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Abstract 
 

In recent years, advances in wireless communication technology have led to the 
widespread use of cellular phones. Because of noisy environmental conditions and 
competing surrounding conversations, users tend to speak loudly. As a 
consequence, private policies and public legislation tend to restrain the use of 
cellular phone in public places. Silent speech which can only be heard by a limited 
set of listeners close to the speaker is an attractive solution to this problem if it can 
effectively be used for quiet and private communication. The motivation of this 
research thesis was to investigate ways of improving the naturalness and the 
intelligibility of synthetic speech obtained from the conversion of silent or 
whispered speech. A Non-audible murmur (NAM) condenser microphone, together 
with signal-based Gaussian Mixture Model (GMM) mapping, were chosen because 
promising results were already obtained with this sensor and this approach, and 
because the size of the NAM sensor is well adapted to mobile communication 
technology. Several improvements to the speech conversion obtained with this 
sensor were considered. 

A first set of improvement concerns characteristics of the voiced source. One of the 
features missing in whispered or silent speech with respect to loud or modal speech 
is F0, which is crucial in conveying linguistic (question vs. statement, syntactic 
grouping, etc.) as well as paralinguistic (attitudes, emotions) information. The 
proposed estimation of voicing and F0 for converted speech by separate predictors 
improves both predictions. The naturalness of the converted speech was then 
further improved by extending the context window of the input feature from 
phoneme size to syllable size and using a Linear Discriminant Analysis (LDA) 
instead of a Principal Component Analysis (PCA) for the dimension reduction of 
input feature vector. The objective positive influence of this new approach of the 
quality of the output converted speech was confirmed by perceptual tests. 

Another approach investigated in this thesis consisted in integrating visual 
information as a complement to the acoustic information in both input and output 
data. Lip movements which significantly contribute to the intelligibility of visual 
speech in face-to-face human interaction were explored by using an accurate lip 
motion capture system from 3D positions of coloured beads glued on the speaker’s 
face. The visual parameters are represented by 5 components related to the rotation 
of the jaw, to lip rounding, upper and lower lip vertical movements and movements 
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of the throat which is associated with the underlying movements of the larynx and 
hyoid bone. Including these visual features in the input data significantly improved 
the quality of the output converted speech, in terms of F0 and spectral features. In 
addition, the audio output was replaced by an audio-visual output. Subjective 
perceptual tests confirmed that the investigation of the visual modality in either the 
input or output data or both, improves the intelligibility of the whispered speech 
conversion. 

Both of these improvements are confirmed by subjective tests. 

Finally, we investigated the technique using a phonetic pivot by combining Hidden 
Markov Model (HMM)-based speech recognition and HMM-based speech 
synthesis techniques to convert whispered speech data to audible one in order to 
compare the performance of the two state-of-the-art approaches. Audiovisual 
features were used in the input data and audiovisual speech was produced as an 
output. The objective performance of the HMM-based system was inferior to the 
direct signal-to-signal system based on a GMM. A few interpretations of this result 
were proposed together with future lines of research. 
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Résumé 
 

Les avancées des technologies de communication sans fil ces dernières années ont 
mené à l’utilisation répandue des téléphones portables pour la communication 
privée. En raison des conditions environnementales bruyantes et des conversations 
environnantes concurrentes, les utilisateurs tendent à parler fort. Par conséquent, la 
législation publique tendent à limiter l'utilisation du téléphone mobile dans les lieux 
publics. La voix silencieuse qui peut seulement être entendue par un ensemble 
limité d'auditeurs entourant le locuteur est une solution attrayante à ce problème si 
elle peut effectivement être employée pour la communication privée, 
confidentielle. La motivation de cette thèse était d'étudier différentes façons 
d'améliorer le naturel et l'intelligibilité de la parole synthétique obtenus à partir de 
la conversion de la voix silencieuse ou chuchotée. Un microphone à condensateur 
NAM, utilisant le mapping direct signal-vers-signal basé sur un modèle GMM 
(Gaussian Mixture Model), a été choisi parce que des résultats prometteurs ont été 
déjà obtenus avec ce capteur et cette approche, et parce que la taille du capteur 
NAM est bien adaptée à la technologie de communication mobile. Différentes 
améliorations de la conversion de parole obtenue avec ce capteur ont été 
envisagées. 

Un premier ensemble d'amélioration concerne les caractéristiques de la source 
voisée. Un des traits manquant dans la voix chuchotée ou silencieuse en ce qui 
concerne la parole modale est F0, qui est crucial pour l'information linguistique 
(question ou affirmation, regroupement syntactique, etc.) aussi bien que 
l'information paralinguistique (attitudes, émotions). L'évaluation proposée du 
voisement et du F0 pour la parole convertie en séparant les modules améliore les 
deux prédictions. Le naturel de la parole convertie a été alors encore amélioré en 
allongeant la fenêtre de contexte d'entrée, de la taille du phonème à la taille de la 
syllabe, et en employant une analyse LDA (Linear Discriminant Analysis) au lieu 
d'une PCA (Principal Component Analysis) pour la réduction de la dimension du 
vecteur d'entrée. 
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Une autre approche étudiée dans cette thèse a consisté à intégrer l'information 
visuelle comme complément à l'information acoustique dans les modalités d'entrée 
et de sortie. Les mouvements des lèvres qui contribuent de manière significative à 
l'intelligibilité de la parole visuelle dans l'interaction humaine face-à-face ont été 
intégrés en employant un système de capture précis des mouvements des lèvres à 
l’aide des positions 3D de billes collées sur le visage du locuteur. Les paramètres 
visuels ont été représentés par 5 composants liés à la rotation de la mâchoire, à 
l’arrondissement des lèvres, aux mouvements verticaux des lèvres supérieure et 
inférieure et aux mouvements de la gorge qui sont associés aux mouvements 
fondamentaux du larynx et de l'os hyoïde. L’inclusion de ces paramètres visuels 
dans les données d’entrée du système a amélioré de façon significative la qualité de 
la parole convertie en sortie, en termes de F0 et de spectre. De plus, la sortie audio 
a été remplacée par une sortie audio-visuelle. 

Des tests perceptifs subjectifs ont confirmé que l’intégration de la modalité visuelle 
soit dans les données d’entrée, soit dans celles de sortie, soit dans les deux, 
améliore significativement l’intelligibilité de la conversion de parole chuchotée. 

Tous ces améliorations sont confirmées par les tests subjectifs. 

Enfin, nous avons étudié la technique utilisant un pivot phonétique en combinant la 
reconnaissance de la parole et la synthèse de la parole basée sur un modèle de 
Markov caché (HMM) pour convertir les données chuchotées en parole claire afin 
de comparer la performance de ces deux approches « état de l’art ». Des paramètres 
audio-visuels ont été utilisés dans les données d’entrée et un signal de parole 
audiovisuel a été produit en sortie. 

La performance objective de ce système à base de HMM était inférieure à celle du 
système d’appariement signal-vers-signal fondé sur un GMM. Plusieurs 
interprétations de ce résultat ont été proposés ainsi que des perspectives de 
recherche dans ce domaine. 
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Introduction 
 

Motivation of research 
Silent speech is the kind of speech defined as the articulated production of sound 
with little vibration of the vocal cords in the case of whisper or no vibration at all in 
the case of murmur, produced by the motions and interactions of speech organs 
such as tongue, palate, lips, etc., to avoid being overheard. This kind of speech is 
commonly used for private and confidential communication, especially useful in 
military environments, or can be used by laryngeal handicapped people who cannot 
speak normally. 

Unfortunately, it is difficult to directly use silent speech as a medium for face-to-
face communication as well as over mobile telephones because the linguistic 
content and paralinguistic information in the uttered message is degraded when the 
speaker murmurs or whispers. A recent direction of research considered by 
researchers and telecommunication industries is how to convert silent speech to 
modal voice in order to have a more intelligible and more familiar speech. If it 
could be done, potential outcomes such as “silent speech telephone” as well as 
robust “speaking-aid” applications for laryngeal handicaps would become feasible. 
My work in this thesis therefore concentrates on this direction. 

 

Scope of thesis 
Several silent speech devices have been explored in the literature including surface 
electromyography (sEMG) (Jorgensen et al., 2003; Jorgensen and Binsted 2005; 
Jou, Schultz et al., 2006, 2008; Walliczek et al., 2006; Toth et al., 2009), non-
audible murmur (NAM) microphone (Nakajima, 2003,2006; Heracleous et al., 
2005, 2009; Toda and Shikano 2005), ultrasound and optical imagery (Denby and 
Stone, 2004; Denby et al., 2006; Hueber et al., 2007, 2008ab, 2009; Denby et al., 
in press), Electromagnetic Articulography (EMA) (Fagan et al., 2008) and Electro-
encephalographic (EEG) (Suppes et al.,1997; Wester and Schultz 2006; 
Porbadnigk et al., 2009). Among them, one that seems particularly interesting is 
the NAM microphone developed by researchers at Shikano Laboratory, NAIST, 
Japan because of its usability and its suitable size for mobile communication 
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technology. Nakajima et al., 2003 proposed that it might be more efficient, in noisy 
environment, to analyze the original vibrations uttered as speech from inside the 
body, through the surface of the skin, instead of analyzing the sounds in the air, 
after being discharged through the mouth. They introduced a new communication 
interface which can capture acoustic vibration in the vocal tract from a stethoscopic 
sensor placed on the neck, below the ear. By using this microphone, Toda and 
Shikano (2005) proposed a NAM-to-Speech conversion system based on a GMM 
model in order to convert “non-audible” speech to audible voice. Although the 
segmental intelligibility of synthetic signals computed by this statistical feature 
mapping is quite acceptable, listeners have difficulty in chunking the speech 
continuum into meaningful words. This is mainly due to impoverished synthetic 
intonation estimated from unvoiced speech like NAM. The main contribution of 
our work in this thesis is to improve the performance of such a system. 

The following is a summary of our contributions: 

Signal-to-signal mapping 

– Pitch. A first improvement proposed in this thesis is to better estimate the 
voice source for the converted speech. Several approaches are explored, 
including training on voiced segments only, separating the voicing and F0 
estimation in the synthesis process, optimizing the context window size of 
the input feature and using LDA (Linear Discriminant Analysis) instead of 
PCA (Principal Component Analysis) to reduce the input vector dimension. 

– Audiovisual input/output. Another solution explored in this thesis to 
improve the performance of the system is to integrate visual information as 
a complement to the acoustic information in both input and output data. 
Facial movements are estimated using an accurate motion capture device. 
The extracted facial parameters are then used to drive a the talking head 
system, a technique developed at the Speech and Cognition Department of 
GIPSA-lab. 

HMM-based recognition-synthesis 

Another approach to map silent speech to audible voice is combining speech 
recognition and synthesis techniques as proposed in (Hueber et al., 2007, 2008ab, 
2009). By introducing linguistic levels, both in recognition and synthesis, such a 
system can potentially compensate for the impoverished input by including 
linguistic knowledge into the recognition process. We compared this approach with 
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the previous direct signal-to-signal mapping, to explore a further solution to 
improve the quality of the whisper-to-modal speech conversion system. 

 

Organization of thesis 
The thesis is organized as follows. 

Chapter 1 starts with the definition of different types of silent speech, followed by 
the presentation of several new communication interfaces and techniques that have 
been used recently to capture silent speech. These interfaces, as mentioned above, 
include Electromagnetic Articulography (EMA), surface Electromyography 
(sEMG), Non-Audible Murmur microphone (NAM), Encephalography (EEG), 
Ultrasound (US) and optical imagery of the tongue and lips. Finally, some 
techniques used to map silent speech to audible speech are presented. The first 
technique is direct signal-to-signal mapping using aligned corpora. This technique 
is derived from voice conversion, a technique frequently used in speech synthesis 
to generate different output voices with limited resources. The second method 
incorporates linguistic knowledge by chaining speech recognition and speech 
synthesis. Both approaches are experimented in this thesis. 

Chapter 2 provides background information on whispered speech production and 
perception from previous research of different view points. This chapter starts with 
the physiological characteristics of whispered speech, then describes the acoustic 
differences between whispered speech and phonated speech. Next, this chapter 
discusses how listeners can identify “pitch” during whispered speech production 
even if there is no vibration of the vocal folds. Finally, visual cues are described as 
a complementary information which improves speech perception, especially in the 
case of silent speech or in conditions of lip-reading, where there is no acoustic 
information. 

Chapter 3 focuses on the design and the acquisition of our data for different 
languages: French and Japanese. The chapter presents the construction of the 
French corpus which only includes audio data as well as the construction of a 
Japanese corpus with simultaneous audio and video modalities. The pre-processing 
of the video data is then explained. A guided PCA is applied to the video data in 
order to extract the main facial movement parameters related to speech articulation. 

Chapter 4 describes my contribution to improve the intelligibility and the 
naturalness of the synthetic speech generated by a direct signal-to-signal mapping 
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technique. Different solutions are presented in this chapter. They include the 
improvement of the precision of voicing decision and F0 estimation, by the 
extension of the context window of the input feature from the phoneme size to the 
syllable size and by the use of LDA instead of PCA to reduce the input feature 
dimension. Finally the use of visual parameters in both input and output of the 
conversion system is investigated. The positive influence of these solutions is 
assessed by objective tests and confirmed by subjective perceptual tests. 

Chapter 5 on the other hand concentrates on the phonetic pivot HMM-based 
recognition-synthesis chain. After studying the impact of facial movement 
information on the performance of both recognition and synthesis, the objective 
performance of the two systems, i.e. the direct signal-to-signal mapping described 
in the previous chapter and the HMM-based conversion system, are compared. 

Finally, the conclusion summarizes the contributions of this thesis and offers 
suggestions for future work. 

 

Figure 1. Silent speech interfaces developed in the CASSIS project. 

 

Related project 
The work presented in this thesis contributes to the CASSIS (Computer-Assisted 
communication and Silent Speech InterfaceS) project (figure 1) which involves the 
collaboration of GIPSA-Lab, ENST-Paris, ESPCI-Paris and NAIST. The aim of the 
CASSIS project is to enable confidential human-human or human-computer 
communication as well as to compensate for phonation loss in silent speech. The 
basic challenge is to convert multimodal signals (brain or muscular activities, 
orofacial movements, contact sounds, etc) gathered during silent or quasi-silent 
articulation into an audible signal or a phonological representation of what has 
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been said. The CASSIS project provides a scientific framework to share 
technologies, develop new interfaces and settle common data recordings and 
evaluation campaigns. Multilingual evaluation is crucial in this respect since 
performance is highly dependent on the phonological structure of the language 
(sound structure, syllable complexity, accentual structure, etc) and since language-
specific knowledge is often injected implicitly or explicitly in the mapping process. 
Comparative assessment of such speech technologies will be performed on 
Japanese, English and French multimodal resources. The ultimate challenge of this 
project is also to consider real-time implementations of the proposed solutions so 
that usability studies can be conducted at the end of the project. 
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Chapter 1 

Silent speech interfaces and silent-
to-audible speech conversion 
 

1.1 Introduction 
Due to the limitations of traditional speech interfaces – i.e. limited robustness in the 
presence of ambient noise, lack of secure transmission of private and confidential 
information and interference of bystanders in concurrent environments – a novel 
approach is necessary to capture articulatory or cerebral causes rather than their 
acoustic consequences, i.e. silent speech. By acquiring multimodal data from the 
articulators, brain or muscular activities, orofacial movements, etc. gathered during 
silent articulation, a Silent Speech Interface (SSI) produces a representation of 
speech which can be synthesized directly and can provide an audible signal. 
(Denby et al., in press). 

Potential applications for SSIs can be found more and more. First of all, SSIs are 
intuitively used to provide privacy for conversations over cellular phones. An SSI, 
if non-invasive and small enough to be incorporated into a cell phone, could allow 
users to communicate more silently, privately and confidentially. Based on their 
natural non-air-borne speech cues, SSIs are robust against environmental 
background noise and therefore are also adapted to speech processing in noisy 
environments (Denby et al., in press). Moreover, SSIs are gradually used to replace 
current speech pathology aids, such as the electrolarynx for the laryngectomy 
handicaps, thanks to their potentially natural sounding. 

This chapter presents the definition of silent speech in section 1.2. A panorama of 
technologies used to capture silent speech signatures follows in section 1.3. Section 
1.4 concentrates on two main conversion techniques to synthesize audible voice 
from silent speech: direct mapping signal-to-signal and coupling a speech synthesis 
system and a non-audible speech recognizer. Finally, section 1.5 presents some 
conclusions for this chapter. 
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1.2 Silent speech 
Silent speech is a common, natural way that speakers use to reduce speech 
perceptibility. For example when they are asked to speak softly so as not to disturb 
others in a school library, in a conference ..., when they are too weak to speak 
normally or when they tell private, confidential information. It seems that silent 
speech is the most effective and efficient vocal communication when only a few 
people around the speaker (or only him/herself when s/he is speaking on the phone) 
should hear the message. 

Depending on the level of “silence” or audibility, we can define 5 categories: 

1. Inner speech: It is also called imagined speech, covert speech or verbal 
thought. It refers to the silent production of words in one’s mind. Inner 
speech can be considered as mental simulation of speech. Some researchers 
suggest that inner speech is the same as overt speech, except that execution 
is blocked, i.e. overt speech equals inner speech plus a motor execution 
process. This ‘continuity hypothesis’ predicts that physiological correlates 
of inner speech (such as duration, muscular activity, heart rate, respiration 
rate and neuronal activity) should bear resemblance to those of overt 
speech. This hypothesis implies that speech motor activities may exist 
during inner speech, resulting from motor planning, but that these activities 
do not result in effective muscular recruitment. The hypothesis is given 
credit by orofacial electromyographic (EMG) recording during inner 
speech. EMG activity has been detected in the speech musculature during 
verbal mental imagery and covert rehearsal (Jacobson, 1931; Sokolov, 
1972). McGuigan and Dollins (1989) conducted EMG recording showing 
that the lips are active when silently reading the letter "P", but not when 
reading "T". Reciprocally, the tongue was active only for silently reading 
“T”. Livesay et al. (1996) observed lip EMG activity in an inner speech 
recitation task, but not in a visualization task. Fadiga et al. (2002) have 
shown, using Transcranial Magnetic Stimulation (TMS), that during 
listening of words which involve tongue movements, there is an increase of 
motor-evoked potentials recorded from the listeners' tongue muscles. 

2. Subvocal invisible speech : This speech mode is articulated very softly so 
that it cannot be heard, but the speech articulators (tongue, lips, perhaps 
jaw) may slightly move. It corresponds to articulation without phonation 
and with very little air emission. Subvocal speech is usually hypo-
articulated, such as when a person silently reads or recites to him/herself. 
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The articulatory movements are so small that they may not be noticed by 
surrounding viewers. This kind of speech is what is studied by researchers 
from a group at NASA Ames Research Center, who are working on the 
decoding of facial EMG signals arising from subvocal speech (Bett and 
Jorgensen 2005; Jorgensen and Binsted 2005). By sticking EMG sensors 
under a person’s chin and on either side of the Adam’s apple, this group 
claim they can recover EMG activities from laryngeal, mandibular and 
lingual muscles and translate them into words. 

3. Subvocal visible speech : This speech mode corresponds to silent speech 
mouthing. Speech is normally articulated but without air emission. The 
articulators move, as if one wanted to be seen but not heard. Lip, jaw, cheek 
and chin motions can thus be tracked to decipher speech. This speech mode 
is used by Tanja Schultz, Alex Waibel and colleagues (at Carnagie Mellon 
University, CMU and at the Interactive Systems Laboratories of Universität 
Karlsruhe) to derive audible speech from facial EMG recordings (e.g. Jou et 
al., 2007). Another research group, involved in the Ouisper1 project, also 
try to synthesize audible speech from the ultrasound motion of the tongue 
movement during the production of this speech mode (Denby and Stone, 
2004; Denby et al., 2006; Hueber et al., 2007, 2008ab, 2009). 

4. Non-audible murmur (NAM): This speech mode is softly whispered so 
that a nearby person would not be able to hear it. It is defined as the 
articulated production of respiratory sound without recourse to vocal-fold 
vibration, produced by the motions and interactions of speech organs such 
as the tongue, palate, lips etc. (Nakajima et al., 2003ab). It can be viewed as 
subvocal invisible speech with air emission. 

5. Whispered speech: although it is difficult to define precisely the acoustic 
differences between "whisper" and "NAM", the term "whisper" implies that 
limited nearby listeners can hear the content of the speech, and that it can be 
recorded by an external microphone through transmission in the air 
(Nakajima et al., 2003ab). 

The following sections will present some current technological attempts in the 
literature, designed to capture silent speech as well as several approaches to silent 
speech-to-audible speech conversion, aiming at obtaining a more natural and 
intelligible voice. 

                                                 
1 http://www.neurones.espci.fr/ouisper/ 
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1.3 Silent speech interfaces (SSI) 
The speech production process can be regarded as producing a set of coherent 
multimodal signals, such as the electrical cerebral signals, the myoelectrical signals 
observable from the muscles, the movements of the orofacial articulators that are 
visible or not, or acoustic signals (figure 1.1). The aim of this section is to 
overview the spectrum of available technologies that can be used to record useful 
signals characterizing articulation and phonation of silent speech. 

 

Figure 1.1. Multimodal signals during the speech production process 

1.3.1 Electro-encephalographic (EEG) sensors 

It is well known that several brain areas are activated in the production of speech. 
Broca's area has been shown to be involved in the planning and decision process 
during speech production while Wernicke's area has been shown to be active during 
speech comprehension (Callies, 2006; Wester and Schultz, 2006). 

To exploit the electromagnetic waves created by these cerebral activities, non-
invasive electroencephalography or EEG devices are frequently used as a brain-to-
computer interface (BCI) (Wolpaw et al., 2002). 

By using this type of sensor for silent speech, Suppes et al. (1997) have shown that 
isolated words can be recognized based on ElectroEcephaloGraphy (EEG) and 
MagnetoEncephaloGraphy (MEG) recordings. In one of their experimental 
conditions called internal speech, the subjects were shown one out of 12 words on a 
screen and asked to utter this word ’silently’ without using any articulatory muscles 
(this corresponds to what we defined as “inner speech” above). Recognition rates, 
based on a least-squares criterion, varied widely, but were significantly different 
from chance. The two best scores were above 90%. These results show that brain 
waves carry substantial information about the word being processed under 
experimental conditions of conscious awareness. 
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Figure 1.2. EEG-based recognition system for unspoken speech (Wester and 
Schultz, 2006) 

Another work by Wester and Schultz (2006) investigated a similar approach which 
directly recognizes “unspoken speech” in brain activity measured by EEG signals 
(figure 1.2). “Unspoken speech” here refers to what we defined as “inner speech” 
above. In this study, the authors used 16 channel EEG data recorded using the 
International 10-20 system (Jasper, 1958) in five different modalities: normal 
speech, whispered speech, silent speech, mumbled speech and unspoken or inner 
speech. They concluded that speech recognition on EEG brain waves is possible 
with a word accuracy four to five times higher than chance for vocabularies of up 
to ten words. The same results were found for the other modalities. Unspoken 
speech was slightly worse than the other modalities (Wester and Schultz, 2006). 
Their experiments also showed that the important EEG recording regions for 
unspoken speech recognition seem to be the motor cortex, Broca’s area and 
Wernicke’s area as shown in figure 1.3. 



22                           Silent speech interfaces and silent-to-audible speech conversion 

 

 

Figure 1.3. The motor cortex, Broca’s area and Wernicke’s area seem to be 
recruited for inner speech (Wester and Schultz, 2006) 

However, subsequent investigations lead to the hypothesis that the good 
recognition performance might in fact have resulted from temporal correlated 
artifacts in the brain waves since the words were presented in blocks. Due to these 
artifacts, the recognition results reported in (Wester and Schultz, 2006) might be 
overestimated. A recent study by Porbadnigk et al. (2009) tried to prove this 
hypothesis. In their experiments, each of the first five words of the international 
radio-telephony spelling alphabet (alpha, bravo, charlie, delta, echo) was repeated 
20 times by 21 subjects. Each session had the same word list (length 100) but the 
word order was varied: blockwise, sequential mode or random mode (see 
Porbadnigk et al. 2009 for more details). The interested signals, 16 EEG channels 
using a 128 cap montage, were recognized by a HMM-based classifier. The authors 
discovered that the average recognition rate of 45.5% in block mode drops to 
chance level for all other modes. This means that temporally correlated brain 
activities tend to superimpose the signal of interest. The authors also found that 
cross-session training (within subjects) yields recognition rates only at chance 
level. 

Dasalla and colleagues (Dasalla et al., 2009) proposed another scheme for a silent 
speech BCI using neural activities associated with vowel speech imagery. EEG was 
recorded in three healthy subjects for three tasks, imaginary speech of the English 
vowels /a/ and /u/, and a no-action state as control. 50 trials were performed for 
each task, with each trial containing two seconds of task-specific activity. Trial 
averages revealed readiness potentials at 200 ms after stimulus and speech related 
potentials peaking after 350 ms. The authors then designed spatial filters using the 
common spatial patterns (CSP) method, which, when applied to the EEG data, 
produce new time series with variances that are maximally discriminative. After 
spatially filtering the EEG data, the authors trained a nonlinear support vector 
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machine (SVM) for the classification task. Overall classification accuracies ranged 
from 68% to 78%. Results indicate significant potential for the use of the proposed 
system for EEG-based silent speech interfaces. 

1.3.2 Surface Electromyography (sEMG) 

The surface Electromyography (sEMG) method measures muscular electric 
potential with a set of electrodes attached to the skin where the articulatory muscles 
underlie (Jou and Schultz, 2008). In the speech production chain (as presented in 
the figure 1.1), neural signals generated from the brain drive articulatory muscles. 
The articulatory muscles then contract and relax accordingly to shape the geometry 
of the vocal tract and produce appropriate sounds. The muscle activity alters the 
small electrical currents through the body tissue whose resistance creates potential 
differences, and the sEMG method can pick up this kind of potential change for 
further signal processing, e.g., speech recognition or speech synthesis. Figure 1.4 
shows the surface muscles involved in speech production that can be used for an 
EMG-based system (Maier-Hein L., 2005). The motivation here is that the sEMG 
method is inherently robust to ambient noise because the sEMG electrodes are 
directly in contact with the human tissue without the air-transmission channel. 
Therefore the sEMG method makes it possible to recognize completely silent 
speech, which means mouthing words without making any sound (Jou and Schultz, 
2008). 

 

Figure 1.4. Some of the surface muscles involved in speech production (Maier-
Hein L., 2005) 

EMG was earlier used to develop a speech prosthesis that functions using the myo-
electric signal as its only input (Morse and O'brien, 1986; Susie and Tsunoda, 
1985). In (Morse and O’Brien, 1986), time domain recognition of speech from 
myoelectric signals using maximum likelihood pattern recognition was first 
studied. The authors investigated the EMG signals from three muscles of the neck, 
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near the vocal tract and one on the left temple. Recognition accuracy as high as 
97% was attained on a two-word vocabulary. However, for larger vocabularies, the 
recognition accuracy deteriorated, falling below 70% accuracy for ten-word 
vocabularies and 35% for 17-word vocabularies in the following studies of theses 
authors (Morse et al., 1989, 1990, 1991). In another work by Susie and Tsunoda 
(1985), the target muscles were three muscles around the mouth: the digastricus, 
the zygomaticus major and the orbicularis (as can be seen in the figure 1.4). The 
words were classified using a finite automation. An average recognition accuracy 
of 64% was attained in discriminating the five Japanese vowels. This speech 
recognition accuracy using EMG signals would be considered poor by today's 
conventional speech recognition standards; however, the accuracy of these systems 
is above the random guessing which promises the presence of speech information 
within the myoelectric signals from the muscles of articulation. 

 

Figure 1.5. (a) Pilot oxygen mask with electrodes embedded in rubber lining: (b) 
anatomical diagram indicating location of target muscles (Chan et al., 2002). 

The research of Chan and colleagues (2002) continued in this direction by 
experimenting automatic speech recognition using sEMG. They proposed to 
supplement voiced speech with EMG in the context of noisy aircraft pilot 
communication. In their work, they studied the feasibility of augmenting auditory 
speech information with EMG signals recorded from primary facial muscles using 
sensors embedded in a pilot oxygen mask. They used five surface signal sites 
(using Ag-AgCl button electrodes), from five facial muscles: the levator anguli oris 
(LAI), the zygomaticus major (ZYG), the platysma (PLT), the depressor anguli oris 
(DAO) and the anterior belly of the digastric (ABD) (Figure 1.5). They recorded 
the EMG activity of these muscles during the vocalized pronunciation of the digits 
zero to nine, in parallel with an additional acoustic channel to segment the signals. 
A Linear Discriminant Analysis (LDA) classifier utilized on a set of wavelet 
transform features (reduced by Principle Component Analysis (PCA) yielded a 
word accuracy of 93%. The authors also claimed that the performance was very 
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sensitive to the pre-triggering value for sEMG signals. This phenomenon occurs 
because the onset of muscle activity precedes the acoustic voice signal. Since the 
temporal position of articulation signal relative to the acoustic signal varies with 
the speaking rate, the authors proposed to use a Hidden Markov Model (HMM) 
(Chan et al., 2002). Even though the HMM classifier yielded worse maximum 
recognition rates (86%) than the LDA classifier for the same data, it was much less 
susceptible to temporal misalignment, that is, there was no dramatic decrease in 
performance when the pre-trigger value used for the training set was slightly 
different from the one used in the test set. 

 

Figure 1.6. (a) the subvocal EMG system proposed by Jorgensen et al. (reference). 
(b) the subvocal EMG system proposed by DoCOMO Research center. (c) 
electrode positioning by the CMU group. 

For silent speech recognition with EMG, Manabe et al. (2003), in the DOCOMO 
project (Figure 1.6b), showed that it is possible to recognize five Japanese vowels 
using surface EMG signals recorded with electrodes pressed on the facial skin. The 
electrodes were placed under the chin, on the cheek, and on the lips, corresponding 
to the digastrics muscle , the zygomaticus major, and the orbicularis oris (Manabe 
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et al., 2003). Using an artificial neural network (ANN), the recognition accuracy 
was over 90%. In their later work on ten Japanese digits recognition (Manabe and 
Zhang, 2004), experiments on speaker-dependent recognition on 10 isolated 
Japanese digits with a multi-stream HMM indicated that it is effective to give 
different weights to different sEMG channels so that the corresponding muscles 
can contribute to a different extent to the classification. The authors reported a 
maximum recognition rate of 65% using delta filterbank coefficients and spectral 
subtraction. 

Chuck Jorgensen and colleagues (Jorgensen et al., 2003; Jorgensen and Binsted 
2005) from the NASA Ames Resarch Center proposed an EMG system that 
captures subvocal speech. Note that this speech mode is articulated very softly so 
that it cannot be heard, but the speech articulators may slightly move. Their aim is 
to track hypoarticulated subvocal speech, with very limited articulatory movement 
and no phonation, nor air emission. Their idea is to intercept nervous control 
signals sent to speech muscles using surface EMG electrodes placed on the larynx 
and sublingual areas below the jaw (Figure 1.6b). The authors reported recognition 
rates of 92% on a set of six control words using a neural network classifier 
(Jorgensen et al., 2003). They examined various feature extraction methods, 
including STFT coefficients, wavelets, and Linear Predictive Coding (LPC) 
coefficients and reported a maximum word accuracy for dual tree wavelets (92%) 
followed by Fourier coefficients (91%). In 2005, the authors extended the original 
six word vocabulary to the ten English digits and achieved a word accuracy of 73% 
(Jorgensen and Binsted, 2005). 

Several important issues in sEMG based non-audible speech recognition concern 
repositioning electrodes between recording sessions, environmental temperature 
changes, and skin tissue properties of the speaker. In order to reduce the impact of 
these factors, Maier-Hein, Schultz, Waibel and colleagues have investigated a 
variety of signal normalization and model adaptation methods (Maier-Hein et al., 
2005). By experimenting on a vocabulary consisting of the ten English digits 
“zero” to “nine”, the authors noted that sharing training data across sessions and 
applying methods based on Variance Normalization and Maximum Likelihood 
adaptation improve across-sessions performance. They achieved an average word 
accuracy of 97.3% for within-session testing using seven EMG channels as 
presented in figure 1.6c. Across-sessions testing without any adaptation yielded an 
average of 76.2%. By applying the normalization and adaptation methods they 
were able to bring recognition rates back up to 87.1%. 
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A recent work by Lee (2008) proposed a method to use global control variables to 
model correlations among the EMG channels. The system treats each EMG as a 
speech signal and thus uses Mel-scale spectral coefficients (MFCC) as main 
features, with delta and delta-delta for dynamics modeling. EMG channels are 
obtained from three articulatory muscles of the face: the levator anguli oris, the 
zygomaticus major, and the depressor anguli oris. The sequence of EMG signals 
for each word is modelled by a HMM framework. Their aim is building a model 
for state observation density when multi-channel observation sequences are given. 
The proposed model reflects the dependencies between each of the EMG signals, 
which are described by introducing a global control variable. In their preliminary 
study, 60 Korean isolated words were used as recognition variables. The findings 
indicated that such a system may achieve an accuracy of up to 87%, which is 
superior to the independent probabilistic model. 

However, these pioneering studies are limited to small vocabulary sizes ranging 
from five to around forty isolated words. The main reason of this limitation is that 
the classification unit is set to a whole utterance, instead of a restrained to a phone, 
a smaller and more flexible unit that is frequently used in large vocabulary 
continuous speech recognition. Such a phone-based continuous speech recognition 
system has first proposed by Jou et al. (2006). It attained the accuracy of 70% for a 
100-word corpus pronounced by a single speaker. 

The EMG method is interesting not only in speech recognition but also in speech 
synthesis. In (Lam et al., 2005), the authors showed that EMG features extracted 
from 2 channels captured from the cheek and the chin can be converted into speech 
signals in a frame-by-frame basis. The conversion is done via a two-layer feed-
forward backpropagation neural network. The network was trained to map the 
short-time Fourier transformation parameters of the sEMG signals to one of six 
possible speech codebook indices. These indices are further decoded as Linear 
Predictive Coding (LPC) coefficients, pitch, and energy information to reconstruct 
the speech signals. The authors noted that the classification rate of the network is 
similar for different sEMG frame sizes on silence vectors, ranging from 83.7% to 
86.4%. Classification rates of phonemes /æ/, /i/, /ʃ/ become higher when the 
sEMG frame size increases. For /æ/, they range from 84.4% to 96.0%, for /i/, from 
87.4% to 93.7%, and from 72.5% to 90.1% for /ʃ/. The average classification rate 
is also higher for larger sEMG frame sizes and reaches 90.5% when this size is 
112.5 ms. Because the conversion was performed at the phoneme level, the 
proposed methodology had the potential to synthesize an unlimited vocabulary 
size, in continuous speech. Another conversion method based on a Gaussian 
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Mixture Model (GMM) on the sentences pronounced by a Taiwanese was recently 
studied in (Toth et al., 2009) with the same positions of EMG channels proposed in 
(Maier-Hein et al., 2005). In their framework, the converted speech from EMG 
signals was then decoded by a speech recognizer. The best result, using an optimal 
EMG recognizer based on bundled phonetic features, was 18.0% Word Error Rate. 
The authors also claimed that there are still a number of difficulties that need to be 
overcome. The biggest barriers to a silent speech interface with sEMG appear to be 
the production of an adequate excitation signal and the different characteristics of 
EMG signals produced during audible and silent speech. 

1.3.3 Tongue displays 

Several devices are able to provide information on the movements of inner speech 
organs. Apart from very sophisticated medical imaging techniques such as 
cineradiography or real-time MRI that provide complete tongue displays, several 
other techniques such as ElectroMagnetic Articulography (EMA) or ultrasound 
(US) imaging provide partial information of the inner organs in motion: EMA 
provides 2D or 3D movements of a few coils glued on the tongue and possibly the 
velum with high precision, ultrasound imaging provides partial 2D or 3D surface of 
the tongue. When these data are regularized with deformable shape models 
acquired on the same subject using medical imaging techniques or adapted from a 
generic tongue model, very convincing tongue articulation, and possibly sound, can 
be estimated. 

 

 

Figure 1.7. Ultrasound-based SSI (schematic) (Denby et al., 2009) 
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1.3.3.1 Ultrasound 

In the SSI developed in the Ouisper project (Denby and Stone, 2004; Denby et al., 
2006, Denby et al., in press; Hueber et al., 2007, 2008ab, 2009), an ultrasound 
imaging system of the tongue is coupled with a standard video camera placed in 
front of the speaker’s lips. Non-acoustic features, derived exclusively from spatial 
configurations of these two articulators, are used to drive a speech synthesizer, as 
illustrated in figure 1.7 (Denby et al., in press). 

A first version of a “visuo-acoustic” mapping task was proposed in (Denby and 
Stone, 2004; Denby et al. 2006) by using a multilayer perceptrons network. By 
using this network, the tongue contours and lip profiles extracted from a 2 minutes 
long ultrasound dataset were mapped either onto GSM codec parameters (the 13 
kbit/sec codec transforms blocks of 160, 13-bit speech samples (20 ms at 8000 
samples/second) into 260 bits of coded information as described in (Denby et al., 
2004) or onto Line Spectral Frequencies (LSF). LSF are used to represent Linear 
Prediction Coefficients (LPC) for transmission over a channel. LSF have several 
properties, e.g. smaller sensitivity to quantization noise, that make them superior to 
direct quantization of LPC. In a later version, extraction and parameterization of 
the tongue contour were replaced by EigenTongues decomposition which projects 
each ultrasound image into a representative space of “standard vocal tract 
configurations” (Hueber et al., 2007). All these approaches, however, only predict 
spectral features, and thus only permit LPC-based speech synthesis, without any 
prescription on the excitation signal (Denby et al., in press). Hueber et al (Hueber 
et al. 2007; Hueber, Chollet et al. 2008ab) then proposed a new framework in 
which a “visuo-phonetic decoding stage” was developed and combined with a 
subsequent concatenative synthesis procedure to produce speech. In this 
framework, a large audio-visual unit dictionary is constructed, which associates a 
visual realization with an acoustic one for each diphone. In the training stage, 
visual feature sequences are modeled for each phonetic class by a context-
independent continuous Hidden Markov Model (HMM). In the test stage, the given 
sequence of visual features is decoded as a set of phonetic targets. However, the 
speech quality of this approach strongly depends of the phone recognition 
performance. The visuo-phonetic decoder is currently able to correctly predict 
about 60% of the phonetic target sequences and therefore the system is not able to 
systematically provide an intelligible output speech. Thus, improvement of the 
visuo-phonetic decoding stage remains a critical issue. (Hueber et al., 2008b) 
recorded a larger audio-visual speech database with a new acquisition system 
which is able to record two video streams (front and profile), along with the 
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acoustic signal, at more than 60 frames per second (fps) instead of 30 fps for the 
earlier baseline acquisition system. Also, in (Hueber et al., 2009), the modelling of 
tongue and lips feature sequences using context-dependent multi-stream HMMs 
has been proposed in order to improve the visuo-phonetic decoding stage. 
Moreover, they mention that as any speech recognition system, performance can be 
further improved by using a language model that can constrain the phonological 
lattice. The results showed that the performance improvement is about 8% higher 
than that of the system proposed in (Hueber et al., 2008ab). 

1.3.3.2   Electromagnetic Articulography (EMA) 

Another method to get information on the movements of the inner organs during 
speech production is using electromagnetic articulography (EMA). EMA is a 
motion tracking method that tracks the Cartesian coordinates of sensor coils which 
can be fixed on specific places of the lips, the teeth, the jaw, and the velum of the 
subject. Usually, there are two trajectories for each coil, one for the movement in 
the front-back direction of the head, and one for the top-bottom direction (Toutios 
and Margaritis, 2005). 

Fagan et al. (2008) proposed a silent speech recognition system based on an EMA, 
This system consisting of permanent magnets attached at a set of points in the 
vocal apparatus, coupling with magnetic sensors positioned around the user’s head 
provides a greater flexibility in terms of placement and use. The magnets were 
glued to the user’s tongue, lips and teeth, and six dual axis magnetic sensors were 
mounted on a pair of glasses (figure 1.8). The aim of this work was to assess the 
potential of indirect measurement of movement of the vocal apparatus as a means 
to determine the intended speech of a subject, rather than to develop a complete 
speech recognition system. As such the results show considerable promise. Based 
on a simple template matching algorithm, Dynamic Time Warping (DTW), it has 
been shown that it is possible to classify a subset of phonemes and a small number 
of words with degree of accuracy which is similar to that achieved for speech 
recognition based on acoustic information – albeit with a significantly smaller 
vocabulary data set. The subject was asked to repeat a set of 9 words and 13 
phonemes to provide training data while 10 repetitions of each word/phone were 
compared to the training set template. With this condition, the recognition accuracy 
attained 97% for words and 94% for phonemes. The authors also noted that the 
processing is still able to correctly identify the best fit where the discrimination is 
less clear, for instance between labial phonemes (/b/-/m/-/p/-/f/) and velars (/g/-/k/), 
even where the difference is between voiced and unvoiced versions of the same 
phoneme (e.g. /g/-/k/ and /b/-/p/). With these preliminary results, further 



Silent speech interfaces and silent-to-audible speech conversion                           31 

 

development of the sensing and processing systems may be possible to achieve 
acceptable recognition for larger vocabularies. 

 

Figure 1.8. Placement of magnets and magnetic sensors for an EMA-based SSI 
(Fagan et al., 2008) 

 

Figure 1.9. EMA positions in MOCHA-TIMIT2 database 

The EMA method has been used also in speech synthesis, especially for 
articulatory movements-to-speech spectrum conversion or inversion. Toda and 
colleagues (Toda, Black and Tokuda, 2008) proposed a signal-to-signal mapping 
technique inspired by voice conversion systems (Stylianou et al., 1998, Kain and 
Macon, 1998abc) which does not compute any intermediate phonetic 
representation of the spoken message. The authors used articulatory movement data 
extracted from MOCHA-TIMIT database captured by EMA sensors attached on 
seven articulators: upper lip, lower lip, lower incisor, tongue tip, tongue body, 
tongue dorsum, and velum) and two reference points (the bridge of the nose and the 
upper incisor). The data were sampled in the midsagittal plane at 500 Hz. Each 
articulatory location is represented by x- and y-coordinates as shown in figure 1.9. 
The training corpus contains 414 sentences while 46 sentences were used for the 
test corpus. The authors used a GMM to model the joint probability density of an 
                                                 
2 http://www.cstr.ed.ac.uk/research/projects/artic/mocha.html 
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articulatory parameter and an acoustic parameter. The parameters of this model are 
determined thanks to the training corpus by a Maximum Likelihood Estimation 
(MLE) within dynamic features instead of a Minimum Mean-Square Error 
(MMSE). They demonstrated that the converted speech by MMSE reached only 
44% preference score while 47.8% was obtained for MLE without dynamic 
features and 58.3% for MLE with dynamic features. 

1.3.4 Non-Audible Murmur (NAM) microphone 

In (Nakajima et al, 2003ab), the author proposed that “speech is one of the actions 
that originate inside the human body. One of the best methods of examining what is 
happening in the human body is to touch it, as medical doctors have always to do 
first. It might be more efficient to analyze the original vibrations uttered as human 
speech from inside the body, through the surface of the skin, instead of analyzing 
the sounds in the air, after being discharged through the mouth.” If this is possible, 
then we can put non-audible murmur into use as a new speech communication 
interface. 

 

 

 

Figure 1.10. Anatomy of NAM microphone (Toda et al., 2009; Shimizu et al., 2009) 
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1.3.4.1 Anatomy of the tissue-conductive microphone 

The NAM microphone was developed at Nara Institute of Science and Technology 
(NAIST), Japan. A NAM microphone is an electret condenser microphone (ECM) 
covered with a soft polymer material, which provides a better impedance matching 
with the soft tissue of the neck (figure 1.10). As presented in (Shimizu et al., 2009), 
there are 2 types of NAM microphone depending what type of soft polymer 
material is used: soft silicone (SS) or urethane-elastomer (UE). In the soft silicone 
(SS) manufactured by Mitsumi Electric Co., Ltd, an ECM whose diaphragm is 
exposed is covered with soft silicone and placed in a rigid cylindrical case of 
30mm diameter x 20mm height. The distance between the surface and the ECM 
diaphragm is about 1 mm. Another type, urethane elastomer (UE) made by 
Nakajima and colleagues has an ECM whose diaphragm is exposed and covered 
with urethane elastomer and placed in a rigid cylindrical case of 20mm diameter x 
10mm height. The urethane elastomer is adhesive, which facilitates the attachment 
of the NAM microphone to the skin. 

 

Figure 1.11. Whispered speech captured by NAM sensor for the utterance: 

“Armstrong tombe et s'envole” 

1.3.4.2 Acoustic characteristics 

The NAM microphone can be placed on the skin, below the ear to capture acoustic 
vibrations in the vocal tract as shown in figure 1.11. This position allows a high 
quality recording of various types of body transmitted speech such as normal 
speech, whisper and NAM. Body tissue and lack of lip radiation act as a low-pass 
filter and the high frequency components are attenuated. However, the non-audible 
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murmur spectral components still provide sufficient information to distinguish and 
recognize sound accurately (Heracleous et al., 2005). Currently, the SS-type NAM 
microphone can record sound with frequency components up to 3 kHz.This 
frequency has recently been extended to 6kHz for the UE-type (Shimizu et al., 
2009). Although this microphone is intrinsically not sensitive to ambient noise, 
when using simulated noise, its performance decreases in real noise environment 
because of the modified articulatory strategies due to the Lombard reflex effect 
(Heracleous et al., 2005). Figure 1.11 shows an example of an utterance captured 
by this microphone. Note that the signal delivered by the NAM microphone is 
highly sensitive to the contacts between organs such as seen in occlusions. 

The NAM signals were first exploited by the speech group at NAIST for NAM 
recognition (Nakajima et al., 2003; Heracleous, Nakajima et al. 2005). The authors 
showed that this microphone could be used as a noise-robust sensor and could 
achieve the same performance as conventional speech recognition without noise. In 
their experiments, they achieved 93.8 % word accuracy in clean environment, and 
93.1 % word accuracy in noisy environment. Moreover, by using maximum 
likelihood linear regression adaptation (MLLR) technique to create acoustic models 
for non-audible murmur, the NAM recognition system reached a very promising 
performance (92.1 %). 

Another interesting line of research using a NAM microphone is voice generation 
from silent speech. In (Toda and Shikano 2005), the authors proposed to use a 
signal-to-signal mapping technique to convert NAM to phonated speech. It was 
shown that this system effectively works but its performance is still insufficient, 
especially in the naturalness of the converted speech. This is partly due to the poor 
F0 estimation from unvoiced speech. The authors claimed that a good F0 estimate is 
necessary to improve the performance of NAM-to-Speech systems. (Nakagiri et al., 
2006) therefore proposed another system which converts NAM to whisper. F0 
values do not need to be estimated for converted whispered speech because 
whisper is another type of unvoiced speech, just like NAM, but more intelligible. 
(Nakamura et al., 2006) also used this trick in order to get a more natural and more 
intelligible speech to realize a speaking-aid system for total laryngectomees. 

 

1.4 Conversion of silent speech to audible speech 
When the speaker murmurs or whispers, the acoustic characteristics of the signal 
are modified (the details will be presented in chapter 2), and thus the linguistic 
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contents of the message can be strongly degraded, as well as the paralinguistic 
parameters (i.e. speaker emotions, attitudes and his/her identity). A crucial issue 
then is developing methods to capture, characterize and convert silent speech to 
audible voice, to generate a more understandable sound. This section presents two 
state-of-the-art approaches: direct signal-to-signal mapping and HMM-based 
recognition-synthesis. 

1.4.1 Direct signal-to-signal mapping 

The speech waveform carries a variety of information: segmental, supra-segmental, 
para-linguistic, etc. Among them, the linguistic content of the message being 
uttered is of greatest interest to most leading speech technologies today. However, 
non-linguistic information such as the speaker’s mood, individuality, emotion or 
position with respect to what he/she says also plays a crucial part in oral 
communication (Moulines and Sagisaka, 1995). Voice individuality, in particular, 
is important not only because it helps us identify the person to whom we are 
talking, but also because it enriches our daily life with variety (Kuwabara and 
Sagisaka, 1995). This information is, of course, related to the physiological and the 
behavioral characteristics of the speaker. These characteristics exist both in the 
short-term spectral envelope (vocal tract characteristics) and in the supra-segmental 
features of speech (voice source characteristics). 

Voice conversion is a generic term for the techniques that, from speech signal 
uttered by a source speaker, aim at transforming the characteristics of the speech 
signal in such a way that a human naturally perceives the characteristics of another 
target speaker in the transformed speech (Moulines and Sagisaka, 1995). 

The potential applications of such techniques are numerous. First of all, voice 
conversion will be an essential component in text-to-speech systems based on the 
selection and concatenation of acoustical units. The synthesis database for such 
systems contains an organised collection of carefully recorded speech, and the 
speaker identity of the synthesis output bears resemblance to the original speaker 
identity of the database speaker. The creation of a synthesis database for a new 
synthesis voice requires a significant recording and labelling effort and a 
significant amount of computational resources. Voice conversion would be 
therefore a simple and efficient way to have the desired variety to the spoken 
messages while avoiding the extensive recording of hours of speech by different 
speakers. Only a few minutes of speech are normally sufficient for the conversion. 
Another application concerns interpreting telephony, which would make the 
communication between foreigners easier by first recognizing the speech sentences 
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uttered by each speaker, and then translating and synthesizing them in a different 
language. In recent years, voice conversion has been also used in the context of 
speaking aids for the speech handicaps (Nakamura et al., 2006) and future “silent 
speech communication” in order to use silent speech as a communication medium 
(Toda et Shikano, 2005). 

This section will review some studies carried out on voice conversion using 
different statistical frameworks in the last two decades, such as Vector 
Quantization (Able et al., 1988), Linear Multivariate Regression (LMR) (Valbret et 
al., 1992), Dynamic Frequency Warping (DFW) (Valbret et al., 1992), speaker 
interpolation approach (Iwahashi and Sagisaka, 1994, 1995), continuous 
transformations based on Gaussian Mixture Model (GMM) (Stylianou et al., 1998; 
Kain et al., 1998abc, Toda et al., 2003) as well as Artificial Neural Networks 
(ANN) and Radial Basis Function (RBF) (Narendranath et al., 1995; Watanabe et 
al., 2002). 

1.4.1.1 General framework of voice conversion system 

Voice conversion systems all share three main components: 

– Feature extraction: the features represent the speaker specific 
characteristics in the speech waveforms such as spectral envelope, intensity, 
F0 and aperiodic components which are used at each instant t, to represent 
both vocal tract and source excitation characteristics. For silent speech, i.e 
NAM or whisper, source excitation information is not included because it is 
uttered without the vibration of the vocal folds, but multi-frame 
representations of spectral envelope and intensity can be used to 
characterize silent speech signal to take into account context variation. 

– Transformation: (a) In the training phase, the system uses aligned samples 
of source and target features to estimate a transformation function. (b) In 
the transformation phase, the estimated function is used to map the source 
acoustical characteristic to the target one. This can be seen as a quantization 
or optimization process that estimates the most probable speech signal 
given the source signals and an a priori joint model of the source and target 
features. 

– Speech synthesis: i.e. a speech vocoder which converts acoustical 
characteristics obtained by the mapping function to speech samples. 

Figure 1.12 shows a general framework for voice conversion with basic building 
blocks. 
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Figure 1.12. Voice conversion framework. 

1.4.1.2 Vector quantization based voice conversion 

One of the first voice conversion system based on mapping codebooks or vector 
quantization (VQ) was proposed by Abe et al. (1988). In this approach, the 
codevectors of a source codebook (speaker A) is mapped to the correspondent 
codevectors of a target codebook (speaker B). The mapping of the codebooks is 
constructed by first vector-quantifying frame by frame the source and target 
features from a learning word set. A Dynamic Time Warping (DTW) algorithm is 
then used to determine the correspondence between vectors of the same words for 
the two speakers. Finally, these vector correspondences are accumulated as 
histograms. The mapping codebook is defined as the linear combination of the 
target codevectors, using the histogram as a weighting function. 

By using this approach with LPC parameters as the spectral characteristics and by 
using a LPC vocoder, Abe et al. (1988) showed that the distortion between the 
converted vector and the target vector decreased by 23% compared to non 
conversion for a female-to-female conversion task, by 45% for a male-to-male and 
by 64% for a male-to-female conversion. However, a basic problem with this 
approach lies in the discontinuities in the speech signal because the parameter 
space of the converted spectral envelope is discretized. Several solutions were 
investigated to overcome this shortcoming of the VQ-based approach, for example 
fuzzy VQ (Kuwabara and Sagisaka, 1995; Arslan, 1999). In this variation, the input 
vector is represented as a combination of several neighbouring codevectors instead 
of being only the nearest one. Thanks to this representation, the discontinuities in 
the feature space reduce and therefore the quality of the synthesized speech 
improves. 

1.4.1.3 Voice conversion using Linear Multivariate Regression 

Another approach to derive spectral transformations, borrowed from the speech 
recognition domain, is Linear Multivariate Regression (LMR), first proposed by 
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(Valbret et al., 1992). The basic idea of this method is that an optimal 
transformation should depend on the acoustical characteristics of the sound to be 
converted. In this method, first, the extracted spectral envelopes, i.e. cepstral 
coefficients, from the source and target signals are first time-aligned by Dynamic 
Time Warping (DTW) technique. The next step is to partition the acoustic space of 
the source speaker into non-overlapping classes by means of a standard vector 
quantization in order to decrease the mapping complexity. The overall mapping is 
approximated by a finite set of elementary transforms, each of them being 
associated with a class. The LMR consists therefore in finding the optimal linear 
transformation, that is, for each class q, the matrix Pq which minimizes a “mean 
square” error between the set of source vectors and the set of target vectors. 
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is the total number of vectors in the qth class, xn,q and yn,q with n = 1, …, Mq are the 
set of source and target vectors belonging to the qth class. For any source vector 
xn,q belonging to the class q, the transformed vector is given by: 
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This technique tries to move the formants from their initial positions towards their 
positions in the target space, but their amplitudes and their band-width are not well 
preserved. Moreover, the “hard” classification in this method introduces undesired 
discontinuities in the converted spectra. 

1.4.1.4 Voice conversion using Dynamic Frequency Warping 

The same transformation method as LMR is Dynamic Frequency Warping, 
proposed in the same study by Valbret et al. (1992). While LMR operates on the 
vector of cepstral coefficients, on the other hand, DFW directly operates on the 
spectral envelope. The aim of this method is to obtain an optimal non-linear 
warping function of the frequency axis to simulate changes of speaker 
characteristics. The DFW is therefore closely related to the acoustic theory of 
speech production, in the sense that changes in vocal-tract length produce a non-
linear transformation of formant frequencies (Valbret et al., 1992). Each pair of 
source and target log-magnitude spectra is first computed. Their spectral tilts are 
estimated to eliminate the glottal effects by fitting the envelope with a linear 
function of frequency, using a least-square regression line. Then, a dynamic 



Silent speech interfaces and silent-to-audible speech conversion                           39 

 

frequency warping algorithm is applied between each source and target residuals, 
the log-magnitude spectrum minus the spectral tilt. The number of warping 
functions is equal to the number of pairs of source-target spectral vectors within the 
class. In (Valbret et al., 1992), the authors showed that the warping functions 
obtained for vectors belonging to the same class look rather similar and very few 
paths deviate from the main “beam”. To avoid artifacts, they worked out a median 
warping function. The experimental results showed that LMR performs slightly 
better than DFW. The spectral envelope transformed by LMR is much closer to the 
target envelope than the one transformed by DFW. In particular, DFW can only 
move formant position without modifying their amplitudes, whereas LMR is able 
to cope with both formant frequencies and amplitudes. Also, the LMR converted 
speech is most often judged closer to the target speaker than the DFW converted 
speech (Valbret et al., 1992). 

1.4.1.5 Voice conversion by speaker interpolation 

Iwahashi and Sagisaka (1994, 1995) stated that suitable constraints on speech 
spectrum consistency were not used in voice conversion based on spectral mapping 
techniques, such as VQ codebook mapping (Abe et al., 1988), linear multivariate 
regression and dynamic frequency warping (Valbret et al., 1992). Moreover, a 
large amount of spectrum data from the target speaker is needed. In the case when 
it is not possible to extract such large amounts of data, these methods do not work 
well. They proposed another technique for spectrum transformation by using 
speaker adaptation method which only needs a small amount of spectrum data to 
model the target speaker’s spectral characteristics. The spectrum data of utterances 
spoken by a moderate number of speakers is pre-stored. In this system, after the 
spectrum sequences of the same utterance by multiple speakers are time-aligned by 
DTW, the interpolation is carried out between these time-aligned spectrum 
sequences by the following transformation: 
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Here, xkij represents the jth spectral parameter of the ith frame in a DTWed 
utterance of the kth speaker. M is the number of pre-stored speakers, the wk is the 
interpolation ratio for kth speaker. Yij represents the jth spectral parameter of the ith 
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frame of the generated spectrum. The optimal interpolation coefficients w1, w2, …, 
wM between pre-stored speakers are determined by minimization of the function: 
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where yi represents the spectral vector of the ith frame of the spectrum of the target 
speaker. N is the number of the training samples. This minimization is done by 
solving normal equations. 

Their experiment was carried out by using this adaptation method. The number of 
pre-stored speakers was 4 (2 females and 2 males). The interpolation ratio was 
determined by only one Japanese word, spoken by the 16 target speakers (8 
females and 8 males). The distance between the spectrum of the target speaker and 
the one generated by the interpolation was calculated for 64 words. The authors 
reported that the distortion between the interpolated spectrum and the target one is 
reduced by about 35% compared with the distance between the spectrum of the 
target speaker and the spectrum of the pre-stored speaker closest to the target. 
Moreover, to obtain more precise adaptation by using a larger amount of training 
data, the transformation was represented by multiple interpolating functions in their 
later work (Iwahashi and Sagisaka, 1995). The multiple functions’ outputs are 
weighted-summed, using weighting values given by a Radial Basis Function 
network (RBF). Using 10 training words, the reduction rate increased to 48% by 
this multi-functional transformation. 

A derived method of the speaker interpolation, called Eigenvoices Conversion 
(EVC), was recently proposed for loosening the parallel training data constraint in 
conventional voice conversion system (Toda et al.,2006, 2007; Ohtani et al., 2009). 
EVC may be used to convert a source speaker’s voice to arbitrary target speakers’ 
voices. A canonical eigenvoice GMM is first trained by using multiple parallel data 
sets consisting of utterance pairs of the source and multiple pre-stored target 
speakers. Then the speaker individuality of the converted speech can be flexibly 
controlled thanks to this conversion model by manually setting weight parameters. 
The optimum weight set for a specific target speaker is estimated using only speech 
data of the target speaker without any linguistic restrictions. In their experiments 
(Toda et al., 2006), the authors found that EVC outperforms the conventional 
GMM-based system trained by parallel data when using a small amount of training 
utterances because EVC effectively uses the information extracted from a lot of 
pre-stored speakers as a prior knowledge. However, the performance of EVC is not 
significantly changed when the number of training utterances increases due to the 
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constant model complexity. Consequently, the performance of the conventional 
GMM-based VC is better than the one of the EVC when using dozens of target 
utterances. 

1.4.1.6 GMM-based voice conversion 

Gaussian mixture model 

As explained in (Stylianou et al., 1995), a Gaussian mixture density is a weighted 
sum of Q components densities modelled by normal distribution (Gaussian), and 
given by the equation 
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The conditional probability of a GMM class q given x is derived by direct 
application of Bayes’s rule 
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The Gaussian mixture model (GMM) is a classic parametric model used in many 
pattern-recognition techniques (Duda et al., 2000) and other speech application 
such as speaker recognition (Reynolds and Rose, 1995) or source separation 
(Zhang et al., 2005). In the GMM context, a speaker’s voice is characterized by Q 
acoustic classes representing some broad phonetic events, such as vowels, nasal or 
fricatives. The probabilistic modelling of an acoustic class is important since there 
is variability in features coming from the same class due to variations in 
pronunciation and co-articulation. Thus, the mean vector qμ  represents the average 

features for the acoustic class qw , and the covariance matrix qΣ  models the 

variability of features within the acoustic class (Stylianou et al., 1998). 
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The GMM parameters { }, ,α μ Σ  are estimated by Expectation Maximization (EM) 

algorithm (Dempster et al., 1977). EM is an iterative method for parameters 
estimation by maximizing the likelihood function. In the case of Gaussian mixture 
densities, each iteration implies two successive stages: 

Expectation: 
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Calculate the conditional probability that each observation xt is generated by class 
q. 

Maximization: 

The prior probabilities ˆqα  are re-estimated in each iteration by the mean of the 

posterior probabilities Pr( | )tq x : 
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The means and the covariance matrices are respectively re-estimated by the means 
and the covariance matrices of the observations balanced by the posterior 
probabilities. 
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In these equations, N indicates the number of observations in the training data. 

The widespread use of the EM algorithm stems from the facts that it guarantees a 
non-decreasing likelihood function after each iteration and that it provides a 
general yet powerful framework capable of dealing with many complicated 
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estimation problems (Redner and Walker, 1984). However, the EM algorithm may 
converge towards one local optimum. In practice, the initialization of the EM 
algorithm is particularly important and vector quantization is usually chosen for 
this task. The iα  are proportionally initialized with the number of vectors in each 

class while iμ  and iΣ  are initialized by the means and the empirical variances of 

the vectors in each class. 

Using Gaussian mixture model for conversion 

Voice conversion is considered as a regression process between two voices. 
Regression analysis is a statistical tool for the investigation of relationships 
between variables. Usually, the investigator seeks to ascertain the causal effect of 
one variable upon another. To explore such issues, the investigator assembles data 
on the underlying variables of interest and employs regression to estimate the 
quantitative effect of the causal variables upon the variable that they influence. 

The goal in conversion is to estimate a mapping function which makes it possible 
to establish the relation between source and target feature vectors. In (Stylianou et 
al., 1995), the source feature space was “softly” classified by a GMM distribution. 
Then, parameters of this model were estimated by solving normal equations for a 
least-squares problem based on the correspondence between source and target 
features. By using cepstral distortion between the converted speech and target 
speech as a objective criterion, the authors demonstrated that a GMM is more 
efficient and robust than a VQ-based technique. In their later study (Baudoin and 
Stylianou, 1996), the authors concluded that a GMM is as good as or better than 
other approaches, such as ANN, VQ and Linear Multivariate Regression (LMR). 

Kain and Macon then proposed to improve the GMM method by studying the use 
of GMMs for regression (Kain and Macon, 1998a,b,c). The authors stated that 
modeling the joint density rather than only the source density can lead to a more 
judicious allocation of mixture components and avoids certain numerical problems 
when inverting large and possibly poorly conditioned matrices (Kain, 2001). 

Although the performance of GMM-based method dominates other approaches, 
Toda et al. (2005) stated that there are two important issues must be further 
considered. The first issue, related to the spectral discontinuities, was alleviated by 
considering the correlation between frames by applying a parameter generation 
algorithm with dynamic features. This generation algorithm was first proposed by 
Tokuda et al. (2000) for the HMM system and could be easily adapted to the 
GMM-based mapping (Toda et al., 2005). The second issue is the over-smoothing 
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of converted spectra, which is inevitable in the conventional ML-based parameter 
estimation. The authors stated that removed variance features are regarded as a 
noise in modelling acoustic probability density. This smoothing causes error 
reduction of the spectral conversion but also causes the degradation of the 
converted speech quality because those removed features are still necessary for 
synthesizing high-quality speech. This problem was addressed by taking into 
account of the global variance of the converted spectra in each utterance during the 
training by a normal distribution (Toda et al., 2005). 

1.4.1.7 Voice conversion by neural networks 

Vocal tract shape between two speakers is non linear and hence, non-linear 
Artificial Neural Networks (ANN) based method could be used for this mapping. 
Narendranath et al. (1995) proposed a system where transformation function of 
formants is modeled by a neural network with one input layer (3 nodes), two 
hidden layers (8 nodes) and an output layer (3 nodes). Five pairs of speakers are 
considered in their experiment, each pair consisted of a male and a female speaker. 
Only speech data of 5 vowels /i/, /e/, /a/, /o/, /u/ in isolated utterances from each of 
5 pairs of speakers is collected. The first three formants were then extracted using a 
method based on minimum phase group delay functions (Murthy and 
Yegnanarayana, 1991). For training, 50 sentences with nearly 500 pairs of formants 
were used. The formant values (F1-F3) corresponding to the source speaker (male) 
were given as the input of this network. The desired output was the formants 
extracted from the corresponding frame of speech of the target speaker (female). 
The weights were adjusted using the backpropagation algorithm until the weights 
converge. The results showed that the reduction rate of the distortion between 
generated formants and target formants depends on the vowel. A reduction rate of 
67% was found for the first formant for vowel /i/ and /a/ whereas only 35% for the 
vowel /o/. The reduction rate for the second formant was 68% for the vowel /e/ and 
25% for the vowel /o/ and /a/. A reduction rate for the third formant was also 
achieved 76% for vowel /u/ and 55% for /a/. 

In another work of Watanabe et al. (2002), the authors proposed to use a Radial 
Basis Function networks to map the spectral envelope from one speaker to another. 
16 LPC coefficients of a phoneme uttered by the source and target speaker are 
chosen as the input vector and target vector for training their system. In the 
conversion phase, the source speech signal is analyzed into both the LPC spectral 
envelopes and the LPC residual signals. The transformed LPC spectral envelopes 
by the trained RBF is combined with residual signals. The converted speech, 
matched the average of F0 to that of target’s F0 using TD-PSOLA technique 
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(Moulines and Laroche, 1995) is finally produced. The experiment results of the 
five Japanese vowels (/a/, /i/, /u/, /e/, and /o/) showed that the proposed system 
reduces by around 87% average cepstrum distances between the converted speech 
and the target speech comparing with the one between source and target speech. 
The listeners in their subjective test also considered the converted speech closer to 
the target speaker than to the source speaker around 78% times for male-to-male 
and 76% times for female-to-female conversion respectively. 

In the recent work of Desai et al. (2009), the authors stated that the techniques 
proposed by Narendranath et al. (1995) and Watanabe et al. (2002) needed to used 
a tedious task of carefully preparing training data which involved manual selection 
of vowels or syllable regions from both the source and target speaker. In their 
proposed system, the spectral envelopes of the source and target are characterized 
by 25 mel-cepstral coefficients. These two parameters are automatically time-
aligned by a DTW. Various ANN architectures are experimented to find an optimal 
one. They concluded that the one with 25 nodes for input and output and two 
hidden layers (50 nodes for each one) revealed the best results. Moreover, both 
objective test and subjective test showed their system is better than broadly-used 
GMM-based system. 

1.4.2 Combination of speech recognition and speech 
synthesis 

The combination consists in plugging a speech synthesis system to a speech 
recognizer. The generation is quite straight forward: the recognizer segments the 
speech flow into phonemic units using both signal-dependent information and a 
more or less sophisticated language model. A standard speech synthesis system 
then converts this phonetic string into a synthetic voice either using the pre-
recorded modal voice of the speaker or built-in available resources. The 
performance of such a system is mainly dependent on the recognition performance: 
correct recognition will result in a perfect reconstructed speech while recognition 
failures or inadequate language models result in drastic degradations (Denby et al., 
2009). 

In this framework, concatenative synthesis or HMM-based speech synthesis can be 
used to generate speech sound (Hueber et al., 2008, 2009). But in our work, HMM-
based speech synthesis as described in (Tokuda et al., 2000) is chosen because this 
system allows the voice characteristics, speaking styles, emotions can be easily, 
parametrically controlled and could bring a more intimate coupling between speech 
recognition and synthesis components than the diphone-based concatenative 
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system. We concentrate here on some studies of such synthesis system after a brief 
introduction of HMM. 

1.4.2.1 Hidden Markov Models 

As described in (Rabiner, 1993), a Hidden Markov Model (HMM) is a stochastic 
technique for the study of the complete-incomplete data problems associated with 
time series. It is well suited to the incorporation of temporal information. The 
HMM based system is supposed to be a Markov process with unknown parameters. 
The challenge is thus to determine these parameters starting from other observable 
parameters. Then, the extracted parameters can be employed for pattern 
recognition. Historically, the Hidden Markov Models were introduced in 1960-70 
by Baum and collaborators. They were then used in speech recognition systems as 
from the 80s and were applied afterwards in other fields such as the bio-
informatics, artificial intelligence, gesture recognition … 

Definition of a Hidden Markov Model 

As described in (Huang X.D. et al., 1990), a HMM model is defined as a set of 
states, each one of them associated with a probability distribution. The transitions 
between the states are controlled by a set of probabilities called transition 
probabilities. In a particular state, observations can be generated/observed in 
accordance with the associated probability distribution. In opposition to a regular 
Markov model where the state is directly visible by an external observer, in a 
HMM model, the state is not directly visible, but state-dependent observations are 
visible. The state sequence through which the model passes is thus hidden. 

An HMM can be defined by the following elements: 

– T = length of the observation sequence, O1, O2, …, OT 

– N = number of states in the model. 

– L = number of observation symbols. In the case where the observations are 
continuous, L is infinite. In this notation, v = {v1, v2, …, vL} is a discrete set 
of symbol observations. Ot belongs to one such observation symbol. 

– S = {s}, a set of states (A state can be considered to possess some 
measurable, distinctive properties of events). For simplicity, state i at time t 
may be denoted by st = i when ambiguity does not exist. 
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An HMM thus can be represented by using the compact notation ( , , )A Bλ π= . 
Specification of an HMM involves the choice of the number of states, N, the 
number of discrete symbols L, and specification of three probability densities with 
matrix form A, B and π . 

In the HMM theory, three assumptions are made for a simple mathematical model: 

– Markov chain hypothesis: concerning the definition of the transition matrix 
A, the probability dependence is truncated to just the preceding state. 

– Stationary hypothesis: the state-transition probabilities is independent of 
time, that is 

1 1 2 21 1 1 2Pr( | ) Pr( | ) ,t t t ts j s i s j s i t t+ += = = = = ∀                    (1.13) 

– Independence hypothesis of output observations: the current observation is 
statistically independent of the preceding observations. Mathematically, this 
assumption can be formulated for a HMM λ  by: 
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Basic algorithms for HMMs 

Given the definition of HMMs, there are three key problems (Rabiner, 1989).  

– Problem 1: Compute the probability Pr( | )O λ  that the observed sequence 

1 2, ,..., TO O O O=  was produced by the model ( , , )A Bλ π= . 

– Problem 2: given the observation sequence O and the model ( , , )A Bλ π= , 
determine what is the most likely state sequence 1 2, ,..., TS s s s=  according 
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to some optimality criterion. This problem can be solved by Viterbi 
algorithm. 

– Problem 3: given the observation sequence O, how do we adjust the model 
parameters ( , , )A Bλ π= to maximize Pr( | )O λ . 

Problem 1 is the evaluation problem. Given a model and a sequence of 
observations, how do we compute the probability that the observed sequence was 
produced by the model or we can also view the problem as one of scoring how well 
a given model matches a given observation sequence. This problem can be solved 
by Forward-backward algorithm. 

Problem 2 is the decoding problem in which we attempt to uncover the hidden part 
of the model, i.e., to find the as “correct” as possible state sequence. The choice of 
criterion for this problem is a strong function of the intended use for the uncovered 
state sequence. The decoding problem is solved by the Viterbi algorithm (see 
annex) 

Problem 3 is the estimation problem in which we attempt to optimize the model 
parameters so as to best describe how a given observation sequence comes about. 
The observation sequence used to adjust the model parameters is called a training 
sequence. The training problem is the crucial one for most applications of HMMs, 
since it allows us to optimally adapt model parameters to observed training data – 
i.e., to create best models for real phenomena. This problem is solved by the Baum-
Welch method or equivalently by the EM method (Dempster et al., 1977). 

1.4.2.2 HMM-based speech synthesis 

Speech synthesis research aims to tackle both the two characteristics: naturalness 
and intelligibility of the generated speech. Naturalness describes how closely the 
output sounds like human speech while intelligibility is the ease to understand of 
the output signal. Building such a system has evolved in the last two decades from 
a knowledge-based (or rules-based) approach to a data-driven one (Zen, Tokuda 
and Black, 2009). High-quality synthetic voices may be built from sufficiently 
single speaker databases of natural speech rather than using each phonetic unit and 
its applicable contexts. Such system first proposed by Moulines and Charpentier, 
(1990), called diphone system. The diphone synthesis uses a minimal speech 
database containing all the diphones (one example for each diphone) occurring in a 
language and the number of diphones depends on the phonotactics of each 
language. Then, more general, but more resource consuming, techniques of unit-
selection synthesis where appropriate sub-word units (individual phones, diphones, 
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syllables, words, phrases and sentences) are automatically selected from large 
databases of natural speech were proposed. Although these techniques have 
evolved to become the dominant approach, provide the greatest naturalness because 
they apply only a small amount of digital signal processing, there are still some 
limitations. When a required sentence needs phonetic and prosodic contexts that 
are under-represented in a database, the quality of the synthesizer can be severely 
degraded. These events occur frequently and a single bad join in an utterance can 
destroy the listeners’ flow. Maximum naturalness typically require unit-selection 
speech databases to be very large, ranging into the gigabytes of recorded data, 
representing dozens of hours of speech (Kominek and Black, 2003). Moreover, as 
there is usually very few modifications to the selected pieces of natural speech , the 
output speech has the same style as the original recordings. With the need for more 
control over speech variations, larger databases containing examples of different 
styles are required. Unfortunately, this task is very difficult and costly (Black, 
2003). 

 

Figure 1.13. HMM-based speech synthesis system (HTS) 

In contrast to the unit-selection synthesis which try to preserve the natural speech 
units from a pre-recorded database as much as possible, HMM-based speech 
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synthesis generates the average of some sets of similarly sounding speech 
segments. In (Zen et al., 2009), the authors stated that although the best examples 
of unit-selection synthesis seem to be better than the best examples of statistical 
parametric synthesis, it appears that the quality of statistical parametric synthesis 
has already reached a level where it can stand in its own right. Moreover, 
parametric models offer other benefits related to their flexibility in changing voice 
characteristics, speaking styles and emotions of output speech. Figure 1.13 shows 
the schematic overview of a HMM-based speech synthesis system. 

In a statistical parametric synthesis system, parametric representations of speech 
including spectral and excitation parameters are extracted from a speech corpus and 
then are modelled by using a set of generative models (e.g., HMMs). The 
parameters of these models are usually estimated by a Maximum Likelihood (ML) 
criterion as presented following: 

ˆ arg max{ ( | , )}p O W
λ

λ λ=                                      (1.15) 

where λ  is a set of model parameters, O is a set of training data, and W is a set of 
word sequences corresponding to O. Speech parameters o, are then generated for a 
given word sequence to be synthesized, w, from the set of estimated models, λ̂ , to 
maximized their output probabilities as 

ˆˆ arg max{ ( | , )}
o

o p o w λ=                                        (1.16) 

Finally, a speech waveform is generated from the parametric representations of 
speech. HMMs have been widely used for these representations. A HMM-based 
speech synthesis consists of training and synthesis parts (Zen et al., 2004, 2009) as 
presented in the figure 1.13. 

– The training part performs the maximum likelihood estimation of Eq. (1.15) 
by using EM algorithm (Dempster et al., 1977). The main difference 
between this training part and a speech recognition is the input features. In 
fact, in addition to the spectrum (e.g., mel-cepstral coefficients and their 
dynamic features) parameters, the excitation (e.g., logF0 and its dynamic 
features), usually ignored in the speech recognizer, is also extracted from a 
database of natural speech. Both of these parameters are modelled by a set 
of multi-stream (Young et al., 2006) context-dependent HMMs. Another 
difference is that linguistic and prosodic contexts are really taken into 
account in addition to phonetic ones (Tokuda et al., 2008). 
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– The synthesis part performs the maximization of Eq. (1.16). This can be 
viewed as the inverse operation of speech recognition. First, a given word 
sequence is converted into a context-dependent label sequence, and then the 
utterance HMM is constructed by concatenating the context-dependent 
HMMs according to the label sequence. Second, the speech parameter 
generation algorithm proposed by Tokuda et al. (2000) generates the 
sequences of spectral and excitation parameters from the utterance HMM. 
Finally, a speech waveform is synthesized from the generated spectral and 
excitation parameters using excitation generation and a speech synthesis 
filter. 

Although the current performance of HMM-based speech synthesis using MLE 
criterion is quite good, two important issues are needed to solve for the training 
phase. The first issue is the inconsistency between the training and the synthesis 
phases. The MLE criterion only evaluates the model’s pertinence to the data in the 
likelihood sense which does not reflect the final distance between the generated 
parameters and the target vectors. The second issue is the mutual constraint 
between static and dynamic features. These constraints are considered in only 
parameter generation while they are ignored in the training phase. The two issues 
above were both resolved by a trajectory model proposed by Tokuda et al. (2004) 
which can explicitly model the inter-frame dependencies and hidden dynamics in 
speech signal. Although this proposition implied the minimization of the error 
between training and generated data, the HMM training is still under the MLE 
framework, which cannot actually resolve the first issue. Wu et al. (2006) then 
proposed a reformulated training procedure for HMM parameters estimation by 
using Minimum Generation Error (MGE) criterion. In their experiments, the author 
showed that the synthesized speech by using MGE criterion is more natural than 
the one generated by MLE-based system (85.7% and 14.7% respectively in 
preference score). 

 

1.5 Summary 
Silent speech is a natural way that speakers use to tell private, confidential 
information. However, traditional speech interfaces seem to be inefficient or even 
incapable to capture this type of speech. As a result, a number of Silent Speech 
Interfaces (SSI) have been proposed to capture different type of multimodal signals 
delivered during the silent speech production such as EEG for cerebral activities, 
EMG for muscle activities, EMA, Ultrasound for articulatory movements or NAM 
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microphone for speech transmitted through the soft tissue of the speaker's face. 
From the signals captured by these interfaces, some mapping techniques have been 
used to generate audible speech, i.e. direct signal-to-signal mappings borrowed 
from speaker transformation for Text-to-Speech (TTS) system (including VQ-
based, LMR, DFW, speaker interpolation, ANN and GMM mapping) or chaining 
speech recognition and speech synthesis in order to benefit from linguistic 
knowledge. 

In the purpose of silent telecommunication, non audible murmur and whisper, do 
contain some acoustic information (compared with inner speech, for instance). 
Therefore, a condenser NAM microphone seems to be better than other interfaces, 
including EMG, EMA, Ultrasound and EEG, because of its usability and its 
directly familiar acoustic signal (compared with electromagnetic, electric or 
imagery signals). This is why we focus on the NAM microphone as one of the 
promising devices. 

In the next chapter, we concentrate on some production and perception 
characteristics of whisper, one type of silent speech, which is used in this thesis. 
Taking these characteristics into account could be useful for the realization of a 
silent speech-to-audible speech conversion system. 
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Chapter 2 

Whispered speech 
 

2.1 Introduction 
In chapter 1, I have presented some capture interfaces for silent speech and an 
overview of the techniques used to convert silent or whispered speech to phonated 
speech. This chapter concentrates on the characteristics of whispered speech, a kind 
of silent speech that I used for my work at GIPSA-Lab. To date, many studies on 
the differences between whispered speech and phonated speech have been 
presented in the literature from different angles such as from the point of view of 
production theory, perception theory and more recently from the use of 
computerized speech to develop new communication interfaces between humans 
and machines. The goal of this chapter is to review some interesting studies on 
whispered speech in literature. 

In this chapter, section 2.2 briefly summarizes basic mechanisms of the human 
speech production system. The specific production of whispered speech is 
presented in section 2.3. Section 2.4 describes the acoustic differences between 
whispered speech and phonated speech. Section 2.5 reviews previous studies on 
perceptual characteristics of whispered speech: “pitch-like” perception in the 
absence of vocal folds vibration, intelligibility and speaker identification. Finally, 
section 2.6 concentrates on the contribution of visual cues as complementary 
information for speech intelligibility, especially in the case of whispered speech 
where very little acoustic information is available. 

 

2.2 The speech production system 
The speech apparatus is divided into the organs of phonation (source voice 
production, at the laryngeal or glottal level) and articulation (settings of the 
supralaryngeal or supraglottal speech organs). The phonatory organs (lungs and 
larynx) create voice source sounds by setting the driving air pressure in the lungs 
and parameters for vocal fold vibration at the larynx. The two organs together 
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adjust the pitch, loudness, and quality of the voice, and further generate prosodic 
patterns of speech (Honda, 2007). The articulatory organs (lower jaw, tongue, lips, 
and the velum) give resonances or modulations to the voice source and generate 
additional sounds for some consonants. The larynx also takes a part in the 
articulation of voiced/voiceless distinctions. The tongue and lower lip attach to the 
lower jaw, while the velum is loosely combined with other articulators. The 
constrictor muscles of the pharynx and larynx also participate in articulation as 
well as in voice quality control. The phonatory and articulatory systems influence 
each other mutually, while changing the vocal tract shape for producing vowels and 
consonants. Figure 2.1 shows a schematic drawing of the speech production 
system. 

 

Figure 2.1. Human speech production system (Honda, 2007) 

Speech production process is initiated by the compression of the lungs which 
induces a stream of air which flows through the windpipe and throat and escapes 
through the oral and nasal cavities. In the case of voiced sounds like /a/ and /e/, the 
air flow sent from the lungs passes through an cyclically opened passage in the 
vocal folds, whose vibration causes that air flow to be converted into cyclic puffs 
of air that then become sound. In the case of unvoiced sounds like /s/ and /f/, the air 
flow then passes through a narrow space formed by the tongue inside the mouth, a 
turbulent flow of air is produced, and this is emitted as a noise-like sound. 
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When we speak, we move our lower jaw, tongue, and other parts of our mouth; in 
fact, this changes the shape of the vocal tract and this in turn enables us to control 
sound resonance characteristics (Honda, 2007). 

The observations on different type of sounds that the human speech production 
mechanism is able to produce have led to a generalized model of speech 
production: The speech waveform is modelled as the output of a time-varying all-
pole filter driven by the source component. The source component is the glottal 
waveform, noise or a mixture of two. This model is known as the source-filter 
model of speech production (Stevens, 1998). This view of speech production is 
very powerful because it can explain the majority of speech phenomena. In the 
distinctions of the model, the source or excitation waveform accounts for the 
physiological sound sources. For example, aspiration and frication noise can be 
modelled as random processes, plosion as a step-function, and voicing as a pulse 
train. The excitation waveform can be classified into an unvoiced and a voiced 
signal, which can be modeled as either a random signal or an impulse-train with 
varying F0 (fundamental frequency), respectively. Finally, the time-varying filter 
represents the contribution of the vocal tract shape by selectively attenuating 
certain frequencies of the excitation spectrum resulting in a speech spectrum with a 
particular spectral envelope and formant structure. 

 

2.3 Whispered speech production 
The main physiological characteristic of whisper lies in the configuration of the 
glottis and the epilarynx. The vocal folds are opened for whispering, thus turbulent 
flow produced when the air stream from the lungs is forced through this glottal 
constriction provides a source of sound. In normal speech, however, the vocal folds 
are cyclically opened and closed which produces quasi-periodic pulses of airflow. 
The source of whisper, therefore, is the aperiodic noise rather than quasi-periodic 
voice due to the lack of quasi-periodic airflow. By comparing the respiratory and 
laryngeal functions between whispering and normal speaking, the authors in (Hoit 
and Hixon, 1987) found that whispering has lower lung volumes, lower tracheal 
pressures and lower laryngeal airway resistances than speaking, but that whispering 
has higher translaryngeal flows. Tsunoda et al. (1991) made a physiological 
measurement of the laryngeal shape during whispering by using magnetic 
resonance imaging (MRI) and found that the supra-glottal structures were not only 
constricted but also shifted downward, attaching to the vocal fold to prevent vocal 
fold vibration. Another study by Matsuda and Kasuya (1999) used a laryngeal 
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endoscope inserted through the nasal tract of the subject to observe the laryngeal 
structure during the whispering of the five Japanese vowels /i/, /e/, /a/, /o/, and /u/ 
(Figure 2.2), the author concluded that there are two major differences between the 
modal voice and whisper: In whisper, 1) the supra-glottal structure is constricted in 
the false vocal fold regions and the vocal folds are covered by the false folds; 2) the 
glottis is opened to a slight extent. In this study, a three-dimensional vocal tract 
shape measurement from a magnetic resonance image (MRI) also showed the 
narrowing of the tract in the false vocal fold regions and weak acoustic coupling 
with the subglottal system. More specifically, the laryngeal sphincter mechanism is 
found to be a principal contributing physiological maneuver in the production of 
whisper, larynx rising is more evident in whispered tense vowels than lax vowels, 
and the tongue root is retracted in tense vowels also (Gao, 2002). 

 

Figure 2.2. Laryngeal structure of modal voice (left) and whisper (right) (Matsuda, 
1999) 

Recent research by Higashikawa et al. (2003) showed the role of lip kinematics in 
the production of whispered plosives (/p/ and /b/). The results revealed that the 
mean peak opening and closing velocities for /b/ were significantly greater than 
those for /p/ during whispered speech. No differences in peak velocity for either 
oral closing or opening were observed during voiced speech. Also, the maximum 
distance between the lips for oral opening for /b/ was significantly greater than for 
/p/ during whisper, whereas no difference was observed during voiced speech. 
These data supported the suggestion that whispered speech relies on a motor 
organization that is either altered or distinct from that used during normally voiced 
speech. 

Due to these differences in the generation mechanism, the acoustic characteristics 
of whispered speech are different from those of phonated speech. 
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2.4 Acoustic characteristics of whispered speech 
Due to the lack of vocal folds vibration in whispering, the most significant acoustic 
characteristic of whisper is the absence of fundamental frequency and consequent 
harmonic relationships (Tartter et al., 1989). Generally, exhalation is the source of 
excitation in whispered speech and the shape of the pharynx is adjusted so that the 
vocal cords do not vibrate. “Turbulent aperiodic airflow is therefore the only 
source of whisper, and it is a strong, ‘rich’, and hushing sound” (Catford, 1977). 

 

Figure 2.3. Waveforms of the signal in normal (top) and whispered (bottom) 
speech modes (Ito et al., 2005) 

The acoustic energy is created by turbulence at the constriction at the vocal folds 
and interaction of the flow with the ventricular folds and the epiglottis. The 
resulting speech is completely noise excited with 20 dB lower power than its 
equivalent phonated speech (Jovičić et al., 1996). Moreover, a study by Ito et al.. 
(2005) showed that unlike normal speech, the intensity of vowels is lower than that 
of consonants in the case of whispered speech. There is a significant reduction in 
the intensity of vowels and voiced consonants in the whispered speech compared to 
the phonated speech because there is no vibration of vocal folds during the 
production of voiced sounds in the whispered speech. However, the intensity for 
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unvoiced consonants is observed to be similar for normal and whispered speech. 
This phenomena can be observed clearly in the figure 2.3. 

Most studies of whispered speech focused on vowels, especially their formantic 
frequencies. The upward shift of the formant frequencies for vowels in whispered 
speech compared to phonated speech has been found for a long time ago (Thomas, 
1969, Kallail and Emanuel, 1984ab; Ito et al., 2005). The studies done by Kallail 
and Emanuel (1984a, 1984b) or recently by Ito (2005) revealed a similar results for 
whispered vowel formants, which showed that the formant shift was only strongly 
evident for F1 and larger for vowels with low formant frequencies. The boundaries 
of vowel regions in the F1-F2 plane were also found to be different for phonated 
and whispered speech (Eklund and Traunmuller, 1996). In another experiment of 
Jovicic (1998), which was performed with five Serbian vowels /i/, /e/, /a/, /o/ and 
/u/. A total of 10 speakers, 5 males and 5 females, sustained their production of 
each vowel in a normal (voiced) and whispered manner. Acoustic and articulatory 
analysis indicated that the first and second formant frequencies of whispered 
vowels /i/, /e/, /a/ and /o/ show shifts toward higher frequencies while all formants 
of whispered /u/ surprisingly shifts toward lower frequencies. The authors also 
showed that in all cases, the formant bandwidths are expanded and are nearly 
constant throughout the all formants and whispered vowels. 

There are also some studies on the difference between whispered and phonated 
consonants. Ito et al. (2005) found that the cepstral distances between phonated and 
whispered speech for vowels and voiced consonants are higher than those of 
unvoiced consonants. This means that the vocal tract characteristics of vowels and 
voiced consonants change more significantly in whisper relative to phonated 
speech than those of unvoiced consonants. Recent investigation of Jovičić and 
Šarić (2008) on Serbian consonants has a compatible result. They concluded that in 
intensity domain, all unvoiced consonants in whispered mode of articulation have 
almost unchanged intensity in comparison to phonated mode (the difference is 
maximum 3.5 dB). On the contrary, voiced consonants in the whispered mode were 
reduced in intensity by as much as 25 dB, as nasals and semivowels. Average 
intensity of whispered consonants is lowered by 12 dB in comparison to phonated 
ones, and does not depend on syllabic position inside the sentences. The authors 
also showed that the duration of consonants is prolonged by about 10% on average 
in whispered speech in comparison to phonated speech. More specifically, analysis 
of consonant duration in function of manner of articulation, along phonetic classes 
and subclasses, has showed that voiced consonants in whispering mode have 
prolonged duration (on average 15.3%) in comparison to unvoiced consonants (on 
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average 5.8%). They revealed that whispering of voiced consonants requires more 
articulation effort and a little more time to produce such articulation, in comparison 
to unvoiced consonants. The relative extension in duration of whispered consonants 
however depends on its position in the sentence. Jovičić and Šarić argued that the 
prolonged duration requires a higher precision in the motor control of vocal 
structures to produce an intelligible whispering. This is in agreement with the 
conclusion in (Rubin et al., 2006) which stated that whispering causes more trauma 
to the larynx than normal speech. The results in this study together with the results 
on formant differences in phonated and whispered mode of vowel articulation in 
other investigations in the literature, show a high level of prosodic feature 
preservation (such as intensity or duration) in whispering, which is the main reason 
for the high intelligibility in whispered speech (Jovičić and Šarić, 2008). 

 

2.5 Perceptual characteristics of whisper 

2.5.1  Pitch-like perception 

A question that has long puzzled speech scientists is how listeners identify the 
“pitch” speech sounds produced during whisper. Because of the lack of voicing, 
there is no fundamental frequency to guide listeners in their assignment of the 
whispered pitch. However, pitch is not a measure of fundamental frequency, but is 
defined as “that attribute of auditory sensation in terms of which sounds may be 
ordered on a musical scale” (Moore, 1997). From this definition, the study of pitch 
of whispered speech is valid and it is suggested that we are dealing with the pitch 
of something like noise bands. The purpose of this section is to clarify acoustical-
perceptual relationships in identification of “pitch” during whispered vowel 
production from several previous studies. 

Whispered pitch was initially explained by Von Helmholtz (1954) using the simple 
“listen-and-compare” method. In fact, he determined vowel resonances by listening 
to whispered vowels and by comparing the perceived pitches with some standard 
frequency source and assigned a single pitch to each of the whispered vowels. He 
concluded that the perceived pitches corresponded to typical values of the first 
formant frequency, F1, for the back vowels, and to typical values of the second 
formant frequency, F2, for the front vowels. Von Helmholtz’s experiments with 
whispered vowels indicate an association between the perceived pitches of the 
vowels and the formant frequencies. From these results, other studies then 
investigated whether listeners rely more heavily on the F1 or the F2 of the 
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whispered speech when identifying whispered pitch. Another study of Meyer-
Eppler (1957) revealed a different result by measuring the spectral characteristics 
of phonated and whispered German vowels on different pitch levels within a range 
of about a musical fifth (the subjects were asked to “sing” the first five tones of a 
diatonic scale: c, d, e, f and g). He found that subjective changes in pitch are 
apparently due either to movements of the third and higher formants (F1 and F2 
remaining constant) or to changes in the intensity of the vowels. Observation of the 
“singing” subjects reveals also their larynx to be raised at the “higher” vowels, 
indicating a narrowing of the glottal fissure. The study of Thomas (1969) was with 
the intention of finding some compatibility in these two widely divergent views of 
Helmholtz and Meyer-Eppler. In his experiments, listeners were presented nine 
whispered vowels /i,I,ε,oe,Λ,a,o,U,u/ pronounced by a male and a female speaker, 
then asked to adjust the frequency oscillator to match the whispered pitch. Thomas 
measured the formant frequencies F1 and F2 for each of these vowels and found 
that the frequencies associated with the perceived pitches of the whispered vowels 
closely approximated the frequencies of F2 for all of the vowels. These results are 
compatible with the findings of Von Helmholtz. In subsequent test in which the 
listeners were told to expect more than one pitch, two listeners identified additional 
pitches corresponding to F1 for the vowels /a/ and /o/ of both speakers. McGlone 
and Manning (1979) recorded the vowels /i,I,e,o,u/ spoken in /hV/ and /pVp/ 
contexts and found that listeners are more likely to rely on the resonance peak that 
arises from acoustical filtering in the portion of the vocal tract nearest to the lips 
(usually F2), even when the fundamental frequency, F0, was available in the voiced 
speech. Higashikawa et al. (1996) recorded whispered /a/ in three pitches: low, 
high, and ordinary. The correct order was found by a majority of the listeners (nine 
of the twelve speakers). The location of F1 rose significantly from low- to high- 
pitched whisper, and F3 was significantly higher in both the high and ordinary 
pitches than in the low-pitched whispers. The second formant frequency increased 
as well, but this was not statistically significant. In a follow-up study, male and 
female /a/ whispers were synthesized with the values of F1 and F2 shifted by +/- 
20, 40, and 60 Hz to simulate whisper pitch. Pitch perception was stronger when F1 
and F2 were moved together, and shifts in F2 created more perceptible changes in 
pitch than F1. The percentage of pitch matches also increased with the magnitude 
of the formant shifts (Higashikawa and Minifie, 1999). In a recent work on the 
perception of boundary tones in whispered Dutch (Heeren et Van Heuven 2009), 
the authors concluded that the second formant may convey pitch in whispered 
speech, and also that first formant and intensity differences exist between high and 
low boundary tones in both phonated and whispered speech. In their experiment, 
listeners were asked whether they were able to perceive the difference between 
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statements and questions as signalled by low and high boundary tones, 
respectively. Almost 79 % of the questions were correctly identified. This well-
above-chance result shows that the rising boundary tone can be conveyed 
prosodically in whispered speech. Another work also shows that although 
whispered speech typically does not involve any vocal fold vibration, laryngeal 
activity may however exist during whispered speech. 

From the physiological view, Coleman et al. (2002) have shown, using dynamic 
Magnetic Resonance Imaging, that larynx movements related to intonation changes 
(rising and falling pitch) can be observed in whispered speech. According to the 
authors this offers an explanation for perceived pitch in whispered speech: 
laryngeal movements modify the shape of the oral cavity, thus altering the vocal 
tract acoustics so that pitch changes can be inferred. Subvocal speech, such as the 
murmur that can sometimes be observed in hallucinating schizophrenic patients, 
has also been shown to be associated with laryngeal activity. Inouye and Shimizu 
(1970) reported increased EMG activity in speech-related muscles including 
laryngeal muscles (cricothyroid, sternohyoid, orbicularis oris, and depressor anguli 
oris) in 47.6% of the hallucinations of nine schizophrenic patients. These works 
suggest that whispered speech might carry information on laryngeal activity. This 
activity could be useful in the recovery of pitch because it could modify the shape 
of the oral cavity and hence be audible. Other sources of pitch information may 
exist. Zeroual et al. (2005) have shown with ultra-high-speed cinematography that 
whisper is associated with an anterior-posterior epilaryngeal compression and an 
abduction of the ventricular bands. These supraglottic changes may also be sources 
of information on pitch during whisper. 

2.5.2 Intelligibility 

Kallail and Emanuel (1984a,b) collected samples of phonated and whispered 
English vowels from male and female speakers. The vowels were /i, æ, Λ, a, u/. 
The listeners correctly categorized the phonated vowels over 80% of the time. 
Whispered vowels, however, were correctly identified at about a 65% rate. 

Tatters’ experiments had 6 speakers (three males and three females) who phonate 
and whisper 10 American English vowels in [hVd] context (Tatters et al., 1991). 
Results exceeded 80% average identification accuracy in whisper mode, 
approximately a 10% falloff in identification accuracy from normally phonated 
speech. When they used the same vowels as in Kallail and Emanuel’s experiment, 
the phonated and whispered accuracies were higher than the results noted by 
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Kallail. They concluded that the use of context from surrounding consonants makes 
this difference (Tatters et al., 1991). 

Another experiment of Tatters is about the consonants. They tested the ability of 
listeners to judge the voicing, place, and manner of articulation of whispered 
consonants. Place of a consonant is defined as the location of maximum 
constriction and can be categorized as labial, labio-dental, dental, alveolar, or velar. 
The different manners of articulation include stops, nasals, fricatives and glides. 18 
consonants /b, d, g, k, m, n, p, t, r, l, w, j, f, v, s, z, sh, zh/ were whispered in the 
nonsense consonant-vowel /a/ syllable: /Ca/. The overall accuracy of the 
identification by six listeners reached 64% while the majority of the errors occurred 
in the voicing decision (only 58% of accuracy for this task). 

2.5.3 Speaker identification 

The results of the experiments in the literature confirm the hypothesis that listeners 
are able to identify speaker sex from the isolated productions of whispered vowels. 
Schwartz and Rein tested the ability of ten listeners to determine speaker sex from 
whispered speech of /i/ and /a/. In their experiment, no errors were made in the 80 
identifications of speaker sex for /a/ and only 4 misidentifications were made of the 
80 stimuli for /i/ (Schwartz, 1968). They concluded that the primary acoustic cue 
that underlies the distinction appears to be the upward frequency displacement of 
the resonance peaks of the female vowels. In another investigation of the relative 
importance of the speaker’s laryngeal fundamental and vocal-tract resonance 
characteristics in speaker sex identification tasks from the isolated vowels /i, ε, æ, 
a, o, u/ recorded by 20 speakers (10 males and 10 females) (Lass et al., 1974), the 
authors found that the accuracy was 95% for voiced vowels, but this drastically 
dropped to 75% for whispered vowels. 

2.5.4 Multimodal speech perception 

The contribution of the vision of the speaker’s face in speech perception by humans 
is well known and has been well documented for a long time. Speechreading (or 
lipreading) is needed not only for hearing-impaired listeners (Schwartz et al., 2004) 
but also for non-impaired hearers when auditory speech is degraded due to the 
ambient noise or due to the need for privacy (i.e. silent speech), in order to 
compensate the auditory deficit (Sumby and Pollack, 1954; Summerfield et 
al.,1989; Benoît et al., 1994, 1998; Schwartz et al., 2002). Vision also helps when 
there is no noise, but the auditory signal is degraded because we listen to speech in 
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a foreign language, because the speech is pronounced by a non-native speaker or 
because the speech is semantically complex (Reisberg et al., 1987). 

In the early studies of Sumby and Pollack (1954), the authors tested the speech 
intelligibility in noise in two conditions: audio-only and audio with visual 
observation of the speaker’s facial and lip movements. The authors showed that 
when the speech signal was nearly inaudible and where only visual factors operated 
(S/N ratio of -30 db), the visual information contributed to about 40% of correct 
word perception for the 256-word vocabulary and to about 80% for the 8-word 
vocabulary. In contrast, under noise-free conditions, or clear speech in other words, 
there was little difference in the intelligibility scores associated with the two 
conditions. From that result, the authors concluded that under degraded acoustic 
conditions, visual and auditory modalities complement each other in the perception 
of speech and that the contribution of facial and lip movements becomes more 
important as the auditory perception is decreased. This conclusion was then 
reinforced by following studies by (Erber, 1969, 1975; Summerfield, 1979; 
MacLeod and Summerfield 1987; Benoît et al., 1998). These studies show that 
what has been masked by noise in the speech spectrum can be partly recovered by 
the visual perception of the lips, teeth and tongue shapes that determine the place of 
articulation of several consonants. In another study by Benoît et al. (1994), the 
authors claimed that the complementarity between auditory and visual information 
provided by the vocal tract gestures is highly dependent on the phonetic context. In 
their experiments, stimuli of VCVCV nonsense words consisting of three French 
vowels (/i/, /a/, /y/) and six French consonants (/b/, /v/, /z/, /Ζ/, /R/, /l/), were 
presented under both auditory and audio-visual conditions with white noise added 
at various signal-to-noise ratios. The results first show that the identification scores 
were higher in the audiovisual condition than in the auditory-alone condition, 
especially in noisy acoustic situations. Secondly, the intelligibility of the 3 vowels 
was found to be different according to the modality. In the auditory modality, /a/ 
was most intelligible, followed by /i/ and then by /y/. In the visual modality, the 
rounded-protruded vowel /y/ was most intelligible, followed by the open vowel /a/ 
and then /i/. Thirdly, the results showed that the auditory and audio-visual 
intelligibility of consonants were contextually affected by the three vowels. The 
consonants were better identified in the /a/ context, followed by /i/ then /y/. These 
results therefore support the hypothesis that vision and ausition complement eaxh 
other, at least in the discrimination of the 3 vowels /i/, /a/ and /y/.In another work 
by Dohen et al. (2004), the authors studied if the visual modality was also useful 
for the perception of prosody. More specifically, they tested whether the visual 
prosodic cues identified through an articulatory analysis were actually perceived 
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and could help listeners collect information about prosodic contrastive focus. In 
their experiment on reiterant speech, the stimuli consisted of sentences with a 
subject–verb–object (SVO) structure. They were recorded by a male speaker of 
French. Four contrastive focus conditions were studied: focus on each of the 
phrases (S, V or O) and broad focus. The results showed that a large jaw opening 
associated with a high opening velocity, a long phrase-initial lip closure and a post-
focal hypo-articulation appeared to be possible visual cues to the perception of 
contrastive focus on reiterant speech. Moreover, when the participants were asked 
to identify the focus condition with only visual modality, they perceived about 86% 
of correct answers on average. From these results, the authors concluded that the 
visual modality is relevant for the perception of contrastive focus in reiterant 
speech in French. In further studies with non-reiterant speech, the contribution of 
the visual modality in the perception of contrastive prosodic focus in French was 
confirmed (Dohen and Lœvenbruck, 2009a; Dohen, Lœvenbruck and Hill, 2009b). 

Note that, on the other hand, in the study of McGurk and MacDonald (1976), the 
authors showed that visual information may distort auditory perception if the 
acoustic and the visual cues are not coherent. It is a well known effect called the 
McGurk effect where an acoustic /ba/ stimulus dubbed onto a visual /ga/ stimulus 
is mainly perceived as /da/. Although this effect shows that the visual articulation 
must be well synchronized with the auditory stream to have a benefit for speech 
perception, it also shows that auditory and visual information are not processed 
(fully) independently but are integrated in the speech perception process. 

Overall, these studies suggest that it is important to develop application with virtual 
3D animated talking heads that are aligned with the auditory speech (Benoît et al. 
1998; Bailly et al., 2003; Beskow, 2003; Massaro, 1998; Ouni et al., 2007; Odisio 
et al., 2004).  

The studies on synthetic faces also showed that the intelligibility of the natural 
speech is increased when the generated facial animation are coherent and 
synchronized with the speech sounds (Brooke and Summerfield, 1983; Le Golf et 
al., 1996; Benoît et al., 1996). In the study by Benoît and Le Goff (1998), the 
authors compared the intelligibility scores obtained for visual stimuli, and audio 
alone stimuli under five conditions of acoustic degradation due to noise (Figure 
2.4). Three types of visual stimuli were tested: 3D lip movements (controlled by 
five parameters and animated 25 times per second), talking head synthesis and 
natural video recordings. eIn the case of severely degraded acoustic information, 
where the subjects do not have any chance to understand the message with the 
audio only modality (when SNR is -18 dB in the figure), all of the three types of 
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visual stimuli drastically improved the scores, with the natural video recordings 
best identified, followed by the synthetic talking head and then by the lips alone. 
Specifically, with the 3D lip model, the perception score is about a third of the 
intelligibility observed for the natural face that reaches 60% of correct scores. With 
the addition of one control parameter for chin position, the lip and face models 
together increase the correct perception to around two thirds of the intelligibility of 
the natural face (Benoît and Le Goff , 1998). 

 

Figure 2.4. Intelligibility scores compared across audio alone presentation of 
natural speech (A: bottom trace) and AV presentation of A + (from top to bottom): 
the front view of the original face; the face model; and the lip model. The lip and 
face models were controlled from measurements made from the speaker's face 
(Benoît and Le Goff, 1998). 

A parallel can be drawn with the subvocal visible speech that I presented in chapter 
1, where there is only visual articulation without any air emission. Although 
synthetic visual movements are less efficient than natural one, the subjects could 
use synthetic visual information to compensate for the loss or degradation of 
auditory data.  

This positive influence of synthetic visual cues will be exploited in our conversion 
from whispered to audible speech (chapters 4 and 5). 
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2.6 Summary 
This chapter presents some studies from both production and perception point of 
views in the literature of whispered speech. The major difference between 
whispered speech and phonated speech is the lack of voicing and pitch cues due to 
the absence of vocal folds vibration. However, the investigations in the literature 
suggest that whispered speech might carry information on laryngeal activity that 
could be used in the recovery of pitch from whispered speech. Note that this 
recovery is a difficult task and this is one of the main reasons that limit the quality 
of the speech generated from whispered or non-audible acoustic signals. 

This chapter also reviews the contribution of visual cues to speech perception. 
Facial movement information, when synchronized with speech sounds, enhances 
the intelligibility of speech in auditorily degraded environment, due to ambient 
noise or silent speech production. The promising contribution of facial movements 
when used as both input and output data in whisper-to-speech systems will be 
studied in next chapters. 
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Chapter 3 

Audio and audiovisual corpora 
 

3.1 Introduction 
The most crucial part of any machine learning system based on a statistical 
framework is the data. In the case of speech, the database consists in a collection of 
recorded sentences, phrases, words, syllables or other units. The general purpose of 
a speech corpus is to acquire adequate data (i.e. acoustic-phonetic information), to 
provide the necessary data for training and evaluating of speech systems. 
Depending on the specific aim of the system, one first has to determine what kind 
of information must be present in the corpus to be collected. In whisper-to-speech 
systems, the speech corpus must satisfy particular requirements. During training, an 
adequate amount of data must be available for the estimation of models that 
represent the mapping between parameters of whispered speech and parameters of 
phonated speech. During evaluation, a sufficiently large number of additional data 
must be available for subjective testing. 

In the design of the speech corpus for our whisper-to-speech system, four issues 
were at stake: database size, phonetic coverage, time alignment and multimodality. 

Database size 

The database size refers to the amount of data that is available in the two speech 
modes: whispered speech and phonated speech. In this thesis, the recording of only 
one speaker under studio conditions was used. In order to avoid fatigue of the 
speaker during the recording sessions, and thus guarantee voice quality, the number 
of sentences to be pronounced should not be too important. A trade-off was thus 
made between the minimum amount of data needed to build and test the models 
and the maximum number of utterances the speaker could produce. 

Phonetic coverage 

The phonetic coverage describes how effectively the speech utterances produced by 
the speaker “span” the space of possible speech sounds in the language, such as 
phonemes, diphones or triphones (Kain, 2001). 
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Time-alignment 

As described in (Kain, 2001), before training the mapping functions to be used in 
the whisper-to-speech conversion system (based on GMM), source (whispered 
speech) and target (phonated speech) features must be aligned in time to display 
similar phonetic features. A natural way to do this task is to have the speaker utter 
the same sentences in both whispered and phonated mode. The use of identical 
sentences maximizes the probability of a consistent transcription across modes of 
pronunciation (whisper and speech). Note however that such speech conversion 
systems do not always require such constraints (Mouchtaris et al., 2006; Toda et 
al., 2006; Ohtani et al., 2007). This approach ensures an accurate time-alignment of 
the training data with only a minimum of additional signal processing or with 
additional manual transcription of both whispered and phonated speech. In our 
case, both orthographic and audio prompts were used for recording whispered 
speech (cf. 3.2.2). 

Multimodality 

Speech is naturally multimodal. Visual cues, i.e. lip shape, tongue position and 
teeth visibility can compensate for lost of audio information or augment the 
perception of speech. In (Summerfield, 1992), the author has shown that noise up 
to 4-6 dB can be tolerated in speech understanding if one can see the speaker’s lips. 
Our corpus was thus recorded with both audio and video modalities to evaluate the 
contribution of facial movement information in both input and output modalities of 
our whisper-to-speech conversion system. 

To sum up, the recorded speech corpus should maximally represent all the facial 
movements and corresponding sounds which can be found in the language. The 
chosen sentences must cover maximally allophonic variations of each phoneme in 
context. We choose to maximize diphone coverage for our corpus. Moreover, as 
described above, the size of the corpus should be limited, especially in the case of a 
audio-visual corpus, because the speaker should not feel fatigue and also because 
the recording should be carried out in one day. The accurate repositioning of the 
NAM microphone and the markers on the speaker’s face from one recording 
session to another is quite difficult. 

In this thesis, we used two corpora, for two languages (French and Japanese), with 
two different speakers. The construction and the analysis of these two corpora will 
be presented in sections 3.2 and 3.3. 
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3.2 French corpus 

3.2.1 Text material 

As explained above, the main objective in the constitution of a speech corpus is to 
gather the maximum of phonetic coverage for a minimum of recording time to 
guarantee the constancy of the voice quality during the recording. It is thus 
necessary to design “dense” sentences, that is a set of homogeneous sentences, 
neither too short nor too long, with a simple typography and capturing the 
maximum of phonetic variability with a limited number of sentences (several 
hundreds). The Greedy search (Van Santen and Buchsbaum, 1997; Franois and 
Boffard, 2002; Bozkurt et al., 2003) algorithm is often used for this task. The 
iterative principle of this algorithm is to eliminate the sentences whose elements 
are already covered by the others. 

 

Figure 3.1. Histogram of phoneme content of the final 288 sentences selected by 
the greedy search algorithm. 

For our corpus, we ran the greedy algorithm on a list of phonetic transcriptions of 
4289 sentences, extracted from the journal Le Monde 2003. These sentences have 
from 5 to 7 words in length with no abbreviations nor acronyms. Our selection 
criterion was to constitute a dense list of sentences for the recording while 
maximizing the number occurrences of diphones. We ended up with a list of 
selected sentences to 288 sentences in order to limit the duration of each recording 
session to approximately 30 minutes. In the final selection, each phoneme was 
represented at least 27 times (see figure 3.1 for a phoneme histogram). The number 
of covered diphones is 935, with only 157 possible diphones missing. 
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Figure 3.2. Instructions presented on a screen guide the recording of each 
sentence in the corpus. 

3.2.2  Recording protocol 

A trained male native speaker of French participated in the recording. The 288 
sentences were first read by the speaker in a normal (voiced) speaking mode, with a 
natural speaking rate. Then to make sure that the whispered speech was uttered as 
close as possible to the normal voiced speech, that is with similar prosody (i.e. 
similar syllable durations, intensity and intended intonation, the speaker listened to 
its own voiced production of a sentence before whispering it. The sentences to be 
produced by the speaker in a whispered mode, were presented on a computer 
screen placed in front him. After a beep, the sentence was presented on the screen 
and the corresponding sound for the sentence produced in the normal speaking 
mode was played. The SpeechRecorder Toolkit developed by Draxler and Jänsch 
(2008) was used. Figure 3.2 shows an example of the software interface that guided 
the speaker to record each sentence. The speaker was asked to try to “mimic” the 
sentence in a whispered mode, with a similar intended intonation as the voiced 
utterance. After each sentence, the following one was immediately presented. 
When the speaker made a mistake, the sentence was re-recorded. Each sentence 
was presented for 5 seconds, which allowed enough time for the sentence to be 
pronounced while ensuring that all the sentences were pronounced in a limited 
time. All of the 288 selected sentences were recorded in one afternoon, in two 
different sessions: the first session for the phonated speech and the second session 
for the whispered speech, without any change in position for the NAM and headset 
microphone. 
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Figure 3.3. Setup for the French corpus recording 

 

We recorded speech at a sampling rate of 44 kHz, using a 16 bit encoding. The 
speaker was seated in a professional soundproof room and wore a high quality 
headset microphone and a NAM microphone. The NAM microphone was fixed on 
the neck, under the ear of the speaker, with a plastic arch . The headset microphone 
was used for easing the phonetic segmentation in the GMM training phase. In 
addition, a calibrated microphone was placed 40 cm away from the speaker to 
assess the intensity of the whisper. This calibrated microphone ensured that the 
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whispered speech could not be heard from a distance of 40 cm, a common 
definition of non-audible murmur in the NAM literature. Figure 3.3 shows the 
setup for the recording. 

 

3.3 Audiovisual Japanese corpus 
An audiovisual corpus was recorded in order to build an audiovisual synthesis 
system which generates speech-related facial movements (Revéret, Bailly et al., 
2000; Elisei et al., 2001; Badin, Bailly et al., 2002; Bailly et al., 2003, 2006; 
Gibert, 2006). 

3.3.1 Text material 

The text used for this corpus was composed of two parts:  

- The first part was obtained from a set of 503 isolated sentences from the 
ATR Japanese speech database B-set. This database was collected from 
newspapers and magazines, by maximizing phonemic variance. The 
description of the text material can be found in more detail in Sagisaka et 
al. (1990). 

- The second part is a list of all the Japanese consonants in symmetrical 
context VCV where V is one of the Japanese vowels /a/, /e/, /i/, /o/, /u/ and 
C is one of the Japanese consonants: /p/, /pj/, /b/, /bj/, /m/, /mj/, /d/, /t/, /s/, 
/ts/, /z/, /j/, /n/, /nj/, /k/, /kj/, /g/, /gj/, /f/, /Σ/, /tΣ/, /Ζ/, /h/, /hj/, /r/, /rj/, /w/. 
This second part was designed to be able to carry out a subjective 
evaluation of the contribution of facial movement parameters in the 
whispered-to-phonated speech conversion. 

3.3.2 Materials and recording 

The apparatus used to record this corpus is the setup traditionally used in the 
building of talking heads, developed at DPC (ex. ICP) (Revéret, Bailly et al., 2000; 
Badin, Bailly et al., 2002; Bailly et al., 2003, 2006). The setup is composed of 
three analogical cameras (where uncompressed images are grabbed by three DPS 
stations, one for the speaker’s face and two others for the profile) (figure 3.4), a 
helmet to maintain the speaker’s head. In addition to the traditional setup, two 
NAM microphones, a headset microphone for the phonetic segmentation (see 
explanation in Chapter 4), a calibration microphone were used. The calibration 
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microphone was positioned at a distance of 40 cm away for the speaker and was 
used to check that the produced utterances were not audible at this distance. 
Finally, a synchronization device (see below) was used to synchronize the audio 
and video data and a screen computer was positioned in front of the speaker to 
display the sentences to be pronounced. 

 

Figure 3.4. Three views of the apparatus used to record the audiovisual 
data.Colored beads are glued on the speaker’s face, to capture facial movements. 
The NAM microphones are strapped to the speaker’s neck. The speaker wears a 
helmet to restrain head movements. 

The speaker was a 27-year old Japanese student at NAIST. 142 markers (small 
colored beads) were glued on his face and his neck. 

The same protocol as the one used to record the French corpus was applied. During 
data acquisition, the sentences to be pronounced were displayed on a computer 
screen in front of the speaker. 

The audio signals from a NAM microphone and a head-set microphone were 
recorded at the sampling rate of 44 kHz. The video are recorded at frequency of 25 
Hz with interleaving, 50 Hz after de-interleaving. The visual parameters extracted 
from the video signals were then upsampled to 200 Hz to have a better alignment 
with audio parameters. 

The raw audio-visual was then processed and visual parameters related to the 
movements of the lips, jaw and larynx were extracted by using the talking head 
cloning methodology that will be presented in more detail in chapter 4. 
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3.4  Summary 
In this chapter, the data used to evaluate the contribution of the solutions explored 
in this thesis to improve whisper-to-clear speech conversion are presented.  

The first corpus on French only consisted of acoustic signals captured by both a 
NAM microphone and a head-set microphone. A set of 288 phonetically-balanced 
sentences was recorded. The sentences were extracted from Le Monde journal, 
2003. This French corpus was designed to test new methods to improve the 
existing GMM-based whisper-to-speech conversion procedure.  

The second corpus on Japanese, on the other hand, is multimodal data. This corpus 
contains audio data (captured by two NAM microphones and a head-set 
microphone) and video data for face movements (captured by three cameras and 
using markers glued on the speaker’s face). A set of 278 sentences, extracted from 
the 503 sentences in the ATR Japanese speech database B-set, was recorded. The 
audio signal was recorded in synchrony with the video signal. This Japanese corpus 
is designed to examine the contribution of visual movements in whisper-to-speech 
conversion. 

The next chapters in this thesis will concentrate on our improvements to the 
naturalness and the intelligibility of the synthesized speech generated from 
whispered speech. 



 

 

Chapter 4 
 

Improvement to the GMM-based 
whisper-to-speech system 
 

 

4.1 Introduction 
As explained in chapter 1, voice transformation has been recently promoted in 
order to obtain quickly and inexpensively new voices for Text-to-Speech (TTS) 
systems. This paradigm creates a “speaker model” from a small number of speech 
utterances produced by the desired target speaker. Among with other different 
techniques already presented in chapter 1, the mapping technique based on 
Gaussian Mixture Model (GMM) proposed by Stylianou et al. (1998) is a mature 
technology. 

As mentioned earlier, another application of voice conversion is whisper-to-speech 
transformation. Based on the GMM technique, the NAM-to-speech conversion 
system proposed by Toda and Shikano (2005) at NAIST which converts Non-
Audible Murmur (NAM) to phonated speech is very promising. The quality of the 
converted speech is however still insufficient for computer-mediated 
communication, notably because of the poor estimation of F0 from unvoiced 
speech and because of impoverished phonetic contrasts. 

In this chapter, section 4.2 briefly presents the original NAIST system which uses a 
Gaussian Mixture Model (GMM) to match whispered-speech to voiced-speech. 
Then I explain why the original system needs improvement. The naturalness and 
intelligibility of the obtained converted speech is still poor, and I suggest that one 
of the reasons for this low quality is the weak F0 and voicing rendering in the 
converted speech. This chapter therefore deals with possible improvements to the 
original NAIST system, concerning F0 estimation and voicing decision. One way to 
do this is to use a better alignment between whispered- and voiced-speech. Section 
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4.3.1 describes an alignment procedure for whisper- and voiced-speech samples. 
This procedure has to overcome the difficulties in getting accurate phonetic 
segmentation in whispered-speech. The feature extraction procedure is presented in 
section 4.3.2. Then a method to improve voicing decision and F0 estimation is 
proposed in section 4.3.3 and 4.3.4. Instead of combining voicing decision and F0 
estimation in a single GMM, a simple feed-forward neural network is used to 
detect voiced segments in whispered speech while a GMM estimates a continuous 
melodic contour based on voiced segments only. Section 4.3.5 describes how to 
further improve the performance of the system by using different input time 
window sizes and by using a different vector dimension reduction technique. 
Finally, I present an experiment in which I tested adding visual parameters both as 
input and output parameters (section 4.3.6). The contribution of these suggestions 
is then evaluated by subjective tests (section 4.4). Finally, the conclusion for this 
chapter is presented in section 4.5. 

 

4.2 Original NAIST NAM-to-Speech system 
The acoustic spectrum of NAM or whispered speech is considerably different from 
that of natural speech. Furthermore, NAM (or whispered speech) does not offer 
input F0 characteristics since they are uttered without the vibration of the vocal 
folds. NAM-to-Speech or whisper-to-speech conversions thus need to estimate 
acoustic features of speech typically used for synthesis namely, spectral envelope, 
power and F0, from the acoustic features of NAM (or whisper) namely spectral 
envelope and power). Figure 4.1 shows a schematic diagram of the NAM-to-
Speech system proposed by Toda et al. (Toda and Shikano, 2005; Nakagiri et al., 
2006; Nakamura et al., 2006; Sekimoto et al., 2006) at NAIST. 

The NAM-to-speech system can be decomposed into two conversion processes: 

– Deriving spectral parameters from a spectral sequence of NAM or 
whispered speech to characterize the time-varying filter part of the 
converted speech signal. Mel-Frequency Cepstral Coefficients (MFCC) are 
used to represent the spectral envelope. 

– Deriving F0 and an aperiodic component from a spectral sequence of NAM 
or whispered speech to characterize the source excitation of the converted 
speech signal. The F0 includes voiced/unvoiced information in this case (0-
label presents unvoiced frame) and the aperiodic component includes the 
non-periodic part of voiced sounds (e.g. fricative noise in /v/) or sound 
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emitted without any vocal fold vibration (e.g. unvoiced fricatives, or 
plosives). 

 

Figure 4.1. Conversion Process of NAM-to-Speech (Toda and Shikano, 2005; 
Nakagiri et al., 2006) 

Finally, the mixed excitation based on estimated F0 and aperiodic component using 
is then filtered with estimated spectra to generate a speech signal by a vocoder 
STRAIGHT (Kawahara et al., 1999, 2001; Ohtani et al., 2006). 

4.2.1 Spectral estimation 

The spectral estimation is described in Toda et al. (2009). The input static feature xt 
and output static feature yt at frame t are presented followed:  

[ ](1),..., ( )t t t xx x x D Τ=                                          (4.1)  

[ ](1),..., ( )t t t xy y y D Τ=                                          (4.2) 

In order to compensate for the lost characteristics of some phonemes due to body 
transmission, a segment feature 

,... ,t x t L t t L xX W x x x b
ΤΤ Τ Τ

− +⎡ ⎤= +⎣ ⎦                                    (4.3) 
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extracted over several frames (t ± L) is used as an input speech parameter vector 
where Wx and bx are determined by Principle Component Analysis (PCA). As an 
output speech parameter vector, ,t t tY y yΤ Τ⎡ ⎤= Δ⎣ ⎦ is used, consisting of both static and 

dynamic feature vectors of the target spectrum. In order to alleviate the spectral 
discontinuities, these dynamic features are used with a parameter generation 
algorithm to take into account the correlation between frames (Toda et al., 2005). 
Moreover, Maximum Likelihood Estimation (MLE)-based mapping is used instead 
of Minimum Mean Square Error (MMSE)-based mapping proposed by Stylianou et 
al. (1998) to improve the mapping performance. As stated in (Toda, Black and 
Tokuda, 2008), MMSE-based algorithm determines the target parameter from the 
given source parameter frame by frame using the minimum mean-square error 
(MMSE) criterion. Although it works reasonably well, it is not appropriate for 
multiple probability density distributions because it ignores the covariances of the 
individual distributions even when they are different from each other and 
inappropriate parameter trajectories having unnatural movements are caused by the 
frame-by-frame mapping process. On the other hand, in the MLE-based mapping, 
the determination of a target parameter trajectory having appropriate static and 
dynamic properties is obtained by imposing an explicit relationship between static 
and dynamic features. (Toda, Black and Tokuda, 2004). 

As explained in Toda et al. (2007b, 2009), using parallel training data set 

consisting of time-aligned input and output parameter vectors 1 1 1,Z X Y
ΤΤ Τ⎡ ⎤= ⎣ ⎦ , 

2 2 2,Z X Y
ΤΤ Τ⎡ ⎤= ⎣ ⎦ ,…, ,T T TZ X Y

ΤΤ Τ⎡ ⎤= ⎣ ⎦ as proposed by Kain et al. (1998abc), the joint 

probability density of the input and output parameter vectors is modelled by a 
GMM as follows: 

( ) ( ) ( )

1

( ) ( ; , )
M

Z Z Z
t m t m m

m

P Z w Zλ μ
=

= Ν Σ∑                        (4.4) 

with                                                
( )

( )
( )

X
mZ

m Y
m

μ
μ

μ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                (4.5) 

and                                           
( ) ( )

( )
( ) ( )

XX XY
m mZ

m YX YY
m m

⎡ ⎤Σ Σ
Σ = ⎢ ⎥

Σ Σ⎢ ⎥⎣ ⎦
                                          (4.6) 
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A parameter set of the GMM is ( )Zλ , which consists of weights wm, mean vectors 
( )Z
mμ  and full covariance matrices ( )Z

mΣ  for each individual mixture component m. 

The parameters GMM ( )Zλ  is trained in advance using aligned training data. 

The spectral conversion is performed by maximizing the following likelihood 
function: 

( ) ( ) ( )( | , ) ( | , ) ( | , , )Z Z Z

all m

P Y X P m X P Y X mλ λ λ= ∑  

( ) ( )

1 1

( | , ) ( | , , )
T M

Z Z
t t t

t m

P m X P Y X mλ λ
= =

=∏∑                              (4.7) 

where m = {m1, m2,…, mT} is a mixture component sequence. The conditional 
probability density at each frame is modeled as a GMM. At frame t, the m-th 
mixture component weight ( )( | , )Z

tP m X λ  and the m-th conditional probability 

distribution ( )( | , , )Z
t tP Y X m λ  are given by 

( ) ( )
( )

( ) ( )

1

( ; , )( | , )
( ; , )

X XX
Z m t m m

t M
X XX

n t n n
n

w N XP m X
w N X

μλ
μ

=

Σ
=

Σ∑
                              (4.8) 

( ) ( ) ( )
,( | , , ) ( ; , )Z Y Y

t t t m t mP Y X m N Y E Dλ =                                  (4.9) 

where                         
1( ) ( ) ( ) ( ) ( )

, ( )Y Y YX XX X
m t m m m t mE Xμ μ

−

= + Σ Σ −                                (4.10) 

1( ) ( ) ( ) ( ) ( )Y YY YX XX XY
m m m m mD

−

= Σ + Σ Σ Σ                                     (4.11) 

In the MLE-based framework, a time sequence of the converted feature vectors is 
determined as follows: 

( )ˆ arg max ( | , )Zy P Y X λ=                                        (4.12) 

subject to yWY y=                                               (4.13) 

where yW  is a window matrix to extend the static feature vector sequence to the 

parameter vector sequence consisting of static and dynamic features (Tokuda et al., 
1995ab). This matrix is the 2DT-by-DT matrix written as 

[ ]Τ1 2, ,..., ,T D DW W W W I ×= ⊗                                      (4.14) 
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where                                       (0) (1),t t tW w w⎡ ⎤= ⎣ ⎦                                                  (4.15) 

( ) ( )( ) ( )( )1
( ) ( ) ( ) ( ) ( ) ( )0 ,...,0, ( ),..., (0) , ( ),0,..., 0 , 0,1

n nt L th t L tht thst T th
n n n n n n

tw w L w w L n
− +

Τ
− − + −− −

− +

⎡ ⎤
= − =⎢ ⎥
⎢ ⎥⎣ ⎦

      (4.16) 

with (0) (0) (0)0, (0) 1.L L w− += = =  

The likelihood function in (4.7) can be approximated with a single mixture 
component sequence to effectively reduce the computational cost. The likelihood is 
now represented as follows 

( ) ( ) ( )( | , ) ( | , ) ( | , , )Z Z ZP Y X P m X P Y X mλ λ λ                    (4.17) 

In the first step, the suboptimum mixture component sequence m̂ is estimated by 

( )ˆ arg max ( | , )Zm P m X λ=                                     (4.18) 

Then the approximated log-scaled likelihood function is written as 

( ) ( )ˆ ˆlog (m | X, ) (Y | X,m, )Z ZL P Pλ λ=                             (4.19) 

The converted static feature vector sequence ŷ  that maximize L under the 
constraint 4.13 is given by 

1 1( ) 1 ( ) ( )
ˆ ˆ ˆˆ ( )T Y T Y Y
m m my W D W W D E

− −−=                                 (4.20) 

with                             
¨1 ¨ 2 ¨ ¨

( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ,1 ,2 , ,, ,..., ,...,

t T

Y Y Y Y Y
m m m m t m TE E E E E⎡ ⎤= ⎣ ⎦ ,                         (4.21) 

1 1 1 1 1

1 2

( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ, ,..., ,...,

t T

Y Y Y Y Y
m m m m mD diag D D D D

− − − − −⎡ ⎤= ⎣ ⎦                      (4.22) 

Further, the degradation of the converted speech quality caused due to an over-
smoothing of the converted spectra can be alleviated by using “global variance” 
(GV) as proposed in (Toda et al., 2005). The GV of the target static feature vectors 
over a time sequence is written as 

( ) (1),..., ( )yv y v v D
Τ

⎡ ⎤= ⎣ ⎦                                         (4.23) 

where                          ∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
−=

T

t

T

t dy
T

dy
T

dv
1

2

1

)(1)(1)(
τ

τ                               (4.24) 
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A new likelihood function consisting of two probability density functions for a 
sequence of the target static and dynamic feature vectors and for the GV of the 
target static feature vectors is defined as follows: 

( ) ( ) ( ) ( )( , , ) ( | , ) ( ( ) )Z v Z w vP Y X P Y X P v yλ λ λ λ=                      (4.25) 

The probability density of the GV of the output static feature vectors over an 
utterance is also modeled by a Gaussian distribution, 

( ) ( ) ( )( ( ) ) ( ( ); , )v v vvP v y N v yλ μ= Σ                                 (4.26) 

A parameter set )(vλ  consists of a mean vector )(vμ  and a diagonal covariance 

matrix ( )vvΣ . 

In the conversion procedure, the converted static feature sequence 

1 2,..., ,..., Ty y y y
ΤΤ Τ Τ⎡ ⎤= ⎣ ⎦  is determined by maximizing a product of the conditional 

probability density of Y given X and the GV probability density as follows: 

( ) ( )ˆ arg max ( , ) ( ( ) )Z w v

y
y P Y X P v yλ λ=                                       (4.27) 

Again, the approximated log-scaled likelihood function is used to effectively 
perform the conversion process without significant quality degradation compared 
with the EM algorithm (Toda et al., 2007b): 

( ) ( ) ( )log{ ( , ) ( ( ) )} ( ( ) | )Z w v w vL P Y X P v y P v yλ λ λ=                   (4.28) 

The converted parameter trajectory is iteratively updated by using the first 
derivative given by 

( )1 1( ) ( ) ( )
ˆ ˆ ˆ

1 2' , ' ,... ' ,..., '

T Y T Y Y
m m m

T T T T
t T

L w W D Wy W D E
y

v v v v

− −∂
= − +

∂

⎡ ⎤+ ⎣ ⎦

                           (4.29) 

where                        [ ]' ' (1), ' (2),..., ' ( ),..., ' ( )t t t t tv v v v d v D Τ=                                    (4.30) 

( )2 ˆ ˆ ˆ' ( ) ( ( ) )( ( ) ( ))
Td

t v v tv d p v y y d y d
T

μ= − − −                                (4.31) 
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4.2.2 Source excitation estimation 

Various vocoders – called Harmonic plus Noise Models (HNM) (Laroche et al., 
1993; Stylianou et al., 1995) - used in speech synthesis or coding decompose the 
speech excitation into two components (Richard and Alessandro, 1996): 

– A periodic or quasi-periodic component which takes into account the quasi-
periodic segments of speech produced by the regular vibrations of the vocal 
folds. This component is characterized by the fundamental frequency F0. 

– an aperiodic component which corresponds to the noise source (frication, 
aspiration, bursts) in the speech production. 

Some results (Laroche et al., 1993; Dutoit and Leich, 1993) indicate that a separate 
processing of the periodic and aperiodic components of speech excitation may 
improve the quality of synthetic speech for time-scale/pitch-scale modifications. 

 

Figure 4.2. STRAIGHT mixed excitation (Ohtani et al., 2006) 

In the STRAIGHT system (Kawahara et al., 1999; Kawahara et al. 2001) that we 
use for the speech analysis and synthesis, the mixed excitation is defined as the 
frequency-dependent weighted sum of periodic and aperiodic components (figure 
4.2). 

The weight is determined based on an aperiodic component in each frequency band 
which is calculated from the smoothed power spectrum by a subtraction of the 
lower spectral envelope from the upper spectral envelope. The upper envelope is 
calculated by connecting spectral peaks and the lower envelope is calculated by 
connecting spectral valleys as presented in the figure 4.3 (Kawahara et al. 2001; 
Ohtani et al., 2006). Note that the noise envelope is characterized by the energy in 
5 frequency bands. 
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Two GMM models for F0 estimation and aperiodic estimation (c.f. figure 4.1) are 
constructed in the same way as the spectral estimation except that the global 
variance (GV) is not used because GV does not cause large differences to the 
converted speech in the aperiodic conversion (Ohtani et al., 2006). Static and 
dynamic features Yt of F0 and aperiodic components are used while keeping the 
same feature vector of whisper Xt as that used for the spectral estimation. 

 

Figure 4.3. Aperiodic component extraction from liftered power spectrum keeping 
periodicity. (Ohtani Y. et al., 2006). 

4.3 Improvement to the GMM-based whisper-to-
speech conversion 

The NAM-to-speech conversion system proposed by Toda and Shikano (2005) 
opens the promise for efficient silent-speech communication. Although this system 
successfully generates intelligible speech using only a small number of training 
sentences, the quality of the synthesized speech is insufficient and is far from 
reaching a commercial level, especially concerning the naturalness of the converted 
speech. This is due to the difficulties in F0 estimation from unvoiced speech. The 
authors claimed that it is inevitable to improve the performance of their NAM-to-
Speech system. Nakagiri and Toda et al. (2006) proposed another system which 
converts NAM-to-whisper in order to avoid this F0 estimation. But this solution 
seems to be inappropriate because whisper is only another type of unvoiced speech, 
just like NAM, just a little more intelligible. 



84                                Improvement to the GMM-based whisper-to-speech system 

 

In this section, I will present our different investigations to improve both the 
intelligibility and the naturalness of the generated audible speech, especially for the 
F0 contour prediction of the synthesized speech. 

4.3.1 Aligning data 

Due to the differences in speaking rate between recording sessions, the feature 
streams of both whispered speech and phonated speech must be aligned in time 
with each other before training the transformation function. The most 
straightforward way is to use manual transcription information. However, it could 
be more time-saving to use automatic methods such as Dynamic Time Warping 
(DTW) (Itakura, 1975) or a Hidden Markov Model (Kim et al., 1997; Kain and 
Macon, 1998abc; Arslan, 1999). 

In our case, the acoustic data of both whispered speech and phonated speech was 
first semi-automatically segmented into phonemes. A careful manual correction 
was carried out after a forced alignment procedure based on a general-purpose 
Viterbi phone recogniser using a HMM. The HTK3 toolkit (Young et al., 2000) and 
the labelling software Praat4 were used here. In this alignment paradigm, the 
whispered speech signal captured by a headset microphone was used instead of that 
captured by the NAM microphone, because the NAM microphone severely 
degraded the quality due to the lack of lip-radiation characteristics and the low-pass 
characteristics of soft tissues as well as the presence of several impulsive pop 
noises caused by the contact between the NAM microphone and the skin (Shimizu 
et al., 2009). 

Table 4.1. Cepstral distortion (dB) between converted speech and target audible 
speech by using phonetic segmentation (seg) and by using DTW. 

French corpus Japanese Number of 
Gaussians Seg DTW Seg DTW 

8 7.23 
(±0.69) 

7.50 
(±0.73) 

6.06 
(±0.64) 

6.29 
(±0.648) 

16 6.96 
(±0.56) 

7.12 
(±0.64) 

5.99 
(±0.63) 

6.13 
(±0.61) 

32 6.64 
(±0.53) 

6.94 
(±0.61) 

5.83 
(±0.64) 

6.16 
(±0.64) 

                                                 
3 http://htk.eng.cam.ac.uk/ 
4 http://www.fon.hum.uva.nl/praat/ 
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This segmentation information was then used to obtain a better alignment between 
the two different modes of pronunciation than the one obtained with the blind 
dynamic time warping (DTW) used in the NAIST system. 

 

                  (a). French data                                     (b). Japanese data  

Figure 4.4 Mean cepstral distortion and standard deviation between converted 
speech and target audible speech by using phonetic segmentation and by using 
DTW. 

Both the French and Japanese corpora presented in chapter 3 were used to evaluate 
the alignment. For the French corpus, the training data consisted of 200 utterances 
and 70 utterances were used for the test. For the Japanese corpus, the training data 
consisted of 150 sentences and 40 sentences were used for the test corpus. The 
cepstral distortion between the spectral parameters of converted speech from 
whispered speech captured by NAM microphone and phonated speech was used as 
a quantitative measurement. 25 mel-cepstral coefficients were used for the French 
data and 20 mel-cepstral coefficients were used for the Japanese data. A better 
alignment does provide a smaller distortion (cf. table 4.1, figure 4.4). The results of 
an ANOVA with the alignment method as a 2-level factor show that we have an 
improvement by using the segmentation information compared to DTW ((F(1,70) = 
17.26, p < 0.001) for the French corpus and (F(1,40) = 11.32, p < 0.001) for the 
Japanese corpus). 

4.3.2 Feature extraction 

The French corpus presented in chapter 3 was used to evaluate our system and the 
original system proposed by NAIST. 

The training corpus consists of 200 utterance pairs of whisper and speech uttered 
by a native male speaker of French. Respective speech durations are 4.9 minutes 
for whisper (9.7 minutes with silences) and 4.8 minutes for speech (7.2 minutes 
with silences). 
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The 0th through 24th mel-cepstral coefficients (MFCC) are used as spectral 
features at each frame (with 25 ms Hanning window, shifted at the rate of 5 ms) for 
both whisper and phonated speech. The spectral segment features of whisper are 
then constructed by concatenating feature vectors at each current whispered frame 
± 8 frames (i.e. representing 105 ms of speech) to take into account the context 
variation. Then the vector dimension is reduced to 50 using a Principal Component 
Analysis (PCA) technique. Log-scaled F0 extracted with fixed-point analysis 
(Kawahara et al., 1999) and 5 average dB values of the aperiodic components on 
five frequency bands (0-1, 1-2, 2-4, 4-6, 6-8 kHz) are used to characterize the 
excitation feature (Ohtani et al., 2006). All these parameters were extracted using 
the STRAIGHT toolkit (Kawahara et al., 1999). 

The test corpus consists of 70 additional utterance pairs of whisper and audible 
speech not included in the training data. This corpus is used to evaluate the 
performance of the two systems. 

4.3.3 Voiced/unvoiced detection 

In the original system, all whispered feature segments (including voiced and 
unvoiced segments) are used to train the GMM model estimating F0 values for 
converted speech. In this training paradigm, the undefined F0 value on each 
unvoiced segment is assigned to 0. Therefore, in the conversion phase, F0 and 
voicing are then jointly estimated by a unique GMM: voicing decision is 
determined using a very simple threshold. If the predicted F0 value at the current 
frame is greater than the threshold, this segment is considered as a voiced segment, 
otherwise this segment is considered as an unvoiced segment and the value of F0 is 
then set to 0. The main drawback of this approach is that some Gaussian 
components are wasted for representing null F0 values for unvoiced segments in 
the training phase. The risk is also to predict unstable F0 values for unvoiced 
segments incorrectly labelled as voiced in the conversion phase. 

In order to improve the naturalness of this whisper-to-speech system by a better 
voicing decision and a better F0 estimation, we estimate each one by two separate 
models instead of combining them in a single GMM. Our system predicts a 
continuous melodic contour that is sampled by voiced/unvoiced decision (Tran et 
al., 2008b). 

A non-linear feed-forward neural network is used to predict the voiced segments 
from the whispered speech. Since the optimization of a neural network is a difficult 
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task, I do not deal with this problem in this thesis. The topology of the network is 
empirically defined as follows: 

– 50 input nodes corresponding to the dimension of the whispered features 
used to train the GMM. 

– One hidden layer with 17 nodes. The best number of hidden nodes depends 
on several variables: the numbers of input and output units, the number of 
training cases, the amount of noise in the targets, the complexity of the 
function or classification to be learned, the architecture, the type of hidden 
unit activation function, the training algorithm, etc... In most situations, 
there is no way to determine the best number of hidden units without 
training several networks and estimating the generalization error of each. If 
we have too few hidden units, high training error and high generalization 
error occur due to underfitting and high statistical bias. If we have too many 
hidden units, we have a low training error but still have a high 
generalization error is occurred due to overfitting and high variance (Xu and 
Chen, 2008). For our network, we use a very simple “rule of thumb” 
proposed in (Blum, 1992, p. 60): “A rule of thumb is for the size of this 
[hidden] layer to be somewhere between the input layer size ... and the 
output layer size ...”. 

– One output node corresponding to the voiced/unvoiced decision: for 
tracking, the network assign 0 to unvoiced segments and 1 to voiced 
segments. For generating, the predicted output is larger than .5, the segment 
is labeled as voiced, otherwise, it is labeled as unvoiced. 

The features at each frame of the whispered utterances extracted from the training 
corpus for the GMM estimation (including spectral, F0 and aperiodic component 
estimation) are used as input vector for this network. The voiced/unvoiced label for 
each segment in the training whispered data is obtained from the voiced/unvoiced 
label of the corresponding speech utterance by aligning the two utterances as 
described above. 

The neural network is trained by the BackpropMomentum learning algorithm 
(Bishop, 1996), using the Stuttgart Neural Network Simulator (SNNS) (Zell et al., 
1996). The configuration parameters for this algorithm are as followed: 

– η = 0.01: learning parameter, specifies the step width of the gradient 
descent. 
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– μ = 0.01: momentum term, specifies the amount of the old weight change 
(relative to 1) which is added to the current change. 

– c = 0.05: flat spot elimination value, a constant value which is added to the 
derivative of the activation function to enable the network to pass at spots 
of the error surface. 

– dmax = 0.2: the maximum difference dj = tj – oj between a teaching value tj 
and an output oj of an output unit which is tolerated. 

The general formula for back-propagation used here is 

( 1) ( )ij j i ijw t o w tηδ μΔ + = + Δ  

( ' ( ) )( )

( ' ( ) )
j j j j

j
j j k jkk

f net c t o if unit j is a output unit

f net c w if unit j is a hidden unit
δ

δ

+ − −⎧⎪= ⎨
+ −⎪⎩ ∑

 

with f is the sigmoid activation function in each unit : 1( )
1 xf x

e−=
+

 

Table 4.2 and figure 4.5 show the voiced/unvoiced detection by this network 
compared with the GMM method in the original system which uses a single GMM 
with F0 estimation. The number of Gaussian mixtures in this model is fixed at 16. 
Compared with the error in the original system, the statistical analysis shows that 
we have a significant improvement of the voiced/unvoiced detection (6.8% 
compare with 9.3% (F(1,70)=24.33, p<0.001)). In this table, we additionnally 
describe two types of error: the voiced error is the proportion of unvoiced frames 
that the system detects as voiced one and the unvoiced error is the proportion of 
voiced frames that the system detects as unvoiced. The ANOVA analysis also 
showed that we have a significantly better performance in both cases: 2.3% 
compared with 3.2% for the voiced error (F(1,70)=10.54, p=0.0014) and 4.5% 
compared with 6.1% for the unvoiced error (F(1,70)=8.45, p = 0.042). 
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Figure 4.5 Mean and standard deviation error of voicing decision by a neural 
network (ANN) and by a GMM. 

Table 4.2. Voicing error using neural network and GMM on the French data 

Type of error Feed-fwd NN (%) GMM (%) 

Voiced 2.3 (± 1.81) 3.2 (± 1.82) 
Unvoiced  4.5 (± 2.88) 6.1 (± 3.07) 

Total ~ 6.8 (± 2.89) ~ 9.3 (± 3.16) 

 

4.3.4 F0 estimation 

Only voiced segments in whispered speech were used to train the GMM for the F0 
estimation in order to avoid wasting Gaussian components for unvoiced frames. 
Continuous F0 values are then predicted. They are then sampled by voicing 
decisions made by the Artificial feed-forward Neural Network (ANN) presented 
above. This study was presented in (Tran et al., 2008b). Figure 4.6 presents the 
synopsis of the system. 
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Figure 4.6. Synopsis of the whisper-to-speech conversion system 

We compared the F0 rendering of our system with the original one, with different 
numbers of mixtures (8, 16, 32 and 64) for both training and test data. Full 
covariance matrices are used for both GMMs. The performance of the system is 
measured as the normalized difference between synthetic F0 and natural F0 in the 
voiced segments that were well detected by the two systems. This difference, 
which we will refer to as the “deviation from natural F0”, is given by the following 
formula: 

0 0

1 0

_ _1 100%
_

N
i i

i i

synthetic F natural F
Diff

N natural F=

−
= ×∑  

where N is the number of frames that well detected by the two systems. 

 

Figure 4.7. Parameter evaluation on training (solid line) and test corpus (dashed 
line). 
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Figure 4.7 shows that the proposed framework outperforms the original system, 
since the deviation from natural F0 is lower. In addition, when the number of 
Gaussian mixtures increases, the deviations of both systems on the training data 
decrease, but the deviations on the test data are almost insensitive to the number of 
mixtures. 

 

Figure 4.8. Natural and synthetic F0 curve for the test utterance: “Armstrong 
tombe et s'envole” 

Figure 4.8 shows an example of a natural (target) F0 curve and the synthetic F0 
curves generated by the two systems. It shows that our proposed system is closer to 
the natural F0 curve than the original system, especially for the final contour. An 
ANOVA analysis showed that this improvement is statistically significant (F(1,70) 
= 20.72, p < 0.001). 

Figure 4.9 shows an example of whispered-, converted- (by our system) and 
natural-speech. As can be seen the formant patterns of the converted speech are 
flatter than those of natural speech. Global variance was used to partly attenuate 
this difference (Toda et al., 2004). 

4.3.5 Influence of spectral variation on the predicted 
accuracy 

4.3.5.1 Context window 

In this section, we compare two different data reduction methods: Linear 
Discriminant Analysis (LDA) versus Principal Component Analysis (PCA) to 
compute the input spectral features for whispered speech. Classes of F0 ranges or 
phonemes were determined to label whispered frames for LDA training. 
Furthermore, we used different sizes of context window to study the influence of 
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spectral variation on the pitch estimation performance as well as the spectral 
estimation performance of GMM-based system. This was presented in (Tran et al., 
2008a). 

a. / Whisper captured by a headset microphone / 

 
b. / Whisper captured by NAM microphone / 

 
c. / Converted speech / 

 
d. / Natural speech / 

 

Figure 4.9. Whispered speech captured by headset microphone (a), NAM sensor 
(b), converted speech (c) and ordinary speech (d) for the same utterance: 

“Armstrong tombe et s'envole”. 
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Figure 4.10. Combining multiple frames for input features 

In (Toda, Black and Tokuda 2008), the authors showed that the use of feature 
vectors constructed by concatenating multiple acoustic frames, employed as an 
input feature to take into account the dynamic constraints on acoustic parameters, is 
effective for improving the mapping accuracy. In this article, the size of the context 
window is increased by concatenating more adjacent frames. In our case, this 
context window is widened by picking one frame every m frames (as presented in 
the figure 4.10 for the cases of m = 1 to 4) keeping thus the number of frames for 
the concatenation remains constant. PCA or LDA is then applied to this multi-
frames vector for dimensionally reduction. 

4.3.5.2 F0 estimation 

For this evaluation, the dimension of the whispered characteristics is reduced by 
using a PCA as proposed in the original system or by using a LDA. For the LDA, 
the target speech frames are classified into 13 classes: unvoiced frames are labelled 
with a ‘0’ label and voiced frames fall into 12 other labels, depending on which 
interval the F0 value in this frame belongs to (bark scale between 70Hz and 300 
Hz). The class of a whispered frame is deduced from the class of the corresponding 
speech frame using the warping path generated by the transcription boundaries for 
each utterance pair. This information is then used to guide the LDA in the 
dimension reduction of the whispered sequence features. While the PCA reduces 
the dimension of the whispered sequence without regarding the corresponding 
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speech features, we hope that the seek for traces of the F0 control performed by 
LDA will improve the performance of the system. 

For the voiced/unvoiced estimation, we used the same neural network as the one 
proposed in 4.3.3 to ensure that the results were not influenced by this step. 

The number of Gaussian mixtures for F0 estimation varied from 8 to 64 (8, 16, 32, 
64). The size of the context window was also varied from the phoneme size (90 
ms) to the syllable (or foot) size (350 ms) (by picking one frame every 1-5 frames). 

Table 4.3. Mean and standard deviation of F0 difference (%) between converted 
and target speech on the French data. 

method window size 
 

Number of Gaussian mixtures 

 frame 
interval 

Context 
size 
(ms) 

8 16 32 64 

1 105 10.96  
(± 2.04) 

10.90  
(± 2.02) 

10.92  
(± 1.99) 

10.90  
(± 1.94) 

2 185 10.77  
(± 2.02) 

10.41  
(± 2.03) 

10.29  
(± 2.13) 

10.44  
(± 2.2) 

3 265 10.33  
(± 2.03) 

9.98  
(± 2.19) 

10.08  
(± 2.17) 

10.28  
(± 2.09) 

4 345 9.90  
(± 2.29) 

9.58  
(± 2.24) 

9.47  
(± 1.98) 

9.82  
(± 2.03) 

 
 

PCA 

5 425 9.44  
(± 2.14) 

9.17  
(± 2.16) 

9.32  
(± 2.21) 

9.31  
(± 2.14) 

1 105 10.85  
(± 2.02) 

10.58  
(± 1.99) 

10.56  
(± 2.08) 

10.64  
(± 1.82) 

2 185 10.36  
(± 2.16) 

10.23  
(± 2.07) 

10.11  
(± 2.09) 

10.36  
(± 1.88) 

3 265 9.98  
(± 2.3) 

9.94  
(± 2.23) 

9.93  
(± 2.16) 

10.29  
(± 2.2) 

4 345 9.45  
(± 2.06) 

9.43  
(± 2.19) 

9.62  
(± 2.2) 

9.67  
(± 2.21) 

 
 

LDA 

5 425 9.15  
(± 2.08) 

9.22  
(± 1.99) 

9.25  
(± 2.19) 

9.37  
(± 2.18) 

Table 4.3 shows that using LDA and a large window size improves the precision of 
pitch estimation with respect to PCA with a small window. When using LDA with 
a window about 400 ms, the F0 error decreases by 16% compared to our previous 
system with PCA and a smaller window size (10.90% with 16 mixtures → 9.15% 
with 8 mixtures). However, using LDA instead of PCA with the same context 
window size does not significantly improve the precision (9.17% with 16 mixtures 



Improvement to the GMM-based whisper-to-speech system                                95 

 

→ 9.15% with 8 mixtures). But with a reduced number of mixtures (8), LDA 
outperforms PCA. Furthermore, The ANOVA on three factors (number of 
Gaussians, context size and dimensional reduction method) also showed that using 
a larger context window (including at least one syllable) is more significant than 
using a smaller window (including only a phoneme) for the F0 estimation 
(F(4,70)=52.81, p<0.001). The LDA is also statistically outperforms PCA 
(F(1,70)=6.25, p=0.013) while the number of Gaussians does not have significant 
effect (F(3,70)=1.7, p = 0.17). 

 

Figure 4.11. Comparing natural and synthetic F0 curves (French data). 

Figure 4.11 shows an example of a natural (target) F0 curve and the synthetic F0 
curves generated by the two systems (LDA + large context window vs. PCA + 
small context window). The predicted F0 contour is closer to the natural F0 curve 
than the one generated by the reference system and also smoother. This suggests 
that increasing the context window size probably helps generating smooth F0 
contours. Largest effect takes place at the end of the sentences. 

4.3.5.3 Spectral estimation 

We also evaluated the influence of LDA and long-term spectral variation to the 
spectral estimation. The phonetic segmentation was used to guide the LDA: each 
whispered frame was classified into one of 34 classes, depending on which 
phonetic segment it belonged to. 

Table 4.4 provides the cepstral distortion between the converted and the target 
speech (the higher the distortion, the worse the performance). It shows that LDA is 
better than PCA (F(1,70)=22.59, p<0.001). But contrary to F0 estimation, the 
spectral distortion increases when the size of the time window increases 
(F(3,70)=18.55, p<0.001). The most plausible interpretation is that a phoneme-
sized window optimally contains necessary contextual cues for spectral conversion. 



96                                Improvement to the GMM-based whisper-to-speech system 

 

Table 4.4. Mean cepstral distortion (dB) and standard deviation between 
converted and target speech (French data). 

window size Number of Gaussian mixtures Method 
frame 

interval 
Context 
size (ms) 

8 16 

1 105 7.23 (± 0.69) 6.96 (± 0.56) 
2 185 7.20 (± 0.59) 7.01 (± 0.57) 
3 265 7.42 (± 0.77) 7.26 (± 0.66) 

 
PCA 

4 345 7.25 (± 0.71) 7.55 (± 0.66) 
1 105 6.96 (± 0.6) 6.83 (± 0.57) 
2 185 6.98 (± 0.57) 7.01 (± 0.59) 
3 265 7.03 (± 0.61) 7.17 (± 0.59) 

 
LDA 

4 345 7.19 (± 0.65) 7.34 (± 0.54) 

 

4.3.6 Influence of visual information for the conversion 

To convey a message, humans produce sounds by controlling the configuration of 
oral cavities. The speech articulators determine the resonance characteristics of the 
vocal tract during speech production. Movements of visible articulators such the 
jaw and lips are known to significantly contribute to the intelligibility of speech 
during face-to-face communication (Summerfield 1979; Summerfield, MacLeod et 
al. 1989). In the field of person-machine communication, visual information can be 
helpful both as input and output modalities (Bailly, Bérar et al. 2003; Potamianos, 
Neti et al. 2003). 

To evaluate the contribution of the facial movements to the performance of the 
GMM-based system, the Japanese audiovisual corpus presented in chapter 3 was 
used. 

4.3.6.1 Visual parameters extraction 

The facial movement parameters were obtained using the face cloning 
methodology developed at DPC (ex. ICP) of GIPSA-Lab (Revéret et al., 2000), 
(Elisei et al., 2001), (Badin et al., 2002), (Bailly et al., 2003). In our case, we 
identified the contribution of the jaw rotation, lip rounding vertical movement of 
upper and lower lips, lip corner movements and throat movement. 

The face and profile views of the subject have been video-monitored under good 
lighting conditions. From the raw motion data of the 142 colored beads glued on 
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the speaker's face (particularly those on the lips and the jaw since their movements 
are supposedly dominating for the speech), a linear model composed of 5 degrees 
of freedom was computed. A so-called guided Principal Component Analysis 
(PCA) was used, which iteratively estimates and subtracts the elementary 
movements of segments (lips, jaw, etc.) known to drive facial motion. The 
resulting articulatory model also includes other components for head movements 
and facial expressions but only components related to speech articulation were 
considered in this thesis, namely: 

1. Jaw Raising/lowering (Jaw1 parameter). The PCA was applied to the 
vertical coordinates (y) of the beads on the jaw and the lower teeth; 

2. Lip Protrusion (Lip1 parameter). The PCA was applied to the coordinates 
(residue) xyz of the beads on the lips; 

3. Lower lip raising/lowering (Lip2 parameter). The PCA was applied to the 
vertical coordinates (residue) (y) of the beads on the lower lip; 

4. Upper lip raising/lowering (Lip3 parameter). The PCA was applied to the 
vertical coordinates (residue) (y) of the beads on the upper lip; 

5. Larynx raising/lowering (Lar1 parameter). The PCA was applied to the 
vertical coordinates (residue) (y) of all the beads on the neck. 

These five visual parameters are used as input and output modalities to obtain a 
multimodal whisper-to-speech system. 

 

Figure 4.12. Video-realistic rendering of computed movements by statistical shape 
and appearance models driven by the same articulatory parameters 
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4.3.6.2 Facial animation 

The audiovisual rendering of the estimated visual parameters is performed by 
texturing the mesh piloted by the shape model introduced above. An appearance 
model that computes a texture at each time frame is built using a technique similar 
to AAM (Active Appearance Models) (Cootes, Edwards et al., 2001) in three steps: 
(1) shape-free (SF) images are obtained by morphing key images to a reference 
mesh; (2) contrary to AAM, these pooled SF images are then directly linked to 
articulatory parameters via a multilinear regression; (3) the resulting appearance 
model is then used to compute a SF synthetic image given the set of articulatory 
parameters of each frame and used to texture the corresponding shape. The main 
difference with AAM is the direct multilinear regression used instead of a joint 
PCA and the number of configurations used: while AAM typically uses a few 
dozen images on which a generic mesh is adapted by hand or semi-automatically, 
we use here more than a thousand configurations on which the mesh is positioned 
automatically thanks to marked fleshpoints (Bailly, Bégault et al. 2008). The 
videorealistic audiovisual rendering of computed facial movements is illustrated in 
Figure 4.12. This figure presents from left to right: original frame; its shape-free 
transform (note the texture distortion in the mouth region because the reference 
mesh is chosen with an open mouth) and three different synthesized frames 
sampling a bilabial closure (note the nice rendering of the inner mouth despite the 
linear modelling of the nonlinear appearance/disappearance of the inner parts, 
notably the teeth). 

4.3.6.3 Contribution of the visual parameters to the conversion 
system 

For this evaluation, the database consists of 150 sentences for training and 40 
sentences for testing, pronounced by a native Japanese speaker. The audiovisual 
feature vector combines whispered spectral and visual feature vectors in an 
identical way to the AAM where two distinct dimensionality reductions by PCA 
are performed in shape and appearance and further combined into a third PCA to 
get a joint shape and appearance model. Acoustic and visual features are fused, 
using an identical process. The 0th through 19th mel-cepstral coefficients are used as 
spectral features at each frame. The input feature vector for computing the speech 
spectrum is constructed by concatenating feature vectors at current ±8 frames and 
further reduced to a 40-dimension vector by a PCA. Each visual frame is interpo-
lated at 200 Hz – so as to be synchronous with the audio signal – and characterized 
by a feature vector obtained by concatenating and projecting ±8 frames centred 
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around the current frame on the first n principal components. The dimension of the 
visual vector n is set to 10, 20 or 40. Prior to joint PCA, the visual vector is 
weighted. The weight w varied from 0.25 to 2. The conversion system uses the first 
40 principal components of this joint audiovisual vector. In the evaluation, the 
number of Gaussian is fixed at 16 for the spectral estimation, 16 for the F0 
estimation and 16 for the aperiodic components estimation. 

Table 4.5. Influence of visual information on voicing decision (Japanese data) 

Feed-fwd NN (%) 
AUVI 

 
Type of 
error 

AU 
w = 1 w = 0.75 w = 0.5 w = 0.25 

GMM 
(%) 

Voiced 
error 

3.71 3.58 3.74 3.34 2.75 4.29 

Unvoiced 
error 

4.34 4.19 4.71 4.37 4.87 5.47 

Total 8.05 
(± 3.99) 

7.77 
(± 3.45) 

8.45 
(± 3.46) 

7.71 
(± 3.48) 

7.62 
(± 3.86) 

9.76 
(± 4.43) 

 

4.3.6.3.1 Voicing decision 

In the same way as for the evaluation of voicing decision described in section 4.2, 
the audiovisual vectors of whisper in the training corpus of the conversion system 
are used to train the network. This network has 40 input neurons, 17 hidden 
neurons and 1 output neuron. Table 4.5 shows that visual information improves the 
accuracy of voicing decision. With a visual weight empirically set at 0.25, the 
voicing error is decreased by 5.4 % (8.05 % → 7.62%) compared to audio-only 
21.9 % compared with the baseline system (9.76 % → 7.62%) (F(1,40) = 2.8, p = 
0.065). 
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4.3.6.3.2 Spectral and excitation estimations 

The visual information also enhances the performance of the conversion system. 
As shown in Table 4.6, the best results are obtained with weighting equally 
acoustic and visual parameters (w = 1) and with the dimension of the visual vector 
equal to 40. The spectral distortion between the converted speech and the target 
speech is decreased by 3.7% (5.99 dB → 5.77 dB) while the difference between the 
converted speech and that of target speech is decreased by 6.9 % (11.56 % → 10.76 
%) for F0 estimation and 3.6 % for aperiodic components estimation. 

Figure 4.13 shows an example of F0 curves converted from audio and audiovisual 
input whisper. With visual information as an additional input, we have a better 
converted F0. 

 

Figure 4.13. Natural and synthetic F0 curve converted from audio and audiovisual 
whisper. 
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Table 4.6 Influence of visual information on the estimation of spectral and excitation features 

 Visual weight 

Distorsions Visual 
dimension 

Audio-
only 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 Video-
only 

10 7.01 5.97 5.80 5.78 5.88 5.87 5.86 5.84 

20 7.01 5.97 5.79 5.77 5.86 5.83 5.95 5.89 

Cepstral 
distortion (dB) 

40 

 
5.99 

7.02 5.96 5.79 5.77 5.86 5.82 5.94 5.88 

 
9.28 

10 14.55 12.44 11.42 10.99 11.71 12.75 14.24 15.77 

20 14.79 12.38 11.40 10.78 11.66 12.62 14.31 15.43 

F0 estimation 
(%). 

40 

 
11.56 

14.57 12.39 11.04 10.76 11.66 12.62 14.33 15.46 

 
12.95 

10 41.46 38.26 37.73 37.57 37.33 37.95 37.57 37.95 
20 41.42 38.25 37.79 37.55 37.33 38 37.90 37.95 

AP distortion 
(dB) 

40 

 
38.72 

41.42 38.21 37.78 37.53 37.33 37.99 37.53 37.93 

 
51.45 
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4.4 Perceptual evaluations 
In this section, the objective improvement of our system over the original one 
proposed by Toda et al. is further evaluated by subjective tests. We recall that two 
corpora were recorded. The French corpus is used for the acoustic evaluation. The 
Japanese corpus is used for the audiovisual evaluation. 

4.4.1 Acoustic evaluation 

For this evaluation, sixteen French listeners, who had never listened to NAM, 
participated in our perceptual tests on the comparison of the intelligibility and 
naturalness of the converted speech in the two systems (Tran et al., 2008c). We 
used 20 test utterances not included in the training set. 

Each listener heard an utterance pronounced in normal (original voiced) speech and 
the converted utterances obtained from the whispered speech with both systems. 
For intelligibility testing, the spectral, F0 and aperiodic component parameters were 
obtained by the two voice conversion procedures and the synthesis was performed 
using STRAIGHT (Kawahara, Masuda-Katsuse et al., 1999). For naturalness, the 
spectral and aperiodic component parameters were original and the stimuli were 
obtained by substituting only predicted voicing and F0 values to the original 
warped target frames. 

 

Figure 4.14. ABX results. (left) intelligibility ratings (right) naturalness ratings 

This procedure was chosen because the quality of the converted spectrum could 
also influence the perception in the naturalness test. We want to make sure that we 
were testing the prediction of F0 and voicing only. 

For each utterance, listeners were asked which one was closer to the original one, 
in terms of intelligibility and in terms of naturalness. An ABX test (or matching-to-
sample test) was used. It is a discrimination procedure involving presentation of 
two test items and a target item. The listeners are asked to tell which test item (A or 
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B) is closest to the target (X). Figure 4.14 (left) displays the mean intelligibility 
scores for all the listeners for the converted sentences using the original system and 
our new system. An ANOVA showed that the intelligibility score is higher for the 
sentences obtained with our new system (F = 23.41, p <.001). Figure 4.14 (right) 
shows the mean naturalness. Again the proposed system is strongly preferred to the 
original one, as shown by an ANOVA (F = 74.89, p <.001). 

4.4.2 Audiovisual evaluation 

To confirm the positive contribution of visual information, eight Japanese listeners 
participated in our perceptual tests on audiovisual converted speech (see also Tran 
et al., in press). The stimuli consisted of Japanese VCV (with V chosen amongst 
five vowels and C amongst twenty-seven consonants) sequences with four 
conditions: 

1. Speech generated from whispered audio (named ‘condition A from A’) 

2. Speech generated from whispered audio and video (‘condition A from AV’) 

3. Speech and facial animation generated from whispered audio (‘condition 
AV from A’) 

4. Speech and facial animation generated from whispered audio and video 
(‘condition AV from AV’) 

The five vowels were /a/, /i/, /e/, /o/, /u/. The 27 consonants were the following: /p/, 
/pj/, /b/, /bj/, /m/, /mj/, /d/, /t/, /s/, /ts/, /z/, /j/, /n/, /nj/, /k/, /kj/, /g/, /gj/, /f/, /Σ/, /tΣ/, 
/Ζ/, /h/, /hj/, /r/, /rj/, /w/. Only 115 combinations of vowels and consonants were 
tested. 

Each participant heard and viewed a list of randomized synthetic audio and 
audiovisual VCV. For each VCV, she/he was asked to select what consonant 
she/he heard among a list of 27 possible Japanese consonants.  

Figure 4.15 provides the mean recognition scores for all the participants. Visual 
parameters significantly improve consonant recognition: the identification ratios 
for ‘AV from A’ (28.37 %), ‘A from AV’ (30.56 %) and ‘AV from AV’ (36.21 %) 
are all significantly higher than that of the ‘A from A’ condition (23.84 %) (F = 
1.23, p < 0.303). The figure also shows that providing visual information to the 
speakers is more beneficial when it is synthesized from audiovisual data (‘AV from 
AV’) than when it is derived from audio data alone (‘AV from A’). Furthermore 
the addition of visual information in the input data (‘A from AV’) increases 
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identification scores compared with audio data alone (‘A from A’), but is not 
significantly different from providing audiovisual information derived from the 
audio alone (‘AV from A’). 

 

Figure 4.15. Mean of consonant identification ratio. 

Although adding visual information greatly increases the identification scores on 
all the tested VCVs, the scores are still quite low (less than 40%). It should be 
noted however that nonsense VCV recognition is a difficult task, especially in a 
language with a lot of consonants. It could therefore be argued that identification 
scores on words or sentences could be much higher, with the help of lexical, 
syntactic and contextual information. With this in mind, it could be interesting to 
check whether the addition of visual information provided in fact some cues to 
place of articulation, even if accurate phoneme detection was too difficult. 
Therefore we also grouped the consonants into different place of articulation 
categories to examine which consonantal groups benefited most from the addition 
of visual information. The 27 consonants were thus grouped into bilabials (/p/, /pj/, 
/b/, /bj/, /m/, /mj/), alveolars (/d/, /t/, /s/, /ts/, /z/, /j/, /n/, /nj/), palatals (/k/, /kj/, /g/, 
/gj/), non-alveolar fricatives (/f/, /Σ/, /tΣ/, /Ζ/) and others (/h/, /hj/, /r/, /rj/, /w/). The 
first aim was to check whether consonants belonging to the bilabial category,  

* *

*
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                                                 (a) bilabials (F = 2.62 , p < 0.079)              (b) non-alveolar fricatives (F = 0.17, p < 0.912) 

 
           (c) alveolars (F = 0.16, p < 0.922)                        (d) palatals (F = 0.3 , p < 0.822)                            (e) others (F = 0.42, p < 0.744 

Figure 4.16. Recognition ratios for different groups of consonants, classified according to their places of articulation



106                                Improvement to the GMM-based whisper-to-speech system 

 

which are intrinsically more salient visually, were better identified as bilabials, 
when visual information was taken into account in the speech conversion procedure 
and when audiovisual stimuli were presented. The second aim was to examine what 
kind of perceptual confusions were observed. 

Table 4.7. Confusion matrices for the 5 places of articulation in the 4 conditions 

   bilabial alveolar palatal fricative other 
A from A bilabial 18.29 10.86 22.86 34.86 13.14 
 alveolar 2.38 59.52 11.90 8.73 17.46 
 palatal 3.86 15.44 54.83 12.74 13.13 
 fricative 0.95 25.71 21.90 47.62 3.81 
 other 5.00 20.71 25.71 9.29 39.29 
       
AV from A bilabial 15.00 10.50 28.00 36.50 10.00 
 alveolar 3.47 65.97 9.03 9.72 11.81 
 palatal 2.36 16.89 65.20 9.12 6.42 
 fricative 0.83 21.67 27.50 49.17 0.83 
 other 7.50 19.38 27.50 10.63 35.00 
       
A from AV bilabial 32.57 5.14 20.57 30.29 11.43 
 alveolar 0.79 63.49 15.87 6.35 13.49 
 palatal 6.56 13.51 57.14 12.74 10.04 
 fricative 3.81 21.90 24.76 47.62 1.90 
 other 5.00 20.00 21.43 6.43 47.14 
       
AV from AV bilabial 75.00 1.00 9.50 10.50 4.00 
 alveolar 0.69 70.83 11.81 2.78 13.89 
 palatal 1.01 17.91 62.84 10.14 8.11 
 fricative 0.83 23.33 26.67 47.50 1.67 
 other 4.38 16.88 25.00 6.88 46.88 

Figure 4.16 displays the evolution of the identification scores along the four 
conditions (‘A from A’, ‘AV from A’, ‘A from AV’, ‘AV from AV’) for the five 
articulatory groups. The average of the correct identification rates for each 
consonant in an articulatory group was calculated to provide an overall correct 
identification rate for each group. This articulatory grouping shows that visual 
information effectively helps the participants to identify bilabials. The 
identification ratio for the bilabial consonants rises from 11.67 % in the ‘A from A’ 
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condition to 39.83 % in the ‘AV from AV’ condition (F = 2.62, p < 0.079). The 
identification ratios for all the other groups are quite stable and are not significantly 
increased by the addition of visual information. 

Table 4.7 provides the confusion matrices with places of articulation chosen among 
5 categories (bilabial, alveolar, palatal, fricative, or other), rather than among 27 
individual consonants. The focus here is on the broad category the consonant 
belongs to, not on the score of individual consonants. Interestingly, the bilabial 
place of articulation, which is poorly identified in the ‘A from A’ and ‘AV from A’ 
conditions (less than 20 %), becomes quite well identified in the ‘AV from AV’ 
condition (75 %). When the bilabial place of articulation is wrongly identified, it is 
most often mistaken for what we named “non-alveolar fricatives”, a group which 
contains labiodentals or rounded consonants. This suggests that the labial place of 
articulation remains quite perceptible. Table 4.6 also shows that the alveolar place 
of articulation is quite well recovered from the audio alone (approximately 60 %). 
Although its recovery does benefit from the addition of visual information, the ‘AV 
from AV’ score does not reach as high a score as the one for the bilabial place of 
articulation (70.83 % vs. 75 %). We must recall here that the visual synthesis used 
in this study does not provide information on tongue movements, which could in 
fact be visible for alveolar consonants. This probably explains why the addition of 
visual information does not provide such a drastic improvement on the scores. The 
palatal place of articulation reaches a good score (above 50 %) but does not benefit 
much from visual information, as could be expected. The other two groups do not 
benefit from visual information and are not well identified (less than 50 %). 

 

4.5 Summary 
This chapter proposes several solutions to improve the intelligibility and the 
naturalness of the speech generated by a whisper-to-speech conversion system. The 
original system proposed by Toda and Shikano (2005) is based on a GMM 
predicting the three parametric streams of the STRAIGHT speech vocoder (F0, 
harmonic and noise spectrum) from spectral characterization of the non-audible-
murmur input. 

The first improvement concerns characteristics of the voiced source. We have 
shown that the estimation of voicing and F0 by separate predictors improves both 
predictions. We have also shown that F0 prediction is improved by the use of a 
large input context window (about 425 ms) to get more spectral variation compared 
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to the original smaller window (about 105 ms). Predictions of all parametric 
streams are further improved by a data reduction technique that makes use of the 
phonetic structure of the speech stream (LDA). 

The second part of the chapter compared objective and subjective benefits offered 
by multimodal data. Improvements obtained by adding visual information in the 
input stream as well as including articulatory parameters in the output facial 
animation are very significant. 

Although the performance of the system is improved, the estimated pitch as well as 
the spectral structures of converted speech is still flat due to the impoverished 
phonetic contrasts of the GMM-based method. Listeners therefore have sometimes 
difficulty in chunking the speech continuum into meaningful words due to 
incomplete phonetic cues provided by output signals. The next chapter 
consequently studies another approach consisting in combining HMM-based 
statistical speech recognition and synthesis techniques to convert silent speech to 
audible voice. By introducing phonological constraints, such systems are expected 
to improve the phonetic consistency of output signals. 



 

 

Chapter 5 

Multi-streams HMM-based 
whisper-to-speech system 
 

5.1 Introduction 
As presented in chapter 1, two main approaches have been proposed to generate 
audible – and visible – speech from signatures of non-audible articulation: 

– Mapping techniques based on a GMM can be used to directly convert 
whispered signals into sound using aligned training corpora (of paired non-
audible and audible sentences, words or other units) without the need for 
any phonetic information: joint multi-frame representations of non-audible 
and speech signals are either stored or modelled and then used to perform 
direct estimation – or inversion – of audible speech given the sole 
representation of non-audible signals. A conversion system based on this 
approach was presented in chapter 1 and improvements to this system were 
proposed in chapter 4. 

– The second approach consists in plugging a speech synthesis system to a 
speech recognizer. The approach is quite straightforward: the recognizer 
segments the speech flow into phonemic units using both signal-dependent 
information and a language model. A standard speech synthesis system then 
converts the phonetic string into a synthetic voice either using the pre-
recorded modal voice of the speaker or built-in available resources. The 
performance of such a system is mainly dependent on the recognition 
performance: correct recognition will result in a perfect reconstructed 
speech while recognition failures or inadequate language models result in 
drastic degradations. 

In this chapter, we examine the feasibility of the second approach in a whisper-to-
speech conversion system, including audiovisual data. A summary of this study 
was published in (Tran et al., 2009). In this section, we only focus on the segmental 
intelligibility of the converted speech. The source excitation (F0) generation is 
beyond the scope of this study. We first study the impact of visual information for 
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a recognition – synthesis system. This system is based on statistical Hidden 
Markov Models (HMM), which are traditionally used in speech recognition. Then, 
this system is compared with the original GMM-based system proposed by Toda 
and Shikano (2005). 

The chapter is organized as follows. Section 5.2 provides an overview of the multi-
stream HMM-based whisper-to-speech conversion system. The promising 
contribution of visual information to this system and the comparison between the 
two approaches (GMM-based mapping and HMM-based recognition and synthesis) 
are presented in the section 5.3. Finally, conclusions are drawn in section 5.4. 

 

5.2 Multi-stream HMM-based Whisper-to-Speech 
system 

In order to compare the performance of the GMM-based voice conversion 
technique proposed by Toda and Shikano (2005) with the approach of combining 
NAM recognition and speech synthesis, HMM-based whisper-to-speech 
conversion system was developed which combines 2 modules, namely HMM 
recognition and HMM synthesis. 

Advantages of an HMM Speech synthesis method 

Instead of using the diphone-based concatenative synthesis proposed in (Hueber et 
al., 2008ab), we used an HMM-based synthesis, as described in (Tokuda et al., 
2000) because integrating a speaker specific parametric model offers some 
benefits. First of all, the whole synthesis system is parameterised rather than 
consisting of stored pre-recorded waveforms. The system is therefore trainable. 
Secondly, HMMs provide a much more compact representation compared to the 
concatenated approach. Moreover, the synthesized speech from an HMM-based 
system has an overall lower variance, more constrained articulatory quality than 
that obtained from a concatenative approach and the voice characteristics, speaking 
styles, emotions can be controlled parametrically. Finally, an HMM-based 
parametric model could bring a more intimate coupling between speech recognition 
and synthesis components, by tackling both problems in a unified coherent 
statistical framework (Tokuda et al., 2004; Zen et al., 2004, 2009; Zhang, 2009) 

Training methods 

As stated in Zhang et al. (2009), two training frameworks could be used to estimate 
the models.  
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The first uses separate training: while the whispered speech HMMs are trained on 
the whispered data only, and the phonated speech HMMs are built from the speech 
data alone using the standard HMM training procedure. The idea behind the 
separate training is clearly that training the two types of HMMs individually is 
likely to bring out the best performance from each channel. This framework does 
not need a prior alignment of whisper and speech data. 

The second scheme, on the other hand, tries to find a way to jointly optimise a 
single model for both whispered speech and phonated speech information. The 
model therefore has two components, both are modelled as multi-state phone-level 
HMMs: a speech synthesis model which generates speech parameters given a 
phone sequence and a whisper model which derives the phone sequence for 
synthesis from the whispered features extracted from a whispered utterance. Both 
the whispered and speech model have the same topology: i.e. they have exactly the 
same set of HMM states and allophonic variations. This structure enables to bridge 
the whisper and speech domains. The Hidden Markov Model Toolkit5 (HTK)’s 
multi-stream functionality makes this type of training possible by combining the 
two sets of HMMs into a single (for our system, we have a two-stream model when 
only acoustic information is available, and a four-stream model when facial data 
are added as a complementary information). This framework, on the other hand, 
needs a prior alignment of whisper and speech data represented the same phonetic 
information. 

The overview of the HMM-based conversion system is presented in figure 5.1. The 
system consists of two processes: training and conversion. The training process is 
performed by the second scheme described above. The conversion process is 
carried out in 2 steps: 

– The first step performed phoneme recognition, based on the acoustic 
HMMs. The result is a sequence of recognised allophones together with 
their durations. 

– The second step of the conversion aims at reconstructing the speech 
parameters (cepstral coefficients in this work) from the chain of phoneme 
labels and boundaries delivered by the recognition procedure. As described 
in (Govokhina et al., 2006), the synthesis is performed as follows, using the 
software developed by the HTS6 group (Tamura et al., 1999; Zen et al., 
2004). A linear sequence of HMM states is built by concatenating the 
corresponding segmental HMMs. The proper state durations are estimated 

                                                 
5 http://htk.eng.cam.ac.uk/ 
6 http://hts.sp.nitech.ac.jp/ 
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by z-scoring. A sequence of observation parameters is generated using a 
specific ML-based parameter generation algorithm (Zen et al., 2004). 

Table 5.1. Phone occurrences in the Japanese training corpus 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

a 472 gj 6 n 171 s 83 
a: 5 h 63 nj 8 Σ 68 
b 61 hj 5 N 134 t 154 
bj 1 i 370 o 347 ts 38 
tΣ 37 i: 3 o: 60 u 290 
d 78 Ζ 59 p 24 u: 72 
e 255 k 179 pj 1 j 73 
e: 17 kj 20 r 164 z 40 
f 23 m 109 rj 7 w 47 
g 101 mj 3 q 56 sil 362 

 

Data 

The data used to train and test this HMM-based conversion system are the Japanese 
corpus used for the evaluation of audiovisual GMM system presented in chapter 4 
(c.f. 4.3.6) which includes 150 sentences for the training and 40 sentences for the 
test. These data are used in order to compare the spectral conversion performance 
of the two systems. Table 5.1 and 5.2 show the number of occurrences of each 
phone in the training and the test corpus respectively. 

As can be seen in Table 5.1, some phones have a very low number of occurrences 
in the training corpus (e.g. /bj/ and /pj/ occur only once) but these phonemes have a 
very low frequency in the language (Amano & Kondo, 1999). 

Table 5.2 shows that some phones are not represented in the test corpus. These 
phones correspond to phonemes that are rare in the language, however. 

The 0th through 19th mel-cepstral coefficients extracted by STRAIGHT7 and their 
first deltas were used as spectral features for the acoustic information while 5 
visual parameters and their first deltas, extracted by the “talking head” cloning 
system developed at DPC (Bailly et al., 2006), were used to characterize the 
movements of the jaw, throat and lips. 

                                                 
7 http://www.wakayama-u.ac.jp/~kawahara/index-e.html 
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Table 5.2. Phone occurrences in the Japanese test corpus 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

Phone No. of 
occ 

a 141 gj 2 n 47 s 24 
a:  h 18 nj  Σ 24 
b 13 hj 2 N 35 t 50 
bj  i 90 o 87 ts 4 
tΣ 13 i: 1 o: 22 u 61 
d 18 Ζ 12 p 6 u: 11 
e 55 k 51 pj  j 13 
e: 8 kj 4 r 38 z 10 
f 6 m 20 rj 2 w 10 
g 31 mj  q 22 sil 89 

 

5.2.1 Concatenative feature fusion 

To build the multi-stream HMM-based system by HTK Toolkit (Young et al., 
2006), a simple audio-visual fusion approach is concatenative feature fusion. 
Whispered and phonated speech audio and visual data need first to be aligned due 
to the different speaking rates and syllable durations in the two speaking modes 
(whispered and phonated). This alignment is carried out by the same semi-
automatic procedure as presented in chapter 4. 

Acoustic and visual parameters of whispered speech and phonated speech are then 
stored in 4 streams (whispered audio spectral stream, whispered visual stream, 
phonated audio spectral stream and phonated visual stream). Static and dynamic 
features are used for each stream to generate a realistic parameter trajectory in 
which the variations in parameters are much smoother. The joint bimodal feature 
vector is therefore presented as:  
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Figure 5.1. HMM-based voice conversion system combining whisper recognition with speech synthesis
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( _ ) ( _ ) ( _ ) ( _ ), , ,
T T T T AVT

AV A W V W A S V S D
t t t t to o o o o R⎡ ⎤= ∈⎣ ⎦                       (5.1) 

where AV
to  is the joint audio-visual feature vector of aligned whispered speech and 

phonated speech, ( _ )A W
to , ( _ )V W

to  are the audio spectral feature and the facial feature 

of whisper, ( _ )A S
to , ( _ )V S

to  are the audio spectral feature and facial feature of 

phonated speech respectively and DAV is the dimensionality of the augmented joint 
feature vector AV

to . Each state-output vector to  of each stream, consists of the 

static feature tc , and its first-order dynamic feature tcΔ : 

,
TT T

t t to c c⎡ ⎤= Δ⎣ ⎦                                                   (5.2) 

where the dynamic feature is calculated as proposed in (Zen, Tokuda et al., 2009): 

1t t tc c c −Δ = −                                                      (5.3) 

The relationship between augmented output vector to  and static vector tc  can be 

presented in matrix form as 

                  (5.4) 

where 1 ,..., Tc c c⎡ ⎤= ⎣ ⎦
TT T  is a static feature-vector sequence and W is a matrix that 

appends dynamic features to c. 

As stated above, we use 20 mel-cepstral coefficents and their first delta, together 
with 5 PCA-coefficients and their first delta to present static and dynamic acoustic 
parameters and visual parameters respectively in our experiments. The dimension 
DAV of AV

to  is therefore 100 (40+10+40+10). 
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5.2.2 Multi-stream HMM 

The fusion data captures the reliability of each stream by combining the likelihoods 
of single-modality HMM classifiers. Such an approach has been used in multi-band 
audio-only ASR (Bourlard and Dupont, 1996) and in audio-visual speech 
recognition (Potamianos et al., 2003). The emission likelihood of multi-stream 
HMM is the product of emission likelihoods of single-modality components 
weighted appropriately by stream weights. Given the O multi-streams observation 
vector, i.e., whispered and speech acoustic and facial modalities, the emission 
probability of multi-streams HMM is given by 

1 1

( ) ( ; , )
sjt

s sN M

j t jsm st jsm jsm
s m

b O c N O
λ

μ
= =

⎡ ⎤
= Σ⎢ ⎥

⎣ ⎦
∏ ∑                           (5.5) 

where ( ; , )st js jsN O μ Σ  denotes the multivariate Gaussian distribution with mean 

vector jsμ and covariance matrix jsΣ  for each state j in stream s. In contrast to the 

GMM-based system presented in chapter 4, the covariance matrix in each state of 
the HMM is modelled by a diagonal matrix due to the limitation of the training 
data. For each stream s, Ms Gaussians in a mixture are used, each weighted with 
cjsm. The contribution of each stream is controlled by the weight λsjt. Although 
finding the optimized weights for the streams is interesting, it is a time consuming 
task for this system with a 4-stream topology. This optimization is therefore not 
studied in this thesis. The stream weights are set by default to 1.0 for all the 
streams in our system. 

5.2.3 HMM Training 

The joint probability densities of whispered speech and phonated speech 
parameters are modelled by “left-right” phone-sized HMM. Each HMM topology 
consists of five states. Three of these are emitting states and have output 
probability distributions associated with them. The transition matrix for this model 
will have five rows and five columns. The HMMs are trained by the following 
basic procedure (Young et al., 2005). 

Context-independent monophone training 

Before starting the training process, the HMM parameters must be properly 
initialised with training data in order to allow a fast and precise convergence of the 
training algorithm. This initialization is considered as an isolated estimation: 
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– Extract all the corresponding segments (audio or audio+visual of aligned 
whisper-speech) for a particular phone model. 

– The segments are then used ? an iterative Viterbi-training scheme until the 
parameters converge (HInit command in HTK). 

– The Viterbi-estimated parameters are then refined by a further Baum-Welch 
training cycle (HRest command in HTK). 

Whereas the isolated training above is sufficient for initialization using hand-
labelled data, the HMM parameters are estimated by an “embedded training” 
procedure (HERest command in HTK). 

For each utterance: 

– Join together all of the HMMs corresponding to the phone list presented in 
the transcription to make a single composite HMM. 

– Apply a Forward-Backward algorithm to collect the necessary statistics. 

When all of the training utterances have been processed, the total set of 
accumulated statistics is used to update the parameters of all HMMs. 

At the end of this stage, we have 40 HMMs for the phone presented in the training 
corpus (cf. table 5.1). 

Context-dependent training 

Starting from single Gaussian state output distribution, context-independent 
monophone, the model was enriched by two ways during the training: 

– Due to coarticulatory effects, it is unlikely that a single context-independent 
HMM could optimally represent a given allophone. Therefore context-
dependent HMM is used as another way to enrich the model. Because of 
limited training data (about 12 minutes), we only used bi-phone context for 
the acoustic models. In the recent study of Ben Youssef et al. (2009), the 
authors showed that the “next” context is better than the “precedent” 
context. The “next” context bi-phone is also chosen for our system by first 
grouping phonemes in context classes. In addition to using a priori phonetic 
knowledge to define such classes, confusion trees have been built based on 
the matrix of Manhattan distances of visual parameters between each pair of 
phone. Two different confusion trees were computed: one from the 
whispered visual (facial) parameters and one from the whispered acoustic 
features. 
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The confusion tree obtained from visual data (figure 5.2) provides 
groupings between consonants that can be interpreted articulatory. In particular, 
most of the bilabials are grouped together (/p/, /b/, /m/, /mj/). Another group 
gathers dentals (/d/, /t/, /n/, /nj/). Another group gathers dental fricatives and 
affricates (/s/, /ts/ /z/, /Σ/, /tΣ/, /ts/). Some results may seem difficult to 
interpret, such as the non-inclusion of /pj/ and /bj/ in the bilabial group. They 
can be explained by the fact that these consonants were very unfrequent in the 
corpus. Table 5.1 provides the number of occurrences of each phoneme in the 
corpus. 

The confusion tree obtained from audio data (figure 5.3) provides groupings 
between consonants that can be interpreted acoustically, considering that in the 
whispered mode many phonemes are confused. Importantly, most of the stops 
are gathered in one group (/t/, /k/, /b/, /ky/, /g/, /gy, /p/). Voiced and unvoiced 
consonants are not separated, which is explained by the fact that they are 
undistinguishable acoustically in whisper. 

Taking these two confusion trees as well as general phonetic knowledge, 
phonemes were classified coarsely into 3 groups for vowels ({/a/}, {/i/,/e/}, 
{/u/,/o/} without distinguishing between long and short vowels) and 7 groups 
for consonants: bilabials ({/p/, /pj/}, {/b/, /bj/}, {/m/, /mj/}), alveolars (/d/, /t/, 
/n/, /nj/, /s/, /ts/, /z/, /j/), palatals (/Σ/, /tΣ/, /Ζ/), velars ({/k/, /kj/},{/g/, /gj/}), /f/, 
/w/ and others ({/h/, /hj/}, {/r/, /rj/}). We added /f/ and /w/ to the list of 
contextual groups because they are visually distinguished from other 
consonants (see figure 5.2). Silences were also classified into 2 groups for 
utterance-final and internal silences. Only phone with high number of 
occurrences are extended to “next-context” biphone (>20). The number of 
HMM models in the training corpus is 149. 

The biphones are initialized by making a copy of the corresponding 
monophones estimated in the previous step. These new biphone sets are then 
re-estimated twice by “embedded training” (HERest). 

– The monogaussian state output distribution is then replaced by Gaussian 
mixture models. The number of Gaussians is increased from 1-2-3 and 4. 
Due to the limitation of training data, the number of Gaussians in each state 
of the HMM differs for each biphone, depending on its number of 
occurrences in the corpus. For biphones with a high number of occurrences 
in the corpus (>40), the number of Gaussians is set to 4. For biphones with 
lower number of occurrences, the number of Gaussians is set to 3, 2 and 1. 
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Finally, the number of parameters of HMM models is 114989 for audio system and 
143545 for audiovisual system, calculated by the formula:  

Number of parameters = models ×  states ×  Gaussians ×  (means + variances) + 
models ×  transitions. 

5.2.4 Recognition 

The recognition phase consists in identifying the most probable phoneme sequence 
from the sequence of observations (acoustic or audiovisual observations of 
whisper). This phase allows us to introduce additional linguistic constraints to 
enhance the recognition performance by using a language model. This model is 
especially essential for large vocabularies recognition task.  

The most common kind of language model in use today is based on estimates of 
word string probabilities from large collections of text or transcribed speech. In 
order to make these estimates tractable, the probability of a word given the 
preceding sequence is approximated to the probability given the preceding one 
(bigram) or two (trigram) words (in general, these are called n-gram models). In 
our experiments, a bigram language model was used. 

                                 1 2 1 1( | , ,..., ) ( | )n n n nP w w w w P w w− −=                                     (5.6) 

This model was simply built from the labelled files in the training corpus via the 
following steps. 

HLStats command reads all of the context-dependent transcriptions of training 
corpus, builds a table of bigrams in memory and then outputs a back-off bigram. 
The probability values of this table is calculated by the following formula 

                            
( ( , ) ) / ( ) ( , )

( , )
( ) ( )
N i j D N i if N i j t

p i j
b i p j otherwise

− >⎧
= ⎨
⎩

                           (5.7) 

where N(i,j) is the number of times word j follows word i and N(i) is the number of 
times that word i appears. D is a constant for the discounting process in which a 
small part of the available probability mass is deducted from the higher bigram 
counts and distributed amongst the infrequent bigrams. When a bigram count falls 
below the threshold t, the bigram is backed-off to the unigram probability suitably 
scaled by a back-off weight in order to ensure that all bigram probabilities for a 
given history sum to one. 
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Figure 5.2. Confusion tree of whispered visual movements of consonants (the smaller the ordinate, the more confused the two 
categories are) 
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Figure 5.3. Confusion tree of whispered acoustic parameters of consonants (the smaller the ordinate, the more confused the two 
categories are) 
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The next step is to use HBuild command to construct the recognition network. One 
of the commonest forms of this network is the word-loop where all vocabulary 
items are placed in parallel with a loop-back to allow any word sequence to be 
recognized. In our experiments, HBuild reads the back-off bigram generated by 
HLStats and attaches a bigram probability to each word transition. 

Finally, for an unknown input utterance with T frames, every path from the start 
node to the exit node of the network passes through T emitting HMM states. Each 
of these paths has a log probability which is computed by summing the log 
probability of each transition in the path and the log probability of each emitting 
state generating the corresponding observation. Within-HMM transitions are 
obtained ? from the HMM parameters while word-end transitions are determined 
by the language model likelihoods attached to the recognition networks. The 
“Token Passing” algorithm is used to find those paths which have the highest log 
probability (Young et al., 2005). 

 

5.3 Experiments and results 
This section presents the objective performance of our multi-streams HMM-based 
whispered-to-speech by different criteria: recognition rate and cepstral distance 
between the converted speech and target audible speech. The impact of facial 
information for recognition and synthesis, as well as the comparison of this system 
with the GMM-based system described in chapter 4 will be presented here. 

5.3.1 Impact of visual information for whisper recognition 

Table 5.3 provides the recognition scores for all phones as well as separately for all 
vowels and consonants presented in the test corpus. These results show the positive 
contribution of visual information for the recognition task. On average, all phones 
considered, the input facial movements improve recognition rate by 13.2% 
(61.35% to 74.52%) for the biphone system and 5.9% (65.25% to 71.10%) for the 
monophone system. In the case of vowel recognition, the accuracy obtained by 
using the visual information is 78.28% for the biphone system and 77.36% for the 
monophone system, showing an improvement of 7% and 3.3% respectively 
compared with using acoustic information only. In the case of consonant 
recognition, this improvement is of 15.7% (56.62% to 72.35%) for the biphone 
system and 6.4% for the monophone one (61.71% to 68.1%). Note that in Japanese 
phonology, the number of vowels is only 5 while the number of consonants is 27. 
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The vowel recognition may be easier than that of consonants. The lesser 
improvement of vowels in the present of facial movements compare to that of 
consonants can be attributed to this fact. 

Table 5.3. Recognition ratio for all vowels, consonants and all the phones 
represented in the test corpus 

a. monophone system 

AU (%) AUVI (%) Number of 
Gaussians 

Vowels Cons All Vowels Cons All 

1 70.76  
(±29.70) 

58.90 
(±30.27) 

62.83 
(±30.28) 

75.70 
(±23.59) 

66.91 
(±29.01) 

69.95 
(±27.79) 

2 74.10 
(±30.99) 

59.44 
(±30.83) 

64.08 
(±31.29) 

77.36 
(±23.93) 

67.94 
(±29.11) 

71.10 
(±27.93) 

3 61.83 
(±30.56) 

58.63 
(±26.67) 

65.25 
(±30.52) 

75.28 
(±30.80) 

68.10 
(±30.25) 

70.73 
(±30.04) 

4 71.08 
(±31.18) 

61.71 
(±30.58) 

65.04 
(±30.67) 

76.91 
(±31.33) 

67.22 
(±30.86) 

70.47 
(±30.75) 

b. right biphone context system 

AU (%) AUVI (%) Number of 
Gaussians 

Vowels Cons All Vowels Cons All 

1 66.70 
(±25.73) 

57.71 
(±28.35) 

61.07 
(±28.06) 

77.94 
(±21.05) 

71.68 
(±28.27) 

73.98 
(±26.52) 

2 71.30 
(±25.10) 

56.62 
(±28.96) 

61.35 
(±28.80) 

78.28 
(±21.80) 

72.35 
(±28.43) 

74.52 
(±26.71) 

3 64.41 
(±29.78) 

58.63 
(±26.67) 

61.21 
(±27.55) 

75.20 
(±25.63) 

71.82 
(±27.71) 

73.41 
(±26.83) 

4 62.46 
(±31.81) 

58.20 
(±28.45) 

60.44 
(±29.25) 

76.79 
(±23.19) 

66.33 
(±31.14) 

69.75 
(±29.43) 

Table 5.4 shows the contribution of facial movements to the recognition of 
consonants clustered according to their place of articulation. The consonants 
considered here are classified into 4 groups: bilabials, alveolars, palatals and velars. 
The bilabials benefit from a very significant improvement (32.4%, from 63.13% to 
95.57% for the biphone system and 26.2%, from 61.97% to 88.17% for the 
monophone system) while alveolars display an improvement (11.7%, from 65.37% 
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to 77.07% and 6.5%, from 66.59% to 73.09% in biphone and monophone case 
respectively). Note that facial movements impact the recognition of the other 
consonants. For palatals, the improvement due to facial movements is of 11.3% for 
the biphone system and of 6% for the monophone system. For velars, the facial 
contribution is null in the biphone system: the recognition ratio is 80.82% with 
audio only and 80.65% with an audiovisual input; in the monophone system, 
adding facial movements for velars decreases the score by 8.9%. The small number 
of occurrences of velars (/kj/, /gj/) in the test corpus probably cause the significant 
improvement of velar recognition when the number of Gaussians increases 
(improvement from 56.45% to 80.82% in the biphone system). A possible 
interpretation, is that since articulatory movements associated with velar phones are 
not visible, adding visual information does not help recognition and may even 
degrade it, if the visual data add confusing information. 

Table 5.4. Recognition ratio with different places of articulation 

a. monophone system 

AU (%) AUVI (%) Num of 
Gauss 

Bil Pal Alv Vlr Bil Pal Alv Vlr 

1 54.03 
±4.15 

62.93 
±19.20 

60.06 
±26.58 

60.93 
±44.53 

80.83 
±21.05 

68.27 
±9.53 

69.31 
±15.70 

54.63 
±37.44 

2 56.27 
±7.31 

58.17 
±32.54 

59.74 
±23.82 

63.18 
±44.79 

82.60 
±18.25 

68.93 
±11.91 

70.83 
±14.46 

55.20 
±37.66 

3 60.50 
±0.87 

57.13 
±25.07 

65.27 
±25.16 

66.05 
±45.49 

88.17 
±12.55 

63.40 
±20.92 

73.09 
±17.23 

57.33 
±39.46 

4 61.97 
±10.44 

57.60 
±25.85 

66.59 
±23.72 

66.25 
±45.84 

88.17 
±12.55 

65.37 
±20.81 

71.60 
±20.46 

52.15 
±38.31 

b. right biphone system 

AU (%) AUVI (%) Num of 
Gauss 

Bil Pal Alv Vlr Bil Pal Alv Vlr 

1 63.13 
±11.76 

56.30 
±11.11 

60.08 
±24.90 

54.77 
±40.21 

87.23 
±17.96 

67.90 
±18.53 

72.64 
±23.51 

80.42 
±22.34 

2 54.43 
±29.84 

50.40 
±19.33 

62.99 
±23.56 

56.45 
±41.68 

90.0 
±13.23 

62.33 
±22.92 

77.07 
±22.85 

80.65 
±21.90 

3 47.16 
±23.70 

48.50 
±25.96 

65.37 
±21.38 

80.82 
±21.90 

95.57 
±4.18 

58.10 
±21.62 

74.21 
±14.07 

78.78 
±22.25 

4 51.06 
±27.12 

45.10 
±21.80 

59.48 
±28.29 

80.70 
±21.92 

95.30 
±4.56 

56.80 
±26.15 

71.41 
±19.87 

51.78 
±39.16 
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5.3.2 Impact of visual information for speech synthesis 

The GMM-based system that we used as a reference for this comparison is 
described in chapter 4. A GMM with 16 Gaussians, full covariance matrix is used 
for the spectral estimation. The number of estimated parameters is of 103680. 
Global variance is also used to reduce the over-smoothing, which is inevitable in 
the conventional ML-based parameter estimation. 

Table 5.5. Cepstral distortion between converted speech and target speech (dB) 
with ideal recognition 

a. monophone system 

HMM Modality 
 ngauss=1 ngauss=2 ngauss=3 ngauss=4 

AU (dB) 5.93 (± 0.57) 6.98 (± 0.45) 6.28 (± 0.54) 6.51 (± 0.63) 
AUVI (dB) 5.92 (± 0.57) 7.60 (± 0.45) 8.45 (± 0.64) 6.54 (± 0.66) 

b. Right context-biphone system 

HMM Modality 
 ngauss=1 ngauss=2 ngauss=3 ngauss=4 ngauss=

5 
AU (dB) 6.48 

(± 0.51) 
6.47 

(± 0.6) 
6.42 

(± 0.59) 
6.37 

(± 0.59) 
6.52 

(± 0.6) 
AUVI (dB) 5.88 

(± 0.56) 
6.01 

(± 0.58) 
6.49 

(± 0.6) 
6.76 

(± 0.64) 
 

For the HMM system, in order to evaluate the contribution of the stochastic 
parameter generation to the intelligibility of the converted speech in terms of 
cepstral distortion between target speech and synthesized speech, we first 
synthesized spectral parameters from the original phonetic transcription, i.e. 
simulating a perfect recognition step. The results presented in table 5.5 show that 
the facial movements also have a positive contribution to the performance of the 
synthesis task in the biphone system, since the cepstral distortion is improved. In 
the monophone system, however, facial information does not provide any 
improvement. In the context-dependent system, the cepstral distortion decreases by 
7.7% relatively, from 6.37 dB to 5.88 dB (F(1,40) = 4.13, p = 0.034). This table 
allows us to select the best synthesis model: in the monophone system, it is the 
monogaussian model, for both audio only and audiovisual input; in the biphone 
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system, the best synthesis models are the monogaussian one with audiovisual input 
and the quadruple-gaussian one with audio only input. Table 5.6 presents the 
cepstral distortion obtained with synthesized parameters which were generated by 
the best synthesis models from the phonetic sequences decoded by the recognition 
module. Again, adding visual information improves the cepstral distortion of the 
converted spectral parameters by 8.3% (from 6.98 dB to 6.4 dB) with F(1,40) = 
35.1, p < 0.001, for the biphone system and by 1.5% (from 6.76 dB to 6.66 dB) 
with F(1,40) = 0.5, p = 0.48 for the monophone one. 

Table 5.6 Cepstral distortion between converted speech and target speech (dB) 

a. monophone system 

HMM Modality 
 ngauss=1 ngauss=2 ngauss=3 ngauss=4 

AU (dB) 6.79 (± 0.74) 6.76 (± 0.74) 6.77 (± 0.72) 6.78 (± 0.73) 
AUVI (dB) 6.66 (± 0.74) 6.68 (± 0.72) 6.76 (± 0.68) 6.77 (± 0.73) 

b. Right context-biphone system 

HMM Modality 
 ngauss=1 ngauss=2 ngauss=3 ngauss=4 

GMM 

AU (dB) 7.10 
(± 0.65) 

7.02 
(± 0.72) 

6.98 
(± 0.70) 

7.03 
(± 0.75) 

5.99 
(± 0.66) 

AUVI (dB) 6.40 
(± 0.67) 

6.40 
(± 0.67) 

6.57 
(± 0.79) 

6.74 
(± 0.97) 

5.77 
(± 0.61) 

Although facial movements have a positive contribution in both HMM-based and 
GMM-based systems, the performance of the HMM-based system is currently 
inferior compared with the direct signal-to-signal system based on GMM model. 
First, the diagonal covariance currently used for each state of the models in the 
HMM-based system does not take into account the covariance between whispered 
speech parameters and speech parameters, but the GMM-based system does, by 
using a full covariance matrix. Second, synthesis and recognition are used 
separately: the trained HMM models tend to minimize the recognition error, but not 
the final reconstruction error. 
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5.4 Summary 
This chapter describes an audio-visual whisper to speech conversion procedure that 
couples a speech synthesis system with a speech recognizer instead of using direct 
mapping function. The facial movements seem to act as a compensation for lip 
radiation loss in the signal captured by the NAM microphone. Integrating them 
noticeably improves the performance of such a system, especially for the 
recognition task. The experimental results also show that the contribution of visual 
data depends on place of articulation. 

The performance of the HMM-based system is however currently inferior 
compared with the direct signal-to-signal system based on GMM model. This 
should be confirmed by a subjective test but objective performances are still too 
different to motivate such an additional benchmark. As mentioned above, this 
inferior score could be explained by two reasons. 

– First, the diagonal covariance currently used for each state of the models in 
the HMM-based system does not take into account the covariance between 
whispered speech parameters and speech parameters, but the GMM-based 
system does, by using a full covariance matrix. We hope that by modelling 
the covariance between whispered speech parameters and speech 
parameters, using more data, extending the acoustic models as well as the 
linguistic model, and by exploiting state-dependent variance, the 
performance of this system will further improve. 

– Second, synthesis and recognition are used separately, therefore the trained 
HMM models tend to minimize the recognition error, but not the final 
reconstruction error. We think that a more intimate coupling of recognition 
and synthesis – obtained for example by considering trajectory formation 
accuracy in HMM training based on Minimum Generation Error (MGE) 
criterion (Wu et al., 2006, 2008) or by considering N-best solutions in the 
synthesis process – should overcome the limitation of the proposed 
approach. 



 

 

Conclusion and perspectives 
 

A brief review 
The focus of this thesis is the conversion of whispered speech to phonated speech 
by using a statistical framework. If this conversion could successfully be carried 
out, silent cell-phones, speech communication in adverse conditions, speaking-aids 
for laryngeal handicaps or new human-computer interfaces would become feasible. 

By using a condenser microphone attached on the neck, under one ear of the 
speaker to capture whispered speech, we propose several solutions to improve the 
intelligibility and the naturalness of the speech generated by whisper-to-speech 
conversion systems. 

The first system that we used is based on a GMM model. It is inspired by the 
original system proposed by Toda and Shikano (2005) at NAIST. Although the 
original system successfully predicts the three parametric streams of the 
STRAIGHT speech vocoder (F0, harmonic and noise spectrum) from a spectral 
characterization of the non-audible-murmur input, the authors claimed that the 
quality of the converted speech is however still insufficient for computer-mediated 
communication, notably because of the poor estimation of F0 from unvoiced 
speech and because of impoverished phonetic contrasts. The substantial 
improvements that we brought to the original system are presented in Chapter 4. 
Our first improvement unsurprisingly concerns characteristics of the voiced source. 
We have shown that the estimation of voicing and F0 by separate predictors 
improves both predictions. F0 prediction is then further improved by the use of a 
large input context window (>400 ms) to get more spectral variation compared to 
the original smaller window (105 ms). Predictions of source and spectral streams 
are both improved by a data reduction technique using LDA instead of PCA. LDA 
slightly helps with subtle traces of that PCA blindly discards. Another issue 
concerned with this system is to compare objective and subjective benefits offered 
by multimodal data. We have shown that improvements obtained by adding visual 
information in the input stream as well as predicting articulatory parameters for 
output facial animation are very significant, especially in the case of bilabial 
consonants where the visual information has an important impact for both 
production and perception. 



Conclusion and perspectives                                                                                  129  

 

We also studied in this thesis another whisper-to-speech conversion system that 
couples a speech synthesis system with a speech recognizer by jointly optimising a 
single model for both whispered speech and phonated speech information using the 
multi-stream functionality supported by the HTK toolkit. The joint probability 
densities of whispered audiovisual and phonated audiovisual parameters and 
common state duration densities are modelled by context-dependent phone-sized 
HMM. Our experiments show that including facial movement noticeably improves 
the performance of such a system, especially for the recognition task. Furthermore, 
this positive contribution depends on the place of articulation. Another results from 
our experiments also proved the inconsistency between the training and the 
generation of such system. Gaussian mixture models (GMMs) were chosen instead 
of single Gaussian densities for the output distribution in each state to provide a 
richer modelling capacity. The best performance of recognition doesn’t bring about 
the best performance for synthesis. Finally, our experiments also show that the 
objective performance of our HMM-based system is currently inferior compared 
with the direct signal-to-signal system based on GMM model. 

 

Future research 
Based on the research in this work, I would like to highlight some possible 
directions for future works. 

HMM-based system 

The major difficulty for the HMM-based whisper-to-speech conversion system is 
how to tackle both speech recognition and synthesis in a unified framework due to 
the lack of a coherent statistical model that can be used for both problems. HMMs 
that have been successfully used in ASR as recognition components, were found to 
be inadequate for use as the generative output component in a synthesis system 
(Wu et al., 2006). In the current system, we use Maximum Likelihood Estimation 
(MLE) criterion for the training of HMM models used by recognition and synthesis 
modules. However, the MLE criterion is the origin of this inconsistency between 
training and generation. In fact, the MLE criterion only evaluates the model’s 
pertinence to the data in the likelihood sense which does not reflect the final 
distance between the generated parameters and the target vectors. MLE criterion is 
clearly not suitable for the aim of HMM-based speech synthesis which is to 
generate a synthetic speech (acoustic parameters) as close to the natural speech as 
possible. Some studies in speech recognition suggested that a training criterion that 
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directly minimises the error measure on the training set, such as the Minimum 
Classification Error (MCE) criteria (Juang et al., 1997) or Maximum Mutual 
Information (MMI) (Valtchev et al., 1997), tends to produce a better model for 
recognition. In the same context, we could use the Root Mean Square (RMS) 
criterion proposed by Zhang (2009) or Minimum Generation Error (MGE) based 
HMM training (Wu and Wang, 2006) to eliminate this inconsistency between 
training and generation. Furthermore, the over-smoothing problem of generated 
speech features could be alleviated by incorporating the Global Variance (GV) 
which represent a penalty for a reduction of the variance of the generated trajectory 
(Wu et al., 2008). 

The second critical issue is the lack of mutual constraints between static and 
dynamic features in HMM (Wu and Wang, 2006). The conditional independence 
assumption between state outputs of the hidden Markov model, which constraints 
the distribution at each time depends only on the state at that time, obstructs the 
modelling of temporal correlation characteristics in human speech, such as the 
coarticulation phenomenon and is regarded as the major drawback of HMM 
(Zhang, 2009). Some solutions are proposed to fix this problem. A simple method 
to enhance HMM’s modelling capacity proposed by Furui (1986) is to use the static 
acoustic feature vector with dynamic features computed as a linear transformation 
of several adjacent acoustic feature vectors to introduce the intra-frame 
dependence. Although the use of these dynamic features (delta and delta-delta 
features) also improves the performance of HMM-based speech recognizers, it has 
been thought of as an ad hoc rather than an essential solution (Tokuda et al., 2003). 
Trajectory-HMM proposed by Tokuda et al. (2004) offers an interesting direction 
which replaces conventional HMM with a new model that can explicitly model the 
inter-frame dependencies and hidden dynamics in speech. This model also allows 
to share coherent knowledge between speech recognition and synthesis 
components. 

Noise reduction 

The signal captured by NAM microphone contains noise that influences the 
performance of the conversion system (cf. section 1.3.4). Noise reduction is 
obviously an important task. In order to enhance the Signal to Noise Ratio (SNR) 
of the NAM microphone, we could use the correlations between signals captured 
by two NAM microphones fixed on the speaker’s neck or we could use other 
multimodal correlations, i.e. the correlation of NAM and visual information. 
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Multimodal data 

Speech is multimodal in nature. The research on exploiting visual cues from 
speaker’s face focuses on the robustness in noise for speech recognition systems. 
The introduction of speaking faces or avatars in speech synthesis systems also 
improves their naturalness and intelligibility. In general, accounting for the visual 
aspect of speech in ways inspired by the human speech production and perception 
mechanisms can substantially benefit to automatic speech processing and human-
computer interfaces. 

In this context, we used visual cues extracted from the speaker’s face as a 
complementary information to the acoustic signal captured by the NAM 
microphone, whose high frequency components are attenuated due to the absence 
of lip radiation. Although the results show the positive contribution of this 
information for our conversion systems, the visible face movements only present a 
partial articulatory apparatus: the lips and the jaw movements, and this information 
is insufficient to adequately convey all spoken information. Including other data 
related to the movements of inner speech organs (i.e. tongue and velum displays 
such as EMA, ultrasound image of the tongue), or to laryngeal activity (EGG, 
EMG), etc., would obviously be very promising. 

Real-time issue 

Real-time issues also need to be considered in order to use a NAM microphone for 
silent communication in daily life. Mapping algorithms work on large speech 
chunks often equal to isolated sentences and combine context-dependent 
estimations of speech frames using sliding windows. The amount of contextual 
information has a strong impact on performance. Realistic applications will require 
this context to be truncated to a maximum duration to allow conversation. Telecom 
companies estimate that a maximal delay of 200ms is tolerated to allow for full 
duplex (Guéguin, 2006; Guéguin et al., 2008). Above this threshold speech overlap 
is prohibited and the conversation enters a mode similar to the push-to-talk 
mechanism. We will thus study the impact of the limitation of contextual 
information with regards to performance and subjective quality. 
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Appendix A 

Résumé en français de la thèse 
 

Cette annexe contient un résumé détaillé en français du travail effectué dans cette 
thèse. 

 

1 Introduction 
La parole silencieuse ou murmurée est définie comme la production articulée de 
sons, avec très peu de vibration des cordes vocales dans le cas du chuchotement, et 
aucune vibration dans le cas du murmure, produite par les mouvements et les 
interactions des organes de la parole tels que la langue, le voile du palais, les 
lèvres, etc., dans le but d’éviter d'être entendue par plusieurs personnes. La parole 
silencieuse ou murmurée est utilisée généralement pour la communication privée et 
confidentielle ou peut être employée par les personnes présentant un handicap 
laryngé et qui ne peuvent pas parler normalement. 

Cependant, il est difficile d'employer directement la parole silencieuse (murmurée) 
pour la communication face à face ou avec un téléphone portable parce que le 
contenu linguistique et l'information paralinguistique dans le message prononcé 
sont dégradés fortement quand le locuteur murmure ou chuchote. Une piste récente 
de recherche est donc celle de la conversion de la parole silencieuse (ou murmurée) 
en voix claire afin d'avoir une voix plus intelligible et plus naturelle. Avec une telle 
conversion, des applications potentielles telles que la téléphonie silencieuse » ou 
des systèmes d’aides robustes pour les handicaps laryngés deviendraient 
envisageables. Notre travail dans cette thèse se concentre donc sur cette piste. 

Plusieurs dispositifs d’interface de parole silencieuse ont été explorés dans la 
littérature, notamment l'électromyographie de surface (sEMG) (Jorgensen et al., 
2003; Jorgensen et Binsted 2005 ; Jou, Schultz et al., 2006, 2008; Walliczek et al., 
2006 ; Toth et al., 2009), le microphone capteur de murmure inaudible (NAM) 
(Nakajima, 2003 ; Heracleous et al., 2005; Toda et Shikano 2005), l’ultrason et 
l’image optique (Denby et Stone, 2004 ; Denby et al., 2006 ; Hueber et al., 2007, 
2008ab, 2009 ; Denby et al., 2009), l’articulographie électromagnétique (EMA) 
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(Fagan et al., 2008) et l’électro-encéphalographie (EEG) (Suppes et al., 1997 ; 
Wester et Schultz 2006 ; Porbadnigk et al., 2009). Parmi ceux-ci, un dispositif qui 
semble particulièrement intéressant est le microphone NAM développé par des 
chercheurs du NAIST (Nara Institute of Science and Technology) au Japon, en 
raison de son usage facile et de sa taille appropriée pour la télécommunication 
mobile. Nakajima et al. (2003) ont ainsi proposé qu'il pourrait être plus efficace, en 
environnement bruyant, d’analyser les vibrations de parole issues directement de 
l'intérieur du corps, en les captant à la surface de la peau, au lieu d'analyser les sons 
transmis dans l’air, après avoir été émis par la bouche. Ils ont présenté une nouvelle 
interface de communication qui peut recueillir les vibrations acoustiques issues du 
conduit vocal à travers la vibration des tissus faciaux, en plaçant un capteur sur le 
cou, juste en dessous de l'oreille. En utilisant ce capteur microphone, Toda et 
Shikano (2005) ont proposé un système de conversion du murmure inaudible 
(NAM) vers la voix claire basé sur un modèle de mélange de gaussiennes (GMM). 
Il a été montré que ce système est efficace mais la qualité de la parole prédite reste 
insuffisante, notamment en raison des difficultés dans l’estimation du F0 (fréquence 
fondamentale) à partir de la voix inaudible. La contribution principale de notre 
travail dans cette thèse est d'améliorer la performance d'un tel système. 

Ce qui suit est un résumé de nos contributions : 

Mise en correspondance directe des signaux basée sur des mixtures 
de Gaussiennes (GMM) 

– Pitch. Une première amélioration proposée dans cette thèse concerne 
l'évaluation de la source vocale pour la parole convertie. Plusieurs 
approches sont explorées, notamment celles de limiter l’apprentissage 
uniquement aux segments voisés, de séparer l'estimation du voisement et 
l'évaluation de F0 dans le processus de synthèse, d’optimiser la taille de la 
fenêtre de contexte du vecteur acoustique d'entrée et d'utiliser une analyse 
discriminante linéaire (LDA) au lieu d’une analyse en composantes 
principales (PCA) pour réduire la dimension du vecteur d'entrée. 

– Information audiovisuelle en entrée-sortie. Une autre solution explorée 
dans cette thèse pour améliorer la performance du système de conversion 
est d'intégrer l'information visuelle comme complément à l'information 
acoustique à la fois dans les données d'entrée et de sortie. Les paramètres 
visuels faciaux sont estimés en utilisant un système de capture de 
mouvement très précis, développé pour le système de têtes parlantes conçu 
au Département Parole et Cognition du laboratoire GIPSA. 
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Mise en correspondance indirecte par pivot phonétique utilisant 
une reconnaissance-synthèse basée sur des modèles de Markov 
Cachés (HMM) 

Une autre approche pour convertir la parole silencieuse en voix audible est de 
combiner techniques de reconnaissance et de synthèse de la parole. Cette approche 
a été mise en œuvre dans (Hueber et al., 2007, 2008ab, 2009). En incluant des 
informations linguistiques, dans la reconnaissance et dans la synthèse, un tel 
système peut potentiellement compenser l'entrée appauvrie en intégrant de la 
connaissance linguistique dans le processus de reconnaissance. Nous comparons 
cette approche avec la technique de mise en correspondance présentée ci-dessus, 
pour explorer une autre solution visant à améliorer la qualité du système de 
conversion du chuchotement en parole claire. 

Le travail présenté dans cette thèse contribue au projet CASSIS (communication 
assistée par ordinateur et interfaces silencieuses) impliquant la collaboration de 
GIPSA, de l'ENST-Paris, de l'ESPCI-Paris et de NAIST. 

 

2 Etat de l’art 

2.1 Parole silencieuse et interfaces de parole silencieuse 

Parole silencieuse 

La parole silencieuse est un moyen de communication que les locuteurs utilisent 
pour réduire la perceptibilité de la parole. Par exemple quand ils ont pour consigne 
de parler doucement pour ne pas gêner les autres dans une bibliothèque, dans une 
conférence…, quand ils sont trop faibles pour parler normalement ou quand ils 
communiquent des informations privées, confidentielles. Il semble que la parole 
silencieuse est la communication vocale la plus efficace quand seules quelques 
personnes autour du locuteur doivent entendre le message. 

Selon le niveau de « silence » ou d'audibilité, nous pouvons définir 5 catégories : 

Parole intérieure : Elle est également appelée parole imaginée ou pensée verbale. 
Elle se rapporte à la production silencieuse mentale de mots ou de phrases. 

Parole subvocale invisible : Ce mode de la parole est articulé très doucement de 
sorte qu'il ne puisse pas être entendu, mais les articulateurs de la parole (langue, 
lèvres, peut-être mâchoire) peuvent légèrement bouger. 
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Parole subvocale visible : Ce mode de la parole correspond à l’articulation 
silencieuse. La parole est articulée mais sans émission d'air. 

Murmure inaudible (NAM) : Ce mode de la parole est chuchoté doucement de sorte 
qu'une personne voisine ne puisse pas entendre. 

Parole chuchotée : Bien qu'il soit difficile de définir avec précision les différences 
acoustiques entre le « chuchotement » et le « NAM », le terme « chuchotement » 
implique que les auditeurs voisins limités peuvent entendre le contenu du message, 
et qu'il peut être enregistré par un microphone externe, par la transmission dans 
l’air. 

Interfaces de parole silencieuse 

La parole peut être considérée comme un ensemble de signaux multimodaux 
cohérents entre eux, tels que les signaux cérébraux électiques, les signaux 
myoélectriques issus des muscles, les mouvements des articulateurs orofaciaux – 
qu’ils soient visibles ou non -, ou encore le signal acoustique. 

Diverse technologies peuvent être employées pour enregistrer les signaux 
caractérisant l'articulation et la phonation: 

– L’activité cérébrale peut être capturée par EEG non-invasive. 

– Les activités musculaires peuvent être mesurées par EMG de surface. 

– L’articulographie électromagnétique permet de déterminer les mouvements 
de points sur les articulateurs 

– Les déformations de surfaces des articulateurs peuvent être déterminées à 
partir de cinéradiographie, d’IRM dynamique, d’échographie ultrasonique. 

– Les microphones acoustiques permettent de capturer différentes sortes de 
signaux acoustiques. 

Dans le but de réaliser une télécommunication silencieuse, où le murmure 
inaudible et le chuchotement sont utilisés en entrée, un microphone à condensateur 
NAM semble être meilleur que d'autres interfaces, y compris l'EMG, l'EMA, 
l'ultrason et l'EEG en raison de sa facilité d’utilisation et de du fait que le signal 
recueilli est directement un signal acoustique, plus directement interprétable que 
ceux capturés par les autres interfaces. C'est pourquoi nous nous concentrons sur le 
microphone NAM en tant que capteur prometteur. 
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Microphone NAM : Le son chuchoté, créé par les mouvements coordonnés de la 
langue, du vélum, des lèvres, etc., peut être capté grâce à la radiation aux lèvres 
mais aussi par la transmission des chocs entre articulateurs et parois ainsi que la 
transmission de l’onde de pression par les tissus mous. Le chuchotement peut ainsi 
être capté par un microphone NAM placé sur la peau, en dessous de l’oreille 
(Nakajima et al., 2003). Le tissu peaussier et la radiation des lèvres agissent 
comme un filtre passe-bas et les composantes hautes fréquences sont atténuées. 
Toutefois, les composantes spectrales du chuchotement (et du murmure inaudible) 
fournissent assez d’information pour identifier les sons (Heracleous et al., 2005). 
Le capteur NAM enregistre la parole dans une bande de fréquence allant jusqu’à 
4kHz, en étant peu sensible au bruit externe. 

Dans le cadre de cette thèse, ce microphone est choisi pour capturer la parole 
chuchotée. 

2.2 Parole chuchotée 

Dans la voix modale (ou claire), les sons voisés impliquent une modulation de la 
circulation d’air issu des poumons par la vibration des cordes vocales. Cependant, 
il n’y a aucune vibration des cordes vocales dans la production de voix chuchotée. 
Pour cette raison, les caractéristiques acoustiques du chuchotement diffèrent de 
celles de la voix modale. Une étude des propriétés acoustiques des voyelles (Ito et 
al., 2005) a montré une augmentation des fréquences de formant pour les voyelles 
chuchotées comparées à la voix modale. Le décalage est plus grand pour les 
voyelles à valeurs formantiques peu élevées. Il a également été constaté que les 
caractéristiques du conduit vocal pour les phonèmes voisés changent plus dans le 
chuchotement par rapport à la voix modale que celles des consonnes non-voisées. 
La perception du pitch (hauteur du son) dans la voix modale est principalement liée 
à la fréquence fondamentale (F0). Dans le chuchotement, cependant, bien qu’il n’y 
ait aucune vibration des cordes vocales, une certaine perception de la hauteur peut 
être possible. Higashikawa et al. (1999, 2003) ont montré que les auditeurs peuvent 
percevoir le pitch dans le chuchotement. Selon eux, les changements simultanés 
des formants F1 et F2 pourraient être l’un des indices qui influencent cette 
perception. 

2.3 Conversion de la parole silencieuse en voix claire 

Deux approches principales sont proposées pour produire de la parole audible et 
visible à partir d'articulations inaudibles : 
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– Les techniques de mise en correspondance basées sur un GMM peuvent être 
employées pour convertir directement les signaux chuchotés en parole 
claire, en utilisant des corpus alignés (des phrases, des mots ou d'autres 
unités inaudibles et audibles) sans avoir à inclure d’information phonétique: 
des représentations communes de la parole inaudible et de la parole claire 
sont stockées ou modélisées puis employées pour estimer directement la 
parole claire à partir de la représentation des signaux inaudibles. 

– Une deuxième approche consiste à utiliser un pivot phonétique et à 
combiner reconnaissance de NAM avec synthèse de parole modale (Hueber 
et al., 2007, 2008ab, 2009). Le système de reconnaissance segmente le 
signal de la parole en unités phonémiques, en utilisant l'information 
dépendante du signal et un modèle de langage. Un système de synthèse de 
la parole convertit alors ces unités phonétiques en voix synthétique, en 
utilisant la voix modale préenregistrée. La performance d'un tel système 
dépend principalement de la performance de la partie de reconnaissance : 
une reconnaissance correcte aura comme conséquence une parole 
reconstruite parfaite tandis que les échecs de reconnaissance ou un modèle 
de langage insatisfaisant pourront conduire à des dégradations fortes de la 
qualité de la parole convertie. 

 

3 Contribution de cette thèse 

3.1  Technique de mise en correspondance basée sur un 
modèle de mélange de gaussiennes (GMM) 

La technique de mise en correspondance directe de signal-à-signal en utilisant des 
corpus alignés est très prometteuse. Toda et al. (2005) ont appliqué un mapping 
statistique (Stylianou et al., 1998; Kain et Macon, 1998) basé sur un modèle GMM 
pour la conversion de parole NAM en parole claire. Dans ce système, pour 
synthétiser la parole, il faut estimer non seulement les traits spectraux mais aussi 
les traits d’excitation, y compris F0 et les composants apériodiques. Les traits 
spectraux à chaque trame ont été construits en concaténant les vecteurs spectraux 
de plusieurs trames autour de la trame courante, afin de compenser les 
caractéristiques perdues sur quelques phonèmes, particulièrement les fricatives, 
d’énergie élevée sur les bandes à haute fréquence. Trois GMMs ont été utilisés 
pour convertir les traits spectraux du chuchotement en trois ensembles de traits 
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pour la parole claire, i.e. le spectre, le F0 et un composant apériodique (qui capture 
le bruit sur chaque bande de fréquence du signal d’excitation) (cf. 4.2). 

Toutefois, bien que l’intelligibilité segmentale des signaux synthétiques calculés 
par la mise en correspondance soit acceptable, les auditeurs ont des difficultés à 
découper le flux sonore pour récupérer des mots. Ce problème est dû en partie à la 
restauration de la mélodie synthétique. Ainsi, dans notre système, adapté de Toda 
et al., nous nous sommes concentrés sur l’amélioration de l’estimation de la 
mélodie et de la détection du voisement. 

3.1.1 Séparation de l’estimation du voisement et de l’évaluation de 
F0 

Détection du voisement 

Dans le système original, Toda et al (2005) estiment la valeur de F0 pour toutes les 
trames en utilisant un modèle GMM. Un seuil de valeur de F0 est déterminé pour 
assigner une étiquette voisée/non-voisée à chaque trame. Dans notre système, nous 
avons testé la possibilité d’améliorer la détection du voisement en employant un 
Réseau de Neurones (RN) feedforward simple. De façon empirique, nous avons 
utilisé 50 neurones d’entrée (i.e. autant que la taille des vecteurs d’entrée du 
système de conversion décrit sur la figure 4.4), 17 neurones cachés et 1 neurone de 
sortie. Les vecteurs de paramètres d’entrée du module de conversion spectral – 
renouvelés toutes les 5ms et issus d’une Analyse en Composantes Principales 
(ACP) des cepstres de 17 trames de 20ms centrées sur la trame courante - ont été 
utilisés comme vecteur d’entrée pour ce réseau. Pour l’apprentissage du réseau, le 
classement en voisé/non-voisé de chaque énoncé chuchoté a été obtenu en 
l’alignant avec l’énoncé modal correspondant. Le tableau 4.2 (c.f. 4.3.3) montre 
l’évaluation des performances de ce RN. Comparativement à l’erreur dans le 
système original, nous avons une amélioration significative de cette détection. 

Estimation de F0 

Pour l’estimation des valeurs de F0, au lieu de prendre tous les segments du 
chuchotement, seuls les segments voisés ont été utilisés pour entraîner une mixture 
de Gaussiennes (GMM), ceci afin d’éviter de perdre des composantes gaussiennes 
pour représenter les valeurs nulles de F0 codant les segments non-voisés. De plus, 
un réseau de neurones (RN) est utilisé pour prédire ces segments. Pour la synthèse, 
on prédit donc des valeurs de F0 continues, hachées par le voisement calculé par ce 
RN. La figure 4.6 montre que la courbe de F0 synthétisé par notre système est plus 
proche de la F0 cible que celle prédite par le système original. 
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3.1.2 Influence de la fenêtre contextuelle sur la performance du 
système 

Dans (Toda, Black et Tokuda, 2008), les auteurs ont prouvé que l'utilisation des 
vecteurs de paramètre d’entrée construits en enchaînant des trames acoustiques, 
pour prendre en compte les contraintes dynamiques sur les paramètres acoustiques, 
est efficace pour améliorer la précision du mapping. Dans cette thèse, la taille de la 
fenêtre contextuelle est augmentée en enchaînant plus de trames adjacentes. Ainsi, 
dans notre cas, la fenêtre de contexte est élargie en sélectionnant une trame toutes 
les m trames, et en maintenant le nombre de trames pour la concaténation constant. 
Une ACP ou une analyse discriminante linéaire (LDA) est alors appliquée à ce 
vecteur de multi-trames pour réduire sa dimension. 

Les résultats montrent qu’en augmentant la taille de la fenêtre, l’estimation de la F0 
est bien meilleure car les contours intonatifs sont portés par des unités de taille 
supérieure au phonème, soit des syllabes ou des pieds (tableau 4.3). Par contre, la 
distorsion spectrale augmente quand la taille de la fenêtre contextuelle augmente 
(tableau 4.4). L'interprétation la plus plausible est qu'une fenêtre de taille d’un 
phonème contient de façon optimale des traits contextuelles nécessaires pour la 
conversion spectrale. 

3.1.3 Contribution de l’information visuelle 

Un nouveau système de conversion a été construit à partir de données 
audiovisuelles. La base de données comprend cette fois-ci 190 phrases du japonais 
prononcées par un locuteur natif, en modes chuchoté et modal, enregistrées par un 
capteur NAM et un microphone tête (dont 150 phrases pour le corpus 
d’apprentissage et 40 phrases pour le corpus de test). Le système capture, à 25 Hz, 
les positions 3D de 142 billes collées sur le visage (c.f. figure 3.4), en synchronie 
avec le signal acoustique échantillonné à 16000 Hz. 

Un modèle de forme est construit à partir des positions 3D des 142 points sur le 
visage du locuteur. La méthodologie de clonage développée dans notre 
département (Bailly et al., 2006) consiste en une ACP itérative appliquée sur des 
sous-ensembles de points pertinents. Cette analyse extrait 5 paramètres 
articulatoires liés au mouvement de la mâchoire, des lèvres et du larynx. 

Un vecteur caractéristique audiovisuel est obtenu en combinant caractéristiques 
audio et visuelle comme pour les AAM (Active Appearance Models) de Cootes et 
al. (2001). Chaque vecteur visuel est multiplié par un poids w avant d’être 
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concaténé avec le vecteur acoustique correspondant. La dimension du vecteur 
conjoint est ensuite diminuée grâce à une autre ACP. 

La conversion utilise les vecteurs de projection des trames sur les 40 premiers axes 
principaux. Ici, les nombres de gaussiennes sont fixés à 16 pour l’estimation 
spectrale pour l'estimation de F0 et aussi bien pour l'estimation des composantes 
apériodiques. 

Les tableaux 4.5 et 4.6 montrent la contribution positive de l’information visuelle 
sur la performance du système. Le meilleur résultat est obtenu pour une dimension 
du vecteur visuel de 40 et avec un poids w=0.25 pour l’estimation du voisement et 
w=1 pour l’estimation spectrale et de la source d’excitation. L’erreur de 
l’estimation du voisement diminue de 5.4% alors que la distorsion spectrale entre 
paroles convertie et modale diminue alors de 3.7%. La différence entre le F0 
converti et celui naturel diminue aussi de 6.9 %. 

3.1.4 Evaluation perceptive 

Evaluation audio 

Seize auditeurs français ont participé à nos tests perceptifs sur l’intelligibilité et le 
naturel de la parole convertie des deux systèmes. 20 phrases, qui n’étaient pas 
incluses dans le corpus d’apprentissage, ont été utilisées. Chaque auditeur a passé 
deux tests ABX. Il a entendu une phrase prononcée dans la voix modale (X) et les 
versions converties à partir du chuchotement par les deux systèmes. Pour chaque 
phrase, l’auditeur devait choisir laquelle était la plus proche de l’originale (X), en 
terme d’intelligibilité et de naturel. La figure 4.12 fournit les scores moyens 
d’intelligibilité et de naturel obtenus pour les phrases converties utilisant les 
systèmes original et modifié, cumulés pour tous les auditeurs. Les scores 
d’intelligibilité sont significativement plus élevés pour les phrases synthétisées par 
notre système (F=23.41, p<.001). Ceci est aussi vrai pour le naturel : le système 
proposé a été encore plus fortement préféré à l’original (F = 74.89, p < .001). 

Evaluation audiovisuelle 

Pour confirmer la contribution positive de l’'information visuelle, huit sujets 
japonais ont participé à nos tests perceptifs sur la parole audiovisuelle convertie. 
Les stimuli étaient composés des VCVs japonais (le V étant choisi parmi cinq 
voyelles et C parmi vingt-sept consonnes) dans quatre conditions :  

– Parole produite à partir de l'acoustique chuchotée (appelée condition A à 
partir d’A) (1) 
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– Parole produite à partir du chuchotement audiovisuel (condition A à partir 
d’AV) (2) 

– Parole et animation faciale produites à partir de l'acoustique chuchotée 
(condition AV à partir d’A) (3) 

– Parole et animation faciale produites à partir du chuchotement audiovisuel 
(AV à partir d’AV) (4) 

Chaque participant a entendu et a regardé aléatoirement une liste de VCV audio et 
audiovisuels synthétiques. Pour chaque VCV, il a été invité à choisir quelle 
consonne il avait entendue parmi une liste de 27 consonnes japonaises possibles. 

La figure 4,13 fournit les taux moyens d'identification pour tous les participants. 
Les paramètres visuels améliorent de manière significative l'identification des 
consonnes. En particulier, les rapports d'identification sont de 28.37% pour la 
condition 2, de 30.56% pour la condition 3 et de 36.21% pour la condition 4 qui 
sont tout sensiblement plus hauts que celle de la condition 1 (23.84 %). 

Bien que l'information visuelle augmente considérablement les taux d'identification 
sur tous les VCVs examiné, les taux sont toujours assez bas (moins de 40%). Il 
convient de noter cependant que l'identification de logatome VCV est une tâche 
difficile, particulièrement dans une langue avec beaucoup de consonnes. Il pourrait 
donc être argumenté que les taux d'identification sur des mots ou des phrases 
pourraient être beaucoup plus élevés dans une tâche de d’intelligibilité sur des mots 
ou des phrases, avec l'aide de l'information lexicologique, syntactique et 
contextuelle. Il pourrait donc être intéressant de vérifier si l’information visuelle a 
fourni en fait quelques traits liés au lieu d'articulation, même si la détection précise 
de chaque phonème était difficile. Par conséquent nous avons également groupé les 
consonnes dans des catégories correspondant à différent lieux d'articulation, pour 
examiner quels groupes consonantiques ont bénéficié le plus de l'addition 
d'information visuelle. La figure 4.14 montre que les consonnes bilabiales, ce qui 
sont intrinsèquement plus saillantes visuellement, ont été mieux identifiées comme 
bilabiales, quand l'information visuelle a été prise en entrée du système de 
conversion et quand des stimulus audiovisuels ont été présentés aux participants. 

3.2 Conversion basée sur un modèle de Markov caché 
(HMM) 

Afin de comparer la performance de la technique de conversion de voix basée sur 
GMM proposée par Toda et Shikano (2005) à l'approche consistant à combiner la 
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reconnaissance de la parole NAM et la synthèse de la parole, un système de 
conversion du chuchotement-vers-la parole claire basé sur HMM est étudié. Ce 
système combine 2 modules, un module de reconnaissance basé sur HMM et un 
module de synthèse basé sur HMM. 

Au lieu d'utiliser la synthèse concaténative basée sur diphone proposée dans 
(Hueber et al., 2008, 2009), nous avons employé une synthèse basée sur HMM, 
proposée par (Tokuda et al., 2000) parce que l'intégration d'un modèle 
paramétrique offre quelques avantages. Tout d'abord, le système entier de synthèse 
est paramétré plutôt que les formes d'onde pré-enregistrées stockées. Le système 
est donc orientable. Il a été suggéré qu’un modèle paramétrique basé sur HMM 
pourrait apporter un couplage plus intime entre la reconnaissance et la synthèse, en 
abordant les deux problèmes dans un cadre statistique logique unifié (Tokuda et al., 
2004 ; Zen et al., 2004, 2009 ; Zhang, 2009 ; Wu et al., 2006, 2008). 

Les densités de probabilité communes des paramètres du chuchotement et de la 
parole claire sont modélisées par des HMMs sur la taille d’un phonème. À partir de 
la distribution gaussienne simple à chaque état, monophone indépendant du 
contexte, le modèle a été enrichi de deux manières pendant l’apprentissage : 

– La distribution monogaussienne à chaque 'état est remplacée par des 
modèles de mélange de gaussiennes (GMM). Le nombre de Gaussiennes 
varie de 1 à 2, à 3 et à 4. 

– En raison des effets de coarticulation, il est peu probable qu'un HMM 
indépendant du contexte pourrait de façon optimale représenter un 
allophone donné. Par conséquent les HMMs dépendant du contexte sont 
employés pour enrichir le modèle. En raison de données d’apprentissage 
limitées, nous avons seulement employé le contexte de biphone pour les 
modèles acoustiques en groupant les phonèmes dans des classes de 
contexte. En ,plus d'utiliser nos connaissances phonétiques a priori pour 
définir de telles classes, des arbres de confusion (visuels et acoustiques) ont 
été construits en se basant sur la matrice des distances euclidiennes des 
paramètres visuels et acoustiques entre chaque paire de phonème. 

Le tableau 5.2 montre la contribution positive de l'information visuelle pour la 
tâche d'identification. En moyenne, les mouvements faciaux améliorent le taux 
d'identification de 13,2% (61,35% à 74,52%). En particulier, dans le cas 
d'identification des voyelles, la précision obtenue en utilisant l'information visuelle 
est 78,28%, montrant une amélioration de 7% comparée avec l'information 
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acoustique seule. Dans le cas de l'identification de consonnes, cette amélioration est 
de 15,7% (56,62% à 72,35%). 

Pour la synthèse, on a comparé ce système avec le système basé sur le modèle 
GMM, présenté dans le chapitre 4. Bien que les mouvements faciaux aient une 
contribution positive dans les deux systèmes, la performance du système basé sur 
HMM est actuellement inférieure à celle du système direct de signal-à-signal basé 
sur le modèle de GMM (tableau 5.4). Ce phénomène peut être expliqué par deux 
raisons. D'abord, la covariance diagonale actuellement utilisée pour chaque état 
dans le système basé sur HMM ne prend pas en compte la covariance entre les 
paramètres chuchotés et ceux de la parole claire, tandis que le système basé sur 
GMM le fait, en employant une matrice pleine de covariance. Deuxièmement, la 
synthèse et la reconnaissance sont employées séparément : les modèles HMM 
tendent à réduire au minimum l'erreur de reconnaissance, mais pas l'erreur de 
reconstruction finale. 

 

4 Conclusion et perspectives 
L’objectif de cette thèse est la conversion de la parole chuchotée en voix claire en 
employant un cadre statistique. Si cette conversion pouvait être effectuée, les 
téléphones cellulaires silencieux, la communication de la parole en conditions 
défavorables, les applications pour aider les personnes présentant des handicaps 
laryngés ou de nouvelles interfaces homme-machine deviendraient envisageables. 

En utilisant un microphone à condensateur attaché sur le cou, au-dessous d’une 
oreille du locuteur pour capturer la parole chuchotée, nous proposons diverses 
solutions pour améliorer le naturel de la parole produite par le système de 
conversion de chuchotement-vers- la parole claire basé sur un modèle GMM : 
séparer la détection du voisement et l'estimation de F0 ; augmenter la taille de la 
fenêtre de contexte du vecteur d'entrée jusqu’à la taille d’une syllabe et utiliser un 
analyse discriminante linéaire (LDA) au lieu d’une analyse en composantes 
principales (PCA) pour réduire la dimension de ce vecteur. Des tests subjectifs 
perceptifs ont été menés pour montrer l’amélioration apportée par ces méthodes. 

Une autre solution examinée dans cette thèse pour améliorer le système est celle 
d’utiliser les mouvements visuels comme complément à l'information acoustique. 
Les mouvements orofaciaux liés aux gestes des lèvres, de la mâchoire et du larynx 
contribuent à l’intelligibilité de la parole convertie, surtout quand ces informations 
sont ajoutées en sortie du système de conversion. 
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Dans la lignée de ce travail de thèse, quelques pistes de recherche sont proposées 
pour l’avenir : 

Couplage entre la reconnaissance et la synthèse 

La difficulté principale pour le système de conversion chuchotement - parole claire 
basé sur les HMMs est d’aborder la reconnaissance de la parole et la synthèse dans 
un cadre unifié, car il manque un modèle statistique qui puisse être employé pour 
les deux problèmes. Les HMMs qui ont été utilisés avec succès pour la 
reconnaissance sont insatisfaisants pour la synthèse (Wu et al., 2006). Dans notre 
système, nous employons le critère d'estimation avec maximum de vraisemblance 
(MLE) pour apprendre les modèles HMM. Cependant, le critère de MLE évalue 
seulement la pertinence du modèle aux données dans le sens des probabilités qui ne 
reflète pas la distance finale entre les paramètres synthétisés et les vecteurs cibles. 
Le critère de MLE n'est clairement pas approprié au but de la synthèse de la parole 
basée sur HMM. Nous pourrions utiliser le critère de la racine de la moyenne du 
carré(RMS) proposé par Zhang (2009) ou l'erreur de génération minimum (MGE) 
(Wu et Wang, 2006) pour apprendre les modèles HMM. Cela nous permet 
d’éliminer cette contradiction entre l’apprentissage et la génération. En outre, le 
problème de lissage des paramètres générés pourrait être corrigé en incorporant une 
contrainte de restauration de la variance globale (GV) (Toda et Tokuda, 2007; Wu 
et al., 2008). 

Elimination du bruit 

Le signal capturé par le microphone NAM est bruité, ce qui influence la 
performance du système de conversion (cf. section 1.3.4). La réduction du bruit est 
évidemment une tâche importante. Afin d'augmenter le rapport signal-sur-bruit 
(SNR) du microphone NAM, nous pourrions tirer parti des corrélations des signaux 
capturés par deux microphones NAM sur le cou du locuteur ou nous pourrions 
utiliser d'autres corrélations multimodales, c.-à-d. la corrélation de la parole 
silencieuse avec les 'informations visuelles. 

Données multimodales 

La parole est naturellement multimodale. La recherche sur l’exploitation des 
signaux visuels du visage du locuteur est essentiellement concentrée sur la 
robustesse dans le bruit pour les systèmes de reconnaissance de la parole. 
L'introduction de visages ou d’avatars parlants dans les systèmes de synthèse de la 
parole améliore également leur naturel et intelligibilité. Généralement la prise en 
compte de l'aspect visuel de la parole en s’inspirant des mécanismes 
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biophysiologiques de production et de perception de la parole peut bénéficier au 
traitement automatique de la parole et aux interfaces homme-machine. 

Dans ce contexte, nous avons utilisé des signaux visuels extraits à partir du visage 
du locuteur comme information complémentaire pour le signal acoustique capturé 
par le microphone NAM, dont les composantes à haute fréquence notamment sont 
atténuées. Bien que les résultats montrent la contribution positive de cette 
information pour nos systèmes de conversion, les mouvements visuels du visage 
(mouvements des lèvres et de la mâchoire) rendent seulement compte d’un appareil 
articulatoire partiel. Cette information est insuffisante. L’inclusion des 
mouvements des organes intérieurs de la parole (c.-à-d. ceux de la langue recueillis 
par EMA, ou par imagerie ultrason), l'activité laryngée (EEG, EMG) etc., est 
évidemment très prometteuse. 

Temps réel 

Le traitement en temps réel est également nécessaire afin d'utiliser le microphone 
NAM pour la communication silencieuse dans la vie quotidienne. Les algorithmes 
de mise en correspondance travaillent souvent sur des phrases isolées et utilisent 
des informations dépendantes du contexte. La quantité d'information contextuelle a 
un impact fort sur la performance. Des applications réalistes exigeront que le 
contexte soit tronqué à une durée maximum pour permettre la conversation. Les 
spécialistes de télécommunication estiment qu'un retard maximal de 200ms est 
toléré pour permettre une conversation en duplex (Guéguin, 2006 ; Guéguin et al., 
2008). Il pourra ainsi être intéressant d’étudier l'impact de la limitation 
d'information contextuelle sur la performance et la qualité subjective. 
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Abstract 
The NAM-to-speech conversion proposed by Toda and 
colleagues which converts Non-Audible Murmur (NAM) to 
audible speech by statistical mapping trained using aligned 
corpora is a very promising technique, but its performance is 
still insufficient, mainly due to the difficulty in estimating F0 
of the transformed voice from unvoiced speech. In this paper, 
we propose a method to improve F0 estimation and voicing 
decision in a NAM-to-speech conversion system based on 
Gaussian Mixture Models (GMM) applied to whispered 
speech. Instead of combining voicing decision and F0 
estimation in a single GMM, a simple feed-forward neural 
network is used to detect voiced segments in the whisper 
while a GMM estimates a continuous melodic contour based 
on training voiced segments. The error rate for the 
voiced/unvoiced decision of the network is 6.8% compared to 
9.2% with the original system. Our proposal benefits also to 
F0 estimation error. 
Keywords: voice conversion, F0 estimation, neural network, 
non-audible murmur, whispered speech. 

1. Introduction 
Speech conveys a wide range of information. Among them, 
the linguistic content of the message being uttered is of prime 
importance. However, paralinguistic information such as the 
speaker’s mood, identity or position with respect to what 
he/she says also plays a crucial part in oral communication 
[10]. Unfortunately, when a speaker murmurs or whispers, this 
information is degraded. 

To solve this problem, Nakajima et al. [5] found that 
acoustic vibrations in the vocal tract can be captured through 
the soft tissues of the head with a special acoustic sensor 
called a NAM microphone attached to the surface of the skin, 
below the ear. Using this stethoscopic microphone to capture 
non-audible murmur, Toda et al. [1] proposed a NAM-to-
Speech conversion system based on the GMM model in order 
to convert “non-audible speech” to ordinary speech. It was 
shown that this system effectively works but its performance is 
still insufficient, especially in the naturalness of the converted 
speech. This is due to the difficulties in F0 estimation from 
unvoiced speech. These authors claimed that it is inevitable to 
improve the performance of NAM-to-Speech systems. 
Nakagiri et al. [4] proposed another system which converts 
NAM to whisper. F0 values do not need to be estimated for 
converted whispered speech because whisper is another type 
of unvoiced speech, just like NAM, but more intelligible. 

Another direction of research consists in using a phonetic 
pivot by combining speech recognition and synthesis 

techniques as in the Ouisper project [12]. By introducing 
higher linguistic levels, such systems can potentially predict a 
phonological structure that can be used in speech resynthesis. 
But no results have been reported yet and such an approach 
seems unsuitable for applications with open domain. 

In this paper, we propose to improve signal-based GMM 
mapping by a better estimation of the voiced source of the 
converted speech. Whisper-to-speech was used because of 
difficulties in getting accurate phonetic segmentation in NAM.  

In the training stage, whispered speech and ordinary 
speech utterance pairs were carefully aligned using phonetic 
transcription information. The main difference between our 
system and the original system proposed in [1] is that only 
voiced segments were provided as input to train the GMM 
model which maps spectral vectors of whisper to F0 values of 
converted speech. In the conversion stage, we use a feed-
forward neural network to detect the voiced segments in 
whispered utterance and then compute F0 for these segments 
only instead of computing these values for all segments. 

Another innovative aspect of this paper is the language: 
we have applied voice conversion techniques to French, which 
has much more complex syllabic structures and a larger 
phonemic inventory than Japanese. Degraded performance is 
thus expected with respect to original published results. 

The paper is organized as follows. Section 2 describes 
some characteristics of whispered speech. Section 3 describes 
the frameworks of our NAM-to-Speech conversion system. 
Section 4 describes our experimental evaluations and finally, 
conclusions are drawn in Section 5. 

2. Whispered speech 
In recent years, advances in wireless communication 
technology have led to the widespread use of mobile phones 
for private communication as well as information access using 
speech. Speaking loudly to a mobile phone in public places 
may be a nuisance to others, however, whispered speech can 
only be heard by a limited set of listeners surrounding the 
speaker and can therefore effectively be used for quiet and 
private communication over mobile phones [7]. 

2.1. Acoustic features 

In normal speech, voiced sounds involve a modulation of the 
air flow from the lungs by vibrations of the vocal folds. 
However, there is no vibration of the vocal folds in the 
production of whispered speech. Exhalation of air is used as 
the sound source, and the shape of the pharynx is adjusted 
such that the vocal folds do not vibrate. Due to this difference 
in production mechanism, the acoustic characteristics of 
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whisper differ from those of normal speech. A study on the 
acoustic properties of vowel sounds [7] has shown an upward 
shift of the formant frequencies for vowels in whispered 
speech compared to normal speech. The shift is larger for 
vowels with low formant frequencies. The authors also found 
that the cepstral distances between normal and whispered 
speech for vowels and voiced consonants are higher than those 
of unvoiced consonants. This means that the vocal tract 
characteristics of vowels and voiced consonants change more 
significantly in whisper relative to ordinary speech than those 
of unvoiced consonants. 

The perception of vowel pitch in normal speech is related 
mainly to the fundamental frequency (F0) which corresponds 
to periodic pulsing. In whispered speech, however, although 
there is no periodic pulsing, some pitch-like perception may 
occur. Higashikawa et al. [8] have shown that listeners can 
perceive pitch during whispering and formant frequency could 
be one of the cues used in perception. More precisely, the 
authors in [9] indicated that “whisper pitch” is more 
influenced by simultaneous changes in F1 and F2 than by 
changes in only one of the formants. 

2.2. NAM microphone 

Nakajima et al. [5] proposed a new communication interface 
which can capture acoustic vibrations in the vocal tract from a 
sensor placed on the skin, below the ear. This position is 
shown in Fig. 1. This position allows a high quality recording 
of various types of body transmitted speech such as normal 
speech and whisper. Body tissue and lip radiation act as a low-
pass filter and the high frequency components are attenuated. 
However, the non-audible murmur spectral components still 
provide sufficient information to distinguish and recognize 
sound accurately [6]. Currently, the NAM microphone can 
record sound with frequency components up to 4 kHz while 
being little sensitive to external noise.  

 
Figure 1: Position of NAM microphone. 

3. NAM-to-Speech conversion system 
Several approaches have been proposed to convert non audible 
speech to modal voice. The most trivial system consists in 
chaining NAM recognition with speech synthesis. Direct 
signal-to-signal mapping using aligned corpora is also very 
promising: Toda et al. [1] applied statistical feature mapping 
[10][11] to NAM-to-speech conversion.  

Although the segmental intelligibility of synthetic signals 
computed by statistical feature mapping is quite acceptable, 
listeners have difficulty in chunking the speech continuum into 
meaningful words. A large part of this problem is due to 
impoverished synthetic intonation. In this study, we focus on 
improving the estimation of pitch and voicing of the converted 
speech. Fig. 2 shows the conversion used in our system. 

 
Figure 2: Conversion process of NAM-to-Speech system. 

Spectral Estimation. 

Before training the models for spectral estimation and F0 
estimation, the pairs of whisper and speech uttered by a 
speaker must be aligned because of different speaking rates. 
Transcription information was used for this task to get a better 
alignment compared to blind dynamic time warping (DTW). 

3.1. Spectral Estimation 

We use the same schema for spectral estimation as the one 
proposed by Toda [1]. As described in [1], feature vector Xt of 
whisper consisting of spectral feature vectors of several 
frames around a current frame t was aligned with a target 
speech feature Yt = [yt, Δ(yt)] consisting of static and dynamic 
features. These vectors were then used to train a GMM for 
representing the joint probability density p(Xt, Yt | Θ), where Θ 
denotes a set of GMM parameters. Another model for 
representing the probability density of global variance (GV) of 
the target static features p(v(y) | Θv) was trained where  Θv 
denotes a set of parameters of a Gaussian distribution, v(y) 
denotes global variance over the time sequence y of target 
static feature. This global variance information is used to 
alleviate the over-smoothing, which is inevitable in the 
conventional ML-based parameter estimation [2]. 

In the conversion, the target static feature y was estimated 
from source feature X = [X1, X2 ,…, XT] so that a likelihood L 
= p(Y|X, Θ)wp(v(y) |Θv) was maximize where w is a weight 
and the vector Y is represented as W y, where W denotes a 
conversion matrix from the static feature sequence to the static 
and dynamic feature sequence. 

3.2 Excitation Estimation 

The mixed excitation is defined as the frequency-dependent 
weighted sum of white noise and a pulse train with phase 
manipulation. The weight is determined based on an aperiodic 
component in each frequency band [14]. 

Aperiodic estimation was done in the same way as the 
spectral estimation except that global variance (GV) was not 
used because GV does not cause any large difference to the 
converted speech in the aperiodic conversion [3]. 

ML-based conversion method was used the F0 estimation. 
Static and dynamic features Yt of F0 are used while keeping 
the same feature vector of whisper Xt as that used for the 
spectral conversion. However, instead of using all the 
segments in each pair of utterance, only voiced segments Xt, Yt  
were extracted to train a GMM on the joint probability in a 
similar way as the spectral estimation in order to avoid loosing 
some Gaussian components for representing the zero values of 
F0 set for unvoiced segments. A feed-forward neural network 
is used to predict these segments from X. For synthesis, 
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continuous F0 values are predicted that are paced by the 
voicing parameter computed by the network. 

4. Evaluation 
In order to show our improvement in F0 estimation and 
voicing attribution, two evaluations were done, comparing our 
system with the original system proposed in [1]. 

The training corpus consists in 200 utterance pairs of 
whisper and speech uttered by a French male speaker and 
captured by a NAM microphone and head-set microphone. 
Respective speech durations are 4.9 minutes for whisper (9.7 
minutes with silences) and 4.8 minutes for speech (7.2 
minutes with silences). The 0th through 24th mel-cepstral 
coefficients were used as a spectral feature at each frame.  
The spectral segment feature of whisper was constructed by 
concatenating feature vectors at current ± 8 frames, and then 
the vector dimension was reduced to 50 using a PCA 
technique. Log-scaled F0 extracted by STRAIGHT [13] was 
used as the target feature. 

4.1. Voicing estimation 

In the original system [1], first, the authors took all the frames 
in each utterance and estimated F0 value at each frame by 
using the trained GMM model. Then, they used a threshold to 
assign the voiced/unvoiced label for this frame. The F0 values 
in every unvoiced frames were then set to zero. We applied 
this original technique to our data. 

Then to compare with our technique, we created a feed-
forward neural network with 50 input nodes, 17 hidden nodes 
and 1 output node. The segmental features at each frame of 
the whispered utterances were used as input vector for this 
network. The voiced/unvoiced label for each segment in the 
training whispered data was obtained from the voiced/ 
unvoiced label of the corresponding speech utterance by 
aligning the two utterances. All the whispered utterances used 
for training the GMM were also used to train this network. 

Table 1: Voicing error using neural network or GMM. 

Type of error Feed-fwd NN (%) GMM (%) 
Voiced error 2.4 3.3 

Unvoiced error 4.4 5.9 
Total ~ 6.8 ~ 9.2 

 
Table 1 shows the evaluation of this network. Compared 

with the error in the original system, the result shows that we 
have a slight improvement of the voiced/unvoiced detection. 

4.2. Parameter evaluation 

We also compared the two systems with different number of 
mixtures for estimating F0 on both the training and the test 
data. The number of mixtures of mel-cepstral mapping 
function was set to 32. Full covariance matrices were used for 
both GMMs. The test corpus consisted of 70 utterance pairs 
not included in the training data.  The error was calculated as 
the normalized difference between synthetic F0 and natural F0 
in the voiced segments that were well detected by the two 
systems. The error is given by the following formula: Err = 
(synthetic_F0 – natural_F0)/ natural_F0. Fig. 3 shows that the 
proposed framework outperforms the original system. In 
addition, when the number of Gaussian mixtures increase, the 
errors of both systems on the training data decrease, but these 
errors on test data are little sensitive to the number of 

mixtures. This is further illustrated in Table 2 which provide 
correlation coefficients for the two systems.  

 
Figure 3: Natural and synthetic F0 curve. 

Fig. 4 shows an example of whispered-, converted- (our 
system) and natural-speech. As can be seen the formant 
patterns of converted speech are flatter than those of natural 
speech. Global variance was used to attenuate this difference. 

Table 2: Correlation coefficient between natural F0 and 
converted F0 by the two systems. 

Our system Original system # of 
Gaussian 
mixtures 

train test train test 

8 0.565 0.495 0.494 0.451 
16 0.667 0.493 0.513 0.456 
32 0.746 0.498 0.603 0.460 
64 0.834 0.499 0.682 0.444 

/ Whisper captured by NAM microphone / 

 
/ Converted speech / 

 
/ Natural speech / 

 
Figure 4: Whispered speech captured by NAM sensor, 

converted speech and ordinary speech for the same 
utterance: “Armstrong tombe et s'envole”. 

Figure 5 shows an example of a natural (target) F0 curve 
and the synthetic F0 curves generated by the two systems. It 
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shows that our new system is closer to the natural F0 curve 
than the original system. 

 
Figure 5: Natural and synthetic F0 curve for the same 

utterance : “Armstrong tombe et s'envole”. 

4.3. Perceptual evaluation 

Sixteen French listeners who had never listened to NAM 
participated in our perceptual tests on intelligibility and 
naturalness of the converted speech from the two systems. We 
used 20 utterances which were not included in the training. 

    
                      (a)                                              (b) 

Figure 6: Intelligibility score (a) and Naturalness score (b). 
4.3.1. Evaluation on intelligibility 

For this evaluation, we used synthetic speech with the 
estimated mel-cepstrum, estimated aperiodic component and 
estimated F0 by both systems.  

Each listener heard an utterance pronounced in modal 
speech and the converted utterances obtained from the 
whispered speech with both systems. For each utterance, they 
were asked which one was closer to the original one, in terms 
of intelligibility (ABX test). Fig. 6a provides the mean 
intelligibility scores for all the listeners for the converted 
sentences using the original system and our new system. The 
intelligibility score is higher for the sentences obtained with 
our new system (F = 23.41, p <.001). 

In the evaluation in [1], it was shown that F0 estimation 
(compared with using a constant F0) improves intelligibility. 
This might be caused by a better detection of the voiced/ 
unvoiced property in the F0 estimation. In our case, a feed-
forward neural network was used instead of using GMM. 
4.3.2. Evaluation on naturalness 

We used here the version of the test utterances produced with 
the modal voice. These utterances are considered as ideal 
desired targets of the mapping. We thus further processed the 
synthetic utterances by warping their time scale to the targets 
using the warping procedure used for training. 

We then conducted an ABX test. Because of the warping, 
all utterances have almost the same temporal organization. 
For each sentence, subjects choose A or B as the nearest to 
the natural X in terms of naturalness. Fig. 6b shows the mean 
naturalness that all the listeners rate as the nearest. Again the 
proposed system was strongly preferred to the original one (F 
= 74.89, p <.001). 

5. Conclusions 
This paper described the improvement in F0 estimation and 
voicing decision we propose for NAM-to-speech conversion 
system applied to whispered speech. GMM models were used 
to estimate the spectra, aperiodic component and F0 of the 
converted speech from spectral segments obtained from 
NAM-captured whispered speech, based on a maximum 
likelihood criterion. To estimate the F0 features in the 
whispered utterances, only voiced segments were used. They 
were detected using a simple feed-forward neural network. 
Although the performance of the system is improved 
compared to that of the original system, the estimated pitch is 
still flat due to the GMMs. In the future, we will investigate 
how to obtain audible speech from whisper by using a HMM 
which is appropriate for modelling a time sequence of speech 
parameters. Also, we plan to use complementary information 
such as video in the aim of obtaining other useful parameters. 
Acknowledgment: The authors are grateful to Coriandre 
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Abstract 
In this paper, new techniques to improve whisper-to-speech 
conversion are investigated, in the framework of silent speech 
telephone communication. A preliminary conversion method 
from Non-Audible Murmur (NAM) to modal speech, based 
on statistical mapping trained using aligned corpora has been 
proposed. Although it is a very promising technique, its 
performance is still insufficient due to the difficulties in 
estimating F0 from unvoiced speech. In this paper, two 
distinct modifications are proposed, in order to improve the 
naturalness of the synthesized speech. In the first 
modification, LDA (Linear Discriminant Analysis) is used 
instead of PCA (Principal Component Analysis) to reduce the 
dimensionality of the input spectral vectors. In addition, the 
influence of long-term variation of spectral information on 
pitch estimation is examined. The second modification is an 
attempt to integrate visual information as a complementary 
input to improve spectral estimation, F0 estimation and 
voicing decision.   
Index Terms: audiovisual voice conversion, non-audible 
murmur, whispered speech. 

1. Introduction 
Speech conveys a wide range of information. Among them, 
the linguistic content of the message being uttered is of prime 
importance. However, paralinguistic information such as the 
speaker’s mood, identity or position with respect to what 
he/she says also plays a crucial part in oral communication 
[12]. Unfortunately, when a speaker murmurs or whispers, 
this information is degraded. 

To solve this problem, Nakajima et al. [10] found that 
acoustic vibrations in the vocal tract can be captured through 
the soft tissues of the head with a special acoustic sensor 
called a Non-Audible Murmur (NAM) microphone attached 
to the surface of the skin. Using this stethoscopic microphone 
to capture non-audible murmur, Toda et al. [14] proposed a 
NAM-to-Speech conversion system based on the GMM 
model in order to convert “non-audible speech” to modal 
speech. It was shown that this system effectively works but 
the naturalness of the converted speech is still unsatisfactory. 
This is due to the poor F0 estimation from unvoiced speech. 
These authors conclude that it is necessary to improve the 
performance of NAM-to-Speech systems. Nakagiri et al. [9] 
propose to simply convert NAM to whisper. F0 values do not 
need to be estimated for converted whispered speech because 
whisper is another type of unvoiced speech, just like NAM, 
but more intelligible. 

Another direction of research consists in using a phonetic 
pivot by combining speech recognition and synthesis 
techniques as in the Ouisper project [6]. By introducing 
higher linguistic levels, such systems can potentially predict a 
phonological structure that can be used in speech resynthesis. 
Although excellent results have been reported for Japanese 
[3], NAM recognition for languages with a richer phonolo-
gical structure such as French, using spontaneous speech and 
open domain is unrealistic. 

In this paper, we propose two different methods to 
improve signal-based GMM mapping from whisper to speech. 
Whisper is used instead of NAM because of the difficulties in 
getting accurate phonetic NAM segmentation. The first 
method consists in using Linear Discriminant Analysis (LDA) 
instead of using Principal Component Analysis (PCA) to 
obtain the spectral vector for whisper. Classes clustering 
different F0 ranges and phonemes are used for LDA. 
Furthermore, we compare different sizes of the context 
window to study the influence of spectral variation on the 
pitch estimation performance. In the second method, visual 
information is integrated as a complement to the audio 
information. The visual parameters are obtained by the face 
cloning methodology developed at ICP [11].  

The paper is organized as follows. Section 2 describes 
some characteristics of whispered speech. Section 3 briefly 
describes the framework of our Whisper-to-speech conversion 
system already explained in [15]. Modifications in this system 
concerned pitch estimation. Although the results of the 
modifications lead to satisfactory improvements, we also 
investigate other direction to improve the quality of the 
converted speech by adding other source of information. For 
this reason, section 4 presents our preliminary study on the 
promising contribution of visual information to the conver-
sion system proposed by Toda [14]. Finally, conclusions are 
drawn in Section 5. 

2. Whispered speech 
In recent years, advances in wireless communication techno-
logy have led to the widespread use of mobile phones for 
private communication as well as information access using 
speech. Speaking loudly to a mobile phone in public places 
may be a nuisance to others. Whispered speech, however, can 
only be heard by a limited set of listeners surrounding the 
speaker and can therefore effectively be used for quiet and 
private communication [7]. However, it is hard to directly use 
whispered speech as a medium for human communication 
because of its lesser intelligibility and unfamiliar perception. 
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The conversion of whispered speech to modal voice is neces-
sary for the realization of a “silent speech telephone”. 

2.1. Acoustic features 

In normal speech, voiced sounds involve a modulation of the 
air flow from the lungs by vibrations of the vocal folds. 
However, there is no vibration of the vocal folds in the 
production of whispered speech. Exhalation of air is used as 
the sound source, and the shape of the pharynx is adjusted 
such that the vocal folds do not vibrate. Due to this difference 
in the production mechanism, the acoustic characteristics of 
whisper differ from those of normal speech. A study on the 
acoustic properties of vowels [7] has shown an upward shift 
of the formant frequencies for vowels in whispered speech 
compared to normal speech. The shift is larger for vowels 
with low formant frequencies. The authors also found that the 
cepstral distances between normal and whispered speech for 
vowels and voiced consonants are higher than those of un-
voiced consonants: vocal tract characteristics of vowels and 
voiced consonants change more significantly in whisper rela-
tive to ordinary speech than those of unvoiced consonants. 

The perception of vowel pitch in normal speech is mainly 
related to the fundamental frequency (F0) which corresponds 
to periodic pulsing. In whispered speech, however, although 
there is no periodic pulsing, some pitch-like perception may 
occur. Higashikawa et al. [4] have shown that listeners can 
perceive pitch during whispering and formant frequency 
could be one of the cues used in perception. More precisely, 
the authors in [5] indicate that “whisper pitch” is more 
influenced by simultaneous changes in F1 and F2 than by 
changes in only one of the formants. 

 
Figure 1: Position of NAM microphone. 

2.2. NAM microphone 

Nakajima et al. [10] proposes a new communication interface 
which can capture acoustic vibrations in the vocal tract from a 
sensor placed on the skin, below the ear (figure 1). This 
position offers a high quality recording of various types of 
body transmitted speech such as normal speech, whisper and 
NAM. Body tissue and lip radiation act as a low-pass filter 
and the high frequency components are attenuated. However, 
the non-audible murmur spectral components still provide 
sufficient information to distinguish and recognize sound 
accurately [3]. Currently, the NAM microphone can record 
sound with frequency components up to 4 kHz while being 
little sensitive to external noise. 

3. Using LDA for whisper-to-speech 
Toda et al. [14] proposed a NAM-to-Speech conversion 
system based on GMM model [12][8] in order to convert 
“non-audible speech” to ordinary speech. Although the 
segmental intelligibility of synthetic signals computed by 
statistical feature mapping is quite acceptable, listeners have 
difficulty in chunking the speech continuum into meaningful 
words. This is mainly due to impoverished synthetic intona-

tion. In this study, we focus on improving the pitch estimation 
of the converted speech. We use the same schema as in the 
system we proposed in [15] except that the dimensionality of 
the spectral sequence is reduced by an LDA instead of a PCA. 
The diagram is shown in figure 2. In order to synthesize 
speech, we need to estimate not only spectral features but also 
excitation features, including F0 and aperiodic components.  

The spectral segment feature at each frame is constructed 
by concatenating spectral vectors for several frames around 
the current frame, in order to compensate for the impove-
rished phonetic features (especially for unvoiced fricatives 
losing their high frequency bands). Three GMMs are used to 
convert the segment features of whisper to three speech 
features, i.e., the spectrum, the F0 and an aperiodic 
component which captures the noisy strength on each 
frequency band of excitation signal. Only voiced segments 
are used to train the model of F0 estimation in order to avoid 
wasting Gaussian components for representing zero or 
undefined values of F0 of unvoiced segments. These voiced 
segments are detected by a small feed-forward neural net-
work. Estimated F0 and aperiodic components are passed 
through a mixed excitation module before being combined 
with estimated spectra to compute the converted speech. 

 
Figure 2:  Whisper-to-Speech conversion process. 

3.1. Evaluation 

Two evaluations have been conducted, comparing this system 
with the system we proposed in [15]. 

The training corpus consists of 200 utterance pairs of 
whisper and speech uttered by a French male speaker and 
captured by a NAM microphone and a head-set microphone. 
The spectral characteristics of each frame are the 0th through 
24th mel-cepstral coefficients.  The context-dependent spectral 
feature of whispered frames are constructed by concatenating 
the spectral vectors at current ± 8 frames (context window). 
This vector is then reduced to 50 by LDA. We test the impact 
of the size of the context window by choosing one frame 
every 2, 3, 4 and 5 frames to combine with the current frame 
(windows varied from phoneme size ~100 ms to syllable size 
~350 ms). Log-scaled F0 characterize the target speech. 

The test corpus consists of 70 utterance pairs not included 
in the training data which were uttered by the same speaker. 

3.1.1. F0 estimation 

For this evaluation, the F0 values of the target speech are 
classified into 13 classes: unvoiced frames are set to 0 Hz and 
voiced frames fall into 12 intervals, from 70Hz to 300 Hz. 
The class of a whispered frame is deduced from the class of 
the corresponding speech frame by aligning the two 
utterances. The number of Gaussian mixtures for F0 estima-
tion varies from 8 to 64 (8, 16, 32, 64). The size of the 
context window is also varied from the phoneme size (~100 
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ms) to the syllable size (~350 ms) (by picking one frame 
every 1-5 frames). 

Table 1 shows that LDA improves the precision of pitch 
estimation with respect to PCA. Larger window sizes also 
improve the prediction. The F0 error decreases by 16% 
compared to the system proposed in [15] (10.90% → 9.15%). 

Figure 3 shows an example of a natural (target) F0 curve 
and the synthetic F0 curves generated by the two systems 
(LDA + large context window vs. PCA + small context 
window). It shows that our new system is closer to the natural 
F0 curve than the old one. 
 
Table 1. F0 errors (%) between converted and target speech 

 
method 

Number of Gaussian mixtures 

 

window size 
(frame 

interval) 8 16 32 64 
1 10.96 10.90 10.92 10.90 
2 10.77 10.41 10.29 10.44 
3 10.33 9.98 10.08 10.28 
4 9.90 9.58 9.47 9.82 

 
 

PCA 

5 9.44 9.17 9.32 9.31 
1 10.85 10.58 10.56 10.64 
2 10.36 10.23 10.11 10.36 
3 9.98 9.94 9.93 10.29 
4 9.45 9.43 9.62 9.67 

 
 

LDA 

5 9.15 9.22 9.25 9.37 
 

3.1.2. Spectral estimation 

We also test the influence of LDA and long-term spectral 
variation to the spectral estimation. This time, we use 
phonetic information to get the label for whispered data to 
train the LDA. Each whispered frame is classified in one of 
34 allophones, depending on what phoneme it belongs to. 

Table 2. Spectral distortion (dB) between converted speech 
and target speech 

Number of Gaussian mixtures  
method 

window size 
(frame interval) 8 16 

1 7.23 6.96 
2 7.20 7.01 
3 7.42 7.26 

 
PCA 

4 7.25 7.55 
1 6.96 6.83 
2 6.98 7.01 
3 7.03 7.17 

 
LDA 

4 7.19 7.34 
 

 
Figure 3: Comparing natural and synthetic F0 curves 

 
Table 2 shows again that LDA is slightly better than 

PCA. Contrary to the evaluation on the F0 estimation, when 
the size of the context window increases, the spectral 
distortion increases. In this case, the discontinuities in the 
input whispered vector probably degrade the performance of 
the system. Another plausible interpretation is that a 

phoneme-sized window optimally contains necessary 
phonetic cues for conversion. 

4. Preliminary study of audiovisual 
whisper-to-speech conversion 

To convey a message, humans produce various linguistic 
sounds by controlling the configuration of oral cavities. The 
articulators determine the resonance characteristics of the 
vocal tract during speech production. Therefore, speech can 
be characterized not only by acoustic properties but also by 
articulatory properties. The articulatory parameters, which 
vary much slower than acoustic parameters, can effectively 
characterize speech [13]. Some important articulators are the 
lips, which significantly contribute to the intelligibility of 
visual speech face-to-face human interaction. In the field of 
man and machine communication, the visual signal 
corresponding to speaking lips can be helpful both in input 
and output modalities [1]. 

4.1. Audiovisual conversion system 

The conversion system is built using audiovisual data. The 
system captures, at a sampling rate of 50 Hz, the 3D positions 
of 142 colored beads glued on the speaker's face (Figure 4) 
synchrony with the acoustic signal sampled at 16000 Hz. 

 
Figure 4: Characteristic points used for capturing the 

movements. 

The shape model is built using a so-called guided 
Principal Component Analysis (PCA) where a priori 
knowledge is introduced during the linear decomposition. We 
compute and iteratively subtract predictors using carefully 
chosen data subsets [11]. For speech movements, this 
methodology extracts 5 components that are directly related 
to the rotation of the jaw, to lip rounding, upper and lower lip 
vertical movements and movements of the throat linked 
underlying movements of the larynx and hyoid bone. The 
resulting articulatory model also includes components for 
head movements and facial expressions but only components 
related to speech articulation are considered here. 

 
Figure 5: Diagram of the audiovisual conversion system. 

The audiovisual feature vector is obtained by combining 
whispered spectral and visual feature vectors in an identical 
way to the AAM (Active Appearance Models) introduced by 
Cootes [2]: each articulatory vector is multiplied with a 
weight w before concatenation with the corresponding acous-
tic vector. The dimension of the joint vector is further 
decreased by an additional PCA (see Figure 5). 
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4.2. Preliminary results 

The database consists of 120 sentences for training and 25 
sentences for the testing, pronounced by a native Japanese 
speaker. The 0th through 19th mel-cepstral coefficients are 
used as spectral features at each frame. The input feature 
vector for computing speech spectrum is constructed by 
concatenating feature vectors at current ±8 frames and further 
reduced to a 40-dimention vector by a PCA. Similarly to the 
processing of the acoustic signal, each visual frame is interpo-
lated at 200 Hz – so as to be synchronous with the audio 
processing – and characterized by a feature vector obtained 
by concatenating and projecting ±8 frames centered around 
the current frame on the first n principal components. The 

dimension of the visual vector n is set to 10, 20, 40 or 50. The 
weight w was also changed from 0.25 to 2. The conversion 
system uses the first 40 principal components of joint 
audiovisual vector. In this evaluation, the number of Gaussian 
was fixed at 16 for the spectral estimation, 8 for the F0 
estimation and 8 for the aperiodic components estimation. 

Table 3 shows the positive contribution of visual 
information on the performance of the conversion. The best 
results are obtained with w = 1 and a dimension of the visual 
vector of 20. The spectral distortion between the converted 
speech and the modal speech is decreased by 2.3% while the 
error decreases by 16.5 % for voiced/unvoiced detection and 
10.3% for F0 estimation. With visual information only, the 
performance of the system is significantly degraded. 

Table 3. Contribution of visual information to (a) spectral estimation; (b) voiced/unvoiced decision; (c) F0 estimation. Best 
performance (bold) is obtained for a balanced contribution of audio and visual parameters. 

 Visual weight 
Distorsions Visual 

dimension 
Audio-

only 
0.25 0.5 0.75 1 1.25 1.5 1.75 2 Video-

only 
10  5.656 5.632 5.608 5.576 5.595 5.634  5.619 5.654  
20  5.676 5.630 5.596 5.564 5.598 5.606 5.598 5.623  
40 5.687 5.676 5.630 5.596 5.611 5.568 5.605 5.596 5.618 9.894 

(a) Cepstral 
distortion in dB 

50  5.676 5.630 5.596 5.597 5.568 5.609 5.592 5.619  
           

10  13.786 13.484 12.898 12.669 20.707 20.670 20.972 21.219  
20  13.236 13.575 12.559 12.358 20.734 20.276 20.569 19.534  
40 14.811 13.236 13.575 12.559 12.696 20.450 20.532 20.358 20.258 31.335 

(b) Voiced/ 
unvoiced 
detection (%) 

50  13.236 13.575 12.559 13.383 20.450 20.505 20.743 20.258  
           

10  18.39 18.14 17.54 17.27 24.58 24.52 24.77 25.53  
20  17.85 18.21 17.14 17.47 24.62 24.15 24.51 23.53  
40 19.48 17.85 18.21 17.14 17.28 24.39 24.41 24.47 24.21 36.31 

(c) F0 
estimation (%). 

50  17.85 18.21 17.14 17.93 24.39 24.37 24.63 24.21  
 

5. Conclusions 
This paper describes our modifications to improve the 
intelligibility and the naturalness of the converted speech of 
the whisper-to-speech system based on GMM model. First, 
the use of LDA with a large context window significantly 
improved the converted speech, compared with using PCA 
with a small window. Secondly, the preliminary results on the 
contribution of visual information on a Japanese corpus 
encourage us to continue in this direction using a larger 
audiovisual corpus. Although the performance of the system 
is improved and the difference is clearly audible, the 
estimated pitch is still too flat due to the GMMs. In the future, 
we will investigate how to obtain audible speech from 
whisper by using a HMM which is more appropriate for 
modelling a time sequence of speech parameters. 
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Abstract 
Although the segmental intelligibility of converted speech 
from silent speech using direct signal-to-signal mapping 
proposed by Toda et al. [1] is quite acceptable, listeners have 
sometimes difficulty in chunking the speech continuum into 
meaningful words due to incomplete phonetic cues provided 
by output signals. This paper studies another approach 
consisting in combining HMM-based statistical speech 
recognition and synthesis techniques, as well as training on 
aligned corpora, to convert silent speech to audible voice. By 
introducing phonological constraints, such systems are 
expected to improve the phonetic consistency of output 
signals. Facial movements are used in order to improve the 
performance of both recognition and synthesis procedures. 
The results show that including these movements improves 
the recognition rate by 6.2% and a final improvement of the 
spectral distortion by 2.7% is observed. The comparison 
between direct signal-to-signal and phonetic-based mappings 
is finally commented in this paper. 
Index Terms: audiovisual voice conversion, non-audible 
murmur, whispered speech, silent speech interface, HMM-
based conversion. 

1. Introduction 
Silent speech consists in articulating sounds with no or little 
vibration of the vocal cords in order to avoid being overheard 
[2]. Silent speech is commonly used in situations where 
private and confidential communication is required. However, 
it is hard to use it directly in telecommunication, especially 
with a cellular phone because of its poor intelligibility and 
unfamiliar perception. This problem challenges researchers 
with two questions: how to better capture silent speech/ 
articulation and how to convert it to audible voice? To cope 
with these challenges, several silent speech interfaces (SSI) 
have been proposed in the literature: motion capture of 
fleshpoints on the main speech articulators using 
Electromagnetic Articulography (EMA) sensors [3], real-time 
characterization of the vocal tract using ultrasound (US) and 
optical imaging of the tongue and lips [4][5], digital 
transformation of signals from a Non Audible Murmur 
(NAM) microphone [2][1][6][7], surface electromyography 
(sEMG) of the muscles or the larynx [8][9]. Together with 
these technologies, two main different approaches have been 
proposed to generate audible – and visible – speech from 
signatures of non audible articulation: 

1. Plugging a speech synthesis system to a speech 
recognizer [4][5]. The generation is quite straight-
forward: the recognizer segments the speech flow 
into phonemic units using both signal-dependent 
information and a more or less sophisticated 
language model. A standard speech synthesis 
system then converts this phonetic string into a 
synthetic voice either using the pre-recorded modal 
voice of the speaker or built-in available resources. 
The performance of such a system is mainly 
dependent on the recognition performance: correct 
recognition will result in a perfect reconstructed 
speech while recognition failures or inadequate 
language models result in drastic degradations. 

2. Mapping technique based on GMM model [10] 
[11][1] can be used to directly convert these signals 
into sound using aligned corpora: joint multi-frame 
representations of subvocal signals and speech are 
either stored or modeled and then used to perform 
direct estimation – or inversion – of speech given 
the sole representation of subvocal signals. This can 
be seen as a quantization or optimization process 
that estimates the most probable speech signal 
given the subvocal signals and an a priori joint 
model of the combination. The overall quality of 
the generated speech signals is more homogenous 
here since the active perception of the listener may 
compensate for impoverished output signals. No 
decision is made by the mapping system concerning 
the phonetic content of the message. Top-down 
constraints driving speech intelligibility are  all 
provided by the human perceiver. 

In both cases, a remaining challenge is the generation of 
voicing decision and melody – speaker-specific and language-
specific tones, accents and intonational patterns – that need to 
be estimated from non-modal phonation characterized by the 
absence of vocal folds vibration. Although subvocal 
articulation seems to still recruit motor neurons driving 
movements of laryngeal effectors resulting in observable 
EMG or small displacements of the larynx [12], this 
“phantom” activity has to be captured and transformed into 
meaningful melodic movements. So far most systems 
generate flat melody. Systems combining recognition and 
synthesis should rely either on language models or 
recognition of prosodic constituents to drive an intonation 
model. No such attempts have been reported in the literature 
so far. Although not completely flat, the synthetic melody 
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computed by voice conversion techniques has a reduced 
dynamics. First attempts to focus on this generation step have 
been performed by Tran et al. [6]. We notably used large 
windows over the subvocal signals to estimate  
suprasegmental features. The naturalness score is noticeably 
better but there is still much space left for improvement. 

In this paper, we focus on the segmental intelligibility of 
converted speech. We first study the impact of visual 
information for the HMM-based speech conversion system, 
for both recognition and synthesis tasks. Then, this system is 
compared with the GMM-based system proposed by Toda et 
al [1]. 

The paper is organized as follows. Section 2 describes 
some characteristics of the NAM microphone. Section 3 
describes the HMM-based whisper-to-speech conversion 
system, the promising contribution of visual information to 
this system and the comparison between the two approaches 
mentioned above. Finally, conclusions are drawn in Section 4. 

2. Non-audible murmur microphone 

Nakajima et al. [2] proposed a new communication interface 
which can capture acoustic vibrations in the vocal tract from a 
sensor placed on the skin, below the ear, called a NAM 
microphone. This microphone offers a high quality recording 
of various types of body transmitted speech such as normal 
speech, whisper and NAM. Body tissue and lip radiation act 
as a low-pass filter and the high frequency components are 
attenuated. However, the recorded spectral components still 
provide sufficient information to distinguish and recognize 
sound accurately. Currently, the NAM microphone can record 
sound with frequency components up to 4 kHz. Although this 
microphone is little sensitive to noise when using simulated 
noise, its performance decreases in real noise environment 
because of the Lombard reflex effect [13]. Figure 1 shows an 
example of whispered speech captured by this microphone. 
Note that the signal delivered by the NAM microphone is 
highly sensitive to bursts of stop consonants. 

 

 
Figure 1: Whispered speech captured by a NAM 

sensor for the French utterance: “Armstrong tombe et 
s'envole” ([amstRõg tõb e sãvol]). 

3. Audiovisual HMM-based conversion 
During speech production, humans produce sounds by 
controlling the configuration of oral cavities. The speech 
articulators determine the resonance characteristics of the 
vocal tract. Movements of visible articulators such as the jaw 
and lips are known to significantly contribute to the 
intelligibility of speech during face-to-face communication. 
In the field of person-machine communication, visual 

information can be helpful both as input and output 
modalities, especially in the case of silent speech [6][7]. 

3.1. Audiovisual corpus 

The conversion system is built using audiovisual data 
pronounced by a native Japanese speaker (the corpus is 
described in [6]). Two speech modes were recorded: whisper 
and normal (modal) speech. The system captures, at a 
sampling rate of 50 Hz, the 3D positions of 142 coloured 
beads glued on the speaker's face (see Figure 2) in synchrony 
with the acoustic signal sampled at 16000 Hz. 

 

 
Figure 2: Characteristic points used for capturing the 

movements. 

3.2. Visual parameters extraction 

A shape model is built using a so-called guided Principal 
Component Analysis (PCA) where a priori knowledge is 
introduced during a linear decomposition. We compute and 
iteratively subtract predictors using carefully chosen data 
subsets [14], for a given speaker and a given language. For 
speech movements and for our particular Japanese speaker, 
this methodology extracts 5 components that are directly 
related to the rotation of the jaw, to lip rounding, to upper and 
lower lip vertical movements and to movements of the throat 
associated with underlying movements of the larynx and 
hyoid bone. The resulting articulatory model also includes 
components for head movements and facial expressions but 
only components related to speech articulation are considered 
here. 

3.3. Conversion system overview 

In order to compare the performance of the GMM-based 
voice conversion technique [1][6] with the approach of 
combining NAM recognition and speech synthesis, a multi-
streams HMM-based whisper-to-speech conversion system 
was developed. It combines 2 modules, namely HMM 
recognition and HMM synthesis: instead of the corpus-based 
synthesis proposed in [5], we use HMM-based synthesis, as 
described in [15]. The voice conversion is performed in three 
steps: 

1. Using aligned training utterances, the joint probability 
densities of source and target parameters and duration 
probability distribution are modeled by context-
dependent phone-sized HMM. Static and dynamic 
acoustic and visual parameters of source and target 
are stored separately in 4 streams (whispered spectral 
stream, whispered visual stream, speech spectral 
stream and speech visual stream). Because of limited 
training data, we only used the right context for the 
acoustic models, where subsequent phonemes are 
classified coarsely into 3 groups for vowels ({/a/}, 
{/i/,/e/}, {/u/,/o/} without distinguishing between long 
and short vowels) and 7 groups for consonants: 
bilabials ({/p/,/pj/},{/b/,/bj/},{/m/,/mj/}), alveolars 
(/d/,/t/,/n/,/nj/,/s/,/ts/,/z/,/j/), palatals  (/Σ/,/tΣ/,/Ζ/), ve-
lars ({/k/,/kj/},{/g/,/gj/}), /f/, /w/ and others 
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({/h/,/hj/}, {/r/,/rj/}). We add /f/ and /w/ to the context 
because they are visually distinguished from other 
consonants (see figure 3). Silences are also classified 
into 2 groups for utterance-final and internal silences. 
Gaussian mixtures with two Gaussians and diagonal 
covariance matrices are used to model the joint 
observations of each HMM state. 

2. HMM-based recognition is performed using the 
source streams (acoustic and visual) with the HTK 
toolkit [16]. The linguistic model is limited to phone 
bi-grams learnt on the training corpus. 

3. HMM-based synthesis of the recognized context-
dependent phone sequence and target streams 
(separately acoustic and visual) is performed using 
the HTS software [15][17]. 

 

 
Figure 3: Confusion tree of whispered visual 

movements of consonants (the smaller the ordinate, 
the more confused the two categories are) 

3.4. Experiments and results 

The Japanese data consists in 150 utterances for training and 
40 utterances for the test. The 0th through 19th mel-cepstral 
coefficients extracted by STRAIGHT [18] and their first 
deltas are used as spectral features while 5 visual parameters 
and their first deltas are used to characterize the movements 
of the jaw and lips, for both aligned modal speech and 
whisper. 

3.4.1. Impact of visual information for recognition 

Table 1 provides the recognition scores for all phones as well 
as separately for all vowels and consonants presented in the 
test corpus. These results show the positive contribution of 
visual information for the recognition task. On average, all 
phones considered, the input facial movements improve 
recognition rate by 6.2 % (65.24 % to 71.43 %). In the case of 
vowel recognition, the accuracy obtained by using the visual 
information is 76.45 %, showing an improvement of 8.7 % 
compared with using acoustic information only. In the case of 
consonant recognition, this improvement is of 7%. The lesser 
improvement of consonants compare to that of vowels can be 
attributed to the large number of labial doubles for Japanese 
consonants. 

Table 2 shows the contribution of facial movements to the 
recognition of consonants considering the place of 
articulation. The consonants are classified into 4 groups: 
bilabials, alveolars, palatals and velars. The bilabials benefit 

from a very significant improvement (27.6%) while alveolars 
display only a slight improvement (4.5%). Note that facial 
movements also benefit surprisingly to the other consonants 
(17.4% improvement for velars and 14.4% degradation for 
palatals respectively). The small number occurrences of 
velars and palatals in the test corpus probably cause this 
phenomenon. The small facial movements cueing these 
phones should in fact have no significant impact on their 
recognition. 

Table 1. Recognition ratio for all vowels, consonants 
and all the phones represented in the test corpus. 

Phones AU (%) AUVI 
(%) 

Vowels 67.79 76.45 
Consonants 61.65 68.68 
All phones 65.24 71.43 

Table 2. Recognition ratio with different places of 
articulation. 

Phones AU (%) AUVI 
(%) 

Bilabials 53.27 80.83 
Palatals 74.98 60.6 

Alveolars 67.06 71.51 
Velars 63.25 80.65 

Table 3. Cepstral distortion between converted speech 
and target speech (dB). 

System AU AUVI 
GMM 5.99 5.77 
HMM 6.58 6.4 

3.4.2. Impact of visual information for synthesis 

The GMM-based system that we used as a reference for this 
comparison is described in [1][6]. A GMM with 16 gaussians, 
full covariance matrix is used for the spectral estimation. 
Global variance is also used to reduce the over-smoothing, 
which is inevitable in the conventional ML-based parameter 
estimation [19]. 

Table 3 compares the contribution of visual information 
for the intelligibility of converted speech in terms of cepstral 
distortion between target speech and synthesized speech, with 
the two systems. Although facial movements have a positive 
contribution in both systems (cepstral distortion relatively 
decreases by 2.7% from 6.58 dB to 6.4 dB), the performance 
of the HMM-based system is currently inferior compared with 
the direct signal-to-signal system based on GMM model. This 
inferior score could be explained by two reasons. First, the 
diagonal covariance currently used for each state of the 
models in the HMM-based system does not take into account 
the covariance between whispered speech parameters and 
speech parameters, but the GMM-based system does, by 
using a full covariance matrix. Second, synthesis and 
recognition are used separately, therefore the trained HMM 
models tend to minimize the recognition error, but not the 
final reconstruction error. 

Figure 4 shows an example of converted speech by the 
two systems. The formant structures of the GMM-based 
converted speech is clearer than the other one. 
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4. Conclusions 
This paper describes audio-visual whisper to speech 
conversion that couples a speech synthesis system with a 
speech recognizer. The facial movements act as a 
compensation for lip radiation loss in the signal captured by 
the NAM microphone. This noticeably improves the 
performance of such a system, especially for the recognition 
task. The experimental results also show that this influence 
depends on place of articulation. Although the performance of 
such a system is currently inferior to the GMM based system, 
we hope that by modeling the covariance between whispered 
speech parameters and speech parameters, using more data, 
extending the acoustic models as well as the linguistic model, 
and by using global variance, the performance of this system 
will further improve. 

In particular, we  think that a more intimate coupling of 
recognition and synthesis – obtained for example by 
considering trajectory formation accuracy in HMM training 
or by considering N-best solutions in the synthesis process –  
should overcome the limitation of the proposed approach. 

/converted speech by GMM/ 

 
 
/converted speech by HMM/ 

 
 
/target speech/ 

 
Figure 4: Whispered speech captured by a NAM 
sensor for the utterance: “tamanegi jagaimo”. 
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