Introduction	Electronic coherence functions	Tomography	Interacting regime	Conclusions and perspectives
000000000	000000	0000000000000	000000000000	

Optique quantique électronique -Electron quantum optics

Charles Grenier Sous la direction de Pascal Degiovanni

École normale supérieure de Lyon

Lyon, 30 juin 2011

▲□▶▲□▶▲□▶▲□▶ □ のQで

Quantum coherence

Classical vs. quantum description

Classical

Evolution Newton's (Einstein's) laws

- Defined position and velocity
- One state at a time : No superposition

Electromagnetic field Maxwell : Light is a wave

Quantum world

Evolution Schrödinger's equation

- Heisenberg inequalities
- Linear superpositions : Schrödinger's cat

Electromagnetic field QED :

 $Light \equiv wave \text{ and } particle$

◆□▶◆□▶◆臣▶◆臣▶ 臣 のへで

Quantum coherence

Linear superpositions \equiv Interferences

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\begin{array}{l} \textbf{Probability } i \to f \ \mathcal{P}_{if} = |\mathcal{A}[q_1] + \mathcal{A}[q_2]|^2\\ \textbf{Classical terms } |\mathcal{A}[q_1]|^2 + |\mathcal{A}[q_2]|^2\\ \textbf{Quantum terms } 2\Re(\mathcal{A}[q_1]\mathcal{A}^*[q_2]) \end{array}$

Coupling to an external environment $\mathcal{R} \Rightarrow$ Reduction of visibility !

$$2\Re(\mathcal{A}[q_1]\mathcal{A}^*[q_2])\underbrace{\mathcal{F}[q_1, q_2]}_{visibility}$$

- R. P. Feynman Rev. Mod. Phys. 20, 367 (1948)
- R. P. Feynman, F. L. Vernon, Ann. Phys. (N. Y.) 24, 118 (1963)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Quantum coherence

Quantum coherence in solid state systems

Feynman - Vernon picture OK if one can separate the system ${\cal S}$ and the environment ${\cal R}$

Approach well suited for :

- Coupling of a two level system to a quantum bath
 - Quantum impurity problems
 - Atom in a cavity
 - Josephson junctions

In a metal : Not so evident to single out an electron ...

Loss of quantum coherence in a metallic environment?

2D electron gas in a magnetic field

- Interface of two semiconductors : 2D electron gas
- In high magnetic field (≃ 5 *T*), at low temperature (100 *mK*)
 ⇒ Quantum Hall effect
- Electrical current at the edge

y	B	
×x		

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• Klitzing, K. von; Dorda, G.; Pepper, M., Phys. Rev. Lett. 45 494-497 (1980)

omography Interacting

Conclusions and perspectives

Integer quantum Hall effect

Current transport in the IQHE

- Electrons in a magnetic field : Landau levels
- Sample edges ↔ Confinment potential
 ⇒ Deformed Landau levels
- Intersection Landau level/Fermi energy : Conduction channels !
 - M. Buttiker, Phys. Rev B, 38 9375 (1988)
 - B.I. Halperin, Phys. Rev. B 25 2185-2190 (1982)

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Quantum optics with electrons?

Chirality of edge channels :

- \Rightarrow Robustness against disorder and interactions
- \rightarrow Edge channels \equiv coherent electronic waveguides

Engineering the electron gas \Rightarrow electronic mirrors, beamsplitters ...

Is it possible to perform interference experiments with chiral electrons?

▲□▶▲□▶▲□▶▲□▶ □ のQで

• M. Buttiker, Phys. Rev B, 38 9375 (1988)

Introduction Elect

Electronic coherence functions

omography Interacting regime

Quantum optics with electrons

A Mach-Zehnder interferometer for electrons

[•] Yang Ji, et al, Nature 422, 415 (2003)

• Playing with the 2DEG : analogues of optics components

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

• Current oscillations : Quantum coherence !

Tomography Interacting reg

Conclusions and perspectives

Quantum optics with electrons

Electron - photon analogy

Photons

Electrons

Photons beams

QHE chiral edge channels

QPC

Beamsplitter

Sample edges

Light source

Mirrors

Driven reservoir

Single photon source

Single electron source^{*ii*}

Electronic MZI (CEA) $l_{\phi} = 20 \mu m$ at $20 m K^{i}$

3

イロト 不得 とうほう イヨン

• P. Roulleau & al. Phys. Rev. Lett. 100, 126802 (2008)

• G. Fève et al., Science 316, 1169 (2007)

Quantum optics with electrons

The single electron source

... The missing piece to perform single quanta experiments

- Electrostatic gate : constriction
- Discrete level structure
- Control via V_{exc}
- Single electron emission !

Fermi sea

э

Possible realization of the quantum optics paradigm :

	Electronic coherence functions	Tomography	Interacting regime	Conclusions and perspectives	
000000000	000000	0000000000000	000000000000		
Quantum optics with electrons					

Main questions

- i) A formalism for electron quantum optics ? \Rightarrow Render the analogies and differences with photons
- ii) Inclusion of interactions?
- iii) Relation to experimentally relevant quantities?
- iv) Validity of the electron quantum optics paradigm?

Introduction 0000000000	Electronic coherence functions	Tomography 000000000000000000000000000000000000	Interacting regime	Conclusions and perspectives

Outline

Toolbox for Electron quantum optics

Measurement of the single particle coherence

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

3 Interactions and single particle coherence

Introduction 000000000	Electronic coherence functions	Tomography 000000000000000000000000000000000000	Interacting regime	Conclusions and perspectives

Outline

1 Toolbox for Electron quantum optics

Measurement of the single particle coherence

Interactions and single particle coherence

▲□▶▲□▶▲□▶▲□▶ □ のQで

Derivation from experimental quantities

Photodetection and coherence function

Derivation from experimental quantities

Electron coherence function

• Electrons

Simple model for tunnelling detection :

$$\mathcal{H} = \hbar(\psi^{\dagger}(\mathbf{x}_{D})O + O^{\dagger}\psi(\mathbf{x}_{D}))$$

$$I_D(t) = \int_0^t \underbrace{\mathcal{G}^{(e)}(x_D, \tau | x_D, \tau')}_{d\tau d\tau} \underbrace{K_D(\tau - \tau')}_{d\tau d\tau'} d\tau d\tau'$$

Single electron coherence Detector properties

▲□▶▲□▶▲□▶▲□▶ □ のQで

$$\mathcal{G}^{(e)}(x,t|x',t') = \langle \psi^{\dagger}(x',t')\psi(x,t) \rangle_{
ho}$$

• C. Altimiras et al., Nature Physics 6, 34-39 (2009)

Properties of electronic coherence functions

Electron coherence functions : different contributions

Single electron coherence

$$\mathcal{G}_{\rho}^{(e)}(x,t;x',t') = \operatorname{Tr}\left(\psi(x,t)\rho\psi^{\dagger}(x',t')\right)$$

For a wavepacket ϕ_e : $\mathcal{G}^{(e)}(t, t') = \mathcal{G}_F^{(e)}(t - t') + \phi_e(v_F t) \phi_e^*(v_F t')$

- Vacuum contribution
- Excess contribution

▲□▶▲□▶▲□▶▲□▶ □ のQで

$$\Delta \mathcal{G}^{(e)}(t,t') = \mathcal{G}^{(e)}(t,t') - \mathcal{G}^{(e)}_F(t-t')$$

Quantity of interest :

Introduction

Electronic coherence function

Tomography Interacting regime

Conclusions and perspective

Properties of electronic coherence functions

Properties of the single electron coherence function At fixed position : $\Delta \mathcal{G}^{(e)}(t - t', (t + t')/2) \rightarrow \Delta \mathcal{G}^{(e)}(\omega, \omega')$ in Fourier space

- Electronic excitations
- Hole excitations
- Electron-hole coherences

▲□▶▲□▶▲□▶▲□▶ □ のQで

Access to occupation number through spectroscopy experiments

• C. Altimiras et al., Nature Physics 6, 34-39 (2009)

An electronic wavepacket

One lorentzian wavepacket of characteristic time τ_0

Diagonal part : Occupation number

3

Introduction 0000000000	Electronic coherence functions	Tomography 000000000000000000000000000000000000	Interacting regime	Conclusions and perspectives
Simple examples				

Two electrons

Two identical lorentzian wavepackets of characteristic time τ_0 separated by Δt

In Fourier space :

 $\Delta t \ll \tau_0$

ω.τ₀

Introduction	Electronic coherence functions		Interacting regime	Conclusions and perspectives
0000000000	000000	0000000000000	000000000000	

Outline

Toolbox for Electron quantum optics

Measurement of the single particle coherence

Interactions and single particle coherence

 Introduction
 Electronic coherence functions

 0000000000
 000000

Tomography Interaction

Interacting regime

Conclusions and perspectives

HBT effect and quantum tomography

What is tomography?

Classical tomography

Quantum tomography

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• A. I. Lvovsky and M. G. Raymer Rev. Mod. Phys. 81, 299 (2009)

Introduction

Electronic coherence fun

HBT effect and quantum tomography

HBT effect

- Nature 178, 1046 (1956)
- Am. J. Phys. 29, 539 (1961)

- 2 particle interferences
- Correlations without interactions :

Classical	(0,2) (2,0) (1,1)
Bosons	(0,2) $(2,0)$
Fermions	(1,1)

HBT effect with electrons :

Liu et al, Nature **391**, 263 (1998) Henny et al, Science **284**, 396 (1999) Oliver et al, Science **284**, 299 (1999) An electronic quantum tomography protocol

HBT interferometry for electrons

In our case : reconstruction of the single particle coherence

- Controlled source : driven ohmic contact
- Outcoming current correlations :

 $S^{(out)}_{lphaeta}(t,t') = \langle i_{lpha}(t)i_{eta}(t')
angle_{c}$

Experimental signal

Low frequency current correlations \equiv Overlap of single particle coherences

• Samuelsson and Büttiker, Phys. Rev. B 73, 041305R (2006)

An electronic quantum tomography protocol

Extraction of the single particle coherence

Controlled source : tunable $\mu_{2,0}$ and $V_{ac} = V_0 \cos(n\Omega_T t + \phi)$

 $\Delta \mathcal{G}_{n=0}^{(e)} \rightarrow \text{Current correlations in terms of the DC bias}$ $\Delta \mathcal{G}_{n\neq 0}^{(e)} \rightarrow \text{Response of current correlations to AC voltage}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An electronic quantum tomography protocol

Extraction of the single particle coherence

Controlled source : tunable $\mu_{2,0}$ and $V_{ac} = V_0 \cos(n\Omega_T t + \phi)$

 $\Delta \mathcal{G}_{n=0}^{(e)} \rightarrow \text{Current correlations in terms of the DC bias}$ $\Delta \mathcal{G}_{n\neq 0}^{(e)} \rightarrow \text{Response of current correlations to AC voltage}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Illustration on the mesoscopic capacitor

The mesoscopic capacitor - Modelling

Square voltage Amplitude A pulsation Ω

- Free electrons
- Quantum dot & T periodic driving ⇒ Scattering
- $S(t, t') = S_0(t t') \exp\left(\frac{ie}{\hbar} \int_{t'}^t V(\tau) d\tau\right)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- $S \equiv$ Floquet scattering : relates *in* and *out* electronic modes
- Periodic driving $\Rightarrow \mathcal{G}^{(e)}$ periodic in $\frac{t+t'}{2}$
- Floquet scattering \Rightarrow Harmonics of $\mathcal{G}^{(e)}$

Illustration on the mesoscopic capacitor

n = 0 harmonic : occupation number

 \rightarrow Spectroscopy of the source

$$f = \frac{\Omega}{2\pi} = 3GHz$$
 $T_{el} = 50mK$ $A = \frac{\Delta}{e}$

Tomography Interact

Interacting regime

Conclusions and perspectives

Illustration on the mesoscopic capacitor

Higher order harmonics

At high transparency

Tomography Intera

Interacting regime

Conclusions and perspectives

Illustration on the mesoscopic capacitor

Higher order harmonics

At low transparency

Tomography Interaction

Interacting regime

Conclusions and perspectives

Illustration on the mesoscopic capacitor

Changing parameters

▲□▶▲圖▶★臣▶★臣▶ 臣 のへで

Tomography

Interacting regime

э

Illustration on the mesoscopic capacitor

Quantum quality of the SES

Can be extracted from $\Delta \mathcal{G}^{(e)}$:

• M. Albert at al., Phys. Rev. B 82, 041407 (2010)

Summary

Summary - Up to now ...

- i. Formalism for electron quantum optics
 - Suitable for the description of quantum optics experiments with electrons
 - Underlines the photon analogy
- ii. Relation to experimental quantities
 - Electronic quantum tomography protocol
 - Access to single particle coherence through current noise measurements
 - Experimental signal predictions

Question : What happens in the presence of interactions?

Introduction 000000000	Electronic coherence functions	Tomography	Interacting regime	Conclusions and perspectives
Summary				

And now?

- i. How to include interactions in the electron quantum optics formalism?
- ii. Is the quantum optics paradigm valid in the presence of interactions?
- iii. Predictions for quasiparticle relaxation?
- iv. Is it possible to get information on relaxation mechanism through electron quantum optics experiments?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction 000000000	Electronic coherence functions	Tomography 000000000000000000000000000000000000	Interacting regime	Conclusions and perspectives

Outline

Toolbox for Electron quantum optics

Measurement of the single particle coherence

S Interactions and single particle coherence

Experiment on relaxation

Setup and results

- Relaxation of a nonequilibrium distribution
- Interchannel interactions
- Thermalization over $L = \hbar v / |\Delta \mu|$
 - H. Le Sueur at al., Phys. Rev. Lett., 105 056803 (2010)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Interaction modelling

 \Rightarrow Bosonization formalism

Dealing with interactions

- Plasmon scattering
- Plasmon scattering related to finite frequency admittances

▲□▶▲□▶▲□▶▲□▶ □ のQで

- I. Safi and H. Schulz, Phys. Rev. B 52, 1740 (1995)
- Eur. Phys. J. D, 12 451 (1999)

Energy resolved excitation

Motivations :

- a- Idealization of the SES
- b- Solution to Landau's problem

- Interaction region \equiv linear environment : external circuit, other edge channel ...
- What happens at low \mathcal{E}_0 ? At high \mathcal{E}_0 ?
- Single particle coherence in the outcoming region ? Energy relaxation ?
- Under what conditions does the excess quasiparticle survives?

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Energy resolved excitation

Quasiparticle relaxation

- Before interaction : QP peak
- After interaction : two contributions Regular part : $\delta n_{k_0}^r(k)$ Singular part : $Z(k_0)\delta(k - k_0)$
- $Z(k_0)$: Elastic scattering probability

Energy resolved excitation

Two different illustrations

- Finite bandwidth
- 2 parameters : $\frac{l}{v_F R_K C}$ & $\frac{R}{R_K}$

• A. Prêtre, et al., Phys. Rev. B 54,8130 (1996)

Coupled channels

- Infinite bandwidth
- Coupling strength $\leftrightarrow \theta$

900

ъ

Energy resolved excitation

Low energy regime - Elastic scattering probability

At low energy \rightarrow Circuit equivalent :

- $\mathcal{Z}(\epsilon_0) \to 1$ at low energy $t(\omega) \to 1 \equiv$ Capacitive coupling
- $1 \epsilon^2 : R \neq 0$
- $1 \epsilon^6 : R = 0 \rightarrow$ passive gate
- Always resistive for coupled channels

- A. Prêtre, *et al.*, Phys. Rev. B **54**,8130 (1996)
- Y. M. Blanter et al., Phys. Rev. Lett. 81, 1925 (1998)

Quasiparticle relaxation - At low energy

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の ヘ

Energy resolved excitation

Quasiparticle relaxation - At high energy

Low coupling - Finite bandwidth

- Fermi sea = effective environment
- Supplementary electron singled out from the Fermi sea
- For a wavepacket, $\Delta \mathcal{G}^{(e)}(x, y) = \mathcal{D}(x - y)\varphi(x)\varphi^*(y)$ \mathcal{D} : decoherence coefficient
- Quantum optics paradigm valid

• G.-L. Ingold and Yu.V. Nazarov. NATO ASI Series B 294 21-107. Plenum Press, New York (1992).

Energy resolved excitation

Quasiparticle relaxation - At high energy

Strong coupling - Infinite bandwidth

- Fermi sea \neq effective environment
- Drowning of the quasiparticle
- Quantum optics paradigm wrong

Two limiting regimes

- "Dynamical Coulomb blockade" for low coupling and finite bandwidth
- QP decay for strong coupling and large bandwidth

э.

Energy resolved excitation

Single electron relaxation - Summary

What for a time resolved excitation?

Introduction 0000000000	Electronic coherence functions	Tomography 0000000000000	Interacting regime	Conclusions and perspectives
Time resolved excitation				

Time resolved excitation

• Quantized lorentzian pulse

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Purely electronic state
- No particle/hole pair

In the presence of interactions :

- Particle/hole pair generation?
- Possibility to gain information on relaxation mechanisms?

• L. Levitov et al., J. Math. Phys. 37 4845 (1996)

Time resolved excitation

Coherence function and interactions

Is it possible to probe the interactions with these excitations?

イロト イ理ト イヨト イヨト ∃ 990 Introduction

Electronic coherence functions

Time resolved excitation

HBT signals and particle hole/pair formation

 $\mu_2 = 0$ value of n = 0 HBT correlation \Rightarrow Interaction induced hole production

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conclusions

- i. A formalism for electron quantum optics
- ii. Measurement of single particle coherence
- iii. Predictions for decoherence and relaxation
- iv. Test for interaction pictures in $\nu = 2$ systems : \rightarrow LPN experiments
- v. Proposition of noise measurement protocols with experimental signal estimation :

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

 \rightarrow HBT interferometry at the LPA

To do list ...

- i. Quantum optics for plasmons Relation to radiation statistics (Beenakker-Schömerus)
- ii. Coherent spin transport
- iii. Fractional quantum Hall regime
 - Coherence of Laughlin's quasiparticles
 - Electron quantum optics in a Luttinger liquid
- iv. Far from equilibrium distributions \rightarrow Adaptation of nonequilibrium bosonization formalism

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Electronic coherence functions	Tomography	Interacting regime	Conclusions and perspectives
000000000	000000	000000000000000000	000000000000	

Merci!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Tomography - Formulae1 Experimental signal : $S_{\alpha\beta} = 2 \int d\tau \overline{S_{\alpha\beta}(\overline{t} + \frac{\tau}{2}, \overline{t} - \frac{\tau}{2})}^{\overline{t}}$

 $S_{11}^{out}(t,t') = \mathcal{R}^2 S_{11}(t,t') + \mathcal{T}^2 S_{22}(t,t') + \mathcal{R}\mathcal{T} \quad \mathcal{Q}(t,t')$ $S_{22}^{out}(t,t') = \mathcal{T}^2 S_{11}(t,t') + \mathcal{R}^2 S_{22}(t,t') + \mathcal{R}\mathcal{T} \quad \mathcal{Q}(t,t')$ $S_{12}^{out}(t,t') = S_{21}^{out}(t,t') = \mathcal{R}\mathcal{T} \big(S_{11}(t,t') + S_{22}(t,t') - \mathcal{Q}(t,t') \big)$

Quantum contribution to HBT correlations : $Q(t, t') = (ev_F)^2 \left[\mathcal{G}_1^{(e)}(t', t) \mathcal{G}_2^{(h)}(t', t) + \mathcal{G}_2^{(e)}(t', t) \mathcal{G}_1^{(h)}(t', t) \right]$ $Q = \underbrace{\mathcal{G}_{\mu_1} \mathcal{G}_{\mu_2}}_{\text{stationnary excess noises}} + \underbrace{\mathcal{G}_{\mu_1} \Delta \mathcal{G}_2}_{p_0 = 0 \text{ contribution}} + \underbrace{\mathcal{G}_{\mu_2} \Delta \mathcal{G}_1}_{V_0 = 0 \text{ contribution}} + \underbrace{\mathcal{G}_{\mu_2} \Delta \mathcal{G}_2}_{V_0 = 0 \text{ contribution}} + \underbrace{\mathcal{G}_{\mu_2} \Delta \mathcal{G}_1}_{V_0 = 0 \text{ contribution}} + \underbrace{\mathcal{G}_{\mu_2} \Delta \mathcal{G}_2}_{V_0 = 0 \text{ contribution}} + \underbrace{\mathcal{G}_{$ Tomography Interacting regime

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Tomography - Formulae 2

Coherence function harmonics :

order 0
$$\delta \bar{n}_{1}(\omega) \stackrel{!}{=} \bar{n}_{1}(\omega) - \bar{n}_{\mu_{1}}(\omega) = -\frac{R_{K}}{2} \left(\frac{\partial \Delta Q_{0}}{\partial \mu_{2}} \right)_{\mu_{2} = \hbar \omega}$$

order $n \ \overline{\chi_{n}}(t - t') = \overline{\frac{\partial \Delta Q}{\partial (eV_{0}/n\hbar\Omega)}(t,t')}^{t}$
 $\frac{\partial \overline{\chi_{n}}}{\partial \mu_{2}}(\mu_{2},\phi) = \frac{v_{F}e^{2}}{\hbar} \Re \left[e^{i\phi} \left(\mathcal{G}_{1,n}^{(e)}(\mu_{2}/\hbar + n\frac{\Omega}{2}) - \mathcal{G}_{1,n}^{(e)}(\mu_{2}/\hbar - n\frac{\Omega}{2}) \right) \right]$

Single electron pulse and interactions

- Source with driving voltage V
- Interactions \equiv scattering

ヘロト ヘアト ヘリト・

• Coherence measurement at *x*₀

Source \oplus interaction region \equiv Renormalized driving voltage \widetilde{V} :

$$\widehat{\widetilde{V}}(\omega) = \widehat{V}(\omega) imes \left(1 - rac{h}{e^2} \widehat{Y}(\omega)
ight)$$

 $\widehat{Y}(\omega)$: finite frequency admittance

Coherence function from Floquet theory

Floquet matrix relates in and out modes :

$$egin{aligned} \mathfrak{c}^{(out)}_{\omega} &= \sum_{n \in \mathbb{Z}} S_n(\omega) \mathfrak{c}^{(in)}_{\omega + n\Omega} \ S_n(\omega) &= \sum_{k \in \mathbb{Z}} S_0(\omega - k\Omega) c_k[V] c^*_{k+n}[V], \end{aligned}$$

and allows to compute the harmonics of the coherence function :

$$\begin{aligned} \mathcal{G}(t,t') &= \langle \Psi_{out}^{\dagger}(t')\Psi_{out}(t) \rangle \\ &= \sum_{n\in\mathbb{Z}} \mathbf{g}_n(t-t')e^{-ni\Omega \overline{t}} \quad , \overline{t} = \frac{t+t'}{2}. \end{aligned}$$

$$\widetilde{\mathbf{g}}_n(\omega) = \frac{1}{\nu_F} \sum_{k \in \mathbb{Z}} S_{n+k}^*(\omega - \frac{n\Omega}{2}) S_k(\omega + \frac{n\Omega}{2}) \overline{n}_F(\omega + (\frac{n}{2} + k)\Omega)$$

i. M. Moskalets & M. Büttiker, Phys.Rev.B 66, 205320 (2002)

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

Introduction	Electronic coherence functio
000000000	000000

Conclusions and perspectives

Noise measurements in $\nu = 2$

- i. Unitarity : $S \in SU(2)$
- ii. OB relations : symmetry
- iii. Capacitive coupling : $\mathcal{S} \rightarrow 1$
- iv. Simplest dependence in ω

$$\Rightarrow \mathcal{S}(\omega) = e^{i\omega L/v_0} e^{i\omega L/v\cos\theta\sigma^z\sin\theta\sigma^x}$$

$$\begin{split} & \left(\frac{k_b T_{exc}}{\Delta \mu}\right)^2 = \\ & \frac{3}{\pi^2} \tau \left(1 - \tau\right) \left(T_{\infty} + \left(1 - T_{\infty}\right) \frac{\sin^2(L/L_{\Delta \mu})}{\sinh^2(L/L_{th})}\right), \\ & J_{\alpha,qp} = \\ & \frac{\pi_b^2}{\hbar} (k_B T)^2 + \frac{R_K}{2} \left(\frac{e^2}{2\pi}\right)^2 \tau (1 - \tau) \int_{-\infty}^{+\infty} T(\omega, L) F(\omega, \mu_2 - \mu_1, \beta) \, \mathrm{d}\omega , \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Scattering matrices - Derivation

$$\psi(t+\tau, x+v_F\tau) = \psi(x,t) \exp\left(\frac{ie}{\hbar} \int_0^\tau V(x+v_Ft', t+t') dt'\right).$$
(1)

$$(\partial_t + v_F \partial_x) \phi(x, t) = \frac{e\sqrt{\pi}}{h} V(x, t).$$
(2)

$$V(x,t) = V_{cond}(t)K(x) - \frac{e}{\epsilon\sqrt{\pi}}\int dy(-\Delta + \chi)^{-1}(x,y)(\partial_y\phi)(y,t).$$
 (3)

$$t_b(\omega) = \frac{\mu^*(\omega) - iRC\omega|\beta(\omega)|^2\Lambda^*(\omega)}{\mu^*(\omega) + iRC\omega|\beta(\omega)|^2\Lambda^*(\omega)}$$
(4)

$$\beta(\omega) = \frac{i}{2\nu_F RC} \sqrt{\frac{2R}{R_K}} \tilde{f}(\omega/\nu_F)$$
(5)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

c coherence functions

mography Interacting regime

Conclusions and perspectives

Tomography - Zoom and phase

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Superposition of 2 lorentzian wavepackets

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q ()

Conclusions and perspectives

Relaxation results vs bosonization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Comparison with FCS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ● ● ● ●