
HAL Id: tel-00619953
https://theses.hal.science/tel-00619953

Submitted on 21 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Similarity Search in High-dimensional Spaces with
Applications to Time Series Data Mining and

Information Retrieval
Muhammad Marwan Muhammad Fuad

To cite this version:
Muhammad Marwan Muhammad Fuad. Similarity Search in High-dimensional Spaces with Applica-
tions to Time Series Data Mining and Information Retrieval. Human-Computer Interaction [cs.HC].
Université de Bretagne Sud, 2011. English. �NNT : �. �tel-00619953�

https://theses.hal.science/tel-00619953
https://hal.archives-ouvertes.fr

THESE / UNIVERSITE DE BRETAGNE SUD
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’UNIVERSITE DE BRETAGNE SUD

 Mention : Sciences et Technologies de l’Information et de la Communication

École Doctorale SICMA

présentée par

Muhammad Marwan Muhammad Fuad

Préparée au laboratoire de recherche en
informatique(VALORIA)
N° d’ordre :

Similarity Search in
High-dimensional Spaces

with Applications to
Time Series Data Mining

and
Information Retrieval

Thèse soutenue le 22 février 2011
devant le jury composé de :

Georges HEBRAIL
Pr. Telecom Paris Tech & Chercheur EDF R&D / président

Valérie MONBET
Pr. Université de Rennes1, IRMAR / rapporteur

René QUINIOU
Cr. INRIA, Bretagne Atlantique / rapporteur

Gildas MENIER
Mcf. Université de Bretagne Sud/ Co-encadrant de thèse

Pierre-François MARTEAU
Pr. Université de Bretagne Sud/ Directeur de thèse

 i

Similarity Search in High-dimensional
Spaces with Applications to Time Series
Data Mining and Information Retrieval

A dissertation presented to the

Université de Bretagne Sud - Université Européenne de Bretagne

for the degree of

PhD in Information and Communication
Sciences and Technologies

by

Muhammad Marwan Muhammad Fuad

February 2011

 ii

 iii

 Beyond this place of wrath and tears
 Looms but the horror of the shade,
 And yet the menace of the years
 Finds, and shall find, me unafraid.

 Invictus-William Ernest Henley

 iv

 To Marwan,
 not the one I am;

 but the one I wanted to be.

 v

Acknowledgment

I would like to thank Prof. Pierre-François Marteau who accepted to supervise my
PhD despite his many responsibilities. His broad knowledge and academic experience
make of him a remarkable researcher.

I would also like to thank the chairman and the members of the dissertation
committee.

 vi

Abstract

We present one of the main problems in information retrieval and data mining, which
is the similarity search problem. We address this problem mainly from a metric
perspective. We focus on time series data, but our general objective is to develop
methods and algorithms that can be extended to other data types. We investigate new
methods to handle the similarity search problem in high-dimensional spaces. The
novel methods and algorithms we introduce are tested extensively and they show
superiority over other methods and algorithms in the literature.

 vii

Contents

Introduction .. 1
Similarity Search in Metric Spaces... 6

2.1 Introduction .. 6
2.2 Applications of Similarity Search .. 7

2.2.1 Queries by Content... 7
2.2.2 Text Mining.. 8
2.2.3 Computational Biology .. 8
2.2.4 Pattern Recognition .. 9
2.2.5 Audio and Video Compression 9

2.3 The Metric Space.. 9
2.4 The Distance Functions .. 11
2.5 Similarity Queries... 12

2.5.1 Range Queries .. 12
2.5.2 −k Nearest Neighbor Queries....................................... 13
2.5.3 −k Reverse Nearest Neighbor Queries 14
2.5.4 Similarity Join .. 14

2.6 Strategies for Executing Similarity Queries......................... 15
2.6.1 Complexity Considerations .. 15
2.6.2 Sequential Scanning ... 15
2.6.3 Pivot Techniques .. 16
2.6.4 Compact-partitioning Techniques 17
2.6.5 The Choice of Pivots .. 20

2.7 Embedding Methods... 21
2.8 Approximate Similarity Search .. 23
2.9 Indexing Multimedia Databases... 24

2.9.1 Introduction .. 24
2.9.2 Dimensionality Curse ... 25
2.9.3 Intrinsic Dimension .. 26
2.9.4 Fractal Dimension .. 26
2.9.5 Indexing High-dimensional Spaces.............................. 26
2.9.6 Operations in High-dimensional Indexing Structures .. 26
2.9.7 High-dimensional Indexing Structures......................... 27

2.10 Survey of Indexing Structures in Metric Spaces 27
2.10.1 Burkard-Keller Tree (BKT).. 27

 viii

2.10.2 Fixed Queries Tree (FQT).. 28
2.10.3 Vantage Point Tree (VPT).. 29
2.10.4 Bisector Tree (BST) ... 30
2.10.5 Methods Exploiting Pre-computed Distances 30
2.10.6 Hybrid Methods.. 31

2.11 Distributed and Parallel Systems.. 34
2.12 Unifying Model .. 34
2.13 Non-metric Similarity Search... 34
2.14 Summary .. 35

Time Series Data Mining and Information Retrieval 37
3.1 Introduction .. 38
3.2 Time Series Data Mining ... 39

3.2.1 Data Transformation... 40
3.3 Time Series Information Retrieval 43
3.4 Dimensionality Reduction Techniques 44

3.4.1 Discrete Fourier Transform (DFT)............................... 45
3.4.2 Discrete Wavelet Transform (DWT)............................ 47
3.4.3 Singular Value Decomposition (SVD)......................... 50
3.4.4 The Piecewise Aggregate Approximation (PAA) 51
3.4.5 The Piecewise Linear Approximation (PLA)............... 52
3.4.6 The Adaptive Piecewise Constant Approximation
 (APCA)... 53
3.4.7 Chebyshev Polynomials (CP)....................................... 54
3.4.8 Comparison of the Different Representation Techniques
 56

3.5 Similarity Distances in Time Series Information Retrieval . 57
3.5.1 The Euclidean Distance.. 58
3.5.2 Dynamic Time Warping (DTW) 59
3.5.3 The Longest Common Subsequence (LCSS)............... 62
3.5.4 The Edit Distance with Real Penalty (ERP)................. 64
3.5.5 The Edit Distance on Real Sequences (EDR) 65
3.5.6 Dissimilarity Distance (DISSIM)................................. 65
3.5.7 Similarity Search based on Threshold Queries (TQ) ... 66
3.5.8 Spatial Assembling Distance (SpADe) 67
3.5.9 Sequence Weighted Alignment (Swale)....................... 67

3.6 Summary .. 68
Adaptive Sampling and Time Series Classification......................... 69

4.1 Introduction and Related Work .. 69
4.2 Adaptive Sampling of Multidimensional Curves................. 70

 ix

4.3 The Experiments... 72
4.3.1 The Dataset... 72
4.3.2 The Experimental Protocol... 75
4.3.3 The Results ... 75

4.4 Conclusion.. 76
4.5 What Next?... 77

Symbolic Methods in Time Series Information Retrieval 78
5.1 Introduction to Symbolic Representation............................. 79

5.1.1 Symbolic Representation Scheme 79
5.1.2 Symbolic Aggregate Approximation (SAX)................ 81

5.2 The Extended Edit Distance (EED)...................................... 83
5.2.1 Introduction .. 83
5.2.2 Motivation .. 85
5.2.3 Definition-The Extended Edit Distance (EED)............ 86
5.2.4 Theorem 1... 87
5.2.5 Complexity Analysis .. 91
5.2.6 Experimental Validation... 91
5.2.7 Other Applications ... 95
5.2.8 Discussion .. 95

5.3 The Multi-resolution Extended Edit Distance...................... 96
5.3.1 Definition-MREED .. 96
5.3.2 Theorem 2... 97
5.3.3 Complexity Analysis .. 98
5.3.4 Experimental Evaluation .. 98
5.3.5 Discussion .. 101

5.4 The ΣGRAM Distance ... 101
5.4.1 Definition-The ΣGRAM Distance.................................. 102
5.4.2 Theorem 3... 104
5.4.3 Discussion .. 107

5.5 The Parameter-free Extended Edit Distance (PFEED) 108
5.5.1 Definition-The Parameter-free Extended Edit Distance
 (PFEED) ... 108
5.5.2 Theorem 4... 108
5.5.3 Experiments.. 112
5.5.4 Discussion .. 114

5.6 Enhancing SAX Using Updated Lookup Tables................ 114
5.6.1 Introduction .. 114
5.6.2 The Updated Minimum Distance (UMD) 115
5.6.3 Empirical Evaluation.. 118

 x

5.6.4 Discussion .. 123
5.7 Conclusion.. 123
5.8 What Next?... 124

Multi-resolution Approaches to Time Series Indexing and Retrieval
.. 126

6.1 Multi-resolution Methods in Multimedia Data Mining..... 126
6.2 The Multi-resolution Indexing and Retrieval Algorithm -
 Weak MIR .. 128

6.2.1 Introduction .. 128
6.2.2 Concepts and Terminology .. 129
6.2.3 The Double Filtering Inequalities............................... 132
6.2.4 The Algorithm Description .. 134
6.2.5 Experiments.. 135
6.2.6 Remarks on the Filtering Process............................... 142
6.2.7 Discussion .. 143

6.3 Combining a Multi-resolution Filter with a Representation
 Method-Strong MIR... 143

6.3.1 The Principle .. 144
6.3.2 The Filtering Process.. 145
6.3.3 The Algorithm .. 145
6.3.4 Experimental Validation... 146
6.3.5 Discussion .. 151

6.4 An Improved Multi-resolution Indexing and Retrieval
 Algorithm –Tight MIR ... 152

6.4.1 Motivation .. 152
6.4.2 The Principle and the Algorithm................................ 152
6.4.3 Performance Evaluation ... 153
6.4.4 Discussion .. 162

6.5 What Next?... 163
Conclusion and Future Work.. 166

7.1 Summary of the Dissertation Contributions....................... 166
7.2 Future Work ... 167

References ... 170
The Dissertation Publications.. 187
Appendix ... 189

 1

Chapter 1

Introduction

The similarity search problem is one of the fundamental problems in computer
science. It has numerous applications in text, video and image retrieval, pattern
recognition, bioinformatics, Web search, fingerprint databases, and many others. In
this problem a pattern is given and the algorithm searches the database, or the Web, to
return all or most, depending on whether the search is exact or approximate, of the
data objects that are “close” to that pattern according to some semantics of closeness.
In another variation of this problem, the algorithm may be asked to retrieve a
specified number of the closest objects to that pattern. A naïve solution to this
problem is to compare the pattern with each object in the database and return all the
objects that are similar to that pattern. This similarity is depicted using a principal
concept which is the similarity measure or its stronger form; the distance metric.

With the proliferation of less expensive storage units with an increasing storing
capacity, the amount of data in modern databases is so large that efficiency and
effectiveness have become the main issues in evaluating the performance of different
similarity search algorithms.

Of the different paradigms proposed to manage the similarity search problem, the
metric model stands out as one that is applicable to different data types. The distance
metric on which the metric model is based is a strong mathematical tool which helped
the researchers build different data structures specific to metric spaces. Other
techniques, such as the pivot technique, are based on the triangle inequality, one of
the axioms of distance metrics. All these advantages of the metric model made it a
rich field of research in information retrieval.

Time series is a data type that is frequently encountered in several scientific, medical,
and business applications. Although time series data can be handled using the
different data structures that the metric model offers, the high-dimensionality of time
series data, in addition to the large size of time series databases, usually require
special approaches developed specifically for this type of data.

The main scheme that is widely used to handle time series data is the following: the
high-dimensionality of these data is reduced by extracting lower-dimensional features
of the time series. Then a similarity measure or a distance metric is defined on this
lower-dimensional space. The above steps are performed at indexing-time. At query-
time the query time series is projected on the same lower-dimensional space and all
the time series, whose distance in the lower-dimensional space is smaller than a
predefined real number known as threshold, are returned. The distance in the lower-
dimensional space is chosen to underestimate the original distance defined on the raw

Introduction

 2

data. If not, the algorithm may return time series which are not true answers to the
query in the original space, or the algorithm may miss some true answers to the query
in the original space. In this case the search is said to be approximate.

The distance in the lower-dimensional space is chosen so that it is as close as possible
to the original distance. An ideal distance on the lower-dimensional space would be
equal to the distance in the original space. However, in most cases such an ideal
distance is almost impossible to find, and the search algorithm returns a candidate
answer set whose cardinality is larger than that of the true answer set, because this
candidate answer set may contain false alarms which are time series that are close to
the query in the lower-dimensional space, but they are farther than the threshold in the
original space. The search process can handle these false alarms, as long as there are
not many of them, through a post-processing linear scanning on the raw data using the
original distance to filter out all the false alarms and recover the true answer set.

Some time series dimensionality reduction techniques use a similarity measure (not a
distance metric) in the reduced space. In this case the model is non-metric because
this measure may violate some of the axioms of the metric distance. This does not
seem to affect the similarity search effectiveness since most of these similarity
measures respect the triangle inequality. Anyway, other methods use distance metrics
in the reduced space so the search is actually metric.

The scope of this dissertation is similarity search in its general sense. We focus
mainly on time series data, but almost all our work can be extended to other data
types. Our objective is to investigate novel techniques to solve the similarity search
problem in high-dimensional data, mainly time series data. We also address the
similarity search from a perspective that is as close to metric as possible. Although in
all the conferences we attended the researchers we talked to were in disagreement on
whether similarity search methods should focus on general models that can be applied
to a wide range of data types, or if they should focus on developing domain-specific
solutions that benefit from the particular nature of each data type. We do not claim to
have found an answer to this question.

This dissertation is structured in the following manner:

Chapter 2-Similarity Search in Metric Spaces: This chapter introduces the
similarity search problem as handled by the metric model. The chapter presents a
formal introduction to the problem together with its applications. We also present the
main different forms of the similarity search problem. We also present a mathematical
definition of the distance metric on which the metric model is based and show some
examples of it. Different strategies for addressing the similarity search problem using
the metric model are presented in this chapter. Partitioning and pivots, two widely
used techniques, are also presented in the chapter. The dimensionality curse is
discussed and some of the techniques that are used to handle this problem, such as
mapping methods, are introduced. The approximate similarity search methods and
principles are only briefly discussed since they lie beyond the scope of this
dissertation. In the second part of the first chapter we present some of the widely

Introduction

 3

used indexing structures in metric spaces. The non-metric model is mainly presented
as an extension to the metric model to help the reader understand the limits of the
metric model.

Chapters 2 and 3 are background chapters so they finish with a summary, unlike
Chapters 4-6 in which we present the bulk of our work, so they finish with
perspectives and future work.

Chapter 3-Time Series Data Mining and Information Retrieval: This chapter
focuses on the similarity search problem in time series data. We start by giving a brief
mathematical definition of time series and the translations that are frequent with them
and how they are usually handled. We also present some of the main tasks of time
series data mining. Then we introduce the general frame of handling time series data
which we explained earlier and which is based on reducing the high-dimensionality of
time series. We also give a description of the most widely-known dimensionality
reduction techniques. SAX, which is probably the most important technique, is left to
Chapter 5 where it is discussed in detail.

In the second part of this chapter we present the different similarity measures and
distance metrics that are used in the time series community. We also present some of
the most recent, state-of-the-art similarity measures and distance metrics applied to
time series data and we show their advantages.

Chapter 4-Adaptive Sampling and Time Series Classification: In this short chapter
we present the first contribution of our dissertation. In this chapter we present our
preliminary work published in [122] which is an experimental study that evaluates the
impact of dimensionality reduction on a time series classification task. The
experiments presented are based on a representation method which reduces the
dimensionality by using an adaptive sampling technique of the time series. The
experiments presented in this chapter utilize different compression ratios and different
similarity measures and metric distances.

The reason we present this chapter, although the work introduced is preliminary, is
that it is a part of the work of the dissertation. The second reason is that we realized
recently how this preliminary work can be exploited as future work to improve the
MIR method we present in Chapter 5.

We meant for all our chapters to be self-contained so we did not merge this short
chapter with any other because it does not fit in anywhere else.

To avoid repetition, our papers have been cited only once at the beginning of Chapters
4, 5, 6 and were not cited again in these chapters

Chapter 5-Symbolic Methods in Time Series Information Retrieval: This is the
chapter where we present the first major direction of our contributions. These
contributions concern symbolic representation and symbolic distances and similarity
measures.

Introduction

 4

The edit distance, which is a metric distance, is the main distance used to compare
two strings. It is the reference distance in many applications in text mining and
bioinformatics. However, this distance has its limitations because it considers local
similarity only. We show by examples how this distance is unable to detect
similarities between strings that are intuitively similar.

The first principal direction of contributions presented in this chapter is several
versions of different improvements of the edit distance which add a global feature of
similarity in addition to the local one that the edit distance considers, all by keeping
the same complexity as that of the edit distance. We also show that all these versions
are metric. We present extensive experiments to show the advantages of our improved
versions of the edit distance, and to investigate how these improvements can be
developed to handle other problems in time series data mining. The work we
presented in this part of Chapter 5 was published in [129], [133], [134], [135], and
[137]. We also present the results of another paper that was accepted in IADIS Multi
Conference on Computer Science and Information Systems 2008, Amsterdam,
Netherlands, 22–27 July 2008 (http://www.mccsis.org/2008/) but we decided at that
time not to publish that paper because we wanted to develop this version (PFEED)
further and to present it in another context.

The experiments on all the improved versions we present in this chapter are
conducted in the context of time series data because it is our field of research. But we
also refer to another paper [14] presented by another author who used one of our
proposed distances in another context and obtained good results.

The proof of Lemma 1 in this chapter (which we present in the Appendix) is the proof
we presented in the published papers, which is the reason why we are presenting it in
this dissertation. However, after presenting that lengthy proof we realized a more
compact proof can be obtained as a special case of the proof of Theorem 3.

The second principal direction of contributions in Chapter 5 concerns SAX. SAX is
probably the most competitive symbolic representation method in time series
information retrieval. The main advantage of SAX is that the similarity measure it
uses in the lower-dimensional space is fast to calculate because it is based on pre-
computed distances obtained from look-up tables. Our second principal contribution
in Chapter 5 is a new similarity measure which is also fast to compute because it uses
pre-computed distances too. But our new similarity measure is tighter and more
intuitive than the original one. This part of Chapter 5 was published in [128].

Chapter 6-Multi-resolution Approaches to Time Series Indexing and Retrieval:
Multi-resolution methods which use several lower-dimensional spaces have already
been used in multimedia retrieval. In this chapter we introduce another major
contribution of this thesis which is new multi-resolution time series indexing and
retrieval approaches that we presented in [130], [132], [131], and [136].

In order to reduce the number of query-time distance evaluations and thus speed up
the similarity search, our multi-resolution approaches are used to economize query-

Introduction

 5

time distance evaluations by using different resolution levels. Fast-and-dirty filters,
which are based on the triangle inequality, are used to filter out the time series which
are not answers to the query by utilizing stored, pre-computed distances.

The first of our three multi-resolution methods is “weak MIR”. This method is a
standalone time series retrieval method that uses two filters. The second method is
“strong MIR” which uses one filter only, together with the lower-dimensional
distance of a time series dimensionality reduction technique. Our last multi-resolution
method is “Tight_MIR”, which has the advantages of the two previously mentioned
methods. All these versions are validated through extensive experiments.

It is important to mention that the great majority of our experiments in this
dissertation were conducted on time series datasets from [190]. The data sets in this
archive have been widely-used for years. So testing on these datasets ensures that the
collection represents the interest of the data mining/database community, and not just
one group [57].

Chapter 7-Conclusion and Future Work: In this concluding chapter we summarize
our contributions and present different directions of future work.

 6

Chapter 2

Similarity Search in Metric Spaces

This is a background chapter on similarity search in metric spaces where we present
fundamentals of this problem from a metric space perspective. In Section 2.2 we
present some applications of this problem in different fields of computer science, and
then we give a formal introduction of metric spaces in Section 2.3. These spaces are
based on the concept of metric distance which is presented in Section 2.4. The
different forms of the similarity search problem are presented in Section 2.5. A
panorama of the different solutions to this problem is presented in Section 2.6. The
general model of embedding in lower-dimensional spaces and other related issues are
presented in Section 2.7. Approximate search, although not the topic of this
dissertation but a principal technique of addressing the similarity search problem, is
presented in Section 2.8. In Section 2.9 we introduce multimedia indexing structures.
Metric spaces have the advantage of using certain data structures. A survey of these
structures is presented in Section 2.10. A unifying model of the similarity search
problem in metric spaces is explained briefly in Section 2.11. The non-metric model,
a rapidly growing field of similarity search, is presented in Section 2.12, and we
conclude this chapter with a summary in Section 2.13.

2.1 Introduction

Similarity search is a fundamental problem in computer science. This problem has
many applications in multimedia databases, bioinformatics, pattern recognition, text
mining, computer vision, medicine, data mining, machine learning and so on. With
the advent of the internet and the increasing use of it, this problem has received more
attention from researchers. The wealth of information available on the internet could
not be manageable if search engines were not present. It does not make much sense to
know that a piece of information is out there had we not got access to it. The
usefulness of information depends highly not only on its quality, but also on the speed
at which it is retrieved, which, in turn, depends upon the way it is represented and
indexed. This all raises questions on indexing, representation and retrieval methods.
Small databases that contain simple data objects can be handled easily. But managing
large databases, like many of the databases in use today, requires serious effort,
especially when they contain complex data types.

Traditional databases have been managed by using exact search queries, i.e. the
search algorithm tries to retrieve the data objects that are identical to a given query.
This was mainly the case with structured databases that contained numerical or
alphabetical data. The approaches used to deal with these data bases were efficient.

Similarity Search in Metric Spaces

 7

But later substantial advances in the field of databases took place; the size of these
databases grew enormously and is still growing that what was considered a large
database just few years ago is now considered small. The data types themselves
changed dramatically in nature. Modern databases contain data types such as images,
audios, videos, time series, fingerprints, documents, DNA and protein sequences, and
new data types do not stop emerging all the time. Another substantial change is the
type of queries posed, which is, somehow, related to the two latter changes; searching
for data objects that are identical to a given query in unstructured, weakly-structured,
or imprecise data bases, like many databases in use today, may not be very
meaningful, not to mention that in many cases the user may not be sure of what they
are looking for when they pose the initial query. Hence range query, in which the
user is interested in retrieving all the data objects that are within a predefined
threshold of a given query, or k-nearest neighbor, in which the user tries to retrieve
the k closest data objects to the query, have become popular. All these problems
make traditional retrieving techniques inadequate that it is inevitable to think of new
ways to handle these databases.

Before we introduce the problem formally and discuss the different solution
paradigms, we start by presenting some of its numerous applications in different fields
of computer science.

2.2 Applications of Similarity Search

There are quite a few applications of the similarity search problem. Here are some of
them [40]. Our purpose is not to list all the applications of this problem but rather to
provide a breadth of examples so that the reader can understand the different contexts
in which this problem may be encountered.

2.2.1 Queries by Content

Multimedia content queries have received a lot of attention lately due to the
continuous growth of user generated content [2]. Query Multimedia databases contain
data types that can not be ordered, like images, fingerprints, video or audio. Queries in
these databases do not search for exact matches, simply because the query itself may
not be precise: the probability that two images match pixel-wise is almost zero, unless
they are digital copies of the same source, also in music information retrieval
musicians play the melody differently, so searching for exact matches is unlikely to
make much sense. In principle, in music information retrieval one can extract various
acoustic features and use distance function dependent on these features [56].

In multimedia databases queries by content can be searched in several ways such as
free text query, query by textual descriptor [118], or by query-by-example (QBE)

Similarity Search in Metric Spaces

 8

[218] where the user provides a part of the document as a query and the algorithm
searches for similar documents.

2.2.2 Text Mining

Textual documents are not structured in many cases. Many of them contain spelling or
optical character recognition (OCR) errors. The Web is a good example of such
documents. All this causes problems similar to those encountered in multimedia
databases. Moreover, these textual databases may not only be searched for strings, but
also for semantic concepts. This type of search can not be handled using classical
approaches. The World Wide Web, for instance, has a large size and other special
features that can not be dealt with the same way we deal with classical corpora [169].

Text mining tackles the general data mining tasks such as classification [81],
clustering [100], representation [90], and anomaly detection [6], in addition to other
specific text mining tasks like spam filtering [70].

2.2.3 Computational Biology

Computational biology consists of the development and use of mathematics and
computer science technologies to help solve molecular biology problems [170].

Three of the four data emerging from a cell are text data; DNA, RNA, and protein
sequences [1]. These data can be handled as strings and there has been successful
research on how to benefit from textual database algorithms to manage DNA and
protein sequences the same way we manage texts. A typical problem that we
encounter in computational biology is to search for a short pattern (a series of amino-
acids, for instance) in a larger sequence. Here, again, the search may not be exact due
to the fact that there are genetic differences, so similarity search presents important
appropriate algorithms and solutions to deal with many problems in computational
biology. In fact, many similarity measures that are widely used have been introduced
by computational biologists.

There are several sequence similarity algorithms that are used in computational
biology like Basic Local Alignment Search Tool (BLAST) [8] which is based on
identifying local alignments between sequences by finding short matches and from
these initial matches (local) alignments are created [51]. BLAST was in fact a
development of the Smith-Waterman algorithm [177] which allows consideration of
insertions/deletions and compares fragments of arbitrary lengths between two
sequences thus identifying the optimal local alignments.

Similarity Search in Metric Spaces

 9

2.2.4 Pattern Recognition

Pattern recognition, also named “learning from examples”, often involves the
definition of stochastic models, like neural networks or Hidden Markov Models
(HMM), which are trained on training data and tested on unseen test data [185].
Pattern recognition classifies objects into a number of classes or categories based on
the patterns that the objects exhibit [186]. This classification task can be seen as a
binary-class problem where the object belongs or not to a particular class or a multi-
class problem where learning concerns several classes [139].

2.2.5 Audio and Video Compression

Audio data have different sources of redundancy which permits compressing it. The
main source of redundancy is that adjacent audio samples tend to be similar, so we
can simply subtract each audio sample from its predecessor and encode the
differences [163].

In internet-based audio or video conferences transmitting over narrow-band channels
is a big problem. In this context, a frame (a static picture of a video or a fragment of
an audio) can be thought of as consisting of a number of sub-frames (possibly
overlapping) and the problem can be solved by sending the first frame as it. As for the
next frames, they are constructed by sending only the sub-frames that are significantly
different from the previously sent ones [40]. □

The above applications are based on similarity, which is an intuitive concept.
Similarity search can be viewed as retrieving all the data objects, in the repository,
that are “near” a given query. This nearness can be modeled using a powerful
mathematical concept; the metric distance, which is related to another mathematical
concept; the metric space.

2.3 The Metric Space

Let D be a set of objects. A function d

{ }0U+→× RDD:d , is called a distance metric if the following holds:

 (p1) () 0≥y,xd (non-negativity)
 (p2) () ()x,ydy,xd = (symmetry)
 (p3) () 0=⇔= y,xdyx (identity)
 (p4) () () ()z,ydy,xdz,xd +≤ (triangle inequality)

Similarity Search in Metric Spaces

 10

Dzyx ∈∀ ,, . We call),(dD a metric space

There are other variations of this form which satisfy weaker or stronger conditions
[58].

Search in metric spaces has many advantages, the most famous of which is that a
single indexing structure can be applied to several kinds of queries and data types that
are so different in nature. This is mainly important in establishing unifying models
for the search problem that are independent of the data type,. This makes metric
spaces a solid structure that is able to deal with several data types [214].

In metric spaces the only operation that can be performed on data objects is
computing the distance between any two objects, which enables us to determine the
relative location of the data objects to one another. This is different from the case of
vector spaces; a special case of metric spaces, where data objects have k real-valued
coordinates which makes it possible to perform operations that can not be performed
in general metric spaces, like addition or subtraction, for instance. Vectors have
certain geometric properties that can be exploited to construct indexing structures, but
these properties can not be extended to general metric spaces [38].

The extensive applications of vector spaces may raise a question on the importance of
working with metric spaces which have limited exploitable geometric properties. But
in fact, the numerous applications of the vector spaces do not lessen the importance of
the research done on metric space-oriented methods. There are many cases that can
not be managed by any kind of vector-like structure. Take the case of strings, for
instance, they are widely used in the textual databases or bioinformatics communities,
yet they can not be represented as vectors. There are also other cases where the data
objects are represented in vector spaces, still the nature of the problem makes it easier
to handle them in metric spaces, like when searching for images using color
similarity. In this case there is cross-talk, i.e. correlations between vectors. This cross
talk is taken into consideration by user-defined weights using distance functions
[214].

Another weakness of vector spaces is the so called dimensionality curse; an important
problem that we will explain in more details later. This problem can slow down the
search to make it similar to that of linear scanning (sometimes called sequential
scanning), or it makes the search index consume too much space. On the other hand,
some data structures use vectors that have very limited dimensionality (binary, for
example) that using these coordinates does not provide much help [38].

But may be the most important argument in favor of metric spaces is that they provide
solutions that are highly extensible in that they are not only applicable to many data
types that are in existence today, but also to other types that may exist in the future
[214].

Similarity Search in Metric Spaces

 11

2.4 The Distance Functions

There are so many distance functions that are known in the multimedia community,
some of them are general, while others are used with certain types of data structures.
In the following, we present some of the most widely utilized distance functions.

The Minkowski Distance: This is actually a whole family of distances, designated
by PL .This distance is defined in n -dimensional space as:

P
pn

i
iinnP yxyyyxxxL ∑ −=

=1
2,121)],...,(),,...,,[((2-1)

In Minkowski distance p does not have to be an integer, but it should not be less than
1. If 1=p , the distance is called the Manhattan distance or the city block distance. If

∞=p , it is called the infinity distance or the chessboard distance. And if 2=p ,we
get the well-known Euclidean distance.. Figure 2.1 shows a few examples of the
Minkowski distance. A variation of these distances are the weighted Euclidean
distance or the weighted maximum distance, where additional weights:

1w , 2w ,….., nw are assigned to the dimensions.

Fig. 2.1. Minkowski distance for L1, L2, and L∞

Notice: In (2-1) if []10,p ∈ the distance is called the fractional distance [3] which is a
non-metric distance because it violates the triangle inequality.

The Hamming Distance: The Hamming distance between two strings S , T , denoted

),(TSH is defined as [98] :

{ }ii tsiTSH ≠= :),((2-2)

L1

 •
L2

 •

L∞
 •

Similarity Search in Metric Spaces

 12

The Hamming distance considers only the mismatches between two strings. If we
consider other atomic operations, we get the edit distance

The Edit Distance: The edit distance [110], also called the Levenshtein distance, is a
distance between two strings TS, , and is defined as the minimum number of delete,
insert, and change operations needed to transform string S into stringT . This
distance is the main distance measure used to compare two strings. In [199] an
algorithm was presented to solve this problem in time proportional to the product of
the lengths of the two strings. The edit distance is mainly used in automatic spelling
correction. This distance will be discussed further in later chapters.

The Multi-set Distance: Given a string S . Let)(Sms be the multi-set, also called bag
of symbols, that S contains. For example, if '' multimediaS = then

{ }a,i,d,e,m,i,t,l,u,m)S(ms = .Then the multi-set distance between S , and T can be
defined as

() { })S(ms)T(ms,)T(ms)S(msmaxT,Sdms −−= (2-3)

where the difference here has a bag semantics, e.g. { } { } { }bbccaacbab ,,,,,,, =− , and
where . denotes the number of elements in the bag.

It can easily be proven that this is a distance metric. [214]. It is interesting to notice
that this distance is a lower bound of the edit distance, i.e.

 () ()TSdTSd editms ,,(≤ *, Σ∈∀ TS (2-4)

2.5 Similarity Queries

A similarity query is defined as a pattern or query object, which does not necessarily
belong to the database, and a constraint that determines the extent of proximity that
the data objects should satisfy to qualify as answers to that query.

In information retrieval there are very well-known types of queries and others that are
less known. Here are a few of these queries starting with the most widely known ones.

2.5.1 Range Queries

Given a query q and a radius r , which represents a threshold, a tolerance, or a
selectivity. The range query problem can be specified as retrieving all the data objects
that are within a distance r of that query. This can be represented as:

Similarity Search in Metric Spaces

 13

{ }ruqdUurqR ≤∈=),(;),((2-5)

where U is the set of objects in the database

Figure 2.2 gives an example of a range query

 u u1 •

 u6 •

 u3 •

Fig. 2.2. Range query),(rqR

Range queries have a main drawback; in some cases we do not have any prior
knowledge about the database in question, so assigning an inappropriate value to
r may sometimes result in two undesirable situations; returning a response set that is
too large, or returning an empty response set. What happens in these cases is that the
user restarts the query using a different value of r , and this may happen several times
before getting a satisfying size of the response set. In very large databases, with a
computationally expensive distance function, this can be tedious.

2.5.2 −k Nearest Neighbor Queries

In this kind of queries we look for the most similar, i.e. the closest, object in the data
base to a given query. In the general case we look for the k most similar objects.
Unlike the case with range queries, the response set here is never empty. Moreover,
its size is defined beforehand by the user. Formally, this problem can be defined as:

{ })q,v(d)q,u(d:XUv,XukU,UX)q(kNN ≤−∈∈∀∧=⊆= (2-6)

In the case where several objects lie at the same distance from the query, ties are
broken arbitrarily.

 u2 •
 u5•

 q •
u4•
 r

Similarity Search in Metric Spaces

 14

It is worth mentioning that range queries are most frequent in data warehousing, while
nearest neighbor queries are most frequent in multi-media systems [18], [19].

Notice also that the nearest neighbor is not a symmetric relation, so if point 1u is the
nearest neighbor of 2u this does not necessarily mean that 2u is the nearest neighbor
of 1u .

2.5.3 −k Reverse Nearest Neighbor Queries

In the past few years several researchers [105], [179], [180], [209] have studied a new
similarity search problem which is the reverse nearest neighbor problem. The formal
definition of this problem is as follows:

{ })x(kNNq:XUu)u(kNNq:Xu,UX)q(kRNN ∉−∈∀∧∈∈∀⊆= (2-7)

In simple words, in this kind of queries we are interested in retrieving the data objects
that have q among their −k th nearest neighbor. This problem has many applications
in mobile devices, data streaming, bioinformatics, and document databases. An
important property of this problem is that data objects may qualify as answers even if
they are far from the query, and data objects that are close to the query may not
qualify. This is related to the density of the data objects in the data base.

2.5.4 Similarity Join

This problem is widely encountered in data cleaning or integration, where we have to
provide error-free data. The similarity join between two sets A , B is the set of all pairs
of data objects whose distance does not exceed a given threshold. This can formally
be defined as:

{ }rbadBAbarBAJ ≤×∈=),(:),(),,((2-8)

A special case of this problem is the similarity self join, where BA = .

The similarity join problem requires more distance computations than the −k
nearest neighbor problem, and much more computations than the range query
problem. In fact, despite the numerous applications of this problem, its quadratic
computational complexity prevents from applying it to large data collections [59].

Similarity Search in Metric Spaces

 15

2.6 Strategies for Executing Similarity Queries

2.6.1 Complexity Considerations

In many applications distance computations can be a time consuming task that other
tasks such as CPU time or even I/O time can be neglected. For this reason search
algorithms try to avoid distance computations as much as possible. In fact, in many
cases the performance of an algorithm is measured by the number of distance
computations that it needs. Different distances also need different computing times,
the multi-set distance, for example, is faster to compute than the edit distance.

2.6.2 Sequential Scanning

A trivial solution to the similarity search problem is linear scanning or sequential
scanning, where the query is compared against all the data objects in the data base. So
in order to perform a range query),(rqR , the distance between the query q and all
the data objects in the data base is computed, and all data objects that satisfy

ruqd ≤),(constitute the response set.

The)(qkNN query is performed in a similar way; an initial set P containing
k arbitrary objects of the data base is formed. These k objects are ordered according
to their distance from q . Then the execution continues with the other objects of the
data base. So each object PUui −∈ is considered in the response set if and only if

),(),(qudqud ki < , where ku is the −k th nearest neighbor of q at a given stage.
Whenever a new object is inserted in the response set the −k th object is eliminated.
We continue until all elements of PU − have been examined. □

It is easy to notice that in the cases where the size of the data base is very large, like
most data bases in use today, sequential scanning is not the best scenario to answer
proximity queries, because it requires so many distance evaluations.

Despite the inefficiency of sequential scanning it is used as a reality check of many
complex indexing structures or high dimensional data [79].

Alternative algorithms to sequential scanning focus on reducing distance calculations
as much as possible. This is achieved by using indexing structures, which are offline
procedures based on storing some distance calculations. Later, and at query time,
these calculations can be used to exclude some data objects, which, according to these
pre-computed distances, can not be answers to the query. This is what we call a fast-
and-dirty filtering of data. What remains of the data objects is scanned sequentially
against the query to get the true answers of the query. □

Similarity Search in Metric Spaces

 16

Indexing structures can generally be divided into pivot-based indexing structures and
compact-partitioning indexing structures.

2.6.3 Pivot Techniques

A few methods have been proposed to limit the number of distance calculations. One
of these methods is the use of pivots [29]. The pivot technique uses a set of k pivots
{ } Upppp ik ∈,,...,, 21 which are distinguished points, usually selected from the
points of the database. By using the triangle inequality it follows that for any Uu ∈
we have:

),(),(),(xqdqpdxpd ii +≤ (2-9)

We also have:

),(),(),(qxdxpdqpd ii +≤ (2-10)

For the two inequalities together we have a lower bound on),(xqd which is:

),(),(),(qpdxpdxqd ii −≥ (2-11)

 u1•

Fig. 2.3. Range query),(rqR

u3•
 r u2•
q

u4•
 pi •

Similarity Search in Metric Spaces

 17

With the use of pivots the search is “shifted” to be centered on these pivots. So using
these pivots serves as a fast-and-dirty filter that excludes those objects that can not be
answers to this query. This is performed by using the following condition, which is
called the exclusion condition:

rqpdupd ii >−),(),((2-12)

for some pivot ip , and where Uu ∈

The above inequality excludes those objects that are not matches, but it does not
guarantee reporting matches only. In other words, it guarantees no false dismissals,
but does not guarantee no false alarms. These are two side-effects of similarity search
algorithms that will be discussed further later.

In order to apply the exclusion condition we have to compute, at query time, the
distances),(qpd i . This is what we call the internal complexity of the algorithm.
Then in order to get the real matches, we have to sequentially scan the object
candidate list, this is what we call the external complexity of the algorithm.

We see in Figure 2.3 that the exclusion condition excluded the objects 1u , and 4u ,
and this is desired, since 1u is not a match, neither is 4u . It also kept 2u , and this is
also desired, since it is a match. However, it failed to exclude 3u , even though it is not
a match. This shows that the exclusion condition may cause false alarms. It only saves
computing time, in that by using this exclusion condition we do not have to do
unnecessary computations between q and objects in the data base that can not be
matches.

2.6.4 Compact-partitioning Techniques

The aim of this partitioning is to divide the search space into sub-spaces so that the
query is searched in some of these sub-spaces only, instead of accessing the whole
search space to answer the query.

Ball Partitioning: This is the simplest type of partitioning. Ball partitioning [191]
divides the search space U into two subsets 1U and 2U by using a pivot p as a
reference point. The algorithm starts by choosing the pivot arbitrarily, then the
distance between the pivot and all the data objects in U if computed. The data objects
are divided between the two sets 1U , 2U according to the following rules:

- If { }mi dpud ≤),(→ assign iu to 1U
- If { }mi dpud ≥),(→ assign iu to 2U

Similarity Search in Metric Spaces

 18

where md is the median of all distances Uu),p,u(d ii ∈∀ .

Fig. 2.4. Ball partitioning

The equality in the conditions ≤ , ≥ is meant to assure balance partitioning in the case
when the median is not unique. Figure 2-4 shows an example of ball partitioning.

Generalized Hyperplane Partitioning: This was also introduced in [191]. This type
of partitioning can be viewed as an orthogonal ball partitioning. In Generalized
hyperplane partitioning U is divided into two subsets 1U and 2U by using two pivots
instead of one. The two pivots are also chosen arbitrarily and all the other data objects
are assigned to either of the two pivots according to the following rules:

- If { }),(),(21 pudpud ii ≤ → assign iu to 1U
- If { }),(),(21 pudpud ii ≥ → assign iu to 2U

 p1

 p2

Fig. 2.5. Generalized hyperplane partitioning

 p •

Similarity Search in Metric Spaces

 19

Unlike ball partitioning, generalized hyperplane partitioning does not guarantee
balanced partitioning. Figure 2-5 shows an example of generalized hyperplane
partitioning.

Excluded Middle Partitioning: This partitioning [211] divides U into three subsets;

1U , 2U , 3U according to the following rules:

- If { }ρ−≤ mi dpud),(→ assign iu to 1U
- If { }ρ+> mi dpud),(→ assign iu to 2U
- Otherwise → assign iu to 3U

where ρ2 is the thickness of the excluding zone.

The motivation behind this partitioning is that whenever the query lies within the
partitioning threshold, the search enters the two subsets making the algorithm
degrades to the case of sequential scanning. So this partitioning leaves out an
excluding zone making the search exclude one subset, at least. Figure 2.6 gives an
example of excluded middle partitioning.

 u2

Fig. 2.6. Excluded middle partitioning

u3

 2ρ

u1 dm

 p

Similarity Search in Metric Spaces

 20

The previous types of partitioning can be generalized in two main ways; the binary
partitioning can be extended to multiple partitioning, and the partitioning process
itself can continue recursively in a top-down way to build a tree.

2.6.5 The Choice of Pivots

The way pivots are chosen has been the subject of much research in information
retrieval, whether they are used for elimination based on pre-computed distances or as
reference points for partitioning structures. Although many pivot-based algorithms
simply choose them at random, it is well-known that this choice can affect the
performance of search algorithms [138], [37]. It is easy to understand that the more
data objects lie close to a certain pivot, the more the chance is that the query will lie in
the vicinity of that pivot. Many researchers have worked on finding a distance
distribution to determine the density of data objects in the search space [20], [63], [49],
and others. But such a distribution is hard to find and harder to manage. This is one
of the main reasons that the random choice of pivots is very frequent in many
algorithms. Another reason why this choice is made randomly is because,
surprisingly, in many cases the results obtained with randomly chosen pivots are quite
acceptable [214].

Nevertheless, it is clear that some points can make better pivots than others. This can
be illustrated by Figure 2.7: the two pivots have the same covering radius, but the
distance between them is not the same. In case (a) the overlap area between the two
ball partitions is larger than in case (b) so there are probably more data objects in case
(a) than in case (b). As a result, the filtering efficiency of pivots 1p , 2p is in case (a)
less than it is in case (b) because whenever the search reaches an object that lies in the
overlap areas it should access the two regions, which is an undesirable situation. This
example helps us understand the well-known recommendation that the best choice for
pivots is outliers; the objects that lie as far as possible from the other data objects in
the search space. It is important to remember, however, that in generic metric spaces,
and because of the properties of these spaces, such a task can be very time-
consuming.

The point here is that since there is no rule about the number of pivots to be used, and
since storing pivots and their corresponding distances (the distances between them
and all the data objects in the search space) requires sufficient memory, a small set of
well chosen pivots can be as effective as another large, randomly-chosen set of pivots.
On the other hand, a well chosen set of pivots is more effective than a randomly
chosen set of pivots of the same size.

A few heuristics have been proposed to select better sets of pivots. [138] proposes
selecting as new pivots the objects that maximize the sum of distances between the
new pivot and the pivots previously selected. Other heuristics have been proposed too
[210]. But most of these heuristics do not work in generic metric spaces.

Similarity Search in Metric Spaces

 21

 (a) (b)

Fig. 2.7. The filtering efficiency of pivots is related to the distance between them

In [29] the authors present an extensive study of this problem and they present an
efficiency criterion to compare two pivot sets. Their criterion states that of two sets of
pivots of size k : { }kpppP ,...,, 21= , { }''

2
'
1

' ,...,, kpppP = , P is better than 'P when :

{ }'
kp,...,'p,'p

kp,...,p,p
DD

2121

μμ >
⎭
⎬
⎫

⎩
⎨
⎧ (2-13)

where Dμ is the distance distribution of the search space.

The bottom line about the choice of pivots is that they should be far away from other
objects in the search space and far away from each other.

2.7 Embedding Methods

One of the strategies that we can use to perform less expensive distance calculations is
to embed all the data objects of the metric space into another metric space. This may
include using a different distance function. Embedding is also used in other fields of
computer science, such as computer vision or computational biology, where the data
are high-dimensional and complex, to map data sets into simpler and more compact
representations [83]. The similarity query itself is transformed to the new space and
performed there under certain restrictions to guarantee that the results obtained in the
new space are relevant to those in the original space.

When embedding a metric space into another and performing the query in the
transformed space, two main side-effects may be encountered; false alarms, also
called false positivity, and false dismissals. False alarms are data objects that belong

 p1
 r1

 r2

 p2

 p1
 r1

 r2

 p2

Similarity Search in Metric Spaces

 22

to the response set in the transformed space, but do not belong to the response set in
the original space. False dismissals are data objects that the search algorithm excluded
in the transformed space, although they are answers to the query in the original space.
Generally, false alarms are more tolerated than false dismissals, because a post-
processing scanning is usually performed on the results of the query in the
transformed space to filter out these data objects. However, false alarms can slow
down the search time if there are too many of them.

False dismissals are a more serious problem and they need more sophisticated
procedures to be avoided. Nevertheless, their influence on the similarity search is
highly related to the nature of the query. If a user is selecting an item from an online
store and he is looking for all the items that are similar to that item, then false
dismissals are quite acceptable. But if the search query is performed to look for
matches of a fingerprint or a DNA of a criminal, then false dismissals are not tolerated
at all.

False alarms and false dismissals are dependent on the transformation used in the
embedding. If f is a transformation from a metric space)d,S(originaloriginal into

another space)d,S(dtransformedtransforme then in order to guarantee no false dismissals
this transform should satisfy:

 () ()() ()2121 u,uduf,ufd originaldtransforme ≤ , originalSu,u ∈∀ 21 (2-14)

The above condition is known as the lower-bounding lemma. [4].

If a transformation can make the two above distances equal for all pairs of data
objects in the original space, then similarity search produces no false alarms or false
dismissals. Unfortunately, such an ideal transformation is very hard to find. Yet, we
try to make the above distances as equal as possible. In other words, (2-14) can be
rewritten as:

() ()()
() 10

21

21 ≤≤
u,ud

uf,ufd

original

dtransforme (2-15)

A tight transformation is one that makes the above condition as close as possible to 1.

Embedding can be achieved in different ways. One of them is to map the data objects
in the original space into a vector space of a lower dimensionality. The distances in
the transformed space are usually chosen from the PL family, since these distances
are generally inexpensive to compute. Similarity queries are performed by mapping
the query q into the transformed space using the function f then the query is
performed in this transformed space using these inexpensive distances. The response
set obtained is post-processed to filter out the false alarms.

Similarity Search in Metric Spaces

 23

2.8 Approximate Similarity Search

Approximate similarity search is a broad topic in information retrieval. The
motivations behind it are numerous; many exact similarity search methods are time-
consuming, that in some cases the response time becomes unacceptable. Besides, in
many applications, the overhead time necessary to achieve exact search is not worth
the importance of the results obtained. If a user is looking for an image that he wants
to download to use as a desktop background then it is not important to use an exact
algorithm capable of retrieving all the images in the data base that are similar to the
image that he is looking for, because such a thing would probably take a long time
that the search process would be meaningless. In fact, this example presents another
motivation of approximate similarity search; in many cases when the user launches
the query, he may not have a clear idea of what he is looking for, and only after
getting an approximate response set does he decide to launch another, more precise
query.

[66] classifies approximate similarity search methods into two main categories:

- Methods that exploit the transformations of the metric space.
- Methods that reduce the size of the data objects being examined.

A more recent classification of approximate similarity search methods appears in
[151] and [48]. In this classification we also have two classes of methods:

 Changing Space: These methods depend on first changing the metric space,
which can be achieved either by changing the distance measure or the object
space, then on solving the exact problem on the obtained space where the
search is simpler. An example of these methods is an approximate method
VA-LOW [201], which is based on the VA-file [202]. The VA-file is a
sequential structure which contains approximations of spatial objects based
on a fixed number of bits.

 Reducing Comparisons: These methods use the exact distance, but they

speed up the search by limiting the number of objects that are compared
against the query. This can be achieved using either or both of the following
techniques:

• Aggressive Pruning: In this technique regions in the search space that

are not likely to contain answers to the query are not accessed. An
example of a method that uses this technique is a main memory indexing
structure called the BBD-tree [10].

• Early Stopping: These methods terminate when a maximum cost or an

acceptable distance value is reached. An approximation which uses the
M-tree [50] is presented in [215]. □

Similarity Search in Metric Spaces

 24

Approximate search methods are viewed as a trade off between speed and accuracy.
[214]. These two criteria are assessed using three measurements; efficiency, precision,
and recall. .

Efficiency: it is usually denoted as IE and defined as the cost ratio of the precise to
the approximate query execution. This can be expressed as

)Q(COST
)Q(COSTIE

eapproximat

exact= (2-16)

Where exactCOST and eapproximatCOST represent the number of disk accesses needed
to perform the exact and approximate search, respectively. Efficiency controls the
speed at which the search query is performed. The accuracy of the search is controlled
by precision and recall.

Precision: it is defined as the ratio of qualifying retrieved objects to the total number
of objects retrieved by the approximate query. This can be formally specified as:

eApproximat

eApproximat

S

SS
P

∩
= (2-17)

Where S is the response set of the exact search query and eApproximatS is the response
set of the approximate search query.

Recall: it is defined as the ratio of qualifying retrieved objects to the total number of
qualifying objects, i.e.:

S

SS
R

eApproximat∩
= (2-18)

2.9 Indexing Multimedia Databases

2.9.1 Introduction

In order to speed up the search process, similarity search algorithms build indices of
the database in advance (offline). At query time, these indices are used to perform the
similarity search more rapidly by avoiding a full scan of the database. Figure 2.9
illustrates this approach [38].

Similarity Search in Metric Spaces

 25

 Indexing Querying

 Query q

 Data

 Traversing the
 index

 Equivalence classes Search in candidate classes

Fig. 2.9. The unified model for indexing and querying

In section 1.6 we presented an outline of existing indexing methods. In this section we
present a more in-depth overview of these methods.

2.9.2 Dimensionality Curse

The term “dimensionality curse”, which is also known by “Hughes effect” was first
introduced in [15]. It refers to the fact that in order to estimate a function of several
variables to a given accuracy, the number of data samples required grows
exponentially as the number of dimensions grows linearly [109]. High-dimensional
data spaces are inherently sparse, because available data are usually limited. This
results in what is known as the empty space phenomenon [168].

Index

q

Similarity Search in Metric Spaces

 26

2.9.3 Intrinsic Dimension

The intrinsic dimension (also named intrinsic dimensionality) of a vector can be
defined as the minimal number of parameters or latent variables needed to describe it
[109]. This concept, although seems simple, is more complicated to estimate in
practice. In fact, intrinsic dimensionality does not refer to a single well-defined
parameter, but rather to a family of parameters associated with a metric space [154].

2.9.4 Fractal Dimension

The fractal dimension is a powerful tool that can be used to describe the data skew of
a dataset [149]. The term fractal means that the object does not need to exhibit exactly
the same structure on all scales, but the same type of structures must appear [205].
The concept of fractal dimension has been used in range queries, as well as join
queries [17], [157]. Fractal dimensions fit into a general paradigm of intrinsic
dimensionality mentioned earlier in that fractal dimensions reflect the rate of growth
of balls and boxes [39].

2.9.5 Indexing High-dimensional Spaces

What makes high dimensional spaces difficult to handle is that most of the effects
resulting from the increase of dimensionality are unintuitive. While our perception of
high-dimensional spaces is based on extending our image of low-dimensional spaces,
this technique becomes deceptive when the dimension of the space becomes high,
which is a part of the curse of dimensionality effect. In general, these effects can be
classified into [23]:

1. Geometric effects concerning the shape of the hyper cubes or spheres
2. Effects concerning the shape and location of the index partitions
3. Effects concerning the database environment

2.9.6 Operations in High-dimensional Indexing Structures

The dynamic aspects of indexing structure are sustained using three main operations:
delete, insert and update. The first two operations are the most important ones, since
in a dynamic environment the databases are continuously submitted to adding some
data objects and deleting others, so different indexing structures should be able to
handle these operations easily and quickly. In some structures these operations are
local, like in the hB-tree [116], for example, while in others they are non-local, an
example of this is the R-tree [74].

Similarity Search in Metric Spaces

 27

2.9.7 High-dimensional Indexing Structures

Many structures have been proposed to manage high-dimensional data, which are not
necessarily spatial. The principle is to use a suitable transformation to project these
data onto lower dimensional spaces that can handle the data. Yet, even spatial
indexing structures can fail to handle the data when the dimensionality increases. The
reason for this is that by increasing space dimensionality more space is required to
store a single data object. As a consequence, the index fanout (the number of children
per node) is reduced considerably, resulting in an increase in disk accesses. In
addition, the good properties of index structures no longer hold because of the
excessive overlap, hence the discrimination power of the structure decreases [149].

In the following we present some of the most known indexing structures.

The R-tree: The R-tree [74] is a hierarchical structure that uses minimum bounding
rectangles MBR, which are multidivisional intervals. This means that there is no
smaller rectangle that can contain the point set in question. Overlapping is allowed,
but it deteriorates the performance of the search.

The SS-tree: The SS-tree [206] uses spheres instead of rectangles as page regions.
The center of the sphere is the centroid point of each dimension. The radius is chosen
so that the sphere contains all the data objects.

The Space filling curves (SFC’s): These are structures that are widely used in
different fields of computer science, especially to linearize multidimensional data
[117]. The most widely used SFC’s are the Hilbert curve [88], the Z-curves [148], and
the Gray code [64]. The SFC’s embed a multidimensional space into a one-
dimensional space while trying to preserve the original spatial proximity [11].

The Pyramid-tree: .The Pyramid-tree [19] uses a technique that is similar to that of
the Hilbert curve, so it also maps a d-dimensional point into a 1-dimensional point,
using a specific mapping called the Pyramid-mapping. The partitioning strategy is
optimized for high-dimensional data, so the authors claim that their structure is the
only structure not to be affected by the dimensionality curse.

2.10 Survey of Indexing Structures in Metric Spaces

2.10.1 Burkard-Keller Tree (BKT)

This tree [28] is considered as the first structure to present a general solution to
similarity search in metric spaces. It belongs to ball partitioning methods (see 2.6.4).
BKT is used with discrete distance functions and is built as follows; an arbitrary
object Up ∈ is selected as the root of the tree. For each distance 0≥i we define

Similarity Search in Metric Spaces

 28

subsets { }ipudUuU i =∈=),(, . A child node of p is built for every nonempty
subset iU . Then all child nodes are partitioned recursively until there is only one
object to process, or no more than b objects that we store in a bucket. The objects that
are chosen as roots of the subtrees are called pivots. Figure 2.10 shows an example of
BKT.

Range query is performed in the following way: The query),(rqR starts at the root
node; it enters all the child nodes i that satisfy irqpd ≤−),(. The algorithm
continues recursively downwards until it reaches a leaf (or a bucket). This leaf or
bucket is compared sequentially against the query.

 p

 3 4 5

 u2 u4 u3

 4 1 3

 u1 u5 u6

Fig. 2.10. BKT

The space complexity of BKT is)(nO , the construction complexity is

)log(nnO (measured in terms of the number of distance computations required), and

the search complexity is)(αnO (also measured by the number of distance
computations needed), where α is real number that satisfies 10 << α , and its value
depends on the search radius and the structure of the tree [38].

2.10.2 Fixed Queries Tree (FQT)

This tree is another structure that utilizes ball partitioning. The Fixed Queries Tree
was proposed in [13] as a modification of BKT tree. In FQT, a single pivot is used for
all the nodes of a certain level. The advantage that this structure presents over BKT is
that it decreases the number of distance computations, since, even if more than one
subtree has to be accessed to evaluate the query, only one distance computation is
computed between the query and the pivot of that level. Figure 2.11 shows an
example of FQT built over the same data of Figure 2.10. The first level shows the
distances between each of the points ()32 u,p,u and p . The second level
()32 u,p,u shows the distances between each of the points ()652 u,u,u and 2u .

Similarity Search in Metric Spaces

 29

p

 3 0 5

u2 u2 p u3

 0 1 3

 u2 u5 u6

Fig. 2.11. FQT

There are a number of variants to this structure like the Fixed-Height Fixed Queries
Tree (FHFQT), Fixed Queries Array (FQA), and others. All these structures handle
discrete distance functions. FQT has the same complexity as that of BKT.

2.10.3 Vantage Point Tree (VPT)

The VPT [210] is designed to handle continuous distance functions. But it can also
handle discrete distance functions. It is also based on ball partitioning.

 p1

 p2

 u2 u5

Fig. 2.12. VPT

This partitioning is based on the median of the set of all these distances, so those
points whose distances from the vantage point are smaller than the median are
inserted into the left subtree, and the other points are inserted into the right subtree.
The process continues recursively until there is only one object in each subtree. This
strategy of partitioning leads to a balanced binary tree. Figure 2.12 shows an example
of VPT with two pivots. The first branch shows all the points in the datasets which
satisfy () mu,pd >1 , where m is the median of all the distances ()u,pd 1 . This is
repeated recursively where the points of each subree that are smaller than the median
are inserted into the left subtree and the others to the right.

Similarity Search in Metric Spaces

 30

The construction complexity of VPT is ()nlognO , and the query complexity is
()nlogO but this is valid only for small values of r [210].

2.10.4 Bisector Tree (BST)

Unlike the structures we have discussed earlier, the BST [87] utilizes the generalized
hyperplane partitioning. The BST is a binary tree that uses two pivots 1p and 2p to

partition the data space. The objects that are closer to 1p create the left subtree, and

the objects that are closer to 2p create the right subtree. Figure 2.13 shows an

example of the first level of BST where ()512 u,u,u are closer to 1p than to 2p , and

()634 u,u,u are closer to 2p than to 1p .

 p1 p2

 u2 u1 u5 u4 u3 u6

Fig. 2.13. BST

The construction complexity of BST is ()nlognO , the query complexity is not
reported.

2.10.5 Methods Exploiting Pre-computed Distances

The motivation behind these methods is that distance functions are usually expensive
to calculate, so these methods suggest using pre-computed distances between data
objects. Experiments show that this technique does enhance the search in terms of
computational costs. Yet this technique has a drawback: the large storing space
required overhead. However, this is not a serious problem with relatively small
databases. In this section we present two of these methods; AESA, and LAESA.

AESA: The Approximating and Eliminating Search Algorithm (AESA) [194] uses a
matrix of 21 /)n(n − distances between data objects. These distances have been pre-
computed at construction time. In this structure all objects play the role of a pivot. At
query time an object is chosen at random to be a pivot, and all data objects that satisfy
the inequality r)u,p(d)p,q(d >− are excluded. Then the algorithm chooses
another object of the remaining objects to be a pivot and applies the above inequality,

Similarity Search in Metric Spaces

 31

and so on. Although this algorithm seems simple, the experiments show that it is
competitive. However, AESA has a drawback, its high space complexity, which is
quadratic.

Linear AESA (LAESA): The high space complexity of AESA has been overcome by
a new structure; the linear AESA [138]. LAESA stores distances from data objects to
only m pivots, so the distance matrix contains n.m elements rather than

21 /)n(n − ones. The pivots are usually chosen in a way similar to that discussed in
section 2.6.5.

2.10.6 Hybrid Methods

These methods combine pre-computed methods and partitioning methods, so these
methods benefit from the advantages of both. In this section we present some of these
methods.

Geometric Near-neighbor Access Tree (GNAT): The GNAT [27] is a structure that
is based on the Voronoi Diagrams. In this structure a set of m centers mccc ,...,2,1 is
chosen for each internal node and the set of data objects U is split into m subsets

mU,...,U,U 21 (called Dirichlet domains) according to the shortest distance of the data
objects to the m centers. Figure 2.14 shows an example of the first level of a GNAT
with four centers.

 c2

 c3
 c1

 c4

Fig. 2.14. GNAT

Similarity Search in Metric Spaces

 32

The algorithm stores, at indexing time, an mm× table that contains, in each cell, the
minimum and maximum distances from each center to the objects in each subset

mU .At query time, the query is compared against some center, say ic , and all classes
whose centers do not intersect with ,ir)c,q(d ± are discarded, then the algorithm
chooses arbitrarily another center and continues in the same manner, until no classes
can be discarded.

The construction complexity of GNAT is ()nlognmO m , the query complexity is not
reported.

Spatial Approximation Tree (SAT) [145] The SAT is a search algorithm that
approaches the query spatially, so this structure does not use pivots to partition the
search space. To build this tree a data object c is chosen randomly to be the root of
the tree.)c(N , the smallest set of all the neighbors of c , is built up as follows:

() () { } () ()'' u,udc,ud;u/cNucNu <∈∀⇔∈ (2-19)

 u2
 u4

 u8
 u7

 u1
 u12 u10
 u9

 u13
 c

 u11

 u3
 u5

 u6

Fig. 2.15. SAT

In other words: all the data objects are sorted according to their increasing distance
from c , the closest object is added to ()cN if it is closer to c than it is closer to any
object in ()cN , otherwise it will be assigned to that object which it is closer to. Then

Similarity Search in Metric Spaces

 33

each element of ()cN is recursively the root of another subtree, together with the
objects that they were assigned to it in the last step. Figure 2.15 shows an example of
SAT with c as its root.

The construction complexity of SAT is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
nloglog

nlognO and the query complexity

is
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

nloglognO
11 θ

.

Metric-tree (MT): The MT structure [50] aims at handling databases whose size
changes dynamically. In these databases deletion and insertion operations are
frequent. The MT, unlike other trees, is built in a bottom-up way. In the MT, all the
objects are stored at the leaf node. This tree is similar to the GNAT, in that a set of
representatives (pivots) are chosen at each internal node, and the objects closer to that
representative are organized into a subtree, and the representative serves as a
representative of the whole subtree. Each internal node is constrained by spheres and
it contains a pointer to a child node, the covering radius of that sphere, and its distance
from the associated parent node. At query time the query q is compared against all the
representatives of the subtrees and enters those that can not be discarded using the
covering radius.

The insertion of new objects is performed by choosing the subtree where the covering
radius should expand minimally to contain that new object.

It is worth mentioning that the M-tree is the only structure that is optimized for
secondary memory datasets, while the other structures mainly support main memory
data sets .

The construction complexity of the MT is ()()nlogm..mnO m

2 . The query complexity
is not reported.

Similarity Hashing (SH): This is a multi-tier hashing structure proposed by [71]. SH
is a multi-level structure that consists of search-separable bucket sets on each level.
This structure supports easy insertion and bounded search costs, because at most one
bucket needs to be accessed at each level for range queries up to a pre-defined value
of search radius. At the same time, the pivot-based strategy significantly reduces the
number of distance computations. SH supports distributed and parallel
implementations.

Hashing, which is also called key-to-address transformation paradigms, provides
direct access to selected regions in the search space, which is something that tree-
indexing structures can not offer.

Similarity Search in Metric Spaces

 34

2.11 Distributed and Parallel Systems

Although centralized search methods achieve speed-ups of orders of magnitude
compared with sequential scanning, their performances deteriorates as the size of the
database increases, which poses questions concerning the scalability of centralized
methods.

Distributed and parallel search methods try to overcome this problem by utilizing
dynamic heterogeneous systems that share resources such as computers, storage and
data which are geographically distributed.

Parallel and distributed models share many important characteristics; shared memory
models, interconnection networks and combinational circuits [188].

In parallel database systems the processors are tightly coupled in a single computer
system [149]. Processors cooperate together to provide efficient processing of the
similarity search. The user has no access to a specific processor of the system.

There are different parallel architectures, the processors may have access to a
common memory, or they can communicate by message passing where the
interconnection is achieved using high-speed links.

2.12 Unifying Model

Although all indexing structures seem to be different in nature, they are similar at
heart, so in [38] the authors try to establish a unifying mathematical model that builds
a common framework to all indexing structures. In this model the indexing algorithms
aim at partitioning the search space U into subsets with relevant features. At query
time the indexing structure should nominate a set of candidate subsets where the
answers to the query are likely to be found, which corresponds to what is called the
internal complexity, and then a post-processing scan on this set can eliminate all false
alarms and return the true answers to the query, which corresponds to what is called
the external complexity.

In this model, each partitioning scheme can be viewed as an equivalence relation
(reflexivity, symmetry, and transitivity) and each class of this equivalence relation
corresponds to a subset in the indexing structure.

2.13 Non-metric Similarity Search

The term non-metric means that the similarity function violates one, or all, the
properties of a distance function [30].

Similarity Search in Metric Spaces

 35

Non-metric models are not widely explored yet, although they are attracting more and
more attention lately as a more general model than the metric one. The problem with
the non-metric model is that with the absence of the triangle inequality the search is
mainly approximate [39].

In a very recent paper (to appear) [176] the authors propose a framework/map of the
options that a domain expert can take when working with non-metric spaces:

 If the problem can be modeled in a metric space, there are plenty of
solutions the choice of the best one of which depends on the data in
question.

 If the problem uses a specific non-metric distance function it may have an

available efficient index (BLAST [8], for example). These specific indices
are usually more efficient than general ones.

 If the problem is modeled as black-box similarity (an algorithm returning a

real-value output from a two-object input [119]) or if there is no specific
index for this non-metric function then the options can be:

• The problem can be mapped into another space or paradigm, although

this may result in losing the discriminative power of the similarity
function. This may also require a static database because this mapping
requires pre-processing that can not be performed in dynamic
environments.

• One can also decide to use some of the few available general non-metric

indexing structures or algorithms. However, this may result in slower
query processing, besides the search algorithm returns approximate
results only.

2.14 Summary

This chapter is a background chapter of the similarity search paradigm presented from
a metric view point. We started by presenting some of the applications of this
problems in different domains. Later we gave a formal presentation of the metric
model and the distance metric as a measure of how two data objects are similar to
each other. We also presented some of the widely-known metrics, mainly the
Minkowsky family. Then we moved in the following section to presenting the
different forms of the similarity search problem focusing on range queries, which will
be dealt with often in later chapters. Next we presented how this problem has been
addressed by researchers starting with the naïve sequential scanning approach with its
high complexity then we showed how different techniques, such as the pivot
technique and the compact partitioning, can be used to lower this complexity. We also

Similarity Search in Metric Spaces

 36

presented mapping methods which aim to reduce the complexity by processing the
search in other spaces under certain conditions.

Although this dissertation handles exact solutions of this problem, approximate
solutions are widely used in the literature, so they were presented briefly in this
chapter together with some related issues to give the reader a thorough picture of the
similarity search problem.

Indexing, a paradigm to speed up the similarity search, was also presented in this
chapter in addition to some of the most widely used metric structures. We also gave a
brief description of the concept of intrinsic and fractal dimensions as well as high-
dimensional spaces.

Processing similarity search using distributed or parallel systems has been used more
frequently lately. So we presented in this chapter some basic concepts of these
approaches.

In the last part of this chapter we presented some efforts of establishing a unifying
model to the search problem. Then in the last section we presented the non-metric
model; a challenging topic in similarity search which tries to build a more general
model than the metric one.

In the next chapters we see how time series data have been addressed through the
metric model, but also through other data-specific models.

Although metric structures are not the topic of this dissertation, we think after
examining the enormous number of structures that have been proposed to address the
similarity search problem that research in this domain should focus now on finding
novel algorithms for utilizing these structures rather than trying to introduce more
new structures.

 37

Chapter 3

Time Series Data Mining and
Information Retrieval

This chapter concerns a data type, time series, which appears in a variety of
applications in science, medicine and economics. The introduction of this chapter in
Section 3.1 gives a formal definition of this data type in addition to some of its
applications. In Section 3.2 we give a brief description of the main tasks in time
series data mining. We also show the types of data transformation that are frequent
with this data type and show the different techniques that are used to remove this
transformation so that the results of the different tasks are more intuitive. Section 3.3
introduces time series retrieval and the types of queries this field of information
retrieval deals with such as whole matching and subsequence matching. Section 3.4
starts with a presentation of a general framework to handle the similarity search
problem in time series : the GEMINI algorithm, which most time series representation
methods adopt to guarantee no false dismissals. The following subsection is a survey
of the different representation methods, also called dimensionality reduction
techniques, which are widely used in the time series community. The first technique
we present is DFT which is probably the first dimensionality reduction technique in
the literature. The next technique is DWT which uses wavelets; a powerful
mathematical tool used to decompose signals. The third technique we present is SVD
which is also used in many applications. This technique is very effective but its main
drawback is its high complexity. PAA, a widely used technique, is presented in
Subsection 3.4.4. In the following subsection PLA, an efficient but not indexable
technique, is presented. In Subsection 3.4.6 APCA, an improvement of the PAA
method is presented. CP, a technique that uses Chebyshev polynomials, is the last
technique that we present in this section about representation methods. In the last
subsection we show a comparison of the dimensionality reduction techniques we
presented in this chapter.

In the second part of this chapter we revisit the concept of similarity distances used in
the literature. So we present in Section 3.5 some metric distances like the Euclidean
distance, and other non-metric distances like DTW and LCSS. We also show some of
the techniques, like using lower bounds, which can be used to enhance these
similarity measures that violate the triangle inequality. The last part of this section is
devoted to state-of-the-art similarity measures and distance metrics in the field of time
series. We conclude this chapter with a summary.

Time Series Data Mining and Information Retrieval

 38

3.1 Introduction

A time series, also called spatiotemporal trajectory, is a collection of observations at
intervals of time points. These observations are measurements of a particular
phenomenon. If these time points are equally spaced, the time series is called regular,
otherwise it is called irregular. Formally, an n -dimensional time series S is an
ordered collection:

 () () (){ }nn v,t,...,v,t,v,tS 2211= (3-1)

0 20 40 60 80 100 120 140
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140

-2

-1

0

1

2

3

4

 (a) (b)

0 100 200 300 400 500 600 700
-5

0

5

10

15

20

0 50 100 150 200 250 300

-1.5

-1

-0.5

0

0.5

1

1.5

 (c) (d)

0 20 40 60 80 100 120 140
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160

-1.5

-1

-0.5

0

0.5

1

1.5

 (e) (f)

Fig. 3.1. Different examples of time series

Time Series Data Mining and Information Retrieval

 39

where nt...tt <<< 21 , and where iv is the value of the observed phenomenon at
time point it . The values iv can be real numbers, or vectors, or even other data types
(graphs, images, etc).

Sometimes a time series is represented by the values iv that it takes.

Time series data appear in a broad variety of applications which vary from medicine,
science and technology to business, finance and economics. Due to its numerous
applications, this branch of computer science has witnessed increasing attention
recently. Figure 3.1 shows some examples of time series.

Because of the several applications in which time series are involved, and the large
size of time series databases, speed has always been the principal focus of all the
methods and algorithms that handle this type of data.

In the literature, the terms time series data mining and time series information
retrieval have usually been used interchangeably. In this dissertation we mainly use
the term time series information retrieval to refer to the query by content problem
over time series databases presented later in this chapter. This problem usually
involves indexing methods. We reserve the term time series data mining to a wider
class of problems in time series databases as indicated in Section 3.2. However, in
many cases the distinction between the two terms is difficult since even some time
series data mining tasks can involve indexing methods.

3.2 Time Series Data Mining

Data mining is a fundamental branch of computer science that witnessed a substantial
progress in the last years. In [207] data mining is defined as “the process of
discovering patterns in data. The process must be automatic or (more usually)
semiautomatic. The patterns discovered must be meaningful in that they lead to some
advantages. The data is invariably present in substantial quantities”. Data mining is
closely related to another branch of computer science which is knowledge discovery.
However, the main focus of knowledge discovery is representing knowledge in a
manner that is understandable to humans, while data mining focuses mainly on
finding hidden information in large amounts of data.

In the following we present some of the most common data mining tasks [107], [140],
[26]:

Description: In some cases, description of trends or patterns can explain them. High
quality description can often be obtained by using exploratory data analysis (EDA),
which is a graphical method that helps explore the data in search of patterns and
trends.

Time Series Data Mining and Information Retrieval

 40

Data Preparation or Data Pre-processing: Most of the raw data are unprepared,
noisy, or incomplete. All this makes data mining systems fail to process these data
properly that a preparation phase seems inevitable before handling these data. This
phase may include different processes such as data cleansing, normalizing, handling
outliers, completion of missing values, and deciding which attributes to keep and
which ones to discard.

Classification: In classification we have categorical variables which represent
classes, and the task is to assign class labels to the dataset according to a model
learned from a learning phase on a training data where the classes are known
(supervised learning). Then the algorithm looks at new data and tries to classify these
data based on the model acquired during the training phase.

Estimation: Estimation (known also as regression, mainly in the statistics
community) is similar to classification, except that in estimation the target variables
are numeric. The model is built using target variables and predictors, and then for new
observations the value of the target variable is estimated based on the values of the
predictors. This is equivalent to what is known as interpolation in the numerical
analysis community.

Prediction: This task also includes a kind of estimation, except that it concerns values
that are beyond the range of already observed data. This is equivalent to extrapolation
in numerical analysis.

Query by Content: In this task the algorithm searches for all the objects in the data
base and returns all those which are similar to a given pattern (see Chapter 2).

Clustering: This is a process in which the algorithm groups the data objects into
classes of similar objects. Clustering is different from classification in that in
clustering we do not have target variables. In other words, clustering is a process of
partitioning the data space into groups of similar objects.

Association Rules: This is the task of finding relationships between two or more
attributes. These rules have the form: “if… then… ”, together with a measure of
confidence associated with these rules.

3.2.1 Data Transformation

Time series data mining addresses the problems that are particular to this data type.
Distortion is the most frequent problem in time series databases. This problem can
have different forms: noise (Figure 3.1, a), amplitude scaling (Figure 3.1, b)
amplitude shifting (Figure 3.1, c), time scaling (Figure 3.1, d) , and outliers (Figure
3.1, e).

Time Series Data Mining and Information Retrieval

 41

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 3.2 (a). Noise

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

 Fig. 3.2 (b). Amplitude scaling

0 2 4 6 8 10 12 14 16 18 20

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 3.2 (c). Amplitude shifting

Time Series Data Mining and Information Retrieval

 42

8 10 12 14 16 18 20

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Fig. 3.2 (d). Time scaling

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.2 (e). Outlier

Applying time series data mining tasks on raw data may result in unintuitive results.
For instance, the Euclidean distance is widely used in time series data mining and
information retrieval, but it is sensitive to noise and to shifts on the time axis [126].
That is why pre-processing of time series is necessary before applying different time
series data mining algorithms.

There are different techniques that can be used to eliminate distortions, depending on
their nature. Noise is usually removed by smoothing the data which is achieved by
taking the average of several successive data points. Amplitude shifting and amplitude
scaling are removed by normalizing the data. The most common type of
normalization is the z-score standardization in which the mean of the normalized
values is obtained by subtracting the mean value from the raw (unprocessed) value,
and dividing the outcome by the standard deviation, i.e.

Time Series Data Mining and Information Retrieval

 43

)v(std
)v(meanvv raw

norm
−

= (3-2)

where rawv is the observed value (see 3.1), normv is the z-score standardization

Outliers, on the other hand, are not easy to identify. The z-score standardisation can
be used for this purpose, as a value can be considered an outlier if it is farther from
the mean than 3 standard deviations; i.e. its z-score standardisation is less than -3 or
greater than +3.

The problem with using the mean and the standard deviation in the z-score
standardization formula is that both these statistical measures are sensitive to outliers.
Therefore, some researchers use another statistical method to detect the outliers which
is the interquartile range (IQR) [107], which is defined as:

13 QQIQR −= (3-3)

where Q1 is the first quartile, i.e. the 25th percentile , and Q3 is the third quartile, i.e.
the 75th percentile.

Using the above concept, a data value is considered an outlier if it is located 1.5(IQR)
or more below Q1 or if it as located 1.5(IQR) or more above Q3 .

3.3 Time Series Information Retrieval

As indicated earlier, in this problem a query time series is given and the search
algorithms returns all the time series that are similar to that given query. This problem
comes in two “flavors”: whole matching queries and subsequence matching queries
[44].

Whole matching:

Given a time series database D of m time series of length n , a query time series
Q (not necessarily from D) of length n too, a real number 0≥r which represents a
threshold, and a distance function d defined on D . The whole matching query is the
set of all the time series DS ∈ which satisfy:

 rQSd ≤),((3-4)

Notice that in this problem the time series in the databases, in addition to the query
time series, all have the same length n .

Time Series Data Mining and Information Retrieval

 44

Subsequence matching:

Given a time series database D of m time series of arbitrary length, a query time
series Q (not necessarily from D) of length minll ≤ , where minl is the length of the
shortest time series in D , a real number 0≥r which represents a threshold, and a
distance function d defined on D . The subsequence matching query reports all the
time series DS ∈ together with the offsets within these time series that satisfy:

 ()[]() rQ,Sd li:i ≤−+ 1 (3-5)

3.4 Dimensionality Reduction Techniques

Data structures such as the R-tree and its variants (see 2.9.7) can be used to handle the
problem of time series information retrieval. Nevertheless, time series are high
dimensional data [75]. This high dimensionality can cause these indexing structures to
fail in handling these data. On the other hand, time series are highly correlated data,
so dimensionality reduction techniques, also known as representation methods, try to
benefit from this fact to find a faster solution to the similarity search problem in time
series databases. Dimensionality reduction techniques aim at reducing the
dimensionality of the time series by projecting the original data onto lower
dimensional spaces and processing the query in those reduced spaces.

Tables 3.1. The GEMINI algorithm for time series range queries

Algorithm: range_query(Q,r)

1. Transform the time series in the database DB from
 the original n-dimensional space into a lower

dimensional space of N dimensions

2. Define a lower bounding distance on the reduced

 space: () () DBS,SS,SdS,Sd jiji
n

ji
N ∈∀≤

3. Eliminate all the time series for which we have

 () rS,Qd N > → obtain a candidate response set

4. Apply nd to the candidate response set and
 eliminate all the time series that are farther than
 r from Q to get the true response set.

Time Series Data Mining and Information Retrieval

 45

The GEMINI Framework: In [65] the authors presented a generic approach for
indexing time series. Later GIMINI was extended to other data types. GEMINI
reduces the dimensionality of the time series by converting them from a point in an n-
dimensional space into a point in an N-dimensional space, where N<<n. A similarity
distance is defined on the reduced space, which is lower bounding to the original
similarity distance, thus the similarity search returns no false dismissals in this case. A
post-processing sequential scan on the candidate response set is performed to filter out
all false alarms and return the true response set. Table 3.1 illustrates the GEMINI
algorithm.

3.4.1 Discrete Fourier Transform (DFT)

This is probably one of the first dimensionality reduction techniques known in the
literature. Discrete Fourier Transform (DFT) is one of the specific forms of Fourier
analysis. It transforms one function of the original form (which is often a function in
the time domain) into another, which is called the frequency domain [143].This
transform as a method of indexing time series was presented in [4], [5]. The basic idea
of DFT is that any complex time series or signal can be expressed in terms of
sine/cosine waves. Each time series can be represented using complex numbers called
the Fourier Coefficients. So a time series of 256 dimensions, for instance, can be
represented by 128 complex Fourier coefficients. However, the first coefficients are
the most significant and the most representative ones, so the other Fourier coefficients
can be truncated without much loss of information. This makes DFT an efficient
dimensionality reduction technique with a good compression ratio that a compression
ratio of 1:16 can be achieved [91], where the compression ratio represents the ratio of
the dimension of the original space to the dimension of the reduced space.

The original algorithm has a high complexity)(2nO . But a well-known efficient
algorithm named Fast Fourier Transform (FFT) has a lower complexity of

)log(nnO [171].

The main property of Parseval’s theorem [147] is that the Euclidean distance between
two time series in the time domain is the same as their Euclidean distance in the
frequency domain. This property is the basis of using DFT as an indexing method in
time series information retrieval.

The distance between two time series X , Y proposed by the authors of [4] is:

()YXEyx)Y,X(d
n

t
tt −=−= ∑

−

=

21

0

 (3-6)

This is the distance in the original space. By using few DFT coefficients to compute
the Euclidean distance we get a distance that is lower bounding to the Euclidean
distance presented in (3-6)

Time Series Data Mining and Information Retrieval

 46

Notice that DFT requires that the two time series have the same length.

It is worth mentioning that other variations of DFT take the best coefficients instead
of the first few coefficients. Another variation called DCT uses only the cosine waves
[91].

To illustrate DFT as an indexing method, let us see how it is applied to the time series
presented in Figure 3.3 (This is the same time series shown in Figure 3.1 (e))

0 20 40 60 80 100 120
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3.3 (a). The original time series on which DFT is applied

This is a 128-dimensional time series. By taking the first 8 coefficients we get the
following waves (Figure 3.3 (b)):

0 20 40 60 80 100 120
0
2
4

0 20 40 60 80 100 120
-0.5

0
0.5

0 20 40 60 80 100 120
-0.5

0
0.5

0 20 40 60 80 100 120
-0.5

0
0.5

0 20 40 60 80 100 120
-0.5

0
0.5

0 20 40 60 80 100 120
-0.5

0
0.5

0 20 40 60 80 100 120
-0.5

0
0.5

0 20 40 60 80 100 120
-0.2

0
0.2

Fig. 3.3 (b). The first 8 coefficients of DFT

Time Series Data Mining and Information Retrieval

 47

Using these waves, the original time series shown in Figure 3.3 (a) can be recovered
to get the lower-dimensional representation shown in Figure 3-3 (c).

0 20 40 60 80 100 120
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3.3 (c). The lower-dimensional time series using 8 coefficients of DFT

3.4.2 Discrete Wavelet Transform (DWT)

Wavelets are a mathematical tool for hierarchically decomposing functions.
Regardless of whether the function of interest is an image, a curve, or a surface,
wavelets offer an elegant technique for representing the levels of details present [183].
Wavelets have successfully been used in many fields of computer science such as
image compression [55], image querying [84], and many others.

DWT has also been used in time series information retrieval as a dimensionality
reduction technique [35], [155], [208]. The advantage that DWT has over DFT in
indexing time series data is that DWT is a multi-resolution representation method and
it can represent local information in addition to global information.

Haar wavelets are the simplest form of wavelet. Haar wavelet transform is a series of
averaging and differentiating operations. To get an idea of how 1-dimensional Haar
wavelets work, let us consider the following 4-dimensional time series:

[]5,3,4,8=S . By taking the average of each two successive values we get the
following 2-dimenisonal time series: []4,6=′S .

To recover the original 4-dimensional time series we need to use the DWT

Coefficients, which, in this case, are:
2

482 −
= and

2
531 −

=− .

Recursively repeating this process we get the full decomposition of S as shown in the
table:

Time Series Data Mining and Information Retrieval

 48

Resolution Averages DTW Coefficients
4 [8,4,3,5]
2 [6,4] [2,-1]
1 [5] [1]

So the wavelet transform of S is []1,2,1,5 − .

The basic idea of DWT is similar to that of DFT in that a time series can uniquely be
represented by a wavelet transform, but by keeping only the first N coefficients we
can reduce the dimensionality and keep much of the information that is in the original
time series. For instance, Figure 3.4 shows the DWT decomposition at level 7 of the
time series show in Figure 3.1 (e). To easily compare the representation of DWT with
that of DFT, we show separately one of these levels using the same scale that was
used in Figure 3.3.

A lower bounding distance to the Euclidean distance was presented in [35] and it was
proven that this lower bound guarantees no false alarms.

It is also proven in [35] that the complexity of Haar transform is)(nO , which is
lower than that of DFT.

It is important to mention that DWT requires that the length of the time series be a
power of 2.

There exist controversies on whether other wavelets are better for indexing. In [155]
the authors claim that Daubechies wavelets outperform Haar wavelets, while in [35]
the authors claim the contrary.

Time Series Data Mining and Information Retrieval

 49

0 20 40 60 80 100 120
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3.4. The lower-dimensional representation of the time series using DWT

Time Series Data Mining and Information Retrieval

 50

3.4.3 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) has been widely used in different fields of
computer science such as text retrieval, where it is called Latent Semantic Indexing
[61] , pattern recognition [60] , face recognition [189] , and image databases [160],
[146]. It has also been proposed as a dimensionality reduction technique in time series
information retrieval in [104].

At heart, SVD is similar to DFT and DWT in that it represents the time series as a
linear combination of eigenvalues but keeps only the first N coefficients as the lower-
dimensional representation of the original time series.

 y1

 y2 x2

 x1

Fig. 3.5. SVD in a 2-dimensional space

The intuition behind SVD is that a set of m points will group on few dimensions only.
Each group represents a “principal component”. This component has a high
discriminatory power and is orthogonal to other groups. SVD finds these dimensions
and projects the points onto these dimensions. Figure 3.5 explains this idea in a 2-
dimensional space. By rotating the axis 11yox to 22 yox the best direction for
projection is 2ox the second best is 2oy . In other words, 2ox is the direction of
maximum variance, 1oy .is the direction of maximum variance orthogonal to 2oy .

Mathematically, SVD can be expressed as follows: Given a time series databases
which contains m time series whose dimension is n , the SVD composition of this
database is a matrix X :

Time Series Data Mining and Information Retrieval

 51

TVUX Σ= (3-7)

where VU , are orthogonal. Σ diagonal, and Σ contains the eigenvalues of XX T .

The first few eigenvalues contain most of the variance of the time series, so the idea is
to keep as many eigenvectors as space permits. These retained terms are called the k
principals components [104].

SVD outperforms both DFT and DWT, but its complexity is very high)(2mnO .
Another disadvantage of SVD is that the transform requires that all the data in
database be available, which means that the database should not be updated too
frequently [44].

3.4.4 The Piecewise Aggregate Approximation (PAA)

This method was proposed in [92] and [212], independently. Its basis is simple and
straightforward, yet this method has been successfully used as a competitive method.
In fact, two other dimensionality reduction techniques have been derived from PAA:
Adaptive Piecewise Constant Approximation (APCA) [93] and the Symbolic
Aggregate Approximation (SAX) [111].

PAA reduces the dimensionality of a time series S from n in the original space to N in
the reduced space. This is achieved by segmenting the time series into equal-sized
frames and representing each segment by the mean of the data points that lie within
that frame. Figure 3.6 shows an example of PAA applied to a time series to reduce its
dimensionality from a 12-dimensional space into a 3-dimensional space

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 3.6. PAA from a 12-dimensional space into a 3-dimensional space

The similarity distance used in the reduced space is:

Time Series Data Mining and Information Retrieval

 52

∑ =
−=

N

i
N yx

N
nYXd

1
2)(),((3-8)

Where n is the length of the time series, N is the number of frames, which should be a
factor of n . The compression ratio l is N/n , so l is the length of each segment.

It is proven in [92] and [212] that the above similarity distance is a lower bounding of
the Euclidean distance applied in the original space of time series.

Since Nd is lower bounding of the Euclidean distance in the original space then,
according to GEMINI, all time series that satisfy:

 rSQd N >),((3-9)

Can not be answers to the query and should be excluded.

3.4.5 The Piecewise Linear Approximation (PLA)

The Piecewise Linear Approximation (PLA) was presented as a method to index time
series in [172]. However, this proposed method did not guarantee no false dismissals.
In [141] the authors proposed a novel indexing structure based on PLA called the L-
index. In this method the time series is transformed into Δ-SEALS (Δ-bounded
Sequence of Approximated Liner Segments). The basic idea of the Δ-SEALS is to
approximate the time series by a sequence of k linear segments. Each line segment is
the longest possible linear segment whose accumulated error does not exceed a given
deviation bound Δ, where the error is defined by the least square method. Figure 3.7
shows how the Δ-SEALS are built.

1 2 3 4 5 6 7 8 9 10 11 12
-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3.7. The Δ-SEALS

Time Series Data Mining and Information Retrieval

 53

The authors present two distance measures; the first is called the Optimistic Bound
Distance (OBD). A bounding value of the error deviation called the worst error
deviation (wed) is used to guarantee that the proposed distance underestimates the
distance in the original space, thus the method with this distance produces no false
dismissals.

The authors also define another distance measure called the Pessimistic Bound
Distance (PBD) .This method overestimates the distance defined in the original space,
so this distance produces no false alarms.

PLA is a competitive method, but one of its cons is that there was no proposed
method to index it. This reduces its efficiency when used over very large databases.

In [45] the authors present an Indexable Piecewise Linear Approximation method
(IPLA). This method uses a new distance function with PLA. The authors prove that
this distance is lower bounding to the Euclidean distance on the original space. They
also present a scheme to index their proposed distance. The experiments conducted by
the authors show that indexable PLA outperforms other state-of-the-art methods

3.4.6 The Adaptive Piecewise Constant Approximation (APCA)

This method was presented in [93] as an extension to PAA. While PAA uses frames
of equal lengths, APCA relaxes this condition and represents each time series in the
database by a set of constant value segments of varying lengths such that their
individual reconstruction errors are minimal. The intuition behind this idea is that
different regions of the time series contain different amounts of information. So while
regions of high activity contain high fluctuations, other regions of low activity show a
flat behavior, so a representation method with high fidelity should reflect this
difference in behavior.

Given a time series { }nvvvS ,...,, 21= . Its APCA representation is:

{ }NN cr,cv,...,cr,cvC 11= (3-10)

where 00 =cr and where icv is the mean value of the data points in the ith segment,
i.e.),...,(11 ii crcri CCmeancv +−

= , icr is the right end point of the ith segment, and
N is the number of segments. We do not represent the length of the segments but the
locations of their right endpoints are recorded instead for indexing reasons.

The authors of [93] propose two distance measures to be used in the reduced space;
the first AEd is non-lower bounding of the Euclidean distance, but a very tight
approximation of the Euclidean distance and can support fast approximate search. The
second distance LBd is lower bounding of the Euclidean distance and can support
exact search.

Time Series Data Mining and Information Retrieval

 54

Given a query time series Q and a time series S whose APCA representation is C .
The approximate Euclidean distance AEd is defined as follows:

() ()∑∑
−

−

−

=
+

=

−=
1

1
1

2

1

ii

i

crcr

k
icrk

N

i
AE cvqC,Qd (3-11)

This distance measure can be calculated in)(nO .

It is proven in [93] that this distance measure does not satisfy the triangle inequality.
This means that it may not be a lower bounding of the Euclidean distance

The lower bounding distance measure LBd is defined using a special version of
APCA. This version is obtained by projecting the end points of C onto Q then
finding the mean value of the sections of Q that lie within the projected intervals. The
APCA representation of Q obtained using this version is denoted by Q′ . LBd is
defined as follows:

() ()()∑
=

− −−=′
N

i
iiiiLB cvqvcrcrC,Qd

1

2
1 (3-12)

It is proven that this distance lower bounds the Euclidean distance.

3.4.7 Chebyshev Polynomials (CP)

This method was presented in [31]. It uses Chebyshev polynomials to represent the
time series since it is shown in [125] that Chebyshev approximation is almost
identical to the optimal minimax polynomial, it is also easy to compute.

The Chebyshev polynomial is a polynomial in t of degree m and defined as follows:

[]1,1)),(cos.cos()(1 −∈= − ttmtPm (3-13)

This can be rewritten with the following recurrence relation:

22 21 ≥∀−= −− m)t(P)t(P.t)t(P mmm (3-14)

where ttPtP ==)(,1)(10

Time Series Data Mining and Information Retrieval

 55

Chebyshev polynomials are orthogonal so they can be used as a base to approximate
any function.

Interval functions are functions whose domain is an interval (which is []1,1− in this
case). The functions may be continuous or not, but they should be defined everywhere
over the interval.

Time series is discrete, so it should be converted into an interval function. To do so,
the time series { }nvvvS ,...,, 21= should be rewritten in a functional form as follows:

()
⎩
⎨
⎧ =

=
otherwiseundefined

ttifv
tS ii (3-15)

Then the []1,1− interval is divided into n disjoint subintervals as follows:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=⎥⎦
⎤

⎢⎣
⎡ +

−≤≤⎢⎣
⎡

⎢⎣
⎡ ++

=⎢⎣
⎡

⎢⎣
⎡ +
−

=

−

+−

niiftt

niiftttt

iiftt

I

nn

iiii
i

1,
2

12
2

,
2

1
2

,1

1

11

21

 (3-16)

The following step function can be chosen as an interval function :

niforItifvtg ii ≤≤∈= 1)((3-17)

However, this function does not guarantee the lower bounding lemma. To satisfy the
lower bounding lemma the interval function should be:

niforItif
Itw

tgtf i
i

≤≤∈= 1
)(

)()((3-18)

)(tw is the Chebyshev weight function and is defined by:

21

1)(
t

tw
−

= (3-19)

After that, the Chebyshev coefficients can be computed by the following formulas:

Time Series Data Mining and Information Retrieval

 56

∑∑
==

==
n

j
j

n

j
jj tf

n
tPtf

n
c

11
00)(1)()(1 (3-20)

∑
=

=
n

j
jiji tPtf

n
c

1

)()(2 (3-21)

It is shown in [31] that the computational complexity of Chebyshev polynomial is

)(nO .

Given two time series 21 , SS of length n , let 21 , CC
rr

be their corresponding vectors

of Chebyshev coefficients, respectively. i.e. []m
T aaaC ,...,, 101 =
r

,

[]m
T bbbC ,...,, 101 =
r

, where T denotes the vector’s transpose. The distance function
between the two vectors of Chebyshev coefficients is defined as follows:

∑
=

−=
m

i
iichy baCCd

0

2
21)(

2
),(πrr

 (3-22)

The authors of [31] show that this distance is metric and that it is lower bounding to
the Euclidean distance in the original space.

3.4.8 Comparison of the Different Representation Techniques

With all these dimensionality reduction techniques that we covered in this chapter and
others that we did not cover a question arises; which dimensionality reduction
technique is the best? Almost every paper with a new dimensionality reduction
technique claims that this new technique is the most effective and the most efficient.
In [155], for instance the authors claim that wavelets outperform DFT, while the
authors of [89] claim that the filtering performance of DFT is superior to that of
DWT, and in [208] the authors claim that DFT and DWT give comparable results.
There are similar contradictions concerning the performance of other methods.

The datasets used in the experiments seem to play a role in favoring one method over
another. Some other aspects should also be taken into consideration when comparing
dimensionality reduction techniques; SVD, for instance, is competitive, but it is very
costly computationally. DWT is applied to time series whose length is of power of 2,
etc. The similarity measure used in the experiments may also influence the results.

Time Series Data Mining and Information Retrieval

 57

Tables 3.2. Comparison of different representation methods

The
Method

Computational
Complexity

Space
Complexity

Index-
ablility

Length
Limitation

Supporting
Weighted Lp

Distances

DFT))(log((nnO)(nO Yes No No

DWT)(nO)(nO Yes Yes (power of 2) No

SVD)(2NnO ()NnO Yes No No

PAA)(nO)(nO Yes No Yes

PLA)(nO)(nO No* No Yes

APCA)(nO)(nO Yes No Yes

CP)(nO)(nO Yes No Yes

* but IPLA is indexable

In [57] the authors conducted extensive experiments implementing different
representation methods and using different similarity measures. The authors reach at a
conclusion that the pruning efficiency of different representation methods is almost
the same. At any rate, we think that the results of such experiments should not be
taken for granted if we take into account that many of such experimental comparison
papers are written by authors who have proposed a representation method or a
similarity measure.

However, we are tried to make a comparison of the different methods based strictly
on the theoretical features of the representation methods. But it is important to state
that the comparison based on theoretical features is not “better” than experimental
comparison, because in some cases the theoretical feature seems to represent the
worst case or the best case evaluation. In Table 3.2 we present a comparison of the
representation methods we presented in this chapter [44].

3.5 Similarity Distances in Time Series Information
Retrieval

Research in time series information retrieval has focussed on two aspects:
dimensionality reduction methods, and similarity distances. There have been several
proposed distances to compute the distance between time series, some are distance
metrics while the others are similarity measures that represent a weaker form of
similarity. In the following we present some of these distances.

Time Series Data Mining and Information Retrieval

 58

3.5.1 The Euclidean Distance

This distance is a member of the PL family (see section 2.4). It is the first distance
measure used in time series information retrieval [4]. The Euclidean distance is
effective [95], [161] and it has been widely used [36], [92], [93].

However, the Euclidean distance has a few inconveniences: it is sensitive to noise
and to shifts on the time axis and thus lacks elasticity [47], [86], [103]. It is also
applied to series of identical lengths only [126]. Figure 3.8 shows an example of the
Euclidean distance between two time series.

Fig. 3.8. The Euclidean distance between two time series

One of the variations of the Euclidean distance is the Weighted Euclidean Distance,
which is defined between the two time series { }nsssS ,...,, 21= , { }nr,...,r,rR 21= as
follows:

()∑
=

−=
n

i
iii rsw)W,R,S(d

1

2 (3-23)

where W is the weight vector.

The intuition behind this distance is that some parts of the time series may have more
importance than other parts. Figure 3.9 illustrates the weighted distance.

Time Series Data Mining and Information Retrieval

 59

Fig. 3.9. The weighted distance

3.5.2 Dynamic Time Warping (DTW)

The dynamic time warping has been developed by the speech recognition community
[193], [162], and later was used with time series [22]. DTW is an algorithm to find the
optimal path through a matrix of points representing possible time alignments
between the signals. The optimal alignment can be efficiently calculated via dynamic
programming [73].

The dynamic time warping between the two time series { }ns,...,s,sS 21= ,

{ }mr,...,r,rR 21= is defined as follows:

⎪
⎩

⎪
⎨

⎧

−−
−

−
+=

)j,i(DTW
)j,i(DTW
)j,i(DTW

min)j,i(d)j,i(DTW
11

1
1

 (3-24)

where ni ≤≤1 , mj ≤≤1 . Notice that the two time series need not have the same
length. Figure 3.10 shows an example of DTW between two time series.

Time Series Data Mining and Information Retrieval

 60

Fig. 3.10. Dynamic time warping

DTW is known to give better, or even much better, results than the Euclidean distance
in several time series data mining tasks such as classification and clustering. Its
applicability to time series of different lengths is another advantage that it has over the
Euclidean distance. However, its main drawback is that its complexity)(2nO is very
high compared with that of the Euclidean distance)(nO . Another disadvantage that
DTW has compared with the Euclidean distance is that DTW violates the triangle
inequality.

Several techniques have been proposed to index DTW some of which are approximate
while others are exact. We present here some of the exact indexing methods, i.e. they
guarantee no false dismissals.

In [213] a lower bounding measure was introduced. This lower bounding measure can
be illustrated in Figure 3.11. We can see in that the sum of the squared lengths of the
lines of shaded areas can be used as a lower bounding measure because this sum
represents the minimum by which these points contribute to DTW.

Time Series Data Mining and Information Retrieval

 61

0 1 2 3 4 5 6 7 8 9
-1

-0.5

0

0.5

1

1.5

Fig. 3.11. The lower bounding measure presented in [213]

In [99] another lower bounding measure was introduced. This lower bounding
measure is the maximum absolute difference of four values which are: the two first
points of the two sequences , the two last points, the two minimum points, and the two
maximum points (in the case of ∞L , as in the original paper). These values are
illustrated in Figure 3-12. In the case of 2L the lower bounding measure is the sum of
the squared differences of these values.

0 1 2 3 4 5 6 7 8 9
-1

-0.5

0

0.5

1

1.5

a
c

b

d

Fig. 3.12. The lower bounding measure presented in [99]

Time Series Data Mining and Information Retrieval

 62

In [94] a new technique of DTW called KeoghLB _ was proposed. This technique
leans on two methods that constraint the indices of the warping path. These methods
are Sakoe-Chiba Band and Itakura Parallelogram [158], [162]. These methods use a
value r which defines the allowed warping path.

Given a sequence Q , by using r we can define two new sequences: U (upper), and
L (lower) as follows:

()ririi q:qmaxU +−= (3-25)
()ririi q:qminL +−= (3-26)

From (2-25), (2-26) we can easily notice that:

iLqU iii ∀≥≥ (3-27)

Using the above concepts the KeoghLB _ lower bounding between two sequences
Q , C can be defined as:

()
()
()∑

=
⎪
⎪
⎩

⎪⎪
⎨

⎧

<−

>−

=
n

i
iiii

iiii

otherwiseif
LcifLc

UcifUc

C,QKeogh_LB
1

2

2

0
 (3-28)

3.5.3 The Longest Common Subsequence (LCSS)

This distance was proposed mainly to handle noisy data [24], [196]. The LCSS is an
elastic distance which allows the two sequences to stretch in order to match identical
elements between them.

Given two sequences { }ns,...,s,sS 21= , { }mr,...,r,rR 21= , the LCSS between S and
T can be defined as follows:

() () ()()
()() ()()()⎪

⎩

⎪
⎨

⎧
=+=

otherwiseSstRe,RLCSS,R,SstReLCSSmax
rsifRstRe,SstReLCSS

emptyisRorSif
R,SLCSS 111

0

 (3-29)

Time Series Data Mining and Information Retrieval

 63

We can easily see from the above definition that LCSS does not follow the triangle
inequality.

The LCSS can be solved using dynamic programming in)(2nO complexity [52].
Figure 3-13 shows the LCSS between two sequences.

Fig. 3-13. The LCSS between two sequences.

LCSS as presented in (3-29) is mainly used to compare sequences of symbols which
is not suitable in the case of time series with real values. In [195] the above model
was extended to allow more flexible matching. This new measure is defined as
follows:

()
() ()()

()() ()()()⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤−<−

+
=

otherwiseSHead,RLCSS,R,SHeadLCSSmax

nmandrsif

RHead,SHeadLCSS

emptyisRorSif

R,SLCSS

,,

nn

,
,

εδεδ

εδ
εδ δε

1

0

(3-30)

Where () { }121 −= ns,...,s,sSHead , () { }121 −= mr,...,r,rRHead ,δ is an integer and ε is
a real positive number.

Based on (3-30) the authors of [195] propose two similarity function; the first is
denoted by 1d and is defined as follows:

Time Series Data Mining and Information Retrieval

 64

() ()
()n,mmin

R,SLCSS
R,S,,d ,εδεδ =1 (3-31)

The similarity measure defined in (3-31) is used to define another similarity measure

2d ;

Let F be a family of translations that cause vertical up or down shifts. A function Cf
belongs to F if it has the form: () ()ca,....,caSf n,x,xc ++=

11 1 . Based on this family of
translations, the authors of [195] define another similarity measure:

() ()()Rf,S,,dmaxR,S,,d c
Ffc

εδεδ 12
∈

= (3-32)

This similarity measure is more flexible than 1d defined in (3-31).

3.5.4 The Edit Distance with Real Penalty (ERP)

This distance presented in [41] can be seen as a combination of the 1L distance and
the edit distance. It is defined as:

()

() ()() (){
()() ()

()() ()}⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

+

+

+

=−

=−

=
∑

∑

otherwiseg,rdistRstRe,SERP

,g,sdistR,SstReERP

,r,sdistRstRe,SstReERPmin

Mifgr

Nifgs

R,SERP

erp

erp

erp

N

i

M

i

1

1

11

1

1

0

0

(3-33)

Where

()
⎪
⎪
⎩

⎪⎪
⎨

⎧

−

−

−

=

gapaissifgr

gapaistifgs

gapsnotarer,sifrs

t,sdist

ii

ii

iiii

Iierp

Time Series Data Mining and Information Retrieval

 65

and where M , N are the lengths of the time series S , R , respectively, and where
g represents a gap (added symbol) which is assigned a constant value.

The authors of [42] prove that ERP follows the triangle inequality.

3.5.5 The Edit Distance on Real Sequences (EDR)

In order to handle data containing local time shifting and noise, the authors of ERP
presented another distance in [43] which is called Edit Distance on Real Sequences.
This distance can be defined as follows; given two sequences S , R of lengths
M , N , respectively, EDR between S and T can be defined as:

() () ()(){
()()

()() }⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+
+

+

=
=

=

otherwiseRstRe,SEDR
,R,SstReEDR

,tcossubRstRe,SstReEDRmin

MifN
NifM

R,SEDR

1
1

0
0

 (3-34)

where 0=tcossub if () truer,smatch =11 and otherwise,tcossub 1= , and where two
elements ji r,s from T,S , respectively, are said to match if and only if

ε≤− x,jx,i rs and ε≤− y,jy,i rs , where ε is the matching threshold.

3.5.6 Dissimilarity Distance (DISSIM)

This distance was presented in [69] and it calculates the similarity between two
sequences with different sampling rates. DISSIM is defined between two sequences

R,S as the definite integral of the function of time of the Euclidean distance between
the two sequences, i.e.:

() ()∫=
nt

t
R,S dt.tDR,SDISSIM

1

 (3-35)

where ()tD R,S is the function of the Euclidean distance. Because of the discrete nature
of the sequences, the above definition can be written as:

Time Series Data Mining and Information Retrieval

 66

() ()∑ ∫
−

=

+

=
1

1

1n

k

t

t
R,S

k

k

dt.tDR,SDISSIM (3-36)

It is easy to notice that DISSIM as presented in the above relation is too difficult to
calculate. The authors, however, present an approximation to this distance using the
following expression:

() () ()()()()∑
−

=
++ −+≈

1

112
1 n

k
kkkR,SkR,S tt.tDtDR,SDISSIM (3-37)

3.5.7 Similarity Search based on Threshold Queries (TQ)

This method proposed in [12] uses a novel concept called Threshold Queries. Given a
time series (){ }n,...,,i,t,sS ii 21=×∈= TR , and a parameter R∈τ that
represents a threshold then the threshold-crossing time interval of S with respect to
τ is a sequence:

() () { }{ }nm,m,...,,j;u,lSTCT jj ≤=×∈= 21TTτ (3-38)

(l and u stand for lower and upper, respectively) of time intervals, such that :

{ }() () τ>⇔<<∈∃∈∀ tsutl;m,...,,j:t jj21T (3-39)

An interval ()jjj, u,ltct =τ of ()STCTτ is called threshold-crossing time interval.

In simple words, TQ transforms the time series into intervals where all the points
within each interval are greater than the given parameterτ , and each interval is
transformed into a 2-dimensional space, where the start point and the end point of
each interval represent the two dimensions.

The distance between two time intervals is defined as follows: given two time
intervals ()ul t,tt 111 = , ()ul t,tt 222 = , then the distance between these two intervals is
defined as :

() () ()22 212121 uullint ttttt,td −+−= (3-40)

That is to say two intervals are considered similar if they are starting at similar
starting points and ending at similar ending points.

Time Series Data Mining and Information Retrieval

 67

3.5.8 Spatial Assembling Distance (SpADe)

[46] proposed a new warping distance which is able to handle shifting and scaling in
both temporal and amplitude dimensions. The main idea of their work is to use a
sliding window of a fixed size to extract a set of small patterns from time series.
These patterns are called local patterns, so a local pattern of a time series S can be
defined as ()ascltsclshpampposp ,,,,l θθθθθ= , which represent the position of pl in S ,

the mean amplitude of the data in pl , the shape signature, the temporal scale, and the

amplitude scale of pl , respectively, and where ascltscl ,θθ are given a value equal to 1

if S is not scaled. The distance between two local patterns pl in S and '
pl in R is

defined as follows:

() ()'
shpshp

'
ampamp

'
pp ,fl,lD θθθθ −−=1 (3-41)

where f is a weight vector and it is application-specific.

If () ε≤'

pp l,lD1 then we have a local pattern match LPM . The problem of similarity
is thus transformed to finding the most similar set of matching patterns.

3.5.9 Sequence Weighted Alignment (Swale)

The Swale scoring model presented in [142] uses a similarity score that rewards
matches and penalizes mismatches. It also allows the match reward and the gap
penalties to be weighted relatively to one another.

Given two time series S whose length is n and R whose length is m . Let the gap
cost be cgap and the match reward be mreward , then:

() () ()()

()(){
()()}⎪

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

+
+

≤−∀+

=
=

=

otherwiseRstRe,SSwalegap
,R,SstReSwalegapmax

rs,difRstRe,SstReSwalereward

mifgap.n
nifgap.m

R,SSwale

c

c

,d,dm

c

c

ε11

0
0

(3-42)

where d is the dimension.

Time Series Data Mining and Information Retrieval

 68

3.6 Summary

In this chapter we introduced fundamental concepts in data mining in addition to the
principal problems this branch of computer science handles. We mainly focused on
time series, a ubiquitous data type that occurs in many fields of science, medicine as
well as economics. We presented the different versions of the similarity search
problem in time series databases and showed why this problem is difficult to manage.

In the second part we presented the GIMINI algorithm which offers a frame to
process the similarity search in time series information retrieval. This algorithm is
based on lowering the high dimensionality of the time series data and processing the
query in the reduced spaces under certain conditions, to guarantee no false dismissals,
to obtain a candidate response set that is later post-processed to return the final
response set.

Next, we did a survey of the most known dimensionality reduction techniques in time
series information retrieval. We presented a description of the basis of each one, in
addition to its main characteristics and how it approaches the questions of
dimensionality reduction and the no false dismissal property. A comparison between
the different reduction techniques based on the theoretical characteristics of each
representation method was made. We showed how an experimental comparison may
give different results.

In the following part of the chapter we presented different distance measures. We
presented the measures which are widely used in time series information retrieval. We
also presented other measures, like LCSS, which is applied to other data types too.
We described each measure and showed its advantages and disadvantages in addition
to its different variations and the modification that were made to improve it.

In the last part of this chapter we presented the state-of-the-arts distance measures,
described these new distance measures, and showed their advantages.

 69

Chapter 4

Adaptive Sampling and Time Series
Classification

In this short chapter we present our first contribution of this dissertation [122], which
is an experimental study to evaluate the impact of dimensionality reduction on a time
series classification task. This dimensionality reduction is achieved using an adaptive
sampling technique of the time series. The experiments utilize different compression
ratios and different similarity measures and metric distances.

We like to state that the work presented in this chapter is preliminary. We present it
mainly because it is a part of the work we did in this dissertation. But we realize that
it requires further development. Besides, the experiments we conducted concern only
a synthetic dataset, so we do not claim that the results can be extended to other
datasets.

We start by presenting the necessary background in section 4.1. The proposed method
is introduced in section 4.2. Section 4.3 is the experimental section. In section 4.4 we
terminate this chapter with concluding remarks and directions of future work.

4.1 Introduction and Related Work

In the previous chapter we covered some dimensionality reduction techniques in time
series information retrieval. Dimensionality reduction can also be viewed as a data
compression technique. Data compression refers to the process of reducing the size of
a data file. Original representation of data has redundancies and compressing the data
reduces these redundancies [163].

Compression techniques belong to one of two classes [33]: lossless compression, in
which the original data can exactly be reconstructed from the compressed data, and
lossy compression, which allows an approximate reconstruction of the original data.

The performance of compression methods is evaluated using different measures. One
of them is the compression ratio [164] which is defined as:

streaminputtheofsize
streamoutputtheofsizerationCompressio = (4-1)

Adaptive Sampling and Time Series Classification

 70

In the language of time series information retrieval and data mining the above formula
can be expressed as:

spaceoriginaltheofensiondim
spacereducedtheofensiondimrationCompressio = (4-2)

In many applications the amount of available data is enormous that storage,
transmission, and computation display serious challenges that the need for data
compression techniques becomes vital [127]. In sensor networks, for instance, there
are energy and bandwidth limitations, so it is desirable to compress time series to
meet these limitations [41].

In some applications in time series data mining low variability of time series-signal
profiles is a very important property. In these cases it is desirable to find a
compression algorithm that could benefit from the low variability among signal
profiles [62].

Several papers have addressed the problem of time series classification as one of the
main tasks of time series data mining. In [97] the authors presented the Cluster, Then
Classify method. In this method every class is represented and a piecewise linear
representation that includes weights per segment is proposed [140]. The same
representation was used in [72] but the classification rules were induces with decision
trees. In [216] the authors use Hidden Markov Model (HMM) representations to
classify time series. In [144] the authors use neural networks that are trained on
statistical features. The authors of [7] propose a method capable of providing a
classification even when only a part of the time series is available. In this method the
induced classifiers are a linear combination of literals. This combination is obtained
by boosting base classifiers that contain one literal only. In [85] the authors tackle this
problem by assigning a weight to each training instance. This weight is used in the
generalization phase to calculate the distance between a query and that instance. The
approach presented in [204] is based on training the distance metric so that the k-
nearest neighbors always belong to the same class while examples from different
classes are separated by a large margin.

4.2 Adaptive Sampling of Multidimensional Curves

The proposed method is inspired by the Dynamic Programming Piecewise Linear
Approximation (DPPLA) model presented in [123], [121], and derived from [152] and
[102]. The authors propose a data modeling approach to handle adaptive sampling
based on a suboptimal solution that limits the search space of a dynamic programming
solution to the problem of polygonal curve approximation.

Given an n-dimensional time series S , we are looking for an approximation θ̂S to
S so that :

Adaptive Sampling and Time Series Classification

 71

()()θ

θ
θ S,SEArgMin= (4-3)

where E is the root mean square error between S and the model θS . The search of
the family (){ }nSθ is limited to the set of linear piecewise functions, and is also
restricted to the case where the two end points of the segments lie on S . In this case
θ is the set of discrete time locations { }in and the end point of a segment is the start

point of another. The selection of the optimal set of parameters { }in̂ˆ =θ is performed
using dynamic programming as follows:

First, we define the compression ratio of the piecewise approximation as:

{ }
(){ } ρ

ρρ 11 +
×−=

nS
ni (4-4)

where () n,nS ∀∈ nR .

Given a value of ρ and the length of the time window (){ } { }w,...,nnSw 1∈= , the

number { } 1−= inN of piecewise linear segments is known.

Let ()kθ be, by definition, the parameters of a piecewise approximation containing
k segments, let ()i,kδ be the minimal error of the best piecewise linear
approximation containing k segments and covering the time window{ }w,,...,1 , then

()i,kδ can be expressed as:

()
() ()() ()

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= ∑
=

2

1

i

n
k

k
nSnSMini,k θ

θ
δ (4-5)

The above term, according to Bellman optimality principle [16], can be decomposed
as:

() () (){ }kk
ink

n,ki,ndMini,k
k

1
1

−+=
≤≤−

δδ (4-6)

where () ()∑
=

−=
i

nn
i,kk

k

nSnR)i,n(d
2 and () ()() ()k

k

k
ki,k nS

ni
nn.nSiSR +

−
−

−= is the

linear segment between ()iS and ()knS .

Adaptive Sampling and Time Series Classification

 72

The recursion is initialized by observing that:

() ki,k,i,k <∀∀= 0δ (4-7)

At the end of the recursion we get the optimal piecewise linear approximation, i.e. the
set of time locations of the end points of the linear segments:

()
()

()() ()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−= ∑
=

2

1

w

n
k

k
nSnSArgMinkˆ

θ
θ

θ (4-8)

with the minimal error:

() ()() ()
2

1
∑

=

−=
w

n
kˆ nSnSw,k θδ (4-9)

The complexity of this algorithm is ()w.kO . In order to reduce this complexity the
search window can be limited by using a lower bound { }0,bandimaxlb −= for each
step i , and where band is a user-defined parameter:

{ }),1(),(),(kk
inlb

nkindMinik
k

−+=
≤≤

δδ (4-10)

In practice we choose k/w.band 2= .

4.3 The Experiments

4.3.1 The Dataset

The dataset on which we conducted the experiments is called “cylinder-bell-funnel”.
This dataset widely-used in the time series data mining community was originally
introduced by [165] and further worked on by [120] and later by [94]. The learning
task is to distinguish between three classes: cylinder (c), bell (b), and funnel (f).
Figure 4.1 shows examples of the three classes.

Adaptive Sampling and Time Series Classification

 73

0 20 40 60 80 100 120
-2

-1

0

1

2

cylinder

0 20 40 60 80 100 120
-2

-1

0

1

2

3

bell

0 20 40 60 80 100 120
-2

-1

0

1

2

3

funnel

Fig. 4.1. Examples of the three classes of dataset “cylinder-bell-funnel”

The three classes are generated using the following functions:

Adaptive Sampling and Time Series Classification

 74

() () []() ()

() () []() ()

() () []() ()t
ab
tb.t.tf

t
ab
at.t.tb

tt.tc

b,a

b,a

b,a

εχη

εχη

εχη

+
−
−

+=

+
−
−

+=

++=

6

6

6

 (4-11)

where :

[]

btaif

btatif
 b,a

⎩
⎨
⎧

≤≤
>∨<

=
1
0

χ

and where η and ()tε are drawn from a standard normal distribution ()10,N , a is an
integer drawn from a uniform distribution in the interval []3216, and ab − is another
integer drawn from another uniform distribution in the interval []9632, . In Figure 4.2
we see another example of the three classes of this dataset with their corresponding
approximations obtained by adaptive sampling.

0 50 100 150
−5

0

5

10

0 50 100 150
−5

0

5

10

0 50 100 150
−5

0

5

10

Fig. 4.2. Examples of the three classes of dataset “cylinder-bell-funnel” together with their
corresponding approximation with an 87% compression ratio

Adaptive Sampling and Time Series Classification

 75

4.3.2 The Experimental Protocol

20 time series of 9 shapes are generated. For each series 3 shapes belong to class (c) ,
3 belong to class (b) , and 3 belong to class (f). We tested our method in a
classification task based on the first near-neighbor rule using leaving-one-out cross
validation. This means that every curve is compared to the other 8. If the 1-NN does
not belong to the same class, the error counter is incremented by 1.

For each of the tested methods, the mean and the standard deviation on all the 20 time
series are computed.

4.3.3 The Results

Table 4.1 shows a comparison of the three methods: adaptive sampling, piecewise
linear approximation (PLA) and discrete Fourier transform (DFT). In the case of PLA
the Euclidean distance (ED-PLA), in addition to dynamic time warping (DTW-PLA),
are used.

The results show that DTW is particularly adapted to the classification task in
question. A gain of 57% compared with ED is obtained , and 35% compared with
DFT .We see from the table that using adaptive sampling associated with DTW
(DTW-PLA) only slightly degrades the performance of the original data with DTW .

We also notice that for a compression ratio of 25% or less, the results are comparable.
For compression ratios of the order of 75%, the loss is only of the order of 5% on
average. We also see from the table that the performance does not degrade
substantially except for compression ratios of the order of 90%. The compression
method using DFT seems to be less sensitive to the compression ratio and yields error
rates that vary between 30% and 45%. When the latter is associated with adaptive
sampling, the performance degrades.

Adaptive Sampling and Time Series Classification

 76

Table 4.1. Comparison of the mean error rate and the standard deviation of PLA-DTW, PLA-
ED, and DFT

The Method The Mean
Error Rate

Standard
Deviation

DTW ρ = 0% 0.0056 0.0248
DTW-PLA ρ = 5% 0.0056 0.0248
DTW-PLA ρ = 10% 0.017 0.041
DTW-PLA ρ = 25% 0.00 0.00
DTW-PLA ρ = 50% 0.028 0.049
DTW-PLA ρ = 75% 0.05 0.092
DTW-PLA ρ = 90% 0.328 0.175
ED ρ = 0% 0.578 0.133
ED-PLA ρ = 5% 0.161 0.132
ED-PLA ρ = 10% 0.228 0.117
ED-PLA ρ = 25% 0.156 0.115
ED-PLA ρ = 50% 0.205 0.166
ED-PLA ρ = 75% 0.333 0.184
ED-PLA ρ = 90% 0.583 0.213
DFT ρ = 0% 0.311 0.152
DFT ρ = 5% 0.372 0.158
DFT ρ = 10% 0.433 0.129
DFT ρ = 25% 0.406 0.181
DFT ρ = 50% 0.317 0.174
DFT ρ = 75% 0.322 0.200
DFT ρ = 90% 0.300 0.191
DFT-PLA ρ = 5% 0.478 0.188
DFT-PLA ρ = 10% 0.422 0.164
DFT-PLA ρ = 25% 0.450 0.175
DFT-PLA ρ = 50% 0.511 0.174
DFT-PLA ρ = 75% 0.533 0.203
DFT-PLA ρ = 90% 0.638 0.210

4.4 Conclusion

In this chapter we presented the first contribution of this dissertation, which is an
experimental study of using adaptive sampling as a method of dimensionality
reduction in a time series classification task. The results of the experiments we
presented in this chapter on this synthetic dataset show that even when using high
compression ratios, the performance of the adaptive sampling method is still
acceptable in a classification task. These results are obtained when DTW is used as a
similarity measure. The results also show that for a low compression ratio, the

Adaptive Sampling and Time Series Classification

 77

performance seems to be better than classifying the raw data with DTW. We think
the reason for this is that adaptive sampling has a smoothing effect.

When comparing this method with DFT the proposed method shows an improvement
in performance of 15%-20%.

However, as indicated in the introduction, this study is preliminary and it requires
further investigation. Besides, the results were obtained using one dataset so they can
not be generalized to other datasets.

4.5 What Next?

We think that the most important improvement that we can investigate is to restrict
the sampling so that some points of the sample will be in the neighbored of some
important points in the original time series. This approach can be viewed as
combining our method with landmark methods.

The proposed method can also be combined with the concept of multi-resolution we
are going to present in Chapter 6. The idea is to have several classifications that are
related to different compression ratios of adaptive sampling in order to avoid the
problem of over-fitting on the training set. In other words, we can use different
compression ratios that correspond to “coarser” through “finer” classifications, and
later a validation set chooses the best compression ratio for the classification task.

 78

Chapter 5

Symbolic Methods in Time Series
Information Retrieval

In this chapter we introduce our contributions in two principal directions: the first is
our work on improving the edit distance which we presented in [129], [133], [134],
[135], and [137]. We also present the results of another paper that was accepted, but
we decided not to publish it (see the introduction of this dissertation) about the
PFEED distance presented in Section 5.4.

The basis of these improvements is to give the edit distance the ability to explore
global similarity in addition to local one. Extensive experiments are also presented to
show the advantages of our improved versions of the edit distance, and to investigate
how these improvements can be developed to handle other problems in time series
data mining.

The second principal direction of this chapter is a new minimum distance on which
SAX, one of the most effective symbolic methods, is based, which is the work we
presented in [128]. We show the results of our experiments that illustrate how this
new minimum distance enhances the performance of SAX. We start this chapter by
presenting in Section 5.1 some time series symbolic representation methods focusing
on SAX. In Section 5.2 we present EED our first extension of the edit distance. The
second extension MREED is presented in Section 5.3. The general model of
extension ΣGRAM is presented in Section 5.4. PFEED, a non-parametric extension of
the edit distance is presented in Section 5.5. Section 5.6 is the second part of this
chapter where we introduce UMD, a new minimum distance for SAX. Section 5.7 is
the concluding section and in Sections 5.8 we present some directions of future work.

We have to mention that presenting the results of our experiments in this chapter was
a bit problematic. In the papers we published we compared the results of different
methods by comparing the mean and the standard deviation of the compared methods
over all the data sets. We also added another comparison criterion which is the
number of times a particular method outperformed another one. However, later we
were wondering if this is the correct way to present the results. On the one hand,
taking the mean and the standard deviation on all the datasets, whose nature is
different, did not seem statistically correct. On the other hand, counting the number of
times one method outperformed another oversimplifies the comparison. Because if a
method A outperforms another method B by hardly 0.1 % on one dataset, while
method B outperforms B by almost 20 % on another dataset, we can not say that the
two methods have the same performance.

Symbolic Methods in Time Series Information Retrieval

 79

The way this comparison is made in most papers is by showing, mainly graphically,
the comparison results of few datasets, but this was not practical in our case because
we conducted extensive experiments that tables were the only proper way to show the
results.

So we finally decided to just highlight the best result for each dataset and let the
reader conclude which method is best according to how many datasets a certain
method outperformed another but also by how much it outperformed it.

5.1 Introduction to Symbolic Representation

Among dimensionality reduction techniques that we presented in Chapter 3, symbolic
representation of time series has several advantages which interested researchers in
this field of computer science for long, because symbolic representation permits
benefiting from the ample symbolic algorithms known in the text-retrieval and
bioinformatics communities.

5.1.1 Symbolic Representation Scheme

Symbolic representation of time series uses an alphabet ∑ (usually finite) to reduce
the dimensionality of the time series. This can be defined formally as follows: given a
time series () () (){ }nn s,t,...,s,t,s,tS 2211= , the symbolic representation scheme is a
map:

[] ji;t,t kk

f

ji <∑∈ααa (5-1)

Numeric time series can be converted into symbols through a process called
discretization or symbolization. This discretization greatly increases the efficiency of
numerical computations compared with what it would be with the original raw data
[54].

We personally think that discretization is an intrinsic part of time series data because
the phenomenon in question is usually continuous, but we measure it at discrete time
stamps (regular or irregular), which is in fact a form of quantization or discretization.

Transforming raw data into symbols can be achieved using different techniques. The
TREND method [25], for instance, integrates signal processing and natural language
description to automatically generate textual description of time series data. The basis
of TREND is to use wavelets and space scale theory to detect trends in the time series.
These trends can be short-term or long-term trends.

Symbolic Methods in Time Series Information Retrieval

 80

The idea of using language based description of the time series was also exploited in
[178]. The method presented in that paper consists of three steps:

1- Selecting the important trends and patterns that need to be communicated.
2- Mapping these patterns and trends onto words and phrases.
3- Generating actual texts which are based on these words and phrases.

In [9] the authors use an alphabet which they call The Shape Description Alphabet
(SDA) to encode the shape of the time series. However, this method is similar to the
language based methods in that the characters actually describe trends in the time
series.

In [82] the authors present a method called Interactive Matching of Patterns with
Advanced Constraints in Time-Series databases (IMPACTS). This method uses a
string based approach to discretize the time series. The string is built by using change
ratios between two consecutive time points. Next, the resulting string can be indexed
using a suffix tree which indexes all the strings in the database.

The authors of [53] propose a rule-discovery based technique to symbolize the time
series. The basis of their technique is to cluster related patterns in the sliding window
and to assign a symbol to that cluster. Their focus is on local patterns rather than
global ones.

Clustering was also exploited by [77], [78] to find the shapes that occur frequently.
Their work focuses on compressing long time series into symbols. The resulting
symbolic representation is then used for visualization, manual edition, and mining for
sequential patterns.

In general, most of these symbolic representations methods suffered from two main
inconveniences [112]: the first is that the dimensionality of the symbolic
representation method is the same as that of the original space, so there is no virtual
dimensionality reduction. The second drawback is that although distance measures
have been defined on the reduced symbolic spaces, these distance measures are poorly
correlated with the original distance measures defined on the original spaces.

There are several distance measures that apply to symbolic data. In the beginning
these measures were restricted to data types whose representation is naturally
symbolic (DNA and proteins sequences, textual data, etc). But later these symbolic
measures were also applied to other data types that can be transformed into strings by
using symbolic representation techniques.

Of all the symbolic representation methods in the times series data mining literature,
the Symbolic Aggregate approXimation method (SAX) [111] stands out as probably
the most powerful symbolic representation method. The main advantage of SAX is
that the similarity measure it uses, called MINDIST, uses statistical lookup tables,
which makes it is easy to compute with an overall complexity of ()NO .

Symbolic Methods in Time Series Information Retrieval

 81

Due to its importance, SAX will be described in detail in the following section.

5.1.2 Symbolic Aggregate Approximation (SAX)

The main characteristic of SAX is that it is similar in structure to the other
representation methods we presented in Chapter 3. This means it permits
dimensionality reduction and it also presents a similarity measure which lower bounds
the original distance in the original space.

SAX is based on the fact that normalized time series have highly Gaussian
distribution [108], so by determining the breakpoints that correspond to the alphabet
size, one can obtain equal sized areas under the Gaussian curve.

SAX is applied as follows:

1- The time series are normalized.

2- The dimensionality of the time series is reduced by using PAA.

3- The PAA representation of the time series is discretized. This is achieved by

determining the number and location of the breakpoints. The number of
breakpoints is related to the desired alphabet size (which is chosen by the
user), i.e. alphabet_size=number_of_breakpoints+1. Their locations are
determined by statistical lookup tables so that these breakpoints produce
equal-sized areas under the Gaussian curve.

The interval between two successive breakpoints is assigned to a symbol of the
alphabet, and each segment of the PAA that lies within that interval is discretized by
that symbol. The last step of SAX is using the following similarity measure:

() ()()∑
=

≡
N

i
ii r̂,ŝdist

N
nR̂,ŜMINDIST

1

2
 (5-2)

Where n is the length of the original time series, N is the length of the strings (the
number of the frames), Ŝ and R̂ are the symbolic representations of the two time
series S and R , respectively, and where the function)(dist is implemented by using
the appropriate lookup table.

Notice that MINDIST is a similarity measure and not a distance metric since it
violates two conditions of distance metrics which are the identity condition, and the
triangle inequality condition, and it respects only one condition which is the
symmetry condition.

Symbolic Methods in Time Series Information Retrieval

 82

(a) The original time series

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Converting the time series to PAA

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) Choosing the breakpoints

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) Discretizing the PAA

0 50 100 150 200 250
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

d
d d

c

b

a a a

dddcbaaa

Fig. 5.1. The different steps of SAX

Symbolic Methods in Time Series Information Retrieval

 83

It can easily be proven that MINDIST is a lower bounding of the Euclidean distance,
because it is a lower bounding of the similarity measure used in PAA. This guarantees
no false dismissals. Figure 5.1 illustrates the different steps of SAX. In this example
the time series is transformed from a 256-dimension space, into an 8-dimension space.
The alphabet size is 4.

SAX paved the way for other papers in time series data mining, time series
information retrieval, and other related fields in computer science. In [96] the authors
presented HOT SAX, which is an algorithm of finding time series discords;
subsequences of a longer time series that are maximally different to all the rest of the
time series subsequences. These discords have many applications in time series data
mining.

In [203] the problem of discords was further extended to handle images. The
algorithm presented in that paper finds shape discords, which are the most unusual
shapes in a collection of data. The algorithm uses locality-sensitive hashing to
estimate similarity between pairs of shapes and then generates heuristics to reorder the
search more efficiently

Another extension of SAX called the indexable Symbolic Aggregate approXimation
(iSAX) was presented in [173] and [174]. The main objective of this method is to
index massive datasets. The basis of iSAX is to modify SAX to allow extensible
hashing. This modification permits indexing time series with zero overlap at leaf
nodes which makes iSAX very fast.

The most recent extension that we know of is iSAX 2.0 [32] which is a data structure
designed to index even larger collections of time series. The authors conduct
experiments using one billion time series, which, according to the authors, is the
largest dataset ever experimented on multimedia objects.

However, the version of SAX that we presented earlier, which is called classic SAX
by the authors of all these extensions, is the most widely known one.

5.2 The Extended Edit Distance (EED)

5.2.1 Introduction

Strings, also called sequences or words, are a way of representing data. This data type
exists in many fields of computer science such as molecular biology, where DNA
(deoxyribonucleic acid) sequences are represented using four nucleotides which
correspond to the four bases: adenine (A), cytosine (C), guanine (G) and thymine (T).
This can be expressed as a 4-symbol alphabet. The RNA (ribonucleic acid) can also
be expressed using a 4-symbol alphabet which corresponds to adenine (A), cytosine

Symbolic Methods in Time Series Information Retrieval

 84

(C), guanine (G) or uracil (U). Protein sequences, on the other hand, can be
represented using a 20-symbol alphabet which corresponds to the 20 amino acids.

Written languages are also expressed in terms of alphabets with letters (26 in
English). Spoken languages are represented using phonemes (40 in English). Texts
use alphabets with a very large size (the vocabulary items of a language). Images can
be expressed using an alphabet of three basic colors { }b,g,r . So we see from these
examples that strings are ubiquitous.

As defined in Chapter 2, the edit distance (ED) is the minimum number of delete,
insert, and substitute operations needed to transform string S into string T . This
distance is the main distance measure used to compare two strings. The edit distance
uses three atomic operations: insert, delete, and change. Figure 5.2 shows the edit
distance between the two strings { }Y,E,H,D,GS =1 and { }G,Y,Q,H,SS =2

Fig. 5.2. The edit distance between two strings.

The edit distance has a main drawback: it penalizes all change operations in the same
way without taking into account the character that is used in the change operation.
This drawback is due to the fact that the edit distance is a measure of local similarities
in which matches between substrings are highly dependent on their positions in the
strings [106]. In fact, the edit distance is based on local procedures both in the way it
is defined and also in the algorithms used to compute it. This raises questions on the
accuracy of the similarities obtained by applying this distance. We will give the
following example to show this idea.

 G D H E Y

 0 1 2 3 4 5

S 1 1 2 3 4 5

H 2 2 2 2 3 4

Q 3 3 3 3 3 4

Y 4 4 4 4 4 3

G 5 4 5 5 5 4

Symbolic Methods in Time Series Information Retrieval

 85

Example 5.1

The edit distance was presented mainly to apply to spelling errors. But because of the
conventional keyboard arrangement, the probability that an “A” be mistyped as “Z” is
not the same as mistyping “A” as “P”, for instance (on an English keyboard), but yet,
the edit distance does not take these different possibilities into consideration.

One of the ways that can be considered to deal with this problem is to use a
predefined table that shows the cost of change between any two characters of that
alphabet. This method, although worth considering, has a few cons; first, it is specific
to each alphabet. Second, the number of change costs to be defined beforehand (this
number is nC 2 , where n is the size of the alphabet) can be somehow large. Third, if
we try to use multi-resolution techniques on the symbolic representation, we will have
to define a table for each resolution. Another serious problem arises in this latter case
which is the fact that merging two characters in text processing is not intuitional. So
there is no clear way on how the “new” characters (those of a different resolution) can
be related to the old ones. □

In this section, we present a new distance metric for symbolically represented data.
The proposed metric, which we call the Extended Edit Distance (EED), adds a global
feature of similarity to the ordinary edit distance. This feature enables our proposed
distance metric to deal with the atomic edit operations more naturally because there is
no need to predefine a cost function for the different operations and the algorithm
assigns costs online based on the characters of the two compared strings. This
proposed distance can by itself detect if the atomic edit operations are applied to
characters that are “familiar” or “unfamiliar” to the two strings concerned.

Before we introduce our distance we start by giving this definition which is necessary
to understand the new distance.

Definition-The Number of Distinct Characters (NDC): Given two strings S ,T .
The number of distinct characters NDC is defined as:

)}({)}({),(TchSchTSNDC ∪= (5-3)

 where)(ch is the set of characters that a string contains.

5.2.2 Motivation

The following example shows the limitation of the edit distance.

Symbolic Methods in Time Series Information Retrieval

 86

Example 5.2

Given the string:

marwanS =1

By performing two change operations on 1S in the first and fifth positions we obtain
the string:

aarwinS =2

By calculating their edit distance we get:

221 =)S,S(ED

If we calculate their NDC we get:

6),(21 =SSNC
Now if we change the same positions in 1S with different characters we obtain, for
instance, the string:

barwenS =3

By calculating the edit distance between 1S and 3S we obtain:

2),(31 =SSED (which is the same as),(21 SSED)

Now, if we calculate their NDC we get:

() 731 =S,SNC

This means that one change operation used a character that is more “familiar” to the
two strings in the first case than in the second case, in other words, 2S is closer to 1S
than 3S . However, the edit distance was not able to recognize this, since the edit
distance was the same in both cases.

We will see later that this concept of “familiarity” can be extended to consider not
only NDC but the frequency of subsequences too.

5.2.3 Definition-The Extended Edit Distance (EED)

Let Σ be a finite alphabet, and let
*Σ be the set of strings on Σ . Let)S(

af be the

frequency of the character a in S , and)T(
af be the frequency of the character a in T ,

Symbolic Methods in Time Series Information Retrieval

 87

where S , T are two strings in
*Σ . The Extended Edit Distance (EED) is defined

as:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++= ∑

Σ∈

)f,f(minTS)T,S(ED)T,S(EED)T(
a

)S(
a

a

2λ (5-4)

Where S , T are the lengths of the two strings TS, respectively, and where

0≥λ (R∈λ). We call λ the frequency factor.

Notice that when),(),(0 TSEDTSEED =⇒=λ , and this is the minimum value for
EED, so ED is actually a lower bound of EED.

5.2.4 Theorem 1

 EED is a metric distance □

Before we prove the theorem we present the following lemma.

Lemma 1

*R,T,S Σ∈∀ , { }0∪∈ +Rλ We have:

() ()()

() ()() () ()()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

≤
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

∑∑

∑

T
i

R
i

i

R
i

S
i

i

T
i

S
i

i

f,fminTRf,fminRS

f,fminTS

22

2

λλ

λ

 (5-5)

The proof of this lemma is presented in the Appendix. Another alternative proof can
be obtained as a special case of the proof of Theorem 3 presented later in this chapter
in Section 5.4.2.

Proof of Theorem 1

(p1) () ()S,TEEDT,SEED = (this is obvious).

Symbolic Methods in Time Series Information Retrieval

 88

(p2) Since for all S in
*Σ we have ∑

Σ∈

=
a

)S(
afS we can easily verify that:

() ()() *T
a

S
a

a

T,Sf,fminTS Σ∈∀≥
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+ ∑

Σ∈

02λ (5-6)

Let us prove first that TS)T,S(EED =⇒= 0 :

If 0),(=TSEED , and taking into account (5-6), we get the two following
relations:

() ()() 02 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+ ∑

Σ∈

T
a

S
a

a

f,fminTSλ (5-7)

0),(=TSED (5-8)

From (5-8), and since ED is metric we get: TS = .

The backward implication 0),(=⇒= TSEEDTS is obvious.

(p3)),(),(),(TREEDRSEEDTSEED +≤

RTS ,,∀ in *Σ . Since ED is metric we can write:

),(),(),(TREDRSEDTSED +≤ (5-9)

Taking Lemma 1 and relation (5-9) into account we get :

),(),(),(TREEDRSEEDTSEED +≤

From (p1), (p2), and (p3) we conclude that EED is a metric.

Example 5.3 (Revisiting Example 5.2)

Calculating EED we see that:

4),(21 =SSEED , 6),(31 =SSEED

Symbolic Methods in Time Series Information Retrieval

 89

Which is what we expected because, according to the concept of similarity we
presented earlier, 2S is more similar to 1S than 3S .

Example 5.4

Given; marwanS =1 , aarwinS =2 (The same 1S , 2S as in Example 5.2). 3S is
obtained by changing 1S in the same positions, but with different characters:

rarwenS =3

In this example we have a particular case where ;

63121 ==)S,S(NDC)S,S(NDC
But we still have

4),(21 =SSEED , 6),(31 =SSEED

Which means that our proposed distance kept considering 2S closer to 1S than 3S is,
and this is what we expect since

(){ } (){ } 221 =∩ SchSch aa , (){ } (){ } 131 =∩ SchSch aa

So it is intuitive to consider 2S closer to 1S than 3S is.

(For all the other characters we have:

(){ } (){ } 121 =∩ SchSch xx , (){ } (){ } 131 =∩ SchSch xx)

Example 5.5

We will give another example that will help show the properties of our EED. Let:

narwanS =1 , aarwnnS =2 , aarwxnS =3 , xarwnnS =4 , xarwxnS =5

The ED between 1S and each of the other four strings is the same (which is 2).
However, we will show that EED is not the same, and that it differs according to how
much any two strings differ.

i- 2),(21 =SSEED , which is the same as their ED. The two strings 21, SS have the
same length, the same characters, and the same frequency for each character (in fact,
one string results from the other by rearranging it). These two strings have the highest

Symbolic Methods in Time Series Information Retrieval

 90

familiarity of all the other pairs (1S and one of 543 S,S,S) so their ED is the same as
their EED.

ii- 44131 ==)S,S(EED)S,S(EED , each of 43, SS results from 2S by replacing one
of the characters in 2S by another character x (in position 5 for 3S and position 1 for

4S) . x is a character that does not exist in 1S , so adding this “unfamiliar” character
makes each of these strings less similar to 1S than 2S is. We also see from this case
that the position at which this unfamiliar character was changed did not affect EED.

iii- If we continue this process and change the characters in position 4 in 4S or in
position 1 in 3S with that same unfamiliar character x (in both cases we obtain 5S).
In both of these cases we substitute a familiar character (a in the first case and n in
the second case) with an unfamiliar character x , so there is loss of similarity
compared with 3S and 4S .

By calculating EED we see that:

() 651 =S,SEED

which is what we expected.

We see that EED was not the same in the above cases, while the ED was always the
same.

Example 5.6

This example concerns strings of different lengths. Let:

abcaS =1 , aabbccS =2 , adbecfS =3

We see that:

3),(),(3121 == SSEDSSED

However, by calculating their EED we find out that:

5),(21 =SSEED , 7),(31 =SSEED

Which is intuitive.

Symbolic Methods in Time Series Information Retrieval

 91

5.2.5 Complexity Analysis

The time complexity of EED is)(nmO × , where m is the length of the first string

and n is the length of the second one, or)(2nO if the two strings are of the same
lengths. This complexity is the same as that of the edit distance.

In order to make EED scale well when applied to time series, we can find a symbolic
representation method that can allow high compression of the time series (leading to
drastic length reduction), with acceptable accuracy. However, our main objective was
not to apply EED to time series data, but to different types of symbolic data.

5.2.6 Experimental Validation

We conducted several experiments of times series classification task. As mentioned
earlier, this new distance metric is applied to data types which are represented
symbolically, whether naturally or by using a certain technique of symbolic
representation. We believe that bioinformatics or textual data are the ideal domains to
apply EED to. However, and because our field of research is time series, we had to
test EED on time series data.

We tested our distance in a classification task based on the first near-neighbor rule (1-
NN) on the datasets available at [190]. We used leaving-one-out cross validation.

The First Experiment

The aim of this experiment is to make a direct comparison between ED,EED and
SAX. We chose SAX because it is one of the most competitive dimensionality
reduction techniques, but also because it is a symbolic method.

We have to mention that the datasets used in all the experiments on SAX in this
dissertation were normalized because SAX can only be applied to normalized time
series.

In our experiments SAX was applied as follows: the time series were represented by
SAX in the manner described in Section 5.1.2. We proceeded in the same way for
steps 1 and 2 to get a symbolic representation of the time series, then in step 3 we
compared EED, with ED and with the distance measure defined in SAX, on the
resulting strings.

For this experiment, we used the same compression ratio that was used to test SAX
(i.e. 1 to 4). We also used the same range of alphabet size (3:10).

For each dataset we tune the parameters on the training set to get the optimal values of
these parameters; i.e. the values that minimize the error. Then we use these optimal

Symbolic Methods in Time Series Information Retrieval

 92

values on the testing set to get the error rate for each method and for each dataset. As
for parameter λ , for simplicity, and in all the experiments we conducted, we
optimized it in the interval [0, 1] only (step=0.25), except in the cases where there was
strong evidence that the error was decreasing monotonously as λ increased.

For this experiment, we chose, at random, 4 datasets from the 20 datasets of [190].
The chosen datasets were (CBF), (Trace), (Two_Patterns), (Yoga). After optimizing
the parameters on the training sets, we used these parameters on the testing sets of
these datasets. We got the results shown in Table. 5.1 (The best results are boldfaced
and shaded)

Table 5.1. The error rate of ED, EED, SAX on the testing sets of (CBF), (Trace), (Two
Patterns), and (Yoga). The parameters used in the calculations are those that give optimal
results on the training sets, the alphabet size was chosen from the interval (3:10).The
compression ratio is 1 to 4

 The Edit Distance
(ED)

The Extended Edit
Distance (EED) SAX

CBF 0.029
α* =10

0.026
α =3, λ =0.75

0.104
α =10

Trace 0.11
α =10

0.07
α =6, λ ≥ 1.25

0.42
α =10

Two_Patterns 0.015
α =3

0.015
α =3, λ =0

0.081
α =10

Yoga 0.155
α =7

0.155
α =7, λ =0

0.199
α =10

 (*: α is the alphabet size)

The results show that EED was always better, or equal, to the other methods.

The Second Experiment

This experiment is an extension of the first experiment; we did not compare our new
distance with ED and SAX only, but we also compared it with other distances that
are applied to non-compressed time series. We chose the two most famous distances:
DTW and the Euclidean distance. We chose randomly 4 datasets of the remaining
datasets in [190]. These were (Gun_Point), (OSU Leaf), (50words), and (Fish). We
used the same compression ratio and the same range of alphabet size that we used the
first experiment. We proceeded in the same way. The results that we obtained are
shown in Table 5.2.

Symbolic Methods in Time Series Information Retrieval

 93

Table 5.2. The error rate of ED, EED, SAX, DTW together with the Euclidean distance on the
testing sets of (Gun_Point), (OSU Leaf), (50words), and (Fish). The alphabet size was chosen
from the interval (3:10). The compression ratio is 1 to 4

 Euclidean
Distance DTW ED EED SAX

Gun-Point

0.087 0.093

0.073
α =4

0.06
α =4, λ =0.25

0.233
α =10

OSULeaf 0.483 0.409

0.318
α =5

0.293
α =5, λ =0.75

0.475
α =9

50words 0.369 0.310

0.266
α =7

0.266
α =7, λ =0

0.327
α =9

Fish 0.217 0.267

0.149
α =10

0.149
α =10, λ =0

0.514
α =10

The results of this experiment show that EED is superior to the other distances.

The Third Experiment

This experiment aims for studying the impact of using a wider range of alphabet size:
(3:20). We proceed in the same way we did before; we randomly chose 6 datasets of
the remaining datasets. The 6 chosen datasets were (Coffee), (Beef), (Adiac),
(ECG200), (Wafer), and (Face all). The compression ratio is the same as before (1 to
4). EED was compared with ED and SAX. The final results on the testing sets are
shown in Table 5.3.

Table 5.3. The error rate of ED, EED, SAX on the testing sets of (Coffee), (Beef), (Adiac),
(ECG200), (Wafer), and (Face all). The alphabet size was chosen from the interval (3:20).The
compression ratio is (1 to 4)

 The Edit Distance
(ED)

The Extended Edit
Distance (EED) SAX

Coffee 0.071
α =12,13

0.0
α =14, λ =0.25

0.143
α =20

Beef 0.467
α =17

0.4
α =4, λ= 0.75

0.433
α =20

Adiac 0.555
α =18

0.524
α =19, λ =1

0.867
α =18

ECG200 0.23
α =13

0.19
α =5, λ =0.25

0.13
α =16

Wafer 0.008
α =4

0.008
α =4, λ =0

0.004
α =19

Face (all) 0.324
α =7

0.324
α =7, λ =0

0.305
α =19

The results of this experiment show that EED is the best one.

Symbolic Methods in Time Series Information Retrieval

 94

The Fourth Experiment

This experiment is designated to study the impact of using a different compression
ratio. This means that in this case we proceeded in the same way as in step 1 in
Section 5.2.1, but later we used a different PAA representation than the one we used
in the previous experiments. We conducted this experiment on the rest of the datasets
in [190].The compression ratio of this experiment is (1 to 5). The alphabet range is
(3:10). After proceeding in the same way that we used for the other experiments we got the
results shown in Table 5.4

Table 5.4. The error rate of ED, EED, SAX on the testing sets of (Lighting2), (Lighting7),
(Synthetic Control), (Face four),(Trace), and (Olive Oil) the alphabet size was chosen from the
interval (3:10).The compression ratio is (1 to 5)

 The Edit Distance
(ED)

The Extended Edit
Distance (EED)

SAX

Lighting2 0.311
α =5

0.311
α =5, λ =0,0.75

0.377
α =3

Lighting7 0.247
α =5

0.247
α =5, λ= 0

0.479
α =7

Trace 0.11
α =10

0.09
α =8, λ =0.75

0.36
α =10

Synthetic Control 0.077
α =8

0.05
α =6, λ =0.25

0.03
α =10

Face (four) 0.045
α =5,6

0.045
α =5,6, λ =0

0.182
α =9

Olive Oil 0.267
α =7

0.267
α =7, λ =0,...,1

0.833
α∀

The results obtained show that EED is the best one.

Remark :

When evaluating the performance of two methods, the classification error should not be
considered independently of the number of classes. For instance, the classification error of SAX
on both Adiac (0.867, 37 classes, Table 5.3) and OliveOil (0.833, 4 classes, Table 5.3) is almost
the same. However, the performance of the method on Adiac is actually better than that on
OliveOil because with the first data set the error of using a random classifier is 36/37=0.973, so
the method did outperform a random classifier, while in the case of OliveOil the error of using
a random classifier is 3/4 =0.750, which is lower than the error of applying the method.

Symbolic Methods in Time Series Information Retrieval

 95

5.2.7 Other Applications

As mentioned earlier, when we thought of EED we wanted to propose a distance that
could be applied to data types that are naturally symbolic, or represented symbolically
by a representation technique, but we could not test our distance on any type of data
other than symbolically represented time series because this is our field of research.
But after publishing our work, a new work was published [14] in which the author
applied our proposed distance metric EED to evaluate the performance of range
queries in the Recursive Lists of Clusters (RLC) metric data structure, when the metric
spaces are natural language dictionaries on which EED is defined. Her experiments
show that RLC has a good performance in all the tested cases when using EED as a
similarity distance.

5.2.8 Discussion

In this section we presented a new distance metric applied to strings. The main feature
of this distance is that it considers the frequency of characters, which is something
other distance measures do not consider. Another important feature of this distance is
that it is metric. We tested this new distance on a time series classification task, and
we compared it to other distances. We showed that our distance gave better results in
most cases.

We think that the main drawback of this distance is that it uses the parameter λ ,
which is heuristic and it also increases the training phase.

In the experiments we conducted we had to use time series of equal lengths for
comparison reasons only, since SAX can be applied only to strings of equal lengths.
But EED (and ED, too) can be applied to strings of different lengths.

Although there are other similarity measures and distance metrics that are derived
from the edit distance and which are applied to time series data mining and
information retrieval, we did not compare our method with any of them because we
view EED as a distance that can be applied to different symbolic data types, while
those distances and similarity measures were developed only for the field of time
series data mining and information retrieval.

We did not conduct experiments for alphabet size=2 because SAX is not applicable in
this case (when alphabet size =2 then the distance between any two strings will be
zero with SAX, and for any dataset). However, it is important to mention that
comparing EED or ED, with SAX was only used as an indicator of performance. In
fact, SAX is faster than any of EED or ED, even though the error it produces is
greater, or even much greater, in most cases than that of EED or ED.

Symbolic Methods in Time Series Information Retrieval

 96

In order to represent the time series symbolically, we had to use a technique prepared
for SAX for comparison purposes. Nevertheless, a representation technique prepared
specifically for EED may even give better results.

The main property of EED over ED is that it is more precise, since it considers a
global level of similarity that ED does not consider.

In order to interpret the results correctly, we have to remember that the comparison
was based on a time series classification task. However, we did not develop EED, or
the other extensions of the edit distance, for this purpose, so we think the performance
of our extensions would be better on other time series data mining tasks.

5.3 The Multi-resolution Extended Edit Distance
 (MREED)

Distance metrics and similarity measures that we know of compare two strings on a
symbol-to-symbol basis, which reduces the number of possible applications of the
symbolic representation. In this section we move one step forward by comparing
subsequences. In this case, we propose a modification of the edit distance which
considers the frequencies of substrings as well as the frequencies of single characters.

5.3.1 Definition-MREED

Let Σ be a finite alphabet, and let *Σ be the set of strings on Σ , and let
)S(

if ,)T(
if be the frequency of the character i in S and T , respectively.)S(

ijff ,
)T(

ijff be the frequency of the two-character subsequence ij in S and T , respectively

(including the case where ji =) , and where S ,T are two non-empty strings on ∑ .

The Multi-Resolution Extended Edit Distance (MREED) is defined as:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−++=

∑∑

∑

))ff,ff(min(TS

)f,f(minTS)T,S(ED)T,S(MREED

)T(
ij

)S(
ij

i j

)T(
i

)S(
i

i

12

2

δ

λ

 (5-10)

Symbolic Methods in Time Series Information Retrieval

 97

Where S , T are the lengths of the strings TS , respectively and where
0≥λ , 0≥δ (R∈δλ ,). We call λ the frequency factor of the first degree, and δ

the frequency factor of the second degree.

5.3.2 Theorem 2

MREED is a metric distance □

Proof of Theorem 2

We can easily notice that:

() ()() *T
ij

S
ij

i j

T,Sff,ffminTS Σ∈∀≥
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−+ ∑∑ 012δ (5-11)

The rest of the proof is similar to that of Theorem 1.

Example 5.7

Given the following strings:

abcaS =1 , aabbccS =2 , adbecfS =3 .

Intuitively, we see that 2S is closer to 1S than 3S .Yet, if we calculate their edit
distance we see that:

3),(),(3121 == SSEDSSED .

But if we apply MREED we see that:

9),(21 =SSMREED , 15),(31 =SSMREED .

So we see that our distance could detect that 2S is closer to 1S than 3S

Symbolic Methods in Time Series Information Retrieval

 98

5.3.3 Complexity Analysis

The time complexity of MREED is)(nmO × , which is the same as that of ED.

5.3.4 Experimental Evaluation

The experimental protocol that we followed to test MREED is similar to that we used
to test EED. We tested our distance on 12 datasets chosen from the 20 datasets
available at [190]. We meant to include quite a variety of cases in our tests; the
number of classes varies between 2 (Gun-Point) and 50 (50words). The size of the
training set varies between 30 (Beef and CBF) and 560 (Face all). The size of the
testing set varies between 30 (Beef and Olive Oil) and 3000 (Yoga), and the length of
the time series (before compression) varies between 60 (Synthetic Control) and 570
(Olive Oil).

We compared MREED with ED, and SAX using the same alphabet size and
compression ratio that SAX uses. We also compared our distance with the Euclidean
distance on a 1-NN classification task.

Both ED and SAX have one parameter, which is the alphabet size. MREED has two
extra parameters: the frequency factor of the first degree λ , and the frequency factor
of the second degreeδ . For each of the 12 datasets we started by tuning the two
parameters λ and δ on the training sets to get the optimal values of these
parameters; i.e. the values that minimize the error rate. For simplicity, we optimized
parameters λ and δ in the interval []1,0 only (step=0.25), except in the cases where
there was strong evidence that the error is decreasing monotonously as λ or δ
increases.

After optimizing the two parameters on the training sets for the 12 datasets we got the
results shown in Table 5.5 (There is no training phase for the Euclidian distance).

Symbolic Methods in Time Series Information Retrieval

 99

Table 5.5. A comparison of ED, MREED, SAX on the training sets of 12 different datasets.
The table shows the error rates for each distance and for each dataset.

ED

MREED

SAX

Synthetic Control 0.037 0.033 0.027

Gun-Point

0.02 0.02 0.08

CBF 0.033 0 0.167

Face (all) 0.157 0.157 0.118

OSULeaf 0.2 0.19 0.365

SwedishLeaf 0.34 0.316 0.486

50words 0.253 0.253 0.349

Trace 0.05 0 0.31

Adiac 0.687 0.674 0.918

Yoga 0.193 0.193 0.24

Beef 0.533 0.433 0.467

OliveOil 0.333 0.3 0.833

Then we used the optimal parameters for each dataset, and for each method, on the
testing sets, we obtained the results shown in Table 5.6 (the cases where the Euclidean
distance outperformed the other methods were shown in boldfaced red)

Symbolic Methods in Time Series Information Retrieval

 100

Table 5.6 The error rates of ED, MREED, SAX , together with the Euclidean distance on the
testing sets of the 12 datasets. The parameters used in the calculations are those that give
optimal results on the training sets

 1-NN
Euclidean
distance

ED

 MREED

SAX

Synthetic
Control

0.12 0.037
α =7

0.053
α =8, λ=0, δ=0.25

0.033
α =10

Gun-Point

0.087 0.073

α =4

0.06
α =4, λ =0.25, δ=0

0.233
α =10

CBF 0.148 0.029
α =10

0.023
α =3, λ =0.25,0.5, δ=0.25

0.104
α =10

Face (all) 0.286 0.324

α =7

0.324
α =7=, λ =0, δ=0

0.319
α =10

OSULeaf 0.483 0.318
α =5

0.302
α =5, λ =0, δ=0.25

0.475
α =9

SwedishLeaf 0.213 0.344
α =7

0.365
α =7, λ =0.25, δ=0

0.490
α =10

50words 0.369 0.266
α =7

0.266
α =7, λ =0, δ=0

0.327
α =9

Trace 0.24 0.11
α =10

0.02
α =6, (λ =0, δ≥0.75),

(λ =0,0.25, δ=1)

0.42
α =10

Adiac 0.389 0.701
α =7

0.642
α =9, λ =0.5, δ=0

0.903
α =10

Yoga 0.170 0.155
α =7

0.155
α =7, λ =0, δ=0

0.199
α =10

Beef 0.467 0.467
α =4

0.367
α =4, λ =0.5, δ=0.25

0.533
α =10

OliveOil 0.133 0.467
α =9

0.367
α =9,(λ=0.75,δ≥0.5),

(λ =1, δ≥0.75)

0.833
∀ α

Symbolic Methods in Time Series Information Retrieval

 101

The results show that the performance of MREED it better than that of both SAX, and
ED.

It is worth mentioning that for the Euclidian distance there is no compression of data,
so in some cases it may give better results than symbolic, compressed distances.

5.3.5 Discussion

In this section we presented another extension of the edit distance which is MREED .
The main feature of this distance is that it does not only consider the frequencies of
single characters but also the frequencies of sub-sequences. We tested this distance on
a time series classification task, and we compared it to two other distances. We
showed that our distance gave better results even when compared to a method (SAX)
that is designed mainly for symbolically represented time series.

5.4 The ΣGRAM Distance

Counting the occurrences of a pattern in a string was first introduced by [192] where
the author used this concept to address the approximate string matching problem. The
author presented a similarity measure based on this concept. However, the model he
proposed violates the metric axioms, so it could only produce approximate solutions.

In this section we establish a general metric model of the distances we presented in
Sections 5.2 and 5.3. This distance that we call the ΣGRAM Distance is based on the
frequencies of n-grams.

We present first a generalization of the definition we presented in Section 5.2.1

Definition-The Number of Distinct n-Grams (NDnG): Given two strings S ,T . The
number of distinct n-grams (substrings of length n) that the two strings S and T
contain is defined as:

() (){ } (){ }TgramnSgramnT,SGNDn −∪−= (5-12)

where ()gramn − is the set of n-grams that a string consists of.

Notice that : ()T,Sminn ≤≤1

Example 5.8

Given the following strings:

Symbolic Methods in Time Series Information Retrieval

 102

exogenS = , oxygenR = , emolenT =

The sets of n-grams for these strings are given by:

n R S T
1 o, x, y, g, e, n e, x, o, g, e, n e, m, o, l, e, n
2 ox, xy, yg, ge, en ex, xo, og, ge, en em, mo, ol, le, en
3 oxy, xyg, yge, gen exo, xog, oge, gen emo, mol, ole, len
4 oxyg, xyge, ygen exog, xoge, ogen emol, mole, olen
5 oxyge, xygen exoge, xogen emole, molen
6 oxygen exogen emolen

Comparing ()R,SGNDn , and ()T,SGNDn gives:

n NDnG(S,R) NDnG(S,T)

1 5 4
2 2 1
3 1 0
4 0 0
5 0 0
6 0 0

∑
=

6

1n
nGND 8 5

The above comparison shows a greater similarity between S and R than between
S and T , which is intuitive. But if we compute the edit distance we get:

() () 2== T,SEDR,SED

5.4.1 Definition-The ΣGRAM Distance

Let Σ be a finite alphabet, and let *Σ be the set of strings on Σ . An n-gram is a
substring of n characters from a given string.

Symbolic Methods in Time Series Information Retrieval

 103

Given n, Let)S(
an

f be the frequency of the n-gram na in S , and)T(
an

f be the frequency

of the n-gram na in T , where S ,T are two strings in *Σ . Let N be the set of

integers, and +N the set of positive integers.

For notation convenience, we define the function:

NN →Σ×+ *:g

 () nS,ng = if Sn ≤≤1

 () 1+= SS,ng if nS <

The ∑GRAM

distance between S and T is thus defined as:

()

() () () ()()
()
∑ ∑

∑

= ∈
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⋅−+−−+

=

T,Smax

n

T
a

S
a

Aa
n

GRAM

nn
n

n

f,fminT,ngS,ngTS.

T,S

1

22λ

 (5-13)

where S , T are the lengths of the two strings S ,T respectively, and where

{ }0∪∈ +Rnλ □

Since ()∑

Σ∈

+−=
n

n

n
a

S
afnS 1 Sn ≤≤∀ 1 , and () 0=∑

Σ∈ n
n

n
a

S
af for all n>|S|, we can

write:

() ()∑
Σ∈

+−=
n

n

n
a

S
afS,ngS 1 +∈∀ Nn .

Thus for Sn > we have :

() 01 =+− S,ngS

Symbolic Methods in Time Series Information Retrieval

 104

 and () ()() 0=∑

Σ∈

T
a

S
a

a
nn

n
n

f,fmin

And for Tn > we have :

() 01 =+− T,ngT

 and () ()() 0=∑

Σ∈

T
a

S
a

a
nn

n
n

f,fmin

Consequently, definition (5-13) can be written as:

()

() () () ()()∑ ∑

∑
∞

= Σ∈
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⋅−+−−+

=

1

22
n

T
a

S
a

a
n

GRAM

nn
n

n

f,fminT,ngS,ngTS.

T,S

λ

or :

 () ()∑∑
∞

=

=
1n

nnGRAM
T,SD.T,S λ (5-14)

where

 () () () () ()()T
a

S
a

aa

T
a

a

S
an nn

n
n

n
n

n
n

n

n
f,fminffT,SD ∑∑∑

Σ∈Σ∈Σ∈

⋅−+= 2

5.4.2 Theorem 3

ΣGRAM is a metric distance □

Proof of Theorem 3

(p1) () ()∑∑ =

GRAMGRAM
S,TT,S (obvious).

Symbolic Methods in Time Series Information Retrieval

 105

(p2) It is easy to notice that 0≥nD +∈∀ Nn

() () *

n
nGRAM

T,ST,SDT,S Σ∈∀≥=⇒ ∑∑
∞

=

0
1

i- Let us prove first that: () TST,S

GRAM
=⇒=∑ 0 .

If () 0=∑GRAM

T,S , and taking into account (5-14) then each term nD of the

summation in equation (5-13) should be equal to 0.

In particular for ()T,SmaxMn == we have:

 () () () () ()() 02 =⋅−+= ∑∑∑
Σ∈Σ∈Σ∈

T
a

S
a

aa

T
a

a

S
aM MM

M
M

M
M

M
M

M

M
f,fminffT,SD (5-15)

If ⇒< MS

() 0=∑
Σ∈ M

M

M
a

S
af ,

() 1=∑
Σ∈ M

M

M
a

T
af and () ()() 0=∑

Σ∈

T(
a

S
a

a
MM

M
M

f,fmin

Which contradicts (5-15).

The same applies if MT <

This implies that MTS == and () ()() 1=∑

Σ∈

T(
a

S
a

a
MM

M
M

f,fmin which implies that

TS = .

ii- () 0=⇒= ∑GRAM

T,STS (obvious)

From i and ii we get:

() TST,S
GRAM

=⇔=∑ 0

(p3) The triangle inequality

Symbolic Methods in Time Series Information Retrieval

 106

Let : () () () ()()∑
Σ∈

⋅−−⋅−+=
n

n

nn
a

T
a

S
an f,fminnTST,SD 212 .

We will show that:

() () () *
nnn R,T,ST,RDR,SDT,SD Σ∈∀+≤ (5-16)

First, we notice that the following equivalences hold:

() () () ⇔+≤ T,RDR,SDT,SD nnn

() () ()()

() () ()() () () ()()∑∑

∑

Σ∈Σ∈

Σ∈

⋅−−⋅−++⋅−−⋅−+

≤⋅−−⋅−+

n
n

nn
n

n

nn

n
n

nn

a

T
a

R
a

a

R
a

S
a

a

T
a

S
a

f,fminnTRf,fminnRS

f,fminnTS

212212

212

() ()() () ()() () () ()()∑∑∑

Σ∈Σ∈Σ∈

+−−≤+⇔
n

n

nn
n

n

nn
n

n

nn
a

T
a

S
a

a

T
a

R
a

a

R
a

S
a f,fminnRf,fminf,fmin 1

Since ()∑

Σ∈

+−=
n

n

n
a

R
afnR 1 this implies that proving (5-16) is equivalent to proving the

following:

() ()() () ()()
() () ()()∑∑

∑∑

Σ∈Σ∈

Σ∈Σ∈

+

≤+

n
n

nn
n

n

n

n
n

nn
n

n

nn

a

T
a

S
a

a

R
a

a

T
a

R
a

a

T
a

S
a

f,fminf

f,fminf,fmin

 (5-17)

Second, we notice that:

() ()() () ff,fmin R
a

R
a

S
a nnn

≤ , () ()() () n
n

R
a

R
a

T
a a ff,fmin

nnn
Σ∈∀≤

In addition, n

na Σ∈∀ we have:

 If () () () ()()⇒= T
a

S
a

R
a

R
a nnnn

f,f,fminf

Symbolic Methods in Time Series Information Retrieval

 107

 () ()() () ()()⇒≤ T
a

S
a

T
a

R
a nnnn

f,fminf,fmin

 () ()() () ()() () () ()()T
a

S
a

R
a

T
a

R
a

R
a

S
a nnnnnnn

f,fminff,fminf,fmin +≤+

 If () () () ()()⇒= T

a
S

a
R

a
S

a nnnn
f,f,fminf

 () ()() () ()()⇒≤ T
a

S
a

R
a

S
a nnnn

f,fminf,fmin

 () ()() () ()() () () ()()T
a

S
a

R
a

T
a

R
a

R
a

S
a nnnnnnn

f,fminff,fminf,fmin +≤+

 If () () () ()()⇒= T
a

S
a

R
a

T
a nnnn

f,f,fminf

 () ()() () ()()⇒≤ T
a

S
a

T
a

R
a nnnn

f,fminf,fmin

 () ()() () ()() () () ()()T
a

S
a

R
a

T
a

R
a

R
a

S
a nnnnnnn

f,fminff,fminf,fmin +≤+

This means that n

na Σ∈∀ we have:

() ()() () ()() () () ()()T
a

S
a

R
a

T
a

R
a

R
a

S
a nnnnnnn

f,fminff,fminf,fmin +≤+

Summing over all na in nΣ we get the proof of proposition (5-17) thus the proof of
(5-16).

Summing over n we get the proof of (p3).

From (p1), (p2), and (p3) we conclude that ΣGRAM is a metric distance.

5.4.3 Discussion

In this section we extended the edit distance to consider the frequencies of characters
and also all substrings of a given string. The main feature of this model is that it is
based not only on the simple model of symbolic distances which compare a symbol to
another symbol, but it permits comparing substrings as well.

A possible future application is to use this model in motif discovery in time series
data mining. The basis of this application is to represent the motif symbolically and
apply our model to consider the frequency of the motif.

Symbolic Methods in Time Series Information Retrieval

 108

5.5 The Parameter-free Extended Edit Distance (PFEED)

Despite all the advantages that all the extensions of the edit distance we presented in
the previous section have, they have one particular inconvenience; they all contain
parameters in their definition. These parameters are not semantic. They also require
tuning on the training sets to get their optimal value, and this training phase can be
long. Although there are alternatives to the protocol we followed in our experiments,
which can speed up the training phase, we thought that a non-parametric extension to
the edit distance can be beneficial, especially in the cases where there is no possibility
of a training phase.

In this section we present another extension to the edit distance which we call the
Parameter-free Extended Edit Distance (PFEED). As indicated in the introduction of
this dissertation and of this chapter, the in which we presented this distance has been
accepted for publication but has not been published, so this section is presented for
the first time here.

5.5.1 Definition-The Parameter-free Extended Edit Distance
(PFEED)

Let ∑ be a finite alphabet, and let)(S
if ,)(T

if be the frequencies of the character i in
S and T , respectively. The Parameter-free Extended Edit Distance (PFEED) is
defined as:

() ()
() ()()

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−+=

∑
TS

f,fmin
T,SEDT,SPFEED

T
i

S
i

i

2
1

 (5-18)
Where S , T are the lengths of the two strings TS , respectively

5.5.2 Theorem 4

PFEED is a metric distance □

Before we prove the theorem we introduce the following lemma:

Symbolic Methods in Time Series Information Retrieval

 109

Lemma 2

 Let ∑ be a finite alphabet,)(S

if be the frequency of the character i in S , where S is a
string on ∑ . Then 321 ,, SSS∀ we have:

() ()()

() ()() () ()()

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

≤
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

∑∑

∑

2331

21

2331

21

2
1

2
1

2
1

SS

f,fmin

SS

f,fmin

SS

f,fmin

S
i

S
i

i

S
i

S
i

i

S
i

S
i

i

 (5-19)

n∀ , where n is the number of characters used to represent the strings

Proof

i) 1=n , this is a trivial case, where the strings are represented with one character .

Given three strings 321 ,, SSS represented by the same character a .

Let)()()(321 ,, S
a

S
a

S
a fff be the frequency of a in 321 ,, SSS , respectively. We have six

configurations in this case:

1))()()(321 S

a
S

a
S

a fff ≤≤

2))()()(231 S
a

S
a

S
a fff ≤≤

3))()()(312 S
a

S
a

S
a fff ≤≤

4))()()(132 S
a

S
a

S
a fff ≤≤

5))()()(213 S
a

S
a

S
a fff ≤≤

6))()()(123 S
a

S
a

S
a fff ≤≤

We will prove that relation (5-19) holds in these six configurations.

1))()()(321 S

a
S

a
S

a fff ≤≤

In this case we have:

Symbolic Methods in Time Series Information Retrieval

 110

() ()() ()121 S
a

S
a

S
a ff,fmin = , () ()() ()131 S

a
S

a
S

a ff,fmin = , () ()() ()232 S
a

S
a

S
a ff,fmin =

By substituting the above values in (5-19) we get:

() ()()
() ()

() ()()
() ()

() ()()
() ()23

23

31

31

21

21 212121 S
a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

ff
f,fmin

ff
f,fmin

ff
f,fmin

+
−+

+
−≤

+
−

)()(

)(

)()(

)(

)()(

)(

23

2

31

1

21

1 2
1

2
1

2
1

S
a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

ff
f

ff
f

ff
f

+
−+

+
−≤

+
−

1
222

)()(

)(

)()(

)(

)()(

)(

23

2

31

1

21

1

−
+

+
+

≥
+ S

a
S

a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

ff
f

ff
f

ff
f

If we substitute)(2S

af ,)(1S
af ,)(2S

af with)(1S
af ,)(3S

af ,)(3S
af , respectively in the

denominators of the last relation it still holds according to the stipulation of this
configuration. We get:

1
222

)()(

)(

)()(

)(

)()(

)(

33

2

33

1

11

1

−
+

+
+

≥
+ S

a
S

a

S
a

S
a

S
a

S
a

S
a

S
a

S
a

ff
f

ff
f

ff
f

1
2
2

2
2

2
2

)(

)(

)(

)(

)(

)(

3

2

3

1

1

1

−+≥ S
a

S
a

S
a

S
a

S
a

S
a

f
f

f
f

f
f

11
3

21

−
+

≥
)S(

a

)S(
a

)S(
a

f
ff

)()()(2132 S

a
S

a
S

a fff +≥

This is valid according to the stipulation of this configuration.

The proofs of cases 2), 3), 4), 5) and 6) are similar to that of case 1).

From 1)-6) we conclude that the lemma is valid for 1=n

ii) 1>n

This is a generalization of the case where 1=n .

ni ∈∀ , then

Symbolic Methods in Time Series Information Retrieval

 111

() ()() () ()() () ()()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

233121

233121 212121
SS

f,fmin
SS

f,fmin
SS

f,fmin S
i

S
i

S
i

S
i

S
i

S
i

holds, according to the first case i)

By summing over n we get

() ()() () ()() () ()()

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−+

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−≤

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

∑∑∑
233121

233121 2
1

2
1

2
1

SS

f,fmin

SS

f,fmin

SS

f,fmin S
i

S
i

i

S
i

S
i

i

S
i

S
i

i

Proof of Theorem 4

Before we prove the theorem, we can easily notice that:

() ()()
T,S

TS

f,fmin T
i

S
i

i ∀≥
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

∑
0

2
1 (5-20)

In order to prove the theorem we have to prove that:

(p1) TSTSPFEED =⇔= 0),(

a) TSTSPFEED =⇒= 0),(

If 0),(=TSPFEED , and taking into account (5-20), we get the following relation:

() ()()
0

2
1 =

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−

∑
TS

f,fmin T
i

S
i

i (5-21)

 0),(=TSED (5-22)

From (5-22), and since ED is metric we get: TS =

Symbolic Methods in Time Series Information Retrieval

 112

b) 0),(=⇒= TSPFEEDTS (obvious).

From a) and b) we get TSTSPFEED =⇔= 0),(

(p2)),(),(STPFEEDTSPFEED = (obvious).

(p3)),(),(),(TRPEEEDRSPFEEDTSPFEED +≤

RTS ,,∀ , we have:

),(),(),(TREDRSEDTSED +≤ (5-23)

(Valid since ED is metric)

From Lemma 2 we have:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

∑
−+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

∑
−≤

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

∑
−

TR

ff

RS

ff

TS

ff T
i

R
i

i

R
i

S
i

i

T
i

S
i

i
),(min2

1
),(min2

1
),(min2

1

)()()()()()(

 (5-24)

Adding (5-23), (5-24) side to side we get:

),(),(),(TRPFEEDRSPFEEDTSPFEED +≤

5.5.3 Experiments

We chose at random 12 datasets of the 20 data sets at [190] using the same protocol
we described in Section 5.2.6. We compared PFEED with ED on a 1-NN
classification task. The compression ratio was 1 to 4. The alphabet size ranged in the
interval (3:10). Although the proposed distance does not include any parameters, the
experiments included a training phase to choose the optimal value of the alphabet
size, which is a parameter related to the symbolic representation of SAX and not to
PFEED. Table 5.7 shows the results we obtained.

Symbolic Methods in Time Series Information Retrieval

 113

Table 5.7 The error rates of ED, PFEED on 12 datasets.

ED

PFEED

Synthetic Control 0.037
α =7

0.03
α =7

Gun-Point

0.073
α =4

0.067
α =4

CBF 0.029
α =10

0.01
α =6

Face (all) 0.324
α =7

0.323
α =5

OSULeaf 0.318
α =5

0.310
α =5

50words 0.266
α =7

0.270
α =7

Trace 0.11
α =10

0.09
α =8,10

Lighting 7 0.247
α =10

0.232
α =10

Adiac 0.701
α =7

0.650
α =9

Yoga 0.155
α =7

0.156
α =8

Beef 0.467
α =4

0.433
α =4,6

Coffee 0.107
α =8

0.071
α =8

The results show that PFEED gives better results than ED.

We also compared PFEED with MREED, one of the parametric extensions of the edit
distance and which we presented in Section 5.3, using 8 datasets chosen randomly
from the datasets presented in 5.5.3 and for the same range on alphabet size. Table 5.8
shows the results of this experiment.

The results obtained show that the performance of this non-parametric extension is
acceptable compared with that of MREED which uses two parameters (δλ ,) and
requires a training phase.

Symbolic Methods in Time Series Information Retrieval

 114

Table 5.8 The error rates of PFEED, MREED on 8 of the 12 datasets presented in Table 5.7

PFEED

MREED

Synthetic Control 0.03 0.053
Gun-Point 0.067 0.06

CBF 0.01 0.023
Face (all) 0.323 0.324
OSULeaf 0.310 0.302
50words 0.270 0.266

Trace 0.09 0.02
Adiac 0.650 0.642
Yoga 0.156 0.155
Beef 0.433 0.367

5.5.4 Discussion

In this section we presented a non-parametric extension of the edit distance which is
metric. The main advantage of this version compared with the other extensions is that
its training time is much shorter.

Again we have to emphasize on the fact that the main objective of developing this
extension was to apply it to other data types where we are expecting to get even better
results.

5.6 Enhancing SAX Using Updated Lookup Tables

In this section we present the second main contribution of this chapter which is a new
minimum distance for SAX. The new similarity measure is fast, it is also tighter and
more intuitive than the original one.

5.6.1 Introduction

In Section 5.1.2 we presented SAX, one of the most competitive methods in time
series information retrieval. The main advantage of SAX is that the similarity measure
it uses, MINDIST, is easy to compute, because it uses statistical lookup tables. In this

Symbolic Methods in Time Series Information Retrieval

 115

section we present an improved similarity measure for SAX. This new measure has
the same advantages as MINDIST. But our new similarity measure gives better results
in different time series data mining tasks. Its overall complexity is the same as that of
SAX, i.e.)(NO .

5.6.2 The Updated Minimum Distance (UMD)

The main advantage of SAX, which makes it fast to apply, is that the similarity
measure it uses is easy to compute because it is based on pre-computed distances
obtained from corresponding lookup tables. However, MINDIST has a main
drawback; in order to be lower bounding this similarity measure ignores all the
distances between any successive symbols of the alphabet and considers them to be
zero. For instance, the lookup table of MINDIST for an alphabet size of 3 is the one
shown in Table 5.9. As we can see from the table, all values between any successive
symbols are equal to zero. The breakpoints in this case (obtained from statistical
tables) are: -0.43 and 0.43. The distance between them is 0.86

Table 5.9 The lookup table of MINDIST for alphabet size equals to 3.

 a b c
 a 0 0 0.86

 b 0 0 0

 c 0.86 0 0

This drawback has two consequences; the first is that MINDIST is not tight enough,
which produces many false alarms. The second consequence can be shown by the
following example: let the symbolic representing of the five time
series 1S , 2S , 3S , 4S , 5S using SAX with alphabet size= 4 be:

aabddS =1 , bacdcS =2 , abbcdS =3 , bacddS =4 , bbbdcS =5 .

The MINDIST between any two of these five time series is equal to zero, which is not
only unintuitive, since no two time series of these five are identical, but this also
produces many false alarms. □

In this section we present a modified minimum distance, which remedies the above
problems. The new minimum distance has all the advantages of the original distance,
in that it is also a lower bounding of the Euclidean distance, and it is also fast to
compute as it uses pre-computed distances. But the new minimum distance is tighter.
It is also intuitive because it does not ignore the distances between successive
symbols.

Symbolic Methods in Time Series Information Retrieval

 116

The principle of our new minimum distance, which we call the Updated Minimum
Distance (UMD) is to recover the distances between any successive symbols, which
were ignored in MINDIST. Figure 5.3 shows an example of the ignored distances in
the case of alphabet size equals to 3, and which are recovered in UMD. The
breakpoints are -0.43 and 0.43. In this case the only non-zero distance according to
MINDIST is dist (a,c) which is equal to 0.86 (the distance indicated by the dashed
arrow). The distances represented by the solid arrows are the distances between the
minima or the maxima of all the symbols of the alphabet and the corresponding
breakpoint. These distances are ignored in MINDIST, but as we can see they are not
equal to zero. So dist(a,b), which was zero in MINDIST can be updated to become
value2+value4 , and dist (b,c) which was also zero in MINDIST can be updated to
become value1+value3,and even dist (a,c) is updated to become value4+value
3+value0 (the original value).

 c
 c

 0.5 c value3

 value1 b
 b b
 b value 0

 b value2 b b

- 0.5 a value4

 a

Fig. 5.3. The PAA representation of two time series: S1 =cbcbab (boldface, blue) and
S2=bcbbab (boldface, red). The solid arrows show the ignored distances and the dashed arrow
shows the only distance considered by MINDIST : dist (a,c)=value0 (0.86)

The lookup tables of different alphabet sizes are updated in a like manner. Obviously,
this update of lookup tables results in a tighter similarity distance. For instance, the
lookup table shown at the beginning of this section can be updated to become the one
shown in Table 5.10.

Symbolic Methods in Time Series Information Retrieval

 117

Table 5.10 The updated lookup table for alphabet size equals to 3. We can see that the
distances between successive symbols are no longer equal to zero, and the distance dist (a,c) is
tighter than dist (a,c) in Table 5.9

 a b c
 a 0 value2+value4 0.86+ value4+value3

 b value2+value4 0 value1+value3

 c 0.86+ value4+value3 value1+value3 0

We can easily notice that this new similarity measure is lower bounding of the PAA
similarity measure presented in Section 3.4.4, since we take the closest distance
between two successive symbols among all the distances of all the PAA segments of
these two symbols. As a result, our new similarity measure is also a lower bounding
of the Euclidean distance (see Section 3.4.4). This is the same property that MINDIST
has.

The other consequence of this update is that UMD, which is based on the updated
lookup tables, is intuitive because it gives non-zero values to successive symbols, so
UMD of any two of the five time series presented at the beginning of this section is
not zero, which is what we expect from any similarity measure applied to these time
series because they are not identical.

In order to obtain the minimum and the maximum values of each symbol, the SAX
algorithm is modified so that at the step where the different segments of PAA are
compared against the breakpoints to decide what symbol is used to discretize that
segment, at that step we modify SAX so that it keeps a record of the minimum and
maximum values of each segment of that time series. This is performed at indexing
time, so it does not include any extra cost at query time. Then when comparing two
time series, we take the minimum (maximum) that corresponds to the same symbol of
the two times series to find the mutual minimum (maximum) that corresponds to each
symbol. These minima and maxima, which are computed at indexing time, are used to
update the lookup tables. The updating process includes very few addition operations
(three for alphabet size= 3, for instance), whose computational cost is very low
compared with the cost of computing the similarity measure. So UMD has the same
complexity as that of MINDIST. The pseudo code for the UMD is shown in Figure
5.4.

So, as we can see, the computational cost of UMD is a little bit higher than that of
MINDIST at indexing time, but it has the same complexity as MINDIST at query
time

We also have to mention that UMD is also a similarity measure and not a distance
metric. However, it is one-step closer to being a distance metric since it violates only
one condition of the distance metric which is the triangle inequality condition.

Symbolic Methods in Time Series Information Retrieval

 118

procedure dist=UMD(S1,S2,S1Min, S1Max,S2Min, S2Max,
 Alphabet, LookupTable)
// INPUT : S1,S2; two input times series presented
// symbolically
// INPUT : S1Min,S2Min; the distance between
// between the minimum value of S1 (S2) and the
// corresponding breakpoint
// INPUT : S1Max,S2Max; the distance between
// between the maximum value of S1 (S2) and the
// corresponding breakpoint
// INPUT : Alphabet
// INPUT : LookupTable is the look up table used with
// MINDIST
// OUTPUT : RETURN dist, the UMD distance between TS1,
// TS2
 for ∈kα Σ

 mn= min (S1Min(αk), S2Min(αk))
 mx= min (S1Max(αk), S2Max(αk))
//update the lookup table for symbol αk
 UpdateTable ← Update(Lookuptable, αk, mn, mx)

 end
 return dist=MINDIST(S1, S2, UpdateTable)
end procedure

Fig. 5.4. Pseudo code for UMD

5.6.3 Empirical Evaluation

We conducted extensive experiments on the proposed similarity measure. In our
experiments we tested UMD on all the 20 datasets available at [190] and for all
alphabet sizes which vary between 3 (the least possible size that was used to test
MINDIST) to 20 (the largest possible alphabet size). The size of these datasets varies
between 28 (Coffee) and 6164 (Wafer). The length of the time series varies between
60 (Synthetic Control) and 637 (Lightning-2). So these data sets are very diverse. We
also tested these datasets using the Euclidean distance as a reference.

Symbolic Methods in Time Series Information Retrieval

 119

Tightness

As mentioned in Section 2.7, tightness of similarity distances enhances the search
process, because it minimizes the number of false alarms. As a result, it decreases the
post processing time.

We compared the tightness of UMD with that of MINDIST, for all the datasets and
for all values of the alphabet size. In all the experiments, UMD was tighter than
MINDIST. In Figure 5.5 we present some of the results we obtained for alphabet size
equals to 3 and 10, respectively. We chose to report these datasets because they are
the largest data sets in [190], thus their tightness, which is the average of the rate of
the corresponding similarity measure to the Euclidean distance between all pairs of
time series in the dataset, is more significant statistically.

The experiments conducted on these datasets using other values of the alphabet size,
in addition to the experiments on the other datasets in [190] for all values of the
alphabet size, all gave similar results.

CBF FaceAll Wafer TwoPatterns Yoga SwedishLeaf
0

10

20

30

40

50

%
 o

f t
he

 E
uc

lid
ea

n
D

is
ta

nc
e

 UMD
 MINDIST

CBF FaceAll Wafer TwoPatterns Yoga SwedishLeaf
0

10

20

30

40

50

60

70

80

%
 o

f t
he

 E
uc

lid
ea

n
D

is
ta

nc
e

UMD
MINDIST

Fig. 5.5. Comparison of the tightness of UMD with the tightness of MINDIST on 6 data sets
and for alphabet size=3 (above) and alphabet size=10 (below). The figure shows that UMD is
tighter than MINDIST.

Symbolic Methods in Time Series Information Retrieval

 120

Classification

Classification is one of the main tasks in time series data mining. We tested the
proposed similarity measure on a classification task on all the data sets available at
[190]. We used leaving-one-out cross validation.

In order to make a fair comparison, we used the same compression ratio (the number
of points used to represent one segment in PAA) that was used to test SAX with
MINDIST (i.e.1 to 4). The first version of SAX used alphabet size that varies between
3 and 10. Then in a later version the alphabet size varied between 3 and 20. We
conducted two main classification experiments; the first one is for alphabet size
(3:10), and the second is for alphabet size (3:20). Each experiment tested all the
datasets. The protocol is the same that we followed in our other experiments on the
extensions of the edit distance: in each experiment we start by varying the alphabet
size (3 through 10 in the first experiment and 3 through 20 in the second one) on the
training set of each dataset to find the optimal value of the alphabet size of that
dataset; i.e. the value that minimizes the classification error rate. Then we use that
optimal alphabet size on the testing set of that dataset. Table 5.11 shows the results of
our experiments for alphabet size in the interval (3:10). We reported the results of the
Euclidean distance for comparison reasons (There is no training phase for the
Euclidian distance). The best result between UMD and MINDIST is boldfaced and
shaded. As mentioned before, the Euclidean distance can sometimes give better
results because it is applied to the original uncompressed data.

Symbolic Methods in Time Series Information Retrieval

 121

Table 5.11. The error rate of UMD and MINDIST for α between 3 and 10.

 1-NN
Euclidean Distance

UMD
(α between 3 and 10)

MINDIST
(α between 3 and 10)

Synthetic Control 0.12 0.007 0.033

Gun-Point 0.087 0.213 0.233

CBF 0.148 0.131 0.104

Face (all) 0.286 0.306 0.319

OSU Leaf 0.483 0.471 0.475

Swedish Leaf 0.213 0.291 0.490

50words 0.369 0.338 0.327

Trace 0.24 0.34 0.42

Two Patterns 0.09 0.076 0.081

Wafer 0.005 0.004 0.004

Face (four) 0.216 0.273 0.239

Lighting-2 0.246 0.230 0.213

Lighting-7 0.425 0.411 0.493

ECG200 0.12 0.11 0.09

Adiac 0.389 0.634 0.903

Yoga 0.170 0.193 0.199

Fish 0.217 0.366 0.514

Beef 0.467 0.367 0.533

Coffee 0.25 0.179 0.464

Olive Oil 0.133 0.367 0.833

The results show that for alphabet size in the interval (3:10), UMD outperforms
MINDIST.

In Table 5.12 we show the results of our experiments for alphabet size in the interval
(3:20).

Symbolic Methods in Time Series Information Retrieval

 122

Table 5.12. The error rate of UMD and MINDIST for α between 3 and 20

 UMD
(α between 3 and 20)

MINDIST
(α between 3 and 20)

Synthetic Control 0.003 0.023

Gun-Point 0.14 0.127

CBF 0.054 0.073

Face (all) 0.305 0.305

OSU Leaf 0.471 0.475

Swedish Leaf 0.242 0.253

50words 0.345 0.334

Trace 0.27 0.35

Two Patterns 0.065 0.066

Wafer 0.004 0.004

Face (four) 0.273 0.239

Lighting-2 0.229 0.148

Lighting-7 0.411 0.425

ECG200 0.11 0.13

Adiac 0.494 0.867

Yoga 0.172 0.181

Fish 0.257 0.263

Beef 0.333 0.433

Coffee 0.071 0.143

Olive Oil 0.3 0.833

The results show that in the interval (3:20) UMD outperforms MINDIST too.

The results obtained for both ranges of alphabet size show that the general
performance of UMD is better than that of MINDIST

Symbolic Methods in Time Series Information Retrieval

 123

5.6.4 Discussion

In this section we presented a new similarity measure for SAX. The new similarity
measure UMD improves the performance of SAX compared with the original
similarity measure MINDIST used with SAX. We conducted several experiments of
times series data mining tasks. The results obtained show that SAX with UMD gives
better results than SAX with MINDIST. Another interesting feature of the new
similarity measure is that it has the same complexity as that of MINDIST.

5.7 Conclusion

In this chapter we presented two main directions of contribution of this dissertation.
The first one concerns extending the edit distance. We showed that the main
drawback of the ordinary edit distance is that it is based on local procedures, which
makes it unable to detect global similarities. We presented another distance metric
EED which remedies this limitation by adding a global feature to the edit distance.
We tested this new distance in the context of time series data mining on a 1-NN
classification task. We showed how EED outperformed the edit distance. We also
showed another application of our proposed distance by another author where our
proposed distance is applied in the context of natural language processing.

We also presented MREED, which is another extension of the edit distance that
considers the frequencies of substrings in addition to those of single characters. Again
we showed experimentally that this metric distance gives better results in 1-NN time
series classification task than the edit distance. Later we presented ΣGRAM which is a
generalization of the previous distances.

In a later section we presented another extension of the edit distance which is PFEED.
The main characteristic of this extension is that it is parameter-free. This feature
makes PFEED mainly applicable when there are no training datasets. We showed how
this extension gives better results in the experiments we conducted than the edit
distance.

In the last section of this chapter we presented the second main contribution of this
chapter which is a new minimum distance for SAX called UMD to replace MINDIST;
the original minimum distance of SAX. We showed through extensive experiments
that UMD is not only fast, which is the main advantage of MINDIST, but it is also
tighter and more intuitive than MINDIST.

Symbolic Methods in Time Series Information Retrieval

 124

5.8 What Next?

The edit distance has been for long the main distance to compare two strings. This
distance is based on a character-to-character comparison. We think this distance is not
suitable for comparing new symbolic data types. In comparing two DNA or RNA
sequences, the strings are usually very long, and the alphabet size is small. This
requires certain modifications on the edit distance, like considering the frequencies in
a way similar to or different from the approach we used in our proposed distances,
instead of the ordinary atomic edit operations.

The reversal operation is a fundamental operation in some applications like gene
rearrangement [166], [115], yet the ordinary edit distance is unable to handle this
operation except through long, indirect edit operations.

In Natural Language Processing (NLP) we can think of a generalized edit distance
that compares sentences instead of words. In this case the alphabet is much larger than
that used in the edit distance. This generalized distance can also include a statistical
feature that considers the letter or groups of letters that usually follow a certain letter
in a certain language.

In some applications like auto completing we see that many algorithms can handle
spelling errors sufficiently when the user mistypes the last part of the entry , and can
still correctly predict the word the user is trying to type, while they seem to be
completely inefficient when the user mistypes the first part of the entry. We think this
can be handled using an edit distance that assigns costs to the edit operations not only
based on the operation itself, but also on the location of the characters in the two
strings that a delete operation, for instance should be assigned a higher cost if the
deletion takes place at the beginning of the two strings than at the end of them.

Although the symbolic representation method presented in this chapter is a substantial
improvement over the first symbolic methods, we think there is a lot of research to be
done in this field of computer science. In fact, although the main motive behind these
methods was to benefit from bioinformatics and textual data mining algorithms, we
did not see any approach to benefit from these algorithms. In many cases, the
symbolic representation was expressed numerically again to perform a required
operation. We understand symbolic representation as an equivalent to the numeric
representation and that it permits defining symbolic operations without having to
resort to the corresponding numeric representation of the data. The main advantage of
this equivalent representation is that some tasks are better handled numerically
(similarity search, classification, median strings, etc) while other tasks are symbolic in
nature (motif discovery, anomaly detection, etc). We think an ideal representation of
data should be numerical-symbolic in a way that all operations in one representation
have their equivalence in the other. Such a representation can tackle different tasks in
data mining more efficiently.

Symbolic Methods in Time Series Information Retrieval

 125

However, the main challenge to introducing such a representation is that symbolic
representation usually implies loss of information which is not easily recovered with
most of the symbolic representation techniques that we have now. We think that some
mathematical tools can be helpful to overcome this obstacle.

 126

Chapter 6

Multi-resolution Approaches to Time Series

Indexing and Retrieval

In this chapter we present another major contribution of this dissertation which is our
work on multi-resolution methods in time series indexing and retrieval which we
presented in [130], [132], [131], and [136].

This chapter is organized as follows: Section 6.1 is a background section in which we
present the principle of multi-resolution as tackled in several domains of multimedia.
We mainly focus on how it has been exploited in the time series data mining and
information retrieval communities. The first contribution of this chapter: MIR, which
is a new standalone multi-resolution algorithm, is presented in Section 6.2. The
filtering mechanism on which MIR is based is presented in Section 6.2.3 and the
algorithm itself is described in Section 6.2.4. Section 6.2.5 is the experimental section
in which we show the results of the experiments we conducted on MIR. The second
contribution of this chapter is a novel multi-resolution algorithm that we combine
with a dimensionality reduction technique to enhance its performance. This algorithm
called MIR_X is introduced in Section 6.3, described in Section 6.3.3, and validated
experimentally in Section 6.3.4. The third contribution of this chapter is an
improvement of the two previously stated algorithms. This improved algorithm, called
Tight_MIR, has the advantages of both MIR and MIR_X. Tight_MIR is presented in
Section 6.4. Extensive experiments on this improved algorithm are presented in
Section 6.4.3. We conclude this chapter with future perspectives in Section 6.5.

6.1 Multi-resolution Methods in Multimedia Data
Mining

Multi-representation approaches physically store data at different scales in a database
[68]. These levels are called resolution levels. In these approaches data are pre-
generated and stored at different resolution levels. The principle of this representation
is that a representation with a maximum resolution contains all data of the lower
resolutions [184]. Multi-resolution approaches store only the data at the highest level
of resolution and simplify and generalize data dynamically [217].

Multi-resolution methods are widely used in multimedia databases. In geographical
databases, multiple representations and multiple resolutions are used in the framework
of a project [150] to enhance Geographic Information System (GIS). The project
supports multiple resolutions of geographic data.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 127

Image retrieval is another field of multimedia in which multi-resolution methods are
used. In [187] the authors use a wavelet transform to obtain a multi-resolution
representation of the searched shape based features. In [80] the authors propose a
multi-resolution multi-grid framework for image retrieval. This framework uses color,
texture and shape features. The images are partitioned into non-overlapping tiles,
while the texture and color features are extracted from these tiles at two different
resolutions in two grid framework. Multi-resolution Matching Pursuit is used in [67]
to decompose images. The authors propose a multi-resolution strategy to reduce
encoding complexity. Multi-resolution is also used for a color reduction algorithm in
[159]. The algorithm is based on color distribution and on the use of multi-resolution
image representation.

In [198] the authors use multi-resolution schemes to estimate missing values for DNA
micro-arrays. The basis of this method in derived from the principle of multi-
resolution analysis; undetected characteristic at one resolution may easily be spotted
at another. In their work the authors investigate the scheme of second order wavelets
known as lifting schemes as a method for estimating missing data in cDNA
(complementary DNA) micro-array experiments.

Multi-resolution methods have also been exploited in time series information retrieval
and data mining. In [21] a visualization application for very large multidimensional
time series datasets is developed. The proposed data model supports multiple
integrated spatial and temporal resolutions of the original data. The system
incorporates an indication of the error introduced by the multi-resolution data
representation into the visualization. So these regions of low resolution where the
error is high can then be explored again using higher resolutions. Using multi-
resolution techniques to effectively visualize large time series is also applied in [76]
where the proposed framework uses multiple resolution levels. The basic idea of this
framework is to allocate space in proportion to the degree of interest of data
subintervals. This strategy enables the user to perceive important information, and it
also frees required display space to visualize all the data.

In time series data mining multi-resolution approaches have been used in motif
discovery problems. In [34] the authors propose a method based on the multi-
resolution property of iSAX [174] and [173] to derive motifs at different resolutions.
This enables the user to navigate in the Top-K motifs hierarchy structure to better
understand the time series database at hand.

Clustering, an important problem in time series data mining, is another domain where
multi-resolution methods have been used. The authors of [114] propose a multi-
resolution PAA to achieve an algorithm for iterative clustering. This clustering
process is sped up by examining the time series at increasingly higher resolution
levels of the PAA. Stopping criteria are proposed to decide how many levels are
needed. The authors use this algorithm for streaming time series. In [197] and [113]
the authors propose a time series k-means clustering algorithm based on the multi-
resolution property of wavelets. In the proposed algorithm an initial clustering is
performed using a very coarse representation of the data. The results of this clustering

Multi-resolution Approaches to Time Series Indexing and Retrieval

 128

are then used to initialize another clustering at a higher resolution level. This process
is repeated several times until the results of the clustering stabilize. The advantage of
this algorithm is that it permits the user to terminate it at any level. The authors apply
their algorithm to images utilizing two descriptors: color and text, and treating them
as time series.

In [126] and [200] a method of multi resolution representation of time series is
presented. This symbolic method uses a multi-resolution vector quantized
approximation of the time series together with a multi-resolution similarity distance.
Using this representation the method keeps both local and global information of the
time series data.

Our approach, however, is substantially different from the other methods in that it
aims to speed up the similarity search by reducing query-time distance evaluations to
the least degree possible. This is achieved in our approach by using two techniques;
the first is applying fast-and-dirty filters based on pre-computed distances, the second
is that when distance evaluations are inevitable, our approach computes the required
distance at lower resolutions where the cost of the distance evaluation is low, and
even when moving to a higher resolution and having to re-compute the distance our
approach recycles computations from lower resolutions to compute the distances at
higher resolutions.

6.2 The Multi-resolution Indexing and Retrieval
Algorithm -Weak MIR

In this section we propose a new multi-resolution indexing and retrieval method of the
similarity search problem in time series databases. The proposed method is based on a
fast-and-dirty filtering scheme that iteratively reduces the search space.

6.2.1 Introduction

Given a query Q , a radius r , and a time series database U . Time series
representation methods that we presented in Chapter 3 process this similarity query
using the following algorithm:

1- Choose a lower dimensional space.

2- Represent the time series in the reduced space.

3- Define a lower bounding similarity distance on this reduced space.

4- Process the similarity search in the reduced space.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 129

5- Exclude the time series which are farther than r from the query and
return a candidate answer set.

6- Scan this candidate answer set using the original time series and the
original similarity distance and return the final answer set.

The problem with this approach is that it uses a one-phase scheme. The dimension of
the reduced space is decided at indexing-time and the performance at query-time
depends completely on the choice made at indexing-time. But in practice, we do not
necessarily know a priori the optimal dimension of the reduced space.

In this work we try to address this problem differently by establishing a model that
involves a multi-resolution representation of time series; we use several reduced
spaces, or as we call them resolution levels. The indexing system stores different
numbers of pre-computed distances, corresponding to the number of resolution levels.
Lower resolution levels have lower dimensions, so distance computations at these
levels are less costly than higher resolution levels where dimensions are higher, so
distance evaluations are more expensive. But the computational complexity at any
level is always less than that of sequential scanning, because even at the highest level
the dimension is still lower than that of the original space, which is used in sequential
scanning.

In our method the search algorithm starts with the lowest resolution level, and tries to
exclude the time series, which are not answers to the query, at that level where the
distances are not costly to calculate, and the algorithm does not access a higher level
until all the pre-computed distances of the lower level have been exploited. We call
our method the Multi-resolution Indexing and Retrieval method (MIR). Notice that
this version of our method does not require additional conditions to apply to indexing
time series (unlike the version we present in Section 6.3) so in mathematical terms
this version is “weak”.

6.2.2 Concepts and Terminology

Let O be the original n -dimensional space where the time series are embedded, R is
a m2 -dimensional space, where nm≤2 . Each time series OS ∈ is divided into
msegments, each of which is approximated by a function of low dimension: a
polynomial of degree (1:5), for instance, where the degree of this approximating
function is lower than the length of the segments, and where the approximation error,
according to a given distance, between this segment and the approximating function is
minimal, so this function is the optimal approximation of that segment. A polynomial
of the same degree is used to approximate all the segments of all the time series in the
database at indexing-time.

We associate every segment with two related concepts; the first is the image of all the
points of that segment on the approximating function. The image vector S~ is, by

Multi-resolution Approaches to Time Series Indexing and Retrieval

 130

definition, an n -dimensional vector whose components are the images of all the
points of all the segments of that times series. The second concept is the images of the
two end points of that segment on the approximating function, which we call the main
image of that segment. So for a time series of m segments we have m2 main images.
Those m2 main images are, by definition, the projection vector RS of the time series
on R . Figure 6.1 illustrates the different definitions we presented in this section. The
segment [t0, t3] is approximated by a first-degree polynomial. The image of this
segment is the points [a, b, c, d]. The main image of this segment is the points [a, d].

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

d
c

a

b

the time series
the main image

 the image vector

Fig. 6.1. The different concepts of the proposed method

Figure 6.2 shows how successive segments are represented. We notice in this figure
that 1b the right main image of the first segment is different from 2a the left main
image of this second segment. This is a main property of our representation.

 b1 b2
 c1 d2
a1 d1
 c2
 a2

 t1 t2 t3 t4 t5 t6 t7 t8

Fig. 6.2. The image vectors and the main images of two successive segments.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 131

We define two distances on the representation space; the first is denoted by d , and is
defined on an n -dimensional space, so it is the distance between two time series in
the original space , i.e. ()ji S,Sd , or the distance between the original time series and

its image vector, i.e. ()ii S~,Sd . We choose d to be Euclidean (or Minkowski distance,
in general), thus d is metric.

The second distance is denoted by Rd , and is defined on a m2 -dimensional space, so
it is the distance between two projection vectors, i.e. ()R

j
R
i

R S,Sd .

Notice that since the main image of each segment is a partial set of the image of that
segment, this implies that the components of the projection vector form a partial set of
the components of the image vector. Consequently, the distance Rd is a partial
distance of d . The direct result of this is that when we use the Euclidean distance (or
any Minkowski distance), for both d and Rd we get:

 () ()ji
RR

j
R
i

R S~,S~dS,Sd ≤ (6-1)

Relation (6-1) means that Rd is lower bounding of d .

The resolution level k is an integer related to the dimensionality of the reduced
space R . So the above definitions of the projection vector and the image vector can be
extended to further segmentation of the time series, with different values kmm ≤ , The

image vector and the projection vector at level k are denoted by)(~ kS and)(kRS ,
respectively. Figure 6.3 shows an illustration of the relationships between the
previous concepts.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 132

Fig. 6.3. The original space ()d,O embeds the original time series iS , jS (top), the images of

the approximated time series ji S~,S~ (middle). The reduced space R embeds the main images

of the approximated time series R
j

R
i S,S (bottom).

6.2.3 The Double Filtering Inequalities

Given a range query),(rQ , let)k(S~ , ()kQ~ be the projection vectors of S , Q ,
respectively, on their approximating functions, where S is a time series in the
database. By applying the triangle inequality we get:

()() () ()() OSQ~,QdS,QdS,Q~d kk ∈∀+≤ (6-2)

So now the range query can be expressed as:

()() ()()kk Q~,QdrS,Q~d +≤ (6-3)

Since)(~ kS is the best approximation of S at level k , then for any OS ∈ we have:

()() ()()kk S~,SdS,Q~d ≥ (6-4)

So (6-3) can be expressed as:

()() ()()kk Q~,QdrS~,Sd +≤ (6-5)

iS

()

S~
k

i

()

S~
k

j

jS
 d

()kR
jS()kR

iS

 d

 Rd

Multi-resolution Approaches to Time Series Indexing and Retrieval

 133

This means that all the data objects that satisfy:

()() ()()kk Q~,QdrS~,Sd +> (6-6)
Should be excluded.

In a similar way, by applying the triangle inequality again, we get:

()() () ()()kk S~,SdS,QdS~,Qd +≤ (6-7)

And the range query can be expressed as:

 ()() ()()kk S~,SdrS~,Qd +≤ (6-8)

Since ()kQ~ is the best approximation of Q at level k , then for any OS ∈ we have:

()() ()()kk Q~,QdS~,Qd ≥ (6-9)

So (6-8) can be expressed as:

 ()() ()()kk S~,SdrQ~,Qd +≤ (6-10)

This means that all the data objects that satisfy:

()() ()()kk S~,SdrQ~,Qd +> (6-11)

Should also be excluded.

From both (6-6) and (6-11), we can write:

()() ()() rS~,SdQ~,Qd kk >− (6-12)

Inequality (6-12) defines the first exclusion condition, which we call the first filter.

On the other hand, by applying the triangle inequality again, we get:

() ()() ()() ()()kkkk S~,SdS,Q~dQ~,S~d +≤ (6-13)

Using the triangle inequality again, and substituting in the above relation we get:

Multi-resolution Approaches to Time Series Indexing and Retrieval

 134

 () ()() () ()() ()()kkkk S~,SdQ~,QdS,QdQ~,S~d ++≤ (6-14)

Or:

 () ()() ()() ()()kkkk S~,SdQ~,QdrQ~,S~d ++≤ (6-15)

If d and Rd are Euclidean, and taking (6-1) into account, we can write:

 () ()() () ()()kkkRkRR Q~,S~dQ,Sd ≤ (6-16)

By substituting in (6-15) we get the second exclusion condition:

() ()() ()() ()()kkkRkRR S~,SdQ~,QdrQ,Sd ++> (6-17)

We call the above exclusion condition the second filter.

6.2.4 The Algorithm Description

At indexing-time: The application of our method starts by choosing the length of
segments for each resolution level. There is no optimal choice of lengths, so we
choose lengths which are of power of 2 for convenience. The segmenting is recursive
so all the points of a certain level are included in a higher level. The shortest length
corresponds to the highest level, and the longest corresponds to the lowest level.

Next we choose the approximating function to be used with all the time series and for
all resolution levels. This means that if we choose to use a polynomial of the first
degree, then all the segments of all the times series in the database, and for all
resolution levels, should be approximated using a polynomial of the first degree. Our
method works with any polynomial, or even any other approximating function.
However, we use polynomials for their simplicity.

We compute and store all the distances ()() OSS~,Sd k ∈∀

At query-time: The query is divided into segments with the same lengths as those of
the indexed time series and for each resolution level. These segments are
approximated using an approximating function of the same type that was used to
approximate the time series at indexing-time. The distances ()()kQ~,Qd are computed.

Notice that ()()kQ~,Qd are computed only once for all the time series in the database.

At each resolution level, the first filter is less costly to apply than the second filter,
because it does not include any distance evaluation, since the two distances it uses
have already been pre-computed at indexing-time. The second filter contains two

Multi-resolution Approaches to Time Series Indexing and Retrieval

 135

distances that have been computed at indexing-time (()() ()()kk S~,Sd,Q~,Qd), so the

only distance that is to be computed at query-time is () ()()kRkRR Q,Sd . Since lower
resolution levels have lower dimensions, the second filter is less costly to compute at
those levels than at higher levels, where the dimensionality increases. But at any level,
the cost of applying the second filter is never as costly as the distance computations at
the original space, because we assumed that nm≤2 .

We start with the lowest level and try to exclude the first time series using (6-12). If
this time series is excluded, we move to the next time series, if not, we try to exclude
this time series using relation (6-17). If all the time series in the database have been
excluded the algorithm terminates immediately, if not, the algorithm moves to a
higher level. Finally, after all levels have been exploited, we get a candidate answer
set which is sequentially scanned to filter out any false alarms and obtain the final
answer set.

So the proposed algorithm does not compute a more expensive distance calculation
unless it has failed to exclude the time series using a less expensive distance at a
lower resolution level.

6.2.5 Experiments

We conducted extensive experiments on different datasets available at [190] in a
similarity search problem. Because scalability is a desired property in similarity
search algorithms, and to make sure that our experiments are statistically significant,
we excluded the datasets that are too small (less than 100 instances). So the datasets
we tested have sizes that vary between 100 and 6164 time series. The length of the
time series varied between (60) and (463). The approximating functions we used in
our experiments were polynomials of the first, third, and fifth degree. The distance we
used for both d and Rd was the Euclidian distance. We compared our method with
sequential scanning (also with the Euclidean distance) since this is the baseline
method. The values of r varied between r that returns 1% of the time series of that
dataset (in sequential scanning) and r that returns 10% of the time series. For each
dataset and for each value of r we launched the query 100 times and took the average
of these 100 runs. The queries in all cases were time series from the dataset chosen at
random, then noise was added to them.

Although several papers present experiments based on wall clock time, it is a poor
choice and subject to bias [92], [57] so we preferred to use another method in the all
the experiments we conducted in this chapter.

We opted for a platform-independent approach to test our method using the latency
time concept obtained from a performance study of floating point operations [167].
The latency time is based on the number of cycles the processor takes to perform
different arithmetic operations, so we added a counter to compute the number of

Multi-resolution Approaches to Time Series Indexing and Retrieval

 136

different operations (>, +, -, *, abs, sqrt) that both sequential scanning and our method
took in the search process. Then the number of each operation was multiplied by the
latency time of that operation to get the total latency time for sequential scanning and
for our method. The latency time is 5 cycles for (>, +, -), 1 cycle for (abs), 24 cycles
for (*), and 209 cycles for (sqrt). This approach actually puts our method at a
disadvantage, because our method uses the square root operation, which is an
expensive operation, more often. So the results of the experiments should be viewed
as a worst-case performance of our method. Figure 6.4, shows some the results we
obtained using as an approximating function a first, third, and fifth degree
polynomial, on time series of average length (between 128 and 150). The results show
that MIR outperforms sequential scanning by an order of magnitude on average.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
1

2

3

4

5

6

7
x 10

5

r

La
te

nc
y

Ti
m

e

Gun Point

P1
P3
P5
Sequential Scan

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
x 106

r

La
te

nc
y

Ti
m

e

Swedish Leaf

P1
P3
P5
Sequential Scan

Fig. 6.4. Comparison of the latency time between sequential scanning and MIR on datasets
(Gun Point, length=150) (above), and (Swedish Leaf, length=128) (below). The figure shows
the latency time using as an approximating function a polynomial of the first (P1), third (P3),
and fifth degree (P5)

Multi-resolution Approaches to Time Series Indexing and Retrieval

 137

Comparing the performance with the length of the time series shows that the
performance of MIR improves in general as the time series get longer. Figure 6.5
shows the results we obtained with the two longest time series among the tested
datasets (Yoga, length=426) and (Fish, length=463).

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 107

r

La
te

nc
y

Ti
m

e

Yoga

P1
P3
P5
Sequential Scan

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5
x 10

6

r

La
te

nc
y

Ti
m

e

Fish

P1
P3
P5
Sequential Scan

Fig. 6.5. The performance of the two longest datasets (Yoga) and (Fish)

We can also see from Figure 6.5 that as the time series get longer, the degree of the
polynomial has less impact on the performance of the algorithm. In order to examine
this phenomenon more closely, we tested MIR on the dataset (motorCurrent,
length=1500, from [156]). This dataset is almost four times as long as the datasets at
[190]. Figure 6.6 shows the results we obtained from applying MIR to this dataset.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 138

10 15 20 25 30 35 40
0

0.5

1

1.5

2
x 107

r

La
te

nc
y

Ti
m

e
motorCurrent

P1
P3
P5
Sequential Scan

Fig. 6.6. Comparison of the latency time between sequential scanning and MIR on dataset
(motorCurrent).

These results enhance the two previously stated outcomes that the performance gets
better in general as the time series get longer, and the influence of the polynomial
degree decreases in this case.

We also designed a particular experiment to study the relationship between the length
of the time series and the performance of MIR: We chose a particular dataset called
(Tickwise) (from [182]). This dataset consists of one very long time series (279113).
We extracted the first (204800) part of it to construct a dataset of 200 time series each
has a length of (1024) (power of 2). We call this dataset (Long Tickwise). We
constructed another dataset called (Short Tickwise) which consists of 200 time series
each of which is the first (128) part of (Long Tickwise), so the two datasets have the
same nature (the same data) and the same size. The only difference is the length of the
time series. Figure 6.7 shows a comparison of the latency time of the two constructed
datasets using a first degree polynomial as an approximating function. Since the
number of operations of sequential scanning is different, Figure 6.7 shows the
proportion of the number of operations that dataset needed to perform the similarity
search using MIR to the number of operations the sequential scanning needed to
perform the similarity search on that dataset. Notice that the values of r that return
1%-10% of the time series are not the same for the two datasets so the values of r in
Figure 6.7 are superposed.

The results clearly show that the performance of MIR improves as the length of the
time series gets longer for this dataset.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 139

LongTickwise

ShortTickwise

r1

r2

r3

r4

0

10

20

30

40

50

60

r

%
 o

f N
r o

f O
pe

rs
. o

f S
eq

. S
ca

n.
LongTickwise
ShortTickwise

Fig. 6.7. Comparison of the proportion of operations of (LongTichwise) to the number of
operations of sequential scanning of (LongTichwise) with the proportion of operations of
(ShortTickwise) to the number of operations of sequential scanning of (ShortTichwise). The
approximating function is a first degree polynomial.

The experiments show that the exclusion process depends on the value of r , the
resolution level, and the dataset in question. Figure 6.8 shows the exclusion process
for two datasets (Adiac) and (ECG200) for the value of r that returns 1% of the time
series. The time series in (Adiac) have a length of (176), so this dataset uses 7
resolution levels, while time series in (ECG200) have a length of (96) so this dataset
uses 6 resolution levels. The approximating function is a first degree polynomial.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 140

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

Resolution Level

Adiac

Filter 1
Filter 2

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

Resolution Level

ECG200

Filter 1
Filter 2

Fig. 6.8. The exclusion process of datasets (Adiac) (above) and (ECG200) (below) for r that
returns 1% of the time series.

It is important to mention that Figure 6.8 does not show the exclusion power of each
resolution level or each filter but only how these participate in the exclusion process,
since at each resolution level the algorithm starts by applying the first filter and it
applies the second filter only on the time series that could not be excluded by the first
filter. This in fact means that the second filter has a higher exclusion power than the
first filter. Likewise, the algorithm does not move to a resolution level k unless it has
failed to exclude the time series at resolution level k-1, but the exclusion power of
level k is higher than that of level k-1 since each level contains all the data in the
previous level in addition to new data.

As we can see from Figure 6.8, the exclusion effect for small values of r results
mainly from the first filter. We can also see that, in general, the exclusion power of
the first filter decreases as the resolution level gets higher. The exclusion power of the
first filter also decreases when r gets larger as we can see from Figure 6.9 which

Multi-resolution Approaches to Time Series Indexing and Retrieval

 141

shows the exclusion process of the same datasets presented in Figure 6.8 but for
values of r that return 10% of the time series

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Resolution Level

Adiac

Filter 1
Filter 2

1 2 3 4 5 6
0

10

20

30

40

50

60

70

Resolution Level

ECG200

Filter 1
Filter 2

Fig. 6.9. The exclusion process of datasets (Adiac) (above) and (ECG200) (below) for r that
returns 10% of the time series.

Several different heuristics can improve the performance of our method. For instance,
sorting the distances before applying the exclusion conditions reduced the number of
operations required to perform the similarity query. Figure 6.10 shows a comparison
of this heuristic applied to dataset (Two Patterns) with an approximating polynomial
of the first degree.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 142

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5
x 10

7

r

La
te

nc
y

Ti
m

e
Two Patterns

Unsorted
Sorted

Fig. 6.10. Comparison of the latency time of MIR applied with and without sorted distances on
dataset (Two Patterns) using a first degree polynomial as an approximating function

6.2.6 Remarks on the Filtering Process

The experiments show that the performance of the two filters seems to be
complementary, since the first filter filters out more time series at lower resolution
levels, while the second filter filters out more time series at higher levels. This
phenomenon can be explained by examining relations (6-12) and (6-17): at lower
resolution levels the segments are longer, so the approximation error is higher. As a
consequence, the absolute difference in the first filter is a difference between
relatively large numbers: ()()kQ~,Qd , ()()kS~,Sd ,so this difference has a better chance
of exceeding r and excluding the time series than at higher levels where the
approximation is better, so these numbers become smaller and their difference has
less chance of exceeding r .

The performance of the second filter is different: at lower levels),()()(kRkRR QSd is
small while ()() ()()kk S~,SdQ~,Qd + is relatively large (see the beginning of this section), so
the chance for this filter to exclude time series is low. As the resolution level gets
higher),()()(kRkRR QSd gets larger, while ()() ()()kk S~,SdQ~,Qd + gets smaller, so this filter
has a better chance of excluding time series at higher levels.

An interesting phenomenon we noticed is that in some datasets, for very small r , the
performance of MIR drops as we use a higher degree approximating function. We
think the reason for this is that the algorithm pays an overhead cost when using a
higher degree approximation.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 143

We also notice that as the degree of the approximating function gets higher, the
performance of the first filter deteriorates.

In general, the exclusion process of MIR is complex as at each step the number of
time series that can be excluded depends on what has been excluded so far. As we
mentioned in Section 6.2.4, this depends on the dataset, the resolution level and the
value of r .

6.2.7 Discussion

We presented a new algorithm to tackle the similarity search problem. The proposed
algorithm is based on a fast-and-dirty filtering scheme that iteratively reduces the
search space. For each resolution level the time series are represented by an
appropriate approximating function. The distance between the time series and the
approximating function is computed and stored at indexing-time. At query-time,
assigned filters use these pre-computed distances to exclude wide regions of the
search space, which do not contain answers to the query, using the least number of
query-time distance computations. The resolution level is progressively increased to
converge towards higher resolution levels where the exclusion power rises, but the
cost of query-time distance computations also increases. The proposed method uses
lower bounding distances, so there are no false dismissals, and the search process
returns all the true answers to the query. A post-processing scanning on this candidate
response set is performed to filter out any false alarms and return the final response
set. The conducted experiments on the proposed method give promising results. In all
the experiments, the performance was much better than that of sequential scanning for
small values of r , and was better than sequential scanning even for large values of r

In this section we presented the results obtained by using the Euclidean distance, but
our method can support a variety of distances. We conducted other experiments using
L1 distance and they gave similar results.

6.3 Combining a Multi-resolution Filter with a
Representation Method-Strong MIR

In this section we introduce another version of our multi-resolution method that does
not function autonomously but by accompanying a representation method. We show
how an algorithm based on coupling the principle of multi-resolution fast-and-dirty
filtering we presented in Section 6.2 with a dimensionality reduction technique can
boost its performance. Since this algorithm requires that the dimensionality reduction
method be lower bounding to the original similarity distance on the raw data (which is
practically the case with most dimensionality reduction techniques) our method is
mathematically “strong”. We call our method the Multi-resolution Indexing and
Retrieval_X (MIR_X), where X is the dimensionality reduction technique used.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 144

6.3.1 The Principle

Let O be the original, n -dimensional space where the time series are embedded. Each
time series OS ∈ is divided into N consecutive segments, where mN 2= is the
dimension of the reduced space, i.e. the space that the dimensionality reduction
technique uses. Each segment [ti , tj] of this time series is approximated by a function
of low dimension in the same way we did in Section 6.2.2. We proceed in the same
way to get the image vector of the time series in the database.

Let R be the lower N -dimensional space that the dimensionality reduction technique
uses, where nN< . The time series in the database are represented in the reduced
space R using the chosen dimensionality reduction technique.

So now each time series has two representations: the first is an n -dimensional one, by
using the approximating function, and the second is an N -dimensional one, by using
the dimensionality reduction technique. Figure 6.11 illustrates the different concepts
we presented in this section, where the dimensionality reduction technique used is
PAA, and the approximating function is a first-degree polynomial.

Our method uses two similarity distances: the first is denoted by d , and is defined on
an n -dimensional space, so it is the distance between two time series in the original
space or the distance between the original time series and its image vector (see
Section 6.2.2) The second distance is denoted by Nd , and it is the distance defined by
the chosen dimensionality reduction technique.

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

PAA

the image vector

the approximating function

the time series

Fig. 6.11. The different concepts of the principle of MIR_PAA (the dimensionality reduction
technique used is PAA). The segments are approximated by a first-degree polynomial

Multi-resolution Approaches to Time Series Indexing and Retrieval

 145

6.3.2 The Filtering Process

The two filters described in Section 6.2.3 can be used with MIR_X. However, using
the exclusion condition of a dimensionality reduction technique which uses a lower
bounding condition to the distance in the original space makes the second filter
described in Section 6.2.3 redundant, because it is overwritten by the more powerful
exclusion condition of the dimensionality reduction technique.

6.3.3 The Algorithm

At indexing-time: We start by choosing the dimensionality reduction technique to be
used, and then we choose the length of segments at each resolution level. Then we
choose the approximating function to be used with all the time series and for all
resolution levels. We compute and store all the distances ()() OSS~,Sd k ∈∀ , for all
resolution levels the same way we did in Section 6.2.4.

At query-time: Like in Section 6.2.4, the query is segmented at each resolution level
using the same lengths of segments that were used to segment the time series. Then
these segments are approximated using an approximating function of the same type
and degree that was used to approximate the time series. The query is also represented
using the same dimensionality reduction technique that was used at indexing-time.

The distances () ()()kRkRN S,Qd are computed when needed (only when needed).
()()kQ~,Qd is also computed.

At each resolution level, the exclusion condition defined by relation (6-12) is much
less costly than the exclusion condition defined by the dimensionality reduction
technique, because the first filter does not include any distance computations, since
the two distances it uses have already been computed at indexing-time.

Just like with MIR, the algorithm starts at the lowest resolution level by applying the
first filter to the first time series. If this first time series is excluded, we move to the
next time series and apply the first filter to this second time series, if it is not

excluded, the algorithm computes () ()()kRkRN S,Qd for this first time series and at
that level and applies the exclusion condition of the dimensionality reduction
technique to this first time series, then it moves to the next time series. The algorithm
continues in the same manner as that of MIR for higher resolution levels. At the end
we get a candidate answer set which is sequentially scanned using the original
distance to get the final answer set.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 146

6.3.4 Experimental Validation

We tested our new method using the same the datasets available at [190] in a
similarity search problem. We also excluded the datasets that are too small like we did
in the experiments in Section 6.2.5. We first tested our method using PAA because
this dimensionality reduction technique is widely used and the concept of multi-
resolution on this method is straightforward. The objective of our experiments was to
see how much our method (MIR_PAA) improves the performance of the
dimensionality reduction technique (PAA) when this latter is used as a standalone
technique. The compression ratio is 1:4. We chose this compression ratio since it is
the compression ratio used with PAA.

We compared the number of operations that (MIR_PAA) needed to perform the
similarity search with the number of operations that (PAA), as a standalone method,
needed, using the latency time concept. The number of operations that sequential
scanning needed was also computed for comparison reasons.

The approximating function we used was a first-degree polynomial. The results were
also the average of 100 runs on each dataset.

In the case where N is not a factor of n , the authors of [92] padded the time series
with zeros. This approach actually puts our method at a disadvantage, because we
have different values of N , which correspond to different resolution levels, so we
have to add more zeros. But still, we tested our method using this approach. In Figure
6.12 we present some of the results we got. The results we got using other datasets
were similar.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 147

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3
x 107

r

La
te

nc
y

Ti
m

e
Wafer

MIRPAA
PAA
Sequential Scan

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x 107

r

La
te

nc
y

Ti
m

e

Yoga

MIRPAA
PAA
Sequential Scan

Fig. 6.12. Comparison of the latency times of sequential scanning, MIR_PAA, and PAA, on
datasets (Wafer) (above), and (Yoga) (below). The approximating function is a first-degree
polynomial. The time series are padded with zeros

We also conducted other experiments, where the time series were truncated so that N
is a factor ofn . In this case there is no need to add zeros, so the methods are applied
to real data only. We show in Figure 6.13 some of the results we obtained. We
obtained similar results when we conducted these experiments on the other data sets.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 148

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5
x 106

r

La
te

nc
y

Ti
m

e
50words

MIRPAA
PAA
Sequential Scan

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5
x 106

r

La
te

nc
y

Ti
m

e

CBF

MIRPAA
PAA
Sequential Scan

Fig. 6.13. Comparison of the latency times of sequential scanning, MIR_PAA, and PAA, on
datasets (50words) (above), and (CBF) (below). The approximating function is a first-degree
polynomial. The time series are truncated

We also tested our method using SAX as a dimensionality reduction technique
because it is a fast method, so we wanted to see if our method can still speed up a
dimensionality reduction technique which is already fast. As mentioned before, SAX
appeared in two versions; in the first one the alphabet size varied in the interval
(3:10), and in the second one the alphabet size varied in the interval (3:20).

We conducted experiments on different datasets from [190], and for different values
of the alphabet size. The codes we used in the experiments were optimized versions of
the original codes, since the original codes written by the authors of SAX were not
optimized for speed

Multi-resolution Approaches to Time Series Indexing and Retrieval

 149

We report in Tables 6.1 and in Figure 6.14 the results of (Wafer). We chose to present
the results of this dataset in particular because it is the largest dataset in the repository,
also because it is shown in [112] by the authors of SAX that the best results obtained
with SAX were with this dataset. The results shown here are for alphabet size 3 (the
smallest alphabet size possible for SAX), 10 (the largest alphabet size in the first
version of SAX), and 20 (the largest alphabet size in the second version of SAX).

Table 6.1. Comparison of the latency time between SAX and MIR_SAX for r=1:4 and alphabet
size=3, 10, 20

α= 3 α= 10 α= 20

MIR_SAX 1.0592E6 3.7136E5 2.6734E5

 SAX 5.1291E6 1.5764E6 1.2759E6

r=1
(a)

α= 3 α= 10 α= 20

MIR_SAX 7.2062E6 3.3509E6 2.2255E6

SAX 1.567E7 4.8078E6 3.4253E6

r=2
(b)

α= 3 α= 10 α= 20

MIR_SAX 1.3717E7 1.1444E7 9.5446E6

SAX 2.1944E7 1.4428E7 1.1144E7

r=3
(c)

α= 3 α= 10 α= 20

MIR_SAX 2.2697E7 1.6928E7 1.6611E7

SAX 2.8287E7 2.2179E7 1.9877E7

r=4
(d)

The results obtained show that MIR_SAX outperforms SAX for the different values
of r and for the different values of the alphabet size.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 150

The results of testing our method on all the other datasets are similar to the results
obtained with (Wafer)

MIR SAX
SAX

1
2

3
4

0

0.5

1

1.5

2

2.5

3

x 107

alphabet size=3

r

N
r o

f O
pe

ra
tio

ns

MIR SAX
SAX

MIR SAX
SAX

1
2

3
4

0

0.5

1

1.5

2

2.5

x 107

alphabet size=10

r

N
r o

f O
pe

ra
tio

ns

MIR SAX
SAX

MIR SAX
SAX

1
2

3
4

0

0.5

1

1.5

2

2.5

x 107

alphabet size=20

r

N
r o

f O
pe

ra
tio

ns

MIR SAX
SAX

Fig. 6.14. Comparison of the latency time between MIR_SAX and SAX for alphabet size=3,
10, and 20

Multi-resolution Approaches to Time Series Indexing and Retrieval

 151

We wanted to see if training will improve the performance of our method. The basis
of this experiment is that we noticed that the performance of MIR_X is related to the
value of r , so we wanted to find an optimal scheme to using MIR_X by making the
algorithm decide whether to continue with the available resolution levels or to
terminate this process and move directly to post-processing when it estimates that the
rest of the resolution levels will probably not exclude many time series. The protocol
we used for this experiment was as follows: at indexing-time we used more resolution
levels than usual (12 levels for (Wafer) compared with 6 levels for untrained
experiments, of course in this experiment the length of the time series was not a
power of 2 but arbitrary). Then for each value of r , we tested all possible
combinations of resolution levels that yield the minimum latency time. The dataset we
used in the training is (Wafer_training) (also from [190]). The optimal combination of
resolution levels that corresponds to a certain value of r that we got from training the
algorithm on (Wafer_training) was used with (Wafer_test). Figure 6.15 shows that the
latency time of the trained MIR_PAA is shorter than that of untrained MIR_PAA.
Interestingly, we see in Figure 6.15 that training is more beneficial as r gets larger.

Training other datasets gave similar results.

1 2 3 4 5 6
0

2

4

6

8

10

12
x 106

r

La
te

nc
y

Ti
m

e

trained MIR PAA
untrained MIR PAA

Fig. 6.15. Comparison between the latency time of trained MIR_PAA and untrained
MIR_PAA on dataset (Wafer)

6.3.5 Discussion

In this Section we presented a new frame to tackle the similarity search problem. The
basis of this frame is to combine a dimensionality reduction technique with a multi-
resolution fast-and-dirty filter to enhance the pruning power of this technique. We
conducted several experiments which show that the proposed frame improves the
performance of dimensionality reduction techniques.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 152

Other heuristics can be used to improve our frame, like recycling the computations
when we move from one resolution level to another, or sorting the distances before
applying the first filter.

In our experiments we tested our method using PAA and SAX because of the reasons
we mentioned in Section 6.3.4, but most papers on time series multi-resolution
indexing methods use DWT because of the multi-resolution nature of this
representation method. We think further investigation on applying MIR with DWT is
worth considering.

6.4 An Improved Multi-resolution Indexing and Retrieval
Algorithm –Tight MIR

In this section we revisit Sections 6.2 and 6.3 and introduce a third version of our
multi-resolution algorithm. This improved version, which we call Tight_MIR has the
advantages of both MIR and MIR_X in that it is a standalone method, like MIR, yet it
has the same competitive performance of MIR_X.

6.4.1 Motivation

The two distances ()()kQ~,Qd , ()()kS~,Sd in the second filter of MIR (relation (6-17))
lower its pruning power. That is why the performance of MIR is not as good as that of
MIR_X which uses an exclusion condition that does not contain those distances. MIR
has one main advantage; it is a standalone method, unlike MIR_X .

On the other hand, although the performance of MIR_X is better than that of MIR, it
is completely dependent on the dimensionality reduction technique used. Its
application requires adopting a different concept of resolution level for each
dimensionality reduction technique, which is not intuitive. Besides, some
dimensionality reduction techniques have certain restrictions (the length of the time
series should be a power of 2 for DWT, N should be a factor of n for PAA and
SAX). All these factors influence the application of MIR_X.

6.4.2 The Principle and the Algorithm

The redundancy of the second filter in the case of MIR_X suggests that our multi-
resolution algorithm can be applied using two separate filters.

In Tight_MIR instead of using the projection vector to construct the second filter, we
access the raw data in the original space directly using a number of points that

Multi-resolution Approaches to Time Series Indexing and Retrieval

 153

corresponds to the dimensionality of the reduced space at that resolution level. In
other words, we use m2 raw points, instead of m2 main images, to compute Rd .

There are several positive effects to this modification; the first is that the new Rd is

obviously tighter than Rd as computed in Section 6.2. The second is that when using

a Minkowski distance Rd is lower bounding to the original distance in the original
space. The direct consequence of this is that the two distances ()()kQ~,Qd ,

()()kS~,Sd become redundant, so the second filter is overwritten by the usual, more

powerful, lower bounding condition () ()() rQ,Sd kRkRR > .

Notice that the complexity of the modified Rd is ()mO 2 which is the same
complexity described in Section 6.2. So this modification does not require any extra
cost.

The algorithm we use to apply Tight_MIR is similar to the one described in Section
6.2.4.

6.4.3 Performance Evaluation

The objective of our experiments is to show that the modified algorithm Tight_MIR
has the advantages of both MIR and MIR_X together, so we have to show that it
outperforms MIR, and that it has the same performance as that of MIR_X. We also
conduct other experiments to compare Tight_MIR directly against other
dimensionality reduction techniques, because Tight_MIR is a standalone method
(unlike MIR_X).

We conducted extensive experiments using datasets of different sizes and dimensions
and from different repositories [156], [175], [181], [190].

We first show a comparison between MIR and Tight_MIR. The way Rd is computed
in Tight_MIR enables us to modify the codes used to avoid the square root, which is a
very costly operation, when applying the second filter. Of course the exclusion
condition of sequential scanning was also modified in a similar way to avoid this
operation. Because this modification is not possible with MIR, the comparison we
present here is made between the speed-up of MIR and Tight_MIR compared to
sequential scanning. In Figure 6.16 we present the results of four datasets. The results
clearly show that Tight_MIR outperforms MIR for all the datasets and for the
different values of r . As in the experiments of Sections 6.2 and 6.3, the values of
r vary between those which return 1% and 10% of the time series in sequential
scanning.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 154

Tight-MIR
MIR

r1r2r3r4r5r6
0

10

20

30

40

50

60

Fish

r

%
 o

f N
r o

f O
pe

rs
. o

f S
eq

.S
ca

n.

Tight-MIR
MIR

Tight-MIR
MIR

r1r2r3r4r5r6

0

5

10

15

20

25

30

35

Yoga

r

%
 o

f N
r o

f O
pe

rs
. o

f S
eq

.S
ca

n.

Tight-MIR
MIR

Fig. 6.16. Comparison of the speed-up of MIR and Tight_MIR on four datasets (Fish), (Yoga),
(SwedishLeaf), and (GunPoint) over sequential scanning.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 155

Tight-MIR
MIR

r1
r2

r3
r4

r5
0

10

20

30

40

50

60

70

SwedishLeaf

r

%
 o

f N
r o

f O
pe

rs
. o

f S
eq

.S
ca

n.

Tight-MIR
MIR

Tight-MIR
MIR

r1
r2

r3
r4

r5

0

10

20

30

40

50

60

GunPoint

r

%
 o

f N
r o

f O
pe

rs
. o

f S
eq

.S
ca

n.

Tight-MIR
MIR

Fig. 6.16. (Continued).

Multi-resolution Approaches to Time Series Indexing and Retrieval

 156

In the second series of experiments we compared MIR_X, with Tight_MIR to show
that the two methods give similar results. Figure 6.17 shows some of the results we
obtained comparing Tight_MIR with MIR_PAA. The results presented show that
MIR_PAA and Tight_MIR have the same performance. In fact, we can even say that
the performance of Tight_MIR is even slightly better.

Comparing Tight_MIR with MIR_SAX also showed that the two methods have the
same performance.

It is important to mention that both MIR_PAA and MIR_SAX require that N be a
factor of n , the length of the time series, but Tight_MIR does not.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

6

r

La
te

nc
y

Ti
m

e

CBF

Tight MIR
MIR PAA

1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7
x 10

6

r

La
te

nc
y

Ti
m

e
FaceAll

Tight MIR
MIR PAA

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

r

La
te

nc
y

Ti
m

e

GunPoint

Tight MIR
MIR PAA

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12

14
x 10

6

r

La
te

nc
y

Ti
m

e

Wafer

Tight MIR
MIR PAA

Fig. 6.17. Comparison between MIR_PAA and Tight_MIR on datasets (CBF), (FaceAll),
(GunPoint) , and (Wafer).

We also conducted other experiments to compare Tight_MIR with PAA, using
different datasets and different values of r . We report in Figure 6.18 some of the
results we obtained. The results show that Tight_MIR outperforms PAA for all the
datasets.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 157

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5
x 106

r

La
te

nc
y

Ti
m

e

CBF

Tight MIR
PAA

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10
x 106

r

La
te

nc
y

Ti
m

e

Yoga

Tight MIR
PAA

10 15 20 25 30 35 40
0

1

2

3

4

5

6
x 106

r

La
te

nc
y

Ti
m

e

motorCurrent

Tight MIR
PAA

4 6 8 10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

r

La
te

nc
y

Ti
m

e

Foetal ecg

Tight MIR
PAA

Fig. 6.18. Comparison between PAA and Tight_MIR on datasets (CBF), (Yoga),
(motorCurrent), and (Foetal ecg)

Multi-resolution Approaches to Time Series Indexing and Retrieval

 158

We also conducted experiments comparing Tight_MIR with SAX on different
datasets, and for different values of the alphabet size. The codes we used in the
experiments were optimized versions of the original ones, because the original codes
written by the authors of SAX were not optimized for speed, so we optimized them to
make a fair comparison.

We report in Figure 6.19 the results of several datasets and for different values of r .
The results shown here are for alphabet size 3, 10, and 20

The results obtained show that Tight_MIR clearly outperforms SAX for the different
values of r and for the different values of the alphabet size.

It is important to mention that the results of SAX as shown Figure 6.19 may give the
fake impression that with some datasets the number of operations seems to be stable
after a certain value of r . This phenomenon does not indicate stability of
performance. It only indicates that SAX examined all the indexed time series using
the lower bounding condition without being able to exclude any time series, so the
search process moved to sequential scanning. So this phenomenon is the worst
scenario possible because the number of operations exceeds even that of sequential
scanning and reaches the maximum possible number of operations, i.e. the maximum
number of distance evaluations.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 159

Tight-MIR
SAX20

SAX10
SAX3

r1
r2

r3
r4

r5
r6

0

0.5

1

1.5

2

2.5

x 10
7

Yoga

r

La
te

nc
y

Ti
m

e

Tight-MIR
SAX20
SAX10
SAX3

Tight-MIR
SAX20

SAX10
SAX3

r1
r2

r3
r4

r5

0

1

2

3

4

5

6

7

x 10
6

FaceAll

r

La
te

nc
y

Ti
m

e

Tight-MIR
SAX20
SAX10
SAX3

Fig. 6.19. Comparison of the latency time between Tight_MIR and SAX for alphabet size=3,
10, and 20 on datasets (Yoga), (FaceAll), (CBF), and (motoCurrent)

Multi-resolution Approaches to Time Series Indexing and Retrieval

 160

Tight-MIR
SAX20

SAX10
SAX3

r1
r2

r3
r4

r5

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
6

CBF

r

La
te

nc
y

Ti
m

e

Tight-MIR
SAX20
SAX10
SAX3

Tight-MIR
SAX20

SAX10
SAX3

r1
r2

r3
r4

r5

0

2

4

6

8

10

12

14

x 10
6

motorCurrent

r

La
te

nc
y

Ti
m

e

Tight-MIR
SAX20
SAX10
SAX3

Fig. 6.19. (Continued)

Multi-resolution Approaches to Time Series Indexing and Retrieval

 161

In all the experiments we presented so far the comparison was made based on speed
as measured by the latency time, but comparisons between representation methods
can also be made according to their pruning power. In Table 6.2 we present the
pruning power of Tight_MIR and SAX with alphabet size=20 (which is the most
effective version of SAX) on the datasets presented in Figure 6.19. The results show
that the pruning power of Tight_MIR is much more stable than that of SAX20 as r
gets larger.

Table 6.2. Comparison of the pruning power between Tight_MIR and SAX20 (alphabet
size=20) for the smallest and largest values of r that were used in the experiments presented in
Figure 6.19. The numbers show the percentage of the number of time series that the method
excluded to the total number of time series that sequential scanning excludes

 SAX20 Tight_MIR

 r min r max r min r max

CBF 99.89 % 14.88 % 99.89 % 98.69 %

FaceAll 99.94 % 7.51 % 99.94 % 98.89 %

motoCurrent 98.40 % 33.15 % 99.87 % 88.13 %

Yoga 99.53 % 37.61 % 99.63 % 85.84 %

In the final set of experiments we wanted to test if the performance of Tight_MIR is
stable with different lengths of time series. We conducted experiments using datasets
of different dimensions and the results showed high stability of performance. We
present in Figure 6.20 the results of applying Tight_MIR on dataset (Wind) whose
length is 12, and dataset (motorCurrent) whose length is 1500, compared to sequential
scanning which represents the baseline performance.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 162

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 106

r

La
te

nc
y

Ti
m

e
Wind

Tight MIR
Sequential Scan

10 15 20 25 30 35 40
0

2

4

6

8

10

12

14
x 106

r

La
te

nc
y

Ti
m

e

motorCurrent

Tight MIR
Sequential Scan

Fig. 6.20. Comparison of the latency time between Tight_MIR and sequential scanning on
datasets (Wind) and (motorCurrent)

6.4.4 Discussion

In this section we presented an improved multi-resolution algorithm of time series
retrieval. This new algorithm combines the advantages of the two previously proposed
algorithms in this chapter MIR and MIR_X. We conducted extensive experiments
comparing the new algorithm with the two other algorithms. The results of the
experiments show the superiority of the improved algorithm over the two previous
ones.

We also conducted other experiments which compare the performance of the new
algorithm with other dimensionality reduction techniques. The results also show that
the improved algorithm outperforms the tested dimensionality reduction techniques
both in terms of speed and pruning power.

Multi-resolution Approaches to Time Series Indexing and Retrieval

 163

6.5 What Next?

Our objective in presenting the three multi-resolution algorithms we introduced in this
chapter was to show the merits of multi-resolution approaches in economizing
distance computations to the lowest degree possible. But we think these are the first
steps on a long road of exploiting these approaches, and we think there is still a lot of
research to be done on multi-resolution approaches.

The approximating functions we used in this chapter were polynomials because of
their simplicity, but we think that other types of functions, which are particularly
designed to approximate time series, can even give better results.

We also think that multidimensional time series is another direction of future work.
The multidimensional nature of these time series data seems to comply with the multi-
resolution aspect of our algorithms.

Training the algorithm seems to have many advantages. The step-by-step behavior of
the three algorithms we presented in this chapter substantially hinders their
performance. The simple training experiment we conducted in Section 6.2.4 shows
the potential advantage of training these algorithms. The main difficulty is that we
have several parameters that influence the performance of our multi-resolution
algorithms. We think a more sophisticated training paradigm using neural networks,
which are effective in training algorithms with several parameters, can boost the
performance of our algorithms so that the search process can access promising levels
directly and terminates immediately when processing indexed data is no longer cost-
effective.

Another major direction of future work is to use landmark methods in choosing the
points we select at each resolution level. Landmarks models [153] extract points of
great importance and identify them as landmark points. This complies with the
method of adaptive sampling we presented in Chapter 4 except that in this case the
sampling should choose points of great importance. When we were working on our
algorithm we thought that choosing the points of each resolution level based on a
landmark model could give much better results. The problem with this approach is
that the points we select from times series i at a certain resolution level may have
different time stamps as time series j at the same resolution level, which is
something the Euclidean distance can not deal with. DTW, on the other hand, can deal
with time series with different time stamps, but DTW violates the triangle inequality,
so it can not be applied with our algorithms, not to mention that it is costly..

We think the answer might come from a new distance metric that can deal with time
series of different time stamps (non-uniformly sampled). This distance is called Time
Warp Edit Distance (TWED) [124]. TWED is defined as follows:

Multi-resolution Approaches to Time Series Indexing and Retrieval

 164

 ()
() ()
() ()
() ()⎪

⎪
⎩

⎪⎪
⎨

⎧

→ΛΓ+

→Γ+

Λ→Γ+

=
−

−−

−

q
qp

,

qp
qp

,

p
qp

,

qp
,

'bB,A

'b'aB,A

'aB,A

minB,A
1

11

1
1

1
1

1
1

1

11

γλ

γλ

γλ

γλ

δ

δ

δ

δ (6-18)

with

() ()
() () ()
() () λ

λ

+=→ΛΓ

+=→Γ

+=Λ→Γ

−

−−

−

qqq

qpqpqp

ppp

'b,'bd'b

'b,'ad'b,'ad'b'a

'a,'ad'a

1

11

1

where d is any distance on 1+kR . In practice, we choose:

() () ()baLpLP t,td.b,ad'b,'ad γ+=

where γ is a parameter which characterizes the stiffness of the elastic distance γλδ , ,

and λ any positive constant element in R that corresponds to a gap penalty.

The recursion is initialized by setting:

()
() () { }

() () { }p,..,i,'a,'adB,A

q,..,j,'b,'bdB,A

B,A

kk

i

k

i
,

j

k
kk

j
,

,

1

1

0

1
1

0
11

1
11

0
1

0
1

0
1

∈=

∈=

=

−
=

=
−

∑

∑

γλ

γλ

γλ

δ

δ

δ

 with 000 == 'b'a by convention

As mentioned earlier, this distance is metric and it is applied to time series of different
time stamps. So we think it can be an ideal distance to apply with our multi-resolution
algorithm using a landmark model. □

Multi-resolution Approaches to Time Series Indexing and Retrieval

 165

Another main direction of future work is to apply our method to other data types
where the idea of resolution level is pertinent. The main challenge here is that while
the concept of optimal approximation is familiar in time series which are generally
numeric data, this concept is unintuitive in other data types. However, the fact that the
two filters are separable is beneficial in extending our algorithm to other data types.
Although our research on a general model is still in its beginnings, we now have an
algorithm that applies our multi-resolution model to symbolic data.

 166

Chapter 7

Conclusion and Future Work

In this dissertation we addressed the problem of similarity search in high-dimensional
spaces, mainly from a metric perspective. We showed how the metric model is built
and how the similarity search problem is tackled in a metric environment. We also
presented the well-known representation methods in the time series literature. We
showed the general framework of handling time series data which aims to lower the
high-dimensionality of the time series by projecting them onto lower-dimensional
spaces and defining a lower bounding distance on these lower-dimensional spaces to
guarantee that the algorithm will not produce false dismissals. We also presented
different time series dimensionality reduction techniques and showed how they handle
this problem using different principles. We showed how symbolic methods are of
particular interest because they benefit form the well-known textual and
bioinformatics algorithm. We presented one of the most competitive time series
symbolic representation methods and showed how by using pre-computed distances
this method can substantially speed up the search process.

In the last part of this dissertation we presented multi-resolution methods in
multimedia retrieval and showed how these methods provide a new approach to
handle the similarity search problem.

7.1 Summary of the Dissertation Contributions

We present in this section the contributions of our work in the order we presented
them in this dissertation. These contributions are one minor contribution and two
categories of major contributions.

A Minor Contribution: An experimental study which evaluates the impact of
dimensionality reduction on a time series classification task. The results we obtained
show that compared with other dimensionality reduction techniques and using
different similarity measures the performance of the adaptive sampling method
remains acceptable even when using a high compression ratio. However, the
experiments were conducted on one synthetic dataset. Further experiments on other
datasets seem necessary to generalize the results we obtained.

The First Category of Major Contributions: These are the contributions that
concern symbolic data and they are grouped in two sub-categories:

Conclusion and Future Work

 167

• Different versions of extended edit distance metrics. These versions have the
advantage of considering global similarity features that the ordinary edit
distance does not consider. In addition to versions that use parameters, we
proposed a non-parametric version of these metrics. The experiments we
conducted on a time series classification task show the superiority of the
proposed versions over the edit distance. The versions we presented can be
applied to other data types as shown later by another author using one of the
versions we proposed.

• A new minimum similarity measure for SAX. The new measure UMD has

the same advantages of the original measure but it is tighter and more
intuitive. We showed through experiments that our new similarity measure
outperforms the original measure on a time series classification task for
different values of the alphabet size.

The Second Category of Major Contributions: These are three versions of multi-
resolution time series indexing and retrieval algorithms. The main principle of these
versions is to reduce the number of query-time distance evaluations by using pre-
computed distances which are calculated at indexing-time by projecting the time
series on several reduced spaces. These distances are exploited at query-time, using
assigned filters based on the triangle inequality, to filter out a large number of time
series, which are not answers to the query, without any distance evaluations, or by
using lower-cost query-time distance computations. The extensive experiments that
we present show the advantages of the proposed multi-resolution versions.

We believe we have met the initial objective that we set at the beginning of the
dissertation. Our work included the different aspects of the similarity search problem
in high-dimensional spaces, and although the experiments we conducted to test our
proposed methods used time series data, most of our work can be extended to other
data types.

7.2 Future Work

Although research in multimedia information retrieval has come a long way since its
beginnings, we believe there is still a lot to be done. We present in this section some
directions of future work in this field of computer science.

While working on this dissertation we realized the need to find different training
strategies. In most cases there was an important difference between the performance
of the algorithm on testing sets and training sets. We think the reason for this is that,
and because of the nature of time series, these training strategies produce over-fitting
models. We think other more controllable training strategies should be developed to
remedy this problem. □

Conclusion and Future Work

 168

In multimedia similarity search, the algorithms focus on establishing a system that
uses an indexed database. This system is validated on a training set before being
deployed. We think future work can use a black box approach to this problem. The
algorithm can use several indexing structures and the algorithm is trained on different
potential queries, which form a pattern set, to learn which indexing structure is best
for a certain type of queries. At query-time the algorithm can compare the query with
the members of the pattern set and decide, according to some semantics or statistics,
which member of the pattern set is closer to the query, then processing the query
using the indexing structure that was shown to be best for that member of the pattern
set. □

When I was first introduced to time series information retrieval and data mining, the
question that confused me was “but where is time in all this?”. Now with much
confidence I can say “time is not an intrinsic feature of time series indexing and
retrieval algorithms”. The way time series are presented is not different from the way
a function is presented in many applications in numerical analysis where different
values of x are given, together with their corresponding y values. Looking at time
series in this manner can greatly help see time series representation methods as a
strong, may be even the strongest, mathematical tool to handle complex figures. This
perspective of representation methods can explain all the new applications of time
series data. We think the future of representation methods will focus on this aspect;
using time series representation methods to handle different figure-related problems
for which applied mathematics could not find efficient answers. □

With the vast number of structures that were proposed to handle the similarity search
problem in metric spaces, we strongly believe that future research should focus more
on new, intelligent algorithms to exploit these already proposed structures rather than
presenting new structures. We give here this example; the performance of the great
majority of these structures degrades as the value of r gets larger, yet most structures
hardly consider this case. The explanation given for this is that in practice r is usually
small. When investigating further, we found out that no paper that we know of
defined what is considered large and what is considered small, so in our experiments
we tried to consider that any value of r that returns more than 10% of the data objects
is large. This may be one step forward, but it is still not enough, because this
phenomenon is too complex to be simplified by giving a certain percentage. We
know, for instance, that when the query lies in a dense region of data objects then a
very “small” value of r may return more than 10% of the data objects. Still, the same
query with a relatively “large” value of r may hardly return 1% of the data objects,
for the same data set, when the query lies in a sparse region of the data space. Noise
also complicates this phenomenon. But the most important thing is that in almost all
cases the user does not know at query-time if the value they are assigning to r is
“large” or “small”, and even this simplified concept which is based on the percentage
of the returned data objects would not be helpful because in many cases the user may
ignore the size of the database or the distribution of the data objects in the search
space. We can see now the consequences of applying an “unintelligent” algorithm to
handle this case. Let us say we have a query with a large value of r that returns 90%
of the data objects (this is an extreme case to help understand the example). How do

Conclusion and Future Work

 169

classical algorithms process this query? They project the query on the reduced space,
examine the query and try to exclude the data objects, which are not answers to the
query, using the distance defined on the reduced space. Of course, in this case this
distance fails to exclude at least 90% of the data objects, so the algorithm returns a
candidate answer set whose cardinality is at least 90% of the cardinality of the search
space set. Ignoring which answers are false alarms, the algorithm has to post-process
all this large candidate answer set, using the original distance, just to filter out few
false alarms. This scenario is worse than sequential scanning, let alone the overhead
storage and indexing-time calculations required. This extreme example shows the
need to find more adaptable algorithms that can process queries differently even for
the same dataset. □

When time series information retrieval was in its beginning, most papers in this field
focused on finding “universal” methods, i.e. methods that can be applied to different
datasets. Today, after long research in this field, several very competitive methods
have been proposed that it is unlikely to find universal methods which are more
competitive than existing ones. On the other hand, there are always more and more
new datasets and media. A question arises “is it still worth working on finding
universal methods?” We do know that even the most competitive method fails to give
the best results for all datasets. Not much research has been done to explore this area
of time series information retrieval and data mining. In a classification task, for
example, there are many factors that could influence the performance of a time series
representation method (the size of the dataset, its nature, the length of the time series,
the number of classes, the size of the training set and testing set, the task at hand, etc),
and may be there are other factors that we are not aware of. It would be great progress
if we could determine all the factors which affect the performance of a certain
representation method. But this objective could be too ambitious. Yet another, more
feasible goal may be reached. Different existing methods can be applied to a wide
variety of datasets. These datasets are then classified according to the most suitable
representation method for each dataset. Later whenever a new dataset is introduced, it
can be compared with these trained datasets to decide which representation method
best suits this dataset. The challenge here is to define a similarity measure between
datasets.

 170

References

[1] Achuthsankar, S N.: Computational Biology & Bioinformatics - A gentle
Overview, Communications of Computer Society of India, January (2007).

[2] Adistambha, K., Davis, S.J., Ritz, C.H. and Burnett, I.S. :Query Streaming for
Multimedia Query by Content from Mobile Devices, in proc. ICSPCS'2007 , Gold
Coast, Australia, Dec 17–19 (2007).

[3] Aggarwal, C., Hinneburg, A., and Keim, D. : On the Surprising Behavior of
Distance Metrics in High Dimensional Spaces. In Proc. 8th International Conference
on Database Theory (ICDT'01). Springer-Verlag, London, UK. (2001).

[4] Agrawal, R., Faloutsos, C., & Swami, A. :Efficient Similarity Search in Sequence
Databases. Proceedings of the 4th Conf. on Foundations of Data Organization and
Algorithms (1993).

[5] Agrawal, R., Lin, K. I., Sawhney, H. S. and Shim, K. : Fast Similarity Search in
the Presence of Noise, Scaling, and Translation in Time-series Databases, in
Proceedings of the 21st Int'l Conference on Very Large Databases. Zurich,
Switzerland (1995).

[6] Allen, E.G., Horvath, M.R.,Kopek, C.V., Lamb, B.T. , Whaples, T.S. and Berry,
M.W. :Anomaly Detection Using Non-negative Matrix Factorization, Survey of Text
Mining II, Springer London, (2007).

[7] Alonso, C. J., and Rodriguez, J. J.: Boosting Interval Based Literals: Variable
Length and Early Classification. In Data Mining in Time Series Databases. World
Scientific (2004).

[8] Altschul, S. F., Gish,W., Miller,W., Myers, E.W., and Lipman, D. J.: Basic Local
Alignment Search Tool. J Mol Biol, 215(3) (1990).

[9] André-Jönsson, H. & Badal. D.: Using Signature Files for Querying Time-Series
Data. In proceedings of Principles of Data Mining and Knowledge Discovery, 1st
European Symposium.Trondheim, Norway, Jun 24-27. (1997).

[10] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y. :An Optimal
Algorithm for Approximate Nearest Neighbor Searching, Journal of the ACM 45 (6)
(1998).

[11] Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.:Space-filling Curves
and Their Use in the Design of Geometric Data Structures, Theoretical Computer
Science, v.181 n.1, July 15 (1997).

References

 171

[12] Aßfalg, J., Kriegel, H.-P. , Kröger, P., Kunath, P., Pryakhin,A. and Renz, M.
:Similarity Search on Time Series Based on Threshold Queries. In EDBT (2006).

[13] Baeza-Yates R., Cunto W., Manber U., Wu S.: Proximity Matching Using Fixed-
queries Trees, Proc. Combinatorial Pattern Matching (CPM’94), LNCS ,(1994).

[14] Barbosa, F.: Similarity-based Retrieval in High Dimensional Data with Recursive
Lists of Clusters: A Study Case with Natural Language Dictionaries, in Proc. of the
International Conference on Information Management and Engineering (2009).

[15] Bellman, R. : Adaptative Control Processes: A Guided Tour. Princeton
University Press, Princeton, NJ, (1961).

[16] Bellman R.: Dynamic Programming. Princeton University Press, Princeton, NJ
(1957).

[17] Belussi, A. , and Faloutsos, C.: Estimating the Selectivity of Spatial Queries
Using the 'Correlation' Fractal Dimension, Proceedings of the 21st International
Conference on Very Large Databases (VLDB'95), Zurich, Switzerland, (1995).

[18] Berchtold S., Böhm C., Kriegel H.-P.: Improving the Query Performance of
High-dimensional Index Structures Using Bulk-Load Operations, 6th. Int. Conf. on
Extending Database Technology, Valencia, Spain (1998).

[19] Berchtold S., Böhm C., Kriegel H.-P.: The Pyramid-Technique: Towards
indexing beyond the Curse of Dimensionality’, Proc. ACM SIGMOD Int. Conf. on
Management of Data, Seattle (1998).

[20] Berchtold, S., Keim, D. A., and Kriegel, H.-R: A Cost Model for Nearest
Neighbor Search in High-dimensional Data Space. In Proceedings of the 16th ACM
Symposium on Principles of Database Systems (PODS 1997), Tucson, Arizona, USA,
May 12-14 (1997).

[21] Bergeron, R. D., and Foulks,A. :Interactive Out-of-Core Visualization of
Multiresolution Time Series Data, Numerical Modeling of Space plasma flows :
ASTRONUM-2006, proceedings of the 1st IGPP-CalSpace International Conference,
Palm Springs, California, March (2006).

[22] Berndt, D. and Clifford, J.: Using Dynamic Time Warping to Find Patterns in
Time Series. In Proc. AAAI Workshop on Knowledge Discovery in Databases (1994).

[23] Böhm, C. , Berchtold, S., and Keim, D. A. :Searching in High-dimensional
Spaces: Index Structures for Improving the Performance of Multimedia Databases.
ACM Computing Surveys (2001).

References

 172

[24] Boreczky, J. S. and Rowe, L. A. :Comparison of Video Shot Boundary Detection
Techniques. In Proc. 8th Int. Symp. on Storage and Retrieval for Image and Video
Data-bases (1996).

[25] Boyd, S.: TREND: A System for Generating Intelligent Descriptions of Time-
series Data. In Proceedings of the IEEE International Conference on Intelligent
Processing Systems (ICIPS'98). IEEE Press, (1998).

[26] Bramer, M.: Principles of Data Mining . Springer (2007).

[27] Brin, S.: Near Neighbor Search in Large Metric Spaces. In Proc. 21st Conference
on Very Large Databases ,VLDB’95 (1995).

[28]Burkhard, W. A. and Keller, R. M.: Some Approaches to Best-match File
Searching. Communications of the ACM (1973).

[29] Bustos, B., Navarro, G., and E. Chavez, E.: Pivot Selection Techniques for
Proximity Searching in Metric Spaces. Pattern Recognittion Letters (2003).

[30] Bustos, B., and Skopal, T. :Beyond the Metric Space Model”, SIGSPATIAL
Special volume 2 Issue 2, July (2010).

[31] Cai, Y., and Ng, R. : Indexing Spatio-temporal Trajectories with Chebyshev
Polynomials. In SIGMOD (2004).

[32] Camerra, A., Palpanas, T., Shieh, J., and Keogh, E. (2010): iSAX 2.0: Indexing
and Mining One Billion Time Series. ICDM (2010).

[33] Castelli, V. and Lawrence Bergman, L.: Image Databases: Search and Retrieval
of Digital Imagery. John Wiley & Sons (2001).

[34] Castro, N., and Azevedo, P. :Multiresolution Motif Discovery in Time Series,
Proceedings of the SIAM International Conference on Data Mining, SDM 2010, April
29 - May 1, 2010, Columbus, Ohio, USA. SIAM (2010).

[35] Chan, K.P., and Fu, A.W-C.: Efficient Time Series Matching by Wavelets. In
Proc. 15th. Int. Conf. on Data Engineering (1999).

[36] Chan, K.P., Fu, A and Yu, C. :Haar Wavelets for Efficient Similarity Search of
Time-series: with and without Time Warping. IEEE Transactions on Knowledge and
Data Engineering (2002).

[37] Chávez, E., and Navarro, Baeza-Yates, R., and Marroquín, J. : Proximity
Searching in Metric Spaces. ACM Computing Surveys (2001).

[38] Chavez, E., Navarro, G., Baeza-Yates, R. A., and Marroquin, J. L.: Searching in
Metric Spaces. ACM Computing Surveys (2001)

References

 173

[39] Chávez, E., and Navarro, G. : Fundamentals of the Problem , SIGSPATIAL
Special volume 2 Issue 2, July (2010).

[40] Chávez, E., and Navarro, G. : Metric Databases, Encyclopedia of Database
Technologies and Applications. Idea Group (2006).

[41] Chen, H., Li, J. and Mohapatra, P. :RACE: Time Series Compression with Rate
Adaptivity and Error Bound for Sensor Networks. In Proc. of IEEE MASS (2004).

[42] Chen, L., Ng, R. :On the Marriage of Lp-Norm and Edit Distance, In Proceedings
of 30th International Conference on Very Large Data Base, Toronto, Canada, August
(2004).

[43] Chen, L., Özsu, M. T. and Oria, V. : Robust and Fast Similarity Search for
Moving Object Trajectories. In SIGMOD Conference (2005).

[44] Chen, L.: Similarity Search Over Time Series and Trajectory Data, PhD thesis,
University of Waterloo, Canada (2005)

[45] Chen, Q., Chen, L., Lian, X., Liu, Y. and Yu, J. X. : Indexable PLA for Efficient
Similarity Search. In VLDB (2007).

[46] Chen, Y., Nascimento, M. A., Ooi, B. C., and Tung, A. K. H. : SpADe: On
Shape-based Pattern Detection in Streaming Time Series. In ICDE (2007).

[47] Chu, S., Keogh, E., Hart, D., Pazzani, M.: Iterative deepening dynamic time
warping for time series. In Proc 2

nd
SIAM International Conference on Data Mining

(2002).

[48] Ciaccia, P., Patella, M. :The Many Facets of Approximate Similarity Search, in
Proceedings of the First International Workshop on Similarity Search and
Applications (SISAP 2008), Cancun, Mexico, IEEE Computer Society (2008).

[49] Ciaccia, P., Patella, M., and Zezula, P.: A Cost Model for Similarity Queries in
Metric Spaces. In Proceedings of the 17th ACM Symposium on Principles of
Database Systems (PODS 1998), Seattle, Washington, USA, June 1-3 (1998).

[50] Ciaccia, P., Patella, M., and Zezula, P., M-Tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Conference on Very
large Database, VLDB'97 (1997).

[51] CLCBio : Bioinformatics explained: BLAST versus Smith-Waterman, Gustav
Wieds (2007)

[52] Cormen, T.H., Leiserson, C.E., and Rivest, R.L.: Introduction to Algorithms.The
MIT Electrical Engineering and Computer Science Series. MIT Press/McGraw Hill,
(1990).

References

 174

[53] Das, G., Lin, K.-I., Mannila, H., Renganathan G. and Smyth, P.: Rule Discovery
from Time Series Database: In Proc. of the 4th Intl. Conference on Knowledge
Discovery and Data Mining KDD (1998).

[54] Daw, C. S., Finney, C. E. A. and Tracy, E. R. : Symbolic Analysis of
Experimental Data. Review of Scientific Instruments (2002).

[55] DeVore, R., Jawerth, B. and Lucier, B.: Image Compression Through Wavelet
Transform Coding. IEEE Transactions on Information Theory (1992).

[56] Dickerson, K. B., and Ventura, D.: Music Recommendation and Query-by-
content Using Self-organizing Maps, Neural Networks, IEEE - INNS - ENNS
International Joint Conference (2009).

[57] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E.: Querying
and Mining of Time Series Data: Experimental Comparison of Representations and
Distance Measures. In Proc of the 34th VLDB (2008).

[58] Dohnal, V.: Indexing Structures for Searching in Metric Spaces.PhD thesis,
Masaryk University, Faculty of Informatics (2004).

[59] Dohnal, V., Gennaro, C., Savino, P., and Zezula, P.: Similarity Join in Metric
Spaces. In Advances in Information Retrieval, 25th European Conference on IR
Research, ECIR 2003. Pisa, Italy,(2003)

[60]Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, A Wiley-
Interscience Publication, New York: Wiley (1973)

[61] Dumais, S. T. : Latent Semantic Indexing (LSI) and TREC-2., In: D. Harman
(Ed.), The Second Text REtrieval Conference (TREC2), National Institute of
Standards and Technology Special Publication (1994).

[62] Eruhimov, V., Martyanov, V., Raulefs, P., and Tuv, E.: Combining Unsupervised
and Supervised Approaches to Feature Selection for Multivariate Signal
Compression., Intelligent Data Engineering and Automated Learning, Springer,
Berlin, Germany (2006).

[63] Faloutsos, C, Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic,D., and
Equitz, W.: Efficient and Effective Querying by Image Content. Journal of Intelligent
Information Systems, Kluwer Academic Publishers (1994).

[64] Faloutsos C.: Gray Codes for Partial Match and Range Queries, IEEE Trans. on
Software Engineering (1988).

[65] Faloutsos, C., Ranganathan, M., and Manolopoulos, Y.: Fast Subsequence
Matching in Time-series Databases. In Proc. ACM SIGMOD Conf., Minneapolis
(1994).

References

 175

[66] Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and Abbadi, A. E.: Approximate
Nearest Neighbor Searching in Multimedia Databases. In Proceedings of the 17th
International Conference on Data Engineering (ICDE 2001), Heidelberg,Germany,
April 2-6, 2001. IEEE Computer Society (2001).

[67] Figueras i Ventura R. M., Frossard P. and Vandergheynst P.: Evolutionary
Multiresolution Matching Pursuit and Its Relations with the Human Visual System, in
Proceedings of the European Signal Processing Conference, Toulouse, France,
September (2002).

[68] Frank, A. U. and Timpf, S.: Multiple Representations for Cartographical Objects
in a Multi-scale Tree - An Intelligent Graphical Zoom. Computers and Graphics
(1994).

[69] Frentzos, E., Gratsias, K., and Theodoridis, Y.: Index-based Most Similar
Trajectory Search. In ICDE (2007).

[70] Gansterer, W.N., Janecek, A.G.K., and Neumayer, R.: Spam Filtering Based on
Latent Semantic Indexing. Survey of Text Mining II - Clustering, Classification, and
Retrieval, volume 2, Springer (2008).

[71] Gennaro, C, Savino, P., and Zezula, P.: Similarity Search in Metric Databases
Through Hashing. In Proceedings of the 3rd ACM Multimedia 2001 Workshop on
Multimedia Information Retrieval (MIR 2001), Ottawa, Ontario, Canada, October 5
(2001).

[72] Geurts, P.: Pattern Extraction for Time Series Classification. Proceedings of the
5th European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD'01), Springer (2001).

[73] Guo,AY., and Siegelmann, H.: Time-warped Longest Common Subsequence
Algorithm for Music Retrieval, in Proc. ISMIR (2004).

[74] Guttman A. ‘R-trees: A Dynamic Index Structure for Spatial Searching’, Proc.
ACM SIGMOD Int. Conf. on Management of Data, Boston, MA (1984).

[75] Han, J., and Kamber, M. : Data Mining:Concepts and Techniques. Morgan
Kaufmann Publishers, CA (2005).

[76] Hao, M., Dayal, U., Keim, D. A., Schreck, T.: Multi-resolution Techniques for
Visual Exploration of Large Time-Series Data. Proc. of Eurographics/IEEE-VGTC
Symposium on Visualization (2007).

[77] Hébrail G., Hugueney B.: Symbolic Representation of Long Time Series,
Conference on Applied Statistical Models and Data Analysis (ASMDA’2001),
Compiègne, Juin (2001).

References

 176

[78] Hébrail G., Hugueney B.: Symbolic Representation of Long Time Series,
Workshop on Symbolic Data Analysis (PKDD’2000), Lyon, Septembre (2000).

[79] Hetland, M. L.: The Basic Principles of Metric Indexing, Swarm Intelligence for
Multi-objective Problems in Data Mining, SCI 242, Springer (2009).

[80]Hiremath, P. S., and Pujari, J. :Content Based Image Retrieval based on Color,
Texture and Shape features using Image and Its Complement”. International Journal
of Computer Science and Security, 1(4), (2007).

[81] Howland, P., and Park, H.: Cluster-preserving Dimension Reduction Methods for
Efficient Classification of Text Data. In M. W. Berry (Ed.), Survey of text mining:
Clustering, classification, and retrieval, New York: Springer-Verlag (2004).

[82] Huang, Y. and Yu, P. S.: Adaptive Query Processing for Time-Series Data. In
proceedings of the 5th Int'l Conference on Knowledge Discovery and Data Mining.
San Diego, CA, Aug 15-18 (1999).

[83] Indyk, P.: Algorithmic Applications of Low-distortion Geometric Embeddings.
In Proceedings of the 42nd Annual Symposium on Foundations of Computer Science
(2001).

[84] Jacobs, C. E., Finkelstein, A., and Salesin, D. H.: Fast Multiresolution Image
Querying. In Proceedings of SIGGRAPH 95, ACM, New York (1995).

[85] Jahromi, M.Z., Parvinnia, E., John, R.: A Method of Learning Weighted
Similarity Function to Improve the Performance of Nearest Neighbor, Inf. Sci. 179
(2009).

[86] Kadous, M. W.: Learning Comprehensible Descriptions of Multivariate Time
Series. In Proc. of the 16

th
International Machine Learning Conference (1999).

[87] Kalantari, I., McDonald, G.: A Data Structure and an Algorithm for the Nearest
Point Problem, IEEE Transactions on Software Engineering, vol. 9, no. 5, September
(1983).

[88] Kamel I., Faloutsos C.: On Packing R-trees, CIKM (1993).

[89] Kawagoe, K., and Ueda, T.: A Similarity Search Method of Time Series Data
with Combination of Fourier and Wavelet Transforms. In TIME (2002).

[90] Keikha, M., Razavian, N.S., and Oroumchian, F.: Document Representation and
Quality Of Text: An Analysis, Survey of Text Mining: Clustering, Classification and
Retrieval, Second Edition, Springer (2007).

[91] Keogh, E. : A Tutorial on Indexing and Mining Time Series Data ,
http://www.cs.ucr.edu/~eamonn/tutorials.html

References

 177

[92] Keogh, E,. Chakrabarti, K,. Pazzani, M. and Mehrotra, S.: Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases. J. of Know. and
Inform. Sys. (2000).

[93] Keogh, E,. Chakrabarti, K,. Pazzani, M. and Mehrotra, S.: Locally Adaptive
Dimensionality Reduction for Similarity Search in Large Time Series Databases.
SIGMOD (2001).

[94] Keogh, E.: Exact Indexing of Dynamic Time Warping. In proceedings of the
28th International Conference on Very Large Data Bases. Hong Kong, Aug 20-23
(2002).

[95] Keogh, E., and Kasetty, S. : On the Need for Time Series Data Mining
Benchmarks: A Survey and Empirical Demonstration. In proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. July
23 - 26, 2002. Edmonton, Alberta, Canada (2002).

[96] Keogh, E., Lin, J., and Fu, A.: HOT SAX: Efficiently Finding the Most Unusual
Time Series Subsequence. In Proc. of the 5th IEEE International Conference on Data
Mining (ICDM 2005), Houston, Texas, Nov 27-30 (2005).

[97] Keogh, E., and Pazzani, M.: An Enhanced Representation of Time Series Which
Allows Fast and Accurate Classification, Clustering, and Relevance Feedback.
Proceedings of the 4th International Conference on Knowledge Discovery and Data
Mining (KDD'98), AAAI Press (1998).

[98] Kim, J., and Warnow, T.: Tutorial on Phylogenetic Tree Estimation. In
Intelligent Systems for Molecular Biology, Heidelberg (1999).

[99] Kim, S,. Park, S., & Chu, W.: An Index-based Approach for Similarity Search
Supporting Time Warping in Large Sequence Databases. In Proc 17

th
International

Conference on Data Engineering (2001).

[100] Kogan, J.: Hybrid Clustering of Large Text Data. In Proceedings of the IEEE
21st International Conference on Advanced Information Networking and Applications
(AINA-07), IEEE Computer Society Press, (2007).

[101] Kohonen, T.; Self-Organization and Associative Memory. Springer (1984).

[102] Kolesnikov, A., and Franti, P.: Reduced-search Dynamic Programming for
Approximation of Polygonal Curves. Pattern Recognition Letters (2003).

[103] Kollios, G., Vlachos, M. and Gunopulos, G.: Discovering similar
multidimensional trajectories. In Proc 18

th
International Conference on Data

Engineering (2002).

References

 178

[104] Korn, F., Jagadish, H and Faloutsos. C.: Efficiently Supporting ad hoc Queries
in Large Datasets of Time Sequences. Proceedings of SIGMOD '97, Tucson, AZ
(1997).

[105] Kom, F. and Muthukrishnan, S. M.: Influence Sets Based on Reverse Nearest
Neighbor Queries. In Proceedings of the ACM International Conferenceon
Management of Data (SIGMOD 2000), Dallas, Texas, USA, May 16-18, (2000).

[106] Kurtz, S. : Lecture Notes for Foundations of Sequence Analysis (2001).

[107] Larose, D.T.: Discovering Knowledge in Data: An Introduction to Data Mining.
New York, Wiley (2005).

[108] Larsen, R. J. and Marx, M. L.: An Introduction to Mathematical Statistics and
Its Applications. Prentice Hall, Englewood, Cliffs, N.J. 2nd Edition. (1986)

[109] Lee, J.A. and M. Verleysen,M. : Nonlinear Dimensionality Reduction. Springer
(2007).

[110] Levenshtein, V. I.: Binary Codes Capable of Correcting Spurious Insertions and
Deletions of Ones. Problems of Information Transmission , 1:8-17. Kluwer Academic
Publishers (1965).

[111] Lin, J., Keogh, E., Lonardi, S., and Chiu, B. Y.: A Symbolic Representation of
Time Series, with Implications for Streaming Algorithms. DMKD (2003).

[112] Lin, J., Keogh, E., Wei, L., and Lonardi, S.: Experiencing SAX: a Novel
Symbolic Representation of Time Series. DMKD Journal (2007).

[113] Lin, J., Vlachos, M., Gunopulos, D., Keogh, E.: Multi-Resolution Time Series
Clustering and Application to Images, Multimedia Data Mining and Knowledge
Discovery, Springer (2007)

[114] Lin, J., Vlachos, M., Keogh, E., and Gunopulos, D.: A MPAA-based Iterative
Clustering Algorithm Augmented by Nearest Neighbors Search for Time-series Data
Streams. Proceedings of the 9th Pacic-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD'05), Springer (2005).

[115] Li, Z., Wang, L., and Zhang, K.: Algorithmic Approaches for Genome
Rearrangement: A Review,” IEEE Trans. Systems, Man, and Cybernetics, vol. 36
(2006).

[116] Lomet D., Salzberg B.: The hB-tree: A Multiattribute Indexing Method with
Good Guaranteed Performance’, ACM Trans. on Data Base Systems 15(4) (1990).

References

 179

[117] Makhanov, S. S., Anotaipaiboon, W.: Advanced Numerical Methods to
Optimize Cutting Operations of Five Axis Milling Machines, Springer (2007)

[118] Mamou, J., Mass, Y., Shmueli-Sheuer, M. , and Sznajder, B.: Query Language
for Multimedia Content. In Procedding of the Multimedia Information Retrieval
workshop held in conjunction with the 30th Annual International ACM SIGIR
Conference 27 July 2007, Amsterdam (2007).

[119] Mandl, T.: Learning Similarity Functions in Information Retrieval. In EUFIT
(1998).

[120] Manganaris, S.: Supervised Classification with Temporal Data. PhD thesis,
Computer Science Department, School of Engineering, Vanderbilt University (1997)..

[121] Marteau, P.F., and Gibet, S.: Adaptive Sampling of Motion Trajectories for
Discrete Task-Based Analysis and Synthesis of Gesture. In Lecture Notes in
Computer Science, Volume 3881/2006, 224-235,, In Proc. of Int. Gesture Workshop,
Vannes, France (2005).

[122] Marteau, P.F., Muhammad Fuad, M.M , and Ménier, G. : Echantillonnage
Adaptatif et Classification Supervisée de Séries Temporelles. EGC 2006, 6èmes
Journées, Extraction et Gestion de Connaissances, Atelier 9 : Fouille de données
temporelles. Jan 17 2006, Lille, France (2006).

[123] Marteau, P.F., Ménier, G., Adaptive Multiresolution and Dedicated Elastic
Matching in Linear Time Complexity for Time Series Data Mining, Sixth
International conference on Intelligent Systems Design and Applications (ISDA
2006), Jinan Shandong, China, 16-18 October (2006).

[124] Marteau, P.F.:Time Warp Edit Distance with Stiffness Adjustment for Time
Series Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 2 (2009).

[125] Mason, J. C., and Handscomb, D.: Chebyshev Polynomials. Chapman & Hall
(2003).

[126] Megalooikonomou, C.: Multiresolution Symbolic Representation of Time
Series. In proceedings of the 21st IEEE International Conference on Data Engineering
(ICDE). Tokyo, Japan. (2005).

[127] Meratnia, N., By, R.: Spatiotemporal Compression Techniques for Moving
Point Objects. In: Proceedings of EDBT (2004).

[128] Muhammad Fuad, M.M, Marteau, P.F.: Enhancing the Symbolic Aggregate
Approximation Method Using Updated Lookup Tables. 14th International Conference
on Knowledge-Based and Intelligent Information and Engineering Systems – KES

References

 180

2010 , Lecture Notes in Computer Science, 2010, Volume 6276/2010, 8-10
September 2010, Cardiff, Wales, UK (2010)

[129] Muhammad Fuad, M.M, Marteau, P.F.: Extending the Edit Distance Using
Frequencies of Common Characters. 19th International Conference on Database and
Expert Systems Applications - DEXA'08, Lecture Notes in Computer Science, 2008,
Volume 5181/2008, 1-5 September,2008, Turin, Italy (2008).

[130] Muhammad Fuad, M.M, Marteau, P.F.: Fast Retrieval of Time Series by
Combining a Multiresolution Filter with a Representation Technique. The
International Conference on Advanced Data Mining and Applications–ADMA2010 ,
Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence, 2010,
Volume 6440/2010, 19-21 November 2010, ChongQing, China (2010).

[131] Muhammad Fuad, M.M, Marteau, P.F.: Multi-resolution Approach to Time
Series Retrieval”, Fourteenth International Database Engineering and Applications
Symposium– IDEAS 2010 , 16-18 August, 2010, Montreal, QC, CANADA (2010).

[132] Muhammad Fuad, M.M, Marteau, P.F.: Speeding-up the Similarity Search in
Time Series Databases by Coupling Dimensionality Reduction Techniques with a
Fast-and-dirty Filter. Fourth IEEE International Conference on Semantic Computing–
ICSC 2010 , 22-24 September 2010, Carnegie Mellon University, Pittsburgh, PA,
USA (2010).

[133] Muhammad Fuad, M.M, Marteau, P.F.: The Extended Edit Distance Metric.
Sixth International Workshop on Content-Based Multimedia Indexing (CBMI 2008)
18-20th June, 2008, London, UK (2008).

[134] Muhammad Fuad, M.M, Marteau, P.F.: The Multi-resolution Extended Edit
Distance. Third International ICST Conference on Scalable Information Systems,
Infoscale, 2008, ACM Digital Library, June 4-6, 2008. Vico Equense, Italy (2008).

[135] Muhammad Fuad, M.M, Marteau, P.F.: The Prolonged Multi-Resolution Edit
Distance. Dutch-Belgian Information Retrieval workshop, DIR-2008,April 14-15,
2008, Maastricht, the Netherlands (2008).

[136] Muhammad Fuad, M.M, Marteau, P.F.: Towards a Faster Symbolic Aggregate
Approximation Method”, 5th International Conference on Software and Data
Technologies – ICSOFT 2010, 22-24 July 2010, Athens, Greece (2010).

[137] Muhammad Fuad, M.M, Marteau, P.F. : Une Distance d’Édition Etendue Multi
Résolution. Atelier à EGC 2008, INRIA, Sophia Antipolis, France (2008).

[138] Micó, L., Oncina, J., and Vidal, E.: A New Version of the Nearest-neighbor
Approximating and Eliminating Search (AESA) with Linear Preprocessing-time and
Memory Requirements. Pattern Recognition Letters (1994).

References

 181

[139] Moens, M.F.: Information Extraction: Algorithms and Prospects in a Retrieval
Context; The Information Retrieval Series , Vol. 21, Springer (2006).

[140] Mörchen, F.: Time Series Knowledge Mining, PhD thesis, Philipps-University
Marburg, Germany, Görich & Weiershäuser, Marburg, Germany (2006)

[141] Morinaka, Y., Yoshikawa, M. , Amagasa, T., and Uemura, S.: The L-index: An
indexing Structure for Efficient Subsequence Matching in Time Sequence Databases.
In Proc. 5th PacificAisa Conf. on Knowledge Discovery and Data Mining (2001).

[142] Morse M. D., and Patel, J. M.: An Efficient and Accurate Method for
Evaluating Time Series Similarity. In SIGMOD Conference (2007).

[143] Movellan, J.R.: Primer on the Discrete Fourier Transform, Tutorial,Machine
Perception Labratory (2009) http://mplab.ucsd.edu/wordpress/ .

[144] Nanopoulos, A., Alcock, R., and Manolopoulos, Y. : Feature-based
Classification of Time-Series Data. Information Processing and Technology (2001).

[145]Navarro, G.: Searching in Metric Spaces by Spatial Approximation In Pro. 6th
South American Symposium on String Processing and Information Retrieval
(SPIRE'99). IEEE CS Press (1999).

[146] Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E., Petkovic, D.,
Yanker, P., Faloutsos, C., and Taubin, G.: The QBIC Project: Querying Images by
Content Using Color, Texture and Shape. In Proc. 5th Int. Symp. on Storage and
Retrieval for Image and Video Databases (1993).

[147] Oppenheim, A.V., and Schafer, R.W.: Discrete-Time Signal Processing 2nd
Edition, Prentice Hall: Upper Saddle River, NJ (1999).

[148] Orenstein, J.: A Comparison of Spatial Query Processing Techniques for Native
and Parameter Spaces. Proc. ACM SIGMOD Int. Conf. on Management of Data
(1990).

[149] Papadopoulos, A. N. and Manolopoulos, Y.: Nearest Neighbor Search: A
Database Perspective. Springer-Verlag, New York (2005).

[150] Parent, C., Spaccapietra, S., and Zimanyi, E.: The MurMur Project: Modeling
and Querying Multi-representation Spatio-temporal Databases. In Information
Systems, volume 31 (2006).

[151] Patella, M. and Ciaccia, P.: Approximate Similarity Search: A Multi-faceted
Problem. Journal of Discrete Algorithms 7 (1) (2009).

[152] Perez, J. C., and Vidal, E.: Optimum Polygonal Approximation of Digitized
Curves. Pattern Recognition Letters (1994).

References

 182

[153] Perng, S., Wang, H., Zhang, S., and Parker, D.S.: Landmarks: A New Model for
Similarity-Based Pattern Querying in Time Series Databases. In Proc. of ICDE
(2000).

[154] Pestov, V.: Intrinsic Dimensionality. SIGSPATIAL Special volume 2 Issue 2,
July (2010).

[155] Popivanov, I., and Miller, R. J.: Similarity Search over Time Series Data Using
Wavelets. ICDE (2002).

[156] http://povinelli.eece.mu.edu/

[157] Proietti, G., and Faloutsos, C.: Analysis of Range Queries and Self-Spatial Join
Queries on Real Region Datasets Stored using an R-tree", IEEE Transactions on
Knowledge and Data Engineering, Vol.12, No.5 (2000).

[158] Rabiner, L., and Juang, B.: Fundamentals of speech recognition. Englewood
Cliffs, N.J, Prentice Hall (1993)..

[159] Ramella, G., Sanniti di Baja, G.: Multiresolution Histogram Analysis for Color
Reduction, Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications - 15th Iberoamerican Congress on Pattern Recognition, CIARP 2010,
Sao Paulo, Brazil, November 8-11, 2010. Proceedings. Lecture Notes in Computer
Science 6419 Springer (2010).

[160] Ravi Kanth, K. V., Agrawal, D., and Singh, A.: Dimensionality Reduction for
Similarity Searching in Dynamic Databases. In Proc. ACM SIGMOD Int. Conf. on
Management of Data (1998).

[161] Reinert, G., Schbath, S. and Waterman, M. S. Probabilistic and Statistical
Properties of Words: An Overview. Journal of Computational. Biology. Vol. 7 (2000).

[162] Sakoe, H., and Chiba, S.: Dynamic Programming Algorithm Optimization for
Spoken Word Recognition. IEEE Trans. Acoustics, Speech and Signal Processing,
ASSP-26(1), (1978).

[163] Salomon, D., A Concise Introduction to Data Compression. Undergraduate
Topics in Computer Science. Springer(2008).

[164] Salomon , D . , Motta , G . : Handbook of Data Compression, Fifth Edition,
Springer (2010)

[165] Saito, N.:Local feature extraction and its application using a library of bases.
PhD thesis, Yale University (1994)

References

 183

[166] Sankoff D, El-Mabrouk N: Genome Rearrangement. In Current Topics in
Computational Biology. Edited by Jiang T, Smith T, Xu Y, Zhang M, Xu Y, Zhang
M. Cambridge: MIT Press (2001).

[167] Schulte, M.J. , Lindberg, M. and Laxminarain, A.: Performance Evaluation of
Decimal Floating-point Arithmetic. in IBM Austin Center for Advanced Studies
Conference, February (2005).

[168] Scott, D.W., and Thompson, J.R.: Probability Density Estimation in Higher
dimensions. Proceedings of the Fifteenth Symposium on the Interface. Elsevier
Science Publishers, B.V., North Holland (1983).

[169] Senellart, P., and Blondel, V.D.: Automatic Discovery of Similar Words. A
Comprehensive Survey of Text Mining. Springer-Verlag (2003).

[170] Setubal, J. C. and Meidanis, J.: Introduction to Computational Molecular
Biology. PWS Publishing Co., Boston (1997).

[171] Shatkay, H.,: The Fourier Transform - a Primer. Technical Report CS-95-37,
Department of Computer Science, Brown University (1995).

[172] Shatkay, H., and Zdonik, S.B.: Approximate Queries and Representations for
Large Data Sequences. In Proc. 12th Int. Conf. on Data Engineering (1996).

[173] Shieh, J. and Keogh, E.: iSAX: Disk-Aware Mining and Indexing of Massive
Time Series Datasets. Data Mining and Knowledge Discovery (2009).

[174] Shieh, J. and Keogh, E.: iSAX: Indexing and Mining Terabyte Sized Time
Series. In Proceeding of the 14th ACM SIGKDD international Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24 – 27
(2008).

[175] SISTA's Identification Database
 http://www.esat.kuleuven.ac.be/~tokka/daisydata.html

[176] Skopal, T., and Bustos, B.: On Non-metric Similarity Search Problems in
Complex Domains. ACM Computing Surveys, to appear.44(3) (2012).

[177] Smith, T. F. and Waterman, M.S.: Identification of Common Molecular
Subsequences. J Mol Biol, 147(1), (1981).

[178] Sripada, S. G., Reiter, E., and Hunter, J.: Generating English Summaries of
Time Series Data Using the Gricean Maxims. Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD'03 (2003).

[179] Stanoi, I., Agrawal, D., and Abbadi, A. E.: Reverse Nearest Neighbour Queries
for Dynamic Databases. In Proceedings of the ACM SIGMOD Workshop on

References

 184

Research Issues in Data Mining and Knowledge Discovery, Dallas, Texas, USA, May
14 (2000).

[180] Stanoi, I., Riedewald, M., Agrawal, D., and Abbadi, A. E.: Discovery of
Influence Sets in Frequently Updated Databases. In Proceedings of the 27th
International Conference on Very Large Data Bases (VLDB 2001), Roma, Italy,
September 11-14 (2001).

[181] StatLib-Datasets Archive http://lib.stat.cmu.edu/datasets/

[182] http://www.stern.nyu.edu/~aweigend/Time-Series/Data/

[183] Stollnitz, E.J. DeRose, T.D. and Salesin, D.H.: Wavelets for Computer
Graphics: A Primer, Part I. IEEE Computer Graphics and Applications (1995).

[184] Sun, S., and Zhou, X. : Semantic Caching for Web-Based Spatial Applications.
in Proceeding of APWeb 2005 (LNCS 3399), pages 783-794, March 29- April 1,
2005, Shanghai, China (2005).

[185] Taniar, D.: Data Mining and Knowledge Discovery Technologies (Advances in
Data Warehousing and Mining). IGI Publishing, (2008).

[186] Theodoridis, S., and Koutroumbas, K.: Pattern Recognition. Amsterdam, The
Netherlands: Academic Press (2003).

[187] Toharia, P., Robles, O.D., Rodríguez, A., Pastor, L.: A study of Zernike
Invariants for Content-based image Retrieval. In: Mery, D., Rueda, L. (eds.) PSIVT
2007. LNCS, vol. 4872. Springer, Heidelberg (2007).

[188] Trobec, R.,Vajtersic,M. and Zinterhof,P. : Parallel Computing-Numerics,
Applications, and Trends, Springer (2009).

[189] Turk M., and Pentland: A. Eigenfaces for Recognition, Journal of Cognitive
Neuroscience (1991).

[190] UCR Time Series datasets http://www.cs.ucr.edu/~eamonn/time_series_data/

[191] Uhlmann, J. K.: Satisfying General Proximity/Similarity Queries with Metric
Trees. Information Processing Letters, 40(4). Elsevier (1991).

[192] Ukkonen, E.: Approximate String-matching with q-grams and Maximal
Matches. Theoretical Computer Science 92 (1992).

[193] Velichko,V.M., and Zagoruyko,N.G.: Automatic Recognition of 200 Words.
Int. J. Man-Mach. Stud., 2 (1970).

References

 185

[194] Vidal, E.,: An Algorithm for Finding Nearest Neighbors in (Approximately)
Constant Average Time. Pattern Recognition Letters, 4, (1986).

[195] Vlachos, M., Gunopulos, D., Das, G.: Indexing Time-Series under Conditions
of Noise. Data Mining in Time Series Databases, World Scientific Publishing (2004).

[196] Vlachos, M., Kollios, G., and Gunopulos, D.: Discovering Similar
Multidimensional Trajectories. In Proc. 18th Int. Conf. on Data Engineering (2002).

[197] Vlachos, M., Lin, J., Keogh, E., Gunopulos, D.: Multi-Resolution K-Means
Clustering of Time Series and Applications to Images. Workshop on Multimedia Data
Mining (MDM), SIGKDD, Washington DC, (2003).

[198] Vogiatzis, D., Tsapatsoulis, N.: Missing Value Estimation for DNA
Microarrays with Mutliresolution Schemes. Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, Vol. 4132/2006, Book: Artificial Neural Networks -
ICANN (2006).

[199] Wagner, R.,A., Fischer, M. J.: The String-to-String Correction Problem. Journal
of the Association for Computing Machinery, Vol. 21, No. I, (1974).

[200] Wang, Q., Megalooikonomou, V., and Faloutsos, C.: Time Series Analysis with
Multiple Resolutions. Inf. Syst. 35, 1 (2010).

[201] Weber, R., Böhm, K.: Trading Quality for Time with Nearest-neighbor Search;
in: Proceedings of the 7th International Conference on Extending Database
Technology (EDBT 2000), Konstanz, Germany, in: Lecture Notes in Computer
Science, vol. 1777, Springer (2000).

[202] Weber, R., Schek, H.-J., Blott, S.: A Quantitative Analysis and Performance
Study for Similarity-search Methods in High-dimensional Spaces. in: Proceedings of
the 24th International Conference on Very Large Data Bases VLDB’98, New York
City, NY (1998).

[203] Wei, L., Keogh, E., and Xi, X.: SAXually Explict Images: Finding Unusual
Shapes. ICDM (2006).

[204] Weinberger, K., Saul, L.: Distance Metric Learning for Large Margin Nearest
Neighbor Classification. The Journal of Machine Learning Research 10 (2009) .

[205] Weisstein, E.W.: Mathworld. A Wolfram web-resource –
 http://mathworld.wolfram.com/.

[206] White D.A., Jain R.: Similarity Indexing with the SS-tree. Proc. 12th Int. Conf
on Data Engineering, New Orleans, LA (1996).

References

 186

[207] Witten, I.H., Frank, E.: Data Mining Practical machine learning Tools and
Techniques, Second Edition, Elsevier (2009).

[208] Wu, Y.-L., Agrawal, D., and Abbadi, A.E.: A Comparison of DFT and DWT
Based Similarity Search in Time-series Databases. In Proc. 9th Int. Conf. on
Information and Knowledge Management (2000).

[209] Yang, C., and Lin, K.-I.: An Index Structure for Efficient Reverse Nearest
Neighbor Queries. In Proceedings of the 17th International Conference on Data
Engineering (ICDE 2001), Heidelberg, Germany, April 2-6, 2001. IEEE Computer
Society (2001).

[210] Yianilos P.: Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces’, Proc. 4th ACM-SIAM Symposium on Discrete Algorithms,
SODA`93 (1993).

[211] Yianilos, P. N.: Excluded Middle Vantage Point Forests for Nearest Neighbor
Ssearch. In Proceedings of the 6th DIMACS Implementation Challenge: Near
Neighbor Searches (ALENEX1999), Baltimore, Maryland, USA, January 15-16
(1999).

[212] Yi, B,K., and Faloutsos, C.: Fast Time Sequence Indexing for Arbitrary Lp
norms. Proceedings of the 26th International Conference on Very Large Databases,
Cairo, Egypt (2000).

[213] Yi, B, K. Jagadish, H., and Faloutsos, C.: Efficient Retrieval of Similar Time
Sequences under Time Warping. In ICDE 98 (1998).

[214] Zezula et al., :Similarity Search - The Metric Space Approach, Springer (2005).

[215] Zezula, P., Savino, P., Amato, G., Rabitti, F.: Approximate Similarity Retrieval
with M-trees, The VLDB Journal 7 (4) (1998) .

[216] Zhong, S., and Ghosh, J.: HMMs and Coupled HMMs for Multi-channel EEG
Classification. In IEEE-INNS-ENNS International Joint Conference on Neural
Networks (IJCNN'02), volume 2, IEEE Press, (2002).

[217] Zhou, X., Prasher, S., Sun, S., and Xu, K.: Multiresolution Spatial Databases:
Making Web-based Spatial Applications Faster. In Proceedings of Asia-Pacific Web
Conference (2004).

[218] Zloof, M. M.: Query by example. In AFIPS NCC (1975).

 187

The Dissertation Publications

1- Muhammad Fuad, M.M, Marteau, P.F. : Enhancing the Symbolic Aggregate
 Approximation Method Using Updated Lookup Tables. 14th International

Conference on Knowledge-Based and Intelligent Information and Engineering
Systems – KES 2010 , Lecture Notes in Computer Science, 2010, Volume
6276/2010, 8-10 September 2010, Cardiff, Wales, UK (2010)

2- Muhammad Fuad, M.M, Marteau , P.F. : Extending the Edit Distance Using

 Frequencies of Common Characters. 19th International Conference on Database
and Expert Systems Applications - DEXA'08, Lecture Notes in Computer Science,
2008, Volume 5181/2008, 1-5 September,2008, Turin, Italy (2008).

3- Muhammad Fuad, M.M, Marteau , P.F. : Fast Retrieval of Time Series by

 Combining a Multiresolution Filter with a Representation Technique. The
International Conference on Advanced Data Mining and Applications–ADMA2010,
Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence, 2010,
Volume 6440/2010, 19-21 November 2010, ChongQing, China (2010).

4- Muhammad Fuad, M.M, Marteau , P.F. : Multi-resolution Approach to Time Series

Retrieval”, Fourteenth International Database Engineering and Applications
Symposium– IDEAS 2010 , 16-18 August, 2010, Montreal, QC, CANADA (2010).

5- Muhammad Fuad, M.M, Marteau, P.F.: Speeding-up the Similarity Search in Time

 Series Databases by Coupling Dimensionality Reduction Techniques with a Fast-
and-dirty Filter. Fourth IEEE International Conference on Semantic Computing–
ICSC 2010 , 22-24 September 2010, Carnegie Mellon University, Pittsburgh, PA,
USA (2010).

6- Muhammad Fuad, M.M, Marteau, P.F. : The Extended Edit Distance Metric. Sixth

 International Workshop on Content-Based Multimedia Indexing (CBMI 2008) 18-
20th June, 2008, London, UK (2008).

7- Muhammad Fuad, M.M, Marteau, P.F. : The Multi-resolution Extended Edit

 Distance. Third International ICST Conference on Scalable Information Systems,
Infoscale, 2008, ACM Digital Library, June 4-6, 2008. Vico Equense, Italy (2008).

8- Muhammad Fuad, M.M, Marteau, P.F. : The Prolonged Multi-Resolution Edit

 Distance. Dutch-Belgian Information Retrieval workshop, DIR-2008,April 14-15,
2008, Maastricht, the Netherlands (2008).

9- Muhammad Fuad, M.M, Marteau, P.F. : Towards a Faster Symbolic Aggregate

 Approximation Method”, 5th International Conference on Software and Data
Technologies – ICSOFT 2010, 22-24 July 2010, Athens, Greece (2010).

The Dissertation Publications

 188

10- Muhammad Fuad, M.M, Marteau, P.F. : Une Distance d’Édition Etendue Multi
 Résolution. Atelier à EGC 2008, INRIA, Sophia Antipolis, France (2008).

11- Marteau, P.F., Muhammad Fuad, M.M , and Ménier , G. : Echantillonnage

 Adaptatif et Classification Supervisée de Séries Temporelles. EGC 2006, 6èmes
 Journées, Extraction et Gestion de Connaissances, Atelier 9 : Fouille de données
 temporelles. Jan 17 2006, Lille, France (2006).

 189

Appendix

Let Σ be a finite alphabet, and let
*Σ be the set of strings on Σ . Let)(S

if be the

frequency of the character i in S , where . S is a string represented by
*Σ .

Let

() () ()()∑−+=
i

T
i

S
i f,fminTST,SD 2

Then 321 S,S,S∀ we have;

() () ()233121 S,SDS,SDS,SD +≤ (A-1)

for all n , where n is the number of characters used to represent the strings.

Note: In the case when a character does not exist in one or more of the strings, we
can assume that this (these) string(s) has (have) 0 frequency of the missing character.

Proof

We will prove the above lemma by induction.

i- 1=n

This is a trivial case. Given three strings; 321 S,S,S represented by the same character

a . Let aaa S,S,S 321 be the frequency of a in 321 S,S,S , respectively.

We have six configurations in this case:

1- aaa SSS 321 ≤≤

2- aaa SSS 231 ≤≤

3- aaa SSS 312 ≤≤

4- aaa SSS 132 ≤≤

5- aaa SSS 213 ≤≤

6- aaa SSS 123 ≤≤

We will prove that relation (A-1) holds in these six configurations.

Appendix

 190

1- aaa SSS 321 ≤≤

In this case we have:

() aaa SS,Smin 121 =

() aaa SS,Smin 131 =

() aaa SS,Smin 232 =

() () ()233121 S,SDS,SDS,SD
?

+≤

By substituting the above values in this last relation we get:

aaaaaa
?

aaa SSSSSSSSS 223131121 222 −++−+≤−+

aa
?

SS 23 220 −≤

This is valid according to the stipulation of this configuration.

2- aaa SSS 231 ≤≤

In this case we have:

() aaa SS,Smin 121 =

() aaa SS,Smin 131 =

() aaa SS,Smin 332 =

() () ()233121 S,SDS,SDS,SD
?

+≤

By substituting the above values in this last relation we get:

aaaaaa
?

aaa SSSSSSSSS 323131121 222 −++−+≤−+

00
?
≤

valid.

3- aaa SSS 312 ≤≤

In this case we have:

Appendix

 191

() aaa SS,Smin 221 =

() aaa SS,Smin 131 =

() aaa SS,Smin 232 =

() () ()233121 S,SDS,SDS,SD
?

+≤

By substituting the above values in this last relation we get:

aaaaaa
?

aaa SSSSSSSSS 223131221 222 −++−+≤−+

aa
?

SS 13 220 −≤

valid.

4- aaa SSS 132 ≤≤

In this case we have:

() aaa SS,Smin 221 =

() aaa SS,Smin 331 =

() aaa SS,Smin 232 =

() () ()233121 S,SDS,SDS,SD
?

+≤

By substituting the above values in this last relation we get:

aaaaaa
?

aaa SSSSSSSSS 223331221 222 −++−+≤−+

00
?
≤

valid.

5- aaa SSS 213 ≤≤
In this case we have:

() aaa SS,Smin 121 =

() aaa SS,Smin 331 =

Appendix

 192

() aaa SS,Smin 332 =

() () ()233121 S,SDS,SDS,SD
?

+≤

By substituting the above values in this last relation we get:

aa

?
SS 31 220 −≤

valid.

6- aaa SSS 123 ≤≤

In this case we have:

() aaa SS,Smin 221 =

() aaa SS,Smin 331 =

() aaa SS,Smin 332 =

() () ()233121 S,SDS,SDS,SD
?

+≤

By substituting the above values in this last relation we get:

aaaaaa
?

aaa SSSSSSSSS 323331221 222 −++−+≤−+

aa
?

SS 32 220 −≤

valid

From 1-6 we conclude that the lemma is valid for 1=n .

ii- Let us assume that the lemma holds for 1−n , where 2≥n and we will prove it for
n .

Since the lemma holds for 1−n then:

() () ()233121 S,SDS,SDS,SD +≤ (A-2)

where

aaaaaa
?

aaa SSSSSSSSS 323331121 222 −++−+≤−+

Appendix

 193

() () ()()∑
−

=

−+=
1

1
2121

212
n

i

S
i

S
i f,fminSSS,SD

() () ()()∑
−

=

−+=
1

1
3131

312
n

i

S
i

S
i f,fminSSS,SD

() () ()()∑
−

=

−+=
1

1
2323

232
n

i

S
i

S
i f,fminSSS,SD

When a new character is added the strings represented by 1−n characters become
represented by n .

Let the frequency of the newly introduced character be () () ()321 S

n
S

n
S

n f,f,f in 321 S,S,S
respectively.

We have six configurations of the newly added character:

 7- () () ()321 S

n
S

n
S

n fff ≤≤

 8- () () ()231 S
n

S
n

S
n fff ≤≤

 9- () () ()312 S
n

S
n

S
n fff ≤≤

10- () () ()132 S
n

S
n

S
n fff ≤≤

11- () () ()213 S
n

S
n

S
n fff ≤≤

12- () () ()123 S
n

S
n

S
n fff ≤≤

We will prove that relation (A-1) holds in these six configurations.

7- () () ()321 S

n
S

n
S

n fff ≤≤

In this case we have:

() ()() ()121 S
n

S
n

S
n ff,fmin =
() ()() ()131 S

n
S

n
S

n ff,fmin =
() ()() ()232 S

n
S

n
S

n ff,fmin =

() () ()233121 S,SDS,SDS,SD
?

+≤

Appendix

 194

() ()() () () () ()()

() ()() () () () ()()

() ()() () () () ()()232323

313131

212121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n
S

n

n

i

S
i

S
i

f,fminfff,fminSS

f,fminfff,fminSS

f,fminfff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()() () () ()

() ()() () () ()

() ()() () () ()22323

13131

12121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n

n

i

S
i

S
i

ffff,fminSS

ffff,fminSS

ffff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()()

() ()()

() ()() () ()2323

31

21

222

2

2

1

1
23

1

1
31

1

1
21

S
n

S
n

n

i

S
i

S
i

n

i

S
i

S
i

?n

i

S
i

S
i

fff,fminSS

f,fminSS

f,fminSS

−+−+

−+

≤−+

∑

∑

∑

−

=

−

=

−

=

Taking (A-2) into account , we get:

() ()23 220 S
n

S
n

?
ff −≤

which is valid according to (7).

8- () () ()231 S

n
S

n
S

n fff ≤≤

In this case we have

() ()() ()121 S
n

S
n

S
n ff,fmin =

Appendix

 195

() ()() ()131 S
n

S
n

S
n ff,fmin =
() ()() ()332 S

n
S

n
S

n ff,fmin =

() () ()233121 S,SDS,SDS,SD
?

+≤

() ()() () () () ()()

() ()() () () () ()()

() ()() () () () ()()232323

313131

212121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n
S

n

n

i

S
i

S
i

f,fminfff,fminSS

f,fminfff,fminSS

f,fminfff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()() () () ()

() ()() () () ()

() ()() () () ()32323

13131

12121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n

n

i

S
i

S
i

ffff,fminSS

ffff,fminSS

ffff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()()

() ()()

() ()()∑

∑

∑

−

=

−

=

−

=

−+

−+

≤−+

1

1
23

1

1
31

1

1
21

23

31

21

2

2

2

n

i

S
i

S
i

n

i

S
i

S
i

?n

i

S
i

S
i

f,fminSS

f,fminSS

f,fminSS

Which is valid according to (A-2).

9- () () ()312 S

n
S

n
S

n fff ≤≤

In this case we have:

Appendix

 196

() ()() ()221 S
n

S
n

S
n ff,fmin =
() ()() ()131 S

n
S

n
S

n ff,fmin =
() ()() ()232 S

n
S

n
S

n ff,fmin =

() () ()233121 S,SDS,SDS,SD
?

+≤

() ()() () () () ()()

() ()() () () () ()()

() ()() () () () ()()232323

313131

212121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n
S

n

n

i

S
i

S
i

f,fminfff,fminSS

f,fminfff,fminSS

f,fminfff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()() () () ()

() ()() () () ()

() ()() () () ()22323

13131

22121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n

n

i

S
i

S
i

ffff,fminSS

ffff,fminSS

ffff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()()

() ()()

() ()() () ()1323

31

21

222

2

2

1

1
23

1

1
31

1

1
21

S
n

S
n

n

i

S
i

S
i

n

i

S
i

S
i

?n

i

S
i

S
i

fff,fminSS

f,fminSS

f,fminSS

−+−+

−+

≤−+

∑

∑

∑

−

=

−

=

−

=

Taking (A-2) into account , we get:

() ()13 220 S
n

S
n

?
ff −≤

which is valid according to (9).

Appendix

 197

10- () () ()132 S
n

S
n

S
n fff ≤≤

In this case we have:

() ()() ()221 S
n

S
n

S
n ff,fmin =
() ()() ()331 S

n
S

n
S

n ff,fmin =
() ()() ()232 S

n
S

n
S

n ff,fmin =

() () ()233121 S,SDS,SDS,SD
?

+≤

() ()() () () () ()()

() ()() () () () ()()

() ()() () () () ()()232323

313131

212121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n
S

n

n

i

S
i

S
i

f,fminfff,fminSS

f,fminfff,fminSS

f,fminfff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()() () () ()

() ()() () () ()

() ()() () () ()22323

33131

22121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n

n

i

S
i

S
i

ffff,fminSS

ffff,fminSS

ffff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()()

() ()()

() ()()∑

∑

∑

−

=

−

=

−

=

−+

−+

≤−+

1

1
23

1

1
31

1

1
21

23

31

21

2

2

2

n

i

S
i

S
i

n

i

S
i

S
i

?n

i

S
i

S
i

f,fminSS

f,fminSS

f,fminSS

Which is valid according to (A-2).

Appendix

 198

11- () () ()213 S
n

S
n

S
n fff ≤≤

In this case we have.

() ()() ()121 S
n

S
n

S
n ff,fmin =
() ()() ()331 S

n
S

n
S

n ff,fmin =
() ()() ()332 S

n
S

n
S

n ff,fmin =

() () ()233121 S,SDS,SDS,SD
?

+≤

() ()() () () () ()()

() ()() () () () ()()

() ()() () () () ()()232323

313131

212121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n
S

n

n

i

S
i

S
i

f,fminfff,fminSS

f,fminfff,fminSS

f,fminfff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()() () () ()

() ()() () () ()

() ()() () () ()32323

33131

12121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n

n

i

S
i

S
i

ffff,fminSS

ffff,fminSS

ffff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()()

() ()()

() ()() () ()3123

31

21

222

2

2

1

1
23

1

1
31

1

1
21

S
n

S
n

n

i

S
i

S
i

n

i

S
i

S
i

?n

i

S
i

S
i

fff,fminSS

f,fminSS

f,fminSS

−+−+

−+

≤−+

∑

∑

∑

−

=

−

=

−

=

Appendix

 199

Taking (A-2) into account , we get:

() ()31 220 S
n

S
n

?
ff −≤

valid according to (11).

12- () () ()123 S

n
S

n
S

n fff ≤≤

In this case we have:

() ()() ()221 S
n

S
n

S
n ff,fmin =
() ()() ()331 S

n
S

n
S

n ff,fmin =
() ()() ()332 S

n
S

n
S

n ff,fmin =

() () ()233121 S,SDS,SDS,SD
?

+≤

() ()() () () () ()()

() ()() () () () ()()

() ()() () () () ()()232323

313131

212121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n
S

n

n

i

S
i

S
i

f,fminfff,fminSS

f,fminfff,fminSS

f,fminfff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

() ()() () () ()

() ()() () () ()

() ()() () () ()32323

33131

22121

22

22

22

1

1
23

1

1
31

1

1
21

S
n

S
n

S
n

n

i

S
i

S
i

S
n

S
n

S
n

n

i

S
i

S
i

?
S

n
S

n
S

n

n

i

S
i

S
i

ffff,fminSS

ffff,fminSS

ffff,fminSS

−++−+

−++−+

≤−++−+

∑

∑

∑

−

=

−

=

−

=

⇒

Appendix

 200

() ()()

() ()()

() ()() () ()3223

31

21

222

2

2

1

1
23

1

1
31

1

1
21

S
n

S
n

n

i

S
i

S
i

n

i

S
i

S
i

?n

i

S
i

S
i

fff,fminSS

f,fminSS

f,fminSS

−+−+

−+

≤−+

∑

∑

∑

−

=

−

=

−

=

Taking (A-2) into account, we get:

() ()32 220 S
n

S
n

?
ff −≤

which is true according to (12).

From 7-12 we conclude that the lemma is valid for n .

From i and ii, the lemma holds.

