclesOnPath
WHERE

grd01 route ∈ routes
grd02 vehicle ∈ Vehicles
grd03 path∈paths ∧ path∈ran(route)
grd04 position (vehicle) ∈ obsHubLocations(connectionOrigin(path))
grd05 vehicle /∈dom(vehiclePath)
grd06 vehicle �→path ∈ connectionsToTraverse
grd07 vehicle �→connectionOrigin(path) /∈ hubsToCross
grd08 vehicleState (vehicle �→connectionOrigin(path))=leaving
grd09 vehiclesOnPath ⊆ Vehicles
grd10 vehiclesOnPath={v.v∈Vehicles ∧ v∈dom(vehiclePosition) ∧ v∈dom(vehiclePath) ∧

vehiclePath(v)=path|v}
grd11 ¬(∀v.v∈ vehiclesOnPath ⇒ vehiclePosition(v) > criticalDistance)

THEN
SKIP

END

Figure 5.10: Event waitToEnterOnPath

moveOnPath �=
ANY

vehicle , path, vehiclesOnPath, move
WHERE

grd1 vehicle ∈ Vehicles
grd2 hub ∈ Hubs
grd3 vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = path
grd4 vehiclePosition (vehicle)<pathLen(path)
grd5 vehiclesOnPath ⊆ Vehicles
grd6 vehiclesOnPath={v.v∈Vehicles ∧ v∈dom(vehiclePath) ∧ vehiclePath(v)=path|v}
grd7 ∀v . v∈vehiclesOnPath ∧ vehiclePosition (v) > vehiclePosition (vehicle) ⇒

vehiclePosition (v) − vehiclePosition (vehicle) > criticalDistance
grd8 {v.v∈vehiclesOnPath ∧ vehiclePosition (v) > vehiclePosition (vehicle) | v} �= ∅ ⇒

move∈1..((min({v.v∈vehiclesOnPath ∧
vehiclePosition (v)> vehiclePosition (vehicle)| vehiclePosition (v)})−
vehiclePosition (vehicle))− criticalDistance)

grd9 {v.v∈vehiclesOnPath ∧ vehiclePosition (v) > vehiclePosition (vehicle) | v} = ∅ ⇒
move∈1..(pathLen(path)−vehiclePosition(vehicle))

THEN
act1 vehiclePosition (vehicle) := vehiclePosition(vehicle) + move

END

Figure 5.11: Event moveOnPath

62

5.3. Stepwise Event-B specification

waitToMoveOnPath �=
ANY

vehicle , path, vehiclesOnPath
WHERE

grd1 vehicle ∈ Vehicles
grd2 path ∈ paths
grd3 vehicle∈dom(vehiclePath) ∧ vehiclePath(vehicle) = path
grd4 vehiclesOnPath ⊆ Vehicles
grd5 vehiclesOnPath={v.v∈Vehicles ∧ v∈dom(vehiclePath) ∧ v∈dom(vehiclePosition) ∧

vehiclePath(v)=path|v}
grd6 ∃v.v∈vehiclesOnPath∧v �=vehicle ∧ vehiclePosition(v)> vehiclePosition (vehicle) ∧

vehiclePosition (v) − vehiclePosition (vehicle)≤ criticalDistance
THEN

SKIP
END

Figure 5.12: Event waitToMoveOnPath

leaveHub �=
REFINES

leaveHub
ANY

vehicle , hub, r , p, vehiclesOnPath
WHERE

grd01 r∈routes
grd02 vehicle∈Vehicles
grd03 hub∈Hubs
grd04 position (vehicle)∈obsHubLocations(hub)
grd05 vehicle �→hub/∈hubsToCross
grd06 vehicleState (vehicle �→hub)=leaving
grd07 hubLoad(hub)≥1
grd08 p∈paths ∧ p∈ran(r)
grd09 hub=connectionOrigin(p)
grd10 vehicle �→p∈connectionsToTraverse
grd11 vehiclesOnPath⊆Vehicles
grd12 vehiclesOnPath={v.v∈Vehicles ∧ v∈dom(vehiclePath) ∧ vehiclePath(v)=p|v}
grd13 ∀v.v∈vehiclesOnPath⇒vehiclePosition(v) > criticalDistance

THEN
act1 vehicleState (vehicle �→hub):=crossed
act2 hubLoad(hub):=hubLoad(hub)−1
act3 vehiclePath(vehicle):=p
act4 vehiclePosition ∈|(∃pos. pos∈1..pathLen(p)∧vehiclePosition ’ = vehiclePosition �−

{ vehicle �→pos} ∧ (∀ v . v ∈ vehiclesOnPath ∧ v �=vehicle ⇒
vehiclePosition ’(v) − vehiclePosition ’(vehicle) ≥ criticalDistance))

END

Figure 5.13: Event leaveHub

63

Chapter 5. Engineering of a domain

activationTime, which contains the time at which a moving vehicle must perform
an event. The following invariants are introduced:

activationT ime ∈ V ehicles �→ N
activationT ime �= ∅ ⇒ time ≤ min(ran(activationT ime))

A new guard is then introduced in the events concerned by time:

vehicle ∈ dom(activationT ime) ∧ time = activationT ime(vehicle)

The action part of the event modifies the event queue accordingly. The refined
timing pattern, specified by the event ticTac, is shown in figure 5.15. An example
of use of this pattern is shown in figure 5.14.

enterHub �=
REFINES

enterHub
ANY

vehicle , hub
WHERE

grd1 vehicle ∈ Vehicles
grd2 hub ∈ Hubs
grd3 position (vehicle) ∈ obsHubLocations(hub)
grd4 hubLoad(hub) < hubCapacity(hub)
grd5 vehicleState (vehicle �→ hub) = entering
grd6 vehicle ∈ dom(activationTime) ∧

time=activationTime(vehicle)
THEN

act1 position (vehicle) := position(vehicle)
act2 hubLoad(hub) := hubLoad(hub) + 1
act3 vehicleState (vehicle �→ hub) := onHub
act4 vehiclePath := {vehicle} �− vehiclePath
act5 vehiclePosition := {vehicle} �− vehiclePosition
act6 activationTime := activationTime �−

{ vehicle �→ time + hubCrossingTime(hub)}
END

Figure 5.14: Event enterHub

ticTac �=
ANY

tic
WHERE

grd1 activationTime �= ∅
grd2 tic = min(ran(activationTime))
grd3 tic > time

THEN
time := tic

END

Figure 5.15: Event ticTac

A vehicle is introduced in the event queue by the startTravel event. It is
removed from the queue when it reaches its destination.

Earlier in the specification, we allowed gridlock situations to happen. Con-
sequently, this decision, combined with the introduction of time, raised up some
unexpected proof-obligations. Since our model is based on timed event queues, i.e.,
happening of one event allows the next, so blocking one vehicle would imply the
whole system to come to a halt. In order to avoid such cases, we introduce three
new events into the model. The description of these events is as follows:

• Event lockOut is triggered when a vehicle needs to enter a station which is
already full of parked cars. No vehicle will leave the hub and the moving
vehicle is then “locked out.” Event lockOut is shown in figure 5.16.

64

5.4. Hierarchy of the model

lockOut �=
REFINES

wait
ANY

vehicle , path, vehiclesOnPath
WHERE

grd1 vehicle ∈ Vehicles
grd2 hub ∈ Hubs
grd3 position (vehicle)∈obsHubLocations(hub)
grd4 hubLoad(hub)≥hubCapacity(hub)
grd5 vehicleState (vehicle �→hub)=entering
grd6 vehiclesOnHub = {v|v∈Vehicles∧position(v)∈obsHubLocations(hub) ∧

(vehicleState (v �→hub)=leaving ∩
vehicleState (v�→hub)=onHub)} � activationTime

grd7 vehiclesOnHub ∅
grd8 vehicle ∈ dom(activationTime) ∧ time=activationTime(vehicle)

THEN
act1 position (vehicle) := position(vehicle)
act2 vehicleState (vehicle �→ hub) := entering
act3 activationTime := {vehicle} �− activationTime
act4 blockedVehicles := blockedVehicles ∪ { vehicle }

END

Figure 5.16: Event lockOut

• Event lockIn is used when a vehicle needs to enter a path which is full of
other (stationary) vehicles. This vehicle is then “locked in.” Event lockIn is
shown in figure 5.17.

• Event lockOnPath is used when a vehicle is blocked on a path after havin begun
the traversal of the path. It is then “locked on path.” Event lockOnPath is
shown in figure 5.18.

Such vehicles are then added to the list of blocked vehicles and subsequently
removed from activationTime. The flow of the system is then easily controlled.

5.4 Hierarchy of the model

Figure 5.19 presents the Event-B hierarchy of our domain model. It contains all
the contexts and machines specified in the model. Extension between contexts
and refinements between machines are shown by single arrow lines, whereas use of
contexts by machines is depicted by double arrow lines. An important point to notice
about this hierarchy is its three column format and the indication of observation
levels.

The first column of the hierarchy is constituted of a series of refinements of
the context Net. This series of refinements has been used to model the general
properties of a transportation network. The second column depicts the refinements
of StartState contexts. These contexts contain the starting values of variables used
in the machines and hence are deployed for initialization purposes. The last column

65

Chapter 5. Engineering of a domain

lockIn �=
REFINES

waitToEnterOnPath
ANY

vehicle , path, route , vehiclesOnPath
WHERE

grd01 route ∈ routes
grd02 vehicle ∈ Vehicles
grd03 path ∈ paths ∧ path∈ran(route)
grd04 position (vehicle) ∈ obsHubLocations(connectionOrigin(path))
grd05 vehicle /∈dom(vehiclePath)
grd06 vehicle �→path ∈ connectionsToTraverse
grd07 vehicle �→connectionOrigin(path) /∈ hubsToCross
grd08 vehicleState (vehicle �→connectionOrigin(path))=leaving
grd09 vehiclesOnPath={v.v∈Vehicles ∧ v∈dom(vehiclePath) ∧ vehiclePath(v)=path|v}
grd10 ¬ (∀v. v∈ vehiclesOnPath ⇒ vehiclePosition (v) > criticalDistance)
grd11 vehiclesOnPath � activationTime = ∅
grd12 vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

THEN
act1 blockedVehicles := blockedVehicles ∪ { vehicle }
act2 activationTime := {vehicle} �− activationTime

END

Figure 5.17: Event lockIn

lockOnPath �=
REFINES

waitToMoveOnPath
ANY

vehicle , path, vehiclesOnPath
WHERE

grd1 vehicle ∈ Vehicles
grd2 path ∈ paths
grd3 vehicle∈dom(vehiclePath) ∧ vehiclePath(vehicle) = path
grd4 vehiclesOnPath={v.v∈Vehicles ∧ v∈dom(vehiclePath) ∧ v∈dom(vehiclePosition) ∧

vehiclePath(v)=path|v}
grd5 ∃v.v∈vehiclesOnPath∧v �=vehicle ∧ vehiclePosition(v)> vehiclePosition (vehicle) ∧

vehiclePosition (v) − vehiclePosition (vehicle)≤ criticalDistance
grd6 vehiclesOnPath � activationTime = ∅
grd7 vehicle ∈ dom(activationTime) ∧ time=activationTime(vehicle)

THEN
act1 blockedVehicles := blockedVehicles ∪ { vehicle }
act2 activationTime := {vehicle} �− activationTime

END

Figure 5.18: Event lockOnPath

66

5.4. Hierarchy of the model

Figure 5.19: The hierarchy of the domain model

67

Chapter 5. Engineering of a domain

of the hierarchy shows the series of refinements of machines. These machines build
the main construct of the land transportation domain model.

Figure 5.19 also indicates four different levels of observations. The abstract
model, the first two refinements and the fifth refinement belong to the first level
of observation. Though technically realized as the refinement of Movement4, the
fifth refinement step is logically situated at the first level of observation; it intro-
duces time and concerns only the events at the first level. The third and fourth
refinement machines belongs to the second and third level of observations respec-
tively. The sixth and seventh refinements model the fourth level of observation.
Machine Movement7 completes the introduction of time into the model and concerns
the events at this level, hence its situation.

5.5 Verification of the model

We have given a great deal of attention to the verification of our model. Conse-
quently, we now have an Event-B specification of transport domain in which all
proof-obligations have been discharged. In the following table, we present some
statistics about the proofs of our model.

Total Automatic Interactive
Location 1 1 0
V ehicle 0 0 0
Net 6 5 1
Net1 4 4 0
Net2 4 1 3
Net4 2 0 2
Net5 0 0 0
Net6 0 0 0
StartState 0 0 0
StartState1 1 0 1
StartState3 0 0 0
StartState4 3 3 0
StartState5 1 0 1
Movement0 3 1 2
Movement1 3 1 2
Movement2 2 2 0
Movement3 18 4 14
Movement4 66 8 58
Movement5 8 4 4
Movement6 54 15 39
Movement7 74 22 52

Naturally, the number of proof-obligations increases when more details are added
to models by refinement steps. Though, as shown by the table, most of the proofs
were discharged interactively, yet most of them were not difficult to prove. In fact,
many of the proofs just required either one or a few clicks. Though, not a real
annoyance, this practice soon become distracting and boring. We have used Rodin
0.9 for specification and verification of the model, as it was the latest version at the
time when we started development of the model. We have observed that provers of
Rodin 2.x are much more efficient concerning the verification of the specification.

68

5.6. Summary

The real difficult proofs are associated to the notion of state markers. In machine
Movement4, we introduced vehicleState to track and control the movement of
vehicles on and off hubs. Invariant 4 of this machine states that a vehicle can
only be present on one hub at a time. In all concerned events of this machine,
for example, enterHub, leaveHub, crossHub, we had to prove that vehicle is not
currently present on any other hub. Due to these intricate proofs, the number of
interactively discharged proof-obligations in this machine are significantly higher
than any other machine of the model.

5.6 Summary

Understanding the application domain is important for specification of useful sys-
tem requirements. When engineering domains formally, all the vocabulary and key
concepts of the problem domain is precisely specified. This, then, can be effectively
used to verify and validate the understanding of the problem domain among various
stakeholders.

In this chapter, we have specified the intrinsic laws and behaviors of transport
domains in general, and properties of collision avoidance and timing in particular.
We have developed our model in the formal specification language Event-B. We have
liberally used refinements, both of machines and contexts. We have also presented
the idea of “observation levels” to group refinements in such a way that facilitates the
introduction of new properties into the model. We have also given a great amount
of attention to proofs and all refinement steps are fully verified.

69

Chapter 6

Guidelines for domain engineering

with Event-B

Contents
6.1 Introduction . 71
6.2 What to specify? . 72

6.2.1 Model assumptions . 72
6.2.2 Define protocols . 73
6.2.3 Specify time . 74
6.2.4 Express temporal properties 75

6.3 How to refine? . 77
6.3.1 Refine slowly . 78
6.3.2 Refine unconventionally . 79

6.4 How to verify? . 80
6.4.1 Beware of easy proofs! . 80
6.4.2 Beware of obvious truth! . 81
6.4.3 Use animation to complement provers 81

6.5 Observations on tool & language 81
6.6 Summary . 82

6.1 Introduction

In the last chapter, we presented a consistent, effective and verified formal model of
land transport domain. During this development, we were confronted with several
challenging characteristics of the domain, such as

• there is no centralized control-system. On the contrary, each vehicle is au-
tonomous and the communication between vehicles is minimal,

• there are important functionalities that must be expressed at the system-level:
absence of collisions, gridlock, etc.,

• time is an important concept at several levels.

Chapter 6. Guidelines for domain engineering with Event-B

Among the issues which were raised, the problem of different “flavors” of time is
very interesting. The flavor of time used by kinematics laws is continuous, the flavor
used to measure travel-time is discrete; when discretized, the former flavor requires
very small units, while the other requires much bigger units.

As a complex and reasonably well-known domain, land transportation is a good
candidate to test and assess specification methods and processes. We have conducted
a thorough analysis of the use of Event-B for this case-study, and more generally,
for specifying domains. The results of this study are presented in this chapter which
mainly deals with three questions: What to specify, how to refine, and how to verify
using Event-B.

The chapter is organized as follows: Section 6.2 presents an overview of the
ingredients of a domain model which must be formally specified. Section 6.3 and
6.4 discuss how it should be refined and verified respectively. We present some
observations about the language and the tool in section 6.5. The chapter is finally
concluded in section 6.6.

6.2 What to specify?

6.2.1 Model assumptions

One of the main reasons to use mathematical formalisms and tools is to define
explicitly the elements of interest. At the time when domain modeling is of impor-
tance, the focus is on “requirements” and “assumptions.” Traditionally, the former
denotes what a particular system is expected to do, and the latter what the system
can expect from its operating environment [Zave 1997a].

In B, which was designed as a language to specify and develop systems, functional
requirements are expressed by invariants. In Event-B, where we are modeling an
environment which controls the system, we cannot locate the properties of interest
as easily. Part of the problem is that it is possible in Event-B models to mix system
and environment properties. While always expressed as predicates on the state,
properties can be found in three places: in the invariants of the machines, in the
axioms of the contexts, or in the guards of the events. It may then be interesting to
relate the type of assumptions with their location in the text of the specification.

A domain model is composed of different assertions about the particular do-
main. So these assertions are used as assumptions by systems operating within the
domain. A system designer uses these written assumptions, but also unwritten,
implicit, assumptions. Of course, the goal of a domain model is to make explicit
as many assumptions as possible which are essential for the correct operation of
a system. In our Event-B models, these could be classified into structural facts,
behavioral laws, and enforceable properties. Please note that this classification is
purely methodological, just for the ease of specification.

Contexts in Event-B are used to describe the constants in a model. So, they
contain all the structural facts. For instance, it is in contexts that a transportation
network is described as a set of nodes (hubs) and vertices (paths) or that hubs are

72

6.2. What to specify?

partitioned into stations and junctions. Axioms in the contexts allow us to define
the properties of the structure. For instance, routes are defined as sequences of
contiguous paths, with each hub visited only once, the first path starting from a
station, and the last path leading to a station.

Behavioral laws are described by events. More precisely, as assumptions, they
are located in the guards of the events. For instance, the law which states that
travel occurs only between stations, or the one which states a travel is associated to
a route are both found in the guards of the travel event, respectively in Movement1
and Movement2 refinements.

We refer to enforceable properties as those properties which are necessary to
have a well-behaved model. Collision avoidance is high among them in the transport
domain, for instance. Such properties fall in between requirements and assumptions:
a system working into the domain can assume the property, but must guarantee to
keep it unbroken. Quite obviously, such properties are expressed by invariants.

Whether a particular domain assumption should be expressed as a behavioral
law or as an enforceable property is a difficult question which has no clear-cut
answer. If we consider the issue of collisions, we used an invariant, but we could
have introduced a special collide event. Formally, there is a strong relationship
between the two descriptions: the guard of the hypothetical collide is the negation
of the invariant. The choice between the two expressions depends on the kind of
system one has to develop. For instance, developers of a road traffic monitoring
system will likely prefer to have collide events since their system will have to deal
with such situations. Developers of a traffic light control system will likely prefer
the invariant expression as it is one of the goals of their system.

6.2.2 Define protocols

A domain exhibits several protocols. Once events are decomposed into smaller
events, it is crucial that these events be fired in a strict order so that the protocol
can be properly followed. For instance, the decomposition of the travel event is
thought of as:

travel ≡ (startTravel; (crossHub; traversePath)+)

Unfortunately, Event-B does not provide us with implicit controls to express this
protocol. Instead, we must make an explicit definition of the protocol with the help
of control variables and guards in the events. This is complex and a source for
errors.

This situation happens each time we introduce a new observation level. So, going
from second to third level, we decompose as follows:

crossHub ≡ (wait∗; enterHub; leaveHub)

To go from third to fourth level, we decompose as follows:

traversePath ≡ (waitToEnterOnPath∗; leaveHub;

73

Chapter 6. Guidelines for domain engineering with Event-B

(waitToMoveOnPath| moveOnPath)∗)

We use two basic techniques for controlling the protocols. The first is the intro-
duction of control sets. We used these for the decomposition of travel. The control
variable is the set of all hubs and paths the vehicle will have to pass through. The
next hub to cross or the next path to traverse is easily defined as the member of the
control set which is related to the vehicle’s current position. This technique has the
advantage that a variant is quite easy to define, but has the drawback of introduc-
ing complex computation of the sets. The second technique is the introduction of a
notion of state markers, either through an explicit variable or through a property,
such as belonging to the domain of a relation. This can be seen as a form of coding
a state machine. The advantage of using state markers is their easy definition, but
their drawback is the difficulty to set variants and generally to connect state markers
to invariants.

Although without formal substance, the previous regular-expressions like formu-
lae were of great help to set up the explicit control. It would be a welcome extension
of Event-B or of its supporting tools if that kind of expression could be stated and
be checked against the behavior of the events. Diagrammatic notations, such as
the structure diagrams of Jackson System Development (JSD) [Jackson 1983] or
formalism like CSP could be used.

6.2.3 Specify time

Unsurprisingly, modeling time raised many questions. We used the timing patterns
for Event-B proposed by Cansell et al [Cansell 2007] in our models. They assume
a discrete time and in our model, travel time is of that kind. The computation of
the clock with the timed event queue is cumbersome because it is explicit, but does
not lead to specification difficulties. Indeed, a generic pattern emerged to write the
refinement:

• pick an event to “time”

• add the guard vehicle∈dom(activationTime) ∧ time=activationTime(vehicle)

• add the action activationTime := activationTime �− {vehicle �→ time + timeInc}. timeInc
is, of course, dependent on the particular event. It can be a constant, an ar-
bitrary value or a computation on the event queue.

Kinematics introduce a flavor of continuous time. This raises two questions: (1)
is it legitimate to try to model this with the purely discrete means Event-B provides
us? and (2) how will it merge with the previous definition of time? The answer to the
first question is “Yes” if the model is to be the basis for a software implementation.
By essence, computers are discrete machines. A fundamental parameter of any
control software for running machines is the frequency of their control loop. So, the
actual time will be discrete.

74

6.2. What to specify?

Technically, the introduction of abstract kinematics behavior did not pose many
problems. The basic idea was to use the pattern presented above with a kind of
“fixed tick.” This idea answers the second question.

6.2.4 Express temporal properties

Temporal properties, such as safety and liveness, are essential to most domains and
systems, particularly those which are safety-critical. However, they do not play the
same role in their specifications.

Safety

A safety property asserts that nothing bad happens [Lamport 1977]. Safety prop-
erties can be specified either as something that should never happen, or as some
property that should always hold. Consider the safety property of collision avoid-
ance. It is specified by the invariant of the model. All the invariant preservation
proofs have been discharged. We are then assured that no event precipitates a
collision.

It should be noted, however, that the previous condition is necessary, but not
sufficient to ensure safety in general. Although this does not yet happen in the
current state of the specification, it will when kinematics will be fully specified. A
moving vehicle should never be allowed to make a move which leads to a collision
(i.e., no event should break the invariant), but it must also always be able to react
(i.e., there should always be an enabled event). This last condition is similar to the
liveness property discussed later.

Deadlock

A deadlock, in computation, is a state when some processes in a system are halted,
waiting for something to happen which can only be triggered by one of the halted
processes. In transportation, a similar phenomenon exists and is referred to as
gridlock, which describes an inability to move on a transport network (i.e., traffic
jams). Both deadlock and gridlock are something that implementers must avoid. It
is then important to characterize them at the level of the specification.

While deadlocks can be thought of as a situation in Event-B, where no event is
enabled, i.e., guards of all events are false, deadlock freeness would mean that some
vehicles can always move, i.e., at least one event is enabled all the time, such as
stated with the following invariant:

G(E1) ∨G(E2) ∨ ... ∨G(En)

where G(Ei) is the guard of the event Ei.
In the transportation domain, we can always experience the situation of traffic

jams which may prevent all vehicles on a certain part of the network from moving.
Since gridlock is a fact of life, we choose to allow them in the specification. At

75

Chapter 6. Guidelines for domain engineering with Event-B

a theoretical level, with the introduction of wait, we can say that a vehicle can
wait in such situations, and at least this event can always be fired, but this is not
an elegant solution. At the specification level, Rodin does not allow any deadlock
freeness proof and it either needs to be done manually or with the help of a model
checker, such as ProB [Leuschel 2003].

As an impact of the decision to allow gridlock in the model, later in the speci-
fication, the introduction of time forced the gridlock situations to “pop up” during
some proofs, technically preventing their discharge. We have tackled the situation
by modeling special (lockXXX) events. These events clearly show the conditions of
the blockage. Implementers who want a particular system to be jam free can derive
their invariants from these conditions.

Have we identified all the gridlock situations? This question can be answered ei-
ther way. We can answer “Yes” if we consider only the formal model. The (lockXXX)
events are direct consequences of the time model that is used in the domain spec-
ification. They are necessary to discharge the proofs related to the property that
time is ever increasing. We can answer “No” if we consider the reality of which the
specification is an abstract model. There could be other gridlock situations, asso-
ciated with other notions of “progress” of the state of the model which are not yet
described. The point is that the proof-obligations of Event-B catch the gridlocks
implied by the model.

Liveness

The liveness property asserts that something good will happen “eventually” [Lamport 1977].
We have noted above that liveness can be a necessary condition to have systems
which guarantee a given safety property. This notion can also be used for express-
ing non-critical, but desirable properties. In our case, a desirable property is that
a vehicle eventually reaches its destination and terminates its travel. This property
cannot be formally expressed within the Event-B framework because liveness prop-
erties involve the temporal concept “eventually;” until now there is no standard way
to define temporal constraints in Event-B specifications. Even so we know that, due
to traffic jams, the above liveness property is certainly not guaranteed, it would be
very useful to be able to express it formally.

However, as proposed by [Yadav 2009], in order to prove the liveness of our
model, we can prove that our system is non-divergent and enabledness preserving.
By non-divergent we mean that newly introduced events do not take control forever
and by enabledness preserving we mean that if an event is enabled at the abstract
level it is enabled at the concrete level as well.

Non-divergence is usually proven with the help of variants. We introduced the
following variant at the second level of observation:

card(hubsToCross) + card(connectionsToTraverse)

where hubstoCross (resp. connectionsToTraverse) is the set of hubs (resp. paths)
that the traveling vehicles have still to cross (resp. traverse) to reach their desti-

76

6.3. How to refine?

nations. One of the sets loses one of its elements each time a vehicle progresses on
its travel. The proof that the newly introduced events crossHub and traversePath
decrease the variant is a guarantee that they do not prevent the travel event to
fire.

This notion of variant is useful to prove non-divergence until the event wait is
introduced at the third observation level. Since a vehicle can wait for indefinite
periods of time for its turn to enter a hub, our variant cannot assure us that this
event cannot take control forever. This is a fact of life: the land transportation
domain is divergent.

We can prove enabledness preservation of the model by the standard consistency
and refinement checking proofs which need to prove that the guards of one or more
events in the refinement are enabled under the assumption that the guards of one
or more events in the abstraction are also enabled.

This discussion on safety and liveness properties indicates that they are complex
and tangled issues. It also shows that as far as domain models are concerned,
there should not be only one rule like, for example, no model shall deadlock, or
models shall always be live. The point is that Event-B does not provide us with the
mean to express cleanly these kind of properties. We consider this as an important
shortcoming.

6.3 How to refine?

Refinements and observation levels are distinct concepts. Refinement is the corner-
stone of the B method. It serves two purposes: methodologically, it allows specifiers
to concretize the specification, and technically, it induces proof obligations which
guarantee the correctness of the development. It gives the development a flat struc-
ture which may impair its readability.

When modeling a domain, we prefer to see refinements as process steps where a
new piece of information is added to the model. We find useful to classify refinements
in two categories:

1. State enrichment: a new concept or a new constraint on the state is added.
Contexts are extended and the events concerned by the novelty are refined
(guards and actions are changed). The structure of the specification is not
changed.

2. Event decomposition: a “large” event is decomposed into several “smaller”
ones. The structure of the model is altered.

The second kind of refinement corresponds to a change of “observation level.”
Observation levels are a way to provide a specification with a super-structure which
eases its understanding. They reflect either the “natural” structure of the objects
or the structure of the behavior. For instance, the second observation level in the
model reflects the static topology of a network, while the third level is more about
the protocol to cross a hub.

77

Chapter 6. Guidelines for domain engineering with Event-B

The major advantage of thinking in terms of observation levels becomes appar-
ent when we introduce a new property. This structure provides us with a strong
guideline. We experienced it with the introduction of time. The vocabulary and
abstract constraints (time is ever increasing, for instance) were defined at the first
level since this concerned only travels. Next we jumped directly to the third level
to define the computation because durations could be associated to events at that
level.

6.3.1 Refine slowly

We advise to use small incremental steps while developing domain models. Ideally,
only one new fact should be introduced per refinement.

Recording rationales for refinements is essential for later understanding of the
formal text. Currently, Rodin provides only minimal abilities in this domain: simple
comments. They are not well fitted for long explanations. We make use of this
small-step approach to introduce the notion of transportation network, for instance.

Structural facts and enforceable properties are expressed by axioms and invari-
ants respectively, so they are well localized, as a unique syntactic expression, in the
text of the specification. The only confusing problem comes from the typing for-
mulae which are part of axioms and theorems: most are purely technical but some
convey information that can be seen as assumptions. For instance, the structural
property that a connection belongs to only one transport network can be written
either as
typ obsNetConnections ∈ Connections → Nets
pro ∀ c . c ∈ Connections ⇒ card(obsNetConnections[{c}] = 1

or as
typ obsNetConnections ∈ Connections � Nets // total injection

The assumption is less conspicuous in the second expression.
Domain models are reference documents. So, they will often be read by people

who need to check some intuitive assumptions or to collect assumptions relevant to a
certain part of the system. It is more difficult to extract assumptions from a model
than to introduce them. This is connected to the traditional issue of readability
of formal texts. Even assuming readers have an equal command on the formalism
as writers, the former need to infer the semantics that the latter has only to write
down.

The extraction of a behavioral law is the real difficulty. The problem comes from
the scattering of the expression of the law into the guards of several events. For
instance, understanding the protocols which prevent collisions require to consider
the guards of two different sets of events. Expressing each type of collision by one
specific refinement eases the work.

Last, expressing only one feature of the domain at a time helped us finding
patterns, such as the time introduction presented earlier, in the refinements of events.
Again, this kind of regularity in the expression makes later analysis of the text easier.

78

6.3. How to refine?

We should also note that small refinement steps are well supported by Rodin. They
do not cost much.

6.3.2 Refine unconventionally

Another piece of advice is to use the notion of observation levels to organize the
development rather than the implicit linear view of refinements.

Event-B has inherited from B the view that a development is a sequence of re-
finements. This conception is adequate in B, less so in Event-B. Plugins like Feature
Composition Plugin [Gondal 2009], Parallel Composition Plugin [Poppleton 2008],
or Shared Event Composition Plugin [Silva 2010] attest the importance of this ob-
servation and may help domain modelers in the future. However, their slow progress
seems to indicate that strong formal difficulties may restrict their applicability.

Organizing the introduction of a new feature along the observation levels (at
least, one refinement per level) has several advantages:

• we make “small” steps, focusing on a small and specific set of events,

• we can relate more easily failures during the proofs to incompatibilities be-
tween the feature’s definition and the existing model,

• the levels point “naturally” to the feature’s facets we need to analyse.

The problem with the linear sequence is that when we introduce a new property,
we need to do this into a complex piece of text. For instance, if we wanted to
introduce a notion of energy consumption, we would like to start the new feature
analysis as written in figure 6.1. From this, we could refine the notion along the
observation levels and merge the resulting model with the current specification.

INVARIANT
meter ∈ Vehicles → int // energy meter
energyConsumed∈ Vehicles → int

EVENT travel REFINES travel �=
ANY

vehicle , newLocation, meterReadingAtStart
WHERE

vehicle∈ Vehicles ∧ newLocation∈ GlobalLocations ∧
newLocation �= location(vehicle) ∧ meterReadingAtStart ≤ meter(vehicle)

THEN
location (vehicle) := newLocation
energyConsumed := meter(vehicle) − meterReadingAtStart

END

Figure 6.1: Introduction of Energy consumption: what we want

Instead, Event-B’s flat refinement structure would force us to write the travel
event as illustrated by figure 6.2 and to introduce in all other events a dummy action
of the form:

79

Chapter 6. Guidelines for domain engineering with Event-B

meter ∈| meter’(n) ≥ meter(n)

This action simply states that meter is susceptible to be modified by future refine-
ments. Even if the addition of such an action does not pose any problem, it tends
to clutter the text and to cause distraction.

INVARIANT
meter ∈ Vehicles → int // energy meter
energyConsumed∈ Vehicles → int

EVENT travel REFINES travel �=
ANY

vehicle , newLocation, r , origin , destination , meterReadingAtStart
WHERE

r ∈ routes ∧
// ...
// 14 lines of guards
// ...
meterReadingAtStart ≤ meter(vehicle)

THEN
location (vehicle):= newLocation
travelTime(vehicle) := time − startTime(vehicle)
activationTime := {vehicle} �− activationTime
speed(vehicle) := 0
acceleration (vehicle) := 0
energyConsumed := meter(vehicle) − meterReadingAtStart

END

Figure 6.2: Introduction of Energy consumption: what we have

6.4 How to verify?

The verification of a domain amounts to assert that the specified facts, laws and
properties about the domain are consistent, checkable and provable. A verified
domain model is, therefore, considered as a consistent set of assumptions about the
domain. In fact, this hypothesis does make sense as an unprovable model, of course,
can not be trusted.

Refinements serve different purposes in system development than in domain
modeling. In the former case, the refinement is a more concrete description of the
same model. We need to prove that the new description enjoys the same functional
properties. In the latter case, the refinement is an enrichment of the model. We
need to show that the new feature is consistent with the previous ones. Although
based on the same set of proof-obligations, the proving process needs to be observed
from another point of view.

6.4.1 Beware of easy proofs!

Asserting the consistency of an assumption expressed as an invariant is relatively
easy. Either the invariant-related proof-obligations can be discharged or not. This
is safe.

80

6.5. Observations on tool & language

However, when an assumption is expressed as an axiom, it is hard to prove
its consistency. Proof obligations assert well-formedness and well-typing, but not
consistency. We are then always at a risk to introduce a fact which is in contradiction
with the rest of the model. Although hard, the ability to detect contradiction among
axioms is crucial for the correctness of the model.

Unfortunately, Rodin does not warn us when axioms are inconsistent. One
should always keep a close eye on the proofs. If proofs become mysteriously easy
to discharge, beware! This point is further elaborated in the section 6.5 as an
observation on the tool.

6.4.2 Beware of obvious truth!

Sometimes, discharging a proof-obligation may not be possible. A proof which
can not be carried out in Event-B is not always an indication of an error in the
specification. We can make “formal approximations” in such situations. Rodin allows
this by declaring the goal as “reviewed.” Model is then considered as trustworthy.

While legitimate in certain situations, in particular due to shortcomings of cur-
rent provers, reviewing an “obvious” goal may lead to a surprise. For instance,
assuming x(y/z) = (xy)/z seems natural, except that this is true in R, but not in
N. Though the difference becomes actually negligible when numerators are much
bigger than denominators, yet this approximation is formally incorrect.

One should always be careful while making approximations and should at least
test them. Dynamic testing techniques, such as animation, with realistic values, can
give insight on the validity of the approximations and on the solidity of the model.

6.4.3 Use animation to complement provers

Animation allows specifiers to check the behavior of the specification by observing its
execution. Non-provable safety and liveness properties can be assessed by analyzing
state values and event-enabledness status. We can make solid observations on the
behavior of a model by a trace analysis of the simulated scenarios.

Animation cannot show that a property always hold, but it may help to generate
counter examples which show that the model is partly incorrect. Animation plays
the same role as model-checking, in fact, a tool like ProB offers both functions.

A very useful side effect of animation is to help get better insights on the model.
Implicit properties and unexpected behaviors, either good or bad, will become ap-
parent. We did even use it as a validation and prototyping tool to understand and
fix the expression of tricky protocols. The next section of this thesis is dedicated to
animation where it is discussed in more details.

6.5 Observations on tool & language

Our unconventional use of Event-B and, consequently, of Rodin raised a few issues
with the modeling language and the tool support. While the observations discussed

81

Chapter 6. Guidelines for domain engineering with Event-B

below sound negative, we must emphasize the overall quality of the language and
the tools: the major difficulties we encountered were caused by the complexity of
the domain and by our own errors.

Considering the tool support, we have two observations:

1. Rodin failed too often to automatically discharge obvious proofs, even those so
obvious that it took a simple click by the user to direct their completion. This
becomes tedious and very distracting. Particularly annoying are the numerous
sub-goals akin to type-checking that are generated by the deduction rules and
discharged with a click. They tend to disrupt the concentration required by
tricky proofs; we expect tools to help rather than distract on this aspect.

2. Rodin does not warn when axioms are inconsistent. The detection of con-
tradicting axioms is hard. Now, we rely only on heuristic rules. We suspect
a contradiction when we notice that proofs become mysteriously easy to dis-
charge. Then, we introduce an axiom or a theorem such as TRUE = FALSE.
Success in the proof signs a contradiction, failure provides us only with rea-
sonable assurance. We know that proving the non-contradiction of axioms
is non-decidable. However, the indication by Rodin that it has detected an
inconsistency would be welcomed.

Our work prompted three remarks on the language:

1. Refinement is the only structuring mechanism in Event-B. As discussed above
(section 6.3), grouping machines in other ways would be appreciated. This
would not necessarily require a modification of the language, but could be
achieved by the tools.

2. The internal structure of Event-B machines and contexts is too flat. Again, a
possibility to structure axioms or events into categories would improve greatly
the readability. For instance, we classified our axioms into three categories
(technical, typing, and property) and found this practice very helpful to main-
tain clean and readable specification.

3. The feature of Event-B which we missed a lot was the notion of sequences.
Currently, we specify them by using the standard definition of sequences. We
consider this only as a patch: it works, but it brings clutter to parts of speci-
fications that are already sufficiently complex.

6.6 Summary

The domain of transportation exhibits several interesting features, such as high levels
of non-determinism, complex interactions, stringent safety properties, multifaceted
timing attributes, etc. The formal representation of these features with Event-B has
been a challenging task.

82

6.6. Summary

In this chapter, based on our experience, we have critically analyzed the capa-
bility of Event-B as a domain engineering tool. We have identified the areas where
modelers can struggle while specifying domains and presented some guidelines to
avoid such pitfalls. In this context, we have answered three pertinent questions:
what to specify? how to refine? and how to verify? Apart from the areas such as
temporal properties, where more work is still needed, we have found Event-B as a
mature and effective tool for engineering domains.

83

Part III

VALIDATION

Chapter 7

Validation of specifications by

animation

Contents
7.1 Introduction . 87
7.2 Validation by animation . 88
7.3 Stepwise animation . 89
7.4 Brama: The animator . 89

7.4.1 Working principle . 89
7.4.2 Structure . 90
7.4.3 Related animators . 91

7.5 Classes of specifications . 92
7.6 Limitations of Brama . 93
7.7 Changing the class of a specification 94

7.7.1 Approximation . 95
7.7.2 Refinement . 95
7.7.3 Rewriting . 96
7.7.4 Inlining . 96

7.8 Summary . 97

7.1 Introduction

The intrinsic complexity of the transport domain raised quickly the issue of the
validation of our model. “Is the model close enough to the reality it pretends to
represent?” is an instance of the general quality assurance question “Do we build
the right product?” Proofs and formal treatments are insufficient. We have to look
towards validation techniques for answers.

Successful validation strategies are often based on users observing and playing
with prototypes. A similar strategy, such as animation, can be used in a formal
development but with a constraint: the prototype must be rigorously derived form
the formal specification. Some tools are provided to animate Event-B specifica-
tions, Brama [Servat 2006], for instance. However, these tools put drastic con-
straints on the class of specifications they can animate: limited non-determinism,

Chapter 7. Validation of specifications by animation

non-constructive definitions easily implemented by enumerations, quantifications
amenable to simple iterations, etc. The catch is that a well written specification is
likely to exhibit contrary features at its early development stages.

Specifications can be classified into two major categories: animatable and non-
animatable. In order to achieve the animation of non-animatable specifications, we
have to change their class. We achieve this goal by their transformation but with
a constraint that their behavior must remain the same, possibly at the expense of
other properties, such as provability.

The chapter is organized as following: In section 7.2, we discuss the validation
of specifications using animation. In section 7.3, we discuss the benefit of using
animation in the incremental development of specifications. In section 7.4, we intro-
duce the animator Brama, its structure, its working principle, etc. Then, in section
7.5, we discuss the distinction between animatable and provable specifications. In
section 7.6, we talk about the limitations of the animator Brama. Finally, in section
7.7, we discuss how can we obtain the animatability of specifications by changing
their class. Section 7.8 then concludes the chapter.

7.2 Validation by animation

Once a model has been formally specified and verified, an important question arises:
does it accurately capture the requirements? While proof tools guarantee the con-
sistency of the specification (verification), they are of little help to check if the
specification models the desired behavior (validation).

There are several ways to validate a specification: prototyping, structured walk-
through, transformation into a graphical language, animation, and others. All con-
cur to the same goal: to evaluate the specification in order to assess its conformance
to the original requirements which later contribute in the demonstration that the
software fulfills users’ needs.

To answer the question of validation, we use the technique of animation. The
main goal behind animation is to demonstrate the requirements mentioned in the
specification document. This demonstration facilitates the understanding and cor-
rection of complex specifications. It is an approach which lets the specifier analyze
the specification against a set of possible behavioral scenarios. These behavioral
scenarios, which in turn are sequences of events, constitute the behavior of the spec-
ification. For instance, different scenarios can happen when a vehicle crosses an
intersection, depending on whether other vehicles are already on or are approaching
the intersection.

The behavioral scenarios, which define the functional behaviors of the system
through a sequential executions of events, are animated by feeding some initial
values to animators at startup. These startup values may not be required by ani-
mators which can compute possible values from the specification itself. During the
animation, we can observe whether the scenario runs as expected, without violating
invariants, guards or post-conditions. The animation process is continued until all

88

7.3. Stepwise animation

the scenarios are exhausted or some error perturbs the intended course of events.
In an ideal world, all typical scenarios should be animated. However, depending

upon cost and timing constraints, conducting animation on selected scenarios, which
are considered critical for the validation of the specification, may be an effective
approach.

7.3 Stepwise animation

Waiting for a final specification to begin the validation leads to the same difficulties
as proving a program against its specification: costly, very complex, soon unman-
ageable. The strategy which works with the verification of specifications built by a
stepwise refinement process, i.e., to break down the proof of correctness of the im-
plementation into smaller proofs associated with each refinement step, can also work
for validation. In a similar spirit, the technique of animation can be used at each
refinement step to break its validation into smaller assessments. It then proves as a
validation tool consistent with the refinement structure of the specification process.

We used animation while developing our specifications: we did not wait until
their construction was finished. The strategy of stepwise validation of specifications
which we have adopted has several advantages. One of them is the fact that problems
are detected close to the point where their cause was introduced. This facilitates
the understanding of the cause. Another advantage is the fact that an unforeseen
behavior may be associated with a specific refinement. If we see a refinement as a
formalization of an assumption, then we have an indication that some interactions
between assumptions need to be investigated.

7.4 Brama: The animator

Once a model has been specified using the Event-B specification language in Rodin,
Brama, an Eclipse based animation plug-in for the platform Rodin, can be exploited
to execute it for its validation.

7.4.1 Working principle

In Brama, a typical animation session begins by setting the values of the constants in
the different contexts seen (either directly or transitively) by the animated machine.
Then, the user must fire the INITIALISATION event, which is, at that time, the only
enabled event. After this, the user will play the animation by firing the events until
there is no more enabled event, or the system enters to a steady loop, or an error
occurs (broken invariant or non-computable action typically).

While animating specifications, Brama determines whether the invariant clause
has been violated. If this is the case, it indicates the violated part of the invariant.
It picks values and tries to evaluate the guard. If it finds good values, the guard is
evaluated to TRUE, otherwise FALSE.

89

Chapter 7. Validation of specifications by animation

Figure 7.1: The Brama animator for RODIN

Figure 7.1 shows the “classic” interface of Brama. On the left hand side, the
events of the animated machine appear. They are in one of two states: enabled
or disabled, depending upon the evaluation of the guards to TRUE and FALSE
respectively. On the right hand side, the actual values of the machine variables
are displayed. The buttons can be used to customize the display or to activate
specialized value editors.

Brama can be used in two complementary modes. Either Brama can be manu-
ally controlled from within the Rodin interface or it can be connected to a Flash1

graphical animation through a communication server; it then acts as the engine
which controls the graphical effects. A mechanism of observers is provided. Expres-
sions and predicates can be individually monitored and their value is communicated
to the Flash program each time they change. Last, a scheduler mechanism allows
for the automatic firing of events.

7.4.2 Structure

Brama is built on an animation engine which, in fact, is a predicate solver. Other
components of Brama are a visualization tool for variables and events, a management
module for the automatic linking of events, a management module for variables,
predicates and observed expressions, and a module to communicate with external

1Flash is a registered trademark of Adobe Systems Inc.

90

7.4. Brama: The animator

graphical environment, such as Flash.

Figure 7.2: Machine-graph-view generated by Brama

The animation of a model obtained by Brama can be seen from different perspec-
tives. While the variable-view, machine-view and event-view show the animation of
the model from their respective point of views, the most interesting is the machine-
graph-view. As depicted by figure 7.2, this view shows the animation of all the
refinements of the model in one glance. Green boxes signal enabled events and
red boxes signal disabled events. All the refinement levels are animated concur-
rently. However, it is worth noting that a refined event may be animatable while its
abstraction may not.

7.4.3 Related animators

ProB [Leuschel 2003] and AnimB2 are two other animators which are also capable to
animate Event-B models. While there is little scientific or technical documentation
available for AnimB, ProB has emerged as a mature and well-documented animator
as well as model checker for the Event-B specifications.

Values to constants in Brama and AnimB explicitly need to be provided, whereas
ProB does this automatically using constraint-solving techniques by finding proper
values that satisfy all axioms. Pure enumeration techniques, which both Brama
and AnimB employ, are limiting as compared to constraint-solving and pose some
problems when evaluating complicated predicates. In fact, they were the main
reason which forced us to transform our specifications in order to achieve their
animation.

2http://www.animb.org

91

Chapter 7. Validation of specifications by animation

Like Brama, ProB also fails to address some of the known animation problems.
For example, it also requires that all sets should be given a finite cardinality or
mathematical integers cannot be enumerated outside their upper and lower bounds.
Basic animation challenges for B specifications and ProB limitations are discussed
in details in [Leuschel 2008].

It should be noted that our choice of tool, Brama, is contingent. At the time
when we started our development, it was the only one able to animate Event-B
specifications; AnimB appeared later and ProB required the translation of Event-B
code into B. While our proposed heuristics (discussed in chapter 8) should surely be
adapted to these specific tools, we suspect that the general philosophy of animation
we have adopted is still valid. Different set of heuristics would be required for
different animators.

7.5 Classes of specifications

As shown by figure 7.3, we can characterize specifications along two axes: provable
and animatable. A specification may therefore fall into one of four categories:

1. non-provable and non-animatable,

2. non-provable but animatable,

3. provable but non-animatable,

4. provable and animatable.

Figure 7.3: Classes of specifications

Like a “bad” program can be executed, an incorrect specification can also be an-
imated. Of course, neither would be an admissible solution to the problem they are
meant to solve, but the observation of the execution can give precious information
about the correct solution. Some important ingredients of specifications, such as
non-constructive definitions, infinite sets, or complex quantified logic expressions,
are among the list of constructs which are non-animatable. Unfortunately, well
written specifications often use these traits. Indeed, it is even advised that early
specifications be highly abstract and non-constructive. Animation, by nature, heav-
ily depends on tools. So any limitation of the tool will also be a restriction on the
class of animatable specifications.

92

7.6. Limitations of Brama

To validate a specification which does not belong to the animatable class, we need
to “bring it in.” We do this by applying the transformational heuristics which are
designed to keep the behavior unaltered, possibly at the expense of other properties,
such as provability.

While it would be interesting for theoreticians to know whether some tools’
limitations come from implementation features or have a deep mathematical reason;
we, as practitioners, are more interested in designing practical rules for one particular
tool. However, it is important to have an explicit rule design technique so that the
current effort can be leveraged and transposed to other tools.

The first error message one is likely to encounter with the animator Brama is
“Brama does not support finite axioms.” Since these technical axioms are manda-
tory to discharge the well-formedness proof obligations of carrier sets, the case was
settled. Beyond the anecdote (removing such technical axioms do not change the
essence of the specification), this feature of Brama gave us the essential insight
to dissociate proofs and animations. We could then focus on the transformational
heuristics which preserve behavior without bothering about preserving proofs.

One can wonder why we do not produce a specification at first which belongs
to the animatable class. The reason is that such specifications are likely to be less
readable and, more importantly, unprovable. The elements which are necessary to
discharge proof obligations are sometimes altered or suppressed by elements which
make specifications animatable. While specifying, verification should be given pre-
eminence over animation. However, once we are assured of its verifiability, we can
then proceed towards its animatability.

The process of bringing specifications into the animatable class may “downgrade”
them. By compromising on proofs, we are at a risk of generating inconsistent speci-
fications. In fact, sometimes we cannot prove within the formal Event-B rules that a
transformation does not modify the original behavior. This implies that the correct-
ness of these transformations must be asserted through other means. We have then
chosen to follow the mathematical tradition of providing rigorous and convincing
arguments as a proof of the preservation of the behavior for each transformation
heuristic.

7.6 Limitations of Brama

The situations where Brama cannot animate a specification can be arranged in a
typology of five typical cases:

I Brama does not support the finite clause in axioms

II Brama must interpret quantifications as iterations

II.1 Brama only operates on finite sets

II.2 Brama cannot compute finite sets defined in comprehension with nested
quantification

93

Chapter 7. Validation of specifications by animation

II.3 Brama explicitly requires typing information of all those sets over which
iteration is performed in an axiom

III Brama cannot compute dynamic functional bindings in substitutions

III.1 Brama does not support dynamic mapping of variables in substitutions

III.2 Brama does not support dynamic function computation in substitutions

IV Brama does not compute arbitrary functions

IV.1 Functions with analytical definitions in context cannot be computed in
events

IV.2 Functions using case analysis can not be expressed in a single event

IV.3 Invariants based on function computations can not be evaluated

V Brama has limited communication with its external graphical animation en-
vironment

We have gathered these observations about Brama while animating two specifi-
cations which will be discussed in details later in chapter 9. The non-animatability
of specifications has two main reasons: either it is the limitation of the animator or
the expression itself is too complicated to be executed.

7.7 Changing the class of a specification

In order to animate a specification, we have to bring it into the right class. We change
its class primarily by reformulating its expressions and adding some constructive
elements to it. Some of such techniques are usage of extension for a finite domain,
definition of upper and lower bounds to ensure termination, simplification of complex
formulas, rewriting of complex non-constructive expressions into executable format,
inline/macro expansion of the formula instead of calling the function, decomposition
of events to include all the cases defined by functions, etc. Our main class changing
constructive techniques, depicted by figure 7.4, are as following:

Figure 7.4: Types of class changing transformational heuristics

94

7.7. Changing the class of a specification

7.7.1 Approximation

Approximation is a standard mathematical technique to represent something close
enough to the original value. It is a reasonably fast solution to be useful for compu-
tation and execution. In our transformations, we use two types of approximations:
under-approximation and over-approximation. The former is the idea of taking a
reasonable subset of the original expression, whereas the latter takes the superset.
These approximation techniques are based on abstract interpretation [Cousot 1977]
and are often used to address state explosion problems in model checking.

We use under-approximation to address the termination problem. This is a
specific kind of termination which is based on enumeration of values. When a
formula is based on an unbounded value it becomes non-terminal because animator
will continue enumerating it infinitely. Consequently, Brama fails to execute such
expressions. Therefore, we define their upper and lower bounds which settles the
case.

In other cases, where we have to deal with complex data structures, such as
sequences or lists, we exploit the over-approximation technique. The primitive data
type of sequence is not provided in Event-B, consequently, we use its standard
definition which is based on nested quantifications (see section 8.2 for more details).
As we have already discussed that (un-bounded) quantifications cause problems
during animation, so, apparently, it seems that under-approximation can again be
the solution and defining bounds will solve the problem. This case is different
because expressions involving nested quantifications become very complex for the
animator to execute. Therefore, we simplify the expression using over-approximation
technique to achieve its animatability.

The idea behind this transformation is twofold: first, to simplify a formula to
replace non-executable elements with something executable, second, to employ an
approach to quickly analyze and establish that if some property exists in the abstract
(over-approximate) specification then it holds in the concrete specification that it
abstracts. However, if the property does not hold in the former, we do not know if
the latter violates this property.

7.7.2 Refinement

Refinement is an established formal activity to transform an abstract (high-level) for-
mal specification into a concrete (low-level) executable program. This is exactly how
we use this technique and transform our non-executable high-level non-constructive
formulas and expressions into lower-level animatable and executable elements. Al-
though transformations achieved by approximations can also be discussed in terms
of abstract-refinement relationship, yet the solutions to Brama’s problems II.3, IV.2
and specially V are cases of refinements.

The following proof obligation must be proved in order to define the abstract-
refinement relationship between the original and transformed specifications:

95

Chapter 7. Validation of specifications by animation

P (s, c) ∧ I(s, c, v) ∧Q(s, t, c, d)∧
J(s, t, c, d, v, w) ∧H(s, t, c, d, w) ∧ S(s, t, c, d, w,w�) ⇒

G(s, c, v) ∧ ∃v�.(R(s, c, v, v�) ∧ J(s, t, c, d, v�, w�))

Where v defines the variables of the abstract machine and w defines the variables
of refined machine, s and c define the sets and constants of the abstract context,
and t and d define the sets and constants of refined context. The axioms on the
sets and constants of the abstract context are denoted by P (s, c) and on the refined
context by Q(s, t, c, d). The invariant of abstract machine is denoted by I(s, c, v)
and of the refined machine by J(s, t, c, d, v, w). G(s, c, v) is the guard of the abstract
event whose before-after predicate is defined by R(s, c, v, v�). The corresponding
concrete event of the refined machine has the guard H(s, t, c, d, w) and the before-
after predicate S(s, t, c, d, w,w�).

7.7.3 Rewriting

Rewriting is a method to replace formulas and expressions with their equivalent
counterparts. The rationale behind using this technique for transformation is same
as others: to replace non-executable elements with their equivalent but executable
counterparts.

In generalized substitutions, dynamic functions whose parameters are passed at
runtime (non-deterministically) and depend upon the computations performed by
guards, are hard for Brama to compute. The same hardships are also faced when
Brama has to compute sets of tuples in generalized substitutions. This is due to
the inability of the animator to perform some standard operations. Our approach
towards these animation problems is to reformulate the non-computable formula by
its counterpart in set algebra. While less readable, it has the same meaning and is
easy enough for animation.

7.7.4 Inlining

Inline/macro expansion is an optimization technique to replace the call of a function
by its body. While writing specifications, this is a common practice to use functions
for readability and simplifying proofs. These functions are defined in contexts using
axioms. A function based on a case-analysis has multiple definitions and cannot be
enumerated straightforwardly. Consequently, specification fails to execute.

This problem can be solved by using inline expansion technique, i.e., to replace
the function call by its body. We take the function body from the context and
replace it in events where they are called. Like this, we do not have to pre-define
values at compile time and animator gives the values to guards at run-time by itself,
so problem is solved and animation is possible.

Inline expansion technique, in fact, is based on two previously defined trans-
formational techniques: rewriting and refinement. It is rewriting because we are
replacing the function call by its body which means semantically both expressions

96

7.8. Summary

are equivalent, of course, proper care has to be exerted with the use of involved vari-
ables. It can be defined as the refinement of the original machine if we can prove
the enabledness preservation of the involved events. The following proof obligation
must be discharged:

∀S,C, Sr, Cr, V, V r, x, xr.A ∧Ar ∧ I ∧ Ir ⇒ (Gr ⇒ G)

Where S and C respectively represent the sets and constants of the abstract
context, Sr and Cr respectively represent the sets and constants of the refined
context, V is the variables of the abstract machine, V r is the variables of the refined
machine, x is the local variables of the abstract event, xr is the variables of the
refined event, and A, Ar, I, Ir, G, Gr are the axioms, invariants and guards of the
abstract and refined machines respectively.

7.8 Summary

Proofs alone are not sufficient to ensure that the specification is an adequate model
of the problem we want to solve; they need to be complemented by validation
techniques, such as animation. However, several ingredients of well written spec-
ifications, such as abstractness, non-determinism, non-constructive definitions, are
non-animatable. Provability and animatability are two different sets of classes of
a formal specification. In order to be validated, a specification must belong to the
latter class. This transformation can be achieved by employing techniques, such as
refinement, rewriting, etc.

In this chapter, we have explained what are the issues which may impede the
animation of a formal specification. We have discussed the differences between
provable and animatable specifications. We have introduced the animator Brama
and also noted down its limitations for animation. In the end, we have presented
some techniques which help obtain the animatability of non-computable traits of
formal specifications.

97

Chapter 8

Transformational heuristics &

formal semantics

Contents
8.1 Introduction . 99
8.2 Transformational heuristics 100
8.3 Formal semantics of the transformations 105

8.3.1 State names . 105
8.3.2 State values . 106
8.3.3 States . 106
8.3.4 Event . 106
8.3.5 Behavior . 106
8.3.6 Specification . 106
8.3.7 Relation between specifications 106
8.3.8 Shared state values . 107
8.3.9 Shared states . 107
8.3.10 Shared behaviors . 107
8.3.11 Behavioral equivalence . 108

8.4 Proofs of the heuristics . 110
8.5 Summary . 113

8.1 Introduction

The distinction between the classes of non-animatable and animatable specifications
leads to the emergence of a set of heuristics which assists in their transformation
from the former class to the latter. These transformational heuristics are designed
to keep the behavior of the specifications unaltered, possibly at the expense of other
formal properties, such as provability. Their correctness then becomes an issue.

We address this issue in two steps. In the first step, we present the heuristics in a
descriptive frame and give rigorous arguments to justify their use, notably that they
are applied to the already verified formal text. In the second step, we give a formal
proof of their correctness. The proof indicates under which conditions both original
and transformed specifications are behaviorally equivalent, i.e., provided the same

Chapter 8. Transformational heuristics & formal semantics

values, the same sequences of events can be followed on both specifications. Some of
the proof obligations cannot be discharged within the formal framework of Event-
B. The general behavior preservation property states that whatever we observe on
the animation of the transformed specification would have been observed on the
animation of the original specification.

The chapter is organized as follows: In section 8.2, we discuss the heuristics to
change the class of a specification. In section 8.3, we present the formal semantics of
the transformations which assist in defining the theorem of behavioral equivalence
of non-animatable and animatable specifications. In section 8.4, we give the formal
proof of behavioral equivalence of each heuristic. Section 8.5 concludes the chapter.

8.2 Transformational heuristics

The aforementioned animation problems of Brama, discussed in section 7.6, lead
us to design 10 transformational heuristics, one for each case. We designed the
heuristics to preserve the behavior of the specification, not its formal properties.
In particular, the transformation may not be provable within Event-B formal logic
system. The correctness of the transformation is then a crucial issue.

One of the strategies to address the issue is relying on the mathematical tradition
of rigorous arguments. For this to work, we need a basic assumption: the initial
specification text must have been formally verified. It provides us with a safeguard
that correct modification of the formal text would not affect the behavior of the
specification. Following this, we have proposed a rigid pattern, shown in figure 8.1,
which describes each heuristic in a standard format.

For each heuristic, we first describe the symptom, i.e., in which particular case
this heuristic should be used. The symptom generally relates to the animation prob-
lems discussed in section 7.6. It also indicates the construct of Event-B model, such
as, axiom, guard, or generalized substitution, where the problem lies and which is
susceptible to modification. The transform explains how the original statement
must be transformed in order to be animatable. Each transform is based on the
execution techniques discussed in section 7.7. Caution is the description of the
applicability conditions, the hypothesis to check, the possible effects, and the pre-
cautions to follow. In the justification part, we provide a rigorous argument about
the validity of the transformation; we describe why this solution works. Although
not strictly formal, yet this rigorous and clear description frame allows us to use
animation safely to validate specifications. Some heuristics are also associated to a
proof-obligation, discussed later in section 8.4, which once discharged ensures the
soundness of the application of the heuristic.

Heuristic 1: Remove the axiom finite from the specification

Symptom: Error message about the keyword finite not being supported. The
problem lies in the axioms of the model.
Transform: Remove all the instances of the axiom finite from the specification.

100

8.2. Transformational heuristics

Figure 8.1: The heuristic pattern

Caution: Removal of the axiom finite invalidates many well-formedness proof-
obligations.
Justification: Axioms like finiteness and non-emptiness can be considered as purely
technical axioms which are just used to discharge related proof obligations. They
do not bring much information into the specified system whose implementation will
necessarily be finite, even if it could conceptually be infinite. These technical axioms
are required by the inference rules used by the provers. Since all the sets of values
will be defined by extension, the animation will work upon necessarily finite values.
The behavior is trivially maintained.

Heuristic 2: Specify the finiteness of a quantified domain

Symptom: Error message about the dependent variables which do not have an
iterator. The problem lies in the axioms of the model.
Transform: Limit the range of the list.

Original n.n ∈ N ⇒ expression(n)

Transformed n.n ∈ min..max ⇒ expression(n)

Caution: The range must be wide enough so that the values of n computed during
the animation never fall outside it. Some proof obligations may become impossible
to discharge (e.g., n+ 1 ∈ N).
Justification: This heuristics is the opposite of the heuristic 1; the argumentation
on the necessary finiteness of the values during animation holds. The major differ-
ence with the heuristic 1 is the necessity to check during the whole animation that
the range is always wide enough. If this condition is ensured then the behavior is
unchanged.

Decidability is a common animation problem. Our solution to ensure it via
typing and stating that any variable, parameter or constant can only take finitely
possible values is inspired by the solution proposed by ProB.

In a broader formal framework spectrum, this is an example of refinement. The
newly constructed expression is a refined version of the original expression which
contains lesser but more precise values. From a more focused abstraction frame-

101

Chapter 8. Transformational heuristics & formal semantics

work’s point of view, this is under-approximation which allows us to quickly check
the state reachability by exploring the subset of the reachable states.

Heuristic 3: Generalize expressions involving complex iterations

Symptom: Error message about the impossibility to build the iterators of the
predicate. The problem lies in the axioms of the model.
Transform: Take the super-set of the expression.

Original var = {x|∃n.n ∈ N1 ∧ x ∈ 1..n → y}
Transformed var ∈ P(N � y)

Caution: This transformation loosens the constraints on the values, some maybe
essential to the behavior (for instance, the property that all integer between 1 and
the length of the sequence belong to the range of the function). Brama cannot
ensure anymore that the property holds. The burden of the check is passed onto the
input of the values. It must be ensured that animation is performed on a shared set
of values between the original and transformed specifications.
Justification: On the subset of shared values (that is, those values respecting the
constraints left out by the generalization), both specifications must have the same
behavior. Two cases must be considered:

• the value is associated to a constant: it does not change during the animation
and it keeps its properties,

• the value is associated to a variable: at least one of the proof obligations in
the initial specification deals with proving that the result of the computation
belongs to the set. Since the initial specification is verified, the values in the
modified specification have the same property.

This is an example of abstraction because the transformed formula is an abstrac-
tion of the original formula. In abstraction framework, this technique is known as
over-approximation.

Heuristic 4: Explicitly provide the typing information of all sets
used in an axiom

Symptom: Error message about the impossibility to build the iterators of the
predicate. The problem lies in the axioms of the model.
Transform: Always provide the type of variables.

original x.expression(x)
Transformed x.x ∈ X ⇒ expression(x)

Caution: The type provided must be consistent with the type inferred by the
provers.
Justification: Brama does not use the information derived by the provers. The
provided set is actually redundant. Brama needs it to set up the iteration process.
Two cases must be considered:

102

8.2. Transformational heuristics

• if the type is equal to a carrier set, or a subset, the modified expression is just
a redundant form of the initial expression,

• if the type is an infinite set, such as N, then heuristic 2 should also be applied
with caution and justification.

Heuristic 5: Avoid expressions involving mapping of variables in
substitutions

Symptom: Error message: “Default number can not be casted to IMapplet.”
Brama does not compute sets of tuples in substitutions. The problem lies in the
substitutions of the model.
Transform: Rewrite the substitution to avoid mapping.

Original {x, y.x ∈ X ∧ y ∈ Y |x �→ y}
Transformed {x ∈ X|x}× {y ∈ Y |y}

Justification: The transformation is simply a rewriting of the initial expression
as a formula in set algebra. While less readable, it has the same meaning. This
heuristic can also be used in guards and axioms.

Heuristic 6: Avoid dynamic function computation in substitutions

Symptom: Error message: “Related invariant is broken after executing the event.”
Brama cannot apply a function defined by its graph in a substitution.
Transform: Rewrite the substitution to avoid function computation.

Original {x.x ∈ X|fun(x)}
Transformed {ran({x.x ∈ X|x}� fun)}

Justification: The transformation is simply a rewriting of the initial expression as
a formula in set algebra. While less readable, it has the same meaning.

Heuristic 7: Inline in events the functions defined in contexts

Symptom: Startup values can not be fed to complex functions. The problem lies
in the context of the model.
Transform: Substitute function calls by their inlined equivalent

Original (in Context) ∀x.x ∈ S ⇒ f(x) = expression(x)
Original (in Event) f(v)
Transformed (in Context) true
Transformed (in Event) Add a new guard v ∈ S and replace f(v) with expression(v)

Caution: All occurrences of f in the specification must be replaced; be consistent
when replacing formal parameters by actual values.
Justification: This is the case of refinement. In a mathematical context, the value
f(v) is equal to its definition expression where v has been substituted to x; both
expressions are interchangeable.

Contexts in Event-B are precisely meant to contain constants and general defi-
nitions, such as functions. Using this structure eases the proofs and provides better

103

Chapter 8. Transformational heuristics & formal semantics

legibility. As for the previous two heuristics 5 and 6, this heuristic is also strongly
connected to the issue of readability and understandability of formal texts.

Heuristic 8: Replicate events which use functions defined “by cases”

Symptom: Same as the heuristic 7.
Transform:

Original (in Context) ∀x.x ∈ S ⇒ (p(x) ⇒ f(x) = expression(x) ∧ q(x) ⇒
f(x) = expression�(x))

Original (in Machine) EVENTS
EVENT A
WHERE ...f(v)...
THEN ...f(v)...
END

Transformed (in Context) true
Transformed (in Machine) EVENTS

EVENT A1
WHERE ...

grdC1 p(v)
THEN ...
END
EVENT A2
WHERE ...

grdC2 q(v)
THEN ...
END

Caution: This heuristic must be followed by the application of heuristic 7. Check
that all cases have been covered. Be particularly careful if the function is applied
to several different actual parameters; this may require several applications of this
heuristic.

This heuristic entails major surgery in the specification. A blind application
may introduce many copies of the events. By using the structures of the other
guards (some may already prevent cases in the function definition to be used) and
by grouping several functions into one transformation, it is possible to reduce the
number of duplications.
Justification: This is a case of refinement. The predicates used in the “by case”
definitions are equivalent to guards in events. They have the same form and are
used for the same purpose. Events A1 and A2 are copies of A, except for the new
guard: their union is equivalent to A. Hence, the transformed specification has the
same behavior as the original specification.

104

8.3. Formal semantics of the transformations

Heuristic 9: Remove Invariant

Symptom: Error message about the dependent variable which does not has an
iterator. The problem lies in the invariant of the model.
Transform: Remove the related invariant.
Caution: Removal of the invariant may invalidate some proof obligations.
Justification: Invariants express the conditions to which a specification must ad-
here. When applied to a proven specification, removal of invariant is safe because (1)
invariant do not modify behaviors (they are only observed) and (2) proof obligations
related to maintaining the invariant have already been successfully discharged.

Heuristic 10: Introduce observatory variables

Symptom: No error message.
Transform: Introduce observatory variables to the specification.
Caution: Use this heuristic only for observatory purposes, not for introducting
a new behavior. Make sure that they are not used on the right hand side of any
generalized substitution or in any guard.
Justification: The observation variables, invariants and events are introduced to
the specification when we want to demonstrate a particular behavior in external flash
application. Since the Flash interface is bound to the Event-B specification where
the actual values are being changed so it is easier to introduce new constructs there
rather than at the front end. These new constructs are purely cosmetic changes
to the specification; they facilitate its graphical look, and do not define any new
behavior.

8.3 Formal semantics of the transformations

Rigorous arguments can be used to justify the usage of the transformational heuris-
tics. Though necessary, they are not sufficient to prove their correctness. This
section therefore aims at defining precise semantics for these transformational heuris-
tics. We provide the formal definitions of basic ingredients which we use to assert the
correctness of our heuristics. We define what is a behavior of a specification, what
is a relation between the original and transformed specification, how can we charac-
terize that two specifications share the same set of behaviors, and more importantly,
what is behavior equivalence.

These formal semantics assert the fundamental concept which we have employed
to reason about our idea of transforming a provable specification into an animatable
one which is “anything that is observed during the animation of the transformed
specification would have been observed on the animation of the provable specifica-
tion.”

8.3.1 State names

State names N is a set of all legal names of variables and constants.

105

Chapter 8. Transformational heuristics & formal semantics

8.3.2 State values

State values V is a set of all legal values in Event-B which are required by an
animator to perform the animation.

8.3.3 States

States is a set of mappings of names to values constrained by invariants.

S = N → V
∀s.s ∈ S ⇒ Inv(s)

8.3.4 Event

An event is a transition from one state value to another. Event E is made of a
guard G, which is a predicate built on a state s and expresses necessary condition
for the transition, and generalized substitution U which describes how the state is
modified.

E = When G(s) Then U(s) End

8.3.5 Behavior

A behavior is a sequence of quadruples of an initial state, an event, state values,
and a reached state. It is defined as:

b ∈ seq(S × E × P(V)× S)
∀i.i ∈ dom(b) ∧ fourth(b(i)) = first(b(i+ 1))

where the starting state of a behavior is the initial state of the machine, E
represents the set of all Es defined in section 8.3.4 and first and fourth are the
respective projections.

We say that a state t is reached from a state s after the firing of an event e

with some state values v. A simple behavior can be denoted as s
e(v)−→ t. Here, e is

an element of E and v represents any state values chosen non-deterministically to
make the guard of e true. The pool of these possible values is represented by P(V).

8.3.6 Specification

Specification Spec is a syntactically correct Event-B model.

8.3.7 Relation between specifications

There exists a relation between a transformed specification and its original speci-
fication. We say that for all transformed events e� in a transformed specification
Spect, there exists an event e in the original specification Speco and a relation Rel
between both of these events and vice versa.

106

8.3. Formal semantics of the transformations

∀e�.e� ∈ Events(Spect) ⇒ ∃e.e ∈ Events(Speco) ∧ e� �→ e ∈ Rel
∀e.e ∈ Events(Speco) ⇒ ∃e�.e� ∈ Events(Spect) ∧ e� �→ e ∈ Rel

Where Event(Spec) denotes the set of all events in the specification Spec.

8.3.8 Shared state values

The set of shared state values is composed of all legal values which are permissible
in the original and transformed specifications. Let Vo and Vt be the sets of all legal
state values in the original and transformed specification respectively, then Vc is the
set of shared state values of both specifications.

Vc = Vo ∩ Vt

8.3.9 Shared states

Let So and St be all the states in the original and transformed specification respec-
tively, then Sc is the set of shared states of both specifications.

S�
o = {s.s ∈ So|Nc ∩No � s}

S�
t = {s.s ∈ St|Nc ∩Nt � s}

Sc = S�
o ∩ S�

t

8.3.10 Shared behaviors

Let Bo and Bt be the sets of all behaviors of the original and transformed specifi-
cation respectively. Let bo and bt be any two behaviors of Bo and Bt respectively,
then bo and bt are shared if they share state values, and their events are related by
Rel with their corresponding counterpart.

Bc = {(bo, bt)|∀i.i ∈ dom(bo) ∧ bo ∈ Bo ∧ bt ∈ Bt ∧
first(bo(i)) = first(bt(i)) ∧ third(bo(i)) = third(bt(i)) ∧
fourth(bo(i)) = fourth(bt(i)) ∧ second(bo(i)) �→ second(bt(i)) ∈ Rel}

Let us define the generalized relationship Rel∗ between the original (Bo) and
transformed (Bt) behaviors (i.e., a set of couples of bo and bt).

∀bo, bt.bo ∈ Bo ∧ bt ∈ Bt ∧ bo �→ bt ∈ Rel∗ ⇔
(∀i.i ∈ dom(bo) ⇒

(second(bo(i)) �→ second(bt(i)) ∈ Rel))

Now if seen from the transformed specification perspective, then

Bt
c = {bt|bt ∈ Bt ∧ (Rel∗−1[{bt}] ⊆ Bo)}

and if seen from the original specification perspective, then

Bo
c = {bo|bo ∈ Bo ∧ (Rel∗[{bo}] ⊆ Bt)}

107

Chapter 8. Transformational heuristics & formal semantics

8.3.11 Behavioral equivalence

In state-based specification languages, such as Event-B, we mainly deal with two
main constructs: states and events. To compare the behavior of two specifica-
tions, we can make the following observations based on the sequence of these two
constructs: enabledness, reachability and closure. Enabledness is the idea that an
event is enabled at a particular state in both behaviors. Reachability is the idea
that a particular state is reachable in both behaviors. Closure is the idea that from
a shared state an event with a shared value always leads to another shared state.

Definition

Two specifications Speco and Spect are behaviorally equivalent when all behaviors
starting from a shared state are shared with Speco.

Speco
B
= Spect �

∀bt, i.bt ∈ Bt ∧ i ∈ dom(bt) ∧ first(bt(i)) ∈ Sc ⇒ bt ∈ Bt
c

Theorem

If two specifications related by Rel have same enabledness, reachability and closure
then they are behaviorally equivalent.

SameEnabledness(Speco, Spect)∧
SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒
Speco

B
= Spect

• SameEnabledness(Speco, Spect)

If an event is enabled with a certain state value associated to a certain state in
the original specification then its transform must be enabled in the transformed
specification given the same state and value, and vice versa.

SameEnabledness(Speco, Spect) �
(∀s, e, v.s ∈ Sc ∧ e ∈ Speco ∧ v ∈ Vc ∧ enabled(e, v, s) ⇒
(∃e�.e� ∈ Spect ∧ e� �→ e ∈ Rel ∧ enabled(e�, v, s)))∧

(∀s, e�, v.s ∈ Sc ∧ e� ∈ Spect ∧ v ∈ Vc ∧ enabled(e�, v, s) ⇒
(∃e.e ∈ Speco ∧ e� �→ e ∈ Rel ∧ enabled(e, v, s)))

• SameReachability(Speco, Spect)

If a state is reachable in the original specification after an event with a certain
state value then the same state should be reachable in the transformed speci-
fication as well given the transform of the event and the same state value, and
vice versa.

108

8.3. Formal semantics of the transformations

SameReachability(Speco, Spect) �
(∀s, t, e, v.s, t ∈ Sc ∧ e ∈ Speco ∧ v ∈ Vc ∧ s

e(v)−→ t ⇒
(∃e�.e� ∈ Spect ∧ e� �→ e ∈ Rel ∧ s

e�(v)−→ t))∧
(∀s, t, e�, v.s, t ∈ Sc ∧ e� ∈ Spect ∧ v ∈ Vc ∧ s

e�(v)−→ t ⇒
(∃e.e ∈ Speco ∧ e� �→ e ∈ Rel ∧ s

e(v)−→ t))

• SameClosure(Speco, Spect)

All the states reachable from a shared state, after an event with a shared state
value, are shared states as well.

SameClosure(Speco, Spect) �
∀s, t, e, v.s ∈ Sc ∧ t ∈ So ∧ e ∈ Speco ∧ v ∈ Vc ∧ enabled(e, v, s) ∧ s

e(v)−→ t ⇒ t ∈ Sc

• Proof. We want to prove:

SameEnabledness(Speco, Spect)∧
SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒
∀bt, i.bt ∈ Bt ∧ i ∈ dom(bt) ∧ first(bt(i)) ∈ Sc ⇒ bt ∈ Bt

c

Let Speco be the original specification and Spect be the transformed specifi-
cation.
Let Rel be the relation between these specifications.
Let Bt = Behavior(Spect) and Bo = Behavior(Speco)
Let bt, bo.bt ∈ Bt ∧ bo ∈ Bo

Now if SameEnabledness(Speco, Spect) ∧
SameReachability(Speco, Spect) ⇒ ∃Bc.bt, bo ∈ Bc

Same enabledness and reachability means specifications share behaviors. How-
ever, some events may lead to non-shared states, therefore we take closure to
consider only the shared states of both specifications, i.e.,

∀s, t, e, v.s ∈ Sc∧t ∈ So∧e ∈ Speco∧v ∈ Vc∧enabled(e, v, s)∧s
e(v)−→ t ⇒ t ∈ Sc

Therefore,

SameEnabledness(Speco, Spect)∧
SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒
∀bt, i.bt ∈ Bt ∧ i ∈ dom(bt) ∧ first(bt(i)) ∈ Sc ⇒ bt ∈ Bt

c

If the specification has also the same closure (i.e., no transition leads to a non-
shared state) in addition to the same enabledness and reachability (shared

109

Chapter 8. Transformational heuristics & formal semantics

behaviors) then the specifications are behaviorally equivalent, i.e., any behav-
ior which is observed in the transformed specification would also be observed
in the original specification.

8.4 Proofs of the heuristics

In this section, we present a formal proof of behavioral equivalence of each heuristic.
While some heuristics are both behavior as well as semantic preserving, some are
only behavior preserving. For the latter case, we introduce a proof-obligation (PO)
which ensures its behavioral equivalence: PO � Speco

B
= Spect.

Heuristic 1: Remove the axiom finite from the specification

Proof. In this heuristic no event is modified therefore Rel is identity.
Removal of the finite axiom does not introduce any change in the states of the

specification, therefore
SameEnabledness(Speco, Spect) ∧ SameReachability(Speco, Spect)

Though the clause of finiteness is removed, yet all the set values are defined by
extension and the original specification is verified so specification will also maintain
the closure property, i.e., SameClosure(Speco, Spect)

Therefore,

SameEnabledness(Speco, Spect) ∧ SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒ Speco

B
= Spect

Heuristic 2: Specify the finiteness of a quantified domain

Proof. In this heuristic no event is modified therefore Rel is identity.
In this heuristic, we are limiting the range of the supplied values to the constant.

These values may impact the behavior. Therefore, it is imperative to check that all
the state transitions (affected by this limitation) from a shared state lead to another
shared state:

∀s, t, e, v.s ∈ Sc∧ t ∈ So∧ e ∈ Speco∧ v ∈ Vc∧ enabled(e, v, s)∧ s
e(v)−→ t ⇒ t ∈ Sc

Following PO needs to be proved: v ∈ Vc

As the original specification is verified, all guards respect the invariants and the
transformation explicitly requires the given range to be wide enough to incorporate
all the legitimate values, therefore this PO would ensure that we are within the
shared states, i.e. closure(Speco, Spect). However, for proofs like n+ 1 ∈ N or
n− 1 ∈ N, we can use lazy proof approach or proof by demand, i.e., always extending
or retracting max and min respectively to incorporate the desired value into the
range.

110

8.4. Proofs of the heuristics

Since Rel = id ∧ So, St ⊆ Sc ⇒
SameEnabledness(Speco, Spect) ∧ SameReachability(Speco, Spect)

Therefore,

SameEnabledness(Speco, Spect) ∧ SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒ Speco

B
= Spect

Heuristic 3: Generalize expressions involving complex iterations

Proof. In this heuristic no event is modified therefore Rel is identity.
In this heuristic, we are taking the superset of the original values, therefore it is

imperative to check the following (closure) property which states that all the state
transitions from a shared state will lead to another shared state:

∀s, t, e, v.s ∈ Sc∧ t ∈ So∧ e ∈ Speco∧ v ∈ Vc∧ enabled(e, v, s)∧ s
e(v)−→ t ⇒ t ∈ Sc

Again, following PO needs to be checked: v ∈ Vc

As the original specification is verified, all guards respect the invariants, and the
original set is replaced by its super-set which implicitly contains all the abstracted
values, therefore this PO would ensure that we are within the shared states, i.e.,
closure(Speco, Spect).

Since Rel = id ∧ So, St ⊆ Sc ⇒
SameEnabledness(Speco, Spect) ∧ SameReachability(Speco, Spect)

Therefore,

SameEnabledness(Speco, Spect) ∧ SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒ Speco

B
= Spect

Heuristic 4: Explicitly provide the typing information of all sets
used in an axiom

Proof. We are just supplying the missing type; the behavior remains intact.

Heuristic 5: Avoid expressions involving mapping of variables in
substitutions

Proof. The transformed expression is the rewriting of the original expression in set
algebra. The behavior of both specifications is the same.

Heuristic 6: Avoid dynamic function computation in substitutions

Proof. The transformed expression is the rewriting of the original expression in set
algebra. The behavior of both specifications is the same.

111

Chapter 8. Transformational heuristics & formal semantics

Heuristic 7: Inline in events the functions defined in contexts

Proof. This is the case of inline expansion which makes the Rel and therefore fol-
lowing PO needs to be checked:

∀S,C, Sr, Cr, V, V r, x, xr.A ∧Ar ∧ I ∧ Ir ⇒ (Gr ⇒ G)

Ir = I because invariants are not changed in this heuristic
Ar ⊂ A because axioms of the transformed context are subset of the original

context
Therefore, we are left to prove:

∀S,C, Sr, Cr, V, V r, x, xr.A ∧ I ⇒ (Gr ⇒ G)

This can be proved with the enabledness preservation proof. This PO can also
be discharged within the formalism of Event-B using refinement.

Once we have proved that SameEnabledness(Speco, Spect), we are now left to
prove the other two properties of behavioral equivalence, i.e., same reachability and
closure.

Since in this heuristics, the states and transitions are not modified, therefore

So, St ⊆ Sc ∧ SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒ Speco

B
= Spect

Heuristic 8: Replicate events which use functions defined “by cases”

Proof. This is the case of inline expansion followed by event decomposition which
introduces a Rel different from identity; therefore the following PO needs to be
checked which states that the new guards cater for all the cases defined by the
original guard.

Ge(v) ⇒ ∃e�.e� ∈ Rel[{e}] ∧G�
e�(v) ∧ (∀e�.G�

e�(v) ⇒ Ge(v))

This can be proved with the enabledness preservation proof. This PO can also be
discharged within the formalism of Event-B using refinement.

Once we have proved that SameEnabledness(Speco, Spect), we are now left to
prove the other two properties of behavioral equivalence, i.e., same reachability and
closure.

Since in this heuristics, states and transitions are not modified, therefore So, St ⊆
Sc ∧ SameClosure(Speco, Spect) ∧ SameReachability(Speco, Spect)

Therefore, Speco
B
= Spect.

112

8.5. Summary

Heuristic 9: Remove Invariant

Proof. In this heuristic no event is modified therefore Rel is identity.
The original specification is already proven and all (invariant related) proof

obligations have been discharged. Since invariants do not modify the behavior of
the specification, removal of an invariant would not change the set of states and
transitions on them, therefore

SameEnabledness(Speco, Spect) ∧ SameReachability(Speco, Spect)∧
SameClosure(Speco, Spect) ⇒ Speco

B
= Spect

Heuristic 10: Introduce observatory variables/invariants/events

Proof. In this heuristic no event is modified therefore Rel is identity.
On shared states,
SameEnabledness(Speco, Spect)∧SameReachability(Speco, Spect)∧SameClosure(Speco, Spect)
The transformed specification is the refinement of the original specification. In

the formalism of Event-B, it can be proved by defining the refinement-relationship
between both. The set of observations on both specifications is identical.

Therefore, Speco
B
= Spect.

8.5 Summary

Animation of non-executable specifications can be sought by our proposed trans-
formational heuristics. However, some of them do not ensure the provability of
the specification any more. Their soundness is then an issue. In order to address
this question, we have developed an ad-hoc semantics based on the behavior of the
model. The behavioral preservation property states that whatever we observe on the
execution of the transformed specification would have been observed on the proven
specification.

In this chapter, we have first presented the heuristics which transform non-
animatable specifications into animatable ones. We have devised a generic pattern
and in its descriptive frame, we have discussed their symptoms, proposed transfor-
mations, caution clauses, and rigorous arguments to justify their application. We
have then introduced the formal semantics of the transformations. We have for-
mally defined the basic ingredients which are then used to prove their correctness.
We have also presented the theorem of behavioral equivalence which relates the
transformations to the formal semantics. In the end of the chapter, we have given
a formal proof of correctness for each heuristic.

113

Chapter 9

Application of the heuristics on

case studies

Contents
9.1 Introduction . 115
9.2 Case study 1: The land transport domain model 116

9.2.1 Machine Movement0 . 117
9.2.2 Machine Movement1 . 117
9.2.3 Machine Movement2 . 117
9.2.4 Machine Movement3 . 119
9.2.5 Machine Movement4 . 121
9.2.6 Machine Movement5 . 123
9.2.7 Machines Movement6 & Movement7 123

9.3 Case study 2: The platooning system 123
9.3.1 Machine Platoon . 125
9.3.2 Machine Platoon_1 . 125
9.3.3 Machine Platoon_2 . 125
9.3.4 Machine Platoon_3 . 130
9.3.5 Machine Platoon_4 . 130

9.4 Summary . 134

9.1 Introduction

In order to investigate the utility of our transformational heuristics, we apply them
on two case studies to validate their behaviors using animation. The first case
study is about the land transport domain model which we have already specified in
chapter 5. The second case study is about a platooning system. Specifications of
both models are animated by creating reasonable behavioral scenarios representing
the protocols that must been observed in the reality. The animator is provided with
startup values accordingly.

Not all refinements are animated. Some refinements based on small incremental
steps are uninteresting from the animation’s point of view because they do not

Chapter 9. Application of the heuristics on case studies

bring much information in terms of new behaviors. At least, one refinement per
observation level was subjected to animation.

The effect of the heuristics is an animatable specification. Their application on
the formal text is presented in a before-after state clearly indicating how it has been
transformed. When necessary, the application of the heuristics is justified in the
form of a formal proof.

The chapter is organized as follows: Section 9.2 presents the first case study
about the land transport domain model. Section 9.3 presents the second case study
about the model of a platooning system. Chapter is finally concluded in section 9.4.

9.2 Case study 1: The land transport domain model

The specification in this case study is about the modeling of land transportation
domain. In the model, we want to express the properties that any system working
within the domain is expected to meet and maintain.

In this specification effort, the focus is on the formal definition of domain’s laws,
protocols and properties, rather than on the implementation of a particular system.
Refinement is used to introduce new notions; the proof obligations serve to guarantee
the consistency of the model.

The current specification consists of 7 refinements and four observation levels.
This specification exhibits several properties which call for animation, namely:

• complex data which constraint behaviors (following a route, for instance),

• protocols and iterations (travel as a sequence of hub crossing and path travers-
ing protocols, for instance), and

• non-deterministic interaction between elements (autonomous vehicles, for in-
stance).

To validate this specification, only first six heuristics, defined in section 8.2, were
used. Then, setting up animation was easy and we used it intensively. Actually,
we used animation more as prototyping rather than validation while beginning the
work on refinements. It helped us understand and fix desired behaviors.

Not all refinements were animated, but we made sure to have one for each obser-
vation level. A typical example of a refinement which is uninteresting from anima-
tion’s point of view was Movement5 where the notion of time was introduced. The
aim of the refinement was mainly to set the vocabulary (travel_time, clock) and
very general properties: time always increases, clock ticks, etc. The definitions are
highly non-deterministic and there is not much in terms of new behaviors. Anima-
tion of that particular refinement would not bring much information. Movement7,
where the actual computation of time, a new complex behavior, is defined, was
subjected to animation.

An interesting point to note is that a machine may not be animatable while
its refinement may be; there is no monotonicity. We also followed an incremental

116

9.2. Case study 1: The land transport domain model

approach while animating. We thus ensured that the correction of an error trickles
down the refinement chain.

9.2.1 Machine Movement0

This machine is the most abstract. It contains only one event, travel, which states
that vehicles change their location on a network. The behavior is simple and does
not present much interest per se. The interesting point lies in the definition of the
values in the contexts. In particular, the context Net specifies the topology of the
network (a directed graph) and the basic properties which make it a transportation
network. It is at this level that the foundations of the model instance are built.

We had to apply the heuristic 1 (erasure of finite axioms) on Net to animate
Movement0. All the sets and constants of this machine were declared as finite. As a
result of the application of the heuristic 1, axioms such as:

∀n.n ∈ Nets ⇒ card(obsNetHubs−1[n]) ≥ 2 ∧ card(obsNetConnections−1[n]) ≥ 1

which expresses that a transportation network has at least two hubs and one connec-
tion, cannot be verified. Its well-formedness proof-obligation requires obsNetHubs
and obsNetConnections to be finite functions, hence their domains and codomains
(Nets, Hubs, and Connections) be finite too. As the consequence of application
of the heuristic 1, the finite axioms have been removed, thus making the machine
animatable but the context unprovable.

We also applied the heuristic 1 to Vehicle. The set of Vehicles was declared
as finite and we removed this axiom as a consequence of application of heuristic 1.
Figure 9.1 shows the context Net before and after the application of the heuristic 1.

9.2.2 Machine Movement1

Movement1 refines the model by specifying that the locations of vehicles are Hubs
at the beginning and the end of travel event. Since this machine introduces only
a small refinement in the model, its animation is straightforward. We were not
required to apply any of the heuristics other than heuristic 1 in order to animate
this machine.

9.2.3 Machine Movement2

The refinement Movement2 introduces the notion of routes. A route is a sequence
of paths; a path is an edge in the graph between two hubs which are the vertices.
The event travel is refined to state that locations are connected by a route.

The set of routes is introduced in the context Net2. We had to use the heuristic
3 because we defined the notion of sequence as follows:

seqPaths = {seq|∃n.n ∈ N1 ∧ seq ∈ 1..n � paths ∧ finite(seq) ∧ card(seq) = n}

117

Chapter 9. Application of the heuristics on case studies

CONTEXT
Net

SETS
Nets, Hubs, Connections

CONSTANTS
obsNetHubs, obsNetConnections, connectionOrigin,
connectionDestination

AXIOMS
tec1 finite (Nets)
tec2 finite (Hubs)
tec3 finite (Connections)
tec4 finite (obsNetConnections)
tec5 finite (obsNetHubs)
tec6 Nets �= ∅
tec7 Hubs �= ∅
tec8 Connections �= ∅

typ1 obsNetHubs ∈ Hubs ↔ Nets
typ2 obsNetConnections ∈ Connections → Nets
typ3 connectionOrigin ∈ Connections → Hubs
typ4 connectionDestination ∈ Connections

→ Hubs
typ5 hubConnections ∈ Hubs → P(Connections)

pro1 dom(obsNetHubs) = Hubs ∧
ran(obsNetHubs) = Nets

pro2 dom(obsNetConnections) = Connections ∧
ran(obsNetConnections) = Nets

pro3 ∀ c . c ∈ Connections ⇒
connectionOrigin(c) �=
connectionDestination (c)

pro4 ∀ n .n ∈ Nets ⇒ card(obsNetHubs−1[{n}])
≥ 2 ∧ card(obsNetConnections−1[{n}]) ≥ 1

pro5 ∀ c . c ∈ Connections ⇒
obsNetConnections[{c}] ⊆
obsNetHubs[{connectionOrigin(c)}] ∧
obsNetConnections[{c}] ⊆
obsNetHubs[{connectionDestination(c)}]

pro6 ∀ h, c . h ∈ Hubs ∧ c ∈ hubConnections(h)
⇒ obsNetConnections[{c}] ⊆
obsNetHubs[{h}]

pro7 ∀ c . c ∈ Connections ⇒
card(obsNetConnections[{c}]) = 1

pro8 ∀ h.h∈Hubs⇒card(obsNetHubs[{h}])≥1
END

CONTEXT
Net

SETS
Nets, Hubs, Connections

CONSTANTS
obsNetHubs, obsNetConnections, connectionOrigin,
connectionDestination

AXIOMS

tec6 Nets �= ∅
tec7 Hubs �= ∅
tec8 Connections �= ∅

typ1 obsNetHubs ∈ Hubs ↔ Nets
typ2 obsNetConnections ∈ Connections → Nets
typ3 connectionOrigin ∈ Connections → Hubs
typ4 connectionDestination ∈ Connections

→ Hubs
typ5 hubConnections ∈ Hubs → P(Connections)

pro1 dom(obsNetHubs) = Hubs ∧
ran(obsNetHubs) = Nets

pro2 dom(obsNetConnections) = Connections ∧
ran(obsNetConnections) = Nets

pro3 ∀ c . c ∈ Connections ⇒
connectionOrigin(c) �=
connectionDestination (c)

pro4 ∀ n .n ∈ Nets ⇒ card(obsNetHubs−1[{n}])
≥ 2 ∧ card(obsNetConnections−1[{n}]) ≥ 1

pro5 ∀ c . c ∈ Connections ⇒
obsNetConnections[{c}] ⊆
obsNetHubs[{connectionOrigin(c)}] ∧
obsNetConnections[{c}] ⊆
obsNetHubs[{connectionDestination(c)}]

pro6 ∀ h, c . h ∈ Hubs ∧ c ∈ hubConnections(h)
⇒ obsNetConnections[{c}] ⊆
obsNetHubs[{h}]

pro7 ∀ c . c ∈ Connections ⇒
card(obsNetConnections[{c}]) = 1

pro8 ∀ h.h∈Hubs⇒card(obsNetHubs[{h}])≥1
END

Figure 9.1: The context Net before (left) and after (right) the application of the
heuristic 1

118

9.2. Case study 1: The land transport domain model

This axiom was replaced by:

seqPaths ∈ P(N �→ paths)

The original axiom defines the route as a sequence of paths. There is no support
of the sequence in Event-B data structure, so we are forced to use its definition.
This definition uses double quantification which Brama is unable to support. We,
therefore, take the superset of the expression in order to animate it. Since the typing
information of seqPaths is now changed, though not in essence, therefore pro1 and
pro2 which are based on the previous definition of seqPaths can also not hold.
Consequently, we remove the two properties and merge their basic ingredients into
the definition of routes. Hence, the specification is now animatable. Figure 9.2
shows the context Net2 before and after the application of the heuristic 3.

The most important effect of the application of the heuristic is the invalidation
of all the proofs, either in Net2 or in Movement2 and their subsequent refinements,
which relied on the essential property of sequences:

∀s.s ∈ seqPaths ⇒ dom(s) = 1..card(s)

Proof of application of the heuristic 3: We are taking the superset of the expression.
The input values to Net2 are supplied carefully while making sure that they conform
to the essential property of closure and respect invariants, i.e., ∀v.Inv(v). Since the
original set of values is a constant, the values fed to its transformation respect orig-
inal axiom, and the original specification is verified, therefore the axiom-respecting
values make sure that v ∈ Vc.

9.2.4 Machine Movement3

The refinement Movement3 introduces the decomposition of the notion of travel as a
sequence of smaller movements: paths traversings and hubs crossings. The impor-
tant behavior we need to validate is that a vehicle follows exactly the same route
that was assigned for its travel. Technically, this means that the events crossHub
and traversePath must be fired in a strict order.

The ordering of the events is controlled by two variables, pathsToTraverse and
hubsToCross, which model the movement of the vehicles along their routes. Their
initialization in the startTravel event required us to use the heuristic 5 to transform

pathsToTraverse := pathsToTraverse �−{path.path ∈ ran(route)|vehicle �→ path}

into

pathsToTraverse := pathsToTraverse �−({vehicle}×{path.path ∈ ran(route)|path})

We also had to use the heuristic 6 to transform

119

Chapter 9. Application of the heuristics on case studies

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes , isRoute , seqPaths

AXIOMS
typ1 paths ⊆ Connections
typ2 seqPaths = { seq | ∃ n . n ∈ N1 ∧

seq ∈ 1..n � paths ∧
finite (seq) ∧ card(seq) = n}

typ3 isRoute ∈ seqPaths → B
typ4 routes = {sp | sp ∈ seqPaths ∧

isRoute(sp) = TRUE}

pro1 ∀r. r∈seqPaths ∧
((connectionOrigin(r (1)) ∈ stations ∧
connectionDestination (r(card(r)))∈stations∧
(obsNetHubs[{connectionOrigin(r(1))}] ∩
obsNetHubs[{connectionDestination(r(card(r)))}]
�= ∅) ∧ (∀i.i∈2..card(r) ∧
connectionDestination (r(i−1)) =
connectionOrigin(r(i))) ∧ connectionOrigin(r (1)) �=
connectionDestination (r(card(r))) ∧
(∀i1 , i2 . i1∈1..card(r) ∧ i2∈1..card(r) ∧ i1 �= i2 ⇒
connectionOrigin(r(i1)) �= connectionOrigin(r(i2)))
∧ (∀ i1 , i2 . i1∈1..card(r) ∧ i2∈1..card(r) ∧ i1 �= i2
⇒ connectionDestination (r(i1)) �=
connectionDestination (r(i2)))) ⇔
isRoute(r) = TRUE)

pro2 ∀c.c∈Connections ⇒
(connectionDestination (c)∈stations ∧
connectionOrigin(c) ∈ stations ⇒
(∃r. r∈routes ∧ connectionOrigin(c) =
connectionOrigin(r (1)) ∧
connectionDestination (c) =
connectionDestination (r(card(r)))))

END

CONTEXT
Net2

EXTENDS
Net1

CONSTANTS
paths, routes , isRoute , seqPaths

AXIOMS
typ1 paths ⊆ Connections
typ2 seqPaths ∈ P(N �→ paths)

typ3 isRoute ∈ seqPaths → B
typ4 routes = {sp|sp∈seqPaths ∧

1∈dom(sp) ∧ card(sp)∈dom(sp) ∧
connectionOrigin(sp(1)) �=
connectionDestination (sp(card(sp)))∧
isRoute(sp) = TRUE}

END

Figure 9.2: The context Net2 before (left) and after (right) the application of the
heuristic 3

120

9.2. Case study 1: The land transport domain model

hubsToCross := hubsToCross �−
{i.i ∈ 1..card(route)|vehicle �→ connectionOrigin(route(i))}

into

hubsToCross := hubsToCross �−
({vehicle}× ran(ran({i.i ∈ 1..card(route)|i} � route) � connectionOrigin))

Figure 9.3 shows the event startTravel before and after the application of
the heuristics 5 and 6. In this refinement, we also introduced the variant into the
machine because of the decomposition of the travel event. It is as follows:

card(hubsToCross) + card(connectionsToTraverse)

The well-formedness of this variant cannot be proved because of the absence of
the finite axioms. This is the only undischarged proof-obligation of this machine.

startTravel �=
ANY

vehicle , r
WHERE

grd1 vehicle∈Vehicles
grd2 r∈routes
grd3 position (vehicle)∈obsHubLocations(r(1))
grd4 vehicle /∈dom(connectionsToTraverse)
grd5 vehicle /∈dom(hubsToCross)

THEN
act1 hubsToCross := hubsToCross ∪

{i . i∈..card(r)|
vehicle �→connectionOrigin(r(i))}

act2 connectionsToTraverse :=
connectionsToTraverse ∪
{p.p∈ran(r)| vehicle �→p}

END

startTravel �=
ANY

vehicle , r
WHERE

grd1 vehicle∈Vehicles
grd2 r∈routes
grd3 position (vehicle)∈obsHubLocations(r(1))
grd4 vehicle /∈dom(connectionsToTraverse)
grd5 vehicle /∈dom(hubsToCross)

THEN
act1 hubsToCross := hubsToCross �−

({ vehicle } X ran(ran({i . i∈1..card(r) i }|�r)
� connectionOrigin))

act2 connectionsToTraverse :=
connectionsToTraverse
�−({vehicle} X {p.p∈ran(r)|p})

END

Figure 9.3: The event startTravel before (left) and after (right) the application of
the heuristics 5 & 6

9.2.5 Machine Movement4

Movement4 introduces the concept that the crossing of a hub follows a protocol. The
refinement decomposes the crossHub event into three events: enterHub, leaveHub
and wait. Another property which is introduced at this level is that only a definite
number of vehicles can be simultaneously present on a hub. This is an abstract
definition of the property of non-collision at a hub. The contexts are enriched by
the notion of hubCapacity and the definition of states of vehicles with respect to a
hub. A variable hubLoad is also added to the machine.

121

Chapter 9. Application of the heuristics on case studies

An important invariant property which states that a vehicle can be on no more
than one hub is introduced at this point as:

∀v.card({h.vehState(v �→ h) = onHub ∪ vehicleState(v �→ h) = leaving|h}) ≤ 1

It required us to use heuristic 4 to introduce the type of hub, so we rewrite:

∀v.v ∈ V ehicles ⇒
card({h.hub ∈ Hubs ∧ vehicleState(v �→ h) = onHub∪
vehicleState(v �→ h) = leaving|h}) ≤ 1

Since both Vehicles and Hubs are the inferred types, we just introduced a
redundant information.

In context startState4, the well-formedness of the following axiom could not
be verified because of the removal of the finite axiom on obsHubLocations.

∀h.h ∈ Hubs ⇒
hubCapacity(h) ≥ card({v.v ∈ V ehicles∧
startV ehicleLocation(v) ∈ obsHubLocations(h)|v})

In Net4, we were required to apply the heuristic 2 to the following axiom:

∀s.s ∈ stations ⇒ (∃n.n ∈ N ∧ hubCapacity(s) = n)

It now appears as:

∀s.s ∈ stations ⇒ (∃n.n ∈ 1..100 ∧ hubCapacity(s) = n)

Actually the problem comes from the unbounded value of n which is a member
element of the set of natural numbers. Termination of such expressions is non-
decidable, specially if they are not defined as finite.

Proof of application of the heuristic 2: The range of the interval 1..100 was chosen
considering the reasonable values with respect to the number of vehicles simultane-
ously present on a hub. This range would not be superseded during the animation
because to keep the scenarios manageable, original set of vehicles Vehicles has not
been provided with that many values. Since the original set of values is constant and
the under-approximated set (1..100 ⊆ N) respect the original axiom and invariants,
i.e., ∀v.Inv(v), and the original specification is verified, therefore v ∈ Vc.

In a previous version of our specification, Brama also helped us to find couple
of specification errors at this level. In this previous version, the event exitHub
changed the state of the vehicle once it exited a hub, now this is done by leaveHub.
In exitHub, we forgot to specify the following guard:

vehicle ∈ dom(hubsToCross)

The error was detected because the omission made the event enabled before the
startTravel event was fired. This violates a basic behavior of the system.

122

9.3. Case study 2: The platooning system

The second error in the same specification found by the animation was in the
event enterHub. Its guard should have stated that it is true only if the load of the
hub is strictly less than its capacity, but instead we had written:

hubCapacity(h) ≥ hubLoad(h)

Interestingly, this error was not caught during the verification: formally, the expres-
sion is correct. Actually, it specifies a behavior which could be admissible in another
model. The correction of the guard was obvious. The corrected specification could
be proven without much problem, and the animation showed the intended behavior:
vehicles waited outside when a hub was full.

9.2.6 Machine Movement5

This refinement introduces the notion of time in the model which is then used to
calculate the travel time of vehicles. As argued before, the animation of this machine
was trivial and uninteresting as it does not introduce much new details in the model.

9.2.7 Machines Movement6 & Movement7

This machine Movement6 decomposes the traversePath event into three sub-events:
moveOnPath, waitToEnterOnPath and waitToMoveOnPath. It enriches the protocol
of movements of vehicles on paths. Whereas, the machine Movement7 introduces the
events lockIn, lockOut and lockOnPath, which model our fine-grained analysis of
grid-lock situations.

The animation of both machines was easy, straightforward and did not induce
us to apply any of the heuristics. Probably, this is because of the well-learned
animation experiences which were there in the back of our minds while specifying
these refinement steps. In fact, both of these refinements were particularly specified
by using animation as an aide. We extensively used animation: as soon as the
behavior was defined, it is animated right away. Animation, used that way, helped
us a lot in the exploration of the modeling of this rather tricky behavior.

9.3 Case study 2: The platooning system

The second case study deals with the specification of a platooning system. Platoon-
ing is a mode of moving where vehicles are synchronized and follow one another
closely. A platoon can be seen as a road-train where cars are linked by software,
instead of by hardware. Platooning has several potential uses in an urban mobil-
ity system: augmenting throughput, herding unused cars to stations, or running
transient buses, for instance.

Several platooning control systems are being developed and experimented. One
locally developed is based on Situated Multi-Agent (SMA) theory. Each car has
its own local control algorithm which uses a perception/decision/action loop; the
platooning behavior is an emerging property [Daviet 1996, Scheuer 2008].

123

Chapter 9. Application of the heuristics on case studies

An Event-B specification of the local model has been written [Lanoix 2008,
Colin 2008a, Colin 2008b]. Contrary to the previous case study, the structure of
the development in this case study can be interpreted as a sequence of refinements
toward an implementation. Each refinement decomposes some events to make ex-
plicit a part of the general computation.

The Event-B model of the specification is presented by figure 9.4. The specifi-
cation consists of five machines (four refinements):

Platoon: defines platoons and sets the basic safety property. It contains only
one event, all_move, where all vehicles change positions while keeping safe
distance.

Platoon_1: decomposes the event into one which moves the leader vehicle and
one which moves the followers. This organizes the basic “iteration along the
platoon” of each move.

Platoon_2: computes the length of each basic move. This leads to the intro-
duction of kinematic functions in the contexts and to the refinement of move
events into several ones, each corresponding to a different situation (wether the
maximum and minimum speeds are reached or not). This models the action
part of the SMA.

Platoon_3: introduces the notion of decision of the SMA model into the specifi-
cation. Two events, one for the leader, and one for the followers, are introduced
and integrated in the control loop.

Platoon_4: introduces the notion of perception which allows decision events to
be refined so the actual computation of the parameters of the control law
(acceleration) can be performed.

Although the last refinement is very close to an implementation, in spirit if not
in form, yet we decided to use animation to validate the specification for several
reasons. The first was curiosity as the heavy use of functions was challenging, the
second was to compare the results of the animation with the results of simulations
that had been previously made, and the last was to confirm that a certain “formal
approximation” was legitimate.

The last reason is a consequence of using discrete tools to model what is inher-
ently continuous. In this case, all proof-obligations were discharged, assuming one
property, namely x(y/z) = (xy)/z, holds. True in R, this property is false in N.
However, the difference becomes actually negligible when numerators are much big-
ger than denominators. Animation with realistic values gives insight on the validity
of the “approximation” and on the solidity of the model.

Although all machines have been animated, the first four are not particularly
interesting. The non-deterministic definition of the parameter of the control law
does not allow for long automatic run of the animation. To observe interesting
behaviors, we have to feed “coherent” values to each event which is fired. This can

124

9.3. Case study 2: The platooning system

Figure 9.4: Event-B model of the platooning system [Lanoix 2008]

be useful for a quick look into the behavior, but not much more. The interesting
animation was for Platoon_4.

9.3.1 Machine Platoon

This is the most abstract machine of the specification. It sees the context Context.
The Context introduces the basic notion of a platoon, i.e., a set of vehicles, VEHICLES;
the notion of critical distance between vehicles, CRITICAL_DISTANCE, which ensures
the safe movement of the platoon; and initial positions of vehicles, initial_xpos.

The only event of the machine, all_moves, states that vehicles change their po-
sitions while respecting the critical distance among them. The functionality defined
in this machine is too abstract to be animated.

9.3.2 Machine Platoon_1

This is the first refining machine in the specification which extends the protocol of
movement in a platoon. It sees Context_1 which extends Context, but it is empty.
Specifiers probably have defined this context in order to be coherent with naming
conventions used during the development process of the specification.

The machine Platoon_1 is comprised of three events: move_1 which defines
the behavior of the leader of the platoon, move which defines the movement of
the subsequent machines of the platoon, and all_moves which is the refinement
of the abstract event with the same name. The animation of this machine is also
uninteresting because of the high level of non-determinism and abstraction.

125

Chapter 9. Application of the heuristics on case studies

9.3.3 Machine Platoon_2

The machine Platoon_2 sees the context Context_2 which is the refinement of
Context_1. This context introduces the notion of speed and acceleration into the
model. Several new constants and axioms have been introduced into the context
which in turn introduce the kinematics of a platooning system. The definition of the
kinematics is comprised of complex mathematical functions and definitions which
are non-animatable. The prime reason for their non-animatability is the complex
definition of the functions which does not allow the assignment of a single start-
up value to the constant. In fact, some of the functions are based on multiple
definitions, each corresponding to a different case.

The first complex modification of the refinement was the definition of new_xpos
function

∀xpos0, speed0, accel0.
((xpos0 ∈ N ∧ speed0 ∈ 0..MAX_SPEED∧
accel0 ∈ MIN_ACCEL..MAX_ACCEL) ⇒

(new_xpos(xpos0 �→ speed0 �→ accel0) = xpos0 + speed0 + (accel0/2)))

which models a kinematic law. It was used in some event guards in the form

nxpos = new_xpos(xpos(vehicle) �→ speed(vehicle) �→ magic_accel)

Using the heuristic 7, we rewrote the guards as

nxpos = xpos(vehicle) + speed(vehicle) + (magic_accel/2))

Proof of application of the heuristic 7: The PO needs to be proved is Gr ⇒ G.
nxpos = new_xpos(xpos(vehicle) �→ speed(vehicle) �→ magic_accel) (G)
The function new_xpos is defined in the context as:
new_xpos(xpos0 �→ speed0 �→ accel0) = xpos0 + speed0 + (accel0/2)
Inlining the definition of function into G with the corresponding local variables:
nxpos = xpos(vehicle) + speed(vehicle) + (magic_accel/2)) (Gr)
Therefore, Gr ⇒ G.

The most important complication came with another kinematic function new_xpos_max
which is quite similar to new_xpos, except there is a case definition:

∀xpos0, speed0, accel0.
((xpos0 ∈ N ∧ speed0 ∈ 0..MAX_SPEED∧
accel0 ∈ MIN_ACCEL..MAX_ACCEL) ⇒

(accel0 = 0 ⇒ new_xposmax(xpos0 �→ speed0 �→ accel0) =
xpos0 +MAX_SPEED)∧

(accel �= 0 ⇒ new_xpos_max(xpos0 �→ speed0 �→ accel0) =
xpos0 +MAX_SPEED − (((MAX_SPEED − speed0)×
(MAX_SPEED − speed0))/(2/accel0))))

126

9.3. Case study 2: The platooning system

The events using new_xpos_max function had to be duplicated (heuristic 8), one
with the guard accel=0 and the other with its negation.

The prime example of such cases is the event move1_max which is shown in
figure 9.6. The guard3 of the original event calculates the new speed of vehicle as:

nspeed = new_speed(speed(vehicle) �→ magic_accel)

The speed is then checked against the maximum allowed speed guard4 and conse-
quently a new position for the vehicle is determined in guard5 as:

nxpos = new_xpos_max(xpos(vehicle) �→ speed(vehicle) �→ magic_accel)

To solve the issue, the cases defined to calculate new_xpos_max are broken down
into two events, each catering for one particular case. The figure 9.7 shows the
transformed move1_max event. The original and the transformed context Context_2
that tells which functions have been relocated to machines are shown by figure 9.5.

Proof of application of the heuristic 8: The PO needs to be proved is

Ge(v) ⇒ ∃e�.e� ∈ Rel[{e}] ∧G�
e�(v) ∧ (∀e�.G�

e�(v) ⇒ Ge(v))

nxpos = new_xpos_max(xpos(vehicle) �→ speed(vehicle) �→ magic_accel)(Ge)

The function new_xpos_max is defined as:

If accel0 = 0 ⇒
new_xpos_max(xpos0 �→ speed0 �→ accel0) = xpos0 +MAX_SPEED

else if accel0 �= 0 ⇒
new_xpos_max(xpos0 �→ speed0 �→ accel0) = xpos0 +MAX_SPEED−
(((MAX_SPEED − speed0) ∗ (MAX_SPEED − speed0))/(2/accel0))

Inlining the definition of function into Ge while splitting it into G� and G��

G� states:

grd� magic_accel �= 0
grd5 nxpos = xpos(vehicle) +MAX_SPEED−

(((MAX_SPEED − speed(vehicle))∗
(MAX_SPEED − speed(vehicle)))/(2 ∗magic_accel))

G�� states:

grd�� magic_accel = 0
grd5 nxpos = xpos(vehicle) +MAX_SPEED

Therefore, G� ∨G�� ⇒ Ge(v).

127

Chapter 9. Application of the heuristics on case studies

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX_SPEED, MIN_ACCEL, MAX_ACCEL,
initial_speed , new_speed, new_xpos,
new_xpos_max, new_xpos_min

AXIOMS
typ01 MAX_SPEED ∈ N1
typ02 MAX_ACCEL ∈ N1
typ03 MIN_ACCEL ∈ INT

pro01 MIN_ACCEL < 0
pro02 initial_speed ∈ 1..VEHICLES →

0..MAX_SPEED
pro03 ∀ vehi0 .(vehi0∈1..VEHICLES ⇒ (∃ speed0.

(speed0 ∈ 0..MAX_SPEED ∧
initial_speed (vehi0) = speed0)))

pro04 new_speed ∈ (0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL) → INT

pro05 ∀ speed1,accel1 .
(speed1∈0..MAX_SPEED ∧ accel1∈
MIN_ACCEL?MAX_ACCEL ⇒
new_speed(speed1�→accel1) =
speed1 + accel1)

pro06 new_xpos ∈ (N X 0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL)→ N

pro07 ∀ xpos0,speed0,accel0 . ((xpos0 ∈ N ∧
speed0 ∈ 0..MAX_SPEED ∧
accel0 ∈ MIN_ACCEL..MAX_ACCEL) ⇒
(new_xpos(xpos0 �→speed0 �→accel0) =
xpos0 + speed0 + (accel0 / 2)))

pro08 new_xpos_max ∈ N X 0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL → N

pro09 ∀ xpos0,speed0,accel0 . (xpos0 ∈ N
∧ speed0 ∈ 0..MAX_SPEED ∧
accel0 ∈ MIN_ACCEL..MAX_ACCEL ⇒
((accel0 = 0 ⇒
new_xpos_max(xpos0�→speed0 �→accel0)
= xpos0 + MAX_SPEED) ∧
(accel0 �= 0 ⇒
new_xpos_max(xpos0�→speed0 �→accel0) =
xpos0 + MAX_SPEED −
(((MAX_SPEED − speed0) ∗
(MAX_SPEED−speed0))/(2∗accel0)))))

pro10 new_xpos_min ∈ N X 0..MAX_SPEED X
MIN_ACCEL..MAX_ACCEL → N

pro11 ∀ xpos0,speed0,accel0 . (xpos0 ∈ N ∧
speed0 ∈ 0..MAX_SPEED ∧
accel0 ∈ MIN_ACCEL..MAX_ACCEL ⇒
((accel0 = 0 ⇒
new_xpos_min(xpos0�→speed0 �→accel0) =
xpos0) ∧ (accel0 �= 0 ⇒
new_xpos_min(xpos0�→speed0 �→accel0) =
xpos0 − ((speed0 × speed0) /
(2 × accel0)))))

END

CONTEXT
Context2

EXTENDS
Context1

CONSTANTS
MAX_SPEED, MIN_ACCEL, MAX_ACCEL,
initial_speed ,

AXIOMS
typ01 MAX_SPEED ∈ N1
typ02 MAX_ACCEL ∈ N1
typ03 MIN_ACCEL ∈ INT

pro01 MIN_ACCEL < 0
pro02 initial_speed ∈ 1..VEHICLES →

0..MAX_SPEED
pro03 ∀ vehi0 .(vehi0∈1..VEHICLES ⇒

(∃ speed0 . (speed0 ∈ 0..MAX_SPEED ∧
initial_speed (vehi0) = speed0)))

END

Figure 9.5: The context Context_2 before (left) and after (right) the application of
the heuristic 7

128

9.3. Case study 2: The platooning system

move1_max �=
REFINES

move1
ANY

magic_accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic_accel ∈ MIN_ACCEL..MAX_ACCEL
grd3 nspeed = new_speed(speed(vehicle) �→magic_accel)
grd4 nspeed > MAX_SPEED
grd5 nxpos = new_xpos_max(xpos(vehicle) �→speed(vehicle) �→magic_accel)

WITH
var1 magic_xpos_vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX_SPEED

END

Figure 9.6: The event move1_max before application of the heuristics 7 & 8

move1_max �=
REFINES

move1
ANY

magic_accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic_accel ∈ MIN_ACCEL..MAX_ACCEL
grd’ magic_accel �= 0
grd3 nspeed = new_speed(speed(vehicle) �→

magic_accel)
grd4 nspeed > MAX_SPEED
grd5 nxpos = xpos(vehicle) +

MAX_SPEED − (((MAX_SPEED −
speed(vehicle)) × (MAX_SPEED −
speed(vehicle))) / (2 × magic_accel))

WITH
var1 magic_xpos_vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX_SPEED

END

move1_max_zero �=
REFINES

move1
ANY

magic_accel, nspeed, nxpos
WHERE

grd1 vehicle = 1
grd2 magic_accel ∈ MIN_ACCEL..MAX_ACCEL
grd ’’ magic_accel = 0
grd3 nspeed = new_speed(speed(vehicle) �→

magic_accel)
grd4 nspeed > MAX_SPEED
grd5 nxpos = xpos(vehicle) + MAX_SPEED

WITH
var1 magic_xpos_vehicle = nxpos

THEN
act1 vehicle := vehicle+1
act2 xpos(vehicle) := nxpos
act3 speed(vehicle) := MAX_SPEED

END

Figure 9.7: The event move1_max after application of the heuristics 7 & 8

129

Chapter 9. Application of the heuristics on case studies

9.3.4 Machine Platoon_3

This refinement decides the acceleration of the vehicles in the platoon. It sees the
context Context_3 which defines the initial acceleration of the vehicles. This context
is simple and does not require any transformation.

In machine Platoon_3, we apply the heuristic 9 (removal of the invariant) to
the following complex invariant:

(d_vehicle = V EHICLES + 1) or (∀v.(v ∈ 2..dvehicle− 1 ⇒
(∃f1, f2.

(f1 ∈ {new_xpos, new_xpos_max, new_xpos_min}∧
f2 ∈ {new_xpos, new_xpos_max, new_xpos_min}∧
(f1(xpos(v − 1) �→ speed(v − 1) �→ accel(v − 1))−
f2(xpos(v) �→ speed(v) �→ accel(v)) >

CRITICAL_DISTANCE)))))

The event decide of the machine, which actually decides the acceleration of the
members of platoon other than the leader vehicle, had to be transformed in order
to animate. We applied heuristic 8 and decomposed the event into four subsequent
events, each catering for one particular case. The event decide is shown by fig-
ure 9.8. Its transformations are shown by figures 9.9 and 9.10 respectively.

decide �=
ANY

magic_accel
WHERE

grd1 vehicle = 1
grd2 d_vehicle ∈ 2..VEHICLES
grd3 magic_accel..MIN_ACCEL..MAX_ACCEL
grd4 ∃g1,g2. (g1∈ {new_xpos, new_xpos_max, new_xpos_min} ∧

g2 ∈ {new_xpos, new_xpos_max, new_xpos_min} ∧
(g1(xpos(d_vehicle−1) �→speed(d_vehicle−1) �→accel(d_vehicle−1))
− g2(xpos(d_vehicle) �→speed(d_vehicle) �→magic_accel) > CRITICAL_DISTANCE))

THEN
act1 d_vehicle := d_vehicle+1
act2 accel (d_vehicle) := magic_accel

END

Figure 9.8: The event decide before the application of the heuristics 7 & 8

The original machine contains 10 events which are decomposed into 17 events in
the transformed machine.

9.3.5 Machine Platoon_4

In this refinement, the controllers perceive (perception step) before they decide for
an acceleration by applying the decision law. This is done in Context_4 which
defines a new constant new_accel. Because of its complex definition, it can not

130

9.3. Case study 2: The platooning system

decide_1 �=
ANY

magic_accel
WHERE

grd1 vehicle = 1
grd2 d_vehicle ∈ 2..VEHICLES
grd3 magic_accel ∈ MIN_ACCEL..MAX_ACCEL
grd’ magic_accel �= 0
grd ’’ accel (d_vehicle−1) �= 0
grd4 ∃ g1, g2.

(g1∈ {(xpos(d_vehicle−1) +
speed(d_vehicle−1) +
(accel (d_vehicle−1)/2)),
(xpos(d_vehicle−1) +
MAX_SPEED − (((MAX_SPEED −
speed(d_vehicle−1)) × (MAX_SPEED −
speed(d_vehicle−1))) /
(2 × accel(d_vehicle−1)))),
(xpos(d_vehicle−1) −
(((speed(d_vehicle−1) ∗
speed(d_vehicle−1)) /
(2 × accel(d_vehicle−1)))))} ∧
g2∈{(xpos(d_vehicle) + speed(d_vehicle)+
(magic_accel/2)), (xpos(d_vehicle) +
MAX_SPEED − (((MAX_SPEED −
speed(d_vehicle)) ∗
(MAX_SPEED − speed(d_vehicle))) /
(2 × magic_accel))), (xpos(d_vehicle) −
(((speed(d_vehicle) × speed(d_vehicle)) /
(2 × magic_accel))))} ∧
g1− g2 > CRITICAL_DISTANCE)

THEN
act1 d_vehicle := d_vehicle+1
act2 accel (d_vehicle) := magic_accel

END

decide_2 �=
ANY

magic_accel
WHERE

grd1 vehicle = 1
grd2 d_vehicle ∈ 2..VEHICLES
grd3 magic_accel∈MIN_ACCEL..MAX_ACCEL
grd’ magic_accel �= 0
grd ’’ accel (d_vehicle−1) = 0
grd4 ∃ g1, g2 .

(g1 ∈ {(xpos(d_vehicle−1) +
speed(d_vehicle−1)), (xpos(d_vehicle−1)+
MAX_SPEED),
speed(d_vehicle−1)} ∧

g2 ∈ {(xpos(d_vehicle)+speed(d_vehicle)+
(magic_accel/2)), (xpos(d_vehicle) +
MAX_SPEED − (((MAX_SPEED −
speed(d_vehicle)) × (MAX_SPEED −
speed(d_vehicle))) / (2 × magic_accel))),
(xpos(d_vehicle) − (((speed(d_vehicle) ∗
speed(d_vehicle)) / (2 × magic_accel))))}

g1 − g2 > CRITICAL_DISTANCE)
THEN

act1 d_vehicle := d_vehicle+1
act2 accel (d_vehicle) := magic_accel

END

Figure 9.9: The event decide after the application of the heuristics 7 & 8

131

Chapter 9. Application of the heuristics on case studies

decide_3 �=
ANY

magic_accel
WHERE

grd1 vehicle = 1
grd2 d_vehicle ∈ 2..VEHICLES
grd3 magic_accel..MIN_ACCEL..MAX_ACCEL
grd’ magic_accel = 0
grd ’’ accel (d_vehicle−1) �= 0
grd4 ∃ g1, g2 .

(g1 ∈ {(xpos(d_vehicle−1)+
speed(d_vehicle−1)+
(accel (d_vehicle−1)/2)),
(xpos(d_vehicle−1) + MAX_SPEED −
(((MAX_SPEED − speed(d_vehicle−1)) ∗
(MAX_SPEED − speed(d_vehicle−1))) /
(2 × accel(d_vehicle−1)))),
(xpos(d_vehicle−1) −
(((speed(d_vehicle−1) ∗
speed(d_vehicle−1)) /
(2 × accel(d_vehicle−1)))))} ∧
g2 ∈ {(xpos(d_vehicle) +
speed(d_vehicle−1)),
(xpos(d_vehicle) + MAX_SPEED),
speed(d_vehicle)} ∧
g1 − g2 > CRITICAL_DISTANCE)

THEN
act1 d_vehicle := d_vehicle+1
act2 accel (d_vehicle) := magic_accel

END

decide_4 �=
ANY

magic_accel
WHERE

grd1 vehicle = 1
grd2 d_vehicle ∈ 2..VEHICLES
grd3 magic_accel..MIN_ACCEL..MAX_ACCEL
grd’ magic_accel = 0
grd ’’ accel (d_vehicle−1) = 0
grd4 ∃ g1,g2 .

(g1 ∈ {(xpos(d_vehicle−1)+
speed(d_vehicle−1)),
(xpos(d_vehicle−1) + MAX_SPEED),
speed(d_vehicle−1)} ∧

g2 ∈ {(xpos(d_vehicle) +
speed(d_vehicle−1)),
(xpos(d_vehicle) + MAX_SPEED),
speed(d_vehicle)} ∧
g1 − g2 > CRITICAL_DISTANCE)

THEN
act1 d_vehicle := d_vehicle+1
act2 accel (d_vehicle) := magic_accel

END

Figure 9.10: The event decide after the application of the heuristics 7 & 8

132

9.3. Case study 2: The platooning system

be assigned startup value so it must be transported to the machine platoon_4 by
applying heuristics 7 and 8. The original and the resulted contexts are shown by
figure 9.11.

CONTEXT
Context_4

EXTENDS
Context_3

CONSTANTS
IDEAL_SPEED, ideal_distance, new_accel

AXIOMS
typ01 IDEAL_SPEED ∈ 0..MAX_SPEED
typ02 ideal_distance ∈ 0..MAX_SPEED → N
typ03 new_accel ∈

(INT X 0..MAX_SPEED X
0..MAX_SPEED) → INT

pro01 IDEAL_SPEED < MAX_SPEED
pro02 ∀ speed0 . (speed0 ∈ 0..MAX_SPEED ⇒

ideal_distance (speed0) =
CRITICAL_DISTANCE + speed0)

pro03 ∀ p_dist1,p_speed1,p_pre_speed1 .
(p_dist1 ∈ INT ∧ p_speed1 ∈
0..MAX_SPEED ∧ p_pre_speed1 ∈
0..MAX_SPEED ⇒
new_accel(p_dist1�→p_speed1�→
p_pre_speed1) = p_dist1 −
ideal_distance (p_speed1) +
p_pre_speed1 − p_speed1)

pro04 ∀ speed . (speed∈ 0..MAX_SPEED ⇒
ideal_distance (speed) ≥
CRITICAL_DISTANCE)

END

CONTEXT
Context_4

EXTENDS
Context_3

CONSTANTS
IDEAL_SPEED, ideal_distance

AXIOMS
typ01 IDEAL_SPEED ∈ 0..MAX_SPEED
typ02 ideal_distance ∈ 0..MAX_SPEED → N

pro01 IDEAL_SPEED < MAX_SPEED
pro02 ∀ speed0 . (speed0 ∈ 0..MAX_SPEED ⇒

ideal_distance (speed0) =
CRITICAL_DISTANCE + speed0)

pro04 ∀ speed . (speed∈ 0..MAX_SPEED ⇒
ideal_distance (speed) ≥
CRITICAL_DISTANCE)

END

Figure 9.11: The context Context_4 before (left) and after (right) the application
of the heuristics 7 & 8

The consequence of the above transformation was that the event decide_normal
had to be split into four subsequent events, just like the event decide. Each new
event is the refinement of the decide event shown by figures 9.9 and 9.10. The
trickiest situation was actually the two guards

grd5 naccel = new_accel(p_dist(d_vehicle) �→ p_speed(d_vehicle) �→
p_pre_speed(d_vehicle))

grd3 ∃g1, g2.
(g1 ∈ {new_xpos, new_xpos_max, new_xpos_min}∧
g2 ∈ {new_xpos, new_xpos_max, new_xpos_min}∧
(g1(xpos(d_vehicle− 1) �→ speed(d_vehicle− 1) �→ accel(d_vehicle− 1))−
g2(xpos(d_vehicle) �→ speed(d_vehicle− 1) �→ naccel)

> CRITICAL_DISTANCE))

Out of three functions used in grd3, two are defined by case but all are used twice
with different arguments. We were lucky that the cases for the function are the

133

Chapter 9. Application of the heuristics on case studies

Figure 9.12: Animation of the platooning system

same (acceleration null or not), so we had only four duplications.
The last step was to setup a small graphical interface in Flash so that we could

have a synthetic view of the moving platoon. Technically, we had to introduce a new
refinement so that “observation” variables could be set (heuristic 10). The reason
comes from the limited data types that Brama currently communicate to the Flash
server: integers and boolean. As the model uses discrete functions to record current
information of the vehicles, we had to split them into different variables. They are
all concentrated in the move_all event. The end result is shown by figure 9.12.

As can be seen on the interface, the cruising speed of the platoon can be con-
trolled. Setting this control required us to modify the specification in which the
cruise speed was initially defined as a constant. From our point of view, the initial
specification was unrealistic in this respect and the animation allowed us to spot
this, small, inconsistency.

After the application of the heuristics, the transformed machine Platoon_4 con-
tains 20 events whereas the original machine has 16 events.

During the animation it has been observed that there is an oscillation in the
platoon, i.e., the propagation of a wave inside the platoon without stabilization.
The last vehicles of the platoon had to adjust their acceleration frequently while the
ones in the front run smoothly. Animation shows that this specification needs to
improve on this account as this is an undesirable feature.

9.4 Summary

In this chapter, we have presented two Event-B specifications, a transport domain
model and a platooning system, which have been animated by applying our pro-
posed transformational heuristics. In order to show their effects, we have presented
both before and after states of the specification. The applications of the heuristics
are justified in the form of a formal proof. The animation of the transformed speci-
fications did not only show the behavior of the model, but also helped to spot some
specification errors.

134

Part IV

EPILOGUE

Chapter 10

Stepwise validation of formal

specifications

Contents
10.1 Introduction . 137
10.2 VTA: The framework . 138

10.2.1 Verification step . 139
10.2.2 Transformation step . 140
10.2.3 Animation step . 140

10.3 Animation: A reflection . 140
10.4 Summary . 141

10.1 Introduction

With the help of well-defined syntax and semantics, formal specifications concisely
express software requirements. However, due to their complex structures and math-
ematical notions, they are difficult to read and understand for customers. Actually,
formal specifications may sometimes not be able to intuitively reflect the concepts
and behaviors of systems in the real world. The conventional issue of validation
may therefore impair the requirement engineering phase. However, in the form of
animation, we have a solution for this problem but then another question arises:
when shall we start validating?

Verification also raises a similar question. In test-based verification procedures,
we need to wait until systems are implemented and running. As the cost of cor-
recting errors or misunderstandings in requirements increases dramatically during
the development life-cycle, it makes a lot of sense to verify and validate as early as
possible.

The pivotal concept of formal methods such as Event-B is the notion of refine-
ment and its relation to correctness. The assessment of the correctness of a piece of
code, its verification, is no more a unique big process step but is broken down into
small pieces along with the whole development process. The proof of correctness is
the sum of the proofs of small assertions (invariant preservation, well-formedness,
existence of abstraction function, etc.) associated to each refinement. Problems are
then detected early. While a formal refinement process does not preclude a testing

Chapter 10. Stepwise validation of formal specifications

activity, the latter will be more focused on finding true implementation errors, not
requirement problems.

We propose a framework, VTA, for the rigorous validation of formal specifica-
tions based on the principle of verification. We break the validation of formal spec-
ifications into smaller assessments and integrate it to their stepwise development.
VTA, powered by the techniques of verification, transformation and animation, al-
lows specifiers to validate their models early and cheaply.

Our aim to introduce validation into refinement-based processes yields results
on two levels. First, early detection of problems in the requirements (say, misunder-
standing about a certain behavior) should be easier and less expensive to correct.
Second, users can be involved into the development right from the start.

The chapter is organized as follows: Section 10.2 presents our proposed valida-
tion framework VTA. Section 10.3 reflects our perspective towards the technique of
animation. Finally, section 10.4 summarizes the chapter.

10.2 VTA: The framework

VTA (Verify-Transform-Animate) is a framework for the stepwise validation of for-
mal specifications. In this framework, we integrate the technique of animation with
each observation level of the specification to break its validation into smaller assess-
ments in order to ensure that it represents actual requirements of customers.

In VTA, before proceeding with the actual validation of the specification, we
first verify it. Later, if the specification contains some elements which are non-
animatable, they are transformed with the help of the heuristics in order to achieve
animation. The application of these heuristics may “downgrade” the specification
to be “non-provable.” Then, running the animation may uncover some mistakes.
These entail the modification of the initial specification which then must be verified
and transformed again for proceeding with the validation.

VTA is shown by figure 10.1 and consists of the following steps:

1. Start from a fully verified specification. This step is mandatory.

2. Transform each non-animatable element of the specification by:

(a) Choosing the matching heuristic from the list

(b) Checking that its applicability conditions hold

(c) Proving its application

(d) Applying the heuristic

3. Animate for validation. If an anomalous behavior is encountered, modify the
initial specification and restart from step one.

138

10.2. VTA: The framework

Figure 10.1: VTA: The stepwise validation framework

10.2.1 Verification step

The step 1 of our proposed validation framework is based on the verification of
specifications. Our belief is that there is no point in validating a specification which
could not be verified! Such a specification is a dead-end as far as formal development
is concerned.

It is important to note that the order between verification and validation in VTA
is the reverse of what a development relying on tests would use. In the later case,
there is no point in engaging a costly series of tests on a piece of code which does not
fulfill the needs of users. We give verification preeminence over validation mainly
for two reasons. First, it provides us with a reasonable safeguard. Second, and more
importantly, it allows us to justify some heuristics with sound arguments.

Let us consider two heuristics, for instance. The first calls for the removal
of an invariant (heuristic 9). This is safe because (1) invariant does not modify
behaviors (it is only observed) and (2) the proof obligations related to maintaining
the invariant have been successfully discharged. The second calls for the replacement
of a set defined through complex properties of its elements by a simpler super-set
(heuristic 3). Provided we have exerted great care while feeding the animation
with values which conform to the “complex” set definition, the transformation is
safe because proof obligations have been discharged under the assumption that the
values belonged to the “complex” set, and (i) either the values are only used (they
are constants), and so properties are trivially maintained, or (ii) the values are

139

Chapter 10. Stepwise validation of formal specifications

computed, but then at least one of the discharged proof-obligation was about the
belonging of the computed value to the “complex” set. Though less direct, the
justification for other heuristics also rely on the fact that they are applied to verified
texts.

10.2.2 Transformation step

As soon as all proof obligations have been discharged, we start animating the spec-
ification. This animation process is often struck either due to some shortcomings
of animators, such as unsupported features of the language, or due to some non-
executable elements, such as non-constructive definitions, which are used to specify
the behavior. This is the point where we introduce our proposed heuristics to VTA.

Whenever we discover any element in the specification which is non-executable,
we inspect the problem and try to match the case with the list of heuristics. This
inspection and matching practice includes checking if the same application condition
holds as defined by the heuristic pattern and also that the use of this heuristic
can be justified. This justification can either be provided in the form of a formal
proof within Event-B (discharge of proof-obligation) or by a rigorous argument that
application of heuristic would not change the behavior of the specification.

10.2.3 Animation step

Once transformations have been applied, the specification belongs to the animat-
able class. Animation would demonstrate the behavior of the specification. If the
demonstrated behavior is as per expectations then we have the verified and vali-
dated specification in our hands. However, if this is not the case and a closer look
at the specification has revealed deviations from the intended behavior, then we
need to go back to the initial specification and would have to correct the anomalous
behavior. This triggers the loop, i.e., re-proving, re-application of the heuristics,
and re-animation until the specification conforms to the actual requirements.

10.3 Animation: A reflection

Literature discusses validation as a heterogeneous process which is based on a va-
riety of techniques to ensure that analysts have understood the requirements of
stakeholders correctly and have not introduced any error while specifying them.
During a typical validation process, requirements are checked for their consistency,
unambiguity, and completeness. These qualities of requirements are established
by customers or with the help of Software Requirement Specifications (SRS) doc-
uments. Requirement coverage matrices are often used to describe the degree to
which the requirements of particular specification have been validated. Different
testing oracles are also employed to prove or disprove whether some validation test
has passed or failed. Definition and categorization of different outputs of system
against which the specification can be compared also help this cause. Extensive test

140

10.4. Summary

plans, either individual test cases or collaborative test suites are also a part of the
standard validation process. In short, the goal of all these techniques, along with
animation, is to provide a feedback link to customers to give them a chance to check
whether the requirements specified are correct or not.

During our experience, we have discovered that animation is a multi-disciplinary
technique which can be used for a variety of activities during software development.
Primarily, animation is used as a quality-assurance activity, i.e., to gain confidence
in specifications. It can also be used as prototyping. The benefit over here is that
we can execute the specification without translating it into code. It then acts as a
quick and low-cost validation technique.

The use of animation after the proofs of both the model and application of the
heuristics is essential to get a trustworthy validation. However, we have discovered
that animation is also a useful tool when used before the proofs. In such cases,
animation is used to explore new features.

The introduction of a feature raises three issues: (1) the definition of the feature,
(2) its formal specification, and (3) its consistency with the current model. Regard-
ing the first issue, animation provides us with a good intuitive understanding of
how the model “works.” This helps to realize how the feature can be introduced and
how it will fit into the model. Expressing a feature into guards, actions, axioms,
or invariants is a difficult exercise, even for simple behaviors. Small variations in
the formal text may lead to “incorrect” behaviors. Using animation to check that
the formal text specifies the intended feature before embarking on the verification is
cost-effective. Regarding the third issue, animators like Brama, which verify contin-
uously that invariants hold, are very effective in catching incomplete or inconsistent
specification of the feature. Like a good debugger which helps programmers to fix a
program rapidly before going to extensive testing, animation helped us to “fix” the
specification before going through the formal proofs.

10.4 Summary

In formal methods, a key idea to assess that an implementation is correct is to break
its verification into smaller proofs associated with each refinement step. Likewise,
we integrate animation into the stepwise development of specifications in order to
break their validation into smaller assessments. Customers, like this, can be involved
into the development right from the start and problems can be detected right on
the spot.

In this chapter, we have introduced the innovative VTA framework which ad-
vocates the frequent use of animation into the rigorous software development cycle.
Combined with verification and our proposed low-cost transformations, it helps re-
ducing the overall cost and time of the validation process. In the end of the chapter,
we have presented some reflections on the utility of the animation.

141

Chapter 11

Conclusion & future work

Event-B is designed around the idea that a piece of code can be “correct per con-
struction.” Due to its strong emphasize on the notion of correctness using proofs,
its refinement-based idea of development and its effective tool support, it is a good
candidate to specify safety-critical systems.

As a complex and reasonably well-known domain, land transportation is a good
choice to test and assess specification methods and processes. We have conducted a
thorough analysis of the use of Event-B for engineering domains using this example.
We have shown what a domain model should be comprised of, how to refine it and
how it should be verified and validated.

Using a language which is not conceived particularly for domain engineering was
a challenging task. We stumbled upon some of Event-B’s shortcomings, for example,
lack of expression of temporal and ordering constraints. The point is that we cannot
straightforwardly state, and of course prove, properties such as liveness, deadlock
freeness, fairness, and so on. Our domain exhibits many natural protocols and
constraints; we do not think it is exceptional in this respect. Whether Event-B can
be extended in this direction, or whether approaches based on mixing formalisms,
such as CSP||Event-B [Schneider 2010] or event refinement diagrams [Butler 2009],
can be made practical is still an open issue. Answers are beginning to appear. We
just hope they can be used soon.

Apart from this, we have found Event-B an adequate language for domain engi-
neering. Its general philosophy is well-suited to our purpose. The notions of events
and non-determinism has allowed us easy modeling of independent vehicles without
any assumption other than their common property: they move. The strong safety
constraints we have considered are also easily modeled. Modeling of other proper-
ties, such as, collision avoidance, timing, etc. also did not pose great difficulties. All
was done through standard refinement techniques.

We would appreciate to see tools evolving in the direction of richer visualization
of the specifications. Our notes about observation levels, flat linear structures,
parallel refinements, or composition of refinements can be seen through this light.
We do not call for incorporating these into the language: it would be unwise to break
something that works quite well! Instead, we think that tools based on a better
understanding of the needs of the specifiers would be a more promising approach.

Event-B provides us with an efficient set of theorem provers, however what we
have discovered is that proofs alone are not sufficient to produce a “good” software:
we need also to execute, i.e., to test, the software. Two main reasons justify this
proposition. Some properties, notably temporal, are virtually impossible to state

Chapter 11. Conclusion & future work

with constructs such as states, invariants, or events which this language provides
us. We need to ensure that the specification is an adequate model of the problem
we want to solve. Software must be verified and validated.

Waiting to have an executable program to begin the validation leads to the same
difficulties as proving a program against its specification: costly, very complex, soon
unmanageable. The strategy which works with the verification of specifications built
by a stepwise refinement process could also work for validation. We should be able
to enrich the development process by adding validation activities to each refinement
step. We have then proposed an animation-based rigorous validation framework for
software specifications.

One limiting factor of the technique of animation is that not all specifications
are animatable. Qualities sought after for a well-written specification, such as ab-
stractness, non-determinism, non-constructive definitions, are contradictory with
what is required for effective computation. Specification, thus, can be classified into
provable, animatable, or both.

Good thing about animation is that in many cases we can “downgrade” a proven,
non-animatable, specification into a “behaviorally equivalent” animatable, but non-
provable, specification. We have then proposed several transformations to realize
this idea. The validity of such a technique depends on the semantics of the transfor-
mations. We have developed ad-hoc semantics based on the behavior of the model.
The preservation property we have expressed can be summed up as: “whatever we
observe on the execution of the transformed specification would have been observed
on the proven specification.”

We are assured that applications of the heuristics are independent of each other,
i.e., application of one heuristic does not contradict or depend upon another. In
future, we intend to formally prove this along with the inclusion of more heuristics
into the list as modeling and validation of new properties of the domain is expected.
We also plan to check their compatibility with animators other than Brama, such
as ProB.

Despite having transformation rules at our disposal, sometimes animators still
fail to execute a specification. For such cases, we expect that translation of Event-B
text into an executable programming language can be a reasonable fall-back strategy.
This can also be seen as a proposed future work.

Tools are essential to formal methods. Without Rodin, the provers, and Brama,
there is no way we could have reached the current state of the specification. How-
ever, they are still crude for an industrial usage. The tool we lacked the most was
inspired by our needs with respect to animation. Application of the transforma-
tional heuristics requires some insight and intelligence (choice of the rule, check of
the validity), but also tedious and boring work (text modification). The boring
parts of the transformation do not contain overly complex text manipulation and
can easily be implemented in the form of a plugin for Rodin.

144

Bibliography

[Abrial 1996] J.-R. Abrial. The B book. Cambridge University Press, 1996. (Cited
on pages 18 and 43.)

[Abrial 1998] Jean-Raymond Abrial and Louis Mussat. Introducing Dynamic Con-
straints in B. In B ’98: Proceedings of the Second International B Conference
on Recent Advances in the Development and Use of the B Method, pages
83–128, London, UK, 1998. Springer-Verlag. (Cited on page 45.)

[Abrial 2007] J.-R. Abrial and S. Hallerstede. Refinement, Decomposition, and In-
stantiation of Discrete Models: Application to Event-B. Fundamenta Infor-
maticae, vol. 77, no. 1-2, pages 1–28, 2007. (Cited on pages 37, 41 and 45.)

[Abrial 2010] Jean-Raymond Abrial. Modeling in event-b: System and software
engineering. Cambridge University Press, 2010. (Cited on page 1.)

[Ahmad 2004] F. Ahmad and U. Aziz. A survey of domain analysis techniques and
domain reuse in Pakistan. In Multitopic Conference, 2004. Proceedings of
INMIC 2004. 8th International, pages 434 – 439, 2004. (Cited on page 11.)

[Alexander 2003] I. Alexander. Misuse Cases: Use Cases with Hostile Intent. IEEE
Software, vol. 20, pages 58–66, 2003. (Cited on page 21.)

[Alexander 2004] I. Alexander. Negative Scenarios and Misuse Cases. Scenarios,
Stories, Use Cases Through the Systems Development Life-Cycle, pages 119–
139, 2004. (Cited on page 21.)

[Aziz 2009] Benjamin Aziz, Alvaro E. Arenas, Juan Bicarregui, Christophe Ponsard
and Philippe Massonet. From Goal-Oriented Requirements to Event-B Spec-
ifications. In First Nasa Formal Method Symposium, California, US, 2009.
(Cited on page 44.)

[Baille 1999] Gérard Baille, Philippe Garnier, Hervé Mathieu and Pissard-Gibollet
Roger. Le cycab de l’INRIA Rhônes-Alpes. Technical Report RT-0229, IN-
RIA – Rhônes-Alpes, 1999. (Cited on page 48.)

[Ball 2004] Thomas Ball, Byron Cook, Vladimir Levin and Sriram K. Rajamani.
SLAM and Static Driver Verifier: Technology Transfer of Formal Methods
inside Microsoft. In Integrated Formal Methods, 4th International Confer-
ence, IFM 2004, Canterbury, UK, pages 1–20, 2004. (Cited on page 30.)

[Banach 1998] Richard Banach and M. Poppleton. Retrenchment: An Engineering
Variation on Refinement. In Proceedings of the Second International B Con-
ference on Recent Advances in the Development and Use of the B Method,
pages 129–147, London, UK, 1998. Springer-Verlag. (Cited on page 45.)

Bibliography

[Beck 1989] K. Beck and W. Cunningham. A laboratory for teaching object-oriented
thinking. OOPSLA’ 89, Special Issue of ACM SIGPLAN Notices, vol. 24,
pages 1–6, 1989. (Cited on page 21.)

[Bendisposto 2008] J. Bendisposto, M. Leuschel, O. Ligot and M. Samia. La val-
idation de modèles Event-B avec le plug-in ProB pour RODIN. Technique
et Science Informatiques, vol. 27, no. 8, pages 1065–1084, 2008. (Cited on
page 44.)

[Bicarregui 2008] Juan Bicarregui, Alvaro Arenas, Benjamin Aziz, Philippe Mas-
sonet and Christophe Ponsard. Towards Modelling Obligations in Event-B.
In Proceedings of the 1st international conference on Abstract State Ma-
chines, B and Z, ABZ ’08, pages 181–194. Springer-Verlag, 2008. (Cited on
page 46.)

[Bisztray 2008] Dénes Bisztray, Reiko Heckel and Hartmut Ehrig. Verification of ar-
chitectural refactorings by rule extraction. In FASE’08/ETAPS’08: Proceed-
ings of the Theory and practice of software, 11th international conference
on Fundamental approaches to software engineering, pages 347–361, Berlin,
Heidelberg, 2008. Springer-Verlag. (Cited on page 44.)

[Bjesse 2005] Per Bjesse. What is formal verification? SIGDA Newsl., vol. 35,
no. 24, 2005. (Cited on page 29.)

[Bjørner 2004] Dines Bjørner. TRain: The Railway domain - A "Grand Challenge"
for Computing Science & Transportation Engineering. In Building the In-
formation Society, IFIP 18th World Computer Congress, Topical Sessions,
Toulouse, France, pages 607–612, 2004. (Cited on page 14.)

[Bjørner 2005] Dines Bjørner. A Cloverleaf of Software Engineering. In Software
Engineering and Formal Methods, International Conference on, pages 75–85,
Los Alamitos, CA, USA, 2005. IEEE Computer Society. (Cited on page 14.)

[Bjørner 2006] D. Bjørner. Software Engineering 3: Domains, Requirements, and
Software Design (Texts in Theoretical Computer Science, an EATCS Series).
Springer-Verlag, 2006. (Cited on page 14.)

[Bjørner 2007] D. Bjørner. Development of Transportation Systems. In International
Symposium On Leveraging Applications of Formal Methods, Verification and
Validation (ISOLA), 2007. (Cited on pages 1 and 14.)

[Bjørner 2008a] Dines Bjørner. Domain Engineering. In In BCS FACS Seminars,
Lecture Notes in Computer Science, the BCS FAC Series (eds. Paul Boca
and Jonathan Bowen, pages 1–42. Springer, 2008. (Cited on page 14.)

[Bjørner 2008b] Dines Bjørner. From Domain to Requirements. In Concurrency,
Graphs and Models, pages 278–300. Springer, 2008. (Cited on page 14.)

146

Bibliography

[Bjørner 2009a] D. Bjørner. DOMAIN ENGINEERING: Technology Management,
Research and Engineering. JAIST, 2009. (Cited on page 14.)

[Bjørner 2009b] Dines Bjørner. Rôle of Domain Engineering in Software Devel-
opment - Why Current Requirements Engineering Is Flawed ! In Ershov
Memorial Conference, Perspectives of Systems Informatics, 7th International
Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk, Russia, pages
2–34, 2009. (Cited on pages 10 and 14.)

[Bjørner 2010] D. Bjørner. Domain science and engineering from computer science
to the sciences of informatics. Part I: Engineering. Cybernetics and Systems
Analysis, vol. 46, pages 609–623, 2010. (Cited on page 14.)

[Boehm 1978] Barry W. Boehm, John R. Brown, Hans Kaspar, Myron Lipow, Gor-
don J. MacLeod and Michael J. Merritt. Characteristics of software quality.
North-Holland Publishing Company, 1978. (Cited on page 27.)

[Booch 1998] G. Booch, J. Rumbaugh and I. Jacobson. The unified modeling lan-
guage user guide. Addison-Wesley, 1998. (Cited on page 20.)

[Booth 1967] Taylor L. Booth. Sequential machines and automata theory. John
Wiley & Sons, 1967. (Cited on page 18.)

[Bowen 1995a] Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths of
Formal Methods. IEEE Softw., vol. 12, no. 4, pages 34–41, 1995. (Cited on
page 23.)

[Bowen 1995b] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of
Formal Methods. Computer, vol. 28, pages 56–63, 1995. (Cited on page 24.)

[Bowen 2006] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of
Formal Methods ...Ten Years Later. Computer, vol. 39, pages 40–48, 2006.
(Cited on page 24.)

[Bozga 1998] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros
Tripakis and Sergio Yovine. Kronos: A Model-Checking Tool for Real-Time
Systems. In CAV ’98: Proceedings of the 10th International Conference on
Computer Aided Verification, pages 546–550, London, UK, 1998. Springer-
Verlag. (Cited on page 30.)

[Brooks 1987] Frederick P. Brooks Jr. No Silver Bullet Essence and Accidents of
Software Engineering. Computer, vol. 20, no. 4, pages 10–19, 1987. (Cited
on page 25.)

[Bryans 2010] J. W. Bryans, J. S. Fitzgerald, A. Romanovsky and A. Roth. Patterns
for Modelling Time and Consistency in Business Information Systems. In
Proceedings of the 2010 15th IEEE International Conference on Engineering
of Complex Computer Systems, ICECCS ’10, pages 105–114, Washington,
DC, USA, 2010. IEEE Computer Society. (Cited on page 45.)

147

Bibliography

[Bryant 1986] Randal E. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Trans. Comput., vol. 35, no. 8, pages 677–691, 1986.
(Cited on page 30.)

[Budde 1990] Reinhard Budde and Heinz Ziillighoven. Prototyping Revisited. In
Proceedings of the IEEE International Conference on Computer Systems
and Software Engineering (COMPEURO’90), Tel-Aviv, Israel, 1990. IEEE
Computer Society. (Cited on page 32.)

[Butler 1996] Michael J. Butler. Stepwise refinement of communicating systems.
Sci. Comput. Program., vol. 27, pages 139–173, September 1996. (Cited on
page 41.)

[Butler 2002] Michael Butler. A System-Based Approach to the Formal Development
of Embedded Controllers for a Railway. Design Automation for Embedded
Systems, vol. 6, pages 355–366, 2002. (Cited on page 44.)

[Butler 2009] Michael Butler. Decomposition Structures for Event-B. In Proceedings
of the 7th International Conference on Integrated Formal Methods, IFM ’09,
pages 20–38, Berlin, Heidelberg, 2009. Springer-Verlag. (Cited on pages 45
and 143.)

[Camilleri 1997] Albert John Camilleri. A Hybrid Approach to Verifying Liveness
in a Symmetric Multi-Processor. In TPHOLs ’97: Proceedings of the 10th
International Conference on Theorem Proving in Higher Order Logics, pages
49–67, London, UK, 1997. Springer-Verlag. (Cited on page 24.)

[Cansell 2007] D. Cansell, D. Mery and J. Rehm. Time Constraint Patterns for
Event B Development. In J. Julliand and O. Kouchnarenko, editeurs, 7th
International Conference of B Users, volume 4355 of LNCS, pages 140–154.
Springer Verlag, 2007. (Cited on pages 45, 52 and 74.)

[Chen 1976] Peter Pin-Shan Chen. The entity-relationship model—toward a unified
view of data. ACM Trans. Database Syst., vol. 1, no. 1, pages 9–36, 1976.
(Cited on page 18.)

[Christel 1992] Michael G. Christel and Kyo C. Kang. Issues in Requirements Elic-
itation. Rapport technique CMU/SEI-92-TR-012, Carnegie Mellon Univer-
sity, September 1992. (Cited on page 17.)

[Clarke 1982] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Temporal Logic. In Logic
of Programs, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.
(Cited on page 30.)

[Clarke 1996] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state
of the art and future directions. ACM Comput. Surv., vol. 28, no. 4, pages
626–643, 1996. (Cited on pages 30 and 31.)

148

Bibliography

[Cle 2009] Clearsy. User Manual of Atelier B, version 4.0, 2009. (Cited on page 44.)

[Cleaveland 1993] Rance Cleaveland, Joachim Parrow and Bernhard Steffen. The
concurrency workbench: a semantics-based tool for the verification of concur-
rent systems. ACM Trans. Program. Lang. Syst., vol. 15, no. 1, pages 36–72,
1993. (Cited on page 30.)

[Clemons 1985] Eric Clemons and Arnold Greenfield. The Sage System Architecture:
A System for the Rapid Development of Graphics Interfaces for Decision
Support. IEEE Computer Graphics and Applications, vol. 5, pages 38–50,
1985. (Cited on page 33.)

[Colin 2008a] S. Colin, A. Lanoix, O. Kouchnarenko and J. Souquières. Towards
Validating a Platoon of Cristal Vehicles using CSP�B. In J. Meseguer and
G. Rosu, editeurs, 12th International Conference on Algebraic Methodology
and Software Technology (AMAST 2008), numéro 5140 de LNCS, pages 139–
144. Springer-Verlag, July 2008. (Cited on page 124.)

[Colin 2008b] S. Colin, A. Lanoix, O. Kouchnarenko and J. Souquières. Using
CSP�B Components: Application to a Platoon of Vehicles. In 13th Inter-
national ERCIM Wokshop on Formal Methods for Industrial Critical Sys-
tems (FMICS 2008), LNCS. Springer-Verlag, September 2008. (Cited on
page 124.)

[Cousot 1977] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation
of fixpoints. In POPL ’77: Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 238–252, New
York, NY, USA, 1977. ACM. (Cited on page 95.)

[Czarnecki 2000] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative pro-
gramming: methods, tools, and applications. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000. (Cited on pages 10 and 13.)

[Dardenne 1993] Anne Dardenne, Axel van Lamsweerde and Stephen Fickas. Goal-
directed requirements acquisition. Science of Computer Programming, vol. 20,
no. 1-2, pages 3–50, 1993. (Cited on page 20.)

[Daviet 1996] P. Daviet and M. Parent. Longitudinal and Lateral Servoing of Vehi-
cles in a Platoon. In Proceeding of the IEEE Intelligent Vehicles Symposium,
pages 41–46, 1996. (Cited on page 123.)

[Davis 1990] AM Davis. System testing: Implications of requirements specifications.
Information and Software Technology, vol. 32, no. 6, pages 407 – 414, 1990.
(Cited on page 14.)

[Dowek 1993] Gilles Dowek, Amy Felty, Hugo Herbelin, Gerard Huet, Catherine
Parent, Christine Paulin Mohring, Benjamin Werner and Chetan Murthy.

149

Bibliography

The Coq proof assistant user’s guide : version 5.8. Research Report RT-
0154, INRIA, 1993. (Cited on page 31.)

[Erasmy 1995] François Erasmy and Emil Sekerinski. Raise: A Rigorous approach
using stepwise refinement. In Claus Lewerentz and Thomas Lindner, editeurs,
Formal Development of Reactive Systems, volume 891 of Lecture Notes in
Computer Science, pages 277–293. Springer Berlin / Heidelberg, 1995. (Cited
on page 43.)

[Essamé 2004] Didier Essamé. Handling Safety Critical Requirements in System En-
gineering Using the B Formal Method. In Maritta Heisel, Peter Liggesmeyer
and Stefan Wittmann, editeurs, Computer Safety, Reliability, and Security,
volume 3219 of Lecture Notes in Computer Science, pages 115–115. Springer
Berlin / Heidelberg, 2004. (Cited on page 44.)

[Fagan 1976] M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM System Journal, vol. 15, no. 3, 1976. (Cited on page 33.)

[Ferr’e 1999] X. Ferr’e and S. Vegas. An Evaluation of Domain Analysis Methods.
In In 4th CAiSE/IFIP8.1 International Workshop in Evaluation of Modeling
Methods in Systems Analysis and Design (EMMSAD99, 1999. (Cited on
page 11.)

[Finkelstein 1996] A. Finkelstein and I. Sommerville. The Viewpoints FAQ. Software
Engineering Journal, vol. 11, pages 2–4, 1996. (Cited on page 20.)

[Futatsugi 1985] Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud and
José Meseguer. Principles of OBJ2. In POPL ’85: Proceedings of the 12th
ACM SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 52–66, New York, NY, USA, 1985. ACM. (Cited on page 43.)

[Gemino 2004] Andrew Gemino. Empirical comparisons of animation and narration
in requirements validation. Requirment Engineering, vol. 9, no. 3, pages 153–
168, 2004. (Cited on page 31.)

[Gondal 2009] Ali Gondal, Michael Poppleton and Colin Snook. Feature Composi-
tion - Towards product lines of Event-B models. In 1st International Work-
shop on Model-Driven Product Line Engineering, pages 18–25, Twente, The
Netherlands, 2009. (Cited on pages 45 and 79.)

[Gordon 1993] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A
Theorem-Proving Environment for Higher-Order Logic. Cambridge Univer-
sity Press, 1993. (Cited on page 31.)

[Gørtz 1994] Jesper Gørtz. Specifying safety and progress properties with RSL. In
Maurice Naftalin, Tim Denvir and Miquel Bertran, editeurs, FME ’94: In-
dustrial Benefit of Formal Methods, volume 873 of Lecture Notes in Com-
puter Science, pages 567–581. Springer Berlin / Heidelberg, 1994. (Cited on
page 43.)

150

Bibliography

[Groslambert 2006] Julien Groslambert. Verification of LTL on B Event Systems. In
Jacques Julliand and Olga Kouchnarenko, editeurs, B 2007: Formal Specifi-
cation and Development in B, volume 4355 of Lecture Notes in Computer Sci-
ence, pages 109–124. Springer Berlin / Heidelberg, 2006. (Cited on page 45.)

[Group 1993a] The Raise Language Group. Raise method manual. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1993. (Cited on page 43.)

[Group 1993b] The RAISE Language Group. The raise specification language.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993. (Cited on pages 14
and 43.)

[Hall 1990] Anthony Hall. Seven Myths of Formal Methods. IEEE Softw., vol. 7,
no. 5, pages 11–19, 1990. (Cited on page 23.)

[Harel 1987] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, vol. 8, pages 231–274, 1987. (Cited on page 29.)

[Harrison 2003] John Harrison. Formal Verification at Intel. Logic in Computer
Science, Symposium on, 2003. (Cited on page 24.)

[Harsu 2002] Maarit Harsu. A survey on domain engineering. Rapport technique,
Tampere University of Technology, Tampere, Finland, 2002. (Cited on
page 11.)

[Henzinger 2003] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar and Gré-
goire Sutre. Software verification with BLAST. In SPIN’03: Proceedings of
the 10th international conference on Model checking software, pages 235–239,
Berlin, Heidelberg, 2003. Springer-Verlag. (Cited on page 30.)

[Hoare 1985] C. A. R. Hoare. Communicating sequential processes. Prentice Hall
Int., 1985. (Cited on page 29.)

[Holbrook 1990] H. Holbrook. A Scenario-based Methodology for Conducting Re-
quirements Elicitation. ACM Sigsoft Software Engineering Notes, vol. 1,
pages 95–104, 1990. (Cited on page 21.)

[Holzmann 1997] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans.
Software Engineering, vol. 23, no. 5, pages 279–295, 1997. (Cited on page 30.)

[Huth 2000] Michael R. A. Huth and Mark Ryan. Logic in computer science: mod-
elling and reasoning about systems. Cambridge University Press, New York,
NY, USA, 2000. (Cited on page 30.)

[IEEE 1990] Institute of Electrical IEEE and Electronics Engineers. IEEE Std
610.12-1990 IEEE Standard Glossary of Software Engineering Terminology,
1990. (Cited on pages 14, 18 and 19.)

151

Bibliography

[IEEE 1998a] Institute of Electrical IEEE and Electronics Engineers. IEEE standard
for software reviews, 1998. (Cited on pages 33 and 34.)

[IEEE 1998b] Institute of Electrical IEEE and Electronics Engineers. IIEEE Rec-
ommended Practice for Software Requirements Specifications, 1998. (Cited
on page 18.)

[IEEE 2004] Institute of Electrical IEEE and Electronics Engineers. IEEE Standard
for Software Verification and Validation, 2004. (Cited on page 19.)

[Jackson 1983] M. A Jackson. System development (prentice-hall international se-
ries in computer science). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1983. (Cited on page 74.)

[Jackson 2001] M. Jackson. Problem frames: Analyzing and structuring software
development problems. Addison-Wesley, 2001. (Cited on page 21.)

[Jarke 1998] Matthias Jarke, X. Tung Bui and John M. Carroll. Scenario Man-
agement: An Interdisciplinary Approach. Requirements Engineering, vol. 3,
pages 155–173, 1998. (Cited on page 20.)

[Jones 1986] C B Jones. Systematic software development using vdm. Prentice Hall
International (UK) Ltd., 1986. (Cited on page 18.)

[Joochim 2010] T. Joochim, C. Snook, M. Poppleton and A Gravell. TIMING
DIAGRAMS REQUIREMENTS MODELING USING EVENT-B FORMAL
METHODS. In IASTED International Conference on Software Engineering
(SE2010), Innsbruck, Austria, 2010. (Cited on page 45.)

[Kang 1990] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak and A. S. Peter-
son. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Rapport
technique, Carnegie-Mellon University Software Engineering Institute, 1990.
(Cited on page 12.)

[Kaufmann 1996] Matt Kaufmann and J. Strother Moore. ACL2: An Industrial
Strength Version of Nqthm. In Proceedings of the Eleventh Annual Confer-
ence on Computer Assurance (COMPASS-96), 1996. (Cited on page 31.)

[Kotonya 1998] Gerald Kotonya and Ian Sommerville. Requirements engineering:
Processes and techniques. Wiley, 1998. (Cited on page 33.)

[Lalioti 1993] V. Lalioti and P. Loucopoulos. Visualisation for Validation. In Fifth
Conference an Advanced Information Systems Engineering, CAiSE, pages
143–164. Springer, 1993. (Cited on page 32.)

[Lamport 1977] L. Lamport. Proving the Correctness of Multiprocess Programs.
IEEE Transactions on Software Engineering, vol. 3, no. 2, pages 125–143,
1977. (Cited on pages 43, 75 and 76.)

152

Bibliography

[Lamsweerde 2000] Axel van Lamsweerde. Formal specification: a roadmap. In ICSE
’00: Proceedings of the Conference on The Future of Software Engineering,
pages 147–159, New York, NY, USA, 2000. ACM. (Cited on page 28.)

[Lamsweerde 2001] A van Lamsweerde. Goal-Oriented Requirements Engineering:
A Guided Tour. In 5th IEEE International Symposium on Requirements
Engineering, 2001. (Cited on page 20.)

[Lanoix 2008] Arnaud Lanoix. Event-B Specification of a Situated Multi-Agent Sys-
tem: Study of a Platoon of Vehicles. In 2nd International Symposium on
Theoretical Aspects of Software Engineering (TASE’08), Nanjing, China,
2008. (Cited on pages 124 and 125.)

[Laplante 2009] Phillip A. Laplante. Requirements engineering for software and sys-
tems. Auerbach Publications, Boston, MA, USA, 2009. (Cited on page 15.)

[Leuschel 2003] M. Leuschel and M. Butler. ProB: A Model Checker for B. In
Keijiro Araki, Stefania Gnesi and Dino Mandrioli, editeurs, FME 2003: For-
mal Methods, LNCS 2805, pages 855–874. Springer-Verlag, 2003. (Cited on
pages 75 and 91.)

[Leuschel 2008] M. Leuschel and M. Butler. ProB: An Automated Analysis Toolset
for the B Method. Journal Software Tools for Technology Transfer, vol. 10,
no. 2, pages 185–203, 2008. (Cited on page 92.)

[Logrippo 1990] Luigi Logrippo, Tim Melanchuk and Robert J. Du Wors. The alge-
braic specification language LOTOS: an industrial experience. In Conference
proceedings on Formal methods in software development, pages 59–66. ACM,
1990. (Cited on page 29.)

[Loucopoulos 1995] Pericles Loucopoulos and Vassilios Karakostas. System require-
ments engineering. McGraw-Hill, Inc., New York, NY, USA, 1995. (Cited
on page 15.)

[Marc 1993] Edited Marc, John Hershberger (Eds.), Marc H. Brown and John Her-
shberger. Animation of Geometric Algorithms: A Video Review. DEC Sys-
tems Research Center, Research Report, vol. 87, 1993. (Cited on page 32.)

[Marca 1987] David A. Marca and Clement L. McGowan. Sadt: structured analysis
and design technique. McGraw-Hill, Inc., New York, NY, USA, 1987. (Cited
on page 20.)

[Mashkoor 2010a] Atif Mashkoor and Jean-Pierre Jacquot. Domain Engineering
with Event-B: Some Lessons We Learned. In 18th International Require-
ments Engineering Conference (RE’10), Sydney, Australia, 2010. (Cited on
page 45.)

153

Bibliography

[Mashkoor 2010b] Atif Mashkoor and Abderrahman Matoussi. Towards Validation
of Requirements Models. In 2nd International Conference on Abstract State
Machines (ASM), Alloy, B and Z (ABZ’10), Orford, Canada, 2010. (Cited
on page 44.)

[Matoussi 2008] A. Matoussi, F. Gervais and R. Laleau. A First Attempt to Express
KAOS Refinement Patterns with Event B. In Proc. of the Int. Conf. on
ASM, B and Z (ABZ), Lecture Notes in Computer Science, pages 12–14.
Springer-Verlag, 2008. (Cited on page 44.)

[McCall 1977] Jim A. McCall, Paul K. Richards and Gene F. Walters. Factors in
Software Quality (Volume-III). Technical report, GENERAL ELECTRIC
CO SUNNYVALE CALIF, 1977. (Cited on page 18.)

[Milner 1982] R. Milner. A calculus of communicating systems. Springer-Verlag
New York, Inc., 1982. (Cited on page 29.)

[Milner 1997] Robin Milner, Mads Tofte, Robert Harper and David Macqueen. The
definition of standard ml - revised. The MIT Press, 1997. (Cited on page 44.)

[Mullery 1979] G. P. Mullery. CORE - A method for controlled requirement spec-
ification. In ICSE ’79: Proceedings of the 4th international conference on
Software engineering, pages 126–135. IEEE Press, 1979. (Cited on page 20.)

[Mylopoulos 1992] J. Mylopoulos, L. Chung and B. Nixon. Representing and Using
Nonfunctional Requirements: A Process-Oriented Approach. IEEE Trans.
Softw. Eng., vol. 18, no. 6, pages 483–497, 1992. (Cited on page 20.)

[Neighbors 1980] James Milne Neighbors. Software construction using components.
PhD thesis, University of California, Irvine, USA, 1980. (Cited on page 11.)

[Neighbors 1989] J. M. Neighbors. Draco: a method for engineering reusable soft-
ware systems. Software reusability: vol. 1, concepts and models, pages 295–
319, 1989. (Cited on page 12.)

[Nipkow 2002] Tobias Nipkow, Lawrence C. Paulson and Markus Wenzel. Is-
abelle/hol — a proof assistant for higher-order logic, volume 2283 of LNCS.
Springer, 2002. (Cited on page 31.)

[Olsen 1994] Anders Olsen. Systems engineering using sdl-92. Elsevier Science Inc.,
1994. (Cited on page 29.)

[Owre 1992] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verifica-
tion System. In Deepak Kapur, editeur, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial In-
telligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag. (Cited
on page 44.)

154

Bibliography

[Papatsaras 2002] Antonis Papatsaras and Bill Stoddart. Global and Communicat-
ing State Machine Models in Event Driven B: A Simple Railway Case Study.
In ZB ’02: Proceedings of the 2nd International Conference of B and Z
Users on Formal Specification and Development in Z and B, pages 458–476,
London, UK, 2002. Springer-Verlag. (Cited on page 44.)

[Paulson 1996] Lawrence C. Paulson. Ml for the working programmer (2nd ed.).
Cambridge University Press, New York, NY, USA, 1996. (Cited on page 43.)

[Paulson 2008] Lawrence C. Paulson. The Isabelle Reference Manual, 2008. (Cited
on page 24.)

[Pnueli 1981] Amir Pnueli. The Temporal Semantics of Concurrent Programs.
Theor. Comput. Sci., vol. 13, pages 45–60, 1981. (Cited on pages 29 and 30.)

[Ponsard 2007] C. Ponsard, P. Massonet, J.F. Molderez and G. Dallons. Formal
Requirements Modelling and Early Verification and Validation of Critical
Systems. In Approches Formelles dans l’Assistance au Développement de
Logiciels - AFADL’07, 2007. (Cited on page 32.)

[Poppleton 2007] Michael R. Poppleton. Towards feature-oriented specification and
development with event-B. In Proceedings of the 13th international working
conference on Requirements engineering: foundation for software quality,
REFSQ’07, pages 367–381, 2007. (Cited on page 45.)

[Poppleton 2008] Michael Poppleton. The composition of Event-B models. In 1st
International Conference on ASM, B and Z (ABZ2008), London, UK, 2008.
(Cited on page 79.)

[Pressman 2005] R. S. Pressman. Software engineering: A practitioner’s approach.
McGraw-Hill Inc, 2005. (Cited on pages 11 and 17.)

[rai 2002] Specification case studies in raise. Springer-Verlag, London, UK, 2002.
(Cited on page 14.)

[Raja 2009] Uzair Akbar Raja. Empirical Studies of Requirements Validation Tech-
niques. In 2nd International Conference on Computer, Control and Commu-
nication, Karachi, Pakistan, 2009. (Cited on page 31.)

[Roman 1989] G.-C. Roman and K. C. Cox. A Declarative Approach to Visualizing
Concurrent Computations. Computer, vol. 22, no. 10, pages 25–36, 1989.
(Cited on page 33.)

[Ross 1977] D. T. Ross and K. E. Schoman. Structured Analysis for Requirements
Definition. IEEE Transactions on Software Engineering, vol. 3, no. 1, pages
6–15, 1977. (Cited on page 17.)

[Roy 1992] Valérie Roy and Robert De Simone. Auto/Autograph. Formal Methods
in System Design, vol. 1, no. 2, pages 239–249, 1992. (Cited on page 30.)

155

Bibliography

[Scheuer 2008] Alexis Scheuer, Olivier Simonin and François Charpillet. Safe Lon-
gitudinal Platoons of Vehicles without Communication. Research Report RR-
6741, INRIA, 2008. (Cited on page 123.)

[Schneider 2010] Steve Schneider, Helen Treharne and Heike Wehrheim. A CSP
Approach to Control in Event-B. In Integrated Formal Methods - IFM 2010
Integrated Formal Methods - 8th International Conference, IFM 2010, vol-
ume 6396 of LNCS, pages 260–274, Nancy France, 2010. Springer Berlin /
Heidelberg. (Cited on page 143.)

[Servat 2006] Thierry Servat. BRAMA: A New Graphic Animation Tool for B Mod-
els. In B 2007: Formal Specification and Development in B, pages 274–276.
Springer-Verlag, 2006. (Cited on pages 5 and 87.)

[Silva 2010] Renato Silva, Carine Pascal, T.S. Hoang and Michael Butler. Decompo-
sition Tool for Event-B. In Workshop on Tool Building in Formal Methods,
Orford, Canada, 2010. (Cited on pages 45 and 79.)

[Simos 1995] Mark A. Simos. Organization domain modeling (ODM): formalizing
the core domain modeling life cycle. SIGSOFT Software Engineering Notes,
vol. 20, no. SI, pages 196–205, 1995. (Cited on page 13.)

[Simos 1996] Mark Simos, Dick Creps, Carol Klingler, Larry Levine and Dean Alle-
mang. Organization domain modeling (ODM) guidebook, version 2.0. Tech-
nical Report STARS-VC-A025/001/00, Lockheed Martin Tactical Defence
Systems, June 1996. (Cited on page 13.)

[Simos 1997] M. Simos. Organization Domain Modeling and OO Analysis and De-
sign: Distinctions, Integration, New Directions. In In STJA’97 Conference
Proceedings, pages 166–175, 1997. (Cited on page 10.)

[Snook 2006] C. Snook and M. Butler. UML-B: Formal modeling and design aided
by UML. ACM Transactions on Software Engineering and Methodology,
vol. 15, no. 1, pages 92–122, 2006. (Cited on page 44.)

[Sommerville 1997] I. Sommerville and P. Sawyer. Viewpoints: principles, problems
and a practical approach to requirements engineering. Annals of Software
Engineering, vol. 3, pages 101–130, 1997. (Cited on page 20.)

[Sommerville 2006] Ian Sommerville. Software engineering (8th ed.). Addison Wes-
ley Longman Publishing Co., Inc., Redwood City, CA, USA, 2006. (Cited
on pages 15 and 16.)

[Spivey 1989] J. M. Spivey. The z notation: a reference manual. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989. (Cited on page 18.)

[Srinivas 1991] Yellamraju Srinivas. Algebraic specification for domains. Domain
Analysis: Acquisition of Reusable Information for Software Construction,
pages 90–124, 1991. (Cited on page 13.)

156

Bibliography

[Sutcliffe 2003] Alistair Sutcliffe. Scenario-Based Requirements Engineering. Re-
quirements Engineering, IEEE International Conference on, 2003. (Cited on
page 20.)

[Thayer 1997] Richard H. Thayer, Sidney C. Bailin and M. Dorfman. Software
requirements engineerings, 2nd edition. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1997. (Cited on page 15.)

[van Lamsweerde 2009] Axel van Lamsweerde. Requirements engineering: From
system goals to uml models to software specifications. Wiley, 2009. (Cited
on page 44.)

[Van 2004] Hung Tran Van, Axel van Lamsweerde, Philippe Massonet and
Christophe Ponsard. Goal-Oriented Requirements Animation. In RE ’04:
Proceedings of the Requirements Engineering Conference, 12th IEEE In-
ternational, pages 218–228, Washington, DC, USA, 2004. IEEE Computer
Society. (Cited on page 32.)

[Wartik 1992] Steven Wartik and Rub’en Prieto-Diaz. CRITERIA FOR COM-
PARING REUSE-ORIENTED DOMAIN ANALYSIS APPROACHES. In-
ternational Journal of Software Engineering and Knowledge Engineering
(IJSEKE), vol. 2, pages 403–431, 1992. (Cited on page 11.)

[Yadav 2009] Divakar Yadav and Michael Butler. Verification of Liveness Properties
in Distributed Systems. In Second International Conference on Contemporary
Computing (IC3’09), pages 625–636. Noida, India, 2009. (Cited on page 76.)

[Yourdon 1978] Edward Yourdon. Structured walkthroughs. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1978. (Cited on page 33.)

[Yourdon 1979] Edward Yourdon and Larry L. Constantine. Structured design:
Fundamentals of a discipline of computer program and systems design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1st édition, 1979. (Cited
on page 18.)

[Yousuf 2008] Farzana Yousuf, Zahid Zaman and Naveed Ikram. Requirements Val-
idation Techniques in GSD: A Survey. In I2th IEEE International Multitopic
Conference (INMIC’08), Karachi, Pakistan, 2008. (Cited on page 31.)

[Yu 1997] Eric S. K. Yu. Towards Modeling and Reasoning Support for Early-Phase
Requirements Engineering. In RE ’97: Proceedings of the 3rd IEEE Inter-
national Symposium on Requirements Engineering, Washington, DC, USA,
1997. IEEE Computer Society. (Cited on page 20.)

[Zave 1997a] P. Zave and M. Jackson. Four dark corners for requirements engineer-
ing. ACM Transactions on Software Engineering and Methodology, vol. 6,
no. 1, pages 1–30, January 1997. (Cited on page 72.)

157

Bibliography

[Zave 1997b] Pamela Zave. Classification of research efforts in requirements en-
gineering. ACM Computing Surveys, vol. 29, no. 4, pages 315–321, 1997.
(Cited on page 15.)

[Zowghi 2005] Didar Zowghi and Chad Coulin. Requirements Elicitation: A Survey
of Techniques, Approaches, and Tools. Engineering and Managing Software
Requirements, pages 19–46, 2005. (Cited on page 17.)

158

Appendix A

Original Event-B specifications

Appendix A. Original Event-B specifications

A.1 The land transport domain model

160

An Event-B Specification of Net

Creation Date: 11 Jul 2011 @ 07:14:51 PM

CONTEXT Net

SETS

Nets

Hubs

Connections

CONSTANTS

obsNetHubs

obsNetConnections

hubConnections

connectionOrigin

connectionDestination

AXIOMS

axm9 : Connections �= ∅
axm8 : Nets �= ∅
axm6 : Hubs �= ∅
axm3 : finite(Connections)

axm2 : finite(Nets)

axm1 : finite(Hubs)

typ1 : obsNetHubs ∈ Hubs ↔Nets

axm4 : finite(obsNetHubs)

typ2 : obsNetConnections ∈ Connections →Nets

axm5 : finite(obsNetConnections)

typ3 : connectionOrigin ∈ Connections →Hubs

typ4 : connectionDestination ∈ Connections →Hubs

typ5 : hubConnections ∈ Hubs → P(Connections)
prop1 : dom(obsNetHubs) = Hubs ∧ ran(obsNetHubs) = Nets

prop2 : dom(obsNetConnections) = Connections ∧ ran(obsNetConnections) = Nets

prop3 : ∀c ·c ∈ Connections ⇒ connectionOrigin(c) �= connectionDestination(c)

prop4 : ∀n ·n ∈ Nets ⇒ card(obsNetHubs−1 [{n}]) ≥ 2 ∧ card(obsNetConnections−1 [{n}]) ≥ 1

prop5 : ∀c ·c ∈ Connections⇒obsNetConnections[{c}] ⊆ obsNetHubs[{connectionOrigin(c)}]∧
obsNetConnections[{c}] ⊆ obsNetHubs[{connectionDestination(c)}]

prop6 : ∀h, c ·h ∈ Hubs ∧ c ∈ hubConnections(h)⇒ obsNetConnections[{c}] ⊆ obsNetHubs[{h}]
prop7 : ∀c ·c ∈ Connections ⇒ card(obsNetConnections[{c}]) = 1

prop8 : ∀h ·h ∈ Hubs ⇒ card(obsNetHubs[{h}]) ≥ 1

END

An Event-B Specification of Net1

Creation Date: 11 Jul 2011 @ 07:14:54 PM

CONTEXT Net1

EXTENDS Net

CONSTANTS

junctions

stations

obsNetJunctions

isJunction

obsNetStations

AXIOMS

typ1 : junctions ⊆ Hubs

typ2 : stations ⊆ Hubs

typ3 : obsNetJunctions ∈ Nets → P(junctions)
typ4 : isJunction ∈ Hubs → BOOL

type5 : obsNetStations ∈ Nets → P(stations)
prop1 : junctions ∩ stations = ∅
prop2 : junctions ∪ stations = Hubs

prop3 : ∀h ·h ∈ Hubs ∧ card(hubConnections(h)) = 1 ⇒ isJunction(h) = FALSE

prop4 : ∀h ·h ∈ stations ⇒ isJunction(h) = FALSE

prop5 : ∀h ·h ∈ junctions ⇒ isJunction(h) = TRUE

prop6 : ∀n ·n ∈ Nets ⇒ card(obsNetHubs−1 [{n}] ∩ stations) ≥ 2

END

An Event-B Specification of Net2

Creation Date: 11 Jul 2011 @ 07:14:56 PM

CONTEXT Net2

EXTENDS Net1

CONSTANTS

paths

routes

isRoute

seqPaths

AXIOMS

type1 : paths ⊆ Connections

type2 : seqPaths = {seq |∃n ·n ∈ N1 ∧ seq ∈ 1 .. n � paths ∧ finite(seq) ∧ card(seq) = n}
type3 : isRoute ∈ seqPaths → BOOL

def1 : ∀r ·r ∈ seqPaths ∧ ((connectionOrigin(r(1)) ∈ stations ∧
connectionDestination(r(card(r))) ∈ stations ∧

(obsNetHubs[{connectionOrigin(r(1))}]∩obsNetHubs[{connectionDestination(r(card(r)))}] �=
∅) ∧

(∀i ·i ∈ 2 ..card(r)∧connectionDestination(r(i−1)) = connectionOrigin(r(i)))∧

connectionOrigin(r(1)) �= connectionDestination(r(card(r))) ∧
(∀i1 , i2 ·i1 ∈ 1 ..card(r)∧i2 ∈ 1 ..card(r)∧i1 �= i2⇒connectionOrigin(r(i1)) �=

connectionOrigin(r(i2))) ∧
(∀i1 , i2 ·i1 ∈ 1 ..card(r)∧i2 ∈ 1 ..card(r)∧i1 �= i2⇒connectionDestination(r(i1)) �=

connectionDestination(r(i2)))
)⇔ isRoute(r) = TRUE)

prop1 : routes = {sp|sp ∈ seqPaths ∧ isRoute(sp) = TRUE}
axm1 : ∀c ·c ∈ Connections ⇒ (connectionDestination(c) ∈ stations ∧ connectionOrigin(c) ∈

stations ⇒
(∃r ·r ∈ routes∧connectionOrigin(c) = connectionOrigin(r(1))∧connectionDestination(c) =

connectionDestination(r(card(r)))))

END

An Event-B Specification of Net4

Creation Date: 11 Jul 2011 @ 07:14:58 PM

CONTEXT Net4

EXTENDS Net2

SETS

States

CONSTANTS

hubCapacity

entering

leaving

onHub

crossed

initial

AXIOMS

type1 : hubCapacity ∈ Hubs → N1

type2 : States = {entering , leaving , onHub, crossed , initial}
prop1 : ∀j ·j ∈ junctions ⇒ hubCapacity(j) = 1

prop2 : ∀s ·s ∈ stations ⇒ (∃n ·n ∈ 1 .. 100 ∧ hubCapacity(s) = n)

prop3 : entering �= leaving

prop4 : entering �= onHub

prop5 : entering �= crossed

prop6 : leaving �= onHub

prop7 : leaving �= crossed

prop8 : onHub �= crossed

prop9 : initial �= entering

prop10 : initial �= onHub

prop11 : initial �= leaving

prop12 : initial �= crossed

END

An Event-B Specification of Net5

Creation Date: 11 Jul 2011 @ 07:14:59 PM

CONTEXT Net5

EXTENDS Net4

CONSTANTS

hubCrossingTime

pathTraversingTime cette variable n’est plus ncessaire

deltaTime La constante de temps pour les calculs de distance avec la vitesse

AXIOMS

type1 : hubCrossingTime ∈ Hubs → N
type2 : pathTraversingTime ∈ paths → N
type3 : deltaTime ∈ N
prop3 : deltaTime > 0

END

An Event-B Specification of Net6

Creation Date: 11 Jul 2011 @ 07:15:02 PM

CONTEXT Net6

EXTENDS Net5

CONSTANTS

pathLen

AXIOMS

axm3 : pathLen ∈ paths → N1

END

An Event-B Specification of Location

Creation Date: 11 Jul 2011 @ 07:14:49 PM

CONTEXT Location

EXTENDS Net

SETS

GlobalLocations

CONSTANTS

hubLocations

connectionLocations

obsHubLocations

obsConnectionLocations

AXIOMS

type1 : hubLocations ⊆ GlobalLocations

type2 : connectionLocations ⊆ GlobalLocations

type3 : obsHubLocations ∈ Hubs → P(hubLocations)
type4 : obsConnectionLocations ∈ Connections → P(connectionLocations)
prop1 : hubLocations �= connectionLocations

prop2 : hubLocations ∪ connectionLocations = GlobalLocations

axm1 : GlobalLocations �= ∅
axm2 : ∀h1 , h2 ·h1 ∈ Hubs∧h2 ∈ Hubs∧h1 �= h2⇒obsHubLocations(h1)∩obsHubLocations(h2) =

∅
END

An Event-B Specification of StartState

Creation Date: 11 Jul 2011 @ 07:15:07 PM

CONTEXT StartState

EXTENDS Location

CONSTANTS

startVehicleLocation

AXIOMS

prop1 : startVehicleLocation ∈ Vehicles →GlobalLocations

END

An Event-B Specification of StartState1

Creation Date: 11 Jul 2011 @ 07:15:09 PM

CONTEXT StartState1

EXTENDS StartState

AXIOMS

prop1 : ∀v ·v ∈ Vehicles ⇒ (∃s ·s ∈ stations ∧ startVehicleLocation(v) ∈ obsHubLocations(s))

END

An Event-B Specification of StartState3

Creation Date: 11 Jul 2011 @ 07:15:11 PM

CONTEXT StartState3

EXTENDS StartState1

CONSTANTS

startHubsToCross

startConnectionsToTraverse

AXIOMS

type1 : startConnectionsToTraverse ⊆ Vehicles × paths

type2 : startHubsToCross ⊆ Vehicles × Hubs

axm1 : startConnectionsToTraverse = ∅
axm2 : startHubsToCross = ∅

END

An Event-B Specification of StartState4

Creation Date: 11 Jul 2011 @ 07:15:14 PM

CONTEXT StartState4

EXTENDS StartState3

AXIOMS

prop1 : ∀h ·h ∈ Hubs ⇒ hubCapacity(h) ≥ card({v ·v ∈ Vehicles ∧ startVehicleLocation(v) ∈
obsHubLocations(h)|v})

END

An Event-B Specification of StartState5

Creation Date: 11 Jul 2011 @ 07:15:15 PM

CONTEXT StartState5

EXTENDS StartState4

CONSTANTS

startVehicleTime

startTravelTime

AXIOMS

type1 : startVehicleTime ∈ Vehicles → N
type2 : startTravelTime ∈ Vehicles → N

END

An Event-B Specification of Vehicle

Creation Date: 11 Jul 2011 @ 07:15:17 PM

CONTEXT Vehicle

SETS

Vehicles

CONSTANTS

criticalDistance

maxSpeed

minSpeed

AXIOMS

axm1 : Vehicles �= ∅
axm2 : criticalDistance ∈ N1

axm3 : criticalDistance > 1

axm4 : maxSpeed ∈ N1

axm5 : minSpeed ∈ N1

axm6 : finite(Vehicles)

END

An Event-B Specification of Movement0

Creation Date: 11 Jul 2011 @ 07:15:19 PM

MACHINE Movement0

SEES StartState

VARIABLES

location

INVARIANTS

inv1 : location ∈ Vehicles →GlobalLocations

EVENTS

Initialisation

begin

act1 : location := startVehicleLocation
end

Event travel �=
any

vehicle
newLocation

where

grd1 : vehicle ∈ Vehicles
grd2 : newLocation ∈ GlobalLocations
grd3 : newLocation �= location(vehicle)

then

act1 : location(vehicle) := newLocation
end

END

An Event-B Specification of Movement1

Creation Date: 11 Jul 2011 @ 07:15:21 PM

MACHINE Movement1

REFINES Movement0

SEES StartState1

VARIABLES

location

EVENTS

Initialisation

begin

act1 : location := startVehicleLocation

end

Event travel �=
refines travel

any

vehicle

newLocation

origin

destination

where

grd1 : vehicle ∈ Vehicles

grd2 : origin ∈ stations

grd3 : destination ∈ stations

grd4 : origin �= destination

grd5 : location(vehicle) ∈ obsHubLocations(origin)
grd6 : newLocation ∈ obsHubLocations(destination)
grd7 : newLocation �= location(vehicle)

then

act1 : location(vehicle) := newLocation

end

END

An Event-B Specification of Movement2

Creation Date: 11 Jul 2011 @ 07:15:23 PM

MACHINE Movement2

REFINES Movement1

SEES Net2, StartState1

VARIABLES

location

EVENTS

Initialisation

begin

act1 : location := startVehicleLocation
end

Event travel �=
refines travel

any

vehicle
newLocation
r
origin
destination

where

grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : origin ∈ stations
grd4 : destination ∈ stations
grd5 : origin �= destination
grd6 : origin = connectionOrigin(r(1))
grd7 : destination = connectionDestination(r(card(r)))
grd8 : location(vehicle) ∈ obsHubLocations(origin)
grd9 : newLocation ∈ obsHubLocations(destination)
grd10 : newLocation �= location(vehicle)

then

act1 : location(vehicle) := newLocation
end

END

An Event-B Specification of Movement3

Creation Date: 11 Jul 2011 @ 07:15:25 PM

MACHINE Movement3

REFINES Movement2

SEES StartState3

VARIABLES

position

connectionsToTraverse

hubsToCross

location

INVARIANTS

inv1 : connectionsToTraverse ⊆ Vehicles × paths

inv2 : hubsToCross ⊆ Vehicles × Hubs

inv3 : position ∈ Vehicles →GlobalLocations

EVENTS

Initialisation

begin

act1 : position := startVehicleLocation
act2 : connectionsToTraverse := startConnectionsToTraverse
act3 : hubsToCross := startHubsToCross
act4 : location := startVehicleLocation

end

Event travel �=
refines travel

any

vehicle
newLocation
r
origin
destination

where

grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : origin ∈ stations
grd4 : destination ∈ stations
grd5 : origin �= destination
grd6 : origin = connectionOrigin(r(1))
grd7 : destination = connectionDestination(r(card(r)))
grd8 : location(vehicle) ∈ obsHubLocations(origin)
grd9 : newLocation ∈ obsHubLocations(destination)
grd10 : newLocation �= location(vehicle)
grd11 : position(vehicle) = newLocation

then

act1 : location(vehicle) := newLocation
end

Event traversePath �=
Status convergent

any

vehicle
r
p
newPosition

where

An Event-B Specification of Movement3 Page 2 of 2

grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : p ∈ ran(r)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(p))
grd5 : newPosition ∈ obsHubLocations(connectionDestination(p))
grd6 : newPosition �= position(vehicle)
grd7 : vehicle �→ p ∈ connectionsToTraverse
grd8 : vehicle �→ connectionOrigin(p) /∈ hubsToCross

then
act1 : position(vehicle) := newPosition
act2 : connectionsToTraverse := connectionsToTraverse \ {vehicle �→ p}

end

Event crossHub �=
Status convergent

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : vehicle �→ hub ∈ hubsToCross

then
act2 : hubsToCross := hubsToCross \ {vehicle �→ hub}

end

Event startTravel �=
any

vehicle
r

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : position(vehicle) ∈ obsHubLocations(connectionOrigin(r(1)))
grd5 : vehicle /∈ dom(connectionsToTraverse)
grd4 : vehicle /∈ dom(hubsToCross)

then
act1 : hubsToCross := hubsToCross∪{i ·i ∈ 1 ..card(r)|vehicle �→ connectionOrigin(r(i))}
act2 : connectionsToTraverse := connectionsToTraverse ∪ {p ·p ∈ ran(r)|vehicle �→ p}

end

VARIANT

card(hubsToCross) + card(connectionsToTraverse)

END

An Event-B Specification of Movement4

Creation Date: 11 Jul 2011 @ 07:15:27 PM

MACHINE Movement4

REFINES Movement3

SEES StartState4

VARIABLES

position

connectionsToTraverse

hubsToCross

location

hubLoad

vehicleState

INVARIANTS

inv1 : hubLoad ∈ Hubs → N
inv2 : ∀h ·h ∈ Hubs ⇒ hubLoad(h) ≤ hubCapacity(h)

inv3 : vehicleState ∈ Vehicles × Hubs → States

inv4 : ∀v ·card({h ·vehicleState(v �→ h) = onHub ∨ vehicleState(v �→ h) = leaving |h}) ≤ 1

inv5 : ∀v , h ·vehicleState(v �→ h) = onHub ⇒ position(v) ∈ obsHubLocations(h)

inv6 : ∀v , h ·vehicleState(v �→ h) = leaving ⇒ position(v) ∈ obsHubLocations(h)

EVENTS

Initialisation

begin

act1 : position := startVehicleLocation
act2 : connectionsToTraverse := startConnectionsToTraverse
act3 : hubsToCross := startHubsToCross
act4 : location := startVehicleLocation
act5 : hubLoad := {h ·h ∈ Hubs|h �→ 0}
act6 : vehicleState := {v , h ·v ∈ Vehicles∧h ∈ Hubs∧startVehicleLocation(v) /∈ obsHubLocations(h)|(v �→

h) �→ initial} ∪
{v , h ·v ∈ Vehicles ∧ h ∈ Hubs ∧ startVehicleLocation(v) ∈

obsHubLocations(h)|(v �→ h) �→ onHub}
end

Event travel �=
refines travel

any

vehicle
newLocation
r
origin
destination

where

grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : origin ∈ stations
grd4 : destination ∈ stations
grd5 : origin �= destination
grd6 : origin = connectionOrigin(r(1))
grd7 : destination = connectionDestination(r(card(r)))
grd8 : location(vehicle) ∈ obsHubLocations(origin)
grd9 : newLocation ∈ obsHubLocations(destination)
grd10 : newLocation �= location(vehicle)
grd11 : position(vehicle) = newLocation

An Event-B Specification of Movement4 Page 2 of 3

grd12 : vehicleState(vehicle �→ destination) = onHub
then

act1 : location(vehicle) := newLocation
end

Event traversePath �=
Status convergent

refines traversePath

any
vehicle
r
p
newPosition

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : p ∈ paths ∧ p ∈ ran(r)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(p))
grd5 : newPosition ∈ obsHubLocations(connectionDestination(p))
grd6 : newPosition �= position(vehicle)
grd7 : vehicle �→ p ∈ connectionsToTraverse
grd8 : vehicle �→ connectionOrigin(p) /∈ hubsToCross
grd9 : vehicleState(vehicle �→ connectionOrigin(p)) = crossed

then
act1 : position(vehicle) := newPosition
act2 : connectionsToTraverse := connectionsToTraverse \ {vehicle �→ p}
act3 : vehicleState(vehicle �→ connectionDestination(p)) := entering

end

Event crossHub �=
Status convergent

refines crossHub

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : vehicle �→ hub ∈ hubsToCross
grd5 : vehicleState(vehicle �→ hub) = onHub

then
act1 : hubsToCross := hubsToCross \ {vehicle �→ hub}
act2 : vehicleState(vehicle �→ hub) := leaving

end

Event startTravel �=
refines startTravel

any
vehicle
r

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : position(vehicle) ∈ obsHubLocations(connectionOrigin(r(1)))
grd4 : vehicleState(vehicle �→ connectionOrigin(r(1))) = onHub
grd5 : vehicle /∈ dom(connectionsToTraverse)
grd6 : vehicle /∈ dom(hubsToCross)

then

An Event-B Specification of Movement4 Page 3 of 3

act1 : connectionsToTraverse := connectionsToTraverse ∪ {p ·p ∈ ran(r)|vehicle �→ p}
act2 : hubsToCross := hubsToCross∪{i ·i ∈ 1 ..card(r)|vehicle �→ connectionOrigin(r(i))}
act3 : vehicleState := (vehicleState�−{i ·i ∈ 2 ..card(r)|vehicle �→ connectionOrigin(r(i)) �→

initial})�−
{vehicle �→ connectionDestination(r(card(r))) �→ initial}

end

Event enterHub �=
any

vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) < hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering

then
act1 : position(vehicle) := position(vehicle)
act2 : hubLoad(hub) := hubLoad(hub) + 1
act3 : vehicleState(vehicle �→ hub) := onHub

end

Event leaveHub �=
any

vehicle
hub
r

where
grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : hub ∈ Hubs
grd4 : position(vehicle) ∈ obsHubLocations(hub)
grd5 : vehicle �→ hub /∈ hubsToCross
grd6 : vehicleState(vehicle �→ hub) = leaving
grd7 : hubLoad(hub) ≥ 1

then
act2 : hubLoad(hub) := hubLoad(hub)− 1
act3 : vehicleState(vehicle �→ hub) := crossed

end

Event wait �=
any

vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) ≥ hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering

then
act1 : position(vehicle) := position(vehicle)
act2 : vehicleState(vehicle �→ hub) := entering

end

VARIANT

card(hubsToCross) + card(connectionsToTraverse)

END

An Event-B Specification of Movement5

Creation Date: 11 Jul 2011 @ 07:15:29 PM

MACHINE Movement5

REFINES Movement4

SEES StartState5

VARIABLES

position

connectionsToTraverse

hubsToCross

location

hubLoad

vehicleState

travelTime

time

startTime

INVARIANTS

inv1 : travelTime ∈ Vehicles → N
inv2 : time ∈ N
inv3 : startTime ∈ Vehicles → N

EVENTS

Initialisation

begin

act1 : position := startVehicleLocation
act2 : connectionsToTraverse := startConnectionsToTraverse
act3 : hubsToCross := startHubsToCross
act4 : location := startVehicleLocation
act5 : hubLoad := {h ·h ∈ Hubs|h �→ 0}
act6 : vehicleState := {v , h ·v ∈ Vehicles∧h ∈ Hubs∧startVehicleLocation(v) /∈ obsHubLocations(h)|(v �→

h) �→ initial} ∪
{v , h ·v ∈ Vehicles ∧ h ∈ Hubs ∧ startVehicleLocation(v) ∈

obsHubLocations(h)|(v �→ h) �→ onHub}
act7 : startTime := startVehicleTime
act8 : travelTime := startTravelTime
act9 : time := 0

end

Event travel �=
refines travel

any

vehicle
newLocation
r
origin
destination

where

grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : origin ∈ stations
grd4 : destination ∈ stations
grd5 : origin �= destination
grd6 : origin = connectionOrigin(r(1))
grd7 : destination = connectionDestination(r(card(r)))
grd8 : location(vehicle) ∈ obsHubLocations(origin)

An Event-B Specification of Movement5 Page 2 of 4

grd9 : newLocation ∈ obsHubLocations(destination)
grd10 : newLocation �= location(vehicle)
grd11 : position(vehicle) = newLocation
grd12 : vehicleState(vehicle �→ destination) = onHub
grd13 : time ≥ startTime(vehicle)

then
act1 : location(vehicle) := newLocation
act2 : travelTime(vehicle) := time − startTime(vehicle)

end

Event traversePath �=
Status convergent

refines traversePath

any
vehicle
r
p
newPosition

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : p ∈ paths ∧ p ∈ ran(r)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(p))
grd5 : newPosition ∈ obsHubLocations(connectionDestination(p))
grd6 : newPosition �= position(vehicle)
grd7 : vehicle �→ p ∈ connectionsToTraverse
grd8 : vehicle �→ connectionOrigin(p) /∈ hubsToCross
grd9 : vehicleState(vehicle �→ connectionOrigin(p)) = crossed

then
act1 : position(vehicle) := newPosition
act2 : connectionsToTraverse := connectionsToTraverse \ {vehicle �→ p}
act3 : vehicleState(vehicle �→ connectionDestination(p)) := entering

end

Event crossHub �=
Status convergent

refines crossHub

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : vehicle �→ hub ∈ hubsToCross
grd5 : vehicleState(vehicle �→ hub) = onHub

then
act1 : hubsToCross := hubsToCross \ {vehicle �→ hub}
act2 : vehicleState(vehicle �→ hub) := leaving

end

Event startTravel �=
refines startTravel

any
vehicle
r

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes

An Event-B Specification of Movement5 Page 3 of 4

grd3 : position(vehicle) ∈ obsHubLocations(connectionOrigin(r(1)))
grd4 : vehicleState(vehicle �→ connectionOrigin(r(1))) = onHub
grd5 : vehicle /∈ dom(connectionsToTraverse)
grd6 : vehicle /∈ dom(hubsToCross)

then
act1 : connectionsToTraverse := connectionsToTraverse ∪ {p ·p ∈ ran(r)|vehicle �→ p}
act2 : hubsToCross := hubsToCross∪{i ·i ∈ 1 ..card(r)|vehicle �→ connectionOrigin(r(i))}
act3 : vehicleState := (vehicleState�−{i ·i ∈ 2 ..card(r)|vehicle �→ connectionOrigin(r(i)) �→

initial})�−
{vehicle �→ connectionDestination(r(card(r))) �→ initial}

act4 : startTime(vehicle) := time
end

Event enterHub �=
Status convergent

refines enterHub

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) < hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering

then
act1 : position(vehicle) := position(vehicle)
act2 : hubLoad(hub) := hubLoad(hub) + 1
act3 : vehicleState(vehicle �→ hub) := onHub

end

Event leaveHub �=
Status convergent

refines leaveHub

any
vehicle
hub
r

where
grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : hub ∈ Hubs
grd4 : position(vehicle) ∈ obsHubLocations(hub)
grd5 : vehicle �→ hub /∈ hubsToCross
grd6 : vehicleState(vehicle �→ hub) = leaving
grd7 : hubLoad(hub) ≥ 1

then
act2 : hubLoad(hub) := hubLoad(hub)− 1
act3 : vehicleState(vehicle �→ hub) := crossed

end

Event wait �=
refines wait

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs

An Event-B Specification of Movement5 Page 4 of 4

grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) ≥ hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering

then
act1 : position(vehicle) := position(vehicle)
act2 : vehicleState(vehicle �→ hub) := entering

end

Event tickTac �=
any

t

where
grd1 : t ∈ N
grd2 : t > time

then
act1 : time := t

end

END

An Event-B Specification of Movement6

Creation Date: 11 Jul 2011 @ 07:15:30 PM

MACHINE Movement6

REFINES Movement5

SEES Net6, StartState5

VARIABLES

position

connectionsToTraverse

hubsToCross

location

hubLoad

vehicleState

travelTime

time

startTime

vehiclePath

vehiclePosition

INVARIANTS

inv1 : vehiclePath ∈ Vehicles �→ paths

inv2 : vehiclePosition ∈ Vehicles �→ N1

inv3 : dom(vehiclePath) = dom(vehiclePosition)

inv4 : ∀v1 , v2 ·v1 ∈ Vehicles ∧ v2 ∈ Vehicles ∧ v1 �= v2 ∧ v1 ∈ dom(vehiclePosition) ∧
v2 ∈ dom(vehiclePosition) ∧ vehiclePath(v1) = vehiclePath(v2) ⇒ vehiclePosition(v1) �=
vehiclePosition(v2)

inv5 : ∀v , p ·v ∈ Vehicles∧p ∈ paths∧v ∈ dom(vehiclePath)∧p = vehiclePath(v)⇒vehiclePosition(v) ∈
1 .. pathLen(p)

inv6 : ∀v , h ·v ∈ Vehicles ∧h ∈ Hubs⇒ ((vehicleState(v �→ h) = onHub∨vehicleState(v �→ h) =
leaving)⇒ v /∈ dom(vehiclePath))

EVENTS

Initialisation

begin

act1 : position := startVehicleLocation

act2 : connectionsToTraverse := startConnectionsToTraverse

act3 : hubsToCross := startHubsToCross

act4 : location := startVehicleLocation

act5 : hubLoad := {h ·h ∈ Hubs|h �→ 0}
act6 : vehicleState := {v , h ·v ∈ Vehicles∧h ∈ Hubs∧startVehicleLocation(v) /∈ obsHubLocations(h)|(v �→

h) �→ initial} ∪
{v , h ·v ∈ Vehicles ∧ h ∈ Hubs ∧ startVehicleLocation(v) ∈

obsHubLocations(h)|(v �→ h) �→ onHub}
act7 : startTime := startVehicleTime

act8 : travelTime := startTravelTime

act9 : time := 0

act12 : vehiclePath := ∅
act13 : vehiclePosition := ∅

end

Event travel �=
refines travel

any

vehicle

newLocation

r

An Event-B Specification of Movement6 Page 2 of 5

origin
destination

where
grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : origin ∈ stations
grd4 : destination ∈ stations
grd5 : origin �= destination
grd6 : origin = connectionOrigin(r(1))
grd7 : destination = connectionDestination(r(card(r)))
grd8 : location(vehicle) ∈ obsHubLocations(origin)
grd9 : newLocation ∈ obsHubLocations(destination)
grd10 : newLocation �= location(vehicle)
grd11 : position(vehicle) = newLocation
grd12 : vehicleState(vehicle �→ destination) = onHub
grd13 : time ≥ startTime(vehicle)

then
act1 : location(vehicle) := newLocation
act2 : travelTime(vehicle) := time − startTime(vehicle)

end

Event traversePath �=
Status convergent

refines traversePath

any
vehicle
r
p
newPosition

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : p ∈ paths ∧ p ∈ ran(r)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(p))
grd5 : newPosition ∈ obsHubLocations(connectionDestination(p))
grd6 : vehicle �→ p ∈ connectionsToTraverse
grd7 : vehicle �→ connectionOrigin(p) /∈ hubsToCross
grd8 : vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = p
grd9 : vehicleState(vehicle �→ connectionOrigin(p)) = crossed
grd10 : vehiclePosition(vehicle) = pathLen(p)

then
act1 : position(vehicle) := newPosition
act2 : connectionsToTraverse := connectionsToTraverse \ {vehicle �→ p}
act3 : vehicleState(vehicle �→ connectionDestination(p)) := entering

end

Event crossHub �=
Status convergent

refines crossHub

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : vehicle �→ hub ∈ hubsToCross
grd5 : vehicleState(vehicle �→ hub) = onHub

An Event-B Specification of Movement6 Page 3 of 5

then
act2 : hubsToCross := hubsToCross \ {vehicle �→ hub}
act1 : vehicleState(vehicle �→ hub) := leaving

end

Event startTravel �=
refines startTravel

any
vehicle
r

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : position(vehicle) ∈ obsHubLocations(connectionOrigin(r(1)))
grd4 : vehicleState(vehicle �→ connectionOrigin(r(1))) = onHub
grd5 : vehicle /∈ dom(connectionsToTraverse)
grd6 : vehicle /∈ dom(hubsToCross)

then
act1 : connectionsToTraverse := connectionsToTraverse ∪ {p ·p ∈ ran(r)|vehicle �→ p}
act2 : hubsToCross := hubsToCross∪{i ·i ∈ 1 ..card(r)|vehicle �→ connectionOrigin(r(i))}
act3 : vehicleState := (vehicleState�−{i ·i ∈ 2 ..card(r)|vehicle �→ connectionOrigin(r(i)) �→

initial})�−
{vehicle �→ connectionDestination(r(card(r))) �→ initial}

act4 : startTime(vehicle) := time
end

Event enterHub �=
refines enterHub

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) < hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering

then
act1 : position(vehicle) := position(vehicle)
act2 : hubLoad(hub) := hubLoad(hub) + 1
act3 : vehicleState(vehicle �→ hub) := onHub
act5 : vehiclePath := {vehicle}�− vehiclePath
act6 : vehiclePosition := {vehicle}�− vehiclePosition

end

Event leaveHub �=
refines leaveHub

any
vehicle
hub
r
p
vehiclesOnPath

where
grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : hub ∈ Hubs
grd4 : position(vehicle) ∈ obsHubLocations(hub)
grd5 : vehicle �→ hub /∈ hubsToCross

An Event-B Specification of Movement6 Page 4 of 5

grd6 : vehicleState(vehicle �→ hub) = leaving
grd7 : hubLoad(hub) ≥ 1
grd8 : p ∈ paths ∧ p ∈ ran(r)
grd9 : hub = connectionOrigin(p)
grd10 : vehicle �→ p ∈ connectionsToTraverse
grd11 : vehiclesOnPath ⊆ Vehicles
grd12 : vehiclesOnPath = {v ·v ∈ Vehicles∧v ∈ dom(vehiclePath)∧vehiclePath(v) = p|v}
grd13 : ∀v ·v ∈ vehiclesOnPath ⇒ vehiclePosition(v) > criticalDistance

then
act1 : vehicleState(vehicle �→ hub) := crossed
act2 : hubLoad(hub) := hubLoad(hub)− 1
act3 : vehiclePath(vehicle) := p
act4 : vehiclePosition : |(∃pos ·pos ∈ 1 ..pathLen(p)∧vehiclePosition � = vehiclePosition�−

{vehicle �→ pos} ∧
(∀v ·v ∈ vehiclesOnPath∧v �= vehicle⇒vehiclePosition �(v)−vehiclePosition �(vehicle) ≥

criticalDistance))
end

Event wait �=
refines wait

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) ≥ hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering

then
act1 : position(vehicle) := position(vehicle)
act2 : vehicleState(vehicle �→ hub) := entering

end

Event moveOnPath �=
any

vehicle
path
vehiclesOnPath
move

where
grd1 : vehicle ∈ Vehicles
grd2 : path ∈ paths
grd3 : vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = path
grd4 : vehiclePosition(vehicle) < pathLen(path)
grd5 : vehiclesOnPath ⊆ Vehicles
grd6 : vehiclesOnPath = {v ·v ∈ Vehicles ∧ v ∈ dom(vehiclePath) ∧ vehiclePath(v) =

path|v}
grd7 : ∀v ·v ∈ vehiclesOnPath∧vehiclePosition(v) > vehiclePosition(vehicle)⇒vehiclePosition(v)−

vehiclePosition(vehicle) > criticalDistance
grd8 : {v ·v ∈ vehiclesOnPath ∧ vehiclePosition(v) > vehiclePosition(vehicle)|v} �= ∅⇒

move ∈ 1 ..((min({v ·v ∈ vehiclesOnPath∧vehiclePosition(v) > vehiclePosition(vehicle)|vehiclePosition(v)})−
vehiclePosition(vehicle))− criticalDistance)

grd9 : {v ·v ∈ vehiclesOnPath ∧ vehiclePosition(v) > vehiclePosition(vehicle)|v} = ∅⇒
move ∈ 1 .. (pathLen(path)− vehiclePosition(vehicle))

then
act1 : vehiclePosition(vehicle) := vehiclePosition(vehicle) +move

end

Event waitToEnterOnPath �=

An Event-B Specification of Movement6 Page 5 of 5

any
vehicle
path
route
vehiclesOnPath

where
grd1 : route ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : path ∈ paths ∧ path ∈ ran(route)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(path))
grd5 : vehicle /∈ dom(vehiclePath)
grd6 : vehicle �→ path ∈ connectionsToTraverse
grd7 : vehicle �→ connectionOrigin(path) /∈ hubsToCross
grd8 : vehicleState(vehicle �→ connectionOrigin(path)) = leaving
grd9 : vehiclesOnPath ⊆ Vehicles
grd10 : vehiclesOnPath = {v ·v ∈ Vehicles∧v ∈ dom(vehiclePosition)∧v ∈ dom(vehiclePath)∧

vehiclePath(v) = path|v}
grd11 : ¬(∀v ·v ∈ vehiclesOnPath ⇒ vehiclePosition(v) > criticalDistance)

then
skip

end

Event waitToMoveOnPath �=
any

vehicle
path
vehiclesOnPath

where
grd1 : vehicle ∈ Vehicles
grd2 : path ∈ paths
grd3 : vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = path
grd4 : vehiclesOnPath ⊆ Vehicles
grd5 : vehiclesOnPath = {v ·v ∈ Vehicles∧v ∈ dom(vehiclePath)∧v ∈ dom(vehiclePosition)∧

vehiclePath(v) = path|v}
grd6 : ∃v ·v ∈ vehiclesOnPath∧v �= vehicle∧vehiclePosition(v) > vehiclePosition(vehicle)∧

vehiclePosition(v)− vehiclePosition(vehicle) ≤ criticalDistance
then

skip
end

Event ticTac �=
refines tickTac

any
t

where
grd1 : t ∈ N
grd2 : t > time

then
act1 : time := t

end

END

An Event-B Specification of Movement7

Creation Date: 11 Jul 2011 @ 07:15:32 PM

MACHINE Movement7

REFINES Movement6

SEES Net7, StartState5

VARIABLES

position

connectionsToTraverse

hubsToCross

location

hubLoad

vehicleState

travelTime

time

startTime

vehiclePath

vehiclePosition

activationTime

blockedVehicles

INVARIANTS

inv1 : activationTime ∈ Vehicles �→ N
inv2 : activationTime �= ∅⇒ time ≤ min(ran(activationTime))

inv3 : dom(vehiclePath) ⊆ dom(activationTime) ∪ blockedVehicles

inv4 : blockedVehicles ⊆ Vehicles

EVENTS

Initialisation

begin

act1 : position := startVehicleLocation

act2 : connectionsToTraverse := startConnectionsToTraverse

act3 : hubsToCross := startHubsToCross

act4 : location := startVehicleLocation

act5 : hubLoad := {h ·h ∈ Hubs|h �→ 0}
act6 : vehicleState := {v , h ·v ∈ Vehicles∧h ∈ Hubs∧startVehicleLocation(v) /∈ obsHubLocations(h)|(v �→

h) �→ initial} ∪
{v , h ·v ∈ Vehicles ∧ h ∈ Hubs ∧ startVehicleLocation(v) ∈

obsHubLocations(h)|(v �→ h) �→ onHub}
act7 : startTime := startVehicleTime

act8 : travelTime := startTravelTime

act9 : time := 0

act10 : vehiclePath := ∅
act13 : vehiclePosition := ∅
act14 : activationTime := ∅
act15 : blockedVehicles := ∅

end

Event travel �=
refines travel

any

vehicle

newLocation

r

origin

destination

An Event-B Specification of Movement7 Page 2 of 7

where
grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : origin ∈ stations
grd4 : destination ∈ stations
grd5 : origin �= destination
grd6 : origin = connectionOrigin(r(1))
grd7 : destination = connectionDestination(r(card(r)))
grd8 : location(vehicle) ∈ obsHubLocations(origin)
grd9 : newLocation ∈ obsHubLocations(destination)
grd10 : newLocation �= location(vehicle)
grd11 : position(vehicle) = newLocation
grd12 : vehicleState(vehicle �→ destination) = onHub
grd13 : time ≥ startTime(vehicle)
grd14 : vehicle ∈ dom(activationTime)
grd15 : time = activationTime(vehicle)

then
act1 : location(vehicle) := newLocation
act2 : travelTime(vehicle) := time − startTime(vehicle)
act3 : activationTime := {vehicle}�− activationTime

end

Event traversePath �=
extends traversePath

any
vehicle
r
p
newPosition

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : p ∈ paths ∧ p ∈ ran(r)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(p))
grd5 : newPosition ∈ obsHubLocations(connectionDestination(p))
grd6 : vehicle �→ p ∈ connectionsToTraverse
grd7 : vehicle �→ connectionOrigin(p) /∈ hubsToCross
grd8 : vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = p
grd9 : vehicleState(vehicle �→ connectionOrigin(p)) = crossed
grd10 : vehiclePosition(vehicle) = pathLen(p)

then
act1 : position(vehicle) := newPosition
act2 : connectionsToTraverse := connectionsToTraverse \ {vehicle �→ p}
act3 : vehicleState(vehicle �→ connectionDestination(p)) := entering

end

Event crossHub �=
extends crossHub

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : vehicle �→ hub ∈ hubsToCross
grd5 : vehicleState(vehicle �→ hub) = onHub

then
act2 : hubsToCross := hubsToCross \ {vehicle �→ hub}

An Event-B Specification of Movement7 Page 3 of 7

act1 : vehicleState(vehicle �→ hub) := leaving
end

Event startTravel �=
refines startTravel

any
vehicle
r

where
grd1 : vehicle ∈ Vehicles
grd2 : r ∈ routes
grd3 : position(vehicle) ∈ obsHubLocations(connectionOrigin(r(1)))
grd4 : vehicleState(vehicle �→ connectionOrigin(r(1))) = onHub
grd5 : vehicle /∈ dom(connectionsToTraverse)
grd6 : vehicle /∈ dom(hubsToCross)
grd7 : vehicle /∈ dom(activationTime)

then
act1 : connectionsToTraverse := connectionsToTraverse ∪ {p ·p ∈ ran(r)|vehicle �→ p}
act2 : hubsToCross := hubsToCross∪{i ·i ∈ 1 ..card(r)|vehicle �→ connectionOrigin(r(i))}
act3 : vehicleState := (vehicleState�−{i ·i ∈ 2 ..card(r)|vehicle �→ connectionOrigin(r(i)) �→

initial})�−
{vehicle �→ connectionDestination(r(card(r))) �→ initial}

act4 : startTime(vehicle) := time
act5 : activationTime := activationTime ∪ {vehicle �→ time}

end

Event enterHub �=
refines enterHub

any
vehicle
hub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) < hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering
grd7 : �
grd8 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : position(vehicle) := position(vehicle)
act2 : hubLoad(hub) := hubLoad(hub) + 1
act3 : vehicleState(vehicle �→ hub) := onHub
act5 : vehiclePath := {vehicle}�− vehiclePath
act6 : vehiclePosition := {vehicle}�− vehiclePosition
act7 : activationTime := activationTime �− {vehicle �→ time + hubCrossingTime(hub)}

end

Event leaveHub �=
refines leaveHub

any
vehicle
hub
r
p
vehiclesOnPath

where
grd1 : r ∈ routes
grd2 : vehicle ∈ Vehicles

An Event-B Specification of Movement7 Page 4 of 7

grd3 : hub ∈ Hubs
grd4 : position(vehicle) ∈ obsHubLocations(hub)
grd5 : vehicle �→ hub /∈ hubsToCross
grd6 : vehicleState(vehicle �→ hub) = leaving
grd7 : hubLoad(hub) ≥ 1
grd8 : p ∈ paths ∧ p ∈ ran(r)
grd9 : hub = connectionOrigin(p)
grd10 : vehicle �→ p ∈ connectionsToTraverse
grd11 : vehiclesOnPath ⊆ Vehicles
grd12 : vehiclesOnPath = {v ·v ∈ Vehicles∧v ∈ dom(vehiclePath)∧v ∈ dom(vehiclePosition)∧

vehiclePath(v) = p|v}
grd13 : ∀v ·v ∈ vehiclesOnPath ⇒ vehiclePosition(v) > criticalDistance
grd14 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : vehicleState(vehicle �→ hub) := crossed
act2 : hubLoad(hub) := hubLoad(hub)− 1
act3 : vehiclePath(vehicle) := p
act4 : vehiclePosition : |(∃pos ·pos ∈ 1 ..pathLen(p)∧vehiclePosition � = vehiclePosition�−

{vehicle �→ pos} ∧
(∀v ·v ∈ vehiclesOnPath∧v �= vehicle⇒vehiclePosition �(v)−vehiclePosition �(vehicle) ≥

criticalDistance))
act6 : activationTime := activationTime �− {vehicle �→ time + deltaTime}

end

Event wait �=
refines wait

any
vehicle
hub
vehiclesOnHub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) ≥ hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering
grd6 : vehiclesOnHub = {v |v ∈ Vehicles∧position(v) ∈ obsHubLocations(hub)∧(vehicleState(v �→

hub) = leaving ∨ vehicleState(v �→ hub) = onHub)}� activationTime
grd7 : vehiclesOnHub �= ∅
grd8 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : position(vehicle) := position(vehicle)
act2 : vehicleState(vehicle �→ hub) := entering
act3 : activationTime := activationTime �− {vehicle �→ min(ran(vehiclesOnHub))}

end

Event lockOut �=
refines wait

any
vehicle
hub
vehiclesOnHub

where
grd1 : vehicle ∈ Vehicles
grd2 : hub ∈ Hubs
grd3 : position(vehicle) ∈ obsHubLocations(hub)
grd4 : hubLoad(hub) ≥ hubCapacity(hub)
grd5 : vehicleState(vehicle �→ hub) = entering

An Event-B Specification of Movement7 Page 5 of 7

grd6 : �
grd7 : vehiclesOnHub = {v |v ∈ Vehicles∧position(v) ∈ obsHubLocations(hub)∧(vehicleState(v �→

hub) = leaving ∨ vehicleState(v �→ hub) = onHub)}� activationTime
grd8 : vehiclesOnHub = ∅
grd9 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : position(vehicle) := position(vehicle)
act2 : vehicleState(vehicle �→ hub) := entering
act3 : activationTime := {vehicle}�− activationTime
act4 : blockedVehicles := blockedVehicles ∪ {vehicle}

end

Event moveOnPath �=
refines moveOnPath

any
vehicle
path
vehiclesOnPath
move

where
grd1 : vehicle ∈ Vehicles
grd2 : path ∈ paths
grd3 : vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = path
grd4 : vehiclePosition(vehicle) < pathLen(path)
grd5 : vehiclesOnPath ⊆ Vehicles
grd6 : vehiclesOnPath = {v ·v ∈ Vehicles∧v ∈ dom(vehiclePosition)∧v ∈ dom(vehiclePath)∧

vehiclePath(v) = path|v}
grd7 : ∀v ·v ∈ vehiclesOnPath∧vehiclePosition(v) > vehiclePosition(vehicle)⇒vehiclePosition(v)−

vehiclePosition(vehicle) > criticalDistance
grd8 : {v ·v ∈ vehiclesOnPath ∧ vehiclePosition(v) > vehiclePosition(vehicle)|v} �= ∅⇒

move ∈ 1 ..((min({v ·v ∈ vehiclesOnPath∧vehiclePosition(v) > vehiclePosition(vehicle)|vehiclePosition(v)})−
vehiclePosition(vehicle))− criticalDistance)

grd9 : {v ·v ∈ vehiclesOnPath ∧ vehiclePosition(v) > vehiclePosition(vehicle)|v} = ∅⇒
move ∈ 1 .. (pathLen(path)− vehiclePosition(vehicle))

grd10 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)
then

act1 : vehiclePosition(vehicle) := vehiclePosition(vehicle) +move
act3 : activationTime := activationTime �− {vehicle �→ time + deltaTime}

end

Event waitToEnterOnPath �=
refines waitToEnterOnPath

any
vehicle
path
route
vehiclesOnPath

where
grd1 : route ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : path ∈ paths ∧ path ∈ ran(route)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(path))
grd5 : vehicle /∈ dom(vehiclePath)
grd6 : �
grd7 : vehicle �→ path ∈ connectionsToTraverse
grd8 : vehicle �→ connectionOrigin(path) /∈ hubsToCross
grd9 : vehicleState(vehicle �→ connectionOrigin(path)) = leaving
grd10 : �

An Event-B Specification of Movement7 Page 6 of 7

grd11 : vehiclesOnPath = {v ·v ∈ Vehicles ∧ v ∈ dom(vehiclePath) ∧ vehiclePath(v) =
path|v}

grd12 : ¬(∀v ·v ∈ vehiclesOnPath ⇒ vehiclePosition(v) > criticalDistance)
grd14 : vehiclesOnPath � activationTime �= ∅
grd13 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : activationTime := activationTime�−{vehicle �→ min(activationTime[vehiclesOnPath])}

end

Event lockIn �=
refines waitToEnterOnPath

any
vehicle
path
route
vehiclesOnPath

where
grd1 : route ∈ routes
grd2 : vehicle ∈ Vehicles
grd3 : path ∈ paths ∧ path ∈ ran(route)
grd4 : position(vehicle) ∈ obsHubLocations(connectionOrigin(path))
grd5 : vehicle /∈ dom(vehiclePath)
grd6 : �
grd7 : vehicle �→ path ∈ connectionsToTraverse
grd8 : vehicle �→ connectionOrigin(path) /∈ hubsToCross
grd9 : vehicleState(vehicle �→ connectionOrigin(path)) = leaving
grd10 : �
grd11 : vehiclesOnPath = {v ·v ∈ Vehicles ∧ v ∈ dom(vehiclePath) ∧ vehiclePath(v) =

path|v}
grd12 : ¬(∀v ·v ∈ vehiclesOnPath ⇒ vehiclePosition(v) > criticalDistance)
grd14 : vehiclesOnPath � activationTime = ∅
grd13 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : blockedVehicles := blockedVehicles ∪ {vehicle}
act2 : activationTime := {vehicle}�− activationTime

end

Event waitToMoveOnPath �=
refines waitToMoveOnPath

any
vehicle
path
vehiclesOnPath

where
grd1 : vehicle ∈ Vehicles
grd2 : path ∈ paths
grd3 : vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = path
grd4 : vehiclesOnPath = {v ·v ∈ Vehicles∧v ∈ dom(vehiclePath)∧v ∈ dom(vehiclePosition)∧

vehiclePath(v) = path|v}
grd5 : ∃v ·v ∈ vehiclesOnPath∧v �= vehicle∧vehiclePosition(v) > vehiclePosition(vehicle)∧

vehiclePosition(v)− vehiclePosition(vehicle) ≤ criticalDistance
grd6 : vehiclesOnPath � activationTime �= ∅
grd7 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : activationTime := activationTime�−{vehicle �→ time+min(activationTime[vehiclesOnPath])}

end

Event lockOnPath �=
refines waitToMoveOnPath

An Event-B Specification of Movement7 Page 7 of 7

any
vehicle

path

vehiclesOnPath

where
grd1 : vehicle ∈ Vehicles

grd2 : path ∈ paths

grd3 : vehicle ∈ dom(vehiclePath) ∧ vehiclePath(vehicle) = path

grd4 : �
grd5 : vehiclesOnPath = {v ·v ∈ Vehicles∧v ∈ dom(vehiclePath)∧v ∈ dom(vehiclePosition)∧

vehiclePath(v) = path|v}
grd6 : ∃v ·v ∈ vehiclesOnPath∧v �= vehicle∧vehiclePosition(v) > vehiclePosition(vehicle)∧

vehiclePosition(v)− vehiclePosition(vehicle) ≤ criticalDistance

grd11 : vehiclesOnPath � activationTime = ∅
grd10 : vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

then
act1 : blockedVehicles := blockedVehicles ∪ {vehicle}
act2 : activationTime := {vehicle}�− activationTime

end

Event ticTac �=
refines ticTac

any
t

where
grd1 : activationTime �= ∅
grd2 : t = min(ran(activationTime))
grd3 : t > time

then
act1 : time := t

end

END

A.2. The platooning system

A.2 The platooning system

161

An Event-B Specification of context

Creation Date: 10 Aug 2011 @ 02:04:44 PM

CONTEXT context

CONSTANTS

VEHICLES

CRITICAL DISTANCE

initial xpos

AXIOMS

axm1 : VEHICLES ∈ N1

axm2 : VEHICLES ≥ 2

axm7 : CRITICAL DISTANCE ∈ N1

axm3 : initial xpos ∈ 1 ..VEHICLES → N
axm4 : ∀v ·(v ∈ 1 ..VEHICLES⇒initial xpos(v) = (VEHICLES−v)∗(CRITICAL DISTANCE+

1))

END

An Event-B Specification of context 1

Creation Date: 10 Aug 2011 @ 02:04:49 PM

CONTEXT context 1

EXTENDS context

END

An Event-B Specification of context 2

Creation Date: 10 Aug 2011 @ 02:04:51 PM

CONTEXT context 2

EXTENDS context 1

CONSTANTS

MAX SPEED

MIN ACCEL

MAX ACCEL

initial speed

new speed

new xpos

new xpos max

new xpos min

AXIOMS

axm1 : MAX SPEED ∈ N1

axm3 : MAX ACCEL ∈ N1

axm4 : MIN ACCEL ∈ Z
axm5 : MIN ACCEL < 0

axm61 : initial speed ∈ 1 ..VEHICLES → 0 ..MAX SPEED

axm62 : ∀vehi0 ·(vehi0 ∈ 1 ..VEHICLES⇒(∃speed0 ·(speed0 ∈ 0 ..MAX SPEED∧initial speed(vehi0) =
speed0)))

axm2 : new speed ∈ (0 ..MAX SPEED ×MIN ACCEL ..MAX ACCEL)→ Z
axm22 : ∀speed1 , accel1 ·

(
speed1 ∈ 0 ..MAX SPEED ∧ accel1 ∈ MIN ACCEL ..MAX ACCEL

⇒
new speed(speed1 �→ accel1) = speed1 + accel1

)

axm71 : new xpos ∈ (N× 0 ..MAX SPEED ×MIN ACCEL ..MAX ACCEL)→ N
axm72 : ∀xpos0 , speed0 , accel0 ·

(
(xpos0 ∈ N∧speed0 ∈ 0 ..MAX SPEED∧accel0 ∈ MIN ACCEL..MAX ACCEL)
⇒
(new xpos(xpos0 �→ speed0 �→ accel0) = xpos0 + speed0 + (accel0/2))
)

axm81 : new xpos max ∈ N× 0 ..MAX SPEED ×MIN ACCEL ..MAX ACCEL→ N
axm82 : ∀xpos0 , speed0 , accel0 ·(

xpos0 ∈ N∧speed0 ∈ 0 ..MAX SPEED∧accel0 ∈ MIN ACCEL..MAX ACCEL

⇒
(
(accel0 = 0⇒new xpos max (xpos0 �→ speed0 �→ accel0) = xpos0+MAX SPEED)
∧
(accel0 �= 0 ⇒ new xpos max (xpos0 �→ speed0 �→ accel0) = xpos0

+MAX SPEED−(((MAX SPEED−speed0)∗(MAX SPEED−speed0))/(2∗
accel0)))

)
)

axm91 : new xpos min ∈ N× 0 ..MAX SPEED ×MIN ACCEL ..MAX ACCEL→ N
axm92 : ∀xpos0 , speed0 , accel0 ·(

xpos0 ∈ N∧speed0 ∈ 0 ..MAX SPEED∧accel0 ∈ MIN ACCEL..MAX ACCEL

⇒
(

An Event-B Specification of context 2 Page 2 of 2

(accel0 = 0 ⇒ new xpos min(xpos0 �→ speed0 �→ accel0) = xpos0)
∧
(accel0 �= 0⇒new xpos min(xpos0 �→ speed0 �→ accel0) = xpos0−((speed0 ∗

speed0)/(2 ∗ accel0)))
)

)

END

An Event-B Specification of context 3

Creation Date: 10 Aug 2011 @ 02:04:53 PM

CONTEXT context 3

EXTENDS context 2

CONSTANTS

initial accel

AXIOMS

axm61 : initial accel ∈ 1 ..VEHICLES →MIN ACCEL ..MAX ACCEL

axm62 : ∀vehi0 ·(vehi0 ∈ 1 ..VEHICLES ⇒ (∃accel0 ·(accel0 ∈ MIN ACCEL ..MAX ACCEL∧
initial accel(vehi0) = accel0)))

END

An Event-B Specification of context 4 v2

Creation Date: 10 Aug 2011 @ 02:04:56 PM

CONTEXT context 4 v2

EXTENDS context 3

CONSTANTS

IDEAL SPEED

ideal distance

new accel

AXIOMS

axm1 : IDEAL SPEED ∈ 0 ..MAX SPEED

axm2 : IDEAL SPEED < MAX SPEED

axm6 : ideal distance ∈ 0 ..MAX SPEED → N
axm7 : ∀speed0 ·(speed0 ∈ 0 ..MAX SPEED⇒ideal distance(speed0) = CRITICAL DISTANCE+

speed0)

axm31 : new accel ∈ (Z× 0 ..MAX SPEED × 0 ..MAX SPEED)→ Z
axm32 : ∀p dist1 , p speed1 , p pre speed1 ·

(
p dist1 ∈ Z ∧ p speed1 ∈ 0 ..MAX SPEED ∧ p pre speed1 ∈ 0 ..MAX SPEED
⇒
new accel(p dist1 �→ p speed1 �→ p pre speed1) = p dist1−ideal distance(p speed1)+

p pre speed1 − p speed1
)

thm1 : ∀speed ·(speed ∈ 0 ..MAX SPEED ⇒ ideal distance(speed) ≥ CRITICAL DISTANCE)

END

An Event-B Specification of platoon

Creation Date: 11 Jul 2011 @ 07:40:42 PM

MACHINE platoon

SEES context

VARIABLES

xpos0

INVARIANTS

inv1 : xpos0 ∈ 1 .. VEHICLES → N
inv3 : ∀v ·(v ∈ 2 ..VEHICLES ⇒ ((xpos0 (v − 1)− xpos0 (v)) > CRITICAL DISTANCE))

EVENTS

Initialisation

begin

act1 : xpos0 := initial xpos

end

Event all moves �=
any

magic xpos

where

grd1 : magic xpos ∈ 1 ..VEHICLES → N
grd2 : ∀v ·(v ∈ 2 ..VEHICLES⇒((magic xpos(v−1)−magic xpos(v)) > CRITICAL DISTANCE))

then

act1 : xpos0 := magic xpos

end

END

An Event-B Specification of platoon 1

Creation Date: 11 Jul 2011 @ 07:40:46 PM

MACHINE platoon 1

REFINES platoon

SEES context

VARIABLES

xpos0

vehicle

xpos

INVARIANTS

inv2 : xpos ∈ 1 ..VEHICLES → N
inv3 : vehicle ∈ 1 ..VEHICLES + 1

inv1 : ∀v ·(v ∈ 2 .. vehicle − 1 ⇒ (xpos(v − 1)− xpos(v)) > CRITICAL DISTANCE)

EVENTS

Initialisation

begin

act1 : xpos0 := initial xpos

act4 : vehicle := 1

act2 : xpos := initial xpos

end

Event move1 �=
Status convergent

any

magic xpos vehicle

where

grd1 : vehicle = 1

grd2 : magic xpos vehicle ∈ N
grd4 : magic xpos vehicle ≥ xpos(vehicle)

then

act1 : xpos(vehicle) := magic xpos vehicle

act3 : vehicle := vehicle + 1

end

Event move �=
Status convergent

any

magic xpos vehicle

where

grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : magic xpos vehicle ∈ N
grd4 : magic xpos vehicle ≥ xpos(vehicle)
grd5 : xpos(vehicle − 1)−magic xpos vehicle > CRITICAL DISTANCE

then

act1 : xpos(vehicle) := magic xpos vehicle

act2 : vehicle := vehicle + 1

end

Event all moves �=
refines all moves

when

grd1 : vehicle = VEHICLES + 1

with

magic xpos : magic xpos = xpos
then

act2 : xpos0 := xpos

An Event-B Specification of platoon 1 Page 2 of 2

act1 : vehicle := 1
end

VARIANT

(VEHICLES+ 1)− vehicle

END

An Event-B Specification of platoon 2

Creation Date: 11 Jul 2011 @ 07:40:48 PM

MACHINE platoon 2

REFINES platoon 1

SEES context 2

VARIABLES

xpos0

vehicle

xpos

speed

INVARIANTS

inv1 : speed ∈ 1 ..VEHICLES → 0 ..MAX SPEED

EVENTS

Initialisation

begin

act1 : xpos0 := initial xpos

act3 : xpos := initial xpos

act4 : vehicle := 1

act2 : speed := initial speed

end

Event move1 normal �=
refines move1

any

magic accel

nspeed

nxpos

where

grd1 : vehicle = 1

grd2 : magic accel ∈ MIN ACCEL ..MAX ACCEL

grd5 : nspeed = new speed(speed(vehicle) �→ magic accel)
grd4 : nspeed ∈ 0 ..MAX SPEED

grd6 : nxpos = new xpos(xpos(vehicle) �→ speed(vehicle) �→ magic accel)
with

magic xpos vehicle : magic xpos vehicle = nxpos
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := nspeed

end

Event move1 max �=
refines move1

any

magic accel

nspeed

nxpos

where

grd1 : vehicle = 1

grd2 : magic accel ∈ MIN ACCEL ..MAX ACCEL

grd5 : nspeed = new speed(speed(vehicle) �→ magic accel)
grd4 : nspeed > MAX SPEED

grd3 : nxpos = new xpos max (xpos(vehicle) �→ speed(vehicle) �→ magic accel)
with

magic xpos vehicle : magic xpos vehicle = nxpos

An Event-B Specification of platoon 2 Page 2 of 3

then
act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := MAX SPEED

end

Event move1 reduce �=
refines move1

any
magic accel

nspeed

nxpos

where
grd1 : vehicle = 1

grd2 : magic accel ∈ MIN ACCEL ..MAX ACCEL

grd5 : nspeed = new speed(speed(vehicle) �→ magic accel)
grd3 : nspeed < 0

grd4 : nxpos = new xpos min(xpos(vehicle) �→ speed(vehicle) �→ magic accel)
with

magic xpos vehicle : magic xpos vehicle = nxpos
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := 0

end

Event move normal �=
refines move

any
magic accel

nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : magic accel ∈ MIN ACCEL ..MAX ACCEL

grd3 : nspeed = new speed(speed(vehicle) �→ magic accel)
grd4 : nspeed ∈ 0 ..MAX SPEED

grd7 : nxpos = new xpos(xpos(vehicle) �→ speed(vehicle) �→ magic accel)
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

with
magic xpos vehicle : magic xpos vehicle = nxpos

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := nspeed

end

Event move max �=
refines move

any
magic accel

nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : magic accel ∈ MIN ACCEL ..MAX ACCEL

grd5 : nspeed = new speed(speed(vehicle) �→ magic accel)
grd4 : nspeed > MAX SPEED

grd3 : nxpos = new xpos max (xpos(vehicle) �→ speed(vehicle) �→ magic accel)

An Event-B Specification of platoon 2 Page 3 of 3

grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

with
magic xpos vehicle : magic xpos vehicle = nxpos

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := MAX SPEED

end

Event move reduce �=
refines move

any
magic accel

nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : magic accel ∈ MIN ACCEL ..MAX ACCEL

grd5 : nspeed = new speed(speed(vehicle) �→ magic accel)
grd4 : nspeed < 0

grd3 : nxpos = new xpos min(xpos(vehicle) �→ speed(vehicle) �→ magic accel)
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

with
magic xpos vehicle : magic xpos vehicle = nxpos

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := 0

end

Event all moves �=
refines all moves

when
grd1 : vehicle = VEHICLES + 1

then
act2 : xpos0 := xpos

act1 : vehicle := 1

end

END

An Event-B Specification of platoon 3 0

Creation Date: 11 Jul 2011 @ 07:40:50 PM

MACHINE platoon 3 0

REFINES platoon 2

SEES context 3

VARIABLES

xpos0

vehicle

xpos

speed

d vehicle

accel

INVARIANTS

inv1 : d vehicle ∈ 1 ..VEHICLES + 1

inv2 : accel ∈ 1 .. VEHICLES →MIN ACCEL ..MAX ACCEL

inv7 : (d vehicle = VEHICLES + 1)
∨
(∀v ·
(v ∈ 2 .. d vehicle − 1 ⇒

(∃f1 , f2 ·
(f1 ∈ {new xpos ,new xpos max ,new xpos min}∧f2 ∈ {new xpos ,new xpos max ,new xpos min}∧

(f1 (xpos(v−1) �→ speed(v−1) �→ accel(v−1))− f2 (xpos(v) �→ speed(v) �→
accel(v)) > CRITICAL DISTANCE)

)
)

)
)

EVENTS

Initialisation

begin

act1 : xpos0 := initial xpos

act3 : xpos := initial xpos

act4 : vehicle := 1

act2 : speed := initial speed

act5 : d vehicle := 1

act6 : accel := initial accel

end

Event decide1 �=
Status convergent

any

magic accel

where

grd2 : vehicle = 1

grd1 : d vehicle = 1

grd3 : magic accel ∈ MIN ACCEL ..MAX ACCEL

then

act1 : d vehicle := d vehicle + 1

act2 : accel(d vehicle) := magic accel

end

Event decide �=
Status convergent

An Event-B Specification of platoon 3 0 Page 2 of 4

any
magic accel

where
grd1 : vehicle = 1

grd2 : d vehicle ∈ 2 ..VEHICLES
grd3 : magic accel ∈ MIN ACCEL ..MAX ACCEL

grd4 : ∃g1 , g2 ·
(g1 ∈ {new xpos ,new xpos max ,new xpos min}∧g2 ∈ {new xpos ,new xpos max ,new xpos min}∧

(g1 (xpos(d vehicle − 1) �→ speed(d vehicle − 1) �→ accel(d vehicle − 1))
−g2 (xpos(d vehicle) �→ speed(d vehicle) �→ magic accel) > CRITICAL DISTANCE)

)
then

act1 : d vehicle := d vehicle + 1

act2 : accel(d vehicle) := magic accel

end

Event move1 normal �=
refines move1 normal

any
nspeed

nxpos

where
grd1 : vehicle = 1

grd2 : d vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed ∈ 0 ..MAX SPEED

grd6 : nxpos = new xpos(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
with

magic accel : magic accel = accel(vehicle)
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := nspeed

end

Event move1 max �=
refines move1 max

any
nspeed

nxpos

where
grd1 : vehicle = 1

grd2 : d vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed > MAX SPEED

grd3 : nxpos = new xpos max (xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
with

magic accel : magic accel = accel(vehicle)
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := MAX SPEED

end

Event move1 reduce �=
refines move1 reduce

any
nspeed

An Event-B Specification of platoon 3 0 Page 3 of 4

nxpos

where
grd1 : vehicle = 1

grd2 : d vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd3 : nspeed < 0

grd4 : nxpos = new xpos min(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
with

magic accel : magic accel = accel(vehicle)
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := 0

end

Event move normal �=
refines move normal

any
nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : d vehicle = VEHICLES + 1

grd3 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed ∈ 0 ..MAX SPEED

grd7 : nxpos = new xpos(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

with
magic accel : magic accel = accel(vehicle)

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := nspeed

end

Event move max �=
refines move max

any
nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : d vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed > MAX SPEED

grd3 : nxpos = new xpos max (xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

with
magic accel : magic accel = accel(vehicle)

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := MAX SPEED

end

Event move reduce �=
refines move reduce

any
nspeed

An Event-B Specification of platoon 3 0 Page 4 of 4

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : d vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed < 0

grd3 : nxpos = new xpos min(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

with
magic accel : magic accel = accel(vehicle)

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := 0

end

Event all moves �=
refines all moves

when
grd1 : vehicle = VEHICLES + 1

grd2 : d vehicle = VEHICLES + 1

then
act2 : xpos0 := xpos

act1 : vehicle := 1

act3 : d vehicle := 1

end

VARIANT

(VEHICLES+ 1)− d vehicle

END

An Event-B Specification of platoon 4 0

Creation Date: 11 Jul 2011 @ 07:40:52 PM

MACHINE platoon 4 0

REFINES platoon 3 0

SEES context 4 v2

VARIABLES

xpos0

vehicle

xpos

speed

d vehicle

accel

p vehicle

p speed

p pre speed

p dist

INVARIANTS

inv4 : p vehicle ∈ 1 ..VEHICLES + 1

inv1 : p speed ∈ 1 .. VEHICLES → 0 ..MAX SPEED

inv5 : (p vehicle = VEHICLES + 1)
∨
(∀v ·(v ∈ 1 .. p vehicle − 1 ⇒ p speed(v) = speed(v)))

inv2 : p dist ∈ 2 ..VEHICLES → Z
inv7 : (p vehicle = VEHICLES + 1)

∨
(∀v ·(v ∈ 2 .. p vehicle − 1 ⇒ p dist(v) = xpos(v − 1)− xpos(v)))

inv3 : p pre speed ∈ 2 ..VEHICLES → 0 ..MAX SPEED

inv6 : (p vehicle = VEHICLES + 1)
∨
(∀v ·(v ∈ 2 .. p vehicle − 1 ⇒ p pre speed(v) = speed(v − 1)))

EVENTS

Initialisation

begin

act1 : xpos0 := initial xpos

act3 : xpos := initial xpos

act4 : vehicle := 1

act2 : speed := initial speed

act5 : d vehicle := 1

act6 : accel := initial accel

act10 : p vehicle := 1

act7 : p speed := initial speed

act8 : p pre speed := {1}�− initial speed

act9 : p dist := {1}�− initial xpos

end

Event perceive1 �=
Status convergent

when

grd1 : vehicle = 1

grd2 : d vehicle = 1

grd3 : p vehicle = 1

then

act2 : p speed(p vehicle) := speed(p vehicle)

An Event-B Specification of platoon 4 0 Page 2 of 6

act1 : p vehicle := p vehicle + 1

end

Event perceive �=
Status convergent

when
grd1 : vehicle = 1

grd2 : d vehicle = 1

grd3 : p vehicle ∈ 2 ..VEHICLES
then

act2 : p speed(p vehicle) := speed(p vehicle)
act3 : p dist(p vehicle) := xpos(p vehicle − 1)− xpos(p vehicle)
act4 : p pre speed(p vehicle) := speed(p vehicle − 1)
act1 : p vehicle := p vehicle + 1

end

Event decide1 normal �=
refines decide1

any
naccel

where
grd1 : vehicle = 1

grd2 : d vehicle = 1

grd4 : p vehicle = VEHICLES + 1

grd3 : naccel = IDEAL SPEED − p speed(d vehicle)
grd5 : naccel ∈ MIN ACCEL ..MAX ACCEL

with
magic accel : magic accel = naccel

then
act1 : d vehicle := d vehicle + 1

act2 : accel(d vehicle) := naccel

end

Event decide1 max �=
refines decide1

any
naccel

where
grd5 : vehicle = 1

grd1 : d vehicle = 1

grd2 : p vehicle = VEHICLES + 1

grd3 : naccel = IDEAL SPEED − p speed(d vehicle)
grd4 : naccel > MAX ACCEL

with
magic accel : magic accel = MAX ACCEL

then
act1 : d vehicle := d vehicle + 1

act2 : accel(d vehicle) := MAX ACCEL

end

Event decide1 min �=
refines decide1

any
naccel

where
grd5 : vehicle = 1

grd4 : d vehicle = 1

grd3 : p vehicle = VEHICLES + 1

grd2 : naccel = IDEAL SPEED − p speed(d vehicle)
grd1 : naccel < MIN ACCEL

An Event-B Specification of platoon 4 0 Page 3 of 6

with
magic accel : magic accel = MIN ACCEL

then
act2 : d vehicle := d vehicle + 1

act1 : accel(d vehicle) := MIN ACCEL

end

Event decide normal �=
refines decide

any
naccel

where
grd1 : vehicle = 1

grd2 : d vehicle ∈ 2 ..VEHICLES
grd4 : p vehicle = VEHICLES + 1

grd5 : naccel = new accel(p dist(d vehicle) �→ p speed(d vehicle) �→ p pre speed(d vehicle))
grd6 : naccel ∈ MIN ACCEL ..MAX ACCEL

grd3 : ∃g1 , g2 ·
(g1 ∈ {new xpos ,new xpos max ,new xpos min}∧g2 ∈ {new xpos ,new xpos max ,new xpos min}∧

(g1 (xpos(d vehicle − 1) �→ speed(d vehicle − 1) �→ accel(d vehicle − 1))
−g2 (xpos(d vehicle) �→ speed(d vehicle) �→ naccel) > CRITICAL DISTANCE)

)
with

magic accel : magic accel = naccel
then

act1 : d vehicle := d vehicle + 1

act2 : accel(d vehicle) := naccel

end

Event decide max �=
refines decide

any
naccel

where
grd3 : vehicle = 1

grd2 : d vehicle ∈ 2 ..VEHICLES
grd1 : p vehicle = VEHICLES + 1

grd5 : naccel = new accel(p dist(d vehicle) �→ p speed(d vehicle) �→ p pre speed(d vehicle))
grd6 : naccel > MAX ACCEL

grd4 : ∃g1 , g2 ·
(g1 ∈ {new xpos ,new xpos max ,new xpos min}∧g2 ∈ {new xpos ,new xpos max ,new xpos min}∧

(g1 (xpos(d vehicle − 1) �→ speed(d vehicle − 1) �→ accel(d vehicle − 1))
−g2 (xpos(d vehicle) �→ speed(d vehicle) �→ MAX ACCEL) > CRITICAL DISTANCE)

)
with

magic accel : magic accel = MAX ACCEL
then

act2 : d vehicle := d vehicle + 1

act1 : accel(d vehicle) := MAX ACCEL

end

Event decide min �=
refines decide

any
naccel

where
grd3 : vehicle = 1

An Event-B Specification of platoon 4 0 Page 4 of 6

grd2 : d vehicle ∈ 2 ..VEHICLES
grd1 : p vehicle = VEHICLES + 1

grd5 : naccel = new accel(p dist(d vehicle) �→ p speed(d vehicle) �→ p pre speed(d vehicle))
grd6 : naccel < MIN ACCEL

grd4 : ∃g1 , g2 ·
(g1 ∈ {new xpos ,new xpos max ,new xpos min}∧g2 ∈ {new xpos ,new xpos max ,new xpos min}∧

(g1 (xpos(d vehicle − 1) �→ speed(d vehicle − 1) �→ accel(d vehicle − 1))
−g2 (xpos(d vehicle) �→ speed(d vehicle) �→ MIN ACCEL) > CRITICAL DISTANCE)

)
with

magic accel : magic accel = MIN ACCEL
then

act2 : d vehicle := d vehicle + 1

act1 : accel(d vehicle) := MIN ACCEL

end

Event move1 normal �=
refines move1 normal

any
nspeed

nxpos

where
grd1 : vehicle = 1

grd2 : d vehicle = VEHICLES + 1

grd7 : p vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed ∈ 0 ..MAX SPEED

grd6 : nxpos = new xpos(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := nspeed

end

Event move1 max �=
refines move1 max

any
nspeed

nxpos

where
grd1 : vehicle = 1

grd2 : d vehicle = VEHICLES + 1

grd7 : p vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed > MAX SPEED

grd3 : nxpos = new xpos max (xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := MAX SPEED

end

Event move1 reduce �=
refines move1 reduce

any
nspeed

nxpos

where

An Event-B Specification of platoon 4 0 Page 5 of 6

grd1 : vehicle = 1

grd2 : d vehicle = VEHICLES + 1

grd7 : p vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd3 : nspeed < 0

grd4 : nxpos = new xpos min(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
then

act3 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act2 : speed(vehicle) := 0

end

Event move normal �=
refines move normal

any
nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : d vehicle = VEHICLES + 1

grd7 : p vehicle = VEHICLES + 1

grd3 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed ∈ 0 ..MAX SPEED

grd5 : nxpos = new xpos(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := nspeed

end

Event move max �=
refines move max

any
nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : d vehicle = VEHICLES + 1

grd7 : p vehicle = VEHICLES + 1

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed > MAX SPEED

grd3 : nxpos = new xpos max (xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := MAX SPEED

end

Event move reduce �=
refines move reduce

any
nspeed

nxpos

where
grd1 : vehicle ∈ 2 ..VEHICLES
grd2 : d vehicle = VEHICLES + 1

grd7 : p vehicle = VEHICLES + 1

An Event-B Specification of platoon 4 0 Page 6 of 6

grd5 : nspeed = new speed(speed(vehicle) �→ accel(vehicle))
grd4 : nspeed < 0

grd3 : nxpos = new xpos min(xpos(vehicle) �→ speed(vehicle) �→ accel(vehicle))
grd6 : xpos(vehicle − 1)− nxpos > CRITICAL DISTANCE

then
act2 : vehicle := vehicle + 1

act1 : xpos(vehicle) := nxpos

act3 : speed(vehicle) := 0

end

Event all moves �=
refines all moves

when
grd1 : vehicle = VEHICLES + 1

grd2 : d vehicle = VEHICLES + 1

grd3 : p vehicle = VEHICLES + 1

then
act2 : xpos0 := xpos

act1 : vehicle := 1

act3 : d vehicle := 1

act4 : p vehicle := 1

end

VARIANT

(VEHICLES+ 1)− p vehicle

END

	Prologue
	Introduction
	Motivation
	Contributions
	Specification level
	Validation level

	Publications
	Structure of the thesis

	I BACKGROUND
	Domain engineering, requirements engineering & formal methods
	Introduction
	Domain engineering
	Domain
	Domain engineering
	Domain engineering methods

	Requirements engineering
	Requirement
	Requirements engineering
	Classification of requirements
	Phases of requirements engineering
	Requirements engineering methods

	Formal methods
	Advantages of formal methods
	Disadvantages of formal methods
	Myths of formal methods
	Guidelines for formal methods

	Summary

	Domain specification, verification & validation
	Introduction
	Domain specification
	Domain verification
	Model checking
	Theorem proving

	Domain validation
	Prototyping
	Animation
	Reviews
	Structured walkthroughs

	Summary

	II SPECIFICATION
	Event-B
	Introduction
	Structuring mechanism
	Refinement
	Proofs
	Proof of invariant preservation
	Proof of event refinement
	Proof to introduce new events

	Decomposition
	Tool
	Related work
	Event-B versus RAISE
	Event-B & goal models
	Modeling of transportation domain in Event-B
	Refinement mechanisms in Event-B
	Specification of timing & temporal properties in Event-B

	Summary

	Engineering of a domain
	Introduction
	Domain overview
	Locations
	Nets, hubs & connections
	Junctions & stations
	Paths & routes
	Properties

	Stepwise Event-B specification
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement
	Fifth refinement
	Sixth refinement
	Seventh refinement

	Hierarchy of the model
	Verification of the model
	Summary

	Guidelines for domain engineering with Event-B
	Introduction
	What to specify?
	Model assumptions
	Define protocols
	Specify time
	Express temporal properties

	How to refine?
	Refine slowly
	Refine unconventionally

	How to verify?
	Beware of easy proofs!
	Beware of obvious truth!
	Use animation to complement provers

	Observations on tool & language
	Summary

	III VALIDATION
	Validation of specifications by animation
	Introduction
	Validation by animation
	Stepwise animation
	Brama: The animator
	Working principle
	Structure
	Related animators

	Classes of specifications
	Limitations of Brama
	Changing the class of a specification
	Approximation
	Refinement
	Rewriting
	Inlining

	Summary

	Transformational heuristics & formal semantics
	Introduction
	Transformational heuristics
	Formal semantics of the transformations
	State names
	State values
	States
	Event
	Behavior
	Specification
	Relation between specifications
	Shared state values
	Shared states
	Shared behaviors
	Behavioral equivalence

	Proofs of the heuristics
	Summary

	Application of the heuristics on case studies
	Introduction
	Case study 1: The land transport domain model
	Machine Movement0
	Machine Movement1
	Machine Movement2
	Machine Movement3
	Machine Movement4
	Machine Movement5
	Machines Movement6 & Movement7

	Case study 2: The platooning system
	Machine Platoon
	Machine Platoon_1
	Machine Platoon_2
	Machine Platoon_3
	Machine Platoon_4

	Summary

	IV EPILOGUE
	Stepwise validation of formal specifications
	Introduction
	VTA: The framework
	Verification step
	Transformation step
	Animation step

	Animation: A reflection
	Summary

	Conclusion & future work
	Bibliography
	Original Event-B specifications
	The land transport domain model
	The platooning system

