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AbstratThis work fouses on the researh and development of e�ient algorithms ofappliation of loal grammars (Gross, 1997), taking as referene those of theurrently existent open-soure systems: Unitex's top-down parser (Paumieret al., 2009) and Outilex's Earley-like parser (Blan and Constant, 2006a).Loal grammars are a �nite-state based formalism for the representationof natural language grammars. Moreover, loal grammars are a model for theonstrution of fully saled and aurate desriptions of the syntax of naturallanguages by means of systemati observation and methodial aumulationof data. The adequay of loal grammars for this task has been provedby multiple works (Rohe and Shabes, 1997; Català and Baptista, 2007;Martineau et al., 2007; Laporte et al., 2008a,b).Due to the ambiguous nature of natural languages, and the partiularproperties of loal grammars, lassi parsing algorithms suh as LR (Knuth,1965), CYK's (Coke and Shwartz, 1970; Younger, 1967; Kasami, 1965) andTomita's (1987) annot be used in the ontext of this work. Top-down andEarley parsers are possible alternatives, though they have an exponentialworst-ase ost for the ase of loal grammars.We have �rst oneived an algorithm of appliation of loal grammarshaving a polynomial worst-ase ost (Sastre, 2009). Furthermore, we haveoneived other optimizations whih inrease the e�ieny of the algorithmfor general ases, namely the e�ient management of sets of elements andsequenes. We have implemented our algorithm and those of the Unitexand Outilex systems with the same tools in order to test them under thesame onditions. Moreover, we have implemented di�erent versions of eahalgorithm, using either our ustom set data strutures or those inluded inGNU's implementation of the C++ Standard Template Library (STL).1 We1A detailed desription of the STL an be found in Josuttis, 1999. GNU's implemen-tation of this library is being distributed along with GNU's Compiler Colletion: http://iii

http://gcc.gnu.org/


ivhave ompared the performane of the di�erent algorithms and algorithmversions in the ontext of an industrial natural language appliation providedby the enterprise Telefónia I+D: 2 extending the understanding apabilities ofa hatterbot that provides mobile servies, suh as sending SMSs to mobilephones as well as games and other digital ontents (Sastre et al., 2009).Conversation with the hatterbot is held in Spanish by means of Mirosoft'sWindows Live Messenger.3 In spite of the limited domain and the simpliityof the applied grammars, exeution times of our parsing algorithm oupledwith our ustom implementation of sets were lower. Thanks to the improvedasymptoti ost of our algorithm, exeution times for the ase of omplexand large overage grammars an be expeted to be onsiderably lower thanthose of the Unitex and Outilex algorithms.

g.gnu.org/2http://www.tid.es/en3www.msn.om
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RésuméNotre travail porte sur le développement d'algorithmes performants d'applia-tion de grammaires loales (Gross, 1997), en prenant omme référene euxdes logiiels libres existants: l'analyseur syntaxique desendant d'Unitex (Pau-mier et al., 2009) et l'analyseur syntaxique à la Earley d'Outilex (Blan andConstant, 2006a).Les grammaires loales sont un formalisme de représentation de la syntaxedes langues naturelles basé sur les automates �nis. Les grammaires loalessont un modèle de onstrution de desriptions préises et à grande éhelle dela syntaxe des langues naturelles par le biais de l'observation systématique etl'aumulation méthodique de données. L'adéquation des grammaires loalespour ette tâhe a été testé à l'oasion de nombreux travaux (Rohe andShabes, 1997; Català and Baptista, 2007; Martineau et al., 2007; Laporteet al., 2008a,b).À ause de la nature ambiguë des langues naturelles et des propriétésdes grammaires loales, les algorithmes lassiques d'analyse syntaxique telsque LR (Knuth, 1965), CYK (Coke and Shwartz, 1970; Younger, 1967;Kasami, 1965) et Tomita (1987) ne peuvent pas être utilisés dans le ontextede e travail. Les analyseurs top-down et Earley sont des alternatives pos-sibles ; ependant, ils ont des oûts asymptotiques exponentiels pour le asdes grammaires loales.Nous avons d'abord onçu un algorithme d'appliation de grammaires lo-ales ave un oût polynomial dans le pire des as (Sastre, 2009). Ensuite,nous avons onçu des strutures de donnés performantes pour la représen-tation d'ensembles d'éléments et de séquenes. Elles ont permis d'améliorerla vitesse de notre algorithme dans le as général. Nous avons mis en ÷uvrenotre algorithme et eux des systèmes Unitex et Outilex ave les mêmes ou-tils a�n de les tester dans les mêmes onditions. En outre, nous avons misen ÷uvre di�érents versions de haque algorithme en utilisant nos struturesv



vide données et algorithmes pour la représentation d'ensembles et eux fournispar la Standard Template Library (STL) de GNU.4 Nous avons omparé lesperformanes des di�érents algorithmes et de leurs variantes dans le adred'un projet industriel proposé par l'entreprise Telefónia I+D : 5 augmenterla apaité de ompréhension d'un agent onversationnel qui fournit des ser-vies en ligne, voire l'envoi de SMS à des téléphones portables ainsi que desjeux et d'autres ontenus numériques (Sastre et al., 2009). Les onversationsave l'agent sont en espagnol et passent par Windows Live Messenger.6 Endépit du domaine limité et de la simpliité des grammaires appliquées, lestemps d'exéution de notre algorithme, ouplé ave nos strutures de donnéeset algorithmes pour la représentation d'ensembles, ont été plus ourts. Grâeau oût asymptotique amélioré, on peut s'attendre à des temps d'exéutionsigni�ativement inférieurs par rapport aux algorithmes utilisés dans les sys-tèmes Unitex et Outilex, pour le as des grammaires omplexes et à largeouverture.

4Voire Josuttis (1999) pour une desription détaillée de la STL. La STL de GNU faitpartie de la GNU's Compiler Colletion: http://g.gnu.org/5http://www.tid.es/en6www.msn.om
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ResumenEste trabajo se entra en la investigaión y el desarrollo de algoritmos e�-ientes de apliaión de gramátias loales (Gross, 1997), tomando omoreferenia aquellos que están siendo usados en sistemas open-soure, a sa-ber: el analizador sintátio top-down de Unitex (Paumier et al., 2009) y elanalizador sintátio à la Earley de Outilex (Blan and Constant, 2006a).Las gramátias loales son un formalismo basado en autómatas �nitospara la representaión de la sintaxis de los lenguajes naturales. Las gramáti-as loales son un modelo de onstruión de desripiones preisas y a granesala de la sintaxis de los lenguajes naturales mediante la observaión sis-temátia y la aumulaión metodológia de informaión. La idoneidad de lasgramátias loales para esta tarea ha sido demostrada por múltiples traba-jos (Rohe and Shabes, 1997; Català and Baptista, 2007; Martineau et al.,2007; Laporte et al., 2008a,b).Debido a la naturaleza ambigua de la lengua, y a las propiedades delas gramátias loales, los analizadores sintátios lásios tales omo LR(Knuth, 1965), el de CYK (Coke and Shwartz, 1970; Younger, 1967; Kasami,1965) y el de Tomita (1987) no pueden usarse en el ontexto de este trabajo.Los analizadores sintátios top-down y de Earley son posibles alternativas,aunque tienen un oste asintótio exponenial en el aso de las gramátiasloales.En primer lugar, hemos desarrollado un algoritmo de apliaión de gra-mátias loales on un oste asintótio polinomial (Sastre, 2009). A onti-nuaión, hemos desarrollado estruturas de datos e�ientes para la gestiónde onjuntos de elementos y de seuenias. Estas estruturas han permitidomejorar la e�ienia de nuestro algoritmo en ondiiones generales. Hemosimplementado diho algoritmo y los algoritmos de Unitex y Outilex on lasmismas herramientas on el �n de ompararlos bajo las mismas ondiiones.Hemos implementado distintas versiones de ada algoritmo usando nuestrasvii



viiiestruturas de datos de tipo onjunto y aquellas inluidas en la implementa-ión de GNU de la librería estándar de plantillas (Standard Template Libraryo STL).7 Hemos omparado el rendimiento de los distintos algoritmos y desus distintas versiones en el ontexto de una apliaión industrial propuestapor la empresa Telefónia I+D: 8 aumentar la apaidad de omprensión deun robot onversaional apaz de suministrar serviios en línea, tales omoel envío de SMS a teléfonos móviles así omo de juegos y de otros ontenidosdigitales (Sastre et al., 2009). La omuniaión on el robot se realiza enespañol a través de Windows Live Messenger de Mirosoft.9 A pesar del do-minio restringido y de la simpliidad de las gramátias apliadas, los tiemposde ejeuión fueron menores para nuestro algoritmo y nuestras estruturasde datos de tipo onjunto. Graias al oste asintótio mejorado de nuestroalgoritmo, son de esperar tiempos de ejeuión signi�ativamente inferioresa los de los algoritmos empleados por los sistemas Unitex y Outilex para elaso de gramátias omplejas y de gran obertura.

7Una desripión detallada de la STL puede enontrarse en Josuttis, 1999. La imple-mentaión de GNU de la STL está siendo distribuida junto on la oleión de ompiladoresde GNU: http://g.gnu.org/8http://www.tid.es/en9www.msn.om
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PrefaeIn the last deades, our world's soieties have been shifting an importantpart of their resoures towards the prodution, distribution and use of in-formation, earning the surname of Information Soieties (Mahlup, 1962)(but see Crawford, 1983). Moreover, information has beome a key fatorin every aspet of our lives, from eonomy and politis to ulture. Aord-ingly, omputer siene and tehnology has evolved in order to ope withthe inreasing demand for the management of information: nowadays om-puters are no longer mere programmable alulators, as Charles Babbage�rst oneived them in 1837,10 but are able to proess multiple kinds of dataand present them in multiple formats. Pythagoras' laim `the whole thingis a number ' is being exempli�ed eah time a physial phenomenon is en-oded into binary digits and proessed by omputers, from the so ommonJPEG images (ITU, 1992; ISO/IEC, 1994), MP3 tunes (ISO/IEC, 1993) andDivX R©videos11 to the partile ollisions that take plae at CERN's LargeHadron Collider (see Lefevre, 2009); upon these ollisions, data bursts of 700megabytes per seond are streamed towards an array of data servers for itsstorage and distribution to omputers around the world (Shiers, 2007), whihwill analyse this information �a total of 15 petabytes a year12� in order tolearn about the nature of matter and of the universe itself.Indeed, omputer siene and tehnology has not only provided the toolsfor data proessing but also for its distribution around the world, startingwith the reation of the Internet (see Leiner et al., 2009). Apart from push-ing the boundaries of omputer networking (Newman et al., 2010), CERNhas also given rise to the most popular system for sharing information overthe Internet: the World Wide Web (Berners-Lee et al., 1992), also alled the10Visit http://www.fourmilab.h/babbage/11Visit http://www.divx.om121 petabyte = 106 gigabytes. ix
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xWWW. The WWW has provided a universal mean for aessing and linkingrelated digital ontents over the Internet: anyone an write a text dou-ment with information that he or she onsiders of interest, make it availablearound the world by means of a hyperlink and extend it with hyperlinks toother related information, mimiking human's assoiative memory. Indeed,omputers have not only assisted us in the management of numeri data,but in the management of text douments. Combined with searh engines,the WWW has beome the paramount expression of exploitable olletiveknowledge, mostly as text douments written in some human language (ornatural language). The 15 petabytes of data produed at CERN eah yearamounts to nothing in omparison with the 20 petabytes of data proessedby Google's lusters eah day (Dean and Ghemawat, 2008) in order to indexa fration of the one trillion web pages that form the World Wide Web.13Thanks to the appearane of Internet broadband onnetions, we ratherspend our time searhing for the information we need at a given momentthan on downloading it: addresses and shedules, produts and servies,news on reent events along with omments from other people, solutions toa great variety of problems and a huge amount of digital ontent, startingwith sienti� produtions. Indeed, most of the more than 300 papers itedin this dissertation have been searhed and downloaded from the WWW,as for any other present sienti� prodution. Atually, we an say that weare ��ooded� with information. E�ient natural language proessing (NLP)tools for information extration, �ltering and sorting are an obvious need.Moreover, mahine translation tools are neessary for the exploitation of textdouments written in languages that we do not master. Additionally, ma-hine translation an help us to preserve the world's multi-linguisti ulturewhih globalization is urrently threatening, starting with the dominane ofEnglish in sienti� literature (Enrique Hamel, 2007; Clavero, 2010). Aord-ing to UNESCO, there are around 6,700 di�erent languages spoken aroundthe world of whih about half of them are in danger of disappearing beforethe entury ends (Moseley, 2010).But the appliation of NLP tehnologies is not limited to web ontent:natural languages are our most ommon medium for the exhange and sup-port of information. Apart from mahine translators and the other men-tioned appliations, spell and grammar hekers help us to write well-formed13Google's estimation as for 2008; visit http://googleblog.blogspot.om/2008/07/we-knew-web-was-big.html

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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xitexts, and onversational agents provide a more natural mean for human-mahine interation. Yet users of these tehnologies still omplain aboutridiulous translation errors, ommuniation deadloks with automated allenter agents and inorret warnings of their grammar hekers (Vetulaniand Uszkoreit, 2009, Pref., p. VI).Though babies usually start talking when they are two years old, thefat is that human language is very omplex. Indeed, humans have tworemarkable apabilities whih are very hard to mehanize:
• the apability to reason, onverse and make rational deisions in anenvironment of impreision, unertainty, inompleteness of information,partiality of truth and possibility, and
• the apability to perform a wide variety of physial and mental taskswithout any measurements and any omputations (Zadeh, 2009).Qualitative spatial reasoning is a good example making use of both apabil-ities (see Freksa, 1991); for instane, we are able to give diretions withoutknowing our environment's exat distribution and without using exat mea-sures of distane or diretion but qualitative ones (a little farther, to yourleft, et.). As ould be expeted, natural languages are heavily in�uenedby our way of thinking. An intriguing example is the fat that all knownlanguages draw heavily on spatial metaphors (Marus, 2004); for instane,we say a happy person is on top of the world while a sad person is down inthe dumps. But the most salient properties of natural languages �in on-trast with formal languages� are their rihness, ambiguity and irregularity.While suh properties do not prevent us from learning them and ommuniat-ing between us, the onstrution of formal desriptions of natural languagesfor their automati treatment is no less than hallenging. Though doubthas been thrown on the suitability of the urrent omputational paradigmin order to ahieve human-level mahine intelligene (Zadeh, 2009), multi-ple natural language models and tehniques have been proposed.14 Generalhuman-level language understanding is far to be ahieved yet, but more on-rete and modest problems have been treated with more or less suess: thenowadays existent natural language appliations are the proof of this fat,14We brie�y desribe the most popular omputable language models in setion 1.3, andthe most popular parsing algorithms that may apply to our use ase in setion 1.4.



xiifrom Google's linguisti-aware searhes to Google's mahine translator.15,16Most natural language tehniques use statistial methods in order to au-tomatially build some language model by observation of large annotatedorpora.17 The purpose of suh tehniques range from part-of-speeh tag-ging and disambiguation (Churh, 1988; Shmid, 1994; Brill, 1995) to theautomated onstrution of lexions (see Sun et al., 2008) and grammars (seeKlein and Manning, 2005). These tehniques avoid the ost of manuallybuilding large linguisti databases, whih is very onvenient for the industrialsetor. However, to whih extent an a omputer apture linguisti informa-tion without the assistane of human experts but rather just by searhing foroinidenes? No magi an extrat an information from a data set whihdoes not ontain it, either expliitly or not. In our ase, we humans do notlearn languages from examples alone but oupled with ontexts of use �asfor the ase of our mother tongues� or with language rules made expliit�as for the additional languages we may have learnt from a teaher and/ora textbook. While the use of statistis has given positive results, better qual-ity results an be obtained by using handrafted linguisti resoures. Despitethis fat, defenders of the statistial approah have frequently ritiized thehandrafted approah as ine�ient, subjetive, tedious, time-onsuming oreven boring. However, it appears that suh ritiisms are rather founded onpersonal preferenes than on onvining evidene (Laporte, 2009): tedious,laborious and boring are an assesment of how muh fun researhers �nd intheir work, whih is rather a question of personal taste than a valid sienti�point. Many other researhers agree that the statistial approah will reahits limits soon, and that handrafted linguisti resoures will be then nees-sary in order to overome suh limits (Gross and Senellart, 1998; Abeillé andBlahe, 2000). The future will tell.
15Google's searh engine no longer searhes for an exat list of words, but also searhesfor the in�eted forms of the given words while tolerating spell errors.16Visit http://translate.google.om17An annotated orpus is a mahine readable text extended with some linguisti meta-data; for instane, the Brown Corpus (Franis and Ku£era, 1982) and the Penn Treebank(Marus et al., 1993) are two large annotated orpora of English: both omprise mor-phosyntati annotations of words, while the latter also inludes syntati annotation ofsentenes (hene the name of `Treebank').
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Chapter 1IntrodutionParsing natural-language text with loal grammars is one of the ways of lo-ating meaningful sequenes in texts. Loal grammars are language resouresdesribing sets of meaningful sequenes in a language (e.g.: named entities,measurement phrases, et.). When ompared to statistial methods, the useof loal grammars provides more ontrol on the results. Current open-souresystems for parsing text with loal grammars, namely Unitex (Paumier et al.,2009) and Outilex (Blan and Constant, 2006a), make use of various algo-rithms depending on the features of the grammars. In this dissertation wepropose faster algorithms.1.1 Loal grammarsFormally, loal grammars (Gross, 1997) are reursive transition networks(RTNs, Woods, 1970) with output de�ned on an alphabet of lexial masks.Lexial masks are powerful linguisti operators whih ease the de�nition ofnatural language grammars: they allow for the representation of large setsof words by means of simple expressions speifying a set of morphosyntatiand/or semanti properties to omply with (e.g.: human noun singular, suhas student, lover, �reman, et.). Numerous studies have shown the adequayof automata for linguisti problems at all desriptive levels, from morphologyand syntax to phoneti issues (Rohe and Shabes, 1997; Català and Baptista,2007; Martineau et al., 2007; Laporte et al., 2008b,a). In partiular, thesuitability of loal grammars for the desription of multiple natural languagemirostrutures has been attested by multiple works:3



4 CHAPTER 1. INTRODUCTION
• named entities in Korean (Nam and Choi, 1997), Frenh (Friburger,2002; Friburger and Maurel, 2002, 2004; Martineau et al., 2007), Arabi(Mesfar, 2007; Traboulsi, 2009), et.,
• nominal determiners in Frenh (Gross, 2001; Silberztein, 2003a),
• expressions of measure and loation adverbs in Frenh (Constant, 2003b),
• date and duration adverbs in Korean (Jung, 2005),
• date adverbs in Greek (Voyatzi, 2006),
• measurement phrases in Frenh (Constant, 2009),
• Frenh determiners (Laporte, 2007),
• oordinated noun phrases in Serbo-Croatian (Nenadi¢, 2000),
• noun phrases and other lause elements in English (Mason, 2004),
• noun phrases with prediative head in Frenh (Laporte et al., 2008)),
• omplex prediates in English (Gross, 1999) and Portuguese (Ranhhodet al., 2004),
• et.1Loal grammars have also been used in pre-treatment stages failitating fur-ther parsing, suh as
• hunking (Poibeau, 2006),
• super-hunking (Blan et al., 2007),
• annotating ompound da-onjuntions in Bulgarian (Venkova, 2000),
• annotating Frenh expletive pronouns (Danlos, 2005),
• et.1An extensive list of works using or iting Unitex �therefore likely to be based on loalgrammars� an be found at http://igm.univ-mlv.fr/~unitex/index.php?page=12

http://igm.univ-mlv.fr/~unitex/index.php?page=12


1.1. LOCAL GRAMMARS 5Loal grammars have also been used for parsing Frenh simple sentenes,either belonging to a partiular domain (Fairon and Paumier, 2005) or not(Paumier, 2003). Finally, loal grammars have been extended with featurestrutures and uni�ation proesses in order to parse Frenh omplex sen-tenes (Blan and Constant, 2005; Blan, 2006). The resulting formalisman be seen as an alternative version of lexial-funtional grammars whererewrite rules are oded as �nite-state automata instead of ontext-free rules(Blan, 2006, p. 140).Loal grammars for natural language parsing an be semi-automatiallybuilt from lexion-grammar tables (Rohe, 1993; Constant, 2003a). A lexion-grammar table onstitutes a lass of prediative elements whih depends onthe similarity of the sentene strutures in whih the prediative elementsmay appear (Lelère, 2002). Following the lexion-grammar model of syntax(Gross, 1996), a large set of lexion-grammar tables for Frenh has been on-struted sine 1968. These tables onstitute a very rih linguisti resouredesribing exhaustively the syntati and distributional properties of 72000prediative elements,2 inluding
• verbs (Gross, 1975; Boons et al., 1976a,b, 1992),
• prediative nouns (Gross, 1989; Giry-Shneider and Balibar-Mrabti,1993; Giry-Shneider, 1978, 1987),
• idiomati expressions (Gross, 1982a, 1985, 1986b, 1988b,a, 1993; Giry-Shneider, 1987), and
• adverbs (Gross, 1982b, 1986a; Molinier and Levrier, 2000).However, these tables were essentially the result of a linguisti approah withno intention to build a tool for omputational appliations (Lelère, 2003).Though they have been suessfully exploited for the automati treatment ofFrenh, to some extent (Paumier, 2003; Blan, 2006), onverting them intosome exploitable format is a non-negligible task (see Hathout and Namer,1998; Gardent et al., 2005, 2006; Constant and Tolone, 2008; Sagot andTolone, 2009); indeed, large parts of the informations they ontain are neitherexpliit nor represented in a uniform manner. As work on lexion-grammartables advanes, we have ompared our algorithms of appliation of loal2Aessible through the HOOP interfae (Sastre, 2006b,a) at http://hoop.univ-mlv.fr/lienseAgreement.html
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6 CHAPTER 1. INTRODUCTIONgrammars with those of the Unitex and Outilex systems within a simpler usease we desribe below. We have not only ahieved lower exeution times butalso a lower asymptoti ost; therefore, even better results an be expetedfor the ase of larger and more omplex grammars suh as the ones that ouldbe semi-automatially built from the Frenh lexion-grammar tables.1.2 The MovistarBotIn ollaboration with the enterprise Telefónia I+D,3 we have built a human-mahine interfae based on short text messages and loal grammars (Sastreet al., 2009).4 This interfae makes use of the di�erent algorithms we presentin this dissertation (Sastre and Forada, 2009; Sastre, 2009), and has servedas an evaluation framework. The interfae is aimed at extending the under-standing apabilities of a hatterbot based on AIML (Wallae, 2004).5,6 Con-versation with the hatterbot is performed by means of short text messagessent through the Internet using one of the most popular instant messaginglients: Mirosoft's Windows Live Messenger, ommonly known as MSN orMessenger.7As well as providing some general onversation, the hatterbot is aimed atproviding mobile servies (e.g.: sending SMSs), either requested in Spanish(e.g.: envía Feliz Navidad al móvil 555-555-555, whih means send Merry3Telefónia I+D is a researh and development enterprise and member of the Telefóniagroup, leader of the teleommuniations market in Spain and Latin Ameria and whihalso enjoys a signi�ant footprint in Europe.4In partiular, we have used weighted RTNs with output5A hatterbot is a omputer program designed to simulate an intelligent onversationwith one or more human users.6AIML is a language for the spei�ation of hatterbot onversation rules based onXML. These rules are mainly omposed of reognition patterns �less powerful than reg-ular expressions� oupled with an output whih may inlude input fragments. Conver-sation ontexts may be de�ned so di�erent sets of rules an be applied depending on theurrent ontext, allowing the hatterbot to follow the human into partiular domains ofonversation.7Communiation between MSN lients and Mirosoft's servers is performed by means ofthe Mirosoft Noti�ation Protool (MSNP). Currently, Mirosoft servers reognize onlyMSNP version 8 or higher, but Mirosoft published only the spei�ations of version 2(Movva and Lai, 1999). However, the open-soure ommunity has been reversely engi-neering newer MSNP versions, and open-soure ompatible lients are urrently available(e.g.: Empathy, Kopete and Pidgin).



1.2. THE MOVISTARBOT 7Christmas to the ell phone 555-555-555 ) or by means of ommands (e.g.sms Feliz Navidad 555555555 ). The interfae we have built spei�ally tar-gets sentenes requesting the servies the hatterbot an provide. We havebuilt a grammar for this spei� domain and implemented a natural lan-guage proessing engine making use of the di�erent algorithms presented inthis dissertation, inluding those of the Unitex and Outilex systems in orderto ompare their performanes. The engine has been paked as a Tomatservlet so that it an provide its servies through the Internet to severalusers onurrently.8 Eah time a message is to be sent to the hatterbot,the message is �rst sent to the engine for preproessing. In ase the messageorresponds to a request of an available servie, the engine extrats the spe-i�ed arguments (e.g.: the message to send and the target phone number) andtranslates the message into the orresponding ommand, extending the hat-terbot's understanding apabilities to a greater variety of natural languagesentenes. If the message is not reognized as a servie request, it is returnedas is to the hatterbot with a speial ode so that the general AIML on-versational rules are applied. Without the engine, the robot mainly searhesfor keywords (e.g.: sms) and shows the preise syntax to be used in order tolaunh the presupposed servie, obligating the user to retype any argumentsthat were already provided. In ase the arguments are partially provided, thehatterbot is now able to ask only for the missing ones; for instane, uponsentene `quiero enviar un SMS al 555 555 555 ' (I want to send an SMS tothe 555 555 555) the hatterbot will only ask for the message to send.In order to ompare the performanes of the di�erent algorithms, we havebuilt a orpus of 168 possible sentenes,9 most of them servie requests butalso other sentenes in order to ontrol over-reognition.10 Servie requestsare formed by a few ompounds that may permute; for instane `Envía el8Information on Tomat an be found in the Apahe Tomat homepage http://tomat.apahe.org and in Brittain and Darwin (2007); information and tutorials onservlets an be found in http://java.sun.om9The original orpus ontains 334 sentenes, though we have only taken into aountthe sentenes that are aurately desribed by our grammars. Due to the time onstraintsof the MovistarBot projet, aurate grammars for every servie the MovistarBot had tosupport ould not be built but simple keyword-mathing rules were used instead, whihare by far simpler than the grammar rules we an expet in a natural language parsinguse ase.10By over-reognition we mean to reognize sentenes that atually orrespond to aservie request plus others that do not, usually beause of small di�erenes that are notmodelled in the grammar.
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8 CHAPTER 1. INTRODUCTIONmensaje hola al móvil 555-555-555 ' (send the message hello to the mobile555-555-555) ould also be written as `Envía al móvil 555-555-555 el men-saje hola' (send to the mobile 555-555-555 the message hello), where eahompound has a �nite variability (e.g. `al móvil 555-555-555', `al 555555555',et.). The orpus onsiders every possible permutation, using di�erent om-pound variants in eah one instead of onsidering every possible ombination,thus the orpus is representative in spite of its size. We have aligned the or-pus with the answers the system should return and implemented a tool forverifying the answer returned by the system for every sentene in the orpus.Exeution times have been measured under the same onditions for eah al-gorithm, namely the same linguisti resoures and their orresponding datastrutures.1.3 Popular omputable grammar formalisms1.3.1 Lexion grammarLexion grammar is a methodology for the empirial study of the syntax ofnatural languages reated by Gross (1996), starting with his book `Méthodesen syntaxe' (Gross, 1975). Lexion grammar is based on Harris's (1965)transformational theory of language; in this theory, the analysis of a senteneonsists in applying some series of transformations (hene the name) to one ormore elementary sentenes: for instane, sentene `The ball was hit by Mary'is analyzed as the result of transforming elementary sentene `Mary hit theball' into passive form. Harris's aim was to onstitute linguistis as a produtof mathematial analysis of the data of language, taking elementary sentenesas objets on whih operators ould be applied (Harris, 1968, 1991). Apartfrom Harris's theory, language models based on Harris's transformationaltheory of language are alled transformational grammars, and they inludelexion grammar.Lexion grammar onsiders that general grammar rules annot give a-urate linguisti desriptions to the irregularities of natural languages; more-over, the presene of spei� words within the sentenes may ondition thesentene strutures (Gross, 1997). Though this idea was not original (seeHarris, 1951 or Chomsky, 1965), Gross was the �rst one to shift from suhtheoretial observation to the empirial desription of language, inludingits lexis (Laporte, 2005). As for Harris's theory, sentenes are lassi�ed in



1.3. POPULAR COMPUTABLE GRAMMAR FORMALISMS 9lexion grammar depending on their syntax, and eah lass is assoiated toan elementary syntati struture of sentene. In order to take into aountthe language irregularities, tables of prediative elements for eah lass arebuilt; these tables are alled lexion-grammar tables (Lelère, 2002). Eahtable entry is ompleted with the data representing the syntati partiu-larities of the orresponding prediative element w.r.t. the other ones in thelass. Parametrized loal grammars an then be built in order to representthe elementary and non-elementary syntati strutures for eah table. Loalgrammars for eah entry are automatially built by instantiating the param-eters of suh parametrized grammars, for eah entry of the orrespondingtable. The ontrol exerted by the parameters ranges from the prediativeelement to appear in the sentenes to the prepositions that introdue thesentene arguments, or even the substrutures of the parametrized grammarthat are to be kept or to be removed, depending on whether they apply ornot to the onerned prediative element.1.3.2 Context-free grammarsContext-free grammars (CFGs, initially alled phrase struture grammars)were �rst proposed by Chomsky (1956) as a desription method for naturallanguages. A similar idea was used shortly thereafter to desribe omputerlanguages: Fortran by Bakus (1959) and Algol by Naur et al. (1960). Theresulting Bakus-Naur form (BNF) an be seen as an alternate notation forCFGs. Chomsky rede�ned Harris's transformations as operations mappingsets of deep strutures (the syntax trees) to surfae strutures (the sequeneof words that ompose the sentenes). CFGs mainly onsist in a set ofterminal symbols, a set of non-terminal symbols and a set of rewrite rules,where
• non-terminal symbols are labels of syntax tree strutures (e.g.: `NP'for noun phrase, `S' for sentene, et.),
• terminal symbols are the words of the language, and
• rewrite rules indiate possible replaements of non-terminal symbolswithin sequenes of terminal and non-terminal symbols by other se-quenes of terminal and non-terminal symbols; for instane, rewriterule `NP → DET NOUN' indiates that a noun phrase an be om-



10 CHAPTER 1. INTRODUCTIONposed by a determiner followed by a noun, and `DET → the' indiatesthat `the' is a determiner.Analyzing a sentene onsists in generating it by transforming sequene `S'(the non-terminal representing any sentene) into the sequene of words thatform the sentene by performing some series rewrites (or transformations).CFGs and any other grammar following this methodology, inluding loalgrammars, are said to be generative grammars.CFGs allow for a strutured representation of languages by means of lin-guisti bloks whih an be reused in the desription of other bloks (e.g.:one an de�ne what a noun phrase is, then de�ne a prepositional phrase asa preposition followed by a noun phrase). CFGs are said to be ontext freesine any rewrite rule for a given non-terminal symbol may apply indepen-dently of the ontext in whih that non-terminal symbol may appear, that is,non-terminal symbol de�nitions do not take into aount the non-terminalontext.ECFGs are CFGs where regular expressions an be used within the rightpart of rewrite rules in order to avoid repetition (but not for augmentingthe generative power of the grammar formalism). As for CFGs, there existsan alternate notation for ECFGs based on BNF: extended BNF or EBNF.EBNF is widely used for the desription of omputer languages and otherformal languages, suh as XML DTDs (Albert et al., 1998). Indeed, the In-ternational Organization for Standardization has adopted an EBNF standard(ISO/IEC, 1996).CFGs, ECFGs, RTNs and pushdown automata (Oettinger, 1961; Shützen-berger, 1963; Evey, 1963) are equivalent formalisms, but CFGs and ECFGsare based on a set of rewrite rules while RTNs and pushdown automata arebased on �nite-state automata. Finite-state automata allow for a more om-pat and e�ient representation than rewrite rules (Woods, 1969, se. 1.7.3,p. 40) and an be graphially represented for better readability. More detailson CFGs and ECFGs are given in appendix B.1.3.3 Attribute grammarsAttribute grammars (AGs, Knuth, 1968) are CFGs extended with attributes.These attributes are given values as the grammar produtions are applied.The attributes are divided into two groups: synthesized attributes and in-herited attributes. The synthesized attributes are the result of the attribute



1.3. POPULAR COMPUTABLE GRAMMAR FORMALISMS 11evaluation rules, and may also use the values of the inherited attributes.The inherited attributes are passed down from parent to hildren nodes, orfrom elder brothers to younger brothers. In some approahes, synthesizedattributes are used to pass semanti information up the parse tree, whileinherited attributes help pass semanti information down and aross it; forinstane, language translation tools (e.g.: ompilers) may use attributes inorder to assign semanti values to syntati onstrutions. Additionally, it ispossible to validate semanti heks that are not expliitly imparted by thesyntax de�nition. AGs an also be seen as an extension of CFGs for out-put generation; see, for instane, syntax-direted translation based on AGsin Aho et al. (1986, hap. 5, p. 279). As for CFGs, RTNs have also beenextended with attributes; the resulting �nite-state mahines have been alledaugmented transition networks (ATNs, Woods, 1969).1.3.4 Probabilisti ontext-free grammarsCFGs generating ambiguous sentenes assoiate several parse trees to thesame ambiguous sentene, one per eah interpretation. In order to hooseone of the possible parse trees, rewrite rules an be assoiated to weights orsores, hene assoiating to eah parse tree an overall weight whih is theombination (e.g.: addition or multipliation) of the di�erent weights of thesuessive rewrite rules that led to suh parse tree. Suh CFGs are alledweighted CFGs (WCFGs). A speial ase of WCFGs, �rst proposed by Booth(1969), are probabilisti (or stohasti) CFGs (PCFGs): in these grammars,weights are probabilities whih de�ne a distribution over the di�erent parsetrees the grammar represents; details on how this an be aomplished anbe found in Booth and Thompson (1973). WCFGs and PCFGs an be seenas an extension of CFGs for the generation of a partiular kind of output(weights or probabilities), as for AGs. Probabilities an be omputed byobservation of large orpora as usually done in statistial approahes. Asould be expeted, RTNs an be extended with weights and probabilities(see, for instane, Blan 2006, se. 3.3, p. 85). More information on PCFGsan be found in Jurafsky and Martin (2008, hap. 12, p. 444).1.3.5 Lexial-funtional grammarsLexial-funtional grammars (LFGs, Kaplan and Bresnan, 1982) are basiallyCFGs extended with feature strutures and uni�ation proesses. LFGs are



12 CHAPTER 1. INTRODUCTIONomposed by two fundamental levels of syntati representation: the on-stituent struture (-struture) and the funtional struture (f-struture); -strutures have the form of CFGs, and f-strutures are sets of attribute/valuepairs (the alled feature strutures). Attributes may be features (e.g.: tense,gender, et.) or funtions (e.g.: subjet, objet, et.). The name of the the-ory emphasizes an important di�erene between LFG and the Chomskyantradition from whih it evolved: many phenomena are thought to be morenaturally analysed in terms of grammatial funtions as represented in thelexion or in f-struture, rather than on the level of phrase struture. An ex-ample is the alternation between ative and passive, whih rather than beingtreated as a transformation, is handled in the lexion. Grammatial funtionsare not derived from phrase struture on�gurations, but are represented atthe parallel level of funtional struture.As stated before, loal grammars have also been extended with featurestrutures and uni�ation proesses for parsing Frenh omplex sentenes(Blan and Constant, 2005; Blan, 2006). Details on uni�ation and how toextend CFGs with feature strutures and uni�ation proesses an be foundin Jurafsky and Martin (2008, hap. 11, p. 391).1.3.6 Tree-adjoining grammarsTree-adjoining grammars (TAGs, Joshi et al., 1975) are somewhat similarto CFGs, but the elementary unit of rewriting is the tree rather than thesymbol: whereas CFGs have rules for rewriting symbols as strings of othersymbols, tree-adjoining grammars have rules for rewriting the nodes of treesas other trees. A TAG onsists of a number of elementary trees, whih an beombined with a substitution and an adjuntion operation in order to obtainderived trees. Interior tree nodes are non-terminals, and frontier tree nodesmay either be terminals or non-terminals. Substitution replaes a frontiernon-terminal by a tree having the same non-terminal as root. Adjuntionis more omplex; summarizing, it onsists in inserting a tree within anothertree, either reursively or not. Beause of the formal properties of adjuntion,the formalism is more powerful than CFGs, but only mildly so (Joshi, 1985).Lexialized TAGs (LTAGs, Abeille, 1988) are a variant of TAGs whereeah elementary tree ontains at least one frontier node labelled with a termi-nal symbol. Thus eah elementary tree is assoiated with at least one lexialelement. Finally, TAGs have also been extended with probabilities (Shabes,1992) and with feature-strutures and uni�ation proesses (Vijay-Shanker



1.4. PARSING ALGORITHMS 13and Joshi, 1988; Vijay-Shanker, 1992).1.4 Parsing algorithms1.4.1 Top-downUsually, omputable language models are de�ned having in mind a partiularproedure for their appliation to language utteranes; for the ase of CFGs,de�ning a top-down parse is quite straightforward: rewrite rules are appliedin order to suessively transform the sentene non-terminal into the sequeneof words that form the sentene to analyse. The RTN ase is analogous:starting from the initial state, outgoing arrows allowing to onsume the nextsentene word are followed until there are no words left. Due to the ambiguityof the language, or simply due to the grammar struture itself, multiplerewrite sequenes (or paths within the RTN) for a given sentene may bepossible. Variants of the top-down parser an be de�ned depending on theorder in whih rewrite rules (or paths) are explored:
• the depth-�rst variant (reursive desent, see Aho et al., 1986, se. 4.4,p. 181) explores one rewrite sequene (or path) at a time, oming bakto the last intersetion when reahing a dead-end, and
• the breadth-�rst variant advanes the exploration of every possiblerewrite sequene (or path) as input words are read.Top-down parsers may fall into an in�nite loop when applying left-reursivegrammars, and hene they do not support them. Both CFGs and RTNsan be transformed into some equivalent non-left-reursive grammar, thoughsuh transformations have some undesired side e�ets: the resulting parsetrees no longer orrespond to the original grammar and ontain arti�ialnon-terminals whih obfusate them. Obviously, an alternative solution is toavoid left-reursive strutures when building the grammars. These parsersare the simplest and easiest to implement, though they have an exponentialworst-ase ost. We will present both depth-�rst and breadth-�rst variantsof top-down parsers in detail for the ase of �nite-state mahines, inludingRTNs with and without output.



14 CHAPTER 1. INTRODUCTION1.4.2 Bottom-upThough CFGs (and RTNs) seem oneived for being applied by means of top-down parsers, other proedures are possible; for instane, bottom-up parsingwith CFGs an be performed by reversely appling the rewrite rules to thesentene words in order to �undo� the rewrites, obtaining sequenes that on-tain non-terminals whih are to be searhed in other rewrite rules to undo,and so on until obtaining the sentene non-terminal (see Aho et al., 1986,se. 4.5, p. 195). Usually, whether an algorithm is more e�ient than an-other one depends on the sentene to analyse and the grammar. Top-downparsers may blindly explore multiple rewrite rules until atually reahingsome �bottom-level� rewrite rules whih require for the presene of ertainsentene words; a greater proportion of reahable bottom-level rules not om-plying with the sentene words will result in a greater perentage of wastedomputational time. One may think that a bottom-up parse ould solve thisproblem, sine it atually starts from the spei� sentene words instead offrom a non-terminal symbol representing any sentene. However, bottom-upparsers may also waste time by undoing rewrite rules that do not lead to thesentene non-terminal (see (Jurafsky and Martin, 2008, se. 10.1, p. 355) fora omparative overview on top-down and bottom-up parsers for CFGs). Un-fruitful grammar explorations may be redued by using smarter algorithms,but one annot expet to ompletely avoid them sine the whole grammarannot be applied to the whole sentene in a single operation: informationunits within both the grammar and the sentene are to be suessively ex-amined, and subsets of the omputed partial parses may beome inonsistentas additional data is taken into aount.1.4.3 LR-parsersLR-parsers (Knuth, 1965) (but see Aho et al., 1986, se. 4.7, p. 215) arevery e�ient lass of top-down parsers, though they only support a subsetof CFGs. In the name, `L' stands for `left-to-right input sanning' and `R'for `rightmost derivation'. LR-parsers are mainly based on a table of inputsymbols × grammar states → ation to perform, whih is to be onstrutedfor eah grammar.11 Thanks to this table, the grammar an e�iently beapplied by systematially exeuting the ation inside the ell indexed by the11Apart from the mentioned table, a table ation × state → state is also to be built;see Aho et al., 1986, se. 4.7, p. 215 for more details.



1.4. PARSING ALGORITHMS 15urrent state and input symbol. However, sine only a single ation anbe de�ned for a given symbol and state, grammars must be deterministiand non-ambiguous, whih is not the ase of natural language grammars.Moreover, building an LR-table with a big alphabet will be ine�ient or evenimpratial; this is the ase of loal grammars sine they are de�ned on thealphabet of the words of the language rather than on the alphabet of lettersand symbols.1.4.4 TomitaTomita's (1987) parser is an extended version of LR-parsers whih supportsnon-deterministi and/or ambiguous grammars: upon multiple ations, theparsing proess is simply forked in order to exeute all of them. However,building LR-tables for loal grammars will still be ine�ient or impratialdue to the alphabet sizes. E�ient data strutures for the representation ofsparse tables ould be used, though we have not studied this possibility.1.4.5 CYKCYK (Coke and Shwartz, 1970; Younger, 1967; Kasami, 1965) is one of the�rst parsers supporting natural languages �namely ambiguous grammars�and CFGs having a polynomial worst-ase ost (n3). It is a bottom-up parserwhih makes use of dynami programming: the parsing problem is brokendown into simpler subproblems, and partial solutions are stored in order tobe later reused so that no subproblem is solved twie. As drawbak, the CYKparser requires to �rst transform the grammar into Chomsky's normal form(Chomsky, 1959).12 Though this implies an additional operation to perform,one may only have to ompute it one as long as the grammar is not tobe modi�ed. However, the grammar size will be onsiderably inreased, itsoriginal struture modi�ed, and many arti�ial non-terminal symbols will beintrodued; as for the removal of left reursivity, the resulting parse treeswill di�er from those obtained from the original grammar, and arti�ial non-terminals will obfusate them.12Alternative desriptions of Chomsky's normal form an be found in Autebert et al.(1997, se. 3.1), Hoproft et al. (2000, se. 7.1.5) and Sipser (2006, p. 106�109)



16 CHAPTER 1. INTRODUCTION1.4.6 EarleyEarley's (1970) CFG parser is another algorithm able to parse natural lan-guage grammars.13 It is a top-down breadth-�rst algorithm whih also makesuse of dynami programming, as for CYK. It has the same worst-ase ostthan CYK, but does not require to transform the grammar, namely to putit in some normal form (as for CYK's), to determinize it (as for LR-parsers)or to remove left reursion (as for top-down parsers). Contrary to LR andTomita parsers, it an equally treat grammars de�ned on either small or bigalphabets. Thanks to its e�ieny and �exibility, Earley's parser has beomea lassi natural language parsing algorithm; indeed, it has been adapted toseveral other grammar formalisms suh as
• RTNs (Woods, 1969),
• attribute grammars (Correa, 1991),
• PCFGs (Stolke, 1995)
• grammars making use of feature strutures and uni�ation proesses,in general, suh as LFG (Shieber, 1985) (see for instane Jurafsky andMartin, 2008, se. 11.5, p. 423 for the CFG ase),
• tree adjoining grammars (Shabes and Joshi, 1988), and
• weighted RTNs extended with feature strutures and uni�ation pro-esses (Blan, 2006).The algorithms we propose are mainly inspired in Earley's parser.1.5 Existing software based on loal grammars1.5.1 IntexIntex (Silberztein, 1993, 1994, 1998, 2004) was the �rst orpus proessingsystem based on loal grammars.14 Intex is omposed by a Windows graph-ial interfae written in C++ and a set of ommand line programs written in13We brie�y desribe Earley's CFG parser in appendix C, p. 411; see �rst appendix B,p. 405, for a desription of the CFG notation.14Intex homepage: http://intex.univ-fomte.fr
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1.5. EXISTING SOFTWARE BASED ON LOCAL GRAMMARS 17C; the ommand line programs are either alled by the graphial interfae orthrough the ommand line in order to perform the di�erent treatments avail-able.15 Though Intex is mainly a Windows appliation, Intex an be run onMaintosh platforms thanks to tools suh as Virtual PC,16 and Unix/Linuxbinary versions of the ommand line programs are also provided with In-tex (Silberztein, 2004, se. 17.1, p. 192). However, Intex is not open-soureand annot be freely downloaded exept for aademi purposes, and a li-ense number is to be requested by email eah time it is installed in a newhard drive;17 moreover, details on the implemented algorithm of appliationof loal grammars are not given in the doumentation; hene, they remainobsure. In the aademi sense, Intex is a tool for the study of natural lan-guages but not for the study of parsing algorithms. Even in the former ase,the Intex author may refuse to provide liense numbers at will.181.5.2 NooJIntex development has been disontinued in favor of its suessor: NooJ(Silberztein, 2003b, 2005a, 2007).19 The author of deided to reimplementthe whole system from the srath with a new set of programming tools fromMirosoft: the C# programming language, the .NET framework and theVisual Studio software development environment.20,21,22 Though there existalternative implementations of C# and .NET ompatible with non-Windowsplatforms, namely Mono and DotGNU,23,24 they do not fully support NooJyet (Silberztein, 2003b, p. 9). NooJ's author mentions two main reasons forhoosing the new set of programming tools:25 the bene�ts of a omponent15Aording to paragraph entitled �Chapitre 1� of http://mshe.univ-fomte.fr/intex/Unitex.htm16Aording to last paragraph of http://mshe.univ-fomte.fr/intex/Unitex.htm17Intex will run in �demo mode� if a liense number is not provided.18Atually, the author of this dissertation experiened this situation when trying toinstall Intex in several mahines in the ontext of aademi projet DRUID (Laforest andBadr, 2003).19NooJ homepage: http://www.nooj4nlp.net/pages/nooj.html20See, for instane, (Albahari and Albahari, 2010) for more information on C# program-ming language.21.NET homepage: http://www.mirosoft.om/net22Visual Studio homepage: http://www.mirosoft.om/visualstudio23Mono homepage: http://www.mono-projet.om24DotGNU homepage: http://www.gnu.org/software/dotgnu25Aording to http://www.nooj4nlp.net/pages/links.html
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18 CHAPTER 1. INTRODUCTIONprogramming methodology (in ontrast with ANSI C) and a free automatimemory management. While suh features failitate software development,ontrol is lost on ertain implementation details whih have an impat on thee�ieny of the parsing algorithms; for instane, the algorithms we proposein this dissertation use omplex data strutures whih are ertainly moreexpensive to delete one they are no longer needed. If we are to redueonseutive parsing times,26 deletion of data strutures annot be left to agarbage olletor but has to be optimized as well.
1.5.3 UnitexUnitex (Paumier, 2003, 2006, 2008; Paumier et al., 2009) has been the �rstopen-soure alternative to Intex:27 it is distributed under the GNU LGPL li-ense and the linguisti resoures it inludes are distributed under the LPGL-LR liense.28 The advantages of open-soure development are multiple andhave been widely reognized, starting with the simple intention of letting oth-ers study one's work in order to reuse or even to improve it (Raymond, 1999;Davis et al., 2000; Raymond, 2001; Graham, 2001; Ambati and Kishore, 2004;Forada, 2006; von Krogh and von Hippel, 2006; von Krogh and Spaeth, 2007;Paumier et al., 2009; Sahi, 2010). Unitex uses a top-down depth-�rst al-gorithm of appliation of RTNs with string output, where output strings mayontain opies of input segments. In our ase, we have reused the Uniodelibrary inluded in Unitex but have reimplemented its parsing algorithm inorder to test the di�erent algorithms under the same onditions; Unitex lin-guisti programs are mainly implemented in ANSI C while we have preferredto take advantage of the C++ objet oriented and generi programming as wellas of the new funtionalities provided by the Standard Template Library.2926Reall that we are to analyse sentenes requesting for online servies as they arereeived through the Internet from multiple users.27Unitex homepage: http://igm.univ-mlv.fr/~unitex28The terms and onditions of the LGPL-LR and GNU's LGPL lienses an be found athttp://igm.univ-mlv.fr/~unitex/lgpllr.html and http://www.gnu.org/lienses/gpl.html, respetively.29See (Josuttis, 1999, hap. 2, p. 13) for a good introdution on the new funtionalitiesadded to C++, inluding the Standard Template Library.
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1.5. EXISTING SOFTWARE BASED ON LOCAL GRAMMARS 191.5.4 OutilexOutilex (Blan et al., 2006; Blan and Constant, 2006a; Blan, 2006; Blanand Constant, 2006b)30 is another open-soure platform for orpus proessing(LGPL liensed), based on RTNs with a more omplex output than Unitex'sRTNs: weights ombined with feature strutures built by means of uni�ationproesses. Outilex uses an Earley-like parser equivalent to that presented inSastre and Forada (2009). Though the original Earley parser has a poly-nomial worst-ase ost (n3), extending it for output generation results in anexponential worst-ase ost due to grammars generating an exponential num-ber of outputs w.r.t. the length of ertain inputs (Sastre and Forada, 2009).Suh ases our in natural language grammars; for instane, if the grammaroutputs represent sentene parses,31 the number of possible sentene parsesinreases exponentially w.r.t. the number of unresolved prepositional phraseattahments it ontains:
• in sentene `the girl saw the monkey with the telesope', it is unknownwhether the girl used the telesope or the monkey was holding it (21interpretations),
• sentene `the girl saw the monkey with the telesope in the garden', itis also unknown whether the monkey was in the garden or the ationtook plae in the garden (22 interpretations),
• in sentene `the girl saw the monkey with the telesope in the gardenunder the tree', it is unknown as well whether the monkey was underthe tree or the ation took plae under the tree (23 interpretations),
• et.32In the MovistarBot use ase, we have used string output ombined withweights: output strings are tags whih identify the requested servie andthe arguments provided (e.g.: to send an SMS to a given phone number),and weights are used in order to hoose one interpretation among those of30Outilex homepage: http://igm.univ-mlv.fr/~monstant/outilex31Outputs an be XML tags (Bray et al., 2008) that are inserted in ertain senteneloations in order to identify and delimit the di�erent sentene onstituents, extendingthe original sentenes with their parse trees.32Example borrowed from (Butt, 2002). More information on this problem, along witha solution based on statistis an be found in Ratnaparkhi (1998).

http://igm.univ-mlv.fr/~mconstant/outilex


20 CHAPTER 1. INTRODUCTIONambiguous sentenes (the one with the �highest sore�). The parsing algo-rithm we propose is able to ompute the highest-ranked output while keepingEarley's original worst-ase ost.Though ative development on Outilex has been disontinued, its soureode may be integrated into the Unitex system in the future.1.6 Other �nite-state software1.6.1 ApertiumApertium (Armentano-Oller et al., 2007; Forada et al., 2009, 2010) is anopen-soure mahine translation platform whih is being distributed underthe GNU GPL liense.33,34 Apertium uses �nite-state transduers for lexialproessing, hidden Markov models for part-of-speeh tagging, and multi-stage�nite-state hunking for strutural transfer. Apertium was initially designedto treat pairs of losely related languages spoken in Spain and Portugal,but it is nowadays able to treat other less related language pairs suh asSpanish and Frenh. Many of the breadth-�rst and minizimation strategiesin Apertium have inspired this thesis.1.6.2 SisHiTraSisHiTra (sistema híbrido de traduión or hybrid translation system, Navarroet al., 2004) is another mahine translation system making use of �nite-statetehnology and statistial methods, as Apertium, but is restrited to Spanishand Catalan. It an be used online at http://sishitra.iti.upv.es/1.6.3 FSA UtilitiesFSA Utilities toolbox (van Noord, 1997) is a olletion of utilities to manipu-late �nite-state automata and �nite-state transduers. Manipulations inludedeterminization (both for �nite-state aeptors and �nite-state transduers),minimization, omposition, omplementation, intersetion, Kleene losure,33The terms and onditions of GNU's GPL liense an be found at http://www.gnu.org/lienses/gpl.html34Apertium homepage: http://www.apertium.org
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1.6. OTHER FINITE-STATE SOFTWARE 21et. Furthermore, various visualization tools are available to browse �nite-state automata. The toolbox is implemented in SICStus Prolog.351.6.4 XFST & Vi-xfstXFST (Xerox �nite-state tool, Karttunen et al., 1997) is a non-free general-purpose utility for omputing with �nite-state networks. It enables the userto reate simple automata and transduers from text and binary �les, regularexpressions and other networks by a variety of operations. The user andisplay, examine and modify the struture and the ontent of the networks.Vi-xfst (O�azer and Y�lmaz, 2004a,b) is a front-end for XFST whih pro-vides a visual interfae and a development environment for the onstrutionof �nite-state language proessing appliations. Complex regular expressionsan be built via drag-and-drop, treating simpler regular expressions as on-strution bloks.More information on both tools an be found at the homepage of the`Finite-State Morphology' book (Beesley and Karttunen, 2003): http://www.fsmbook.om1.6.5 AT&T FSM libraryTMThe AT&T FSM libraryTM (Mohri et al., 1998) is a set of general-purposesoftware tools available for Unix. It allows for building, ombining, optimiz-ing, and searhing weighted �nite-state aeptors and transduers.36 Theoriginal goal of the library was to provide algorithms and representationsfor phoneti, lexial, and language-modeling omponents of large-voabularyspeeh reognition systems. The library is available under non-ommerial(binary only) and ommerial lienses from AT&T Labs.1.6.6 OpenFSTOpenFst (Allauzen et al., 2007) is a library for onstruting, ombining,optimizing, and searhing weighted �nite-state transduers.37 OpenFst on-sists of a C++ template library with e�ient WFST representations and over35SICStus Prolog homepage: http://www.sis.se/sistus/36AT&T FSM libraryTM homepage: http://www2.researh.att.om/~fsmtools/fsm/37OpenFST homepage: http://www.openfst.org/twiki/bin/view/FST/WebHome
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22 CHAPTER 1. INTRODUCTION25 operations for onstruting, ombining, optimizing, and searhing them.OpenFst is an open soure projet and is being distributed under the Apaheliense.381.6.7 HFSTThe Helsinki Finite-State Transduer software (HFST, Lindén et al., 2009) isintended for the implementation of morphologial analysers and other toolswhih are based on weighted and unweighted �nite-state transduer teh-nology.39 HFST is ompatible with XFST, and is being distributed underGNU's LGPL liense.1.6.8 FomaFoma (Hulden, 2009) is a ompiler, programming language, and C library foronstruting �nite-state automata and transduers for various uses. It hasspei� support for many natural language proessing appliations suh asproduing morphologial analyzers.40 Foma is ompatible with XFST, andis being distributed under GNU's GPL liense.1.7 Struture of this workThe di�erent elements that we expose in this dissertation are heavily in-terrelated, whih makes di�ult to desribe them in some sequene with-out referring to future material; for instane, the optimization of set datastrutures for boosting the di�erent parsing algorithms strongly depends onthe partiular requirements of the di�erent parsing algorithms. Conversely,some implementation details of set data strutures must be taken into a-ount when onstruting the parsing algorithms. We have hosen to follow a�weak� bottom-up approah: objets that are either omponents or simplerases of other objets are desribed �rst, but relevant properties of futureobjets are brie�y desribed in advane when needed.38The terms and onditions of the Apahe liense an be found at http://www.apahe.org/lienses/LICENSE-2.039HFST homepage: http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst/40Foma homepage: http://foma.soureforge.net
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1.7. STRUCTURE OF THIS WORK 23As we have seen, di�erent authors de�ne di�erent kinds of �nite-statemahines depending on their needs, though the basi strutures remain un-hanged:
• Unitex uses RTNs with string output,
• Outilex uses RTNs outputting weights and feature strutures, and
• we have used �in the MovistarBot use ase� RTNs outputting weightedtables assoiating the identi�ers of the deteted servie and argumentsto the orresponding input intervals where they have been loated; forinstane, the following output table is generated (among others) for thease of sentene `envía hola al 555-555-555 ' (send hello to the 555-555-555): sms → (1, 1]message → (1, 2]phone → (3, 14]This table is a representation of the following sentene braketing, as-suming that the �rst token position is 1 and that tokens are either wordsor digits: `envía<sms/> <message>hola</message> al <phone>555-555-555</phone>'.Additionally, di�erent kinds of �nite-state mahines are used depending onthe data to represent:
• tries and other ayli �nite-state automata in order to represent di-tionaries and other sets of sequenes,
• di�erent kinds of RTNs in order to represent grammars, and
• �ltered-popping RTNs (Sastre, 2009) �a new kind of mahine we alsopresent in this dissertation� in order to serve as a ompat represen-tation of the result of applying a RTN with output.Rather than being ompletely di�erent objets, those mahines having moreomplex features an be seen as extended versions of simpler ones, and areindeed easier to desribe by inrementally re�ning the simplest ase. Beauseof these reasons, we have hosen to build a hierarhy of �nite-state mahines



24 CHAPTER 1. INTRODUCTIONfor any kind of input and output, along with the orresponding algorithmsof treatment. This hierarhy has served as a theoretial basis for the im-plementation of a C++ library of �nite-state mahines and the orrespondinggeneri algorithms of appliation. The library has been adapted to the Mo-vistarBot use ase and is meant to be easily extended in order to onsiderRTNs with di�erent kinds of output, suh as those of the Unitex and Out-ilex systems. As a �nal remark, objet oriented and generi programminghas not only allowed us to fator out ommon parts of the soure ode butalso to ensure that di�erent performanes are exlusively due to the di�erentstrategies followed by the di�erent parsing algorithms.This dissertation is mainly divided in 4 parts as we desribe below.1.7.1 Part IPart I inludes this introdution and the desription of some objets that areused by our implementation of �nite-state mahines and their algorithms oftreatment, namely:
• Chapter 2 desribes e�ient implementations of set and map datastrutures. Most of the parsing algorithms we desribe in this dis-sertation make an intensive use of set and map data strutures, henethe need for suh e�ient implementations.
• Chapter 3 desribes some implementation onerns around haraterrepresentation. The texts to analyse are basially sequenes of hara-ters.
• Chapter 4 desribes the ditionaries we have used in order to storemorphosyntati and semanti data for eah word of the language, aswell as some implementation details.
• Chapter 5 desribes tokens, the minimal input unit our mahines takeinto aount, and how harater sequenes are segmented into tokens.
• Chapter 6 desribes lexial masks and other prediates that we haveused as input labels of the loal grammar transitions in order to repre-sent sets of tokens, and to detet whether tokens are blank-separated ornot. Token sets are usually de�ned as the ditionary words omplyingwith a set of morphosyntati properties.



1.7. STRUCTURE OF THIS WORK 251.7.2 Part IIThis part desribes the hierarhy of mahines we have de�ned. It omprisesde�nitions and properties of �nite-state mahines, algorithms of appliationand other algorithms that optimize the mahines and ensure the absene of�o�ending� mahine substrutures (substrutures that may lead to in�niteloops upon the appliation of the mahines). Moreover, we will show thatthose mahines having unavoidable o�ending strutures make no sense asnatural language grammars. Contrary to CYK's parser, these mahine op-timizations do not introdue arti�ial non-terminal symbols. Eah hapterorresponds to a type of �nite-state mahine, namely:
• Finite-state mahines or FSMs (hapter 7), the base lass for everykind of �nite-state mahine. This lass does not really de�ne a spei�mahine but gives de�nitions, properties and algorithms ommon to allthe mahines; in the ontext of objet oriented programming it wouldbe an abstrat lass de�ning pure virtual methods.
• Finite-state automata or FSAs (hapter 8), sequene aeptors repre-senting regular languages. Deterministi and non-deterministi FSAs(DFAs & NFAs) are subategories of this lass. In partiular, we haveused ayli DFAs for the representation of eletroni ditionaries.
• Tries (hapter 9), a partiular ase of DFAs used here for the optimiza-tion of sequene opies and omparisons as well as for the representationof eletroni ditionaries 6.1.4 (apart from ayli DFAs).
• Finite-state transduers with blakboard output or FSTBOs (hap-ter 10), a generi extension of FSAs for the generation of any kind ofoutput. Blakboards are either simple or strutured data types, andoutput symbols are funtions on blakboards. Apart from generat-ing output, blakboards may also be used in order to further restritthe language reognized by the original FSA. In partiular, mahinesextended with feature strutures and uni�ation rejet input interpre-tations that involve the generation of inonsistent feature strutures.
• Finite-state transduers with string output or FSTSOs (hapter 11),letter transduers desribed as a speial ase of blakboard outputwhere blakboards are strings and funtions on blakboars append out-put symbols. String output may be used to enrih texts with meta-



26 CHAPTER 1. INTRODUCTIONinformation, for instane tags indiating the syntati struture of thesentenes, or simply marking input segments ontaining relevant infor-mation to be extrated.
• Reursive transition networks or RTNs (hapter 12), reursive sequeneaeptors equivalent to CFGs and pushdown automata (Oettinger, 1961;Shützenberger, 1963; Evey, 1963), hene having a greater generativepower than FSAs; as CFGs, RTNs allow for strutured de�nitions ofgrammars where subgrammars an be reused in the de�nition of higherlevel grammars by means of all transitions.
• Reursive transition networks with blakboard output or RTNBOs (hap-ter 13), a kind of mahine ombining reursive alls and blakboardoutput.
• Reursive transition networks with string output or RTNSOs (hap-ter 14), RTNBOs where blakboards are strings and funtions on blak-boards append output symbols (as for FSTSOs).
• Filtered-popping reursive transition networks or FPRTNs (hapter 15),RTNs where returning from a all is only possible under ertain ondi-tions (return or `pop' transitions are �ltered, hene the name). We alsoall FPRTNs �ltered-popping networks or FPNs, though we rather usehere aronym FPRTN sine aronym FPN is already in use for fuzzyPetri nets (see, for instane, Aziz et al., 2010). We use here FPRTNs asa ompat representation of the set of outputs generated by a RTNBOfor a given input string. We present in this hapter an algorithm thatomputes suh FPRTN-ompated outputs in time n3, even for ases inwhih the number of outputs to generate inreases exponentially w.r.t.the input length (an example of this situation with natural languagegrammars has been given in setion 1.5.4, p. 19).
• Reversed FPRTNs or RFPRTNs (setion 15.5, p. 306), these mahinesreognize the reverse of the languages aepted by some FPRTN. Re-versing a FPRTN requires to �lter pushing transitions �the all initial-izers� instead of popping transitions. RFPRTNs may also be referredto as �ltered-pushing RTNs or �ltered-pushing networks, though weuse aronyms RFPN or RFPRTN in order to avoid ambiguity (bothwords `pushing' and `popping' start with the same letter).



1.7. STRUCTURE OF THIS WORK 27
• Output FPRTNs or O-FPRTNs (hapter 16): the sublass of FPRTNsserving as a ompat representation of a set of outputs. We studyhere the properties of O-FPRTNs and set the bases for further post-proessings, mainly the e�ient generation of the language of outputsrepresented by an O-FPRTN.A shema of this mahine hierarhy is given in �gure 1.7.2.The last 3 hapters of this part give the guidelines for onstruting ma-hines with other kinds of output as partiular ases of blakboard output,namely:
• Finite-state mahines with omposite output or FSMCOs (hapter 17):FSMs generating multiple outputs, either of di�erent types or not.FSMCOs equivalent to Turing mahines (Turing, 1936, but see Hoproftet al., 2000, se. 8.2, p. 319) an be seen as mahines with multiple out-put tapes.
• Weighted �nite-state mahines or WFSMs (hapter 18): FSMs withblakboard output where blakboards are weights and funtions onblakboards may inrease or derease them. This kind of output servesas a non-arbitrary mehanism for the seletion of a unique output uponambiguous sentenes, whih is to be used by end-user appliations suhas hatterbots and mahine translators. In this hapter, we presentan algorithm able to generate only the top-ranked output representedby an O-FPRTN in time n3, even for ases in whih the O-FPRTNrepresents an exponential set of outputs.
• Uni�ation �nite-state mahines or UFSMs (hapter 19): a kind ofFSMs with blakboard output where blakboards are feature struturesand transitions may de�ne funtions that unify pairs of blakboards, asfor the ase of Outilex's loal grammars. Uni�ation allows for a om-pat representation of grammatial phenomena suh as agreement andsubategorization. Uni�ation introdues the possibility of generatingkilling blakboards, whih in this ase are inonsistent feature stru-tures; input sequenes that involve to generate killing blakboards areto be rejeted. The e�ient omputation of the non-killing top-rankedoutput is a more omplex problem that is left open here for a futurework.
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Figure 1.1: Hierarhy of the �nite-state mahines.



1.7. STRUCTURE OF THIS WORK 291.7.3 Part IIIThis is the onluding part and omprises two hapters:
• hapter 20 presents an empirial omparison of the performanes of thedi�erent algorithms of appliation of loal grammars in the ontext ofthe MovistarBot projet, and also ompares their performane dropswith an arti�ial minimal grammar generating an exponential numberof outputs w.r.t. an input inreasing in length, and
• hapter 21 summarizes our ontributions and gives a list of furtherimprovements that ould be applied to this work in the future.1.7.4 Part IVFinally, in this part we brie�y desribe the basi algorithms �and the ob-jets on whih they operate� whih have inspired some of the algorithmspresented in this dissertation, namely
• appendix B gives a brief overview of CFGs and presents the notationwe have followed for representing them,
• appendix C brie�y desribes the original Earley parser for CFGs, and
• appendix D brie�y desribes PERT networks and Kahn's algorithm foromputing a possible topologial sort a PERT network,41Last but not least, an index of terms an be found at the end of thismanusript, right after the bibliography. This index inludes the di�erentabbreviations, algorithms, funtions, and variable identi�ers. A list of themost ommon abbreviations used throughout this dissertation has been givenin page xxiii.

41PERT stands for `program evaluation and review tehnique'.





Chapter 2Sets and mapsMost of the parsing algorithms that we will present in this dissertation makean intensive use of data objets representing sets, that is, olletions of uniqueelements: upon adding an element to a set struture, the element must be�rst searhed within the struture so that it is not added twie.1 Other moresophistiated parsing algorithms also make use of maps.2 However, set andmap representation and management is, in essene, the same problem sinemaps an be regarded as sets of key/value pairs where keys are the onlydistintive trait between pairs: upon adding an element (k, v2) to a map thatalready ontains an element (k, v1), (k, v2) will not be added (nor replaethe former pair) sine it is onsidered to be already present within the datastruture.3 At �rst, we simply used the set and map implementation providedby GNU's implementation of the C++ Standard Template Library (STL).This implementation is expeted to be e�ient in most ases. However,our experiene has proved that other implementations perform better �1We do not intend here to give a mathematial de�nition of set but rather treat themas a ontainer lass of an objet oriented programming language, namely C++ oupledwith the Standard Template Library (see for instane Josuttis, 1999, se. 5.2, p. 70).Introdutory material on set theory an be found in Devlin (1993, hap. 1).2Likewise, we treat here maps as a lass of assoiative ontainer. To put them inmathematial terms, a map M is a binary relation between keys in K and values in Vsuh that k M v and k M v′ i� v = v′, and we say M maps k to v or assoiates key k withvalue v; in other words, M may either map a key to a single value or leave it unmapped,and no restrition applies on the amount of keys assoiated with the same value.3Indeed, GNU's implementation of the STL uses the same data strutures for therepresentation of sets and maps, but the stored elements are keys in the former ase andkey/value pairs in the latter one. 31



32 CHAPTER 2. SETS AND MAPSdepending on the algorithm and the use of the strutures� and are evenmandatory if we are to implement faster parsing algorithms than the onesused in the Unitex and Outilex systems.Most of the algorithms we propose use a dynami programming approah(Bellman, 1957): the parsing problem is broken down into simpler subprob-lems, whih are to be solved only one. Some data struture is used inorder to represent the subproblems along with their omputed solutions (thepartial parses). The algorithms build either sets or maps of suh data stru-tures in order to ensure that the same pair subproblem/solution is not addedtwie, hene avoiding the repeated omputation of any further subproblemsthat would follow the ones already solved. Sine natural language sentenesan have multiple interpretations �and indeed they usually do� multipleparses are possible. One every subproblem is solved, the set of possibleparses is built by ombining the di�erent subproblem solutions, avoiding re-peated parses thanks to the use of a set data struture. Last but not least,the algorithms perform sequential traversals of the sets and maps in order toexeute at least one of the following operations:
• searh and remove every useless partial parse due to sentene misinter-pretations,4
• apply some post-proessing to eah element of the set of total parses,and
• delete the sets and maps one they are no longer needed, whih impliesto �rst remove every set or map element one by one.Whether more sophistiated algorithms will be faster than simpler ones willstrongly depend on the use of set and map implementations providing e�-ient addition, removal and sequential traversal methods. We simultaneouslydisuss these problems for both set and map strutures by presenting solu-tions to the e�ient management of sets of key/value pairs (for the ase ofsets, assume that values are empty).The problem of e�ient set management is ubiquitous. As ould be ex-peted, the solutions that have been proposed are numerous. In this hapter4Note that, due to loal ambiguities, parsing algorithms may not realize of a sentenemisinterpretation until reading enough sentene words; for instane, in sentene `the manwhistling tunes pianos', one does not realize that `tunes' is the sentene verb rather thana part of the subjet until reading `pianos'.



2.1. ARRAYS 33we �rst introdue the problem of set management by presenting a trivial so-lution based on arrays (setion 2.1). We further re�ne this solution by meansof double-linked lists (setion 2.2) and, furthermore, with binary-searh trees(setion 2.3); many of the solutions proposed in the literature, inluding theone of GNU's implementation of the STL, are based on some kind of binary-searh tree. In the setion, we desribe some GNU implementation hoiesalong with some alternative algorithms and optimizations. In setion 2.4 weenumerate and summarize the advantages and drawbaks of di�erent kindsof self-balaned binary-searh trees, a further re�ned kind of binary-searhtrees. In setion 2.5 we fous on red-blak trees, the partiular kind of self-balaning trees hosen for GNU's implementation. In setion 2.6 we presentour solution: a hybrid struture ombining a double-linked list with a red-blak tree. In setion 2.7 we brie�y desribe other strutures that ould beused instead of those based on red-blak trees; some of them �perhaps om-bined as well with a double-linked list� are worth to be onsidered in futureworks. In setion 2.8 we disuss how to e�iently implement maps of keysto sets of values. Finally, we give in setion 2.9 the guidelines for adapt-ing the previously presented set and map strutures for the representationof multisets and multimaps; these guidelines are to be followed in order toreimplement every set and map struture provided by the STL.2.1 ArraysIn spite of the simpliity of the onept of set, the e�ient implementationof set data strutures is a rather omplex problem. Sets are to be stored ina omputer's memory, whih in turn is an array of bytes. As stated before,emulating a set with an array requires to �rst searh the array for elementshaving the same key than the ones to be added before atually adding them.While adding an element to an unordered sequene requires only a onstanttime (e.g.: to append it to the end of the sequene), searhing for an elementwith a spei� key requires an average time proportional to the array sizesine the element's key is to be ompared one by one with the ones of theelements previously added to the array. In order to redue this time, a totalorder is to be de�ned over the set of keys �say ki ≺ kj for every pair of keys
(ki, kj) suh that i < j� and the array is to be kept sorted w.r.t. this order,at least until element searhes will no longer be required. A binary searhan then be performed, whih has a logarithmi worst-ase ost w.r.t. the



34 CHAPTER 2. SETS AND MAPSarray size instead of proportional.Algorithm 2.1 sorted_array_add adds a key/value pair (k, v) to a setrepresented as a sorted array a0 . . . an−1. It �rst performs a binary searhfor the position where to insert the element, then inserts it in that positionif it is not already oupied by an element having k as key. The algorithmreturns a Boolean indiating whether the element was inserted or not. Thebinary searh is based on the one performed by algorithm B in Knuth (1998,p. 410). During the whole algorithm exeution, variables i and j representthe bounds of the searh interval, starting with [0, n), the range overing thewhole array. As long as the interval is not empty (i ≤ j), it �rst sets m to themiddle position of the interval. In ase the interval ontains an even amountof elements, the greater of the two middle positions is hosen. If the key ofthe element to searh is less than the one of the middle element, the searhontinues with interval [i, m), the inferior half of the urrent interval withoutthe middle element. If it is greater, it proeeds with [m + 1, j), the superiorhalf of the urrent interval without the middle element. If it is neither less orgreater, the algorithm returns ((km, vm), false) without inserting the element,where (km, vm) is the element in A suh that km = k. If the array does notontain an element having k as key, the interval will be suessively dividedby 2 up to obtaining an empty interval [i, j) with both i and j pointing tothe element having the least key greater than k. In that ase, the element isinserted at position i and ((ki, vi), true) is returned. The insertion operation�rst requires to shift elements (ki, vi) . . . (kn−1, vn−1) one position to the rightin order to make room for the new element. Note that this algorithm doesnot require to de�ne operators = or ≻ (reverse total order operator) but only
≺, without loss of e�ieny. Indeed, STL sets and maps require to de�neonly one omparator operator. More information on binary searhes an befound in Knuth (1998, hap. 6.2.1).While the binary searh has a logarithmi worst-ase ost (the searhspae is divided by 2 at eah unfruitful iteration), the insertion operationstill has a worst-ase ost proportional to the array size due to the shiftingoperation. Moreover, if there is no free memory right after the last elementin order to alloate one more element, the whole array must be opied intoa big-enough free memory segment. If the maximum amount of elementsto be added is known before reating the set, enough free memory an bereserved in order to avoid this situation, but that will not be the ase for theparsing algorithms presented in this dissertation and, anyway, we would stillbe faing the shifting problem. Deleting an element from the array will not
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Algorithm 2.1 sorted_array_add(A, (k, v))Input: A = (k0, v0) . . . (kn−1, vn−1), a sorted array of n key/value pairs

(k, v), the key/value pair to add to the arrayOutput: A after inserting (k, v) at a position i, if there is no kj = k in A,or A unmodi�ed if there is a km = k in Areturns ((ki, vi), true) in the former ase, and ((km, vm), false) inthe latter one1: i← 02: j ← n3: while i 6= j do4: m← i + integer_division(i− j, 2)5: if k ≺ am then6: j = m7: else if am ≺ k then8: i = m + 19: else10: b← false11: return ((km, vm), false)12: end if13: end while14: insert(A, i, (k, v))15: return ((ki, vi), true)



36 CHAPTER 2. SETS AND MAPSrequire to realloate the whole array, but the elements at greater positionsthan the deleted one will still have to be shifted left. The operations in whiharrays exel are both the sequential and random aess of its elements (henethe name of random aess memory or RAM).2.2 Double linked listsDouble-linked lists are data strutures having both e�ient insertion andremoval methods as well as a sequential traversal method. List elements donot neessarily lie on onseutive memory positions but in arbitrary ones.In order to enable both the forward and reverse traversal of the list, the liststruture ontains a pointer towards the �rst element and another towardsthe last one, and eah list element ontains a pointer towards its previousneighbour and another towards its next one. Both inserting and removingan element x onsists in redireting x's neighbouring pointers as well as theones of its neighbours, hene saving the hassle of shifting every element witha key greater than the one of x (see Cormen et al., 2001, hap. 10 for moredetails). However, diret aess to elements at random positions is no longerpossible sine they no longer lie at onseutive memory positions. In orderto ompute the middle element between two elements ai and aj , the list mustbe walked from ai towards aj and from aj towards ai, element by element inboth diretions, until both walks reah the same element. Hene, adding anelement to a sorted list will still have an average ost proportional to the listsize.2.3 Binary searh treesBinary searh trees (BSTs) are a straightforward representation of every pos-sible binary searh that an be performed on a sorted sequene. Like double-linked lists, they also augment eah element data struture with two pointers,though their struture is not sequential but hierarhial: tree data objetsontain a pointer towards the top element of the hierarhy, the root of thetree, and the two pointers of eah element referene the root of their respe-tive left and right subtrees. Subtree roots y and z of an element x are alledthe hildren of x and, onversely, x is alled the parent of both y and z. Weuse symbol ⊥ in order to represent the absene of element, namely
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• root(T ) =⊥ (T has no root),5
• left(y) =⊥ (y has no left hild) and
• right(z) =⊥ (z has no right hild).In pratie, the orresponding pointers are given a null value.In the ideal ase, the root of the tree is the middle element, its left andright subtrees ontain, respetively, the inferior and superior halves of the treeminus the root, the subtrees of the root's hildren ontain the quarters minusthe tree and subtree roots, and so on until reahing a bottom hierarhy levelwhose elements are either missing or have no hildren (see �gure 2.1(a)).6In other words, the number of hierarhy levels �the height of the tree� isminimal. Suh trees are said to be balaned. Searhing for an element with akey k inside a BST onsists in traversing the tree downwards from the root,either stepping towards the left or right hild of eah element x if k is less orgreater than the key of x, or stopping at x if its key is equal to k. Addingan element to a BST will �nally have a logarithmi worst-ase ost w.r.t.the tree size rather than proportional, provided that the tree is balaned.In return, the sequential aess to the tree elements is more omplex andexpensive than with arrays or double-linked lists. We will �rst study thesequential traversal sine it introdues some modi�ations to be done on thetree struture whih the other algorithms must maintain.2.3.1 Reursive traversalAlgorithm 2.2 bst_proess_in_order performs an in-order walk of the treehaving x as root in order to perform some proessing to every element ofthe tree, in diret order. Note that, in a balaned tree, the element thatfollows another one that is plaed at the bottom hierarhy level belongs to anupper hierarhy level, and vie-versa (see �gure 2.1(a)). The algorithm �rstnavigates the tree all the way down from the root up to the tree's bottom-left orner in order to aess and proess the �rst element, then diretlyaesses the seond one at an upper hierarhy level by returning from onereursive all and proesses it, then navigates again towards the bottom of5Note that a tree without root is an empty tree.6We assume that every element is aessed with the same frequeny. Taking intoaount that aess frequenies di�er from element to element is a more omplex problemwhih is not relevant to our use ase.
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3(b)Figure 2.1: At the left, a balaned binary searh tree and, at the right, a binarysearh tree having a sequential struture.
Algorithm 2.2 bst_proess_in_order(x)Require: x to be a BST elementEnsure: every element of the tree or subtree having x as root gets deleted1: if x 6=⊥ then2: bst_process_in_order(left(x))3: y ← right(x)4: process(x)5: bst_process_in_order(right(y))6: end if



2.3. BINARY SEARCH TREES 39the tree and so on up to reahing and proessing the last element at the tree'sbottom-right orner. In partiular, GNU's implementation of the STL usesthis algorithm for deleting every element of a set or map.2.3.2 Iterative traversalThe STL abstrats the atual strutures representing sets and maps, thusraw aess to the tree elements is not possible and therefore neither it is toperform a reursive traversal. On the ontrary, the STL provides a univer-sal mehanism for traversing any kind of ontainer by means of iterators.7Suh iterators are equivalent to pointers towards the ontainer elements.8Containers provide methods begin and end whih return, respetively, theiterator towards the �rst and past-the-end elements of the ontainer. Thelatter element lies after the last element �out of the ontainer� and its solepurpose is to serve as an end-of-sequene mark; therefore this element storeskey/value pair. Forward iterators provide post- and pre-inrement operatorswhih rediret them towards the next or the previous element, respetively,following the total order implemented by the hosen funtion objet (e.g.:less<key_type>, see Josuttis, 1999, se. 5.9, p. 114). Container elementsare ommonly aessed in diret order by means of a loop inrementing theiterator returned by the begin method up to equaling the one returned bythe end one. Reverse versions of these methods and iterators are providedfor reverse traversals. More information on STL iterators an be found inJosuttis (1999, haps. 7, p. 220).In order to e�iently ompute either the next or the previous element ofanother one, the tree struture is modi�ed as follows:
• eah tree element is extended with a third pointer towards its parent,
• the pointer to the root of the tree within the tree struture is replaedwith a pointer towards the past-the-end element,
• the parent, left and right pointers of the past-the-end element are di-reted towards the root, �rst and last elements of the tree, respetively,and7Vetors, deques and lists are other ontainers provided by the STL. More informationon STL ontainers an be found in Josuttis (1999, hap. 6, p. 129).8Indeed, iterators are usually implemented as pointers with ustom inrement, dere-ment and dereferene operators.
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• the parent pointer of the root element is direted towards the past-the-end element.The �rst modi�ation is needed in order to navigate the tree upwards. Theseond and third ones allow for diret aess to the past-the-end, root, �rstand last elements. The last one is needed for dealing with boundary ondi-tions (e.g.: omputing the element after the last one, whih results in thepast-the-end element).Algorithm 2.3 bst_next_elem is the one used by GNU's implementationof the STL in order to �nd the next element of a BST element x.9 Thealgorithm �rst veri�es whether x has a right hild or not; if it does, theelement at the bottom-left orner of x's right subtree is returned as x's nextelement. Note that this is true in any ase where x has a non-empty rightsubtree:
• if x is the root, or is the right hild of the root, or an be reahed fromthe root by always desending towards the right, elements in the rightsubtree of x are all those elements of the tree whose keys are greaterthan the one of x, and the element at the bottom-left orner of thissubtree is the one having the least key amongst all of them,
• if x is the left hild of an element p, elements in the right subtree of

x are the ones whose keys are greater than the one of x but less thanthe one of p, being as well the element at the bottom-left orner of thissubtree the one having the least key amongst them, and
• �nally, if p is the left hild of an element y and x is the right hild of

p, or x an be reahed from p by always desending towards the right,the elements at the right subtree of x are those whose keys are greaterthan the one of x but less than the one of y, also being the one of thebottom-left element the least one amongst them.A simpli�ed version of the last ase applies when x has no right subtreeand is not the last element of the tree: sine there are no elements between xand y, y is the next element of x; in other words, the next element of x is the9The original GNU C++ ode orresponds to method _Rb_tree_inrement in �letree. of the libstd++-v3 library. This �le an be downloaded from http://g.gnu.org/viewvs/trunk/libstd%2B%2B-v3/sr/tree.?view=o. The terms of useof this �le an be found in the own �le header.

http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co


2.3. BINARY SEARCH TREES 41lowest anestor of x in the tree hierarhy suh that x lies at the anestor'sleft subtree rather than at the right one. The algorithm iteratively navigatesthe tree upwards as follows: y is initialized as the parent of x and, at eahiteration, x is set to y and y to its parent as long as x is a right hild of y.One the proess stops, y will be the next element, as long as there is one.If x is the last element of the tree, the past-the-end element is to bereturned. An extra ondition ould be added before the loop that navigatesthe tree upwards so that the past-the-end element is returned if x is the lefthild of the past-the-end element. However, the past-the-end element annotbe aessed from the iterators, sine they ontain only the pointer towardsa tree element but not towards the tree struture: the past-the-end pointerof the tree struture an only be aessed by methods that take the wholetree struture as argument rather than tree elements, suh as methods beginand end. Algorithm TREE-SUCCESSOR in Cormen et al. (2001, p. 259)solves the problem as follows: the parent pointer of the root is null and theupwards navigation is stopped one a null parent or the next element of xis reahed. In this ase, the extra ondition (null parent) is plaed withinthe loop performing the upwards navigation whih, in turn, would be nestedin the loop traversing the whole tree. Rather than evaluating the extraondition a single time, it would be evaluated one or more times for eahelement of the tree. GNU's implementation of the STL solves this problemby navigating the tree upwards in order to reah the past-the-end element, ifneessary, and by plaing the extra ondition after the loop. This onditionveri�es whether y is the right hild of x. Sine x will be left hild of y, thiswill only be possible for the past-the-end and root elements sine those arethe only ones that are the parents of eah other. If x is not the last element ofthe tree, the next element of x will be reahed before reahing the past-the-end element and, therefore, y will not be the right hild of its own left hild.Otherwise, 2 situations are possible depending on the presene or absene of alast element other than the root. These situations are illustrated in �gure 2.2by means of a minimal tree for eah one, oupled with an exeution traeunder eah tree. The traes ontain the values of the relevant variables duringthe last exeution stages, namely:
• x, y and their right hildren right before the �rst iteration having xand y as the root and the past-the-end elements, respetively,
• the same variables right before the following iteration, if any, and
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• the variable whose value is to be returned at the end of exeution.As we an see, the value returned by the algorithm as the next of the lastelement is the past-the-end element, in both situations.Algorithm 2.3 bst_next_elem(T, x)Input: T , a binary searh tree

x, an element of TOutput: returns the next element of x, or past_the_end(T ) if x = last(T )1: if right(x) 6=⊥ then2: x← right(x)3: while left(x) 6=⊥ do4: x← left(x)5: end while6: return x7: end if8: y ← parent(x)9: while right(y) = x do10: x← y11: y ← parent(y)12: end while13: if right(x) 6= y then14: return y15: end if16: return xThe iterative traversal has a slight advantage and an important drawbakw.r.t. the reursive traversal:
• the �rst element is diretly aessed while the reursive traversal nav-igates the tree all the way down from the root up to the bottom-leftorner, but
• the tree is navigated both upwards and downwards in order to searhfor the next elements while the reursive traversal staks the elementsat higher hierarhy levels during the downwards traversal so that theyan simply be popped out when needed.Instead of using a past-the-end element as the root's parent, Wein (2005)proposes to use a before-the-begin element as the left hild of the �rst element
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x = p y = pFigure 2.2: The 2 boundary ases of algorithm 2.3 bst_next_elem and theirorresponding exeution traes one the root is �rst reahed up to the end ofexeution; p, r, and l stand for past-the-end, root and last, respetively.



44 CHAPTER 2. SETS AND MAPSas well as a past-the-end element as the right hild of the last one. Thismodi�ation makes the boundary ases to behave exatly as the other ones;therefore, it is no longer required to navigate the tree up to the root's parentin order to retrieve the past-the-end element.2.3.3 Reverse iterative traversalAs the iterative traversal an be performed by suessively searhing for thenext element of the urrent one, the reverse traversal an be done by sues-sively searhing for the previous one. Sine BSTs are symmetri, algorithmbst_previous_elem an be obtained by simply replaing right with left andvie-versa in algorithm 2.3. In order to study the new boundary ases, thesame replaement is to be done to �gure 2.2 as well as replaing the last ele-ment by the �rst one. There is only one ase that is not present in the normaltraversal and whih requires a speial treatment: omputing the predeessorof the past-the-end element. Let x be the element whose predeessor elementis to be omputed, the algorithm veri�es whether x has a left hild or notand, if so, returns the element at the bottom-right orner of the left subtreeof x. The past-the-end element does have a left hild, but it is de�ned asthe �rst element of the tree. Hene, the algorithm would return either thiselement or its the rightmost desendant, if any, instead of the last one. Inorder to deal with this situation, GNU's implementation of the STL simplyveri�es �rst whether x is the past-the-end element in order to return the lastelement or to proeed as usual. The modi�ation proposed by Wein (2005)(�rst mentioned at the end of the previous setion) also deals with this par-tiular ase as for any other ase: sine the past-the-end element is the righthild of the last element and has no hildren, its previous element is preiselythe last element, the losest anestor suh that the past-the-end element liesat its right subtree.2.3.4 Unrolled iterative traversalAlgorithm 2.4 bst_unrolled_next_elem is an optimized version of algorithm 2.3bst_next_elem in whih the trivial assignment x ← y of the last loop hasbeen removed by unrolling the loop. The loop ontent is doubled so that aniteration of the unrolled loop performs two iterations of the original one. In-stead of performing the trivial assignment, the roles of variables x and y areexhanged during the �rst half of the loop, and exhanged bak during the



2.3. BINARY SEARCH TREES 45seond one. Between the two halves, an extra stop ondition is inserted whihinludes the post-proessing to be done after the loop but with the exhangedroles of x and y. This kind of optimization is likely to be automatially doneby modern ompilers depending on the kind of optimization requested (e.g.:we use �ag -O3 with the g++ ompiler in order to obtain faster ode in spiteof the inrease in size). One an manually ode unrolled loops in order toensure that this optimization is inluded, but by relying on �ags one angenerate di�erent exeutables with the same soure ode depending on theharateristis and limitations of the targeted platform: while loop unrollingan aelerate the program exeution in a desktop omputer, the inrease insize might not be an option for an embedded devie with limited resoures.GNU's implementation of the STL does not manually ode this loop, thuswe have relied on the optimization apabilities of the g++ ompiler. We leavemanual loop unrolling for a future work. More information on the removalof trivial assignments an be found in Mont-Reynaud (1976), and other ex-amples of appliation of suh tehnique an be found in Bentley (1982, p.59). Apart from the removal of trivial assignments, other bene�ts as well asdrawbaks of loop unrolling are disussed in Dongarra and Hinds (1979) andSarkar (2001). The unrolled version of algorithm bst_previous_elem anbe obtained by following the same proedure, or by simply replaing rightwith left and vie-versa in algorithm 2.4 bst_unrolled_next_elem.2.3.5 Addition with Knuth's algorithmAlgorithm 2.5 bst_knuth_add adds a key/value pair (k, v) to a set bakedby a BST. This algorithm is a modi�ed version of the one given in Knuth(1998, hap. 6.2.2) whih also keeps trae of the root, �rst and last elementsof the tree. The algorithm �rst heks whether the tree has a root or not,storing the root in variable x. If not, it alls algorithm 2.7 bst_add_rootin order to add (k, v) as the tree's root, then returns pair (root(T ), true).Otherwise, it performs a binary searh in a similar fashion than algorithm 2.1sorted_array_add. The tree is navigated downwards from the root by usingtwo variables, x and y, storing the urrent tree element and the previousone, respetively. A third variable c stores the result of the last omparison
k ≺ key(x). The urrent element for the next iteration is either the leftor right hild of x depending on whether k is less or greater than x's key,respetively. The loop ends one reahing an x having k as key or an y lakingthe hild that would be the next element. In the former ase, the algorithm
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Algorithm 2.4 bst_unrolled_next_elem(T, x)Input: T , a binary searh tree

x, an element of TOutput: returns the next element of x, or past_the_end(T ) if x = last(T )1: if right(x) 6=⊥ then2: x← right(x)3: while left(x) 6=⊥ do4: x = left(x)5: end while6: return x7: end if8: y ← parent(x)9: while right(y) = x do10: x← parent(y)11: if right(x) 6= y then12: if right(y) 6= x then13: return x14: end if15: return y16: end if17: y ← parent(x)18: end while19: if right(x) 6= y then20: return y21: end if22: return x



2.3. BINARY SEARCH TREES 47returns pair (x, false) from within the loop, and (k, v) is not added to thetree. In the latter one, algorithm 2.6 bst_knuth_add_post is alled in orderto perform the post-proessing after the loop. This post-proessing allseither algorithm 2.8 bst_add_left or 2.9 bst_add_right in order to reatethe laking hild of y with (k, v) as key/value pair. The value of variable cdetermines whether the new element is to be a left or right hild sine y'skey annot be equal to k at this point.Algorithms 2.7 bst_add_root, 2.8 bst_add_left and 2.9 bst_add_right�rst all algorithm 2.10 bst_reate_elem in order to reate the new treeelement. This last subroutine simply initializes the key, value and pointer�elds to the passed values. One the element is reated, they update thepointers to the root, �rst and last elements of the tree, whenever neessary:
• a new element added as the tree's root beomes the �rst and last ele-ment as well as the new tree's root,
• a new element added as the left hild of the �rst element beomes thenew �rst element, and
• a new element added as the right hild of the last element beomes thenew last element.Provided that the tree is balaned, algorithm 2.5 bst_knuth_add has alogarithmi worst-ase ost w.r.t. the tree size. However, this algorithm doesnot ensure that the tree will still be balaned one a new element is added.Indeed, if the tree elements are added in either diret or reverse order thenthe resulting tree will resemble a double-linked list; for instane, the tree of�gure 2.1(b) an be built by adding elements 1, 2 and 3 to the empty treein that order. Therefore, the worst-ase ost of adding an element to a BSTwill still be proportional to the tree size depending on the order in whih theelements are added.If one was to build a stati set or map in order to be just searhed ratherthan modi�ed �for instane, whenever using a ditionary rather than build-ing it� a balaned tree might not be the best option. Depending on thefrequeny in whih the di�erent keys are to be searhed, some tree elementsshould appear at upper hierarhy levels rather than at lower ones (e.g.: thelanguage's most frequent words). An algorithm for the onstrution of suhtrees in time n2 is given in Knuth (1998, p. 436). For the ase of our pars-ing algorithms, sets and maps are built rather than just searhed, and key



48 CHAPTER 2. SETS AND MAPSAlgorithm 2.5 bst_knuth_add(T, (k, v))Input: T , a binary searh tree
(k, v), the key/value pair to add to the treeOutput: T after adding an element z with key(z) = k and value(z) = v, ifthere is no element z′ in T having k as key, or T unmodi�ed otherwisereturns (z, true) in the former ase, and (z′, false) in the latter one1: if (x← root(T )) =⊥ then2: return (bst_add_root(T, (k, v), true)3: end if4: repeat5: y ← x6: if c← (k ≺ key(x)) then7: x← left(x)8: else if key(x) ≺ k then9: x← right(x)10: else return (x, false)11: end if12: until x =⊥13: return bst_knuth_add_post(T, (k, v), y, c)

Algorithm 2.6 bst_knuth_add_post(T, (k, v), y, c)Input: T , a binary searh tree
(k, v), the key/value pair to add to the tree
y, the parent of the new tree element
c, a Boolean equal to k ≺ key(y)Output: T after adding the new element holding (k, v)returns the added element1: if  then2: return (bst_add_left(T, (k, v), y), true)3: else return (bst_add_right(T, (k, v), y), true)4: end if



2.3. BINARY SEARCH TREES 49Algorithm 2.7 bst_add_root(T, (k, v))Input: T , an empty binary searh tree
(k, v), a key/value pairOutput: T after reating its root

z, the new tree's root holding (k, v)1: z ← bst_create_elem((k, v), past_the_end(T ),⊥,⊥)2: root(T )← first(T )← last(T )← z3: first(T )← z4: last(T )← zAlgorithm 2.8 bst_add_left(T, (k, v), y)Input: T , a binary searh tree
(k, v), a key/value pair
y, an element of TOutput: T after adding a new element z as left hild of y holding (k, v)

z, the new tree element1: z ← bst_create_elem((k, v), y,⊥,⊥)2: left(y)← z3: if first(T ) = y then4: first(T )← z5: end ifAlgorithm 2.9 bst_add_right(T, (k, v), y)Input: T , a binary searh tree
(k, v), a key/value pair
y, an element of TOutput: T after adding a new element z as right hild of y holding (k, v)

z, the new tree element1: z ← bst_create_elem((k, v), y,⊥,⊥)2: right(y)← z3: if last(T ) = y then4: last(T )← z5: end if



50 CHAPTER 2. SETS AND MAPSAlgorithm 2.10 bst_reate_elem((k, v), p, l, r)Input: (k, v), the key/value pair of the new tree element
p, the parent of the new tree element
l, the left hild of the new tree element
r, the right hild of the new tree elementOutput: z, the new tree element1: key(z)← k2: value(z)← v3: left(z)← l4: right(z)← rfrequenies are unknown; hene, we will onsider balaned trees as the idealase.2.3.6 Addition with Cormen's algorithmAlgorithm 2.11 bst_ormen_add is another algorithm for adding a key/valuepair (k, v) to a set baked by a BST, based on Cormen's algorithm TREE-INSERT in Cormen et al. (2001, p. 261). Cormen's algorithm is oneivedfor adding an element whose key is new to the set; it is equal to Knuth'salgorithm (Knuth, 1998, hap. 6.2.2) without the seond test within thebinary searh loop. However, algorithm bst_ormen_add does take intoaount that k may not be new to the set. Rather than omitting the equalitytest, it transfers it to the post-proessing after the loop, whih is performedby algorithm 2.12 bst_ormen_add_post. This post-proessing is dividedinto to main ases depending on whether the key of the last tree elementstored in y is less than k or not. If it is less, we have the following subases:

• k is less than any other key within the tree, thus the tree has alwaysbeen navigated towards the left from the root up to the bottom-leftorner. This ase is reognized by verifying whether y is the �rst ele-ment of the tree. In this ase, a new �rst element is added as left hildof y by means of algorithm 2.13 bst_add_�rst.
• k is less than y's key, but not less than any other key within the tree.If there is an element y′ having k as key, the tree will be navigateddownwards up to suh element. Then, the right hild of y′ will be hosenand, sine every key within the right subtree of y′ will be greater than
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k, the tree will be navigated downwards up to the bottom by alwaysturning left. Hene, y′ is the lowest anestor of y suh that y lies on itsright subtree rather than on its left one. Note that this orresponds tothe reverse of one of the ases for the omputation of the next element ofanother one. Hene, y′ an be retrieved by means of the ounterpart ofalgorithm 2.3 bst_next_elem, bst_previous_elem. One retrieved, theequality test is �nally performed. If the keys are equal, the algorithmreturns pair (y′, false). If they are not, algorithm 2.14 bst_add_left_-no_�rst is alled in order to reate a new element z as left hild of y,and (z, true) is returned. bst_add_left_no_�rst is equal to bst_add_-�rst without verifying whether the new element is the �rst one or not,sine that orresponds to the previous ase.
• k is greater or equal than y's key. In this ase, the algorithm simplyperforms the equality test between k and y's key, and either adds ornot the new element as the right hild of y, depending on the result.Opposite to the previous ase, if a new element is added then it mustbe veri�ed whether it is to beome the new last element or not.Algorithm 2.11 bst_ormen_add(T, (k, v))Input: T , a binary searh tree

(k, v), the key/value pair to add to the treeOutput: T after adding an element z with key(z) = k and value(z) = v, ifthere is no element z′ in T having k as key, or T unmodi�ed otherwisereturns (z, true) in the former ase, and (z′, false) in the latter one1: if (x← root(T )) =⊥ then2: return (bst_add_root(T, (k, v), true)3: end if4: repeat5: y ← x6: if c← (k ≺ key(x)) then7: x← left(x)8: else x← right(x)9: end if10: until x =⊥11: return bst_cormen_add_post(T, (k, v), y, c)



52 CHAPTER 2. SETS AND MAPSAlgorithm 2.12 bst_ormen_add_post(T, (k, v), y, c)Input: T , a binary searh tree
(k, v), the key/value pair to add to the tree
y, the parent of the new tree element
c, a Boolean equal to k ≺ key(y)Output: T after adding an element z with key(z) = k and value(z) = v, ifthere is no element z′ in T having k as key, or T unmodi�ed otherwisereturns (z, true) in the former ase, and (z′, false) in the latter one1: if c then2: if y = first(T ) then3: return (bst_add_first((k, v), y), true)4: else5: y′ ← bst_previous_elem(y)6: if key(y′) ≺ k then7: return (bst_add_left_no_first((k, v), y), true)8: else return (y′, false)9: end if10: end if11: else if key(y) ≺ k then12: return bst_add_right((k, v), y)13: else return (y, false)14: end if

Algorithm 2.13 bst_add_�rst(T, (k, v), y)Input: T , a binary searh tree
(k, v), a key/value pair
y, an element of TOutput: T after adding (k, v) as left hild of y and �rst of T

z, the new tree element holding (k, v)1: z ← bst_create_elem((k, v), y,⊥,⊥)2: left(y)← z3: first(T )← z



2.3. BINARY SEARCH TREES 53Algorithm 2.14 bst_add_left_no_�rst(T, (k, v), y)Input: T , a binary searh tree
(k, v), a key/value pair
y, an element of TOutput: T after adding (k, v) as left hild of y but not �rst of T

z, the new tree element holding (k, v)1: z ← bst_create_elem((k, v), y,⊥,⊥)2: left(y)← zThis algorithm is the one used by GNU's implementation of the STL, withoutsome minor ode fatoring in the post-proessing part that we have omittedin favor of a more readable ode.10Summarizing, this algorithm has one advantage and one drawbak w.r.t.algorithm 2.5 bst_knuth_add :
• the equality test is performed after the binary searh loop a single timerather than one time per iteration, but
• when the key to add is already in the set, the algorithm does not stop atthe orresponding tree element y′ but navigates up to the tree bottom,then omes bak to y′ in order to perform the equality test.We expet bst_ormen_add to be faster than bst_knuth_add, in general,sine
• the saved onditional jump is one of the most expensive operationswithin the binary searh loop,
• the searh for y′ is to be done in less than half of the ases, on theaverage, and
• this extra searh will simply add an extra loop with a single onditionaljump rather than 3 (less/greater/no further hildren) with a logarith-mi ost in the worst ase, provided that the tree is balaned. Indeed,10The original C++ ode is splitted into methods _M_insert_unique and _M_insert_-of �le stl_tree.h and the �rst part of method _Rb_tree_insert_and_rebalanein �le tree.. Both �les belong to the libstd++-v3 library and an be down-loaded from http://g.gnu.org/viewvs/trunk/libstd%2B%2B-v3/sr/tree.?view=o and http://g.gnu.org/viewvs/trunk/libstd%2B%2B-v3/inlude/bits/stl_tree.h?view=o, respetively. The terms of use of these �le an be found in theirrespetive headers.

http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/include/bits/stl_tree.h?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/include/bits/stl_tree.h?view=co


54 CHAPTER 2. SETS AND MAPSthe average ase will have an even smaller ost sine the worst asewill only take plae when navigating bakwards from the bottom-leftorner of the root's right subtree up to the root.2.3.7 Addition with Andersson's algorithmAndersson (1991) gives an algorithm for searhing for an element inside aBST, rather than for element addition. This algorithm is almost the samethan algorithm 2.11 bst_ormen_add : both of them perform a binary searhsimilar to the one performed by algorithm 2.5 bst_knuth_add, but omittingthe equality test until the searh loop is over. Apart from being a puresearher, the di�erene onsists in the way in whih y′ is retrieved: whilealgorithm bst_ormen_add walks the tree bak in order to retrieve the pre-vious element of y, Andersson's algorithm performs assignment y′ ← x insidethe binary searh loop eah time the key of x is found to be less than thesearhed key, that is, it keeps trak of the last explored element whose keymight be equal to the searhed one. One the binary searh ends, the algo-rithm simply uses the value of the preomputed y′ instead of searh for theprevious element of y. An addition version of Andersson's algorithm an beeasily built by performing these modi�ations to algorithm bst_ormen_add.Due to the di�erenes between Knuth's and Andersson's algorithm, thedisussion on optimal BSTs in Knuth (1998, p. 436) does not apply for thease of Andersson's algorithm. Spuler (1993) disusses the optimal BSTfor Andersson's algorithm, and gives an algorithm for the onstrution ofsuh trees in time n log n rather than n2. Due to the resemblane betweenCormen's and Andersson's algorithms, this work is likely to apply as well toCormen's algorithm.Sine we have already obtained faster parsing algorithms that those pro-vided with the Unitex and Outilex systems by using Knuth's and Cormen'salgorithms, we have not tested this algorithm; moreover, we present in se-tion 2.6 another possible optimization of the tree struture whih makesunneessary to ompute y′.2.3.8 Addition with unrolled loopsTrivial assignment y ← x in all the previous addition algorithms an beremoved by unrolling their binary searh loops, in the same manner in whihit has been shown in setion 2.3.4 for algorithm 2.3 bst_next_elem.



2.3. BINARY SEARCH TREES 55Spuler (1992) gives another version of Andersson's binary searh algo-rithm in whih the searh loop has been unrolled in order to remove thetrivial assignment y′ ← x. The proedure is similar to the one followed forthe onstrution of algorithm 2.4 bst_unrolled_next_elem, but with a smalldi�erene: a new loop is embedded inside the original one whih has the rolesof y′ and y exhanged, and a onditional jump redirets the exeution �owto the outer loop when the roles are exhanged bak.The addition version of Andersson's algorithm has two trivial assignmentsthat ould be removed: y ← x and y′ ← x. Rather than simply exhangingthe roles of two variables, multiple ombinations of exhanges between the 3roles (x, y and y′) are possible. This problem is quite more omplex, requiringa quite greater number of loop versions than simply two, as well as a moreomplex network of exeution �ow deviations between the di�erent loops. Asstated in the previous setion, we present in setion 2.6 another optimizationof the tree struture whih no longer requires to ompute y′ and, therefore,to perform the seond trivial assignment y′ ← x.2.3.9 Addition with a 3-way omparatorAlgorithm 2.5 bst_knuth_add evaluates at eah iteration of its binary searhloop whether the searhed key is less, equal or greater than the key of theurrent tree element. This operation is alled a 3-way omparison. Thisoperation is emulated by means of two appliations of the `less than' om-parator. However, some programming languages provide suh operator (e.g.:Perl, Ruby, et.). Let <=> represent suh operator, a <=> b returns anegative value if a < b, 0 if a = b and a value greater than 0 if a > b. TheSTL does not provide a generi version of this operator, but it is quite easyto implement. Moreover, if a and b are signed numbers, one an simply om-pute a− b. Anyway, we would still need to verify whether the result is eithernegative, positive, or null, in order to hoose between navigating the treeleft, right, or stopping the algorithm exeution. This operator beomes ofinterest when keys are sequenes of values to be lexiographially ompared,rather than simple values.In order to ompare both the use of the less and 3-way omparators, we�rst reall how to extend the less omparator for being applied to sequenes ofelements. Algorithm 2.15 array_ompare_less returns a Boolean indiatingwhether an array A is lexiographially less than an array B. For the sakeof simpliity, the algorithm supposes that B is either shorter or has the



56 CHAPTER 2. SETS AND MAPSsame number of elements than A. A previous onditional instrution wouldbe required in order to all the algorithm with B as the shorter array, ifneessary. The algorithm emulates the 3-way omparison with two `less than'omparisons, as for algorithm 2.5 bst_knuth_add. For eah bi in B, it veri�eswhether bi is greater, less, or equal to the orresponding ai. If it is greater,then the algorithm is to return true, if it is less then it is to return false, andif it is equal then the same proedure is to be performed on the next pair ofarray elements as long as B has elements left. If B runs out of elements, theneither both arrays are equal or A is greater than B, depending on whether
A has the same amount of elements than B or not. In either ase, A is notless than B, thus false is to be returned.Algorithm 2.15 array_ompare_less(A, B)Input: A = a0 . . . am−1, an array of m elements

B = b0 . . . bn−1, an array of n elements suh that n ≤ mOutput: returns a boolean indiating whether A is lexiographially lessthan B1: i← 02: while i 6= n do3: if ai < bi then4: return true ⊲ A < B5: else if bi < ai then6: return false ⊲ A > B7: end if8: i← i + 19: end while10: return false ⊲ A ≥ BLet us suppose that we are to use a `less than' operator with algorithm 2.5bst_knuth_add, and that we are to ompare two arrays A and B having aommon pre�x of length l. We �rst verify whether A is less than B or not,whih requires to perform 2l `less than' omparisons before reahing the pairof elements that di�er. If B is not a pre�x of A, a last omparison for thedi�ering elements is needed. In ase A is not less than B, we verify whether
B is less than A, whih doubles the amount of omparisons.Algorithm 2.16 array_ompare_3w is the orresponding extension of the3-way omparator for sequenes of signed numbers. At eah iteration, it onlyneeds to verify whether the urrent pair of elements are the ones that di�er or



2.3. BINARY SEARCH TREES 57not. If so, the result of the subtration is returned and, if not, the proedureontinues for the next pair of elements. One every element of B has beenompared, A will be greater than B if it still has elements left, and equal ifnot. Subtration m − n will return a number greater than 0 in the formerase, and 0 in the latter one. Note that this algorithm performs a singleif/then instrution at eah iteration instead of two, thanks to the use of thesubtration in order to emulate the 3-way omparison. Assignment c← ai−biis not really performed sine c is supposed to be the own proessor register inwhih the subtration result is returned, thus the result is not really opiedinto a memory position. One the 3-way omparison is �nished, algorithm 2.5bst_knuth_add still requires to verify whether A ≺ B, B ≺ A or A = B inorder to either navigate the tree left, right or stop the algorithm exeution.However, the ompiler is likely to embed the ode of the 3-way omparisonalgorithm within algorithm 2.5 bst_knuth_add rather than performing aall; in this ase, the if/then instrution of the 3-way omparison algorithmwill also serve as the equality test of algorithm 2.5 bst_knuth_add (whether
key(x) = key(y) or not), hene algorithm 2.5 bst_knuth_add will only requireto perform one additional if/then instrution after the equality test in orderto verify whether key(x) ≺ key(y) or key(y) ≺ key(x).Algorithm 2.16 array_ompare_3w(A, B)Input: A = a0 . . . am−1, an array of m signed numbers

B = b0 . . . bn−1, an array of n signed numbers suh that n ≤ mOutput: returns a number less than, equal to or greater than zero dependingon whether A is lexigraphially less, equal or greater than B, respetively1: i← 02: while i 6= n− 1 do3: if (c← ai − bi) 6= 0 then4: return c ⊲ A 6= B5: end if6: i← i + 17: end while8: return m− n ⊲ A ≥ BSummarizing, we an expet a performane boost in Knuth's algorithmproportional to the average length of the ommon pre�xes of the omparedsequenes. Sine both Cormen's and Andersson's algorithms perform theequality test a single time after the binary searh loop, they may only take



58 CHAPTER 2. SETS AND MAPSadvantage of the 3-way omparator a single time instead of one for eahloop iteration. We have implemented an equivalent version of the STL setsand maps that use Knuth's algorithm, with and without the 3-way ompara-tor, and ompared it with GNU's implementation, whih uses the modi�edversion of Cormen's algorithm presented here. Wein (2005) presents anotherimplementation of the STL sets and maps using the 3-way omparator; how-ever, the algorithm used for either searhing or adding elements to the treesis not spei�ed.2.3.10 RemovalAs shown in setion 2.3.1, the removal of every element of a BST an beperformed by means of an in-order walk. In order to maintain the extrapointers added for the e�ient iterative traversal of the tree (setion 2.3.2),the root pointer is to be given a null value and the pointers to the �rst andlast elements are to be redireted towards the past-the-end element, one thein-order walk is �nished. Apart from that, it will not be neessary to verifywhether the resulting tree respets or not the well-formedness rules sine itit will be empty, namely:
• no tree element an have more than two hildren,
• if the tree is not empty, only the root of the tree has no parent (or hasthe past-the-end as parent, in order to deal with the boundary ases ofalgorithm 2.3 bst_next_elem in setion 2.3.2),
• the keys of every element at the left subtree of an element x are all lessthan the key of x, and
• the keys of every element at the right subtree of an element x are allgreater than the key of x.It is only neessary to ensure that, after deleting eah element, the remainingones are still aessible from the resulting tree struture in order to deleteall of them. Sine the in-order walk deletes the tree from the bottom to thetop, this restrition is respeted, and an e�iently be performed even if thetree elements have no pointers towards their parents. However, removing asingle element from an arbitrary position requires some further proessing inorder to obtain a well-formed BST. Let z be the element to remove:
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• if z has no hildren, it is only neessary to nullify the orrespondinghild pointer of z's parent,
• if z has a unique hild x, x is to take z's plae within the tree struture,and
• if z has two hildren, a more omplex proessing is neessary sine z'sparent annot adopt both z's hildren as its own left or right hildren(one left and one right hildren are possible, but not two left or tworight hildren).The �rst ase is trivial. The seond one is solved as stated, sine:
• if x is a left hild of z, the keys of x and every element under x will beless than the key of z and, onsequently, less than the key of the parentof z, and
• the same reasoning applies if x is a right hild of z but with greaterkeys instead of less ones.For the third ase, it is neessary to searh for an alternative element yhaving at most one hild, so that it an be put in the plae of z within thetree struture. This element an be, for instane, the next element of z: asstated in setion 2.3.2, the next element of an element z having a right hildis the element at the bottom-left orner of z's right subtree. Obviously, thiselement y will have no left hild but may have a right hild x. Instead ofpopping z out of the tree struture, we pop y out by following either the �rstor the seond ase depending on whether y has a right hild or not. Onethis has been done, it will sure that y has no hildren, thus y will be ableto take z's parent and hildren. Moreover, the key of y will be less than thekeys within the right subtree of z, and greater than the keys within the leftsubtree of z. Alternatively, the previous element of z an also take z's plae.One the tree struture is rearranged, z an be deleted.The atual algorithm an be found in Cormen et al. (2001, p. 262). Thisalgorithm has a slight di�erene w.r.t. the third ase of the previous expla-nation: instead of replaing element z by element y and then deleting z, z isgiven y's key and y is deleted instead. Note that, if keys are simple values,it will be faster to opy a single key than several pointers. However, thisoptimization is not ompatible with the STL spei�ation sine set and mapiterators must remain valid until the element they point to is deleted. Hene,
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y annot be deleted instead of z or, otherwise, iterators pointing at y wouldbeome invalidated beause of deleting an element other than y.GNU's implementation of the removal operation is based on Cormen'salgorithm but replaing z by y instead of simply opying y's key into z.Moreover, the �rst and last elements of the tree must be updated as follows:
• if z is the root and has no hildren, the past-the-end element is tobeome the new �rst and last element,
• if z is the root and has only a left or a right hild, this left or right hildis to beome either the new last or �rst element, respetively, and
• if z is not the root but has no left or right hild, the parent of z is tobeome the new last or �rst element if z is the last or �rst element,respetively.We will present in setion 2.6 a quite simpler removal method based onthe use of BSTs ombined with double-linked lists; therefore we will not godeeper into the details of GNU's implementation of the removal operation.112.4 Self-balaning binary searh treesThere exist several variations of BSTs whose addition and removal operationsperform some series of rotations on the tree elements so that the tree is alsokept more or less balaned; the most popular ones are: AVL trees (Adel'son-Vel'ski�� and Landis, 1962, named after their inventors), symmetri binary B-trees (Bayer, 1972, rebaptized as red-blak trees after Guibas and Sedgewik,1978), AA trees (Arne Andersson, 1993, named after their inventor) andsapegoat trees (Galperin and Rivest, 1993). Exept for the last one, all ofthem require extending the tree elements with some extra data in order tokeep trae of the tree balane status. Pointers to the parent elements arealso required in order to navigate the tree upwards, as well as to performthe element rotations. AVL trees extend their elements with the di�erenebetween the heights of their left and right subtrees, and rebalane the tree11The atual GNU's C++ ode for element removal is a part of method _Rb_tree_-rebalane_for_erase de�ned in �le tree. of the libstd++-v3 library. This �lean be downloaded from http://g.gnu.org/viewvs/trunk/libstd%2B%2B-v3/sr/tree.?view=o. The terms of use of this �le an be found in the own �le header.

http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co
http://gcc.gnu.org/viewcvs/trunk/libstdc%2B%2B-v3/src/tree.cc?view=co


2.5. RED-BLACK TREES 61after eah element addition or removal so that this di�erene is always keptbetween −1 and 1. This ensures that the tree will always be balaned;therefore AVL trees provide the best average searh times (assuming thatevery element within the tree is searhed with the same frequeny). However,they also perform a greater number of tree restruturings, whih may resultin worst overall exeution times. While adding elements to a BST in diretor reverse order results in sequential trees, adding them in random ordertend to result in balaned trees, thus relaxing the rebalane onstraints willaelerate the addition operation with slight or no penalization on the searhtimes as long as elements are added in random sequenes. Rather thanensuring a minimal tree height at all times, red-blak trees ensure that, forevery tree element x, the longest sequene of desendants of x is at most twieas long as the shortest one. Rather than a more e�ient alternative, AAtrees are a simpli�ed version of red-blak trees. Rather than having a �xedbalane fator, sapegoat trees allow for hoosing an unbalane toleraneindex α, ranging from sequential trees (α = 1) up to fully balaned trees(α = 0). Instead of having to add some extra information to eah treeelement, only 2 integer numbers are to be added to the whole tree struture.Sapegoat trees �nd a sapegoat whih is not α-weight-balaned to performthe rebalane operation on (hene the name). Sapegoat trees with di�erentunbalane tolerane indexes might be an option to onsider for a future work.We fous here on red-blak trees sine those are the ones used by GNU'simplementation of sets and maps in the STL. AVL trees do not seem aompetitive option; indeed, Lynge (2004) has already tested them againstthe GNU's implementation, obtaining worst results for every operation.2.5 Red-blak treesAs stated in the previous setion, red-blak trees are self-balaning treeswhih allow for some unbalaning degree. This degree is determined by 3axioms that hold for every red-blak tree:
• every tree element is either red or blak (hene the name),
• if y is a hild of a red element x, then y's olor is blak, and
• for every sequene of elements from a given element towards any de-sendant having an empty left or right subtree, the number of blakelements is the same.
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6(b)Figure 2.3: At the left, a balaned red-blak tree and, at the right, a partially-balaned red-blak tree.In the extreme ases, these axioms ensure that the shortest path from a givenelement x towards a desendant having an empty left or right subtree willbe formed by a sequene of n red nodes, and the longest one by an alternatesequene of n red and n blak elements. Therefore, the length of the shortestpath annot be less than half of the length of the longest one, hene ensuringa �half� balane fator.The red-blak tree of �gure 2.3(a) is a balaned BST equivalent to thatof �gure 2.1(a) whih an be obtained without performing any rebalane byexeuting the following sequene of operations:
• add 4 to the empty tree,
• add 2 and 6 in any order, and
• add 1, 3 and 5 in any order.The red-blak tree of �gure 2.3(b) an be obtained by adding the same el-ements but in asending order; note that the resulting tree is a partiallybalaned tree whih respets the 3 previously stated axioms.Sine red-blak trees are themselves BSTs, the former algorithms on BSTsalso apply to red-blak trees. However, after either adding or removing andelement, it is neessary to hek whether the red-blak tree axioms are stillrespeted and, if not, the tree is to be restrutured. A detailed explanationon how to perform these operations as well as the orresponding algorithmsis given in Cormen et al. (2001, hap. 13). For the ase of red-blak trees,



2.6. DOUBLE-LINKED RED-BLACK TREES 63Cormen et al. make use of a sentinel element: instead of using null pointersin order to represent a missing left or right hild, a speial element alled thesentinel is used in order to expliitly represent the empty subtrees. Sinethe key of suh element is of no use, elements having one or two emptysubtrees are all linked to the same sentinel element instead of having a dif-ferent sentinel for eah empty subtree. The sentinel allows for dealing withboundary ases as one would with normal ones, sine it is no longer requiredto verify whether the hild of an element exists or not before aessing it.The tree struture must be augmented with suh an extra element, whihin fat an perfetly be the past-the-end element, and a pointer towards thesentinel must be stored inside the tree struture so that the algorithms anverify whether an element's hild is the sentinel or not. However, the imple-mentation of the STL iterators on�its with the use of sentinels: algorithmsoperating on iterators rather than on whole tree strutures do not have aessto the sentinel's pointer sine iterators are implemented as pointers towardstree elements rather than tree strutures; therefore it is neessary to use a�xed value suh as the null pointer in order to represent the empty subtrees.2.6 Double-linked red-blak treesAs stated at the beginning of this hapter, some of the parsing algorithmsthat we will present in this dissertation searh and remove every useless par-tial parse before starting to ombine them in order to build the set of parses.At a �rst implementation version, we �rst built a simpli�ed version of the setsof partial parses in the form of a single double-linked list, then threw awaythe previous sets of partial parses and �nally performed the removal of uselesspartial parses from the list. Sine no more elements were to be added andthe set strutures already rejeted repeated partial parses, the double-linkedlists were preferred due to their more e�ient removal operation. Althoughappending an element to a double-linked lists is a fast operation, this proe-dure wasted time due to the dupliated onstrution and destrution of allthe partial parses. In order to avoid this situation, we deided to performall the treatment on the original set strutures. The exeution times werelowered, but not as muh as expeted: the removal operation was not onlyrestruturing the tree in order to respet the BST axioms, but it was alsorebalaning the tree. This rebalaning was unneessary sine the remainingoperations to perform on the trees involved only iterative traversals, but no



64 CHAPTER 2. SETS AND MAPSsearh for spei� elements. Finally, we onsidered an even more radial so-lution: we extended eah tree element with two pointers linking the elementwith its previous and next elements (in the set order), obtaining a hybridred-blak tree and double-linked list struture, and then we removed the use-less elements by treating the struture as a simple double-linked list, withoutaring whether the BST axioms were still respeted or not. The resultingstruture still allows for its traversal, both for building the set of parses andfor ompletely deleting it one it is no longer required.Mixing both red-blak tree and double-linked list strutures had alreadybeen proposed by Das et al. (2008), but for a di�erent purpose: rather thantreating the struture as a simple double-linked list one no more elementsare to be added or searhed for, it only mentions the possible speedup ofappliations making an intensive use of set and map iterators. In fat, wehad not onsidered the possible speedup due to the faster aess to the nextor previous element of another one; this speedup has not only improved thealgorithms removing useless partial parses but every algorithm building setsor maps of partial parses.The added pointers towards the neighbours of eah tree element not onlyallow for a faster implementation of the sets and maps, but for several sim-pli�ations of the di�erent algorithms, namely:
• algorithm 2.3 bst_next_elem is redued to simply aessing the pointertowards the next element and, onversely, the orresponding algorithmbst_previous_elem just requires to aess the pointer towards the pre-vious element,
• the implementation of the STL iterators no longer on�its with theuse of a sentinel element, sine the retrieval of the previous or nextelement of another one no longer requires to navigate the tree down upto reahing the sentinel but to simply follow the pointer towards theprevious or the next element,
• rather than using the left and right pointers of the past-the-end elementin order to have diret aess to the �rst and last elements of the tree,its previous and next pointers are used as for any other element of thetree; hene, when adding or removing an element so that the �rst orlast elements are to be updated, no speial operation is to be performedsine the new �rst or last element will be simply relinked with the past-the-end element, in the same manner that it would happen when adding



2.7. OTHER STRUCTURES 65or removing elements in the middle of the list,
• algorithm 2.11 bst_ormen_add no longer requires to navigate the treeupwards in order to �nd the previous element of the last visited onein order to perform the equality test, sine the pointer to the previouselement an simply be followed,
• Andersson's algorithm no longer requires to keep trak of the last vis-ited element whose key may be equal to the searhed one, sine thepointer towards the previous element an also be followed as for theprevious ase; in fat, both algorithms bst_ormen_add and the addi-tion version of Andersson's algorithm beome the same algorithm afterthis simpli�ation,
• this simpli�ed version of Andersson's algorithm no longer performs twotrivial assignments but only one, thus unrolling its binary searh loopin order to remove the remaining trivial assignment is as easy as forthe other algorithms and, �nally,
• the removal of an element no longer requires to navigate the tree downin order to �nd the next element of the one to remove, but to followthe pointer towards the next element.We have implemented a set/map library equivalent to the one provided bythe GNU's STL implementation �in order to failitate their omparison�but using double-linked red-blak trees with algorithm 2.5 bst_knuth_addinstead of standard red-blak trees with algorithm 2.11 bst_ormen_add.This alternate implementation has �nally allowed us to make ompetitivealgorithms out of the parsers we propose in this dissertation. We expet toimprove them further with algorithm 2.11 bst_ormen_add in a future work.2.7 Other struturesWe brie�y present here other strutures for the implementation of sets andmaps other than BSTs or BSTs ensuring some balane fator. Some of thesestrutures may be worth to be tested in future implementations.



66 CHAPTER 2. SETS AND MAPS2.7.1 TreapsTreaps (Seidel and Aragon, 1996, ontration of tree and heap) are BSTswhih exploit the fat that randomly adding elements to a tree tends to re-sult in balaned trees, rather than forefully ensuring some balane fator.As elements are added to the treap, they are given a random priority. BST'saddition and removal algorithms are modi�ed so that, one onluded, thepriority of every element within the treap is greater than the one of its hil-dren. This results in exatly the same tree that would have been obtainedby adding the elements in their priority order. As for red-blak trees, adouble-linked version of this struture might also perform well.2.7.2 Splay treesRather than trying to aelerate the retrieval of arbitrary tree elements, splaytrees (Sleator and Tarjan, 1985) restruture the tree so that the most fre-quently aessed elements are loated at higher hierarhy levels. All normaloperations on a BST are ombined with one basi operation alled splaying(hene the name): splaying the tree for a ertain element rearranges the treeso that the element is plaed at the root of the tree. Compared with theother self-balaning strutures, they have two main drawbaks: they allowfor sequential trees, and searh operations are more expensive sine they in-volve restruturing the tree in order to raise the most frequently searhedelements within the tree hierarhy. Sine our parsing algorithms add newelements to the sets and maps rather than repeatedly aessing some of thealready added ones, we do not onsider splay trees appropriate for our usease.2.7.3 2-3 trees2-3 trees are another kind of non-binary self-balaning searh tree: theyallow for elements having either zero, two or three hildren, hene the name.Elements having no hildren �also alled leaves�may have one or two keys.From the point of view of BSTs, leaves having two keys are equivalent to twoBST leaves whih lie attahed at the same hierarhy level, where the key ofthe left element is less than the one of the right one. Elements having twohildren are strutured in the same manner than the ones of BSTs: they havea single key whih must be greater than the key of their left hildren and less



2.7. OTHER STRUCTURES 67than the one of their right ones. Elements with 3 hildren have two attahedkeys k and k′ rather than simply one. Let l, m and r be the keys of the left,middle and right hild, respetively, suh elements must hold that
l < k ≤ m ≤ k′ < r. (2.1)After eah addition and removal, every 2-3 tree leaf lies at the tree's bottomhierarhy level. This implies a �perfet� balane independently of the numberof elements within the tree, whih is possible thanks to the use of the di�erentkind of tree elements.12 2-3 trees were introdued by Hoproft in 1970, thoughnot published (Cormen et al., 2001, p. 300). A desription of 2-3 trees as wellas of its management algorithms an be found in Aho et al. (1974, se. 5.4).2.7.4 2-3-4 trees2-3-4 trees, also alled 2-4 trees, are a slightly more omplex version of 2-3trees where elements having 4 hildren and 3 keys are also possible. Indeed,2-4 and red-blak trees are isometri strutures as for 2-3 and AA trees.13Sine we have already tested red-blak trees and either 2-3, 2-4 and AAtrees are strutures analogous to red-blak trees, we rather onsider otheralternative strutures for a future work.2.7.5 B-treesB-trees (Bayer, 1972) are a generalization of 2-3 and 2-3-4 trees: leaves mayhave one, two or more keys, and non-leaves may have n > 0 keys k1 . . . kn, inwhih ase they have n + 1 hildren x1 . . . xn + 1 suh that

key(x1) < k1 < key(x2) < k2 < . . . < key(xn) < kn < key(xn+1). (2.2)Note that the tree height dereases when using elements with a greater num-ber of hildren and keys. B-trees were oneived for minimizing the numberof input/output aesses to seondary storage devies (e.g.: hard disks) andhave been widely used in database systems. Extensive information on B-trees an be found in Cormen et al. (2001, hap. 18). B-trees have already12Note that BSTs an only be perfetly balaned when having either 0 or 2n elements,with n ≥ 0.13Reall that AA trees are a simpli�ed version of red-blak trees.



68 CHAPTER 2. SETS AND MAPSbeen used in an implementation of STL sets and maps (Hansen and Hen-riksen, 2001); the performanes obtained w.r.t. red-blak trees were betterfor searhes, similar for additions and onsiderably worse for removals. AB-tree version ombined with a double-linked list might perform better thandouble-linked red-blak trees, sine element removal would rather use thedouble-linked list struture rather than the B-tree one.2.7.6 Hash tablesHash tables are an array-based alternative to searh trees. Let us supposethat the number of every possible key identifying the elements to store withinthe set is rather big in omparison with the number of elements that will beadded to the hash table. We alloate an array bigger than needed for storingall the elements to add, and use a hashing funtion in order to ompute thearray position where to add eah element. This funtion usually onsists insome short sequene of heap arithmeti/bitwise operations on the element'skey. E�ieny highly depends on whether the hash funtion provides a uni-form distribution of the elements along the array in order to minimize elementollisions; suh ollisions take plae eah time a new element to add is givenan already oupied array position. In suh ases, multiple tehniques mightbe used in order to solve the ollision (e.g.: using a seond hashing funtion).This implies that, whenever retrieving a previously added element, it doesnot su�e to ompute the element's position, but also to verify that both thesearhed key and the one of the retrieved element math. Of ourse, by us-ing bigger arrays than neessary one an minimize the number of ollisions,though more memory will be wasted. As drawbak, elements within hashtables are not neessarily kept in order, whih prevents the use of furtheroptimizations suh as the one that we are to present in the next setion.More information on hash tables, inluding some historial bakground, anbe found in Knuth (1998, se. 6.4).2.7.7 Skip listsSkip lists (Pugh, 1990) are sorted linked lists where eah element may notonly be linked to its next element but to other elements several positionsahead. The number of ahead pointers for eah element to insert is randomlyhosen suh that the number of elements having i pointers dereases expo-nentially w.r.t. i. Searhes are performed in a similar manner than for BSTs,



2.7. OTHER STRUCTURES 69though starting from the �rst element instead of the �middle� one (the rootof the tree): for eah visited element, a proper ahead pointer is followed sothat the searh spae is redued to the element subsequene between the lastvisited element and the next element to visit. The average searh times arekept logarithmi, as for BSTs, while the total number of pointers inreasesproportionally to the list size. Opposite to double-linked lists, no bakwardspointers are stored, so only forward traversal is possible. Sine they arealready lists, there is no need to add extra pointers as done with red-blaktrees in order to ombine both linked-list and tree strutures. However, bak-ward pointers are used by some of the parsing algorithms, apart from beinguseful for the optimization of some of the BST algorithms; whether theiruse ould be avoided or adding suh pointers to the skip lists would not re-sult in an important loss of e�ieny will require a further study. Seidel andAragon (1996) state that both skip lists and treaps have similar performanes;therefore both of them are interesting andidates for the optimization of ourparsing algorithms.2.7.8 Conurrent aess struturesPersonal omputer tehnology has lately foused on inreasing the numberof proessing ores �up to 6 ores nowadays� attahed within a single hiprather than on augmenting their lok frequenies. A performane gain ouldbe ahieved by onurrently exeuting the independent subtasks that om-pose our parsing algorithms, taking advantage of multiple ores. However,parallel algorithms are more omplex than their non-parallel ounterparts,whih we have not fully exploited yet. Moreover, it must be taken intoaount that the speedup fator that an be ahieved by means of paral-lel omputing is less than the available number of proessors or proessingores. Hene, parallel omputing will beome an interesting option one theremaining alternatives will not be able to yield greater speedup fators. Bethat as it may, a straightforward way of making parallel versions out of ourparsing algorithms ould onsist in onurrently exploring several grammarrules in parallel, whenever multiple grammar rules apply to the same sen-tene fragment.14 Sine the exploration of suh rules results in the addition ofpartial parses to some series of sets and maps, the main problem will onsistin �guring out how to e�iently integrate onurrent set and map stru-14This is the usual situation due to the ambiguous nature of natural languages.



70 CHAPTER 2. SETS AND MAPStures into our parsing algorithms. The list of works on onurrent versionsof the set and map strutures disussed in this hapter is quite extensive;we onlude this setion with a small seletion among them: (Larsen et al.,2001) (self-balaning BSTs in general), (Bronson et al., 2010) (AVL trees),(Paul et al., 1983) (2-3 trees), (Bender et al., 2005) (B-trees), (Hanke, 1999)(red-blak trees), (Herlihy et al., 2006) (skip lists) and (Triplett et al., 2010)(hash tables).2.8 Maps of keys to setsLet us suppose that we are to implement a map M of keys in K to setsof keys in K ′. One ould simply use a BST struture with key/value pairsin K × P(K ′), where elements in P(K ′) are also represented by other BSTstrutures with keys in K ′. Let (k, S) be a key/value pair where S is itselfa set of keys in K ′; if we are to add an element k′ to S, we are to performa binary searh on M in order to retrieve S, then another one in S and�nally rebalane S. If the map did not exist, we are to add a map k toa newly reated empty set S and rebalane M and, �nally, add k′ to S.Moreover, in order to delete M 's data struture one it is no longer needed,we are to traverse M and, for eah pair (k, S) found, we are to traverse S aswell in order to delete the whole struture. Indeed, the reverse proedure isperformed in order to build the map, though deomposed into several elementadditions. It is possible to avoid the overhead aused by the use of severalBST strutures by using a single BST struture representing a set in K×K ′rather than a map K → P(K ′). For instane, if we are to represent map
{a M {x, y}, bM {z, t}}, (2.3)we rather emulate suh struture by means of set
{(a, x), (a, y), (b, z), (b, t)}. (2.4)We rede�ne the key omparator in order to lexiographially ompare pairsof keys in (K, K ′) as two-letter sequenes having keys in K as �rst letter. Inorder to iterate over the elements of a set mapped by key k, we searh forthe �rst element with key k, then sequentially aess the next elements untilreahing the past-the-end element or an element with a key other than k. Inontrast with the �rst solution, keys in K are repeated and some extra key



2.8. MAPS OF KEYS TO SETS 71omparisons are also to be performed. However, we have obtained shorterexeution times in every parsing algorithm using maps of sets implementedas simple sets.In general, we have found that minimizing the number of requests for freememory segments has given better results in spite of the added repetition:rather than reating STL ontainers of pointers to other dynamially allo-ated strutures, it is usually more e�ient to let the ontainer own its ownelements.15 Note that memory alloations involve to searh for a big-enoughmemory segment, whih beomes more and more expensive as memory getsfragmented, and both memory alloations and dealloations involve to up-date the memory alloation table. A ontainer of pointers will require twomemory alloations for eah ontained element: one for the own element'sstruture and another for the pointer to add to the ontainer. Containersof pointers are to be used whenever the element strutures are to be sharedamong several ontainers; anyway, it is better to let one ontainer have theownership, and the others to take are only of the pointers but not of thepointed memory segments. Containers of Boost's shared smart pointers havealso been tested,16 obtaining quite worst results: suh pointers involve tomanage a ounter of pointers to the same element so that the element isdealloated upon the deletion of the last remaining pointer.Why would anyone use ontainers of pointers rather than ontainers ofatual elements? The original STL ontainers use opy semantis, meaningthat whenever adding an element to a ontainer, a opy of suh element isadded rather than granting the ontainer the ownership of the element toadd. Containers of omplex strutures may require to perform expensiveopies of elements that may just have been reated for being added to theontainer, thus being destroyed right after the opy is added to the ontainer.One ould use some speial pointer ontainers that beome responsible forthe dealloation of the memory pointed by the added pointers (e.g.: Boost'spointer ontainers). However, this involves two memory alloations and deal-15By owning an element we mean to have the responsibility of alloating and dealloatingthe memory oupied by the element; properly de�ning eah element's ownership is vitalfor avoiding both segmentation fault errors as well as memory leaks: the former take plaewhenever following a pointer whose pointed memory has not been alloated �rst, andthe latter whenever the pointers used to aess some memory segment are deleted beforedealloating the pointed memory.16Searh for shared_ptr at the homepage of the Boost C++ libraries: http://www.boost.org
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72 CHAPTER 2. SETS AND MAPSloations for eah added element, as stated before. Another solution providedby the new C++ standard, C++0x,17 is the use of move semantis: instead ofopying the whole omplex struture, only the main pointers governed bythe struture are opied, and the original struture is left in an �empty� statefor its deletion. For instane, an STL vetor is basially a pointer to anarray plus an element ounter; rather than opying the whole array, onlythe pointer and the ounter are opied and both of them are nulli�ed in theoriginal struture. Anyway, we have not needed to use suh omplex stru-tures for the implementation of the algorithms presented in this dissertation,and we have preferred not to use the new C++0x features until its de�nitiveestablishment.18Another optimization to take into aount is the so alled RVO or returnvalue optimization: whenever assigning to a newly reated objet A theresult B of a funtion F , the ompiler is allowed to use B as A rather thanopying B into A and then deleting B. Moreover, if B is to be passed to afuntion G as parameter C, the ompiler is allowed diretly use B as if it was
C. Indeed, the g++ ompiler atually performs these optimizations, ignoringany extra ode that might be inluded within the opy onstrutor apartfrom the own objet opying (e.g.: printf instrutions). However, elementsare yet systematially opied whenever added to STL ontainers, even whenthe added elements are temporal objets. The use of move semantis is thestandard proedure to avoid suh opies, performing shallow opies instead.2.9 Multisets and multimapsMultisets and multimaps are sets and maps that may ontain several elementshaving the same key. The same data strutures and algorithms presented herefor the representation and management of sets and maps an be used for thease of multisets and multimaps, but with a slight di�erene: the equalitytest in the addition algorithms is to be removed so that, whenever the key toadd is equal to some key k′ within the tree, it is treated as if it was greaterthan k′; this implies that17Visit http://www2.researh.att.om/ bs/C++0xFAQ.html for an overview of the newfailities o�ered by C++0x.18Up to now, support for the new C++0x features provided by the g++ ompiler is yetonsidered experimental; visit http://g.gnu.org/projets/xx0x.html for a list ofthe urrently supported features.

http://gcc.gnu.org/projects/cxx0x.html


2.9. MULTISETS AND MULTIMAPS 73
• adding a key/value pair (k, v) always results in inreasing the tree sizeby one element,
• tree elements having the same key appear at onseutive positions, fromthe sequential point of view, and
• whenever adding a key/value pair (k, v) suh that k is already withinthe tree, the new element is added as the next element of the last onehaving k as key.Wein (2005) gives an alternative implementation of the STL multisets andmultimaps, also based in red-blak trees, whih supports two additional op-erations: split and atenation; splitting a set S by a key k results in twodisjoint sets S1 and S2 suh that S1 ontains all the elements of S whose keysare less than k, and S2 ontains all the other elements, and the atenation isthe inverse operation.





Chapter 3Charater treatmentFrom the omputer's point of view, a text is a sequene of binary digits rep-resenting a sequene of haraters, where the orrespondene between digitsand haraters is given by a harater enoding system. Text proessingwould be greatly simpli�ed if there would be a unique and universal hara-ter enoding system; though work on suh a universal harater enoding isalready quite advaned (The Uniode Consortium, 2007), there exist manyother enoding systems whih are not intended to be universal. Computerusers are usually unaware of the existene of harater enodings, sine thedefault harater enoding given by the operating system is transparentlyused. Problems arise when trying to open a text �le reated in a di�erentomputer with a di�erent harater enoding system. For the ase of webpages, the reommendation is to inlude some meta-information speifyingthe employed harater enoding; however, this reommendation is not al-ways followed. In that ase, there is no hoie but to try di�erent haraterenodings until the haraters are properly rendered. If our harater enod-ing is not ompletely di�erent than the appropriate one, one may still be ableto reognize the language in whih the text was written and limit the searhto the harater enodings for that partiular language. Be as it may be, theautomati proessing of suh texts will still be obstruted, if not prevented.Charater enodings are not only used for representing haraters insidetext �les, but also inside the omputer's memory as part of the data proessedby a omputer program. Depending on the language or languages to treat,and whether the enoding is to be used for data storage or for text proessing,ertain harater enodings will be more appropriate than others. In ourase, Telefónia imposed a harater enoding system for data transmission75



76 CHAPTER 3. CHARACTER TREATMENTover the Internet, but we are to hoose a harater enoding system forboth storing and proessing linguisti data. We brie�y present here themost relevant, namely Uniode and those from whih it evolved, and someimplementation details surrounding our hoie.3.1 ASCIIThe Amerian Standard Code for Information Interhange (ASCII, Gornet al., 1963) is one of the �rst widely used harater enoding systems, andthe basis of many others; it is restrited to English and enodes eah har-ater as a sequene of 7 bits plus one bit, either used for data transmissionontrol (parity bit) or simply left unused. Apart from the upperase andlowerase English letters, and some other symbols (e.g.: numbers, arithmetioperators, puntuation symbols, et.), ASCII inludes 32 haraters that donot represent printable information but text formatting marks and/or a-tions to be exeuted by devies suh as printers or sreens; for instane, thebell harater (number 7) was used for alerting operators of an inomingmessage by means of an audible sound. Most of those haraters are nolonger used, but we still keep many of its text formatting marks, also alledblank or white haraters, namely: the white spae (number 32) for sepa-rating words, the horizontal tabulation (ode 9) for separating olumns, andthe line feed (number 10) for marking the end-of-line. Some systems (e.g.:Windows platforms) preede the line feed by a arriage return (number 13),and others (e.g. Unix and Linux platforms) use the line feed alone.1 Moredetails on ASCII, along with an evolving view of harater enoding systemsup to ASCII, an be found in Fisher (2000).3.2 ISO-8859-xISO-8859-x is nowadays a family of 16 harater enodings extending ASCII(x is a number between 1 and 16): the eighth bit is used in order to representextra haraters not present in English; for instane, ISO-8859-1 enodes1The arriage return is the mehanism in a typewriter that pushes the ylinder onwhih the paper is held towards one side in order to start a new line; on a omputer textinterfae, the arriage return moves the ursor towards the beginning of the urrent line,and an be used without a line feed in order to rewrite the urrent line of text, for instanefor reating some text-based animation suh as a progress bar.



3.3. UNICODE 77additional haraters for Western European languages suh Spanish (ñ, á),Frenh (ç, è), German (ÿ, ö), et. ISO-8859-1 (ISO/IEC, 1998), also alledLatin 1, was the default harater enoding for the web.3.3 UniodeWith the oming of globalization, Uniode (The Uniode Consortium, 2007)beame the new web harater enoding standard, though it still oexistswith many others. Uniode overs most of the existing writing systems,inluding symbols of a great variety of domains suh as mathematis (∑,
∞), eonomy (¤, ¿), ulture (†, Y) and many others. Generially, Uniodemaps integers between 0 and 1,114,111 to haraters. Eah integer is alleda ode point, and ode points are grouped into 17 planes of 216 ode pointseah one. Plane 0 is alled the basi multilingual plane or BMP: it omprisesharaters from most modern languages as well as a large number of speialharaters, inluding ISO-8859-1 as the �rst 256 ode points. Uniode isonstantly growing: around 100,000 haraters have already been mapped,having oupied only the 10% of the available spae. Though intended to beuniversal, there is not a unique Uniode harater enoding form but several.They either use a �xed or variable amount of bytes in order to represent eahode point, where the minimum amount of bytes is alled a ode unit. Webrie�y desribe below the main Uniode harater enoding forms.3.3.1 UCS-2UCS-2 uses 2 bytes per ode unit, and eah ode unit orresponds to a odepoint. It enodes only the basi multilingualmap. UCS-2 �les start with odepoint 0xFEFF, the so-alled byte order mark or BOM. The �le endiannessan be dedued by verifying whether the BOM bytes are transposed (littleendianness) or not (big endianness).22The terms big- and little-endian refer to two possible ways of laying out bytes inmemory or transmitting them through a serial onnetion: starting from the most signi�-ant byte (big-endian) or from the least one (little-endian). These terms were introduedby Cohen (1981), who borrowed them from the satyri novel `Gulliver's Travels' (Swift,1726); in the novel, Lilliputians are divided into two religious fations: those who preferraking open their soft-boiled eggs from the little end, and those who prefer the big end(the Big-endian heretis).



78 CHAPTER 3. CHARACTER TREATMENT3.3.2 UTF-16UTF-16-LE & UTF-16-BE are 2 extension of UCS-2 also using 2 bytes perode unit, but either 1 or 2 ode units per ode point. UTF-16-LE imposeslittle endianness, while UTF-16-BE imposes big endianness; hene, the BOMis optional, though reommended for bakwards ompatibility. Code pointsof the basi multilingual map are serialized as for UCS-2. Unused UCS-2ode units are used in pairs, forming the so-alled surrogate pairs, in order torepresent haraters beyond plane 0. UCS-2 is usually mistaken for UTF-16sine they do not di�er as long as surrogates are not required, and UCS-2has been abandoned in favor of UTF-16.3.3.3 UTF-32UTF-32-LE & UTF-32-BE are the 32 bit versions of UTF-16-LE and UTF-16-BE. These are the only Uniode shemes representing every Uniode odepoint with a �xed amount of bytes, 4 to be exat. However, they usually im-ply a memory waste sine the basi multilingual map is enough in most ases.Fixed-length enoding forms are useful for randomly aessing single har-aters within strings, sine a simple addition an multipliation is enough foromputing their position. However, one an better use the UTF-16 enodingforms without loss of e�ieny as long as surrogates are not required.3.3.4 UTF-8UTF-8 is a variable-length harater enoding form, using 8 bits per odeunit and 1 to 4 ode units per ode point. UTF-8 not only overs everyUniode ode point but is also the only Uniode sheme fully ompatiblewith ASCII, sine ASCII haraters are represented with a single byte. Thisimplies that both enodings will yield the same byte sequenes as long asno haraters outside ASCII are used. The byte order mark is not neededhere sine ode units are one-byte long. For the ase of English and WesternEuropean languages, UTF-8 is preferred for data storage an transfer ratherthan for text proessing: ommon haraters take less spae but aessing aharater within a string requires to sequentially ompute and add the lengthsof every preeding harater (unless it is previously known that every stringharater is oded with the same amount of bytes, suh as the ones in theASCII subset). Indeed, UTF-8 is the urrent harater enoding standard



3.4. IMPLEMENTATION 79for the web. An important property of UTF-8 is that multi-byte ode pointsmay not ontain other ode points. Moreover, a null byte may also be usedfor terminating UTF-8 strings, suh as in C and C++. Hene, UTF-8 stringsmay be treated as normal 1-byte har strings whenever omparing them forequality. Moreover, if one is to build a set of UTF-8 strings with someimplementation requiring an arbitrary total order, a lexiographial per-byteorder an be e�iently applied. Linguistially sorting a set of strings isa more omplex problem: sine not every language de�nes the same sortingrules (e.g.: binary searh trees), a universal harater ordering is not possible.For instane, the letter after e in English (and ASCII) is f , but letter é isplaed between e and f in Spanish; to be exat, letters with and without auteaents are onsidered equal, unless the aute aents are the only distintivetraits between two words (e.g.: ame and amé).3,4 Thus, ame omes beforeamé, but amé omes before amerizar (to land on the sea).
3.4 ImplementationUniode aims to failitate the exhange of text data by homogenizing har-ater representation; however, the presene of multiple Uniode enodingforms has allowed for a heterogeneity of implementations between di�erentplatforms and programming languages. It is not surprising to �nd titles in theliterature suh as �Uniode enoding forms: A devil in disguise? � (Biswas,2003). Among the di�erent interoperability issues mentioned in the paper,we are mainly onerned by the C++ standard diretives on Uniode support:a wide har type �as well as wide string and stream types� are to be usedin order to represent Uniode haraters longer than one byte, but eah C++ompiler is free to assume a di�erent Uniode enoding form. As a matter offat, the g++ ompiler on a Linux platform uses 4 bytes in order to represent3Indeed, a vowel with an aute aent is still the same vowel: the aute aent simplymarks the word's stressed syllable. That is not the tilde's ase: n and ñ are onsidereddi�erent letters and have a di�erent pronuniation.4ame and amé are in�eted forms of verb amar or �to love�; opposite to onventionalditionaries, eletroni ditionaries are not only to ontain the in�nitive forms but everyin�eted form.



80 CHAPTER 3. CHARACTER TREATMENTwide hars, while the MinGW port of g++ to Windows uses only 2 bytes.5 ,6If one is to write portable C++ ode using Uniode, third party libraries areto be used; the IBM ICU library is an open-soure example of portable Uni-ode library, both available for C/C++ and Java.7 The Outilex system usesUTF-8 and the ICU library in order to represent and ompare strings. Inour ase, we have deided to reuse Unitex's Uniode libraries, both for om-patibility with the Unitex system as well as for fousing on parsing ratherthan on harater enoding issues. These libraries mainly use UTF-16LE,both for string proessing as well as for textual data storage, and have beentested in di�erent platforms and omputer arhitetures, inluding little- andbig-endian's. Both grammar and ditionary �les provided with the Unitexsystem are enoded with UTF16-LE, though they an be easily re-enoded ifneessary, for instane by using the GNU ionv tool.8 Sine we are mainlyto work on Spanish and other Western European languages, we simply ignorethe existene of surrogate pairs an treat every harater as a single two-byteode unit.3.4.1 Exhanging haraters between Java and C++Another interoperability issue desribed in Biswas (2003) that onerns usis the exhange of text data between Java and C++ programs: one of therequirements given by Telefónia for the use of our NLP engine was that itshould be aessible through the Internet as a Java servlet inside a Tomatservlet ontainer,9,10 and haraters should be reeived and transmitted asUTF-8 streams. Servlets are Java programs that answer HTTP requests,usually by returning a dynamially built web page. In our ase, the servletreeives UTF-8 streams orresponding to request sentenes, and returns aplain UTF-8 text ontaining the result returned by the NLP engine. Animmediate solution would have been to implement our NLP engine in Java,5g++ is one of the ompilers of the GNU Compiler Colletion (GCC). More informationan be found in the GCC homepage: http://g.gnu.org/6More information on MinGW an be found in its o�ial homepage: http//www.mingw.org7More information on the ICU library an be found in the ICU projet homepagehttp://site.iu-projet.org/.8http://www.gnu.org/software/libionv/doumentation/libionv/ionv.1.html9More information and tutorials on servlets an be found in http://java.sun.om10More information on Tomat an be found in the Apahe Tomat homepage http://tomat.apahe.org and in Brittain and Darwin (2007)
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3.4. IMPLEMENTATION 81sine Java provides a good Uniode support and it is easier not to mix dif-ferent programming languages; however, this would have had an impat inperformane, sine Java ode is to be exeuted in a virtual mahine ratherthan ompiled into the native ode of the mahine where it is to be exe-uted. Moreover, we are also interested in the preise manner in whih ourobjets are dealloated from the omputer memory rather than on delegatingthis task to the Java garbage olletor: our parsing time measures inludethe dealloation osts, sine more omplex parsers use more omplex datastrutures whih require more expensive dealloation methods. We haveprogrammed a small Java servlet whih simply interfaes Telefónia's Mo-vistarBot with our C++ NLP engine. The servlet invokes the NLP enginethrough the Java Native Interfae (JNI),11 and performs the neessary har-ater enoding translations from UTF-8 to UTF-16LE and vie-versa.3.4.2 Charater normalizationFinally, a last requirement given by Telefónia was to ignore every diaritimark, exept for the tilde in ñ, as well as to make no distintion betweenupperase and lowerase letters. Omission of the diariti marks is one of themost ommon orthographi mistakes in written Spanish. Moreover, diaritimarks are usually omitted for onveniene when ommuniating by means ofsort text messages: Spanish keyboards do not have separate keys for letterswith diariti marks (exept for letter ñ) but an extra key must be pressed inorder to add the diariti mark. As usual, the same applies to upperase let-ters: two keys must be ombined in order to obtain the upperase version of aletter. Sine surrogate pairs are not needed for the representation of Spanishharaters, we have built a look-up table mapping every single UTF-16LEode unit with its orresponding normalized version, that is, the orrespond-ing lowerase letter without diariti marks or the same ode unit, if alreadynormalized.12 Rather than reating a normalized opy of eah user sentene,we apply the look-up table on-the-�y during the grammar appliation, sineuser sentenes are to be disarded one treated. Moreover, user sentenesare kept unmodi�ed so that original sentene fragments an be returned ifneessary; for instane, in �envía hola Pao al 555 � (send hello Pao to the11See (Liang, 1999) for a omprehensive book on JNI.12The orrespondene between Uniode lowerase and upperase letters, as well as let-ters with and without diariti marks, an be extrated from http://www.uniode.org/Publi/UNIDATA/CaseFolding.txt
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82 CHAPTER 3. CHARACTER TREATMENT555) the user is requesting to send the SMS �hola Pao� to phone number555. Normalized opies of grammar and ditionary �les are onstruted sinethey are to be applied to eah user sentene.



Chapter 4DELAF ditionariesMonolingual lexions (or voabularies) for language proessing are one of theways of automatially annotating words with formalized linguisti informa-tion. As ompared to statisti methods, the use of lexions provides moreontrol on the results. As ompared to other language proessing lexions,those with the DELA format o�er onvenient funtionality for update thanksto an automati in�etion mehanism.1DELAF ditionaries (Silberztein, 1993) are a kind of eletroni ditionar-ies whose purpose is to provide a set of unambiguous identi�ers for eah useof eah simple word of a natural language, as well as to provide informationinherent to eah one. These properties impliitly de�ne lasses of words (e.g.:verbs, nouns, adjetives, et.).2 Grammar development an be greatly sim-pli�ed by making referene to these lasses instead of expliitly stating theorresponding list of words (the exat mehanism will be explained in hap-ter 6). Moreover, separating the information inherent to lexial units fromthe grammar rules results in a better strutured approah. DELAF ditio-naries for several languages are freely distributed with the Unitex platformunder the LGPL-LR liense.3 We have adopted the DELAF formalism in or-der to keep the ompatibility with the Unitex system, and used the SpanishDELAF (Blano, 2000) freely distributed with Unitex for the hatterbot use1DELA stands for Ditionnaires Életroniques du LADL or LADL's Eletroni Ditio-naries for in�eted forms, where LADL is the Laboratoire d'Automatique Doumentaire etLinguistique.2`F' in DELAF stands for formes �éhies or in�eted forms.3The terms and onditions of the LGPL-LR liense an be found in http://igm.univ-mlv.fr/~unitex/lgpllr.html 83
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84 CHAPTER 4. DELAF DICTIONARIESase. In partiular, this ditionary desribes more than 775.000 lexial units.We �rst give a set of relevant de�nitions in setion 4.1, and then de-sribe the DELAF formalism in setion 4.2. Next, we present our DELAFimplementations in setion 4.3. We desribe the modi�ations we have in-trodued in the ditionaries for adapting them to our use ase in setion 4.4,and present the tools we have developed for automating some proesses onDELAF ditionaries in setion 4.5. Finally, we mention other eletroni di-tionaries in setion 4.6.4.1 De�nitionsDe�nition 1 (Use of a word). We all use of a word a ontext of utilizationof the word. Suh ontexts vary depending on the di�erent meanings of theword.De�nition 2 (Surfae form). The surfae form of a word is the exat se-quene of haraters that form it.De�nition 3 (Semanti lass). A word semanti lass is a set of wordsde�ned by semanti riteria whih uniquely apply to the properties inherentto eah word, for instane the set of `human' words (e.g.: student, friend,inhabitant, et).De�nition 4 (Semanti feature). A word semanti feature is a word propertythat determines whether the word belongs to a semanti lass or not, forinstane feature `human'.De�nition 5 (Part-of-speeh). The part-of-speeh of a word, also alled lex-ial or word ategory, is the semanti feature that determines the syntatirole the word plays inside a sentene (e.g.: verb, noun, adjetive, et.).De�nition 6 (In�eted form). A word's in�eted form is the partiular mod-i�ation the word has undergone in order to express a partiular ase, gender,number, tense, person, mood and/or voie.De�nition 7 (In�etional feature). A word's in�etional feature is a parti-ular harateristi expressed by an in�eted form.



4.1. DEFINITIONS 85The set of in�etional features of a given word depends on the languageand the word's part-of-speeh; for instane, in Spanish, verb in�etion om-prises tense but not gender, adjetive in�etion omprises gender but nottense, and prepositions have no in�etional features sine they are invari-ant. Opposite to Spanish, some Polish verb tenses also omprise gender(e.g.: `byª ', `byªa' and `byªo' orrespond to `he was', `she was' and `it was',respetively).De�nition 8 (Lemma). The lemma, anonial form or ditionary form ofa word is the in�eted form of the word that is used in order to refer to thewhole set of possible in�eted forms.For instane, verb lemmas in English, Frenh and Spanish are the in-�nitive forms, in Basque are the partiiples and in Bulgarian and Latin arethe �rst person singular of the indiative present. Lemmas are also alledthe ditionary forms sine onventional ditionaries inlude only suh forms.For the ase of eletroni ditionaries, suh as the DELAFs, every possiblein�eted form is to be inluded.De�nition 9 (In�etional paradigm). The in�etional paradigm of a givenword is its set of every possible in�eted form.For instane, `olor' and `olors' form the in�etional paradigm of word`olor', with `olor' as the lemma, and `texture' and `textures' form the in-�etional paradigm of word `texture', with `texture' as the lemma.De�nition 10 (In�etional model). An in�etional model is a set of rulesor proedures ommon to a set of lemmas desribing how to onstrut theirin�etional paradigms.For instane, the in�etional model of lemmas `olor' and `texture' statesthat the singular form is the lemma and that the plural form is built byappending `s' to the lemma (`olors' and `textures'). In Spanish, `olor ' and`textura' do not share the same the same in�etional model: while the pluralof `textura' is built as in English (`texturas'), the plural of `olor ' is built byappending `es' to the lemma (`olores').De�nition 11 (In�etional lass). An in�etional lass is omposed by theset of lemmas sharing the same in�etional model.



86 CHAPTER 4. DELAF DICTIONARIESFor instane, Spanish �rst-onjugation regular verbs form an in�etionallass. In�etional lasses ontaining a single lemma are also possible: forinstane, irregular verb `to go' in either English, Frenh (aller) or Spanish(ir).De�nition 12 (Lexial unit). A lexial unit is a surfae form oupled with alemma and a set of semanti and in�etional features whih unambiguouslyidentify a partiular use and in�eted form of the surfae form.De�nition 13 (Ambiguous word). We say a word is ambiguous i� its surfaeform is shared among several lexial units, that is, the word has either multipleuses or meanings or orresponds to multiple in�eted forms.The main purpose of lexial units is to unambiguously identify the wordsof the language. The set of properties added to the surfae form depends onthe ones taken into aount by the ditionary. We have de�ned here lexialunits given by DELAF ditionaries, but other ditionaries may give othersets of properties.4.2 DesriptionDELAF ditionaries are text �les listing a set of lexial units, arranged intolines. Opposite to onventional ditionaries, DELAF ditionaries do notinlude word de�nitions but desribe every possible in�eted form of thewords. Ditionary lines, or entries, look as follows:envía,enviar.V+Trans_msg:P3senvía,enviar.V+Trans_msg:Y2sEah entry is omposed by the following data:
• surfae form (`envía' = `he sends' or `you send') terminated by aomma,
• lemma (`enviar ' = `to send') terminated by a period,
• one or more semanti feature identi�ers separated by plus symbols,where the �rst semanti feature orresponds to the part-of-speeh (V =verb, Trans_msg = synonyms of `to send' in the ontext of sending anSMS, for instane `to transmit') and the last identi�er is followed by aolon, and



4.2. DESCRIPTION 87
• a sequene of haraters identifying the in�eted form of the word (P3s

= present indiative, third person, singular; Y2s = present subjun-tive).In order to avoid redundany, the lemma is omitted when it is equal to thesurfae form; for instane, the entry for the in�nitive form of `envía' looks asfollows:enviar,.V+Trans_msg:WAs well, lexial units sharing all properties exept their in�etional featuresare ompressed into a single line: one or more sequenes of in�etional fea-tures may be spei�ed, eah one separated from the previous one by a olon;for instane, the two given entries for surfae form envía are rather om-pressed in a single entry as follows:envía,enviar.V+Trans_msg:P3s:Y2sBoth semanti and in�etional feature identi�ers are ase sensitive. Se-manti feature identi�ers are omposed by an upperase letter followed byzero, one or more letters, digits or undersores. In�etional feature identi�ersare omposed by a single upperase letter, lowerase letter or digit (`P' means`present indiative tense', while `p' means `plural').Both parts-of-speeh and in�etional features are more or less �xed foreah partiular language; most ommon parts-of-speeh onsidered in theSpanish DELAF, along with their identi�ers, are: verb (V), noun (N), pronoun(PRON), determiner (DET), adjetive (ADJ), adverb (ADV), preposition (PREP),onjuntion (CONJ) and interjetion (INTJ). The in�etional features, alongwith their identi�ers, are:
• indiative tenses: present (P), imperfet (I), preterit (J), future (F) andonditional (C),
• subjuntive tenses: present (S), imperfet with -ra ending (T), imperfetwith -se ending (Q) and future (R),
• other verbal forms: in�nitive (W), gerund (G), past partiiple (K) andimperative (Y),
• genders: masuline (m), feminine (f), neutral (n),
• persons: �rst (1), seond (2), third (3), and
• numbers: singular (s), plural (p).



88 CHAPTER 4. DELAF DICTIONARIES4.3 ImplementationThe main operation performed on DELAF ditionaries onsists in searhingfor a partiular surfae form in order to retrieve the orresponding lexialunits. Hene, we implement these ditionaries as maps of surfae forms tosets of lexial units. Some data strutures for the representation of mapswhere already presented in hapter 2. However, other data strutures aremore appropriate for mapping sequenes rather than simple data.4.3.1 TriesIn a �rst implementation version, we reused a trie C++ lass we had alreadyprogrammed for optimizing the representation and management of sequenes(this optimization, along with a formal de�nition of tries, will be given inhapter 9). Brie�y, tries (Fredkin, 1960) are a kind of searh trees whereeah trie element orresponds to a unique pre�x within the set of pre�xes ofthe represented set of sequenes. This orrespondene is as follows:
• the root represents the empty pre�x, and
• the hildren of an element representing a pre�x α represent pre�xes

ασ, where σ is a letter that is unique for eah hild.Additionally, eah trie element is extended with a pointer towards the orre-sponding set of lexial units. In ase the trie element does not orrespond toa omplete word, the pointer is null.This implementation not only allows for searhing for surfae forms andtheir orresponding lexial units, but also for programmatially adding, re-moving and/or modifying DELAF entries, as well as for saving the hangesin DELAF text format. Tries allow for an e�ient retrieval of the proper-ties assoiated to a given surfae form. However, DELAF text �les are large(e.g.: 32.6 MB for the ase of the Spanish DELAF ditionary), and load-ing them into a trie data struture takes a few seonds. In the hatterbotuse ase, the ditionary and grammar are loaded upon the reeption of the�rst user sentene. One the sentene analysis is �nished, these data stru-tures are kept in memory in order to be reused by later analyses. Hene,only the �rst analysis will be delayed due to data loading. However, whilemodifying and testing the system, we are required to reload the ditionariesmany times, adding up those few seonds eah time. Moreover, tries are not



4.3. IMPLEMENTATION 89the most ompat representation of eletroni ditionaries, though urrentaverage omputers have plenty of memory.4.3.2 Minimal ayli automataDominique Revuz studied during its PhD thesis (Revuz, 1991) ompressiontehniques for DELAF ditionaries whih would allow to load entire DELAFditionaries in a personal omputer's RAM, while keeping short searhingtimes. Note that average omputers of that moment had around 8 MB ofRAM, against the more than 30 MB of DELAF text �les. As result, he pro-posed to represent ditionaries as minimal ayli automata and presentedan e�ient algorithm for the minimization of these mahines (Revuz, 1992).While tries fator out ommon pre�xes, minimal ayli automata also fa-tor out ommon su�xes. Hene, states within the automata may not onlyorrespond to a unique surfae form, suh as within tries, but to multiplesurfae forms. If the automaton were to be fully minimized, searhing a sur-fae form within them may not only lead to their orresponding lexial units,but also to the lexial units orresponding to other surfae forms sharing anynon-empty su�x. In order to solve this situation, surfae forms mapped todi�erent sets of lexial units are regarded as having di�erent endings, henetheir su�xes will not be mixed together. Up to here, the resulting automataare not di�erent than tries. However, the surfae form is not stored withinthe lexial units, and the lemma is not fully stored: the lemma is replaedby a ode indiating how to modify the ending of the surfae form in orderto obtain the lemma (e.g.: ode `2in' for surfae form `begun' indiates thatthe last two haraters should be replaed by `in', obtaining the lemma `be-gin'). As result, su�xes of surfae forms belonging to the same in�etionalparadigm, though having di�erent lemmas, may be fatored out; for instane,surfae forms `loves', `omes' and `stores' are all mapped to the same lexialunit, 1.V:P3s, and their su�x `es' is fatored out. This tehnique allowsfor a greater ompression ratio than with tries for the ase of in�etionallanguages, suh as English, Frenh, and speially Spanish. However, theaddition and subtration of ditionary words is no longer straightforward.The Unitex platform provides a tool for the onversion of DELAF text�les into a ompressed format, based on these minimal ayli automata,and uses the ompressed format for lexial mask evaluation. This format isdesribed in Paumier (2008, se. 12.8, p. 262). Following this desription,we have programmed a C++ ompressed ditionary lass whih is able to



90 CHAPTER 4. DELAF DICTIONARIESinterpret this format as an automata for its appliation. The ompressedditionary �le is loaded as is, without requiring any reformatting as for thease of the text format. As result, the time required for loading a ompressedditionary is virtually impereptible. As drawbak, this format does notsupport modi�ations on the ditionaries but only to searh for surfae formsand their orresponding lexial units. Modi�ations are to be done on thetext �le and then ompressed for its use.The Unitex platform ontains a set of DELAF ditionaries in ompressedformat for several languages�freely distributed under the LGPL-LR liense�and a tool for onverting DELAF text �les into ompressed ones.4 However,Unitex did not have a tool for reverting these ditionaries bak to text for-mat, hene these ditionaries ould not be modi�ed.5 Text ditionaries wereto be either downloaded or requested to the Unitex author. Following theroutine for the serialization of a trie into a DELAF text �le, we also im-plemented a routine for the serialization of minimal ayli automata. Inour ase, we primarily developed suh routine for verifying the orretness ofour ompressed ditionary implementation: ompressing and deompressingbak a text ditionary should not introdue any hanges.4.3.3 Alternative implementationsCiura and Deorowiz (2001) give an alternative algorithm for the optimalonstrution of minimal ayli �nite-state automata. Daiuk et al. (2000)give algorithms for the management of minimal ayli �nite-state automataso that words an be added and subtrated diretly on this ompressed rep-resentation; Carraso and Forada (2002) extends these algorithms in orderto support minimal �nite-state automata with yles. Daiuk et al. (2005)implements dynami perfet hashing with �nite-state automata in order toallow for a full minimisation of the ditionary, as well as to add new entriesto the ompressed ditionary without having to deompress and ompressit again. This kind of hashing assoiates a di�erent number between 0 and
n− 1 to eah ditionary word, where n is the number of words. Hash tableshave been brie�y disussed in setion 2.7.6, p. 68.4The terms and onditions of the LGPL-LR liense an be found in http://www.gnu.org/lienses/gpl.html5Unitex's Unompress tool is available sine version 2.1
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4.4. DELAF EXTENSIONS 914.4 DELAF extensionsAs stated before, parts-of-speeh and in�etional features are more or less�xed, depending on the language. We say `more or less �xed' sine one maystill add new parts-of-speeh and in�etional features in order to deal withspeial ases; for instane, one may onsider the ontrated form 'al' (tothe) as two lexial units, preposition 'a' (to) and determiner 'el' (the), oronsider it as a single lexial unit with a speial part-of-speeh `preposition-determiner' (PREPDET in the Spanish DELAF). Be as it may be, lexial unitsmust be unique: the lemma oupled with the set of semanti features iden-tify the use of the surfae form, and together with the surfae form andin�etional features the lexial unit is uniquely identi�ed; for instane, thefollowing extrat of the English DELAF ditionary (Courtois, 2004) onsistsin four entries desribing four possible uses of word `lay', and a total of 14lexial units:lay,.Alay,.N:slay,.V:W:1Ps:2Ps:1Pp:2Pp:3Pplay,lie.V+I:1Is:2Is:3Is:1Ip:2Ip:3IpThe uses are:
• adjetive (A) `lay': non-speialist,
• noun (N) `lay': romane,
• verb (V) `lay', either in�nitive (W) or present tense (P), either in �rst(1) or seond (2) singular (s) person or in �rst (1), seond (2) or third(3) plural (p) person: plae, put, prepare, et.,
• intransitive (I) verb (V) `lie', simple past tense (I), any person, anynumber: to be or to stay at rest in a horizontal position.Whether to write one or more entries for the same surfae form depends onthe level of granularity we want to ahieve; if a partiular appliation requiresto distinguish among di�erent meanings of a single entry, it su�es to reatethe semanti lasses that di�erenes eah meaning, and write a separate entrywith di�erent semanti odes.In ontrast with the set of parts-of-speeh, the set of semanti lasses ofa DELAF ditionary is open: one is expeted to add the semanti lasses



92 CHAPTER 4. DELAF DICTIONARIESthat might ease the de�nition of grammars for a partiular appliation; forinstane, we have added semanti lasses for pronouns and determiners de-pending on the distane of the referred objet:
• lose to the speaker (D1): este, esta, estos, estas, et. (this, these),
• lose to the listener (D2): ese, esa, esos, esas, et. (that, those), and
• far from both the speaker and the listener (D3): aquel, aquella, aquellos,aquellas, et. (also translated as `that' and `those').We have also de�ned the lass of verbs for the transmission of messages,Trans_msg: enviar, mandar, transmitir, omuniar, et). When desribingthe sentenes requesting to send an SMS, it is only neessary to speify thissemanti lass rather than the full verb list. Due to the amount of di�erentin�eted forms of verbs in Spanish, this semanti lass ontains hundreds ofwords.It has to be noted that the �rst DELAF ditionary was written for Frenh(Courtois, 1990); writing DELAF ditionaries for other languages may re-quire to adapt the DELAF formalism in order to over other lexial phe-nomena not present in Frenh, suh as enliti pronouns in Spanish. Thesepronouns appear attahed to the end of verbs; for instane, `léemelo' is om-posed by verb `lee' (read) and pronouns `me' (to me) and `lo' (it). Wehave omitted every information onerning enliti pronouns and treated theSpanish DELAF as the Frenh one sine the overage on enliti pronounswas quite inomplete. It has to be noted that enliti pronouns are om-monly used in Spanish when formulating requests, for instane `muéstramelos juegos que tienes' (show me the games you have). Treatment of theseforms is disussed in the next hapter.4.5 DELAF toolsIn order to ease the analysis and extension of DELAF ditionaries, as wellas for normalizing the ditionary haraters, we have developed a set of 3DELAF tools we desribe below.



4.5. DELAF TOOLS 934.5.1 AnalysisThe �rst tool extrats every ditionary entry mathing at least one ditionary-based lexial mask of a given set. These lexial masks are prediates thatapply on the properties of the lexial units, and will be the objet of hap-ter 6; for instane, lexial mask DET+D1:m an be used with this tool in orderto extrat any determiner with distane D1 and gender masuline. We haveused the tool for verifying the ditionary overage on subsets of the language;for instane, we extrated the list of determiners and found that the poetiforms were missing (`aqueste', `aquestos', aquese, et). Conversely, thesetools an be used for verifying whether a lexial mask mathes the expetedentries or not.4.5.2 ExtensionThe seond tool is a modi�ed version of the �rst one: instead of extratingthe entries, it alters the set of semanti features of the mathed entries. Wehave used this tool for adding new semanti lasses to the Spanish DELAF.For instane, in order to add the semanti lass `Trans_msg' we have �rstbuilt a set of lexial masks mathing every in�eted form of the verbs for thetransmission of messages (587 entries, the ones orresponding to verbs witha partiular lemma); then, we have used this tool for adding the semantifeature `Trans_msg' to the mathed entries. Speial attention must be paidhere sine an important amount of ditionary entries ould be modi�ed bymistake. The �rst tool an be used here for verifying the lexial mask or-retness. In ase of mistake, this seond tool an be also used for revertingthe hanges, sine it allows for both removing and adding semanti features.4.5.3 NormalizationThe third tool normalizes the ditionary haraters, as explained in se-tion 3.4.2, p. 81. This tool also merges sets of ditionary entries when theirnormalization results in the same entry, exept for their in�etional features;for instane, entries for `I love' and `he/she loved'amo,amar.V:P1samó,amar.V:J3s beome amo,amar.V:P1s:J3s,and so on for the same in�eted forms of every regular verb of the �rstonjugation.



94 CHAPTER 4. DELAF DICTIONARIES4.6 Other eletroni ditionariesDELAS ditionaries are similar to DELAF ones, but rather than expliitlyspeifying eah in�eted form and their orresponding lists of in�etional fea-tures, only lemmas oupled with their semanti features are spei�ed, and the�rst semanti feature identi�es both the part-of-speeh and the in�etionallass the lemma belongs to (e.g.: N4 orresponds to the fourth in�etionallass of nouns).6 The DELAS format is oneived for the onstrution andmaintenane of eletroni ditionaries, and the DELAF for their use by om-puter programs. Unitex is able to build the orresponding DELAF froma DELAS ditionary and a formal desription of the di�erent in�etionalparadigms. Probably, it will be more e�ient to add new semanti lasseswithin the DELAS ditionary and then generate the orresponding DELAFthan diretly modify the DELAF with the tool we have presented. However,open-soure Spanish DELAS ditionaries are not available and, though pos-sible, it will be more di�ult to implement a tool for reversing the DELAF-to-DELAS transformation than implementing the tool we have proposed foraltering the DELAF ditionaries diretly, whih has proved to be enough forour use ase.DELAC and DELACF ditionaries are the equivalent to DELAS and DE-LAF ditionaries but for ompound words. 7 Currently, Unitex makes nodistintion between simple and ompound DELA formats, allowing to mixboth kind of forms in a single ditionary. Referenes to the DELAS andDELAF formalisms within the Unitex manual subsume the orrespondingDELAC and DELACF ones. In our ase, we have stritly supported the orig-inal DELAF format sine the Spanish DELAF ontains no ompound wordsand, anyway, our use ase omprises only a few ompound forms whih wehave simply oded within the grammar rules (e.g.: `teléfono móvil ' or `mobilephone'). DELAF and DELAS desriptions inluding ompound words anbe found in Paumier (2008, hap. 3, p. 49).Though work on the Spanish DELA ditionaries has ontinued, newerversions have been distributed only in binary format along with the Intexsystem (Silberztein, 2004), and under a restritive liense forbidding theirfree use by either private or publi organizations (without the author's on-sent). Currently, Intex development has been disontinued in favor of NooJ6DELAS stands for (DELA de formes simples or simple forms)7Letter 'C' in DELAC and DELACF stands for `omposées' or `ompound'.



4.6. OTHER ELECTRONIC DICTIONARIES 95(Silberztein, 2003b), an evolved version of Intex. This evolution has alsoa�eted the di�erent DELA ditionary formats, whih are now all integratedwithin a single format (Silberztein, 2005b). Newer versions of the SpanishDELA are being distributed in NooJ's binary format and under the sameterms than with the Intex system.Apart from ompound words, there exist other linguisti objets formedby multiple words and suseptible to be regarded as lexial units, suh asomplex terms and named entities. These linguisti objets, along withompound words, are all referred under the term multi-word lexial unit(MWLU), and may present and important degree of �exibility broader thansimple in�etion (e.g.: birth date/date of birth, hereditary disease/genetidisease, et.). Rather than giving support to ompound words only, we mayrather onsider more general frameworks supporting any kind of multi-wordunits. Currently, there exist a multipliity of suh frameworks (Savary, 2008);in partiular, Multi�ex is a formalism and a tool that opes with the �exi-bility and idiosynrasy of multi-word units (Savary, 2009). Unitex inludesa Multi�ex version (see Paumier, 2008, hap. 10, p. 193), whih is beingdistributed along with Unitex under the GNU LGPL liense.8Other Spanish ditionaries are being freely distributed under the GNUGPL liense, along with the Apertium system.9 These ditionaries followthe XML format desribed in Forada et al. (2010, se. 3.1.2, p. 20), andan be easily transformed to DELAF. Apart from monolingual ditionaries,Apertium inludes other kind of ditionaries for the automati translationbetween language pairs.

8The terms and onditions of GNU's LGPL liense an be found in http://www.gnu.org/opyleft/lesser.html9The terms and onditions of GNU's GPL liense an be found in http://www.gnu.org/lienses/gpl.html

http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html




Chapter 5TokenizationTokenization, or text segmentation, is the proess by whih harater se-quenes are split into tokens or information units, whih must orrespond insome way with the words desribed in the lexion (the DELAF ditionaries,in our ase). In natural language proessing (NLP), it makes more senseto onsider words and symbols as information units rather than haratersalone. Tokenization is the �rst stage of our NLP engine, and usually of anynatural language proessor. Sine we are rather interested in the optimizationof the algorithms of appliation of loal grammars, the tokenization proesswe have implemented is very simple, yet enough for our use ase. This pro-ess is a simpli�ed version of the one followed by the Unitex (Paumier, 2008,se. 2.5.4, p. 43) and Outilex (Blan and Constant, 2006b, se. 6.1, p. 23)systems, with some partiular implementation features for better aommo-dating our use ase. We desribe the basi tokenization rules in 5.1, and itsimplementation in setion 5.2. We brie�y disuss the problem of lexial am-biguity (as for de�nition 13, p. 86), and how we have treated it in setion 5.3.Furthermore, we shortly desribe the mehanism followed by the Unitex andOutilex systems for the representation and resolution of lexial ambiguity insetion 5.3.2.As stated before, this hapter does not intend to give a omprehensiveview on lexial proessing (indeed, tokenization is only a part of lexial pro-essing). An alternative open-soure lexial proessor to the ones found inthe Unitex and Outilex systems an be found in the Apertium system (seeForada et al., 2010, hap. 3, p. 17). Opposite to Unitex, Apertium in-ludes a partiular treatment of Spanish enliti pronouns; it must be notedthat, while the �rst treated languages by the Unitex system were Frenh and97



98 CHAPTER 5. TOKENIZATIONEnglish, the �rst ones treated in Apertium were Spanish and several otherlanguages that are also spoken in Spain, suh as Catalan. As well, whileUnitex's approah is rather onservative (upon unresolved ambiguity, everyinterpretation is presumably aepted), Apertium's approah is rather sele-tive: the most likely translation between pairs of languages is to be returnedinstead of the set of every possible translation; as result, Apertium inludesa part-of-speeh tagger based on statistial data, whih is neither present inUnitex. It must be noted that, while Apertium's objetive is the automatitranslation between pairs of languages, Unitex is a tool for language analysisand information extration.Treatment of non-atenative (e.g. Arabi) and agglutinative languages(e.g. Basque, Korean, et.) is more omplex and beyond the sope of thiswork. Up to now, Apertium's treatment of suh languages is a known lim-itation (Forada et al., 2009), and Unitex inludes a tokenizer an a taggerfor the partiular ase of Korean (see Paumier, 2008, se. 7.7, p. 174), whihwas oneived and developed by Huh (2005).5.1 DesriptionThe tokenization rules we have followed are similar to the ones of the Unitexand Outilex systems:
• we distinguish between word tokens and symbol tokens, where wordtokens are sequenes of letter haraters, and symbol tokens are singlesymbol haraters;
• word tokens are separated from adjaent word tokens by one or moreblank haraters (desribed in setion 3.1, p. 76),
• symbol tokens may or may not be blank-separated from other tokens,and
• blanks are not tokens but token separators.Following these rules, multi-words suh as `teório-prátio' (theoretial/pra-tial) are segmented into multiple tokens, and attahed words suh as `en-víamelo' are segmented as single tokens (envía + me + lo = send + to/forme + it). Hene, tokens and lexial unit surfae forms are equivalent for thease of simple words, but not for the ase of multi-word units and attahed



5.2. IMPLEMENTATION 99words. Blank haraters are not onsidered tokens but token separators, andsymbols are segmented as single tokens.5.2 ImplementationWe build a linked list of token strutures, where eah struture is omposedby two pointers and an integer; the pointers delimit the token within theinput harater sequene, an the integer identi�es the token type. As forIntex, Unitex and Outilex, we identify the following token types, based ontheir harater types:
• symbol,
• digit symbol,
• puntuation symbol,
• neither digit or puntuation symbol (de�ned impliitly),
• word,
• upperase word,
• lowerase word,
• proper noun word (�rst letter upperase, the other lowerase), and
• neither upperase, lowerase or proper noun word (de�ned impliitly).Note that some token types subsume others (e.g.: `symbol' subsumes all theother symbol types), while others are mutually exlusive (e.g.: `symbol' and`word'). Bitwise identi�ers allow for an e�ient representation and ompar-ison of token type identi�ers: one bit odes whether the type is `symbol' or`word', and two other bits ode the `symbol' and `word' subtypes.During the tokenization proess, we do not only hek whether the har-aters are either letters, symbols or blanks, but also whether they are digit,puntuation or other kind of symbols, and whether they are upperase orlowerase letters. The harater type is determined by means of a look-uptable. This way, we e�iently ompute the type of the next input token whilesearhing for its rightmost harater. Higher levels of treatment deal with



100 CHAPTER 5. TOKENIZATIONthe token sequene rather than with raw haraters. Sine blanks are nottokens, blanks are impliitly omitted while iterating over the token sequene;the presene of blanks between two tokens an yet be deteted by hekingwhether the tokens share one bound or not.The Unitex and Outilex platforms perform some text normalization be-fore tokenizing it, whih inludes replaing blank sequenes by single blanks.The tokenization result is written into a �le in some text format, then this �leis read by higher levels of treatment. This proedure is appropriate for thelinguisti study of texts, where di�erent grammars are to be applied to thesame text and partial results are to be examined. In our ase, the same gram-mar is to be onurrently applied a single time to eah user sentene as theyare reeived, and only the �nal result is to be returned; hene, tokenizationand any text normalization is to be performed on the �y.Sine our NLP engine is to be invoked for the analysis of single sentenes(instant messaging ommuniation is sentene-based), we do not implementany proedure for the segmentation of texts into sentenes. Intex, Unitexand Outilex insert sentene delimiter tags by applying a RTN with output.Sine our NLP engine also supports suh kind of RTNs, the same sentenesegmentation proedure ould be easily implemented, if required.More information on the partiular text preproessing, tokenization andsegmentation into sentenes arried out by Unitex an be found in Paumier(2008, se. 2.5, p. 37), by Outilex in Blan and Constant (2006b, hap. 6,p. 23), and by Intex in Silberztein (2004, hap. 10, p. 97).5.3 Treating lexial ambiguityWhether the same token may have di�erent interpretations is trivially takeninto aount while applying the grammar: if the grammar requires the nexttoken to be a verb and one of the token interpretations orresponds to a verb,then the token is assumed to be a verb; moreover, multiple grammar rules tobe applied on the same token but having inompatible requirements will all befollowed as long as the token has at least the same amount of interpretations,eah one omplying with the requirements of one of the rules.Ambiguity is rather treated at sentene level than at token level: everypossible sentene interpretation is e�iently omputed in some ompressedformat, fatoring out ommon parts, then only the one derived from theappliation of the most preise grammar rules is deompressed and returned.



5.3. TREATING LEXICAL AMBIGUITY 101The exat proedure is based on weighted RTNs and FPRTNs, and will beexplained in hapter 18. This proedure is new to Intex, Unitex and Outilexsystems: Intex and Unitex do not support weighted RTNs, and Outilex'salgorithm of appliation of weighted RTNs has an exponential worst-ase ostrather than polynomial, as we have managed thanks to the use of FPRTNs;moreover, Outilex does not provide a mehanism for the automati de�nitionof grammar weights, though the one we have used is not hard to implement.5.3.1 Multiple segmentationsMultiwords may give rise to multiple segmentations: for instane, `inturónnegro' (blak belt) may orrespond to either two lexial units (a belt that isblak) or to a single one (a master degree in martial arts). Though Spanish isnot an agglutinative language, enliti pronouns attahed to verbs are veryommon. Suh forms also give rise to multiple segmentation possibilities,though this is not very frequent: for instane, `dáte + lo' (date it) and `dá
+ te + lo' (give it to yourself), `orreos' (post o�e) and `orre + os' (moveover [you all℄), and `pésame' (ondolenes) and `pésa + me' (weight [theoranges℄ for me). More ommon ases appear when omitting diariti marks,suh as `tomate' (tomato) and `tóma + te' (have yourself [a drink/somevaation/et.℄), and `leales' (plural of loyal) and `léa + les' (read them [theirrights℄), et. As in Frenh, there exist a few ontrated words, but they arenot ambiguous: for instane, `al = a + el ' (to the, `au = à + le' in Frenh)and `del = de + el ' (of the, `des = de + les' in Frenh). Sine our usease omprises only a few multiwords, attahed words and ontrations, wehave simply oded them inside the grammar rules: multiwords are oded assequenes of lexial units, and ontrations and attahed words are treatedas single lexial units.5.3.2 Text automata and ELAG grammarsIntex, Unitex and Outilex platforms perform a seond tokenization levelbased on the appliation of eletroni ditionaries. This proedure ouldalso be applied in our ase in order to build a struture of lexial units ratherthan a simple token sequene. They build what they all a text automaton:an ayli FSA reognizing every possible sequene of interpretations of thetoken sequene, taking into aount multiple segmentation possibilities (see�gure 5.1 for an example). Though possible, attahed words are not frag-



102 CHAPTER 5. TOKENIZATION
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envia,enviar.V:P3s:Y2s me,.PRON+od:me,.PRON+oi:me,.PRON+SE: este,.DET:mseste,.N:mseste,.PRON:mseste,estar.V:S1s:S3s:Y3sSMS,.N:msa:PREPel,.DET:mstelefono,.N:ms movil,.A:ms:fsmovil,.N:mstelefono movil,.N:ms 5 5 5Figure 5.1: Text automaton illustrating the lexial ambiguities of sentene �en-víame este SMS al teléfono móvil 555 � (send [for me℄ this SMS to the mobile phone555), with diariti marks removed from both the sentene and the ditionary.mented but unambiguous ontrations are (au beomes a le), as part of atext-preproessing. As we stated before, these systems where �rst foused onthe treatment of Frenh and English, whih are even less agglutinative thanSpanish.Unitex and Outilex systems an partially disambiguate the text automa-ton by the appliation of ELAG grammars (Elimination of Lexial Ambi-guities by Grammars, Laporte and Moneaux (2000)). These grammars areto be built by human experts rather than by some automated method, andmainly onsist in assoiating input fragments with possible tagging senarios.Their appliation results in the removal of paths within the text automatonthat do not orrespond to any tagging senario; for instane, some ommonwords in both Frenh and Spanish an be used both as determiners and aspronouns, and their use an be distinguished by their right ontext: theyare determiners when preeding nouns, and pronouns when preeding verbs(e.g.: in `la pintura, la ví', meaning `the painting, I saw it', the �rst `la' is adeterminer and the seond one is a pronoun). Though the Apertium systeminludes a part-of-speeh tagger, it also allows to use simple `forbid' rules for2 part-of-speeh sequenes in order to improve the tagger results (Foradaet al., 2010, se. 3.2.1, p. 56).Unitex's implementation of text automata and ELAG grammars is de-sribed in Paumier (2008, se. 7, p. 147), Outilex's implementation in Blan



5.3. TREATING LEXICAL AMBIGUITY 103(2006, se. 2.7, p. 44) and Intex's implementation in Silberztein (2004, se. 14.1,p. 153).





Chapter 6Prediates and lexial masksIf one would de�ne the mahines representing the grammar of a natural lan-guage on the alphabet of tokens of that language, grammar rules for spei�token sequenes should be de�ned instead of being able to de�ne generalrules aepting tokens omplying with a set of lexial properties (e.g.: verbs,nouns, et.). Instead, we de�ne an alphabet of prediates on the tokens sothat sets of tokens having ommon properties an be represented by meansof simple expressions. Speifying onrete tokens is still possible, allowingfor a wide range between general and partiular grammar rules. This ideawas already proposed by van Noord and Gerdemann (2001) for the ase of�nite-state mahines. We limit ourselves to desribe here the set of predi-ates we have onsidered along with the odes used for representing them.These prediates are a subset of the ones supported by Unitex (Paumier,2008, se. 4.3, p. 72), and their odes are based on Unitex's FST2 format(Paumier, 2008, se. 12.3.2, p. 252). Some of them onstitute very powerfullinguisti operators, allowing for referening word lasses depending on theproperties desribed in DELAF ditionaries (e.g.: any word belonging to aset of semanti lasses and having a set of in�etional features). A shematilist of the prediates along with their odes an be found in appendix A.6.1 Lexial masksDe�nition 14 (Lexial mask). A lexial mask is a prediate appliable to thetokens of a natural language, de�ning a subset of zero, one or more tokens bymeans of lexial riteria, that is, properties whih only depend on the tokens105



106 CHAPTER 6. PREDICATES AND LEXICAL MASKSthemselves. We say a lexial mask mathes a token i� it is true for thattoken; otherwise, we say it does not math the token.Notie that there are prediates that are not lexial masks; for instane,the ε-prediates that will be presented in setion 6.2 do not apply to tokensbut depend on the presene or absene of blanks between them, whih arenot onsidered tokens.6.1.1 Literal masksDe�nition 15 (Literal mask). A literal mask is a lexial mask mathing aunique token, where harater ase may or may not be restrited.De�nition 16 (Lexialization level). The lexialization level of a grammaris a measure of dependene of grammar rules on spei� tokens.Usually, the lexialization level is expressed as a qualitative measure (e.g.:highly or strongly lexialized). In our ase, the lexialization level of a gram-mar depends on the proportion of literal masks w.r.t. other kind of prediates.Due to the irregularities of natural languages, natural language gram-mars annot be de�ned as a set of general rules (Gross, 1997). Indeed,syntax is usually onditioned upon the presene of partiular tokens (Harris,1951; Chomsky, 1965; Gross, 1996). Appliations requiring the reognitionof properly written sentenes, suh as syntax validators and orretors, areto use highly lexialized grammars. The objetive of the grammars we haveonstruted for the MovistarBot use ase is to detet the servie the useris requesting for (e.g.: to send an SMS, to download a game, et.), and todelimit the sentene segments orresponding to servie arguments (e.g.: thetext of the SMS to send, the title of the game to download, et.). Thesegrammars do not need to be strit and, indeed, we have tolerated some syn-tax errors in bene�t of grammar simpliity; for instane, we have de�ned agrammar `atalog' whih reognizes several synonyms of atalog (e.g.: atál-ogo, lista, repertorio, et.), where some of them are masuline and others arefeminine, and we state that suh words ould be preeded by a determinerbut do not speify the proper determiner's gender for eah ase (e.g.: wedo not only aept `el atálogo' and `la lista' but also `*la atálogo' and `*ellista'). However, we still require some level of lexialization sine, usually,keywords determine what the user is talking about or asking for (e.g.: SMS,message, send). Moreover, ontexts of unrestrited arguments also require



6.1. LEXICAL MASKS 107some lexialization level (e.g.: the text of the SMS to send, or the title of thegame to download). The only way to properly delimit suh arguments is byelimination: one their left and right ontexts are reognized, the argumentis what is left; for instane, in `envía el mensaje llego en 5 min al 555 ' (sendthe message I arrive in 5 min to the 555), `envía el mensaje' indiates thata message is to be sent, and `al móvil 555 ' spei�es the destination phonenumber, thus `llego en 5 min' is the message ontent. Fine desriptions ofsuh ontexts are to be given so that they are not onsidered as part of theunrestrited arguments; in the last example, segment `el mensaje' is optional(one ould simply write `envía llego en 5 min al 555 ') and must not bereognized as part of the message to send.Literal word masksDe�nition 17 (Literal word mask). A literal word mask is a literal maskwhih mathes a unique word token and, in some ases, their ase variations.De�nition 18 (Case-sensitive word mask). A ase-sensitive word mask isa literal word mask stritly mathing the spei�ed word token, without asevariations. We represent them as a `�' symbol followed by the sequeneof haraters that ompose the word (e.g.: mask `�WORD' mathes token`WORD' but not tokens `word' or `Word)'.De�nition 19 (Case-insensitive word mask). A ase-insensitive word maskis a literal word mask whih also aepts ase variations, and we representthem as a `%' symbol followed by the sequene of either upperase or loweraseharaters that ompose the word (e.g.: mask `%wOrD' mathes both tokens`word' and `WORD').As a onvention, every prediate ode starts with either `% ' or `� '. Forthe ase of literal word masks, the use of one or other symbol determinesase sensitivity, and for the other ases there is no di�erene.In most ases, the use of lowerase or upperase letters does not alter themeaning but is just a matter of formatting; for instane, the MovistarBotonsiders equivalent the sentenes `envía llego en 5 min al 555' and `ENVÍALLEGO EN 5 MIN AL 555'. Proper nouns and abbreviations are an exep-tion; for instane, `RAM' is the random aess memory of a omputer, `Ram'is the onstellation or sign of Aries, and `ram' has several other meanings,suh as the male of the sheep.



108 CHAPTER 6. PREDICATES AND LEXICAL MASKSSine our use ase also requires the omission of diariti marks, our aseinsensitive word masks are also insensitive to diariti marks. As stated insetion 3.4.2 (p. 81), we use a look-up table in order to retrieve the normalizedversion of the token haraters as they are ompared to the ase-insensitiveword masks, and these masks are normalized only one and then applied toevery reeived user sentene.Literal symbol masksDe�nition 20 (Literal symbol mask). A literal symbol mask is a literalmask whih only mathes a spei� symbol token. We represent literal-symbolmasks as a symbol `%' or `�' followed by the symbol to math (e.g.: `��'mathes token `�').6.1.2 Token maskDe�nition 21 (Token mask). We de�ne the token mask as the lexial maskmathing any token, and we represent it as `%<TOKEN>' or `�<TO-KEN>'.Note that the ode representing the token mask is omposed by upperaseletters. As a general rule, lexial mask odes are ase sensitive, that is,%<TOKEN>' and %<token>' do not represent the same lexial mask.The purpose of the token mask is to math unrestrited or unknowntokens and token sequenes. We have used it for mathing unrestrited ar-guments, and it an also be used for the omplementary ase: the extrationof well-known arguments from unrestrited texts; for instane, Laforest andBadr (2003) use Intex-based automata for extrating very spei� data froma set of medial presriptions written in natural language, namely the ill-ness, drug, dose, dosage frequeny and treatment duration (e.g.: in�uenzaA, Tami�u, 75 mg, twie daily, 5 days). This information is latter input intoa strutured database.11The author of this dissertation partiipated in the oneption of the language of spe-i�ation of extration rules used in Laforest and Badr (2003) and in the implementationof a translator of suh rules to Intex automata.



6.1. LEXICAL MASKS 1096.1.3 Charater-lass masksDe�nition 22 (Charater-lass mask). A harater-lass mask is a lexialmask whih restrits only the type of the haraters that ompose the token.De�nition 23 (Word mask). We de�ne the word mask as the harater-lass mask that mathes any word token (e.g.: aB), and we represent it as`%<MOT>' or `�<MOT>'.2De�nition 24 (Symbol mask). We de�ne the symbol mask as the harater-lass mask mathing any symbol token (e.g.: +), and we represent it as`%<!MOT>' or `�<!MOT>'.Note that the ode representing the symbol mask is the same than for theword mask but inserting the ` !' symbol right after `<'. As a general rule, byinserting the ` !' symbol we negate the lexial mask. However, for di�erentlasses of lexial masks the negation is de�ned in a partiular way. We donot de�ne the negation of the token mask but remove the transitions thatmay not be realized under any irumstane.De�nition 25 (Digit mask). We de�ne the digit mask as the harater-lassmask that mathes every digit (e.g.: 7), and we represent it as `%<NB>'or `�<NB>',3 and its negation as the mask mathing any non-digit token(e.g.: aB, +, ?, et.), and we represent it as `%<!NB>' or `�<!NB>'.Note that a transition labeled with the digit mask would onsume a singledigit but not a number omposed by several digits, neither the deimal dot.De�nition 26 (Puntuation-symbol mask). We de�ne the puntuation-sym-bol mask as the harater-lass mask mathing every puntuation symbol(e.g.: ?), and we represent it as `%<PNC>',4 and its negation as the maskmathing any non-puntuation-symbol token (e.g.: +), and we represent itas `%<!PNC>' or `�<!PNC>'.Case-dependent word masksDe�nition 27 (Case-dependent word mask). A ase-dependent word maskis a harater-lass mask whose restritions are uniquely based on the aseof the haraters that ompose the tokens.2From Frenh `mot ', whih means `word'.3From Frenh `nombre', whih means `number'4From Frenh `pontuation', whih means `puntuation'.



110 CHAPTER 6. PREDICATES AND LEXICAL MASKSDe�nition 28 (Negation of a ase-dependent word masks). We de�ne thenegation of a ase-dependent mask m as the mask mathing every token wordthat is false for m.Note that the negation of a ase-dependent word mask does not mathsymbol tokens.De�nition 29 (Upperase-word mask). We de�ne the upperase-word maskas the ase-dependent word mask mathing every word token whose letters areall upperase (e.g.: SMS), and we represent it as `%<MAJ>' or `�<MAJ>'and its negation as %<!MAJ>' or `�<!MAJ>'.5De�nition 30 (Lowerase-word mask). We de�ne the lowerase-word maskas the ase-dependent word mask mathing every word token whose lettersare all lowerase (e.g.: message), and we represent it as `%<MIN>' or`�<MIN>' and its negation as %<!MIN>' or `�<!MIN>'.6De�nition 31 (Proper-noun mask). We de�ne the proper-noun mask as thease-dependent word mask mathing every word whose �rst letter is upperaseand the others lowerase (e.g.: Sastre), and we represent it as `%<PRE>'or `�<PRE>' and its negation as %<!PRE>' or `�<!PRE>'.7As stated in setion 5.2 (p. 99), token types are omputed during thetokenization proess. The evaluation of harater lass masks is redued toa bitwise omparison between the identi�ers of the required token type andthe next token type.6.1.4 Ditionary-based masksWe have also added support for Unitex's ditionary-based lexial masks,whih in turn are the same than the ones of the Intex system. These masksde�ne subsets of the words of a DELAF ditionary (Silberztein, 1993) �exept the unknown-word mask, whih we de�ne below� usually dependingon the properties onsidered in the ditionary (in our ase, the Spanish DE-LAF built by Blano (2000), with some ustom extensions).5From Frenh `majusule', whih means `upperase'.6From Frenh `minusule', whih means `lowerase'.7From Frenh `prénom', whih means `proper noun' or `�rst name'.



6.1. LEXICAL MASKS 111De�nition 32 (Ditionary-word mask). A ditionary-word mask is a lexi-al mask that mathes word tokens depending on riteria based on the dataontained in a ditionary.De�nition 33 (Known-word mask). We de�ne the known-word mask as theditionary-word mask mathing every word that belongs to the ditionary,and we represent it as `%<DIC>' or `�<DIC>'.8De�nition 34 (Unknown-word mask). We de�ne the unknown-word maskas the ditionary-word mask mathing every word that does not belong to theditionary, and we represent it as `%<!DIC>' or `�<!DIC>'.Note that the unknown-word mask does not math symbol tokens. Thismask may be used for testing the ditionary overage and for searhing fornew ditionary-word andidates.De�nition 35 (Constrained ditionary-word mask). A onstrained ditio-nary-word mask is ditionary-word mask mathing the subset of ditionarywords holding a set of properties desribed in the ditionary (e.g.: being averb in present tense).De�nition 36 (Lemma mask). A lemma mask is a onstrained ditionary-word mask mathing every ditionary word having the spei�ed word as lemma,and we represent it as either `%<anonial_form>' or `�<anonial_form>',where `anonial_form' is the lemma in lowerase letters.As for the ase-insensitive masks, every grammar's lemmamask is normal-ized before applying the grammar in order to math the normalized lemmaswithin the ditionary. In general, any lemma spei�ed within any kind ofditionary-word mask is normalized.De�nition 37 (Semanti-feature mask). A semanti-feature mask is a on-strained ditionary-word mask mathing every ditionary word belonging to aset of mandatory semanti lasses and not belonging to a set of forbidden se-manti lasses, and we represent them as ` [%�] <[+−]? Sem1 [+−]Sem2

[+−] . . . [+−] Semn>', where [%@] stands for either symbol `%' or `�',`Sem1 . . .Semn` are a sequene of n ≥ 1 semanti odes, ` [+−]' stands foreither a `+' or `−' symbol indiating whether the following semanti oderefers to a mandatory or forbidden semanti lass, respetively, and ` [+−]?'8From Frenh `ditionnaire', whih means `ditionary'.



112 CHAPTER 6. PREDICATES AND LEXICAL MASKSstands for an optional spei�ation of this symbol, by default `+'; for in-stane, masks `<N+Hum>', `<−Hum+N>' and `<-N-Hum>' math everyhuman noun, every non-human noun and every non-noun non-human word,respetively.De�nition 38 (Lemma and semanti-feature mask). A lemma and semanti-feature mask is a onstrained ditionary-word mask both restriting the in-�etional and semanti lasses of ditionary words, and we represent themas ` [%�]<anonial_form.<[+−]? Sem1 [+−] Sem2 [+−] . . . [+−] Semn>',that is, as for both the lemma and semanti-feature masks but �rst speifyingthe lemma, then a dot, then the sequene of either mandatory or forbiddensemanti lasses.Note that `<hum>' denotes a lemma mask while `<Hum>' denotes asemanti-feature mask. Note also that lexial units belong to a unique part-of-speeh lass (part-of-speeh lasses are disjoint), hene it only makes senseto either speify a unique mandatory part-of-speeh or one or more forbiddenparts-of-speeh.De�nition 39 (Possible-in�etional-features mask). A possible-in�etion-al-features mask is a onstrained ditionary-word mask mathing every di-tionary word having all of the in�etional features represented by at least oneof the spei�ed sequenes of in�etional odes; we represent the possible in-�etional features as a olon-separated list of sequenes of in�etional odes(e.g.: `ms:mp' for masuline singular or masuline plural, whih would beequivalent to `m' sine every number is aepted). Sine in�etion dependson the part-of-speeh, masks restriting the in�eted form alone are not tobe de�ned but both restriting the part-of-speeh and the in�eted form, andpossibly other semanti lasses as well as the in�etion lass, and we repre-sent them as either the semanti-features mask or the lemma and semanti-features mask but inserting a olon after the semanti-features spei�ationfollowed by the list of possible in�etional-features list.For instane, mask `%<V+Trans_msg:Y2:Y3>' mathes 40 words thatan be used for ordering the MovistarBot (Y = imperative) to send an SMS(e.g.: envía, envíe, enviad, envíen, manda, mande, mandad, manden, et).9.Mask `%<enviar.V+Trans_msg:Y2:Y3>' mathes the subset orrespondingto in�eted forms of verb `enviar '.9In Spanish, we address somebody using the third person instead of the seond one inorder to show respet, ourtesy or distane.



6.2. ε-PREDICATES 113De�nition 40 (Negation of onstrained ditionary-word masks). The ne-gated form of a onstrained ditionary-word mask mathes every ditionaryword not mathed by the original mask; we negate a ditionary mask byinserting symbol ` !' after symbol `<' (e.g.: `%<!V>' mathes any ditionaryword that is not a verb).Note that the negation of a onstrained ditionary-word mask does notmath unknown words.The implementation of suh masks onsists in searhing the next inputtoken within the DELAF, either for verifying its presene or absene (aseof known and unknown word masks) or for verifying the presene of a useof the token whose properties omply with a set of restritions (ase of on-strained ditionary-word masks). DELAF ditionaries are implemented assets of properties of lexial units indexed by their surfae forms. DELAFimplementation details have been given in setion 4.3 (p. 88).6.2 ε-prediatesDe�nition 41 (ε-prediate). An ε-prediate is a prediate that applies to thespae between two tokens.Some grammar rules are to be applied right before the next token tobe analyzed. In other words, suh rules apply on the emptiness betweenthe last analyzed token and the next one, whih is usually represented by theempty symbol, ε. Usually, suh emptiness has no assoiated properties whihould be evaluated in order to deide whether suh rules are to be appliedor not, hene they are to be always applied. In our ase, the spae betweenonseutive word tokens must ontain at least one blank harater, and thespae before and after symbol tokens may be either empty or ontain one ormore blank haraters. In some exeptional ases, the presene or absene ofblank haraters is to be taken into aount; for instane, in Frenh, sequene`1,2' without blanks represents a real number, while `1, 2' with a blank is asequene omposed by two numbers. In the MovistarBot use ase, requestsentenes may also follow a ommand-like syntax, that is, a word ommandfollowed by a blank-separated list of arguments where arguments are not toontain blanks in some ases; for instane, one an request to send an SMSas follows:sms phone message



114 CHAPTER 6. PREDICATES AND LEXICAL MASKSwhere at least one blank harater must appear before and after phone, phoneis a sequene of digit symbols without blanks between them, and message isany sequene of tokens, either blank-separated or not. This situation leadsto the de�nition of di�erent kinds of ε-prediates.De�nition 42 (Blank-insensitive ε-prediate). We de�ne the blank-insensi-tive ε-prediate as the ε-prediate that always evaluates true, independentlyof whether the spae to whih it applies is empty or not, and we represent itwith ode `%<E>' or `�<E>'.De�nition 43 (Blank-sensitive ε-prediates). Blank-sensitive ε-prediatesare those who may or may not be true depending on the presene or abseneof blanks between the last analyzed token and the next one.De�nition 44 (Mandatory-blank ε-prediate). We de�ne the mandatory-blank ε-prediate as the blank-sensitive ε-prediate that evaluates true i� thenext token is blank-separated, and we represent it with ode `%\⊔' or `�\⊔',where `⊔' represents a white spae.De�nition 45 (Forbidden-blank ε-prediate). We de�ne the forbidden-blank
ε-prediate as the blank-sensitive ε-prediate that evaluates true i� the nexttoken is not blank-separated, and we represent it with ode `%#' or `�#'.As stated in setion 5.2 (p. 99), the evaluation of these prediates onsistsin verifying whether the pointer to the right bound of the last analyzed tokenand the pointer to the left bound of the next input token are equal or not.These ε-prediates are usually enough for natural language proessing.If neessary, one may de�ne more �ne-grained ε-moves whih would, forinstane, take into aount the amount and type of blank haraters betweentokens. For instane, programming languages usually mark the start andend of instrution bloks with start/end pairs of keywords (open/losed urlybrakets in C, C++ and Java, pairs if/�, do/done, ase/esa in Unix/Linuxshell sripts, et), but in Python the start and end of a blok is given by thelength of instrution indentation (number of blanks between the beginningof the instrution line and the �rst non-blank instrution harater).6.3 Supporting prediatesA grammar's appliation usually onsists in keeping trae of a set of livegrammar rules (some representation of grammar rules that have being par-tially applied to an input segment, depending on the algorithm of appliation



6.4. ASSIGNING PRIORITIES TO LEXICAL MASKS 115of the grammar); the grammar must de�ne an initial set of rules, whih isused for building the initial set of live rules, and for eah input token a newset is omputed depending on the previous set and the next input token.Eah live grammar rule imposes some restritions on the next input token,whih are expressed as lexial masks and ε-prediates in our ase. In orderto ompute the next set of live grammar rules, the set of next lexial maskandidates given by the urrent set of live rules must be searhed for the onesmathing the next input token (in our ase, to searh for the transitions out-going from the urrent states and whose labels math the next input token).In ase the grammars were de�ned on an alphabet of letters rather than ofprediates, the set of live grammar rules is to be searhed in order to �nd theones whose next letters are equal to the next input letter. The next-lettersets ould be stored in some binary-searh struture, suh as the ones pre-sented in hapter 2, so that the ones equal to the next input letter ould bee�iently found. However, it is not possible to de�ne a lexial mask orderingin order to guide a binary searh depending on the next input token andthe result of the last mask evaluation; for instane, let %<A> (is adjetive),%<N> (is noun) and %<V> (is verb) be the urrent andidate prediates,and prediate %<N> be the �rst one to be evaluated, whether the next to-ken is a noun word or not does imply whether the same token may or maynot be a verb or an adjetive (e.g.: `love' an either be a noun or a verb,while `orange' an either be a noun or an adjetive); hene, all the andidatelexial masks must be systematially evaluated. While a binary searh has alogarithmi ost, the systemati searh has a ost proportional to the numberof andidate lexial masks. However, if suh number is small, the e�ienyloss is insigni�ant; this is the ase of the MovistarBot grammar, with anaverage of 2.3 outgoing transitions per state.6.4 Assigning priorities to lexial masksDuring the �rst stages of a grammar's development, one my de�ne generalrules (in our ase, transitions labeled with lexial masks) in order to over agreat number of ases, and later add more spei� rules for well-known aseswhih may overlap with the general ases. Rule overlapping leads to multiplesentene interpretations. A good heuristi for hoosing a single one is theoverall spei�ity level of the sequene of rules that led to eah interpretation(in our ase, the sequene of transitions whose lexial masks reognized the



116 CHAPTER 6. PREDICATES AND LEXICAL MASKSentire sentene).We have shortened lexial masks depending on the ardinality of the setof tokens mathed by eah one, from the most general (the token mask) tothe most spei� (ase insensitive masks), and assigned a default weight foreah ase we have distinguished (see table 6.1). We have implemented a rou-tine that automatially assigns the orresponding weights to grammar rules(transitions of reursive transition networks with weight and string output)depending on the spei�ity of their lexial masks. Rules that are not labeledwith lexial masks (ε-prediate rules) are given a zero weight by default. Weinterpret weights as sores: the highest the spei�ity, the highest the sore.Note that mask %<TOKEN> is given a null sore: reognizing tokens with-out any restritions does not inrease or derease the interpretation sore.The main ahievement of this proedure has been to suessfully dealwith ambiguous sentenes due to unrestrited arguments in the middle, suhthe text of the message that is requested to be sent by sentene `envía el SMSFeliz Navidad al móvil 555 ' (send the SMS Merry Christmas to the mobile555). One of the general grammar rules allows for simply writing `envía FelizNavidad' in order to ask for sending the SMS `Feliz Navidad', without eitherspeifying any phone number (the MovistarBot would then ask for it) or thefat that what we want to send is an SMS. Consequently, this rule reognizes`el SMS ' and `al móvil 555 ' as part of the message to send. However, thegeneral rule will use the token mask in order to reognize those sentenesegments, while the more spei� rule will use literal masks, whih are givenhigher sores. Other rule reognizes the ase in whih the user delimits thetext of the message by means of quotes, in whih ase the quotes are neitherinterpreted as part of the message sine they are also reognized by meansof literal masks.Grammar rules that are already given a weight are not touhed by theweight assignment proedure, hene it is possible to de�ne ustom weightsfor spei� grammar rules by hand. At a ertain time, Telefónia requested afast implementation of a grammar for the reognition of sentenes requestingto send an MMS, based on the mere detetion of keyword `MMS'. However,we had already de�ned other more spei� grammars that interpreted MMSrequests as other kind of requests, hene the MMS requests were misinter-preted in some ases (e.g.: `quiero enviar un MMS al 555 ' was reognized as`I want to send the SMS un MMS to the phone number 555'). This situationwas solved by assigning by hand to the MMS grammar a weight higher thanthose automatially assigned to the other grammars.



6.4. ASSIGNING PRIORITIES TO LEXICAL MASKS 117Mask Cardinality Weight%<TOKEN> ∞ 0%<!NB> ∞ but subset of %<TO-KEN> 1%<!PNC> ∞ but less than %<!NB> 2%<MOT> ∞ but subset of %<!NB>and %<!PNC> 3%<!DIC> ∞ but subset of %<MOT> 4%<!PRE> ∞ but subset of %<MOT>and less than %<!DIC> 5%<!MAJ> ∞ but less than %<!PRE> 6%<!MIN> ∞ but upperase is less fre-quent than lowerase 7%<MIN> ∞ but subset of %<!MAJ>and less than %<!MIN> 8%<MAJ> ∞ but subset of %<!MIN>and upperase is less fre-quent than lowerase 9%<PRE> ∞ but less than %<MAJ>and %<MIN> 10%<DIC> equal to the ditionary size 11onstrained ditionary-word mask less than or equal to the di-tionary size 11%<!MOT> equal to the ardinality ofthe set of symbol tokens,less than %<DIC> for nat-ural languages 12%<NB> 10 (deimal system) 13ase-insensitive word mask 2|w| for word w, though lessthan %<NB> in pratie 14literal symbol mask 1 among the set of symboltokens 15ase-sensitive word mask 1 among the set of word to-kens, whih is greater thanthe set of symbol tokens 16Figure 6.1: Default weights assigned to lexial masks.
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Chapter 7Finite-state mahinesWe give in this setion the ommon de�nitions, properties and algorithms forevery mahine used along this dissertation. The de�nition of FSM is too gen-eral to be diretly applied as a mahine, but is intended to be further re�nedin order to brie�y de�ne the onrete mahines in the subsequent hapters.This de�nition is very similar to the usual de�nition of non-deterministiFSA (NFA) but leaving unde�ned the set of transition labels rather than be-ing equal to the set of input symbols Σ plus the empty symbol, and de�ningboth the input alphabet and the set of transition labels as either �nite orpotentially in�nite; the latter is required in order to onsider mahines whosetransition labels are taken from a potentially in�nite alphabet of words orprediates on words, suh as the set of lexial masks presented in hapter 6.1As stated in van Noord and Gerdemann (2001), prediate alphabets do notneed to be expliitly de�ned �the rules for the onstrution of prediateexpressions are to be expliitly de�ned instead� and, onsequently, suhalphabets do not need to be �nite. Moreover, van Noord and Gerdemann(2001, se. 1.1, p. 2) expliitly states that �robust syntati parsing requiresan in�nite alphabet�.De�nition 46 (Finite-state mahine). In general, �nite-state mahines (FSMs)are strutures omposed of, at least, the following 6 elements:
• Q = {q0, q1, . . . , q|Q|−1}, a �nite set of states (SS),1We assume that a word is any sequene of letters, though in pratie grammars are toonsider only a �nite set of words sine grammars are to be �nite desriptions of languagestrutures (hene the expression `potentially in�nite').121



122 CHAPTER 7. FINITE-STATE MACHINES
• Σ = {σ0, σ1, . . . , σ|Σ|−1}, an either �nite or potentially in�nite inputalphabet,
• Ξ = {ξ0, ξ1, . . . , ξ|Ξ|−1}, an either �nite or potentially in�nite set oftransition labels,
• δ : Q × Ξ → P(Q) a �nite and partial transition funtion where P(·)represents the set of all subsets of a given set,
• QI ⊆ Q is the set of initial states and
• F ⊆ Q the set of �nal or aeptane states.The partiular de�nition of the set of transition labels depends on the kind ofpartiular mahine.De�nition 47 (Letter FSM). A letter FSM is a FSM whose alphabet isa �nite set of letters, words or symbols rather than prediates, and whosetransition labels are taken from suh alphabet, exept for the empty symbol.This de�nition orresponds to a generalization of the de�nition of lettertransduer given by Rohe and Shabes (1997, p. 14).For the simplest inarnation of FSM, letter FSAs, transitions labeled withan input symbol an be traversed by onsuming the next input symbol whenboth symbols are equal, and transitions labeled with the empty symbol anbe traversed without input onsumption. FSAs as a partiular ase of thisFSM de�nition will be the objet of hapter 8.De�nition 48 (Lexial FSM). A lexial FSM is a FSM whose transitionlabels are lexial masks and ε-prediates with, possibly, other extensions.2.This de�nition is a generalization of the de�nition of lexial automatonand deorated lexial RTN given in hapters 2 and 4 of (Blan, 2006, hap. 2,p. 13), respetively. Suh RTNs are extended with uni�ation proesses andtheir labels are deorated with equations on feature strutures.Most of the theory on FSMs we will present does not depend on the exatmehanism for the evaluation of transition labels, but on whether transitionsare taken or not and, therefore, the same theory applies to both letter orlexial FSMs. For the sake of simpliity, we will present this theory for the2Lexial masks and ε-prediates have been desribed in hapter



7.1. TRANSITIONS 123ase of letter FSMs, and disuss the di�erenes w.r.t. the ase of lexial FSMswhenever they are not obvious.For the MovistarBot use ase (se. 1.2, p. 6), we have used lexial RTNsoupled with the 3 di�erent kinds of ε-prediates desribed in setion 6.2(p. 113).De�nition 49 (Null element). In general, we expliitly represent an illegal,invalid or unde�ned result of an operation as ⊥, the null element.For instane, given a state q of a FSM and a transition label ξ, we expli-itly represent the lak of transitions from q and with label ξ as δ(q, ξ) =⊥.Notie that there is a di�erene between the null element and the neutral oridentity element: given a binary operation · and two operators a and b, if bis the identity element of · then a · b = a, but if b is the null element then theresult is ⊥, that is, unde�ned.7.1 TransitionsDe�nition 50 (Transition). We represent a transition of a FSM as a triplet
(qs, ξ, qt) ∈ (Q × Ξ × Q) where qt ∈ δ(qs, ξ). We all qs and qt the soureand target states of the transition, respetively, and ξ the transition label.Transitions, also alled moves or jumps, represent the possibility of hangingthe state of the mahine from a soure state to a target state depending onthe prediate or ondition expressed by the ξ label and the urrent ontext ofexeution of the mahine, and to perform some other arbitrary ations whihwill further modify the urrent ontext of exeution.The ontext of exeution of a mahine is a generalization of the statein whih a mahine an be during its appliation; for instane, the ontextof exeution of an augmented transition network, or ATN (Woods, 1969),inludes a set of registers whih may be modi�ed by additional ations asso-iated to transitions, and whose value may ondition the transition traversal.A formal de�nition of exeution ontext or exeution state will be given insetion 7.6.De�nition 51 (Consuming transition). A onsuming transition is a transi-tion onditioned upon the urrent input symbol and whih triggers the on-sumption of the symbol (to advane the input pointer up to the next symbol)whenever the transition is traversed.



124 CHAPTER 7. FINITE-STATE MACHINESDe�nition 52 (Pure onsuming transition). A pure onsuming transition isa onsuming transition not assoiating any other ondition or ation to itstraversal than the sole onsumption of an input symbol.A non-pure onsume transition would be, for instane, a onsuming tran-sition that also generates output.De�nition 53 (ε-transition). An ε-transition is a transition whose prediaterequires no symbol to be onsumed. We expliitly represent the absene ofsymbol or empty symbol as ε.3Transitions whose prediates hold independently of the urrent ontexte�etively represent the possibility of being in several states at the same time.This is the ase of ε-transitions for several mahines, for instane FSAs, FSTsand RTNs. Other mahines might add other onditions to be taken intoaount whih would prevent the transition from being traversed for someexeution ontexts even if no input symbol is required to be onsumed, forinstane mahines extended with uni�ation sine ε-transitions might alsorequire to unify two inompatible feature strutures. Uni�ation mahineswill be desribed in hapter 19.De�nition 54 (Pure ε-transition). A pure ε-transition is an ε-transition notassoiating any ondition or ation to its traversal.De�nition 55 (Outgoing and inoming transitions). Given a transition
t = (qs, ξ, qt), we say that t is an outgoing transition from state qs andan inoming transition into state qt.7.2 Graphial representationThe lassi representation of FSMs onsists in a set of labeled irles andlabeled arrows between the irles, the former representing states and thelatter transitions (see �gure 7.1(b)). Double-border irles represent aep-tane states (e.g.: state q8 of �gure 7.1(b)), and initial states are pointed toby an arrow oming from nowhere (e.g.: state q0 of �gure 7.1(b)).3Some authors use di�erent symbols in order to represent the empty symbol and theempty string; for instane, Ortiz-Rojas et al. (2005) represent the former as θ and thelatter as ε. We hoose here to make no distintion in order to alleviate the notation.



7.2. GRAPHICAL REPRESENTATION 125Intex, Unitex and Outilex use another kind of representation they allgraph, and whih was oneived for failitating the manual onstrution andmaintenane of loal grammars.4 This is the representation we have used forthe onstrution of the MovistarBot grammars.5 Graphs basially onsist ofa set of linked boxes, where boxes orrespond to transitions and links or-respond to states. Eah box represents a set of transitions, one transitionper box line, whih is shared among every pair of states represented by aninoming and an outgoing link (e.g.: box `<TOKEN>' of �gure 7.1(a) or-responds to the 4 `%<TOKEN>' transitions of �gure 7.1(b)). Start symbols`�' and `%' of lexial masks within boxes are not spei�ed: ase-sensitivemasks are to be quoted, and ase-insensitive masks are not. Moreover, a boxentry may ontain a sequene of lexial masks rather than a single one, inwhih ase represents an alternate sequene of transitions and states ratherthan a simple transition (e.g.: a box entry `"Feliz Navidad"' represents twoase-sensitive masks whih are to be applied in that order). Boxes indiatethe diretion of the transitions they represent by means of a triangular ar-rowhead attahed to one of their sides. Graphs are meant to be read inthe text sense, whih depends on the language (e.g.: left-to-right in English,right-to-left in Arabi, et.), thus the arrowhead is always attahed to thesame side of the boxes. Links between boxes do not arry state labels: statelabels are not to be expliitly de�ned sine they have no impat in the rep-resented grammar. Graphs de�ne a unique initial state represented by a linkonneted to a single box. To make them more expliit, an empty box (a boxhaving only the arrowhead) is inserted right after the link, though this is notneessary; indeed, boxes having a single entry `<E>' (the blank-insensitive
ε-prediate) are drawn as a triangle alone. Links representing aeptanestates are those onneted to the irle with a square inside (see the right-most box of �gure 7.1(a)). Finally, graphs an be ommented as for the aseof soure ode (e.g.: see greyed text of �gure 7.1(a)); labels of unlinked boxesare treated as omments, and their frames are not drawn. More informationon Intex graphs an be found in Silberztein (2004, hap. 5�8), on Unitexgraphs in Paumier (2008, hap. 5�6), and on Outilex graphs in Blan andConstant (2006b, hap. 4).4In the ontext of mathematis, a graph is a set of elements (verties) oupled with aset of edges whih onnet pairs of elements; though the graphs presented here are verysimilar to these graphs, they are not the same kind of objet.5Indeed, we have used the Unitex graph editor.
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(a)
q0 q1 q2

q3q4

q5 q6

q7

q8
%sms %\⊔ %<NB>%#%<NB>%<NB>%<NB> %\⊔%<TOKEN>

%<TOKEN>
%<TOKEN>%<TOKEN>(b)

q0 q1 q2,4 q3,5 q6,7 q{6,7},8
%sms %\⊔ %#%<NB> %\⊔ %<TOKEN>%<TOKEN>()Figure 7.1: (a) Unitex graph reognizing SMS ommand requests, (b) equivalentlexial FSM obtained by replaing boxes and links by trasitions and states, respe-tively, and () equivalent pseudo-minimal lexial FSM. Comments in (a) appear ingreyed fonts and have been used here to make state labels expliit and to indiatewhat eah graph fragment is supposed to reognize. Pseudo-minimization will beexplained in setion 8.6.



7.3. SEQUENCES OF TRANSITIONS 1277.3 Sequenes of transitionsDe�nition 56 (Conneted transitions). We say transition t is onneted totransition t′ i� the target state of t is the soure state of t′.De�nition 57 (Path or transition onatenation). We de�ne a path withina FSM as the onatenation of a sequene of n > 0 suessively onnetedtransitions
(qs0

, ξ0, qt0) . . . (qsn−1
, ξn−1, qtn−1

) suh that qti = qsi+1
, for i = 0 . . . n−2.(7.1)and we represent it as

(qs0
, ξ0, qt0) · (qs1

, ξ1, qt1) · . . . · (qsn−1
, ξn−1, qtn−1

), (7.2)or simply as
(qs0

, ξ0, qt0)(qs1
, ξ1, qt1) . . . (qsn−1

, ξn−1, qtn−1
), (7.3)or even simpler as

qs0

ξ0
−→ qs1

ξ1
−→ . . .

ξn−2
−−→ qsn−1

ξn−1
−−→ qtn−1

. (7.4)De�nition 58 (| · |). We de�ne | · | as the length or number of elements ofa sequene.We use | · | in order to represent the length of a path inside a FSM as wellas the length of a string.De�nition 59 (Start and end states of a path). The start state of a pathis the soure state of its �rst transition, and the end state of a path is thetarget state of its last transition.De�nition 60 (Conneted paths). We say path p is onneted to path p′ i�the end state of p is equal to the start state of p′.De�nition 61 (Conatenation of paths). We de�ne the onatenation ofa path p onneted to a path p′ as the path omposed by the sequene oftransitions of p followed by the sequene of transitions of p′, and we representit as p · p′ or simply as pp′.



128 CHAPTER 7. FINITE-STATE MACHINESDe�nition 62 (Cyle). A yle is a losed or self-onneted path, that is, apath whose start and end states are the same. Cyles are also alled loopsor losed paths.Sine yles are to be desribed as transition sequenes, one of the ylestates starts the sequene and ends it too. Cyles have no start or end statesin the sense of whether the sequene of transitions an be followed untilthere are no more transitions belonging to the yle, sine the �rst transitionfollows the last one. However, when regarding yle desriptions as itineraries(a sequene of states and transitions to visit in the order spei�ed), the hoieof the start and end state is not arbitrary: traversing n times a yle startingat a state q ends up at q and not at any other state.De�nition 63 (Self-onatenation of a yle). Given a yle p and an integer
n ≥ 0, we de�ne pn as the result of onatenating path p with itself n times.De�nition 64 (Empty path). Given any losed or unlosed path p, we de�ne
p0 as the empty path or zero-length path.De�nition 65 (Self-onatenation of the empty path). Given a path p, wede�ne the speial ases of onatenations of paths involving the empty pathas follows:

pp0 = p

p0p = pp0p0 = p0The empty path is the neutral element of the onatenation of paths.Corollary 1 (Conatenation with the empty path). Conatenating the emptypath to itself any number of times results in the empty path, that is,
p0p0 . . . p0 = p0 (7.5)De�nition 66 (Subpath). pb is a subpath of p if there exist two paths pa and

pb suh that papbpc = p.De�nition 67 (Consuming path). A onsuming path is a path having atleast one onsuming transition.De�nition 68 (Consuming yle). A onsuming yle is a losed onsumingpath.



7.4. STRUCTURES 129De�nition 69 (ε-path). An ε-path is a path whose transitions are all ε-transitions.De�nition 70 (ε-yle). An ε-yle is a losed ε-path.De�nition 71 (Reahable). We say that a state qt is reahable or derivablefrom a state qs i� there exists at least one path p whose start and end statesare qs and qt, respetively. We say qt is reahable or derivable from qs throughpath p.De�nition 72 (Diretly reahable). We say that a state qt is diretly reah-able from a state qs i� qt is reahable from qs through a path p suh that
|p| = 1.We will �rst de�ne the funtion omputing sets of diretly-reahable statesfrom other states, and then de�ne the funtion omputing the set of reah-able states by one or more appliations of the former funtion, hene thedistintion between reahable and diretly reahable.De�nition 73 (ε-reahable). We say that a state qt is ε-reahable from astate qs i� it is reahable through an ε-path.De�nition 74 (Diretly ε-reahable). We say that a state qt is diretly ε-reahable from a state qs i� qt is diretly reahable from qs through an ε-path.7.4 StruturesDe�nition 75 (Empty mahine). We say a mahine is empty i� it ontainsno states.Corollary 2 (Transitions of empty mahines). Empty mahines have notransitions sine no transitions an be de�ned without soure and targetstates.De�nition 76 (Ayli mahine). We say a mahine is ayli i� it ontainsno yles.Tries are an example of ayli mahines. These mahines will be theobjet of hapter 9.



130 CHAPTER 7. FINITE-STATE MACHINESDe�nition 77 (Linear mahine). We say a mahine is linear or has a linearstruture i� the mahine is ayli, has at most one initial state and everystate has at most one outgoing transition.A sequene of symbols w an be represented by a linear FSA A having aunique aeptane state and a path onsuming w from the initial state up tothe aeptane state.7.5 SubstruturesDe�nition 78 (Mahine substruture). Given a mahine with a set of states
Q and a partial transition funtion δ, (Q′, δ′) identi�es a mahine substru-ture i� Q′ ⊆ Q and δ′ is a partial transition funtion suh that every tran-sition de�ned by δ′ is also de�ned by δ and suh that the soure and targetstate of every transition in δ′ belongs to Q′.De�nition 79 (Disjoint mahine substrutures). We say two mahine sub-strutures are disjoint i� they do not share any states and/or transitions.De�nition 80 (Properties of relations). A relation R on a set A is
• re�exive i� a R a, for all a in A,
• irre�exive i� ¬(a R a), for all a in A,
• antisymmetri i� a R b and bR a imply a = b, for all a, b in A, and
• transitive i� a R b and bR c imply a R c, for all a, b, c in A,De�nition 81 (Topologial sort). Let (Q′, δ′) be a mahine substrutureand R a relation on Q′ suh that qs R qt i� qt is reahable from qs; we saya sequene of states in Q′ is a topologial sort of (Q′, δ′) i� the followingonditions hold:
• R is irre�exive, antisymmetri and transitive,
• the sequene ontains every state in Q′, and
• the sequene is ompatible with R, that is, for every pair of states qi, qj ∈

Q′, if qi appears before qj within the sequene then either qiRqj or qiand qj are not related.



7.5. SUBSTRUCTURES 131The problem of �nding a topologial sort for a graph was �rst studiedfor the ase of PERT networks (see appendix D, page 419). Sine verties ofa PERT network represent points in time and edges represent ativities be-tween two points in time, yles of length 1 make no sense: ativities requirea positive amount of time in order to be performed. However, it makes sensethat every temporal point is reahable from itself by performing no ativity.The original de�nition of topologial sort requires R to be a (non-strit) par-tial order, that is, it must be re�exive rather than irre�exive; sine temporalpoints are onsidered to be reahable from themselves, R is also re�exive.The topologial sort is de�ned as a (non-strit) total order ompatible with
R, that is, an extension of R suh that antisymmetry and transitivity is keptwhile relating every pair of verties of the network. Totality implies re�ex-ivity sine it also requires every vertex to be related to itself. Sine FSMsmay ontain yles of length 1, we must distinguish between just being ata state and reahing it from itself, hene we do not onsider that a state isreahable from itself unless there exists a transition having the same stateas target and soure. Consequently, our de�nition of topologial sort doesneither require R or the topologial sort to be re�exive and, indeed, it forbidsit; in our ase, the topologial sort of a FSM represents a linear ordering ofthe states of a mahine suh that eah state an only be reahed from zero,one or more of the states preeding them in the topologial sort, but not fromthemselves or from the states following them. This ordering will be used foroptimizing the appliation of mahines with blakboard output: we will seethat it is possible to proess eah transition a single time as long as we followthe ordering given by a topologial sort.Lemma 1 (Existene of a topologial sort). At least one topologial sortexists for a given mahine substruture i� the substruture ontains no yles.Proof. Let (Q′, δ′) be a mahine substruture, R be a relation on Q′ suhthat qs R qt i� qt is reahable from qs, and

p = q0
ξ0
−→ q1

ξ1
−→ . . .

ξl−2
−−→ ql−1 (7.6)be a path within the substruture. If p is a yle of length 1, then q0 = ql−1and q0 is reahable from itself, whih would not allow for R to be irre�exive.If p is a path of length greater than 1 having no yli subpath, then thereis at least one state qi between q0 and ql−1 whih is not equal to q0 or ql−1.If p is itself a yle, then both holds that qi is reahable from q0 and q0 is



132 CHAPTER 7. FINITE-STATE MACHINESreahable from qi, whih would not allow for R to be antisymmetri. Everypath respets transitivity, sine every state within a path is reahable fromall those preeding them. Hene, R an only be irre�exive, antisymmetriand transitive i� the substruture ontains no yles. The existene of Rimplies the existene of at least one sequential ordering of the states in Q′ompatible with R.7.6 BehaviourWe give here the general de�nitions and equations that desribe the languagerepresented by a FSM.De�nition 82 (Exeution state). The exeution states (ESs) of a given al-gorithm of appliation of a mahine are strutures omposed by, at least, amahine state plus, possibly, other additional data whih depend on the algo-rithm. These ESs represent exeution ontexts or partial omputations thatare performed in some order up to obtaining the �nal result. If the algo-rithm does not require any additional information, ESs are simply states ofthe mahine rather than strutures.De�nition 83 (X). We de�ne X as the set of all possible ESs of an algorithmof appliation of a mahine.For instane, ESs of FSTSOs not only inlude a reahed state q butalso the partial output that has been generated from an initial state up toreahing q. FSAs require no further information, so X = Q. Every mahinean be redued to a either �nite or in�nite-state automaton; for instane,we replae eah state q of a FSTSO by its exeution states (q, z), for everypartial output z that an be generated from an initial state up to reahing q,and we opy eah transition inoming to or outgoing from q but without theoutput, and having the orresponding ESs as soure and target states. Inother words, outputs are oded within the states of the mahine rather thanwithin the transitions. Sine ESs having di�erent partial outputs will nolonger be the same ES, independently of whether they share the same state,the resulting mahine will have an in�nite number of states if an in�nitenumber of partial outputs is possible; hene, this sort of mahine is not tobe generated for pratial NLP, but only the neessary �real� states of themahine �its ESs� are to be produed for eah input, and the algorithm



7.6. BEHAVIOUR 133exeution will �nish as long as the number of ESs to produe for eah input is�nite. We will give an exat de�nition of ES for eah algorithm and mahinein their orresponding setions.De�nition 84 (Multiple ES). A multiple ES is a set of exeution states(SES) omposed by every ES that an algorithm of exeution of a mahinean generate for a given input sequene; sine mahines may de�ne severalpaths leading to di�erent ESs for the same input sequene, we onsider thatthe mahine is able to be taken to a multipliity of ESs at a given exeutiontime. Throughout this dissertation, V and W are used as SES identi�ers.For instane, proessing an ambiguous sentene will lead to multiple ESsat some exeution time, one for eah possible sentene interpretation onsid-ered in the grammar.De�nition 85 (Illegal ES). Illegal ESs are a speial kind of ESs whih avoidthe traversal of any transition that ends at them.For instane, mahines extended with uni�ation proesses de�ne as il-legal every ES ontaining the null feature struture, that is, the result ofunifying two inompatible feature strutures; transitions that result in suhillegal ESs annot be traversed.De�nition 86 (Realizable transition). A transition t within a FSM is real-izable from a given legal (soure) ES xs i�, the mahine being in ES xs, thetransition t an be traversed for some input symbol, that is, t is an outgoingtransition of the state assoiated to the ES xs and the mahine is taken to alegal (target) ES xt by traversing t. In general, we say a transition is eitherrealizable or not depending on the existene of some input for whih suh xsis produed.Following the former example, a transition requiring to unify two inom-patible feature strutures is not realizable even if the transition onsumes theurrent input symbol.De�nition 87 (Realization of pure ε-transitions). Given a legal ES xs = (qs,
a0 . . . an−1), where a0 . . . an−1 is the additional data produed by the algorithmof appliation of the orresponding mahine, a pure ε-transition t = (qs, ξ, qt),
t is realizable by bringing the mahine to ES xt = (qt, a0 . . . an−1). Sinepure ε-transitions do not impose any restrition to their traversal, every pureonsuming transition is realizable.



134 CHAPTER 7. FINITE-STATE MACHINESNote that pure ε-transitions do not assoiate any ation to their traversal,hene they do not modify the urrent ontext of exeution exept for themahine state.De�nition 88 (Realization of pure onsuming transitions). Given a legalES xs = (qs, a0 . . . an−1), where a0 . . . an−1 is the additional data imposedby the algorithm of appliation of a mahine, a pure onsuming transition
t = (qs, ξ, qt) is realizable by onsuming the input symbol spei�ed in ξ andby bringing the mahine to ES xt = (qt, a0 . . . an−1). Sine pure onsumingtransitions do not impose any other restrition to their traversal than thepresene of some input symbol at the urrent input point, every pure on-suming transition is realizable.As for the ase of pure ε-transitions, sine pure onsuming transitions donot assoiate any ation to their traversal other than the onsumption of theurrent input symbol, the additional data of the ES is not modi�ed.De�nition 89 (Realizable path). A path within a FSM is realizable from agiven legal ES xs i�, the mahine being in ES xs, every transition within thepath is onseutively realizable.De�nition 90 (Exeution path). Given a realizable path

p = t0t1 . . . tn = q0
ξ0
−→ q1

ξ1
−→ q2

ξ2
−→ . . .

ξn−1
−−→ qn

ξn
−→ qn+1from an ES x0, we de�ne its exeution path from x0, X (p, x0), as

X (p, x0) = x0
ξ0
−→ x1

ξ1
−→ x2

ξ2
−→ . . .

ξn−1
−−→ xn

ξn
−→ xn+1where x1 is the ES the mahine is taken to by transition t0 from ES x0, x2the ES the mahine is taken to by transition t1 from ES x1, and so on. Wealso all X (p, x0) the realization or the exeution of path p from ES x0. Ifthe ESs of a mahine are states in Q, there is no di�erene between pathsand their realizations.De�nition 91 (Reahable ES). Given two legal ESs xt and xs, we say xtis reahable or derivable from xs i� there exists at least one realizable path

p whose exeution from ES xs brings the mahine to ES xt. We say xt isreahable or derivable from xs through path p.



7.6. BEHAVIOUR 135De�nition 92 (Deterministi mahine). A mahine is deterministi i� itholds the following properties:
• to have at most one initial state,
• not to have transitions that an be realized independently of the exeu-tion ontext,6 and
• for every possible exeution ontext of the mahine there is at most onerealizable transition.7De�nition 93 (Equivalent mahines). In general, we say two mahines areequivalent i� for every possible input they yield the same output, no matterhow the mahines are strutured.Depending on the type of output generated by a lass of mahines, apartiular de�nition of equivalene will be given (onsidering that a Booleanindiating whether an input sequene belongs to a language or not is alreadyan output).De�nition 94 (Minimal mahine). We say a mahine is minimal i� thereexists no other equivalent mahine having a smaller number of states.Mahines of di�erent types may be yet equivalent if they produe thesame kind of output; for instane, both FSAs and RTNs return a Booleanvalue. However, some mahine types may allow for more ompat strutures;for instane, FSAs allow for fatoring out ommon pre�xes and su�xes ofthe represented sequenes, while RTNs an also fator out ommon in�xes.In general, when we speak about minimal mahines we are restriting thetype of the equivalent mahine to the one of the original mahine.De�nition 95 (Derivation rule). The set of derivation rules or derivationmehanisms of a mahine desribe the ES diretly reahable from any givenES of the mahine. For the ase of FSMs, eah transition lass is assoiated6For instane, ε-transitions in FSAs. Reall that, apart from the input, exeutionontexts may omprise other data (e.g.: the output generated up to reahing a ertainES).7For instane, deterministi FSAs have no pair of transitions outgoing from the samesoure state so that both are labeled with the same input symbol; otherwise both transi-tions might be realizable under the same exeution ontext, that is, being at the sourestate of these transitions.



136 CHAPTER 7. FINITE-STATE MACHINESto a derivation rule and eah transition represents a partiular ase of suh arule for a partiular pair of soure and target states and transition ondition(expressed by the transition's label). The realization of a transition onsistsin applying the derivation rule orresponding to the transition type.For instane, de�nitions 87 and 88 desribe the derivation rules assoiatedto pure ε-transitions and pure onsuming transitions, respetively.De�nition 96 (∆). We de�ne funtion
∆ : P(X)× Σ→ P(X) (7.7)as the extension of the onsuming ases of transition funtion δ to soure andtarget SESs instead of simple soure and target states of the mahine, that is,

∆(V, σ) is equal to the set of diretly reahable ESs from any ES of V throughtransitions that onsume the next input symbol σ. The exat behaviour offuntion ∆ depends on the type of mahine and algorithm followed.De�nition 97 (D). Analogous to funtion ∆, we de�ne funtion
D : P(X)→ P(X) (7.8)as the extension of the non-onsuming ases of transition funtion δ to soureand target SESs, that is, D(V ) is equal to the set of diretly ε-reahable ESsfrom any ES of V . Let A be a mahine with n ε-transition types,8 we de�ne

D as
D :

n
⋃

i=0

Di, (7.9)where Di(V ) represents a partiular derivation rule of D(V ) for a type of
ε-transition. The exat behaviour of eah Di funtion depends on the typeof mahine and algorithm followed. For the sake of simpliity, if i = 1 wedo not de�ne a D1 funtion but we de�ne D itself as the diret-derivationfuntion on SESs.De�nition 98 (Simple diret-derivation funtion on SESs). A simple diret-derivation funtion on SESs is an extension of a partiular derivation aseof transition funtion δ to soure and target SESs, namely funtion ∆ andthe Di funtions omposing funtion D (or D for mahines with a uniquetype of ε-transition).8for instane, RTNs have three di�erent kinds of ε-transitions: expliit ε-transitions,push transitions and pop transitions; RTNs will be the objet of hapter 12.



7.6. BEHAVIOUR 137In general, simple diret-derivation funtions on SESs are all de�ned byan expression of the form
F(V, σ) = {xt : d ∧ xs ∈ V }, (7.10)where V is the soure SES, σ is the urrent input symbol (for the ase of ∆)or is omitted (for the ase of Di funtions or funtion D), d is a prediatethat depends on the followed derivation rule, and xt is the target ES derivedfrom soure ES xs if d holds. For instane, for the ase of FSAs, ∆(V, σ) isde�ned as follows:

∆(V, σ) = {qt : (qt ∈ δ(σ)) ∧ (qs ∈ V )}, (7.11)where qt and qs orrespond to xt and xs (for the ase of FSAs, ESs are simpleFSA states), and `qt ∈ δ(σ)' is the derivation prediate. In order to avoidrepetition, we will de�ne simple diret-derivation funtions on SESs for eahalgorithm and mahine by speifying xs, xt and d. This generalization willalso be used for studying some properties ommon to every simple diret-derivation funtion on SESs.De�nition 99 (i-reursive funtion appliation). Let F be a funtion of aset A into itself, that is, F : A → A, we de�ne F i, the i-reursive appliationof F , as
• the omposition of F with itself i− 1 times, for i > 1

• the funtion itself, for i = 1, and
• idA, the identity funtion of A, for i = 0.For instane, let f be a funtion of N into itself suh that f(x) = x + 1,the following equations hold:

f 0(0) = id(0) = 0
f 1(0) = f(0) = 0 + 1 = 1
f 2(0) = f(f(0)) = 0 + 1 + 1 = 2
f 3(0) = f(f 2(0)) = 2 + 1 = 3...
fn(0) = f(fn−1(0)) = n− 1 + 1 = n

(7.12)



138 CHAPTER 7. FINITE-STATE MACHINESDe�nition 100 (ε-losure). We de�ne the ε-losure of a SES V as the SESontaining V and every ε-reahable ES from any ES of V :
Cε : P(X)→ P(X)

Cε(V ) =
m
⋃

i=0

Di(V ), (7.13)that is, the ESs of V plus the ESs reahable from any ES of V through oneup to m ε-transitions, where m is the smallest k suh that
k

⋃

i=0

Di(V ) =

k+1
⋃

i=0

Di(V ), (7.14)if suh k exists, and unde�ned otherwise.Indeed, there are mahines having SESs for whih suh k does not existand, hene, the ε-losure is not omputable. For eah kind of mahine, wewill identify the substrutures allowing for suh SESs, if any, in order to avoidthem.De�nition 101 (Delayability of union). Given n subsets Vi of a set X and aunary funtion F : P(X)→ P(X), we say that the union of sets is delayablew.r.t. F i�
F(

⋃

i

Vi) =
⋃

i

F(Vi). (7.15)Sine the union of sets is assoiative, if the previous equality holds for theunion of two sets then it holds for the union of two or more sets.Lemma 2 (FSM D-union). The union of sets is delayable w.r.t. funtion Dif it is delayable for eah Di funtion omposing D.Proof. Let D be the union of two funtions D1 and D2 suh that the unionof sets is delayable w.r.t. both of them, and let V and V ′ be two SESs, thenit holds that
D(V ∪ V ′) = D1(V ∪ V ′) ∪D2(V ∪ V ′) (7.16)

= D1(V ) ∪D1(V
′) ∪D2(V ) ∪D2(V

′) (7.17)
= D1(V ) ∪D2(V ) ∪D1(V

′) ∪D2(V
′) (7.18)

= D(V ) ∪D(V ′). (7.19)



7.6. BEHAVIOUR 139Theorem 1 (Union of diret-derivation funtions on SESs). The union ofsets is delayable w.r.t. diret-derivation funtions on SESs.Proof. Let F be a diret-derivation funtion on SESs, that is, a funtion ofthe form
F(V, σ) = {xt : d ∧ xs ∈ V }, (7.20)where d is the derivation prediate, the following equations hold:

F(V ∪ V ′) = {xt : d ∧ xs ∈ V ∪ V ′}

= {xt : d ∧ (xs ∈ V ∨ xs ∈ V ′)}

= {xt : d ∧ xs ∈ V ∨ d ∧ xs ∈ V ′}

= {xt : d ∧ xs ∈ V )} ∪ {xt : d ∧ xs ∈ V ′)}

= F(V ) ∪ F(V ′).Theorem 2 (D-union). Given lemma 2 and theorem 1, the union of sets isdelayable w.r.t. the D funtion, in general.Lemma 3 (ε-losure-union). Given a FSM, if the union of sets is delayablew.r.t. its D funtion then it is delayable as well w.r.t. its ε-losure funtion:
D(

⋃

i

Vi) =
⋃

i

D(Vi) =⇒ Cε(
⋃

i

Vi) =
⋃

i

Cε(Vi). (7.21)Proof. Let V and V ′ be two SESs, it holds that
Cε(V ∪ V ′) =

m
⋃

j=0

Dj(V ∪ V ′)

=

m
⋃

j=0

Dj(V ) ∪
m
⋃

j=0

Dj(V ′)

= Cε(V ) ∪ Cε(V
′),where m is the smallest k suh that

k
⋃

i=0

Di(V ) =
k+1
⋃

i=0

Di(V ).



140 CHAPTER 7. FINITE-STATE MACHINESTheorem 3 (ε-losure-union). Given theorem 2 and lemma 3, the union ofsets is delayable w.r.t. the ε-losure, in general.Lemma 4 (Iterative ε-losure). Sine the union of sets is delayable w.r.t.the D funtion, the following is an equivalent de�nition of ε-losure, basedon iterative omputation:
Cε(V0) = Vm with Vi+1 = Vi ∪D(Vi), i > 0, (7.22)and m is the smallest k suh that Vk+1 = Vk.Proof. By omputing the di�erent Vi's we obtain:

V1 = V0 ∪D(V0) =
1

⋃

j=0

Dj(V0)

V2 = V0 ∪D(V0) ∪D(V0 ∪D(V0))

= V0 ∪D(V0) ∪D(V0) ∪D(D(V0))

= V ∪D(V0) ∪D(D(V0)) =
2

⋃

j=0

Dj(V0)...
Vi =

i
⋃

j=0

Dj(V0)From the development of term Vm we obtain the �rst de�nition of ε-losure.Lemma 5 (Finite ε-losure). Given the iterative de�nition of ε-losure oflemma 4, if there exists a natural number k ≥ 0 suh that Vk = Vk+1 then
Vk = Vl, for l ≥ k, that is, one Vk is omputed, omputing further Vi's willnot add anything to the ε-losure and, hene, the ε-losure will be �nite.Proof. Let k be the smallest number suh that Vk = Vk+1 = D(Vk), and l bea number greater than k, then

Vl = Vk ∪ D(Vk) ∪ D(D(Vk)) ∪ . . . ∪ Dl−k(Vk)
= Vk ∪ Vk ∪ D(Vk) ∪ . . . ∪ Di−k−1(Vk)...
= Vk ∪ Vk ∪ Vk ∪ . . . ∪ Vk

= Vk



7.6. BEHAVIOUR 141and therefore omputing further Vi's after Vk will not add anything to Cε(V0).De�nition 102 (∆∗). We reursively de�ne ∆∗, the extension of the transi-tion funtion over SESs ∆ for an input sequene w ∈ Σ∗, as follows:
∆∗ : P(X)× Σ∗ → P(X)

∆∗(V, ε) = Cε(V ) (7.23)
∆∗(V, wσ) = Cε(∆(∆∗(V, w), σ)) (7.24)This de�nition is analogous to that of δ̂ for NFAs given in Hoproft et al.(2000, se. 2.3.3, p. 58), though ∆∗ is de�ned on SES and δ̂ is de�ned onNFA states.De�nition 103 (Initial and aeptane SESs). We all XI the initial SES ofa FSM and XF its aeptane or �nal SES. ESs in XI or XF are struturesontaining a state in QI or F , respetively, plus any additional informationrequired to represent the initial or aeptane ES depending on the type ofmahine and algorithm followed. When no additional information is required,as in FSAs, XI = QI and XF = F .De�nition 104 (Deterministi exeution of a FSM). Let A be a FSM withan input alphabet Σ and a set of initial ESs XI, we say A is deterministi�in terms of exeution� i� it holds that
|∆∗(XI , w)| ≤ 1, for all w ∈ Σ∗, (7.25)that is, A has a unique initial ES x0 and the number of reahable ESs from

x0 by onsuming any input sequene is at most one.De�nition 105 (Exeution mahine). Given a FSM A with Σ as input al-phabet, X as its ES domain, XI as initial SES and XF as aeptane SES, wede�ne X (A), the exeution mahine of A, as an either �nite- or in�nite-statemahine (depending on eah ase) having at least the following elements
• X as set of states, either �nite or in�nite,
• XI as set of initial states, �nite,
• XF as set of aeptane states, either �nite or in�nite,
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• Σ as input alphabet, either �nite (for letter mahines) or in�nite (formahines on an alphabet of words or prediates), and
• δ′ as partial transition funtion, either �nite or in�nite, suh that� xt ∈ δ′(xs, σ) ⇐⇒ the exeution of A an diretly derive xt from

xs by onsuming σ,� xt ∈ δ′(xs, ε) ⇐⇒ the exeution of A an derive xt from xswithout input onsumption, and� possibly other transitions depending on the type of mahine andalgorithm of appliation.Exeution mahines an be seen as exeution traes of the algorithm of ap-pliation of the mahines for every possible input. The exat de�nition ofexeution mahine depends on the kind of mahine and exeution method.Note that for FSMs having an in�nite number of ESs (e.g.: FSTs repre-senting an in�nite number of translations), the number of transitions linkingthe states of their orresponding exeution mahines will also be in�nite. Asstated before, exeution mahines are not to be entirely omputed but onlythe neessary substrutures for the appliation of FSMs to spei� inputsequenes. The onept of exeution mahine will be used for the ase ofmahines with output generation in order to study the possibility of omput-ing the di�erent ESs in some spei� order that will aelerate the mahineappliation: the order given by a topologial sort of the exeution mahinesubstrutures produed by derivation funtions on SESs. In partiular, wewill study the neessary onditions for the existene of suh topologial sorts.De�nition 106 (F -substruture). Given a derivation funtion on SES F ofa mahine A, we de�ne the F(V )-substruture of X (A) as the substrutureof X (A) omposed by every reahed ES �inluding the ESs in V � and everytraversed transition during the omputation of F(V ).De�nition 107 (L). We de�ne L(A), the language of a FSM A, as the set ofsequenes w ∈ Σ∗ reognized by A, that is, the set of sequenes whose wholeonsumption reahes at least an aeptane ES from at least an initial ES:
L(A) = {w ∈ Σ∗ : ∆∗(XI , w) ∩XF 6= ∅}. (7.26)



7.6. BEHAVIOUR 143This formula is similar to that of Hoproft et al. (2000, se. 2.3.4, p. 59),though using funtion ∆∗ instead of δ̂, an initial SES XI instead of a singleinitial state q0, and an aeptane SESs XF instead of a set of aeptanestates F .We say that a word w is aepted or reognized by a FSM A i� w belongsto the language of A; otherwise we say that w is rejeted or not reognizedby the FSM.De�nition 108 (LR(x)). Let x be an ES of a FSM A, we de�ne LR(x), theright language of x, as
LR(x) = {w ∈ Σ∗ : ∆∗({x}, w) ∩XF 6= ∅}. (7.27)De�nition 109 (Aeptor mahine). We say that a mahine or an algorithmof appliation of a mahine is a pure aeptor i� its sole purpose is to omputethe aeptane/rejetion of an input sequene.In de�nition 93 (p. 135) we introdued the onept of equivalene betweenmahines. One de�ned what a pure aeptor mahine is, we an give a moreonrete de�nition of equivalene between pure aeptor mahines:De�nition 110 (Equivalent pure aeptor mahines). We say two pure a-eptor mahines A and A′ are equivalent i� L(A) = L(A′).De�nition 111 (Interpretation). Given a word w and a mahine A, we saya path p within A is an interpretation of w i� X (p, xs) reahes an aeptaneES from an initial ES xs by onsuming w.De�nition 112 (Ambiguous word). We say a word w is ambiguous for agiven mahine A i� there exist several interpretations within A that onsume

w.De�nition 113 (Ambiguous mahine and language). Mahines reognizingat least one word through several interpretations are said to be ambiguous,and so are their aepted languages.De�nition 114 (Useful state). We say a state is useful i� there exists atleast one interpretation traversing the state. Otherwise we say it is useless.De�nition 115 (Useful transition). We say a transition is useful i� it is apart of at least one interpretation; otherwise we say it is useless.



144 CHAPTER 7. FINITE-STATE MACHINESDe�nition 116 (Useful path). We say a path is useful i� it is a subpath ofat least one interpretation; otherwise we say it is useless.De�nition 117 (Useful mahine substruture). We say a mahine substru-ture (Q′, δ′) is useful i� it ontains at least one useful state. Conversely, wesay a mahine substruture is useless i� it ontains no useful states.Corollary 3 (Transitions of mahine subtrutures and usefulness). A ma-hine substruture that ontains useful transitions is also useful, sine the use-fulness of a transition implies the usefulness of its soure and target states,whih also belong to the mahine substruture. Conversely, mahine sub-strutures ontaining no useful states neither ontain useful transitions.One may be tempted to say that a mahine is useless i� it ontains nointerpretation. However, suh mahines may have a purpose analogous tothat of ε (to represent the empty symbol or the empty string), ∅ (to representthe empty set), or 0 (to represent the null quantity).De�nition 118 (Trimmed FSM). We say a FSM is trimmed i� it ontainsno useless states or transitions.De�nition 119 (w-usefulness). We say a path, a transition or a state isuseful for a given input sequene w, or simply w-useful, i� there exists aninterpretation of w traversing suh path, transition or state.De�nition 120 (Pruning). We all pruning the proess of removing everyuseless mahine substruture of a mahine.Corollary 4 (Result of pruning). The result of pruning a mahine is eitherthe empty mahine or a mahine without useless states or transitions.Some of the algorithms we will present in this dissertation require thegeneration of the language of a new kind of mahine we have alled �ltered-popping reursive transition network (FPRTN). We will �rst study the asesin whih suh language is �nite, in order to guarantee that the exeutionof suh algorithms will �nish. FPRTNs an be seen as RTNs whose pop-ping transitions are not always realizable, and RTNs an be seen as FSAsextended with all, push and pop transitions. Apart from these transitions,the remaining transitions are the same and, hene, the orresponding sub-strutures will have the same behaviour. Though it may seem obvious whihkind of FSA and RTN substrutures lead to in�nite languages, that is notthe ase for FPRTNs. We will present the FPRTN ase by extending thesimpler ases, starting here with the general ondition for any FSM.



7.6. BEHAVIOUR 145Theorem 4 (Cardinality of the interpretation set). The number of inter-pretations of a FSM without useful yles is �nite; otherwise, the number ofinterpretations is in�nite i� the mahine allows for the realization of an in�-nite number of self-onatenations of at least one useful yle, and an in�nitesubset of the realizable self-onatenations is useful.Proof. Let it be a FSM A either without yles or with useless yles; sinefor any interpretation p the same state annot be traversed twie, every inter-pretation must be formed by a sequene of onneted transitions traversinga sequene of states without repetitions. The number of subsets of states ofa mahine is equal to
|P(Q)| = 2|Q|, (7.28)whih is �nite sine Q is �nite. For every subset of states Qi ⊆ Q, the numberof permutations without repetitions of the states in Qi is |Qi|!, giving a totalof

|P(Q)|
∑

i=0

|Qi|! (7.29)possible sequenes of states without repetitions, whih is also a �nite numbersine Qi is �nite for i = 0 . . . |P(Q)|. Moreover, not every sequene of stateswill be possible for a mahine without useful yles sine two interpretationswithout yles may allow for the existene of a third interpretation with yles(e.g: interpretations with sequenes of states q0q1 and q1q0 may allow for aninterpretation with state sequene q0q1q0). Finally, for eah sequene to bean interpretation, at least one realizable transition (qj, ξj, qj+1) must exist foreah two onseutive states qj and qj+1 within the sequene, eah additionalrealizable transition allowing for an additional interpretation. However, sinethe number of transitions is �nite, the total number of interpretations is also�nite.Otherwise, if A ontains a useful yle pb for a given interpretation p =
papbpc, then A ontains the in�nite family of paths pi = pap

i
bpc for i ≥ 0; if anin�nite subset of this family is realizable, then the number of interpretationsof the mahine is in�nite i� pi is an interpretation for some in�nite set ofvalues of i, that is, an in�nite set of useful self-onatenations of a yle isrequired for a mahine to have an in�nite set of interpretations.The proof's last paragraph may remind the reader of the pumping lemmafor regular expressions (see Hoproft et al., 2000, se. 4.1.1, p. 126 or Sipser,



146 CHAPTER 7. FINITE-STATE MACHINES2006, se. 1.4, p. 77) but from a more general perspetive: the pumpinglemma states that regular languages may not be omposed by an in�nitenumber of random sequenes but, at most, by an in�nite number of wordsthat are built by the repeated self-onatenation of some �nite set of ran-dom subsequenes, and our proof states that yles within FSMs my allowfor an in�nite number of interpretations by onseutively repeating the pro-essing assoiated to the yles, whatever the proessing may onsist in.Indeed, some of the mahines we will present in this dissertation are equiv-alent to Turing mahines and, therefore, go beyond regular and ontext-freelanguages.Theorem 5 (Cardinality of the language). The language of a mahine isin�nite i� it ontains at least one useful onsuming yle p and an in�niteset of self-onatenations of p is useful.7.7 Reverse FSMSome of the algorithms presented in this dissertation require to reverselytraverse a FSM, namely: a general minimization algorithm (se. 8.6, p. 174),a FPRTN pruning algorithm (se. 16.1, p. 326) and an algorithm extratingthe top-ranked output represented by a FPRTN (alg. 18.2, p. 346). As for theardinality of the language of FPRTNs, we will de�ne the anonial reverseof a FPRTN as the extension of simpler ases, starting here with the generalde�nition of reverse FSM.De�nition 121 (Reverse transition). Let t be a transition (qs, ξ, qt), we de-�ne tR, the reverse of t, as (qt, ξ, qs)De�nition 122 (Reverse sequene). Let A be a set of elements, a be anelement of A, α and β be two sequenes of zero, one or more elements of Aand ε be the empty sequene, we de�ne αR, the reverse of α, as
αR =

{

ε, α = ε
aβR, α = βa

(7.30)Sine words and paths are sequenes, the same de�nition applies for re-verse words and reverse paths.



7.8. EFFICIENT COMPUTATION OF THE ε-CLOSURE 147De�nition 123 (Reverse path). We de�ne pR, the reverse of a path p, as theresult of reversing the sequene of transitions forming p and then replaingeah transition by its reverse, that is,
p = t0t1 . . . tn i� pR = tRn . . . tR1 tR0 . (7.31)De�nition 124 (LR). Let L(A) = {w0, . . . , wn} be the language of a mahine

A, we de�ne LR(A), the reverse language of A, as {wR
0 , . . . , wR

n }, that is,reversed word wR
i ∈ LR(A) i� wi ∈ L(A).Corollary 5 (Cardinality of LR). Let A be a FSM, the ardinality of LR(A)is equal to the ardinality of L(A)De�nition 125 (Reverse mahine). We say a mahine B is a reverse of amahine A i� L(A) = LR(B).De�nition 126 (Canonial reverse mahine). Let A be a FSM, we de�ne AR,the anonial reverse of A as the result of reversing mahine A by means of apartiular proedure whih is to be de�ned for eah partiular kind of mahine.For all the mahines presented here, their anonial reverses are mahinesof the same kind, exept for FPRTNs: reversing a �ltered-popping reursivetransition network results in a �ltered-pushing reursive transition network.7.8 E�ient omputation of the ε-losureIn this setion we derive from the iterative de�nition of ε-losure (de�ni-tion 4), p. 140) an equivalent and more e�ient de�nition so that at eahiteration we only onsider the ESs from where new ESs may be ε-derived,and reuse previous omputations as far as possible. We will then give analgorithm for the omputation of the ε-losure of any kind of FSM, based onthis de�nitions.De�nition 127 (ε-expansion). We de�ne E(V ), the ε-expansion of a SES

V , as the set of diretly ε-reahable ESs from any ES of V that is not alreadypresent in V :
E : P(X)→ P(X)

E(V ) = D(V )− V (7.32)



148 CHAPTER 7. FINITE-STATE MACHINESLemma 6 (ε-expansion-based ε-losure). Sine the union of sets is delayablew.r.t. the D funtion (theorem 2), the following is an equivalent and moree�ient de�nition of ε-losure, based on suessive ε-expansions:
Cε(V0) = C ′

ε(V0, E(V0)) (7.33)where C ′
ε : P(X)×P(X)→ P(X) is an auxiliary funtion whih is reursivelyde�ned as follows:

C ′
ε(Vi, Ei) =

{

Vi, Ei = ∅
C ′

ε(Vi ∪ Ei, D(Ei)− (Vi ∪Ei)), Ei 6= ∅,
(7.34)being Vi the SES resulting from the i-reursive all to funtion C ′

ε and Ei the
ε-expansion of Vi.As we will see, Ei is eventually to be empty for the ase of �nite ε-losures.Proof. Following the iterative de�nition of ε-losure of lemma 4, we omputethe ε-losure of a SES V0 by generating the suessive Vi suh that eahone ontains V0 plus the ε-reahable states through i ε-transitions, that is,we inrement V0 with the reahable ESs through one ε-transition, two ε-transitions and so on. The new ESs appearing at a SES Vi+2 will ome fromthe ESs that were not formerly onsidered during the omputation of D(Vi);rather than omputing the new ε-reahable ESs at Vi+2 from every state of
Vi+1, we only onsider the states Vi+1 − Vi, that is, the ε-expansion of Vi:

Vi+1 − Vi = (Vi ∪D(Vi))− Vi

= (Vi − Vi) ∪ (D(Vi)− Vi)

= D(Vi)− Vi

= E(Vi).Hene, we an reformulate the ε-losure de�nition as
Cε(V0) = Vm suh that Vi+1 = Vi ∪ E(Vi) (7.35)and m is the smallest k suh that Vi+1 = Vi. If suh k exists, then the ε-losure is �nite (see lemma 5) and its omputation will �nish one the �rstempty ε-expansion is reahed:
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Cε(V ) = Vk : Vk = Vk+1 ⇐⇒ Vk = Vk ∪D(Vk)

⇐⇒ D(Vk) ⊆ Vk

⇐⇒ D(Vk)− Vk = ∅

⇐⇒ E(Vk) = ∅As well, we do not require to ompute at eah iteration i the ε-expansionfrom the whole set Vi but from the previous ε-expansion; let Ei = E(Vi) for
i ≥ 0; it holds that

Ei+1 = E(Vi+1)

= D(Vi+1)− Vi+1

= D(Vi ∪ Ei)− Vi+1

= (D(Vi) ∪D(Ei))− Vi+1

= (D(Vi)− Vi+1) ∪ (D(Ei)− Vi+1)

= (D(Vi)− (Vi ∪D(Vi)) ∪ (D(Ei)− Vi+1)

= D(Ei)− Vi+1

= D(Ei)− (Vi ∪ Ei).Therefore, we an e�iently ompute the ε-losure of V by following theiterative proedure below:
V0 = V

Vi+1 = Vi ∪Eiwhere
E0 = E(V0)

Ei+1 = D(Ei)− Vi+1until reahing an Ek = ∅; by developing the equations of lemma 6 we obtainthis pattern.



150 CHAPTER 7. FINITE-STATE MACHINESAlgorithm 7.1 fsm_eexpansion_elosure(V ) ⊲ Cε(V ), lem. 6Input: V , the SES whose ε-losure is to be omputedOutput: V after omputing its ε-losure1: E = fsm_eexpansion(V )2: while E 6= ∅ do3: V ← V ∪ E4: E ← fsm_eexpansion(E)5: end whileAlgorithm 7.2 fsm_eexpansion(V ) ⊲ E(V ), def. 127Input: V , the SES whose ε-expansion is to be omputedOutput: E, the ε-expansion of V1: for eah xt ∈ D(V ) do2: if xt /∈ V then3: E ← E ∪ xt4: end if5: end forAlgorithm 7.1 fsm_eexpansion_elosure is an implementation of the ε-losure based on ε-expansions (lemma 6), whih uses algorithm 7.2 fsm_-eexpansion in order to ompute the suessive ε-expansions. The implemen-tation of funtion D, whih is used for the omputation of the ε-expansion,depends on the type of mahine.Finally, algorithm 7.3 fsm_interlaed_elosure is a more e�ient proe-dure for the omputation of the ε-losure, also based on ε-expansions. Insteadof omputing the whole ε-expansion at eah iteration and then adding it to
V , it adds new states to V as they are found and it keeps a queue E of unex-plored states that grows with eah new ES found and dereases eah time oneof its ESs is explored; the onstrution of the di�erent ε-expansions is inter-laed with the onstrution of the ε-losure. Algorithm 7.4 add_enqueue_esis a small routine used for adding ε-derived ESs to the SES whose ε-losureis to be omputed. This routine is further used in the algorithm omputingthe ∆ funtion of V (algorithm 7.6 fsm_reognize_symbol) in order to addESs reahed through the onsumption of an input symbol.Notie that the addition of xt to V by means of funtion add in algo-rithm 7.4 add_enqueue_es requires to hek whether the ES already belongsto the SES or not so that the underlying data struture does not represent
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Algorithm 7.3 fsm_interlaed_elosure(V, E) ⊲ Cε(V, E), lem. 6Input: V , the SES whose ε-losure is to be omputed

E, the queue of unexplored ESs ontaining every ES in VOutput: V after omputing its ε-losure
E after emptying it1: while E 6= ∅ do2: xs ← dequeue(E)3: for eah xt ∈ D(xs) do4: add_enqueue_es(V, E, xt)5: end for6: end while

Algorithm 7.4 add_enqueue_es(V, E, xt)Input: V , the SES where the ES is added
E, the queue of unexplored ESs
xt, the target ES to add to VOutput: V after adding the ES

E after enqueuing the ES, if new1: if add(V, xt) then2: enqueue(E, xt)3: end if



152 CHAPTER 7. FINITE-STATE MACHINEStwie the same element. Thus, we are to use set data strutures providinge�ient searh operations, suh as the ones presented in hapter 2. How-ever, if we an ensure that the same element is not going to be added twieduring the whole life of the set, and the order in whih the elements are tobe retrieved is not important, it is preferable to use a data struture thatsari�es dupliity heking, element ordering and, onsequently, ordered el-ement retrieval but provides faster add and retrieval operations: for instanequeues and staks. That is the ase of the set of unexplored ESs E andoperation enqueue in the same algorithm: we want to add to E the elementsthat are new to V , so they are going to be new as well to E, and the orderin whih unexplored ESs in E are explored does not modify the algorithmresult. Funtion add is to return a Boolean indiating whether the elementhas been added or not to the set so that we an safely enqueue elements in E.As well, algorithm 7.3 fsm_interlaed_elosure is not to initialize E withevery ES in V but E is to be built along with V by the algorithm omputing
∆(V ) (algorithm 7.6 fsm_reognize_symbol in the next setion), so that thelatter algorithm an also bene�t from the add-enqueue mehanism.Algorithm 7.3 fsm_interlaed_elosure an be seen as a generalizationof the algorithm presented in van Noord (2000, se. 3.2): while van Noord'salgorithm omputes the ε-losure of a set of states of a FSA, our algorithmomputes the ε-losure of a SES of any kind of FSM. Side by side, the dif-ferenes between both algorithms are:
• van Noord's algorithm marks the states that have been explored, whileour algorithm expliitly uses a queue E of unexplored ESs,
• van Noord's algorithm �rst unmarks every state of the set whose ε-losure is to be added, while our algorithm expets the initial E to bepassed as argument (it will be onstruted along with the set whose

ε-losure is to be omputed),
• van Noord's algorithm adds to the ε-losure every state qt suh that

qt ∈ δ(qs, ε), with qs the unmarked states already in the ε-losure, whilewe add the ESs xt suh that xt ∈ D(xs), with xs the ESs in E.The equations given in this setion, along with the equations given in se-tion 7.6 (p. 132) relative to the ε-losure, verify the algorithm orretness forevery kind of ES and D funtion.



7.9. RECOGNIZING A STRING 1537.9 Reognizing a stringBased on the previous de�nitions, algorithm 7.5 fsm_reognize_string isa generi breadth-�rst algorithm whih omputes the aeptane/rejetionof a given word for a FSM (de�nition 46, p. 121). This algorithm usesalgorithms 7.3 fsm_interlaed_elosure and 7.6 fsm_reognize_symbol forthe omputation of the ε-losure and the ∆ funtion of a SES, respetively.Two small routines are used in order to add an ES to a SES: algorithm 7.4,the same used for the omputation of the ε-losure, and algorithm 7.7, aversion of the former algorithm whih unonditionally adds the ES to theSES. The latter algorithm is to be used whenever it is sure the ES is new sowe an save the onditional jump.Algorithm 7.5 fsm_reognize_string(σ1 . . . σl) ⊲ σ1 . . . σl ∈ L, def. (107)Input: σ1 . . . σl, an input string of length lOutput: r, a Boolean indiating whether the input string belongs to L1: V ← ∅2: E ← ∅3: for eah xs ∈ XI do4: unconditionally_add_enqueue_es(V, E, xs)5: end for6: fsm_interlaced_eclosure(V, E)7: i← 08: while V 6= ∅ ∧ i < l do9: V ← fsm_recognize_symbol(V, E, σi+1)10: i← i + 111: fsm_interlaced_eclosure(V, E)12: end while13: r ← false14: for eah q ∈ V do15: r ← r ∨ q ∈ XF16: end forThis algorithm is a generalization of the breadth-�rst translator algorithmfor RTNs presented in Sastre and Forada (2007, 2009), whih in turn is basedon the algorithm presented in Garrido-Alenda et al. (2002) for the appliationof deterministi augmented letter transduers. It iteratively omputes the
∆∗ funtion: �rst initializes V as the initial SES of the mahine and marks
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Algorithm 7.6 fsm_reognize_symbol(V, E, σ) ⊲ ∆(V, σ), def. (96)Input: V , a SES

E, the empty queue of unexplored ESs
σ, the input symbol to reognizeOutput: W , the set of reahable ESs from V by onsuming σ

E after enqueuing the ESs of W1: W ← ∅2: for eah xt ∈ ∆(V, σ) do3: add_enqueue_es(W, E, xt)4: end for

Algorithm 7.7 unonditionally_add_enqueue_es(V, E, xt)Input: V , the SES where the ES is added
E, the queue of unexplored ESs
xt, the target ES to add to VOutput: V after adding the ES

E after enqueuing the ES, if new1: add(V, xt)2: enqueue(E, xt)



7.9. RECOGNIZING A STRING 155every initial ES as unexplored for the ε-losure omputation, then adds to
V its ε-losure and afterwards performs a sequene of iterations so that foreah one reinitializes V as the set of reahable ESs from the previous Vby onsuming the next input symbol and adds its ε-losure. Eah time anES is to be added, it veri�es if the ES is new and, if so, it marks it asunexplored for the omputation of the ε-losure by enqueuing it into E, thequeue of unexplored ESs. The only exeption is when building the initialSES: sine every initial ES is unique, all of them are unonditionally markedas unexplored. Iterations proeed until every symbol has been onsumedor an empty SES V is reahed. After the omputation of the ε-losure, anempty queue is returned whih is re�lled again when onsuming the nextinput symbol. The algorithm aepts the string if the last omputed Vontains at least one aeptane ES. It is not neessary to expliitly hekwhether the whole input has been onsumed or not: in ase an input symbolannot be onsumed, the iterative proess will be interrupted after building alast empty SES. Sine this algorithm only omputes aeptability, it ould befurther optimized by having a speial last iteration whih would immediatelyreturn true one the �rst aeptane ES is found, avoiding the onstrutionof the whole last SES. The algorithm only requires to store two SESs: theSESs of the urrent and the next iteration, the latter stored as a loal variableduring the evaluation of the expression

V ← fsm_recognize_symbol(V, E, σi+1)).Sine the algorithm performs a breadth-�rst exploration of the mahine,parallel explorations of the mahine will be joined together if they reah thesame ES, avoiding the repeated exploration of ommon paths as happendswith depth-�rst algorithms. Of ourse, if the mahine is determinized (de-terminization is desribed in the next setion) then there will be a uniquepath to be explored for every input string, thus there will not be parallelpaths to be joined; a simplest algorithm just seeking for the onseutive ESsof the path would be more e�ient. However, not every mahine an bedeterminized.In order to adapt these algorithms for any kind of FSM, we need to speifythe following partiularities of the mahine:
• the initial SES XI and how to build it,
• the ∆ funtion or how to traverse a onsuming transition,
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• the D funtion or how to traverse an ε-transition and
• the aeptane SES XF and how to evaluate if an ES x belongs to it.9It must be taken into aount that, sine the algorithm is based in theomputation of the ε-losure, the exeution of this algorithm might fall intoan in�nite loop for the ase of mahines allowing for in�nite ε-losures; foreah kind of mahine, we will study suh ases in order to avoid them.7.9.1 From breadth-�rst to depth-�rstThe same ESs and derivation funtions used for the breadth-�rst appliationof a mahine an be used for its depth-�rst appliation; the di�erene lies inthe order in whih the di�erent ESs are omputed:
• An arbitrary initial ES x is hosen, then the �rst suessively realizabletransitions, starting with the one outgoing from x, are followed until ei-ther an aeptor ES is reahed after onsuming the whole input or untilreahing an ES from where no more suessively realizable transitionsare found.� In the former ase, the input is to be aepted.� In the latter ase, the traversed path is to be walked bak untilthe last reahed ES having some additional realizable outgoingtransition that has not been explored yet, and the same proess isto be repeated from that ES and transition and remaining inputsu�x from that ES.
• If no interpretation starting at x is found, the proess repeats for thenext unexplored initial ESs until either �nding an input interpretationor until no more unexplored initial ESs are left, in whih ase the inputsequene is to be rejeted.As we an see, the depth-�rst exploration stops at the �rst interpretationfound while the breadth-�rst approah explores every realizable path startingat an initial ES by onsuming some input pre�x; the depth-�rst approahwill only explore all those paths for inputs that are to be rejeted. However,9XF might be in�nite; however, the algorithm only requires to implement prediate

x ∈ XF rather than onstruting XF .



7.10. DETERMINIZATION 157the exploration of eah path is performed independently of the others, thusommon subpaths of paths that join at some point will be explored severaltimes. In pratie, this algorithm has been the fastest one. However, we arenot only interested in reognition but in omputing every possible translationof a given input sequene, in whih ase every input interpretation is to beexplored. Depth-�rst translation will be disussed in setion 10.6.1.Algorithm 7.8 fsm_depth_�rst_reognize_string is a possible implemen-tation of the depth-�rst appliation of a FSM. This algorithm simply initial-izes the explorations starting from eah initial ES by alling algorithm 7.9fsm_depth_�rst_reognize_suf�x. This latter algorithm reursively per-forms the searh for the �rst realizable path starting from a given ES xsand aepting a given input su�x σi . . . σl, the �rst alls taking an initial ESand the whole input. If the su�x is empty and xs is an aeptor ES, thealgorithm simply returns true. If the su�x is not empty, the algorithm allsitself for input su�x σi+1 . . . σl and for eah target ES reahable from xs byonsuming σi, until �nding the �rst xs whose right language (de�nition 108,p. 143) inludes σi+1 . . . σl. If suh ES is found, the algorithm returns true.Otherwise, the same proess repeats for the ε-reahable ESs from xs and thesame input su�x σi . . . σl. If neither here suh ES is found, the algorithm�nally returns false.Algorithm 7.8 fsm_depth_�rst_reognize_string(σ1 . . . σl) ⊲
σ1 . . . σl ∈ L, def. 107Input: σ1 . . . σl, an input string of length lOutput: a Boolean indiating whether the input string belongs to L1: for eah x ∈ XI do2: if fsm_depth_first_recognize_suffix(σ1 . . . σl, 1, x) then3: return true4: end if5: end for6: return false7.10 DeterminizationIn general, determinizing a FSM onsists in �nding an equivalent (de�ni-tion 93, p. 135) but deterministi FSM (de�nition 92, p. 135). Determinizing
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Algorithm 7.9 fsm_depth_�rst_reognize_su�x(σ1 . . . σl, i, xs) ⊲
σi . . . σl ∈ LR(xs), def. 108Input: σ1 . . . σl, an input string of length l

i, the index of the �rst su�x symbol
xs, an ES with qs as reahed stateOutput: a Boolean indiating whether su�x σi . . . σl an be reognized from

xs or not1: if i > l ∧ xs ∈ XF then2: return true3: end if4: if i ≤ l then5: for eah xt ∈ ∆({xs}, σi) do6: if fsm_depth_first_recognize_suffix(σ1 . . . σl, i + 1, xt) then7: return true8: end if9: end for10: end if11: for eah xt ∈ D({xs}) do12: if fsm_depth_first_translate_suffix(σ1 . . . σl, i, xt) then13: return true14: end if15: end for16: return false



7.11. MINIMIZATION 159a mahine before its appliation redues the ost of appliation of the mahinesine, instead of having to maintain a SES, only a single ES is to be om-puted for eah input symbol. However, the resulting mahine may be largerthan the original one. De�ning a generi determinization algorithm for anykind of FSM is not feasible sine the de�nition of equivalene depends onthe purpose of the mahine, whih may di�er from mahine to mahine; forinstane, sequene aeptors and sequene translators do not share the samede�nition of equivalene (de�nitions 109 and 163). Even for mahines havingthe same purpose, the same determinization algorithm may involve to om-pute an in�nite mahine. We will �rst study FSA's and then give a generialgorithm that omputes an equivalent FSA for some aeptor mahine. Thedeterminization issues for eah kind of mahine will be disussed in theirrespetive hapters. In partiular, a pseudo-determinization algorithm willbe given for ases in whih �full� determinization is not possible (e.g.: dueto output generation, whih will be disussed in setion 10.7). Apart fromperforming a partial determinization, this algorithm removes ertain kindsof ε-moves and, hene, avoids the possibility of falling into in�nite loops dueto ε-yles.7.11 MinimizationAs for determinization, minimizing a FSM onsists in �nding an equiva-lent but minimal FSM (de�nition 94, p. 135). One a mahine is deter-minized, minimizing it will not aelerate the mahine appliation �the sizeof the SESs to ompute during the mahine appliation will not be furtherredued� but may onsiderably redue the size of the mahine; hene, min-imization may redue both the time and amount of memory required to loadthe mahine. We will give in setion 8.6 (p.174) a minimization algorithmwhih an be seen as an extension of the determinization algorithm (indeed,minimization subsumes determinization). Sine grammars are to be mini-mized only one and then applied several times, we will rather fous on theoptimization of the algorithms of appliation of the mahines rather than onthe optimization of their determinization and minimization algorithms.





Chapter 8Finite-state automataFSAs are equivalent to regular expressions,1 that is, for any FSA there existsa regular expression representing the same (regular) language and vie-versa(Kleene, 1956). FSAs and regular expressions are or have been used for build-ing lexial analyzers as well as for desribing searh patterns and token sets(Hoproft et al., 2000, ses. 2.4 & 3.3, pp. 68 & 108; Revuz, 1992; Daiuket al., 2000; Carraso and Forada, 2002; Daiuk et al., 2005); they notonly allow for desribing �nite sets of words, but also some in�nite sets of se-quenes suh as integer numbers and email addresses (see �gure 8.1). Regularexpressions are more onvenient for desribing simple patterns; the manualonstrution of FSAs is usually more umbersome, either when using somegraphial interfae for drawing them, suh as the ones inluded in the Intex(Silberztein, 2004, hap. 5, p. 49) and Unitex (Paumier, 2008, se. 5.2, p. 90)systems, or by desribing them in some text format, suh as with Graphviz'sdot format (Gansner and North, 2000) or with the VauCanSon-G LATEXpakage (Lombardy and Sakarovith, 2002).2 Additionally, applying a FSA ismore straightforward than applying its equivalent regular expression, heneregular expressions are usually transformed into their equivalent FSAs fortheir appliation: FSAs are proedural while regular expressions are delar-ative.We present here letter FSAs as the simplest ase of FSM. We give thebasis for the de�nitions, properties and proofs of the mahines presented inthe following hapters. More extensive material on letter FSAs and regular1A desription of regular expressions an be found in Hoproft et al. (2000, se. 3,p. 83) or in Sipser (2006, se. 1.3, p. 63).2Graphviz homepage: http://www.graphviz.org161

http://www.graphviz.org


162 CHAPTER 8. FINITE-STATE AUTOMATA[_A-Za-z0-9-℄+(\.[_A-Za-z0-9-℄+)*�[A-Za-z0-9℄+(\.[A-Za-z0-9℄+)*\.[A-Za-z℄[A-Za-z℄(a)
q0 q1 q2 q3 q4 q5 q6

_A-Za-z0-9-\.
_A-Za-z0-9- � A-Za-z0-9\.

A-Za-z0-9 \. A-Za-z A-Za-z(b)Figure 8.1: (a) Unix regular expression (see Hoproft et al., 2000, se. 3.3, p. 108)and (b) FSA mathing any email address; additional transitions for the same sourean target states have been omitted, leaving a set of staked labels, and labels ofthe form `X-Y' represent any harater between X and Y, both inluded.expressions an be found in Hoproft et al. (2000, hap. 2�3) and Sipser(2006, hap. 1).De�nition 128 (FSA). A FSA (Q, Σ, δ, QI , F ) is a speial type of FSM(de�nition 46, p. 121) whose set of labels Ξ takes its elements from Σ∪ {ε},where Σ is a �nite input alphabet and ε is the empty symbol.8.1 TransitionsDe�nition 129 (Consuming transition). Following de�nitions 51 and 52,transitions in Q×Σ×Q, that is, whih onsume and input symbol, are alledpure onsuming transitions or simply onsuming transitions.De�nition 130 (ε-transition). Following de�nitions 53 and 54, transitionsin Q × {ε} × Q, that is, whih do not onsume input, are alled pure ε-transitions or simply ε-transitions.8.2 BehaviourDe�nition 131 (Exeution state). The ESs of a FSA are states in Q.



8.2. BEHAVIOUR 163The realization of FSA transitions falls into the FSM general ategories ofpure onsuming transitions and pure ε-transitions (see de�nitions 87 and 88).De�nition 132 (∆). The ∆ funtion for FSAs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = qs,
• xt = qt, and
• d = qt ∈ δ(qs, σ).De�nition 133 (D). The D funtion for FSAs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = qs,
• xt = qt, and
• d = qt ∈ δ(qs, ε).Lemma 7 (Finite ε-losure). Given the iterative de�nition of ε-losure oflemma 4 (p. 140) adapted for FSAs, there exists a �nite number n ≤ |Q| sothat Vn = Vn+1. Therefore, the ε-losure omputation an be redued to a�nite union of sets

Cε(V0) = Vn suh that Vi+1 = Vi ∪D(Vi), i = 0 . . . n, (8.1)following lemma 5 (p. 140).Proof. Let us suppose that Vi+1 6= Vi for all i ≥ 0, that is, there is no�nite number n so that Vn = Vn+1. Sine Vi+1 = Vi ∪ D(Vi), it holds that
Vi ⊂ Vi+1 and that Vi+1 − Vi 6= ∅; therefore |V0| − |V1| ≥ 1, |V0| − |V2| ≥
2, . . . , |V0| − |V∞| = ∞. However, sine FSAs have a �nite number of statesand Vi ⊆ Q for i ≥ 0, Vi must be also �nite for i > 0. Consequently, theremust be a �nite number n ≤ |Q| suh that Vn = Vn+1, where Vn ontains atmost every state of Q.De�nition 134 (Initial and aeptane SESs). The initial and aeptaneSESs of a FSA are its initial and aeptane sets of states QI and F , respe-tively.



164 CHAPTER 8. FINITE-STATE AUTOMATADe�nition 135 (Exeution mahine). The exeution mahine of a FSA A isde�ned as for the generi exeution mahine (de�nition 105, p. 141) withoutany other kind of transitions than pure onsuming transitions and pure ε-transitions; sine ESs of a FSA are FSA states, the exeution mahine of Ais A itself.De�nition 136 (L). Following de�nition 107 (p. 142), we de�ne L(A), thelanguage aepted by a FSA A, as
L(A) = {w ∈ Σ∗ : ∆∗(QI , w) ∩ F 6= ∅}. (8.2)Lemma 8 (Self-onatenation usefulness). If a yle p inside a FSA is useful,then pn is also useful for n ≥ 0.Proof. Given an interpretation p = papbpc suh that pb is a yle, pi = pap

i
bpcfor i ≥ 0 is an in�nite family of interpretations sine pi is a path within theFSA (pa is onneted to pc and to pi

b for i > 0, and pi
b is onneted to pc for

i > 0), every FSA path is realizable and the start and end states of pi areinitial and �nal, respetively, as for path p.As for the ase of FSMs, this proof is related to the pumping lemma forregular expressions (see paragraph after proof of theorem 6, p. 164).Theorem 6 (Cardinality of the interpretation set). Given theorem 4 (p. 145)and the previous lemma, the number of interpretations within a FSA is in�-nite i� it ontains at least a useful yle.Theorem 7 (Cardinality of the language). Given lemma 8 and theorem 5(p. 146), the language of a FSA is in�nite i� it ontains at least a usefulonsuming yle.8.3 Reverse FSADe�nition 137 (Reverse FSA). Let A be a FSA (Q, Σ, δ, QI , F ), we de�ne
AR, the anonial reverse of A, as the FSA (Q, Σ, δ′, Q′

I , F
′) with

• qt ∈ δ′(qs, σ) i� qs ∈ δ(qt, σ)

• qt ∈ δ′(qs, ε) i� qs ∈ δ(qt, ε)

• Q′
I = F , and
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• F ′ = QI .Our de�nition of reverse FSA is similar to that in Hoproft et al. (2000,se. 4.2, p. 137); as main di�erene, Hoproft et al. require to add an ad-ditional state to the reverse mahine that will serve as initial state. Addi-tionally, a set of ε-transitions outgoing from that state towards the aeptorstates of the original mahine is to be added in order to simulate multipleinitial states. We do not need suh additional state and transitions sine ourde�nition of FSA is symmetri: we simply allow for multiple initial states aswell as for multiple aeptor states, hene we only require to swap the setsof initial and aeptor states of the original mahine.Lemma 9 (Reverse FSA). Let A be a FSA, AR is a reverse of A.Proof. If w = σ1σ2 . . . σl ∈ L(A) then there exists at least one �nite path

p = p0 (q0, σ1, r1) p1 (q1, σ2, r2) p2 . . . (ql−1, σl, rl) pl (8.3)where
• qj and rj are states in Q, for j = 0 . . . l,
• pj is a �nite and non-empty ε-path having rj and qj as start and endstates, respetively, or is the empty path and rj = qj ,
• r0 ∈ QI , and
• ql ∈ F .Consequently, the �nite path

pR = pR
l (rl, σl, ql−1) . . . pR

2 (r2, σ2, q1) pR
1 (r1, σ1, q0) pR

0 (8.4)belongs to AR, where
• pR

j is a �nite and non-empty ε-path having qj and rj as start and endstates, respetively, or is the empty path and qj = rj ,
• ql ∈ QI , and
• r0 ∈ F .Therefore, word σl . . . σ2σ1 = wR ∈ L(AR). If w /∈ L(A) then there isno suh path p within A, hene neither there is a path pR within AR and,onsequently, wR /∈ L(AR).



166 CHAPTER 8. FINITE-STATE AUTOMATA8.4 Reognizing a stringThe base breadth-�rst and depth-�rst aeptor algorithms 7.5 and 7.8 forFSMs an be straightforwardly adapted for FSAs as explained in setion 7.9(p. 153).8.5 Determinization of aeptors into FSAsWe present here a generi algorithm for the determinization of any kind ofaeptor FSM whih tries to ompute an equivalent but deterministi FSA,whenever possible. This algorithm is a generalization of the FSA deter-minization desribed in Hoproft et al. (2000, se. 2.3.5, p. 60) or in Sipser(2006, p. 54) (the former onsidering only FSAs without ε-moves and the lat-ter onsidering FSAs with and without ε-moves), and will be the base of thedeterminization algorithms for all the mahines presented in this dissertation.Determinization (into FSAs) and appliation of sequene aeptors aresimilar problems, though determinization is more omplex. Computing anequivalent and deterministi FSA an be viewed as applying a mahine notjust for a single input but for every input sequene the mahine an onsume�leading to the exploration of every realizable path within the mahine�and building an equivalent FSA so that for eah set of reahable ESs by on-suming a given input the new mahine de�nes a unique state; that is, multipleESs for every possible input sequene the mahine an onsume are preom-puted and replaed by single FSA states. One the mahine is determinized,reognizing an input is redued to searhing for a single target state for eahinput symbol to onsume rather than maintaining several parallel searhes.The omputation of the ε-losure is no longer required sine ε-moves are re-moved during the determinization proess. Appliation algorithms an behighly simpli�ed for the ase of deterministi mahines, though we still needthe original algorithms for the ase of non-determinizable mahines.Theorem 8 (Equivalent deterministi aeptor). Given a non-deterministipure aeptor A having
• Σ as its input alphabet,
• X as domain of its ESs,
• XI ∈ X as initial SES,
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• XF ∈ X as aeptor SES,
• ∆ : P(X) × Σ → P(X) as its onsuming transition funtion on SESsand
• Cε : P(X)→ P(X) as its ε-losure transition funtion on SESs,3the following is a desription of an equivalent and deterministi �nite- orin�nite-state automata A′ = (Q′, Σ, δ′, Q′

I , F ′), depending on whether theexeution of A for any input sequene produes �nite or in�nite sets of ESsand transitions:
• Q′ ⊆ P(X),4
• V0 = Cε(XI),
• Q′

I =

{

{V0} V0 6= ∅
∅ V0 = ∅

• if V0 6= ∅ then V0 ∈ Q′ (by de�nition of FSM, def. 46, p. 121),
• if Vs ∈ Q′ and Vt = Cε(∆(Vs, σ)) 6= ∅ then Vt ∈ Q′ and δ′(Vs, σ) = Vt,and
• F ′ = {Vf ∈ Q′ : Vf ∩XF 6= ∅}.Proof. Let A and A′ be two aeptors as the ones desribed in the theoremand w = σ1 . . . σl be a sequene suh that there exists at least one path within

A onsuming it. The appliation of A to this sequene yields the followingsequene of non-empty SESs:
V0 = Cε(XI) (8.5)
V1 = Cε(∆(V0, σ1)) (8.6)
V2 = Cε(∆(V1, σ2)) (8.7)... (8.8)
Vl = Cε(∆(Vl−1, σl)) (8.9)3Examples of mahines following this desription are letter FSAs in this hapter, letterRTNs in hapter 12 and letter FPRTNs in hapter 15.4As stated in Hoproft et al. (2000, p. 61, 3rd prg.), not every multiple ES in P(X)may be reahable from {XI}, hene Q′ does not need to ontain every multiple ES in

P(X). Indeed, the determinization algorithm must disard those unreahable states if itis to be used as part of the minimization algorithm à la van de Snepsheut (1985).



168 CHAPTER 8. FINITE-STATE AUTOMATABy onstrution, A′ ontains a path
p = V0

σ1−→ V1
σ2−→ V2 . . .

σ1−→ Vl. (8.10)If A aepts w then Vl ontains at least one ES in XF and, therefore, Vl ∈ F ′.Sine V0 is the initial state of A′ and p is omposed only by pure onsumingtransitions, p is realizable and is an interpretation of w withinA′. If w /∈ L(A)then Vl ontains no aeptane ES and, therefore, path p exists within A′ butis not an interpretation.Up to here, we have proved that w ∈ L(A) implies w ∈ L(A′) and thatfor every family of paths within A onsuming a sequene w there exists aunique path within A′ onsuming it. Let us suppose that A′ aepts someadditional sequene not in A. If so, there must exist some interpretation ofsuh sequene within A′. Sine paths are added to A′ by omputing the SESsreahable from V0, this interpretation must be equal to the onatenation ofsome sequene of subpaths of some of the added paths that share one or moreSES. Let w and w′ be two sequenes of the form
w = σ1 . . . σjσj+1 . . . σl and (8.11)
w′ = σ′

1 . . . σ′
kσ

′
k+1 . . . σ′

m. (8.12)If both sequenes are aepted by A, then they are also aepted by A′ andthe appliation of A to these sequenes generates the following sequene ofSESs:
V0 = Cε(XI) V ′

0 = Cε(XI)
V1 = Cε(∆(V0), σ1) V ′

1 = Cε(∆(V ′
0), σ

′
1)... ...

Vj = Cε(∆(Vj−1, σj)) V ′
k = Cε(∆(V ′

k−1, σ
′
k))

Vj+1 = Cε(∆(Vj, σj+1)) V ′
k+1 = Cε(∆(V ′

k , σ
′
k+1))... ...

Vl = Cε(∆(Vl−1, σl)) V ′
m = Cε(∆(V ′

m−1, σ
′
m)).

(8.13)
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k , then the following sequenes of SESs are also possible:

V0 = Cε(XI) V ′
0 = Cε(XI)

V1 = Cε(∆(V0), σ1) V ′
1 = Cε(∆(V ′

0), σ
′
1)... ...

Vj = Cε(∆(Vj−1, σj)) V ′
k = Cε(∆(V ′

k−1, σ
′
k))

V ′
k+1 = Cε(∆(Vj, σ

′
k+1)) Vj+1 = Cε(∆(V ′

k , σj+1))... ...
V ′

m = Cε(∆(V ′
m−1, σ

′
m)) Vl = Cε(∆(Vl−1, σl)).

(8.14)
Therefore, sequenes

σ1 . . . σ′
jσ

′
k+1 . . . σ′

m and (8.15)
σ′

1 . . . σ′
kσj+1 . . . σl (8.16)are also aepted by both A and A′. The same reasoning an be extended forsequenes whose interpretations are omposed by more than two fragmentsof subpaths of two or more interpretations.Sine the languages of A and A′ are equal, and every path within Aonsuming a sequene w is ondensed into a unique path within A′, A′ is adeterministi mahine equivalent to A.Following this desription, algorithm 8.1 fsm_determinize is a generideterminization algorithm for aeptor mahines. The algorithm an beadapted for any kind of aeptor mahine by replaing X, XI , XF , ∆ and Cεby their partiular de�nitions. The algorithm tries to transform some kind ofaeptor mahine A into a deterministi FSA A′ = (Q′, Σ, δ, QI , F ). It buildsthe di�erent multiple ESs of A and uses algorithm 8.3 fsm_reate_state forreating a single state in A′ for eah one, keeping a map ζm of multiple ESsto single FSA states. The initial steps of the algorithm perform the followingoperations:

• initializes A′ as the empty FSA,
• if XI is empty, return A′ as is or, otherwise, proeed,
• builds Vt as the initial SES XI and Et as the orresponding queue for

ε-losure omputation,
• extends Vt with its ε-losure,



170 CHAPTER 8. FINITE-STATE AUTOMATA
• reate the initial state rt of A′,
• map Vt to rt,
• initialize Vm, the set of every omputed SES, as {Vt}, and
• initialize Em, the queue of unexplored SES orresponding to Vt.The rest of the algorithm works in a similar fashion than algorithm 7.3 fsm_-interlaed_elosure: while there are SESs Vs to explore within Em, dequeuethe next one, ompute the reahable SESs Vt from Vs and add them to Vmand, if not already present, enqueue them into Em as well. Step by step, theloop iteration performs the following operations:
• dequeue the next unexplored Vs,
• retrieve rs, the state of A′ orresponding to Vs,
• all algorithm 8.2 fsm_reognize_every_symbol in order to build fun-tions ζt and ζe, the former mapping symbols σ ∈ Σ to target SESs Vtsuh that Vt = Cε(∆(Vs, σ)), and the latter mapping the input symbolsto the orresponding queues for ε-losure omputation,5
• for eah input symbol that has been mapped to a non-empty SES Vt,� retrieve Vt,� retrieve its orresponding queue,� extend Vt with its ε-losure,� add the resulting Vt to Vm and, if not already present, enqueue Vtinto Em as well, reate the orresponding state rt ∈ A′ and map

Vt to rt,� otherwise, retrieve the state rt ∈ A′ orresponding to Vt and,� �nally, add transition (rs, σ, rt) to A′.The algorithm is not appliable for ases in whih the number of ESs tobe explored is in�nite. It is appliable for any FSA sine FSA ESs are states5In pratie we implement a single map returning both the set and queue instead ofhaving to searh inside two separate maps for eah objet.
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Algorithm 8.1 fsm_determinize(A) ⊲ theorem 8Input: A, an aeptor having Σ as input alphabet, X as ES domain, XI asinitial SES, XF as aeptor SES, ∆ as onsuming transition funtion onSESs and Cε as ε-losure funtion on SES,Output: A′ = (Q′, Σ, δ′, Q′

I , F
′), a deterministi FSA equivalent to A1: initialize A′ as the empty FSA on alphabet Σ2: if XI 6= ∅ then3: Vt ← XI4: Et ← XI5: Vt ← fsm_interlaced_eclosure(Vt, Et)6: rt ← fsm_create_state(true, Vt ∩XF 6= ∅)7: ζm(Vt)← rt8: Vm ← {Vt}9: Em ← {Vt}10: while (Em 6= ∅) do11: Vs ← dequeue(Em)12: rs ← ζm(Vs)13: (ζt, ζe)← fsm_recognize_every_symbol(Vs)14: for eah σ : ζt(σ) /∈ {⊥, ∅} do15: Vt ← ζt(σ)16: Et ← ζe(σ)17: Vt ← fsm_interlaced_eclosure(Vt, Et)18: if add(Vm, Vt, ) then19: enqueue(Em, Vt)20: rt ← fsm_create_state(false, Vt ∩XF )21: ζm(Vt)← rt22: else23: rt ← ζm(Vt)24: end if25: δ′(rs, σ)← {rt}26: end for27: end while28: end if
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Algorithm 8.2 fsm_reognize_every_symbol(Vs)Input: Vs, a soure SESOutput: ζt : Σ → P(Q), a map of input symbols to target SESs suh that

ζt(σ) = ∆(Vs, σ)
ζe, a map of input symbols to queues of ESs orresponding to theSESs of ζt for ε-losure omputation1: ζt ← ∅2: ζe ← ∅3: for eah (xt, σ) : xt ∈ ∆(Vs, σ) do4: add_enqueue_es(ζt(σ), ζe(σ), xt)5: end for

Algorithm 8.3 fsm_reate_state(is_initial, is_final)Input: is_initial, future value of prediate r ∈ Q′
I

is_final, future value of prediate r ∈ F ′Output: r, the new FSM state1: r ← new_state(Q′)2: add(Q′, r)3: if is_initial then4: add(Q′
I , r)5: end if6: if is_final then7: add(F ′, r)8: end if



8.5. DETERMINIZATION OF ACCEPTORS INTO FSAS 173in Q, whih is a �nite set. The other ases are disussed in their respetivesetions.Determinization of lexial aeptors is slightly more omplex: let t =
(qs, ξ, qt) and t′ = (qs, ξ

′, q′t) be two transitions of an aeptor A suh that
ξ 6= ξ′, for the ase of letter aeptors the realization of t and t′ is exlusive(the input symbol is either ξ, ξ′ or none of them), while for the ase of lexialaeptors this is not neessarily true; for instane, let

ξ = <V:1>, and (8.17)
ξ′ = <V:p>, (8.18)any verb in both �rst person and plural will math both masks. Eah setof outgoing transitions from the same state must be replaed by a set ofequivalent transitions whose realizations are exlusive. For instane, let theformer transitions t and t′ be the only ones outgoing from qs and having theformer de�ned lexial masks ξ and ξ′, we �rst ompute their orrespondingintersetion and di�erenes:
ξ ∧ ξ′ = <V:1p> (8.19)

ξ ∧ ¬ξ′ = <V:1s> (8.20)
¬ξ ∧ ξ′ = <V:2p:3p> (8.21)Then, we replae t and t′ by the following transitions:

(qs,<V:1p>, qt) (8.22)
(qs,<V:1p>, q′t) (8.23)
(qs,<V:1s>, qt) (8.24)
(qs,<V:2p:3p>, qt) (8.25)This proedure requires the lexial mask formalism to be losed under theintersetion and the di�erene, whih is not the ase of the lexial masksformalism of the Intex and Unitex systems or that of hapter 6: the di�er-ene of two lexial masks may result in a subset of tokens that annot berepresented by any lexial mask of those formalisms. Blan (2006, se. 2.5,p. 29) gives an alternate and losed de�nition of lexial masks, along with thealgorithms for the omputation of the intersetion and the di�erene. As wewill explain in the next hapter (se. 10.7, p. 200), we have hosen a simplerdeterminization method whih simply onsists in regarding any transition



174 CHAPTER 8. FINITE-STATE AUTOMATAlabel as a letter, inluding ε-moves based on mandatory or forbidden blank
ε-prediates, hene the proedure applies to both letter and lexial mahines.As drawbak, suh determinization method may not (and usually will not)result in a �totally� deterministi mahine due to non-exlusive lexial masksof transitions outgoing from the same state. However, it must be taken intoaount that some mahines annot be �totally� determinized but, at least,this �partial� determinization will remove ertain kinds of ε-moves whih maylead to in�nite loops when applying the mahines. More information on de-terminization of lexial FSAs and FSAs with prediates, in general, an befound in Blan (2006, se. 2.6, p. 37) and van Noord (2000, se. 2, p. 5),respetively.8.6 MinimizationFollowing van de Snepsheut (1985, se. 3.1, p. 67), minimizing a FSA Aan be ahieved by performing the following sequene of operations to A:reverse, determinize, reverse and determinize again. In pratie, eah statestruture stores its outgoing transitions as a map of input symbols to targetstates. The mahine is �rst to be reversed, replaing the maps of outgoingtransitions by maps of inoming transitions and swapping the initial andaeptane sets of states. The following determinize and reverse operationsan be ondensed into a single algorithm; it su�es to perform the followingmodi�ations to algorithm 8.1 fsm_determinize:
• swap both arguments of alls to fsm_reate_state, that is, reate initialstates of A′ as aeptor states and vie-versa, and
• replae δ′(rs, σ) ∈ {rt} by δ′(rt, σ) ∈ {rs}, that is, add the transitionsreversed.Finally the unmodi�ed determinization algorithm is to be applied. Notethat just applying twie the determinize-reverse operation may not yield adeterministi FSA: the last determinization must be performed to the non-reversed mahine in order to make sure that the resulting mahine will have aunique initial state (otherwise, the resulting FSA will have a single aeptanestate but, possibly, several initial states). The same minimization algorithmapplies for the rest of the mahines but using the determinization algorithmproposed for eah one; therefore, no further details on minimization will



8.6. MINIMIZATION 175be neessary. We will not go into further details sine the main subjetof this dissertation is the optimization of the algorithms of appliation ofloal grammars rather than their minimization algorithms: we only requireto minimize a grammar one time before its appliation, while the algorithmsof appliation are to be exeuted one for eah sentene. We onlude thehapter with an example of minimization à la van de Snepsheut of a lexialFSA (�gure 8.2).
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%sms %\⊔ %#%<NB> %\⊔ %<TOKEN>%<TOKEN>(d)Figure 8.2: Minimization à la van de Snepsheut of a FSA reognizing SMSommand requests, regarding lexial masks and ε-prediates as letters; from topto bottom, (a) original FSA, (b) reversed FSA, () reversed-determinized-reversedFSA and (d) reversed-determinized-reversed-determinized FSA.



Chapter 9TriesRetrieval trees (Fredkin, 1960), or tries, are a speial kind of FSAs whihhave been ommonly used for the representation of ditionaries or �nite setsof words. This partiular appliation, along with alternative data stru-tures, has been desribed in hapter 4. In this hapter, we will �rst givea formal de�nition of trie and then present a new appliation of this datastruture: the optimization of the algorithms of appliation of FSMs usingstring-like data.1 We have given a brief desription of this optimization inSastre and Forada (2009, se. 4.1). Experimental results for eah appliablealgorithm will be given in hapter 20; these results show speedups up to 30%.Greater speedups might be obtained by using ternary searh trees (Bentleyand Sedgewik, 1997) instead of tries, though desribing and implementingthis optimization by means of tries is more straightforward. We leave theadaptation of this material for the ase of ternary searh trees to a futurework.De�nition 138 (Trie). Given a �nite set of strings S ∈ Σ∗, we de�ne thetrie representing S as the FSA (Q, Σ, δ, qε, F ) suh that
• Q ontains a state qα for eah pre�x α of eah string in S,
• δ(qα, σ) = qασ i� ασ is a pre�x of some string in S, and
• F = {qα ∈ Q : α ∈ S}.1By �string-like� we mean any data struture onsisting of an empty sequene of ele-ments or a non-empty sequene of elements that an be built by appending elements tothe empty sequene. 177
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qε

qa qb qf qi qo qt
qag qat qby qfo qin qof qon qou qto
qago qfor qo� qout

a b f i o t
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Figure 9.1: Trie representing the set of words {`ago', `at', `by', `for', `in', `of',`o�', `on', `out', `to'}.For the sake of simpliity, we de�ne tries with a single initial state qε insteadof a set of initial states QI = {qε}, an with a transition funtion returningsingle states qασ instead of sets of states {qασ}.By onstrution, a trie aepts only the strings in S, is trimmed (de�ni-tion 118, p. 144), is deterministi (see de�nition 92) and has no yles sineinterpretations share only the subpaths onsuming their ommon pre�xes.(see �gure 9).9.1 Optimizing string proessing with triesMost of the algorithms of appliation of FSMs that we will present throughtthis dissertation build SESs whose ESs have one or more string-like ompo-nents, namely partial outputs and staks of states. During the initializationstage of these algorithms, a �rst SES V0 is built ontaining the ESs in some
XI . The string-like omponents of these ESs are empty sequenes in all ases.Then, V0 is extended with its ε-losure and a loop onsuming the input sym-bols starts: for eah input symbol, a new SES Vi+1 is derived from Vi andextended with its ε-losure. In all ases, let β be a string-like omponent



9.1. OPTIMIZING STRING PROCESSING WITH TRIES 179of an ES xt that is to be derived from an ES xs, β is built from the or-responding string-like omponent α of xs by either opying α, opying onlysome pre�x of α or opying a pre�x of α and then appending some su�x.One xt is built, it is to be added to a SES, whih implies to ompare β withthe orresponding string-like omponents of the ESs already in the SES inorder to avoid for dupliates, as explained in hapter 2. The ost of all theseoperations is proportional to the length of β.Sine there exists a bijetive orrespondene between trie states andstrings (aeptor state qα aepts string α and no other string), we an repre-sent string-like omponents α and β as pointers to states qα and qβ of a trie,respetively; string opies and omparisons will be then redued to pointeropies and omparisons, taking a onstant time (a single lok yle in mostases). In ase β is not a simple opy of α but some su�x is also to be addedto or removed from α, we simply follow the pointer towards qα and traverseor reate the trie path orresponding to that su�x in order to retrieve pointerto qβ , hene saving the ost of either opying the unmodi�ed pre�x of α ortraversing the trie path orresponding to that pre�x. Tries aepting onlythe empty sequene are initially built for eah kind of string-like omponent,and new paths are added to the tries as new su�xes are to be appended tothe already aepted sequenes. Eah string-like omponent β is built froma previously built string-like omponent α as follows:1. if β = α then pointer to qα is simply opied,2. if β = ασ then transition t = (qα, σ, qβ) is followed in order to retrievethe pointer to qβ, previously adding t and qβ to the trie if not alreadypresent (see algorithm 9.1),Algorithm 9.1 onat_trie_string_and_symbol(qα, σ)Input: qα, the trie state orresponding to string α
σ, a trie input symbolOutput: qασ, the trie state orresponding to string ασ1: qασ ← δ(qα, σ)2: if qασ =⊥ then3: qασ ← fsm_create_state(false, true)4: δ(qα, σ)← qασ5: end if



180 CHAPTER 9. TRIESAlgorithm 9.2 onat_trie_string_and_string(qα, β)Input: qα, the trie state orresponding to string α
β = σ1 . . . σl, the string to onatenate to qαOutput: qαβ, the trie state orresponding to string αβ1: qαβ ← qα2: i← 13: while i 6= l + 1 ∧ (qα ← δ(qαβ, σi)) 6=⊥ do4: qαβ ← qα5: i← i + 16: end while7: while i 6= l + 1 do8: qα ← qαβ9: qαβ ← fsm_create_state(false, true)10: δ(qα, σi)← qαβ11: i← i + 112: end while3. if β = ασ1 . . . σl then we explore the already present trie path

qα
σ1−→ qασ1

σ2−→ . . .
σj

−→ qασj
, (9.1)then onstrut path

qασj

ασj+1

−−−→ qασj+1

ασj+2

−−−→ . . .
ασl−−→ qασl

(9.2)and �nally return pointer to qασ1...σl
(see algorithm 9.2), and4. if βσ = α then pointer to qβ is retrieved by reversely following transi-tion (qβ , σ, qα), operation that an be e�iently performed if the datastruture representing qα stores a pointer to qβ.Obviously, the �rst and last ases have a onstant time. Appending asymbol σ to a string α represented by a trie state qα mainly requires a binarysearh within the map of symbols to target states diretly reahable from qα.As seen in hapter 2, this searh has a logarithmi ost w.r.t. the number ofoutgoing transitions from qα. Appending a string σ1 . . . σl requires to perform

j binary searhes, where j is the greatest natural number suh that the trieontains a path orresponding to σ1 . . . σj , and then l− j additions of a stateand a transition to the trie, eah one having a onstant time.



9.2. EXTRACTING STRINGS FROM TRIES 181For the ase of ditionary representation, aeptane �ags of trie states areused for distinguishing between omplete words and mere pre�xes; however,this distintion is not needed for the optimization of string management bymeans of tries: the set of strings orresponding to the whole onsumption ofthe input will be given by the pointers to trie states within the ESs aeptingthe whole input. Sine we have de�ned tries as FSAs, the onatenationalgorithms always set these �ags to true, just to give some value. In pratie,we simply do not use any aeptane �ags.9.2 Extrating strings from triesDepending on the algorithm of appliation of FSMs, some string-like om-ponents of the ESs aepting the input are to be given as result, namelythe output sequenes generated by algorithms of appliation of FSMs withletter output (to be seen in hapter 11). Other string-like omponents areonly required for the implementation of derivation mehanisms, namely thestaks of return states onstruted by some algorithms of appliation of FSMswith reursive alls (to be seen in hapters 12�14). These omponents anbe simply thrown away along with their respetive tries one the algorithmexeution ends. In ase the sequenes to return are to be represented asarrays instead of pointers to trie nodes, a further proessing is neessary inorder to generate the orresponding trie strings. Of ourse, if the stringsrepresented by every state of the trie were to be returned, it would be betterto use normal strings sine the beginning, but this will not be the ase: onlythose sequenes orresponding to the onsumption of the whole input areto be returned. Rather than generating the language of the trie, the lastomputed SES is to be traversed in order to searh for the aeptor ESs, andthe pointers within these ESs representing the strings to extrat are to befollowed in order to explore only the relevant trie paths. As long as the num-ber of sequenes to extrat is small enough w.r.t. the number of sequenesrepresented by the trie, the optimization will worth the e�ort.By de�nition, every trie state has a unique inoming transition exept for
qε, whih has none. Therefore, the symbols of a string α represented by apointer to a trie state qα an be retrieved in reverse order by following thepointer and then by reversely following eah inoming transition up to state
qε (see �gure 9, p. 178). Retrieving α instead of αR is slightly more om-plex. Algorithm 9.3 reursive_retrieve_trie_string implements a possible



182 CHAPTER 9. TRIESsolution based on reursivity. The algorithm takes a state qα and a ounterof traversed inoming transitions i, having 0 as default value, and returns anarray a ontaining α and a natural number j equal to |α|. Counter i an alsobe seen as the index of this reursive all, starting with 0. As long as qσ 6= qε,the algorithm alls itself with the soure state of the transition inoming to
qα and i + 1 as ounter. During the all in whih qε is reahed, i is equal to
|α|. At this point, an array a of length i is initialized and returned, alongwith the value of i. The array is then �lled with the symbols of α in diretorder, one symbol after eah return from a reursive all: let σ be the lastsymbol of the string represented by the state qα during reursive all withindex i, σ is to be assigned to a[j − i− 1], the `mirror' position of i within a.Summarizing, the algorithm traverses the path from qε up to qα in reverseorder in order to ompute the length of α, then initializes array a and �lls itin diret order by taking its steps bak.Algorithm 9.3 reursive_retrieve_trie_string(qα, i = 0)Input: qα, the trie state whose string α is to be retrieved

i, the string length ounter having 0 as default valueOutput: a, an array of input symbols storing α
j, the �nal string length1: if ∃(qβ, σ) : δ(qβ , σ) = qα then2: (a, j)← recursive_retrieve_trie_string(qβ , i + 1)3: a[j − i− 1]← σ ⊲ �rst bu�er index is 04: else5: a← create_array(i)6: j ← i7: end ifFinally, a simpler solution ould be implemented if α's length ould beretrieved by simply following the pointer to qα; we extend the data struturerepresenting eah state qα within the trie with a �eld storing qα's depth, thatis, the length of the path starting at qε and ending at qα. Sine tries have onlypure onsuming transitions, qα's depth is equal to |α|. Upon the initializationof a trie, the depth of its initial state is set to zero. Algorithms 9.1 onat_-trie_string_and_symbol and 9.2 onat_trie_string_and_string are modi-�ed so that, eah time a new state qβ is reated with an inoming transition

δ(qα, σ), qβ's depth is set to qα's plus one. Construting an array a ontaininga string α an then be done with a single traversal, as illustrated in algo-



9.3. A NOT-SO-EFFICIENT CONCATENATION CASE 183rithm 9.4 retrieve_trie_string : array a is �rst initialized with a length equalto the depth of qα, and then a loop �lls the array from the last position upto the �rst one while reversely following eah inoming transition.Algorithm 9.4 retrieve_trie_string(qα)Input: qα, the trie state whose string is to be retrievedOutput: a, an array storing α
j, the �nal string length1: a← create_array(depth(qα))2: for i = depth(qα)− 1 to 0 step −1 do ⊲ �rst bu�er index is 03: a[i]← σ : δ(qβ , σ) = qα4: qα ← qβ : δ(qβ, σ) = qα5: end for9.3 A not-so-e�ient onatenation aseAs we will see, some of the algorithms of appliation of FSMs generatingletter sequenes require an additional onatenation ase: appending a triestring β to another trie string α (e.g.: in �gure 9, p. 178, appending qto to

qin in order to obtain qinto). In this ase, knowing qβ 's depth will not avoidthe hassle of traversing bakwards and then forward the path from qε to
qβ : this path is to be appended to the path orresponding to α in diretorder. Algorithm 9.5 onat_trie_strings performs this operation, based onalgorithm 9.3 reursive_retrieve_trie_string : it reursively alls itself withthe states before qβ up to reahing qε, then either explores or reates a pathanalogous to the path from qε up to qβ in diret order, starting from qα; afterreturning from eah reursive all, algorithm 9.1 onat_trie_string_and_-symbol is alled in order to either reah the next state or to reate it alongwith its inoming transition, if not already present. In pratie, performanehas dropped for the ase of algorithms using this kind of onatenation.
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Algorithm 9.5 onat_trie_strings(qα, qβ)Input: qα, the trie state orresponding to a string α
qβ, the trie state orresponding to a string βOutput: qαβ, the trie state orresponding to string αβ1: if ∃(qγ , σ) : δ(qγ, σ) = qβ then2: qαβ ← concat_trie_strings(qα, qγ)3: qαβ ← concat_trie_string_and_symbol(qαβ , σ)4: else qαβ ← qα5: end if



Chapter 10Finite-state transduers withblakboard outputFSTBOs are a generalization of FSTs where outputs may be any kind ofobjets (for instane, in the ase of letter transduers, strings) and transi-tions may perform any kind of transformation to a urrent output (lettertransduers may append a symbol to the urrent output). FSTBOs an beseen as augmented transition networks (Woods, 1969) without reursive allswhere register sets �the blakboards� are not only used in order to imple-ment more omplex transition funtions but are to be given as output. Wegive here the general de�nitions for any kind of output, we present in thenext hapter FSTs as the partiular ase of string output, and �nally give inhapters 17, 18 and 19 the general guidelines for the de�nition of weighted,uni�ation and omposite output mahines as other partiular ases of blak-board output. Referenes to other works are given for eah partiular asein their respetive setions.De�nition 139 (FSTBO). A FSTBO (Q, Σ, Γ, B, BK , δ, QI , F ) is a speialtype of FSM (de�nition 46, p. 121) whose set of labels Ξ takes its elementsfrom the set of input/output pairs (Σ ∪ {ε})× (Γ ∪ {idB}), where
• Σ is a �nite input alphabet,
• ε is the empty input symbol,
• Γ : B → B is a �nite output alphabet of funtions γ on �nite blakboards

b ∈ B, 185
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• idB the identity funtion on blakboards, and
• b∅, is the empty blakboard,
• BK ⊆ (B − {b∅}) is a (possibly empty) set of illegal or killing blak-boards.Transitions that produe killing blakboards annot be traversed: during theexeution of an algorithm of appliation of a FSTBO, explorations of pathsreahing suh blakboards are killed.10.1 TransitionsDe�nition 140 (Consuming transition). Following de�nition 51 (p. 123),transitions in Q × (Σ × (Γ ∪ idB)) × Q, that is, whih onsume an inputsymbol, are alled onsuming transitions.De�nition 141 (Generating transition). Transitions in Q × ((Σ ∪ {ε}) ×

Γ)×Q, that is, having a non-empty output, are alled generating transitions.De�nition 142 (Translating transition). Transitions in Q × (Σ × Γ) × Q,that is, both onsuming and generating, are alled translating or substitutingtransitions.De�nition 143 (Deleting transition). Transitions in Q × (Σ × {idB}) ×
Q, that is, onsuming transitions that do not generate, are alled deletingtransitions.De�nition 144 (ε-transition). Following de�nition 53 (p. 124), transitionsin Q× ({ε}× (Γ∪{idB}))×Q, that is, whih do not onsume input but mayor may not generate output, are alled ε-transitions.De�nition 145 (Inserting transition). Transitions in Q × ({ε} × Γ) × Q,that is, generating ε-transitions, are alled inserting transitions.De�nition 146 (ε2-transition). Transitions in Q × {(ε, idB)} × Q, that is,non-generating ε-transitions, are alled ε2-transitions.



10.2. GRAPHICAL REPRESENTATION 18710.2 Graphial representationFSTBO transition labels may inlude an output as well as an input, as hasbeen seen in de�nition 139 (p. 185). In the lassi representation format, thetransition label is formed by an input/output pair of odes separated by aolon (see �gure 10.1(b)). The representation of non-generating transitionsis not modi�ed, that is, the empty output is represented by the absene ofthe olon and output ode rather than by a olon followed by some oderepresenting an empty output.Unitex and Intex graphs may assoiate a single output to eah box, rep-resenting them as text labels with bold fonts (by default) under the orre-sponding boxes (see �gure 10.1(a)). In ase a box ontains multiple inputlabels, the same output label is assoiated to eah input label.10.3 Sequenes of transitionsDe�nition 147 (Generating path). A generating path is a path ontainingat least one generating transition.De�nition 148 (Generating ε-path). A generating ε-path is a generatingpath without onsuming transitions.De�nition 149 (ε2-path). An ε2-path is a path whose transitions are all
ε2-transitions.De�nition 150 (Generating yle). A generating yle is a losed generatingpath.De�nition 151 (Generating ε-yle). A generating ε-yle is a losed gen-erating ε-path.De�nition 152 (ε2-yle). An ε2-yle is a losed ε2-path.10.4 BehaviourDue to blakboard management and the fat that it might be possible toarrive to a state q through di�erent paths whih might generate di�erentblakboards, ESs for FSTBOs are omposed by a state q ∈ Q plus the blak-board generated from an initial ES up to the ES.
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(a)
q0 q1 q2 q3 q4,6

q5,7

q8q9q10,11

q{10,11},12 q13

%sms %<E> : <sms/> %\⊔ %<E> : <phone> %# %<NB>%<E> : </phone>%\⊔%<E> : <message>%<TOKEN>%<TOKEN><E> : %<TOKEN>(b)Figure 10.1: (a) Unitex graph marking SMS requests and delimiting theirphone and message arguments by inserting XML tags, and (b) equivalent pseudo-minimized lexial FSTSO. These objets are extended versions of the ones in �g-ures 7.1(a) and 7.1() (p. 126) Pseudo-minimization is performed as explained insetion 8.6 (p. 174) ombined with the pseudo-determinization that will be de-sribed in setion 10.7.



10.4. BEHAVIOUR 189De�nition 153 (Exeution state). FSTBO ESs are pairs (q, b) ∈ (Q, B).De�nition 154 (Illegal SES). The illegal SES of a FSTBO (Q, Σ, Γ, B, BK ,
δ, QI , F ) is (Q× BK), that is, the set of all ES having a killing blakboard.De�nition 155 (∆). The ∆ funtion for FSTBOs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = (qs, bs),
• xt = (qt, bt), and
• d = qt ∈ δ(qs, (σ, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK .As we an see, the last ondition of prediate d, bt /∈ BK , prevents ∆(V, σ)from returning ESs with killing blakboards.De�nition 156 (D). The D funtion for FSTBOs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = (qs, bs),
• xt = (qt, bt), and
• d = qt ∈ δ(qs, (ε, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK .As for ∆(V, σ), the last ondition of prediate d prevents D(V ) fromreturning ESs with killing blakboards.Lemma 10 (In�nite ε-losure). The ε-losure of a FSTBO SESs V is in�niteif there exists an ES xs within V or ε-reahable from an ES of V suh that
• there exists an ε-yle p passing through xs,
• starting from xs, for every traversal of yle p output funtions alwaysreturn non-killing blakboards, and
• non-identity output funtions return a di�erent blakboard at eah yletraversal.Proof. Let A be a FSTBO having a generating ε-yle
p = t0t1 . . . tn−1 = (q0, (ε, γ0), q1)(q1, (ε, γ1), q2) . . . (qn−1, (ε, γn), qn),where γj ∈ (Γ ∪ idB) and there is at least one γk ∈ Γ (non-identity outputfuntion) for j, k = 0 . . . n− 1; let (q0, b0,0) ∈ V0 a non-illegal ES (b0,0 /∈ BK)suh that
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• (qj, bi,j) is a reahable ES through path pit0 . . . tj − 1, for i ≥ 0 and

j = 0 . . . n− 1, and
• if γj 6= idB then bi,j = bi′,j i� i = i′, for i, i′ ≥ 0 and j = 0 . . . n − 1,that is, every output funtion other than the identity produe a newblakboard at eah traversal of the yle.Following the development of the iterative ε-losure of V0 (lemma 4,p. 140) adapted for FSTBOs (de�nition 156 of D funtion),

Cε(V0) = Vn suh that Vi+1 = Vi ∪ {(qt, b
′) : qt ∈ δ(qs, (σ, γ))∧

(qs, b) ∈ V0 ∧ b′ = γ(b) ∧ b′ /∈ BK}, i = 0 . . . n, (10.1)where the last ondition b′ /∈ BK an be omitted sine we suppose that onlynon-killing blakboards are produed,1 it holds that
(q0, b0,0) ∈ V0

(q1, b0,1) ∈ V1...
(qn−1, b0,n−1) ∈ Vn−1

(q0, b1,0) ∈ Vn

(q1, b1,1) ∈ Vn+1...
(qn−1, b1,n−1) ∈ V2n−1

(q0, b2,0) ∈ V2n...
(q0, bi,j) ∈ Vin+jSine p is a yle, when traversing path pit0 . . . tk an ES (qk+1, bi,k+1) withthe same state qk+1 is produed for eah i ≥ 0. However, sine funtion γkis a non-identity funtion always returning a di�erent blakboard, every ES

(qk+1, bi,k+1) is di�erent and therefore the ε-losure is inde�nitely inrementedin at least one ES per yle traversal. By de�nition, if an ES (q, b0,0) is ε-reahable from an ES of V0, then there is a SES Vi that ontains the ES.Sine the ε-losure of V0 ontains the ε-losure of Vk and the ε-losure of Vkis in�nite, so it is the ε-losure of V0.1if an ES is reahable, then it is legal and therefore has a non-killing blakboard



10.4. BEHAVIOUR 191Lemma 11 (Finite ε-losure). Under onditions other than those expressedin the previous lemma, the ε-losure of a FSTBO SES is �nite.Proof. Let A be a FSTBO and (q0, b0) an ES in V0; let p be any ε-path
(q0, (ε, γ0), q1), (q1(ε, γ1), q2) . . . (qn−1, (ε, γn−1), qn), (10.2)of A, by developing the iterative ε-losure of V0 we obtain the ESs

(q0, b0) ∈ V0

(q1, γ1(γ0(b0))) ∈ V1...
(qn, γn−1(. . . (γ1(γ0(b0))) . . .) ∈ Vn...where one of these ases holds:

• After a �nite number of transitions have been traversed, a killing blak-board is produed. Sine a �nite number of ESs have been derived upto this point and no more ESs an be derived one an illegal ES isreahed, the ε-losure is �nite.
• If γj = idB for j = 0 . . . n − 1, then b0,0 = b0,1 = . . . b0,n−1 = b1,0 =

. . . = bi,j , that is, every ε-reahable ES from (q0, b0,0) has the sameblakboard. Therefore, Cε(V0) is a �nite set sine it is a subset of
(Q× {b0,0}) whih is �nite. In this ase the proof is the same than for
FSAs (proof of lemma 7, p. 163), whih is based in the fat that theresult of the ε-losure is a subset Q, whih is �nite.
• If γj ∈ (Γ ∪ {idB}) but qj = qk i� j = k, that is, there are no ε-yleshaving an ε-reahable ES from q0, the ε-losure is also �nite if the ε-paths are �nite, whih is true sine FSTBOs have a �nite number oftransitions.
• Finally, if γj ∈ (Γ ∪ {idB}) and γj ∈ Γ i� qj 6= qk for j 6= k, that is,there are no generating ε-yles having an ε-reahable ES from q0, the

ε-losure is also �nite sine it is the union of the seond and third ases,whih are also �nite: the path an be deomposed into onatenationsof ε2-paths, with yles or not, and generating ε-paths without yles,eah one adding a �nite SES to the ε-losure.



192 CHAPTER 10. FSTS WITH BLACKBOARD OUTPUTTheorem 9. The ε-losure is always �nite for FSTBOs without generating
ε-yles.De�nition 157 (Initial and aeptane SESs). Given the sets of initial andaeptane states of a FSTBO, QI and F , its initial and aeptane SESsare (QI × {b∅}) and (F × (B − BK)), respetively.De�nition 158 (Exeution mahine). The exeution mahine of a FSTBO
A is de�ned as for the generi exeution mahine (de�nition 105, p. 141)without any other kind of transitions than pure onsuming transitions andpure ε-transitions, thus its de�nition is equal to that of a FSA exept for thepossibly of having an in�nite set of states, transitions and aeptane states.Note that the exeution mahine of a FSTBO A does not require to de-�ne transitions with output funtions sine the resulting output blakboardsare oded inside the state labels; for instane, if A ontains a transition
(qs, (σ, γ), qt) suh that qs is reahable from some initial state by generatingblakboard bs, then X (A) ontains a transition ((qs, bs), σ, (qt, γ(bs))).De�nition 159 (τ). We de�ne τ(A), the language of translations of a FSTBO
A, as the set of input/output pairs (w, b) ∈ (Σ∗ × (B − BK)) suh that w isreognized and translated into blakboard b by A, that is, reahing at least anaeptane ES from an initial ES by onsuming w and generating blakboard
b:

τ(A) = {(w, b) : (qf , b) ∈ ∆∗((QI × {b∅}), w) ∩ (F × B)}. (10.3)De�nition 160 (ω). We de�ne ω(A, w), the translations or language ofblakboards of a word w for a FSTBO A, as the set of blakboards (SB)
b ∈ (B − BK) suh that (w, b) belongs to the translations of A:

ω(A, w) = {b : (w, b) ∈ τ(A)}. (10.4)De�nition 161 (τR). Let x be an ES of a FSM A, we de�ne τR(x), the righttranslations from x, as
τR(x) = {(w, b) : xf ∈ ∆∗({x}, w) ∩XF}. (10.5)De�nition 162 (ωR). Let x be an ES of a FSM A, we de�ne ωR(x, w), theright translations of w from x, as

ωR(x, w) = {b : (w, b) ∈ τR(x)}. (10.6)



10.5. RECOGNIZED LANGUAGES 193De�nition 163 (Translator mahine). We say that a mahine or an algo-rithm of appliation of a mahine is a translator i� its purpose is to imple-ment a map L → P(L′), that is, a map of words of a language L to sets ofwords of a language L′.In a larger sense, we ould say that even aeptor mahines are alsotranslators: aeptor mahines translate input sequenes to Booleans (aep-tane or rejetion). However, generating more omplex output than simpleBooleans introdues some additional omplexities that make worth the dis-tintion; for instane, the possibility of in�nite ε-losures and, as we will seein setion 10.7, the impossibility of determinizing ertain mahines.In de�nition 93 (p. 135) we introdued the onept of equivalene betweenmahines, and in de�nition 110 (p. 143) we gave the de�nition of equivalenefor pure aeptor mahines. One de�ned what a translator mahine is, wean give the last de�nition of equivalene between mahines:De�nition 164 (Equivalent pure translator mahines). We say two puretranslator mahines A and A′ are equivalent i� τ(A) = τ(A′).Other mahines than FSAs and FSTBOs that we will present in thisdissertation will simply have other kinds of transitions, but will �nally beeither aeptors de�ning a language or translators de�ning a map betweentwo languages.10.5 Reognized languagesFSTBOs may be designed to express additional restritions on the inputlanguage through the killing-blakboard mehanism in order to go beyondregular languages. Indeed, for every Turing mahine there exists an equiv-alent FSTBO (in the aeptor sense), as for augmented transition networks(Woods, 1969, se. 1.7.9, p. 39). Following Hoproft et al. (2000, p. 319), webrie�y de�ne Turing mahines as follows:De�nition 165 (Turing mahine). A Turing mahine is a struture M =
(Q, Σ, Γ, δ, q0, g∅, F ) where
• Q is a �nite SS,
• Γ is a �nite tape alphabet,
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• g∅ ∈ Γ is the blank symbol or default tape symbol,
• Σ ⊆ Γ− {g∅} is a �nite input alphabet,
• δ : Q × Γ → Q × Γ × {L, R} is a �nite transition funtion, where Land R represent a left or right shift, respetively,
• q0 ∈ Q is the unique initial state, and
• F ⊆ Q is the set of aeptor states.ESs are triplets in (Q, Γ∗, N): a state, a tape and a head position. The uniqueES is (q0, σ1 . . . σn, 0) and the aeptane SES is (F × Γ∗, N).Informally, a Turing mahine is a kind of FSM with a potentially in�nitetape and a bidiretional read/write head. Initially, the input is to be on-tained in a segment of the tape and every other tape ell to ontain a speialdefault symbol. Transitions an or annot be taken depending on the urrentstate as well as the tape symbol at the urrent head position. Traversing atransition involves to bring the mahine to the transition's target state, tooverwrite the tape symbol at the urrent head position and to shift the headposition either to the left or to the right. By potentially in�nite we meanthat the tape head an be shifted in both diretions any number of positions,though for a given mahine and input only a �nite number of shifts must beneessary if we are to apply the mahine in pratie. Instead of storing anin�nite tape, whih would be impossible, we initially store a tape having thesame length as the input and, eah time a symbol is to be read beyond thelimits, the tape is �rst inremented with an extra ell ontaining the defaultsymbol.Theorem 10 (FSTBO and Turing mahine equivalene). For every Turingmahine there exists a FSTBO reognizing an equivalent language.We basially use blakboards to represent the tape and urrent head po-sition, and output funtions to perform the orresponding modi�ations onthe tape and the head position as well as to produe killing blakboardswhenever the symbol spei�ed in the transition does not orrespond to thetape symbol at the urrent head position. We de�ne an initial substru-ture of the FSTBO for onsuming the whole input and loading it into thetape, and another substruture orresponding to the original Turing mahinestruture where its behaviour is emulated by ε-transitions that operate onthe blakboards.



10.5. RECOGNIZED LANGUAGES 195Proof. Let M = {Q, Γ, g∅, Σ, δ, q0, F} be a Turing mahine, we build a FSTBO
A = (Q′, Σ′, Γ′, B, BK , δ′, QI , F ′) as follows:
• Σ′ = Σ∪{$}, the Turing mahine original input alphabet plus a speialsymbol marking the end of input (EOI), where every original input

σ1σ2 . . . σl−1σl ∈ Σl is �rst to be replaed by σlσl−1 . . . σ2σ1$, that is,the original input in reverse order followed by the EOI mark,
• Q′ = Q∪{q′0}, the Turing mahine original states plus a FSTBO initialstate needed for loading the input into the blakboard's tape,
• F ′ = F ,
• QI = {q′0}

• B = (Γ∗ ×N), a tape and a head position,
• BK = {⊥}, the killing blakboard,
• Γ′ = {idB}∪{γ

′
r,w,s : (r, w, s) ∈ (Γ×Γ×{L, R}), the funtions operatingon blakboards, where� γ′

r,w,s(bs) returns ⊥ if r, the symbol to read, is not equal to thetape symbol at the head position in bs,� otherwise builds bt, the blakboard to return, by opying bs, thenoverwritting bt's tape symbol at the head position with w and,�nally, shifting bt's head position one ell to the left, if s = L, orto the right, if s = R,� ells ontaining g∅ are automatially appended to the tape whenaessing positions beyond the limits,
• and transitions are de�ned as follows:� q′0 ∈ δ′(q′0, (σ, γ′

b,σ,L)), for eah σ ∈ Σ; these transitions load theinput in reverse order onto the tape up to the EOI mark, keepingthe mahine in the initial state q′0,� q0 ∈ δ′(q0, ($, γ
′
b,b,R)); this transition detets the EOI mark, posi-tions the head on the last opied symbol and brings the mahineto the initial state of the Turing mahine to emulate, and



196 CHAPTER 10. FSTS WITH BLACKBOARD OUTPUT� qt ∈ δ′(qs, (ε, γ
′
r,w,s)) i� (qt, r) ∈ δ(qs, w, s); traversing a FSTBOtransition is also onditioned by the urrent tape symbol by thekilling-blakboard mehanism.

10.6 Translating a stringBased on algorithm 7.5 fsm_reognize_string adapted for FSTBOs, algo-rithm 10.1 fstbo_translate_string omputes the set of possible translationsof a given input string. It uses algorithm 10.2 fstbo_translate_symbol, anadaptation of algorithm 7.6 fsm_reognize_symbol for FSTBOs, in order toompute the ∆ funtion, and algorithm 10.3 fstbo_interlaed_elosure, anadaptation of algorithm 7.3 fsm_interlaed_elosure for FSTBOs, in orderto ompute the ε-losure. Finally, algorithm 10.4 add_enqueue_esbo is usedin the ∆ and ε-losure algorithms instead of algorithm 7.4 add_enqueue_esin order to add derived ESs with blakboard output;2 both algorithms per-form the same operation but the former heks whether the blakboard isnot a killing one before adding the ES. When building the initial SES, theroutine unonditionally_add_enqueue_es seen in setion 7.9 (p. 153) is usedinstead of an equivalent routine for ESs with blakboard output sine, byde�nition, every initial ES has a non-killing blakboard: b∅.Apart from the adaptation of the algorithm for FSTBOs and the killingblakboard test, the main di�erene resides in the post-proessing of the lastomputed SES: rather than looking for the �rst aeptane ES in order toaept the word, we extrat every output assoiated to any aeptane ESin order to build the set of translations of the input word. Sine the SESs Viannot ontain ESs having a killing blakboard, it is only neessary to hekwhether their state q is aepting or not. If no aeptane ES is found thenan empty set of translations is returned. The domain of appliation of thetranslator algorithm must be redued to FSTBOs not having generating ε-yles in order to ensure that the algorithm exeution will �nish. For the aseof NLP this is not an issue sine generating ε-yles would lead to in�nitesets of interpretations of natural language sentenes, whih makes no sense.The algorithm an be further improved by using the trie string man-agement shown in setion 9.1 (p. 178) for the representation of string-like2In add_enqueue_esbo, `esbo' stands for ES with blakboard output.



10.6. TRANSLATING A STRING 197Algorithm 10.1 fstbo_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl), def. 160Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: V ← ∅2: E ← ∅3: for eah q ∈ QI do4: unconditionally_add_enqueue_es(V, E, (q, b∅))5: end for6: fstbo_interlaced_eclosure(V, E)7: i← 08: while V 6= ∅ ∧ i < l do9: V ← fstbo_recognize_symbol(V, E, σi+1)10: i← i + 111: fstbo_interlaced_eclosure(V, E)12: end while13: T ← ∅14: for eah (q, b) ∈ V : q ∈ F do15: add(T, b)16: end for
Algorithm 10.2 fstbo_translate_symbol(V, E, σ) ⊲ ∆(V, σ), def. (155)Input: V , a SES

E, the empty queue of unexplored ESs
σ, the input symbol to translateOutput: W , the set of reahable ESs from V by onsuming σ

E after enqueuing the ESs of W1: W ← ∅2: for eah (qs, bs) ∈ V do3: for eah (qt, γ) : qt ∈ δ(qs, (σ, γ)) do4: add_enqueue_esbo(W, E, (qt, γ(bt)))5: end for6: end for
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Algorithm 10.3 fstbo_interlaed_elosure(V, E) ⊲ Cε(V )Input: V , the SES whose ε-losure is to be omputed

E, the queue of unexplored ESs ontaining every ES in VOutput: V after omputing its ε-losure
E after emptying it1: while E 6= ∅ do2: (qs, bs)← dequeue(E)3: for eah (qt, γ) : qt ∈ δ(qs, (ε, γ)) do4: add_enqueue_esbo(V, E, (qt, γ(bs)))5: end for6: end while

Algorithm 10.4 add_enqueue_esbo(V, E, xt)Input: V , the SES where the ES is added
E, the queue of unexplored ESs
xt, the ES to add to VOutput: V after adding the ES, if legal

E after enqueuing the ES, if new and legal1: if blackboard(xt) /∈ BK then2: if add(V, xt) then3: enqueue(E, xt)4: end if5: end if



10.6. TRANSLATING A STRING 199strutures of output blakboards; FSTs are the simplest appliable ase sinetheir blakboards are strings (see setion 11.5, p. 215).10.6.1 From breadth-�rst to depth-�rstAlgorithm 10.5 fstbo_depth_�rst_translate_string (along with algorithm 10.6fstbo_depth_�rst_translate_suf�x ) is another algorithm omputing the trans-lations of an input sequene for a given FSTBO but performing a depth-�rsttraversal of the mahine instead of a breadth-�rst one. We simply modifythe generi depth-�rst reognizer algorithms (setion 7.9.1, p. 156) so thatthey do not stop after reahing the �rst aeptor ES by onsuming the wholeinput; instead, the algorithms is to ontinue until reahing all those aeptorESs and to return a set of translations omposed by all of their orrespond-ing blakboards. Algorithms 7.8 fsm_depth_�rst_reognize_string and 7.9fsm_depth_�rst_reognize_suf�x are to be modi�ed as follows:
• a set of translations T is to be returned instead of a Boolean value,
• when deteting an aeptor ES, its blakboard is to be added to Tinstead of returning true,
• alls to algorithm 10.6 fstbo_depth_�rst_translate_suf�x are to beperformed without evaluating the returned value and without returningany value, and
• the instrution returning false is to be removed (T is impliitly returnedsine it is an input/output variable).Algorithm 10.5 fstbo_depth_�rst_translate_string(σ1 . . . σl) ⊲

ω(A, σ1 . . . σl), def. 160Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: for eah x ∈ XI do2: fstbo_depth_first_translate_suffix(σ1 . . . σl, 1, x, T )3: end for



200 CHAPTER 10. FSTS WITH BLACKBOARD OUTPUTAlgorithm 10.6 fstbo_depth_�rst_translate_su�x(σ1 . . . σl, i, (qs, bs), T )
⊲ ωR(xs, σi . . . σl), def. 162Input: σ1 . . . σl, an input string of length l

i, the index of the �rst su�x symbol
bs, an ES with qs as reahed state
T , a set of translationsOutput: T after adding the right translations of σi . . . σl from xs1: if i > l ∧ (qs, bs) ∈ XF then2: add(T, bs)3: end if4: if i ≤ l then5: for eah xt ∈ ∆({(qs, bs)}, σi) do6: fstbo_depth_first_translate_suffix(σ1 . . . σl, i + 1, xt, T )7: end for8: end if9: for eah xt ∈ D({xs}) do10: fstbo_depth_first_translate_suffix(σ1 . . . σl, i, xt)11: end for10.7 DeterminizationDeterministi transduers are ommonly known as sequential transduers;following Mohri (1997, se 2.1), we de�ne sequential FSTBOs as follows:De�nition 166 (Sequential FSTBO). Let A be a FSTBO (Q, Σ, Γ, B, BK ,

δ, QI , F ), we say A is sequential i� it has deterministi input, that is, let A′be a FSA (Q, Σ, δ′, QI , F ) suh that
qt ∈ δ′(qs, σ) ⇐⇒ qt ∈ δ(qs, (σ, γ)) and (10.7)
qt ∈ δ′(qs, ε) ⇐⇒ qt ∈ δ(qs, (ε, γ)), (10.8)

A′ is deterministi.In general, FSTBOs representing natural language grammars are not de-terminizable due to their ambiguity.Corollary 6. Let A and A′ be the mahines of the previous de�nition; then,
∀w ∈ Σ∗[|ω(A, w)| ≤ 1], (10.9)



10.7. DETERMINIZATION 201sine A′ is deterministi and, hene, it may ontain no more than one inter-pretation of w.Corollary 7. Let A be a non-sequential FSTBO, if |ω(A, w)| > 1 for someinput sequene w then there exists no sequential FSTBO equivalent to A.Note that a FSTBO A may have two di�erent interpretations for thesame input sequene w, yet assoiate a single output to w; for instane, if
A maps input sequenes to sores by adding some amount of points at eahtransition, di�erent paths may generate the same sore by adding the samepoints in di�erent order.Sequential transduers an be generalized by introduing the possibilityof generating at most one additional output right after aepting an inputsequene, where the output is given by a map of aeptor states to additionaloutputs (Shützenberger, 1977). Suh transduers are alled subsequential.Cho�rut (1977, 1978) haraterized the lass of transduers performing sub-sequential transdutions, hene being determinizable. Suh haraterizationimpliitly de�nes an algorithm for the onstrution of an equivalent subse-quential transduer. This algorithm has been expliitly given by several au-thors (Berstel, 1979; Mohri, 1996; Rohe and Shabes, 1997). Mohri (1994a)extended the de�nition of subsequential transduers to p-subsequential trans-duers, transduers assoiating up to p additional outputs to eah aeptorstate, in order to allow for a `quasi-determinization' of FSTBOs representingsome ambiguous languages.De�nition 167 (p-subsequential FSTBO). A p-subsequential FSTBO is astruture (Q, Σ, Γ, B, BK , δ, {qI}, F, ρ) where (Q, Σ, Γ, B, BK , δ, {qI},
F ) is a sequential FSTBO and

ρ : F → P(Γ) (10.10)is a funtion mapping aeptor states to sets of up to p additional outputfuntions.Corollary 8 (Mohri, 1994b, se. 4). A p-subsequential FSTBO (Q, Σ, Γ, B,
BK , δ, QI , F, ρ) an be seen as a FSTBO (Q ∪ {q$}, Σ ∪ {$}, Γ, B, BK , δ′,
QI , {q$}) where
• input symbol $ expliitly represents the end of input,
• q$ is an additional state and the only aeptor state, and
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• δ′ de�nes the same transitions than δ plus an additional transition

(qf , ($, γ), q$), for eah (qf , γ) suh that qf ∈ F and γ ∈ ρ(qf ).Though not deterministi in the strit sense, p-subsequential transduers(with p > 1) an be applied to an input sequene as deterministi mahinesuntil reahing an aeptor state: only a single ES must be omputed for eahinput symbol; one the whole input is onsumed, if an aeptor ES is reahedthen the set of translations is built by ombining the output of the ES withthe outputs mapped to the aeptor state of the ES.De�nition 168 (τ). We de�ne τ(A), the language of translations of a p-subsequential FSTBO A, as
τ(A) = {(w, b′) : (qf , b) ∈ ∆∗((QI × {b∅}), w) ∩ (F × B)∧

b′ = γ(b) ∧ b′ /∈ BK ∧ γ ∈ ρ(qf )}. (10.11)Algorithms for the onstrution of p-subsequential transduers equivalentto string-to-string, string-to-weight and string-to-string-and-weight transdu-ers,3 have also been given by Mohri (1996, 1997). These algorithms are simi-lar to the ommon determinization algorithm: they join together transitionssharing the same soure state and label, and then join as well the orrespond-ing target states. In order to join transitions onsuming the same input butperforming di�erent output transformations, the transformations are totallyor partially delayed to the subsequent transitions. If not totally delayed, thenon-delayed partial transformations must be equal so that the transitionsan be joined; for instane, let γ and γ′ be two output transformations ap-pending strings αβ and αβ ′, respetively, only the generation of su�xes βand β ′ is to be delayed. Target states are oupled with the orrespondingdelayed transformations. When taking these ouples as soure states for join-ing their orresponding outgoing transitions, the delayed transformations areadded to the transition output labels. Delayed transformations of aeptorstates will be the additional transformations to perform one the whole inputhas been onsumed. Summarizing, output transformations are delayed untilenough input symbols have been onsumed in order to be sure that the righttransformation is performed.3Transduers implementing maps of strings to either strings, weights, or both string andweights, respetively, where weights represent sores or probabilities; weighted mahineswill be the objet of hapter 18.
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(b)Figure 10.2: (a) Non-deterministi string-to-string transduer and (b) equivalentsubsequential transduer; transitions onsuming $, the end-of-input, represent theadditional outputs to generate after aepting the input.Figure 10.2 illustrates a string-to-string transduer along with its equiv-alent subsequential transduer.4 Output labels α simply indiate that string
α is to be appended to the urrent output. Under eah state of the sequen-tial transduer, the orresponding set of ouples state/delayed output havebeen inluded. The initial state r0 orresponds to ouple (q0, ε), that is, tohave reahed state q0 with no delayed output. Transitions (q0, (a, b), q1) and
(q0, (a, a), q2) are joined by delaying the generation of a and b. Reahing state
r1 is equivalent to have reahed state q1 with delayed output b or state q2 withdelayed output a. Transitions (q1, (b, b), q0), (q2, (a, a), q2) and (q2, (a, b), q0)reeive these delayed outputs, beoming (q1, (b, bb), q0), (q2, (a, aa), q2) and
(q2, (a, ab), q0). Then, the two latter are joined by delaying only the gener-ation of the seond symbol, whih results in reahing exatly the same setof ouples {(q1, b), (q2, a)}. The other transitions have unique inputs, thustheir outputs do not need to be delayed and hene reah the set of ouples
{(q0, ε)}. Aeptor states of the sequential transduer are those having atleast one ouple (qf , α) with qf ∈ F , and the additional outputs to generateare those delayed outputs α: nothing for r0 and a for r1.Figure 10.3 illustrates a string-to-string transduer along with its equiv-alent∞-subsequential transduer.5 Outputs of transitions (q0, (a, x), q0) and
(q0, (a, x), q0) are totally delayed at eah step, resulting in di�erent targetstates ri with 2i di�erent delayed outputs.4Example extrated from (Mohri, 1996).5Example extrated from (Blan, 2006, p. 69).
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(b)Figure 10.3: (a) Non-deterministi string-to-string transduer and (b) equivalent
∞-subsequential transduer. Transitions onsuming $, the end-of-input, representthe additional outputs to generate after aepting the input.An alternative to quasi-determinization is lazy or on-the-�y determiniza-tion (Mohri et al., 2002; Jussila et al., 2005), whih onsists in determinizingthe explored paths of the mahine during its appliation; supposing that agrammar is always applied to the same subset of input sequenes, only theorresponding paths will be determinized yet keeping a �nite mahine sinethe input sequenes are �nite. When applying the mahine for the �rst time,the ost of determinizing the orresponding substrutures will be added tothe ost of applying the mahine as if it was deterministi. Suessive appli-ations will take advantage of the already determinized substrutures, savingthe determinization ost. However, the mahine may grow in size exessivelyone applied to a ertain amount of input sequenes. Lazy determinizationis the solution adopted by the Outilex system (Blan, 2006, se. 2.8.4, p. 68).The solution we present here is the one used by the Unitex and Apertiumsystems (Garrido-Alenda et al., 2002), whih onsists in determinizing themahine's underlying FSA instead of the mahine itself.6De�nition 169 (Underlying FSA). Let A = (Q, Σ, Γ, B, BK , δ, QI , F ) bea FSTBO, we de�ne its underlying FSA as (Q, ((Σ ∪ {ε}) × (Γ ∪ {ε})) −6This kind of determinization is performed in Unitex whenever ompiling a graph (seePaumier, 2008, se. 6.2, p. 105), though is not mentioned in the manual. In Garrido-Alenda et al. (2002), this determinization proedure is mentioned in the ontext of theinterNOSTRUM mahine translator; Apertium is another mahine translator that hasevolved from interNOSTRUM and whih has inherited this feature.
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{(ε, ε)}, δ, QI , F ) with (ε, ε) as the empty symbol; in other words, FSTBOinput/output pairs beome FSA input symbols exept for (ε, ε) whih beomesthe empty symbol.This proess may only perform a partial determinization of the FSTBO:let (qs, (σ, γ), qt) and (qs, (σ, γ′), qt) be two transitions of a FSTBO, these tran-sitions will not be joined together sine (σ, γ) and (σ, γ′) will be interpretedas two di�erent input symbols. However, it is sure that, for every FSTBO,this proedure will end up with a �nite mahine sine FSA determinizationalways ends up with a deterministi FSA. One important advantage of FSAdeterminization is that ε-moves are removed, avoiding the need for ε-losureomputation during further FSA appliations. Determinizing a FSTBO asits underlying FSA will not remove every ε-move, sine generating transitionsare treated as onsuming transitions, but will at least remove every FSTBO
ε2-transition.10.8 MinimizationMohri (1994b) also de�ned an algorithm for the minimization of transduersby onstruting equivalent p-subsequential transduers. As for the ase of de-terminization, the same problem prevails: for some transduers, p is in�nite.Obviously, if we treat the FSTBO as its underlying FSA then minimizationà la van de Snepsheut (setion 8.6, p. 174) an be normally performed.10.9 Blakboard set proessingThe set of explored paths during the reognition of an input sequene fora FSTBO without killing blakboards depends uniquely on the input sym-bols to onsume and not on the generated blakboards. By de�ning killingblakboards, the set of explored paths may be redued but not extended.However, sine ESs ontain the blakboard generated up to reahing theFSTBO state q, multiple ESs xi = (q, bi) are possible for the same FSTBOstate q; moreover, a path p starting at q will allow for multiple exeutionpaths, eah one starting at an xi. Therefore, algorithm 10.1 fstbo_translate-_string may perform several explorations of p when it may be possible toexplore it one while onstruting the set of every possible blakboard it mayyield. We extend the FSA proessing for FSTBO blakboard set proessing
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for eah FSA SES Vi that maps FSAESs �whih are in fat simple FSA states� to SBs, rather than storinggenerated blakboards within eah ESs.De�nition 170 (ZB). Given a FSTBO (Q, Σ, Γ, B, BK , δ, QI , F ), we de�ne

ZB as the set of every partial map ζB of FSA ESs in Q to SBs in P(B).De�nition 171 (BSP SES). We de�ne the equivalent BSP SES VB of aFSTBO SES V as a pair (V ′, ζB) where V ′ ⊆ Q is a FSA SES �a set ofFSA states� and ζB ∈ ZB is a funtion mapping states to SBs suh that
VB = (V ′, ζB) : V ′ = {q : (q, b) ∈ V } ∧ ζB(q) = {b : (q, b) ∈ V }, (10.12)whih is equivalent to say that

VB = (V ′, ζB) :
⋃

q∈V ′

{q} × ζB(q) = V. (10.13)In BSP, performing a derivation from a state qs due to a onsumingtransition δ(qs, (σ, γ)) → qt, or due to an ε-transition δ(qs, (ε, γ)) → qt, the
γ funtion is to be applied to every blakboard in ζB(qs).De�nition 172 (γ on SBs). Given a funtion γ on blakboards, we extendthe de�nition of γ for SBs as follows:

γ : P(B)→ P(B)

γ(Bs) = {bt : bs ∈ Bs ∧ bt = γ(bs) ∧ bt /∈ BK} (10.14)Note that the appliation of γ disards killing blakboards; hene γ mayreturn an empty SB, in whih ase there is no ES to be derived.De�nition 173 (BSP ∆). We rede�ne the FSTBO ∆ funtion for BSP SESsas follows:
∆ : (P(Q)× ZB)× Σ→ (P(Q)× ZB),suh that

∆((V, ζB), σ) = (V ′, ζ ′
B) : V ′ = {qt : ζ ′

B(qt) 6= ∅}∧

ζ ′
B(qt) =

⋃

γ:qt∈δ(qs,(σ,γ))∧qs∈V

γ(ζB(qs)) (10.15)



10.9. BLACKBOARD SET PROCESSING 207The omputation of ∆ traverses every path of length 1 having a stateof Vi as soure state and onsuming σi+1 in order to build (Vi+1, ζBi+1
) from

(Vi, ζBi
). However, the omputation of the ε-losure traverses every ε-pathof any length having any state of Vi as start state, whih allows for di�erentderivation paths to share subpaths. These ε-paths an be explored withoutrepeating the traversal of shared subpaths by following a topologial sort(de�nition 81, p. 130) of the orresponding ε-losure-substruture (de�ni-tion 106, p. 142). However, only ayli substrutures an be topologiallysorted (lemma 1, p. 131). Let A be a FSTBO and A′ be the FSA equal to

A after removing its output alphabet and transition outputs, yles in the
ε-losure-substrutures of X (A′) ome from yles in A, whih an be of twoforms: generating ε-yles and non-generating ε-yles or ε2-yles; however,the former must be forbidden in order to avoid in�nite ε-losures, and thelatter an be removed by determinizing A regarding it as its underlying FSA(de�nition 169, p. 204). Forbidding generating ε-yles does not redue theapability of the formalism for the representation of natural language gram-mars, sine they allow for generating an in�nite output from a �nite input(e.g. an in�nite parse tree for a given sentene), whih makes no sense.Theorem 11 (ε2-yle removal). For every FSTBO with ε2-yles there ex-ists an equivalent FSTBO without ε2-yles whih an be obtained by deter-minizing the underlying FSA (de�nition 169, p. 204).Theorem 12 (Existene of a topologial sort). Considering lemma 1 (p. 131)and theorem 11, for every FSTBO without generating ε-yles there exists atleast one equivalent FSTBO A suh that, given A′ the FSA obtained from Aafter removing its output alphabet and transition outputs, there exists at leastone topologial sort for every ε-losure-substruture (de�nition 106, p. 142)of X (A′).Reall that the exeution mahine of a FSA is the FSA itself (de�ni-tion 135, p. 164); therefore, X (A′) = A′ sine A′ is a FSA.The de�nition of D for BSP is almost the same than the previous de�ni-nition of ∆ for BSP; for the ase of D, no input input symbol is to be on-sumed, ε-transitions are onsidered instead of onsuming ones, and a BSPSES is derived from a single soure state and SB instead of from a BSP SES:De�nition 174 (BSP D). We rede�ne the FSTBO D funtion for BSP asfollows:

D : Q× B → (P(Q)× ZB)
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D(qs, Bs) = (V ′, ζ ′

B) : V ′ = {qt : ζ ′
B(qt) 6= ∅}∧

ζ ′
B(qt) =

⋃

γ:qt∈δ(qs,(ε,γ))

γ(Bs), (10.16)that is, D(qs, Bs) returns a pair (V ′, ζ ′
B) where ζ ′

B is a funtion mapping eah
ε-reahable state qt from qs to the set of blakboardsFor the ase of BSP, we iteratively ompute the ε-losure of a BSP SES
(V0, ζB0

) by omputing at eah iteration the ε-reahable states qt from aunique soure state qi, and by inreasing ζB(qt) with every blakboard gener-ated by ε-reahing qt. The state to be taken as qs for eah iteration is givenby a topologial sort of the orresponding Cε(V0)-substruture.De�nition 175 (BSP ε-losure). Given a PB SES (V0, ζB0
) of a FSTBO

A, A′ the FSA equal to A after removing its output alphabet and transitionoutputs, and x0, . . . , xn a topologial sort of the Cε(V0)-substruture of X (A),we rede�ne the ε-losure for BSP as follows:
Cε(V0, ζB0

) = (Vn, ζBn
) : (V ′

i+1, ζ
′
Bi+1

) = D(xi, ζBi
(xi)) ∧ Vi+1 = Vi ∪ V ′

i+1∧

∀xt ∈ Vi+1[ζBi+1
(xt) = ζBi

(xt) ∪ ζ ′
Bi+1

(xt)], i = 0 . . . n− 1. (10.17)Note that ESs xi and xt of A′ are in fat FSA states sine A′ is a FSA.In the equation,
• (V ′

i+1 is the set of ε-reahable FSA states xt from xi,
• Vi+1 aumulates every ε-reahed FSA state from V0 up to iteration

i + 1 (the union of V0 with V ′
1 , V ′

2 , . . . , V ′
i+1),

• ζBi+1
maps eah state xt ∈ Vi+1 to the SB generated by ε-reahing xtfrom any state xs ∈ V0, where states xs have been reahed prior to theomputation of the ε-losure by generating SB ζB0

(xs), and
• ζ ′

Bi+1
maps the states xt ∈ V ′

i+1) to the blakboards that have beengenerated by diretly ε-reahing xt from xi after having reahed xi bygenerating SBs ζBi
(xi).Theorem 13 (BSP ε-losure equivalene). Let V be a non-PB SES of aFSTBO A suh that there exists a topologial sort of the Cε(V )-substrutureof A, and let VB be a BSP SES of A, then the equivalene of V and VBimplies the equivalene of Cε(V ) and Cε(VB).



10.9. BLACKBOARD SET PROCESSING 209Proof. Let V be a non-PB SES of a FSTBO, VB = (V0, ζB0
) its equivalentPB SES, (Q′, δ′) the Cε(V )-substruture and q0, . . . , qn a topologial sort of

(Q′, δ′). By de�nition of ε-losure-substruture, V ontains at least everystate in Q′ that is unreahable from any other state in Q′ through any pathwithin (Q′, δ′), and therefore so it does V0: if q is suh an unreahable stateand it does not belong to V , then it annot be derived during the ompu-tation of the ε-losure and therefore annot belong to Q′. By de�nition oftopologial sort, q0 is suh an unreahable state and therefore belongs to V0.
V1 ontains every state in V0 plus every ε-reahable state from q0 by gen-erating at least one non-killing blakboard. If q1 is one of the unreahablestates then it belongs to V0 and therefore to V1 as well; otherwise q1 mustbe ε-reahable from q0 sine, by de�nition of topologial sort, it annot be
ε-reahed from any qi with i > 1. Following the same reasoning for Vi and
Vi+1 with i = 1 . . . n− 1, we dedue qi+1 ∈ Vi+1 and therefore Vn = Q′.Funtion ζB0

maps every state in V0 to a SB so that the equivalene iskept w.r.t. V . Sine q0 ∈ V0, it holds that {q0} × ζB0
(q0) = {(q0, b) ∈ V },that is, ζ0 is a omplete map for q0. If q1 is one of the unreahable states,

ζB0
(q1) ontains every blakboard that an be generated up to reahing q1,and therefore so it does ζB1

. Otherwise ζB0
may or may not be a ompletemap for q1, but it is sure that ζB1

is sine, by de�nition of topologial sort,every ε-path reahing q1 from a state of V0 is ompletely traversed one every
ε-derivation from q0 is omputed, and therefore every generated blakboardfor q1 has been added to ζB1

(q1). Following the same reasoning for Vi and
Vi+1 with i = 1 . . . n − 1, we dedue ζBi+1

is a omplete map for qi+1 with
i = 1 . . . n− 1, and therefore (Vn, ζBn

) is equivalent to Cε(V ).In setion 7.8 (p. 147) we gave an e�ient de�nition of ε-losure based on
ε-expansions; the main idea onsisted in using only the ESs in E = D(V )−Vas soure ESs in order to try to reah new ESs, sine the ESs in V havealready been used as soure ESs and, hene, no new ESs will be derived fromthem. For the ase of BSP, D(qi, ζBi

) returns states and maps that are notalready present in (Vi, ζBi
), hene there is no need for an ε-expansion-basedde�nition.BSP requires to follow a topologial sort of the exeution mahine sub-strutures involved in the reognition of a string. The topologial sort anbe omputed as these substrutures are explored, but it is neessary to know�rst whih substrutures of the whole exeution mahine are going to beexplored. Exeuting the mahine in order to �nd these substrutures and



210 CHAPTER 10. FSTS WITH BLACKBOARD OUTPUTthen exeuting it again by means of BSP makes no sense. However, there areases in whih it is sure that the whole exeution mahine will be explored,for instane when omputing the whole language of a mahine without uselessstates and transitions (see setion 11.6, p. 215). One may ompute the set ofoutputs for a given mahine and input sequene as another kind of mahinereognizing this set, for instane a FSA for the ase of FSTBOs or an outputFPRTN for the ase of RTNBOs (see hapters 15 and 16). In partiular, theformer ase is of interest sine these output FPRTNs an be omputed inpolynomial time even when representing exponential languages. One thismahine is built, an output enumeration an be e�iently onstruted byomputing the represented language through BSP.



Chapter 11
Finite-state transduers withstring output
We present in this setion FSTSOs as a speial kind of FSTBO in whihblakboards are strings, output funtions append a symbol to the outputstring, and there are no killing blakboards. These FSTSOs orrespond tothe de�nition of letter transduer given, for instane, in Rohe and Shabes(1997, p. 14). As we have seen in setion 10.7 (p. 200), other types of FSTs arepossible suh as sequential transduers (de�nition 166, p. 200), subsequentialtransduers (Shützenberger, 1977) and p-subsequential transduers (de�ni-tion 167, p. 201), though all of them an be turned into an equivalent lettertransduer (orollary 8, p. 201). Additionally, deterministi augmented let-ter transduers (Garrido-Alenda and Forada, 2002) are a more general typeof letter transduers, due to the inluded lookahead mehanism for inputsegmentation. FSTSOs have multiple appliations (Mohri, 1997; Karttunen,2001) suh as parsing (Silberztein, 1993), information extration (Hsu andChang, 1999; Friburger and Maurel, 2002, 2004), phonology (Kaplan andKay, 1994; Karttunen, 1993), morphology (Karttunen et al., 1992; Kart-tunen, 1993), spelling orretion (O�azer, 1996), speeh proessing (Mohriet al., 1996) and grammatial inferene (Onina et al., 1993; Onina, 1998).We are mainly interested in parsing and information extration by usingstring output for enrihing texts with meta-information, for instane by in-serting XML (Bray et al., 2008) tags that expliitly represent the syntati211



212 CHAPTER 11. FSTS WITH STRING OUTPUTstruture of the text sentenes or identify the information to be extrated.1XML tags an be e�iently treated as output symbols instead of strings byrepresenting them as pointers to the states of a trie, as explained in hapter 9.De�nition 176 (FSTSO). A FSTSO (Q, Σ, Γ, δ, QI , F ) is a speial type ofFSMs (de�nition 46, p. 121) whose set of labels Ξ is the set of input/outputpairs (Σ∪{ε})×(Γ∪{ε}), where Σ is a �nite input alphabet, Γ a �nite outputalphabet and ε the empty symbol. FSTSOs an be seen as FSAs augmentedwith string output or as a partiular type of FSTBO where
• funtions in Γ always perform the onatenation of an output symbolto the urrent blakboard; for the sake of simpli�ity, we onsider that

Γ ontains output symbols g rather than funtions on blakboards andoutput labels g represent the onatenation of a symbol g to the urrentblakboard,
• the identity funtion on blakboards idB onatenates the empty symbol

ε to the urrent blakboard; we will therefore write the ε instead of the
idB funtion in order to represent that a transition does not modify theurrent output,
• B = Γ∗, that is, blakboards are sequenes of zero, one or more outputsymbols, and
• BK = ∅, that is, there are no killing output strings, and
• b∅ = ε, that is, the empty blakboard is the empty string.11.1 TransitionsFSTSO transitions are a partiular ase of FSTBO transitions (setion 10.1,p. 186):
• onsuming transitions (de�nition 140, p. 186): Q× (Σ× (Γ∪{ε}))×Q,
• generating transitions (de�nition 141, p. 186): Q× ((Σ∪{ε})×Γ)×Q,1An example of grammar reognizing SMS ommand requests and delimiting phonenumber and message to send has been shown in �gure 10.1, p. 188
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• translating or substituting transitions (de�nition 142, p. 186): Q×(Σ×

Γ)×Q,
• deleting transitions (de�nition 143, p. 186): Q× (Σ× {ε})×Q,
• ε-transitions(de�nition 144, p. 186): Q× ({ε} × (Γ ∪ {ε}))×Q,
• inserting transitions (de�nition 145, p. 186): Q× ({ε} × Γ)×Q and
• ε2-transitions (de�nition 146, p. 186): Q× ({ε} × {ε})×Q.Substituting, deleting and inserting operations have been ommonly usedto give a measure of the di�erene between two strings alled edit distane orLevenshtein distane (Levenshtein, 1966): the di�erene between two stringsis equal to the minimal number of symbol substitutions, deletions and inser-tions to be performed in order to transform one string into the other. Editdistane is the basis of approximate string mathing. An extensive disussionon this subjet an be found in Navarro (2001).11.2 Sequenes of transitionsAnalogously, FSTSO paths are a partiular ase of FSTBO paths. Every def-inition in setion 10.3 (p. 187) an be straightforwardly adapted by replaingFSTBO transitions by their orresponding FSTSO transitions.11.3 BehaviourDe�nition 177 (Exeution state). FSTSO exeution states are pairs (q, z) ∈

(Q, Γ∗).De�nition 178 (∆). The ∆ funtion for FSTSOs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = (qs, zs),
• xt = (qt, zt), and
• d = qt ∈ δ(qs, (σ, g)) ∧ zt = zsg,where g ∈ Γ ∪ {ε}.



214 CHAPTER 11. FSTS WITH STRING OUTPUTDe�nition 179 (D). The D funtion for FSTSOs is itself a simple diret-derivation funtion on SESs (de�nition 98, p. 136) with
• xs = (qs, zs),
• xt = (qt, zt), and
• d = qt ∈ δ(qs, (ε, g)) ∧ zt = zsg,where g ∈ Γ ∪ {ε}.Lemma 12 (Finite and in�nite ε-losure). The ε-losure of a FSTSO SESs

V is in�nite i� there exists an ES (q, z) within V or ε-reahable from an ESof V suh that q is traversed by a generating ε-yle.Proof. Sine the FSTSO ε-losure funtion is a partiular ase of the FSTBO
ε-losure funtion, this proof is a partiular ase of proofs of lemmas 10(p. 189) and 11 (p. 191).Theorem 14. The ε-losure is always �nite for FSTSOs without generating
ε-yles.Reall that generating ε-yles allow for in�nite translations of �nite inputsequenes, whih makes no sense in natural language grammars (e.g.: �nitesentenes with in�nite parse trees).De�nition 180 (Initial and aeptane SESs). Given the sets of initial andaeptane states of a FSTSO, QI and F , its initial and aeptane SESs are
(QI × {ε}) and (F × Γ∗), respetively.Note that, sine FSTSOs have no killing blakboards, there is no need torestrit the outputs of aeptor ESs.De�nition 181 (τ). We de�ne τ(A), the language of translations of a FSTSO
A, as the set of input/output sequene pairs (w, z) ∈ Σ∗ × Γ∗ suh that w isreognized and translated into z by A, that is, the set of input/output sequenepairs suh that the whole onsumption of w reahes at least an aeptane ESfrom at least an initial ES through a path that generates z:

τ(A) = {(w, z) : (qf , z) ∈ ∆∗((QI × {ε}), w) ∩ (F × Γ∗)}. (11.1)De�nition 182 (ω). We de�ne ω(A, w), the translations of a word w for aFSTSO A, as the set of output sequenes z ∈ Γ∗ suh that (w, z) belongs tothe translations of A:
τA(w) = {z : (w, z) ∈ τ(A)}. (11.2)



11.4. RECOGNIZED LANGUAGES 21511.4 Reognized languagesIn setion 10.5 (p. 193)we proved that the killing-blakboard mehanismsould be used in order to emulate Turing mahines. Sine FSTSOs de�ne nokilling blakboards, the languages a FSTSO an reognize are the same thanfor FSAs.11.5 Translating a stringAlgorithms for string translation with FSTSOs, either by means of a breadth-�rst or a depth-�rst exploration, an be easily derived from the orrespondingFSTBO algorithms (algorithms 10.1 and 10.5, pp. 197 and 199) by taking intoaount the di�erenes between FSTSOs and FSTBOs listed in de�nition 176(p. 212). These algorithms an be further improved by using the trie stringmanagement shown in setion 9.1 (p. 178) sine the involved onatenationsonsist in appending a symbol to a string, that is, one of the ases in whihtrie string management is faster than normal string onatenation.11.6 Language generationThe proedure for the generation of the language of a FSA desribed here ismeant to be extended in further hapters for other mahines, namely RTNs(hapter 12) and output FPRTNs (hapter 16). Output FPRTNs are a kindof �nite state mahines that e�iently represent the set of outputs generatedby applying a RTNBO (a RTN with blakboard output). The language ofsuh output FPRTNs is later to be generated in order to extrat the e�etivelist of outputs. Moreover, this proedure will be the base for the extrationof the top-ranked output represented by a weighted output FPRTN (hap-ter 18).The whole language represented by a FSA an be easily omputed bytransforming the FSA into a FSTSO as explained in the following theorem.Theorem 15 (Language generation). Let A = (Q, Σ, δ, QI , F ) be a FSA and
A′ = (Q′, Σ′, Γ, δ′, Q′

I , F
′) a FSTSO suh that

• Q′ = Q, Q′
I = QI and F ′ = F ,

• Σ′ = ∅,
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• Γ = Σ, and
• qt ∈ δ′(qs, (ε, σ)) i� qt ∈ δ(qs, σ),then it holds that

L(A) = τA′(ε) (11.3)Proof. Let it be the FSA and FSTSO of the previous theorem, an inputsequene w = σ1 . . . σl ∈ Σ∗. A ontains a path of the form
p = p0(q0, σ1, q1)p1(q1, σ2, q2) . . . pl−1(ql−1, σl, ql), (11.4)where paths pi for i = 0 . . . l − 1 are ε-paths or empty paths, i� A′ ontainsa path of the form

p′ = p′0(q0, (ε, σ1), q1)p1(q1, (ε, σ2), q2) . . . pl−1(ql−1, (ε, σl), ql), (11.5)where paths p′i for i = 0 . . . l − 1 are ε2-paths or empty paths. Therefore, apath p within A onsumes w i� its equivalent path p′ within A′ translates
ε into w. Finally, p is an interpretation within A i� A′ is an interpretationwithin A′, and therefore A reognizes w i� A′ translates ε into w.Following this equivalene, any algorithm omputing the translations ofan input sequene for a FSTSO an be easily transformed into an algorithmomputing the language of a FSA by onsidering every FSA transition asan ε-transition generating the original input and omputing the translationsof ε instead of the translations of a given input sequene. Notie that re-ognizing the empty string does not require to apply funtion ∆ and onlyrequires to apply the ε-losure one. Translator algorithms for language gen-eration an be redued to the omputation of the ε-losure of the initial SESplus the extration of the outputs from the generated aeptane ESs. Algo-rithm 11.1 fsa_language is suh a simpli�ed adaptation of the breadth-�rstalgorithm 10.1 adapted for string output. The domain of appliation ofthe resulting algorithm is derived from the domain of appliation of the orig-inal algorithm: FSTSOs ontaining generating ε-yles involved during theomputation of the ε-losure are exluded from the domain sine they leadto in�nite ε-losures (see lemma 12). Note that pruned FSAs leading to suhFSTSOs by following the transformation of theorem 15 (p. 215) are in fatFSAs with onsuming yles and, therefore, FSAs representing in�nite lan-guages (see theorem 7, p. 164). As for the original algorithm, this algorithm
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Algorithm 11.1 fsa_language(A) ⊲ L(A), eq. (136)Input: A = (Q, Σ, δ, QI , F ), a FSAOutput: L, the language of A1: V ← ∅2: E ← ∅3: for eah q ∈ QI do4: unconditionally_add_enqueue_es(V, E, (q, ε))5: end for6: while E 6= ∅ do7: (qs, w)← dequeue(E)8: for eah qt ∈ δ(qs, ε)) do9: add_enqueue_es(V, E, (qt, w))10: end for11: for eah (qt, σ) : qt ∈ δ(qs, σ)) do12: add_enqueue_es(V, E, (qt, wσ))13: end for14: end while15: L← ∅16: for eah (q, w) ∈ V : q ∈ F do17: add(L, w)18: end for



218 CHAPTER 11. FSTS WITH STRING OUTPUTan also be improved with the trie string management shown in setion 9.1(p. 178). BSP of FSTBOs (setion 10.9, p. 205) an also be applied heresine the substruture of the mahine to be explored for language genera-tion is known: the whole mahine, provided that the mahine is trimmed(de�nition 118, p. 144).



Chapter 12Reursive transition networksRTNs (Woods, 1970) are �nite-state mahines equivalent to pushdown au-tomata (Oettinger, 1961; Shützenberger, 1963; Evey, 1963; but see Hoproftet al., 2000, hap. 6, p. 219) and CFGs (brie�y desribed in appendix B,page 405). A major advantage of RTNs over CFGs is the ability to mergeommon parts of many CFG rules; onsequently, not only a greater e�-ieny of representation is ahieved but more e�ient algorithms of applia-tion sine separate proessing of ommon parts is also fatored out (Woods,1969, se. 1.7.3, p. 40). As stated in appendix B, CFGs an be extended withregular expressions in order to also allow for a more ompat representation.However, the same advantages and disadvantages of FSAs over regular ex-pressions (hapter 8, p. 161) take plae here for RTNs over extended CFGs(ECFGs): it is faster and less umbersome to manually write simple gram-mars as ECFGs with a text editor than as RTNs by means of some graphiinterfae (suh as the ones of the Intex, Unitex and Outilex systems), but er-tain grammars an be more readable when graphially represented as RTNsthan when represented as ECFGs with omplex regular expressions (see �g-ure 12.1)1. Indeed, the graphial representation of RTNs used in the Intex,Unitex and Outilex systems (setion 12.2) has been optimized in order togive a very intuitive view of natural language grammars.We present here RTNs (Woods, 1970) as FSAs extended with a subrou-tine jump mehanism. This mehanism allows for a better struturing ofthe grammar as well as for reusing grammar fragments: subgrammars orgrammar bloks are de�ned for loal strutures (e.g.: Korean time adverbs1Example extrated from (Paumier, 2004)219
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S → E |F E → acG G→ H |SdI
H → SdccH | f I → ccSdI | g F → bdJ
J → K | ccL K → ccSdK | g L→ SdccL | f(a) CFG

S → (ac((Sdcc)∗f + Sd(ccSd)∗g)) + (bd((ccSd)∗g + cc(Sdcc)∗f))(b) ECFG
S

S1 S2

S3 S4

S5

a

b

c

S
f

d

c
g() RTNFigure 12.1: Equivalent (a) CFG, (b) ECFG and () RTN.(Jung, 2005), Frenh loation adverbs (Constant, 2003b), Frenh measureexpressions (Constant, 2003b), Greek frozen adverbs (Voyatzi, 2006)) andother subgrammars may be de�ned from a higher point of view by means ofsubroutine jumps to lower level subgrammars (see �gure 12.3, p. 224, for asimple example of strutured RTN). As for any piee of software, readability,reusability and well-struturing are ruial for the onstrution and mainte-nane of large and omplex grammars, suh as natural language ones.2 Wegive a formal de�nition similar to the informal one given by Woods (1970)but labelling all transitions with sets of states instead of single states in or-der to failitate the de�nition of reverse RTNs. Woods (1969, se. 3.3, p. 82)gives another de�nition of RTN whih is straightforwardly derived from thede�nition of CFG, failitating the rede�nition of the Earley parser (Earley,1970) for the RTN ase.3 We derive in setion 12.10 an alternative de�nitionof the Earley parser based on the FSA-like de�nition of RTNs and the generibreadth-�rst algorithm of appliation of FSMs.The appliation of a RTN may not only result in the aeptane or therejetion of a sentene but also in a desription of the sentene struture,represented as the path or paths that allow to reognize the sentene. In2A disussion on onepts and priniples of software design an be found in Pressman(2001, hap. 13, p. 335)3The Earley parser was originally oneived for the appliation of CFGs; see appendix C(p. 411) for a brief desription and disussion on the original Earley parser.



12.1. TRANSITIONS 221this ase, the grammar and sentene strutures are analogous. However,this prevents from possible restruturings of the grammar that may boostthe mahine appliation, suh as the weak Greibah normal form for RTNs(Paumier, 2004),4 sine di�erent grammar strutures yield di�erent sentenestrutures in spite of not altering the set of aepted sentenes. We havehosen to represent sentene strutures as output XML tags bounding thesentene omponents (see �gure 13.2, p. 259) instead of subgrammar labels.Hene, it is not required to expliitly de�ne subgrammars nor subgrammarlabels (analogous to CFG non-terminals); we all a subgrammar by spe-ifying its set of subinitial states. Let this set be Qc, eah subgrammar isimpliitly de�ned as the mahine substruture reahable from Qc, inluding
Qc and exluding the substrutures of other alled subgrammars. We permitsubgrammars to share states and transitions in order to support grammaroptimizations suh as the weak Greibah normal form. However, RTN sub-grammars are intended to be disjoint before applying suh optimizations forthe sake of modularity. Common parts of subgrammars ould be avoided bysimply repliating suh parts, but that would imply an e�ieny loss.De�nition 183 (RTN). A RTN (Q, Σ, δ, QI , F ) is a FSA (Q, Σ, δ, QI , F )(de�nition 128, p. 162) extended with a subroutine jump mehanism: its setof transition labels Ξ takes its elements from (Σ ∪ {ε}) ∪ P(Q), where
• labels of the form Σ ∪ {ε} have the same interpretation as in the aseof FSAs, and
• labels of the form P(Q) represent subroutine jumps or alls to state sets(de�nition 187 in the next setion).12.1 TransitionsDe�nition 184 (Consuming transition). Following de�nition 51 (p. 123),transitions in Q×Σ×Q, that is, whih onsume an input symbol, are alledonsuming transitions.Consuming transitions orrespond to terminal symbols within the body ofCFG prodution rules (e.g.: prodution `N → garden' of CFG of �gure 12.2and transition (qN0

, %garden, qN1
) of �gure 12.3).4This weak Greibah normal form is an adaptation of the ECFG Greibah normalform (Albert et al., 1998), whih in turn is an extension of the CFG Greibah normal form(Greibah, 1965; Koh and Blum, 1997).



222 CHAPTER 12. RECURSIVE TRANSITION NETWORKSDe�nition 185 (Expliit ε-transition). Following de�nition 53 (p. 124),transitions in Q × {ε} × Q, that is, whih do not onsume input, are alledexpliit ε-transitions.
ε-transitions orrespond to ε symbols within the body of CFG produtionrules.De�nition 186 (Impliit ε-transition). Within the ontext of RTNs there aretwo kinds of impliit ε-transitions, that is, transitions that are impliitly de-�ned by the RTN and whih do not require to onsume input when traversed:push transitions (de�nition 189) and pop transitions (de�nition 190).De�nition 187 (Call transition). Call transitions are transitions of the form

(qs, Qc, qt) ∈ Q×P(Q)×Q and represent a subroutine jump to a SS Qc, thatis, the reursive appliation of the whole RTN taking Qc as set of initialstates before bringing the mahine to state qt. The exat behaviour of alltransitions is governed by the RTN impliit ε-transitions.Call transitions orrespond to non-terminal symbols within the body ofCFG prodution rules (e.g.: non-terminal symbol `PP ' in prodution `VP →
VP PP ' of CFG of �gure 12.2 and transition (qVP1

, qPP0
, qVP3

) of �gure 12.3).De�nition 188 (Subinitial set of states). We say a subset of states Qc of amahine A is a subinitial SS of A i� A ontains at least one all to Qc.Subinitial sets of states orrespond to CFG non-terminals expanding intoone or more right-hand sides; every rule left-hand side with the same non-terminal symbol is ondensed into a single subinitial set of states (e.g.: headsof produtions `VP → VP PP ' and `VP → V NP ' of CFG of �gure 12.2and subinitial SS {qVP0
} of �gure 12.3).De�nition 189 (Push transition). Push transitions are impliit ε-transitionswhih take plae eah time a state having at least one outgoing all transitionis reahed: for eah all transition (qs, Qc, qr) and for eah state qc ∈ Qcthe mahine impliitly de�nes a push transition (qs, qr�, qc) whih brings themahine from soure state qs to alled state qc, without input onsumption,and pushes return state qr onto the stak, ation that we represent as qr�.Push transitions are subroutine jump initializers.De�nition 190 (Pop transition). Pop transitions are impliit ε-transitionswhih take plae eah time an aeptane state qf ∈ F is reahed during
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VP → VP PP NP → DET N PP → PREP NP

VP → V NP NP → NP PP

N → monkey V → watch PREP → in
N → telescope PREP → with
N → garden DET → theFigure 12.2: A left-reursive CFG representing a toy grammar whih reognizessentene �Wath the monkey with the telesope in the garden�, among others, withnon-terminal VP as the grammar's start symbol; VP stands for verb phrase, NPfor noun phrase and PP for prepositional phrase.a subroutine jump: for eah pair of states (qf , qr) ∈ F × Q the mahineimpliitly de�nes a pop transition (qf , qr�, qr) whih pops state qr from thestak and brings the mahine to state qr, i� qr is the state at the top of thestak.De�nition 191 (Realization of all transitions). A all transition (qs, Qc, qr),or simply a all to Qc, is realizable i� there exists at least one realizable path

p starting with one of the orresponding transitions pushing qr onto the stakand ending with a transition popping the previously pushed qr from the samestak position. If p exists, then we say all to Qc is realizable through path p.De�nition 192 (Call ompletion). During the proess of appliation of amahine with alls, we say a all is unompleted or unresolved when a pathhas been exeuted up to realizing the orresponding push transitions, but notup to realizing any of the orresponding pop transitions; we all the proessof realizing a pop transition a all ompletion or resolution.De�nition 193 (ε-all). We say a all to a subinitial SS Qc is an ε-all, adeletable all or an ε-realizable all i� it is realizable through an ε-path (seede�nition 69, p. 129).These ε-alls orrespond to deletable non-terminals within the bodies ofCFG prodution rules.12.2 Graphial representationUnitex and Intex graphs represent alls to subgraphs as subgraph identi�erswith shaded bakground (see �gure 12.4). We represent all transitions as
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%in%withFigure 12.3: Left-reursive RTN equivalent to the CFG of �gure 12.2.
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with(g) PREPFigure 12.4: Unitex set of graphs equivalent to the CFG of �gure 12.2.



12.3. SEQUENCES OF TRANSITIONS 225dashed arrows labeled with the alled subinitial SS (see �gure 12.3).There are ases in whih it an be useful to expliitly represent impliittransitions (push and pop transitions for the ase of RTNs), for instanewhen graphially representing an exeution trae (e.g.: the exeution traein �gure 12.7, p. 238) for the visualization of the exeution paths generatedby an algorithm of appliation of a mahine. ESs and transitions betweenESs are represented as for states and transitions between states of a mahine,though labels of ESs may be strutures rather than single elements. UselessESs (those who do not derive any aeptane ES) are usually marked withtwo rossed lines. Push transitions are represented as as dotted arrows andpop transitions as thik arrows. Both types of transitions are labeled with thereturn state of the all they implement, that is, the pushed state for the aseof push transitions and the popped state for the ase of pop transitions. Forthe latter ase, sine the popped and target states are the same, the transitionlabel an be omitted. For the ase of algorithms that use other more omplexsubroutine jump mehanisms than the one based on a stak, suh as theEarley-like ones (the Earley RTN ase will be desribed in setion 12.10),push and pop transitions may be labeled with strutures more omplex thanthe return state (e.g.: exeution trae of �gure 12.7, p. 238).12.3 Sequenes of transitionsDe�nition 194 (Expliit path). An expliit path is a path omposed by ex-pliit transitions (de�nition 185, p. 222).Note that expliit paths are not neessarily realizable sine all transitionsmay not be realizable.De�nition 195 (ε-path). Following de�nition 69 (p. 129), within the on-text of RTNs, an ε-path is a path that an be traversed without input on-sumption, that is, whose transitions are either impliit ε-transitions, expliit
ε-transitions or ε-all transitions.De�nition 196 (Expliit ε-path). An expliit ε-path is both and ε-path andan expliit path.De�nition 197 (Call yle). Let p be a path having qs as start state, we say
p is a all yle i� its last transition is a push transition having qs as targetstate and, during the whole yle, the pushed state is never popped from thatposition of the stak.



226 CHAPTER 12. RECURSIVE TRANSITION NETWORKSDe�nition 198 (Call ε-yle). A all ε-yle is both an ε-path and a allyle.De�nition 199 (Reursive all). A all to a SS Qc is reursive i� thereexists at least a all yle starting at state of Qc.RTN reursive alls orrespond to CFG produtions of the form `A →
αAβ'.De�nition 200 (Left-reursive all). A all to a SS Qc is left-reursive i�there exists at least a all ε-yle starting at a state of Qc.RTN left-reursive alls orrespond to CFG produtions of the form `A→
Aα' (e.g.: prodution `VP → VP PP ' of CFG of �gure 12.2 and all transi-tion (qVP0

, qVP0
, qVP1

) of �gure 12.3).De�nition 201 (Right-reursive all). A all to a SS Qc is right-reursivei� it is realizable through a path (qs, qr�, qc)pp
′p′′ where p is a all yle, p′ isa path ompleting all to Qc and p′′ is an ε-path.RTN right-reursive alls orrespond to CFG produtions of the form

A→ αA.De�nition 202 (Deletable reursion). We say a path ompleting a all is adeletable reursion i� it implies the all to be both left- and right-reursive,that is, it is a path having the same form than the one of the previous de�-nition but p is not only a yle but also an ε-yle.RTN deletable reursions orrespond to CFG produtions of the form
A → A; we all them deletable sine they do not ontribute anything tothe grammar desription: supposing that non-terminal A represents a nounphrase, saying that a noun phrase is a noun phrase does not larify what anoun phrase an be made of.De�nition 203 (Reursive mahine). We say a mahine is reursive i� itontains at least one reursive all, left-reursive i� it ontains at least oneleft-reursive all and right-reursive if it ontains at least one right-reursiveall.De�nition 204 (Reursion degree). The reursion degree of a mahine withall transitions is equal to the maximum number of useful self-onatenationsor onseutive traversals of its all yles.



12.4. SUBSTRUCTURES 22712.4 SubstruturesDe�nition 205 (Submahine). Let Qc be a set of initial states of a mahineor one of its subinitial SSs, we de�ne its Qc-submahine as the mahinesubstruture omposed by Qc and every state and transition of every expliitpath starting at a state of Qc.A RTN submahine orresponds to a Unitex graph or to a subset ofprodutions of a CFG ontaining every prodution having a partiular non-terminal as head (e.g.: the set of produtions of CFG of �gure 12.2 startingwith VP , graph VP of �gure 12.4 and {qVP0
}-submahine of �gure 12.3).De�nition 206 (Axiom submahine). We de�ne the axiom submahine ofa mahine A as its Qc-submahine suh that Qc is the set of initial statesof A. Let A represent a grammar, the axiom submahine orresponds to thegrammar's axiom or start symbol (see de�nition 288 in appendix B, p. 405).12.5 BehaviourDe�nition 207 (Exeution state). RTN ESs are pairs (q, π) ∈ (Q × Q∗)where π is a stak of return states, λ being the empty stak.The realization of RTN transitions falls into the FSM general ategoriesof pure onsuming transitions and pure ε-transitions (de�nitions 87 and 88)exept for push, pop and all transitions.De�nition 208 (Push transition realization). A push transition (qs, qr�, qc)is realizable from ES (qs, π), for any stak π, and its realization brings themahine to ES (qt, πqr).De�nition 209 (Pop transition realization). A pop transition (qs, qr�, qc) isrealizable from ES (qs, π) i� π = π′qr and qs ∈ F , and its realization bringsthe mahine to ES (qr, π

′).Sine the realization of all transitions depends on the realization of pushand pop transitions as well as on the paths transitively onneting pushtransitions to pop transitions, we rather dedue whether a all transition anor annot be realized rather than adding a separate de�nition here.



228 CHAPTER 12. RECURSIVE TRANSITION NETWORKSLemma 13 (Call transition realization). A all transition (qs, Qc, qr) is real-izable from an ES (qs, π) by bringing the mahine to ES (qr, π), for any stak
π, i� there exists at least one expliit path p starting at a state qc ∈ Qc andending at an aeptor state suh that p is omposed by
• either onsuming transitions or expliit ε-transitions, or
• either onsuming transitions, expliit ε-transitions or all transitionsrealizable from the ES reahed just before eah orresponding all,the seond ase requiring for eah all transition at least one �nite sequeneof reursively realizable alls so that the last all of the sequene falls into the�rst ase.Proof. Let t = (qs, Qc, qr) be a all transition of a RTN A, and

p = (qs, qr�, qc)p
′(qs, qr�, qr)a path inside A with qc ∈ Qc. The push transition is realizable by pushing

qr onto the stak. If p′ is only omposed by onsuming transitions and/orexpliit ε-transitions then it is also realizable. The pop transition is realizableby popping the previously pushed state qr sine p′ does not modify the stak.Let p′ be omposed by a unique all transition t′ suh that t′ is realizablethrough a path
p′ = (q′s, q

′
r�, q

′
c)p

′′(q′s, q
′
r�, q′r)If p′′ is only omposed by onsuming transitions and expliit ε-transitions,the realization of t′ falls into the �rst ase. The realization of t′ momentarilymodi�es the stak by pushing a return state but popping it again, thusthe same reasoning than for the �rst ase applies here for the realizationof t. If t′ is realizable through another all whih is ompletable throughanother all and so on reursively, t is realizable as long as the last all isompletable through a path only omposed by onsuming transitions and/orexpliit ε-transitions. Sine the realization of eah all leaves the stak asbefore the all, a path omposed by any sequene of alls is realizable as longas every all is individually realizable, the presene of onsuming transitionsand expliit ε-transitions in between not modifying this fat sine they arealways realizable and do not modify the stak. Obviously, for any other ases

t is not realizable, either beause there is no path reahing an aeptane statewhih would allow for the realization of the orresponding pop transition orbeause the path traverses a non-realizable all transition.



12.5. BEHAVIOUR 229De�nition 210 (∆). The ∆ funtion for RTNs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = (qs, π),
• xt = (qt, π), and
• d = qt ∈ δ(qs, σ).De�nition 211 (D). The D funtion for RTNs is omposed by 3 simplediret-derivation funtions on SESs (de�nition 98, p. 136), Dε with
• xs = (qs, π),
• xt = (qt, π), and
• d = qt ∈ δ(qs, ε),

Dpush with
• xs = (qs, π),
• xt = (qc, πqt), and
• d = qt ∈ δ(qs, Qc) ∧ qc ∈ Qc,and Dpop with
• xs = (qf , πqr),
• xt = (qr, π), and
• d = qf ∈ F ,Lemma 14 (In�nite ε-losure). The ε-losure of a RTN SES V is in�nite ifthere exists an ES (q, π) within V or ε-reahable from an ES of V suh that

q has an outgoing left-reursive all transition.Reursive-desent parsers applying left-reursive CFGs may fall into in�-nite loops (Aho et al., 1986, se. 2.4, p. 47). Sine RTNs and CFGs are equiv-alent, the same problem arises for the ase of the base top-down breadth-�rstand top-down depth-�rst aeptors (algorithms 7.5 and 7.8, pp. 153 and 157)when adapted for the appliation of RTNs.



230 CHAPTER 12. RECURSIVE TRANSITION NETWORKSProof. The proof is analogous to the one for FSTs with generating ε-yles(proof of lemma 12, p. 214). Left-reursive alls behave as generating ε-yles:it is possible to traverse in�nite times the sequene of states whih form theyle without input onsumption but for eah yle the stak of return statesis inremented with at least a new return state from the left-reursive all(as happened with the inreasing output sequene), therefore generating anin�nite set of ESs with staks that are inde�nitely inremented.Lemma 15 (Finite ε-losure). The ε-losure of a RTN SES V is �nite i�there is no ES (q, π) within V or ε-reahable from V suh that q has anoutgoing left-reursive all transition.Proof. As we have seen for FSAs, ε-paths having only expliit ε-transitions donot yield in�nite SESs sine every ES derived through an expliit ε-transition
(qs, ε, qt) from an ES (qs, π) is of the form (qt, π) ∈ (Q × {π}), whih is a�nite set. Even if the ε-path is a yle, during the �rst path traversal everypossible ES will be added to the ε-losure and further traversals will not addnew ESs. The ompletion of a non-left-reursive all through an ε-path doesnot produe an in�nite SES either. Let (q0, π) ∈ V0 be an ES from where we�nd a all transition (q0, Qc, qn) that is ompleted through an ε-path

(q0, qn�, q1), (q1, ε, q2) . . . (qn−2, ε, qn−1), (qn−1, qn�, qn), (12.1)that is, an ε-path whose �rst transition is a push transition initiating the all(q1 ∈ Qc), the last one is a pop transition that returns from the all and themiddle transitions are expliit ε-transitions; following the iterative ε-losureof V0, it holds that
(q0, π) ∈ V0

(q1, πqn) ∈ V1

(q2, πqn) ∈ V2...
(qn−1, πqn) ∈ Vn−1

(qn, π) ∈ Vn.As we an see, every ES produed during the all belongs to the domain
(Q× πqn) whih is also �nite even if the ε-path that ompletes the all has
ε-yles. As well, if the ε-path ontains a �nite suession of alls that are



12.5. BEHAVIOUR 231always ompleted by means of expliit ε-paths, the total number of ESs isalso �nite sine eah all produes a �nite number of ESs. If any of thesealls an also be ompleted through a non-left-reursive suball whih isompleted through an expliit ε-path and/or suessive non-left-reursivealls, the number of ESs is �nite as well sine the number of ESs given bythe suball is �nite. Any �nite number of suballs will produe as well a �nitenumber of ESs. Finally, non-left-reursive alls that annot be ompleted bymeans of an ε-path give also a �nite number of ESs, sine it is a subase ofnon-left-reursive alls that an be ompleted through ε-paths (the ε-losureexplores some part of the alls but not up to ompleting them).Theorem 16. Following lemmas 14 and 15, the ε-losure is always �nite fornon-left-reursive RTNs.De�nition 212 (Initial and aeptane SESs). Given the sets of initial andaeptane states of a RTN, QI and F , its initial and aeptane SESs are
(QI × {λ}) and (F × {λ}), respetively, with λ the empty stak.De�nition 213 (Exeution mahine). The exeution mahine of a RTN A isde�ned as for the generi exeution mahine (de�nition 105, p. 141) withoutany other kind of transitions than pure onsuming transitions and pure ε-transitions, thus its de�nition is equal to that of a FSA though possibly havingan in�nite set of states, transitions and aeptane states.As for the FSTBO ase (de�nition 158, p. 192), the exeution mahine ofa RTN does not require to de�ne all, push or pop transitions sine they arereplaed by pure ε-transitions that point to states whih already inlude theresulting stak after pushing or popping the orresponding return state.De�nition 214 (L). Following de�nition 107 (p. 142), we de�ne L(A), thelanguage aepted by a RTN A, as

L(A) = {w ∈ Σ∗ : ∆∗((QI × {λ}), w) ∩ (F × {λ}) 6= ∅}. (12.2)Lemma 16 (In�nite reursion degree). The reursion degree of a RTN havingat least one useful all yle is in�nite.Proof. Let A be a RTN ontaining the struture of �gure 12.5 so that
p = pa (qi−1, qr2

�, qi) pb (qj , qr1
�, qi) pc (qp1

, qr1
�, qr1

) pd (qp2
, qr2

�, qr2
) pe



232 CHAPTER 12. RECURSIVE TRANSITION NETWORKSis a path within A, pb (qj , qr1
�, qi) is a all yle, the realization of path pprodues the sequene of ESs

(q0, λ) . . . (qi−1, π1)

(qi, π1qr2
) . . . (qj , π1qr2

π2)

(qi, π1qr2
π2qr1

) . . . (qp1
, π1qr2

π2qr1
)

(qr1
, π1qr2

π2) . . . (qp2
, π1qr2

)

(qr2
, π1) . . . (qn, λ)and therefore p is interpretation of A sine (q0, λ) ∈ XI and (qn, λ) ∈ XF .By suppressing the all yle we obtain path

p0 = pa (qi−1, qr2
�, qi) pc (qp1

, qr2
�, qr2

) pewhih produes the sequene of ESs
(q0, λ) . . . (qi−1, π1)

(qi, π1qr2
) . . . (qp1

, π1qr2
)

(qr2
, π1) . . . (qn, λ)and therefore is also an interpretation of A as for p. By self-onatenatingthe all yle k ≥ 1 times we obtain the in�nite family of paths

pk = pa (qi−1, qr2
�, qi)(pb (qj , qr1

�, qi))
k pc (qp1

, qr1
�, qr1

) (pd (qp2
, qr1
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))k−1

(pd (qp2
, qr2

�), qr2
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q0 . . . qi−1 qr2

. . . qn
{. . . , qi, . . .}

pa, pushes π1 pe, pops π1

qi . . . qj qr1
. . . qp2

. . .

qp1

{. . . , qi, . . .}

pb, pushes π2 pd, pops π2

p
cFigure 12.5: RTN generi struture ontaining in�nite interpretations due toreursive all to qi.whih produe the sequene of ESs
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, π1) . . . (qn, λ),and therefore is an in�nite family of interpretations of A.



234 CHAPTER 12. RECURSIVE TRANSITION NETWORKSTheorem 17 (Possible reursion degrees). The reursion degree of a RTNis either zero or in�nite.In hapter 15 we will present other kind of RTNs �FPRTNs� having anot so obvious set of possible reursion degrees: zero, one or in�nite. Theproof for the ase of FPRTNs is an extension of the proof for the ase ofRTNs.Theorem 18 (Cardinality of the interpretation set). Given the previous the-orem and the theorems 4 (p. 145) and 6 (p. 164) on the ardinality of theinterpretation set for FSMs and for FSAs (theorem), the number of interpre-tations of a RTN is in�nite i� it ontains at least one useful non-all yleor its reursion degree is not zero.Theorem 19 (Cardinality of the language). Given theorem 5 (p. 146), sineFSAs allow for the realization of any of its transitions, the language of aRTN is in�nite i� it ontains at least a useful onsuming yle, whih in thisase may also be a all yle.12.6 Reverse RTNDe�nition 215 (Reverse RTN). Let A be a RTN (Q, Σ, δ, QI , F ) with dis-joint submahines; we de�ne AR, the anonial reverse of A, as a RTN
(Q, Σ, δ′, Q′

I , F
′) suh that

• AR ontains a onsuming transition or expliit ε-transition t i� A on-tains transition tR,
• AR ontains a all transition (qs, Qc, qt) with Fc as the set of aeptanestates of its Qc-submahine i� A ontains a all transition (qt, Fc, qs)with Qc as the set of aeptane states of its Fc-submahine,
• push and pop transitions are impliitly de�ned by the previous all tran-sitions,
• Q′

I is the set of aeptane states of A's axiom submahine, and
• F ′ is the union of QI and every subinitial state of A.Lemma 17 (Reverse RTN). Let A be a RTN with disjoint submahines, ARis a reverse of A.



12.7. RECOGNIZING A STRING 235Proof. The proof for the ase of words whih are reognized by means ofpaths ontaining FSA transitions, that is, without subroutine jumps, is thesame than for FSAs (proof of lemma 9, p. 165). Let t = (qs, Qc, qt) be a alltransition within A suh that t is realizable through a path (qs, qt�, qc)p(qf ,
qf�, qt) with qc ∈ Qc and p does not ontain push, pop or all transitions,then AR ontains a all (qt, Fc, qs) with Fc equal to the set of aeptanestates of the Qc-submahine of A, and this all is realizable through a path
(qt, qs�, qf)p

R(qc, qs�, qs) onsuming wR. No other words are reognized by aall to Fc due to the reversal of other submahine than Qc sine submahinesare disjoint. Note that given two non-disjoint submahines of A for Qc and Q′
cwith Fc and F ′

c as sets of aeptor states, reversed submahines Fc and F ′
c of

AR may reah states that are not reahable by the non-reversed submahinesof Qc and Q′
c. If p ontains a �nite reursion degree n of alls, the samereasoning is to be applied n reursive times. Finally if A reognizes a word

w through a path p starting at a state qs ∈ QI and ending at a state qt ∈ F ,then AR reognizes wR through a path p′ starting at qt ∈ Q′
I and ending at

qs ∈ F ′, and therefore it holds that LR(A) = L(AR).As stated before, non-disjoint submahines an be made disjoint by repli-ating their shared substrutures, thus any RTN an be reversed as explainedabove. Anyway, we will not need to reverse any mahine with non-disjointsubmahines sine the grammars we will treat are built as sets of disjointUnitex's graphs.12.7 Reognizing a stringThe base breadth-�rst and depth-�rst aeptor algorithms 7.5 (p. 153) and 7.8(p. 157) an be adapted for RTNs as explained in setion 7.9 (p. 153), butexluding left-reursive RTNs from their domain of appliation in order toavoid in�nite ε-losures. The di�erene between RTNs and the base FSMs,FSAs, is the subroutine jump mehanism, whih is implemented by addinga ouple of ε-moves (push and pop transitions) that operate on a stak.The main modi�ation to be done to the base breadth-�rst aeptor lies inthe omputation of the ε-losure, whih we show in algorithm 12.1 rtn_in-terlaed_elosure. The adaptation of the depth-�rst base aeptor an bestraightforwardly performed by following the de�nition of D(V ) for RTNs.Figure 12.7 is a graphial representation of the exeution trae of thebreadth-�rst aeptor algorithm adapted for RTNs, for RTN of �gure 12.6
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Algorithm 12.1 rtn_interlaed_elosure(V, E) ⊲ Cε(V )Input: V , the SES whose ε-losure is to be omputed

E, the queue of unexplored ESs ontaining every ES in VOutput: V after omputing its ε-losure
E after emptying it1: while E 6= ∅ do2: (qs, π)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS3: for eah qt ∈ δ(qs, ε) do4: add_enqueue_es(V, E, (qt, π))5: end for
⊲ PUSH-TRANSITIONS6: for eah (qr, Qc) : qr ∈ δ(qs, Qc) do7: for eah qc ∈ Qc do8: add_enqueue_es(V, E, (qc, πqr))9: end for10: end for
⊲ POP TRANSITIONS11: if π = π′qr ∧ qs ∈ F then12: add_enqueue_es(V, E, (qr, π

′))13: end if14: end while
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q0

q1 q2

q3 q4

q5

a

a

{q0}

{q0}

b

b

εFigure 12.6: Non-deterministi RTN with two alls whose omputation an befatored out; solid transitions represent either onsuming transitions or expliit
ε-transitions, and dashed transitions represent all transitions.and input aabb. As we an see in the exeution trae, the number of on-urrent explorations of the RTN doubles eah time an a is onsumed. Eventhough this number is redued eah time a b is onsumed, the number ofgenerated ESs inreases exponentially w.r.t. the length of input anbn.5 De-terminizing the RTN would have avoided this dupliation, keeping a linearrelation between the number of ESs and the input length. However, deter-minization may be too omplex or even impossible, for instane for mahineson an alphabet of prediates rather than symbols or mahines with output(this has been disussed in setions 8.5 and 10.7, pp. 166 and 200). As-suming that the leftmost transitions of eah ES within the trae are the�rst transitions of eah ES, the depth-�rst aeptor will just generate theleftmost exeution path; therefore, its exeution ost will be linear for thisase. Note that for other ases the algorithm may explore an exponentialnumber of paths onsuming some input pre�x before �nding the �rst inputinterpretation, hene its asymptoti ost is yet exponential.Both aeptor algorithms an be further improved by representing staksas pointers to the states of a trie of RTN state sequenes, as explained insetion 9.1 (p. 178).Left reursion allows for a natural way of modelling many natural lan-guage strutures (e.g.: see CFG in �gure 12.2, p. 223), but the algorithmwe have presented here is not able to proess left-reursive RTNs. Thereexist algorithms that transform any left-reursive CFG into an equivalentnon-left-reursive CFG; the lassi algorithm an be found in Aho et al.(1986, p. 176), and a more e�ient algorithm in Moore (2000)). Sine RTNsand CFGs are equivalent formalisms, left-reursion removal is also possible5This is a minimal theoretial ase whose purpose is to illustrate the problem of theexponential output generation; an example of exponential output generation for the aseof natural language grammars has been given in setion 1.5.4, p. 19.
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Figure 12.7: Exeution trae of the RTN breadth-�rst aeptor algorithm for the RTN of �gure 14.1 and input aabb.Solid, dotted and bold trae transitions orrespond, respetively, to the exploration of the RTN expliit transitions,push transitions and pop transitions.



12.8. FLATTENING 239for RTNs (see �gures 12.8 and 12.9) and these algorithms an be adaptedfor RTNs. A RTN proessing system may prevent the user from applyingnon-left-reursive RTNs �the urrent ase of the Unitex system� or to au-tomatially remove left-reursion from the RTN before applying it. However,we may be interested not only in the reognition of a sentene but in deter-mining the sentene's struture (identifying the sentene's onstituents andgroupings), whih might be oded within the RTN as a preise sequene of alltransitions. In this ase, if we transform the grammar so that left-reursion isavoided then we modify the sequene of subroutine alls reognizing the sen-tenes and therefore the resulting sentene struture. Another possibility isto extend RTNs for output generation �the objet of the next hapter� andto ode the sentene strutures as output tags inserted in the right plaes, forinstane XML tags bounding eah sentene onstituent. In that ase, trans-forming the RTN struture does not modify the resulting sentene strutureas long as both mahines are equivalent. This is analogous to the eliminationof left-reursion from syntax-direted translation shemes desribed in Ahoet al. (1986, hap. 2, p. 25).6 In setion 12.10 we present a more e�ientalgorithm of appliation of RTNs whih is also able to proess left-reursiveRTNs, saving the hassle of left-reursion detetion and suppression.12.8 FlatteningFlattening is a possible transformation to perform on a RTN in order to a-elerate its appliation. This operation is already implemented in the Unitexsystem (Paumier, 2008).De�nition 216 (Flattening). Flattening a RTN is the proess of replaingevery all transition t = (qs, Qc, qt) by an exlusive opy of its Qc-submahineas follows:
• remove t,
• for eah q of the Qc-submahine, reate a new state q′ whih is �nal i�so it is q,6Syntax-direted translation shemes are CFGs extended with some kind of outputgeneration mehanism that rereates the syntati struture of the sentenes they areapplied to.
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VP→ VP PP

=⇒

VP→ V NP VP′ VP′ → PP VP′

VP→ V NP VP→ V NP VP′ → PP

NP→ NP PP NP→ DET N NP′ VP′ → PP NP′

NP→ DET N NP→ DET N NP′ → PPFigure 12.8: Left-reursion of CFG of �gure 12.2 (p. 223) an be removed byreplaing the prodution rules at the left by those at the right; however, the gram-mar's struture is modi�ed and new �arti�ial� symbols VP′ and NP′ are added.
VP PP

V NP(a) Left-reursive VP DET N

NP PP(b) Left-reursive NP
V NP

VP_prime() Non-left-reursive VP (d) Non-left-reursive NP
PP

VP_prime(e) VP_prime (f) NP_primeFigure 12.9: Unitex graphs equivalent to those of �gure 12.8: graphs (a) and(b) orrespond to the produtions at the left, and graphs (), (d), (e) and (f)orrespond to the produtions at the right.
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• for eah transition (qcs, ξ, qct) of the Qc-submahine, add transition

(q′cs, ξ, q
′
ct),

• for eah qc ∈ Qc add transition (qs, ε, q
′
c), and

• for eah aeptane state qf of the Qc-submahine, add transition (q′f , ε, qt).Call transitions of added opies of submahines are to be reursively replaedas well.As we an see, �attening transforms the RTN into a FSA, thus allowingfor a full determinization of the RTN. However, this proess is not appliableto RTNs with reursive alls sine the replaement of these alls by theirorresponding Qc-submahines would never end. However, the maximumnumber of reursive realizations of alls for a given set of input sequenes is tobe �nite sine input sequenes are to be �nite. The Unitex system allows forsetting up a maximum number of reursive replaements in order to perform,at least, a partial �attening of reursive RTNs; reursive alls beyond thislevel are not replaed, hene the resulting RTNs aept the same languages.It must be taken into aount that �attening a RTN with ambiguous andreursive alls inreases its size exponentially w.r.t. the number of reursivereplaements to perform. The number of reursive replaements is to be setto the greatest number lower than or equal to the maximum expeted numberof reursive realizations of alls suh that the resulting RTN is small enoughto be handled. The MovistarBot grammar is not reursive, hene every allan be removed by �attening it, but the number of states and transitions isinreased by a fator of 4.1 and 10.1, respetively.12.9 DeterminizationThe generi determinization algorithm seen in setion 8.5 (p. 166) performshere an impliit �attening of the RTNs; therefore, it an only be applied tonon-reursive RTNs. However, we are also interested in applying reursiveRTNs; as for FSTBOs (setion 10.7, p. 200), we pseudo-determinize reursiveRTNs by determinizing their underlying FSAs. If the RTN is to be �attened,pseudo-determinization is to be performed on the �attened RTN.De�nition 217 (Underlying FSA). Let A = (Q, Σ, δ, QI , F ) be a RTN, wede�ne its underlying FSA as (Q, Σ ∪ P(Q), δ, QI , F ), that is, RTN inputsymbols and RTN subinitial SSs beome FSA input symbols.



242 CHAPTER 12. RECURSIVE TRANSITION NETWORKSHowever, sine all transitions are interpreted as onsuming transitions,the alled submahines are not determinized. Algorithm 8.2 fsm_reognize-_every_symbol (p. 172) needs to be modi�ed so that when σ is a subinitialSS Qc, algorithm 8.1 fsm_determinize (p. 171) is exeuted again on RTN Abut taking Qc as initial SS, if this has not already been done. In other words,the di�erent submahines are separately determinized, assuming that theyare disjoint. Algorithm 8.1 fsm_determinize is to take RTN A as a globalargument for eah exeution, and it is to take two new optional arguments:
• the SS Qc to be taken as initial SS, with QI as default value for the�rst exeution of the algorithm, and
• a global map ζI of subinitial SSs Qc ∈ P(Q) to subinitial states rc ∈ Q′,taking the empty map as default value.Note that, sine the RTN is being treated as its underlying FSA, ESs in thealgorithm are simple RTN states, namely: XI = QI , XF = F , xt ∈ Q and

Vs, Vt ∈ P(Q).In algorithm 8.1 fsm_determinize, state rt ∈ Q′ is reated before thewhile loop as the initial state of A′. In the new version, this is to be done onlyfor the �rst algorithm exeution. Moreover, map ζI(Qc) = rt is to be addedfor every exeution. The presene of this map is to be heked in algorithm 8.2fsm_reognize_every_symbol so that determinization of the Qc-submahineis not started multiple times. Additionally, the reation of all transitionsof mahine A′ is to be given a speial treatment: the original algorithmwould reate a all transition (rs, Qc, rc), where Qc is some subinitial SS of
A, but transition (rs, ζI(Qc), rc) is to be reated instead, where ζI(Qc) is thesubinitial state of A′ orresponding to Qc. At this point, it is sure that ζI(Qc)is already de�ned sine algorithm 8.2 fsm_reognize_every_symbol has beenpreviously alled, and this algorithm triggers the determinization of every Qc-submahine whih has not already been triggered, for every all transitionhaving as soure any of the states of A whih have been ondensed into state
rs of A′. Finally, an in�nite loop due to left-reursive alls is not possiblesine all transitions are treated as onsuming transitions: omputing thesubinitial state rc orresponding to a subinitial SS Qc implies to ompute the
ε-losure of Qc, whih does not traverse all transitions. Furthermore, ,ap
ζI(Qc) = rc is immediately de�ned afterwards, whih prevents from initiatingthe determinization of the Qc-submahine again.



12.10. EARLEY-LIKE PROCESSING 24312.10 Earley-like proessingFinite-state automata an give a more ompat representation of a set ofsequenes by fatoring out the ommon pre�xes and su�xes. RTNs an alsofator in�xes by de�ning one subautomaton for eah repeated in�x and byusing transitions alling the set of initial states of the orresponding subau-tomaton eah time the in�x is to be reognized. However, it is up to theparsing algorithm to detet that the same set of initial states is being alledfrom multiple points of the grammar for the same input point so that the allis proessed only one; for instane, in RTN of �gure 12.6 (p. 237) both allsto {q0} ould be omputed only one (per reursion level). Inspired by Ear-ley's CFG parser (Earley, 1970), we show here a modi�ed and more e�ientversion of the base aeptor algorithm 7.5 for FSMs whih is able to proessleft-reursive RTNs (see �gure 12.11) without falling into an in�nite loop andwhih fators out the omputation of in�x alls of parallel explorations of theRTN. Our algorithm di�ers from the Earley-like parser for RTNs given byWoods (1969) in that
• it is based on a FSA-like de�nition of RTNs rather than on a CFG-likeone,
• RTNs with ε-moves are supported, and
• alls are performed towards subinitial SSs instead of single states, whihfailitates the de�nition of the anonial reverse RTN (or the reverseexploration of a RTN)We have already presented a version of this algorithm for RTNs with stringoutput in Sastre and Forada (2007, 2009). Details and properties of the orig-inal Earley parser are given in appendix C (page 411) as well as omparisonswith other algorithms.We mainly modify the subroutine jump mehanism, whih is a part of the

ε-losure omputation. We replae the use of a stak of return states by amore omplex representation of the ESs and a hart storing every omputedSESs V during eah iteration of the algorithm. When a all transition to aSS Qc is to be traversed, two kinds of ESs are generated: one paused and oneor more ative ESs:
• the paused ES represents a hypotetial return from the all that is tobe resumed if the all is ompleted, and
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• the ative ESs initialize the all from eah alled qc ∈ Qc and the urrentinput, if all to Qc has not already been initialized at this input point.Eah all is omputed only one for eah paused ES waiting for its omple-tion, and eah time the all is ompleted the orresponding paused ESs areresumed.De�nition 218 (Earley exeution state). ESs for Earley-like RTN proessingare quadruplets in (Q × (P(Q) ∪ {λ}) × P(Q) × N), where quadruplets ofthe form (qs, {λ}, Qh, i) are alled ative ESs and quadruplets of the form

(qr, Qc, Qh, i) are alled paused ESs. In the quadruplets,
• the �rst term, qs or qr, is the urrent state of the ES: the soure statefor ative ESs and the return-from-all state for paused ESs,
• the seond term, Qc or λ, is the alled SS Qc whose ompletion thispaused ES is waiting for, or λ if this is an ative ES,
• Qh or hypothesis SS is the last alled SS whose assoiated alls will beompleted one an aeptane state is reahed, and
• i is the number of onsumed input symbols at the moment of initi-ating the last all to Qh, that is, when generating the last ative ES(qs, λ, Qs, i) from where this either ative or paused ES is derived.ESs of the original Earley parser (the hart items) inlude a seond index

j suh that σi+1 . . . σj is the input interval that has been onsumed sine thelast all initialization up to the ES, for an input sequene σ1 . . . σl. SineESs are grouped into SESs suh that Vj ontains every generated ES afteronsuming j symbols, we retrieve j from the index of Vj rather than expliitlyrepresenting it inside every ES.De�nition 219 (Earley ∆). The ∆ funtion for RTN Earley-like proessing,the equivalent to Earley's sanner, is a simple diret-derivation funtion onSESs (de�nition 98, p. 136) with
• xs = (qs, λ, Qh, i),
• xt = (qt, λ, Qh, i), and
• d = qt ∈ δ(qs, σ).



12.10. EARLEY-LIKE PROCESSING 245Notie that the ∆ funtion does not apply to paused ESs: there is nothingto do with paused ESs until the all they depend on is ompleted. Inputsymbols are to be onsumed from ative ESs only and paused ESs are towait for all ompletions. Notie as well that neither the hypothesis statenor the input position i are modi�ed: they remain the same until enteringinto or oming out from a all.De�nition 220 (Earley D). The D(Vk) funtion for RTN Earley-like pro-essing is omposed by 3 simple diret-derivation funtions on a SESs (de�-nition 98, p. 136): Dε(Vk) with
• xs = (qs, λ, Qh, j),
• xt = (qt, λ, Qh, j), and
• d = qt ∈ δ(qs, ε),is the expliit ε-transitions proessor, Dpush(Vk) with
• xs = (qs, λ, Qh, j),
• xt = (qc, λ, Qc, k) or xt = (qr, Qc, Qh, j), meaning that both target ESsare derived from xs if p holds, and
• d = qr ∈ δ(qs, Qc) ∧ qc ∈ Qc,is the equivalent to Earley's preditor, and Dpop(Vk) with
• xs = (qf , λ, Qh, j),
• xt = (qr, λ, Q′

h, i), and
• d = qf ∈ F ∧ (qr, Qh, Q

′
h, i) ∈ Vj,is the equivalent to Earley's ompleter. Dpop is retroative, that is, if dur-ing the omputation of Dpush(Vk) a paused ES (qr, Qc, Qh, j) is added to Vkdue to a all to a SS Qc that has already been ε-ompleted,7 its resumedES (qr, λ, Qh, j) is to be retroatively added to Vk as well. Retroative ε-ompletion is disussed in more detail in the next setion.7Completions within the same SES Vk are only possible if no input is onsumed duringthe whole all.



246 CHAPTER 12. RECURSIVE TRANSITION NETWORKSDe�nition 221 (Earley initial and aeptane SESs). Given the sets ofinitial and aeptane states of a RTN, QI and F , its initial and aep-tane SESs for Earley-like proessing are (QI × {λ} × {QI} × {0}), the ESsstarting a all to any initial state before onsuming any input symbol, and
(F × {λ} × {QI} × {0}), the ESs from where those initial alls would pop,respetively.De�nition 222 (Earley exeution mahine). The Earley exeution mahineof a RTN is a FPRTN. Its de�nition and the onstrution of the exeutionsubstrutures for a partiular input sequene will be desribed in hapter 15.For the Earley ase, it does not su�e to replae all, push and pop tran-sitions by pure ε-transitions; onsider an ε-path having several onseutiveand deletable alls to the same subinitial SS Qc (see RTN of �gure 12.10);during the omputation of an ε-losure involving this path, all to Qc is om-puted only one and therefore a unique struture resolving this all is builtin the exeution mahine: the exeution mahine still needs all transitionsin order to be able to return to the right state one the all is ompleted.Moreover, the all may be ompleted through di�erent paths that do notneessarily onsume the same amount of input symbols, resulting in multi-ple return states orresponding to di�erent input points. FPRTNs performan additional test in order to forbid pop transitions that bring the mahineto return states orresponding to di�erent input points than those of theaeptor states that preede them. More details will be given in hapter 15.De�nition 223 (Earley L). Following de�nition 107 (p. 142), we de�ne
L(A) �the language of a RTN A� through Earley-like proessing as

L(A) = {w ∈ Σ∗ : ∆∗((QI × {λ} × {QI} × {0}), w)∩

(F × {λ} × {QI} × {0}) 6= ∅}. (12.3)12.11 Earley aeptor algorithmAlgorithm 12.2 rtn_earley_reognize_string is a sequene aeptor imple-menting prediate w ∈ L(A) through Earley-like proessing (de�nition 223,p. 246). It uses algorithm 12.3 rtn_earley_reognize_symbol for omputingthe Earley-like ∆ funtion (de�nition 219), the equivalent to Earley's san-ner, and algorithm 12.4 rtn_earley_interlaed_elosure for omputing the



12.11. EARLEY ACCEPTOR ALGORITHM 247Earley-like ε-losure (generi FSM ε-losure in de�nition 100, p. 138 usingthe Earley-like D funtion in de�nition 220, p. 245), whih inludes bothEarley's preditor (push transition proessor) and ompleter (pop transi-tion proessor). Moreover, it inludes an ε-transition proessor for expliit
ε-transition support as well as an ε-ompleter for handling deletable alls;both omponents are missing in the original Earley parser sine:
• it does not support CFGs with either diretly or indiretly deletablenon-terminals, and
• the empty symbol is used only for the de�nition of diretly deletablenon-terminals (e.g.: A→ ε).8Notie that the main di�erene w.r.t. the FSM aeptor, algorithm 7.5, isthe way in whih the ε-losure is omputed. Finally, add_enqueue_es andunonditionally_add_enqueue_es are the small routines seen in setions 7.8(p. 147) and 7.9 (p. 153) for onditionally or unonditionally adding an ESto a SES.Following the preditor-ompleter mehanism, every all started at a SES

Vi to the same SS is omputed only one. Without the possibility of ε-ompleting a all, alls started in Vi are ompleted during the omputationof Vi+1 or later, and therefore after every paused ES is added to Vi. Eahtime the all is ompleted, every paused ES in Vi depending on the all issearhed in order to be resumed. If alls an be ε-ompleted then they anbe started and ompleted during the omputation of the same SES; there-fore, paused ESs depending on the all might be added to the SES after theall is ompleted and therefore not to be resumed. In order to avoid this,
ε-ompleted alls must be marked in order to retroatively resume subse-quent paused ESs. Algorithm rtn_earley_interlaed_elosure builds a set
T ontaining the alled subinitial SSs Qc that are been ε-ompleted duringthe omputation of the ε-losure of the SES Vk.9 The ε-ompleter insidethe ompleter adds Qc to T for eah ES (qs, λ, Qc, i) that triggers the allompletion in Vk with i = k: sine at Vi we have onsumed i symbols and ES
(qs, λ, Qc, i) indiates that the all started when i symbols where onsumed,8A non-diretly deletable non-terminal B an still be indiretly deletable: the grammarprodutions may allow for rewriting B as a diretly deletable non-terminal, whih in turnan be rewritten as the empty symbol.9In pratie we add the pointer to the set objet representing Qc.



248 CHAPTER 12. RECURSIVE TRANSITION NETWORKSthe all is being ompleted without input onsumption. The ε-ompleter in-side the preditor immediately resumes every paused ES (qr, Qc, Qh, i) addedto Vi so that Qc ∈ T .A disussion on extending Earley's CFG parser for supporting CFGs withdeletable non-terminals an be found in Ayok and Horspool (2002), as wellas an example of exeution illustrating the problem. In the paper, a listof deletable non-terminals is to be previously built so that alls to suhnon-terminals are immediately ompleted. In our ase, we have followed adi�erent approah sine the algorithm we give here is to be further extendedfor output generation, whih will require an e�ient proedure for the om-putation of suh outputs rather than simply ompleting the deletable allsprematurely. However, we give in �gure 12.10 an equivalent example to thatgiven by Ayok and Horspool (2002) in order to illustrate the problem forthe ase of RTNs and how we have solved it. An example implying a left-reursive RTN equivalent to the one for CFGs in appendix C is shown in�gure 12.11. Funtions in the rightmost olumn of exeution traes �exeptfuntion deletable(Qc)� represent the derivation mehanism that has beenfollowed in order to produe the ES in the same line, where the argumentsare the index of the ESs from where this ES has been derived:
• reognize(i, σ): derived from ES i by taking a transition onsuminginput symbol σ,
• ε-transition(i): derived from ES i by taking an ε-transition,
• all(i) and pause(i): the ative and paused ESs, respetively, derivedfrom ES i by taking a all transition,
• resume(i, j) and ε-resume(i, j): derived by resuming paused ES (i) dueto reahing ES j whih triggers the all ompletion, the former by theompleter and the latter by the ε-ompleter (inside the preditor).Funtion deletable(Qc) aompanies funtion resume(i, j) and indiates that,upon resuming ES i, the ε-ompleter (inside the ompleter) has detetedthat the all to SS Qh is deletable. Notie that when deriving an ES that isalready present in the orresponding SES, there is no line added to the traeand therefore the derivation mehanism for that ES does not appear in thetrae; for instane, in �gure 12.11 a all is performed from the initial ES in 1whih produes the paused ES in 2 and an ative ES that is already presentin 1.



12.11. EARLEY ACCEPTOR ALGORITHM 249Algorithm 12.2 rtn_earley_reognize_string(σ1 . . . σl) ⊲ σ1 . . . σl ∈ L,def. (223)Input: σ1 . . . σl, an input string of length lOutput: r, a Boolean indiating whether the input string belongs to L1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: for eah (qc ∈ QI) do5: unconditionally_add_enqueue_es(V0, (qc, λ, QI , 0))6: end for7: V ← rtn_earley_interlaced_eclosure(V l+1, E, 0)8: k ← 09: while Vk 6= ∅ ∧ k < l do10: Vk+1 ← rtn_earley_recognize_symbol(Vk, E, σk+1)11: k ← k + 112: rtn_earley_interlaced_eclosure(V l+1, E, k)13: end while14: r ← false15: for eah (qs, λ, QI , 0) ∈ Vk do16: r ← r ∨ qs ∈ F17: end forAlgorithm 12.3 rtn_earley_reognize_symbol(V, E, σ) ⊲ ∆(V, σ),def. (219)Input: V , a SES
E, the empty queue of unexplored ESs
σ, the input symbol to reognizeOutput: W , the set of reahable states from V by onsuming σOutput: E after enqueuing the ESs of W1: W ← ∅2: for eah (qs, λ, Qh, i) ∈ V do3: for eah qt ∈ δ(qs, σ) do4: add_enqueue_es(W, E, (qt, λ, Qh, i))5: end for6: end for



250 CHAPTER 12. RECURSIVE TRANSITION NETWORKSAlgorithm 12.4 rtn_earley_interlaed_elosure(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the hart
E, the queue of unexplored ESs ontaining every ES in Vk

k, the index of the SES, Vk, whose ε-losure is to be omputedOutput: V l+1 after adding to Vk its ε-losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, λ, Qh, j)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS4: for eah qt ∈ δ(q, ε) do5: add_enqueue_es(Vk, E, (qt, λ, Qh, j))6: end for
⊲ PREDICTOR7: for eah (qr, Qc) : qr ∈ δ(qs, Qc) do8: if add(Vk, (qr, Qc, Qh, j)) then9: if Qc /∈ T then10: for eah qc ∈ Qc do11: add_enqueue_es(Vk, E, (qc, λ, Qc, k))12: end for

⊲ ε-COMPLETER13: else14: add_enqueue_es(Vk, E, (qr, λ, Qh, j))15: end if16: end if17: end for
⊲ COMPLETER18: if qs ∈ F then19: for eah (qr, Qh, Q

′
h, i) ∈ Vj do20: add_enqueue_es(Vk, E, (qr, λ, Q′

h, i))
⊲ ε-COMPLETER21: if i = k then22: add(T, Qh)23: end if24: end for25: end if26: end while
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a {q7}

ε

V0

1 : (q0, λ, {q0}, 0) initial ES
2 : (q1, {q5}, {q0}, 0) pause(1)
3 : (q5, λ, {q5}, 0) all(1)
4 : (q6, {q7}, {q5}, 0) pause(3)
5 : (q7, λ, {q7}, 0) all(3)
6 : (q8, λ, {q7}, 0) ε-transition(5)
7 : (q6, λ, {q5}, 0) resume(4, 6); deletable({q7})
8 : (q1, λ, {q0}, 0) resume(2, 7); deletable({q5})
9 : (q2, {q5}, {q0}, 0) pause(8); all already in 3

10 : (q2, λ, {q0}, 0) ε-resume(7, 9)
11 : (q3, {q5}, {q0}, 0) pause(10); all already in 3
12 : (q3, λ, {q0}, 0) ε-resume(7, 11)
13 : (q4, {q5}, {q0}, 0) pause(12); all already in 3
14 : (q4, λ, {q0}, 0) ε-resume(7, 13)

V1

15 : (q6, λ, {q5}, 0) reognize(3, a)
16 : (q1, λ, {q0}, 0) resume(2, 15)
17 : (q2, λ, {q0}, 0) resume(9, 15); resume(20, 27)
18 : (q3, λ, {q0}, 0) resume(11, 15); resume(22, 27)
19 : (q4, λ, {q0}, 0) resume(13, 15); resume(23, 27);aeptane ES
20 : (q2, {q5}, {q0}, 0) pause(16)
21 : (q5, λ, {q5}, 1) all(16)
22 : (q3, {q5}, {q0}, 0) pause(17); all already in 21
23 : (q4, {q5}, {q0}, 0) pause(18); all already in 21
24 : (q6, {q7}, {q5}, 1) pause(21)
25 : (q7, λ, {q7}, 1) all(21)
26 : (q8, λ, {q7}, 1) ε-transition(25)
27 : (q6, λ, {q5}, 1) resume(24, 26); deletable({q7})Figure 12.10: RTN with deletable alls (left) and exeution trae of algo-rithm 12.2 rtn_earley_reognize_string for this RTN and input a (right); withoutthe ε-ompleter, greyed ESs would be missing and the input rejeted.
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1 : (q0, λ, {q0}, 0) initial ES

2 : (q1, {q0}, {q0}, 0) pause(1); all already in 1
V1

3 : (q2, λ, {q0}, 0) reognize(1, b)
4 : (q1, λ, {q0}, 0) resume(2, 3)

V2

5 : (q2, λ, {q0}, 0) reognize(4, a)
6 : (q1, λ, {q0}, 0) resume(2, 5)

V3

7 : (q2, λ, {q0}, 0) reognize(6, a)
8 : (q1, λ, {q0}, 0) resume(2, 7)...

Vl

2l + 1 : (q2, λ, {q0}, 0) reognize(2l, a); aeptane ES

2l + 2 : (q1, λ, {q0}, 0) resume(2, 2l + 1)Figure 12.11: Left-reursive RTN reognizing the language ban and exeution trae of algorithm 12.2 rtn_earley-_reognize_string for this RTN and input bal.



12.11. EARLEY ACCEPTOR ALGORITHM 253A graphial representation of the exeution trae of the Earley-like a-eptor algorithm for RTN of �gure 12.6 and input aabb �the same ase seenin setion 12.7� is shown in �gure 12.12. Note that paused ESs are not rep-resented as states of the trae but as labels of the push and pop transitions;their purpose is to annotate the required information upon starting a allfor popping from it later. As for the base aeptor algorithm for RTNs, thenumber of parallel explorations is dupliated eah time an a is onsumed,but when performing the parallel alls to {q0} the algorithm reates a uniqueexploration path for the all. One the all is ompleted, the two explorationpaths are joined after onsuming a b. The average number of parallel explo-rations is kept onstant w.r.t. the length of input anbn, thus the algorithmhas a linear exeution time for this RTN instead of exponential as for thebase aeptor algorithm.Note that the exponential explosion is due to multiple nesting levels ofsubgrammar alls ombined with multiple interpretations within the alledsubgrammars: grammar of �gure 12.6 produes 2n di�erent outputs with n asthe number nesting levels of all to {q0}. The amount of suh nesting levelsthat take plae when parsing natural language sentenes annot be expetedto be very high, sine we �nd di�ult to understand sentenes involvinga high number of ambiguous nesting levels and therefore we usually avoidto formulate suh omplex sentenes. However, sine the speedup due tofatoring out the omputation of subgrammar alls inreases exponentiallyw.r.t. the number of nesting levels, and general natural language grammarsinvolve ambiguous alls to heavy-weighted subgrammars, the performanegain an be expeted to be onsiderable even for low nesting levels.Sine RTNs and CFGs are equivalent and the presented Earley-like al-gorithm for RTNs is an almost straightforward adaptation of Earley's CFGparser, we an expet the same asymptoti ost than that of the originalparser: polynomial (O(n3)) in the worst ase, but linear for many naturallanguage input sentenes and grammars. The algorithm annot be furtheroptimized using the trie string management seen in setion 9.1 sine it nei-ther generates output nor relies on a stak of return states for reursive allmanagement.
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Figure 12.12: Exeution trae of the RTN Earley-like aeptor �algorithm 12.2� for the RTN of �gure 12.6and input aabb. Thik dashed arrows link push transitions with their orresponding pop transitions. Paused ESsdeorate push and pop transitions.



12.12. EARLEY-LIKE DETERMINIZATION 25512.12 Earley-like determinizationEven though Earley-like proessing avoids falling into in�nite loops duringthe ε-losure omputation, it does not prevent in�nite loops when it is appliedto the generi determinization algorithm (setion 8.5, p. 166): Earley-like ESsbelong to sequenes of SES V0 . . . Vl, where V0 ontains the ESs before on-suming any input symbol, V1 after onsuming the �rst input symbol and soon, so even though two ESs belonging to two di�erent SES Vi and Vj mightbe equal, they are not regarded as the same ES (an Earley-like determiniza-tion algorithm would require to extend ESs with another �eld storing theindex of the SES they belong to). If the RTN an reognize input sequenesof any length (it ontains yles that an be onseutively realized any num-ber of times for some �nite input), the determinization algorithm will tryto generate an unbounded number of ESs, inreasing the index of the SESthey belong to eah time an input symbol is onsumed. This feature makesbreadth-�rst proessing a better hoie for RTN determinization. Anotherpossibility is to determinize only the paths onsuming the �rst n input sym-bols, though we have not studied it. A similar approah alled pre�x overlaytransduers (POTs) is presented in Marshner (2007) for RTNs with output.The main idea is that the searh spae of a RTN representing a natural lan-guage grammar gets redued as sentene words are reognized sine the �rstwords ondition the following ones; therefore, if we are to partially deter-minize a RTN at the expense of inreasing its size, we an expet a greatersearh spae redution by fully determinizing the paths reognizing the �rst
n words than by �attening the �rst n reursive alls and then determinizingthe RTN as a FSA.





Chapter 13Reursive transition networkswith blakboard outputWe present here RTNBOs as a generalization of output generation with RTNsby ombining the de�nitions and properties of FSTBOs (hapter 10) andRTNs (previous hapter). RTNBOs an be seen as an alternative de�nitionof augmented transition networks (Woods, 1969): both formalisms extendRTNs with registers that store information generated during their applia-tion, and both formalisms de�ne extra onditions to the traversal of transi-tions whih depend on the values stored in the registers. RTNs with stringoutput are presented in hapter 14 as a partiular ase of output generation.RTNs with omposite output, weighted RTNs and RTNs with uni�ationproesses an be de�ned as speial kinds of RTNBOs. The guidelines for ob-taining suh de�nitions will be given in hapters 17, 18 and 19, respetively.De�nition 224 (RTNBO). A RTNBO (Q, Σ, Γ, B, BK , δ, QI , F ) is a FSTBO
(Q, Σ, Γ, B, BK , δ, QI , F ) (de�nition 139, p. 185) extended with a subroutinejump mehanism, as for RTNs (de�nition 183, p. 221) w.r.t. FSAs (de�ni-tion 128, p. 162): the set of transition labels Ξ takes its elements from theset ((Σ ∪ {ε})× (Γ ∪ {idB})) ∪ P(Q), where
• labels in ((Σ ∪ {ε}) × Γ) ∪ P(Q) are the same than for the ase ofFSTBOs and,
• labels in P(Q) represent subroutine jumps or alls to state sets, as forthe ase of RTNs. 257



258 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUT13.1 TransitionsIn the de�nition of RTNBO, transitions that onsume input and/or generateoutput are not allowed to modify the stak of return states and vie-versa.This way, transition de�nitions for the ase of FSTBOs and RTNs an bereused for the ase of RTNBOs. Transitions that either onsume input orgenerate output are inherited from the FSTBO ase, whih are
• onsuming transitions (de�nition 140, p. 186): Q×(Σ×(Γ∪{idB}))×Q,
• generating transitions (de�nition 141, p. 186): Q× ((Σ∪ ε)× Γ)×Q,
• translating or substituting transitions (de�nition 142, p. 186): Q×(Σ×

Γ)×Q,
• deleting transitions (de�nition 143, p. 186): Q× (Σ×{idB})×Q and
• inserting transitions (de�nition 145, p. 186): Q× ({ε} × Γ)×Q.Transitions that modify the stak are inherited from the RTN ase, whihare
• all transitions (de�nition 187, p. 222): Q×P(Q)×Q,
• push transitions (de�nition 189, p. 222): Q×Q�×Q,
• pop transitions (de�nition 190, p. 222): Q×Q�×Q and
• impliit ε-transitions (de�nition 186, p. 222): push or pop transitions.Finally, transitions that neither onsume input nor generate output nor mod-ify the stak have the same form than FSTBO ε2-transitions but fall into theategory of RTN expliit ε-transitions:
• expliit ε-transitions or ε2-transitions(de�nition 146, p. 186): Q×({ε}×
{idB})×Q.De�nition 225 (ε2-all). We say a all to a subinitial SS Qc is an ε2-allor ε2-realizable all i� it is realizable through an ε2-path (see de�nition 149,p. 187).
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garden </N>(b) NFigure 13.1: Graphs of sub�gures 12.4(b) and 12.4(e) after inserting XML outputtags for marking the sentene ompounds they reognize.
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Figure 13.2: RTNBO fragments equivalent to the graphs of �gure 13.1.13.2 Graphial representationThe graphial representation of RTNBOs is a ombination of the representa-tions of FSMs, FSTBOs and RTNs, both for the lassial representation asfor the Unitex and Intex graphs. Figures 13.1 and 13.2 show some fragmentsof the graph and RTN shown in setion 12.2 (p. 223) but extended with XMLoutput tags in order to mark the reognized sentene ompounds.

13.3 Sequenes of transitionsDe�nitions given on the sequenes of transitions of FSTBOs (setion 10.3,p. 187) and RTNs (setion 12.3, p. 225) also apply for the ase of RTNBOs.



260 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUT13.4 BehaviourThe de�nitions in this setion orrespond to the appliation of RTNBOs with-out Earley proessing (as for the non-Earley appliation of RTNs desribedin setion 12.5). The Earley-like appliation of RTNBOs will be desribed insetion 13.9.De�nition 226 (Exeution state). RTNBO ESs are triplets (q, b, π) ∈ (Q×
B ×Q∗) where b is an output blakboard, being b∅ the empty blakboard, and
π is a stak of return states, being λ the empty stak.De�nition 227 (Illegal SES). As for FSTBOs (de�nition 154, p. 189), theillegal SES of a RTNBO (Q, Σ, Γ, B, BK , δ, QI , F ) is (Q×BK ×Q∗), thatis, the set of all ES having a killing blakboard.De�nition 228 (∆). The ∆ funtion for RTNBOs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = (qs, bs, π),
• xt = (qt, bt, π), and
• d = qs ∈ δ(qs, (σ, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK.The RTNBO ∆ funtion behaves as the FSTBO ∆ funtion (de�nition 155,p. 189): ESs are extended with a stak whih is in fat not modi�ed.De�nition 229 (D). The D funtion for RTNBOs is omposed by 3 simplediret-derivation funtions on SESs (de�nition 98, p. 136), Dε with
• xs = (qs, bs, π),
• xt = (qt, bt, π), and
• d = qs ∈ δ(qs, (ε, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK.

Dpush with
• xs = (qs, b, π),
• xt = (qc, b, πqt), and
• d = qt ∈ δ(qs, Qc) ∧ qc ∈ Qc,



13.4. BEHAVIOUR 261and Dpop with
• xs = (qf , b, πqr),
• xt = (qr, b, π), and
• d = qf ∈ F .As an be seen, Dε is de�ned as funtion D for FSTBOs (de�nition 156,p. 189) but extended with an stak of return states whih is left intat,and funtions Dpush and Dpop are de�ned as the ones for RTNs (see def-inition 211, p. 229) but extended with an output blakboard whih is leftintat.Lemma 18 (In�nite ε-losure). The ε-losure of a RTNBO SES V is in�niteif there exists an ES (q, b, π) within V or ε-reahable from V suh that q istraversed by a generating ε-yle holding the onditions expressed in lemma 10(p. 189) and/or q has an outgoing left-reursive all transition, as for RTNs(lemma 14, p. 229).Proof. The proof for the ase involving generating ε-yles an be obtainedby extending FSTBOs ESs of proof of lemma 10 (p. 189) with a stak ofreturn states π that does not hange. The ase involving left-reursive allsan be obtained by extending RTN ESs of proof of lemma 14 (p. 229) witha non-killing output blakboard that does not hange. Sine both ases leadto in�nite ε-losures, the ombination of both de�nes several ε-paths addingan in�nite SES to the ε-losure and therefore leading to in�nite ε-losures aswell.Lemma 19 (Finite ε-losure). Under onditions other than those expressedin the previous lemma, the ε-losure of a RTNBO SES is �nite.Proof. This proof is also a mixture of the analogous proofs for FSTBOs (proofof lemma 11, p. 191) and RTNs (proof of lemma 15, p. 230). If we onlyonsider paths that do not modify the stak of return states, by extendingthe proof for FSTBOs with staks that do not hange we see that every ε-path not ontaining a generating ε-yle suh as the desribed in the prooflead to �nite ε-losures. If we only onsider paths that do modify the stakof return states or do not modify it but do not generate output, by extendingthe proof for RTNs with non-killing blakboards that do not hange we seethat every ε-path not ontaining left-reursive alls lead to �nite ε-losures



262 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUTas well. Finally, a path being omposed by the onatenation of a �nitesequene of paths of both kinds will lead to the �nite union of the �nite SESfor eah individual path, thus also leading to a �nite ε-losure.Theorem 20. The ε-losure is �nite for non-left-reursive RTNBOs whihdo not ontain generating ε-yles suh as the ones desribed in lemma 10(p. 189).As already mentioned, suh generating ε-yles do not make sense innatural language grammars sine they allow for in�nite translations of �niteinput sequenes (e.g.: in�nite parse trees of �nite sentenes). Therefore,forbidding suh yles does not limit the natural language grammars thatan be represented but ensures that the algorithms of appliation of RTNBOswill end.De�nition 230 (Initial and aeptane SESs). Given the sets of initial andaeptane states of a RTNBO, QI and F , its initial and aeptane SESsare (QI × {b∅} × {λ}) and (F ×B × {λ}), respetively.De�nition 231 (τ). We de�ne τ(A), the language of translations of a RTNBO
A, as the set of input/output pairs (w, b) ∈ (Σ∗×B) suh that w is reognizedand translated into b by A, that is, the set of input/output pairs suh that thewhole onsumption of w reahes at least an aeptane ES from at least aninitial ES through a path that generates b:
τ(A) = {(w, b) : (qf , b, π) ∈ ∆∗((QI×{b∅}×{λ}), w)∩(F×B×{λ})}. (13.1)De�nition 232 (ω). We de�ne ω(A, w), the translations of a word w for aRTNBO A, as the set of output sequenes b ∈ B suh that (w, b) belongs tothe translations of A:

τA(w) = {b : (w, b) ∈ τ(A)}. (13.2)13.5 Translating a stringAlgorithm 13.1 rtnbo_translate_string performs a breadth-�rst appliationof a RTNBO to an input string in order to obtain its set of translations. It isan almost straightforward adaptation of the breadth-�rst FSTBO translator(algorithm 10.1) but with the following di�erenes:
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• the initial set of ESs has empty staks of return states added to eahES,
• the use of the ∆ and ε-losure funtions adapted for RTNBOs,
• in the last loop, we extrat the output blakboards of the ESs of the last

Vi that have an empty stak of return states as well as an aeptanestate.1Algorithm rtnbo_translate_symbol an be easily dedued from algorithm 10.2fstbo_translate_symbol by extending ESs with a stak that does not hange,and algorithm rtnbo_interlaed_elosure an be easily dedued from algo-rithm 12.1 rtn_interlaed_elosure by extending ESs with an output blak-board that
• might be modi�ed for the ase of expliit ε-transitions as for onsumingtransitions in algorithm 10.2 fstbo_translate_symbol, and
• is not modi�ed for the other ases (push and pop transitions).Algorithm 10.5 (p. 199), the depth-�rst translator algorithm for FSTBOs,an yet be used for RTNBOs by simply replaing the implementation of the

∆ and D funtions for the ase of RTNBOs.As for the RTN breadth-�rst and depth-�rst aeptor algorithms (se-tion 12.7, p. 235), these algorithms an be further improved by representingthe staks of return states as pointers to the nodes of a trie (see setion 9.1,p. 178). As for the ase of FSTBOs, blakboard �elds ontaining data se-quenes may also be represented as pointers to trie nodes.13.6 FlatteningThere is no di�erene between �attening a RTNBO and �attening a RTN(setion 12.8, p. 239) sine this proess applies only to all transitions, whihare de�ned as for RTNs, and submahines are to be opied as is, that is,without interpreting their ontent.1As for FSTBOs, it is not neessary to hek whether the blakboards belong to BKor not sine, by de�nition, every ES in Vi is legal.
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Algorithm 13.1 rtnbo_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl),eq. (13.2)Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: V ← ∅2: E ← ∅3: for eah qc ∈ QI do4: unconditionally_add_enqueue_es(V, E, (qc, b∅, λ))5: end for6: rtnbo_interlaced_eclosure(V, E)7: i← 08: while E 6= ∅ ∧ i < l do9: Vi ← rtnbo_translate_symbol(V, E, σi+1)10: i← i + 111: rtnbo_interlaced_eclosure(V, E)12: end while13: T ← ∅14: for eah (q, b, λ) ∈ V : q ∈ F do15: add(T, b)16: end for



13.7. DETERMINIZATION 26513.7 DeterminizationThis setion is a ombination of the determinization setions for FSTBOsand RTNs (setions 10.7, p. 200, and 12.9, p. 241); we are interested indeterminizing the RTNBO regarding it as its underlying FSA.De�nition 233 (Underlying FSA). Let A = (Q, Σ, Γ, B, BK , δ, QI , F ) be aRTNBO, we de�ne its underlying FSA as (Q, (((Σ ∪ {ε}) × (Γ ∪ {ε})) −
{(ε, ε)}) ∪ P(Q), δ, QI , F ) with (ε, ε) as the empty symbol, that is, RTNBOinput/output pairs and RTNBO subinitial SSs beome FSA input symbolsexept for (ε, ε) whih beomes the empty symbol.13.8 Blakboard set proessingWe present here blakboard set proessing (BSP) of RTNBOs as an extensionof the FSTBO ase (setion 10.9, p. 205). As for FSTBOs, we traverse theRTNBO as a RTN, and we dinamially build a map ζB assoiating eah RTNES with the SBs that an be generated by reahing the ES from an initialES through any path. When deriving an ES xt from an ES xs we must makesure that ζB(xs) is ompletely built so that every blakboard to be generatedby this derivation is added to ζB(xt). ESs derived by onsuming i symbolsare reahed before the ones derived by onsuming j symbols, for 0 ≤ i < j,and therefore the ∆ funtion respets this restrition. We only require to payspeial attention to the way in whih the ε-losure is omputed: ESs mustbe ε-derived by following a topologial sort of the ε-losure-substrutures of
A′′. The relation between the yles in A and the yles in A′′ is not sostraightforward as for the FSTBO ase due to the presene of a stak insideRTN ESs.De�nition 234 (ZB). Given a RTNBO (Q, Σ, Γ, B, BK , δ, QI , F ), we de�ne
ZB as the set of every partial map ζB of RTN ESs Q×Q∗ to SBs in P(B).De�nition 235 (BSP SES). We de�ne the equivalent BSP SES VB of aRTNBO SES V as a pair (V ′, ζB) where V ′ ⊆ Q × Q∗ is a RTN SES and
ζB ∈ ZB is a funtion mapping states to SBs suh that
VB = (V ′, ζB) : V ′ = {(q, π) : (q, b, π) ∈ V } ∧ ζB((q, π)) = {b : (q, b, π) ∈ V },(13.3)



266 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUTwhih is equivalent to say that
VB = (V ′, ζB) :

⋃

(q,π)∈V ′

{q} × ζB((q, π))× {π} = V. (13.4)The de�nition of γ on SBs (de�nition 172, p. 206) does not hange.De�nition 236 (BSP ∆). We rede�ne the RTNBO ∆ funtion for blakboardset proessing as follows:
∆ : (P(Q×Q∗)× ZB)× Σ→ (P(Q×Q∗)× ZB),suh that

∆((V, ζB), σ) = (V ′, ζ ′
B) : V ′ = {x : ζ ′

B(x) 6= ∅}∧

ζ ′
B((qt, π)) =

⋃

γ:qt∈δ(qs,(σ,γ))∧(qs ,π)∈V

γ(ζB((qs, π))), (13.5)As for the FSTBO ase, the existene of a topologial sort for the ompu-tation of the ε-losures depends on the possibility of removing the ε-yles ofthe RTNBO. As for FSTBOs, RTNBO ε-yles with generation are simplyforbidden in order to avoid in�nite ε-losures. RTNBO ε2-yle removal isslightly di�erent to the FSTBO ase due to the presene of all transitions.Theorem 21 (ε2-yle removal). For every non-left-reursive RTNBO with
ε2-yles not involving deletable alls there exists an equivalent non-left-reursiveRTNBO without ε2-yles whih an be obtained by determinizing the RTNBOregarding it as its underlying FSA.Proof. RTNBO ε2-yles an be divided into two lasses: all ε2-yles andnon-all ε2-yles. Call ε2-yles orrespond to left-reursive alls, whih areforbidden sine they lead to in�nite ε-losures. Non-all ε2-yles an bedivided again into two lasses: the ones that involve deletable alls and theones that do not. ε2-yles belonging to the former lass are forbidden, andthe ones belonging to the latter lass are the same than the ε2-yles found inthe FSTBO ase and therefore an be removed by determinizing the RTNBOas its underlying FSA.RTNBO ε2-yles with deletable alls are not removed by the FSA-homo-morph determinization: suh ε2-yles are redued to an ε2-yle omposed



13.8. BLACKBOARD SET PROCESSING 267only by deletable alls, where the subinitial SS of eah all is replaed by asingle state that is both subinitial and �nal. However, suh yles do notontribute anything to the grammar desription. We simply forbid theirpresene in order to support BSP.Theorem 22 (Existene of a topologial sort). Considering lemma 1 (p. 131)and theorem 21, for every non-left-reursive RTNBO without ε-yles in-volving deletable alls and/or output generation there exists an equivalentRTNBO A suh that, given A′ the RTN obtained from A after removing itsoutput alphabet and transition outputs, there exists at least one topologialsort for every ε-losure-substruture of X (A)′.As for the FSTBO ase (de�nition 174, p. 207), we de�ne funtion D forBSP for a single soure RTN ES and its assoiated SB instead of a RTN SESand a mapping of RTN ESs to SBs sine we iteratively ompute the ε-losureES by ES, following a topologial sort.De�nition 237 (BSP D). We de�ne funtion D for RTNBO BSP as follows:
D : ((Q×Q∗)× ZB)→ (P(Q×Q∗)× ZB),suh that

D(xs, Bs) = (V ′, ζ ′
B) : V ′ = Vε ∪ Vpush ∪ Vpop∧

∀xt ∈ V ′[ζ ′
B(xt) = ζBε

(xt) ∪ ζBpush
(xt) ∪ ζBpop

(xt)]∧

(Vε, ζBε
) = Dε(xs, Bs) ∧ (Vpush, ζBpush

) = Dpush(xs, Bs)∧

(Vpop, ζBpop
) = Dpop(xs, Bs) (13.6)

Dε((qs, π), Bs) = (V ′, ζ ′
B) : V ′ = {x : ζ ′

B(x) 6= ∅}∧

ζ ′
B((qt, π)) =

⋃

γ:qt∈δ(qs,(ε,γ))

γ(Bs) (13.7)
Dpush((qs, π), Bs) = (V ′, ζ ′

B) : V ′ = {(qc, πqt) : qt ∈ δ(qs, Qc)} ∧ qc ∈ Qc∧

∀x ∈ V ′[ζ ′
B(x) = Bs] (13.8)

Dpop((qs, πqr), Bs) =

{

({(qr, π)}, ζ ′
B) : ζ ′

B(qr, π) = Bs qs ∈ F
(∅, ζ ′

B) : ∀x[ζ ′
B(x) = ∅] qs /∈ F

(13.9)



268 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUTDe�nition 238 (BSP ε-losure). The de�nition of BSP ε-losure is the samethan for FSTBOs (de�nition 175, p. 208) but replaing FSTBOs by RTNBOs,FSAs by RTNs, FSA ESs by RTN ESs and the BSP D funtion for FSTBOsby the one for RTNBOs.The proof of equivalene between BSP and non-BSP ε-losures for RTNBObreadth-�rst proessing is analogous to the one for the FSTBO ase (proofof theorem 13, p. 208).13.9 Earley-like proessingRTNBOs perform the reognition of an input sequene as RTNs do, but alsoompute its assoiated output blakboards as result of applying to the emptyblakboard b∅ the omposition of the sequene of output funtions found dur-ing the traversal of the RTNBO. Earley-like RTN proessing (setion 12.10,p. 243) fators out the omputation of parallel alls to the same state bypausing every alling ES, then starting a new and single proessing for theall and �nally resuming the paused ES eah time the all is ompleted. Forthe ase of RTNBOs we fator out as well the omputation of the outputblakboard of ommon alls. However, it is neessary to de�ne a blakboardomposition operator so that for eah all ompletion the blakboards om-puted during the all an be ombined with the blakboards of the pausedESs to be resumed in order to proeed with the exploration of the RTNBO:De�nition 239 (Blakboard omposition operator). Given a RTNBO (Q,
Σ, Γ, B, BK , δ, QI , F ), its blakboard omposition operator ◦ is a binaryfuntion on blakboards

◦ : B × B → Bsuh that given two blakboards
b = (γm ◦ γm−1 ◦ . . . ◦ γ0)(b∅) (13.10)and
b′ = (γ′

n ◦ γ′
n−1 ◦ . . . ◦ γ′

0)(b∅) (13.11)it holds that
b ◦ b′ = (γ′

n ◦ γ′
n−1 ◦ . . . ◦ γ′

0 ◦ γm ◦ γm−1 ◦ . . . ◦ γ0)(b∅),
2 (13.12)2Reall that the notation of funtion omposition reverses the funtion spei�a-tion w.r.t. the order in whih they are applied, that is, (γm ◦ γm−1 ◦ . . . ◦ γ0)(b∅) =

γm(γm−1(. . . (γ0(b∅)) . . .))



13.9. EARLEY-LIKE PROCESSING 269that is, the blakboard omposition operator enables to separately omputepartial results orresponding to onseutive segments of the sequene of out-put funtions and then ombine those partial results as if the sequene ofoutput funtions was applied sequentially to the empty blakboard. The on-rete de�nition of the blakboard omposition operator depends on the kindof onrete mahine.Lemma 20 (Assoiative blakboard omposition operator). Let • be a binaryoperator on blakboards; if every output funtion of a RTNBO A is of the form
γbr

(bl) = bl • br, and • is assoiative, then • is the blakboard ompositionoperator of A.3Proof. Let output funtions of a RTNBO B be de�ned as in the lemma, thenit holds that
γbr

(b∅) = br and (13.13)
idB(bl) = bl,

4 (13.14)whih imply that
b∅ • br = br and (13.15)
bl • b∅ = bl, (13.16)that is, b∅ is the identity element w.r.t. •. Let blakboards b and b′ be de�nedas

b = (γbm
◦ γbm−1

◦ . . . ◦ γb0)(b∅) and (13.17)
b′ = (γb′n

◦ γb′n−1
◦ . . . ◦ γb′0

)(b∅), (13.18)then it holds that
b = b∅ • b0 • . . . • bm−1 • bm = b0 • . . . • bm−1 • bm and (13.19)
b′ = b∅ • b0 • . . . • b′n−1 • b′n = b′0 • . . . • b′n−1 • b′n. (13.20)If • is assoiative, then it holds that

b • b′ = b∅ • b0 • . . . • bm−1 • bm • b′0 • . . . • b′n−1 • b′n (13.21)
= (γb′n

◦ γb′n−1 ◦ . . . ◦ γb′0
◦ γbm

◦ γbm−1
◦ . . . ◦ γb0)(b∅) (13.22)3Blakboards bl and br stand for left and right operands, respetively.4Reall that b∅ stands for the empty blakboard and that idB stands for the identityfuntion on blakboards.



270 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUTand therefore • is the blakboard omposition operator of A (de�nition 239).The previous lemma is applied to the de�nition of the blakboard ompo-sition operator for every partiular output ase treated in this dissertation,namely weights (the objet of hapter 18) and feature strutures built bymeans of uni�ation proesses (the objet of hapter 19). RTNBOs whoseoutput blakboards do not allow for the de�nition of a blakboard omposi-tion operator an still be applied e�iently if suh blakboards are weightedand only the top-ranked blakboard is to be returned. More details will begiven in hapter 18.De�nition 240 (Earley exeution state). ESs for Earley-like RTNBO pro-essing are ESs for Earley-like RTN proessing (de�nition 207, p. 227) aug-mented with a blakboard in B representing the output generated up to theES, in partiular strutures in (Q× B × (P(Q) ∪ {λ})×P(Q)× N).De�nition 241 (Earley ∆). The ∆ funtion for RTNBO Earley-like proess-ing, the equivalent to Earley's sanner, is a simple diret-derivation funtionon SESs (de�nition 98, p. 136) with
• xs = (qs, bs, λ, Qh, i),
• xt = (qt, bt, λ, Qh, i), and
• d = qt ∈ δ(qs, (σ, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK.The RTNBO Earley-like ∆ funtion behaves as the RTN Earley-like ∆ fun-tion (de�nition 219, p. 244) extended with blakboard proessing analogouslyto the way in whih the FSA ∆ funtion (de�nition 132, p. 163) is extendedwith blakboard output for FSTBO proessing (de�nition 155, p. 189).De�nition 242 (Earley D). The D(Vk) funtion for RTNBO Earley-likeproessing is omposed by 3 simple diret-derivation funtions on SESs (def-inition 98, p. 136): Dε(Vk) with
• xs = (qs, bs, λ, Qh, i),
• xt = (qt, bt, λ, Qh, i), and
• d = qt ∈ δ(qs, (ε, γ)) ∧ bt = γ(bs) ∧ bt /∈ BK.



13.9. EARLEY-LIKE PROCESSING 271is the expliit ε-transition proessor, Dpush with
• xs = (qs, bs, λ, Qh, j),
• xt = (qc, b∅, λ, Qc, k) or xt = (qr, bs, Qc, Qh, j), meaning that both targetESs are derived from xs if p holds, and
• d = qr ∈ δ(qs, Qc) ∧ qc ∈ Qc,is the equivalent to Earley's preditor, and Dpop with
• xs = (qf , bf , λ, Qh, j),
• xt = (qr, br, λ, Q′

h, i), and
• d = qf ∈ F ∧ (qr, bs, Qh, Q

′
h, i) ∈ Vj ∧ br = bs ◦ bf ∧ br /∈ BK,where Dpop is retroative, as for RTN Earley-like proessing, and ◦ is theblakboard omposition operator.De�nition 243 (Earley initial and aeptane SESs). Given the sets of ini-tial and aeptane states of a RTNBO, QI and F , its initial and aeptaneSESs for Earley-like proessing are (QI ×{b∅}× {λ}× {QI}× {0}), the ESsstarting a all to any initial state before onsuming any input symbol or gen-erating any output, and (F × B × {λ} × {QI} × {0}), the ESs from wherethose initial alls would pop, respetively.De�nition 244 (Earley τ). We de�ne τ(A), the language of translations ofa RTNBO A, through Earley-like proessing as

τ(A) = {(w, b) : (qf , b, λ, QI , 0) ∈ ∆∗((QI ×{b∅}× {λ}× {QI}× {0}), w)∩

(F × B × {λ} × {QI} × {0})}. (13.23)De�nition 245 (Earley ω). We de�ne ω(A, w), the translations of a word
w for a RTNBO A, through Earley-like proessing as

τA(w) = {b : (w, b) ∈ τ(A)}. (13.24)



272 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUT13.10 Earley translator algorithmAlgorithm 13.2 rtnbo_earley_translate_string is a sequene translator im-plementing the Earley-like τA(w) (de�nition 244, p. 271), whih we haveobtained by extending the orresponding Earley-like sequene aeptor al-gorithm for RTNs (algorithm 12.2) with blakboard output. As for theaeptor algorithm, it uses algorithm 13.3 rtnbo_earley_translate_symbolfor omputing the Earley-like ∆ funtion (de�nition 241, p. 270) and algo-rithm 13.4 rtnbo_earley_interlaed_elosure for omputing the Earley-like
ε-losure (generi FSM ε-losure in de�nition 100, p. 138) using Earley-like
D funtion (de�nition 242, p. 270). Finally, add_enqueue_esbo and un-onditionally_add_enqueue_es are the small routines seen in setions 10.6(p. 196) and 7.9 (p. 153) for onditionally or unonditionally adding an ESto a SES.The di�erenes between the Earley-like aeptor algorithm (algorithm 12.2)and the translator version (algorithm 13.2) are:
• ESs are extended with a blakboard element, whih is b∅ for the initialESs, so when arriving to the same state through di�erent paths it ispossible to have several ESs due to di�erent blakboards,
• proessing a transition with output requires to apply a γ funtion tothe soure ES blakboard,
• as for FSTBOs, illegal ESs (ontaining killing blakboards) are rejetedand
• instead of a Boolean, the result of the algorithm is the set of blakboards(SB) ontaining every blakboard of every aeptane ES in the last V ,
• given the set of paused ESs Wpush of a SES Vk having alled the sameSS Qc, and the set of ESs Wpop from where the all has been popped,the algorithm omputes the omposition of every pair of blakboardsof every pair of ESs in Wpush ×Wpop, whih raises its asymptoti ostfrom polynomial to exponential, and
• the ε-losure algorithm requires to build the list of not only the ε-ompleted alls but their orresponding outputs as well, so the ompo-sition of blakboards an be performed when retroatively ε-ompletinga all inside the preditor.



13.10. EARLEY TRANSLATOR ALGORITHM 273Algorithm 13.2 rtnbo_earley_translate_string(σ1 . . . σl) ω(A, σ1 . . . σl),eq. (13.24)Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: for eah (qc ∈ QI) do5: unconditionally_add_enqueue_es(V0, E, (qc, b∅, λ, QI , 0))6: end for7: V0 ← rtnbo_earley_interlaced_eclosure(V l+1, E, 0)8: k ← 09: while Vk 6= ∅ ∧ k < l do10: Vk+1 ← rtnbo_earley_translate_symbol(Vk, E, σk+1)11: k ← k + 112: rtnbo_earley_interlaced_eclosure(V l+1, E, k)13: end while14: T ← ∅15: for eah (qs, bs, λ, QI , 0) ∈ Vk : qs ∈ F do16: add(T, bs)17: end forAlgorithm 13.3 rtnbo_earley_translate_symbol(V, E, σ) ⊲ ∆(V, σ),def. (241)Input: V , a SES
E, the empty queue of unexplored ESs
σ, the input symbol to translateOutput: W , the set of reahable ESs from V by onsuming σ

E after enqueuing the ESs of W1: W ← ∅2: for eah (qs, bs, λ, Qh, j) ∈ Vk do3: for eah (qt, γ) : qt ∈ δ(qs, (σ, γ)) do4: add_enqueue_esbo(W, E, (qt, γ(bs), λ, Qh, j))5: end for6: end for
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Algorithm 13.4 rtnbo_earley_interlaed_elosure(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the hart

E, the queue of unexplored ESs ontaining every ES in Vk

k, the index of the SES whose ε-losure is to be omputedOutput: V l+1 after adding to Vk its ε-losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, bs, λ, Qh, j)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS4: for eah (qt, g) : qt ∈ δ(qs, (ε, g)) do5: add_enqueue_esbo(Vk, E, (qt, γ(bs), λ, Qh, j)6: end for
⊲ PREDICTOR7: for eah (qr, Qc) : qr ∈ δ(qs, Qc) do8: if add(Vk, (qr, bs, Qc, Qh, j)) then9: if ∄bc : (Qc, bc) ∈ T then10: for eah qc ∈ Qc do11: add_enqueue_esbo(Vk, E, (qc, b∅, λ, Qc, k))12: end for

⊲ ε-COMPLETER13: else14: for eah bc : (Qc, bc) ∈ T do15: add_enqueue_esbo(Vk, E, (qr, bs ◦ bc, λ, Qh, j)16: end for17: end if18: end if19: end for
⊲ COMPLETER20: if qs ∈ F then21: for eah (qr, bc, Qh, Q

′
h, i) ∈ Vj do22: add_enqueue_esbo(Vk, E, (qr, bs ◦ bc, λ, Q′

h, i)



13.11. EARLEY-LIKE BLACKBOARD SET PROCESSING 275
⊲ ε-COMPLETER23: if i = k then24: add(T, (Qh, bs))25: end if26: end for27: end if28: end whileAs for the RTN Earley-like ase (setion 12.11, p. 246), sine the Earleytranslator algorithm 13.2 for RTNBOs does not rely on staks of return states,the optimization seen in setion 9.1 does not apply for stak representation.It might be appliable for the representation of string-like outputs, thoughfor Earley-like proessing this modi�ation might derease e�ieny ratherthan optimizing the algorithm (see setion 14.7.)13.11 Earley-like blakboard set proessingAs for breadth-�rst blakboard set proessing (BSP) of RTNBOs (setion 13.8),we present here Earley-like BSP of RTNBOs as an extension of the FSTBOase (setion 10.9, p. 205). The exeution mahines of the orresponding ma-hines without output for both the FSTBO and RTNBO breadth-�rst ases(FSAs and RTNs, respetively) are FSAs. However, for the ase of Earley-like RTN proessing the resulting exeution mahine is an output FPRTN, asublass of FPRTNs that we will study in hapter 16.5 De�ning a topologialsort for output FPRTN substrutures and �nding the neessary onditionsfor its existene is not so straightforward as for FSAs due to the presene ofall transitions and the partiular way in whih they are onstruted. We justpresent here the equations for Earley-like BSP of RTNBOs, supposing thatthere exists suh a topologial sort for the ε-losure substrutures of the or-responding output FPRTNs. An appliation of these equations will be givenin setion 16.3 for the generation of the language of an output FPRTN, along5To be exat, the Earley-like exeution mahine of a RTN is an �input� FPRTN: amahine built as for output FPRTNs but taking as transition labels the inputs of the RTNinstead of the outputs of the original RTNBO. Moreover, output FPRTNs are built forreognizing only the translations generated by the RTNBO for a given input sequene,and the exeution mahine onsumes every input sequene the RTN an onsume. Moredetails will be given in hapter 16.



276 CHAPTER 13. RTNS WITH BLACKBOARD OUTPUTwith a de�nition of topologial sort for output FPRTN substrutures and theneessary onditions for its existene.De�nition 246 (ZB). Given a RTNBO (Q, Σ, Γ, B, BK , δ, QI , F ), we de�ne
ZB as the set of every partial map ζB of RTN Earley ESs (Q×B× (P(Q)∪
{λ})× P(Q)×N) to SBs in P(B).De�nition 247 (Earley blakboard set proessing). We de�ne the equivalentEarley BSP SES VB of a RTNBO Earley SES V as follows:

VB = (V ′, ζB) : V ′ = {(qs, λ, Qh, i) : (qs, b, λ, Qh, i) ∈ V } ∪ (13.25)
{(qs, Qc, Qh, i) : (qs, b, Qc, Qh, i) ∈ V } ∧ (13.26)

ζB(qs, λ, Qh, i) = {b : (qs, b, λ, Qh, i) ∈ V } ∧ (13.27)
ζB(qs, Qc, Qh, i) = {b : (qs, b, Qc, Qh, i) ∈ V }, (13.28)whih is equivalent to say that

VB = (V ′, ζB) : (
⋃

(qs,λ,Qh,i)∈V ′

{qs} × ζB(qs, λ, Qh, i)× {λ} × {Qh} × {i}) ∪

(
⋃

(qs,Qc,Qh,i)∈V ′

{qs} × ζB(qs, Qc, Qh, i)× {Qc} × {Qh} × {i}) = V. (13.29)The de�nition of γ on sets of blakboards (de�nition 172, p. 206) doesnot hange.De�nition 248 (Earley BSP ∆). We rede�ne the RTNBO ∆ funtion forEarley-like BSP as follows:
∆ : (P(Q×{λ}×P(Q)×N)×ZB)×Σ→ (P(Q×{λ}×P(Q)×N)×ZB),suh that

∆((V, ζB), σ) = (V ′, ζ ′
B) : V ′ = {(qt, λ, Qh, i + 1) : ζ ′

B(qt, λ, Qh, i + 1) 6= ∅}∧

ζ ′
B(qt, λ, Qh, i + 1) =

⋃

γ:qt∈δ(qs,(σ,γ))∧(qs,λ,Qh,i)∈V

γ(ζB(qs, λ, Qh, i)) (13.30)De�nition 249 (Earley BSP D). The D funtion for BSP Earley RTNBOproessing is de�ned as follows:
D : ((Q×Q∗)× ZB)→ (P(Q×Q∗)× ZB)
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D((qs, λ, qh, j), Bs) = (V ′, ζ ′

B) : V ′ = Vε ∪ Vpush ∪ Vpop∧

ζ ′
B(qt, π) = ζBε

(qt, π) ∪ ζBpush
(qt, π) ∪ ζBpop

(qt, π)∧

(Vε, ζBε
) = Dε((qs, π), Bs) ∧ (Vpush, ζBpush

) = Dpush((qs, π), Bs)∧

(Vpop, ζBpop
) = Dpop((qs, π), Bs) (13.31)

Dε((qs, λ, qh, j), Bs) = (V ′, ζ ′
B) : V ′ = {(qt, λ, qh, j) : ζ ′

B(qt, λ, qh, j) 6= ∅}∧

ζ ′
B(qt, λ, qh, j) =

⋃

γ:qt∈δ(qs,(ε,γ))

γ(Bs) (13.32)
Dpush((qs, λ, qh, j), Bs) = (V ′, ζ ′

B) : V ′ = {(qc, λ, qc, k), (qt, qc, qh, j) :

(qs, λ, qh, j) ∈ Vk ∧ qt ∈ δ(qs, qc)}∧

(ζ ′
B(qc, λ, qc, k) = {b∅} ∧ ζ ′

B(qt, qc, qh, j) = Bs) ⇐⇒

((qs, λ, qh, j) ∈ Vk ∧ qt ∈ δ(qs, qc)) (13.33)
Dpop((qs, λ, qh, j), Bs) =







(V ′, ζ ′) : V ′ = {(qr, λ, q′h, i) :
(qr, qh, q

′
h, i) ∈ Vj} ∧ ζ ′(qr, π) = Bs qs ∈ F

(∅, ζ ′) : ζ ′(qs, λ, qh, j) = ∅ qs /∈ F(13.34)De�nition 250 (BSP ε-losure). The de�nition of BSP ε-losure is the samethan for breadth-�rst BSP of RTNBOs (de�nition 238, p. 268) but replaingRTN ESs by RTN Earley ESs and the BSP breadth-�rst D funtion by theorresponding Earley one.The proof of equivalene between Earley-like BSP and non-BSP ε-losuresfor RTNBO Earley-like proessing is analogous to the one for the FSTBOase (proof of theorem 13, p. 208).





Chapter 14Reursive transition networkswith string outputWe present here RTNSOs as a speial ase of RTNBOs in the same way wehave presented FSTSOs as a speial ase of FSTBOs. We have publishedbrief desriptions of RTNSOs �as well as of the breadth-�rst and Earley-like algorithms of appliation of RTNSOs we desribe here� in Sastre andForada (2007, 2009).De�nition 251 (RTNSO). A RTNSO (Q, Σ, Γ, δ, QI , F ) is a speial type ofFSM (de�nition 46, p. 121) with a stak, where the mahine set of labels Ξtake its elements from a set ((Σ ∪ {ε} × (Γ ∪ {ε})) ∪ P(Q), Σ is an inputalphabet, Γ an output alphabet, ε the empty symbol and Q the �nite SS of theRTNSO. RTNSOs an be seen as a speial ase of RTNBOs in the same wayFSTSOs are a speial ase of FSTBOs (see de�nition 176, p. 212).14.1 TransitionsRTNSO transitions are a partiular ase of RTNBO transitions (setion 13.1,p. 258) as FSTSO transitions are a partiular ase of FSTBO transitions (seesetion 11.1, p. 212). Possible RTNSO transition types are:
• onsuming transitions: Q× (Σ× (Γ ∪ {ε}))×Q,
• generating transitions: Q× ((Σ ∪ {ε})× Γ)×Q,
• translating or substituting transitions: Q× (Σ× Γ)×Q,279



280 CHAPTER 14. RTNS WITH STRING OUTPUT
• deleting transitions: Q× (Σ× {ε})×Q,
• inserting transitions: Q× ({ε} × Γ)×Q,
• all transitions: Q× P(Q)×Q,
• push transitions: Q×Q�×Q,1
• pop transitions: Q×Q�×Q,2
• impliit ε-transitions: push or pop transitions and
• expliit ε2-transitions: Q× ({ε} × {ε})×Q.14.2 Sequenes of transitionsAnalogously, RTNSO paths are a partiular ase of RTNBO paths. Everyde�nition in setion 13.3 (p. 259) is inherited by replaing RTNBO transitionsby their orrespondent RTNSO transitions.14.3 BehaviourDe�nition 252 (Exeution state). RTNSO ESs are triplets (q, z, π) ∈ (Q×

Γ∗ ×Q∗) where z is a sequene of output symbols, being ε the empty output,and π is a stak of return states, being λ the empty stak.De�nition 253 (∆). The ∆ funtion for RTNBOs is a simple diret-derivationfuntion on SESs (de�nition 98, p. 136) with
• xs = (qs, z, π),
• xt = (qt, zg, π), and
• d = qs ∈ δ(qs, (σ, g)),where g ∈ Γ∪{ε}. The RTNSO ∆ funtion behaves as the FSTSO ∆ funtionwhose proessing is extended with staks of return states whih are in fatleaved untouhed.1Reall that qc� represents to push state qc onto the stak.2Reall that qr� represents to pop state qr from the stak.



14.3. BEHAVIOUR 281De�nition 254 (D). The D funtion for RTNSOs is omposed by 3 simplediret-derivation funtions on SESs (de�nition 98, p. 136), Dε with
• xs = (qs, z, π),
• xt = (qt, zg, π), and
• d = qs ∈ δ(qs, (ε, g)),where g ∈ Γ ∪ {ε}, Dpush with
• xs = (qs, z, π),
• xt = (qc, z, πqt), and
• d = qt ∈ δ(qs, Qc) ∧ qc ∈ Qc,and Dpop with
• xs = (qf , z, πqr),
• xt = (qr, z, π), and
• d = qf ∈ F .Lemma 21 (In�nite ε-losure). The ε-losure of a RTNSO SES V is in�niteif there exists an ε-reahable ES (q, z, π) suh that q has an outgoing left-reursive all transition and/or is traversed by a generating ε-yle.Proof. Sine the RTNSO ε-losure funtion is a partiular ase of the RTNBO

ε-losure funtion, this proof is a partiular ase of proof of lemma 18 (p. 261)for RTNBOs. The ESs derived during the omputation of the ε-losure arenot expliitly required to be legal sine RTNSOs do not de�ne killing blak-boards. Additionally, non-identity output funtions are neither expliitlyrequired to always generate new blakboards sine, for the ase of stringoutput, this is always true: zg 6= z i� g 6= ε.Lemma 22 (Finite ε-losure). For onditions other than those expressed inthe previous lemma, the ε-losure of a RTNSO SES is �nite.Proof. Sine the RTNSO ε-losure funtion is a partiular ase of the RTNBO
ε-losure funtion, this proof is a partiular ase of proof of lemma 19 (p. 261)for RTNBOs.



282 CHAPTER 14. RTNS WITH STRING OUTPUTTheorem 23. The ε-losure is always �nite for non-left-reursive RTNSOswithout generating ε-yles.De�nition 255 (Initial and aeptane SESs). Given the sets of initial andaeptane states of a RTNSO, QI and F , its initial and aeptane SESsare (QI × {ε} × {λ}) and (F × Γ∗ × {λ}), respetively.De�nition 256 (τ). We de�ne τ(A), the language of translations of a RTNSO
A, as the set of input/output pairs (w, z) ∈ (Σ∗ × Γ∗) suh that w is reog-nized and translated into z by A, that is, the set of input/output pairs suhthat the whole onsumption of w reahes at least an aeptane ES from atleast an initial ES through a path that generates z:
τ(A) = {(w, z) : (qf , z, π) ∈ ∆∗((QI×{ε}×{λ}), w)∩(F×Γ∗×{λ})}. (14.1)De�nition 257 (ω). We de�ne ω(A, w), the translations of a word w for aRTNSO A, as the set of output sequenes z ∈ Γ∗ suh that (w, z) belongs tothe translations of A:

τA(w) = {z : (w, z) ∈ τ(A)}. (14.2)14.4 Translating a stringAlgorithm 14.1 rtnso_translate_string is a speialization of algorithm 13.1rtnbo_translate_string for the omputation of the set of string translationsfor a given RTNSO an input sequene. Algorithms for omputing the ∆ and
ε-losure funtions an be easily derived from their RTNBO ounterparts (seesetion 13.5, p. 262). Notie that sine RTNSOs do not de�ne killing strings,routine add_enqueue_es (setion 7.8, p. 147) an be used instead of routineadd_enqueue_esbo (setion 10.6 (p. 196) in order to add derived ESs to theurrent SES: both routines perform the same operation but the former onedoes not verify whether the derived ESs ontain killing blakboards or not.Figure 14.2 is a graphial representation of the exeution trae of thebase translator algorithm adapted for RTNSOs, for RTNSO of �gure 14.1and input aabb. This RTNSO annot be determinized as for the RTN ase insetion 12.7 (p. 235) sine transitions labeled with the same input symbolsde�ne di�erent outputs. As for the RTN ase, the number of parallel parses isdoubled eah time an a is onsumed, but is not redued after onsuming eah



14.4. TRANSLATING A STRING 283Algorithm 14.1 rtnso_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl),eq. (14.2)Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: V ← ∅2: E ← ∅3: for eah qc ∈ QI do4: unconditionally_add_enqueue_es(V, E, (qc, ε, {λ}))5: end for6: rtnso_interlaced_eclosure(V, E)7: i← i + 18: while Vi 6= ∅ ∧ i < l do9: V ← rtnso_translate_symbol(V, E, σi+1)10: i← i + 111: rtnso_interlaced_eclosure(V, E)12: end while13: T ← ∅14: for eah (q, z, π) ∈ V do15: if q ∈ F ∧ π = λ then16: add(T, z)17: end if18: end for
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ε : ∗Figure 14.1: Example of ambiguous RTNSO orresponding to RTN of �gure 12.6(p. 237) extended with string output; labels of the form x : y represent aninput : output pair (e.g.: a : { for transition (q0, (a, {), q1)) and dashed transitionsrepresent a all to the state spei�ed by the label (e.g.: transition (q1, q0, q2)).Input a an be interpreted as [ or { and b as ] or }.
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Figure 14.2: Exeution trae of the RTNSO breadth-�rst translator algorithm 14.1 for the ambiguous RTNSO of�gure 14.1) and input aabb. Solid, dotted and bold trae transitions orrespond, respetively, to the exploration ofthe RTN expliit transitions, push transitions and pop transitions.
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b symbol due to the di�erent outputs of the ESs. The number of generatedESs is also exponential w.r.t. the length of input anbn, as for the RTN ase.The algorithm an be further improved with the trie string managementseen in setion 9.1 (p. 178), whih in this ase may be applied to both theoutput strings and the stak of return states.14.5 Language generationIn setion 11.6 (p. 215) we desribed how to adapt an FSTSO translatoralgorithm in order to obtain an algorithm for the generation of the languageof a FSA. We follow here an analogous proedure for the onstrution of analgorithm for the generation of the language a RTN, that is, by adapting aRTNSO translator algorithm.Theorem 24 (Language generation). Let A = (Q, Σ, δ, QI , F ) be a RTN and
A′ = (Q′, Σ′, Γ, δ′, Q′

I , F
′) a RTNSO suh that

• Q′ = Q, Q′
I = QI , F ′ = F ,

• Σ′ = ∅,
• Γ = Σ,
• qt ∈ δ′(qs, (ε, γ)) i� qt ∈ δ(qs, σ), and
• qt ∈ δ′(qs, Qc) i� qt ∈ δ(qs, Qc),then it holds that

L(A) = τA′(ε) (14.3)Proof. The proof is the same than the one for the FSA/FSTSO ase (proofof theorem 15, p. 215). In this ase, paths pi and p′i for i = 0 . . . l−1 may alsoontain push and pop transitions modifying a stak of return states. However,it still holds that p is an interpretation within A i� p′ is an interpretationwithin A′.Algorithm 14.2 rtn_language is an adaptation of the breadth-�rst trans-lator algorithm 14.1 for the omputation of the language of a RTN. As forthe FSA/FSTSO ase, the domain of appliation is given by the originalalgorithm, that is, the algorithm annot ompute the language of RTNs on-taining useful onsuming yles and/or useful left-reursive alls. As for the



286 CHAPTER 14. RTNS WITH STRING OUTPUToriginal algorithm, this algorithm an also be improved with the trie stringmanagement shown in setion 9.1 (p. 178).14.6 Earley-like proessingWe adapt here the RTNBO Earley-like proessing equations (setion 13.9,p. 268) for the RTNSO ase, that is, replaing blakboards by strings. Wemainly remove the killing blakboard mehanism and de�ne the blakboardomposition operator as the string onatenation operator.De�nition 258 (String omposition operator). We de�ne the blakboardomposition operator (de�nition 239, p. 268) for the ase of RTNSOs asthe string onatenation operator sine it is a partiular ase of lemma 20(p. 269).De�nition 259 (Earley exeution state). ESs for Earley-like RTNSO pro-essing are ESs for Earley-like RTNBO proessing (de�nition 226, p. 260)where the blakboards are strings in Γ∗, that is, strutures in (Q×Γ∗×(P(Q)∪
{λ})× P(Q)×N).De�nition 260 (Earley ∆). The ∆ funtion for RTNSO Earley-like proess-ing, the equivalent to Earley's sanner, is a simple diret-derivation funtionon SESs (de�nition 98, p. 136) with
• xs = (qs, z, λ, Qh, i),
• xt = (qt, zg, λ, Qh, i), and
• d = qt ∈ δ(qs, (σ, g)),where g ∈ (Γ ∪ {ε}).De�nition 261 (Earley D). The D(Vk) funtion for RTNSO Earley-likeproessing is omposed by 3 simple diret-derivation funtions on SESs (def-inition 98, p. 136), Dε(Vk) with
• xs = (qs, z, λ, Qh, i),
• xt = (qt, zg, λ, Qh, i),
• d = qt ∈ δ(qs, (ε, g)),
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Algorithm 14.2 rtn_language(A) ⊲ L(A), eq. (12.2)Input: A = (Q, Σ, δ, QI , F ), a RTNOutput: L, the language of A1: V ← ∅2: E ← ∅3: for eah qc ∈ QI do4: unconditionally_add_enqueue_es(V, E, (qc, ε, {λ}))5: end for6: while E 6= ∅ do7: (qs, w, π)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS8: for eah qt ∈ δ(qs, ε) do9: add_enqueue_es(V, E, (qt, w, π))10: end for
⊲ CONSUMING TRANSITIONS11: for eah (qt, σ) : qt ∈ δ(qs, σ) do12: add_enqueue_es(V, E, (qt, wσ, π))13: end for

⊲ PUSH-TRANSITIONS14: for eah (qr, Qc) : qr ∈ δ(qs, Qc) do15: for eah qc ∈ Qc do16: add_enqueue_es(V, E, (qc, w, πqr))17: end for18: end for
⊲ POP TRANSITIONS19: if π = π′qr ∧ qs ∈ F then20: add_enqueue_es(V, E, (qr, w, π′))21: end if22: end while23: L← ∅24: for eah (q, w, λ) ∈ V : q ∈ F do25: add(L, w)26: end for



288 CHAPTER 14. RTNS WITH STRING OUTPUTwith g ∈ (Γ ∪ {ε}), is the expliit ε-transitions proessor, Dpush with
• xs = (qs, zs, λ, Qh, j),
• xt = (qc, ε, λ, Qc, k) or xt = (qr, zs, Qc, Qh, j), meaning that both targetESs are derived from xs if p holds, and
• d = qr ∈ δ(qs, Qc) ∧ qc ∈ Qc,is the equivalent to Earley's preditor, and Dpop with
• xs = (qf , zf , λ, Qh, j),
• xt = (qr, zszf , λ, Q′

h, i), and
• d = qf ∈ F ∧ (qr, zs, Qh, Q

′
h, i) ∈ Vj,where Dpop is retroative, as for RTN Earley-like proessing.De�nition 262 (Earley initial and aeptane SESs). Given the sets of ini-tial and aeptane states of a RTNSO, QI and F , its initial and aeptaneSESs for Earley-like proessing are (QI × {ε} × {λ} × {QI} × {0}), the ESsstarting a all to any initial state before onsuming any input symbol andgenerating any output, and (F ×Γ∗×{λ}×{QI}×{0}), the ESs from wherethose initial alls would pop, respetively.De�nition 263 (Earley τ). Following de�nition 244 (p. 271), we de�ne

τ(A), the language of translations of a RTNSO A, through Earley-like pro-essing as
τ(A) = {(w, z) : (qf , z, λ, QI , 0) ∈ ∆∗((QI × {ε} × {λ} × {QI} × {0}), w)∩

(F × Γ∗ × {λ} × {QI} × {0}). (14.4)De�nition 264 (ω). We de�ne ω(A, w), the translations of a word w for aRTNSO A through Earley-like proessing as
τA(w) = {z : (w, z) ∈ (A)}. (14.5)



14.7. EARLEY TRANSLATOR ALGORITHM 28914.7 Earley translator algorithmAlgorithm 14.3 rtnso_earley_translate_string is a sequene translator im-plementing the Earley-like τA(w) (de�nition 263), whih we have obtainedby removing the killing blakboard mehanism of the Earley-like transla-tor for RTNBOs (algorithm 13.2), and by replaing blakboard manage-ment by string management. As for the RTNBO algorithm, it uses algo-rithm 14.4 rtnso_earley_translate_symbol for omputing the Earley-like ∆funtion (de�nition 260) and algorithm 14.5 rtnso_earley_interlaed_elo-sure for omputing the Earley-like ε-losure (generi FSM ε-losure in def-inition 100, p. 138) using Earley-like D funtion in de�nition 261. Finally,the routines add_enqueue_es and unonditionally_add_enqueue_es seen insetions 7.8 (p. 147) and 7.9 (p. 153), respetively, are used for onditionallyor unonditionally adding derived ESs to the urrent SES without hekingfor illegal strings sine there are none de�ned. We have already presentedthe resulting algorithm in Sastre and Forada (2007, 2009).Figure 14.3 is a graphial representation of the exeution trae of theEarley-like translator algorithm adapted for RTNSOs, for RTNSO of �g-ure 14.1 and input aabb. As for the RTN ase (without output generation)in setion 12.11 (p. 246), the number of parallel explorations is dupliatedeah time the ambiguous symbol a is to be translated but then the ommonall to SS {q0} is fatored out, reduing again the number of parallel explo-rations to one. However, when ompleting a all to {q0} the two outputsgenerated during the all are ombined with the outputs generated beforethe all, resulting in an exponential explosion of ESs to ompute. The algo-rithm saves an exponential number of steps w.r.t. the breadth-�rst RTNSOalgorithm in setion 14.4 by fatoring out push transitions, but still su�ersfrom an exponential explosion of ESs to ompute upon popping; sine thenumber of outputs inreases exponentially w.r.t. the input length, it is in-evitable to perform an exponential number of operations if one is to generatethe e�etive list of translations. In the next hapter we show how to delayas muh as possible the exponential explosion by building the translation setas some kind of �nite-state mahine reognizing the language of translationsbut fatoring out the ommon output subsequenes. Suh exponential explo-sion is possible in natural language grammars, for instane due to unresolvedprepositional phrase attahments. An example illustrating suh situation hasbeen given in 1.5.4 (p. 19).Online appliations suh as the MovistarBot (se. 1.2, p. 6) are not ne-



290 CHAPTER 14. RTNS WITH STRING OUTPUTAlgorithm 14.3 rtnso_earley_translate_string(σ1 . . . σl) ⊲ ω(A, σ1 . . . σl),eq. (14.5))Input: σ1 . . . σl, an input string of length lOutput: T , the translations of σ1 . . . σl1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: for eah (qc ∈ QI) do5: unconditionally_add_enqueue_es(V0, E, (qc, ε, λ, QI , 0))6: end for7: rtnso_earley_interlaced_eclosure(V l+1, E, 0)8: k ← 09: while Vk 6= ∅ ∧ k < l do10: Vk+1 ← rtnso_earley_translate_symbol(Vk, E, σk+1)11: k ← k + 112: rtnso_earley_interlaced_eclosure(V l+1, E, k)13: end while14: T ← ∅15: for eah (qs, z, λ, QI , 0) ∈ Vk : qs ∈ F do16: add(T, z)17: end forAlgorithm 14.4 rtnso_earley_translate_symbol(V, E, σ) ⊲ ∆(V, σ),def. (260)Input: V , a SES
E, the empty queue of unexplored ESs
σ, the input symbol to translateOutput: W , the set of reahable ESs from V by onsuming σ

E after enqueuing the ESs of W1: W ← ∅2: for eah (qs, z, λ, Qh, j) ∈ V do3: for eah (qt, g) : qt ∈ δ(qs, (σ, g)) do4: add_enqueue_es(W, E, (qt, zg, λ, Qh, j))5: end for6: end for
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Algorithm 14.5 rtnso_earley_interlaed_elosure(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the hart

E, the queue of unexplored ESs ontaining every ES in Vk

k, the index of the SES, Vk, whose ε-losure is to be omputedOutput: V l+1 after adding to Vk its ε-losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, z, λ, Qh, j)← dequeue(E)

⊲ EXPLICIT ε-TRANSITIONS4: for eah (qt, g) : qt ∈ δ(qs, (ε, g)) do5: add_enqueue_es(Vk, E, (qt, zg, λ, Qh, j))6: end for
⊲ PREDICTOR7: for eah (qr, Qc) : qr ∈ δ(qs, Qc) do8: if add(Vk, (qr, z, Qc, Qh, j)) then9: if ∄z′ : (Qc, z

′) ∈ T then10: for eah qc ∈ Qc do11: add_enqueue_es(Vk, E, (qc, ε, λ, Qc, k))12: end for
⊲ ε-COMPLETER13: else14: for eah z′ : (Qc, z

′) ∈ T do15: add_enqueue_es(Vk, E, (qr, zz
′, λ, Qh, j))16: end for17: end if18: end if19: end for

⊲ COMPLETER20: if qs ∈ F then21: for eah (qr, z
′, Qh, Q

′
h, i) ∈ Vj do22: add_enqueue_es(Vk, E, (qr, zz

′, λ, Q′
h, i))
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⊲ ε-COMPLETER23: if i = k then24: add(T, (Qh, z

′))25: end if26: end for27: end if28: end whileessarily required to redue the average ost of analyzing user input sentenesbut to ensure that eah sentene is proessed in a short time interval, sineusers are not willing to wait more than a few seonds for an answer. As well,we must guarantee that the sentene parsing server will not be ollapsed dueto a partiular user sentene having a speially high ost. Sine nowadaysomputers have at least two proessing units, another possible solution isto onurrently exeute two di�erent parsing algorithms (e.g.: a top-downdepth-�rst parser and an Earley-like parser) and to retrieve the result fromthe one that �nishes �rst, aborting the exeution of the other algorithm. Thisway we an obtain a �ombined� algorithm that both minimizes the averageand maximum exeution times.Figure 14.4 is another example of exeution of the Earley-like algorithmfor RTNSOs equivalent to the example of �gure 12.10 (p. 251) for RTNs.The transition onsuming a now also generates output symbol A, and the ε-transition generates now output symbol E. The four possible interpretationsof a have a di�erent assoiated output: AEEE, EAEE, EEAE and EEEA,respetively. As we an see, the trae for this example ontains more stepsthan its RTN equivalent due to the onatenation of di�erent pairs of outputsupon all ompletions. As for the RTN ase, without the ε-ompleter itwould have not been possible to derive the aeptane ESs and therefore thealgorithm would have returned an empty set of translations of a.Figure 14.5 is the example equivalent to that of �gure 12.11 (p. 252) butfor a simple left-reursive RTNSO �instead of a simple left-reursive RTN�that translates ban into BAn. In this ase, the trae is the same but addingthe inreasing output to the ESs.Finally, optimizing the RTNSO Earley-like translator algorithm by meansof trie string management (setion 9.1, p. 178) is a spei� ase of the RTNBOEarley-like ase (setion 13.10): output strings may be represented as point-ers to the nodes of a trie. As long as no alls are performed, the algorithm
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Figure 14.3: Exeution trae of the RTNSO Earley-like translator algorithm 14.3 for the ambiguous RTNSO of�gure 14.1 and input aabb. Thik dashed arrows link push transitions with their orresponding pop transitions.Paused ESs deorate push and pop transitions.



q0

q1

q2

q3

q4

q5

q6

q7

q8

{q5}

{q5}

{q5}

{q5}

a : A {q7}

ε : E

V0

1 : (q0, ε, λ, {q0}, 0) initial ES

2 : (q1, ε, {q5}, {q0}, 0) pause(1)
3 : (q5, ε, λ, {q5}, 0) all(1)
4 : (q6, ε, {q7}, {q5}, 0) pause(3)
5 : (q7, ε, λ, {q7}, 0) all(3)
6 : (q8, E, λ, {q7}, 0) generate(5, E)
7 : (q6, E, λ, {q5}, 0) resume(4, 6); deletable(q7, E)
8 : (q1, E, λ, {q0}, 0) resume(2, 7); deletable(q5, E)
9 : (q2, E, {q5}, {q0}, 0) pause(8); all already in 3

10 : (q2, EE, λ, {q0}, 0) ε-resume(7, 9)
11 : (q3, EE, {q5}, {q0}, 0) pause(10); all already in 3
12 : (q3, EEE, λ, {q0}, 0) ε-resume(7, 11)
13 : (q4, EEE, {q5}, {q0}, 0) pause(12); all already in 3
14 : (q4, EEEE, λ, {q0}, 0) ε-resume(7, 13)

V1

15 : (q6, A, λ, {q5}, 0) translate(3, a : A)
16 : (q1, A, λ, {q0}, 0) resume(2, 15)
17 : (q2, EA, λ, {q0}, 0) resume(9, 15)
18 : (q3, EEA, λ, {q0}, 0) resume(11, 15)
19 : (q4, EEEA, λ, {q0}, 0) resume(13, 15); aeptane ES



20 : (q2, A, {q5}, {q0}, 0) pause(16)
21 : (q5, ε, λ, {q5}, 1) all(16)
22 : (q3, EA, {q5}, {q0}, 0) pause(17); all already in 21
23 : (q4, EEA, {q5}, {q0}, 0) pause(18); all already in 21
24 : (q6, ε, {q7}, {q5}, 1) pause(21)
25 : (q7, ε, λ, {q7}, 1) all(21)
26 : (q8, E, λ, {q7}, 1) generate(25, E)
27 : (q6, E, λ, {q5}, 1) resume(24, 26)
28 : (q2, AE, λ, {q0}, 0) resume(20, 27); deletable({q5}, E)
29 : (q3, EAE, λ, {q0}, 0) resume(22, 27); deletable({q5}, E)
30 : (q4, EEAE, λ, {q0}, 0) resume(23, 27); deletable({q5}, E); aeptaneES
31 : (q3, AE, {q5}, {q0}, 0) pause(28); all already in (21)
32 : (q3, AEE, λ, {q0}, 0) ε-resume(27, 31)
33 : (q4, EAE, {q5}, {q0}, 0) pause(30); all already in (21)
34 : (q4, EAEE, λ, {q0}, 0) ε-resume(27, 33); aeptane ES
35 : (q4, AEE, {q5}, {q0}, 0) pause(32); all already in (21)
36 : (q4, AEEE, λ, {q0}, 0) ε-resume(27, 35); aeptane ESFigure 14.4: RTN with deletable alls of �gure 12.10 extended with string output and exeution trae of algo-rithm 12.2 rtn_earley_reognize_string for this RTNSO and input a; without the ε-ompleter, greyed ESs wouldbe missing and the input would be rejeted.



q0

q1

q2

{q0}

b : B

a : A

V0

1 : (q0, ε, λ, {q0}, 0) initial ES

2 : (q1, ε, {q0}, {q0}, 0) pause(1); all already in 1
V1

3 : (q2, B, λ, {q0}, 0) translate(1, b : B)
4 : (q1, ε, λ, {q0}, 0) resume(2, 3)

V2

5 : (q2, BA, ε, λ, {q0}, 0) translate(4, a : A)
6 : (q1, BA, ε, λ, {q0}, 0) resume(2, 5)

V3

7 : (q2, BAA, λ, {q0}, 0) translate(6, BAA)
8 : (q1, BAA, λ, {q0}, 0) resume(2, 7)...

Vl

2l + 1 : (q2, BAl−1, λ, {q0}, 0) translate(2l, a : A); aeptane ES

2l + 2 : (q1, BAl−1, λ, {q0}, 0) resume(2, 2l + 1)Figure 14.5: Left-reursive RTNSO translating ban into BAn and exeution trae of algorithm 14.3 rtnso_earley-_translate_string for this RTNSO and input bal.



14.8. EARLEY-LIKE LANGUAGE GENERATION 297behaves as the FSTSO translator algorithm (setion 11.5): eah transitionadds at most one symbol to the output string in ourse, only therefore requir-ing to jump from the orresponding output string node to one of its suessorsor just to stay in the same node. When performing a all, new explorationsstarting with the empty output string are reated, and also one symbol is ap-pended at most during the all if no other alls or ompletions are performed.However, upon ompletion it is required to append the strings produed dur-ing the all to the strings produed before the all. Sine strings an only beaessed in reverse order, it is neessary to reorder the whole string beforeadding it. The whole purpose of the optimization onsists in transformingvetorial operations into salar ones, but when onatenating two strings ofa trie we must perform two vetorial operations: to reorder the string toappend and then to append it. For the ases in whih there are a few alls toperform, this problem will have no meaningful impat, but neither will thefatoring out of ommon alls.14.8 Earley-like language generationAlgorithm 14.6 rtn_earley_language is an adaptation of the Earley-like trans-lator algorithm 14.3 for the omputation of the language of a RTN, as seen insetion 14.5 with the breadth-�rst algorithm. Note that sine the algorithmonly translates the empty sequene, every input index generated during thealgorithm appliation will be zero. Therefore, we an remove input indexesfrom ESs and onsider every input index equal to zero, that is, a unique SES
V0 is omputed during the whole algorithm exeution. In the original algo-rithm, the ompleter ompared the input index of the urrent ES with theindex of the urrent SES in order to either exeute or not the ε-ompleter,but in this ase we an skip the test sine every ompletion will be in fatan ε-ompletion. As for the original algorithm, this algorithm also appliesfor left-reursive RTNs and adding trie string management may or may notaelerate its exeution depending on the alls present in the RTN to proess.



298 CHAPTER 14. RTNS WITH STRING OUTPUTAlgorithm 14.6 rtn_earley_language(A) ⊲ L(A), eq. (12.3))Input: A = (Q, Σ, δ, QI , F ), a RTNOutput: L, the language of A1: V ← ∅2: E ← ∅3: for eah (qc ∈ QI) do4: unconditionally_add_enqueue_es(V, E, (qc, ε, λ, QI))5: end for6: T ← ∅7: while E 6= ∅ do8: (qs, w, λ, Qh)← dequeue(E)
⊲ EXPLICIT ε-TRANSITIONS9: for eah qt ∈ δ(qs, ε) do10: add_enqueue_es(Vk, E, (qt, w, λ, Qh)11: end for

⊲ CONSUMING TRANSITIONS12: for eah qt ∈ δ(qs, σ) do13: add_enqueue_es(Vk, E, (qt, wσ, λ, Qh)14: end for
⊲ PREDICTOR15: for eah (qr, Qc) : qr ∈ δ(qs, Qc) do16: if add(V, (qr, w, Qc, Qh)) then17: if ∄w′ : (Qc, w

′) ∈ T then18: for eah qc ∈ Qc do19: add_enqueue_es(V, E, (qc, ε, λ, Qc))20: end for
⊲ ε-COMPLETER21: else22: for eah w′ : (Qc, w

′) ∈ T do23: add_enqueue_es(V, E, (qr, ww′, λ, Qh)24: end for25: end if26: end if27: end for



14.8. EARLEY-LIKE LANGUAGE GENERATION 299
⊲ COMPLETER28: if qs ∈ F then29: for eah (qr, w

′, Qh, Q
′
h) ∈ V do30: add_enqueue_es(V, E, (qr, ww′, λ, Q′

h)
⊲ ε-COMPLETER31: add(T, (Qh, w

′))32: end for33: end if34: end while35: L← ∅36: for eah (qs, w, λ, QI) ∈ V : qs ∈ F do37: add(L, w)38: end for





Chapter 15Filtered-popping reursivetransition networksIn the previous hapter we have shown the inevitable exponential explosionupon applying a RTNSO generating an exponential number of outputs w.r.t.an input inreasing in length, even for an Earley-like algorithm of appliation.In order to avoid this explosion, we propose to represent the set of outputs assome kind of �nite-state mahine. This mahine should have the same stru-ture than the trae of the Earley-like reognizer, so the algorithm buildingit would keep the asymptoti ost of the Earley-like reognizer, O(n3). Thismahine annot be a FSA, sine it should have a subroutine jump meh-anism: the exponential explosion due to the ombination of outputs uponall ompletions must be avoided by representing ommon output in�xes assubstrutures of the mahine that are alled rather than expliitly repre-sented multiple times. It neither an be a RTN sine, when exeuting thealgorithm, ommon alls may be ompleted by onsuming input segmentsof di�erent lengths but the ombination of blakboards before a all withthe blakboards during the all and �nally with the blakboards after theall must orrespond to the translation of onseutive input segments (see�gure 15.1). It is a �ltered-popping RTN or FPRTN, a new kind of �nite-state mahine we have de�ned as a RTN where states are assoiated to inputindexes and popping transitions annot be traversed unless both the soureand target states are not assoiated to the same input indexes. We havebrie�y presented both FPRTNs and the algorithm building them in Sastre(2009).One the FPRTN is built, one an ompute the e�etive list of outputs, if301
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a b cFigure 15.1: At the left, an ambiguous RTNSO, and at the right, a FPRTNreognizing the language of translations of abc for this RTNSO. Boxes ontainthe key of the state they are attahed to. FPRTN push and pop transitions areexpliitly represented as dotted and thik arrows, respetively. Only pop transitionsorresponding to onneted input segments are allowed: pop transitions from r7 to
r5 and from r9 to r3 are forbidden sine the former skips the translation of c andthe latter translates c twie.neessary, by generating the FPRTN language. Obviously, this operation willstill have an exponential ost, as the size of the output set is exponential,but the FPRTN an be pruned �rst in order to avoid the onstrution ofpartial blakboards that uniquely orrespond to misinterpretations of theinput. We will study in hapter 16 the sublass of FPRTNs built by thealgorithm presented here and give two e�ient algorithms for generatingtheir languages. Moreover, we will give in hapter 18 an algorithm able toextrat only the top-ranked blakboard of a weighted FPRTN, provided thatthe grammar is a RTNBO where blakboards inlude weight output.De�nition 265 (FPRTN). A FPRTN (Q, K, Σ, δ, κ, QI , F ) is a speial typeof FSMs (de�nition 46, p. 121) with a stak, a set of keys K and a κ : Q→ Kfuntion that maps states to keys in K, whose set of labels Ξ take its elementsfrom a set (Σ∪{ε}∪Q), where Σ is a �nite input alphabet, Q the �nite statesof the FPRTN and ε the empty symbol. FPRTNs an be seen as an extensionof RTNs (de�nition 183) by assoiating keys to states and by adding a �lterto the pop transitions so that they take plae only if the keys of the aeptorand return states math.



15.1. TRANSITIONS 30315.1 TransitionsFPRTN transition de�nitions are the same than the ones for RTNs (se-tion 12.1, p. 221) exept for popping transitions, whih we rede�ne below.De�nition 266 (Filtered-pop transition). Filtered-pop transitions (qf , qr�, qr)are impliit ε-transitions whih take plae eah time an aeptane state qfis reahed while exeuting a all having qr as return state suh that κ(qf ) =
κ(qr), that is, the keys of the aeptane and return states math. Whentraversing a �ltered-pop transition, the state qr at the top of the stak of re-turn states is popped out and the mahine is taken to the popped state qrwithout onsuming any input symbol.15.2 Graphial representationWe represent FPRTNs as RTNs with a box attahed to eah state, eah boxontaining the key of the orresponding state (see �gure 15.1). Filtered-poptransitions are represented as RTN pop transitions.15.3 Sequenes of transitionsFPRTN paths and yles are de�ned as for RTNs (setion 12.3, p. 225).Reursive alls for the ase of RTNs lead to an in�nite set of interpretationswithin the mahine, sine realizable all yles an be traversed an in�nitenumber of times. For the ase of FPRTNs, we will show in the next setionhow �ltered-pop transitions add additional restritions upon the number oftimes all yles an be realized.15.4 BehaviourFPRTNs behave as RTNs exept for the pop transitions. Therefore, the onlydi�erene is the way in whih the Dpop funtion is omputed.De�nition 267 (D). The D(V ) funtion for FPRTNs is de�ned as forRTNs 211 exept for the prediate of its Dpop omponent, whih is rede�nedas
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• d = qf ∈ F ∧ κ(qf ) = κ(qr),that is, by adding the key-mathing restrition.Lemma 23 (In�nite ε-losure). The ε-losure of a FPRTN SES V is in�niteif there exists an ES x = (q, π) within V or ε-reahable from an ES of V suhthat there exists an ε-realizable all yle whose start state is q.Proof. The proof is same than for RTNs (proof of lemma 14, p. 229) buttaking into aount that pop transitions involved in reahing ES (q, π) andin ε-realizing the all yle require the keys of their soure and target statesto be equal.Lemma 24 (Finite ε-losure). Under onditions other than those expressedin the previous lemma, the ε-losure of a FPRTN SES is �nite.Proof. The proof is the same than for RTNs (proof of lemma 15, p. 230)following the same reasoning than in the preeding proof but taking intoaount that the paths within the FPRTN that may lead to in�nite ε-losuresalso require their pop transitions to be realizable.Corollary 9. The ε-losure is always �nite for non-left-reursive FPRTNs.De�nition 268 (Initial and aeptane SESs). The initial and aeptaneSESs of a FPRTN are de�ned as for RTNs (de�nition 212, p. 231).De�nition 269 (L). The language of a FPRTN is de�ned as for RTNs(de�nition 214, p. 231), though taking into aount that pop transitions are�ltered.Lemma 25 (In�nite reursion degree). The reursion degree of a FPRTNhaving at least one useful all yle p suh that p2 is also useful is in�nite.Proof. The proof is similar to the one for RTNs (proof of lemma 16, p. 231);let us suppose a FPRTN suh as the RTN of �gure 12.5 where eah state qkis assoiated to a key kk, that is, κ(qk) = kk. In fat, the relevant keys to thisproof are kp1

, kp2
, kr1

and kr2
, the ones of the aeptane and return states(exept for qn, the �global� aeptane state), sine they determine whetherthe pop transitions are realizable or not. Let p be a path within the FPRTNsuh as the one de�ned in the proof for RTNs,

p = pa (qi−1, qr2
�, qi) pb (qj , qr1

�, qi) pc (qp1
, qr1

�, qr1
) pd (qp2

, qr2
�, qr2

) pe,



15.4. BEHAVIOUR 305where pb (qj , qr1
�, qi) is a yle. First of all, if the yle is useful then it mustbe realizable. If pop transition (qp1

, qr1
�, qp1

) is realizable, then kp1
= kr1

.For the yle to be useful, path p must be an interpretation and thereforerealizable. As before, if pop transition (qp2
, qr2

�, qp2
) is realizable then kp2

=
kr2

. If the yle an be traversed twie and still be useful, then path
p2 = pa (qi−1, qr2

�, qi)(pb (qj , qr1
�, qi))

2 pc (qp1
, qr1

�, qr1
) pd (qp2

, qr1
�, qr1

)

pd (qp2
, qr2

�, qr2
) pemust also be an interpretation. Note that the seond traversal of the ylerequires an additional realizable pop transition (qp2

, qr1
�, qr1

) in order to beuseful, whih either implies kp2
= kr1

or path pd to be empty: the latterase implies the former one sine qp2
would be equal to qr1

and thereforeboth states would be assoiated to the same key. Obviously, if kp2
= kr1then it is not only possible to traverse twie the yle but to traverse it anynumber of times, hene allowing for the existene of an in�nite number ofinterpretations. If this last equation does not hold then the yle an stillbe useful but not its self-onatenations, that is, the yle will allow for areursion degree equal to one, but zero or in�nite.Theorem 25 (Possible reursion degrees). Aording to the previous proof,the reursion degree of a FPRTN is either zero, one or in�nite.Theorem 26 (Cardinality of the interpretation set). Given the previous the-orem and the theorems on the ardinality of the interpretation set for FSMs(theorem 4, p. 145) and for FSAs (theorem 6, p. 164), the number of inter-pretations of a FPRTN is in�nite i� it ontains at least one useful yle pholding one of the following onditions:

• p is uniquely omposed by onsuming transitions and/or ε-transitions,
• p ontains realizable push and pop transitions �keys of soure andtarget states of eah pop transition are equal� but the exeution of pmomentarily modi�es the stak, that's it, the stak before and after theexeution of p is the same, or
• p is a all yle suh that p2 is also useful.Theorem 27 (Cardinality of the language). Given theorem 5 (p. 146), sineFSAs allow for the realization of any of its transitions, the language of aFPRTN is in�nite i� it ontains at least one useful onsuming yle p holdingone of the onditions of the previous theorem.



306 CHAPTER 15. FILTERED-POPPING RTNS15.5 Reverse FPRTNDe�nition 270 (RFPRTN). We de�ne �ltered-pushing reursive transitionnetworks or reverse FPRTNs (RFPRTNs) as FPRTNs where the �ltering isto be applied to push transitions instead of to popping ones.De�nition 271 (Reverse FPRTN). Let A be a FPRTN (Q, K, Σ, δ, κ, QI ,
F ) with disjoint submahines; we de�ne AR, the anonial reverse of A, as aRFPRTN (Q, K, Σ, δ′, κ, Q′

I , F ′) suh that A′ = (Q, Σ, δ, QI , F ) is a RTNand A′R = (Q, Σ, δ′, Q′
I , F ′) is the anonial reverse of A′ (de�nition 215,p. 234).Proof. The proof is the same than for RTNs but with a slight di�erene in thereversal of all transitions and submahines; let p = (qs, qt�, qc)p

′(qf , qt�, qt)be a path within A ompleting a all, the keys of qf and qt must be equalso that the pop transition an be taken. If AR would be a FPRTN insteadof a RFPRTN, then pR = (qt, qs�, qf )p
′R(qc, qs�, qs) would be a path within

AR whih might not be realizable sine the keys of states qs and qc arenot neessarily equal, and therefore A might reognize a word w suh that
wR is not reognized by AR. Moreover, the opposite ould also be true:the keys of qc and qs ould be di�erent while the keys of qt and qf wouldbe equal, thus AR ould reognize a word wR while A would not reognizeword w. Consequently, the mathing key restrition must be applied to pushtransitions instead of pop transitions in order to ensure that AR reognizesthe reverse language of A, and therefore the anonial reverse of a FPRTN isa RFPRTN and not another FPRTN. Conversely, the reverse of a RFPRTNis a FPRTN and not another RFPRTN.15.6 Translating a string into a FPRTNAlgorithm 15.1 rtnbo_translate_string_to_fprtn is an equivalent versionof algorithm 13.2 rtnbo_earley_translate_string whih returns a FPRTNrather than the e�etive list of outputs.1 This algorithm has been derivedfrom the RTN Earley-like aeptor algorithm 12.2 by adding the requiredinstrutions for building the resulting FPRTN: a FPRTN state is reatedfor eah ative ES generated during the algorithm exeution, and a FPRTN1We only de�ne the FPRTN in algorithm 15.1 rtnbo_translate_string_to_fprtn andthen treat it in the other algorithms as a global variable in order to avoid repetition.



15.6. TRANSLATING A STRING INTO A FPRTN 307transition is added for eah explored RTNBO transition deriving an ative ESfrom another one, where RTNBO output labels beome FPRTN input ones.FPRTN state keys are the input indexes at the moment of reation of eahstate. Algorithm 15.2 fprtn_reate_state is used for the reation of FPRTNstates instead of algorithm 8.3 fsm_reate_state in order to also assoiatethe state to a key. From now on, we will all FPRTNs states output statesor OSs. The algorithm builds a funtion ζs mapping pairs (k, (qs, λ, qh, j))to OSs so that it is possible to retrieve the OS orresponding to any of thepreviously generated ESs. Notie that ative ESs belonging to di�erent SESmay be equal (e.g.: xs = x′
s = (qs, λ, Qh, k), with xs ∈ Vj, x′

s ∈ Vk and
0 ≤ j < k ≤ l), hene we need to speify here the index of the SES on-taining them in order to uniquely identify them;2 indeed, the index of theSES ontaining an ES is also a term of the ES, but we have omitted it inorder not to repeat this index for eah ES of a SES (we simply use the SESindexes). Notie as well that output labels are just opied as input labels ofthe resulting FPRTN: blakboard funtions are not interpreted here but justannotated in order to be exeuted in a further stage of treatment. The samealgorithm is valid for RTNs with string output, weight output, uni�ationproesses or any ombination of these output types; di�erent algorithms willbe required for the partial or total generation of the language reognized bythe FPRTN, but not for the onstrution the FPRTN itself.The algorithm �rst alloates memory for storing the parsing hart: a ve-tor of l + 1 SESs. It builds two extra OSs, initial OS rs and the �global�aeptane OS rf , where rs is assoiated to index 0 and rf to index l, the in-put length. Then it adds to V0 the initial SES XI for RTNs using the routineunonditionally_add_enqueue_link_es_os (algorithm 15.3) in order to addeah ES. This routine extends routine unonditionally_add_enqueue_es (al-gorithm 7.7) by unonditionally reating a OS rc, as well as the spei�ed ES
xs, and by adding the orresponding map to ζs (the link between the ES andthe OS).3 Let Rc be the set of OSs (SOS) orresponding to XI , the algorithmadds a all to Rc from rs to rf . This onstrution represents a all to the2In pratie we do not build a map objet representing ζs but just add an extra �eldto ative ESs in order to store the pointer to the orresponding OS, so retrieving this OSdoes not involve a searh inside a map but just to follow the pointer. The only purposeof this �eld is to aelerate the retrieval of OSs, so whenever omparing two ative ESs ofthe same SES for equality this �eld is not taken into aount.3As stated before, in pratie we only �ll the ative ES extra �eld with the pointer tothe OS we have just reated.



308 CHAPTER 15. FILTERED-POPPING RTNSgrammar's axiom, whih an only be realized by onsuming the entire input:sine rf is assoiated to index l, the input length, pop transitions to rf fromstates whose index is less than l �and onsequently assoiated to ESs reahedbefore onsuming the whole input� will not be realizable. Afterwards, thesame iterative proess of the RTN Earley-like algorithm is followed here inorder to build the SESs V0 to Vl, but using algorithm 15.4 rtnbo_translate-_symbol_to_fprtn and algorithm 15.6 rtnbo_interlaed_elosure_to_fprtninstead of the equivalent RTN ones for the implementation of the ∆ and
ε-losure funtions. Sine the number of realizable �ltered-pop transitionsof the resulting FPRTN is �nite (the ones found during the algorithm ex-eution), we expliitly de�ne them so that further FPRTN postproessingdoes not require to searh for them again. The last loop of the Earley-likeRTN aeptor is modi�ed so that for eah aeptor ES in the last SES a�ltered-pop transition is added towards the �global� aeptor OS, rf .Algorithm 15.4 rtnbo_translate_symbol_to_fprtn is an almost straight-forward adaptation of algorithm 12.3 rtn_earley_reognize_symbol for theonstrution of a FPRTN. For eah ative ES xs = (qs, λ, Qh, j) in V (whihis in fat Vk, the last omputed SES), it �rst retrieves its assoiated OS rs.Then, for eah onsuming transition (qs, (σ, g), qt) it derives ES (qt, λ, Qh, j)and adds it to SES W (whih will be Vk+1, the next SES) using algorithm 15.5add_enqueue_link_es_os, the extended version of routine add_enqueue_es(algorithm 7.4). Besides adding an ES to a SES and enqueuing it for furtherproessing if the ES was not already present in the SES, it also reates itsoutput state rt with key k + 1 and adds the orresponding map to the ζsfuntion, or just returns the former reated OS if the ES was already presentin the SES. Finally, algorithm 15.4 rtnbo_translate_symbol_to_fprtn addsthe FPRTN transition (rs, g, rt) whih represents the possible partial trans-lation of input symbol σk+1 into g ∈ Γ ∪ {idB}, sine states rs and rt areassoiated to input indexes k and k + 1, respetively.Algorithm 15.6 rtnbo_interlaed_elosure_to_fprtn is a slightly moreomplex adaptation of algorithm 12.4 rtn_earley_interlaed_elosure. Thederivation of ative ESs due to expliit ε-transitions is analogous to thederivation through onsuming transitions; therefore, the extension is almostthe same. However, the extension of the preditor, ompleter and ε-ompleterinvolves onsidering more ESs than the former ase, namely
• xs = (qs, λ, Qh, j) ∈ Vk, the urrent ative ES whose RTNBO state qshas been deteted to be �nal and hene triggering the ompletion of



15.6. TRANSLATING A STRING INTO A FPRTN 309Algorithm 15.1 rtnbo_translate_string_to_fprtn(σ1 . . . σl) ⊲
ω(A, σ1 . . . σl)Input: σ1 . . . σl, an input string of length lOutput: A′ = (Q′, N, Γ, δ′, κ, Q′

I , F
′), the FPRTN reognizing ω(A, σ1 . . . σl)1: allocate_memory_for_chart(V l+1)2: rs ← fprtn_create_state(true, false, 0)3: rf ← fprtn_create_state(false, true, l)4: V0 ← ∅5: E ← ∅6: Rc ← ∅7: for eah (qc ∈ QI) do8: rc ← unconditionally_add_enqueue_link_es_os(V0, E, 0, (qc, λ, QI ,

0))9: add(Rc, rc)10: end for11: δ′(rs, Rc)← {rf}12: rtnbo_interlaced_eclosure_to_fprtn(V l+1, E, 0)13: k ← 014: while Vk 6= ∅ ∧ k < l do15: Vk+1 ← rtnbo_translate_symbol_to_fprtn(Vk, E, k, σk+1)16: k ← k + 117: rtnbo_interlaced_eclosure_to_fprtn(V l+1, E, k)18: end while19: for eah xs ∈ Vk : xs = (qs, λ, QI , 0) ∧ qs ∈ F do20: add(δ′(ζs(k, xs), rf�), rf)21: end forAlgorithm 15.2 fprtn_reate_state(is_initial, is_final, k)Input: is_initial, future value of prediate r ∈ Q′
I

is_final, future value of prediate r ∈ F ′

k, the state keyOutput: r, the new FPRTN state1: r ← fsm_create_state(is_initial, is_final)2: κ(r)← k



310 CHAPTER 15. FILTERED-POPPING RTNS
Algorithm 15.3 unonditionally_add_enqueue_link_es_os(V, E, k, xt)Input: V , the SES where the ES is added

E, the queue of unexplored ESs
k, the urrent input position
xt, the target ES to add to VOutput: V after adding the ES

E after enqueuing the ES, if new
rt, the target ES OS1: unconditionally_add_enqueue_es(V, E, xt))2: rt ← fprtn_create_state(false, state(xt) ∈ F, k)3: add(ζs(k, xt), rt)

Algorithm 15.4 rtnbo_translate_symbol_to_fprtn(V, E, k, σ) ⊲
∆(Vk, σk+1)Input: V , a SES

E, the empty queue of unexplored ESs
k, the index of V
σ, the input symbol to translateOutput: W , the set of reahable ESs from V by onsuming σ

E after enqueuing the ESs of W1: W ← ∅2: for eah (qs, λ, Qh, j) ∈ V do3: rs ← ζs(k, (qs, λ, Qh, j))4: for eah (qt, g) : qt ∈ δ(qs, (σ, g)) do5: rt ← add_enqueue_link_es_os(W, E, k + 1, (qt, λ, Qh, j))6: add(δ′(rs, g), rt)7: end for8: end for



15.6. TRANSLATING A STRING INTO A FPRTN 311Algorithm 15.5 add_enqueue_link_es_os(V, E, k, xt)Input: V , the SES where the ES is added
E, the queue of unexplored ESs
k, the urrent input position
xt, the target ES to add to VOutput: V after adding the ES

E after enqueuing the ES, if new
rt, the target ES OS1: if add(V, xt) then2: enqueue(E, xt)3: rt ← fprtn_create_state(false, state(xt) ∈ F, k)4: add(ζs(k, xt), rt)5: else6: rt ← ζs(k, xt)7: end ifparallel alls to Qh,

• xp = (qr, Qh, Q
′
h, i) ∈ Vj, a paused ES waiting for the ompletion of allto Qh,

• xr = (qr, λ, Q′
h, i) ∈ Vk, the return ative ES result of resuming pausedES xp,

• x′
s ∈ Vj , the ative ES from where all to Qh was performed, resultingin paused ES xp, and

• Xc, the set of ative ESs initiating the exploration of all to Qh.Note that reahing ES xs may resume several paused ESs, eah one having anassoiated return ES and one or more soure ESs of the all; therefore, reah-ing xs may trigger several all ompletions. Generating the orrespondingall struture inside the FPRTN involves the following OSs:
• r′s = ζs(x

′
s), the soure OS of the all, assoiated to ES x′

s,
• Rc = {rc : ζs(xc) = rc ∧ xc ∈ Xc}, the alled SOS,
• rr = ζs(xr), the return OS, and
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• rs = ζs(xs), the aeptane OS that triggers the all ompletion, if the�ltered-pop transition is to be expliitly de�ned.In order to add the FPRTN all transition (r′s, Rc, rr) in the ompleter weare �rst required to retrieve the involved OSs and SOS. rr is reated or justretrieved, if the assoiated return ES already existed, by routine add_en-queue_link_es_os inside the ompleter. OS r′s has been previously reatedby some derivation mehanism of the algorithm, but its ES x′

s is aessedduring the predition of all to Qh in order to reate paused ES xp andative ES xc. Inside the preditor, we build two additional maps so thatthe ompleter an retrieve these elements latter: ζ ′
s mapping xp to r′s and ζImapping xp to Rc.4 The ε-ompleter inside the ompleter does not need to bemodi�ed: it just marks all to Qh as deletable (adds Qh to T ) for the urrentSES Vk. The ε-ompleter inside the preditor will just reate or retrievereturn OS rr in order to add the orresponding FPRTN all transition sinethe other needed elements are already reated or retrieved by the preditor.Filtered-pop transitions due to ε-ompletions are expliitly de�ned insidethe ompleter; therefore, thus the ε-ompleter is not required to de�ne themagain.Notie that for all of the derivation mehanisms it might be possible toreah the same RTNBO state through di�erent paths generating di�erentoutput sequenes. For the RTNBO Earley-like translator this implied gen-erating several ESs instead of only one: one for eah di�erent output sineoutputs are a part of the ESs. For the algorithm generating a FPRTN, out-puts are represented as FPRTN transitions rather than being stored insidethe ESs. When deriving an ES by generating an output (or empty output),if the ES was not present it is generated as well as its assoiated OS and thetransition with the output label added, but if the ES was already presentits OS is just retrieved and a new alternative transition added (again, if thetransition was not already present).Figure 15.2 is an example of exeution of algorithm 15.1 rtnbo_trans-late_string_to_fprtn for input aabb and the RTNSO of �gure 14.1.5 On4As was done for map ζs (footnote 2, p. 307), in pratie we do not implement two mapobjets representing ζ′

s
and ζI but extend paused ESs with two �elds storing the pointersto the orresponding OS and SOS. Those �elds are not either taken into aount whenomparing paused ESs for equality.5Blakboards are strings and output labels are just output symbols; as stated before,the algorithm is the same for any kind of output sine it does not interpret the outputsbut just annotates them.



15.6. TRANSLATING A STRING INTO A FPRTN 313Algorithm 15.6 rtnbo_interlaed_elosure_to_fprtn(V l+1, E, k) ⊲ Cε(Vk)Input: V l+1, the hart
E, the queue of unexplored ESs ontaining every ES in Vk

k, the index of the SES VkOutput: V l+1 after adding to Vk its ε-losure
E after emptying it1: T ← ∅2: while E 6= ∅ do3: (qs, λ, Qh, j)← dequeue(E)4: rs ← ζs(k, (qs, λ, Qh, j))

⊲ EXPLICIT ε-TRANSITIONS5: for eah (qt, g) : qt ∈ δ(qs, (ε, g)) do6: rt ← add_enqueue_link_es_os(Vk, E, k, (qt, λ, Qh, j))7: add(δ′(rs, g), rt)8: end for
⊲ PREDICTOR9: for eah (qr, Qc) : qr ∈ δ(qs, Qc) do10: if add(Vk, (qr, Qc, Qh, j)) then11: ζ ′

s(k, (qr, Qc, Qh, j))← {rs}12: Rc ← ζI(k, Qc)13: if Rc =⊥ then14: Rc ← ∅15: for eah qc ∈ Qc do16: rc ← add_enqueue_link_es_os(Vk, E, k, (qc, λ, Qc, k))17: enqueue(Rc, rc)18: end for19: ζI(k, Qc)← Rc

⊲ ε-COMPLETER20: else if ∃rf : (Qc, rf) ∈ T then21: rr ← add_enqueue_link_es_os(Vk, E, k, (qr, λ, Qh, j))22: add(δ′(rs, Rc), rr)23: for eah rf : (Qc, rf) ∈ T do24: add(δ′(rf , rr�), rr)25: end for26: end if



314 CHAPTER 15. FILTERED-POPPING RTNS27: else28: enqueue(ζ ′
s(k, (qr, Qc, Qh, j)), rs)29: end if30: end for

⊲ COMPLETER31: if qs ∈ F then32: for eah (qr, Qh, Q
′
h, i) ∈ Vj do33: rr ← add_enqueue_link_es_os(Vk, E, k, (qr, λ, Q′

h, i))34: R′
s ← ζ ′

s(j, (qr, Qh, Q
′
h, i))35: Rc ← ζI(Qh)36: for eah r′s ∈ R′

s do37: add(δ′(r′s, Rc), rr)38: end for39: add(δ′(rs, rr�), rr)
⊲ ε-COMPLETER40: if i = k then41: add(T, (Qh, rs))42: end if43: end for44: end if45: end whilethe left, we have drawn a opy of the RTNSO and, on the right, we haverepresented the trae of the RTN Earley-like aeptor with its orrespondingoutput FPRTN. Notie that eah line ontains a RTN ES along with itsassoiated FPRTN state, and that every transition within the trae has itsorresponding FPRTN transition with the same transition label but omittingthe input symbol. The key of FPRTN state r0 is 0, whih represents the pointjust before the �rst input symbol σ1. Keys ks and kt of two FPRTN states

rs and rt assoiated to two ESs xs and xt suh that xt is diretly reahablefrom xs are equal i� the transitions that led to xt from xs did not involveinput onsumption; otherwise kt is equal to ks + 1. The �global� aeptanestate r1 is assoiated to key 4 so that any interpretation within the FPRTNneessarily orresponds to the whole onsumption of input aabb. Note thata single RTNBO all results in several FPRTN alls when the RTNBO allan be ompleted by onsuming input segments of di�erent lengths sineseveral return ESs belonging to di�erent SESs will be produed; for instane,



15.6. TRANSLATING A STRING INTO A FPRTN 315the �rst realization of all transition (q1, {q0}, q2) produes the FPRTN alltransitions (r4, {r6}, r8) and (r4, {r6}, r17), whih di�er only in the targetstate: r8, whose ES belongs to V1, and r17, whose ES belongs to V3. The�rst orresponding �ltered-pop transition, (r7, r8�, r8), is only realizable if theFPRTN all represents a translation of the empty input segment right afteronsuming the �rst input symbol (κ(r6) = 1 ∧ κ(r7) = κ(r8) = 1), and theseond one, (r13, r14�, r14), if the FPRTN all represents the translation ofthe seond and third input symbols (κ(r6) = 1 ∧ κ(r16) = κ(r17) = 3). Notealso that a RTNBO all transition results in a single FPRTN all transitionbut several �ltered-pop transitions when the all is realizable by reahingmultiple aeptor states but always onsuming the same amount of inputsymbols.Figure 15.3 is an example of exeution of algorithm 15.1 rtnbo_translate-_string_to_fprtn, equivalent to the example of �gure 14.4 for the RTNSOwith deletable alls. In this example we an appreiate how the deletableall to state {q5} is omputed only one for eah SES, and further alls areproessed by the ε-ompleter by just adding the orresponding all transition.As we an see, deletable alls allow for exeution paths traversing the sameall (e.g.: all to ES r3) suessive times inside the same SES; even thoughthe same ES is reahed several times, no all-yle is present sine eah all isompleted before starting the next one (the return state is popped out beforepushing it again); for instane, the following is an exeution path reahingstate r3 four times, starting from state r0 and ending at state r10:
(r0, r1�, r2)

(r2, r7�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r7�, r7)
(r7, r8�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r8�, r8)
(r8, r9�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r9�, r9)
(r9, r10�, r3) (r3, r6�, r4) (r4, E, r5) (r5, r6�, r6) (r6, r10�, r10)Transitions have been aligned so that every push transition to state r3 isplaed in the leftmost olumn and every �ltered-pop transition from all to

r3 is plaed in the rightmost olumn. This path orresponds to the traversalof the RTNSO from state q0 to state q4 whih onsumes no input and gener-ates sequene EEEE. This path is not an interpretation of input a: a lasttransition (r10, r1�, r1) is missing whih is not realizable due to the di�erentassoiated keys to states r10 and r1.Finally, �gure 15.4 is an example of exeution of algorithm 15.1 rtnbo_-translate_string_to_fprtn equivalent to the example of �gure 14.5 (p. 296)



q0

q1

q2

q3

q4

q5

a : { a : [

{q0} {q0}

b :} b :]

ε
:
∗

2 (q0, ¸, {q0}, 0)

3 (q5, ¸, {q0}, 0)

4 (q1, ¸, {q0}, 0)

5 (q3, ¸, {q0}, 0)

(q2, {q0}, {q0}, 0)

6 (q0, ¸, {q0}, 1)

(q4, {q0}, {q0}, 0)

7 (q5, ¸, {q0}, 1)

8 (q2, ¸, {q0}, 0)

9 (q4, ¸, {q0}, 0)

10 (q1, ¸, {q0}, 1)

11 (q3, ¸, {q0}, 1)

V0

V1

V2

{ [

*

*

{ [

":*
a:[a:{

6

":*

a:[a:{

4
5

6

r0 0

{r2}

{r6}{r6} {r6}{r6}

r10

r3

r2

r4

r5

r6

r7

r8

r9

r11

Initial_set

¢(V0, a)

¢(V1, a)

[ C"(¢(V0, a))

[ C"(Initial_set)

{6}{6}

0

0

1

1

1

1

1

1

2

2

r1

r17

r8 r9

r15

r14



V3

V4

]}

*":*

b:]b:}

b:]b:}

]}

10
11

4 5

r12{r12} {r12}

r13

r14

r15

r16

r17

r18

r1

r19

[ C"(¢(V1, a))

¢(V2, b)

¢(V3, b)

[ C"(¢(V3, b))

[ C"(¢(V2, b))

1212{12}{12}

2

2

2

2

3

3

3

4

4

r15(q2, {q0}, {q0}, 1)

12 (q0, ¸, {q0}, 2)

(q4, {q0}, {q0}, 1)

13 (q5, ¸, {q0}, 2)

14 (q2, ¸, {q0}, 1)

15 (q4, ¸, {q0}, 1)

16 (q5, ¸, {q0}, 1)

17 (q2, ¸, {q0}, 0)

18 (q4, ¸, {q0}, 0)

19 (q5, ¸, {q0}, 0)
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320 CHAPTER 15. FILTERED-POPPING RTNSfor the left-reursive RTNSO. Even if the resulting FPRTN ontains allyles, it ontains a unique and �nite interpretation due to �ltered-pop tran-sitions:
(r0, r1�, r2)(r2, r2l�, r2) . . . (r2, r8�, r2)(r2, r6�, r2)(r2, r4�, r2)

(r2, B, r3)(r3, r4�, r4)
(r4, A, r5)(r5, r4�, r6)
(r6, A, r7)(r7, r4�, r8)...

(r2l, A, r2l+1)(r2l+1, r1�, r1)The �rst line ontains the sequene of push transitions initializing the axiomall plus the l− 1 suessive alls to r2; one the stak is �lled with the rightsequene of return states, transitions of the following lines onsume an inputsymbol an pop out the next return state.
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Chapter 16Output FPRTNsWe study here the relevant partiularities of the FPRTNs onstruted byalgorithm 15.1 rtnbo_translate_string_to_fprtn, namely the irumstanesthat lead to FPRTNs that reognize in�nite languages; suh irumstanesshould be avoided in order to ensure �nite results. We give a pruning al-gorithm for suh FPRTNs in setion 16.1, and two e�ient alanguage gen-erator algorithms for FPRTNs representing �nite languages in setions 16.2and 16.3. We have brie�y presented both the pruning algorithm and anadapted version of the �rst language generator algorithm in Sastre et al.(2009), in the ontext of appliation of the MovistarBot projet. The pruningalgorithm removes every useless substruture of the FPRTN (de�nition 120,p. 144), and onsequently saves the ost of omputing useless partial blak-boards. The �rst language generator is able to avoid the exponential explo-sion in ases in whih the grammar represents a set of sentenes where thenumber of interpretations of eah sentene is limited, even for sentenes hav-ing an exponential number of loal ambiguities (ambiguities that are solvedafter reading a ertain amount of input). The seond language generator isintended to be as e�ient as possible for the worst ase; furthermore, thisseond algorithm will be the base for the onstrution of another algorithmthat de�nitively avoids the exponential explosion in ases in whih the gram-mar is a weighted mahine (hapter 18) and only the top ranked blakboardis needed. Note that many appliations require a single interpretation tobe returned in spite of ambiguity, for instane automati translators andonversational agents suh as the MovistarBot.As stated before, paths within O-FPRTNs orrespond to the RTN Earley-like exeution paths of a RTNBO for a given �nite input sequene, the323



324 CHAPTER 16. OUTPUT FPRTNSRTNBO being applied as a RTN but labeling the transitions of the resultingFPRTN with the RTNBO output labels. If we onsider the input segment asa linear FSA (see de�nition 77, p. 130), the FPRTN is a fatored represen-tation of the intersetion of the languages represented by the input FSA andthe RTNBO, that is, a substruture of the exeution mahine of the RTNBOonditioned upon the input FSA. Boullier and Sagot (2007) present a set of�lters to be applied to a CFG for a given input sequene in order to reduethe searh spae when applying the CFG, for instane the suppression of anygrammar rule onsuming an input symbol not present in the input sequene.From that point of view, our algorithm performs some kind of �ltering of thegrammar represented by the RTNBO so that only the paths onsuming somepre�x of the input remain. It is not a full �ltering sine not all these pathsmay be useful for the reognition of the entire input: we still need to prunethe resulting FPRTN in order to remove the useless substrutures. We ap-ply the RTNBO rather than individually applying a �lter to eah transition,though the ost of individually applying one or more of the suggested �ltersplus the appliation of our algorithm might be less than the appliation ofthe algorithm without the previous �ltering of individual transitions.De�nition 272 (Output FPRTN). We say a FPRTN A is an output FPRTN(O-FPRTN) i� there exists a RTNBO B and an input sequene w suh that
B is the result of the exeution of algorithm 15.1 rtnbo_translate_string_-to_fprtn for B and w, and we all (B, w) a soure of A.De�nition 273 (Canonial soure of an output FPRTN). We say a soure
(B, w) of an O-FPRTN A is a anonial soure i� every path of B is exploredand every symbol of w is onsumed for the generation of A, whether thelanguage of the resulting FPRTN is empty or not.Note that all the examples of exeution given here are based on anonialsoures in order to keep them small. In pratie, only a subset of the RTNBOwill be explored and the input sequene will not be neessarily reognized.Note that even if every input symbol is onsumed, aeptane ESs may notbe reahed, in whih ase the resulting FPRTN language will be empty.Lemma 26 (Output FPRTN yles). Given a anonial soure (B, w) of anO-FPRTN A, a path p in A is a yle i� there exists a path p′ in B holdingthe following properties:
• p′ is a subpath of some path p′′ realizable from an initial ES by onsum-ing some pre�x of w,
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• p′ is an ε-yle, and
• during the traversal of p′′, the last alled SS and the number of inputsymbols onsumed when starting that all are the same either whenreahing the start or the end states of p′.Moreover, p is a onsuming yle i� p′ is a generating path, and p is usefuli� p′ is w-useful.Proof. Obviously, the �rst ondition must hold sine paths are added to Aas some pre�x of w is onsumed by B. Let wawbwc = w, papbpc be a pathin B suh that it is realizable from some RTN Earley-like initial ES xε of

B by onsuming w, where exeution path X (pa, xε) (de�nition 90, p. 134)reahes ES xa by onsuming wa, X (pb, xa) reahes ES xb by onsuming wb and
X (pc, xb) reahes ES xc by onsuming wc. Proving the remaining onditionsonsists in proving that they hold i� X (pb, xb) is a yle, that is, xa = xband both xa and xb belong to the same SES. Let xa = (qs, Qc, Qh, i) and
xb = (q′s, Q

′
c, Q

′
h, j). pb is a yle i� qs = q′s. Qc = Q′

c = λ sine only ativeESs orrespond to FPRTN states. The third ondition holds i� Qh = Q′
hand i = j. Finally, xa and xb belong to the same SES i� pb does not onsumeinput.The two additional propositions are obvious: sine FPRTN input symbolsare opies of RTNBO output symbols, p onsumes i� p′ generates and, byonstrution, every interpretation of w in B produes an interpretation ofsome translation of w in A, thus relating the usefulness of p and p′.Lemma 27 (Possible reursion degrees). Given a soure (B, w) of an O-FPRTN A, the reursion degree of A is in�nite i� B ontains a w-usefuldeletable reursion; otherwise it is either 0 or 1.Proof. The key of this proof is that OS keys represent the number of inputsymbols onsumed during the traversal of the soure RTNBO up to the gen-eration of the OSs. For an O-FPRTN A to have an in�nite reursion degree,

A must ontain a path p suh as the one shown in proof of lemma 25 (p. 304),
p = pa (qi−1, qr2

�, qi) pb (qj, qr1
�, qi) pc (qp1

, qr1
�, qr1

) pd (qp2
, qr2

�, qr2
) pe,where pb (qj, qr1

�, qi) is a all yle and keys kp2
and kr1

are equal. For
(B, w) to be a soure of A, B must ontain a substruture that is exploredby onsuming some pre�x of w, generating A as is. As stated in the previous



326 CHAPTER 16. OUTPUT FPRTNSproof, a yle in A implies a orresponding explored ε-yle in B and, sinethe yle pb (qj , qr1
�, qi) in A is a all yle, the ε-yle in B must be a all ε-yle. Sine kp2

= kr1
and A ontains a path pd deriving OS qp2

from OS qr1
,the orresponding path within B annot either onsume any input symbol;therefore, the path in B orresponding to p in A is a deletable reursion.Finally, path p in A must be useful whih, by onstrution, is only possibleif the orresponding path in B is w-useful.Theorem 28 (Cardinality of the interpretation set). Given theorem 26 (p. 305),the number of interpretations of an O-FPRTN with soure (B, w) is in�nitei� B ontains at least one w-useful ε-yle p holding at least one of the fol-lowing onditions:

• every all initiated within p is ompleted as well within p, or
• there exists an ε-path p′ suh that pp′ is a deletable reursion.Theorem 29 (Cardinality of the language). The language of an O-FPRTNwith soure (B, w) is in�nite i� B ontains at least one w-useful generating ε-yle holding at least one of the onditions mentioned in the previous theorem.We must expet a natural language grammar to assoiate several interpre-tations to a natural language sentene sine natural languages are ambiguous;however, assoiating in�nite interpretations to a natural language sentenemakes no sense. Therefore, forbidding the presene of generating ε-yles inRTNBOs does not restrit the natural languages that an be represented butensures that the language represented by the resulting O-FPRTNs will be�nite sine this restrition and the one of the previous theorem are mutuallyexlusive.16.1 PruningLet A be an O-FPRTN obtained from a soure (B, w); by onstrution, everystate in A is reahable from the initial state of A though it may ontainuseless states and transitions. Before generating the language representedby A, we prune it so that we save the ost of proessing useless paths, andonsequently the generation of useless blakboards. By onstrution, the lasttransition of every possible interpretation within A is an expliitly de�ned�ltered-pop transition having the �global� aeptor state rf as target. If B



16.1. PRUNING 327does not reognize w but is only able to onsume some pre�x of w, A will haveno �ltered-pop transitions towards rf . Sine A ontains no interpretations,every state and transition is useless and is to be removed. Otherwise, we anreversely traverse every interpretation from state rf towards the initial state,marking every reahed state, so that the remaining unmarked states will bethe ones to remove as well as every transition having any of these states aseither soure or target.Algorithm 16.1 output_fprtn_prune removes every useless state and tran-sition of a given O-FPRTN with expliitly de�ned �ltered-pop transitions,following the proedure desribed above. In order to optimize the reversetraversal of the O-FPRTN, we store at eah state objet its set of inom-ing transitions as well as its set of outgoing transitions. The algorithm �rstheks for the existene of expliitly de�ned �ltered-pop transitions inomingto state rf and, if none found, alls proedure lear in order to perform anindisriminate removal of states and transitions;1 otherwise, it proeeds witha seletive pruning. The algorithm builds a funtion ζ mapping states toBooleans whih returns whether a state has already been reversely reahedfrom rf or not, and initializes it with a false value for every state.2. The algo-rithm also keeps a queue E of reversely reahed but unexplored states, thatis, states whose inoming transitions are still to be reversely traversed. Theseletive pruning starts by marking rf as reahed and enqueuing it into thequeue of states to be explored. Then, for eah enqueued state it dequeuesthe next one and reversely traverses one by one its inoming onsumingtransitions, ε-transitions, all transitions and expliitly de�ned �ltered-poptransitions. Note that through a pop transition we may reversely reah statesof a all up to its subinitial states, but no further. By reversely traversingall transitions as well we skip the whole all traversal and diretly reah thestate before the all. Note that all transitions are added one it is provedthat they are realizable exept for the all transition pointing to rf ; how-ever, if this all is not realizable then no �ltered-pop transitions will reah
rf and therefore the entire FPRTN will be deleted. For eah transition,routine enqueue_mark_unexplored_os (algorithm 16.2) is alled in order toadd the reversely reahed state to the queue and mark it as reahed, if itwas not previously reahed: sine the FPRTN may ontain yles, the algo-1Note that, in pratie, the memory alloated for the O-FPRTN is to be freed sooneror later, so learing the O-FPRTN is not a waste of time.2In pratie, we just extend FPRTN state objets with a Boolean �eld so that we donot have to searh in a map, assigning to it a false default value



328 CHAPTER 16. OUTPUT FPRTNSrithm must perform this hek before enqueuing the state in order not to fallinto an in�nite loop. Finally, a last loop iterates over every FPRTN stateand removes the unmarked ones as well as their orresponding transitions.Note that sine we are storing inoming as well as outgoing transitions, foreah outgoing transition t stored in a state objet qs there is a orrespond-ing inoming transition t′ in some state qt. In order to aelerate transitionremoval, we also store in the transition data strutures the referene towardsthe orresponding reverse transition data strutures.16.2 Language generationThere are ases in whih we an expet the language of the resulting O-FPRTN to be small; for instane, when building a grammar for a partiulardomain of appliation one may try to represent only the interpretation ofeah ambiguous sentene that a human would assume in that ontext (e.g.:upon reeiving a sentene suh as envía al móvil 555-555-555 hola Pao,whih means send to the mobile 555-555-555 hello Pao, the MovistarBotshould assume that the user is asking to send the SMS �hola Pao� to themobile phone �555555555� and not the SMS �al móvil 555-555-555 hola Pao�to an unspei�ed phone number). One pruned, the resulting O-FPRTN willontain a small number of paths (the possible interpretations), even for gram-mars representing an exponential number of loal ambiguities (ambiguitiesthat are solved after reading enough input symbols): the pruning operationwill e�iently remove the O-FPRTN substrutures orresponding to loalmisinterpretations. An e�ient language generator algorithm for suh ases(low global ambiguity with high/low loal ambiguity) an be obtained bymodifying algorithm 14.2 rtn_language, the breadth-�rst language genera-tor for RTNs, as follows:
• ESs ontain a blakboard instead of a string,
• expliit ε-transitions and onsuming transitions are labeled with anoutput funtion on blakboards instead of the empty symbol or aninput symbol, and their traversal applies the output funtion to theblakboard of the soure ES instead of appending a symbol,
• the key-mathing ondition is to be added to the treatment of poppingtransitions, that is, popping from an state qs with a stak π to a state

qr requires κ(qs) = κ(qr) as well as π = π′qr and qs ∈ F , and
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Algorithm 16.1 output_fprtn_pruneInput: A = (Q′, K, Γ, δ′, κ, Q′

I , F
′), the output FPRTN to prune

rf , the �global� aeptor state of AOutput: A after removing every useless state and transition1: if ∄rs : δ′(rs, rf�) = rf then2: clear(A)3: else4: for eah r ∈ Q′ do5: ζ(r)← false6: end for7: ζ(rf)← true8: E ← ∅9: enqueue(E, rf)10: while E 6= ∅ do11: rt ← dequeue(E)12: for eah (rs, γ) : rt ∈ δ′(rs, γ) do13: enqueue_mark_unexplored_os(E, ζ, rs)14: end for15: for eah rs : rt ∈ δ′(rs, ε) do16: enqueue_mark_unexplored_os(E, ζ, rs)17: end for18: for eah (rs, rc) : rt ∈ δ′(rs, rc) do19: enqueue_mark_unexplored_os(E, ζ, rs)20: end for21: for eah rs : rt ∈ δ′(rs, rt�) do22: enqueue_mark_unexplored_os(E, ζ, rs)23: end for24: end while25: for eah r ∈ Q′ : ¬ζ(r) do26: remove_state_and_associated_transitions(A, r)27: end for28: end if



330 CHAPTER 16. OUTPUT FPRTNSAlgorithm 16.2 enqueue_mark_unexplored_osInput: E, the queue of OSs to explore
ζ : Q′ → B, a Boolean funtion returning whether a state in Q′ haspreedently been reahed or not
r, a reently reahed OSOutput: ζ , after setting r as reahed, if neessary

E, after enqueuing r, if neessary1: if ¬ζ(r) then2: ζ(r)← true3: enqueue(r)4: end if
• when omputing the set of derived ESs from an ES x, derived ESs aremodi�ed opies of x exept for the last derived ES whih keeps theoriginal x data struture.Note that when the language to generate ontains a unique element, thisalgorithm builds a unique ES data struture and simply modi�es its blak-board �eld eah time a transition is traversed instead of building a new ESdata struture ontaining a modi�ed opy of the soure blakboard. At a �rststage of development of the MovistarBot, this algorithm was used in onjun-tion with a low global-ambiguity grammar and, upon ambiguous sentenes,interpretations were hosen randomly: we seleted the �rst one (whatever itorresponds to) from the list of possible interpretations.16.3 Language generation through BSPWe apply here the equations for Earley-like BSP of RTNBOs for omputingthe language represented by an O-FPRTN. First of all, we give a de�nitionof topologial sort of the O-FPRTN, then study the neessary onditions forits existene and �nally give an algorithm omputing the language of theO-FPRTN.De�nition 274 (Topologial sort of an output FPRTN). Assuming thatalls within a RTNBO are to be explored only one, suh as it is done by theEarley-like algorithm omputing the translations of an input sequene as anO-FPRTN, we de�ne the topologial sort of the resulting O-FPRTN as forFSMs (de�nition 81, p. 130) but rede�ning relation R as follows:
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• expliit ε-transitions, onsuming transitions, all transitions and real-izable �ltered-pop transitions from rs to rt imply rs R rt, and
• ra R rb ∧ rb R rc implies ra R rc.Let t = (rs, Rc, rt) be a all transition within an O-FPRTN that is realiz-able through a path p starting at a state rc ∈ Rc and having a last transitionof the form (rf , rt�, rt). If the O-FPRTN is to be traversed by following atopologial sort, it is obvious that rs and rf are to be explored before rt.Transitively, states in p before rf are also to ome before rt. However, itmakes no di�erene whether rs is explored before states in p or the onverse,sine the all to Rc is omputed as an independent appliation of the mahinebut taking Rc as set of initial states. Let t′ = (r′s, Rc, r

′
t) be a seond all tothe same SS Rc. Depending on how t and t′ are organized w.r.t. eah other,we distinguish 3 feasible ases: t and t′ are parallel alls, t omes before t′within a path that is not a yle, and path p ontains a all yle p′ thatinitiates all transition t′ (all to Rc is reursive) but �ltered-pop transitionsdo not allow for the repeated realization of p′. In the �rst ase, the followingrelations would be de�ned in R:3

• rs R rt,
• rc R rf R rt,
• r′s R r′t and
• rc R rf R r′t.In the seond ase, the relations in R would be
• rs R rt R r′s R r′t and
• rc R rf R rt R r′t.The third ase requires an additional path ompleting transition t′ in order tostop the reursion. Let this path start at a state r′c and have a last transitionof the form (r′f , r

′
t�, r′t), the relations in R are

• rs R rt,3For the sake of simpliity, we have abused here the notation of R as done in inequalityexpressions suh as 3 ≤ x ≤ y ≤ 9 (instead of 3 ≤ x ∧ x ≤ y ∧ y ≤ 9).



332 CHAPTER 16. OUTPUT FPRTNS
• rc R r′s R r′t R rf R rt, and
• r′c R r′f R r′t.Transition t would initiate the exploration of all to Rc and, one traversedpath from rc to r′s, transition t′ would not initialize any all but just wait forthe exploration of path from r′c to r′f .Note that we have de�ned the topologial sort for entire O-FPRTNs andnot only for their ε-losure-substrutures. In the previous setions on BSPwe foused on topologially sorting the ε-losure-substrutures sine a topo-logial sort for ∆-substrutures was already given by the sequene of SESsthe di�erent ESs belonged to: onsuming transitions derive target ESs xtfrom soure ESs xs with xs ∈ Vi and xt ∈ Vi+1. We �rst explored the ∆-substruture of a SES Vi, then the ε-losure-substruture derived from the

∆-substruture by following a topologial sort, then the ∆-substrutures of
Vi+1 and so on. One the O-FPRTN is omputed, the key assoiated toeah state gives us the index of the SES the orresponding ES belonged to,but the information about whih states where produed by the sanner andwhih ones where produed by the other algorithm omponents is lost. Sineit is neessary to explore the entire O-FPRTN in order to generate its lan-guage (provided that it has been previously pruned, and therefore ontainsno useless substrutures), we explore it by following the previously de�nedtopologial sort for entire O-FPRTNs, whih is not neessarily the samethan the one given by the sequene of SESs plus the topologial sort of the
ε-losure-substrutures.Theorem 30 (Existene of a topologial sort for output FPRTNs). Consid-ering lemma 1 (p. 131) and theorems 21 (p. 266) and 28, for every RTNBOnot having deletable reursions or ε-yles involving deletable alls and/oroutput generation there exists an equivalent RTNBO B suh that there existsa topologial sort for the O-FPRTN generated with soure (B, w), for everyinput sequene w of B.Note that forbidding the presene of deletable reursions in a RTNBOdoes not restrit the set of grammars that an be represented sine suh pathsdo not ontribute anything to the grammar desription (they are equivalentto CFG rules of the form A → A). The same applies for ε-yles involv-ing deletable all ompletions. Finally, ε-yles with output generation areforbidden sine they lead to grammars representing sentenes with in�niteinterpretations, whih make no sense.



16.3. LANGUAGE GENERATION THROUGH BSP 333Algorithm 16.3 output_fprtn_bsp_earley_language e�iently omputesthe language represented by a pruned O-FPRTN, based on the RTN Earley-like language generator algorithm in setion 14.8 (p. 297), the RTNBO Earley-like BSP equations in setion 13.11, the topologial sort for O-FPRTNs andKahn's (1962) topologial sorter (a brief desription of Kahn's algorithm anbe found in appendix D, page 419). The algorithm omputes the translationsof the empty word, onsidering every transition of the O-FPRTN as a tran-sition reognizing the empty symbol and applying the assoiated γ funtionto the urrent output blakboard; therefore the algorithm is redued to theomputation of the ε-losure of a set of initial ESs. Moreover, it performs ablakboard set proessing (BSP) of the O-FPRTN, that is, it traverses theentire O-FPRTN by following a topologial sort, omputing every blakboardthat an be generated by reahing eah partiular state q before omputingthe blakboards of every reahable state from q. The topologial sort is om-puted during the algorithm appliation as for Kahn's algorithm. Anotheralgorithm for omputing a topologial sort is desribed in Cormen et al.(2001, se. 22.4). Opposite to Kahn's algorithm, this algorithm does notrequire to ompute �rst the list of unreahable nodes from any other one sothat the exploration of the graph is performed from these nodes by followingthe own topologial sort; however, these nodes are known before omputingthe language of the O-FPRTN, the initial state rI , and our language genera-tor algorithm requires to follow the topologial sort as for Kahn's algorithmin order to orretly ompute the language of blakboards.Rather than performing again an Earley-like proessing of the O-FPRTN,the algorithm takes advantage of the omputations already performed tobuild the O-FPRTN: the algorithm takes an additional input parameter ζ ′′
swhih represents a funtion mapping eah pop transition to the set of sourestates of the all transitions it ompletes.4 This requires the following mod-i�ations in algorithm 15.6 rtnbo_interlaed_elosure_to_fprtn:

• right before the ε-ompleter inside the ompleter, insert instrution�ζ ′′
s ((rs, rr�, rr))← ζ ′′

s ((rs, rr�, rr)) ∪R′
s� in order to register the sourestates of normally ompleted all transitions,

• in the ε-ompleter of the ompleter, replae instrution �add(T, Qh)�4In pratie, we extend pop-transition objets with a �eld ontaining a referene to-wards the orresponding set and, when ompleting a all during the onstrution of theO-FPRTN, the set Q′′ is �lled with the soure states assoiated to every resumed pausedES.



334 CHAPTER 16. OUTPUT FPRTNSby �add(T, Qh, rs)� in order not only to mark deletable alls but also tobuild the orresponding list of aeptor states triggering ε-ompletions,
• in the ε-ompleter of the preditor, replae instrution �else if Qc ∈ Tthen� by �else if ∃rf : (Qc, rf ) ∈ T then�, sine elements in T are nolonger elements Qc but pairs (Qc, rf), and insert inside this �else if �blok a blok �for eah rf : (Qc, rf) ∈ Tdo� with a unique instrution�add(ζ ′′

s ((rf , rr�, rr)), rs)� in order to register the soure states of ε-ompleted all transitions.Map ζ ′′
s is to be de�ned as an output parameter of algorithm 15.1 rtnbo_-translate_string_to_fprtn and, as the other maps, it is treated as a globalvariable and impliitly initialized as an empty map.The algorithm �rst reates two maps, ζn and ζB; the former maps eahstate to a ounter of unexplored inoming transitions to the state, namelyonsuming transitions, expliit ε-transitions, all transitions and pop tran-sitions but not push transitions. The latter map assoiates eah state toan initially empty SB. Then it initializes all to rI by adding the emptyblakboard to the SB of rI and by enqueuing rI . States are dequeued andproessed one by one, following a topologial sort, until the queue is empty.At eah iteration, rs represents the dequeued state and Bs its SB. First ofall, Bs is inremented with every blakboard omposition b′s ◦ bf suh that

(b′s, bf) ∈ ζB(r′s)× ζB(rf), for every pair of states (rf , r
′
s) suh that rs is thereturn state of a all transition having r′s as soure state and rf as a possibleaeptor state ompleting it. Of ourse, if rs is not a return state of anyall then no blakboard is added to Bs. Then the outgoing transitions of rsare explored, namely onsuming transitions, expliit ε-transitions, all tran-sitions and pop transitions. Let rt be the target state of these transitions; inevery ase the ounter ζn(rt) is deremented, and rt is enqueued i� the newvalue of ζn(rt) is zero sine, in that ase, every blakboard to be added to

ζB(rt) should already have been added, exept for the blakboards due to allompletions whih are added to rt right after dequeuing it. Eah partiularase performs the following additional operations:
• for eah onsuming transition (rs, γ, rt), blakboards γ(Bs) are addedto ζB(rt),
• for eah expliit ε-transition(rs, idB, rt), blakboards Bs is added to

ζB(rt),
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• for eah all transition (rs, Rc, rt), all to Rc is initiated if it has notbeen done yet (SBs of every rc ∈ Rc will be empty, thus it su�es tohek only the �rst element) and not every transition inoming to rt hasalready been explored:5 for eah state rcinRc the empty blakboard isadded to ζB(rc) and rc is enqueued if its ounter is zero,6 and
• no additional operation is performed for eah pop transition (rs, rt�, rt)sine omposed blakboards are added right after dequeuing eah state.7One every state in the O-FPRTN has been proessed, the SB of the last ex-plored state is returned, whih, by onstrution, orresponds to the �global�aeptor state of the O-FPRTN. Note that, as long as the O-FPRTN ispruned before the appliation of this algorithm, the �global� aeptor stateis the only one from where no other state an be reahed. We have followeda non-destrutive method for the omputation of a topologial sort of theO-FPRTN by means of assoiating ounters to eah state. Kahn's algorithmremoves eah traversed edge, and enqueues a node one it has no inomingedges. In ase there is nothing to be done with the O-FPRTN one its lan-guage is omputed, the destrutive method would be preferred sine, anyway,the memory alloated by the O-FPRTN transitions is to be freed sooner orlater (as stated in footnote 1, p. 1).

5Note that having explored every inoming transition to rt implies that every poptransition ompleting all to Rc has also been explored and therefore all to Rc has alreadybeen initiated.6Note that subinitial states in Rc might be reahable from other subinitial states in Rc,so only the unreahable ones should be enqueued at this moment.7Note that reahing an aeptor state that triggers a all ompletion does not neessarilyensure that every soure state of every other all whose ompletion it might also triggerhas already been visited, hene the algorithm does not ompute the omposed blakboardsfor a given state rs until rs is dequeued.
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Algorithm 16.3 output_fprtn_bsp_earley_language(A)Input: A = (Q′, K, Γ, δ′, κ, {rI}, F

′), an output FPRTN
ζ ′′
s , a funtion mapping eah pop transition to the set of soure statesof the all transitions that it ompletesOutput: L, the language of A1: E ← ∅2: for eah rt ∈ Q′ do3: ζn(rt)← |{(rs, γ, rt) : rt ∈ δ′(rs, γ)}|+

|{(rs, idB, rt) : rt ∈ δ′(rs, idB)}|+
|{(rs, Rc, rt) : rt ∈ δ′(rs, Rc)}|+
|{(rs, rt�, rt) : rt ∈ δ′(rs, rt�)}|4: ζB(rt)← ∅5: end for6: add(ζB(rI), b∅)7: enqueue(E, rI)8: while E 6= ∅ do9: rs ← dequeue(E)10: Bs ← ζB(rs)11: for eah rf : rs ∈ δ′(rf , rs�) do ⊲ BLACKBOARD COMPOSITION12: for eah r′s ∈ ζ ′′

s ((rf , rs�, rs)) do13: for eah (b′s, bf ) ∈ ζB(r′s)× ζB(rf) do14: add(ζB(rs), b
′
s ◦ bf )15: end for16: end for17: end for18: for eah (rt, γ) : rt ∈ δ′(rs, γ) do ⊲ CONSUMING TRANSITIONS19: add(ζB(rt), γ(Bs))20: ζn(rt)← ζn(rt)− 121: if ζn(rt) = 0 then22: enqueue(E, rt)23: end if24: end for
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25: for eah rt ∈ δ′(rs, idB) do ⊲ EXPLICIT ε-TRANSITIONS26: add(ζB(rt), Bs)27: ζn(rt)← ζn(rt)− 128: if ζn(rt) = 0 then29: enqueue(E, rt)30: end if31: end for32: for eah (rt, Rc) : rt ∈ δ′(rs, Rc) do ⊲ PUSH TRANSITIONS33: ζn(rt)← ζn(rt)− 134: if ζn(rt) = 0 then35: enqueue(E, rt)36: else if ζB(first(Rc)) = ∅ then37: for eah rc ∈ Rc do38: add(ζB(rc), b∅)39: if ζn(rc) = 0 then40: enqueue(E, rc)41: end if42: end for43: end if44: end for45: for eah rt : rt ∈ δ′(rs, rt�) do ⊲ POP TRANSITIONS46: ζn(rt)← ζn(rt)− 147: if ζn(rt) = 0 then48: enqueue(E, rt)49: end if50: end for51: end while52: L← ζB(rs)





Chapter 17Finite-state mahines withomposite outputWe present here FSMs with omposite output (FSMCO) as an extension ofFSMs with blakboard output for the generation of multiple outputs, eitherof the same kind or not. FSMCOs an be seen as mahines with multipleoutput tapes: blakboards are strutures having a �eld for eah output tape,and eah output tape is itself another kind of blakboard.De�nition 275 (FSMCO). In general, �nite-state mahines with ompositeoutput(FSMCOs) are a partiular ase of FSMs with blakboard output with
• B = (B0 × B1 × . . . × Bn), that is, blakboards b ∈ B are ompositeblakboards (b0, b1, . . . , bn) ∈ (B0 × B1 × . . .×Bn),
• Γ = Γ0×Γ1× . . .×Γn, that is, funtions γ ∈ Γ are omposite funtions

γ(b) = (γ0(b0), γ1(b1), . . . , γn(bn)) that operate on omposite blakboards
b = (b0, b1, . . . , bn),
• BK = {(b0, b1, . . . , bn) : b0 ∈ BK0 ∨ b1 ∈ BK1 ∨ . . .∨ bn ∈ BKn}, that is,omposite blakboards b ∈ BK are those who have at least one killingterm bi ∈ BKi, and
• b∅ = (b∅0, b∅1, . . . , b∅n), that is, the empty omposite blakboard is theone whose terms are all empty.
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Chapter 18Weighted �nite-state mahinesWe present here weighted mahines as a speial ase of blakboard proessing,analogously to the way in whih we have derived FSMs with string outputas a partiular ase of FSMs with blakboard output, namely FSTs (hap-ter 11) from FSTBOs (hapter 10) and RTNSOs (hapter 14) from RTNBOs(hapter 13): blakboards are weights, we assume that there are no killingweights, and funtions on blakboards may inrement or derement suhweights. Weights represent the ost, sore or probability assoiated to therealization of a transition. We use here weight output in order to de�ne ariterion to selet a preferred interpretation upon ambiguous sentenes: theheapest, top-ranked or most likely one, depending on what the weights rep-resent themselves. In the MovistarBot use ase (setion 1.2, 6), grammarsare RTNs with omposite output: weights and XML tags that either identifythe requested servie or delimit the arguments to be extrated; for instane,the expeted output for sentene
• `envía Feliz Navidad al 555',whih means `send Merry Christmas to the 555', is
• `envía<sms/> <message>hola</message> al <phone>555</phone>'.This output is to be oupled with an overall weight greater than any of otherpossible outputs, suh as
• `envía<sms/> <message>Feliz Navidad al 555</message>'.XML tags an be treated as string output, though we have implemented aslightly more omplex kind of blakboard and treatment on blakboards for341



342 CHAPTER 18. WEIGHTED FINITE-STATE MACHINESthe sake of e�ieny (to be desribed in hapter 20). Mainly, we onsider inthis hapter that there are no killing blakboards whatsoever. The problemof killing blakboards will be disussed in the next hapter.Weights are de�ned by following some heuristi, thus the seleted in-terpretation is not guaranteed to be the expeted one. However, there areappliations whih require a single interpretation of eah parsed sentene inspite of eventual mistakes, for instane mahine translators and onversa-tional agents. Sine humans are used to deal with impreise and/or inexatinformation, a human interested in the ontent of a text written in an un-known language will still �nd useful a partially orret mahine translation.Human translators an use mahine translators in order to partially autom-atize their work, having only to orret the output returned by the mahinetranslator instead of typing the whole translation from the srath. In asea hatterbot does not understand or misunderstands a request, the user maytry to express his request in a di�erent manner. Note that this kind of sit-uation also happens between humans, though are usually less frequent thanbetween humans and mahines. The onversations held with a hatterbotare usually logged and studied by the hatterbot's administrator in order toimprove the onversational rules for overing the possible de�ienies. Aswell, mahine translator developers usually provide free online translationservies (e.g.: http://translate.google.om) for gathering user transla-tion requests, whih are then studied for improving the translation rules.De�nition 276 (WFSM). In general, weighted �nite-state mahines (WF-SMs) are a partiular ase of FSMs with blakboard output so that
• given a partially-ordered group (G, •,≺), for instane (Z, +, ≤) or

(R+, ·,≤), funtions in Γ always perform the binary operation • on anelement of G and the urrent blakboard, whih is another element of
G; for the sake of simpliity, we onsider that Γ ontains elements in Grather than funtions on blakboards, and output labels g ∈ Γ representthe operation b • g where b is the urrent blakboard,
• the identity funtion on blakboards idB performs operation • with itsidentity element and the urrent blakboard, for instane 0 for (Z, +,≤)and 1 for (R+, ·,≤); we write the orresponding identity element insteadof funtion idB in order to represent that a transition does not modifythe urrent output,
• B = G,

http://translate.google.com


343
• BK = ∅, that is, there are no killing blakboards, and
• b∅ is the identity element of operator •, for instane 0 for (Z, +,≤) and

1 for (R+, ·,≤).De�nition 277 (Weight of a path). Given a path or sequene of onatenatedtransitions t0t1 . . . tn within a WFSM for an ordered group (G, •,≺) so that
wi is the weight of transition ti, the weight of the path is w0 • w1 • . . . • wn.In the MovistarBot use ase, weights represent sores rather than proba-bilities. Upon ambiguous sentenes, the top-ranked output is to be assumedas the right interpretation. We use partially-ordered group (Z, +, ≤) in orderto avoid �oating-point operations.Probabilisti mahines (PFSMs), also alled stohasti FSMs (SFSMs),are a speial kind of weighted mahines, though our de�nition of weightedmahine an easily be adapted for PFSMs as follows, based on the de�nitionof probabilisti automata given in Vidal et al. (2005a, se. 2.2, p. 1015):De�nition 278 (PFSM). A probabilisti mahine (PFSM) is a weightedmahine where
• (G, •,≺) is to be de�ned as ([0, 1], ·, ≤), that is, weights are probabilitiesrepresented by real numbers between 0 and 1,1
• QI is to be replaed by a funtion PI : Q → R+, whih represents theprobability of eah state to be an initial state,
• F is to be replaed by a funtion PF : Q → R+, whih represents theprobability of eah state to be an aeptor state, and
• let P : (Q × Ξ × Q) → R+ be the funtion returning the probabilityassoiated to eah transition, P is to respet the following onstraintsso that the mahine represents a probability distribution over the set ofinterpretations (de�nition 111, p. 143) it ontains:

∑

q∈Q

PI(q) = 1, and (18.1)
PF (qs) +

∑

ξ∈Ξ,qt∈Q

P (qs, ξ, qt) = 1, ∀qs ∈ Q. (18.2)1For e�ieny, probabilities may also be represented by rational numbers, that is, asthe quotient of two integer numbers.



344 CHAPTER 18. WEIGHTED FINITE-STATE MACHINESIn ase the mahine is non-deterministi, the probability of an input sequeneis omputed as the sum of the probabilities of every interpretation reognizingsuh sequene. In ase the mahine generates additional output (apart fromprobabilities), the probability of a translation (into the additional output) isomputed as the sum of the probabilities of every interpretation performingsuh translation.A more straightforward de�nition of probabilisti mahine w.r.t. the de�-nition of weighted mahine an be given by modifying the previous de�nitionas follows:
• instead of replaing the sets of states QI and F by funtions PI and

PF , two additional states qI and qF are to be added to Q,
• QI is to be de�ned as {qI},
• F is to be de�ned as {qF}, and
• for eah state q ∈ Q two additional transitions are to be added:� a transition from qI to q onsuming no input and generating prob-ability PI(q), and� a transition from q to qF onsuming no input and generating prob-ability PF (q).Examples of mahines representing probability distributions over a setof sequenes are weighted automata (Mohri, 1997), probabilisti su�x trees(Ron et al., 1994), probabilisti �nite-state automata (Paz, 1971), stohas-ti or probabilisti automata (Carraso and Onina, 1994), hidden Markovmodels (Rabiner, 1989) and n-grams (Ney, 1992). In the MovistarBot usease, we have used weighted RTNs rather than probabilisti RTNs. We willnot give here more details on PFSMs, but a omplete survey an be foundin Vidal et al. (2005a,b).In setion 13.10 (p. 272) we presented an Earley-like algorithm of appli-ation of RTNBOs. In order to use this algorithm for the ase of weightoutput, we de�ne the weight omposition operator as follows:De�nition 279 (Weight omposition operator). Let A be a weighted RTNhaving (G, •,≺) as partially ordered group; onsidering that operator • is as-soiative (by de�nition of group), we de�ne the blakboard omposition opera-tor (de�nition 239, p. 268) of A as • sine it is a partiular ase of lemma 20(p. 269).



18.1. WEIGHT ASSIGNMENT 345De�nition 280 (Top path). Let p be a path within a WFSM A suh that preognizes a sequene α and has qs and qt as start and end states, respetively;we say p is a top path of A for (qs, α, qt) and ES xs i� the weight generatedby exeuting p from xs is greater or equal to the weight generated by theexeution from xs of any other path p′ deriving qt from qs. We simply saythat
• p is a top path of A for (α, qt) when qs is any initial state of A and xsany initial ES,
• p is a top path of A for α when p and p′ are interpretations of Areognizing α, and
• p is a top path of A, in general, when p and p′ are interpretations of Areognizing any input.18.1 Weight assignmentGiven two transitions outgoing from the same state of a FSM suh that bothtransitions are realizable upon the same input and ontext of exeution,one may express the preferene of one transition over the other by assigningdi�erent weights to eah transition. In the MovistarBot use ase (setion 1.2,p. 6), we have manually built a set of grammars �more or less desriptive�and automatially assoiated weights to the grammar transitions so that themost desriptive transitions �hene the most restritive or spei�� arepreferred over those less desriptive. In setion 6.4 (p. 115), we have studiedthe spei�ity of the di�erent lexial masks, and proposed a weight to assignto eah transition depending on the lexial mask used as input label. Thisproedure has allowed our NLP engine to deal with ambiguous sentenes, asdesribed in the setion 6.4.Other possibility is to use a part-of-speeh tagger, either stohasti (Churh,1988) or rule based (Brill, 1992), in order to automatially assoiate weightsto transitions during the appliation of the mahine for a given input. Part-of-speeh taggers ompute the most likely part-of-speeh of the words of asentene. We may assoiate higher sores to transitions requiring or, at least,not forbidding the part-of-speeh hosen by the tagger.



346 CHAPTER 18. WEIGHTED FINITE-STATE MACHINES18.2 Extrating the top blakboard of a weighted-ouptut FPRTNIn setion 15.6 we presented an algorithm able to ompute the set of transla-tions for a given RTNBO and input as an O-FPRTN in time n3 in the worstase, even for RTNBOs generating an exponential number of outputs w.r.t.the input length. In hapter 16 we presented two proedures for the gen-eration of the language of outputs represented by an O-FPRTN. Obviously,generating the language of outputs of an O-FPRTN representing an exponen-tial number of outputs will have an exponential worst-ase ost. However,end-user appliations suh as mahine translators and hatterbots (namelythe MovistarBot), require only a single output to be returned, let it be themost likely or the top-ranked one. We present here an algorithm that is �-nally able to generate only the top-ranked output represented by a weightedO-FPRTN (WO-FPRTN) in time n3. Reall that O-FPRTNs are built froma soure (B, w) (de�nition 272, p. 324), and that O-FPRTN input labelsare simple opies of the output labels of their respetive soure RTNBOs(setion 15.6, p. 306). Therefore, we de�ne WO-FPRTNs as follows:De�nition 281 (Weighted-output FPRTN). Let (B, w) be the soure of anoutput FPRTN A, we say A is a weighted-output FPRTN i� B is a RTNBOwith weight output, either as unique output or as one of the outputs of aomposite output mahine (de�nition 275, p. 339). For the sake of generality,we de�ne WO-FPRTNs as both O-FPRTNs and WFSMs with
• (W, •,≺) as partially ordered group, that is, with W as set of weights,
• as operator on weights and ≺ as weight omparator, and
• Γ×W as set of output labels, where Γ is a set of output funtions thatapply on the blakboard omponents other than the weight.Mainly, the proedure we present here is divided into two stages. The �rststage onsists in traversing the WO-FPRTN in order to �nd and annotatethe WO-FPRTN top path:De�nition 282 (Top path of a WO-FPRTN). Top paths of WO-FPRTNsare de�ned as top paths of WFSMs, though taking into aount that weightsof WO-FPRTN reognize the outputs instead of generating them: weights arethe seond term of the pairs that form their input labels.



18.2. EXTRACTING THE TOP BLACKBOARD OF A WO-FPRTN 347The top path is annotated by marking at eah state the inoming transi-tion that allowed for reahing the state by generating the maximum weight.At a seond stage, the top path is reversely traversed in order to generatethe top blakboard:De�nition 283 (Top blakboard of a WO-FPRTN). Let A be a WO-FPRTNand b a blakboard in L(A), we say b is a top blakboard of A i� for everyblakboard b′ in L(A) the weight omponent of b is greater or equal than theweight omponent of b′.Note that this forward-and-baktrak proedure is typially followed byother dynami programming (Bellman, 1957), suh as Wagner and Fisher's(1974) algorithm for the omputation of the edit distane between two strings(Levenshtein, 1966).Sine the top blakboard is to be omputed by reversely traversing thetop path found, output funtions on blakboards annot be applied as is;instead, their onverse funtions are to be applied:De�nition 284 (Converse of a funtion on blakboards). Let γ1, γ2 . . . γnbe a sequene of funtions on blakboards, the onverse of γi, γ̆i, is anotherfuntion on blakboards suh that the following equation is satis�ed:
(γ̆1 ◦ γ̆2 ◦ . . . ◦ γ̆n)(b∅) = (γn ◦ . . . ◦ γ2 ◦ γ1)(b∅) (18.3)De�nition 285 (Converse of a binary operator). Let • be a binary operator,we de�ne the onverse of •, •̆, as another binary operator suh that, for all

a, b, c,
a • b = c ⇐⇒ b •̆ a = c. (18.4)Corollary 10 (Double onverse). The onverse of the onverse of a binaryoperator is the operator itself, that is, ˘̆• = •.Lemma 28. (G, •̆) is a monoid i� so it is (G, •) and, if so, both monoidsshare the same identity element.Proof. For (G, •) to be a monoid, the following two axioms must be satis�ed:

• operator • is assoiative, and
• ∃e ∈ G suh that e is the identity of •.



348 CHAPTER 18. WEIGHTED FINITE-STATE MACHINESThe �rst axiom is satis�ed i�
a • (b • c) = (a • b) • c. (18.5)By de�nition of •̆, the following two equations hold:
a • (b • c) = (c •̆ b) •̆ a (18.6)
(a • b) • c = c •̆ (b •̆ a), (18.7)whih together with the former equation proof the assoiative ondition of •̆:
(c •̆ b) •̆ a = c •̆ (b •̆ a). (18.8)For e to be the identity element of •, the following axioms must be satis�ed:

a • e = a (18.9)
e • a = a. (18.10)If so, the following equations hold by de�nition of •̆:
e•̆a = a (18.11)
a•̆e = a, (18.12)and therefore e is also the identity of •̆. Sine ˘̆• = •, the same reasoning anbe applied to prove that • is a monoid i� so it is ˘̆• and that, if so, both sharethe same identity element.Lemma 29 (Converse operator on blakboards). Let (B, •) be a monoid withan identity element b∅; if every output funtion is of the form γbr

(bl) = bl •br,then γ̆br
(bl) = bl •̆ br.Proof. Let γb1 , γb2 . . . γbn be a sequene of funtions on blakboards suh that

γbi
(b) = b • bi. If n = 1 then it holds that

(γbn
◦ γbn−1

◦ . . . ◦ γb2 ◦ γb1)(b∅) = ((. . . ((b∅ • b1) • b2) • . . . • bn−1) • bn)

= b∅ • b1 • b2 • . . . • bn−1 • bn

= b1 • b2 • . . . • bn−1 • bn

= bn •̆ bn−1 •̆ . . . •̆ b2 •̆ b1

= b∅ •̆ bn •̆ bn−1 •̆ . . . •̆ b2 •̆ b1

= ((. . . ((b∅ •̆ bn) •̆ bn−1) •̆ . . . •̆ b2) •̆ b1)

= (γ̆b1 ◦ γ̆b2 ◦ . . . ◦ γ̆bn−1 ◦ γ̆bn
)(b∅)



18.2. EXTRACTING THE TOP BLACKBOARD OF A WO-FPRTN 349Note that the assoiative blakboard omposition operator desribed inlemma 20 (p. 269) forms, indeed, a monoid (B, •) with B as the set of blak-boards and b∅ as the identity element. Either for string, sore or probabilityoutput, suh a monoid exists:
• the set of output strings with the string onatenation and the emptystring as identity element,
• the set of integer numbers with the addition and 0 as the identityelement, and
• the set of real numbers with the multipliation and 1 as the identityelement.The ase of feature struture output and uni�ation proesses will be dis-ussed in the next hapter.In ase a set of output funtions annot be onversed, the top path an bereversely traversed in order to annotate the orresponding outgoing transi-tions at eah state instead of the inoming ones, then traverse the top path indiret order in order to ompute the top blakboard with the original outputfuntions. Another possibility is to apply the reverse of the RTNBO repre-senting the grammar to the reversed sentene; the resulting WO-FPRTN willthen represent the reverse translations of the sentene, allowing for using theoriginal output funtions during the reverse traversal of the top path insteadof their respetive onverse funtions.We have also studied the possibility of �rst traversing the whole WO-FPRTN in reverse order, that is, to ompute a top path of the anonialreverse of the WO-FPRTN (de�nition 270, p. 306), then reversely traversethat path in order to ompute the top blakboard using the original outputfuntions on blakboards instead of their onverses. However, the traversalof the WO-FPRTN must follow a topologial sort of the whole mahine (de�-nition 274, p. 330); while we an ensure the existene of suh topologial sortfor O-FPRTNs (theorem 30, p. 332), that is not the ase of their anonialreverses. A possible example is the anonial reverse of the O-FPRTN of�gure 15.3 (p. 319); it su�es to apply the algorithm we desribe below tothat mahine in order to realize of this fat.



350 CHAPTER 18. WEIGHTED FINITE-STATE MACHINES18.2.1 The algorithmAlgorithm 18.1 woutput_fprtn_top_reverse_path is an almost straightfor-ward adaptation of algorithm 16.3 output_fprtn_bsp_earley_language (p. 336)for the e�ient omputation of a top path of a WO-FPRTN. Instead of om-puting every possible blakboard that an be generated by reahing eahstate, it stores only the maximum generated weight up to reahing eahstate and, eah time a new maximum is found for a given state, it storesas well the reverse of the transition that reahed that state by generatingsuh a maximum weight. The maximum weight is given by map ζw, and thereversed top transition by map ζt. The top path an be later traversed inreverse order by following the reversed top transition at eah state, startingfrom the �global� aeptor state up to reahing the initial state.During the initialization phase, the algorithm sets the ounters of inom-ing transitions for eah state rt, ζn(rt), as for algorithm 16.3 output_fprtn-_bsp_earley_language. However, instead of setting the sets of blakboards(SBs) of eah state to an empty set, the algorithm sets the maximum weightof eah state to the minimum possible weight (ζt(rt) ← wmin) so that the�rst omputed weight by reahing rt is set as the new maximum weight of rt.The top reversed transition of eah state rt, (ζt(rt)), is assumed to be ⊥ bydefault, though an implementation of this algorithm may require to expliitlyassign a null value. States having an unde�ned top reversed transition willbe those initiating alls within the FPRTN, that is, those whose top reversedtransition is a reversed push transition.2 The algorithm sets the weight ofthe initial state to wid, the weight identity element, instead of setting theSB of rI to the empty blakboard. A last initialization instrution enqueuesstate rI in order to start the WO-FPRTN exploration as for algorithm 16.3output_fprtn_bsp_earley_language.In spite of being optimized, algorithm 16.3 output_fprtn_bsp_earley_-language) annot avoid an exponential ost due to the omputation of anexponential number of blakboards in the blakboard omposition blok: fora given pop transition (rf , rs�, rs), it adds to the SB of rs every blakboard
bs = b′s ◦ bf suh that (b′s, bf ) ∈ B′

s × Bf , where Bf is the set of blakboardsof rf and B′
s is the set of every blakboard of every soure state of every all2Reall that while pop transitions are expliitly de�ned in O-FPRTNs for onveniene,push transitions are not needed to: the reverse traversal of a push transition will simplyonsist in bringing the mahine to the state at the top of the stak and to pop that stateout.



18.2. EXTRACTING THE TOP BLACKBOARD OF A WO-FPRTN 351transition ompleted by the pop transition. Instead, algorithm 18.1 woutput-_fprtn_top_reverse_path �rst retrieves r′smax
, the state having the maximumweight among all the soure states of all transitions ompleted by the poptransition, then omputes only the omposition of this maximum weight withthe maximum weight of rf . The treatment for eah transition inoming to

rs is the same than for algorithm 16.3 output_fprtn_bsp_earley_language,though it omputes only the maximum weight and stores it along with thereverse of the orresponding transition whenever a new maximum is found.As for algorithm 16.3 output_fprtn_bsp_earley_language, algorithm 18.1woutput_fprtn_top_reverse_path uses ounters in order to hek whetherevery inoming transition of eah state has already been traversed or not; ifthe WO-FPRTN is not needed for any other treatment, transitions an besimply removed from the WO-FPRTN instead of keeping a set of ounterssine the memory alloating the transitions is to be freed sooner or later (asstated in footnote 1, p. 327).Finally, algorithm 18.3 woutput_fprtn_top_blakboard omputes a topblakboard of a WO-FPRTN A = (Q′, K, Γ×W, δ′, κ, {rI}, F ′). First of all,it alls algorithm 18.1 woutput_fprtn_top_reverse_path in order to build ζt,the map of states to top-reverse transitions, and to retrieve rF , the �global�aeptor state of A. Afterwards, it traverses the reverse of the omputed toppath, from rF up to rI , by following at eah state the top reverse transitionde�ned by ζt. Apart from being reversed, the latter operation is similar tothe omputation of the language of a RTN (setion 14.5, p. 285) by means ofa breadth-�rst traversal of a RTNBO (setion 13.5, p. 262), though keepinga single top ES (rt, bt, π) at eah iteration instead of a SES ontaining everypossible ES. The initial top ES is set to (rF , b∅, λ). Then, the sequene oftop ESs that ompose the top reverse path is iteratively omputed. Let theurrent top ES be xt = (rt, bt, π), the next top ES xs is omputed as follows,depending on the type of the next top reversed transition:
• reverse pop transition: sine aeptane states of AR are those forhaving no de�ned top reverse transition, xt = (rr, bt, π

′) with π = π′rri� ζt =⊥,
• reverse �ltered-push transition: xt = (rf , bt, πrs) i� ζ(rt) = (rt, {rf}, rs),knowing that a unique top state rf is alled suh that (rt, rf�, rs) is anallowed top �ltered-push transition of AR sine (rs, rf�, rt) is an allowedtop �ltered-pop transition of A,
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• reverse ε-transition: xt = (rs, bt, rt) i� ζt(rt) = (rt, (idB, w), rs), and
• reverse onsuming transition: xt = (rt, γ̆(bt), π) i� ζt = (rt, γ, rs), ap-plying γ̆ to bt instead of γ so that the resulting blakboard belongs to

L(A) instead of L(AR).
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Algorithm 18.1 woutput_fprtn_top_reverse_path(A, ζ ′′

s )Input: A = (Q′, K, Γ×W, δ′, κ, {rI}, F
′), a weighted-output FPRTN

ζ ′′
s , a funtion mapping eah pop transition to the set of soure statesof the all transitions that it ompletesOutput: ζw, a map of states to top weights
ζt, a map of states to top reverse transitions
rs, the last visited state = the �global� aeptor state of A1: E ← ∅2: for eah rt ∈ Q′ do3: ζn(rt)← |{(rs, (γ, w), rt) : rt ∈ δ′(rs, (γ, w))}|+

|{(rs, (idB, wid), rt) : rt ∈ δ′(rs, (idB, wid))}|+
|{(rs, Rc, rt) : rt ∈ δ′(rs, Rc)}|+
|{(rs, rt�, rt) : rt ∈ δ′(rs, rt�)}|4: ζw(rt)← wmin5: end for6: ζw(rI)← winit7: enqueue(E, rI)8: while E 6= ∅ do9: rs ← dequeue(E)10: ws ← ζw(rs)11: for eah rf : δ′(rf , rs�) do ⊲ BLACKBOARD COMP.12: r′smax
← first(ζ ′′

s ((rf , rs�, rs)))13: for eah r′s ∈ ζ ′′
s ((rf , rs�, rs))− {first(ζ ′′

s ((rf , rs�, rs)))} do14: if ζw(r′smax
) ≺ ζw(r′s) then15: r′smax
← r′s16: end if17: end for18: w ← ζw(r′smax
) • ζw(rf )19: if ws ≺ w then20: ws ← w21: ζt ← (rt, {rf}, r

′
smax

)22: end if23: end for
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24: for eah (rt, (γ, w)) : rt ∈ δ′(rs, (γ, w)) do ⊲ CONSUMING TRANS.25: wt ← ws • w26: if ζw(rt) ≺ wt then27: ζw(rt)← wt28: ζt(rt)← (rt, (γ, w), rs)29: end if30: ζn(rt)← ζn(rt)− 131: if ζn(rt) = 0 then32: enqueue(E, rt)33: end if34: end for35: for eah rt ∈ δ′(rs, (idB, wid)) do ⊲ ε-TRANSITIONS36: if ζw(rt) ≺ ws then37: ζw(rt)← ws38: ζt(rt)← (rt, (idB, wid), rs)39: end if40: ζn(rt)← ζn(rt)− 141: if ζn(rt) = 0 then42: enqueue(E, rt)43: end if44: end for45: for eah (rt, Rc) : rt ∈ δ′(rs, Rc) do ⊲ PUSH TRANSITIONS46: ζn(rt)← ζn(rt)− 147: if ζn(rt) = 0 then48: enqueue(E, rt)49: else if ζw(first(Rc)) = wmin then50: for eah rc ∈ Rc do51: ζw(rc)← winit52: enqueue(E, rc)53: end for54: end if55: end for



18.2. EXTRACTING THE TOP BLACKBOARD OF A WO-FPRTN 35556: for eah rt : rt ∈ δ′(rs, rt�) do ⊲ POP TRANSITIONS57: ζn(rt)← ζn(rt)− 158: if ζn(rt) = 0 then59: enqueue(E, rt)60: end if61: end for62: end whileAlgorithm 18.2 top_state(ζw, Q′′)Input: ζw, the map of states to top weights
Q′′, a set of statesOutput: rmax, the state in Q′′ mapped to the maximum weight1: rmax ← first(Q′′)2: for eah r ∈ Q′′ − {first(Q′′)} do3: if ζw(rmax) ≺ ζw(r) then4: rmax ← r5: end if6: end forAlgorithm 18.3 woutput_fprtn_top_blakboard(A, ζ ′′

s )Input: A = (Q′, K, Γ×W, δ′, κ, {rI}, F
′), a weighted-output FPRTN

ζ ′′
s , a funtion mapping eah pop transition to the set of soure statesof the all transitions that it ompletesOutput: bt, a top blakboard of A1: (ζt, rF )← woutput_fprtn_top_reverse_path(A, ζ ′′

s , ζc)2: (rt, bt, π)← (rF , b∅, λ)3: while rt 6= rI do4: if ζt(rt) =⊥ then let π = π′rr ⊲ REVERSE POP TRANS.5: (rt, bt, π)← (rr, bt, π
′)6: else if ζt(rt) = (rt, {rf}, rs) then ⊲ REVERSE PUSH TRANS.7: (rt, bt, π)← (rf , bt, πrs)8: else if ζt(rt) = (rt, (idB, wid), rs) then ⊲ REVERSE ε-TRANS.9: (rt, bt, π)← (rs, bt, π)10: else let ζt(rt) = (rt, (γ, w), rs) ⊲ REVERSE CONSUMING TRANS.11: (rt, bt, π)← (rs, γ̆(bt), π)12: end if13: end while





Chapter 19Uni�ation �nite-state mahinesWe brie�y present here mahines omprising uni�ation proesses as a spe-ial ase of blakboard output, analogously to the way in whih we havepresented weighted mahines in the previous hapter. Uni�ation is the onlykind of blakboard proessing presented in this dissertation that makes useof killing blakboards. Sine our de�nitions and algorithms and algorithmsof appliation of mahines with blakboard output take into aount thispossibility, adapting the algorithms for the ase of uni�ation mahines isstraightforward exept for the last and most e�ient algorithm we have pre-sented in this dissertation: algorithm 18.3 woutput_fprtn_top_blakboard.We brie�y desribe uni�ation in setion 19.1, uni�ation mahines in se-tion 19.2, the advantages of uni�ation in setion 19.3, and how to adaptthe algorithms of appliation of mahines with blakboard output in orderto support uni�ation in setion 19.4.19.1 Overview of uni�ationUni�ation allows for a ompat representation of long-distane relationshipsand dependenies, that is, relationships and dependenies between input ele-ments that are separated by an arbitrary amount of input rather than beingonseutive; for instane, the number agreement between the subjet and theverb of a sentene. Algorithms of appliation of grammar formalisms om-prising uni�ation make use of feature strutures in order to store linguistidata as it is observed during the analysis of the sentenes. Suh feature stru-tures are strutures of attribute/value pairs (e.g.: number/singular, fun-357



358 CHAPTER 19. UNIFICATION FINITE-STATE MACHINEStion/subjet, et.), where values may be other feature strutures. Addition-ally, feature strutures may omprise values that are shared among di�erentattributes, forming omplex strutures analogous to direted ayli graphs(examples an be found in Jurafsky and Martin, 2008, hap. 11, p. 391).Uni�ation is a monotoni operation: the uni�ation of two feature stru-tures results in another feature struture ontaining every attribute/valuepair of both the feature strutures to unify. Whenever unifying two featurestrutures both ontaining a given attribute, 3 situations are possible:
• only one of the feature strutures de�nes a value for the attribute (thevalue in the other feature struture is not set), in whih ase the re-sulting feature struture will ontain suh attribute/value pair withoutdupliating the attribute,
• both feature strutures de�ne the same value for the attribute, in whihase the resulting feature will ontain attribute paired with the de�nedvalue, or
• the feature strutures de�ne di�erent values for the attribute, in whihase the feature strutures annot be uni�ed due to an inonsisteny.Whenever inonsistenies appear, killing blakboards are to be generated inorder to invalidate the analysis that led to them; for instane, a possibleattribute name ould be `number agreement', whose value is to be takenfrom both the subjet and the verb of the sentene to analyse. When eitherthe subjet or the verb is read, the feature struture of the urrent analysis isuni�ed with another one that inludes a `number agreement' attribute takingas value the number of the sentene onstituent read. In other words, a set ofregisters is used in order to remember the number of either the subjet or theverb so that it an be ompared when reading the other sentene onstituent.More information on feature strutures, uni�ation, and how to imple-ment both an be found in Jurafsky and Martin (2008, hap. 11, p. 391).19.2 Uni�ation mahinesWe de�ne uni�ation mahines as follows:De�nition 286 (UFSM). In general, uni�ation �nite-state mahines (UF-SMs) are a partiular ase of FSMs with blakboard output so that



19.3. ADVANTAGES OF UNIFICATION 359
• funtions in Γ always perform the uni�ation operation ⊔ of a fea-ture struture with the urrent blakboard, whih is a feature strutureas well; for simpliity, we onsider that Γ ontains feature struturesrather than funtions on blakboards, and output labels g ∈ Γ representthe operation b ⊔ g where b is the urrent blakboard,
• the identity funtion on blakboards idB uni�es the empty feature stru-ture, [ ], and the urrent blakboard,
• B is the set of feature strutures,
• BK = {⊥}, where ⊥ represents the inonsistent feature struture, thatis, the uni�ation of two inompatible strutures of features, and
• b∅ = [ ], that is, the empty feature struture.As for input labels of lexial FSMs (de�nition 48, p. 122), feature struturesin Γ may rather be expressions �alled uni�ation equations� whih de-sribe feature strutures whose values may be taken from the properties ofthe read input (e.g.: a feature struture with a `number agreement' attributetaking its value from the `number' property of the last read token).An example of uni�ation mahines are loal grammars extended with fea-ture strutures and uni�ation proesses (Blan and Constant, 2005; Blan,2006); these mahines are equivalent to lexial-funtional grammars (Kaplanand Bresnan, 1982): they use RTNs instead of CFGs, whih are equivalentgrammar formalisms, oupled with feature strutures and uni�ation. Suhloal grammars have been used for parsing omplex sentenes.19.3 Advantages of uni�ationWithout uni�ation, �nite-state mahines suh as FSAs and RTNs requirea separate mahine substruture for eah possible valid ombination of pairs`attribute/value'; for instane, assuming that the number and gender of twosentene onstituents must agree, and that there are only two possible val-ues for these attributes, four mahine substrutures are required in order torepresent the onsistent ombinations: both onstituents are masuline andsingular, both are masuline and plural, both are feminine and singular, orboth are feminine and plural. Note that suh mahine substrutures require



360 CHAPTER 19. UNIFICATION FINITE-STATE MACHINESalso to represent the sentene onstituents that may appear between thesubjet and the verb. When manually onstruting a grammar, this impliesopying by hand suh substrutures in order to de�ne eah possible ombi-nation. Moreover, as the number of o-ourrent attributes inreases, thenumber of onsistent ombinations may inrease exponentially. Dependingon the grammars to de�ne, uni�ation an avoid an important amount ofredundany while avoiding an exponential growth of the grammar.Uni�ation an also ease the representation of sentene onstituents thatmay appear in an arbitrary order; for instane, in the MovistarBot use ase(setion 1.2, p. 6), request sentenes are omposed by some struture identi-fying the servie requested along with other strutures ontaining the serviearguments, where the order in whih they appear may not neessarily be�xed: sentenes `envía Feliz Navidad al 555-555-555' (send Merry Christmassto the 555-555-555) and `envía al 555-555-555 hola' (`send to the 555-555-555Merry Christmass') are equivalent. Note that, while there are only 2 pos-sibilities with 2 arguments that may permute, the number of ombinationsinreases exponentially w.r.t. the number of freely-permutable arguments.19.4 Supporting uni�ationAs for weight output (previous hapter), the adaptation of the Earley-likealgorithm of appliation of RTNBOs 13.10 (p. 272) for feature strutureoutput and uni�ation proesses requires only to de�ne the feature strutureomposition operator:De�nition 287 (Feature struture omposition operator). We de�ne theblakboard omposition operator (de�nition 239, p. 268) for the ase of uni-�ation RTNs as ⊔ sine it is a partiular ase of lemma 20 (p. 269).Almost every algorithm of appliation of mahines with blakboard out-put we have presented in this dissertation takes into aount the possibility ofgenerating killing blakboards, hene do not require any further modi�ationin order to support uni�ation. The exeption is the algorithm omputingthe top blakboard of a WO-FPRTN (algorithm 18.3 woutput_fprtn_top_-blakboard, p. 355). Until now, we have onsidered the following approahesin order to extend this algorithm with uni�ation proesses:
• ensuring that the grammar does not assoiate the highest sore to aninonsistent interpretation for every possible input sentene, that is,



19.4. SUPPORTING UNIFICATION 361ensuring that top-ranked blakboards are not killing blakboards byonstrution of the grammar, and
• extending the algorithm so that further top-ranked blakboards (theseond in the raking, the third, et.) are e�iently omputed in asekilling blakboards are enountered.Note that, in ase the grammar de�nes an exponential number of top-rankedkilling blakboards, the algorithm will no longer have a polynomial worst-ase ost but an exponential one. A ombined possibility would be to ensurethat the grammar does not de�ne suh an exponential number of top-rankedkilling blakboards, that is, to ensure that the non-killing top-ranked blak-board is one of the k top-ranked ones for some onstant k. A last resourewould be to de�ne a proedure for the removal of on�iting uni�ationequations, replaing them by the equivalent sequenes of mahine substru-tures for eah possible ombination. However, the same side-e�et than thatof RTN �attening (setion 12.8, p. 239) an be expeted: an exponentialgrowth of the grammar. Due to the omplexity of the problem, we leave itopen to a future work.
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Chapter 20Experimental resultsIn this hapter we present the results of the experiments we have onduted inorder to empirially ompare the performanes of the di�erent algorithms wehave presented. We �rst give in setion 20.1 an overview of the treatment wehave performed, reall the di�erent algorithms and algorithm optimizationswe have tested and desribe the implementation details and the atual ex-periment onditions. Finally, we disuss in setion 20.2 the observed results,namely the speedup fators for eah algorithm and algorithm optimizationrelative to the simplest algorithm, the algorithm overheads and asymptotiosts.20.1 DesriptionFigures 20.1 and 20.2 (pgs. 373�378) ompare the performane of eah variantof eah algorithm of appliation of RTNs �with and without output� fortwo versions of the MovistarBot grammar: in both ases the grammar hasbeen pseudo-determinized (setion 13.7, pg. 265) but in the latter ase ithas �rst been �attened (setion 13.6, pg. 263). Sine the grammar ontainsno reursive alls, the �attened version is not an approximation but a FSTequivalent to the original RTN. We have applied the MovistarBot grammarto a test orpus mainly omposed by sentenes requesting for mobile servies.Other sentenes have been added in order to ontrol over-reognition (theyare to be rejeted). The grammar is a RTN with string and weight output(hapters 14 and 18, respetively):
• output string symbols are XML tags whih either identify the requested365



366 CHAPTER 20. EXPERIMENTAL RESULTSservie or delimit the arguments to extrat (see �gure 10.1(a), pg. 188),and
• weights are used for hoosing a single interpretation (the one with themaximum sore) for the ase of ambiguous sentenes.Translator algorithms ompute maps of XML tags to input segments (theinput position at the moment of generating the orresponding opening andlosing XML tags, starting with 1 as the �rst input token). Additionally,eah map is assoiated to an overall weight. The map with the highestoverall weight is to be transformed into a ommand and then passed to theMovistarBot. This transformation is trivial and has simply been hard-odedas a C++ funtion; for instane, the following set of mappings of XML tags toleft-open input intervals is generated for sentene `envía hola al 555 ', amongothers: sms → (1, 1] (20.1)message → (1, 2] (20.2)phone → (3, 4] (20.3)The presene of the �rst mapping implies that the user is asking to send anSMS, and the others de�ne the input segments to be used as message andphone arguments, respetively. For this map, ommand sms 555 hola is tobe generated. Note that the input interval of the �rst mapping is empty: onlyXML tags orresponding to arguments to be outputted need to be mappedto a non-empty input interval. XML tags identifying the requested servierequire only to be present in the map.Translator algorithms ompute the set of outputs for eah possible inter-pretation of the input sentene, either as an expliit list of outputs (a list ofmaps in this ase) or as some kind of mahine fatoring out ommon parts:a �ltered-popping reursive transition network (FPRTN, hapter 15) havingpairs XML tag/weight as transition labels. They then translate the top-ranked output into the orresponding MovistarBot ommand. Additionally,FPRTN-based algorithms also prune the generated FPRTN (setion 16.1,pg. 326) before generating either the whole set of outputs or the top-rankedoutput only, depending on the algorithm. Aeptor algorithms �algorithmsomputing only whether the sentene orresponds to a servie request ornot, without generating any translation� ignore grammar's output labels



20.1. DESCRIPTION 367and ompute only whether the sentene is a request for a supported onlineservie or not.Figure 20.3 illustrates the performane drop of the best performing vari-ant of eah algorithm, for input anbn with n = 0 . . . 15 and grammar of�gure 14.1 (p. 283). In this ase, the grammar has weight and string output;the treatment is similar to the MovistarBot ases though sets of weightedstrings are to be generated instead of sets of weighted maps, and the top-ranked string is to be returned as is, that is, without being transformed intosome ommand.Reall that grammar of �gure 14.1 is a minimal theoretial grammarwhose purpose is to produe an exponential number of outputs w.r.t. theinput length; exponential prodution happens in natural language grammarsdue to ambiguity that inreases exponentially with additional nesting levels ofsubgrammar alls. Though suh nesting levels in natural language grammarsare not usually high, signi�ant speedups an be pereived even for low nest-ing levels due to the exponential nature of the problem: in spite of the smallsize of grammar of �gure 14.1 (6 states and 7 transitions), non-exponentialalgorithms already perform better than their exponential ounterparts fornesting levels greater than 3; lower nesting levels will be required for generalnatural language grammars, whih an easily reah millions of states andtransitions.20.1.1 AlgorithmsIn the �gures, the following short odes and bakground olors have beenused in order to identify eah algorithm:
• depth-�rst -o : depth-�rst aeptor, setion 12.7 (pg. 235)
• depth-�rst : depth-�rst translator, setion 13.5 (pg. 262)
• breadth-�rst -o : breadth-�rst aeptor, setion 12.7 (pg. 235)
• breadth-�rst : breadth-�rst translator, setion 13.5 (pg. 262)
• earley -o : Earley aeptor, setion 12.11 (pg. 246)
• earley : Earley translator, setion 13.10 (pg. 272)
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• to-fprtn : to FPRTN translator (prunes the FPRTN but does notgenerate its language), setion 15.6 (pg. 306)
• to-fprtn-bfe : to FPRTN translator and FPRTN breadth-�rst expan-sion (as `to-fprtn' but also generating the language of the FPRTN bymeans of a breadth-�rst traversal), setions 15.6 (pg. 306) and 16.2(pg. 328),
• to-fprtn-zpps : to FPRTN & ζ ′′

s map translator (as `to-fprtn' but alsobuilding a map ζ ′′
s and performing some variable initializations requiredby algorithm `to-fprtn-bse'), setions 15.6 (pg. 306) and 16.3 (pg. 330),

• to-fprtn-bse : to FPRTN translator and blakboard set expansion(as `to-fprtn-zpps' but also expanding the FPRTN by means of blak-board set proessing instead of a breadth-�rst traversal), setions 15.6(pg. 306) and 16.3 (pg. 330),
• to-fprtn-top : to FPRTN translator and top-blakboard initialization(as `to-fprtn-zpps' but performing the initializations required by algo-rithm `to-fprtn-tbe' instead of `to-fprtn-bse'), setions 15.6 (pg. 306)and 16.2 (pg. 328),
• to-fprtn-tbe : to FPRTN translator and top-blakboard extrator(as `to-fprtn-top' but also extrating the top-ranked blakboard by amethod similar to blakboard set proessing), setions 15.6 (pg. 306)and 16.2 (pg. 328).Note that algorithms with faded olors do not perform the whole hain oftreatment, either beause they are simple aeptors or beause omit some�nal stages of treatment. We have inluded them in order to observe theperformane drop due to output generation, and to observe the ost of eahseparate stage of treatment, namely:
• `earley -o' = ost of omputing the Earley aeptor sets of exeutionstates,
• `to-fprtn' − `earley -o' = ost of adding transitions with output labelsto the Earley aeptor exeution states in order to build an outputFPRTN, plus later prunning the FPRTN,
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• `to-fprtn-zpps' − `to-fprtn' = ost of building ζ ′′

s map and performingsome variable initializations for output generation by means of blak-board set proessing
• `to-fprtn-top' − `to-fprtn' = ost of building ζ ′′

s map and performingsome variable initializations for the generation of the top-blakboard
• `to-fprtn-bse' − `to-fprtn-zpps' = ost of generating every output a-epted by the FPRTN by means of blakboard set proessing and thenhoose the top-ranked one
• `to-fprtn-tbe' − `to-fprtn-top' = ost of generating only the top-rankedoutput within the FPRTNFor instane, we an see that the ost of omputing map ζ ′′

s and performingthe subsequent variable initializations is negligible. Additionally, algorithmsimplementing partial treatments establish a performane limit for algorithmsperforming additional stages (e.g.: `to-fprtn' annot be faster than `earley -o'sine it performs the treatment stages plus some additional ones). In general,it is no use to implement a FPRTN based algorithm in order to surpass analgorithm X if `to-fprtn' performs worst than X; the implementation of `to-fprtn' is to be �rst improved until obtaining a meaningful performane marginw.r.t. the algorithm to surpass.20.1.2 Algorithm variantsIn the �gures, parameters other than `-o' identify �minor� algorithm opti-mizations (the algorithm variants), namely
• +t: optimize sequene management by means of tries (hapter 9); ap-pliable to algorithms whose exeution states inlude a stak of returnstates (namely `depth-�rst', `breadth-�rst' and the breadth-�rst expan-sion of `fprtn-bfe') and/or inlude a sequential partial output (in thease exposed here, outputs are not sequenes but desriptions of themobile servie the sentene is asking for),
• -eXXX: set/map implementation for the management of sets/maps ofexeution states (exluding `depth-�rst' sine it does not build sets ormaps of exeution states but single exeution states), and
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• -bXXX: set/map implementation for the management of sets/maps ofblakboards (the output strutures).The di�erent set/map implementations are
• std: the one provided by GNU's implementation of the C++ StandardTemplate Library, that is, red-blak trees (setion 2.5, pg. 61) withCormen's addition algorithm (setion 2.3.6, pg. 50),
• lrb: our ustom implementation based on double-linked red-blak trees(setion 2.6, pg. 63) with Knuth's addition algorithm (setion 2.3.5,pg. 2.3.5), and
• lrb-3w: as the previous one but using a 3-way omparator (setion 2.3.9,pg. 55).Fully-olored rows highlight the fastest variant of eah algorithm.20.1.3 Implementation detailsEvery algorithm has been programmed in C++ (Stroustrup, 2000), using theStandard Template Library (see for instane Josuttis, 1999) and some Boostlibraries (http://www.boost.org). We have taken advantage of generi pro-gramming in order to reuse the soure ode of eah algorithm for every pos-sible variant �sequene, set and map types have been delared as templatetypes. Apart from fatoring out the soure ode, this ensures that the per-formane di�erene between the di�erent variants of the same algorithm isexlusively due to the di�erent implementation of sequenes (with or withouttrie optimization), sets and maps. Input and output types have also beendelared as template types so that other kind of grammars an be supportedin the future (e.g.: with other harater odi�ation shemes suh as UTF-8, with other kind of lexial masks, with uni�ation proesses, et.). Everyalgorithm variant has been ompiled into a single exeutable, weighting 5.9MB, with version 4.3.2 of GNU's g++ ompiler. The odes desribed in thetwo previous setions are used as parameters in order to hoose the algorithmvariant to exeute.

http://www.boost.org


20.1. DESCRIPTION 37120.1.4 Experiment onditionsEah algorithm has been applied to the whole orpus several onseutivetimes in order to obtain meaningful measures: a minimum amount of se-onds is spent per algorithm, the number of onseutive appliations beingounted. Eah measure has been taken several times; graph bars of �g-ures 20.1 and 20.2 represent means and error bars represent the minimumand maximum measures. Errors are less than 1% of the observed measure,hene we an onsider negligible the error of the speedup fators we will give(below ±0.001). In �gure 20.3, only thik urves representing the meanshave been drawn; exept for n = 0, the regions between the maximum andminimum urves for eah algorithm are thinner enough to be overed by theorresponding mean urves. These regions are slightly wider for n = 0, anda few times wider for algorithm `depth-�rst -o'. Anyway, the purpose of thisgraphi is to ompare the performane drops against an exponential grammarrather than giving absolute measures.The measures not only inlude the ost of omputing the result, but alsothe ost of freeing the alloated memory; hene, the overhead added by someoptimizations and algorithms due to the use of more omplex data strutures,suh as tries and FPRTNs, is fully taken into aount. We have used GNU'smhek library and mtrae tool in order to ensure that every single byte ofdynamially alloated memory is properly freed.1The tests were run on a Ubuntu platform version 8.10 (Intrepid Ibex), 64bits. The hardware spei�ations are2
• CPU: Intel R© CoreTM2 Duo E8500, 3.16 GHz, 6 MB L2 ahe, 64 KBL1 ahe
• RAM: 8 GBs, DIMM DDR Synhronous 1066 MHz (0.9 ns)Eah test onsumed no more than 18 MB of RAM for the ase of the Movis-tarBot grammar and orpus, and less than the RAM size for the exponentialase (more than 8 GBs are needed for some algorithms with exponentialworst-ase ost and n ≥ 20). The pseudo-determinized version of the Movis-tarBot grammar has 1359 states and 3141 transitions, and the �attened and1http://www.gnu.org/s/lib/manual/html_node/Alloation-Debugging.html#Alloation-Debugging2Retrieved with ommand lshw.

http://www.gnu.org/s/libc/manual/html_node/Allocation-Debugging.html#Allocation-Debugging
http://www.gnu.org/s/libc/manual/html_node/Allocation-Debugging.html#Allocation-Debugging


372 CHAPTER 20. EXPERIMENTAL RESULTSpseudo-determinized version has 5504 states and 31702 transitions. The or-pus ontains 168 sentenes, with an average of 10.1 tokens per sentene and4.1 haraters per token. Eah sentene has an average of 6.9 interpretationsfor both versions of the MovistarBot grammar.
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Figure 20.1: Performane omparison of eah algorithm variant for the Movis-tarBot orpus and �attened and pseudo-determinized grammar; fully olored rowsorrespond to the fastest variants, and only intense olor rows orrespond to al-gorithms that perform the whole hain of treatment (rows 12�89 exept those ofalgorithm `breadth-�rst -o').
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Figure 20.2: Performane omparison of eah algorithm variant for the Movis-tarBot orpus and �attened and pseudo-determinized grammar; fully olored rowsorrespond to the fastest variants, and only intense olor rows orrespond to algo-rithms that perform the whole hain of treatment (rows 18�89 exept 34 & 38).



20.2. INTERPRETATION 37920.2 InterpretationFor the ase of the non-�attened grammar, our fastest translator (12 to-fprtn-tbe -elrb -blrb) is 2.12 times faster than the plain depth-�rst translator (67depth-�rst -bstd), the one used by Unitex,3 while the plain Earley translator(37 earley -estd -bstd), the one used by Outilex,4 is 1.64 times faster. Forthe ase of the �attened grammar, our fastest translator is 1.45 times faster(position 18) than the plain depth-�rst translator (position 58), while theplain Earley (position 68) is 1.39 times slower. The speedup fators w.r.t.the plain depth-�rst algorithm, for eah one of the fastest translator variants,are
• non-�attened: 2.12 (`to-fprtn-tbe'), 1.74 (`to-fprtn-bse'), 1.64 (`earley'),

1.54 (`to-fprtn-bfe'), 1.15 (`depth-�rst') and 0.68 (`breadth-�rst')
• �attened: 1.45 (`to-fprtn-tbe'), 1.42 (`to-fprtn-bfe'), 1.15 (`to-fprtn-bse'), 0.76 (`breadth-�rst') and 0.72 (`earley')Even for the optimized versions of the Earley and depth-�rst translators,translator `to-fprtn-tbe' is the fastest one in both ases, and `breadth-�rst'is the worst one.The performane drop for eah stage of treatment of the fastests FPRTN-based translators, for the non-�attened and �attened grammars and takingthe fastest Earley aeptor (3 & 5 `earley -o') as referene, is:
• 35% & 37% for adding output transitions to the Earley trae (10 & 12`to-fprtn'),
• 35% & 37% (negligible) for additionally building map ζ ′′

s and perform-ing the variable initializations required for either extrating the top-ranked blakboard (7 & 14 `to-fprtn-top -elrb') or every blakboard bymeans of blakboard set proessing (6 & 15 `to-fprtn-zpps') and, �nally3Unitex implements some optimizations to aelereate the evaluation of lexial maskswhih have not been taken into aount here (see Paumier, 2003, Vol. 1, se. 2.1.2.2,p. 120), though the same optimizations would apply for any algorithm.4Additionally, Outilex's algorithm performs an on-the-�y determinization of the gram-mar whih we have not taken into aount (see Blan, 2006, se. 2.8.4, pg. 68); this oper-ation aelerates further grammar appliations reusing determinized substrutures duringprevious grammar appliations at the expense of inreasing the grammar size.



100

101

102

103

104

105

106

107

0 3 6 9 12 15

Parsedsente
nesperse

ond

n

100

101

102

103

104

105

106

107

0 3 6 9 12 15

Parsedsente
nesperse

ond

n

100

101

102

103

104

105

106

107

0 3 6 9 12 15

Parsedsente
nesperse

ond

n

100

101

102

103

104

105

106

107

0 3 6 9 12 15

Parsedsente
nesperse

ond

n

depth-�rst -o +tearley -o -elrbto-fprtn -elrb-3wto-fprtn-tbe +t -elrb-3wbreadth-�rst -o +t -elrbto-fprtn-bse -elrb-3w -blrb-3wearley -elrb-3w -blrb-3wto-fprtn-bfe -elrb -blrb-3wdepth-�rst +t -blrbbreadth-�rst +t -elrb -blrbbreadth-�rst +t -elrb -blrb

Figure 20.3: Performane omparison of the fastest algorithm variants �exluding `to-fprtn-zpps' and `to-fprtn-top' sine they perform as `to-fprtn'� for grammar of �gure 14.1 and input anbn; `fprtn-tbe' is the only algorithmperforming the whole hain of treatment and whose performane does not drop exponentially w.r.t. n, but linearly.



20.2. INTERPRETATION 381
• 37% & 38% for additionally extrating the top-ranked blakboard (12& 18 `to-fprtn-tbe'), or
• 48% & 51% for additionally extrating every blakboard by means ofblakboard set proessing (20 & 49 `to-fprtn-bse'), or
• 54% & 40% for additionally extrating every blakboard by means ofa breadth-�rst traversal (34 & 24 `to-fprtn-bfe'),while the performane drop of the straightforward adaptation of the Earleyaeptor for output generation is
• 51% & 70% (30 & 65 `earley').As we an see, we have managed to extend the original Earley aeptor forthe generation of the top-ranked output with a performane drop of 37%�

38% (for the MovistarBot grammar) instead of 51%�70%. We an expeta performane drop of up to 48%�51% for an algorithm extrating the mtop-ranked blakboards.The performane drops of the other translator algorithms due to outputgeneration (fastest translators against their respetive fastest aeptors) are:
• 79% & 70% for breadth-�rst traversal (72 & 62 `breadth-�rst' vs 18 &3 `breadth-�rst -o') and
• 92% & 95% for depth-�rst traversal (61 & 48 `depth-�rst' vs 1 & 1`depth-�rst -o').As we an see, the breadth-�rst algorithm is not only less e�ient than theFPRTN-based ones, but the performane drop due to output generation isalso higher. Obviously, the performane drop of the depth-�rst translator isthe highest sine its aeptor-only version stops one the �rst interpretationis found, instead of searhing for every possible interpretation as for the otheralgorithms.20.2.1 OverheadsObviously, more omplex algorithms have a greater overhead than simplerones. Relative overheads between the di�erent algorithms an be observedin �gure 20.3 as the di�erent performanes for n = 0:5 the algorithms are5The lower the performane, the greater the overhead.



382 CHAPTER 20. EXPERIMENTAL RESULTSjust requested to traverse a single ε-transition in order to either aept or totranslate the empty string into sequene `*', but more omplex algorithmsperform additional operations that are amortized for higher values of n. Ifwe ompare either translator or aeptor algorithms only, we an see that:
• FPRTN-based algorithms have the greatest overheads, as ould be ex-peted due to the onstrution of an intermediate representation of theset of outputs (the output FPRTN),
• depth-�rst algorithms have the lowest overheads, as ould be expetedfrom the most straightforward algorithms, and
• Earley and breadth-�rst algorithms have similar intermediate over-heads.Among the FPRTN-based algorithms, `fprtn-bse', 'fprtn-tbe' and `fprtn-bfe'have similar overheads; obviously, the di�erene between these 3 algorithmsand algorithm `to-fprtn' is quite greater sine `to-fprtn' skips the generationof the outputs aepted by the FPRTN. Finally, Earley algorithms havea slightly higher overhead than breadth-�rst ones due to the use of moreomplex ESs (5-tuples instead of triplets for the translators, and quadrupletsinstead of pairs for the aeptors).20.2.2 Asymptoti ostsThe applied grammar for the ase of �gure 20.3 generates an exponentialnumber of outputs w.r.t. the input length (|anbn|). Obviously, every algo-rithm generating the list of every possible output will have an exponentialost w.r.t. the input length, namely any variants of `to-fprtn-bse', `to-fprtn-bfe', `earley', `depth-�rst' and `breadth-�rst'. `breadth-�rst -o' is an aeptoralgorithm, yet it generates an exponential number of ESs w.r.t. the inputlength and, therefore, has an exponential ost. Algorithm `depth-�rst -o'generates the same kind of ESs than `breadth-�rst -o', but explores only asingle potential interpretation at eah given moment instead of all of them.Sine the �rst explored path is already found to be an interpretation, it avoidsto explore the remaining paths; sine the length of this path is linear w.r.t.the input length, the algorithm ost is linear for this ase, though for otherases an exponential number of ESs might have to be explored before �ndingthe �rst interpretation. `earley' omputes every ES but following another for-mat whih allows for fatoring out ommon all substrutures, whih results



20.2. INTERPRETATION 383in a linear number of ESs w.r.t. the input length. `to-fprtn' inrements thisstruture with output transitions, resulting in an output FPRTN aeptingevery possible output, yet keeping the linear time. `to-fprtn-tbe' traverses theFPRTN in order to extrat only the top-ranked output; this operation is alsoperformed in linear time thanks to an adaptation of Kahn's topologial sortalgorithm for the omputation of the top-ranked path within the FPRTN.Blakboard-set expansion is an improvement over the breadth-�rst traversalof the FPRTN, also based on Kahn's topologial sort, obtaining similar re-sults to the Earley translator for omplex enough grammars and input: forthe ase of the exponential grammar, n must be equal to or greater than 6,but lower reursion degrees will be enough for grammars having bigger allsubstrutures whose treatment an be fatored out; note that the exponentialgrammar has only 6 states an 7 transitions, while the MovistarBot grammarhas 1359 states and 3141 transitions. Indeed, better results are expeted forgeneral domain grammars with millions of states and transitions (reall thatthe MovistarBot grammar mainly represents sentenes requesting for somemobile servie).Sine `to-fprtn-tbe' is an adaptation of `to-fprtn-bse' for extrating onlythe top-ranked output, we an expet that an e�ient implementation of analgorithm generating the m top-ranked blakboards will have a ost between`to-fprtn-tbe' and `earley', depending on m. This would allow for a ompro-mise between performane and the maximum number of outputs to generate,for appliations taking advantage of multiple outputs upon ambiguity.
20.2.3 FlatteningFlattening the grammar inreases performane by a fator between 1.43 and5.05; Earley algorithms are the less a�eted (1.43�2.5) and breadth-�rst anddepth-�rst algorithms are the most a�eted (3.25�5.05): the e�ient treat-ment of all transitions ompensates, to some extent, the lak for this gram-mar optimization. FPRTN-based algorithms with breadth-�rst expansionare slightly less a�eted than the breadth-�rst translators (3.02�3.94 against
3.65�4.05), sine pruning the FPRTN redues the number of ESs to explore.Finally, algorithms based on FPRTNs andn blakboard set proessing areslightly more a�eted than Earley-based ones (2.11�2.84 against 1.43�2.5).



384 CHAPTER 20. EXPERIMENTAL RESULTS20.2.4 Set and map implementationsThe use of double-linked red-blak trees instead of the standard red-blaktrees for the implementation of set and map strutures aelerates the it-erative traversal of the sets �operation required by all the algorithms but`depth-�rst -o'� and allows for seletively removing elements from the stru-tures without having to rebalane the orresponding trees �operation re-quired by the FPRTN-based algorithms only. However, we have used aKnuth-like algorithm (setion 2.3.5, pg. 2.3.5) instead of a Cormen-like (se-tion 2.3.6, pg. 50) in order to add elements to the trees, the former algorithmrequiring additional element omparisons. The Knuth-like algorithm antake advantage of a 3-way omparator (setion 2.3.9, pg. 55) in order toredue the number of omparisons when set elements are sequenes: om-paring two sequenes α and β having a maximum ommon pre�x of length nwill require n appliations of the 3-way omparator and either n or 2n om-parisons with a `less-than' operator (n if α < β and 2n otherwise, sine inthe latter ase omparison β < α will also be performed). In the presentedases, the number of avoided omparisons by using the 3-way omparatordoes not seem to ompensate the additional number of omparisons due tothe use of Knuth's algorithm, hene it would be better to simply use Cor-men's algorithm, whih annot be improved with a 3-way omparator (weleave this improvement to a future work). For the ase of output generation,we have experiened no improvement or even a slow-down when applyingeither the �attened or the non-�attened version of the MovistarBot gram-mar (0.7�1.01). For the ase of sets of exeution states and the non-�attenedgrammar, we have obtained the same positive results either using or not the3-way omparator: speedup fators between 1.02 and 1.37, mostly a�etingeither the FPRTN-based ones not performing a breadth-�rst exploration ofthe FPRTN (1.16�1.32) or the non-FPRTN based algorithms not generatingoutput at all (1.15�1.15−−1.23). For the other algorithms, speedup fatorsstay between 1.02 and 1.17, the FPRTN-based one being the most a�eted.For the ase of the non-�attened grammar, speedup fators are quite reduedin every ase, staying between 1.02 and 1.12; �attening the grammar resultsin an important redution of the impat of this optimization �probably dueto a redution in the size of the omputed sets of exeution states� thoughthis will not be possible for natural language grammars not foused in a sospei� domain suh as the sentenes requesting for mobile servies.



20.2. INTERPRETATION 38520.2.5 Trie-string optimizationFor the MovistarBot use ase, outputs are not sequenes; hene, the opti-mization of string management based on tries an only be applied to algo-rithms using staks of states, namely the ones performing a breadth-�rstor depth-�rst exploration of either the grammar or the generated outputFPRTN. The speedup depends on the number of generated staks and theirlengths. Depth-�rst and breadth-�rst algorithms generate as many staksas ESs, and the FPRTN-based algorithm generates at least as muh staksas remaining states within the FPRTN after pruning it, and more if theFPRTN ontains shared all substrutures. The stak lengths depend onthe number of suessive unresolved alls. Sine the �attened grammar hasno alls, the stak lengths are always zero, though it is still more expensiveto manage an empty array than a pointer to the root of a trie. Speedupfators for the non-�attened and �attened grammars are 1.16�1.43 and 1.13�
1.37 (breadth-�rst), 1.14�1.19 and 1.11�1.21 (depth-�rst) and 1.11�1.19 and
1�1.02 (FPRTN-based ombined with a breadth-�rst exploration).20.2.6 Joint optimizationsSome algorithms an bene�t from both the use of more e�ient set and mapimplementations and the trie-based optimization. In those ases, maximumspeedups for the �attened and non-�attened versions of the MovistarBotgrammar are
• `to-fprtn-bse +t -elrb -bstd': 1.3�1.12, while `+t' alone yields 1.19�1.02and `-elrb' alone yields 1.17�1.12,
• `breadth-�rst +t -elrb -bstd': 1.4�1.26, while `+t' alone yields 1.31�1.21and `-elrb' alone yields 1.08�1.06,
• `breadth-�rst -o +t -elrb': 1.64 and 1.45, while `+t' alone yields 1.43and 1.36 and `-elrb' alone yields 1.23 and 1.1.In these ases, the trie-based optimization is more signi�ant than the op-timization based on double-linked red-blak trees with Knuth's algorithm.We reall that both optimizations an be further improved: the former byusing ternary searh trees instead of tries and the latter by using Cormen'salgorithm instead of Knuth's. Note that modi�ed versions of FPRTN-basedalgorithms based on blakboard set proessing have been onsidered whole



386 CHAPTER 20. EXPERIMENTAL RESULTSnew algorithms instead of simple optimizations, and that multiple implemen-tation hoies o�ered by the own programming language have been omitted.The fat is, the greater the number and omplexity of the omponents on-stituting an algorithm, the greater the hane to �nd or to have missed someappliable optimization. Hene, not only our algorithms based on FPRTNsand blakboard set proessing perform better than the others, but their im-plementation is more likely to be improved than the one of the other al-gorithms. It must also be taken into aount that further optimizing analgorithm solving a omplex problem, suh as natural language parsing, isanalogous to tightening a srew: as we approah the optimal solution �whatever it is� ahieving another quarter of turn requires a onsiderablee�ort, and the srew has already been turned several times in 50 years ofresearh in natural language parsing.



Chapter 21ConlusionThis work has foused on the optimization of the algorithms of appliation ofloal grammars (Gross, 1997), taking as referene those of the Unitex (Pau-mier et al., 2009; Paumier, 2008) and Outilex (Blan and Constant, 2006b,a)systems: a top-down depth-�rst algorithm (Aho et al., 1986, se. 4.4, p. 181)and an Earley-like algorithm (Blan, 2006, se. 3.5, p. 89), respetively. Loalgrammars are reursive transition networks with output de�ned on an alpha-bet of prediates alled lexial masks. These masks are powerful linguistioperators whih ease the onstrution of natural language grammars: simpleexpressions an be used in order to represent potentially large sets of words(or tokens, hapter 5) omplying with a set of onstraints on their seman-ti and/or morphosyntati properties, whih are desribed in an eletroniditionary (hapter 4).The adequay of loal grammars for the desription of natural languagephenomena has already been proved (Rohe and Shabes, 1997; Català andBaptista, 2007; Martineau et al., 2007; Laporte et al., 2008b,a). As anbe expeted from a formalism for the representation of natural languagegrammars, the appliation of loal grammars requires �exible algorithms,suh as those based on top-down (Aho et al., 1986, se. 4.4, p. 181) andEarley (Earley, 1970) parsers.1 Other not-so-�exible parsers suh as LR(Knuth, 1965), CYK's (Coke and Shwartz, 1970; Younger, 1967; Kasami,1965), and Tomita's (Tomita, 1987) are not viable, either beause
• they require the grammars to be deterministi and non-ambiguous,
• they require to transform the grammar into some normal form, or1A brief desription of the original Earley parser is given in appendix C.387



388 CHAPTER 21. CONCLUSION
• they require to build a table whose size depends on the size of the inputalphabet, whih for the ase of loal grammars an be too large: thepotentially in�nite set of words and symbols of the language.21.1 Our ontributionsAs stated in Boullier (2003), it seems di�ult to �nd a tehnique that wouldimprove the throughput of ontext-free parsers due to the huge amount of re-searh that has already been performed by the parsing ommunity. The sameapplies for the ase of reursive transition networks due to their equivalenewith ontext-free grammars. Surpassing both the top-down depth-�rst andEarley-like algorithms has required to oneive a whole new algorithm andseveral other optimizations; we have followed an iterative approah, re�ningthe previous solutions until ahieving lower exeution times.21.1.1 Formal desription of �nite-state mahines andtheir algorithms of appliationWe have started by formally desribing the di�erent mahines and algorithmsof appliation in order to study their properties, strengths and weaknesses.It must be noted that Unitex's and Outilex's loal grammars are not exatlyof the same kind: Outilex introdued new kinds of output generation to loalgrammars, suh as weights (Blan, 2006, se. 3.3, p. 85) and feature struturesbuilt by means of uni�ation proesses (Blan, 2006, se. 4.3, p. 118). Wehave built a general mathematial framework for the formal desription ofany kind of �nite-state mahine (brie�y summarized in setion. 1.7.2, p. 25),inluding mahines on an alphabet of lexial masks instead of input symbols(hapter 6); this framework not only opes with the di�erent kind of mahinestreated by both the Unitex and Outilex systems, but an be used as the basefor future extensions. Within this framework, we have �rst given a generaldesription of �nite-state mahine (hapter 7), then re�ned this desriptionfor the ase of �nite-state automata (hapter 8), tries (hapter 9), �nite-statetransduers (hapters 10 and 11), reursive transition networks with andwithout output (hapters 12�14) and �ltered-popping reursive transitionnetworks (hapters 15 and 16), a new kind of mahine; desribing �rst thesimpler automata types is an easier and better-strutured approah, allowing



21.1. OUR CONTRIBUTIONS 389for fatoring out properties and proofs ommon to the di�erent mahinetypes:
• �nite-state transduers (FSTs) an be obtained by extending �nite-state automata (FSAs) with output generation,
• reursive transition networks (RTNs) an be obtained by extendingFSAs with a subroutine jump mehanism, whih orresponds to theimplementation of the evaluation of the equivalent non-terminal sym-bols of the ontext-free grammar,2
• reursive transition networks with output (RTNOs) an be obtained byombining the two previous extensions, and
• �ltered-popping reursive transition networks (FPRTNs) an be ob-tained by extending RTNs with additional restritions upon the termi-nation of subroutine jumps.Based on these formalisms, we have �rst de�ned top-down breadth-�rst al-gorithms of appliation; one the equations desribing the behaviour of thedi�erent mahines are given, de�ning these algorithms is straightforward.Moreover, these algorithms an be easily modi�ed in order to obtain boththe top-down depth-�rst and Earley algorithms, serving as a ommon basefor their formal de�nition and omparison:
• Top-down depth-�rst algorithms produe the same steps of exeution(or exeution states) than the orresponding top-down breadth-�rst al-gorithms, but in a di�erent order (following a depth-�rst exploration ofthe mahine instead of breadth-�rst). Top-down depth-�rst algorithmsare simpler, requiring to store a single exeution state at a time insteadof having to manage the sets of every possible exeution state for eahinput pre�x, whih is more time onsuming. In turn, further additionsof the same exeution state to the sets of exeution states are skipped,avoiding having to ompute twie every exeution that would followthem.
• Earley-like algorithms perform a breadth-�rst exploration of the gram-mar, also building sets of exeution states, but use a more omplexrepresentation and management of the exeution states. As bene�ts,2We have given a short desription of ontext-free grammars in appendix B.



390 CHAPTER 21. CONCLUSIONthey support left-reursive grammars and are able to fator out theomputation of subroutine jumps from alternative analyses of the sameinput pre�xes.As their main weakness, all these algorithms have an exponential worst-aseost, even the Earley-like algorithm in spite of the polynomial worst-ase ost(n3) of the original Earley parser (Sastre and Forada, 2007, 2009): if thenumber of outputs to generate inreases exponentially w.r.t. the input length,omputing the list of outputs for a given input sequene annot have a worst-ase ost below exponential. Suh ases our in natural language grammars:for instane, let the outputs represent tags to be inserted between the sen-tene onstituents in order to build every possible parse tree of the givennatural language sentenes; the number of trees to generate inreases expo-nentially w.r.t. the number of unresolved prepositional phrase attahmentswithin the sentenes (Ratnaparkhi, 1998). As for ontext-free grammars, thesize of the orresponding RTNs does not need to be inreased exponentiallyin order to represent suh natural language strutures, sine their represen-tation is fatored out by means of subroutine jumps. The original Earleyaeptor keeps an analogous fatored representation of the exeution statestrutures (the exeution traes), whih is lost when extending the exeutionstates with partial outputs: the onurrent analyses that where meant tobe joined together during and after the omputation of a subroutine jumpare now joined during the subroutine jump only, sine the ombination ofthe di�erent partial outputs omputed before the jump with those omputedduring the jump result in di�erent exeution states after the jump; at least,the internal omputation of subroutine jumps is fatored out, to some extent.21.1.2 Trie string managementAs a �rst optimization, we have improved the inremental onstrution ofsequenes �namely partial outputs and staks of return states� by storingthem in tries and representing them as pointers to the nodes of the trieorresponding to the end of the sequenes (hapter 9); sequene opies andomparisons are then redued to single operations on pointers, and appendingor removing su�xes �the typial involved operations� an be e�ientlydone on the tries sine the pointers give diret aess to the end-of-sequenenodes. Trie string management, as we have alled this optimization, produesa signi�ant inrease in performane for the ase of the breadth-�rst and



21.1. OUR CONTRIBUTIONS 391depth-�rst parsers, but has a negative impat on the Earley-like algorithms;these algorithms do not use staks of return states, and fatoring out theomputation of partial outputs of ommon subroutine jumps requires anadditional operation on the tries whih is not so e�ient: appending a wholetrie branh to another existent trie branh.21.1.3 A �rst algorithm of appliation of loal gram-mars based on �ltered-popping reursive transi-tion networksAs a �rst milestone, we have oneived �ltered-popping reursive transitionnetworks (FPRTNs), a new kind of �nite-state mahine for the ompat rep-resentation of the sets of outputs (or translations) for a given input sequeneand RTNO, and an algorithm omputing suh FPRTNs in time n3 in theworst ase (Sastre, 2009). FPRTNs are analogous to the shared parse forests(Lang, 1991) that result from the appliation of a CFG with the original Ear-ley parser, though instead of being ustom data strutures they are a kindof RTN; therefore, theory and algorithms on graphs, �nite-state automataand reursive transition networks an be reused or extended for the ase ofFPRTNs.One a FPRTN is omputed, we prune it in order to remove every uselesspath due to grammar paths aepting some input pre�x but not leading to awhole input translation. Due to the ambiguity of the language, this simpli�esthe FPRTN onsiderably. The FPRTN an then be graphially representedas a kind of �nite-state automaton for its visualization.3 In order to ope withappliations requiring a list of translations rather than a FPRTN, we haveoneived a �rst algorithm for the generation of the language of FPRTNs,based on a breadth-�rst traversal (setion 16.2, p. 328). Obviously, the expo-nential worst-ase ost annot be avoided if the language of the FPRTN is tobe generated, but pruning �rst the FPRTN avoids the onstrution of uselesspartial translations. As for the breadth-�rst algorithms, we have optimizedthis algorithm by means of trie string management.3Indeed, we have developed a tool for the generation of a Graphviz dot �le (Gansnerand North, 2000) in order to visualize the resulting FPRTNs, for debugging purposes;more information on Graphviz an be found in http://www.graphviz.org

http://www.graphviz.org


392 CHAPTER 21. CONCLUSION21.1.4 Implementation and appliation to the Movistar-Bot projetThe given formal desriptions have served as the base for the implementa-tion of the di�erent mahine strutures and their algorithms of appliationin an objet-oriented programming language: C++ (Stroustrup, 2000), us-ing the Standard Template Library (see, for instane, (Josuttis, 1999)) andsome Boost libraries (http://www.boost.org). We have further adaptedthese implementations for their exploitation in an industrial natural lan-guage appliation provided by the enterprise Telefónia I+D:4 the translationof sentenes in Spanish requesting for mobile servies (e.g.: sending SMSs,downloading games to our mobile phone, subsribing to alert servies, et.)into ommands that the MovistarBot �an AIML hatterbot (Wallae, 2004)aessible through Mirosoft's Windows Live Messenger� an easily under-stand (Sastre et al., 2009).5 As part of the projet, we have built the orre-sponding loal grammars for the translation of suh request sentenes, andbuilt a test orpus in order to verify the grammar overage and ontrol over-reognition. As bene�ts, this projet has allowed us to test the robustnessof our implementations and to ompare the di�erent algorithm performanesin a �nal natural language appliation.21.1.5 Automati assignment of weights to grammartransitionsAs many other �nal appliations, the MovistarBot takes as input a uniquepossible translation of eah user sentene. Upon ambiguity, it is up to ourNLP engine to hoose the right interpretation. We have extended the gram-mar with weight output and implemented a proedure for the automatiassignment of weights to eah grammar transition, depending on the spei-�ity of the lexial masks labeling eah transition: transitions with morerestritive lexial masks are to be preferred sine they result in �ner sentenedesriptions (setion 6.4, p. 115). However, the whole set of translations isstill to be omputed sine an interpretation may start with a �ne desriptionbut then beome oarser than the others. One every interpretation is om-4Telefónia I+D is a researh and development enterprise and member of the Telefóniagroup, leader of the teleommuniations market in Spain and Latin Ameria and whihalso enjoys a signi�ant footprint in Europe.5AIML stands for Arti�ial Intelligene Mark-up Language.

http://www.boost.org


21.1. OUR CONTRIBUTIONS 393puted, the top-ranked one is hosen. Thanks to this tehnique, we have beenable to properly treat ambiguous sentenes requesting for mobile servies.21.1.6 Grammar optimizationsWe have measured the performane of the algorithms when applying botha �attened and a non-�attened version of the MovistarBot grammar to thewhole orpus of request sentenes.6 Note that, in general, natural languagegrammars annot be �attened due to reursivity, though a partial �atteningis still possible (reursive alls an be reursively inlined a �nite number oftimes, leaving the all transitions as is within the last inlining). However,this operation inreases the grammar size exponentially w.r.t. the amount ofall nesting levels to �atten; hene, it may not be viable for large overagegrammars.Both grammar versions have been pseudo-minimized before their ap-pliation. We have desribed this proess in setion 7.11, p. 159, basedon the minimization algorithm given in van de Snepsheut (1985, se. 3.1,p. 67). This proess is mainly based on pseudo-determinization, whih inturn onsists in determinizing the mahine regarding it as a FSA over aninput alphabet of RTNO transition labels (input/output pairs and alls).Note that full determinization is not generally possible for the ase of ma-hines with output or with reursive alls. We have used both the �atteningand pseudo-minimization programs inluded in Unitex ��attening and thenpseudo-minimizing the grammar, or only pseudo-minimizing it� rather thanreimplemented the orresponding algorithms. Outilex proposes an on-the-�ydeterminization of the involved grammar substrutures during eah partiu-lar appliation; however, this will not aelerate the algorithms of appliationexept for repeated appliations of the same grammar substrutures, sinedeterminization is performed while applying the grammars. We have ratherhosen to keep Unitex's approah, whih is more general (appliable to anymahine), simpler and better-strutured (determinization and grammar ap-pliation are two separated proesses).6Flattening onsists in replaing all transitions (the subroutine jumps) by the wholealled mahine substrutures; this is analogous to funtion inlining in, for instane, C andC++ programming languages. This proedure has been desribed in setions 12.8 and 13.6,pp. 239 and 263.



394 CHAPTER 21. CONCLUSION21.1.7 First experimental resultsWhile the Earley-like algorithm had the best performane for the non-�attenedgrammar, it had the worst one for the �attened grammar.7 Our FPRTN-based algorithm was the best for the �attened grammar, but ame seondfor the non-�attened grammar. The breadth-�rst algorithm performed badlyin both ases: managing sets of exeution states instead of single states, asfor the depth-�rst algorithm, is expensive; the Earley-like algorithm amor-tizes the added omplexity when there are alls whose omputations an befatored out and, additionally, the FPRTN-based algorithm also amortizesthe added omplexity by avoiding the generation of useless partial outputs.However, the added omplexity of building the FPRTN and then generatingits language is not ompensated enough w.r.t. the Earley algorithm, for thenon-�attened ase.21.1.8 Double-linked red-blak trees with aggressive el-ement removal for e�ient set managementGNU's implementation of the Standard Template Library (and many otherimplementations) use red-blak trees for the representation of sets. One of themain drawbaks of this implementation is that, when pruning the FPRTN,the removal of eah FPRTN state implies a tree rebalane. We have avoidedthis rebalaning by using an alternative set representation: double-linkedred-blak trees (hapter 2); moreover, this struture allows for an aggressiveelement removal: the tree struture is no longer maintained, but only thedouble links at eah tree node. The non-aggressive use of double-linked red-blak trees was proposed by Das et al. (2008) for optimizing the iterativetraversals of sets. Indeed, the use of double-linked red-blak trees has notonly aelerated the FPRTN-based algorithm but every algorithm buildingsets of exeution states, that is, every algorithm but depth-�rst. As result, thespeedup fator of the FPRTN-based algorithmw.r.t. the depth �rst algorithmis even greater, but the Earley-like algorithm has also been improved: theEarley-like algorithm still performs better than the FPRTN-based algorithmfor the ase of the non-�attened grammar, but not as muh as before.7See the previous hapter for the exat performane �gures.



21.1. OUR CONTRIBUTIONS 39521.1.9 Blakboard set proessingAs a seond milestone, we have oneived an e�ient method for the gener-ation of the language of a FPRTN we have alled blakboard set proessing(setions 10.9, 13.8 and 16.3, pp. 205, 265 and 330). This method avoids toompute twie the same partial output by following a topologial sort of theFPRTN. Additionally, some partial results omputed during the onstru-tion of the FPRTN an be reused here. The new FPRTN-based algorithm�nally performs better than the Earley-like algorithm for the non-�attenedgrammar, but slightly worse than the depth-�rst algorithm for the �attenedgrammar: the additional ost of omputing a topologial sort of the FPRTNis not su�iently amortized in this ase.21.1.10 Computing the top-ranked output in time n3As a third and �nal milestone, we have extended blakboard set proessing forgenerating the top-ranked output represented by the FPRTN (setion 18.2).The topologial sort is used here for generating only the greatest possibleweight and for marking the orresponding FPRTN path. This path is thentraversed for generating only the top-ranked output. The exponential worst-ase ost is �nally avoided, reduing it to that of the original Earley parser(n3). This algorithm is, �nally, the best performing for both the �attenedand non-�attened versions of the MovistarBot grammar.21.1.11 Final onsiderationsIt is possible to de�ne more omplex algorithms whih beome aware of sit-uations in whih ertain omputations an be either fatored out or avoided.However, notiing suh situations does not ome without an added ost,whih is not amortized if the grammar does not ontain strutures allow-ing for them to happen. However, suh situations do happen with naturallanguage grammars due to their ambiguity and omplexity. For the Movis-tarBot grammar, whih applies to a very restrited domain of the language,our FPRTN-based algorithm already performs better than both the top-down depth-�rst and the Earley-like algorithm, either for a �attened or anon-�attened version of the grammar. Moreover, this algorithm is the onlyone having a polynomial worst-ase ost instead of exponential. Hene, weexpet the performane di�erene between our algorithm and the others to



396 CHAPTER 21. CONCLUSIONbe onsiderably greater for the ase of grammars overing a wider spetrumof natural language strutures.21.2 Future workFirst of all, we are willing to test our FPRTN-based algorithms with omplexand large overage grammars, suh as those that an be semi-automatiallybuilt from lexion-grammar tables for the analysis of simple (Paumier, 2003,se. 1.3, p. 28). Blan (2006, se. 4.5.1, p. 143) follows a similar proedurefor the semi-automati onstrution of grammars desribing omplex sen-tenes. However, this proedure will �rst require extending our algorithm inorder to support uni�ation grammars; due to the possibility of generatinginompatible feature strutures, suh extension is not trivial. Apart fromuni�ation, other interesting extensions that would allow for an easier andmore strutured de�nition of linguisti data are:
• Input sentenes represented by means of text automata (ayli FSAs)instead of sequential inputs (setion 5.3.2, p. 101). Apart from lexi-al ambiguity, text automata represent the possible segmentations ofsentenes. Up to now, we have oded multi-words and attahed words(verbs followed by enliti pronouns) inside the grammars, hene somelexial and syntati data is not ompletely separated. This extensionhas already been done for the Earley translator for RTNs with outputby Blan (2006, se. 3.5.1, p. 90).
• Modify our algorithms in order to e�iently loate within a text everysequene that is aepted by a RTN with output, and their respetivetranslations,8 as done by the Unitex (Paumier, 2008, se. 6.8, p. 137)and Outilex systems (Blan, 2006, se. 3.5.1, p. 90). As a workaround,one an de�ne a grammar that �rst onsumes any number of tokens,then alls the grammar representing the sequenes to loate, then on-sumes again any number of tokens.
• Add support for multiwords, for instane as done by Multi�ex (Savary,2009).8In Frenh, appliation glissante d'une RTN.
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• Add support for attahed words (e.g.: enliti pronouns in Spanish),for instane as done by the Apertium system (see Forada et al., 2010,hap. 3, p. 17).Other extensions that would have a onsiderable impat on the reognitionrate of the MovistarBot, and of any hatterbot in general, are:
• Reognizing ommon abbreviations that are used in onversations basedon short text messages (see, for instane, Fairon et al., 2006 and Faironand Sébastien, 2007).
• Error tolerane, either by using approximate string mathing (Lev-enshtein, 1966; Damerau, 1964; Bentley and Sedgewik, 1997; Baeza-Yates and Navarro, 1998; Mihov and Shulz, 2004) or by relaxing theuni�ation onstraints (Fouvry, 2003). In both ases, weights an beused in order to penalize sentene interpretations that assume one ormore mistakes.Finally, possible optimizations that are worth onsidering for a more e�ientappliation and management of the grammars and the ditionaries are:
• Use alternative data strutures to the one proposed by Revuz (1991)that allow for a greater ompression rate and, most of all, allowing formodifying ditionary entries diretly on the ompressed format of theditionary (Ciura and Deorowiz, 2001; Daiuk et al., 2000, 2005; Car-raso and Forada, 2002); with Revuz's (1991) approah it is neessaryto ompress the entire ditionary again in order to take into aountany modi�ation, independently of the number of entries that havebeen hanged.
• Use Cormen's/Andersson's addition algorithms (setions 2.3.6 and 2.3.7,pp. 50 and 54) instead of Knuth's (setion 2.3.5, p. 45) in order to addelements to set data strutures represented by a double-linked red-blaktree (setion 2.6, p. 63). The former algorithms perform, on the aver-age, a lesser amount of omparisons; hene, they may be expeted tobe faster.
• Unroll the loops of Cormen's/Andersson's addition algorithm (setion 2.3.8,p. 54) and the algorithm for the iterative traversal of sets (setion 2.3.4,p. 44) in order to avoid trivial assignments.
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• Test e�ient strutures for the management of sets of elements otherthan double-linked red-blak trees, suh as sapegoat trees (Galperinand Rivest, 1993), double-linked B-trees (setion 2.7.5, p. 67), treaps(Seidel and Aragon, 1996) and skip lists (Pugh, 1990).
• Implement an e�ient set and map library allowing for onurrent a-esses (setion 2.7.8, p. 69); suh library would allow for a trivial exten-sion of the breadth-�rst, Earley-like and FPRTN-based algorithms fortaking advantage of multi-ore proessors by exploring multiple transi-tions onurrently. Currently, there exist multiple proposals of parallelversions of well-known parsers suh as:� LR (Hendrikson, 1995),� CYK's (Grishman and Chitrao, 1988; Hill andWayne, 1991; Janssenet al., 1992),� Tomita's (Numazaki and Tanaka, 1990), and� Earley's (Janssen et al., 1992; Brushi and Pighizzini, 1994; Sand-strom, 2004)
• Use ternary searh trees (Bentley and Sedgewik, 1997) instead of triesin order to optimize the inremental onstrution of strings (trie stringmanagement, hapter 9). We an expet an inrease in performanesine ternary searh trees require less dynami memory alloations anddealloations: while data strutures representing trie nodes ontain amap of letters to other trie nodes,9 the data strutures representing thenodes of a ternary searh tree ontain a struture having 3 �elds.
• Filter the grammar before its appliation aording to the sentene toanalyse (Boullier and Sagot, 2007).
• Replae the grammar substruture allowing for the reognition of the

n �rst input symbols by a deterministi transduer (a pre�x overlaytransduer: Marshner, 2007).
• Transform the grammar into Paumier's (2004) weak Greibah normalform before its pseudo-determinization; handrafted grammars usually9Reall that maps are to be represented by other dynami strutures suh as red-blaktrees.



21.2. FUTURE WORK 399ontain subgrammars whose purpose is to group other subgrammars:they simply o�er a hoie between multiple subgrammars, foring theparser to explore multiple alls that may not be able to onsume eventhe next input symbol. The weak Greibah normal form ensures thatat least one input symbol is onsumed before initiating any all, heneavoiding a ompletely blind initialization of suh sets of subgrammaralls.
• As an alternative to the previous optimization, one an allow to expli-itly mark subgrammars that are to be �inlined�, as for funtion inliningin C++. A pre-treatment proedure would replae every all to themarked subgrammars by the own subgrammars. A similar feature isimplemented in the Outilex system, although it is not mentioned in themanual (Blan and Constant, 2006b): individual alls are marked forinlining rather subgrammars.
• Extend the Earley parser with lookahead, as proposed by Leiss (1990),in order to redue the amount of alls that are explored but do notlead to any interpretation of the input. The weak Greibah normalform may no longer be required one this optimization is implemented.
• Aelerate the Earley parser by means of a guide that �foresees� thegrammar rules that will allow for reognizing the whole input sentene(Boullier, 2003). The guide is to have a 100% reall, but not a 100% pre-ision. This guide is to be used in Earley's preditor, avoiding initiatinguseless subgrammar alls. For instane, the previous optimization anbe seen as a kind of guide, though others an be de�ned: for the aseof CFGs, take only into aount produtions that either rewrite a non-terminal as a sequene of non-terminals or as a sequene of terminalsand non-terminals where the non-terminals appear in the remaininginput sequene and in the same order.
• Preompute Earley-like ε-losure exeution states as LR states (MLeanand Horspool, 1996).
• Following (Ayok and Horspool, 2001), preompute the translationsprodued during the resolution of deletable alls without onsuminginput in order to prematurely omplete suh alls inside Earley's pre-ditor. Apart from aelerating the omputation of the ε-losure, thisoptimization eliminates the need for an ε-ompleter.
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Appendix APrediate hierarhy and odesWe summarize here the set of lexial masks and prediates �along with theirsyntax� desribed in hapter 6.
• Lexial masks� token: [%�]<TOKEN>� Literal masks

∗ Literal word mask
· Case sensitive word masks: �word
· Case insensitive word masks: %word

∗ Literal symbol masks: [%�]symbol� Charater lass masks
∗ word: [%�]<MOT>
∗ digit: [%�]<NB>
∗ puntuation symbol: [%�]<PNC>
∗ Case-dependent word masks
· upperase: [%�]<MAJ>
· lowerase: [%�]<MIN>
· proper noun: [%�]<PRE>

∗ Negated harater lass masks: [%�]<!...>� Ditionary-based masks
∗ known word: [%�]<DIC>403
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∗ Constrained ditionary word masks
· lemma mask: [%�]<anonial_form>
· semanti-features mask:

[%�]<[+−]?Sem1[+−] . . . [+−]Semn>
· lemma and semanti-features mask:

[%�]<anonial_form.[+−]?Sem1 [+−] . . . [+−]Semn>
· semanti and possible-in�etional-features mask:

[%�]<[+−]?Sem1[+−] . . . [+−]Seml:fl11...fl1n:...:flm1...flmn>
· lemma, semanti and possible-in�etional-features mask:

[%�]<anonial_form.[+−]?Sem1 [+−] . . . [+−]Seml:fl11...fl1n:...:flm1...flmn>
∗ Negated ditionary masks: [%�]<!...>

• ε-prediates� blank-insensitive ε-prediate: [%�]<E>� Blank-sensitive ε-prediate
∗ mandatory-blank ε-prediate: [%�]\⊔
∗ forbidden-blank ε-prediate: [%�]#



Appendix BContext-free grammarsContext-free grammars (CFGs) are a mathematial objets for grammar rep-resentation, useful for parsing both formal (Aho et al., 1986; Hoproft et al.,2000; Brüggemann-Klein and Wood, 2003) and natural languages (Jurafskyand Martin, 2008; Paumier, 2003; Rohe, 1999; Rohe and Shabes, 1997;Silberztein, 1994). We give here the notation used in appendix C for thedesription of the Earley parser, whih was originally oneived for CFGs.More extensive material on CFGs an be found in Autebert et al. (1997),Hoproft et al. (2000, hap. 5, p. 169), Sipser (2006, hap. 2, p. 100) andJurafsky and Martin (2008, hap. 9, p. 319).De�nition 288 (Context-free grammar). A ontext-free grammar is a stru-ture G = (N, T, P, S) where
• N is a �nite alphabet of non-terminal symbols,
• T is a �nite alphabet of terminal symbols,
• T ∩N = ∅,
• P : N → (N ∪ T )∗, with ε as the empty sequene of terminals and/ornon-terminals, is a �nite prodution appliation, and
• S ∈ N is the start non-terminal of the grammar, also alled the gram-mar's axiom or start symbol,Prodution rules �also alled rewrite rules, or simply produtions or rules�are expressions of the form A → α; A ∈ N is alled the left-side of the405



406 APPENDIX B. CONTEXT-FREE GRAMMARSrule or rule's head, and α ∈ (N ∪ T )∗ is alled the right-side of the rule orrule's body. Produtions desribe the possible ompositions of non-terminalsymbols as a sequene of terminal and/or non-terminal symbols.De�nition 289 (Prodution diret derivation). Consider two sequenes αand β in (N ∪ T )∗ suh that α = α1Aα2, with α1 and α2 in (N ∪ T )∗ and
A ∈ N ; we say β is diretly derivable from α i� there exists a prodution ofthe form A→ γ and β = α1γα2, and we represent it as α⇒ β.De�nition 290 (Prodution derivation). Consider two sequenes α and βin (N ∪ T )∗; we say β is derivable from α i� one of the following onditionsholds:1. α = β, or2. α⇒ β, or3. there exists a �nite sequene of terminals and/or non-terminals β1 . . . βnsuh that

• α⇒ β1, and
• βi ⇒ βi+1, for i = 1 . . . n− 1, and
• βn ⇒ β.In order words, we say β is derivable from α i� there exists a possibly empty�nite sequene of prodution appliations rewriting α as β, and we representit as α
∗
⇒ β. Additionally, we represent as α

+
⇒ β the possibility of deriving βfrom α by applying one or more rewrite rules, that is, when either the seondor the third previous onditions apply but not the �rst one.De�nition 291 (Deletable non-terminal). We say a non-terminal A is deletablei� A

+
⇒ ε, that is, either there exists a prodution of the form A → ε or aprodution of the form B ⇒ ε with A

+
⇒ B.De�nition 292 (Language of a CFG). The language represented by a CFG

G, L(G), is the set of terminal sequenes derivable from the grammar's ax-iom:
L(G) = {w ∈ T ∗ : S

+
⇒ w} (B.1)



407CFGs allow for strutured language de�nitions. Terminals orrespond tothe words or symbols of the language and non-terminals to sentene ompo-nents. Non-terminal de�nitions are reused in the de�nition of �higher-level�non-terminals up to the grammar's axiom, whih is de�ned as any ompletelanguage sentene. Non-terminals may have several alternative de�nitionsdepending on the variability of the sentene omponent they represent (e.g.:a non-terminal DET representing any determiner would have an alternativede�nition per determiner). The set of produtions below. . .
DET → the

N → garden
N → house

NP → DET N. . . de�ne determiners as word �the�, nouns as either word �garden� or word�house� and noun phrases (NP) as a determiner (DET ) followed by a noun(N ). If this set of produtions would de�ne a omplete grammar with (NP) asthe grammar's axiom, the possible language sentenes would be �the garden�and �the house�.CFGs have a greater generative power than regular expressions. A lassiexample of language that an be represented with a CFG but not with aregular expression is anbn. This language an be represented by means of thefollowing CFG produtions:
S → ε

S → aSbA onrete sequene of the language would derived as follows:
S ⇒ aSb⇒ aaSbb⇒ aaaSbbb . . . anSbn . . . anbn. (B.2)As we an see, CFGs allow for a synhonous generation of the left and rightontexts of non-terminals. In other words, CFGs an implement a ounterof rewrites on the immediate left ontext of a non-terminal, whih an beonsulted during the generation of the immediate right ontext of the samenon-terminal. However, no ounters an be implemented with regular ex-pressions: a∗b∗ represents any sequene anbn but also any sequene anbmwith n 6= m. At most, a regular expression of the form

ε|ab|aabb|aaabbb| . . . |akbk (B.3)



408 APPENDIX B. CONTEXT-FREE GRAMMARSould represent the language anbn for n = 0 . . . k, but not for n beyond k(see pumping lemma for regular expressions in either Hoproft et al., 2000,se. 4.1.1, p. 126 or Sipser, 2006, se. 1.4, p. 77).There are more powerful formalisms than CFGs, for instane Turing ma-hines. A lassi example of language that annot be represented with aCFG is anbncn: CFG ounters are limited to either the immediate left andright ontext of eah non-terminal, so it is not possible to aess a ounter ata greater distane (see pumping lemma for ontext-free languages in Sipser,2006, se. 2.3, p. 123). Turing mahines (Turing, 1936) are a formal modelof omputers as we know them nowadays. These mahines are able to aessinformation related to any previously proessed input symbol. We brie�ydesribe Turing mahines in setion 10.5, p. 193; more extensive desriptionsan be found in Hoproft et al. (2000, hp. 8, p. 307) and Sipser (2006, hp. 3,p. 137).De�nition 293 (Extended ontext-free grammar). Extended ontext-freegrammars (ECFG) are CFGs where the prodution bodies may also ontainregular expressions.ECFGs do not have a greater generative power than CFGs but providea more ompat way of representing a set of produtions. For instane, thefollowing CFG
PREP → in (B.4)
PREP → with (B.5)

PP → PREP NP (B.6)
PPS → ε (B.7)
PPS → PP PPS (B.8)
NP → DET N PPS (B.9)de�nes a noun phrase (NP) as a determiner (DET ) followed by a noun (N )followed by zero, one or more prepositional phrases (PPS ), where a prepo-sitional phrase (PP) is a preposition (PREP) followed by a noun phrase.The Kleene star an be used for representing any sequene of prepositionalphrases and therefore removing the need for de�ning non-terminal PPS . Aswell, the two produtions de�ning prepositions ould be joined together with



409the disjuntion operator. This equivalent ECFG would be
PREP → in | with (B.10)

PP → PREP NP (B.11)
NP → DET N PP

∗ (B.12)Other formalisms equivalent to CFGs are pushdown automata (Oettinger,1961; Shützenberger, 1963; Evey, 1963),1 automata with reursive alls (Gal-lier et al., 2003), syntati diagrams (see for instane Jensen and Wirth, 1974,hp. 0, p. 3) and RTNs (Woods, 1970).2

1An extensive desription of pushdown automata, inluding the proof of equivalenew.r.t. CFGs, an be found in Hoproft et al. (2000, hp. 6, p. 219); shorter desriptionsan be found in Sipser (2006, se. 2.2, p. 109) and Autebert et al. (1997, hp. 5, p. 29)2We desribe RTNs in hapter 12, p. 219.





Appendix CEarley's parserWe brie�y desribe here the Earley parser (Earley, 1970), an e�ient al-gorithm of appliation of CFGs (see appendix B) without deletable non-terminals for natural language parsing.1 This desription is inspired by theone given in Leiss (1990). A more extensive disussion an be found in Ju-rafsky and Martin (2008, hap. 10).De�nition 294 (Dotted rule). Exeution states (ESs) are dotted rules A→
α1 • α2, [i, j], where α1 is the pre�x of the rule's body that has already beenexplored, α2 the unexplored remaining part and [i, j] a losed interval or-responding to the input segment that has been derived from α1 (see top of�g. C). We say a dotted rule is omplete i� the dot is at the end of the rule'sbody; otherwise we say it is inomplete. Given a terminal or non-terminalsymbol σ right after the dot of a dotted rule xs, we say xs expets symbol σor σ is the symbol expeted by rule xs.De�nition 295 (Dotted rule derivation). Earley's parser is based on threedotted rule derivation mehanisms (see middle of �g. C):
• sanner: from A → α1 • aα2, [i, j] derives A → α1a • α2, [i, j + 1] i�

a = aj+1, that is, if the expeted symbol is terminal a, it sans the inputfor a and in ase of math it shifts the dot right after a and inrementsthe right bound of the input interval one unit,
• preditor: from A → α1 • Bα2, [i, j] derives B → •β, [j, j] for everyrule B → β, that is, if the expeted symbol is a non-terminal B, it1Though deletable non-terminals are not supported, the idea on how to adapt thealgorithm is given in Earley (1970) 411



412 APPENDIX C. EARLEY'S PARSERexpands B by reating the orresponding dotted rules with an emptyinput interval starting and �nishing where the interval of the originaldotted rule �nishes,
• ompleter: from B → β•, [j, k] derives A → α1B • α2, [i, k] for everydotted rule A→ α1 • Bα2, [i, j], that is, whenever a dotted rule havinga head non-terminal B is omplete, redues B by shifting one positionto the right the dot of every dotted rule expeting B and whose inputinterval �nishes where the one of the omplete rule starts; the resultinginput interval is the onatenation of both intervals.De�nition 296 (Initial and aeptane SESs). Given a CFG grammar G =

(N , T , P , S), its initial and aeptane Earley SESs are {S ′ → •S, [0, 0]}and {S ′ → S•, [0, l], respetively, where S ′ is a non-terminal not in Vn (seebottom of �g. C).By reating this grammar �super-axiom� symbol, S ′, Earley's algorithmnaturally explores every axiom rule S → α during the �rst iteration; one thealgorithm exeution �nishes, suessful parses an be identi�ed by trakingbak the derivations that have yielded the dotted rule having the super-axiomas head.2Algorithm C.1 fg_earley_parser is the original Earley's parser for CFGswithout deletable non-terminals. The algorithm reates a parsing hart orsequene of l + 1 SESs V0 . . . Vl for a given input sentene a1 . . . al of l wordsand a CFG grammar G; the grammar is treated as a global variable whereterminal symbols are parts-of-speeh whih are to be ompared with the onesof the input words. The algorithm starts by adding to V0 the super-axiomdotted rule S ′ → S•, [0, 0] and marking it as unexplored. Then, for eahiteration k = 0 . . . l it explores the dotted rules in Vk, applying for eah onethe derivation mehanism orresponding to the rule: if the dotted rule expetsa terminal symbol, sanner (algorithm C.3 fg_earley_sanner), if it expetsa non-terminal, preditor (algorithm C.2 fg_earley_preditor), and if therule is omplete, ompleter (algorithmC.4 fg_earley_ompleter). Iterationsfollow as long as iterations start with a non-empty Vk, whih would mean thatit was not possible to derive terminal ak from the super-axiom dotted rule,or until every possible derivation has been omputed for the whole input.2Supposing that the sentene has at least one word and that the whole sentene hasbeen onsumed.
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i j

a0 . . . al ∈ L(G) ⇐⇒ S•
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0
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∗

S •

S ′

0 lFigure C.1: Graphial representation of Earley's algorithm; from top to bottom,a dotted rule A → α1 • α2 aligned with an input a1 . . . al, the three dotted rulederivation mehanisms and the input string reognition ondition.



414 APPENDIX C. EARLEY'S PARSERThe preditor derivation mehanism �lls V0 with every dotted rule derivedfrom the super-axiom rule by expanding the expeted non-terminals; everydotted rule expeting a terminal is proessed by the sanner mehanism and,in ase of math with input a1, the orresponding dotted rules are added to
V1. The ompleter mehanism annot be ativated during the onstrutionof V0, sine the algorithm does not handle grammars with deletable alls:every ompletion must involve a omplete dotted rule in the urrent Vk andone or more dotted rules in preeding SESs Vi expeting the head terminalof the omplete rule, that is, every omplete rule must derive at least oneinput symbol. Iterations for Vk follow until the omputation of Vl or until anempty Vk is derived, whih would mean input ak did not math any expetedterminal. Vl will ontain every dotted rule derivable from the super-axiomdotted rule and able to derive the whole input sentene. The sentene isreognized if Vl ontains the omplete super-axiom dotted rule S ′ → S•, [0, l].By traking bak the derivation paths of this dotted rule we an retrieve thederivation trees of every possible interpretation of the sentene.We end this appendix with a ouple of examples of exeution: �gure Cillustrates how the Earley parser fators out the exploration of a grammarsubtree among two dotted rules, keeping the number of dotted rules perSES onstant, and �gure C illustrates how left-reursive CFGs are handledwithout falling into an in�nite loop.



415Algorithm C.1 fg_earley_parser(σ1 . . . σl)Input: σ1 . . . σl, an input string of length lOutput: r, a Boolean indiating whether the input string belongs to L1: allocate_memory_for_chart(V l+1)2: V0 ← ∅3: E ← ∅4: unconditionally_add_enqueue_es(V0, E, (S ′ → •S, [0, 0]))5: k ← 06: E ′ ← ∅7: while E 6= ∅ ∧ k < l do8: Vk+1 ← ∅9: repeat10: xs ← dequeue(E)11: if incomplete(xs) then12: if terminal_symbol_after_dot(xs) then13: cfg_earley_scanner(Vk, Vk+1, E
′, xs)14: else15: cfg_earley_predictor(Vk, E, xs)16: end if17: else18: cfg_earley_completer(V l+1, E, xs)19: end if20: until E = ∅21: k ← k + 122: swap(E, E ′)23: end whileAlgorithm C.2 fg_earley_preditor(V, E, xs)Input: V , the urrent SES or parsing hart element

E, the urrent queue of unexplored ESs
xs = (A→ α1 •Bα2, [i, j]), an ESs or dotted ruleOutput: V , after expanding non-terminal BOutput: E, after enqueuing the new derived ESs1: for eah (B → β) ∈ G do2: add_enqueue_es(V, E, (B → •β, [j, j]))3: end for
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Algorithm C.3 fg_earley_sanner(V, W, E ′, aj+1, xs)Input: V , the urrent SES or parsing hart elementInput: W , the next SESInput: E ′, the next queue of unexplored ESsInput: σ, the input symbol to sanInput: xs = (A→ α1 • aα2, [i, j]), an ESs or dotted ruleOutput: W , after sanning input for terminal σ′Output: E ′, after enqueuing the new derived ESs1: if part− of − speech(aj+1) = a then2: add_enqueue_es(W, E ′, (A→ α1a • α2, [i, j + 1]))3: end if
Algorithm C.4 fg_earley_ompleter(V l+1, E, xs)Input: V l+1, the parsing hart

E, the urrent queue of unexplored ESs
xs = (B → β•), [j, k], an ES or dotted ruleOutput: V l+1, after expanding non-terminal B

E, after enqueuing the new derived ESs1: for eah (A→ α1 •Bα2, [i, j]) ∈ Vj do2: add_enqueue_es(Vk, E, (A→ α1B • α2, [i, k]))3: end for
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p1 : S → aSb
p2 : S → aSc
p3 : S → Sx

V0

1 S ′ → •S [0, 0] initial super-axiom
2 S → •aSb [0, 0] preditor(1, p1)
3 S → •aSc [0, 0] preditor(1, p2)
4 S → •x [0, 0] preditor(1, p3)

V1

5 S → a • Sb [0, 1] sanner(2, a)
6 S → a • Sc [0, 1] sanner(3, a)
7 S → •aSb [1, 0] preditor(5, p1)
8 S → •aSc [1, 0] preditor(5, p2)
9 S → •x [1, 0] preditor(5, p3)

V2

10 S → a • Sb [1, 2] sanner(7, a)
11 S → a • Sc [1, 2] sanner(8, a)
12 S → •aSb [2, 2] preditor(10, p1)
13 S → •aSc [2, 2] preditor(10, p2)
14 S → •x [2, 2] preditor(10, p3)

V3

15 S → x• [2, 3] sanner(14, x)
16 S → aS • b [1, 3] ompleter(15, 11)
17 S → aS • c [1, 3] ompleter(15, 11)

V4

18 S → aSb• [1, 4] sanner(16, b)
19 S → aS • b [0, 4] ompleter(18, 5)
20 S → aS • c [0, 4] ompleter(18, 6)

V5

21 S → aSb• [0, 5] sanner(19, b)
22 S ′ → S• [0, 5] ompleter(21, 1)Figure C.2: At the left, a simple left-reursive CFG reognizing the language

anx(b|c)n and, at the right, exeution trae of Earley's parser for this CFG andinput aaxbb. Notie that for this example a top-down parser would exponentiallyinrease the ardinality of the generated SES whilst Earley's parser manages tokeep it onstant thanks to the fatoring out of the exploration of ommon grammarsubtrees: predition of symbol S is shared for both produtions p1 and p2.
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p1 : S → Sa
p2 : S → b

V0

1 S ′ → •S [0, 0] initial super-axiom
2 S → •Sa [0, 0] preditor(1, p1)
3 S → •b [0, 0] preditor(1, p2)

V1

4 S → b• [0, 1] sanner(3, b)
5 S ′ → S• [0, 1] ompleter(4, 1)
6 S → S • a [0, 1] ompleter(4, 2)

V2

7 S → Sa• [0, 2] sanner(6, a)
8 S ′ → S• [0, 2] ompleter(7, 1)
9 S → S • a [0, 2] ompleter(7, 2)

V3

10 S → Sa• [0, 3] sanner(9, a)
11 S ′ → S• [0, 3] ompleter(10, 1)
12 S → S • a [0, 3] ompleter(10, 2)...

Vl

3l + 1 S → Sa• [0, l] sanner(3l, a)
3l + 2 S ′ → S• [0, l] ompleter(3l + 1, 1)
3l + 3 S → S • a [0, l] ompleter(3l + 1, 2)Figure C.3: At the left, a simple left-reursive CFG reognizing the language banand, at the right, exeution trae of Earley's parser for this CFG and input bal−1.Notie that where a top-down parser would enter into an in�nite loop due to theleft reursion, Earley's parser expands symbol S only one but redues it severaltimes.



Appendix DKahn's topologial sorterWe brie�y desribe here Kahn's algorithm (Kahn, 1962) for topologiallysorting a PERT network (PERT, 1958a,b).1De�nition 297 (Direted graph). A direted graph G is an ordered pair
(V, A) where V is a set of verties or nodes and A ⊆ V × V is a set ofordered pairs of nodes, also alled ars, direted edges or arrows.De�nition 298 (PERT network). A PERT network is a direted or undi-reted graph where nodes represent points in time and edges (n, n′) representtasks that should take plae between temporal points n and n′, that is, duringinterval [n, n′].Considering the direted ase, a PERT network is a graphial representa-tion of a set of temporal restritions over the order in whih a set of tasks anbe performed; for instane, supposing that graph of �gure D.1 represents aPERT network, task of ar (3, 6) is to follow task of ar (0, 3). A topologialsort of the network is a total order of the graph nodes respeting the tempo-ral onstraints, that is, expressing a possible sequene of exeution of everytask within the network. Note that suh a topologial sort is only possiblefor ayli graphs.AlgorithmD.1 kahn_topologial_sort gets as input a direted graph (G, A)and a queue E of graph nodes initially �lled with every node having no in-oming ars, and initializes topologial sort t as an empty sequene of nodes.Then it dequeues and proesses eah node in E until there are no more nodesleft, traversing the graph by following a possible topologial sort. Note that1PERT stands for `program evaluation and review tehnique'.419



420 APPENDIX D. KAHN'S TOPOLOGICAL SORTERany of the nodes initially present in the queue ould be the �rst node of thetopologial sort. For eah dequeued node n, it removes from A every ar ofthe form (n, m) (tasks starting at n are exeuted), and enqueues m i� it hasno more inoming ars (tasks before m are �nished, thus tasks starting at
m are now available). If the graph ontains no yles then every ar shouldhave been removed after emptying the queue. If so, the algorithm returnsthe omputed topologial sort; otherwise returns ⊥ in order to indiate thatthere exists no topologial sort for graph G.Figure D.1 shows an example of direted graph along with the orre-sponding exeution trae of Kahn's algorithm.Algorithm D.1 kahn_topologial_sort(G)Input: G = (V, A), a direted graph

E, a queue of nodes initially �lled with every node of G withoutinoming arsOutput: t, a topologial sort of G1: t← ε2: while E 6= ∅ do3: n← dequeue(E)4: t← tn5: for eah m : (n, m) ∈ A do6: A← A− {(n, m)}7: if ∄n′ : (n′, m) ∈ A then8: enqueue(E, m)9: end if10: end for11: end while12: if A 6= ∅ then13: t←⊥14: end if



0 1 2

3 4

5 6 7

n E t ation

⊥ 0, 1, 2 ε initialize

0 1, 2 0 n← dequeue(E), t← tn
0 1, 2 0 A← A− {(0, 3)}
0 1, 2 0 A← A− {(0, 4)}
1 2 0, 1 n← dequeue(E), t← tn
1 2, 3 0, 1 A← A− {(1, 3)}, enqueue(E, 3)
2 3 0, 1, 2 n← dequeue(E), t← tn
2 3, 4 0, 1, 2 A← A− {(2, 4)}, enqueue(E, 4)
2 3, 4 0, 1, 2 A← A− {(2, 5)}
3 4 0, 1, 2, 3 n← dequeue(E), t← tn
3 4, 5 0, 1, 2, 3 A← A− {(3, 5)}, enqueue(E, 5)
3 4, 5 0, 1, 2, 3 A← A− {(3, 6)}
3 4, 5, 7 0, 1, 2, 3 A← A− {(3, 7)}, enqueue(E, 7)
4 5, 7 0, 1, 2, 3, 4 n← dequeue(E), t← tn
4 5, 7, 6 0, 1, 2, 3, 4 A← A− {(4, 6)}, enqueue(6)
5 7, 6 0, 1, 2, 3, 4, 5 n← dequeue(E), t← tn
7 6 0, 1, 2, 3, 4, 5, 7 n← dequeue(E), t← tn
6 ε 0, 1, 2, 3, 4, 5, 7, 6 n← dequeue(E), t← tnFigure D.1: Ayli direted graph and exeution trae of Kahn's algorithm for this graph.
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