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Chapter 1

Introduction

During the last decade, a significant experimental effort has been done towards the realiza-
tion of quantum optics experiment with electrons [74, 68, 131, 133, 132]. These experiments
underlined the analogy between photons propagating in the vacuum and electrons in ballistic
conductors. By showing the importance of electronic decoherence, they also stressed the impor-
tance of many body correlations in quantum transport and have then motivated an important
theoretical activity [89, 88, 146, 21, 79, 80] to explain quantitatively the decoherence observed
in interferometry experiments.
In this context, the recent demonstration of an on demand single electron source [38] has
opened the way to quantum optics experiments with single electron excitations. These in turn
offer new possibilities to perform quantitative decoherence and relaxation studies. This experi-
mental achievement also raises the problem of the measurement of a single electron wavefunc-
tion.

This thesis is a contribution to the physics of single to a few electronic excitations in the
integer quantum Hall regime. Its main objective was to provide an appropriate framework for
electron quantum optics able to render the analogy between electronic excitations in quantum
Hall edge channels and photons propagating in the vacuum and which also takes into account
electronic features such as the fermionic statistics and Coulomb interactions.
This formalism has been developed during this thesis and has conducted to experimentally
testable predictions. By doing so, the modelling for the dynamics of the systems under consid-
eration could be tested.

A central concept in this thesis is, as in Glauber’s quantum optics, the notion of single
particle coherence. A significative part of this work has been devoted to the alteration of single
electron coherence by interactions and coupling to an external environment : this is the problem
of single electron decoherence which is closely related to the problem of electronic relaxation.

We will first present general statements about quantum coherence. This first part will
explain how the coupling to an environment affects the dynamics of a quantum system, and
what are the related questions that naturally arise in a many electron system. Then, we will
present the context in which these ideas on quantum coherence will be applied, by describing
current transport in quantum Hall edge channels. A third section will give a short overview
of the experimental context of this thesis, and present some recent experimental achievements,
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CHAPTER 1. INTRODUCTION

together with a presentation of current fluctuations measurements. Finally, we will give an
outline of the ideas developed in this manuscript.

1 Quantum coherence

Contrary to an isolated quantum systemwhich follows a unitary evolution ruled by Schrödinger’s
equation, an open quantum system experiences decoherence which turns pure states into sta-
tistical mixtures. Decoherence is responsible for the quantum to classical transition in the
behaviour of a physical system. Its study, even if present from the very beginning of quantum
mechanics [34], really took off in the last fourty years, following the pioneering works of H.
D. Zeh [75, 162] and W. Zurek [164, 163]. The original motivation for these works was to find
a satisfactory explanation to the superselection rules that forbid linear superpositions of states
for macroscopic objects[166, 165].

More precisely, decoherence is responsible for a dynamical selection of certain states (the
pointer states), and acts contrary to the superposition principle : the superpositions of these
dynamically selected states are suppressed in characteristic times short compared to the char-
acteristic dissipation time. Surviving the system/environment interaction, these states can be
viewed as the "classical states" that can be repeatedly seen by an external observer. The selec-
tion of these priviledged states due to the entanglement between the system and its environment
is called einselection (for environment induced selection)[124].
From the point of view of the environment, the interaction with the open quantum system will
generate correlations between the system’s state and the one of the environment : the evolution
of the environment will be conditioned to the one of the system.

1.1 State evolution in the presence of an environment

To understand the effects of the coupling of a quantum system to its environment, we will use
the influence functional formalism derived by Feynman and Vernon [40, 39].
We will consider a small (in terms of degrees of freedom) system S coupled to a reservoir R.
The generalized coordinates describing the system are denoted q, and the ones for the reservoir
are denoted x. We assume that the initial states of the S and R are initially uncorrelated,
which means that the total density operator describing the state of the system and the reservoir
factorizes :

ρS⊕R(ti) = ρS(ti)⊗ ρR(ti) .

For an isolated system, the probability to get from the initial state i at ti to the final state f at
tf is given by the square of the modulus of the sum of probability amplitudes associated with
all trajectories connecting the initial and the final state :

Pi→f =
∑
m,n

A[qm]A∗[qn] .

In this sum, the terms corresponding to identical trajectories are of the form
∑

n |A[qn]|2 : they
correspond to classical trajectories. Under the influence of the environment, terms involving

2



1. QUANTUM COHERENCE

Figure 1.1: Interfering trajectories. The presence of the environment R is responsible for an
attenuation of the visibility of quantum interferences.

interferences between two different trajectories are affected by an influence functional that
depends on the system’s trajectory F [q+, q−] :

A[q+]A∗[q−] → A[q+]A∗[q−]F [q+, q−] .

In some cases, the expression of the influence functional can be cast in the following form :

F [q+, q−] = 〈ξ(q+)|ξ(q−)〉 ,

where |ξ(q±)〉 denotes the state of the environment conditionned by the system’s trajectories
q±. Depending on the trajectory and on the coupling between the system and its environment,
the states |ξ(q+)〉 and |ξ(q−)〉might be totally distinguishable (in this case, they are orthogonal)
or not. When the environment is a good "path detector", F [q+, q−] is very small and quantum
interferences are killed.

Thus, the influence functional is responsible for the attenuation of the quantum interfer-
ences, and consequently, for the loss of coherence. The influence functional formalism under-
lines the analogy with standard coherence theory in undulatory optics. It can be shown [40]
that this functional is also responsible for transitions between stationary states of the system S ,
and thus for energy exchanges with the environment.

From the experimental point of view, traditional playgrounds where quantum coherence
phenomenon are discussed and experimentally observed are atomic physics and quantum op-
tics. For example, in cavity quantum electrodynamics, one can monitor the evolution of meso-
scopic quantum superpositions of coherent states of the electromagnetic field (Schrödinger cat
states) and visualize their quantum to classical transition [57].
In solid state systems, decoherence effects have been observed for example in superconducting
qubits [104, 143] or quantum impurity systems [98]. With the emergence of mesoscopic quan-
tum physics, quantum coherence effects have been discussed in solid state devices involving a
macroscopic number of particles. In these systems, the manifestations of quantum coherence
are for example Anderson localization [155], or the Aharonov-Bohm phase [105].

In this manuscript, the aforementioned concepts on open quantum systems will be applied
to mesoscopic electronic systems.

3



CHAPTER 1. INTRODUCTION

1.2 Decoherence in electronic systems

The behaviour of electrons in metallic conductors is ruled by coulombic interactions and Fermi
statistics. In particular, even in the absence of interactions, the latter can generate entanglement
between electronic sources [7].
Throughout this thesis, we will consider electronic systems coupled to their electromagnetic
environment via Coulomb interactions. More precisely, we will consider the case of single elec-
tron injected in a ballistic conductor, and study the interplay of interactions and many body
effects on the dynamics of these electrons.
Such physical situations ask the question of the role played by the indistinguishability of elec-
trons in a metallic environment. Indeed, the supplementary electron is integrated in the elec-
tronic fluid, and thus is in principle undistinguishable from the other electrons in the conductor.
Thus, the natural question that arises is in which cases is it possible to single out an electron
and consider the other ones in the conductor as an effective environment ? In such cases, the
typical situation will be :

(i) The "small" system S under consideration will be the electron injected in the conductor.

(ii) The environment R will comprise the other electrons in the conductor, and the external
electromagnetic environment coupled to the conductor.

In the situations considered in this manuscript, we will study the single particle density
operator that encodes the single particle properties of the electronic fluid coupled to an external
environment. In the cases where the supplementary electron will be singled out of the Fermi
sea, it will correspond to the reduced density operator for the single electron.

The physical situations considered in this thesis are one dimensional balistic conductors
called quantum Hall edge channels which, as we shall see in the next section, appear when a
two dimensional electron gas formed at an heterojunction between different semiconductors is
placed in a high perpendicular magnetic field at low temperature.

2 The quantum Hall effect

Low dimensional systems have attracted a lot of attention in mesoscopic physics. Effective two
or one dimensional systems such as graphene or carbone nanotubes are subjects of constant
experimental and theoretical activity. Among these low dimensional experimental realizations,
our interest will focus on two dimensional electron gases, which exhibit particular transport
properties at low temperature and high magnetic field. This section will introduce the integer
quantum Hall effect, and current transport in this regime, in a semiclassical picture.

2.1 Quantum Hall edge channels

Semiconductor heterostructures such as AsGa/AlGaAs exhibit a potential well at their interface
which is responsible for the formation of a two-dimensional high mobility electron gas (2DEG).
In the presence of a strong perpendicular magnetic field (' 10T ), at low temperature (below
1K), this 2DEG enters the quantum Hall regime where the transverse conductance is quantized
and the longitudinal one vanishes. This new state of matter has been discovered by K. Von
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2. THE QUANTUM HALL EFFECT

Klitzing [149] in 1980. In this regime, the bulk of the 2DEG becomes insulating and the electrical
current flows along one dimensional channels located at the edges of the sample.

(a) Chiral edge channels

E

x

E
F

(b) Landau levels

Figure 1.2: (a) Chiral quantum Hall edge channels, indicating the electron velocity. (b) The
shape of Landau levels is affected by the confinment potential representing the edges of the
sample. The intersection of these deformed Landau levels with the Fermi energy gives the edge
channels.

Their emergence can be understood within a single particle picture [63, 15] as shown on the
figure 1.2 above. The energy levels of electrons in an homogeneous transverse magnetic field
are simply given by highly degenerate harmonic oscilator levels called Landau levels, with a
characteristic oscillator frequency given by the cyclotron frequency ωc =

eB
m
, where m is the

electron’s mass. In the presence of a confining potential in one direction (y in fig. 1.2), the
levels bend according to the confining potential (see fig. 1.2(b)).
The intersection of these bent Landau levels with the Fermi energy will indicate the location
of the conduction channels in the system. At the center of the sample, the energy levels of the
electrons are harmonic oscillator levels, and consequently the bulk states do not carry electrical
current due to the cyclotron gap ~ωc.
A classical image can illustrate this last feature : at the center of the sample, the electrons follow
closed circular orbits, that are localized states, and thus do not participate to the electrical
current. On the contrary, at the edge of the sample, electrons can move in the y direction by
successive bounces.
The number of conduction channels is equal to the number of filled Landau levels at the Fermi
energy. This number is called the filling factor ν. It is equal to :

ν = n
h

eB
,

where n is the electronic density and h
eB

is the area threaded by one flux quantum. At constant
electron density, the filling factor depends on the magnetic field : integer values of ν correspond
to an integer number of filled Landau levels .

2.2 Current transport in the integer quantum Hall regime

A key point is that each of the edge channels is chiral : the direction of the current flow depends
on the edge of the sample. This comes from the relation between the average velocity of the

5



CHAPTER 1. INTRODUCTION

carriers (the drift velocity) at the Fermi level and their energy :

〈v〉 ≡ vF =
1

~

(
∂En

∂k

)
k=kF

,

where En is the energy of the n− th Landau level. The figure 1.2(a) illustrates the dependence
of the velocity’s sign on the edge under consideration.
Chirality is at the origin of the robustness of current propagation against disorder or interac-
tions. Indeed , in a typical configuration, the only possibility for an electron propagating in
an edge channel to be backscattered is to reach the other edge via the tunnel effect. When the
sample edges are separated by more than a few magnetic lengths, tunnelling processes from
one edge to the other are strongly suppressed. This explains why, in the integer quantum Hall
regime, the longitudinal resistivity vanishes. Furthermore, when a current I is applied to the
sample, a voltage difference appear between the edges of the samples. This voltage difference
is the Hall voltage VH . The latter is related to the total current I (see fig. 1.3) flowing through
the edge channels through :

VH =
h

νe2
I .

The Hall voltage is typically measured in a quantum Hall bar between metallic contacts located
at opposite edges, as shown in fig.1.3.

Figure 1.3: A quantum Hall bar. Measurements of longitudinal and transverse resistances are
performed with voltage difference measures between respectively contacts 1 and 3 and 1 and 2
when the current I flows through the sample.

The absence of backscattering suggests that chiral quantum Hall edge channels can be
viewed as coherent waveguides for electrons similar to optical fibers for photons, an image
initially developed by M. Büttiker [15]. This intuition has received a striking experimental il-
lustration in Mach-Zehnder interference experiments, which have shown that electrons remain
coherent over distances of a few to 20 µm, greater than the typical size of the samples [132].

3 Experimental context

After this short introduction to the integer quantum Hall effect let us now focus on the exper-
imental aspects of current transport in this particular regime, and discuss how one can realize
quantum optics experiments with electrons propagating along chiral quantum Hall edge chan-
nels.

6



3. EXPERIMENTAL CONTEXT

3.1 The experimental toolbox for electron quantum optics

We have seen in the previous section that integer quantum Hall edge channels are, at first
glance, good analogues of optical fibers. This analogy suggests to extend this comparison to
other nanostructures, so as to build a complete toolbox to perform electron quantum optics ex-
periments. Basically, we need pieces able to perform wave separation, which are beamsplitters,
we need mirrors, classical light sources, and single photon sources.

An electron beamsplitter : the quantum point contact

The electronic analogue of a beamsplitter is the quantum point contact (QPC). This nanostruc-
ture consists in two metallic gates deposited on the surface of the sample and connected to DC
voltage sources. Then, when this DC voltage is switched on, electrostatic repulsion is responsi-
ble for the creation of a constriction in the 2DEG.When the widthw of the constriction becomes
comparable to the Fermi wavelength, the number of electronic modes transmitted through the
potential barrier becomes quantized in units of λF

2w
, where λF is the Fermi wavelength[17].

When the system enters the quantum Hall regime, tuning the gate voltage will change the num-
ber of edge channels transmitted through the barrier. Starting from zero gate voltage to large
negative values, the edge channels are reflected one by one at the QPC. Thus, the conductance
of the QPC and so the number of transmitted edge channels can be modified by tuning the gate
voltage[150]. Fig. 1.4(b) illustrates that the increase in the magnetic field lowers the number
of channels transmitted at the QPC. Consequently a quantum point contact mimicks a channel
selective beam splitter with tunable transmission. This peculiarity will be of first importance in
designing protocols of electron quantum optics experiments.

(a) (b)

Figure 1.4: (a) Sketch of a quantum point contact : the gate voltage drives the transparency of
the tunnel barrier, and so the conductance of the constriction. (b) Evolution of the conductance
of a quantum point contact with the gate voltage, taken from [152].

Noise measurements as probes

Pioneering works on current fluctuations in mesoscopic systems by R. Landauer, Th. Martin
and M. Büttiker [103, 85, 86, 10] have shown that current noise contains information about the
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CHAPTER 1. INTRODUCTION

dynamics of charge carriers.
On the experimental side, the measurement of partitioned current noise after a quantum point
contact has shown that the statistics of electrical current in an ideal quantum conductor is sub-
Poissonian [138], as a direct consequence of the Pauli exclusion principle.
Current noise measurements in an Hanbury Brown and Twiss configuration (see fig. 1.5) has
also allowed, for example, to measure the charge of fractional excitations in the ν = 1/3 regime
[82]. The extraction of the change of quasiparticle from shot noise measurements illustrated
in a spectacular way the relevance of studying the noise to obtain information on the current
carriers. As we shall see in chapter 3, this idea popularized by Landauer through his sentence
" The noise is the signal " [86] will be central in our single electron tomography proposal that
aims at reconstructing the single particle coherence of a single electron source.

Figure 1.5: Hanbury Brown and Twiss configuration for noise measurements. The quantum
point contact mixes the incoming currents, and the correlations between output electrical cur-
rent I1 and I2 are measured.

Electron sources

A DC bias applied to a quantum point contact will create a stationnary electron stream that
will populate an edge channel with a macroscopic nonequilibrium distribution. An oscillating
voltage bias can alsso be used to create a standing wave on output of an ohmic contact.
To perform quantum optics experiments with single quanta, a single electron source is nece-
sary. Several propositions have been made to realize such an electron source in 2DEG at zero
magnetic field or in the quantum Hall regime, relying on tunnel junctions [9], surface acous-
tic waves [147, 27, 130], charge pumping [159] or the use of a properly designed voltage [87].
Nevertheless, up to now, the only available experimental realization that ensures good control
of the emission time together with energy resolution of the emitted electron relies on another
technique that we will now describe.

This recently demonstrated single electron source takes benefit on electron confinement in
a quantum dot [38]. The latter is an isolated portion of the 2DEG created electrostatically or
by changing the shape of the 2DEG during its fabrication. This confinement is responsible for
a discrete level structure in the quantum dot. The typical energy level separation ∆ is chosen
to be well above to the charging energy EC of the dot.
The application of a periodic square voltage Vexc (see fig. 1.6) on the quantum dot will shift the
energy levels accordingly to the voltage. By choosing the appropriate amplitude and frequency
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for Vexc, one can emit a single electron per cycle. In this case, the emitted electron has an energy
eV ≤ ∆ above the Fermi level. For such a source, the emission of an electron goes together
with the emission of a hole in the following half period : it is an AC source. A sketch of the
source together with a cartoon of its functioning is given in fig. 1.6.

Figure 1.6: Up : Sketch of the single electron source built in the LPA, and shape of the excitation
voltage. Each phase of the driving voltage corresponds to a different processus in the emission.
Down : the sequential processes in the emission are synchronized with the driving voltage.
These figures are taken from [38].

3.2 A Mach-Zehnder interferometer for electrons

The first striking evidence of the quantum coherence of electrons propagating in quantum Hall
edge channels came with the demonstration of a Mach Zehnder interferometer in 2003 by the
group of M. Heiblum [74] in the Weizmann institute. In this setup, depicted in 1.7, two quantum
point contacts are operated as electronic beamsplitters. A first ohmic contact emits electrons
towards the first quantum point contact. The reflected and transmitted paths are then recom-
bined at the second quantum point contact.

Since we are in the quantum Hall regime, the whole system in submitted to a strong per-
pendicular magnetic field ~B. Thus, the phase difference between the reflected and transmitted
paths is given by the Aharonov-Bohm phase ϕ = 2πA × | ~B|/Φ0, where A is the area of the
loop delimited by the two arms of the iterferometer. Here, Φ0 = h/e is the flux quantum. The
phase difference can be changed by changing the magnetic field or by the backgatesG1 and G2

which change the area.
The electrical current after recombination is measured at the ohmic contacts Di. This current
presents oscillations when plotted against the magnetic field or the gate’s voltage, which are
clear signatures of quantum interferences. The visibility reduction (see fig. 1.8) is due to deco-
herence mechanisms, for which several competing explanations have been proposed. Some of
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Figure 1.7: Figures taken from [74]. (a) Optical Mach-Zehnder interferometer. (b) Electronic
analogue : the quantum point contacts are beamsplitters, in which the electron beams, namely
the edge channels, split up and recombine.

(a) (b)

Figure 1.8: Figures taken from [74]. (a) Oscillations in the output current are manifestations of
quantum coherence. (b) Visibility of the interference pattern. The reduction of the visibility is
a manifestation of the decoherence of electronic excitations, and have motivated a significative
amount of theoretical propositions.

them [102, 42, 24, 100, 101, 111, 133] involve sources of dephasing that are exterior to the edge
channels, which can be the movement of charge impurities, or radiation emitted by the sam-
ples surroundings. Other explanations [21, 114, 88, 79] rely on electron/electron interactions in
the edge channels. This departure from the electron quantum optics picture of free electrons
"flying" on top of the Fermi sea is at the heart of the work realized in this thesis.

4 Thesis outlook

In the context of Mach-Zehnder interferometry, the Coulomb interaction is responsible for the
decoherence of electronic excitations [24, 21, 111, 114, 88, 133, 79]. In particular, this raises the
question of the validity of the analogy between current transport in the integer quantum Hall
regime and photon propagation in the vacuum : to which extent is this comparison valid, and
when do the many body effects mentioned in 1 come into play ?
The single electron source presented in section 3 offers the possibility to probe the one body
dynamics in quantum Hall edge channels, but it also demands a reconsideration of the problem
of electronic coherence. Indeed, a crucial question would be to understand the deviation from
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the noninteracting picture for single electrons excitations due to coulombic interactions and
coupling to the electromagnetic environment. As suggested by recent experiments on electron
relaxation in ν = 2 quantum Hall edge channels performed by by Frédéric Pierre, Carles Al-
timiras and Hélène Le Sueur, [2, 145], the effects of interactions seriously challenge the quantum
optics paradigm for electrons, which designates the situation in which an electronic wavepacket
at an energy high above the Fermi level can propagate freely, as a photon in the vacuum.

This thesis has contributed to push further the understanding of electron transport in the
integer quantum Hall regime. The proposed formalism to study the coherence of electrons has
shed new light on the relaxation of single electron excitations. This problem is simpler than
the relaxation of a general stationary non equilibrium electronic state but is nevertheless con-
ceptually important since it probes the nature of quasiparticle in quantum Hall edge channels.
In particular, a unified approach to decoherence and relaxation of single electron has been pro-
posed, which answers the question raised in section 1 concerning many body effects in metallic
environments. This approach clearly states at which conditions an electron can be singled out
in a conductor when it is submitted to the influence of a linear environment.
We also propose to make use of two particle interferometry experiments (see section 3) to probe
the bosonization approach to interactions. This test could be complementary to finite frequency
admittances measurements.
Two particle interferences are also the basis of a quantum tomography protocol which aims
at probing further the single particle coherence. Indeed, up to now, only spectroscopy of the
electron state, namely the measurement of the occupation number, have been performed. Here,
the measurement of current correlations that we propose would provide the reconstruction of
a single electron’s wavefunction, and could be the first step of a whole experimental program
to control the state of electrons in quantum Hall edge channels.

This manuscript organizes as follows. The first chapter presents the coherence function for-
malism for electrons by comparison to the quantum coherence theory of the electromagnetic
field. Coherence functions for electrons are nothing but standard correlators encountered in
many body condensed matter physics, but the quantum optics interpretation will shed new
light on quantum coherence problems in electronic systems.
Then, a protocol aiming at measuring the single particle coherence is presented in chapter 3.
It relies on noise measurements similar to those mentioned in section 3. The experimental
feasability of this quantum tomography protocol will be assessed by predictions for the single
electron source of the Laboratoire Pierre Aigrain [38].
The following three chapters will show how the coherence function formalism together with
bosonization can describe decoherence and relaxation of electronic excitations. In chapter 4,
a confrontation to experimental results for electron relaxation in the quantum Hall regime is
presented. On the basis of bosoonization and a plasmon scattering formalism, predictions for
measured quantities are compared to the outcomes of [3, 145].
Chapter 5 describes the decoherence and relaxation of an energy resolved single electron excita-
tion. In this chapter, the relative importance of many body effects and coupling to the external
environment are systematically analyzed and propose an answer to the questions concerning
the quantum optics paradigm in the presence of interactions.
Finally, chapter 6 provides a study of the interaction effects on the coherence function for
sources of minimal excitations proposed by Levitov, Lee and Lesovik [87]. Furthermore, proto-
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cols relying on two particle interferences are proposed to investigate interaction mechanisms.
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Chapter 2

Quantum optics in quantum Hall edge
channels
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In this chapter, the single particle coherence function for electrons is defined in analogy
with the Glauber’s functions of quantum optics[51]. To begin with we will recall some ele-
ments of Glauber’s theory [51], putting the emphasis on the analogies and differences between
traditional quantum optics with photons and electron quantum optics. In particular, how these
differences manifest themselves in the quantities that we chose to study. Basic concepts will
be illustrated on simple examples, both for photons and electrons and will be referenced to
extensively throughout this thesis.

In a first part, we will present the first and second order coherence functions, and the asso-
ciated degrees of .coherence for the electromagnetic field. The second section will be devoted to
the study of electron quantum coherence from the quantum optics point of view. In both parts,
the coherence functions will be related to experimentally relevant quantities. The similitudes
and differences between photons in the vacuum and electrons propagating in quantum Hall
edge channels will be illustrated both on experimental and theoretical grounds.
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CHAPTER 2. QUANTUM OPTICS IN QUANTUM HALL EDGE CHANNELS

1 Quantum coherence of photons
The quantum theory of optical coherence was elaborated by Glauber [50, 52, 51] in the 1960s.
This theory aims at describing the quantum coherence properties of the electromagnetic field
and relate them to photodetection signals. The central elements of this theory are correlators
of the electric field, which are very similar to the coherences of the electromagnetic field in
classical optics. In the case of a quantized field, these correlators are the photon coherence
functions.
In this section, we will focus on photon coherence at first and second order. In both cases, the
photon coherence functions will be related to photodetection signals, in a similar way as in[25].

1.1 Photon first order coherence

Link with photodetection signals

In his work, Glauber studied the case of an ideal detector insensitive to spontaneous emission,
and which measures the intensity of the electric field. The archetypal detector with such prop-
erties is the photomultiplier. The basic process at the heart of such an ideal detector is the
absorption of a photon : we consider a destructive photon measurement, in opposition with
QND measurements performed, for example in cavity quantum electrodynamics (see [67] for a
review). In this case, the photon is irreversibly lost during the measurement process.

In a photomultiplier, the absorption of an incoming electron is responsible for the ionization
of a photocathode, which then produces a photoelectron [25]. This microscopic current is then
amplified to produce the photodetection signal. A schematic illustrations of this process is given
in fig. 2.1.

Incoming light

I   (t)
D

Photocathode

Amplification

Figure 2.1: A schematic view of a photodetector. The single electron on output of the photo-
cathode is amplified, and generates a measurable output current pulse.

Within a first-order perturbation theory, the instantaneous transition rate of the photode-
tector from the state |g〉 to the state |e〉 is given by the Fermi golden rule .
For the sake of simplicity, we will give the details of the computations for the case of a detector
consisting in a single atom localized at the position ~r.
The photodetection consists in the absorption of a photon, a process in which the atom under-
goes a transition from a state |g〉 to a state |e〉, while the field goes from its initial state |i〉 to
a final state |f〉. The evaluation of the probability of this transition in the time interval [0, t]
will give the the associated photocurrent. The atom / field coupling is assumed to be dipolar
electric :
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1. QUANTUM COHERENCE OF PHOTONS

HI = ~d(t) · ~E(~r, t) , (2.1)

where ~d(t) = −e~q(t) is the dipole associated to the atomic states |e〉 and |g〉. In a first order
approximation, the evolution operator between 0 and t is :

U(t, 0) ' 1+
1

i~

∫ t

0

dt′HI(t
′) (2.2)

The detector under consideration is sensitive to the positive frequency part of the electric field,
which only contains annihilation operators :

~E+(~r, t) = i
∑
k

√
~ωk

2ε0V
ake

i~k·~r−iωkt~eλ , (2.3)

V being the volume of the box containing the photons and ~eλ the polarization. The complete
electric field is the sum ~E+ + ~E−, where ~E− = ( ~E+)†. The transition amplitude is thus :

Ag→e = 〈ef |U(t, 0)|g i〉 = ie

~

∫ t

0

dt′〈e|~q(t′)|g〉〈f | ~E+(~r, t′)|i〉. (2.4)

With 〈e|~q(t′)|g〉 = eiωegt′~q, one can find the transition probability from state g to e summing
over the final states of the electric field 1 and averaging over the possible initial states |i〉:

peg(t) = Tri
(∑

f

|Ag→e|2
)

= Tri
(∑

f

|〈ef |U(t, 0)|gi〉|2
)

=
( e
~

)2 ∫ t

0

dt′dt′′eiωeg(t′′−t′)||~q||2Tri
(
ρi ~E

−(~r, t′) ~E+(~r, t′′)
)

=
( e
~

)2 ∫ t

0

dt′dt′′eiωeg(t′′−t′)||~q||2G1(~r, t
′;~r, t′′).

If one considers a continuum of electronic states with density f , the total transition probability
is thus :

p(t) =

∫
dωegf(ωeg)peg(t) (2.5)

=
( e
~

)2 ∫ t

0

dt′dt′′κ(t′ − t′′)G1(~r, t
′;~r, t′′), (2.6)

where κ(τ) =
∫
dωege

iωegτf(ωeg).
Thus, in full generality, the photocurrent has the following expression :

ID(t) =

∫ t

0

dt′dt′′G1(~r, t
′;~r, t′′)KD(t

′ − t′′), (2.7)

1Which is generally unknown.
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CHAPTER 2. QUANTUM OPTICS IN QUANTUM HALL EDGE CHANNELS

where KD takes into account the characteristics of the detector : its efficiency, spectral band-
with, and density of states. G1 is the first order photon coherence function [148] :

G1(~r, t;~r
′, t′) = Tr

(
~E+(~r, t)ρ ~E−(~r′, t′)

)
. (2.8)

For a broadband detector,f is almost constant and consequently p(t) is directly given by
the integral of G1 : a broadband detector will measure the coherence function at coincident
times. For a narrow band detector centered around ω0 ( f(ωeg) ' δ(ωeg − ω0)) the detector
will measure its Fourier transform G1(ω1;ω2) for ω1 = ω2 = ω0.

The average field intensity is the diagonal part of the one particle coherence function in the
time domain :

〈I(~r, t)〉 = Tr
(
~E+(~r, t)ρ ~E−(~r, t)

)
= G1(~r, t;~r, t) . (2.9)

The values of G1(~r1, t1;~r2, t2) for different times and positions are correlations of the light
arriving at the photodetector: they account for interferences.

The first order coherence function in the quantum case is very similar to interference terms
that come into play in classical interference experiments. For example, the visibility in a
Young’s interference experiment has the following expression [43] :

v = |g(1)(~r1, t1;~r2, t2)|, (2.10)

where g(1) is the normalized first order coherence function, defined as :

g(1)(~r1, t1;~r2, t2) =
G1(~r1, t1;~r2, t2)√

G1(~r1, t1;~r1, t1)G1(~r2, t2;~r2, t2)
. (2.11)

This function g(1) encodes the coherence properties at the single particle level. Its physical
meaning is very similar to the classical case. It discriminates between three different situations:

(i) |g(1)(~r1, t1;~r2, t2)| = 1 : complete coherence

(ii) 0 < |g(1)(~r1, t1;~r2, t2)| < 1 : partial coherence

(iii) |g(1)(~r1, t1;~r2, t2)| = 0 : incoherent field.

The next paragraph will illustrate the results on the first order coherence function in simple
cases.

Simple examples

For simplicity and without loss of generality, we will from now forget about the vectorial
nature of the electric field and we will only consider one spatial dimension. Before going to the
electron case, it is useful to give the expression of the first order coherence function in simple
cases, such as a wavepacket propagating in the vacuum and also coherent and number states of
a single mode electric field.

Single photon field propagating in the vacuum
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1. QUANTUM COHERENCE OF PHOTONS

For an electromagnetic field containing one photon described by a probability amplitude φ :

ψ†[φ]|0〉 =
∫

dk φ(k)a†k|0〉 , (2.12)

the density operator has the following expression in the position basis :

ρ(x, y) = φ(x)φ∗(y). (2.13)

Using Wick’s theorem and the normalization of φ, the associated first order coherence function
is:

G1(x, y) = 〈0|E−(y)E+(x)|0〉
∫

dy−dy+φ(y+)φ
∗(y−)〈0|E+(y−)E

−(y+)|0〉+ φ(x)φ∗(y)

(2.14)

= φ(x)φ∗(y) . (2.15)

Here, the first term in (2.14) vanishes, since the operator ak annihilates the photon vacuum
|0〉. The vacuum of photons has a vanishing coherence, and does not contribute to the total
coherence function. The result is depicted in 2.2 for a lorentzian wavepacket, which models the
state of the electromagnetic field emitted by the desexcitation of an atomic level [156].
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lcoh

(a) G1(x, y)
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(b) G1(x, x) = 〈I(x)〉

Figure 2.2: (a) Evaluation of the first order coherence function for a wavepacket of the form
φ(x) =

√
Γ/π 1

x−x0+iΓ
. The dashed line indicates the diagonal. The extension of the coherence

function in the x−y direction gives an estimate of the coherence length lcoh of the wavepacket,
as suggested by the arrow. (b) Diagonal part of the firt order coherence function, which is the
average intensity of the electromagnetic field (2.9).

First order coherence of single mode fields
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For a single-mode electric field with wavevector ~q in a volume V , the positive frequency
part reads :

E(+)(~r, t) = i

√
~ω
2ε0V

â~q with ω = c|~q| .ei(~q·~r−ωt) , (2.16)

For a thermal state, the density operator is a statistical mixing of number states with thermal
weights:

ρq,th =
∞∑

nq=0

e−nqβ~ωq

Nq

|nq〉〈nq|, (2.17)

where nq is the quanta number in the mode q, and Nq = 1
1−e−β~ωq a normalization constant.

For this state, the first order coherence function reads :

G1(~r1, t1;~r2, t2) =
~ω
2ε0V

ei(~q·(~r1−~r2)−ω(t2−t1))
1

eβ~ωq − 1
. (2.18)

For a multimode field, one can integrate over k, and making use of the linear dispersion relation
in the vacuum, one gets for the reduced first order coherence function:

g(1)(x; y) =
6

π2
ζ(2, 1 + i

x− y

β~c
) , (2.19)

where ζ(s, z) =
∑

n≥0
1

(n+z)s
2. The characteristic decreasing length β~c in (2.19) is the coher-

ence length in the thermal case. This thermal coherence length will allso come into play the
case of electron quantum optics in 2.

In the case of a field in a number state |n〉, the first order coherence function is :

G1(~r1, t1;~r2, t2) =
~ω
2ε0V

n ei(~q·(~r1−~r2)−ω(t2−t1)). (2.20)

If the field is in an eigenstate of the annihilation operator : aq|αq〉 = αq|αq〉, it is said to be
coherent[52]. In this case, we have :

G1(~r1, t1;~r2, t2) = 〈αq|E(−)(~r1, t1)E
(+)(~r2, t2)|αq〉 (2.21)

=
~ω
2ε0V

|αq|2ei(~q·(~r1−~r2)−ω(t2−t1)). (2.22)

In the cases of number and coherent states, g(1)(~r1, t1;~r2, t2) = ei(~q·(~r1−~r2)−ω(t2−t1)). Fig. 2.3
summarizes the results of the last calculations, and compares the obtained first order coherence
functions.
|G1(~r1, t1;~r2, t2)| = 1 for all points in space-time, for both number and coherent states. Thus,
coherent and number states (among others) cannot be discriminated on the basis of the infor-
mation provided by the first order coherence function.
This statement is true in full generality : the first order coherence function cannot distinguish
between two sources having the same spectra. We will see in the forthcoming paragraph that
being related to photon number statistics, the second order coherence function can distinguish
between the two kinds of states. We will thus present the second order coherence for photons
in the next paragraph.

2In three spatial dimensions, x-y must be replaced by |~x− ~y|.
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Figure 2.3: Comparison between different first order coherence functions. The solid blue line
correspond to the thermal case for a multimode field. The dotted yellow constant line corre-
spond to a coherent state (or to a number state for a single-mode field). The red and green
dashed at dash-dotted lines correspond to chaotic (exponential decay) and doppler broadened
(gaussian shape) spectra (see, eg[91]).

1.2 Photon second order coherence

The first order degree of coherence of the electromagnetic field is appropriate to understand
the result of one particle interference experiment, such as Young’s experiment. Such an exper-
iment can determine the degree to which a light source is monochromatic, or to determine the
coherence length of the light. Nevertheless, it brings no information about the statistical prop-
erties of the emitted radiation. More precisely, first order coherence experiments are unable to
distinguish between states of light with identical spectral distributions but with quite different
photon number distributions as seen previously in the case of number and coherent states of a
single mode electrical field.
In the 1950s, Hanbury Brown and Twiss have developped an interferometer [65] involving
correlations of intensities instead of fields. The interpretation of intensity interferometry ex-
periments requires the introduction of higher order coherence functions of the electromagnetic
field. Chapter 3 will devote more space to the quantum counterpart of the Hanbury Brown and
Twiss interferometer in the context of quantum tomography.
In this paragraph, we will focus on the second order coherence function. We will see its rela-
tion to photon distribution, and more generally its link to statistical properties of the particles
outcoming from a light source.

The second order coherence function is defined by a generalization of the first order coher-
ence:

G2(~r1, t1;~r2, t2;~r3, t3;~r4, t4) = Tr
(
~E+(~r2, t2) ~E

+(~r1, t1)ρ ~E
−(~r3, t3) ~E

−(~r4, t4)
)
. (2.23)

Link with photodetection signals

Here, we consider the setup depicted in fig. 2.4. The delay time ∆τ between the two detection
signals issued from D1 and D2 is controlled. When it is shorter than the coherence time τcoh of
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the light source, information about its photon statistics can be obtained.

Figure 2.4: Sketch of a coincidence setup. The lengths from the beam splitter to the detectors D1
and D2 are the same. The time delay∆τ is controlled between D2 and the coincidence counter.
In practice, the variable time delay is obtained by changing the optical path difference : a 10cm
difference in length corresponds to ∆τ = 0.3ns.

The probability amplitude for the absorption of two photons by detectors Di located at ~ri is :

W
(2)
fi = |〈ψf |E(+)(~r2, t2)E

(+)(~r1, t1)|ψi〉|2 . (2.24)

After summing over the final states and averaging over the initial ones, we obtain the second
order coherence function (2.23) by considering the coincidences between two photodetection
signals.
At fixed positions,G2 depends only on the time delay∆τ between photodetections. In this case,
it is proportionnal to the probability of absorbing a photon at time t and another at time t+∆τ .

To enlighten the relation between the second order coherence function and photon statistics,
let us introduce the normalized second order degree of coherence :

g(2)(~r1, t1, ~r2, t2) =
G2(~r1, t1, ~r2, t2;~r2, t2, ~r1, t1)

G1(~r1, t1;~r1, t1)G1(~r2, t2;~r2, t2)
. (2.25)

In most cases, we will consider detectors at fixed positions, for which the correlations depend
only on the time difference ∆τ introduced earlier in fig. 2.4. In the forthcoming examples, we
will consequently compute the second order coherence function g(2) as a function of ∆τ only.
g(2) is positive [91, 121]:

0 ≤ g(2)(∆τ) ≤ ∞. (2.26)

For classical electromagnetic fields, it can be shown (see e.g. [121]) that 1 ≤ g(2)(∆τ) ≤ ∞.
The range of values between 0 and 1 can be reached only by sources that have no classical
counterpart. The different behaviours discriminated by the values of g(2) are deeply related to
photon statistics.

The second order coherence function at equal position and different times G2(t1, t1 +
∆τ ; t1 + ∆τ + t1, t1) accounts for the measurement of one photon at time t1, and another
at ∆τ later. Thus, the quantity

G2(t1, t1 +∆τ ; t1 +∆τ + t1, t1)

G1(t1; t1)
(2.27)
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can be understood as the joint detection probability to detect a photon at time t1+∆τ knowing
that one has been detected at t1. Consequently, g(2)(t1, t1 + ∆τ) compares the conditional
probability (2.27) to the unconditional detection probability G1(t1 + ∆τ ; t1 + ∆τ). At this
point, we can distinguish between three characteristic behaviours :

(i) g(2)(∆τ) = 1 : In this case, the source is coherent. The two photocount events are
independent and the second order coherence factorizes intoG1(t1; t1)G1(t1 +∆τ ; t1+).

(ii) g(2)(∆τ) > 1 : This manifests the tendency of photons to arrive in pairs. This behaviour
is called photon bunching.

(iii) g(2)(∆τ) < 1 : The joint detection probability is less than one, which is the manifestation
of photon antibunching.

The behaviour at short ∆τ characterizes the light source. If g(2)(0) > g(2)(∆τ), photons will
have a tendency to arrive in pairs, and it can be shown [47] that their statistic is superpois-
sonian. On the contrary, situations where g(2)(0) < g(2)(∆τ) , correspond to subpoissonian
statistics. The examples in the following paragraph will help to illustrate how the notions of
bunching and antibunching are related to photon statistics.

Simple examples

Second order coherence of number and coherent states

As in the case of the first order Glauber’s function, we consider a single mode ~q of the
electric field. If we evaluate g(2) for this single mode field in an arbitrary state ρ, we find :

g(2)(∆τ) =
〈a†a†aa〉
〈a†a〉

=
〈n(n− 1)〉

〈n〉2
= 1 +

〈(∆n)2〉 − 〈n〉
〈n〉2

, (2.28)

the averages being taken in the state ρ. Here we can see the relation between the degree of
second order coherence and photon statistics :

(i) If g(2) = 1, then 〈(∆n)2〉 = 〈n〉, and the statistics is poisson-like.

(ii) For g(2) > 1, then 〈(∆n)2〉 > 〈n〉, and the statistics is superpoissonian.

(iii) Conversely, g(2) < 1 ⇒ 〈(∆n)2〉 < 〈n〉 : in this case, the statistics is subpoissonian.

For a coherent state |αq〉,
g
(2)
coh.state = 1. (2.29)

This result means that coherent states are second order coherent (they also verify g(1) = 1). It
is also the manifestation of the poissonian nature of the photon statistics in a coherent state,
since we have 〈(∆n)2〉 = 〈n〉.

For a number state |n〉,
g
(2)
numb.state = 1− 1

n
, n ≥ 2. (2.30)
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This shows that number states have no classical counterpart. They are truly quantum states, in
opposition to coherent states which are semi-classical. It also means that the photon statistics
in a number state is sub-poissonian and that photons in a number state will have a tendency to
antibunch.

A more general connection between photon collective behaviour (bunching or antibunch-
ing) and photon statistics can be made through the Mandel formula [99], which is valid for
stationary fields :

〈n2〉 − 〈n〉2 − 〈n〉 = 〈n〉2

T 2

∫ T

−T

(T − |∆τ |)[g(2)(∆τ)− 1] d∆τ . (2.31)

In (2.31), the averages are taken over the photon state, which is no longer a number state. This
formula states that when a field has g(2)(∆τ) < 1 for all ∆τ in the time interval [−T, T ], it
exhibits subpoissonian statistics 3.

Second order coherence of thermal light

Finally, we will show that even if light is treated quantum-mechanically, the second order
coherence function of a thermal field has classical features.
The density operator associated to a thermal state of the electric field reads, has been given in
the previous paragraph (2.19). The coherence function at second order has the form [91] :

g(2)(∆τ) = 1 + |g(1)(∆τ)|2, (2.32)

where g(1)(∆τ) is given in (2.19).
The expression (2.32) shows that g(2) > 1 for a thermal state, which means that the thermal
photons have a super-poissonian statistics. Furthermore, having g(2)(∆τ) < g(2)(0) for all ∆τ
indicates that the photons outcoming from a thermal source always bunch 4.

In the next section we present electronic first and second order degrees of coherence, in
analogy with what has been done for photons.

2 Definition and properties of electron coherence functions

2.1 First order electronic coherence

At the first order level, the analogues of photon first order correlation functions are the electron
(and hole) nonequilibrium Keldysh Green’s functions, whose expressions in the state ρ are :

G(e)
ρ (x, t; y, t′) = Tr

(
ψ(x)ρψ†(y)

)
= 〈ψ†(y)ψ(x)〉ρ (2.33)

G(h)
ρ (x, t; y, t′) = Tr

(
ψ†(x)ρψ(y)

)
= 〈ψ(y)ψ†(x)〉ρ. (2.34)

3We may however be confronted to the case of an antibunching field that exhibits superpoissonian statistics in
a finite time interval [121].

4This result is also true for sources admitting (2.32) as a second order coherence function. In particular, this is
the case of sources having spectra broadened by collisions or Doppler effect.
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Due to fermionic anticommutation relations, these two functions fulfil the relation at equal
time :

G(e)
ρ (x, y) + G(h)

ρ (y, x) = δ(x− y), (2.35)

which implies that we will essentially focus on electronic coherence for most cases.
The coherence function for coinciding points G(e)

ρ (x, x) is the average charge density, and its
integral is the total average number of electrons in the system.
The coherence function also satisfies

G(e)
ρ (x, y)∗ = G(e)(y, x), (2.36)

making G(e)
ρ the representation of an hermitian operator in the Hilbert space of single particle

states.

In a metallic conductor, due to the presence of the Fermi sea, the vacuum is not void from
particles. This is one of the major differences between photons propagating in the true vacuum
and electrons in quantum Hall edge channels. A chemical potential µ is associated to the Fermi
sea. This chemical potential is assumed to be homogeneous in the system. The Fermi sea has a
nonvanishing nonvanishing contribution G(e)

µ to the coherence function.

In most case, we will study the single particle coherence of a source emiiting electrons on
top a Fermi sea vacuum. We are thus interested to the deviation of the single particle function
to the Fermi sea contribution :

∆G(e)
ρ (x, y) = G(e)

ρ (x, y)− G(e)
µ (x, y). (2.37)

The quantity ∆G(e)
ρ (x, x) represents the average excess particle density at the point x and its

integral gives the average excess number of charges in the system. Formally,∆G(e)
ρ (x, x) is the

normal ordered density with respect to the Fermi sea : ∆G(e)
ρ (x, x) = 〈: ψ†(x)ψ(x) :〉ρ.

For a translation invariant state ρ, G(e/h)
ρ (x, y) only depends on x− y and can be expressed

in terms of fermion occupation numbers:

G(e)
ρ (k) =

∫
G(e)
ρ (x− y) eik(x−y) d(x− y) = n̄ρ(k) . (2.38)

In (2.38), it has been assumed that the density of states is the one of free electrons. In particular,
for the Fermi sea |Fµ〉 where µ ≡ µ(ρ), the occupation number is the Fermi distribution
corresponding to the Fermi momentum kF at the corresponding chemical potential. Since we
are considering chiral systems, we will take for convenience kF = 0 : All energies and momenta
will be measured from the Fermi level.

For any state, the single electron coherence depends in general on x and y, or equivalently
on x− y and x̄ = (x+ y)/2. Its Fourier transform G(e)

ρ (k+, k−) defined as

G(e)
ρ (k+, k−) =

∫
G(e)
ρ (x, y) ei(k+x−k−y) dx dy (2.39)

has non zero values away from the diagonal k+ = k−. The (k+, k−) plane can be divided
into four quadrants, as shown on fig. 2.5. The positive energy quadrant k+, k− > 0 accounts
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for electronic excitations. Correspondingly, the negative energy quadrant k+, k− < 0 repre-
sent hole excitations. the off diagonal contributions k+ k− < 0 to the coherence function in
Fourier space account for electron/hole coherences. The examples given below will illustrate
this separation.

Figure 2.5: The quadrant defined by k+ > 0 and k− > 0 (in blue) corresponds to positive
energy states which are electron excitations whereas the red quadrant, defined by k+ < 0 and
k− < 0 corresponds to hole excitations (negative energy states). The off diagonal quadrants (in
green) defined by k+k− < 0 encode the information on electron/hole coherence.

The shape of the charge density wave associated to any state ρ can be recovered by inte-
grating this double Fourier transform along parallels to the diagonal:∫

G(e)
ρ (q +

k

2
, q − k

2
)
dq

2π
=

∫
eikxG(e)

ρ (x, x) dx. (2.40)

In the same way, spatial coherence around a classical position x̄ is recovered by integrating
along antidiagonal lines in Fourier space:∫

G(e)
ρ (x̄+

∆

2
, x̄+

∆

2
) eik∆ d∆ =

∫
G(e)
ρ (

k

2
+ q,

k

2
− q)e−iqx̄ dq

2π
. (2.41)

Simple examples

To illustrate clearly the aforementioned general concepts on the single electron coherence func-
tion, we will derive its expression in a few simple cases. The first example will show the electron
quantum optics paradigm of a single electron waveoacket injected well above the Fermi level.
Then, we will illustrate some of the features evocated in the previous part by looking at a su-
perposition of a hole and an electron, and the supersposition of two electronic wavepackets on
top of the Fermi sea.

Electronic wavepacket on top of the Fermi sea

Introducing an electronic wavepacket on top of the Fermi sea is equivalent to the action of
a wavepacket creation operator on the vacuum :
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ψ†[φ] =

∫
dyφ(y)ψ†(y) , (2.42)

with
∫
|φ|2 = 1. The associated density operator is ρφ = ψ†[φ]|F 〉〈F |ψ[φ]. The first order

coherence function is thus :

G(e)(x, y) = 〈ψ†(y)ψ(x)〉ρφ (2.43)

=

∫
dy+dy−φ(y+)φ

∗(y−)〈F |ψ(y−)ψ†(y−)ψ(y+)ψ
†(y+)|F 〉. (2.44)

With the help of Wick’s theorem [73], for an electronic wavepacket 5, the coherence function
reduces to :

G(e)(x, y) = G(e)
µ (x− y) + ∆G(e)(x, y) = G(e)

µ (x− y) + φ(x)φ∗(y). (2.45)

The ∆G(e)(x, y) term is identical to the coherence function (2.14) for a photonic wavepacket,
but here the coherence function of the vacuum (here the Fermi sea) no longer vanishes. For a
Fermi sea at chemical potential µ, it has the following expression at finite temperature :

G(e)
µ (x− y) =

∫ +∞

−∞
dk n̄µ(k)e

ik(x−y) =
iπ

βh

eiµ(x−y)/~vF

sinh (π(x− y)/β~vF )
, β =

1

kBT
. (2.46)

In the case of a wavepacket well separated from the Fermi sea, eq. (2.45) illustrates the elec-
tron quantum optics paradigm (see chapter 1).
In the following example we will evaluate the single particle coherence function for two elec-
trons on top of the Fermi sea.

Two electrons on top of the Fermi sea

This example is quite similar from the previous one, except that we are now considering
the injection of two electronic wavepackets. This will illustrate how the Pauli principle comes
into play in the coherence function.The state resulting from the action of two operators creating
electronic wavepackets φ1 and φ2 on the Fermi sea is a Slater determinant6 :

1√
Det (〈φi|φj〉i,j=1,2)

ψ†[φ1]ψ
†[φ2]|F 〉 . (2.47)

The wavepackets considered here only have strictly positive momentum Fourier components.
The computations to find the associate coherence function are quite similar to the previous
case, and we obtain, in Fourier space :

v2F∆G(e)(k+, k−) =
φ̃1(k+)φ̃

∗
1(k−)− 〈φ1|φ2〉φ̃∗

2(k−)φ̃1(k+) + φ̃2(k+)φ̃
∗
2(k−)− 〈φ2|φ1〉φ̃1(k−)

∗φ̃2(k+)

Det (〈φi|φj〉i,j=1,2)
(2.48)

5This implies that the wavepacket has a nonvanishing spectrum for positive energies only.
6The prefactor ensures correct normalization.

25



CHAPTER 2. QUANTUM OPTICS IN QUANTUM HALL EDGE CHANNELS

For non overlapping wavepackets, each one contributes independently to the excess coherence.
But when their overlap is nonzero, the supplementary terms that appear will bear the effects of
the Pauli principle.
To illustrate the behaviour of the electronic coherence function in this case, we will choose φ1

and φ2 such that φ̃1(k) =
√
2l0θ(k)e

−l0k and φ̃2(k) =
√
2l0θ(k)e

−l0keikvF∆t, which represents
a situation where two identical lorentzian wavepackets [76, 87] are separated by a time ∆t. By
varying this time interval, we will illustrate the effects of the Pauli principle. As seen in fig.
2.6, the shape of the single particle coherence function is significantly different for the different
values of∆t. In particular, when∆t→ 0, G(e) is no longer the sum of two identical coherence
functions for one electron.
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(a) ∆t = 0.05l0/vF
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Figure 2.6: Modulus of the Fourier transform of first order electronic coherence function for two
identical electronic wavepackets separated by ∆t. As this time difference goes to zero, oscilla-
tions occur in the frequency plane, resulting from interferences between the two wavepackets.
On the contrary, as the difference in the emission times increases, the oscillating contribution
to the coherence function vanishes.

In position space, the coherence function is also the sum of the same four contributions:

v2F∆G(e)(x, y) =
φ1(x)φ

∗
1(y)− 〈φ1|φ2〉φ∗

2(y)φ1(x) + φ2(x)φ
∗
2(y)− 〈φ2|φ1〉φ1(y)

∗φ2(x)

Det (〈φi|φj〉i,j=1,2)
,

(2.49)
where φ1(x) =

√
2l0

l0−ix
and φ2(x) = φ1(x− vF∆t). The effect of the overlap is illustrated in 2.7.

In the newt two examples, we will present situations that have no optical counterpart, since
they involve hole excitations. More precisely, we will first look at the case of an electron/hole
pair, and then at a state that generate electron/hole coherences.

Electron / hole pair

The operator acting on the Fermi sea to create a single electron/hole pair is :

ψ†[φe]ψ[φh] =

∫
dy1dy2φh(y1)φe(y2)ψ

†(y2)ψ(y1) . (2.50)
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Figure 2.7: Modulus of the first order coherence function in position space for two electronic
wavepackets separated by a time interval ∆t. As the emission time increases, the effects of
the overlap vanish, as expected. At short ∆t, the Pauli principle imposes the vanishing of the
coherence function at equal times.

The excess coherence due to the introduction of the pair is :

∆G(e)(x, y) =〈ψ†[φh]ψx〉
(
〈ψ[φe]ψ

†
y〉〈ψ†[φe]ψ[φh]〉 − 〈ψ[φe]ψ

†[φe]〉〈ψ†
yψ[φh]〉

)
+ (2.51)

〈ψxψ
†[φe]〉

(
−〈ψ†

yψ[φh]〉〈ψ†[φh]ψ[φe]〉+ 〈ψ[φe]ψ
†
y〉〈ψ†[φh]ψ[φh]〉

)
(2.52)

For any wavepackets φ1 and φ2 :

〈ψ†[φ1]ψx〉 =
∫ +∞

−∞

dq

2πvF
n̄F (q)φ̃1(q)e

iqx (2.53)

〈ψ†
yψ[φ1]〉 =

∫ +∞

−∞

dq

2πvF
n̄F (q)φ̃

∗
1(q)e

−iqy. (2.54)

〈ψ[φ1]ψ
†[φ2]〉 =

∫ +∞

−∞

dk

2πvF
(1− n̄F (k))φ̃

∗
1(k)φ̃2(k) (2.55)

〈ψ†[φ1]ψ[φ2]〉 =
∫ +∞

−∞

dk

2πvF
n̄F (k)φ̃

∗
2(k)φ̃1(k) (2.56)

The expressions (2.55) and (2.56) reduce respectively to 〈φ1|φ2〉 and 〈φ1|φ2〉 in the case of
wavepackets whose Fourier components are only in the k > 0 or k < 0 interval. Thus, in the
case of an electron hole pair, these terms vanish.
Therefore, for electron and hole wavepacket, the excess coherence in Fourier space is:

v2F∆G(e)(k+, k−) = −φ̃h(k+)φ̃
∗
h(k−) + φ̃e(k+)φ̃

∗
e(k−). (2.57)

In this expression, the second and fourth term respectively account for hole and electron
contribution to the coherence function (red and blue quadrants in 2.5). The other terms are the
electron/hole coherences.

Note that in the case of an electron (resp. a hole) wavepacket with Fourier components only
in the k > 0 (resp. k < 0) interval, the electron/hole coherences vanish. This modulus of this
excess coherence function is depicted in 2.8 in the particular case of electron and hole lorentzian

27



CHAPTER 2. QUANTUM OPTICS IN QUANTUM HALL EDGE CHANNELS

-2 -1  0  1  2

k+/k0

-2

-1

 0

 1

 2

k -
/k

0

Figure 2.8: Modulus of the first order coherence function in the case of electron and hole
wavepackets coherent superposition. The expressions of the wavepackets are : φ̃e(k) =
θ(k) φ0

k−k0+iΓ/~vF
and φ̃h(k) = θ(k) φ0

k+k0+iΓ/~vF
. Here, Γ is taken to be vFk0/10.

wavepackets centered at opposite energies. This particular shape of electronic wavepacket is
encountered in [76].

Electron/hole coherences

For a state of the form
1√
2

(
|F 〉+ ψ[φh]ψ

†[φe]|F 〉
)
, (2.58)

the coherence function contains contributions in the electron/hole quadrants :

v2F∆G(e)(k+, k−) = −φ̃h(k+)φ̃
∗
h(k−) + φ̃e(k+)φ̃

∗
e(k−)− (1− n̄F (k+))n̄F (k−)φ̃e(k+)φ̃h

∗
(k−)
(2.59)

+ (1− n̄F (k−))n̄F (k+)φ̃e
∗
(k−)φ̃h(k+) . (2.60)

The result is illustrated in fig. 2.9 for the previous form of electron and hole wavepackets. In
general, the appearance of electron/hole coherences in∆G(e) is associated with the presence of
coherent superspositions of electron/hole pairs.

Tunnel detection and first order coherence

In this last part, in analogy with the first section, we will make a link between the electronic
coherence function and the detection signal (an electric current) for an ideal tunneling detector
coupled to an edge channel. For electronic systems, the analogous of photodetection consist of a
device that could extract one electron from the electronic channel and detect the corresponding
charge, as depicted in fig. 2.10. The coupling between the edge channel and the detector is
assumed to be of the form :
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Figure 2.9: Modulus of the first order coherence function in the case of two wavepackets exhibit-

ing electron/hole coherences. The expressions of the wavepackets are : φ̃e(k) =

√
Γ/π

k−k0+iΓ/~vF

and φ̃h(k) =

√
Γ/π

k+k0+iΓ/~vF
. Here, Γ is taken to be vFk0/10.

Ht = ~(ψ†(xD)O +O†ψ(xD)) (2.61)

where O only acts on the detector and xD is the position of the detector which is assumed to
be local. In this context, the operator O is the analogue of the dipolar operator encountered in
the case of photons.

Perturbative approach

As for the case of photodetection, we will consider an ideal two level detector which will
be treated in a first order perturbation theory. This detector is initially in the state |g〉, and the
detection of an electron during time t will cause a transition to an excited state |e〉 containing
an extra charge :

Pg→e(t) =

∫ t

0

〈g|O†(τ)|g〉〈g|O(τ ′)|e〉 G(e)
ρ0
(xD, τ |xD, τ ′) dτdτ ′ (2.62)

where ρ0 is the many body density operator describing the electron channel coupled to the
detector. Differences between electrons and photons lie in the detection process. Indeed, con-
trarily to photons, an electron cannot be destroyed. Therefore, one has to consider also emission
processes, where an electron is sent back from the detector into the conductor. The probabilty
that such a process occurs, leading to a transition from a state e to g is:

Pe→g(t) =

∫ t

0

〈g|O(τ)|e〉〈e|O†(τ ′)|g〉 G(h)
ρ0

(xD, τ |xD, τ ′) dτdτ ′ (2.63)
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Detection signal

P
abs

P
em

Figure 2.10: Schematic electrodetection setup. The detector is coupled to the conductor via a
weak tunnel effect. The detection signal is associated to the absorption process, which has a
probability Pabs to occur.

and involves the hole coherence function G(h), suggesting the underlying symmetry between
absorption and emission processes in the detection.

We are considering tunneling detection, so the measured signal is the tunneling current
flowing from the conductor into the detector. The corresponding absorption operator O can be
written as :

O(τ) =
√
vF

∫
fd(ω) e

−iωtc(ω)
dω√
ω

(2.64)

where vF (taken for simplicity to be equal to the Fermi velocity in the conductor) has been
introduced for dimensionality reasons and fd(ω) is a dimensionless function that encodes the
density of states within the detector as well as any possible energy dependence of tunneling.
Summing over all the final states:

Pabs(t) =

∫ t

0

K
(abs)
D (τ − τ ′)G(e)

ρ0
(xD, τ |xD, τ ′) dτdτ ′ (2.65)

Pem(t) =

∫ t

0

K
(em)
D (τ − τ ′)G(e)

ρ0
(xD, τ |xD, τ ′) dτdτ ′ (2.66)

where the detector’s functions are expressed in terms of the electron occupation number n̄d(ω)
within the detector:

K
(abs)
D (τ) = vD

∫
eiωτ |fd(ω)|2(1− n̄d(ω))

dω

2π
(2.67)

K
(em)
D (τ) = vD

∫
e−iωτ |fd(ω)|2n̄d(ω)

dω

2π
. (2.68)

Stationary regime
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In the stationary regime, the coherence functions depend on the time difference τ−τ ′. They
are thus related to the electron occupation number in the conductor :

G(e)
ρ0
(xD, τ |xD, τ ′) =

∫
eiωτ n̄e(ω)

dω

2πvF
(2.69)

G(h)
ρ0

(xD, τ |xD, τ ′) =
∫
eiωτ (1− n̄e(ω))

dω

2πvF
. (2.70)

The probabilities in (2.65) are then increasing linearily with time and can then be replaced by
transition rates:

Γabs =

∫
|fd(ω)|2n̄e(ω)(1− n̄d(ω))

dω

2π
(2.71a)

Γem =

∫
|fd(ω)|2(1− n̄e(ω))n̄d(ω)

dω

2π
. (2.71b)

The current from the conductor to the detector is finally obtained as : Ī = −e(Γabs −Γem) and
is given by:

Ī = e

∫
|fd(ω)|2(n̄d − n̄e)(ω)

dω

2π
. (2.72)

In the case of a broadband detector, we consider that |fd(ω)|2 is constant over the frequency
range under consideration and denote its value by gD. Then, assuming that ne and nd are
two Fermi distributions differing by their chemical potential, the average current is given by
Ī = (e2/h). gD. (µd−µe) and therefore gD can be interpreted as the dimensionless conductance
between the conductor and the detector.

An interesting case is obtained when considering tunneling from a chiral edge channel
into a drain reservoir through an energy filter such as a quantum dot with well defined single
particle energy levels. In this case, |fd(ω)|2 = γD δ(ω − ω0) where γD has the dimension
of a rate. Then, the average current is a direct measurement of the difference of the electron
distribution function within the detector and the system at ω0:

Ī = eγD (n̄d − n̄e)(ω0) . (2.73)

Such a detection scheme has been used by Frédéric Pierre and his collaborators at the Labo-
ratoire de Photonique et Nanostructures to study the interaction induced relaxation processes
occuring in the quantum Hall regime [2].

Although this is not the subject of this section, nor of this thesis, this approach to electrode-
tection could be envisioned to measure the information encoded in the spin degree of freedom
[129].

In the following part, we introduce the second order electronic coherence and discuss its
relation to current fluctuations in the context of electronic transport.

2.2 Quantum electronic coherence at second order

The forthcoming discussion of second order electronic coherence will be very similar to the one
for photons in section 1.
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Definition and properties

By analogy with the case of photons, the second order coherence function is defined as :

G(e,2)
ρ (x1, x2|y1, y2) = Tr

(
ψ(x2)ψ(x1) ρψ

†(y1)ψ
†(y2)

)
. (2.74)

In the following paragraphs, we will essentially consider G(e,2)
ρ (x1, x2|x1, x2) ≡ G(e,2)(x1, x2),

and see how this function is related to particle number fluctuations and statistics of the electrical
current.

We now turn to density correlations 〈n(x)n(y)〉ρ where n(x) = (ψ†ψ)(x). Using the
canonical commutation relations 7,then:

n(x)n(y) = δ(x− y)ψ†(y)ψ(x) + ψ†(x)ψ†(y)ψ(y)ψ(x) (2.75)

thus relating density fluctuations to first and second order coherences :

〈n(y)n(x)〉c,ρ = 〈n(y)n(x)〉ρ − 〈n(y)〉ρ〈n(x)〉ρ (2.76)

= δ(x− y)G(1)
ρ (x, y) + G(e,2)

ρ (x, y|x, y)− G(e)
ρ (x, x)G(e)

ρ (y, y) . (2.77)

Thus, the fluctuations of the total number of particles ND within a domainD are a sum of two
contributions:

〈δN2
D〉ρ = 〈ND〉ρ +

∫
D2

〈n(x)〉ρ〈n(y)〉ρ
(
g(2)ρ (x, y)− 1

)
dx dy . (2.78)

In a similar way to photons [52], g(2)ρ (x, y) denotes the degree of second order for electrons :

g(2)ρ (x, y) =
G(e,2)
ρ (x, y|x, y)

G(e)
ρ (x, x)G(e)

ρ (y, y)
. (2.79)

In the case of free quantum particles at equilibrium, Wick’s theorem immediately leads to:

G(2)(x, y|x, y) = G(e)(x, x)G(e)(y, y)− G(e)(x, y)G(e)(y, x) . (2.80)

Consequently:

〈δN2
D〉 = 〈ND〉 −

∫
D2

∣∣G(e)(x, y)
∣∣2 dx dy . (2.81)

The first term in the r.h.s corresponds to the usual Gaussian or Poissonian particle number fluc-
tuation arising in classical mechanics. It reflects the discrete nature of particles. The second
one arises from quantum coherence and will thus be called the quantum contribution to fluctu-
ations. Note that this contribution reflects the wave nature of quantas. This interpretation has
already been proposed by A. Einstein in [35] (reprinted in [4], and also discussed in [55]).

To pursue the parallel between photons and electrons from the point of view of the particle
statistics,let us relate the degree of second order coherence (2.79) to the coincidence probability
for electrons.

7The result is the same for electrons or photons.
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Since G(e,2)
ρ (x, y|x, y) represents the probability density to find a particle at position x and

then, immediately after, at position y, the conditional probability to detect a particle at position
y knowing one has just been detected at position x is of the form

P(y|x) = 1

N2

G(e,2)(x, y|x, y)
G(e)(x, x)

. (2.82)

where N2 is a normalization constant ensuring
∫
P(y|x) dy = 1. The probability distribution

for a single particle is P(y) = 〈N〉−1
ρ G(e)(y, y) 8. P(y|x)/P(y) = (〈N〉ρ/N2) g

(2)
ρ (x, y) and it

can easily be shown9 that in the thermodynamic limit, the prefactor goes to 1 and so

P(y|x)
P(y)

= g(2)(x, y) . (2.83)

Therefore, the degree of second order coherence directly measures the tendency to bunch or
antibunch of the particles. The interpretation of the second order of coherence for electrons is
the same as in the photon case. Equation (2.82) thus expresses how bunching or antibunching
influence particle number fluctuations. The rhs of (2.81) show for example that noninteracting
electrons have a tendency to antibunch.

Let us now relate the average number of electron and hole excitations, and their statistical
properties to the coherence function. Here we consider the single coherence in the time domain
at a given point. Let us assume that its double Fourier transform with respect to time is of the
following form:

G(e)
ρ (ω+, ω−) =

2π

vF
nF

(
ω+ + ω−

2

)
δ(ω+ − ω−) + ∆G(e)

ρ (ω+, ω−) (2.84)

where the first term represents the Fermi sea contribution and ∆G(e)
ρ (ω+, ω−) represents the

contribution of the excitations created by a source. It is interesting to consider the operators
counting electron-like excitations as well as hole-like excitations with respect to µ = 0 :

N+ =

∫ +∞

0

c†(ω)c(ω) dω (2.85a)

N− =

∫ 0

−∞
c(ω)c†(ω) dω . (2.85b)

With these conventionsN+ andN− are positive operators. Their average values obtained from
the single electron (resp. hole) coherences by integration over the positive (resp. negative)
single particle energy states :

〈N+〉ρ =
vF
2π

∫ +∞

0

G(e)
ρ (ω, ω) dω and 〈N−〉ρ =

vF
2π

∫ 0

−∞
G(h)
ρ (ω, ω) dω . (2.86)

8Normalized in this way, G(e)(x, y) represents the one particle density operator. Its diagonal part is conse-
quently the probability density to find an electron at a given position.

9This follows from the fact that
∫
G(e,2)
ρ (x, y|x, y) dy = 〈N〉ρ−1+

∫
〈n(x)n(y)〉c,ρ dy. Assuming that in the

thermodynamic limit, the relative fluctuation of the total particle number is subdominant with respect to 〈N〉ρ,
〈N〉ρ/N2 7→ 1 in the thermodynamic limit.
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The total charge present within the system with respect to the Fermi sea isQ = −e(N+−N−).
An AC source will satisfy Q = 0 at the operator level (see chapter 3 for the discussion of a
periodically driven system).

An AC single electron source is expected to produce 〈N+〉ρ = 〈N−〉ρ = 1 implying that
within each operating cycle, it emits on average a single electron and a single hole. But an
indicator of the quality of the source is given by the fluctuation of these numbers: 〈(∆n+)

2〉ρ =
〈N2

+〉ρ−〈N+〉2ρ. Note that for an AC single electron source, we have 〈(∆n+)
2〉ρ = 〈(∆n−)

2〉ρ =
〈(∆n+)(∆n−)〉ρ. Then for states such that Wick theorem applies, we have:

〈(∆n+)(∆n−)〉ρ = − v2F
(2π)2

∫
ω+≥0ω−≤0

G(e)
ρ (ω−, ω+)G(h)

ρ (ω−, ω+) dω−dω+ (2.87)

Using the anticommutation relations for fermion operators {c(ω), c†(ω′)} = δ(ω − ω′), we
find10:

〈(∆n+)
2〉ρ =

v2F
(2π)2

∫
ω+≥0

ω−≤0

∣∣G(e)
ρ (ω−, ω+)

∣∣2 dω−dω+ . (2.88)

This shows that, when Wick’s theorem applies, the fluctuation of the number of electron exci-
tations is precisely given by the single electron coherence in the electron/hole sector (ω+ω− ≤
0). For an AC source, the vanishing of these fluctuations is equivalent to the vanishing of
G(e)
ρ (ω+, ω−) for ω+ω− ≤ 0.

We also have the following general expression for the number fluctuations:

〈(∆n+)
2〉ρ = 〈N+〉ρ −

v2F
(2π)2

∫
ω+≥0

ω−≥0

∣∣G(e)
ρ (ω+, ω−)

∣∣2 dω+dω− (2.89)

which emphasizes the correction to the Poissonnian result 〈N+〉ρ as a reduction of the noise
due to the single particle coherence of positive energy excitations.

Relation to current noise

Relation between current noise and coherence functions

In this last paragraph, we discuss the relation of temporal second order coherence to current
fluctuations. Indeed, the previous discussion on particle number fluctuations are equivalent to
a discussion of current noise, since the electrical current is linked to the particle density via :

I(x) = −evF : ψ†(x)ψ(x) : . (2.90)

The general expression of current noise is :

S(t, t′) = 〈I(t)I(t′)〉ρ − 〈I(t)〉ρ〈I(t′)〉ρ
= e2vF 〈n(t)n(t′)〉c,ρ (2.91)

10The boundary of the domain ω+ ≥ 0 and ω− ≤ 0 does not contribute.
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where ρ is the many body state generated by the source. Thus current noise and particle
fluctuations can be expressed in terms of the first and second order coherences as :

(evF )
−2S(t, t′) = G(e)(t, t)δ(t− t′)− |∆G(e)(t, t′)|2 − G(e)

F ∆G(e)(t, t′)− G(e)
F (t′, t)∆G(t′, t) .

(2.92)
We now define the quantity :

S(ω) =

∫
d∆τ S(t, t+∆τ)

t
eiω∆τ , (2.93)

which corresponds to finite frequency noise accessed in experiments. In this expression, the
overline represents an average over the time t and corresponds to the signal acquisition time
which is much larger than the characteristic dynamical times of the system (time of flight and
decoherence time).
The evaluation of noise (2.93) can be done in any state. Here, for simplicity, we illustrate the
relation between two particle coherence and current noise on the example of a source producing
a single electron in a wavepacket ϕe. In this case, the different contributions arising in (2.92)
will have a clear interpretation.

Illustration with a source of single electron wavepackets

We now analyze the case of a single electronic wavepacket propagating in an edge channel
from the point of view of current fluctuations. The manybody state is given by (2.42) and
the single particle excess wavefunction is given by (2.45).The different contribution to finite
frequency noise (2.93) are :

• A term G(e)(t, t+∆τ)δ(∆τ), which accounts for the poissonian term in (2.92), and
which gives a white noise contribution.

• The second term in (2.92) is the Fourier transform of 〈I(t)〉〈I(t+∆τ)〉. This contribu-
tion is accessed through finite frequency noise measurements, and is responsible for the
antibunching of electrons. In the case of an electronic wave packet on top of the Fermi
sea, its expression is

−
∫ +∞

−∞
d∆τ eiω∆τ

(∫ +∞

−∞
dt |ϕe(t)|2|ϕe(t+∆τ)|2

)
. (2.94)

• The last two terms account for the interference processes occuring between the supple-
mentary electron and the Fermi sea. Consequently, they have no optical counterpart.
Remembering that the Fermi sea coherence function is

G(e)(t, t+∆τ) = ~
∫ +∞

−∞
dω n̄µ(ω) e

iω∆τ , (2.95)

we have the third and fourth contributions for an electronic wavepacket :

−
∫ +∞

−∞
dω1 n̄µ(ω1)|ϕe(ω1 +±ω)|2 . (2.96)

If the wavepacket ϕe centered at the energy ∆
2
is well separated from the Fermi sea, these

last two terms vanish for |~ω| ≤ ∆/2.
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The total expected noise in the case of a lorentzian wavepacket is depicted in fig. 2.11. The time
dependence of the wavepacket is :

ϕe(t) =

√
1

τ0
e−2i~t/∆e−|t|/τ0 . (2.97)

The two first terms in (2.92) are responsible for the low frequency behaviour of S(ω). Notably,
they combine so that the current fluctuations vanish at zero frequency. On the experimental
side, this observation coincides with noise measurements [123, 95, 94] performed for the single
electron sources of the LPA at optimal transparency (see chapter 3) : the noise related to the
uncertainty on the emission time of the emitted electron (the quantum jitter noise) is responsi-
ble for the low frequency behaviour of current correlations.

The last two terms involving the Fermi sea are responsible for the high frequency cutoff :
the Fermi sea prevents the emission of photons having an energy greater than the energy of the
emitted electron.

 0
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Figure 2.11: Current noise as a function of the measurement frequency at zero temperature, for
single electron emission. Here, the current noise is represented in units of the average current
transported by a single electron excitations. For a periodic system, it would be proportionnal to
the driving frequency. The red dashed curve models the quantum jitter noise, which coincides
with the total noise at low frequency.
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3 Conclusion
In this chapter, we have presented an approach to quantum coherence of single to few electron
and hole excitations in metallic conductors canalogous to quantum optics. This approach is
based on electron and hole coherence functions analogous to the ones introduced by Glauber
for the electromagnetic field [50, 51]. These coherence functions appear in detection signals
and can be related to fluctuation properties of the charge density.
Through simple examples, we have underlined the similitudes and differences between electron
quantum optics and the usual photon quantum optics. The first important difference comes
from the Pauli principle, which forbids two electrons to be in the same quantum state. It also
implies that electron quantum optics does not have a classical Thelimit as the usual quantum
optics, and thus there are strictly speaking no coherent states for the electron field ψ(x). The
other main difference comes from the nonvanishing coherences in the vacuum : contrary to
photon vacuum, the Fermi sea is not empty of particles and contributes to the total electronic
coherence. This particular vacuum state also allows the creation of neutral excitations.
In this chapter, we have not considered interaction effects which are responsible for decoher-
ence and relaxation of electronic excitations. This important issue will be studied in details in
chapters 4, 5 and 6 of this manuscript.

However, before dealing with interactions, the natural question that arises concerns the
measurement of the single electron coherence function. Actually, the detection scheme pre-
sented in this chapter only concerns the occupation number, namely the diagonal part of the
coherence function in Fourier space. In other words, it performs the spectroscopy of the quan-
tum state.
The complete characterization of the single particle quantum state requires a measurement of
the off diagonal part of the coherence function. Reconstructing the ful single electron coher-
ence is called a single electron quantum tomography. This is the subject of the next chapter,
in which we propose a tomography protocol based on current noises measurements in an HBT
interferometer.
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Chapter 3

Single electron tomography
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In this chapter, we propose a protocol to measure the first order electronic coherence func-
tion. Such a measurement, which aims at reconstructing a quantum state is called a quantum
tomography experiment. For this purpose, we propose once again to apply ideas from quantum
optics for photons to electrons propagating in quantum Hall edge channels. Although the to-
mography protocol is analogous to homodyne tomography in quantum optics, differences will
arise from the nature of the particles involved.

In a first section, we briefly recall the basics of homodyne tomography which relies on the
Hanbury Brown and Twiss effect [12, 13]. We then present a possible realization of homodyne
tomography for electrons in quantum Hall edge channels. A second part will be devoted to
the study and modelisation of the single electron source built in the Laboratoire Pierre Aigrain
in Paris [38]. This part will show that the single electron coherence function can be extracted
through current noise measurements. In particular, we will predict the expected experimental
signals of a tomography experiment in the case of this single electron source. The feasability of
the HBT tomography experiment will be discussed based on these estimations of the expected
experimental signals. In this last part, we will also address the question of the quality of the
electron emission from the point of view of quantum coherence and statistics of the emitted
charge.
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1 Tomography protocol
In full generality, tomography designates an imaging technique based on sectionning. By send-
ing waves on the object of interest, one can obtain images of different sections of the object,
which are combined to recover the total picture by the mean of tomographic reconstruction.
Tomography protocols are of common use in various fields such as geological and medical sci-
ences for example [110].
Quantum state tomography is the process by which a quantum state is reconstructed using
measurements on an ensemble of quantum states described by a given density operator [93].
Because of the no cloning theorem[158], quantum tomography requires many copies of the
state to be reconstructed. It after involves the measurement of a set of observables. The outputs
of these measurements are compared to several test density operators and density matrix that
reaches the best agreement is claimed to describe the unknown quantum state [20]. Quantum
tomography protocols have been implemented succesfully for one or two qubits[113] or for
example in cavity quantum electrodynamics with Rydberd atoms [32] or with superconducting
circuits [70, 66].
The goal of this section is to show how the ideas about quantum state tomography that have
been developped in atomic physics can be adapted in a tomography protocol for electronic ex-
citations in quantum Hall edge channels. This protocol makes use of the HBT effect so we will
first introduce it, and present its experimental aspects in the context of quantum optics. Then,
we will describe the tomography protocol for single electron sources [56].

1.1 The Hanbury Brown and Twiss effect

In 1956, R. Hanbury Brown and R.Q. Twiss designed a new kind of interferometer based on
intensity interferometry [12, 13]. In this seminal experiment, they made use of the correla-
tions between two photodetection signals to extract the apparent angular diameter of Sirius
[65]. More than the final result, this new type of interferometry, which is known as intensity
interferometry, inspired a lot of experiments to probe the second order coherence of the elec-
tromagnetic field[78, 106]. For the rest of the discussion, we will focus on the quantum aspects
of the Hanbury Brown Twiss effect.

HBT effect and homodyne tomography in optics

A typical HBT protocol is depicted in fig. 3.1.
Such a protocol measures the second order function g2(∆τ) described in the previous chap-

ter, in 1. The number of photocounts is proportional to the field intensity [43]:

N =
ηT

~ω
, (3.1)

where η is the quantum efficiency of the detector, and ~ω the energy of the measured mode of
the electromagnetic field. Thus, the second order photon coherence function can be rewritten
in terms of photocounts in detectors Di at different times :

g2(∆τ) =
〈N1(t)N2(t+∆τ)〉
〈N1(t)〉〈N2(t+∆τ)〉

. (3.2)
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Light
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(a) Sketch of a HBT interferometer (b) Interference paths

Figure 3.1: (a) Sketch of a HBT type interferometer. The detectors D1 and D2 absorb photons
from the output (w.r.t. the beam splitter) electric fields Ei,out. The counter C measures the
correlation between photodetection events. (b) Direct (orange and green) and exchange (red)
paths in a HBT interferometer.

In quantum optics, HBT-like setups can be used to measure the quantum state of a mode of
the electromagnetic field. Such a measurement implements a homodyne detection technique,
and is thus called a homodyne tomography experiment. In these experiments, the mode of the
electromagnetic field that one wants to measure (denoted by a) are sent onto a beam splitter
together with a local oscillator (the b mode), typically a laser. The modes on output are linear
combinations of the input ones. For a 50 : 50 beamsplitter :

a(out) =
1√
2
(a+ b) (3.3)

b(out) =
1√
2
(b− a) . (3.4)

Thus, the outcoming photon number in output branches 1 and 2 are

N
(out)
1 =

1

2

(
a†a+ b†b+ a†b+ b†a

)
(3.5)

N
(out)
2 =

1

2

(
a†a+ b†b− a†b− b†a

)
(3.6)

By chosing the state of the local oscillator to be coherent |z〉, z = reiφ, one can show that

N
(out)
1 −N

(out)
2 = r

√
2 (q cosφ+ p sinφ) , (3.7)

where p and q are the position and impulsion of the oscillator describing the electromagnetic
field. Thus, by measuring N (out)

1 −N
(out)
2 for a ensemble of identical systems, one can recover

the probability distribution of qφ = q cosφ + p sinφ. Finally, varying the phase φ of the local
oscillator gives the complete probability distribution function, and then the Wigner function
of the electromagnetic field mode via a Radon transform [93, 5]. Then, accessing the Wigner
function is sufficient to recover the density matrix of the electromagnetic field mode.

Before presenting an homodyne detection quantum tomography protocol for electrons prop-
agating in quantum Hall edge channels, let us discuss in more details the Hanbury Brown and
Twiss effect.
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The HBT effect in quantum Hall edge channels

From a general point of view, the HBT effect arises from two particle interferences be-
tween direct and exchange paths sketched in fig. 3.1 b. These interferences lead to bunching
for indistinguishible bosons and antibunching for indistinguishible fermions, as expected from
their quantum statistics. Consequently, when indistinguishible particles particles from two in-
dependent sources collide on a beamsplitter, the outcoming particle current fluctuations and
correlations bear information on the single particle content of the two incoming beams. In
mesoscopic physics, the HBT effect has already been observed for electrons in a two dimen-
sional electron gas issued by two reservoirs at equilibrium [90, 68, 119]. Here, we discuss the
HBT effect for single electron sources.

In fig. 3.3, the quantum point contact acts as a beamsplitter for electrons, which means
that the fermion fields on incoming and outcoming sides of the constriction are related in the
following way : (

ψ1(t)
ψ2(t)

)
out

=

( √
R i

√
T

i
√
T

√
R

)
.

(
ψ1(t)
ψ2(t)

)
in

(3.8)

where the “in” (resp “out”) fields are taken right before (resp. right after) the QPC. The proba-
bility for an electron to be transmitted in the same (resp. the other) channel is R (resp. T ).
The experimentally relevant quantities are current correlations on the outcoming channels of
the interferometer :

S
(out)
α,β (t, t′) = 〈i(out)α (t) i

(out)
β (t′)〉 − 〈i(out)α (t)〉〈i(out)β (t′)〉 (3.9)

where iα(t) denotes the edge current operator propagating along the α ouput channel. This
current operator is iα(t) = −evα : (ψ†

αψα)(t) : where the normal ordering is taken with
respect to the Fermi sea corresponding to the chemical potential of the edge channel at the
position of the detector.
The goal is to extract information on the source by measuring the outcoming noises of the
interferometer. For this purpose, we express the outcoming currents in terms of the incoming
fields :

iout1 (t) = R i1(t) + T i2(t)− ievF
√
RT (ψ†

1ψ2 − ψ†
2ψ1)(t) (3.10)

iout2 (t) = T i1(t) +R i2(t) + ievF
√
RT (ψ†

1ψ2 − ψ†
2ψ1)(t) (3.11)

where “in” superscripts have been removed in the r.h.s for simplicity. These outcoming current
correlators can be written as :

Sout
11 (t, t′) = R2S11(t, t

′) + T 2S22(t, t
′) +RT Q(t, t′) (3.12)

Sout
22 (t, t′) = T 2S11(ω) +R2S22(t, t

′) +RT Q(t, t′) (3.13)

Sout
12 (t, t′) = Sout

21 (t′, t) = RT (S11(t, t
′) + S22(t, t

′)−Q(t, t′)) (3.14)

where Q(t, t′) is defined as

Q(t, t′) = (evF )
2
(
G(e)
1 (t′, t)G(h)

2 (t′, t) + G(e)
2 (t′, t)G(h)

1 (t′, t)
)
. (3.15)

42



1. TOMOGRAPHY PROTOCOL

The R2 and T 2 contributions in (3.12) to (3.14) correspond to the scattering of electron/hole
pairs from one incoming channel into the another one as a whole. They correspond to classical
partitioning of noise.
The terms proportional toRT Q(t, t′) probe the single electron and hole coherences at different
times within the incoming channels. For classical particles partitionned by the beam splitter,
these terms would be absent. Indeed these are the two particle interference contributions to the
output noise of the HBT interferometer.

The next paragraph will show that these HBT correlations can give information on the
single particle coherence and thus how can the latter be reconstructed.

1.2 Single electron tomography protocol

By analogy with traditional quantum optics, the driven ohmic contact on channel 2 in fig. 3.3
will be used as a local oscillator since its chemical potential µ2 can be varied to explore the
single particle space.
Contrary to quantum optics, it is not possible to access time resolved quantities in electronic
transport experiments. Thus, our protocol will rely on the zero frequency Fourier component
of the average over t̄ of current correlations :

Sαβ = 2

∫
Sout
α,β(t̄+ τ/2, t̄− τ/2)

t̄
dτ. (3.16)

Figure 3.2: Sketch of the coherence function in Fourier space. The frequencies ω and ω′ are
respectively associated to t − t′ and t̄ = t+t′

2
. The harmonics are parallel to the horizontal

axis. The n = 0 harmonic corresponds to the excess occupation number δn introduced by the
source. The different quadrants are identical to those in 2.5 in chapter 2.

We would like to measure the excess coherence introduced by a periodic AC source of pe-
riod T = 2π

ΩT
at a given position. This quantity ∆G(e) depends on two times t and t′ and thus

can be viewed as a function of the time average t̄ = t+t′

2
and difference t− t′. In Fourier space,

itdepends on two frequencies ω and ω′, the first being the conjugate variable to t− t′, and the
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other being conjugate to t̄. The periodicity with respect to t̄ implies that the coherence function
will be nonzero for values of ω′ that are multiples of ΩT , as suggested in fig. 3.2.

The aim of the forthcoming electronic quantum tomography protocol is thus to measure
the ω dependence of each harmonic of the coherence function (ω′ = nΩT ).

Coherence function and noise signals

The electronic quantum tomography experimental setup is depicted in fig. 3.3 . Here, the
quantum point contact plays the role of a beamsplitter for electrons. We measure the low
frequency current correlations Sout

11 and Sout
22 defined by eqs. (3.12) and (3.13).

SES

1 in

2 in2 out

1 out

Vac

m  2 = 2,0m  + eV
ac

T

R

Figure 3.3: The tomography experimental setup for periodic single electron sources. The incom-
ing channel 1 is populated with the output state of the single electron source. The incoming
channel 2 is populated with a driven ohmic contact. Current correlations are measured on the
outputs of the interferometer. The transparency of the quantum point contact is denoted by T .

The ohmic contact plays here the role of the local oscillator. By changing the frequency of
the AC voltage by multiples of the driving frequency, one can access the various harmonics of
∆G(e). From a graphical point of view, the homodyning is equivalent to an exploration in the
vertical direction in fig. 3.2.
By changing the stationnary part µ2,0 of the chemical potential, one can explore the single par-
ticle space, and thus reconstruct the frequency dependence of each harmonic of the coherence
function. Changing µ2,0 corresponds to an horizontal displacement in fig. 3.2 .

In the next section, we will see more precisely how these general considerations can be
expressed to exprimental noise signals, and what are the quantities that are precisely related to
the harmonics of the coherence function.

Single particle coherence function from noise measurements

Summing (3.12) to (3.14) leads to:∑
α,β

Sout
α,β(t, t

′) = S11(t, t
′) + S22(t, t

′) , (3.17)

reflecting particle number conservation. Another relation :

Q(t, t′) = (Sout
11 + Sout

22 )(t, t′)− 1− 2RT
2RT

(Sout
12 + Sout

21 )(t, t′), (3.18)
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shows that the HBT quantum contribution can be extracted from outcoming current noises and
correlations measurements.

We now go into the details of the tomography protocol. As stated in the previous chapter,
the first order coherences can be split into two parts, the first one G(e)

µ corresponding to the
Fermi sea and the second one, noted ∆G(e), representing the excess coherence due to excita-
tions on top of this vacuum state. Here, the contribution that we want to reconstruct is the
excess contribution due to the presence of the single electron source in the first incoming chan-
nel : ∆G(e)

1 .

The electron and hole coherence functions for the single electron source (denoted 1) and the
driven ohmic contact (denoted 2) split into:

G(e/h)
1,2 (t, t′) = G(e/h)

µ1,2
(t− t′) + ∆G(e/h)

1,2 (t, t′). (3.19)

The excess coherence for the driven ohmic contact ∆G(e)
2 is due to the AC driving. We now

have an expression for Q in terms of Fermi sea coherence functions and excess contributions :

Q(t, t′) = G(e)
µ1
(t′, t)G(h)

2 (t′, t) + G(h)
µ1

(t′, t)G(e)
2 (t′, t)

+ G(h)
µ2

(t′, t)∆G(e)
1 (t′, t) + ∆G(h)

1 (t′, t)∆G(e)
2 (t′, t). (3.20)

The terms containing ∆G(e)
1 are isolated in an excess contribution to noise ∆Q:

∆Q(t, t′) = G(h)
2 (t′, t)∆G(e)

1 (t′, t) + G(e)
2 (t′, t)∆G(h)

1 (t′, t). (3.21)

In eq. (3.20), the terms involving the Fermi sea coherence Gµ1 describe two different physi-
cal effects. First, the expressions of the form Gµ1Gµ2 contribute to the stationnary excess noise
[10] which is due to the difference in the chemical potentials µ2 − µ1. The terms containing
Gµ1∆G2 are present only when the ohmic contact is driven and describe the photoassisted noise
[10].
An evaluation of their orders of magnitude shows that the excess noise terms go like (µ1 is
assumed to be zero here) e2µ2

h
. The photoassisted noise is of the order of e2µ2

h
eV0

~ωd
, where V0 and

ωd are respectively the amplitude and frequency of the AC drive.
In the same way (3.21) contains contributions associated with G(e/h)

µ2 and a contribution associ-
ated with ∆G(e/h)

µ2 . A similar evaluation gives: Gµ2∆G1 ∝ e2ΩT

2π
and ∆G2∆G1 ∝ e2ΩT

2π
eV0

~ωd
. In

these evaluations, the contribution of the source to the noise is taken to be at its maximal value
e2f [123].
For realistic experimental values (For example µ2 ' 50µeV, V0 ' µeV and f = 1

T
= 3GHz),

we have :

• Excess noise contribution Gµ1Gµ2 ∝ e2µ2

h
' 10−26A2/Hz

• Photoassisted noise Gµ1∆G2 ∝ e2µ2

h
eV0

~ωd
' 10−27A2/Hz

• Gµ2∆G1 ∝ e2ΩT

2π
' 10−28A2/Hz

• ∆G2∆G1 ∝ e2ΩT

2π
eV0

~ωd
' 10−29A2/Hz.
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• Thermal noise at zero frequency Sth ∝ 2e2 kBT
h

' 10−30A2/Hz for T = 50mK .

The expected noises corresponding to the single electron source’s coherence function are above
the levels of sensibilities that have already been reported with the single electron source un-
der examination or more generally with quantum pumps [97, 96, 49]. Recovering the source’s
noise requires the implementation of high sensitivity noise measurements and powerful am-
plification techniques.The source’s contribution will be extracted from the difference of noise
measurements performed in the presence and absence of the source.

The expression of the noise signals in terms of the harmonics of the coherence function is
detailed in the next section. The obtained expressions will be suitable for a numerical evaluation
of these signals in the last part of this chapter.

Extraction of the single electron coherence

The tomography protocol aims at reconstructing the harmonics∆Gn of the excess single parti-
cle coherence function which are defined by:

∆G(e)
1 (t, t′) =

+∞∑
n=−∞

e−2πint̄/T

∫
∆G(e)

1,n(ω)e
−iωτ dω

2π
. (3.22)

The harmonics of ∆Q are defined by:

∆Q(t, t′) =
∑
n∈Z

e−inΩT (t+t′)/2

∫
eiΩ(t−t′)∆Qn(Ω)

dΩ

2π
. (3.23)

In the next two paragraphs, we will show precisely how to extract the harmonics of the
coherence function from the measurements of the harmonics of ∆Q. We will first show how
to obtain the occupation number, and then how the higher order harmonics can be extracted
from an homodyne detection scheme.

Obtention of the excess occupation number

When the AC voltage on the ohmic contact is switched off, the ohmic contact’s coherence
function does not depend on t̄. Thus,in this case, averaging eq. (3.23) over t̄ leads to:

∆Q(t, t′)
t̄
= ∆Q0(t− t′) = ∆G(e)

1,0(t
′ − t)Gµ2(t

′ − t) + ∆G(h)
1,0 (t

′ − t)Gµ2(t
′ − t). (3.24)

The Fourier transform of this expression is :

∆Q0(Ω) = e2vF

∫ (
(1− nµ2(−ω))∆G(e)

1,0(Ω− ω)− nµ2(ω)∆G(e)
1,0(ω − Ω)

) dω

2π
. (3.25)

Taking the derivative w.r.t. µ2
1 leads to the relation between the n = 0 harmonic of the noise

at zero frequency and the excess occupation number δn̄1 :

1Recall that d
dx

1
ex+1 = 1

4ch2(x/2)
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− RK

2

(
∂∆Q0(Ω = 0)

∂µ2

)
µ2=~ω2

=

∫ +∞

−∞
δn̄1(ω2 + kBTelx/~)

dx

4 cosh2 (x/2)
. (3.26)

At zero temperature, this equation reduces to:

∂∆Q0(Ω = 0)

∂µ2

= − 2

RK

δn̄1(ω2) , ~ω2 = µ2. (3.27)

Thus, the remaining integral over x in eq. (3.26) accounts for the thermal smearing in the
measurement process. An equivalent result for this spectroscopy of the single electron source
has been derived in [108]. In the numerical evaluations presented in the last section of this
chapter, this thermal smearing has been taken into account. The thermal effects deteriorate
the resolution on noise measurements, and thus the resolution on the single particle coherence.
Thus, the electronic temperature must be as low as possible.

Higher order of the single particle coherence : homodyne detection

To access the higher order harmonics of the single particle coherence function, a homo-
dyning method is needed. This means that the ohmic contact in the output way 2 of the HBT
interferometer is driven by a small2 AC voltage Vac(t) = V0 cos (ωdt+ φ) at the frequency
corresponding to the one of the harmonic to be measured : recovering the n-th harmonic of the
coherence function needs an homodyning at a frequency nΩT

2π
. Looking at the linear response

to V0 :

χωd
(t, t′) =

∂∆Q(t, t′)

∂(eV0/~ωd)
|V0=0. (3.28)

leads to the extraction of the harmonic of the source’s coherence function at nΩT .

Technical details of the reasoning are given in appendix A. By considering the average over
t̄ of the response function at the appropriate frequency :

χN(t− t′) ≡ χωd=nΩT
(t, t′)

t̄
, (3.29)

we get the final expression relating the linear harmonic response to the harmonics of the co-
herence function :

(
∂χn

∂µ2

)
(Ω, Tel, µ2, φ) =

∫ +∞

−∞

(
∂χ

(0)
N

∂µ2

)
(Ω, µ2 + xkBTel, φ)

dx

4 cosh2 (x/2)
,where (3.30)(

∂χ
(0)
n

∂µ2

)
(Ω, µ2, φ) =

e2

h
<
[
eiφ
(
vF∆G(e)

1,N(
µ2

~
+
NΩT

2
)− vF∆G(e)

1,N(
µ2

~
− NΩT

2
)

)]
.

(3.31)

2The amplitude V0 must be small compared to µ2/e to remain in the linear response regime.
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This equation plays the same role for n 6= 0 harmonics than eq.(3.26) for the occupation
number. These two equations constitute the main results of this chapter. They make explicit
the relation between the single particle coherence function characterizing the source and ex-
perimental signals. The inversion of these relations leads to the reconstruction of the single
electron coherence in the frequency plane : this inversion constitutes the single electron to-
mography protocol.
To recover the source’s coherence from noise measurements, one can proceed in two steps :

(i) First, a derivative of the experimental with respect to µ2 must be taken.

(ii) Then, starting from a region where ∆G(e)
n (ω) is expected to vanish, and then proceed by

steps of 2πnf using (3.31) to get ∆G(e)(ω + 2πnf) for positive p.

To limit the total reconstruction time, an optimization strategy must be devised to choose
the measurement points (i.e. the values of µ2) so that regions where the coherence is expected to
vary most are covered with maximal resolution. To identify this regions of maximal variation,
we will then make predictions for the expected experimental signals. Thus, in the next section,
we will present a model for the single electron source. This model will be used in section 3 to
make predictions for the single particle coherence and the associated signals.

2 Modelling of the SES

To model the functioning of the mesoscopic capacitor operated as a single electron source, for-
mer predictions based on noninteracting models for the average current [37] and current noise
[94, 123] have been verified experimentally. So far, this suggests that a noninteracting scat-
tering theory can be used to describe the mesoscopic capacitor in the experimentally relevant
range of parameters. The suitable formalism is the Floquet scattering formalism for electrons
[107, 109, 41].
In this section, we will present the basics of Floquet scattering theory and derive the expres-
sion of the Floquet scattering matrix in the case of the mesoscopic capacitor. Then, the single
particle coherence will be expressed in terms of Floquet scattering matrix elements.

2.1 Floquet scattering theory

Generalities

For a periodically driven quantum system, Floquet theorem states that there exists a basis
of the space of single particle states |ϕα(t)〉, called Floquet states, that are T -periodic solutions
of the time dependent Schrödinger equation :

|ϕα(t+ T )〉 = e−iωαT |ϕα(t)〉 . (3.32)

Consequently, they can be expanded as a Fourier series:

|ϕα(t)〉 = e−iωαt
∑
n∈Z

e−inΩT t|ϕα,n〉 . (3.33)
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Therefore, the Floquet state |ϕα(t)〉 is a linear combination of states with eigenfrequencies
ωα + nΩT . Considering that the time dependent potential is applied within a limited region
of the system, Floquet theorem enables us to find the scattering matrix relating outcoming
electronic modes to the incoming ones under the form :

c(out)α (ω) =
∑
n∈Z

∑
β

Sα,β,n(ω) c
(in)
β (ω + nΩT ). (3.34)

Eq. (3.34) simply states that an output mode at a given frequency ω is a linear combination
of those at frequencies ω + nΩT . The coefficients of this linear combination are the elements
of the Floquet scattering matrix. In other words, the photoassisted transitions induced by the
periodic driving occur only at multiples of the pumping frequency, with transition amplitudes
given by the Floquet scattering matrix elements.

S
n
(w)

a,b,
c(out)

a (w)c(in)
b (w +   W  ) n 

T

Figure 3.4: Sketch of the action of the Floquet scattering matrix. An electronic mode at energy
~ω in channel α on output of the scattering region is a linear combination of incoming modes
from all the incoming channels β at energies ~(ω + nΩT ).

Since the outcoming modes satisfy the same (anti)commutation relations as the incoming
ones, the Floquet scattering matrix must satisfy the unitarity relation:∑

n∈Z

∑
β

Sα,β,n(ω)Sα′,β,n(ω
′)∗ = δα,α′ δ(ω − ω′) . (3.35)

We now compute the Floquet scattering matrix in the case of the single electron source,
following the ideas developed in [94, 123].

Floquet scattering matrix for the SES

In the case of the single electron source under consideration, indexes concerning edge chan-
nels in the equation (3.34) can be forgotten and equation (3.34) reduces to:

c(out)ω =
∑
n∈Z

Sn(ω)c
(in)
ω+nΩT

. (3.36)

For the mesoscopic capacitor, the Floquet scattering originates from the presence of a quantum
dot driven by a T -periodic voltage V .

Usually, one already knows the scattering matrix Sdot(ω) of the mesoscopic capacitor in the
absence of interactions and external voltage. It is defined by:

ϕ(out)(ω) = Sdot(ω)ϕ
(in)(ω) (3.37)
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so that Sdot(ω) represents the amplitude for an electron to go through the mesoscopic capacitor.

We will now derive the Floquet scattering matrix in the presence of a time dependent volt-
age V (t) applied to the mesoscopic capacitor. The idea is to use gauge invariance which states
the physical equivalence of two situations (see fig. 3.5):

(a) The edge channel is connected to reservoirs at fixed chemical potential whereas a time
dependent voltage V (t) is applied to the dot.

(b) A global potential −V (t) is applied to the system so that no voltage is applied to the dot
but the reservoirs are driven by a voltage −V (t).

Note that in our case V (t) has zero average over its period. Therefore, in situation (b), the
reservoirs chemical potentials are the same as in situation (a). Here, the effect of a non zero
potential applied to the dot is assumed to be equivalent to a shift of the energy levels within
the mesoscopic capacitor and therefore can be accounted for by a suitable frequency shift in
the undriven scattering matrix Sdot for the capacitor.

D

V(t)(a)

D

0(b)

-V(t) -V(t)

Figure 3.5: Schematic representaion of the driven mesoscopic capacitor. The edge channel is
coupled to the quantum dot via a tunnel barrier of transparency D. The two depicted situations
(a) and (b) are physically equivalent due to gauge invariance.

The undriven scattering matrix Sdot relates the outcoming wavefunction right after the
mesoscopic capacitor to the wavefunction right before. In situation (b), the wavefunction in-
jected by the reservoir at x = −∞ (denoted by ϕ(in)(t)) leads to the following time dependence
of the wavefunction at the entrance of the mesoscopic capacitor :

ϕ0−(t) = exp

(
−ie
~

∫ t

−∞
V (τ) dτ

)
ϕ(in)(t) . (3.38)

Consequently, the wavefunction arriving at the x = +∞ reservoir is:

ϕ(out)(t) =

∫
exp

(
ie

~

∫ t

t′
V (τ) dτ

)
Sdot(t− t′)ϕ(in)(t′) dt′ , (3.39)

which directly leads to the Floquet scattering in real time:

S(t, t′) = Sdot(t− t′) exp

(
ie

~

∫ t

t′
V (τ) dτ

)
. (3.40)

Going to Fourier space gives the following expression for the Floquet scattering matrix:

Sn(ω) =
∑
k∈Z

ck[V ] ck+n[V ]∗Sdot(ω − kΩT ) . (3.41)
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where cn[V ] denotes the n-th Fourier coefficient of the T -periodic phase factor 3:

exp

(
ie

~

∫ t

−∞
V (τ) dτ

)
=
∑
n∈Z

cn[V ] e−inΩT t . (3.42)

To achieve a complete description of the driven mesoscopic capacitor in terms of Floquet
scattering, we must now compute the zero-drive scattering matrix Sdot. To do so, one can use
two different models for the quantum dot :

• A first model in which the dot is described as a single resonant level. This model has
been used by Keeling et al. in [77].

• The second one takes into account the transit time of an electron within the quantum
dot, and leads to a Fabry-Perot geometry.

For the rest of the discussion, and notably for numerical evaluations, we will use the second
model which is parametrized by the mean level spacing ∆ and transparency D of the tunnel
barrier between the edge channel and the quantum dot.
In the time domain, the Fabry-Perot scattering matrix represents the probability amplitude to
arrive at a time t′ at the quantum dot and to escape it after an arbitrary number of turns. Thus,
the total probability amplitude is simply a sum over the number of turns (which represents the
time an electron spends in the dot) :

Sdot(t, t
′) =

√
D δ(t− t′)− 1−D

+∞∑
n=1

Dn/2 δ(t− t′ − nl/vF ). (3.43)

In frequency space, we obtain :

Sdot(ω) =
√
D − (1−D)

+∞∑
n=1

Dn/2 e−inlω/vF =

√
D − eiωl/vF

1−
√
D eiωl/vF

. (3.44)

The time independent density of states of the quantum dot can be found using the zero-drive
scattering matrix Sdot [19, 45, 37, 44] :

N (ε = ~ω) =
1

2iπ~
S∗
dot(ω)

dSdot

dω
=

1

∆

D

2−D − 2
√
1−D cos(2πε∆)

, (3.45)

where ∆ = ~vF/l. When the tunnel barrier is completely opened, the density of states is flat
and equal to 1

∆
. As the transparency D goes to zero, it is a sum of well separated lorentzian

peaks, as can be seen in fig. 3.6. In this last situation, the two models to describe the dot are
expected to give the same results.

2.2 Single particle coherence from Floquet theory

The single particle electronic coherence on output of the driven quantum dot is :

G(e)(t, t′) = 〈ψ†
out(t

′)ψout(t)〉. (3.46)

3We recall that
∫ t+T

t
V (τ)dτ = 0.
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Figure 3.6: Density of states of the quantum dot as a function of ε/∆ (in units of∆), for different
values of the transparency D of the tunnel barrier.

The fermionic operators on output of the scattering region are related to the input operators via
the Floquet scattering matrix (3.36) :

ψout(t) =
∑
n∈Z

∫
R

dω√
2πvF

e−i(ω−nΩT )tSn(ω − nΩT )c
(out)
ω (3.47)

ψ†
out(t) =

∑
n∈Z

∫
R

dω√
2πvF

ei(ω−nΩT )tS∗
n(ω − nΩT )c

(out)†
ω . (3.48)

The source is periodic. Consequently, the coherence function is periodic in t̄ = t+t′

2
. Formally,

this means that it can be written as a Fourier sum with respect to t̄:

G(e)(t, t′) = G(e)
µ (t− t′) +

∑
n∈Z

∆Gn(t− t′)e−niΩT t̄. (3.49)

Using the decomposition of the fermion operators (3.47) in terms of the input modes and the
Floquet scattering matrix elements, we can obtain the Fourier transform w.r.t. t − t′ of the
harmonics ∆Gn of the coherence function :

vF∆Gn(ω) =

∫
d(t− t′)eiω(t−t′)∆(vFGn(t− t′))

=
∑
k∈Z

S∗
n+k(ω − n

2
ΩT )Sk(ω +

n

2
ΩT )n̄µ(ω + (k +

n

2
) (3.50)

In the above equation, n̄µ designates the equilibrium occupation number of a Fermi sea at
a chemical potential µ.

Extracting the physical content of (3.50) requires a numerical evaluation of its r.h.s. The
forthcoming section presents numerical results for the coherence function and the associated
noise signals. This numerical work has also been the occasion to study the statistics of the
emitted charge and the purity properties emitted electronic excitations.
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3 Numerical results
This section is devoted to the numerical study of the mesoscopic capacitor operated as a sin-
gle electron source, using the analytical results given by the Floquet scattering theory. More
than formulae evaluation, this numerical work provides an efficient tool for predicting single
particle coherence and other experimentally or theoretically relevant quantities. The methods
presented here will be also be useful in chapter 6 for computing the relaxation of minimal ex-
citations.
All the formulae that have been used in the numerics are recalled in appendix A, where we also
describe the checks that have been done to ensure the validity of the numerical evaluation.

We will first study the n = 0 harmonic, namely the excess occupation number δn̄, and
continue by examining the complete single particle coherence function. We will finally consider
the issue of the quality of the source by studying the statistics of the emitted charge and its
coherence properties. The computation of the expected experimental signal will argue in favour
of the experimental feasability of the single electron quantum tomography protocol.

3.1 Occupation number and coherence function

Occupation number

The excess occupation number is defined as δn̄ = n̄− n̄µ, where n̄µ is the equilibrium occupa-
tion number in the edge channel. This excess occupation number has the following expression
in terms of Floquet matrix elements :

δn̄(ω) =
∑
k∈Z

|Sk(ω)|2n̄µ(ω + kΩT )− n̄µ(ω) . (3.51)

Its integral over the positive (resp. negative) frequencies gives the average electron excitation
number emitted per cycle n̄+ (resp. the average number of hole excitations emitted per cycle
n̄−). The source under consideration is an AC source : the average output charge added to the
Fermi sea is zero. In other words, the average numbers of emitted electron and hole excitations
are opposite : n̄+ = −n̄−.
These quantities are linked to the excess occupation number. For example, for the average
number of electrons, we have, from chapter 2 :

n̄+ =

∫ +∞

0

〈: c†εcε :〉 dε =
∫ +∞

0

δn̄(ε) dε. (3.52)

Thus, the neutrality condition n̄+ = −n̄− becomes :∫ +∞

−∞
δn̄µ(ε) dε = 0 .

The relevant experimental parameters are the electronic temperature, the amplitude and
frequency of the driving voltage, as well as the transparency of the tunnel barrier. The temper-
ature must be as low as possible, and will be chosen at a realistic although already challenging
value of 50mK .
The frequency of the driving voltage V must be such that the electron has the time to escape,
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and sufficiently high to keep a significative noise signal (as noted in the previous section, the
relevant noises are proportional to the driving frequency). Here, f is fixed at 3GHz. Numeri-
cally, all these quantities are expressed in units of the mean level spacing ∆/kB = 4.7K .
The position of the dot’s level with respect to the Fermi level ε0 must be symmetric to operate
in the particle/hole symmetric regime, as seen in fig.3.7. Furthermore, the voltage’s amplitude
must correspond exactly to the mean level spacing ∆.

(a) Choice of the voltage amplitude

E
0

(b) Position of the dot level wrt the Fermi sea

Figure 3.7: The position of the dot’s levels are chosen to be symmetric around the Fermi en-
ergy. The effect of the initial position E0 of the dot’s level wrt the symmetric configuration is
illustrated at the end of this paragraph.

Occupation number in the symmetric configuration

Figures 3.8 and 3.9 display the excess occupation number for different values of the trabs-
parency D.

From these plots, we can infer the following conclusions :

D=1 When the tunnel barrier is completely open, the source emits a coherent superposition
of particle/hole pairs. No energy resolved electron and hole excitation are produced.
Actually, in this regime, the result essentially probes the response of the chiral edge
channel to a periodic square voltage. The particle/hole pair production is, in this regime,
responsible for important charge fluctuations. Lastly, we observe that n̄+ differs from
one.

D=0.44 In this case, energy resolved excitations appear but are accompanied by particle hole
pairs, as seen from the nonzero values of the occupation number near the Fermi level. The
associated noise signal has jumps corresponding to the peaks in the occupation number.

D=0.2 In this regime, electron and hole excitations are energy resolved, and no remarkable
electron/hole production occurs. The corresponding noise signal displays a shape close
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Figure 3.8: Excess occupation number and associated noise for D=1 and D=0.44.
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Figure 3.9: Excess occupation number and associated noise for D=0.2 and D=0.04. The spurious
pikes for D = 0.04 are numerical artefacts.

to a square : the jumps at µ2 = ±∆/2 are linked to the electron and hole emission at
precise energies. Furthermore, the almost flat shape of the noise signal means that the
electron/hole pair production close to the Fermi level has almost disappeared. Finally,
having ∆Q(µ2 = 0) = 2 means that n̄+ = −n̄− = 1.

D=0.04 When the transparency is too low, the escape time of the electron and hole becomes
too long compared to the period of the driving voltage (as can be seen in the current
pulse fig. 3.15). As a consequence, ∆Q0(µ2 = 0) is reduced by a half. In this regime, the
output state is expected to be a linear superposition of the Fermi sea and a particle/hole
pair :

|Ψout〉 =
1√
2

(
|F 〉+ ψ[ϕh]ψ

†[ϕe]|F 〉
)
. (3.53)
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The evaluation of the supplementary charge in this state explains the value ∆Q0(µ2 =
0).

We will now see how these result have a manifestation in the full coherence function, and
which other information can be extracted.

Effect of nonsymmetric configurations and transition to the adiabatic regime

Fig. 3.10 depicts the excess occupation number for different values of the initial position E0

of the dot’s levels w.r.t the Fermi energy (in units of∆). As the energy shift goes away from the
symmetric configuration value E0 = 0, the source emits an increasing number of particle/hole
pairs, since the values of the excess occupation number around ε = 0 are increasing. The total
number of electrons emitted per cycle does not experience significant modification, but the en-
ergy repartition of the emitted excitations is drastically modified. Thus, this analysis shows that
the symmetric configuration is optimal for energy resolved electron emission. Furthermore, it
makes the source less sensible to voltage fluctuations.
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Figure 3.10: Excess occupation number for different configurations of the dot’s levels, for an
amplitude of the driving voltage equal to ∆, f = 3Ghz, and T = 50mK . Green, yellow,
and red curve correspond respectively to a shift of ∆

4
, 0.45∆ and ∆

2
. The gray dashed curve

corresponds to the symmetric configuration. The energy shift E0 is linked to the quantity φ0 in
[123] by φ0 = 2πE0

∆
.

The effect of the driving frequency for a sine voltage on the excess occupation number is
shown in fig. 3.11. The emission regime tends to the adiabatic limit [108] as the frequency
decreases. In this asymptotic regime, the electron / hole emission takes place at the surface of
the Fermi sea, and the energy repartition is exponentially decreasing over an energy scale ~ΩT .

The next paragraph will focus on the impact of the transparency D of the tunnel barrier
on the full coherence function, and on the associated noise signals. This study will be done at
fixed temperature and voltage characteristics.
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Figure 3.11: Excess occupation number for different values of the driving frequency, for a sine
voltage, with an amplitude of the driving voltage equal to ∆, D = 0.2 and T = 50mK . Gray,
blue, green and red curve correspond respectively to a frequency of f ≡ f0 = 3GHz, f0/2 ,
f0/3 and f0/6.

Complete coherence function

Along the same lines as for the occupation number, we now focus on the behaviour of the
complete single particle coherence function as a function of the transparency of the tunnel
barrier between the quantum dot and the edge channel.
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Figure 3.12: Coherence function (modulus) and the first four harmonics of the associated noise
signal for D=1. In (b), grey lines indicate the minimal measurable level of noise (0.1e2f ). The
blue lines corresponds to <(χn) and the orange ones to =(χn).

When the dot is completely open, the source emits particle/hole pairs close to the Fermi
level. This can be seen in the coherence function depicted on fig. 3.12 (a) : the highest values of
|∆G| are in the vicinity of the origin. Furthermore, the strong electron/hole coherences (in blue
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in 3.12) indicate large fluctuations of the number of emitted electron per cycle as pointed out in
chapter 2. For most of the harmonics, the expected signal is close to the minimal experimental
sensitivity. Nevertheless, we see that it is essentially localized close to µ2 = 0.
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Figure 3.13: Coherence function and the first four harmonics of the associated noise signal for
D=0.2.

At D = 0.2, we see in fig. 3.13 that electron and hole excitations are localized in energy
space. The crosses around the spots represent the electron’s and hole’s wavefunctions. This lo-
calization in Fourier space goes along with a disppearance of the electron/hole coherences : the
small values of |∆G(e)| in the off diagonal quadrants indicate weak fluctuations of the number
of emitted electrons n̄+.
The experimental signal is essentially nonzero around µ2 = ±∆/2 corresponding to the ener-
gies of the emitted electron and hole excitations.
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Figure 3.14: Coherence function and the first four harmonics of the associated noise signal for
D=0.04.
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If the transparency of the tunnel barrier is too low, the electron/hole coherences reappear
implying that the fluctuations of n̄+ number are greater in this regime than in the D = 0.2
case. The consequences of such a long escape time in the low-D regime are more clearly seen
in the current pulse as we will now discuss.

3.2 Current pulse

The average current can expressed in terms of the harmonics of the excess coherence function :

〈I(t)〉 = −evF
∑
n∈Z

∆

(
vF

∫ +∞

−∞

dω

2π
∆G(e)

n (ω)

)
e−inΩT t, (3.54)

Thus, as noted in chapter 2 in eq.(2.40), integrating the coherence function over lines parallel to
its diagonal gives the average current.

Fig. 3.15 depicts the current pulse for different values of the transparency of the tunnel
barrier. In these plots, the current pulse has been obtained by performing an inverse Fourier
transform of the current pulse’s Fourier coefficients in (3.54).

When D tends to 0.2, the current pulse tends to an exponential decay form, with a decay
time given by the escape time τesc = h

D∆
. But when the transparency of the tunnel barrier is

too low, the pulse does not have the time to decay completely (see fig. 3.15)because the escape
time becomes too long compared to the driving period. In this regime, due to the decrease of
n̄+, the relative second order fluctuations of the emitted charge are more important, as we will
see in the next part.

3.3 Accuracy of the quantum capacitor as a single electron source

The optimal value of the driving amplitude corresponds exactly to the mean level spacing ∆ :
such a voltage ensures that and only one of the dot’s levels will cross the Fermi energy. The
driving frequency is chosen as a compromise between noise power (which increases with ΩT )
and the experimental possibilities (microwave generators only give access to frequencies up
to 20GHz) and has been fixed at f = ΩT

2π
= 3GHz. Thus, the remaining parameter is the

transparency of the tunnel barrier connecting the quantum dot to the edge channel.
To find the optimal value of the transparencyD, we evaluate the quality of the emitted electron
for the full range of the transparency 4. This evaluation consists in fulfilling two criteria:

(a) The average number of emitted electrons per cycle must be one, and the fluctuations around
this average number must be minimal.

(b) The output state must be pure.

Statistics of the emitted charge

Formally, the criterion (a) is equivalent to:

n̄+ → 1 and
(∆n+)

2

n̄2
+

� 1, (3.55)

4This study is done at fixed frequency. For another value of f , the results will be different. Nevertheless, the
principle remains the same.
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Figure 3.15: Current pulse for different values of D. In these curves, kBT/∆ = 1/100,
hf/∆ = 0.019, corresponding to T = 50mK and f = 3Ghz. The black dots in (c) rep-
resent an exponential decay with characteristic constant τesc = h

∆

(
1
D
− 1

2

)
' h

D∆
[38]. Rapid

oscillations (Stokes phenomenon) near t = 0 and t = T/2 are due to the finite number of terms
in Fourier sums.

where (∆n+)
2 is the fluctuation of the number of emitted electrons n̄+. These two quantities

can be extracted from the single particle coherence function (see Chapter 2, section 2) :

n̄+ = T

∫ +∞

0

vF∆G(e)
0 (ω)

dω

2π
(3.56)

(∆n+)
2 = T

+∞∑
n=1

∫ +nΩT /2

−nΩT /2

∣∣vF∆G(e)
n (ω)

∣∣2 dω
2π

(3.57)
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The evolution of n̄+ and ∆n+

n̄+
=
√

(∆n+)2

n̄2
+

with the transparency D are given in 3.16.
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Figure 3.16: Average number of electrons emitted per cycle n̄+ (yellow curve) and correspond-
ing fluctuations ∆n+

n̄+
(green curve).

The curve representing n̄+ displays a plateau at n̄+ ' 1 for values of the transparency
close to D = 0.2. Apart from this value, the output charge falls to zero when the quantum
point contact is closed, as expected. When the transparency of the tunnel barrier is too high,
charge quantization is lost : the average number of electron excitations emitted per cycle be-
comes slightly greater than one 5. These observations on the average electron number can be
confirmed by looking at its fluctuations.
If we turn to ∆n+/n̄+ we see that it exhibits a minimum close to D = 0.2. Away from this
minimum, when the transparency increases,∆n+/n̄+ becomes more important due to electron
hole pairs. Thus, when D → 1, the relative fluctuations ∆n+/n̄+ increase since we essentially
create electron hole pairs. When D → 0, the fluctuations are due to the weak values of the
average electron number. In this regime, the escape time h/D∆ of the electron is too long
compared to the period, and then the electron could not escape the confined region before the
dot level is sunk again under the Fermi level.

Coherence properties of the output electron

To estimate the purity of the output electronic state, we use the linear entropy Slin [125]. This
quantity is obtained by linearizing the Von-Neumann entropy around the identity

SV N(ρ) = −Tr
(
ρ log ρ

)
: Slin(ρ) = 1− Tr(ρ2) , (3.58)

5Here, n̄+ is obtained as an integral of the occupation number in the positive energies, and so could be greater
than one.
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and is consequenctly easier to evaluate numerically. Tt is linked to another relevant quantum
information quantity : the purity γ = 1−Slin [116]. Here, we compute the linear entropy of the
one body electronic density operator ρe, extracted from the single particle coherence function
in Fourier space 6 :

ρe(ω+, ω−) =
1

n̄+

θ(ω+)θ(ω−)∆G(e)(ω+, ω−). (3.59)

In our case, Slin ∈ [0, 1] and reaches 0 only for a pure state. For our purpose, we must identify
the value of D that corresponds to the minimal linear entropy. For that value of the trans-
parency, the emitted state will be the purest. The linear entropy has the following expression
in terms of the excess coherence function7 :

Slin = 1− T

n̄+

∑
n∈Z

∫ +∞

|n|ΩT

dω

2π
|vF∆G(e)

n (ω)|2. (3.60)

The remaining question concerns the characterization of this state. For this purpose, we
compute the overlap of the output electronic state to a trial wavefunction. In the present con-
text, it is natural to consider the wavefunction predicted by the resonant level coupled to a
semi-infinite continuum model [26] :

φtest = θ(ω)

√
2~/D∆

ω −∆/2~+ iD∆/h
. (3.61)

At low transparency, the typical escape time h/D∆ is expected to be small compared to the
driving period T . In this case, the dot level that has been displaced at an energy ∆/2 over the
Fermi energy at t = 0 has the time to deliver a single electron into the edge channel, which
plays the role of the continuum. To quantify how close the output state is from (3.61), we
compute its overlap [116] with φtest :

O(ρ|φtest) = 〈φtest|ρ|φtest〉, (3.62)

which becomes, in terms of the coherence function :

O(G(e)|φtest) =
∑
n∈Z

∫
∆G(e)

n (ω)φ∗
test

(
ω + nΩT/2

vF

)
φtest

(
ω − nΩT/2

vF

)
dω

2π
. (3.63)

The numerical evaluation of (3.63) together with the linear entropy is plotted in fig. 3.17. It
shows that Slin has a minimum forD close to 0.2, which is the same value as in 3.16. When the
transparency goes to zero, the emitted state is no more pure due to the revival of electron/hole
pair production. WhenD increases from its optimal value, the purity decreases, as electron/hole
coherences (and electron/hole pairs) appear. The optimal regime also corresponds to a maximal
overlap with the trial wavefunction (99%). In this regime, the emitted electron is emitted with
probability 99% in a lorentzian wavefunction in energy space and the corresponding current
pulse is an exponential decay.

We can then infer the following results:

• In the optimal regime, the emitted state is pure and this optimal operating point also
corresponds to the optimal in terms of statistical indicators n̄+, ∆n−+.

• The wavefunction describing the emitted electron is predicted by a model of a resonant
level coupled to a semi-continuum (3.61).

6A hole density operator can be defined in an equivalent way.
7The Von-Neumann entropy cannot be expressed simply in terms of the single electron coherence
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Figure 3.17: Overlap of the electron density operator to the resonant level model (orange curve)
and linear entropy Slin (green curve). The vertical dotted line indicates the optimal operating
point.

4 Conclusion

This chapter was devoted to the presentation of a single electron quantum tomography proto-
col based on current noise measurements in an Hanbury Brown and Twiss configuration. This
protocol is an electronic analogue of homodyne tomography in photonic quantum optics.

In order to evaluate the feasability of its implementation in the case of the single electron
source built in the LPA, we have obtained numerical predictions for the expected noise signals
based on the noninteracting Floquet scattering theory.
This quantum tomography protocol could be envisioned to characterize the state of other types
of sources, such as time resolved sources envisioned by Keeling et. al [76].
Another proposition [108] has been recently done to perform the spectroscopy of the state of
a single electron source. This other protocol relies on two particle interferences. It has also
been illustrated in the case of the mesoscopic capacitor [38], but is adaptable for other kinds of
sources. Contrarily to the proposition of this chapter, it does not rely on homodyne detection,
but on the suppression of current noise due to the overlap of the incoming states of the inter-
ferometer.

Interaction effects are a major issue in electron quantum optics. Understanding them in a
controlled decoherence experiment may lead to new ideas to minimize the decoherence. In this
chapter, we have considered the issue of source characterization but performing single electron
tomography after an interaction region as depicted on fig. 3.18 is a very interesting perspective.
As we shall see in the next chapters, the HBT protocol could also be implemented to study the
single electron decoherence and relaxation [30], or the production of noise induced by interac-
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tions, as proposed in the chapter 6.

Figure 3.18: The different situations in which the tomography protocol depicted in this chapter
can be useful. Here, we illustrated the first possibility, which is the characterization of an
unkwnown source. In chapter 6, we will see that it could also be useful for characterizing
interaction effects.

These experiments could bring new elements to the study of energy exchange mechanisms
in quantum Hall edge channels. The extracted information would be complementary to those
obtained using tunneling spectroscopy [2, 3, 145], which only measure the stationnary contri-
bution to single particle coherence .
The following chapter is devoted to the study of some of the results of this spectroscopy exper-
iment in the ν = 2 regime. This chapter will explain how electron transport in the interacting
regime can be understand by the mean of the bosonization technique. It will also explain pre-
dictions that will be compared to experimental results.
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In the previous chapters we have neglected the effects of interactions in current transport
in the quantum Hall regime. Nevertheless, although some experimental results [112, 152] agree
remarkably well with noninteracting theoretical predictions [140], the results of Mach-Zehnder
interferometry experiments [74, 68, 131, 133, 132] have shown that studying interactions is
crucial to understand relaxation and decoherence. Here, we illustrate this general statement on
the example of energy exchange in the ν = 2 quantum Hall regime, a situation which has been
recently studied experimentally [145, 3, 2].
In a first section, we will briefly describe the experimental setup and results. In the second part,
we will present an approach based on bosonization and plasmon scattering to understand the
effect of interactions. We will finally show how this approch to interactions can be tested using
current noise measurements at finite frequency.
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1 Experimental study of edge channel equilibration
In this section, we review recent results obtained by Frédéric Pierre and his collaborators on
the energy exchanges in the ν = 2 regime [145, 3, 2]. We will first describe the experimental
setup, and then analyze briefly the experimental results, showing which information on energy
exchange can be extracted from the datas.

1.1 Experimental protocol

Experimental setup

The experimental setup is described in [2] and its schematic view is shown on fig. 4.1. A
nonequilibrium electronic distribution is created by mixing two equilibrium distributions at
the same temperature and different chemical potentials µ1 and µ2 :

f1(ε) = τfin,1(ε) + (1− τ)fin,2(ε). (4.1)

The electrons of this nonequilibrium distribution in the channel (1) in fig.4.1 copropagate along
with the other edge channel (2), which has been populated by an equilibrium distribution at
the chemical potential µ2. The aim of this experiment is twofold :

(i) Elucidate which mechanisms are responsible for the relaxation of the nonequilibrium state
in the edge channel (1).

(ii) Find the final equilibrium electronic distribution.

QPC

(1)
(2)

x=0 x=L

f
1(x=0) f

1(x=L)

Figure 4.1: Sketch of the energy relaxation setup. A nonequilibrium electronic distribution is
injected in the outer edge channel (1) at x = 0 by mixing two equilibrium distributions fin,1 and
fin,2 at different chemical potentials µ1 and µ2 with a quantum point contact of transmission
τ . The electronic distribution is measured at x = L. The inner edge channel (2) is populated
by an equilibrium distribution at chemical potential µ2.

We look at the temporal coherence after copropagation over a distance L. This length is
varied using different paths in the sample (see fig.4.3). The path in which the current propa-
gates is chosen by opening the appropriate quantum point contacts. The distribution function
is measured by the mean of a quantum dot operated as an energy filter.
Experimental data consist in the variation of the electric current flowing through the dot ID
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with respect to VG, where VG is the external voltage that shifts the dot’s energy levels. Assum-
ing that, at the measurement point, the density of states is the one of free chiral fermions, ∂ID

∂VG

is related to the Fermi function in channel (1) and in the reference channel (see. fig. 4.2):

∂ID
∂VG

∝ ∂

∂E
(f1 − fref ), (4.2)

a result that directly follows from eq. (2.73) in chapter 2.

Figure 4.2: Measurement point in the relaxation setup (from [2]). The measured electronic
distribution is fD. The dot (white circle) acts as an energy filter. The measured current IQD has
variations w.r.t VG proportional to f1 − fref .

The next discussion shows how information on energy exchange can be extracted from
electronic distribution measurement.

Energy exchange from electronic distribution

The total energy current along an edge channel α is the sum of an electrochemical contribution
due to the chemical potential and of a heat contribution due to electron excitations with respect
to the cold Fermi sea at the local EC chemical potential.
The electrochemical energy current has the following expression [31] (supplementary mate-
rial) :

J (ec)
α =

µ2
α

2h
. (4.3)

The heat current is expressed in terms of the electron distribution function fα(ε, x) in channel
α at position x as

Jqp = ραvα

∫
(fα(ε, x)− θ(µα − ε)) dε (4.4)

ρα being the density of states per unit length end energy, which verifies ρα vα = 1/h. In the
case of an equilibrium state at temperature T ,

Jqp =
π2

6h
(kBT )

2. (4.5)
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Figure 4.3: (from [145]) (a) : Overview of the setup for relaxation studies. Here, the different
paths having different propagation lengths are represented in (b), (c) and (d).

In the experiment described in [2], the measured energy current along the edge channel α
is the one of quasiparticles. It can be expressed in terms of an effective temperature using (4.5) :

Jqp = vαEqp =
π2

6h
(kBTqp)

2 . (4.6)

At x = 0, we thus obtain : Tqp :

kBTqp =

√
6(Eqp/ρ)

π2
(4.7)

=

√
T 2 + 3τ(1− τ)

(µ2 − µ1

πkB

)2
(4.8)

=
√
T 2 + T 2

exc , (4.9)

where Texc is the excess temperature equivalent to the quasiparticle energy injected at x = 0.
In the next part, we show the experimental results for the measurement of the energy current
flowing through the quantum dot, together with the extracted excess temperature. A short
interpretation of these observations will be presented, and will lead us to the most probable
relaxation process.
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1.2 Results and interpretation

Experimental datas and analysis

Raw measurement datas are presented in fig. 4.4(b). Integration of these datas provides the
nonequilibrium electronic distribution function. This distribution function gives access to the
heat current Eqp using (4.4), which is represented as an excess temperature in fig. 4.4(c).

(c)

(b)

(a)

E

fD
??

(a)

(b)

Figure 4.4: (from [145]) (b) Raw data for ∂ID/∂V for different propagation lengths and at fixed
QPC bias (36µV ). Solid lines accompanying datas for L = 10 and 30µm are expected dips for
Fermi electronic distribution at 85mK . The dotted line is the measured dip in the absence of
QPC bias. It corresponds to a Fermi distribution at 40mK . (c) Extracted excess temperature
as a function of the QPC bias for various propagation length.

The results presented in fig. 4.4 organize as follows for increasing propagation length:

L = 0.8µm For the shortest propagation length (blue squares), the double dip in ∂ID/∂VD
associated to the double step in the electronic distribution is close to noninteracting pre-
dictions, and thus shows that energy exchanges are small at short lengthscales.
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L = 2.2 to 30µm As the copropagation length is increased, the double dip in the experi-
mental signal evolves toward a single dip. This is the manifestation of the relaxation
of the nonequilibrium distribution injected at x = 0 towards a state close to a Fermi
distribution, for which a single dip is expected. The temperature characterizing this dis-
tribution is higher than the equilibrium temperature as can be seen by comparing the dip
for L = 30µm and the dotted line presenting the measured signal for a Fermi distribu-
tion at the equilibrium temperature. For the chosen value of the QPC bias (36µV ), the
characteristic relaxation length is Linel = 3µm. 1

L = 10 and 30µm For the two longest paths, the experimental signal is the same, showing
that the relaxation process saturates at long propagation lengths.

This information extracted from the raw experimantal datas provide some insight on the
relaxation mechanism.

Interpretation : finding the relaxation mechanism

Figure 4.5: The different possible mechanisms for energy exchange . (a) : Exchange with a
thermalized bath. (b) : Intrachannel interaction. (c) : Interchannel interaction.

The different mechanisms that could be proposed to explain these results are schematized
in fig. 4.5. Neglecting the possibility of charge tunneling between the edge channels [145, 151],
three mechanisms can be proposed to explain the observed energy exchange:

(a) Coupling to a thermalized bath such as the excitations of metallic gates or phonons ;

(b) Intrachannel interactions ;

(c) Electrostatic coupling between charge densities in different edge channels.

These different possibilities can be discriminated on experimental grounds [145] by analyzing
the results for the energy contained in the probed edge channel.
The saturation of energy redistribution at long propagation lengths is incompatible with the
scenario (a). Indeed, a coupling with a thermalized bath of excitations would instead imply a
relaxation towards an equilibrium state identical to the one at zero QPC bias.
Experimental data in 4.4 (c) suggest a repartition of quasiparticle energy between the two edge
channels. Thus, the measured evolution of the excess temperature reflects an energy exchange
between the two copropagating edge channels, which is incompatible with the possibility of
dominant intrachannel coupling (b).

1The procedure to extract this characteristic length is described in [145] (supplementary material).
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Consequently, the best candidate to explain the energy exchange observed in this experiment
is electrostatic coupling between charge densities propagating in the two channels. More pre-
cisely, this interchannel coupling arises from the Coulomb interaction screened by the gates
that design the shape of the 2DEG.

In the next section, we will present a model that describes the coupling between edge chan-
nels in terms of scattering of bosonic modes. This approach will be used to make predictions
for the excess temperature that will be compared to the experimental results [31].

2 Plasmon scattering approach to edge channel equilibration

Our modeling of interactions is based on bosonization. This technique describes a one-dimensional
electronic fluid in terms of its long-range charge density fluctuations and thus allows a nonper-
turbative treatment of interactions. After a brief introduction to the bosonization of chiral elec-
trons, we will describe interaction effects within a scattering formalism for bosonic excitations.
We will finally see how the predictions from this model can be used to extract experimentally
relevant quantities and how they compare with experimental data.

2.1 Bosonization and plasmon scattering

Short introduction to bosonization

Electrons in one dimension can be described in terms of charge density oscillations. The
bosonization technique focuses on low energy excitations and provides an effective theory
of electronic excitations. A complete account of the bosonization technique can be found in
refs. [142, 53, 48, 154, 144]. Here, we focus on specific points that will be used to understand
the description of electrons propagating in chiral edge channels as bosonic modes called the
edge magnetoplasmons. The electron/electron interactions in finite regions will be described in
terms of plasmon scattering. This hydrodynamical approach is similar to [157].

Bosonization of chiral electrons

As pointed out in chapter 1, the current flow in integer quantumHall edge channels is chiral.
Thus, in fig. 4.6, we consider only one branch of the dispersion relation with electrons having
positive momenta (right movers) 2. Furthermore, we consider only low energy excitations.
Consequently, the spectrum is linearized around the Fermi energy. Finally, we do not consider
the spin of electron here. We are thus left with spinless chiral electrons with a linear dispersion
relation.

These assumptions lead to the following free electron hamiltonian :

H(F )
0 = −i~vF

∫
R
dxψ†(x)∂xψ(x) . (4.10)

2In a quantum Hall bar, the edge of the sample have different moving directions, but the spatical separation
prevents any backscattering from one edge to the other. The two chiralities are decoupled.
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Figure 4.6: Linearized spectrum for electrons in one dimension. The quadratic dispersion re-
lation is linearized around the two Fermi points ±kF . This linearization gives birth to chiral
electron modes, propagating in the right and left directions. In our case, we only consider right
moving electrons, corresponding to positive momenta.

The expression of the electronic field in terms of a bosonic field 3 relies on the fact that the
electron density is a bosonic object, since it is the product of two fermion fields. If we assume
that the electron density is the derivative of a bosonic field φ, n(x) ∝ ∂xφ, then

φ(x) = λ

∫ ∞

x

dy n(y) n(x) =
1

λ
∂xφ, (4.11)

where λ is a constant to be determined. Creating an electron at the position x′ increases φ(x)
by a value λ if x < x′. Because of the commutation relation between φ and its conjugate field
Π(x) = 1

v
(∂tφ)(x): [

φ(x),

∫ x′

−∞
dyΠ(y)

]
= iθ(x′ − x), (4.12)

creating an electron at the position x′ < x necesarily involves the action of the following shift
operator:

exp
[
− iλ

∫ x′

−∞
dyΠ(y)

]
. (4.13)

Thus, the electron creation operator ψ†(x) can be written in terms of φ as :

ψ†(x) = Ae2iλφ(x) (4.14)

(4.15)

Ensuring that the electron field fulfils the appropriate anticommutation relations imposes A
and λ :

ψ†(x) =
U †

√
2πα

ei
√
4πφ(x) and ψ(x) =

U√
2πα

e−i
√
4πφ(x), (4.16)

3We ignore spin here. Its inclusion would be equivalent to the introduction of another boson type.
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where U is an operator which lowers the number of particles by one, called a Klein factor. It
also ensures the fermionic nature of ψ. In (4.16),α is a short distance cutoff.
Then, the free electron hamiltonian (4.10) can be written as an hamiltonian for the free chiral
bosonic field φ :

H(B)
0 = ~v

∫
dx (∂xφ)

2, (4.17)

where the bosonic field admits the following mode decomposition 4 :

φ(x− vt) =

∫
k>0

dk

2π

1√
2k

[bR(k)e
ik(x−vt) + b†R(k)e

−ik(x−vt)] (4.18)

Before using the formulae (4.16) to express the interacting hamiltonian in bosonic terms, it
will be useful for the next chapters to notice that operators of the form ei

√
4πφ are displacement

operators for the bosonic modes. More precisely, their action on the vacuum creates a coherent
state of bosonic modes with a position-dependent parameter :

ei
√
4πφ(x)|0〉 =

⊗
ω>0

D(λω(x))|0〉 =
⊗
ω>0

|λω(x)〉, (4.19)

where D(λω(x)) is a displacement operator of parameter λω(x) = − 1√
ω
eiωx/vF , where the

latter is the coherent state parameter for the bosonic mode at energy ~ω (see appendix C). The
tensorial product over all positive frequencies reflect the independence of bosonic modes.
Here, the zero temperature Fermi sea is seen as a boson vacuum :

|F 〉 =
⊗
ω>0

|0ω〉, (4.20)

where |0ω〉 is the vacuum state for the boson mode at frequency ω. In λω(x), the phase encodes
the position of the single electron excitation. Using eq. (C.14) shows that an n fermion excita-
tion of the form ψ†

R(x1) . . . ψ
†
R(xn) |F 〉 also corresponds to a plasmonic coherent state on top

of a Fermi sea corresponding to N + n particles 5.

A coherent wave packet introduced on top of the Fermi sea is now described as a Schrődinger
cat state of plasmonic coherent states:

ψ†[ϕ0] |F 〉 =
∫
ϕ0(x)

⊗
ω>0

|λω(x)〉 dx . (4.21)

Note that in general, the coherent state description presented here is well suited to the descrip-
tion of states that are obtained by adding a few electrons or holes above the Fermi sea. On the
other hand, a stationnary state corresponding to a non equilibrium electron distribution such as
the one created by a Fermi sea is a very complicated object in this language since it is obtained
from a Fermi vacuum by adding a macroscopic number of particles. Nevertheless, the basics of
bosonization such as the expression for the electron density and the fermion operators are still
valid.

4We disregard the zero mode here
5For an infinite system, adding a finite number of electrons will not change the chemical potential. this is no

longer true for a finite system.
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Coupling of the 1D channel under consideration to an external linear environment will
produce entanglement which has a simple description in the plasmonic coherent state basis.
Exactly as in cavity or circuit QED, this entanglement will induce decoherence of the quantum
many body state of the 1D chiral electronic fluid turning it from a pure state into a statistical
mixture (see chapter 5). This point of view [29] will be at the heart of our discussion of single
electron decoherence in Quantum Hall edges.

Bosonization and interactions

In the situations under consideration here, we will stay in the linear response regime. An
example of nonlinear response in a mesoscopic sysem can be found in [117] for a mesoscopic
capacitor.
Chiral propagation prevents electrons from experiencing interaction induced backscattering.
Furthermore, we do not take into account the spin degree of freedom here. The interaction
hamiltonian consequently have the general form of a coupling between charge densities prop-
agating in the same direction6 :

Hint =

∫
dx

∫
dy ρ(x)V (x, y)ρ(y) . (4.22)

The total hamiltonian can be written in a simple bosonic form :

H = πvF

∫
dx (∂xφ(x))

2 +
e2

π

∫
dx dy (∂xφ(x))V (x, y)(∂yφ(y)) , (4.23)

and leads to the following equations of motion for the chiral field φ :

(∂t + vF∂x)φ(x, t) =
e
√
π

h

∫
dy(∂yφ(y)) .V (x, y) (4.24)

Plasmon scattering

Throughout this manuscript we will consider situations in which an edge channel is coupled
to an arbitrary linear environment over a length L. Before and after the interacting region
|x| < L/2, the bosonic field φ describing the edge channel propagates freely, and thus defines
in (for x < −L/2) and out (for x > L/2) plasmon modes b :

φ(in/out)(x, t) = − i√
4π

∫ +∞

0

dω√
ω

(
b(in/out)ω eiω(x/v−t) + h.c.

)
. (4.25)

The total system { edge channel ⊕ environment } is described by an set of bosonic fields
{φα}. Since the dynamics is time translation invariant and ruled by linear equations, the in
and out fields are related via a scattering matrix 7 :

Φ(out)(ω) = S(ω,L)Φ(in)(ω), (4.26)

6In standard g-ology terminology [48], it means that we only consider the g4 term.
7This definition for scattering takes the free propagation into account : In the case of noninteracting channels,

the scattering matrix is diagonal : Sβα(ω,L) = δαβe
iωL/vα .
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whereΦ(in/out) = (φα)α contains the in and out bosonic fields describing the edge channel and
its environment. The properties of the plasmon scattering matrix are detailed in appendix B.

Relation to finite frequency admittances

For a mesoscopic conductor connected to electron reservoirs by external leads (indexed by
α), the finite frequency admittance matrix relates the current Iα flowing into the conductor
through lead α to the time dependent voltage Vβ(t) applied to the reservoir connected to the
lead β. In the linear response regime:

Iα(ω) =
∑
β

Gαβ(ω)Vβ(ω) . (4.27)

The plasmon scattering matrix can be related to the linear response of the edge channel to an
external classical voltage V . Solving the equation of motion for the bosonic field φ, we find
that such a voltage creates in the edge channel a coherent state µ(ω) of the plasmon modes b.
The parameter of this coherent state is related to the Fourier transform of V :

µ(ω) = − e

h

Vs(ω)√
ω
. (4.28)

The particle density is related to the bosonic field :

n(x, t) =
1√
π
(∂xφ)(x, t), (4.29)

so the total charge stored in the region [−L/2, L/2] is:

QL(t) = −e
∫ L/2

−L/2

dxn(x, t) = − e√
π
(φ(L/2, t)− φ(−L/2, t)) . (4.30)

Using the decomposition (4.25) of the bosonic fields in modes, and the definition (B.2) of the
scattering matrix, we find the relation between the admittance matrix and the plasmon scatter-
ing [136, 137, 135] :

Gαβ(ω) =
e2

h
(δαβ − Sαβ(ω)) . (4.31)

A low frequency expansion of (4.31) provides the value of the circuit element representing the
environment in terms of the plasmon scattering matrix’s parameters, as will be illustrated in
the next chapter.

The following part is devoted to the derivation of the plasmon scattering matrix in the
specific case of two edge channels coupled by a short-range Coulomb interaction.
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CHAPTER 4. ENERGY EXCHANGE BETWEEN COUPLED CHANNELS

2.2 Plasmon scattering from general considerations

Now, we turn to the specific case of two edge channels coupled over a finite length L. Here,
we derive the plasmon scattering matrix on the basis of general considerations. This will lead
to an expression for S(ω, L) in terms of only three parameters which play in the present case
the same role as the Luttinger or Fermi liquid liquid parameters. In appendix B, we also show
how the plasmon scattering matrix can be derived from a microscopic model of short range
interactions thus relating these three parameters to the microscopic parameters describing in-
teractions.
Each channel α = 1, 2 is described by a chiral bosonic field φα related to the particle density :

ρα(x, t) =: (ψ†ψ)(x, t) :=
1√
π
∂xφα(x, t). (4.32)

The equation for this bosonic field in the presence of an external voltage Uα(x, t) is (see ap-
pendix B):

(∂t + vα∂x)φα(x, t) =
e
√
π

h
Uα(x, t), (4.33)

where vα is the Fermi velocity in the channel α. The scattering matrix relates the bosonic fields
φα on input and output of the interaction region :

φ
(out)
β (ω, L/2) = Sβα(ω, L)φα(ω,−L/2). (4.34)

We will now try to infer as much as possible S(ω, L) from its physically expected properties.
First of all, S(ω, L) being a unitary matrix, it can be written as the product of a phase and a
SU(2) matrix :

S(ω,L) = eif(ω,L)e−i~a(ω,L)·~σ , (4.35)

where f(ω,L) and ~a(ω, L) only depend on ω and L.
The previous paragraph has shown the relation (4.31) between the plasmon scattering and ad-
mittance matrices. The applied magnetic field being perpendicular to the plane of the 2DEG,
the Onsager-Büttiker relations [14] (see appendix B) impose that the scattering matrix is sym-
metric :

S21(ω, L) = S12(ω,L) . (4.36)

Consequently, ay(ω, L) = 0.

Finally, interactions being short range, we expect the scattering matrix to satisfy the following
composition relation :

S(ω, L1 + L2) = S(ω,L1)S(ω,L2) , (4.37)

which implies that ~a(L, ω) = L~b(ω), and f(ω, L) = Lg(ω).

The coupling between the edge channel and its environment being purely capacitive, the
admittance must vanish at low frequency. As a consequence, the plasmon scattering matrix
tends to the identity at zero frequency :

S(ω) → 1 as ω → 0. (4.38)
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Thus, ~b(ω) → ~0 and g(ω) → 0 when ω → 0. The simplest dependence for ~b and g is linear in
ω corresponding to capacitances. this leads to the following expressions for ~a and f :

ax(ω) = ωτ sin (θ) (4.39)

az(ω) = ωτ cos (θ) (4.40)

f(ω) = ωτ0 . (4.41)

where θ is a fixed angle independent of L. The times τ and τ0 can be interpreted as times of
flight, and have the following expressions:

τ0(L) =
L

v0
and τ(L) =

L

v
, (4.42)

where v0 and v are characteristic velocities. Finally, the scattering matrix admits the following
expression :

S(ω,L) = eiωL/v0e−iωL/v(cos θσz+sin θσx). (4.43)

Its v± of the previous matrix are the velocities of the plasmonic eigenmodes :

1

v±
=

1

v0
± 1

v
. (4.44)

Now that we have represented the effects of short-range coupling in a scattering formalism,
we will now seehow it could lead to predictions for experimentally measurable quantities.

2.3 Predictions for experimental quantities

To make quantitative predictions for energy exchange, we make use of the previously described
bosonization formalism to evaluate the excess temperature (4.60). Our approach relies on the
identification between the heat current carried by quasiparticles and the energy current of the
plasmon modes. Then, using the plasmon scattering approach to account for interactions, we
can find the evolution of the plasmon occupation number with respect to the copropagation
length.

Relation between injected noise and energy current

The heat current in channel α is defined in eq. (4.4), with the help of the electronic distribution
fα(x, ε) at the position x along the edge channel α . In (4.4), the energy ε is measured from the
chemical potential µα of the edge channel. Since there is no tunnelling between the two edge
channels, this chemical potential is not expected to vary with the position x. The heat current
can also be expressed in terms of plasmons :

Jα(x) =

∫ +∞

0

dω

2π
~ω n̄α(x, ω), (4.45)

where n̄α(x, ω) is the average plasmon occupation number at the position x along the channel
α. This relation holds here since we are dealing with DC transport. Thus, the plasmon modes
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are not populated on average : 〈bα,ω〉 = 0 for all frequencies and the only remaining contribu-
tions to the heat current are given by (4.45).
The plasmon occupation number is related to the excess current noise:

n̄α(x, ω) =
2π

e2
Siα(x)(ω)− e2

4π
ω

ω
, (4.46)

where Siα(x)(ω) is the finite frequency unsymmetrized current noise at position x. In (4.46),
the zero point fluctuations have been substracted.
For an equilibrium state at temperature T , the occupation number does not depend on x :

n̄α,eq(ω) =
1

e~ω/kBT − 1
, (4.47)

and substituting (4.47) in (4.45) we recover the equilibrium value of the heat current already
found in (4.5) : Jα,eq = (kBT )

2 π2

6h
.

Before extracting the excess temperature, we will evaluate the excess noise created at a
quantum point contact operated at a transparency T . The result will provide the evaluation of
the excess noise right after the QPC creating the nonequilibrium distribution in the experiment.
The noises in the external and internal channels right after the QPC are given by (3.12), (3.13)
and (3.14), as seen in chapter 3, section 1. Here, since the incoming channels are populated by
reservoirs at fixed chemical potentials, the current correlators as well asQ(t, t′) (see chapter 3)
are stationary and thus only depend on t − t′. Their Fourier transform with respect to t − t′

can then be expressed in term of the reservoir’s electron distribution nα(ω). In particular:

Q(Ω) =
e2

2π

∫
(n̄1(Ω + ω)(1− n̄2(ω)) + n̄2(Ω + ω)(1− n̄1(ω))) dω . (4.48)

Rewriting n̄1(1− n̄2)+ n̄2(1− n̄1) = n̄1(1− n̄1)+ n̄2(1− n̄2)+ (n̄1− n̄2)(n1− n̄2), the finite
frequency noises can then be rewritten as follows:

Sout
11 (ω) = R2S11(ω) + T 2S22(ω) +RT Sexc(ω) (4.49)

Sout
22 (ω) = T 2S11(ω) +R2S22(ω) +RT Sexc(ω) (4.50)

Sout
12 (ω) = Sout

21 (ω) = −RT Sexc(ω) (4.51)

where the excess noise is given by :

Sexc(Ω) =
e2

2π

∫
(n̄1 − n̄2)(Ω + ω)(n̄1 − n̄2)(ω) dω . (4.52)

The terms proportional to R2 and T 2 account for the classical repartition of electrons at the
quantum point contact. The RT contribution account for truly nonequilibrium effects.

In the case of two reservoirs at the same temperature and with different chemical potential,
the integral can be evaluated explicitely and this leads to the excess noise at finite temperature
and bias voltage V :

Sexc(ω) =
e2

2π

(
ω + ωV

eβel~(ω+ωV ) − 1
+

ω − ωV

eβel~(ω−ωV ) − 1
− 2ω

eβ~ω − 1

)
(4.53)
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where ωV = eV/~ and β−1
el = kBTel. Eq. (4.53) is depicted in fig. 4.10 (black dashed line).

This expression for the excess noise on output of a quantum point contact has been probed
experimentally in [161].

Extraction of the excess temperature

The incoming and outcoming plasmon modes of edge channel α are related by the plasmon
scattering matrix :

b(out)α,ω = Sαβ(ω, L)b
(in)
β,ω . (4.54)

Since 〈b†α,ωbβ,ω〉 = 0 for α 6= β, the plasmon occupation numbers in the edge channels on
output of a scattering region of length L are given by :

n̄1(ω,L) = T (ω, L)n̄1(ω, 0) +R(ω,L)n̄2(ω, 0) (4.55)

n̄2(ω,L) = T (ω, L)n̄2(ω, 0) +R(ω,L)n̄1(ω, 0), (4.56)

where T (ω, L) (resp. R(ω,L)) is the probability for a plasmon at energy ~ω to be transmitted
in the same channel (resp. sent to the other channel) after a length L. The expression (4.43) of
the plasmon scattering matrix gives the following expression for T and R :

T (ω, L) = 1−R(ω, L) =
1 + cos2 θ

2
+

1− cos2 θ

2
cos

(
2ωL

v

)
. (4.57)

We now have all the necessary ingredients to make a prediction for the excess temperature.
The total energy current in channel α is the sum of two contributions. The first one is a thermal
contribution, which is left intact by the propagation in the interacting region. The second one
is a nonequilibrium contribution, which will be affected by the interactions :

Jα,qp =
π2

6h
(kBT )

2 +
RK

2

( e2
2π

)2
τ(1− τ)

∫ +∞

−∞
T (ω,L)F (ω, µ2 − µ1, β) dω , (4.58)

where

F (ω,∆µ, β) =
ω +∆µ/~

eβ(~ω+∆µ) − 1
+

ω −∆µ/~
eβ(~ω−∆µ) − 1

− 2ω

eβ~ω − 1
. (4.59)

Now, if we express the energy current in terms of an effective temperature using (4.5), we
associate a nonequilibrium temperature Texc to the nonequilibrium contribution in (4.58) :(

kbTexc
∆µ

)2

=
3

π2
τ(1− τ)

(
T∞ + (1− T∞)

sinc2(L/L∆µ)

sinhc2(L/Lth)

)
, (4.60)

with L∆µ = ~v/e|∆µ|, Lth = ~vβ, sinc(x) = sinx
x

and sinhc(x) = sinhx
x

.

This prediction for the excess temperature will be now compared to experimental datas.

3 Confrontation to experimental results
Here, we test the dependence of the excess temperature on the propagation length L and bias
voltage V = µ2−µ1

2
at fixed QPC transmssion (see fig. 4.7). We also consider its dependence on

the transmission of the QPC at fixed length and bias voltage (see fig. 4.8).
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3.1 Evolution with respect to bias voltage
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Figure 4.7: Evolution of the excess temperature as a function of the bias voltage applied to the
QPC, for a fixed QPC transmission τ = 0.5 (taken from [31]). The excess temperature for
different lengths are shifted vertically by 75mK for clarity. Solid lines show raw prediction for
Texc from (4.60) by taking T∞ = 1/2, and dashed lines the predictions scaled down by 13%.
Grey areas show the values of Texc accessible at fixed length and QPC transmission by varying
the coupling. All the quantities are calculated with a Fermi velocity of 105m/s.

The experimental results for Texc(∆µ, L, τ, θ) presented in 4.7 agree well with the predic-
tion (4.60) at strong coupling (θ = π

2
, or equivalently T∞ = 1

2
). The nonlinear shape of Texc at

low |V | is well reproduced, together with the characteristic relaxation length Lth.

Nevertheless, we can see that the data points fall off the grey areas that represents the pos-
sible values for Texc reachable from our model. Indeed, a systematic scaling down by 13% of
the predictions is necessary to reach agreement. This feature can be interpretated as a leak of
energy towards other degree of freedom that have not been taken into account. We suggest
that these could be the internal modes of the inner edge channel [1]. Indeed, this channel is
expected to be wider, and consequently more prone to such phenomena. Another possibility for
this energy leak has been proposed in [92]. In this paper, cooperative energy transport between
localized states is designated as being responsible for this extra energy exchange. The discus-
sion on this matter remains open, and other contributors [81] have since suggested that the
discrepancy actually comes from a renormalization of the density of states at the measurement
point by the interactions.

This discrepancy also appears in the dependance of the excess temperature with respct to
the QPC transmission which we now discuss.
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Figure 4.8: Evolution of the excess temperature with the conductance of the QPC (from [31]).
Here, the length is set to L = 30µm and the bias voltage V is V = 36µV . The solid line
represents the prediction of (4.60) for L → ∞ at strong coupling T∞ = 1/2, and the dashed
line the same prediction with a reduction by 13%.

3.2 Dependence with the QPC transmission

Concerning the dependence of the excess temperature with respect to the QPC transmission,
the prediction of eq. (4.60) reproduces quite well the

√
τ(1− τ) shape of the experimental

results presented in 4.8, still up to the scaling down evoked earlier.

An experimental test of the plasmon scattering approach would be to measure the fre-
quency dependence of the probabilities R(ω, L) and T (ω, L) for a plasmon to be transmitted
or reflected. Such a measurement could shed light on the mechanism responsible for the extra
energy loss. Moreover, it could help discriminate between our approach and an alternative
one relying on iterative corrections to free electron propagation that has been proposed by
A.M Lunde, S. Nigg and M. Büttiker in [92]. A possible setup for this kind of measurement
is described in the next part, together with the expected results as predicted by the plasmon
scattering approach.

3.3 Noise measurements to probe plasmon scattering

Being an integrated quantity, the heat current cannot bring energy resolved information. The
electronic distribution neither does. Furthermore, the difficulty to provide results concerning
this quantity both from theoretical and experimental sides does not make it an ideal quantity
to compare theory and experiment. Finite frequency measurements, on their behalf, are able to
provide energy resolved information on the dynamics and could be very helpful tool for testing
the various approaches.

Here, we propose to make use of the setup depicted in fig. 4.9 to probe in more details the
plasmon scattering approach.
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Noise measurement setup

The setup proposed in fig. 4.9 relies on finite frequency noise measurements which are now
available in the GHz domain [161, 122]. A first quantum point contact is operated in the same
way as in the setup in 1 : it creates a nonequilibrium double step distribution in the external
channel which copropagates and interacts with the electrons in the external channel. Contrary
to the setup described in the first section, here the two channels are separated by choosing an
appropriate operating point of the second quantum point contact. This makes the current noises
on each channel accessible separately. The quantities to be measured are the finite frequency
excess noises at contacts 1′ and 2′ :

S
(exc)
iα(L)

(ω) = SIα′ (ω, V )− SIα′ (ω, V = 0) , (4.61)

where V is the bias voltage at the first quantum point contact.

1 1'

2 2'3 3'

=0 =Lx xR

T

(2)

(1)

(2)

V2

V1

I2'

I1'

Figure 4.9: Noise measurement setup. The right QPC is set to perfectly reflect the internal
channel and perfectly transmit the external one. Voltage drives V1 and V2 are applied to the
ohmic contacts 1 and 2. The currents I1′ and I2′ are measured at contacts 1′ and 2′.

Expected results for correlation measurements

Figure 4.10 shows the expected results for noise measurements in the configuration depicted in
4.9, using the plasmon scattering matrix (4.43). Indeed, as shown in eq. (4.46), the excess noise
is linked to the plasmon occupation number. At x = L, the excess noises on channel 1 and 2
are given by :

S
(exc)
i1(L)

(ω) = T (ω,L)S
(exc)
i1(0)

(ω) (4.62)

S
(exc)
i2(L)

(ω) = R(ω,L)S
(exc)
i2(0)

(ω). (4.63)

Thus, the use of the expression (4.57) for T and R implies oscillations in the excess current
noise measured on output of the scattering region. The zero frequency excess noise

S
(exc)
iα(L)

(ω = 0) = e2τ(1− τ)
eV

h

(
coth (

eV

2kBT
)− 2kBT

eV

)
(4.64)
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is left untouched by the interactions since the scattering matrix for plasmons tends to the iden-
tity at low frequencies (see appendix B).
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Figure 4.10: Expected excess noise after interchannel coupling over various lengths : L = 10µm
(red),L = 20µm (blue) and L = 30µm (green). The dashed black line represents the injected
excess noise.
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4 Conclusion
In this chapter, we have developped a plasmon scattering approach to interactions in the integer
quantum Hall regime. This method will be used throughout the rest of this thesis to deal with
interaction effects.
Here, we have applied this approach to a simple model for capacitively coupled copropagating
edge channels and have obtained predictions for the excess temperature characterizing the en-
ergy exchange between the two channels.
These predictions agree well with the experimental findings [31], up to a systematic energy
loss, possibly towards other degrees of freedom (gapless additional modes due to smooth edge
confinement, for example [1]). A possible extension of this work could be for example to derive
a similar plasmon scattering theory that takes these additional modes into account.
Another approach [92] to the energy relaxation problem has been proposed by Lunde, Nigg &
Büttiker which relies on iterative corrections to free electron propagation. These corrections
are implemented by the mean of an equation of motion technique. This other proposition also
reaches good agreement with experimental data. Furthermore, it also gives predictions for the
evolution of the nonequilibrium distribution. In this work, the energy loss is accounted for by
the cooperative energy transfer into nonpropagating modes existing in the bulk of the sample.
To get a deeper insight on the relaxation process, we have proposed a finite frequency noise
measurement setup. Our design allows the measurement of all the current noises in the system
and could bring more information on the mechanism responsible for energy losses and could
help discriminating between the plasmon scattering and equation of motion approaches.

One missing point in our study is a prediction for the nonequilibrium occupation number of
electrons. The biaised quantum point contact injects a far from equilibrium distribution which
contains a macroscopic number of electrons. An adaptation of the ideas of nonequilibrium
bosonization [61, 60, 62, 59] would be necessary to deal with the interactions along the same
lines.

Our plasmon scattering approach will be used in the next chapters to study the decoherence
and relaxation of single elecron excitations. In this case, nonperturbative predictions will be
made for the occupation number (in chap.5) and the whole coherence function (in chap.6). From
these studies, we will be able to find informations on the regime in which electron quantum
optics ideas are valid.
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Decoherence and relaxation of single
electron excitations
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In chapter 2, we have left aside the problem of how interactions affect the propagation of
single electron excitations. Nevertheless, as we have shown in chapter 4, the coupling of an
edge channel to its electromagnetic environment induces energy exchange and is responsible
for the relaxation of electronic excitations. Being able to evaluate the effect of interactions
in particular situations is of crucial importance to test the validity of the electron quantum
optics paradigm described in chapter 1. In particular, it is of crucial importance to study how
interactions affect the propagation of a single electron at a given energy above the Fermi level.

Here, we address the problem of decoherence and relaxation of an energy resolved single
electronic excitation under the influence of its electromagnetic environment in the spirit of
Landau’s quasiparticle problem[83]. We will first present a general solution to this problem,
underlining the different contributions arising in the coherence function. The two following
sections will then describe the relaxation processes at low and high injection energy. In both
cases, the study will rely on analytical results and their numerical evaluation.
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CHAPTER 5. RELAXATION OF A SINGLE ELECTRON

1 Relaxation of an energy resolved single electron excitation

This part first explains and motivates the study of the relaxation of an energy resolved single
electron excitation at zero temperature. Then, details concerning the method adopted for the
resolution are given. They preceed the general results for the expected coherence function.

1.1 Statement of the problem

As stated in chapter 2, the injection of a single electron with a wave function ϕ in a quantum
Hall edge channel is equivalent to the action of the following operator on the Fermi sea :

ψ†[ϕ] =

∫ +∞

−∞
dxϕ(x)ψ†(x) . (5.1)

The density operator describing the Fermi sea and this extra particle is :

ρin = ψ†[ϕ]|F 〉〈F |ψ[ϕ] =
∫
dy+dy−ϕ(y+)ϕ

∗(y−)ψ
†(y+)|F 〉〈F |ψ(y−). (5.2)

We then assume that the edge channel can be divided in three distinct regions (see Fig. 5.1).
The central region, called the interaction region, is where the coupling to the external circuit
and/or interactions acts. The two external regions, respectively called the incoming and out-
coming regions, are located respectively before and after the interaction region with respect to
chiral electron propagation. In these two regions, electrons propagate freely. Equivalently, we
assume that in this region long range Coulomb interactions are screened by a suitable set of
electrostatic gates.
These assumptions justify the use of a scattering formalism . Furthermore, we will make use of
the bosonization technique (see previous chapter) and describe interactions effects by a scatter-
ing matrix for edge magnetoplasmons.
Both the incoming and outcoming regions are connected to Ohmic contacts at fixed chemical
potentials. Electronic excitations are generated in the input region using for example an AC
drive applied to the input Ohmic contact or by another source located deep inside the input
region. This source could for example be a tunneling tip connected to an electron reservoir at
potential V0 or a single electron source [38].

Figure 5.1: Input/output setup : the interaction region is supposed to have a finite extension,
from x = 0 to x = L. The electrons in incoming and outcoming regions propagate freely.

We are then looking for the expression of the single particle coherence G(e)
out in the outcom-

ing region Usually, it is measured at a given position and at different times G(e)(xD, t|xD, t′).
However, in the geometry considered here, it is equivalent to consider the spatial dependence
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of G(e) in the outcoming region due to the chiral relativistic motion of electrons in this region.
Furthermore, we also assume that the density of states is the one of free chiral fermions in the
outcoming region :

G(e)
out(x, y) = Tr

(
ψout(x). ρin. ψ

†
out(y)

)
(5.3)

where the ψout and ψ
†
out fields represent the fields within the outcoming region1. The density

operator ρin represents the many body state injected into the system by the source.

To illustrate the physics of electron decoherence following from our results, we will discuss
three important examples :

(i) The case of two edge channels coupled by a screened potential, as described in chapter 4.

(ii) A single edge channel coupled to a quantum RC circuit [30]. This illustration is motivated
by the modelling of an on the fly detector for qubits travelling along quantum Hall edge
channels [36]. The derivation of the associated scattering matrix is given in the appendix
B.

(iii) An edge channel capacitively coupled to a closed channel over a length l. Here, the trans-
mission coefficient is a phase : tb(ω) = eiϕ(ω) where ϕ(ω) is highly nonlinear. It will
illustrate that single electron relaxation and decoherence can also occur in the absence of
an external environment for the edge channel. This example has been studied experimen-
tally by F. Pierre and his collaborators [3] and by P. Roche and his collaborators 2

The next paragraph presents our approach to the relaxation of a single electron wavepacket.
In particular, we show how the single particle coherence function can be cast in a form anal-
ogous to (2.45) in the presence of interactions. Then, the specific case of a planewave will be
discussed in the light of these general principles.

1.2 General results for a wavepacket

Decoherence of an electronic wavepacket

Assuming that the plasmon scattering matrix S(ω) is known, the output state produced by the
interactions can be computed directly. At zero temperature, the initial state of the total system
(edge channel ⊕ environment) is factorized and can be written as :

|Ψi〉 =

[∫ ∞

−∞
ϕ(y)

(⊗
ω>0

| − λω(y)〉

)
dy

]
⊗

(⊗
ω>0

|0ω〉

)
, (5.4)

where the electronic state (5.1) has been written in bosonic terms and
(⊗

ω>0 |0ω〉
)
denotes the

vacuum state for all environment modes. The position dependent coherent state parameter is
(see chapter 4):

λω(y) = − 1√
ω
e
−i ωy

vF . (5.5)

1Formally extended to −∞ in order to be able to describe all excitations of a chiral edge channel.
2Poster presentation in the "Rencontres de Moriond" 2011 by P.A Huyn.
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CHAPTER 5. RELAXATION OF A SINGLE ELECTRON

In quantum optics, classical coherent waves sent onto a beam splitter come out as classical
coherent waves whose amplitudes are given by the transmission and reflexion amplitudes of the
beam splitter. At the quantum level, this property translates into scattering of coherent states
by the beam splitter: at a given frequency ω/2π, an initial factorized coherent state |αω〉⊗|βω〉
is sent onto the factorized coherent state |α′

ω〉 ⊗ |β′
ω〉 where

α′
ω = ta(ω)αω + rb(ω)βω (5.6a)

and β′
ω = ra(ω)αω + tb(ω)βω . (5.6b)

Applying this to the state ⊗ω>0(| − λω(y)〉 ⊗ |0ω〉) appearing in (5.4) leads to the outcoming
edge channel / environment entangled state :

|Ψf〉 =
∫
ϕ(y)

⊗
ω>0

[| − tb(ω)λω(y)〉 ⊗ | − rb(ω)λω(y)〉] dy . (5.7)

The effect of interactions on the electronic dynamics is seen through the many-body reduced
density operator for the edge channel. It is obtained by tracing out over the environment’s
degrees of freedom (see chapter 1) :

ρ1D =

∫
dy+dy− ϕ(y+)ϕ(y−)

∗Dext(y+, y−)

×
⊗
ω>0

| − tb(ω)λω(y+)〉〈−tb(ω)λω(y−)| (5.8)

where the extrinsic decoherence coefficient Dext(y+, y−) is the overlap of the environment’s
states associated with two different positions y±. Its explicit expression is:

Dext(y+, y−) = exp

(∫ +∞

0

R(ω) (e
−iω∆y

vF − 1)
dω

ω

)
(5.9)

where ∆y = y+ − y− and R(ω) = |rb(ω)|2 denotes the probability that a plasmon at energy
~ω is scattered into the environmental modes. In the case of the RC circuit, this corresponds to
photon emission into the transmission line. For the cases of coupled channels, the scattering of
a plasmon with a given energy ~ω generates a plasmon at the same energy, since the scattering
is elastic for plasmonic modes.

The plasmon transmission coefficient can be written as tb(ω) = eiωτ0T (ω), where τ0 ac-
counts for the total linear dephasing :

τ0 = −idLog(tb(ω))
dω

(ω = 0) . (5.10)

The outcoming electronic excitations in (5.8) are not bare electrons. They are collective excita-
tions of the Fermi sea corresponding to an electron dressed by particle hole pairs generated by
the interactions :

ψ̃†(y) =
1√
2πa

U ⊗

[⊗
ω>0

D(−tb(ω)λω(y))

]
(5.11a)

= ei
∫+∞
0 =(tb(ω))

dω
ω ψ†(y)

[⊗
ω>0

Dbω (λω(y)(1− tb(ω)))

]
. (5.11b)
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The linear phase eiωτ0 in tb(ω) represents a time delay for the electron, and thus does not lead
to decoherence. This linear phase reflects the ambiguity on the choice of the position y in
the decomposition (5.11b). As shown in appendix C, the appropriate choice corresponds to
tb(ω) → 1 at high energies. When the dressed electron operator (5.11b) acts on the Fermi sea,
it generates the state

ψ̃†(y)|F 〉 = ei
∫+∞
0

dω
ω

=(tb(ω)) ψ†(y±)|g(y)〉 (5.12)

where
|g(y)〉 =

⊗
ω>0

|(1− tb(ω))λω(y)〉 (5.13)

contains all e/h pairs created during the interaction between the edge channel and the environ-
ment. This leads to the following expression for the outcoming single particle coherence :

G(e)
out(x, y) =

∫
ϕ(y+)ϕ

∗(y−)〈F |ψ̃(y−)ψ†(y)ψ(x)ψ̃†(y+)|F 〉Dext(y−, y+) dy+dy− . (5.14)

We will now see how to separate this expression into two contributions with clear physical
interpretation.

Different contributions to the coherence function

An electronic wavepacket ϕ introduced on top of the Fermi sea admits the following first order
coherence function in the absence of interactions (see chapter 2, eq. (2.45)) :

G(e)(x, y) = G(e)
µ (x, y) + ϕ(x)ϕ∗(y) . (5.15)

The aim of the following paragraphs is too show that an analogous separation can be done also
in the interacting regime. Such a decomposition will make the evaluation of G(e)

out in Fourier
space easier, and it will also provide a clear physical interpretation to the two arising contribu-
tions.

A generalized Wick theorem proved in appendix C naturally provides a suitable decompo-
sition of the coherence function. It shows that G(e)(x, y) can be decomposed into a wavepacket
contribution G(e)

wp(x, y) analogous to the second term in (5.15) and another which we call the
modified vacuum contribution and denote by G(e)

mv(x, y), which is the analogue of G(e)
µ (x, y) in

the interacting regime.

Wavepacket contribution

Detailed computations given in appendix C lead to the following exact expression for the
wave packet contribution to G(e)

out(x, y):

G(e)
wp(x, y) =

∫
ϕ(y+)ϕ(y−)

∗ 〈ψ(y−)ψ†(y)〉〈ψ(x)ψ†(y+)〉Cy+(x, y)Cy−(y, x)
∗ dy+dy−(5.16a)

Cy+(x, y) = exp

{∫ +∞

0

dω

ω
(1− tb(ω))

[
e
− iωy+

vF

(
e

iωy
vF − e

iωx
vF

)]}
(5.16b)

In this expression, 〈ψ(x)ψ†(y+)〉F and 〈ψ(y−)ψ†(y)〉F are free electron propagators. The in-
teraction effects are contained in the exponential factors Cy+(x, y) and Cy−(y, x)

∗.
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Assuming that the incident wavepacket is still well above the Fermi sea after its interac-
tion with the environment, the two point functions 〈ψ(x)ψ†(y+)〉 and 〈ψ†(y)ψ(y−)〉 can be
approximated by their free particle expressions δ(x− y+) (resp. δ(y − y−)) in (5.16a).
This heuristic argument leads to a simplified expression for the wave packet contribution to
G(e)
wp(x, y) which is expected to be valid as long as dissipation does not bring the incident wave

packet onto the Fermi surface:

G(e)
wp(x, y) ' Dtot(x, y)ϕ(x)ϕ(y)

∗ , (5.17)

where

Dtot(x, y) = exp

(∫ +∞

0

2<(1− tb(ω))(e
−i

ω (x−y)
vF − 1)

dω

ω

)
. (5.18)

The expression above can be interpreted as an effective decoherence coefficient that describes
dissipative effects on the injected particle. This decoherence coefficient is indeed the product
Dtot(x, y) = (Dext × Dint)(x, y) of the extrinsic contribution due to the external environ-
ment (5.9) and of the intrinsic decoherence coefficient Dint(x, y) = 〈g(y)|g(x)〉 whose explicit
expression is given by:

Dint(x, y) = exp

(∫ +∞

0

|1− tb(ω)|2 (e
−i

ω (x−y)
vF − 1)

dω

ω

)
. (5.19)

This intrinsic decoherence coefficient accounts for the loss of coherence associated to the parti-
cle/hole pairs generated in the Fermi sea by the interactions. The total decoherence coefficient
(5.18) is nothing but the influence functional introduced in chapter 1 which contains the ef-
fects of the coupling to the external environment and of the many body dynamics. In terms of
impedances, the total decoherence coefficient (5.18) depends on the total admittance <(1− t)
of the electromagnetic environment, including the contribution of the Fermi sea.
In this regime, the Fermi sea appears as an extra dissipation channel which must be taken into
account into an effective environment in the spirit of the dynamical Coulomb blockade theory
[72, 33]. Note that here, this picture emerges in the high energy limit, when the extra-particle
does not relax down to the Fermi surface. This case describes the electron quantum optics
paradigm in the presence of interactions (see chapter 1). The section 3 will show under which
conditions this picture is valid in the chosen examples.
Nevertheless, in general, the indiscernability of electrons plays an important role and as a con-
sequence the Fermi sea cannot be viewed as an independent dissipation channel. However, the
general expression (5.16) contains all these effects and properly accounts for the effects of the
Pauli principle.

The manifestations of these two limiting regimes in the occupation number for the relax-
ation of the quasiparticle will be analyzed in detail in section 3. We will now discuss the
remaining contribution to the single particle coherence function.

Modified vacuum contribution

As shown in appendix C, the modified vacuum contribution can always be written as aris-
ing from an effective many body operator built out of plasmonic coherent states |g(y)〉 (see
Eq. (C.35)):

ρmv[ϕ] =

∫
ϕ(y+)ϕ(y−)

∗〈ψ(y−)ψ†(y+)〉
|g(y+)〉〈g(y−)|
〈g(y−)|g(y+)〉

dy+dy− . (5.20)
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The physical meaning of eq. (5.20) is the following: after travelling through the interaction re-
gion, the quantum coherences of the initial wave packet have been imprinted into the modified
vacuum through the association of the plasmonic coherent state |g(y)〉 to every position y.

Using Eq. (C.29), the modified vacuum contribution G(e)
mv(x, y) is of the form

G(e)
mv,ϕ(x, y) = G(e)

µ (x, y)Fϕ(x− y) , (5.21)

where Fϕ(x − y) can be interpreted as the decoherence coefficient for the Fermi sea induced
by the extra electron. Its expression is given by:

Fϕ(x, y) =

∫
ϕ(y+)ϕ

∗(y−)〈ψ(y−)ψ†(y+)〉F Cy+(x, y)Cy−(y, x)
∗ dy+dy− . (5.22)

where Cy+(x, y) is defined by eq. (5.16b).

Having identified the different contributions in the outcoming coherence function let us
now discuss in more details the case of an energy resolved single electron excitation.

1.3 Relaxation of a single electronic excitation

Let us now turn to the problem of the relaxation of an energy resolved single electron excita-
tion originally considered by Laudau in Fermi liquid theory [83]. In this theory, a system of
interacting fermions is mapped onto a noninteracting Fermi gas of quasiparticles which bear
the same properties as bare fermions except for a renormalized mass. In particular, this theory
assesses the survival of the quasiparticle close to the Fermi level. Here, the results that we
present bring a solution to this issue in the context of chiral quantum Hall edge channels.

To do so, we consider a single electronic excitation c†k0at energy ε0 = ~vFk0 above the
Fermi level :

E

0

E
0

|in〉 = c†k0 |F 〉. (5.23)

In position space, it is equivalent to the introduction of an electron with
a plane wave wavefunction ϕk0 :

|in〉 = ψ†[ϕk0 ]|F 〉 =
∫
eik0x ψ†(x)|F 〉 dx .. (5.24)

As can be explicitely checked using eq. (5.14) this restores the translation invariance of the
single electron coherence G(e)

out(x, y) since ϕk0(y+)ϕk0(y−)
∗ now only depends on y+ − y−.

Moreover, both the wavepacket and modified vacuum contributions only depend on x − y in
this case, as pointed out in chapter 2. In the stationary state under consideration here, the
coherence lies in the k− = k+ line in fig.2.5). Translation invariance of G(e)(x, y) translates
into the absence of coherences in momentum space for electrons: 〈c†kck′〉 = 0 for k 6= k′.

At this point, one should remember that the wavepacket ϕk0 is not normalized. To regu-
larize the infrared behaviour of the quantities under consideration, we assume that the edge
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channel has a finite length L. As a consequence, ϕk0 is divided by
√
L and the incoming

coherence is found to be

G(e)(x, y) = 2πLG(e)
µ (x, y) + eik0(x−y) . (5.25)

In this expression, the L factor reflects that we are studying single to few electron excitations on
top of the Fermi sea which contains a macroscopic number of electrons. In fact, this approach
is perturbative in the number of excess electronic excitations introduced on top of the Fermi
sea but nonperturbative in the interactions.
Rewriting eq. (5.25) in Fourier space makes this point explicit:

L−1G(e)(x, y) =

∫
eik(x−y)

(
n̄µ(k) + L−1δ(k − k0)

)
dk . (5.26)

In the previous equation, n̄µ(k) is the equilibrium occupation number for a Fermi sea at chem-
ical potential µ .
In the same way, the outcoming electron distribution will consists into the Fermi sea and, on
top of this, a 1/L perturbation that reflects the relaxation of the extra single electron excitation :

G(e)
out(x, y) = L

∫
eik(x−y)

(
n̄µ(k) + L−1δnk0(k)

)
dk (5.27)

In the equation above, δnk0 is the deviation of the occupation number from the equilibrium. It
is the same quantity as in chapter 3, where the supplementary index k0 recalls its dependence
on the initial wavevector.
Thus, taking the Fourier transform with respect to x − y of G(e)

out(x, y) for incoming ϕk0 and
substracting the Fermi sea contribution gives a direct access to the single electron relaxation
δnk0(q). This quantity satisfies the sum rule∫

δnk0(q) dq = 1 (5.28)

which reflects particle conservation.

At zero temperature, no energy can be given to the electron and therefore, one expects
δnk0(k) = 0 for k > k0. Note that at zero temperature, δnk0(k) also vanishes for k < −k0
since the incoming extra electron has just enough energy to draw one electron frommomentum
−k0 to the Fermi level. As we shall see, δnk0(k) can be decomposed into a quasi-particle peak at
k = k0 representing elastic scattering through the interaction region and a regular part δnr

k0
(k)

representing both the electron relaxation as well as the heating of the Fermi sea (see fig.5.2):

δnk0(k) = δnr
k0
(k) + Z(k0) δ(k − k0) (5.29)

where Z(k0) denotes the elastic scattering probability for an electron at incident energy ~vFk0.
The regular part is positive for k > 0 and negative for k < 0 since in this case, electrons

below the Fermi level can only be extracted through electron/hole pair creation. The goal is
then to determine Z(k0) and δnr(k).
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Figure 5.2: Sketch of the excess occupation number. (a) Incoming single electron coherence
for an initial energy resolved single electron excitation above the Fermi level. (b) Outcoming
single electron coherence δnk0(k): at k = k0, the quasiparticle peak comes is the contribu-
tion of electrons ying across the interaction region without loosing energy (elastic scattering
probability).

Results

As shown in appendix C, explicit expressions can be obtained for the wavepacket and modified
vacuum contributions to the Fourier transform of G(e)

out(x, y)with respect to x−y. The extensive
Fermi sea contribution that has to be substracted to obtain δnk0(q) comes from the modified
vacuum contribution.

The complete result for δnk0(q) is the sum of a wavepacket contribution δn(wp)
k0

(q) and

of a modified vacuum contribution δn(mv)
k0

(q) which can be exactly computed from auxiliary
functions A±(q) which are solutions of the following equation :

∓ q A±(q) = 1− t(−vF q) +
∫ −q

0

(1− tb(vFk))A±(k + q) dk . (5.30)

More precisely, the expressions of the two contributions δn(wp)
k0

(q) and δn(mv)
k0

(q)are :

δn
(wp)
k0

(q) = |Z(k0)|2δ(q − k0) (5.31a)

+ 2<(Z(k0)J
∗(q − k0)) +

∫
J(p)∗J(q − k0 − p) dp (5.31b)

δn
(mv)
k0

(q) =

∫ +∞

q

G(k0, k)
dk

2π
(5.31c)

where Z(k0), J and G are expressed in terms of the A±(q) (see appendix C). The complete
expressions given in appendix C show that, as expected δnk0(q) has a discontinuity at q = 0
associated with the Fermi level and also a delta singularity at q = k0 associated with the elastic
scattering of the extra electron through the interaction region.

Elastic scattering probability

At zero temperature, a quasi particule peak of the form Z(k0) δ(q − k0) subsists. The weight
Z(k0) represent the probability for the electron to remain at the same energy. This is the am-
plitude for elastic scattering of the electron across the interacting region. Its explicit expression
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is :

Z(k0) = |Z(k0)|2 =
∣∣∣∣1− ∫ k0

0

A−(k)
dk

2π

∣∣∣∣2 . (5.32)

This result can indeed be recovered more directly. Let us consider the amplitude for a single
electron excitation of momentum k0 to be scattered elastically. This amplitude is nothing but
the scalar product 〈out|in〉 where the |in〉 and |out〉 states take into account the environmental
modes :

|in〉 =

∫
dy+ e

ik0y+

[⊗
ω>0

| − λω(y+)〉 ⊗ |0ω〉

]
in

(5.33)

|out〉 =

∫
dy+ e

ik0y−

[⊗
ω>0

| − λω(y−)〉 ⊗ |0ω〉

]
out

(5.34)

Indeed, this quantity represents the overlap between an energy resolved electron in the outcom-
ing region c†k0,out|F 〉 and the stateUintc

†
k0,in

|F 〉, whereUint is the evolution operator accounting
for the interactions.

Expressing |in〉 in terms of the out modes leads to:

|in〉 =
∫
dy+e

ik0y+

[⊗
ω>0

| − tb(ω)λω(y+)〉 ⊗ | − r(ω)λω(y+)〉

]
out

(5.35)

and using eq. (C.19) and |r(ω)|2 + |tb(ω)|2 = 1, the scalar product becomes:

〈out|in〉 =
∫
dy+dy−e

ik0(y+−y−) exp

(∫ +∞

0

(tb(ω)e
i ω
vF

(y−−y+) − 1)
dω

ω

)
(5.36)

The scalar product is proportional to size of the system as expected from the norm of the
wavepacket ϕk0 . Dividing by this divergent normalization factor leads to the amplitude for the
electron to scatter elastically:

Z(k0) =

∫
e−ik0z exp

(∫ +∞

0

(tb(ω)e
i ωz
vF − 1)

dω

ω

)
dz . (5.37)

This expression can be shown to be equal to (C.46). This discussion provides a supplemen-
tary interpretation to Z(k0) as the overlap of the input and output states of the system made of
the edge channel and the environment.
The elastic scattering probability also appears naturally as the reduction factor of the visibility
in Mach-Zehnder experiments (see chapter 1) for energy resolved single electron excitations.
In this context, the interference terms in this case are multiplied by products of amplitudes of
the form (5.37). The effect of the coupling to the environment is similar to the one of a voltage
probe [16], which has been illustrated experimentally in [134]. In this work, the reduction of
the visibility of the interference fringes when the gate voltage is increased is understood as the
lowering of the probability to go out of the interferometer without transiting to the voltage
probe.

In the next two sections, a detailed analysis of the low and high energy regimes will be
presented. The discussion will focus first on the weight of the residual quasiparticle peak and
then on the full electron occupation number δnk0 .
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2 Low energy relaxation

The plasmon scattering coefficients for the models under consideration here are derived in
appendix B. Each model is characterized by a set of dimensionless parameters :

RC circuit The different regimes of this model are parametrized by R = R/RK , which com-
pares the resistance of the circuit to the resistance quantum, and α = l/vFRKC which
compares the time of flight l/vF to the characteristic response time of the circuit.

Coupled channels The coupling strength is represented through an angle θ ∈ [0, π/2], and
the energies will be measured in units of ~v/L.

Closed channel In this model, the propagative and closed channel are capacitively coupled by
short range interactions. Once again, the angle θ accounts for the strength of interactions.
The new dimensionless parameter that comes into play is the ratio between the dipolar
and charge mode velocities γ = v+/v− ≤ 1, which represents the dephasing between
the eigenmodes after a copropagation length L.

The real and imaginary parts of these transmission coefficients for different values of the
parameters are represented in fig.5.3.
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Figure 5.3: (a) Real (blue) and imaginary part (red) of the transmission coefficient for the RC
circuit for α = 1/2, and low resistance (R = 0.002 or R = 50Ω ,solid lines) or high resistance
(R = 0.5 or R = RK/2,dashed lines). From the detection point of view, a fast detector is ex-
pected to have a short response time compared to the time of flight L/vF under the capacitor’s
influence. This coresponds to high values of α. (b) Real (blue) and imaginary part (red) of the
transmission coefficient for coupled channels for low coupling (θ = π/10, solid lines) or strong
coupling (θ = π/2, dashed lines).(c) Nonlinear part of the phase in the case of a closed loop
channel for γ = 1/5. The green curve corresponds to θ = π/10 (low coupling) and the orange
one to strong coupling θ = π/2.

Before going any furher, two remarks on these transmission coefficients must be made:

• The scattering for coupled edge channels (ν = 2 and closed channel cases) does not
present a finite spectral bandwidth 3.

3This observation is not surprising, since these transmission coefficients are obtained through low energy
considerations or a short range interaction model, see appendix B.
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• The transmission for the RC circuit has richer features from this point of view : the low
R scattering converges rapidly to 1 but at higher relaxation resistance, the scattering
matrix does not trivializes on the same energy scales.

2.1 Elastic scattering probability

At low energy, the elastic scattering probablity tends to one : the quasiparticles are not sensi-
tive to decoherence and relaxation mechanism when they are injected close to the Fermi level,
as expected when metallic reservoirs dominate the dynamics. This common feature to all the
models under consideration in this thesis originates in the low energy behaviour of the scatter-
ing matrix, which tends to the identity as ω → 0 4.

Circuit equivalent at low energy

At low energies, it is interesting to describe the quantum circuit formed by the edge channel
coupled to the environment in terms of discrete circuit elements. This discrete circuit elements
approach was developed by Prêtre, Thomas & Büttiker in [128, 18] to study quantum transport
at finite frequency. It is valid as long as the frequency is low compared to the inverse of the
longest time of flight in the system. This description is contained within the low frequency
expansion of the admittance y(ω) = 1− eiωl/vtb(ω) which is of the form

y(ω) = −iRKCµω+RKRq(Cµω)
2−i(RKCµω)

3

[
Lq/Cµ

R2
K

−
R2

q

R2

]
+y4(RqCµω)

4+. . . (5.38)

where C−1
µ = 1

C
+ vFRK

l
denotes the electrochemical capacitance of the complete circuit that

takes into account the density of states, Rq = R + RK/2 its total relaxation resistance and
Lq its total kinetic inductance that accounts for the dynamical effects [22, 127]. These three
parameters are sufficient for describing the expansion up to order three. Pushing the expansion
one step further requires one extra parameter y4.
This approach is very similar to the one adopted by Blanter, Hekking and Büttiker [11], in which
the finite frequency admittance is related to the interaction parameter of the Luttinger liquid.
In this work, it is suggested that a better understanding of electron/electron interactions can be
reached via low frequency admittance measurements. The recent progresses in this direction in
the GHz range [46, 45] have already confirmed earlier predictions on the quantum RL and RC
circuits, and provide a good opportunity to probe experimentally plasmon scattering properties.

R R RK/2

C Cq

Lq

Figure 5.4: Sketch of the quantum circuit equivalent to the system comprising the edge channel
and its environment. Rq is the total relaxation resistance, Cµ the quantum capacitance, and Lq

the kinetic inductance.

4This comes from the capacitive capacitive coupling, see appendix B.
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As shown in appendix C, the single electron coherence does not change when multiplying
tb(ω) by a phase linear in ω. Therefore, one could replace tb(ω) by teff(ω) defined by

1− teff(ω) = eiCµRKωy(ω) . (5.39)

The low frequency expansion of the admittance (5.38) then leads to a low frequency expansion
for teff(ω)which can in turn be used to obtain an expansion ofA−(q) in powers of−q for q < 0.

Using the expression for the elastic scattering probability from A(q) as detailed in the ap-
pendix C finally leads to the low energy expansion of the elastic scattering probability in powers
of RKCµω of the form :

Z(ω) = 1− Z2(RKCµω)
2 − Z4(RKCµω)

4 − . . . (5.40)

where the coefficients are given by (Rq = R +RK/2):

Z2 =
R

RK

=
Rq

RK

− 1

2
(5.41a)

Z4 =
1

2

(
<(y4) +

5

12

(
Rq

RK

)2

+
1

12

Rq

RK

− Lq/Cµ

R2
K

− 1

96

)
. (5.41b)

This shows that as soon as R 6= 0, the low energy inelastic scattering is dominated by photon
emission within the external circuit. The probability for inelastic scattering at a given energy
ε thus scales as ε2 which shows that the quasi particles survives down to the Fermi sea. This
result is universal : it does not depend on the particular form of the scattering coefficient.
Furthermore, this simple result can be recovered by a perturbative expansion at first order in
1− tb, which gives that Z(ω) ' 1− t′′b (0)ω

2.

In the case of a passive gate described as an RC circuit withR = 0, the relaxation resistance
is given by the relaxation resistance of the edge channel: Rq = RK/2 and this leads to Z2 = 0.
The kinetic inductance is also fixed and given by Lq = R2

KCq where Cq =
l

vFRK
= le2ν is the

edge channel’s quantum capacitance (ν is the density of states).
The y4 coefficient is also determined from the plasmon scattering matrix and substituting these
parameters shows that the fourth order vanishes. Indeed, inelastic scattering arises at order six:

1− Z(ω) =
11 (C/Cq)

2

25920
(ωRKCµ)

6 . (5.42)

As expected, the passive gate leads to a much weaker low energy inelastic scattering than a dis-
sipative external circuit. Contrary to the expansion at second order, this result is not universal,
since it still depends on the geometrical capacitance C .

In the case of coupled channels, fig. 5.5(b) shows that the elastic scattering probability de-
cays quadratically at low energy for all coupling strengths. As in the case of the quantum RC
circuit, the deviation to the quadratic approximation appears more clearly for lower couplings
as seen on the red curve in fig. 5.5(b). It could also be seen on this graph that the relaxation
resistance increases with the coupling strength, as expected. In the strong coupling case, the
equivalent resistance for the conductor made of the two channels is RK

4
corresponding to the
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parallel association of two resistances equal to RK

2
.

For the case of a closed channel, the resonances observed in the scattering phase 5.3 are
responsible for brutal decays of the elastic scattering probability at multiples of the resonance
frequency v+/2πL. The height of this decay increases with the coupling strength, as expected.
As long as the initial energy is lower than the associated energy scale, the elastic scattering
probability remains close to one : the quasiparticle remains untouched at low energy.
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Figure 5.5: (a) Low energy behaviour of the elastic scattering probability in the case of the
quantum RC circuit for a passive gate (blue) and R = 0.5. Dots represent the low energy
expansions in both cases. (b) Low energy behaviour of the elastic scattering probability for the
coupled channels model at low (θ = π/10,red) and strong coupling (θ = π/2, green). Dots
represent the low energy expansion (5.40) at order 2. (c) Elastic scattering probability for the
coupling to a closed channel at low (θ = π/10, yellow) and strong coupling (θ = π/2,violet),
and γ = 1/5. The dots show the series expansion up to order 6. The quick departure from the
low energy expansion is due to the resonance at L/vF .

2.2 Occupation number

Relaxation close to the Fermi level can be described using of a simple model which relies on
the following two hypothesis :

(i) The Fermi sea is left unaltered by the quasiparticle relaxation : it does not participate to
decoherence.

(ii) Quasiparticle relaxation’s properties are described by the probability density p(q) to lose
momentum q.

Formally, these assumptions are equivalent to assuming that the regular part of the excess
occupation number δnk0(k) is nonzero only for k ∈ [0, k0], and that it is given by p(k0 − k).
Making use of the normalization condition∫

δnk0(k) dk = 1, (5.43)
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we find that the probability density is given by the derivative of the elastic scattering probabil-
ity :

p(q) = −Z ′(q). (5.44)

Thus, the excess occupation number is given by5 :

δnk0(k) = −Z ′(k0 − k) + Z(k0)δ(k − k0). (5.45)

The figures 5.6 and 5.7 display the low energy behaviour of the excess occupation number
for the quantum RC circuit and the coupled channels, in different regimes. The bosonization
prediction and the phenomenological expression (5.45) agree well for small injection energies
in both cases. The only difference being that the agreement remains at higher energies in low
dissipative cases (low resistance or weak coupling between the edge channels). Nevertheless,
it is always possible to find an appropriate regime in which the phenomenological expression
(5.45) describes the relaxation.
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Figure 5.6: (a) Low energy limit of the occupation number for R = 50Ω (R = 0.002). Dots
represent the low energy phenomenological approximation (5.45). (b) Low energy behaviour of
the occupation number for the coupled channels model, at low coupling θ = π/10.

In fig. 5.8, the excess occupation number is depicted at low and strong coupling in the closed
channel case. In this regime, we can observe no major decrease of Z(ε0) (see fig. 5.5), which
corresponds here to a small creation of electron hole pairs, both in the relaxation tail of the
quasiparticle and at the surface of the Fermi sea. This is due to the fact that at low energy, no
resonance in the scattering phase has been encountered. When the initial energy of the electron
does not reach this energy scale, the excess quasiparticle is almost left untouched. This feature
has been probed experimentally in the relaxation experiments described in chapter 4. For this
model, the energy associated to the first phase resonance in the plasmon scattering defines the
low energy regime [3].

2.3 Conclusion

At low injection energies, relaxation is frozen by the Pauli principle. This result appears both
in the elastic scattering probability (which tends to unity at low energies) and in the occupation

5This expression can also be reached by a low initial energy expansion of (5.31a), see appendix C.
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Figure 5.7: (a) Low energy limit of the occupation number for R = RK

2
(R = 0.5). Dots

represent the low energy phenomenological approximation (5.45). (b) Low energy behaviour of
the occupation number for the coupled channels model, at strong coupling θ = π/2.
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Figure 5.8: Excess occupation number for the closed channel model at low injection energy. At
low (θ = 0.1) and strong (θ = π/2) coupling. γ = 0.2 in both cases

number. Close to the Fermi level, the relaxation properties are incoded in the elastic scattering
probability and also can be understood through a discrete circuit elements model.

The results at low energy are universal, provided that the injection energy is small com-
pared to the smallest energy scale appearing in plasmon scattering.
The high energy regime displays a richer behaviour, since the results drastically depend on the
whole structure of plasmon scattering, and the values of the parameters. The next section will
present the different situations that can be encountered at high injection energy.
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3 Relaxation at higher energy

In this section, we illustrate the two possible scenarii on the same examples as before. The two
limiting situations at high injection energy have already been presented in section 1, and are :

(i) The dynamical Coulomb blockade like regime, where the relaxation tail of the quasipar-
ticle can be separated from the particle/hole pairs at the surface of the Fermi sea. In this
case, the coherence function in position space is of the form (5.17).

(ii) The "quasiparticle drowning" case, where the two contributions to the occupation number
cannot be separated.

3.1 The dynamical Coulomb blockade regime

When the coupling between the edge channel and its environment is sufficiently low and pro-
vided that the bandwidth of the plasmon scattering is finite, the behaviour at high injection
energy limit reaches the limiting case formulated by (5.17) in section 1. In this case, the value
of the elastic scattering probability at infinite energies is finite (see fig 5.5).

The curves in 5.9 represent δnk0 at high k0. In the case of the quantum RC circuit at
low resistance the coupling to the environment is sufficiently weak and the bandwidth of the
scattering is finite so that a simple high energy limit can be reached : the quasiparticle is
still defined at high energy and its relaxation tail matches the Fourier transform of the total
decoherence coefficient (5.18).
This is no longer the case when the environment consists of a copropagating edge channel. In
this situation, the bandwidth of the scattering is not finite and the quasiparticle’s relaxation tail
merges with the particle/hole pairs at the surface of the Fermi sea, even at low coupling.

3.2 Drowning of the quasiparticle

This paragraph illustrates the consequences of the strong coupling of the edge channel to its
environment. In this case, the electron quantum optics limit cannot be reached. The excess
quasiparticle is merged into the particle/hole pairs generated at the surface of the Fermi sea by
the interactions. The electron gets literally drown into the Fermi sea.

This regime is illustrated in fig. 5.10 and 5.11 in the same cases as before. In the three cases,
the regular part of the occupation number cannot be split into clearly separated contributions.
This situation is uncompatible with the electron quantum optics paradigm, since the excess
quasiparticle cannot be singled out after its travel through the interaction region. In the case of
coupled channels at strong coupling the Fourier transform of the total decoherence coefficient
(5.17) is negligible compared to the bosonization prediction (see fig.5.10(b)). Relaxation in this
case can only be understood by the mean of the complete expressions provided in section 1.

For the closed channel model, the high energy regime is reached when the initial energy
exceeds a few resonance energies ~vF

l
. Even if illustrated at high coupling only in fig. 5.11, the

result at high energy in this case is general : the dynamical Coulomb blockade regime cannot
be reached. Indeed, the scattering has infinite bandwidth and each resonance is responsible for
the creation of particle hole pairs in the Fermi sea. Thus, at high energies, the initial excess
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Figure 5.9: (a) High injection energy limit of the occupation number forR = 50Ω (R = 0.002).
(b) Low energy behaviour of the occupation number for the coupled channels model, at low
coupling θ = π/10. In both cases, the dashed line represents the Fourier transform of the high
energy approximated expression (5.17).

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5  0

δn
(k

)

(k-k0)l

(a) RC circuit

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-8 -6 -4 -2  0

δn
(ε

)

(ε-ε0)L/−hv
(b) ν = 2

Figure 5.10: (a) High injection energy limit of the occupation number for R = RK

2
(R = 0.5).

(b) Low energy behaviour of the occupation number for the coupled channels model, at strong
coupling θ = π/2. In both cases, the dashed line represents the Fourier transform of the high
energy approximated expression (5.17).

quasiparticle is destroyed.
Furthermore, this example illustrates the possibility for decoherence and relaxation even in the
absence of an external environment. This would also be the case for intrachannel interactions :
these would imply a nonlinearity in the dispersion relation (see appendix B), and consequently
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Figure 5.11: Excess occupation number for the closed channel model, at increasing injection
energy, for strong coupling θ = π/2 and γ = 0.2. The dashed line indicates the fourier
transform of the total decoherence coefficient.

a nonlinear propagation phase (see appendix B). Such a model has been investigated in the
high energy limit (ie for an initial energy above the energy scale associated to the interaction
range) in [115, 114, 69]. In particular, in [114], a universal power law decay of the spatial coher-
ence at zero temperature is predicted. The approach adopted in these works is very similar to
the dynamical Coulomb blockade regime described above, in the sense that the supplementary
electron interacts with a fluctuating bath of electrons in the Fermi sea.

The different behaviours previously described can be understood through an interpretation
in terms of energy repartition between the edge channel and the environment, as shown in the
next section.

3.3 Energy interpretation

The conclusions on quasiparticle’s survival can be described in energy terms. This discus-
sion generalizes the low energy circuit expansion for the elastic scattering probability, which
concludes to the survival of the quasiparticle close to the Fermi level under the assumptions
adopted here 6 .

Up to now, at high energy, it has not been possible to make general expansions of the elastic
scattering probability since its behaviour depends on the complete structure of the scattering
matrix for plasmons. Nevertheless, numerical evaluations of Z(ε0) can help to characterize a
model depending on its parameters’ values.

The injection of a single electron with perfectly resolved energy is equivalent to an energy
injection of Einit = ε0 = ~ω0. This energy can be understood as a sum over plasmons energies,

6The crucial hypothesis being the low energy limit of the scattering matrix, which must tend to the identity.
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since 〈b†ωbω〉 = 1
ω
for 0 < ω ≤ ω0 :

Einit =

∫ ω0

0

dω〈b†ωbω〉~ω . (5.46)

The plasmon modes within the outcoming region are related to the incoming ones via the
plasmon scattering matrix therefore the energy after the interaction region splits into two con-
tributions :

Eafter = Einit = Eec + Eenv, (5.47)

where the edge channel (Eec) and environment (Eenv) energies have the following expression,
still in the case of an energy resolved single electron excitation :

Eec = ~
∫ ω0

0

dω|tb(ω)|2 (5.48)

and Eenv = ~
∫ ω0

0

dω|rb(ω)|2. (5.49)

The evaluation of the energy sent into the environment gives a first clue : if the quasiparti-
cle experiences massive energy emission towards the environment during the scattering, it will
have only a small probability to come out untouched of the interacting region.
The energy stored in the edge channel can be split into two contributions, one corresponding
to the quasiparticle, and another representing the particle/hole pairs in the Fermi sea. Conse-
quently, the fraction of the energy which leaks towards the effective environment (external and
the particle/hole pairs) is given by 1 − Z(ε0), and is depicted in fig. 5.12 for incresing circuit
resistance, as a function of the injection energy and α = l

vFRKC
.

The analysis of the inelastic scattering probability gives a criterion to determine wether the
electron quantum optics limit is reached at high energy or not : if a region in parameter space
corresponds to a nonzero elastic scattering probability at infinite energy, then the dynamical
Coulomb blockade limit in section 3 can be reached. More precisely, if we consider the elastic
scattering probability at very high energy :

Z(ε0 → ∞) = exp

(
−
∫ ∞

0

dω

ω
<(y(ω))

)
, (5.50)

where y(ω) is the dimensionless admittance. If the dissipative part of the admittance is such
that the integral on the rhs of (5.50) is finite, then the quasiparticle survives at high energy,
and its relaxation properties can be understood via the effective Dynamical Coulomb blockade
approach.

At small resistance, a low coupling regime can be found, which corresponds to a finite
elastic scattering probability at high energy for nonvanishing α. This suggests the existence of
a transition in the behaviour of the model at high resistance. In this case, it is no longer possible
to find a value of α for which the elastic scattering probability does not vanish at high energy.
Conversely, in this situation, the total energy available in the initial state is totally dissipated
towards the external environment and the particle/hole pairs in the Fermi sea.
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Figure 5.12: Energy fraction send to the effective environment (external circuit and edge chan-
nel) for the RC circuit model for decreasing resistance from (a) to (d)

4 Conclusion

In this chapter, we have studied the effects of interactions on energy resolved single electron
excitations. With the help of the bosonization formalism, nonperturbative evaluations of the
occupation number have been made for any of injection energy. Limiting regimes at low and
high energies have been discussed and characterized. At low energy, a phenomenological model
describes the relaxation properties in which the Fermi sea remains spectator. In this case we
are left with a decoherence scenario that can be described using a discrete circuit elements ap-
proach in the spirit of Prêtre Thomas & Büttiker [18, 128]. In this regime, the electron relaxation
is blocked at very low energy (Pauli blockade) in accordance to what should be expected when
Fermi liquid reservoirs dominate the dynamics.

105



CHAPTER 5. RELAXATION OF A SINGLE ELECTRON

The situation at high energy is more involved. For interactions leading to a scattering ma-
trix with a finite bandwidth, if the injection energy is sufficiently high, the quasiparticle deco-
heres under the influence of the environment made of the external circuit and the particle/hole
pairs generated in the Fermi sea. The relaxation tail of the quasiparticle does not merge with
the particle hole pairs at the Fermi level. The relaxation properties are described by an effective
model similar to the dynamical Coulomb blockade theory. If the environment does not have a
finite bandwidth, the quasiparticle gets drown into the Fermi sea. In this case, no quasiparticle
exists at high energy. The typical situations exhibiting this behaviour is the capacitive coupling
of ν = 2 edge channels : at low energy, the quasiparticle is well defined, but at high energy,
the quasiparticle decays over a length inversely proportional to its energy.

The results obtained from bosonization interpolate between these two limiting regimes and
are valid for all injection energy. They are also nonperturbative in the interactions.

From the experimental point of view, the results presented here are relevant for the re-
laxation of a state emitted by the single electron source depicted in chapter 3 operated in its
optimal regime. The predictions could be measured by the mean of the HBT tomography pro-
tocol proposed in chapter 3, or by a spectroscopy measurement.

In the last chapter of this manuscript, we will study the effect of the coupling of the edge
channel to a linear environment on time resolved excitations for chiral quantum Hall edge
channels. This study will show quantitative predictions for interaction induced particle/hole
pair generation, together with the interplay of interactions and the Pauli principle in this case.
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Decoherence and relaxation of time
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This last chapter discusses the relaxation of time resolved single electron excitations. These
electronic excitations have been described by Levitov, Lee and Lesovik [87] and were further
studied by Keeling et al. [76]. They are eigenstates of the total number of electron excitations
N+ generated by the application of a classical voltage of appropriate shape on an ohmic contact.
They are accompanied by minimal particle/hole pairs. Contrary to the previous chapter, the
electronic excitations we will be dealing with are not energy resolved and are indeed produced
close to the Fermi level. These excitations being accompanied by minimal charge fluctuations,
they are appropriate tools to reveal interaction induced particle/hole pairs production processes.
A first part will detail the properties of these excitations, including their coherence properties
and discuss how they could be generated. Then, we will see how the effects of interactions can
be treated exactly. We then illustrate the effect of the interactions on the coherence function and
see how information concerning the electron/hole pair production can be recovered through the
HBT setup proposed in chapter 3.
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1 A source of minimal excitations
This section describes the source of minimal excitations proposed in [87] by the mean of the
coherence function of its emitted state. We first describe the action of a classical voltage on
an edge channel, before specifying the discussion to a Lorentzian pulse of quantized action.
Then, the properties of the excitations generated by these pulses will be discussed within the
coherence function formalism.

1.1 Driving an edge channel with a classical voltage source

General case

The generic setup consist in a classical voltage V (t) driving an ohmic contact or a metallic
gate capacitively coupled to the edge channel. This classical potential couples to the charge
density and thus becomes the analogue of a classical force for a quantum harmonic oscillator.
Consequently, the action of such a classical drive is to generate a plasmonic coherent state in
the edge channel. As mentioned in appendix B, the parameter of this coherent state is found
solving the equations of motion for the bosonic field φ and is :

µω = − e

h

V̂ω√
ω
. (6.1)

Using the general fomulae given in appendix C, the coherence function for a coherent state
can be evaluated, and gives :

G(e)(x, y) = G(e)
F (x, y) exp

(
4i

∫ ∞

0

dω√
ω
<
(
µωe

iωx̄/vF
)
sin

(
ω(x− y)

vF

))
. (6.2)

We will now see how these results translate for a particular shape of the voltage pulse.

Case of a Lorentzian pulse of quantized action

We consider now a lorentzian pulse of characteristic time τ0 centered at a time t0 :

V (t) =
V0τ

2
0

(t− t0)2 + τ 20
. (6.3)

So as to suppress the emission of particle/hole pairs, the action associated to this pulse must be
quantized [87] : ∫ +∞

−∞
eV (t)dt = nh, (6.4)

where n is a stricly positive integer. Thus, this voltage generates a coherent plasmonic state
which is also a pure state of the electron number N+. The expression of the voltage and the
associated coherent state parameter are respectively :

V (t) =
nhτ0/π

(t− t0)2 + τ 20
and µω = − n√

ω
e−ωτ0e−iωt0 . (6.5)

The fact that the emitted state is a coherent plasmonic state will reveal convenient for the
inclusion of interactions through the bosonization formalism. These excitations can also be
easily described in fermionic terms, as the next paragraph will show. We will now see how the
characteristic properties of the n electron pulse manifests in the coherence function formalism.
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1.2 Coherence function of minimal excitations

For the rest of this chapter, we will systematically distinguish between single shot and periodic
sources. In the first case, the applied voltage has the form (6.5), whereas in the second one the
voltage (6.5) is applied repeatedly at each period 1, and is consequently equal to :

VT (t) =
∑
k

V (t− kT ) =
∑
k

nhτ0/π

(t− t0 − kT )2 + τ 20
. (6.6)

Equivalently, in Fourier space :

V̂T (ω) =
∑
n∈Z

δ(ω − nΩ)V̂ (nΩ). (6.7)

A pulsed source

The periodic application of the lorentzian voltage (6.5) generates quantitatively different out-
coming state depending on the ratio T/τ0. At low frequency (T/τ0 � 1), the emitted state
is comparable to the single shot source : consecutive wavepackets do not overlap. At high
frequency (T/τ0 � 1), the Pauli exclusion principle comes into play, and is responsible for
discrete structures, as can be seen in fig. 6.1. In the limit τ0 � T , the application of the voltage
(6.6) is only responsible for a shift in the chemical potential correspoding to the charge added
in the edge channel. The different situations are illustrated in fig. 6.1.

All these different cases can be taken into acount in a common framework by the mean of
the Floquet formalism. We proceed along the same lines as in the case of the single electron
source in chapter 3, where the only difficulty arises from the phase associated to the periodic
voltage, since here the edge channel has no structure :

exp

(
ie

~

∫ t

0

δVT (τ)dτ

)
=
∑
k∈Z

Ck[δVT ]e
ikΩt , (6.8)

where δVT (t) = VT (t)− V̄T , where V̄T is the average of the driving voltage. Contrary to chap-
ter 3, this quantity is nonzero : V̄T = nhf

e
. Indeed, the application of this voltage modifies the

chemical potential of the Fermi sea by nhf .

The T -periodic coherence function

G(e)(t, t′) =
∑
n∈Z

Gn(t− t′)eniΩt̄. (6.9)

can be decomposed into harmonics depending on t − t′, which have the following Fourier
decomposition :

G̃n(ω) =
1

vF

∑
k∈Z

Cn+k[δVT ]C
∗
k [δVT ]n̄µ(ω + (k + n/2)Ω) . (6.10)

1The repetition process is assumed to be ideal. Nevertheless, imperfections in the emission process, such as
uncertainty on the emission time, can be accounted for.

109



CHAPTER 6. DECOHERENCE AND RELAXATION OF TIME RESOLVED EXCITATIONS

-1  0  1

ω+τ0

-4

-2

 0

 2

 4

nf
τ 0

 0

 0.02

 0.04

 0.06

 0.08

 0.1

(a) f = 0.05/τ0

-1  0  1

ω+τ0

-4

-2

 0

 2

 4

nf
τ 0

 0

 0.05

 0.1

 0.15

 0.2

(b) f = 0.1/τ0

-3 -2 -1  0  1  2  3

ω+τ0

-4

-2

 0

 2

 4

nf
τ 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

(c) f = 0.5/τ0

 0

 0.05

 0.1

-1  0  1

δn
(ω

)

ωτ0

(d) f = 0.05/τ0

 0

 0.1

 0.2

-1  0  1

δn
(ω

)

ωτ0

(e) f = 0.1/τ0

 0

 0.2

 0.4

 0.6

-3 -2 -1  0  1  2  3

δn
(ω

)
ωτ0

(f) f = 0.5/τ0

Figure 6.1: Coherence function in Fourier space of the state generated by the repeated appli-
cation of a Lorentzian pulse containing one electron. The repetition frequency increases from
0.05/τ0 in (a) to 0.5/τ0 in (c). The horizontal and vertical coordinates are frequencies respec-
tively conjugated to t − t′ and t+t′

2
. The temperature is kBT = h

100τ0
. (d),(e),(f) display the

n = 0 harmonic (the occupation number) for increasing frequency.

Single shot source

The single shot case corresponds to the zero frequency limit of the periodic source described in
the last paragraph. Considering this limit will be of interest when studying interaction effects
on time resolved phenomena such as the Hong Ou Mandel effect (see section 3). Furthermore,
in this limit, the interactions are conveniently taken into account by the bosonization formal-
ism (see section 2).

The time dependence of the coherence function for an arbitrary number of quanta nis
obtained by a direct integration of the phase associated to the voltage pulse :

G(e)
n (t, t′) = G(e)

F (t, t′) exp

(
i
e

~

∫ t

t′
dτV (τ)

)
(6.11)

= G(e)
F (t, t′)

[
1− it/τ0
1 + it/τ0

]n [
1 + it′/τ0
1− it′/τ0

]n
(6.12)

At zero temperature, the coherence function in Fourier space is of the simple form :

G̃(e)(ω, ω′) = G(e)
µ (ω, ω′) + Φn(ω)Φ

∗
n(ω

′), (6.13)

This shows that the output state generated by the Lorentzian voltage is pure. The function Φn

appearing in (6.13) is nonzero only for positive frequencies : the state is purely electronic. For
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n = 1, this function can be directly interpreted as the wavefunction of the output electron.
In full generality, Φn is found by taking the Fourier transform of (6.12) by :

Φn(ω) = −
√
2τ0e

−ωτ0θ(ω)Ln−1(2ωτ0) . (6.14)

In (6.14), LN is the Laguerre polynomial of order N [54]. In the case n > 1, Φn cannot be
interpreted as the many body wavefunction for the n supplementary electrons : finding the
wavefunction of the n supplementary electrons requiresthe evaluation of the electronic coher-
ence function of order n.
The modulus of ∆G(e)(ω, ω′) is depicted in 6.2 for different values of the quanta number
n. These plots show that the coherence only lies in the positive part of the energy plane :
∆G(e)(ω+, ω−) = 0 for ω± < 0 : this reflects the absence of particle /hole pairs in the output
state.
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Figure 6.2: Excess coherence function in Fourier space of the state generated by a single
Lorentzian pulse. In these plots, ω and ω′ are frequencies conjugated respectively to t and
t′. (d),(e) and (f) are the occupation number (ω = ω′) for different n.

We will now see how the interactions affect the output state of the minimal excitation
source.

2 Effects of the interactions on the coherence function

In the presence of interactions, two different methods can be used to predict the single particle
coherence. Technics developed in the case of the single electron relaxation can be adapted to
compute the relaxation function for the single shot excitation.

111



CHAPTER 6. DECOHERENCE AND RELAXATION OF TIME RESOLVED EXCITATIONS

For the periodic source, there is a way to compute the coherence that does not require the use
of bosonization. This method proves to be more convenient for the numerical evaluation of the
coherence function after interaction.

2.1 Plugging the interactions into the Floquet formalism

As stated in the first section, driving a region with a classical voltage creates a coherent plas-
monic state whose parameter is proportional to the Fourier transform of the voltage. After an
interaction region, the outcoming plasmon state is still coherent but its parameter is multiplied
by the scattering coefficient tb(ω). Therefore, the outcoming state can be viewed as generated
by an effective voltage pulse Ṽout renormalized by the interactions :

ˆ̃
V out(ω) = tb(ω)V̂ (ω) . (6.15)

Formally, the coherence function reads :

G(e)(t, t′) = Gµ(t− t′) exp
(ie
~

∫ ′t

t

dτṼout(τ)
)
, (6.16)

In the periodic case, the expression of the renormalized voltage is :

Ṽout(t) =
∑
n∈Z

V̂ (nΩ)t(nΩ)e−inΩt (6.17)

Consequently, the coherence function is obtained through the computation of the Fourier co-
efficients of the phase associated to the modified voltage, as in the case of the single electron
source. Note that because tb(ω) → 1 when ω → 0, the constant part of the voltage and thus
the chemical potential are not altered by the interactions.

2.2 Coherence function and interactions

Interaction effects are illustrated on the example of the scattering for ν = 2 edge channels
introduced in chapter 4. We will first discuss interaction effects on the single particle function
in real time before examining it in Fourier space.

Temporal coherence

Average current

As mentioned in chapter 2, the diagonal part of the real-time coherence function is the
average particle density, and, up to a constant −evF , the average current flowing along the
edge channel.

∆G(e)(t, t′) = G(e)
µ (∆)

[
exp

(ie
~

∫ ∆

0

dτṼ (τ + t̄−∆/2)
)
− 1
]
. (6.18)
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Then, with ∆ = ε, ε→ 0, one finds, with G(e)
µ (∆) = iπ

βh
eiµ∆/~

sinh (π∆/β~) :

lim
ε→0+

(−evF )∆G(e)(t̄+ε/2, t̄−ε/2) = (−evF )〈: Ψ†(t̄−ε/2)Ψ(t̄+ε/2) :〉 = 〈I〉(t̄) = e2

h
Ṽ (t̄).

(6.19)
Figure 6.3 shows the evolution with respect to the length of the interaction region of the

average current over a voltage period . This evolution can be understood analytically : the
scattering (4.43) is reponsible for a splitting of the initial voltage peak into two separate peaks
with different heights :

Ṽ (t) =
1 + cos θ

2
V (t− L/v) +

1− cos θ

2
V (t+ L/v). (6.20)

If the time shift L/v introduced by the scattering is long compared to τ0, the two peaks are well
separated. When the dephasing time L/v eventually reaches a multiple N of T/2, the peaks
from different periods recombine to restore the initial shape of the current, with an additional
dephasing NT/2.
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Figure 6.3: Evolution of the current pulse profile with the interaction length, for θ = π
4
, kBT =

0.01h/τ0. Here, only one period of the current pulse is displayed.

Complete coherence function

The complete time dependence of the coherence function is depicted in fig. 6.4, for different
values of the time spent in the interacting region. The initial coherence in 6.4 (a) evolves
in the same way as the average current (see fig. 6.3). The initial lorentzian peak splits into
two lorentzian peaks with different heights. These secondary peaks are manifestations of the
propagation of plasmon eigenmodes of the ν = 2 system at different velocities and without
dispersion (spin/charge modes) 2

As noticed in the analysis of the average current, the coherence function has a periodicity in
the interaction length : fig. 6.4 (d),(e) and (f) are identical to fig. 6.4 (a), (b) and (c) up to a π
dephasing.

We will now see how these features appear in Fourier space.
2The spin and charge modes are, in full rigor the eigenmodes of the ν = 2 system only at strong coupling, ie

θ = π
2 .
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Figure 6.4: Real time coherence function (modulus) for increasing interaction lengths. The
parameters are f = 1

20τ0
, kBT = h

100τ0
, and θ = π

4
.

Coherence function in Fourier space

The single electron coherence function in the frequency domain is shown on 6.4 for the same
values of the interaction length. The two peaks in the real time coherence function interfere
and are responsible for the oscillations in Fourier space. Furthermore, we observe that the off
diagonal quadrants are no more empty : interactions have generated electron/hole coherences.
Also,the hole quadrant is not empty anymore. Coherent electron/hole pairs have thus been
generated. A quantitative study of the number of hole excitations generated by the interactions
as a function of the coupling and the interactions length will be performed in the forthcoming
section.

The periodicity in the interaction length clearly appears in Fourier space : for an interaction
time corresponding to half a period, the initial coherence is recovered. This feature originates
in the periodicity of the driving voltage and the linear dispersion relation : this is truly a stro-
boscopic effect. This stroboscopic revival reflects the dispersionless propagation of plasmonic
modes within the interacting region. Any deviation to the linear dispersion would destroy this
perfect revival of the initial coherence. In different words, this particular effect is a test of the
validity of the phenomenological plasmon scattering for two channels (4.43).

In the next section, we will discuss how interactions can be probed using these time resolved
excitations in an HBT setup.
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Figure 6.5: Modulus of the coherence function in Fourier space for increasing interaction
lengths. The parameters are f = 1

20τ0
, kBT = h

100τ0
and θ = π

4
.

3 HBT signals and HOM experiment in the interacting regime

In this last section, we propose two experiments based on HBT interferometry to probe de-
coherence mechanisms with the help of noise measurements and quantized lorentzian voltage
pulses. In the first proposal, we propose to measure the number of hole excitations generated by
interactions using the HBT setup in the same way as in the tomography protocol discussed in
chapter 3. The second proposal is a Hong Ou Mandel electronic experiment also used to probe
the interactions.

3.1 Electron/hole pair counting in HBT interferometry

Experimental setup

A sketch of the experimental setup is depicted in fig. 6.6. The pulsed Lorentzian voltage
source is followed by an interacting region. The modulation of the sources’s freqency accounts
for the variation of the interaction length. As in the tomography protocol described in chapter
3, we assume that the Coulomb interaction plays no role at the quantum point contact.

In the next paragraph, we will show how quantitative information on electron/hole pair
creation can be extracted from HBT measurements.
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Figure 6.6: HBT setup for the n electron pulses in the presence of interactions. The emitted
state of the pulsed lorentzian source is sent into an interacting region. The coherence function
is measured by an HBT interferometer at the position x0 right after the interacting region.

Electron/hole pair counting

The HBT signals contain information about the average number of holes created by the
interactions. Up to a thermal smearing, the n = 0 contribution to HBT correlations at zero
energy is related to the average number of electrons and holes introduced by the source (cf eq.
(3.27)) :

∆Q0(µ2 = 0) = − 2

RK

∫ 0

−∞
dε δn(ε) , (6.21)

The curves in fig. 6.7 (a) show the evolution of ∆Q0 after the interactions have been switched
on. If the value at µ2 = 0 is recorded for different values of the interaction length and different
coupling strengths, the evolution of ∆Q0(µ2 = 0) depicted in 6.7 (b) is obtained. In fig. 6.7(b),
the red dashed line indicates the expected noise signal for free propagation. Any deviation from
this prediction would imply the presence of interactions. Measuring this quantity is equivalent
to monitor the number of holes generated by the interactions.

As expected, the particle/hole production increases with the coupling. Nevertheless, it only
reaches experimental noise sensitivity for strong coupling. The periodicity is a manifestation
of the stroboscopic reconstruction of the initial pulse as explained in the previous section.

HBT signal predictions

Fig. 6.8 shows the expected noise signals for higher harmonics of the single particle co-
herence function in the noninteracting case (6.8 (a)) and for θ = π/4 (6.8 (b)). A comparison
between the two graphs shows that the values associated to negative energies in fig. 6.8 (b)
reflect the appearance of electron/hole pairs due to the interactions. These signals assess the
relevance of HBT noise measurements to probe interaction mechanisms. In the absence of in-
teractions (fig. 6.8 (a)), the expected noise signals have a typical value of 0.2 e2f , which is above
the experimental noise sensivity. This is not always the case when interactions occur (see fig.
6.8 (b)). In this case, the typical value for the noise signals is closer to 0.1 e2f .

116



3. HBT SIGNALS AND HOM EXPERIMENT IN THE INTERACTING REGIME

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1  0  1  2  3

∆Q
0 

(e
2 f 

un
its

)

µ2τ0/h

 0

 0.1

-0.2  0  0.2

kBTτ0/h = 

0.002

0.01

0.02

(a) n = 0HBT signal

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.2  0.4  0.6  0.8  1

∆Q
0(

µ 2
 =

 0
)

L/vT

(b) e/h pairs number

Figure 6.7: Evolution of the HBT signals for n = 0 harmonics in the presence of interactions.
(a) HBT signal associated to the occupation number for zero coupling and strong coupling.
The Inset shows the evolution of the µ2 = 0 signal wrt temperature. (b) Evolution of the
particle/hole pair number as a function of the interaction length and the coupling strength.
The red dashed line indicates the expected noise signal in the absence of interactions. In these
predictions, f = 0.05/τ0 and kBT = 0.01h/τ0.
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Figure 6.8: Evolution of the HBT signals for n 6= 0 harmonics in the presence of interactions. (a)
θ = 0 : Zero coupling case. (b) θ = π

4
: Mid coupling case. In these predictions, the length of the

interaction region is taken to be 2vT . The dashed lines indicate the minimal sentivity level for
noise measurements. The temperature is kBT = 0.01h/τ0, and the frequency is f = 0.05/τ0.

3.2 Hong Ou Mandel effect in the interacting regime

In this last paragraph, we analyze the effect of the propagation of an electronic excitation in an
interacting region on the result of a Hong Ou Mandel experiment [71]. In this experiment, two
sources emit identical single particle states which are sent onto a beamsplitter. The time delay
between the two arrivals at the beamsplitter is variable and controlled. The output signal is the
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correlation between the two output currents.
In the case of photons [71], when the paths lengths are equal, photons arrive at the same
time at the 1/2:1/2 beamsplitter. Destructive two particle interferences prevent them to go out
on different outcoming channels. Thus, the correlation between the two output intensities
vanishes. As the path length (or equivalently the time delay) is varied from zero to values long
compared to the source’s coherence time, the correlation between the two outcoming channels
reappears and reaches its maximal value at long delay times. The shape of the correlation as a
function of the delay time is given in 6.9.

Figure 6.9: Hong Ou Mandel correlation dip for photons at zero delay time (taken from [71]).

We propose here to realize a similar experiment for lorentzian excitations in the presence of
interactions in one of the two incoming channels. A sketch of the proposed setup is shown in
fig. 6.10. As in the case of the single electron source in chapter 3, we focus on the excess HBT
contribution ∆Q(t, t′) on output of the QPC.

1 in

2 out

1 outT

R

Interactions

2 in

Figure 6.10: Sketch of a Hong Ou Mandel setup in the presence of an interacting region. The
two single shot sources S1 and S2 feed the two branches of the interferometer. An interacting
region is present in the first incoming channel, and a controlled time delay ∆τ is introduced
on the second branch. Current correlations are measured on output of the interferometer.

The excess quantum contribution due to both sources can be written as :

∆Q(t, t′) = G(e)
1,F (t

′, t)G(h)
2,F (t

′, t)
(
e−iΦ1(t,t′) − 1

)(
eiΦ2(t,t′) − 1

)
+ 1 ↔ 2 , (6.22)

where

Φi(t, t
′) =

e

~

∫ t

t′
Vi(τ) dτ . (6.23)
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For a quantum point contact with no DC bias, the phase factors in (6.22) combine to give :

∆Q(t, t′) = 2G(e)
F (t′, t)G(h)

F (t′, t) [1− cos (Φ1(t, t
′)) cos (Φ2(t, t

′))− sin (Φ1(t, t
′)) sin (Φ2(t, t

′))] .
(6.24)

Experimentally, the equivalent of photocounting is the broadband measurement of current
fluctuations3 : ∫

〈I(t)I(t)〉 dt =
∫

〈I(ω)I(−ω)〉 dω . (6.25)

we define the following quantity from the expression (6.24) :

∆Q(t, t)(t) ≡ lim
ε→0+

∆Q(t+
ε

2
, t− ε

2
) = − e

4

~2
V1(t)V2(t) . (6.26)

Integrating the last expression over t, we get :

∆Q(∆τ) ≡
∫ +∞

−∞
dtQ(t, t) = − e

4

~2

∫ +∞

−∞
dt V1(t)V2(t) . (6.27)

This last quantity, which is a function of the delay time ∆τ , corresponds to the overlap be-
tween the two voltages. In the presence of interactions, the voltage V1 is simply replaced by its
renormalized expression :

Ṽ1(t) =

∫ ∞

−∞

dω

2π
tb(ω)V̂1(ω)e

iωt . (6.28)

To make the dependence in ∆τ more explicit, we write the voltage V2 as :

V̂2(ω) = Ŵ2(ω)e
−iω∆τ , (6.29)

whereW2 does not depend on ∆τ . Thus, the main result is, in its most general form :

∆Q(∆τ) = − e
4

~2

∫ +∞

−∞

dω

2π
V̂1(ω)tb(ω)Ŵ2(−ω)eiω∆τ . (6.30)

In the case of two identical lorentzian pulses, (6.30) becomes :

∆Q(∆τ) = − e4

2~2
V0
τ0

1

1 + 1
4

(
∆τ
τ0

)2 . (6.31)

The effect of an ohmic dissipation (tb(ω) = e−ωτ1 , see appendix B) on (6.31) would be the
renormalization of τ0 : τ ′0 = τ0 + τ1. The effect of the ν = 2 channel at different coupling
strength and fixed propagation length is illustrated in fig. 6.11, and can be evaluated :

∆Q(∆τ) = − e4

2~2
V0
τ0

 1− cos θ

1 +
(

∆τ
2τ0

)2 (
1 + L

v∆τ

)2 +
1 + cos θ

1 +
(

∆τ
2τ0

)2 (
1− L

v∆τ

)2
 . (6.32)

Interactions are responsible for a drastic change in the shape of the HOM dip. Indeed, in
the case of the ν = 2 edge channels, the original dip (blue in fig.6.11) splits into two dips
which reflect the plasmon eigenmodes. Their depth is related to the coupling strength (they are
identical in the strong coupling limit), and their relative distance accounts for the propagation
length.

3From the experimental signal, a filter function χ will come into play : the signal becomes∫
〈I1(ω)I2(−ω)〉eiω∆τ χ(ω)dω .
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Figure 6.11: HOM dip in the presence of interactions. Blue curve corresponds to free propaga-
tion. Orange curve (symmetric wrt the y-axis) corresponds to strong coupling θ = π/2 and
the green curve corresponds to θ = π/4. In both case, the propagation length is such that
L/vτ0 = 1. The temperature is taken to be 0K .

4 Conclusion
In this chapter we have studied the relaxation of electronic excitations generated by voltage
pulses of quantized action. Because of the "dual nature" of these excitations (single electron
and coherent plasmonic), the Floquet scattering approach can be used to compute the single
particle coherence even in the presence of interactions. This remarkable fact has been used to
obtain simple predictions in the ν = 2 edge channel system. In particular, we have shown that
when plasmonic eigenmodes are dispersionless within the interacting region, a perfect strobo-
scopic revival of the initial single electron coherence occurs for certain propagation lengths.

We have proposed to test this phenomenon using an HBT setup where the perfect revival
would manifest itself through the periodicity of the outcoming noise in the HBT setup.
Finally, we have focused on the effect of interactions in a Hong Ou Mandel experiment, and
obtained a simple result describing the evolution of the HOM dip as the overlap between renor-
malized voltages.
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Chapter 7

Conclusion and perspectives

1 Main conclusions
The recent advances in nanofabrication, radiofrequency technology and experimental tech-
niques have paved a way to new experiments aiming at the controlled manipulation of ele-
mentary excitations in ballistic quantum conductors similar to what is done with photons in
quantum optics[38, 74, 68, 131, 133, 132, 112]. These experiments have already stimulated an
important stream of theoretical research on the formulation of electron quantum optics taking
into account interactions and discussing the dynamics of single to few electron excitations in
the presence of interactions [89, 88, 21, 79, 80, 102, 100]. Furthermore, numerous recent theoret-
ical works [24, 139, 120, 108, 23]contain proposals aiming at pushing these experiments further.
This thesis has been realized in this rich experimental and theoretical context.
In this section, we review the results reported in this manuscript. They organize in two main
directions. The first one is the definition of the appropriate framework to study electron quan-
tum optics. The other is the analyzis of decoherence and relaxation mechanisms due to the
coupling of electronic excitations to their electromagnetic environment.

Building blocks of electron quantum optics

The first part of this manuscript was devoted to the definition of quantum optics correla-
tions for electrons propagating in quantum Hall edge channels, in analogy with the quantum
coherence theory of the electromagntic field formulated by Glauber [51].

In full generality, the coherence function for electrons or photons can be split into two parts.
The first one is the contribution of the vacuum to the coherence and the other one represents
the contributions of the excitations on top of the vacuum. The vacuum of photons being a true
vacuum, it does not contribute to the total coherence. In other words, its coherence functions
are zero at all orders. This is no longer true for electrons : in this case the vacuum is filled with
particles and contributes to the total coherence at all orders. These nonvanishing correlations
reflect the possibility to generate particle/hole pairs from the Fermi sea : these contributions
to the total coherence have been observed both in the noninteracting (chapter 2 and 3) and
interacting cases (chapters 5 and 6). One of the main challenges in the study of the interacting
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regime (especially in chap. 5 for this point) has been to show how such a natural decomposition
translates in the interacting regime.

The single electron coherence function has been shown in chapter 2 to contain different
contributions corresponding to electrons and hole excitations (diagonal blocks in the frequency
domain) and electron/hole coherences (off diagonal blocks). These notions are defined with
respect to a given chemical potential, the natural choice being the chemical potential of the
conductor.

Evaluating the single particle coherence function in simple cases has shown similarities with
the photon case. Notably, the expression of the wavepacket contribution in the case of a single
electronic wavepacket is totally similar to the result obtained for a coherent light wavepacket.
This result illustrates the electron quantum optics paradigm, where an electronic wavepacket
well separated in energy propagates freely in the edge channel it has been injected in. The
study of single electron relaxation in chap 5 has described in which cases an equivalent situa-
tion can be recovered at high injection energy in the presence of an external electromagnetic
environment. In situations that do not match this paradigm, the complete many body approach
developped in chapter 5 offers a solution to understand the the coherence properties at the sin-
gle particle level.
The simple examples considered in chapter 2 also give an insight into the strong differences
between photonic and electronic quantum optics, even in the noninteracting case. Apart from
the nonvanishing coherence of the Fermi sea vacuum, the Pauli principle is ubiquitous when it
comes to situations involving several electronic excitations. This fermionic characteristic is one
of the sources of the richness of electron quantum optics compared to photon quantum optics.
Note that in the interacting case, we have explicitely shown that the Pauli principle prevents
the relaxation of the quasiparticle emitted at the surface of the Fermi sea.
Electronic coherence at second order have also been considered. The relation of this correlation
to particle fluctuations and current noise have been unveiled, and we have shown that it con-
tains information on the statistics of electron sources. Nevertheless, the analogy with photons
is not complete, since the Fermi sea contributes to the second order coherence via two particle
interferences.

In chapter 3, we have proposed a protocol to reconstruct the single electron coherence. This
single electron quantum tomography is based on the HBT effect and can be viewed as the elec-
tron quantum optics analogue of homodyne tomography in quantum optics.
To argue in favor of its experimental feasability, we have considered [56] the case of the meso-
scopic capacitor [38] operated as single electron source which we have modelled using the
Floquet scattering approach.
Finally, we have introduced quantum information theory notions such as purity and fidelity
with respect to a trial wavefunction in order to assess the the quality of such a single electron
source at the quantum level.

This HBT protocol has also been proved efficient to characterize the mechanisms responsible
for the decoherence and relaxation of single electron excitations. In the case of n electron pulses
considered in chapter 6, we have shown that HBT noise measurements can recover information
on interactions, such as the average of particle/hole pairs generated .
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Interaction induced decoherence and relaxation

The results that have been obtained concerning the propagation in the interacting regime
concern both single electron excitations (chapters 5 and 6) and nonequilibrium distributions
(chapter 4). They mainly rely on the bosonization formalism and make extensive use of a
plasmon scattering approach. In this approach, it is thus crucial that the interaction region is
surrounded by free propagation regions. Although limited from this point of view, this ap-
proach has proved efficient in many different cases.

In our study of energy relaxation in chapter 4, we have derived a universal low energy
plasmon scattering matrix for a system with screened Coulomb interactions [31]. We have also
shown that this scattering provides predictions for experimentally relevant quantities. We have
compared these predictions with experimental data on energy relaxation[2, 3, 145] and seen
that this simple scattering approach captures most of the physics, up to small discrepancies,
for which several different explanations can be provided [1, 64, 92, 81, 28]. Our opinion is that
further progresses in understanding relaxation in the ν = 2 edge channel system requires new
experiments able to probe the dynamics in a frequency resolved way. This is why we have
proposed finite frequency noise measurements to get a better insight on these issues.

In chapters 5 and 6, we have presented a complete theory of the relaxation of coherent single
electron excitations in integer quantum Hall edge channels. For simplicity, we have focused on
the decoherence andrelaxation of an energy resolved single electron excitation. This problem
has been originally considered by Landau in the elaboration of the Fermi liquid theory[83].
The scattering between edge plasmonic and environmental modes determines both the finite
frequency admittances and relaxation properties of a coherent single electron excitation. The
latter can thus be computed exactly from the finite frequency admittances. This approach is
very general and can be used to compute the relaxation of a single electron under the influence
of any linear environment over a finite length.

In our study, we have considered two physically important regimes.
The low energy regime, which concerns the relaxation properties close to the Fermi level. In-
vestigating this range of energy would provide an answer to the problem of the survival of the
quasiparticle at low energy, and consequently answer the question of the nature of the elec-
tronic fluid. In the cases we have considered, the inelastic processes are blocked by the Pauli
principle at low energy. The results in this regime are universal, and can be captured by a
discrete circuit element approach[18, 128].

At high energies, the situation is richer. This regime appears when the initial energy of
the electron is higher than the typical energy scale of the plasmon scattering. Our approach to
this case relies on bosonization, and is nonperturbative in the interactions. Similarly to the low
energy case, this regime also raises the question of the survival of the particle. In this case, the
persistence of the electron would ensure the validity of the electron quantum optics paradigm.
Here, all the frequency dependence of the plasmon scattering is involved, so the results are not
universal.
Our analyzis has unveiled two different possibilities. For interactions that are not too strong,
and for an environment with a finite bandwidth, the excess quasiparticle decoheres under the
influence of an effective environment including the remaining electrons in the Fermi sea and
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the external environment, as in the dynamical Coulomb blockade. In this case, the relaxation
tail of the supplementary electron can be separated from the particle/hole pairs generated by
the interactions at the surface of the Fermi sea.
On the contrary, if the bandwidth of the scattering matrix or if the coupling is too strong, this
simple physical picture is no longer valid. Our study shows that in such cases, the particle/hole
wave generated at the Fermi level catches up the excess quasiparticle, which gets literally drown
into the Fermi sea. This approach can also be suited for non chiral quantum wires, or for the
fractional quantum Hall regime, as we will see in the next section.

Interaction effects on a time resolved electronic excitation have been examined through
the example of the source of minimal excitation proposed by Levitov, Lee and Lesovik [87].
Being non stationary, these states require the evaluation of the complete coherence function in
the interacting regime. They also provide an example where the interplay between the Pauli
principle and interactions can be explored in a simple way. Furthermore, we have used this
example to illustrate the relevance of two particle interference experiments in the investigation
of relaxation mechanisms. Indeed, the average number of holes generated by interactions has
been extracted directly from HBT noise measurements. Then, signals associated to off diagonal
coherences have shown the emergence of electron hole coherences, thus assessing the relation
between off diagonal coherences and noise generation proposed in chapter 3.

To summarize, the proposed framework fullfils the requirements to study the quantum op-
tics of electronic excitations stated in chapter 1. Indeed, this framework takes into account the
specific features of electrons, namely the Pauli principle, and Coulomb interactions. It is also
well suited to understand the analogies between photons and electrons in chiral edge channels.
Finally, even if the similarities between current transport and light propagation in optical fibers
should be stressed, one of the richnesses of electron quantum optics emerges from its departure
from the ideal situation : understanding the interplay of Coulomb interactions and of the Fermi
statistics in a mesoscopic conductor is a highly non trivial problem which has already attracted
a lot of attention[153, 118, 6]. It raises questions concerning the nature and dynamics of quasi-
particles in mesoscopic conductors. Future experiments may involve controlled decoherence of
single to few electron excitations . They would provide quantitative answers to the aforemen-
tioned questions in quantum Hall edge channels.

2 Perspectives
Possible extensions of the results presented in this manuscript are various and go towards dif-
ferent directions, from the answer to questions arising in the condensed matter community,
to quantum information perspectives. In both directions, theoretical and experimental works
have provided numerous new sources of inspiration.
A first possible extension would be the study of quantum optics with plasmons. These ex-
citations are particularly adapted to deal with interactions, and would consequently be ideal
candidates for a preliminary evaluation of their influence on electron quantum optics correla-
tions. Another one is coherent spin transport, which has quantum information implications. In
particular, a major issue is to determine to what extent the quantum state can be encoded and
then transported using a one dimensional system such as a ν = 2 edge system 1 as a conveyer

1Via a superposition of the spin states in the two channels.
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belt for an electronic flying qubit.
From a different perspective, far from equilibrium effects and strong interactions regimes are
not fully understood. In particular, reconsidering them in the light of electron quantum optics
would help clarifying important issues. This requires an adaptation of the coherence function
formalism to the case of electronic distributions containing a macroscopic number of electrons,
or to the fractional quantum Hall regime.

Quantum optics with plasmons

A first natural possibility is to investigate the plasmonic content of electronic excitations.
Indeed, the statistics of the photons emitted by a conductor depends on the current that flows
through it. Thus, by accessing the statistics of the radiation emitted by a conductor, one can
recover information on the plasmon state, which is directly related to the electrical current. If
this current has classical features, the plasmon state is coherent, and so is the photon state. On
the contrary, if the plasmon state is non classical, then the photon statistics will exhibit purely
quantum features, as noted in [8]. Thus, one can apply a similar reasoning to single electron
sources, and question the nature of the plasmon state on output of a single electron source.

The other perspective is more general, and suggests the possibility to realize plasmon quan-
tum optics experiments. We have seen in this manuscript that a classical voltage drive provides
a source of coherent plasmons. Furthermore, a natural beamsplitter for plasmons is an inter-
acting region. A clever use of an interaction region in the ν = 2 edge channel system would
thus open the possibility of controlled plasmon interference. Finally, a mesoscopic capacitor or
a QPC would provide a nonlinear element that can create nonclassical plasmon state.

Coherent spin transport

The elements of electronic quantum coherence described here could be useful to understand
the propagation of a quantum superposition in the presence of interaction. In a quantum in-
formation perspective, this superposition woud be a superposition of spin state for which the
edge state plays the role of a quantum information transport channel, and the supplementary
electron acquires the status of a flying qubit.
The ideas presented in this manuscript could bring interesting elements in the study of co-
herent spin transport, whose natural applications are the manipulation and transport of quan-
tum information. Ongoing experimental efforts aim at developing quantum channels between
quantum dots to transport single electron spin qubits. Their perspectives are also fast qubit
injection,manipulations, transfer, and readout.
Manipulating the spin of a single electron requires detection schemes based on high frequency
transport. Since these experimental works are aimed at transmitting quantum information, one
could ask for measurement schemes that do not alter too much the spin state of the qubit. This
raises the issue of the feasability of nondestructive measurements in the context of electronic
transport, or, at least, how close a realist detection scheme can be from such an ideal detection
process.
Besides injection and detection problems, the propagation of a spin superposition in the pres-
ence of the interchannel interactions has to be discussed. The formalism proposed for a single
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electron excitation injected in one quantum Hall edge channel can be extended to the case of
a non-polarized spin superposition. In that case, the coherence function will become a matrix
whose elements encode the coherence between each spin component of the excitation. Trac-
ing out orbital degrees of freedom, the spin reduced density matrix can be obtained from the
complete coherence function.

Strong interactions and far from equilibrium effects

So far, the formalism developed for electron quantum optics assumed an initial state con-
sisting in single or a few excitations on top of the Fermi sea, together with interactions which
do not cause the disapperance of the quasiparticle at low energies. It is consequently natural
to think of the potential extension of the results obtained on this context to cases that do not
fulfil such preliminary assumptions, namely far from equilibrium electronic distributions, or
the fractional quantum Hall regime.
The study of interactions in the ν = 2 regime already sheds light but also raises questions
on the strong interacting regime together with far from equilibrium initial states, both from
theoretical and experimental points of view. On the basis of recent propositions for the de-
velopment of a nonequilibrium bosonization formalism [61, 62, 58, 60], the adaptation of the
coherence function formalism to far from equilibrium situations will help connecting electron
quantum optics and the full counting statistics approach.

Finally, let us mention the extension of electron quantum optics to the fractional quantum
Hall regime. In this manuscript, we have only considered situations in which the electronic
quasiparticle is preserved at low energy : the vacuum remains a Fermi sea. Considering the ef-
fect of strong interactions and going to the Luttinger liquid regime would provide new insights
on the behaviour of Laughlin quasiparticles since it would give the opportunity to study their
quantum coherence.The strong interactions in this regime are responsible for a change in the
behaviour of the electron fluid at low energy. Thus, one can wonder about the modifications
induced by this different nature of the vacuum on the coherence function, and more generally
on electronic quantum optics.
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Appendix A

Quantum tomography : extraction of the
coherence function and complements on
the driving phase

This appendix first details the derivation of the results for single electron quantum tomography.
Then, in a second part, we derive the expression of the Fourier coefficients of the driving phase
for simple driving voltages. We also derive analytically the expression of the harmonics of
the coherence function in the simple case of a sinusoidal drive. This is one of our reference
situations which was compared to the numerical results of the Floquet formalism.

Extraction of the single electron coherence

Generalities

The harmonics of the single particle coherence function are defined by:

∆G(e)
1 (t, t′) =

+∞∑
n=−∞

e−2πint̄/T

∫
∆G(e)

1,n(ω)e
−iωτ dω

2π
. (A.1)

The corresponding noise is thus :

∆Q(t, t′) = (evF )
2
∑
n∈Z

e−inΩT
t+t′
2

(
∆G(e)

1,n(t
′ − t)G(h)

2 (t′, t) + ∆G(h)
1,n(t

′ − t)G(e)
2 (t′, t),

)
(A.2)

where ∆G(e/h)
1,n denotes the n-th harmonic of the electron/hole single particle coherence func-

tion1. If we assume that no interactions are present in the interferometer 2, the anticommutation
of fermion fields and chiral motion

{ψ†
α(t), ψβ(t

′)} = δα,β v
−1
F δ(t− t′) . (A.3)

1The supplementary index 1 indicates that the branch of the HBT interferometer containing the source is the
first one

2Interactions can be present in the source. If so, they would be responsible for a modification of the predictions
for the coherence function, but not for its measurement.
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lead in Fourier space to a relation between electron and hole coherence function for a periodic
source :

∆G(e)
1,n(ω) + ∆G(h)

1,n(−ω) =
δn,0
vF

. (A.4)

Since ∆G(e/h)
1,n = G(e/h)

1,n − δn,0G(e/h)
µ1 , we obtain ∆G(e)

1,n(ω) = −∆G(h)
1,n(−ω). Now, let us express

the n-th harmonic of the noise signal ∆Q in terms of the harmonics of the coherence function
of the source ∆G1 and the coherence function of the driven ohmic contact G2.

The ohmic contact on the input way 2 of the interferometer is driven by a periodic voltage
so the coherence function G2 is periodic in t̄.

G(e/h)
2 (t, t′) =

∑
k∈Z

e−ikΩT t̄G(e/h)
2,k (t− t′). (A.5)

Thus, the n-th harmonic ∆Qn(t− t′) can be expressed as :

∆Qn(t− t′) =
∑
k∈Z

∆G(e)
1,kG

(h)
2,n−k(t− t′) + ∆G(h)

1,kG
(e)
2,n−k(t− t′). (A.6)

In Fourier space, this transforms into, if we take eq. (A.4) into account:

∆Qn(Ω) =
∑
k∈Z

∫
dω′

2π
∆G(e)

1,n(ω
′)G(h)

2,n−k(Ω− ω′)−∆G(e)
1,n(ω

′)G(e)
2,n−k(Ω + ω′). (A.7)

Higher order harmonics

The electron and hole coherence functions of the driven ohmic contact are (Vac(t) = V0 cos (ωdt+ φ)):

G(e)
2 (t′, t) = G(e)

µ2
(t′, t) exp

(
ie

~

∫ t′

t

Vac(τ) dτ

)
(A.8a)

G(h)
2 (t′, t) = G(h)

µ2
(t′, t) exp

(
−ie

~

∫ t′

t

Vac(τ) dτ

)
. (A.8b)

The linear response to V0 is defined by:

χωd
(t, t′) =

∂∆Q(t, t′)

∂(eV0/~ωd)
|V0=0. (A.9)

It has the following expression in terms of coherence functions :

χωd
(t, t′) = 2i(evF )

2 cos (ωdt̄+ φ) sin

(
ωd(t

′ − t)

2

) (
∆G(h)

1 G(e)
µ2

−∆G(e)
1 G(h)

µ2

)
(t′, t) .

(A.10)
Taking ωd = nΩT , and performing the average over t̄, we obtain the relation between ∆G1,n

and the linear response function at ωd = nΩT :

χn(t− t′) ≡ χωd=nΩT
(t, t′)

t̄
(A.11)

= 2i(evF )
2 sin

(
nΩT (t

′ − t)

2

){
G(h)
µ2

(t′ − t)
eiφ∆G(e)

1,n(t
′ − t) + e−iφ∆G(e)

1,−n(t
′ − t)

2

− G(e)
µ2
(t′ − t)

eiφ∆G(h)
1,n(t

′ − t) + e−iφ∆G(h)
1,−n(t

′ − t)

2

}
. (A.12)
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The remaining steps are similar to the n = 0 case, χn(t−t′) playing the role of∆Q0(t−t′).
The final expression relating the linear harmonic response to the harmonics of the coherence
function is:

(
∂χn

∂µ2

)
(Ω, Tel, µ2, φ) =

∫ +∞

−∞

(
∂χ

(0)
N

∂µ2

)
(Ω, µ2 + xkBTel, φ)

dx

4 cosh2 (x/2)
(A.13)(

∂χ
(0)
n

∂µ2

)
(Ω, µ2, φ) =

e2

h
<
[
eiφ
(
vF∆G(e)

1,n(
µ2

~
+
NΩT

2
)− vF∆G(e)

1,n(
µ2

~
− nΩT

2
)

)]
.

Fourier coefficients of the driving phase

The expression of the Fourier coefficients of the driving phase are derived in simple cases,
analytically for simple voltage shapes and numerically (via FFT) for more generic voltages.
Here, we give the expressions for a square and sine voltages.

Generalities

The driving represents the total phase acquired by an electron travelling under the influence of
V (τ) between times t and t′ :

φ(t, t′) = exp

(
ie

~

∫ t′

t

V (τ)dτ

)
. (A.14)

We assume here that the voltage is periodic :

V (t) =
∑
n∈Z

Vne
−inΩT t. (A.15)

For a T-periodic voltage with zero mean, we have :

exp

(
ie

~

∫ t

−∞
V (τ)dτ

)
=
∑
n∈Z

cn[V ]e−inΩT t, (A.16)

where ΩT = 2π
T
. We will now evaluate this result in simple cases.

Computations in simple cases

Square voltage

For a T -periodic voltage V (τ) = +V for τ ∈]0, T/2[ and V (τ) = −V for τ ∈] − T/2, 0[.
Then, we have:

exp

(
ie

~

∫ t

0

V (τ) dτ

)
= exp

(
ieV

~
|t|
)

for |t| ≤ T/2 . (A.17)
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Denoting ωV = eV/~, computing the integrals leads to the following generic expression, valid
when ωV /ΩT is not an integer :

cn[V ] =
2i ωV T

(ωV T )2 − 4π2n2

(
1− (−1)neiωV T/2

)
. (A.18)

When ωV /ΩT = p ∈ N∗, we have:

cn[V ] =
i

2π

2p

p2 − n2
(1− (−1)n+p) for n2 6= p2 (A.19a)

and cp[V ] = c−p[V ] =
1

2
. (A.19b)

Cosine voltage

In the case of a cosine voltage V (t) = V0 cos (ΩT t+ φ), we have :

cn[V ] = (−1)n Jn

(
2eV

~ΩT

)
e−inφ , (A.20)

where Jn denotes the n-th order Bessel function.

For voltages containing an arbitrary number of harmonics, a numerical evaluation has been
performed on the basis of a fast Fourier transform. This method offers the possibility to evaluate
the effects of a periodic voltage of any form.

Harmonics of the coherence function in a simple case
So as to verify the numerical evaluation of the harmonics of the coherence function, it is of
importance to compare it with analytical results whenever possible. Fortunately, this can be
done in the case of a cosine voltage. Here, we derive completely the expression of the single
particle coherence function’s harmonics for a cosine voltage.
We consider an ohmic contact driven by a voltage V (t) = V0 cos (ΩT t+ φ). The coherence
function generated by this drive is :

G(e)(t, t′) = G(e)
µ (t− t′) exp

(
ieV0
~ΩT

sin (ΩT
t− t′

2
) cos (ΩT t̄)

)
, (A.21)

with t̄ = t+t′

2
. With [54] eiz cos θ =

∑
n∈Z i

nJn(z)e
inθ, we find the n-th harmonic of the

coherence function :

G(e)
n (t− t′) = ineniφG(e)

µ (t− t′)Jn

(
2eV0
~ΩT

sin (ΩT
t− t′

2
)

)
. (A.22)

Now, recalling the power series development of Bessel functions [54], we can compute the
Fourier transform of Gn :

Gn(ω) = (−1)neniφ
∑
k∈N

γ2k+n

k!(n+ k)!
fn,k(ω)

fn,k(ω) =
2k+n∑
j=0

Cj
2k+n(−1)jn̄F (ω − (k − j + n/2)ΩT ) , γ =

eV0
2~ΩT

andCk
n =

n!

k!(n− k)!
.

(A.23)
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Appendix B

Plasmon scattering

In all models considered throughout the manuscript, the dynamics of the edge channel coupled
to its environment is solved within a scattering formalism. The central object of this approach
is thus the scattering matrix for bosonic modes S(ω) that relates the edge (b) and environmental
(a) modes before and after the interacting region :

S(ω) =
(
ta(ω) rb(ω)
ra(ω) tb(ω)

)
(B.1)

such that (
a
(out)
ω

b
(out)
ω

)
= S(ω).

(
a
(in)
ω

b
(in)
ω

)
. (B.2)

Physically, this means that the coupling between the edge and its environment acts as a beam-
splitter between the edge and environmental modes. All the physical aspects are contained in
the frequency dependence of the reflexion and transmission coefficients.

This appendix presents some of the properties and expressions of the plasmon scattering
matrices . In a first part, we present the Onsager-Büttiker relations which enforce the symmetry
of the scattering matrix. In a second part, we derive the expression of scattering coefficients
that have been used in in chapters 4, 5 and 6.

Consequences of Onsager-Büttiker relations
In the framework of linear response theory, the Onsager-Büttiker relations [14] concern the
behaviour of the finite frequency admittance (and consequently of the plasmon scattering) in
the presence of a magnetic field. These relations are:

Gαβ(ω, ~B) = Gβα(ω,− ~B), (B.3)

where ~B = ~B‖ + ~B⊥ is the total magnetic field applied to the 2DEG (see fig. B.1). ~B‖ (resp.
~B⊥) is the contribution to the magnetic field parallel (resp. perpendicular) to the plane of the
2DEG.
The system is symmetric in a reflexion with respect to the plane of the 2DEG :

Gαβ(ω, ~B‖, ~B⊥) = Gαβ(ω, ~B‖,− ~B⊥). (B.4)
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Figure B.1: The different contributions to the total magnetic field. In the absence of the compo-
nent parallel to the 2DEG plane, the admittance and plasmon scattering matrices are symmetric.

Combining the previous equation with the Onsager-Büttiker relations, we finally have :

Gαβ(ω, ~B‖, ~B⊥) = Gβα(ω,− ~B‖, ~B⊥). (B.5)

In the case of a magnetic field perpendicular to the 2DEG, the admittance and scattering matri-
ces are symmetric.

Derivation of scattering matrices for different models

In this section, we derive explicitely the expression of the scattering matrices for plasmons used
in chapter 4, 5 and 6.

The quantum RC circuit

Here, we find the expression of the scattering matrix for the quantum RC-circuit, which is
expected to describe the mesoscopic capacitor in the linear response regime [36, 30]. To do
so, we consider a chiral edge channel coupled to a perfect conductor, and analyze the role of
screening and Coulomb interactions, in the spirit of [128], which will allow an extension of
previous works [141] on electron dephasing in such situations.

Electrostatics of edge channels

In the presence of a potential V (x, t), the electron field in the edge channel evolves according
to :

ψ(t+ τ, x+ vF τ) = ψ(x, t) exp

(
ie

~

∫ τ

0

V (x+ vF t
′, t+ t′)dt′

)
. (B.6)

This evolution transposes to the following equation of motion for the bosonic field φ:

(∂t + vF∂x)φ(x, t) =
e
√
π

h
V (x, t). (B.7)

Now, we must find the voltage in the edge channel as a function of the voltage Vcond(t) that
drives the conductor, and the density field φ. To do so, we have to solve the Poisson equation
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for the voltage difference V (x, t) − Ṽcond(x, t), (see fig. B.2) where Ṽcond(x, t) is the voltage
induced by the conductor’s voltage along the edge channel :

−∆(V − Ṽcond) =
1

ε
(ρch + ρind) , (B.8)

where ρch is the charge density along the edge channel, and ρind the charge density induced in
the conductor in the absence of the conductor’s voltage.

Figure B.2: Edge channel gated by a conductor driven with Vcond(t). The voltage along the edge
channel is V (x, t), and the voltage induced along the edge channel by the driven conductor is
Ṽcond(x, t).

If we rewrite Ṽcond(x, t) as Vcond(t)K(x), and introducing the conductor’s polarisability:

χcond(x, y) = −1

ε

(∂ρind(x)
∂V (y)

)
Vcond=0

, (B.9)

we find the voltage along the edge channel:

V (x, t) = Vcond(t)K(x)− e

ε
√
π

∫
dy(−∆+ χ)−1(x, y)(∂yφ)(y, t). (B.10)

The equations (B.7) and (B.10) describe the dynamics of a chiral edge channel coupled to a per-
fect conductor. We thus obtained an integrodifferential equation for the bosonic field φ, which
relates it to the conductor’s potential Vcond. This result takes into account linear screening
effects.

Scattering matrix of the quantum RC circuit

Model from electrostatics

We now replace the preceeding conductor by a quantum RC circuit. In this case, the con-
ductor has its own charge dynamics over a relaxation time RC , and the charge relaxation
resistance R is modelled by a semi-infinite transmission line [160] of inductance and capaci-

tance per unit length Lline and Cline such that R =
√

Lline

Cline
.

It is also assumed that the characteristic polarization time of the capacitor’s plate is much
shorter than all other time scales RC and l/vF . In this case, any charge fluctuation in the edge
channel leads to an immediate polarization of the capacitor’s plate.
Two neutrality conditions are satisfied:
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Circuit neutrality The charge stored in the plate and in the transmission line are opposite.

Capacitor neutrality The edge channel and the plate being in total electrostatic influence, the
charge stored in the edge channel and in the plate are opposite.

Figure B.3: Sketch of the mesoscopic RC circuit. The conductor made of the capacitor’s plate
and the associated lead is neutral. The total charge stored in the lead is the total charge of the
transmission line. For perfect screening, the chargeQe(t) stored on the shaded part of the chiral
edge channel and the charge stored on the plate facing it are opposite:Qe(t) = −(−Q(0, t)) =
Q(0, t).

The capacitor’s plate and the edge channel are coupled over a length L. The charge stored
in the circuit is Q(z, t), z being the coordinate along the transmission line (see fig. B.3). The
neutrality conditions and the equation of motion for the bosonic field in the presence of an
external potential lead to :

Q(0, t) = −e
∫ +L/2

−L/2

n(y, t)dy (B.11)

(∂t + vF∂x)φ(x, t) =
e
√
π

h
f(x)Uc(t) , (B.12)

where f(x) = 1 if |x| < L/2 and 0 otherwise and Uc(t) is the potential seen by the electrons
in the edge channel inside the capacitor.

Solution as a plasmon scattering matrix

The distributed charge Q(z, t) along the transmission line satisfies a wave equation for
z > 0. The distributed charge in the transmission line thus decomposes into ingoing and
outgoing waves:

Qin(z, t) =

√
~

4πR

∫ +∞

0

dω√
ω
(a(in)ω eiω(z/v−v) + h.c.) (B.13)

Qout(z, t) =

√
~

4πR

∫ +∞

0

dω√
ω
(a(out)ω e−iω(z/v−v) + h.c.), (B.14)

where a(in,out) are the input/output modes of the transmission line. The capacitance C appears
as a boundary condition :

Q(0, t) = C
(
Uc(t)−

1

Cline

(
∂Q

∂z

)
(0, t)

)
. (B.15)
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In (B.15), the second term in the r.h.s. is the voltage at the boundary of the transmission line.
The total charge accumulated in the transmission line isQ(0, t) = Qin(0, t)+Qout(0, t). Thus,
the voltage on the capacitor’s plate is given by :

V (0, t) = −R(∂tQ)(0, t) = eR

√
RK

2R

∫ +∞

0

dω

2π

√
ω
(
i(a(in)ω − a(out)ω )e−iωt + h.c.

)
. (B.16)

The capacitor’s potential in eq. (B.15) can be expressed as

Uc(t) =
Q(0, t)

C
+ V (0, t), (B.17)

which gives, in the equation of motion for φ:

(∂t + vF∂x)φ(x, t) =
e
√
π

h
f(x)

(
Q(0, t)

C
+ V (0, t)

)
. (B.18)

By introducing the spatial Fourier components of the density field along the edge channel:

φ(x, t) =

∫
dω

2π
φω(x)e

iω(x/vF−t), (B.19)

one can solve eq. (B.18)for φω(x):

φω(x) =
1

2

(
φ(out)
ω + φ(in)

ω

)
+

1

vFRC

√
2R

RK

√
π

ω

(
Λ(ω)a(in)ω + Λ∗(ω)a(out)ω

) [
G0(x)−

1

2
G0(L/2)

]
,

(B.20)
with Λ(ω) = 1 + iωRC and G0(x) =

∫ x

−L/2
f(y)e−iωy/Ldy. Using the relation between φω

and the b modes

φ(in/out)
ω = −i

√
π

ω
b(in/out)ω , (B.21)

the specification x = L/2 gives a first relation between a and b modes :

b(out)ω − b(in)ω =
if̃(ω/vF )

vFRC

√
R

2RK

(
Λ(ω)a(in)ω + Λ∗(ω)a(out)ω

)
. (B.22)

To obtain a second relation between b and a modes, we must use the neutrality condition
(B.11), which rewrites :

Q(0, t) = − e√
π

∫
f(y)

d

dy

(
eiωy/vFφω(y)

)
dy. (B.23)

Using (B.20), we get :

µ(ω)a(in)ω + µ(ω)∗a(out)ω = − ω

2vF
f̃(−ω/vF )

√
2R

RK

(b(in)ω + b(out)ω ), (B.24)

where :

µ(ω) = 1 +
lf (ω)Λ(ω)

vFRKC
(B.25)

lf (ω) =

∫
f 2(x)dx+

ω

vF

∫
x≥y

f(x)f(y) sin

(
ω(x− y)

vF

)
dxdy. (B.26)
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The two equations (B.22) and (B.24) can be solved to give the out modes as functions of the
in modes : (

a
(out)
ω

b
(out)
ω

)
= S(ω)

(
a
(in)
ω

b
(in)
ω

)
, (B.27)

where the scattering matrix coefficients admit the following expression :

tb(ω) =
µ∗(ω)− iRCω|β(ω)|2Λ∗(ω)

µ∗(ω) + iRCω|β(ω)|2Λ∗(ω)
(B.28)

ta(ω) =
−µ(ω)− iRCω|β(ω)|2Λ∗(ω)

µ∗(ω) + iRCω|β(ω)|2Λ∗(ω)
(B.29)

rb(ω) =
−2iωRCβ∗(ω)

µ∗(ω) + iRCω|β(ω)|2Λ∗(ω)
(B.30)

ra(ω) =
2iωRCβ(ω)

µ∗(ω) + iRCω|β(ω)|2Λ∗(ω)
, (B.31)

where β(ω) = i
2vFRC

√
2R
RK
f̃(ω/vF ).

The behaviour of the scattering coefficients is determined by two dimensionless parameters:

R =
2R

RK

(B.32)

α =
L

vFRKC
=

e2/C

hvF/L
. (B.33)

R is the dimensionless relaxation resistance, and αmeasures the relative importance of Coulomb
interactions (which scale as e2/C) and the kinetic energy hvF/L. In other words, it compares
the time of flight through the circuit L/vF to the typical response time RKC in the absence of
the resistance. The fast circuit limit is reached when α � 1. On the contrary, a circuit with
slow response will have α� 1.

In the case of a square gate, the plasmon transmission coefficient 1 admits the following
expression :

tb(ω) =
1 + αsinc(ωL/vF )−R sin2 (ωL/2vF )− i(ωL/2vF )

(
αsinc2(ωL/2vF ) +Rsinc(ωL/vF )

)
1 + αsinc(ωL/vF ) +R sin2 (ωL/2vF ) + i(ωL/2vF )

(
αsinc2(ωL/2vF )−Rsinc(ωL/vF )

) .
(B.34)

In the UV regime, this expression becomes :

tb(ω) '
1−R sin2 (ωL/2vF )− iR/2 sin (ωL/vF )
1 +R sin2 (ωL/2vF )− iR/2 sin (ωL/vF )

. (B.35)

At low frequency, (B.34) reduces to:

tb(ω) '
1 + α− (ωL/vF )

2(α/6 +R/4)− i(ωL/vF )(α/2 +R)

1 + α+ (ωL/vF )2(R/4− α/6) + i(ωL/vF )(α/2−R)
(B.36)

1It has been shown in chapter 5 that this coefficient encodes all the relaxation properties.
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At low frequency, the plasmon transmission coefficient (B.34) reduces to a phase linear in ω,
and gives acces to the Wigner-Smith delay time τ = L

vF

α+2R
1+α

. In other words, this delay time
represents the renormalized time of flight under the influence of the capacitor.
Finally, the low frequency expansion of the admittance associated to (B.34) gives the total
relaxation resistance and the total electrochemical capacitance of the circuit :

Rq = R +
RK

2
and Cµ =

1
vFRK

L
+ 1

C

. (B.37)

Microscopic model for the ν = 2 regime

If we consider short-range coupling in the interacting region :

Vαβ(x, y) = Vαβδ(x− y) , (B.38)

with Vβα = Vαβ , the equation of motion for the bosonic field reads:

(∂t + vα∂x)φα(x, t) = −e
2

h
f(x)

∑
β

Vαβ(∂xφβ)(x, t), (B.39)

with f(x) = 1 if |x| < L/2 and 0 otherwise.

Considering position dependent Fourier modes, we get:

V(x)∂Φ
∂x

(x, ω) = iωΦ(x, ω). (B.40)

with Vαβ(x) = δαβvα + e2

h
f(x)Vαβ . We see here that the diagonal terms in V renormalize the

Fermi velocities in each channel. The non-diagonal part, which couples the edge channels, is
responsible for the interchannel plasmon scattering. It is useful to rewrite V in the interaction
region as :

V = v̄1+
∆v

2
σz +Wσx, (B.41)

where

v̄ =
v1 + v2

2
+
e2

2h
(V11 + V22) (B.42)

∆v = v1 − v2 +
e2

h
(V11 − V22) (B.43)

andW =
e2

h
V12. (B.44)

The plasmon scattering matrix is found by integrating eq. (B.40):

S(ω,L) = eiLV
−1

= eiωL/v0eiωL/v(cos θσ
z+sin θσx) . (B.45)

The eigenmode velocities v± and the angle θ are given by :

v± =
1

1
v0

∓ 1
v

= v̄ ±

√(
∆v

2

)2

+W 2 (B.46)

cos θ =
∆v/2√

W 2 + (∆v/2)2
and sin θ =

W√
W 2 + (∆v/2)2

. (B.47)
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Requiring the Hamiltonian of the infinite system to be definite positive implies that v± > 0
and this gives a constraint on the interaction potentials which we assume to be satisfied :
|v+ − v−| < v̄). As soon as there are interactions, v+ < v− and therefore these eigenmodes
are called the fast and slow modes depending on their velocities. We thus recover a scattering
of the form (4.43) found in chapter 4, where the angle can be interpreted as representing the
strength of interactions. Indeed, the value of cos θ and sin θ depends on the ratio u = W/∆v :

WhenW → 0 then θ → 0. We are in the weak coupling regime : plasmon modes localized
in one channel only acquire a phase during their propagation.

When u → ∞ , then θ → π
2
: the interchannel coupling is much stronger than the energy

scale associated to the renormalized Fermi velocities2. This value corresponds to the
strong coupling regime, a case that has been considered in [88].

In the strong coupling case, which corresponds to maximal mixing, the eigenmodes corre-
spond to a spinless mode calledspin the charge mode (fast mode of velocity v+) and a dipo-
lar mode carrying a nonvanishing spin (slow mode of velocity v−) : this model exhibits the
spin/charge separation.
The mesoscopic conductor made of the two edge channels admits the following admittance :

RK Y (ω) = (1− eiωl/v+)(1− sin θ) + (1− eiωl/v+)(1 + sin θ) . (B.48)

If θ = π/2, the admittance (B.48) becomes RK Y (ω) = 2(1 − eiωl/v−) : in this case, only the
symmetric mode carries charge, as expected. If we expand (B.48) at low frequency, we get in
the strong coupling regime :

Rq =
RK

4
and RKCµ = 2l/v+ . (B.49)

Discrete circuit elements model for coupled channels
We would like to see the coupled channels problem in terms of discrete circuit elements de-
scribing long range interactions along the same lines as [128]. Within the interaction region
|x| < l/2, the channel α sees a uniform time dependent potential Uα(t). This potential is in
turn related to the charges Qβ(t) stored in the interacting region thruogh a capacitance matrix
(Cαβ)αβ :

Qα(t) =
∑
β

CαβUβ(t) . (B.50)

The equations of motion for the bosonic fields describing the density fluctuations in the two
edge channels are :

(∂t + vF∂x)φα(x, t) =
e
√
π

h
f(x)Uα(t) . (B.51)

where f(x) = 1 if |x| < l/2 and 0 otherewise. In the previous equation, we assumed that the
Fermi velocities are the same for the two channels. We would like now to relate the plasmon
scattering matrix to the capacitance matrix (Cαβ)αβ . Let us introduce the vector notation :

Φ(ω)(in/out) =
e√
π
(φα(±l/2, t))α and U(ω) = (Uα(ω))α . (B.52)

2Or the renormalized velocities in the edge channels are the same, a case that we cannot consider here.
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Then eq. (B.50) rewrites :
Φ(ω)(in) − Φ(ω)(out) = C · U(ω) . (B.53)

The capacitance matrix is symmetric [84]. Thus, it can be diagonalized by a rotation :

C =

(
C1 −C
−C C2

)
= R(θ)−1

(
C+ 0
0 C−

)
R(θ) . (B.54)

The eigenvalues and the angle θ are given by :

C± =
C1 + C2

2
+

√
C2 +

(∆C)2

4
and cos θ =

∆C√
C2 + (∆C)2

4

, (B.55)

where∆C = C1−C2. The plasmon scattering matrix relating Φ(ω)(in) and Φ(ω)(out) is found
by solving the equations of motion. At low energies, it reads :

S(ω) = 1

2

(
eiωl/v+ + eiωl/v−

)
1+

1

2

(
eiωl/v+ − eiωl/v−

)
(cos θσz − sin θσx) , (B.56)

where the eigenmode velocities v± are given by:

v± = v + (RK∂lC±)
−1 . (B.57)

Since the capacitances are proportional to the length l of the interacting region, the eigenmode
velocities are independent of l. Thus, we have derived the scattering matrix for plasmon modes,
and found that in the infrared limit it has the same universal expression as in the short range
coupling case.
Here, the limit cos θ = 0 is reached for C � |∆C|. It can also be checked that gauge invari-
ance is satisfied by the admittance matrix only if the capacitance matrix C satisfies the same
condition : it means that each edge channel must be totally screened by the other within the
interaction region.

Phase scattering

In this section, we consider two examples which lead to a pure phase transmission of plasmons
corresponding to the absence of nergy leak outside of the edge channel. These include the casse
of a single channel with intrachannel interactions and also the coupling of an open channel to
a closed one.

Coupling with a closed channel

In fig B.4, the closed edge channel is described by a spatially periodic bosonic field :

Φ2(−l/2, t) = Φ2(l/2, t),∀t. (B.58)

The former equality means that there is no charge stored in the closed channel, since Q =∫
(∂xΦ)dx = Φ(l/2) − Φ(−l/2). This assumes the absence of interaction with a zero mode,

and thus the equality of the chemical potentials of the two channels : µ(1)
F = µ

(2)
F .Apart from

139



APPENDIX B. PLASMON SCATTERING MATRICES

(2)

(1)

x=0 x=l

Figure B.4: The edge configuration considered here. There is no tunneling between positions
x = 0 and x = L of the channel (1). The coupling is assumed to be local all along the closed
channel.

this specificity, the derivation of the scattering matrix follows the same line of arguments as for
the low energy scattering for ν = 2 edge channels. The supplementary condition comes from
the closed channel (2) whose bosonic field satisfies :

φ2(x = 0, t) = φ2(x = l, t) . (B.59)

Thus, the transmission coefficient has the following expression :

tb(ω) = exp (−iφ(ω)) (B.60)

with

φ(ω) = ω(τ+ + τ−)− 2 arctan

[
1− p cosωτ+ − (1− p) cosωτ−
p sinωτ+ + (1− p) sinωτ−

]
, (B.61)

and

τ+ =
l

v+
, τ+ =

l

v−
, p =

1

2
(1 + cos(θ)),

where v− (resp.v+) is the velocity of the dipolar (resp. charge) plasmonic mode.
One has |tb(ω)|2 = 1, ∀ω : since the closed edge has a finite length, there is no energy loss from
the first edge to the other one. Two physically relevant parameters appear, which are the ratio
between the travel times for slow (dipolar) and fast (charge) modes γ = τ−

τ+
, and the interaction

parameter p or equivalently θ. It should be noticed that γ ∈ [0, 1] since the dipolar mode is
slower than the charge one.

The appearance of phase resonances in the transmission coefficient is linked to the presence
of the closed channel, and they will be responsible for a step structure in the elastic scattering
probability, as seen in chapter 5.

Intrachannel interactions

We now turn to the case of intrachannel interactions. These are responsible for a modifica-
tion of the plasmon dispersion relation :

ω(q) = vF q

(
1 +

Ũ(q)

2π~vF

)
, (B.62)
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where Ũ is the Fourier transform of the interactin potential.
The screened Coulomb interaction could be modeled by different expressions :

• Contact potential : U(x, y) = U0δ(x− y). In this case, Ũ(q) = U0.

• Finite range potential U(x, y) = U0e
−|x−y|/ξ , where ξ is the screening length. Here,

Ũ(q) = 2U0ξ
1+(qξ)2

.

• A regularized Coulomb potential : U(x, y) = U0√
a2+(x−y)2

. This potential form corre-

sponds to Ũ(q) = 2U0aK0(qa).

The dispersion relation being written in the form ω(q), the different operators appearing in
bosonization must be written in terms ok the wavevector k. After propagation during a time t,
the parameter of the coherent state of an electron introduced at a position x becomes :

λx,t(k) = λx,t=0(k) e
−iω(k)t = λx,t=0(k) e

−ivF kt e−i(ω(k)−vF k)t . (B.63)

Thus, the transmission coefficient is a phase, and is equal to:

tb(k) = exp (−i(ω(k)− vfk)) . (B.64)

In such a situation, the nonlinear part of the scattering phase is responsible for decoherence
and relaxation.

Dissipative environment

As a last example, we consider an edge channel coupled to a dissipative environment. The
losses per unit length are accounted for by a frequency dependent energy loss rate κ(ω). The
propagation over an infinitesimal length dl is described by the following equation :

φω(l + dl) = φω(l) e
iωdl/vF e−κ(ω)dl . (B.65)

This leads to the evolution equation for the bosonic field :

dφω

dx
(x) = (ω/vF − κ(ω))φω(x) . (B.66)

Thus, in this case, the transmission coefficient representing a propagation over a length l is, up
to the free propagation phase :

tb(ω) = e−κ(ω)l . (B.67)

The dimensionless admittance equivalent to the circuit depicted on the left is:
(w)G

mC

R
K/2

y(ω) = RKG(ω)− iRKCµω − R2
K

2
(G(ω)− iCµω)

2 .
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If we expand the expression of the admittance obtained from tb(ω) :

y(ω) = 1− eiRKCµωe−lκ(ω) (B.68)

' −iRKCµω − lκ(ω) +
1

2
(RKCµω)

2 +
1

2
l2κ2(ω) , (B.69)

then we have the relation between κ(ω) and the leak conductance G(ω) :

lκ(ω) = RKG(ω) . (B.70)

In the case of an ohmic environment G(ω) ∝ ω, the dissipation rate κ is linear in ω.
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Appendix C

Auxiliary relaxation functions and
modified Wick theorem

In this appendix, the auxiliary functions needed to compute the relaxation of electrons in chap-
ters 5 and 6 are presented. We also give the derivation of a generalization Wick’s theorem in
a coherent plasmonic state which is necessary to split the coherence function into its modified
vacuum and wavepacket parts.

The Γ± functions and their properties

The Γ± functions are defined by :

Γ±(q) =

∫
e−iqx exp

(
±
∫ ∞

0

(1− tb(ω))(e
− iωx

vF − 1)
dω

ω

)
dx (C.1)

They satisfy the following sum rule :∫
Γ±(q)

dq

2π
= exp

(
±
∫ ∞

0

(1− tb(ω))(e
− iωx

vF − 1)
dω

ω

)∣∣
x=0

= 1 . (C.2)

These functions also satisfy Γ+ ?Γ− = δ, where ? denotes the convolution product. Expanding
the exponential integrand in series shows that each of them can be decomposed into a δ(q)
singularity and a regular part A±(q):

Γ±(q)

2πΛ±
= δ(q) + A±(q) (C.3)

where

Λ± = exp

(
∓
∫ ∞

0

(1− tb(ω))
dω

ω

)
(C.4)

and A±(q) = 0 for q > 0 (since the integration goes from zero to infinity in the exponential in
(C.1)). Note that it is assumed that the transmission coefficient tb(ω) tends to 1 at infinity fast
enough so that Λ± 6= 0. The property Γ+ ? Γ− = δ rewrites as:

A+ + A− + A+ ? A− = 0 . (C.5)
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The regular part can be obtained as a solution of an inhomogeneous linear integrodifferential
equation, in the spirit of the P(E) theory of dynamical Coulomb blockade :

− qA±(q) = f±(q) +

∫ −q

0

f±(k)A±(k + q) dk (C.6)

where f±(k) = ±(1− t(vFk)). Note that for q ≤ 0, A±(q) only depends on the values of tb(ω)
for 0 ≤ ω ≤ vF |q|. The formal solution to each of these equations is the series expansion of
A±(q) as a series of convolutions:

A±(q) =
+∞∑
n=1

(±1)n

n!

[
Θ(−k)1− t(−vk)

−k

](?n)
(q) (C.7)

which represents their perturbative expansion in terms of plasmon scattering. Since tb(ω) goes
to zero as O(ω) for ω → 0, this shows that A±(q) 7→ 0 when q → 0−. The first terms of this
expansion can be used to obtain approximate analytical expressions for A±(q) in the infrared
regime from a low frequency expansion of plasmon scattering or equivalently of the finite fre-
quency admittance y(ω) = RKGee(ω). In chapter 5, section 2, this expansion has been used
to find the series expansion of the elastic scattering probability at low energy. Finally, eqs.
(C.6) provide a very convenient way to compute A± numerically from the scattering coefficient
tb(ω).

Time delay symmetry

In the case of a pure phase scattering tb(ω) = eil0ω/vF , we have:

A+(q) = −il0Θ(−q) (C.8)

A−(q) = il0Θ(−q) e−il0q . (C.9)

In this case, Z(k0) = 1 and more generally G(e)
k0

is the sum of the Fermi sea contribution and
of a quasi particle peak δ(q − k0). This result simply expresses that tb(ω) = eiωl0/vF is a time
delay for single electron excitations and thus does not lead to relaxation at all.

More generally, let us consider tb(ω) = eiωl0/vF T (ω). The eiωl0/vF phase introduces a
time delay for single electron excitations and therefore should not alter their energy nor their
coherence. Integration by parts shows that:

A+(q) = −il0Θ(−q)
(
1 +

∫ 0

q

B+(k)e
−ikl0 dk)

)
+ e−iql0B+(q) (C.10)

A−(q) = il0e
−iql0Θ(−q)

(
1 +

∫ 0

q

B−(k) dk)

)
+ e−iql0B−(q) (C.11)

where B±(q) denotes the A± functions defined in (C.1) and (C.3) evaluated using T (ω). These
expressions can then be used to evaluate for the electron distribution. Plugging this back into
the epxression for |Z(k0)|2 immediately shows that the result does not depend at all on l0 and
can be evaluated using T (ω) instead of tb(ω) = eiωl0/vF T (ω) as expected on physical grounds.
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Wick theorem in plasmon coherent states
This section shows how a generalization of Wick’s theorem can be derived for matrix elements
in coherent plamonic states. Before deriving the complete expression of Wick’s theorem, we
recall some results on coherent states and displacement operators.

Coherent states and displacement operators

A single plasmonic mode is described as a quantum harmonic oscillator. Denoting by b and b†

creation and destruction operators ([b, b†] = 1) in such a mode, the displacement operator with
complex parameter λ is defined as:

Db(λ) = eλ b†−λ∗ b . (C.12)

This operator generates the coherent state Db(λ)|0〉 = |λ〉.
Displacement operators form a projective representation of translations in phase space :

Db(λ)
†. b.Db(λ) = b+ λ (C.13)

Db(λ). Db(µ) = ei=(µ∗λ)Db(λ+ µ) . (C.14)

Denoting by : A : the bosonic normal ordering of A, it immediately follows that

Db(λ) = e−|λ|2/2 : Db(λ) : . (C.15)

Equations (C.14) and (C.15) give access to all average values. In particular:

〈α−| : Db(λ) : |α+〉 = eλα
∗
−−λ∗α+〈α−|α+〉 . (C.16)

The scalar product of coherent states follows from (C.14) and (C.15):

〈µ|λ〉 = e−|λ−µ|2/2 × ei=(µ∗λ) . (C.17)

All in this thesis, we consider infinite dimensional coherent states that are eigenstates of all bω
for ω > 0. These states are written as formal infinite tensor products:

|[λω]〉 =
⊗
ω>0

Dbω(λω)|0ω〉 (C.18)

Correlation functions as well as matrix elements involving such states are derived simply by
taking a formal product over all ω > 0 which is equivalent to integrating the argument of
exponentials that appear in the above equations (C.14) to (C.17). For example, the scalar product
of two infinite dimensional coherent states is given by:

〈[µω]|[λω]〉 = e−
1
2

∫+∞
0 |λω−µω |2dω × ei

∫+∞
0 =(µ∗

ωλω) dω (C.19)

and we have:

〈αω| :
⊗
ω>0

D(λω) : |βω〉 = e
∫+∞
0 (λωα∗

−−λ∗
ωβω) dω〈[αω]|[βω]〉 . (C.20)
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Generalized Wick’s theorem

Our goal is to compute the single electron coherence G(e)
out(x, y) for an initial state formed by

two single particle excitations on top of the Fermi sea:

G(e)(x, y) =

∫
ϕ(y+)ϕ

∗(y−)〈ψ̃(y−)ψ†(y)ψ(x)ψ̃†(y+)〉FDext(y−, y+) dy+dy− . (C.21)

The main difficulty comes from the four point correlator 〈ψ̃(y−)ψ†(y)ψ(x)ψ̃†(y+)〉F . In the
case of free electrons, Wicks theorem can be used to decompose it into a sum of two con-
tributions which respectively correspond to the Fermi sea and wave packet contributions to
G(e)(x, y).

We want to perform a similar decomposition here. As stressed in chapter 5, the operator
ψ̃(y) only differ from a bare electron operator by an e/h pair dressing:

ψ̃†(y) = ei
∫+∞
0 =(tb(ω))

dω
ω ψ†(y)

[⊗
ω>0

Dbω (λω(y)(1− tb(ω)))

]
. (C.22)

Evaluating the above mentioned four point functions then boils down to the evaluation of a
four fermion operator matrix element between coherent plasmon states:

〈ψ̃(y−)ψ†(y)ψ(x)ψ̃†(y+)〉F = 〈g(y−)|ψ(y−)ψ†(y)ψ(x)ψ†(y+)|g(y+)〉 . (C.23)

where
|g(y)〉 =

⊗
ω>0

|λω(y)(1− tb(ω))〉 . (C.24)

As we shall see now, using a generalization of Wick’s theorem, the four point correlator ap-
pearing in (C.21) can be written as a sum of product of two point functions. Then, a careful
rewriting of each of these two contributions will be performed to make its physical meaning
more explicit.

The result can be generalized to the product of an arbitrary even number of fermionic
operators. For the sake of simplicity, let us look at a four point correlator :

A(x1, x2;x
′
1, x

′
2) = ψ(x1)ψ(x2). ψ

†(x′1)ψ
†(x′2) . (C.25)

We would like to evaluate its matrix element 〈g−|A(x1, x2;x′1, x′2)|g+〉 between two coherent
plasmonic states |g±〉. Up to phases A(x1, x2;x′1, x

′
2) acts as a product of displacement opera-

tors in plasmonic phase space. Making use of (C.15), we get:

A(x1, x2;x
′
1, x

′
2) =: A(x1, x2;x

′
1, x

′
2) : ×〈A(x1, x2;x′1, x′2)〉F (C.26)

where 〈A〉F denotes the average value of A in the Fermi sea |F 〉 and : A(x1, x2; x
′
1, x

′
2) :

denotes the bosonic normal ordering of the four fermion operator. Since the normal ordering
consists into putting all the bosonic annihilators (resp. creators) on the right and (resp. left),
it implies that : A(x1, x2;x′1, x

′
2) : is nothing but the normal ordered displacement operator

: D(Λ) : where the parameter Λ is obtained by summing all complex parameters that appear
in the 4 fermion operator:

Λω =
1√
ω

(
e−iωx′

1/v − e−iωx1/v + e−iωx′
2/v − e−iωx2/v

)
. (C.27)
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Then, the matrix element of a normal ordered plasmonic displacement operator : D(Λ) : be-
tween two coherent plasmonic states |g±〉 is obtained as:

〈g−| : D(Λ) : |g+〉 = 〈g−|g+〉 × e
∫∞
0 (g−(ω)∗Λω−Λ∗

ωg+(ω)) dω . (C.28)

In particular for the fermionic two point function, we obtain :

〈g−|ψ(x)ψ†(y)|g+〉
〈g−|g+〉

= 〈ψ(x)ψ†(y)〉F×exp

(∫ ∞

0

{
g∗−(ω)(e

−i ωy
vF − e

−i ωx
vF )− g+(ω)(e

−i ωy
vF − e

−i ωx
vF )
} dω√

ω

)
(C.29)

Wick’s theorem can then be applied to decompose the four point fermionic correlator into a
sum of products of two point functions:

〈A(x1, x2;x′1, x′2)〉F = 〈ψ(x1)ψ†(x′1)〉F 〈ψ(x2)ψ†(x′2)〉F + 〈ψ(x1)ψ†(x′2)〉F 〈ψ(x2)ψ†(x′1)〉F .
(C.30)

Using eq. (C.28) and then (C.29) to absorb the exponential into a rewriting of two point func-
tions finally leads to the generalization of Wick’s theorem to plasmon coherent states:

〈g−|A(x1, x2;x′1, x′2)|g+〉
〈g−|g+〉

=
〈g−|ψ(x1)ψ†(x′1)|g+〉〈g−|ψ(x2)ψ†(x′2)|g+〉+ x′1 ↔ x′2

〈g−|g+〉〈g−|g+〉
. (C.31)

This result has been expected. Indeed, since Wick’s theorem is verifies in the state |F 〉 (in the
absence of interactions), gauge invariance states that it is also true for every plasmon coherent
state. The interesting point in (C.31) comes that an equivalent of Wick’s theorem can be found
for matrix elements between different plasmonic coherent states.

Splitting the coherence function

Let us apply this result to the evaluation of the four point function 〈ψ̃(y−)ψ†(y)ψ(x)ψ̃†(y+)〉F
and plug it back into (C.21). This leads to the decomposition of G(e)

out(x, y) as a sum of two
terms.

The first one, called the modified vacuum contribution, is given by:

G(e)
mv(x, y) =

∫
dy+dy−ϕ(y+)ϕ

∗(y−)Dext(y+, y−)〈g(y−)|ψ(y−)ψ†(y+)|g(y+)〉
〈g(y−)|ψ†(y)ψ(x)|g(y+)〉

〈g(y−)|g(y+)〉
(C.32)

Since 〈g(y−)|ψ(y−)ψ†(y+)|g(y+)〉 = 〈ψ̃(y−)ψ̃†(y+)〉F and remembering that Dext(y+, y−) is
the scalar product of the circuit and edge channel states issued from localized single electron
excitations at positions y+ and y−, unitarity of the plasmon scattering matrix leads to:

〈ψ̃(y−)ψ̃†(y+)〉F Dext(y+, y−) = 〈ψ(y−)ψ†(y+)〉F . (C.33)

Consequently, the modified vacuum contribution rewrites as:

G(e)
mv(x, y) =

∫
dy+d−ϕ(y+)ϕ

∗(y−)〈ψ(y−)ψ†(y+)〉F
Tr [ψ(x)|g(y+)〉〈g(y−)|ψ(y)]

〈g(y−)|g(y+)〉
(C.34)

This suggests that the modified vacuum contribution can be viewed as originating from an
effective many body operator that represents the excitation of the Fermi sea by the wave packet
ϕ:

ρmv[ϕ] =

∫
dy+dy−ϕ(y+)ϕ

∗(y−)〈ψ(y−)ψ†(y+)〉F
|g(y+)〉〈g(y−)|
〈g(y−)|g(y+)〉

. (C.35)
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This statement can be proved as follows: if we compute the reduced n particle coherence or
more generally any mixed objects involving electron creation and destruction operators, all
contributions involving the (y+, y−) contraction in the l.h.s. of the generalized Wick theorem
can be resummed and gathered together as a modified vacuum contribution for the coherence
function under consideration. Then, eq. (C.34) becomes true provided one replaces the ψ(x)
and ψ†(y) operators by the corresponding product of operators appearing in the definition of
the n-particle coherence. This precisely means that all modified vacuum contributions arise
from the effective many body operator (C.35).

The second contribution to (C.21), called the wavepacket contribution, is given by:

G(e)
wp(x, y) =

∫
dy+dy−ϕ(y+)ϕ

∗(y−)Dext(y+, y−)
〈g(y−)|ψ(x)ψ†(y+)|g(y+)〉〈g(y−)|ψ(y−)ψ†(y)|g(y+)〉

〈g(y−)|g(y+)〉
(C.36)

Using equation (C.29), the two point correlators 〈g(y−)|ψ(x)ψ†(y+)|g(y+)〉 and 〈g(y−)|ψ(y−)ψ†(y)|g(y+)〉
can be rewritten in terms of the usual propagators 〈ψ(y−)ψ†(y)〉F and 〈ψ(y−)ψ†(y)〉F multi-
plied by the appropriate exponential factors:

G(e)
wp(x, y) =

∫
dy+dy−ϕ(y+)ϕ

∗(y−)Dext(y+, y−)〈g(y−)|g(y+)〉〈ψ(y−)ψ†(y)〉F 〈ψ(x)ψ†(y+)〉F

× exp

[∫ +∞

0

dω

ω
(1− t∗b(ω))

{
1− e

i ω
vF

(y−−y+)
+ e

i
ωy−
vF (e

−i ωx
vF − e

−i ωy
vF )
}]

× exp

[∫ +∞

0

dω

ω
(1− tb(ω))

{
1− e

i ω
vF

(y−−y+)
+ e

−i
ωy+
vF (e

i ωy
vF − e

i ωx
vF )
}]

. (C.37)

Then, remembering that

Dext(y+, y−) = exp

(∫ +∞

0

R(ω) (e
−iω∆y

vF − 1)
dω

ω

)
(C.38)

and computing the scalar product 〈g(y−)|g(y+)〉 as:

Dext(y+, y−) = exp

(∫ +∞

0

|1− tb(ω)|2 (e
−iω∆y

vF − 1)
dω

ω

)
(C.39)

we obtain

Dext(y+, y−)〈g(y−)|g(y+)〉 = exp

(∫ +∞

0

2<(1− tb(ω))(1− e
i ω
vF

(x−y)
)
dω

ω

)
. (C.40)

Thus, the productDext(y+, y−)〈g(y−)|g(y+)〉 compensates parts of the exponentials in the r.h.s.
of (C.37). This leads to the following expression for the wavepacket contribution:

G(e)
wp(x, y) =

∫
dy+dy−ϕ(y+)ϕ

∗(y−)〈ψ(y−)ψ†(y)〉F 〈ψ(x)ψ†(y+)〉F Cy+(x, y)Cy−(y, x)
∗

(C.41)

Cy+(x, y) = exp

(∫ +∞

0

(1− tb(ω))e
− iωy+

vF

(
e
i ωy
vF − e

i ωx
vF

) dω

ω

)
. (C.42)
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Decomposing the free electron correlators appearing in eq. (C.41) in Fourier space finally leads
to:

G(e)
wp(x, y) =

∫
ϕ̃(k+) ϕ̃(k−)

∗ Ik+(x− y) Ik−(x− y)∗ ei(k+x−k−y) dk+dk−
(2π)2

. (C.43)

where ϕ̃ denotes the incident wavepacket in momentum space and

Ik(z) =

∫
(1− nF (k − p)) eipu exp

(∫ +∞

0

(1− tb(ω))e
−i ωu

vF (e
−i ωz

vF − 1)
dω

ω

)
dp du

2π
(C.44)

The physical intepretation of (C.43) is clear: each contribution from coherent plane waves
(k+, k−) to the coherence has to be multiplied by and effective decoherence coefficient of the
form Ik+(x − y) Ik−(y − x) which accounts for the effect of interactions and of the external
circuit. The presence of the (1− nF (k± − p)) factor precisely accounts for the Pauli principle.

Translation invariance and splitted coherence function

In chapter 5, we considered the case of an energy resolved electronic excitation. In position
space, the wavefunction of such an electron is a plane wave, which is a translation invariant
state.
An ambiguity remains in the definition of the dressed electron operator (C.22). Indeed, the
reference position to define the bare fermion operator can be chosen arbitrarily. Adding a
constant b to this position would lead to :

ψ̃†(y + b) = ei
∫∞
0

dω
ω

=tb(ω)ψ(y + b)|g(y + b)〉 . (C.45)

This different decomposition does not affect G(e)(x, y) in the case of a planewave : a change of
variables shows that the total coherence function is left untouched, as expected from translation
invariance. Nevertheless, this ambiguity affects the two contributions G(e)

wp and G(e)
mv. Hopefully,

the oscillations appearing in the two parts of G(e) cancel out, as seen in fig. C.1.
The UV behaviour of the scattering guides the appropriate choice for the decomposition of

the dressed fermion operator (C.22) : the suitable decomposition is the one leading to tb(ω) → 1
when ω → ∞.

Explicit expressions in Fourier space

In this last paragraph, we give the expression of the different contributions to the excess occupa-
tion number in terms of the A functions, and perform a low energy expansion of the coherence
function. The elastic scattering amplitude Z(k0) is given by :

Z(k0) = 1 +

∫ 0

−k0

A−(p)dp . (C.46)

The J and G functions in equations (5.31c) and (5.31a) in chapter 5 admit the following expres-
sions :

J(p) = A+(p)Θ(p+ k0)Z(p+ k0) (C.47)
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Figure C.1: Effect of a supplementary phase in the scattering. The two contributions G(e)
wp and

G(e)
mv are modified by the supplementary phase, but their sum remains untouched (red dashed

line). Here, tb(ω) = eiωL0/vF , where L0 =
6
k0
.

and

G(k0, q)

2π
= δ(q)

∫ k0

0

2<(A+(p− k0)A
∗
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2<
(
A+(q)
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0
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)
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p≥0
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(
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2
+ k

)
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(
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2
− k

)
A∗

+

(
p− k0 + q

2
− k

)
A∗

−

(
p− k0 − q

2
+ k

)
dp dk .

(C.48)

Low energy approximation

Up to first order in 1− t, the A± functions read :

A±(q) ' ∓θ(−q)1− t(−vF q)
q

. (C.49)

Thus, in this approximation, the modified vacuum does not contribute to the coherence, since
it involves terms containing at least two A functions : the Fermi sea remains spectator. For the
same reason, the term

∫
J(p)∗J(q−k0−p) dp in the expression (5.31a) of δn(wp)(q) in chapter

5 does not come into play. Consequently, we are left with

δn(wp)(q) ' |Z(k0)|2δ(q − k0) + 2<(Z(k0)J
∗(q − k0)) (C.50)

as an expression for the coherence in Fourier space up to the first order in 1 − t. The second
term in the r.h.s. of the equation above can be approximated by 2<(Z(k0 − q)A+(k0 − q)),
since Z(k0) ' 1. Finally, with A+(q) ' A−(q) when q → 0, we recover the low energy
expression (5.45) of the occupation number at low injection energy :

δn(k)

{
' Z(k0)δ(k − k0)− Z ′(k − k0) for 0 ≤ k ≤ k0,

= 0 otherwise .
(C.51)
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