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Préface

Les réseaux sont très largement utilisés dans de nombreux domaines
scientifiques afin de représenter les intéractions entre objets d’intérêt.

Ainsi, en Biologie, les réseaux de régulation s’appliquent à décrire les mé-
canismes de régulation des gènes, à partir de facteurs de transcription,
tandis que les réseaux métaboliques permettent de représenter des voies
de réactions biochimiques. En sciences sociales, ils sont couramment util-
isés pour réprésenter les intéractions entre individus.

Dans le cadre de cette thèse, nous nous intéressons à des méthodes
d’apprentissage non supervisé dont l’objectif est de classer les nœuds d’un
réseau en fonction de leurs connexions. Il existe une vaste littérature se
référant à ce sujet et un nombre important d’algorithmes ont été proposés
depuis les premiers travaux de Moreno en 1934. Il apparaît dès lors que
les approches existantes peuvent être regroupées dans trois familles dif-
férentes. Tout d’abord, un certain nombre de méthodes se concentrent
sur la recherche de communautés où les nœuds sont classés de manière
à ce que deux nœuds aient une plus forte tendance à se connecter s’ils
appartiennent à la même classe. Ces techniques sont parmi les plus util-
isées en particulier pour analyser les réseaux de type Internet. Par ailleurs,
d’autres approches recherchent des structures topologiques différentes où,
au contraire, deux nœuds ont une plus forte tendance à intéragir s’ils sont
dans des classes distinctes. Elles sont particulièrement adaptées à l’étude
des réseaux de type biparpite. Enfin, quelques méthodes s’intéressent à la
recherche de structures hétérogènes où les nœuds peuvent avoir des pro-
files de connexion très différents. En particulier, ces techniques peuvent
être employées pour retrouver à la fois des commautés et des structures
bipartites dans les réseaux. Le point de départ de cette thèse est le mod-
èle à blocs stochastiques, Stochastic Block Model (SBM) en anglais, qui
appartient à cette dernière famille d’approches et qui est également très
largement utilisé.

SBM est un modèle de mélange qui est le résultat de travaux en sci-
ences sociales. Il fait l’hypothèse que les nœuds d’un réseau sont répartis
dans des classes et décrit la probabilité d’apparition d’un arc entre deux
nœuds uniquement en fonction des classes auquelles ils appartiennent.
Aucune hypothèse n’ait faite a priori en ce qui concerne ces probabilités
de connexion de sorte que SBM puisse prendre en compte des structures
topologiques très variées. En particulier, le modèle permet de caractériser
la présence de hubs, c’est à dire de nœuds ayant un nombre de liens élevés
par rapport aux autres nœuds d’un réseau. Pour finir, il généralise la
plupart des modèles existants pour la classification de nœuds dans les
réseaux.

L’estimation des paramètres de SBM a déjà fait l’objet de nombreuses
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2 Préface

études. Cependant, à notre connaissance un seul critère de sélection de
modèles a été développé pour estimer le nombre de composantes du
mélange (Daudin et al. 2008). Malheureusement, il a été montré que ce
critère était trop conservateur dans le cas de réseaux de petites tailles.

Par ailleurs, il apparaît que SBM ainsi que la plupart des modèles
existants pour la classification dans les réseaux sont limités puisqu’ils par-
titionnent les nœuds dans des classes disjointes. Or, de nombreux objets
d’étude dans le cadre d’applications réelles sont connus pour appartenir
à plusieurs groupes en même temps. Par exemple, en Biologie, des pro-
téines appelées moonlighting proteins en anglais ont plusieurs fonctions
dans les cellules. De la même manière, lorsqu’un ensemble d’individus
est étudié, on s’attend à ce qu’un nombre conséquent d’individus appar-
tiennent à plusieurs groupes ou communautés.

Dans cette thèse, notre contribution est la suivante:
• Nous proposons un nouvel algorithme de classification pour SBM

ainsi qu’un nouveau critère de sélection de modèle. Ces travaux sont
implémentés dans le package R “mixer” qui est disponible sur le
CRAN: http://cran.r-project.org/web/packages/mixer.

• Nous introduisons un nouveau modèle de graphe aléatoire que nous
appelons modèle à blocs stochastiques chevauchants, Overlapping
Stochastic Block Model (OSBM) en anglais. Il autorise les nœuds
d’un réseau à appartenir à plusieurs groupes simultanément et peut
prendre en compte des topologies de connexion très différentes. La
classification et l’estimation des paramètres de OSBM sont réalisées
à partir d’un algorithme basé sur des techniques variationnelles.

• Nous présentons une nouvelle approche d’inférence pour OSBM
ainsi qu’un nouveau critère de sélection de modèle qui permet
d’estimer le nombre de classes, éventuellement chevauchantes, dans
les réseaux. Ces travaux sont implémentés dans le package R
“OSBM” qui sera très prochainement disponible sur le CRAN.

Le premier chapitre s’attache à présenter les principaux concepts statis-
tiques et les méthodes existantes sur lesquels se fondent nos travaux. Nous
introduisons notamment les modèles de mélange ainsi que les techniques
d’inférence de type EM et variationnel. Plusieurs critères de sélection de
modèle sont également discutés. Enfin, il est fait état des méthodes les
plus connues pour la classification des nœuds dans les réseaux.

Dans le deuxième chapitre, le modèle à blocs stochastiques est décrit
dans un cadre Bayésien et une nouvelle procédure d’inférence est pro-
posée. Elle offre la possibilité d’approcher la loi a posteriori des paramètres
et des variables latentes. Cette approche permet également d’obtenir un
critère non asymptotique de sélection de modèle, basé sur une approxi-
mation de la vraissemblance marginale.

Le troisième chapitre introduit le modèle à blocs stochastiques
chevauchants. Nous montrons que le modèle est identifiable dans des
classes d’équivalence. De plus, un algorithme basé sur des techniques
variationnelles locales et globales est proposé. Il permet le clustering de
nœuds dans des classes chevauchantes et l’estimation des paramètres du
modèle.

http://cran.r-project.org/web/packages/mixer
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Enfin, le quatrième chapitre considère à nouveau un cadre Bayésien. Des
lois a priori conjuguées sont utilisées pour caractériser les paramètres du
modèle à blocs stochastiques chevauchants. Une procédure d’inférence
permet alors d’approcher la loi a posteriori des paramètres et des variables
latentes. Elle donne naissance à un critère de sélection de modèle basé sur
une nouvelle approximation de la vraissemblance marginale.

Cette thèse a fait l’objet de deux papiers et d’un chapitre de livre:
Latouche et al. (2009; 2010a;b).





Abstract

Networks are used in many scientific fields to represent the interactions
between objects of interest. For instance, in Biology, regulatory net-

works describe the regulation of genes with transcriptional factors while
metabolic networks focus on representing pathways of biochemical reac-
tions. In social sciences, networks are commonly used to represent the
interactions between actors.

In this thesis, we consider unsupervised methods which aim at clus-
tering the vertices of a network depending on their connection profiles.
There has been a wealth of literature on the topic which goes back to the
earlier work of Moreno in 1934. It appears that available techniques can
be grouped into three significant categories. First, some models look for
community structure, where vertices are partitioned into classes such that
vertices of a class are mostly connected to vertices of the same class. They
are particularly suitable for the analysis of affiliation networks. Other
models look for disassortative mixing in which vertices mostly connect to
vertices of different classes. They are commonly used to analyze bipar-
tite networks. Finally, a few procedures look for heterogeneous structure
where vertices can have different types of connection profiles. In particu-
lar, they can be used to uncover both community structure and disassorta-
tive mixing. The starting point of this thesis is the Stochastic Block Model
(SBM) which belongs to this later category of approaches.

SBM is a mixture model for graphs which was originally developed
in social sciences. It assumes that the vertices of a network are spread
into different classes such that the probability of an edge between two
vertices only depends on the classes they belong to. No assumption is
made on these probabilities of connection such that SBM can take very
different topological structures into account. In particular, the model can
characterize the presence of hubs which make networks locally dense.
Moreover and to some extent, it generalizes many of the existing graph
clustering techniques.

The clustering of vertices as well as the estimation of SBM parameters
have been subject to previous work and numerous inference strategies
have been proposed. However, SBM still suffers from a lack of criteria to
estimate the number of components in the mixture. To our knowledge,
only one model based criterion has been derived for SBM in the literature.
Unfortunately, it tends to be too conservative in the case of small networks.

Besides, almost all graph clustering models, such as SBM, partition
the vertices into disjoint clusters. However, recent studies have shown
that most existing networks contained overlapping clusters. For instance,
many proteins, so-called moonlighting proteins, are known to have several
functions in the cells, and actors might belong to several groups of inter-
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6 Abstract

ests. Thus, a graph clustering method should be able to uncover overlap-
ping clusters.

In this thesis, our contributions are the following:
• We propose a new graph clustering algorithm for SBM as well as a

new model selection criterion. The R package “mixer” implement-
ing this work is available at http://cran.r-project.org/web/
packages/mixer.

• We introduce a new random graph model, so-called, Overlapping
Stochastic Block Model (OSBM). It allows the vertices of a network
to belong to multiple classes and can take very different topologi-
cal structures into account. A variational algorithm, based on global
and local variational techniques, is considered for clustering and es-
timation purposes.

• We present a new inference procedure for OSBM as well as a model
selection criterion which can estimate the number of overlapping
clusters in networks. A R package “OSBM” implementing this work
will be soon available on the CRAN.

The first chapter introduces the main concepts and existing work this
thesis builds on. In particular, we review mixture models as well as infer-
ence techniques such as the EM algorithm and the variational EM algo-
rithm. We also focus on some model selection criteria to estimate the num-
ber of classes from the data. Finally, we describe some of the most widely
used graph clustering methods for network analysis and focus mainly on
model based approaches.

The second chapter illustrates how SBM can be described in a Bayesian
framework. A new inference procedure is proposed to approximate the
full posterior distribution over the model parameters and latent variables,
given the observed data. This approach leads to a new model selection
criterion based on a non asymptotic approximation of the marginal likeli-
hood.

The third chapter presents OSBM. We show that the model is identifi-
able within classes of equivalence. Moreover, an algorithm is proposed,
based on global and variational techniques. It allows the model param-
eters to be estimated and the vertices to be classified into overlapping
clusters.

Finally, in chapter 4, conjugate prior distributions are proposed for the
OSBM model parameters. Then, we show how an inference procedure
can be used to obtain an approximation of the full posterior distribution
over the model parameters and latent variables. This framework leads to
a model selection criterion based on new approximation of the marginal
likelihood.

During this thesis, two papers and a book chapter were published:
Latouche et al. (2009; 2010a;b).

http://cran.r-project.org/web/packages/mixer
http://cran.r-project.org/web/packages/mixer
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This preliminary chapter introduces the main concepts and existing
work this thesis builds on. In Section 1.1, we consider a simple ex-

ample, i.e. the Gaussian mixture model, to illustrate the use of the Expec-
tation Maximization (EM) algorithm for estimation and clustering pur-
poses in mixture models. We also focus on some model selection criteria
to estimate the number of classes from the data. We then give in Section
1.2 a variational treatment of EM and describe a more general framework
called variational Bayes EM which can lead to an approximation of the
full posterior distribution over the model parameters and latent variables.
In Section 1.3, we present some of the most widely used graph cluster-
ing methods for network analysis and focus mainly on model based ap-
proaches. Finally, we bring some insights into the stochastic block model
which is considered in Chapter 2 and extended in Chapters 3 and 4 to
allow overlapping clusters in networks.

7
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1.1 Mixture models and EM

In this section, we introduce some algorithms which are commonly used
to classify the points of a data set. Existing techniques can be distin-
guished depending on the structure of the classification they produce.
Here we consider methods which look for a partition P of the data only.
Approaches looking for hierarchies or fuzzy partitions will be briefly men-
tioned in the rest of the thesis while others producing overlapping clusters
will be described in more details in Chapters 3 and 4.

For a few decades, there has been a wealth of literature on mixture
models and the associated Expectation Maximization (EM) algorithm to
uncover the classes of a partition P in a data set. Mixture models first
assume that the observations are spread into Q hidden classes such that
observation xi is drawn from distribution fq if its belongs to class q. If the
posterior distribution over the latent variables takes an analytical form,
the EM algorithm can then be applied to estimate the mixture model pa-
rameters and classify the observations. In the following, we consider a
simple example, i.e. the Gaussian mixture model, for illustration pur-
poses. However, we emphasize that EM has a much broader applicability.
In particular, it can be used for every distributions fq of the exponential
family (McLachlan and Peel 2000).

We start by introducing the kmeans and kmedoids algorithms. After
having described EM, we show how it is related to kmeans in the case
of Gaussian mixture models. Finally, we describe some model selection
criteria to estimate the number Q of classes from the data in a mixture
context.

1.1.1 Kmeans

Let us consider a data set E = {x1, . . . , xN} of N observations. Each vector
xi is in R

d and therefore the data set can be represented by a matrix X in
R

N×d where the ith row equals x⊺i . The goal is to cluster the observations
into Q disjoint clusters {P1, . . . , PQ} of a partition P such that Pq

⋂
Pl =

∅, ∀q 6= l and
⋃Q

q=1 Pq = E . We will see in Section 1.1.4 how Q can be
estimated from the data but for now, Q is held fixed. A common approach
consists in looking for clusters where data points of the same cluster have a
smaller inter-point distance than points of different clusters. To formalize
this notion, we introduce a d-dimensional vector µq, called prototype, for
each of the Q clusters. The kmeans algorithm aims at minimizing the sum
of squares of the distances between each point and its closest prototype.
Formally, this involves minimizing an objective function, called distortion
function:

J =
N

∑
i=1

Q

∑
q=1

Ziq|| xi− µq ||
2, (1.1)

where Ziq equals 1 if xi is assigned to cluster q and 0 otherwise. In the fol-
lowing, we will denote Zi the corresponding Q-dimensional binary vector
of cluster assignments. It satisfies Ziq ∈ {0, 1}, ∀(i, q) and ∑

Q
q=1 Ziq = 1.

From the N binary vectors, we also build a N ×Q binary matrix Z whose
ith row is equal to Z⊺

i . In the following, we will show that minimizing
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(1.1) is equivalent to looking for a partition P with the smaller intra class
inertia denoted Iintra and given by:

Iintra =
Q

∑
q=1

∑
i∈Pq

|| xi−x̄Pq ||
2,

where x̄Pq is the center of mass of Pq:

x̄Pq =
1

card(Pq)
∑

i∈Pq

xi,

and card(Pq) is the cardinality of Pq. It is known that the total inertia Itotal
can be decomposed into the sum of the intra class inertia Iintra and the
inter class inertia Iinter:

Itotal = Iintra + Iinter,

where

Iinter =
Q

∑
q=1

card(Pq)||x̄Pq − x̄||2,

and x̄ is the center of mass of the entire data set. Since Itotal does not
depend on the partition P, minimizing Iintra is equivalent to maximizing
Iinter. Thus, kmeans looks for clusters as separated as possible.

The algorithm starts with a set of initial prototypes usually sampled
from a Gaussian distribution. It then optimizes (1.1) with respect to Z

and the set {µ1, . . . , µQ} in turn. First, the µqs are kept fixed while J is
minimized with respect to Z. Second, J is minimized with respect to the
µqs keeping Z fixed. This two stage optimization procedure is repeated
until the absolute distance between two successive values of J is smaller
than a threshold eps. In Section 1.1.3, we will see how these two steps
are related to the E and M steps of the Expectation Maximization (EM)
algorithm in the case of Gaussian mixture models.

Since J is a linear function of the Ziqs, the optimization of J with respect
to Z leads to a closed form solution. Indeed, the terms indexed by i are all
independent, and therefore, optimizing J involves optimizing each of the
objective functions:

Ji =
Q

∑
q=1

Ziq|| xi− µq ||
2, ∀i ∈ {1, . . . , Q}.

The function Ji is minimized when Ziq equals 1 for whichever value of q
gives the minimum value of || xi− µq ||

2. In other words, Ziq equals 1 if
q = argminl || xi− µl ||

2 and 0 otherwise.
Finally, in order to optimize J with respect µq, we set the gradient of

(1.1) to zero:

▽µq
J = 2

N

∑
i=1

Ziq(xi− µq) = 0.

This implies:

µq =
∑

N
i=1 Ziq xi

∑
N
i=1 Ziq

. (1.2)
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Thus, the prototype µq is defined as the mean of all the points xi assigned
to cluster q.

Kmeans (Algorithm 1) was studied by MacQueen (1967). Because each
step is guaranteed to reduce the objective function, convergence of the
algorithm is assured. However, it may converge to local rather than global
minimum.

Algorithm 1: The kmeans algorithm.

// INITIALIZATION

Initialize µ0
q , ∀q

µnew
q ← µ0

q , ∀q

// OPTIMIZATION

repeat

µold
q ← µnew

q , ∀q
// Step 1

for i ∈ 1 : N do

Find q = argminl || xi− µold
l ||

2

Ziq ← 1
Zil ← 0, ∀l 6= q

end

// Step 2

µnew
q ←

∑
N
i=1 Ziq xi

∑
N
i=1 Ziq

, ∀q

until J converges

Numerous methods have been proposed to speed up the kmeans al-
gorithm. Some of them precompute a tree such that nearby points are in
the same sub-tree (Rmasubramanian and Paliwal 1990). Others limit the
number of distances || xi− µq ||

2 to compute using the triangle inequality
(Hodgson 1998, Moore 2000, Elkan 2003).

Because the kmeans algorithm is based on the Euclidean distance, it
is very sensitive to outliers. Moreover, depending on the type of data
considered, the Euclidean distance might not be an appropriate choice as
a measure of dissimilarity between data points and prototypes. Therefore,
it can be generalized by introducing any dissimilarity measure ds(·, ·). The
goal is now to optimize the objective function J∗ rather than J, where:

J∗ =
N

∑
i=1

Q

∑
q=1

Ziqds(xi, µq).

This gives rise to the kmedoids algorithm. As kmeans, the kmedoids algo-
rithm relies on a two stage optimization procedure. First, each data point
xi is assigned to the prototype µq for which the corresponding dissimilar-
ity measure ds(xi, µq) is minimized. Second, each cluster prototype is set
equal to one of the data points assigned to that cluster.

A drawback of the kmeans and the kmedoids algorithms is that, at
each iteration, each data point is assigned to one and only one cluster.
In practice, while some points are much closer to one of the mean vec-
tors µq, some others often lie midway between cluster centers. In this
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case, the hard assignment of points to the nearest cluster may not be the
most appropriate choice. In Section 1.1.3, we will see how a probabilis-
tic framework can lead to soft assignments reflecting the uncertainty to
which cluster each data point belongs.

1.1.2 Gaussian mixture models

We denote by κ a set of Q mean vectors µq and covariance matrices Σq.
Moreover, let us consider a vector α of class proportions which satisfies
αq > 0, ∀q and ∑

Q
q=1 αq = 1. A Gaussian mixture distribution is then given

by:

p(xi | α, κ) =
Q

∑
q=1

αqN (xi; µq, Σq), (1.3)

where

N (xi; µq, Σq) =
1

(2π)d/2|Σq |1/2 exp
(

−
1
2
(xi− µq)

⊺
Σ
−1
q (xi− µq)

)

.

As shown in the following, a mixture distribution can be seen as the result
of a marginalization over a latent variable.

First, let us assume that a binary vector Zi is sampled from a multino-
mial distribution:

p(Zi | α) =M (Zi; 1, α = (α1, . . . , αQ))

=
Q

∏
q=1

α
Ziq
q .

(1.4)

As in the previous section, Zi sees all its components set to zero except
one such that Ziq = 1 if observation i belongs to class q. The vector xi is
then sampled from a Gaussian distribution:

p(xi |Ziq = 1, µq, Σq) = N (xi; µq, Σq) (1.5)

with mean vector µq and covariance matrix Σq. The full conditional distri-
bution is given by:

p(xi |Zi, κ) =
Q

∏
q=1

p(xi |Ziq = 1, µq, Σq)
Ziq

=
Q

∏
q=1
N (xi; µq, Σq)

Ziq .

(1.6)

Therefore, the marginalization of p(xi | α, κ) over all possible vectors Zi
leads to:

p(xi | α, κ) = ∑
Zi

p(xi, Zi | α, κ)

= ∑
Zi

p(xi |Zi, κ)p(Zi | α)

= ∑
Zi

Q

∏
q=1

(

αqN (xi; µq, Σq)
)Ziq

.

(1.7)

Note that (1.7) is equivalent to (1.3). However, we now have an explicit
formulation of the Gaussian mixture model in terms of the latent vector
Zi which will play a key role in Section 1.1.3.
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Maximum likelihood

We are given a data set X of N observations which are assumed to be inde-
pendent and drawn from a Gaussian mixture distribution with Q classes.
In a frequentist setting, the goal is to maximize the observed-data log-
likelihood log p(X | α, κ) with respect to κ and α:

log p(X | α, κ) =
N

∑
i=1

log p(xi | α, κ)

=
N

∑
i=1

log

(
Q

∑
q=1

αqN (xi; µq, Σq)

)

.

(1.8)

One approach consists in relying directly on gradient based algorithms
for the optimization procedure (Fletcher 1987, Nocedal and Wright 1999).
Although this approach is feasible, it is rarely used in practice and the EM
algorithm described in Section 1.1.3 is usually preferred.

Bayesian approach

In the Bayesian framework, some distributions, called priors, are intro-
duced to characterize a priori information about the model parameters.
For instance, in the regression context, a Gaussian prior distribution over
the weight vector β is often used for regularization in order to avoid over-
fitting (Wahba 1975, Berger 1985, Gull 1989, MacKay 1992, Bernardo and
Smith 1994, Gelman et al. 2004). While a Gaussian prior leads to a L2-
norm regularization (ridge regression) (Hoerl and Kennard 1970, Hastie
et al. 2001), a Laplace prior gives rise to a L1-norm regularization (Lasso)
(Tibshirani 1996, Park and Casella 2008).

In the case of Gaussian mixture model, the Bayesian framework can
be used to deal with the singularities of the observed-data log-likelihood
(1.8). For simplicity, consider that the covariance matrices of the different
components are such that Σq = σ2

q I where I denotes the identity matrix.
If one component has its mean vector equal to one of the points xi in the
data set, i.e. µq = xi, then:

N (xi; µq, Σq) = N (xi; xi, Σq)

=
1

(2π)d/2σd
q

.
(1.9)

If we now consider the limit σq → 0, then (1.9) goes to infinity and so
does (1.8). Therefore, optimizing the observed-data log-likelihood is not a
well defined problem since singularities can arise whenever a component
of the Gaussian mixture model collapses to a single point. To tackle this
issue, a common strategy consists in introducing conjugate priors1 for the
model parameters. Thus, a Dirichlet distribution is chosen for the vector
α:

p(α) = Dir(α; n0 = (n0
1, . . . , n0

Q)),

1In a Bayesian framework, given a data set X as well as a model parameter θ, if a
posterior distribution p(θ |X) is in the same family of distributions as the prior p(θ), then
the prior and posterior are said to be conjugate
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where n0
q = 1/2, ∀q. This Dirichlet distribution corresponds to a non-

informative Jeffreys prior distribution which is known to be proper (Jef-
freys 1946). It is also possible to consider a uniform distribution on the
Q − 1 dimensional simplex by fixing n0

q = 1, ∀q. As for κ, independent
Gaussian-Wishart priors can be used:

p(κ) =
Q

∏
q=1
N (µq; m0, β0 ∆

−1
q )W(∆q; W0, λ0),

where ∆q denotes the precision matrix of the qth component, that is the
inverse matrix of Σq. Considering a quadratic loss function (see Dang
1998), the goal is now to maximize the log-posterior distribution of the
model parameters, given the observed data set X. Using Bayes rule, we
have:

p(α, κ |X) ∝ p(X | α, κ)p(α)p(κ).

Therefore:

log p(α, κ |X) = log p(X | α, κ) + log p(α) + log p(κ) + const. (1.10)

Note that the first term on the right hand side of (1.10) is the observed-data
log-likelihood. As in the frequentist setting, it is possible to rely directly
on gradient based algorithms for the optimization procedure. However,
as mentioned above, the standard approach in the machine learning and
statistical community, to obtain point estimates of mixture model param-
eters, is the EM algorithm (see Section 1.1.3). The estimates are called
Maximum A Posteriori (MAP) estimates because they maximize the pos-
terior distribution rather than the observed-data likelihood. As shown
in Bishop (2006), the singularities are absent in this Bayesian framework,
simply by introducing the priors and relying on the MAP estimates.

In this section, we made a first step towards a full Bayesian treatment
of the data and motivated the use of prior distributions to deal with sin-
gularities. However, the Bayesian framework brings much more powerful
features as illustrated in Chapters 2 and 4. For instance, we will see how
an estimation of the full posterior distribution over the model parameters
can be performed using variational techniques. This will naturally lead
to new model selection criteria to estimate the number Q of classes in
networks.

1.1.3 The EM algorithm

The Expectation Maximization (EM) algorithm (Dempster et al. 1977,
McLachlan and Krishnan 1997) was originally developed in order to find
maximum likelihood solutions for models with missing data, although
it can also be applied to find MAP estimates. The two corresponding
functions to be maximized will be denoted QML(·, ·) and QMAP(·, ·) re-
spectively. EM has a broad applicability and will be first described in a
general setting. We shall then go back to our example in this chapter, i.e.
the Gaussian mixture model. Note that EM can be used in the case of con-
tinuous latent variables but in the following, we concentrate on discrete
mixture models only.
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General EM

Let us consider a data set X of N observations and Z the corresponding
matrix of class assignments introduced in Section 1.1.1 . The ith row of X

and Z represent the vectors x⊺i and Z⊺

i respectively. Moreover, we assume
that the observations are drawn from a mixture distribution with param-
eter θ, i.e. θ = (κ, α) in the Gaussian mixture model. If the observations
are independent, then:

log p(X | θ) =
N

∑
i=1

log p(xi | θ).

Following (1.7), the marginalization of each distribution p(xi | θ) over all
possible vectors Zi leads to:

log p(X | θ) =
N

∑
i=1

log

(

∑
Zi

p(xi, Zi | θ)

)

.

A more general expression, which stands also in the non independent
case, can be obtained by directly marginalizing over all possible matrices
Z:

log p(X | θ) = log

(

∑
Z

p(X, Z | θ)

)

, (1.11)

where p(X, Z | θ) is called complete-data likelihood. In practice, given a
data set X, the matrix Z is unknown and has to be inferred. The state
of knowledge of Z is given only by the posterior distribution p(Z |X, θ).
Therefore, in order to estimate θ, the EM algorithm considers the maxi-
mization of the expected value of the complete-data log-likelihood, under
the posterior distribution.

If we denote θold the current value of the model parameters, then dur-
ing the E step, the algorithm computes p(Z |X, θold) and the expectation
QML(θ, θold):

QML(θ, θold) = ∑
Z

p(Z |X, θold) log p(X, Z | θ). (1.12)

During the M step, (1.12) is then maximized with respect to θ. This leads
to a new estimate θnew of the model parameters. Thus, the algorithm starts
with an initial value θ0. The E and M steps are then repeated until the
absolute difference between two successive values of θ are smaller than
a threshold eps. For now, the use of the expectation may seem arbitrary,
but we will show in Section 1.2.1 how EM (Algorithm 2) is guaranteed to
maximize the observed-data log-likelihood (1.11).

As mentioned in Section 1.1.2, the EM algorithm can also be used to
find MAP estimates when the goal is to maximize log p(θ |X):

log p(θ |X) = log

(

∑
Z

p(θ, Z |X)

)

.
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Algorithm 2: General EM algorithm for mixture models. Q(·, ·) ei-
ther denotes QML(·, ·) or QMAP(·, ·).

// INITIALIZATION

Initialize θ0
θnew ← θ0

// OPTIMIZATION

repeat

θold ← θnew

// E-step

Compute p(Z |X, θold)
Compute Q(θ, θold)
// M-step

Find θnew = argmaxθQ(θ, θold)
until θ converges

During the E step, the algorithm computes p(Z |X, θold) and the expecta-
tion QMAP(θ, θold):

QMAP(θ, θold) = ∑
Z

p(Z |X, θold) log p(θ, Z |X)

= ∑
Z

p(Z |X, θold) log
p(X, Z | θ)p(θ)

p(X)

= ∑
Z

p(Z |X, θold) log p(X, Z | θ) + ∑
Z

p(Z |X, θold) log p(θ)

−∑
Z

p(Z |X, θold) log p(X)

= ∑
Z

p(Z |X, θold) log p(X, Z | θ) + log p(θ) + const.

(1.13)
Again, QMAP(θ, θold) is maximized with respect to θ during the M step.
Note that the first term on the right hand side of (1.13) corresponds exactly
to (1.12).

As pointed out by Bishop (2006), among many others, the EM algo-
rithm can converge to local rather than global maxima.

EM for Gaussian mixtures

In order to perform maximum likelihood inference in the case of Gaus-
sian mixture models, we need an expression for the complete-data log-
likelihood. The observations are assumed to be independent and there-
fore:

log p(X, Z | α, κ) = log p(X |Z, κ) + log p(Z | α)

=
N

∑
i=1

(log p(xi |Zi, κ) + log p(Zi | α)) .
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Using (1.4) and (1.6) leads to:

log p(X, Z | α, κ) =
N

∑
i=1

Q

∑
q=1

Ziq

(

logN (xi; µq, Σq) + log αq

)

.

Moreover, from Bayes rule and (1.3), the posterior distribution over all the
latent variables takes a factorized form:

p(Z |X, α, κ) =
p(X, Z | α, κ)

p(X | α, κ)

=
∏

N
i=1 p(xi, Zi | α, κ)

∏
N
i=1 p(xi | α, κ)

=
∏

N
i=1 ∏

Q
q=1

(

αqN (xi; µq, Σq)
)Ziq

∏
N
i=1

(

∑
Q
l=1 αlN (xi; µl , Σl)

)

=
∏

N
i=1 ∏

Q
q=1

(

αqN (xi; µq, Σq)
)Ziq

∏
N
i=1 ∏

Q
q=1

(

∑
Q
l=1 αlN (xi; µl , Σl)

)Ziq

=
N

∏
i=1

Q

∏
q=1

(
αqN (xi; µq, Σq)

∑
Q
l=1 αlN (xi; µl , Σl)

)Ziq

=
N

∏
i=1
M (Zi; 1, τi = (τi1, . . . , τiQ)) ,

where

τiq =
αqN (xi; µq, Σq)

∑
Q
l=1 αlN (xi; µl , Σl)

. (1.14)

Each variable τiq denotes the posterior probability, sometimes called re-
sponsibility, of observation i to belong to class q. Note that for each obser-
vation, both the prior (1.4) and the posterior are multinomial distributions.
During the M step, QML(θ, θold) is then maximized with respect to all the
model parameters:

QML(θ, θold) = ∑
Z

p(Z |X, αold, κold) log p(X, Z | α, κ)

=
N

∑
i=1

Q

∑
q=1

τiq

(

logN (xi; µq, Σq) + log αq

)

.
(1.15)

Setting the gradient of (1.15), with respect to µq, to zero, leads to:

▽µq
QML(θ, θold) =

N

∑
i=1

τiq(xi− µq) = 0. (1.16)

Therefore

µq =
∑

N
i=1 τiq xi

∑
N
i=1 τiq

. (1.17)

Equation (1.17) must be compared with (1.2). Indeed, contrary to the
kmeans algorithm, µq is now a weighted mean of all the points in the data
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set, the weighting factors being the posterior probabilities of the points to
belong to class q. The gradient with respect to Σq also takes a simple form:

▽ΣqQML(θ, θold) =
N

∑
i=1

τiq

(
Σq

2
−

1
2
(xi− µq)(xi− µq)

⊺

)

= 0.

Thus

Σq =
∑

Q
i=1 τiq(xi− µq)(xi− µq)

⊺

∑
N
i=1 τiq

.

Again, each data point is weighted by τiq, the posterior probability that
class q was responsible for generating xi. Finally, caution must be taken
when maximizing QML(θ, θold) with respect to αq. Indeed, the optimiza-
tion is subject to the constraint ∑

Q
q=1 αq = 1. This is achieved using a

Lagrange multiplier and maximizing:

QML(θ, θold) + λ(
Q

∑
q=1

αq − 1). (1.18)

Setting the gradient of (1.18), with respect to αq, to zero, gives:

∑
N
i=1 τiq

αq
+ λ = 0. (1.19)

Then, after multiplying (1.19) by αq as well as summing over q, we find
λ = −N and therefore:

αq =
∑

N
i=1 τiq

N
.

The algorithm is initialized for instance using a few iterations of the
kmeans algorithm (see Section 1.1.1), the E and M step are then repeated
until convergence. As mentioned already in a general setting, EM (Algo-
rithm 3) is not guaranteed to converge to a global maximum.

Relation to kmeans

As mentioned in Section 1.1.1, the two stages of the kmeans algorithm are
related to the E and M steps of the EM algorithm in the case of Gaussian
mixture models. While kmeans relies on hard assignments, we showed in
Section 1.1.3 that EM performs soft assignments of points in a data set.
In fact, the kmeans algorithm can be seen as a particular limit of EM for
Gaussian mixtures (Bishop 2006). Thus, consider that each component of
the mixture has a covariance matrix given by Σq = σ2 I, where I denotes
the identity matrix:

p(xi | µq, σ2) = N (xi; µq, σ2)

=
1

(2πσ2)d/2 exp
(

−
1

2σ2 || xi− µq ||
2
)

.

The variance parameter σ2 is shared by all the components and held fixed
for now. If the EM algorithm is applied for maximum likelihood estima-
tion of this Gaussian mixture model, then the posterior probabilities τiqs
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Algorithm 3: The EM algorithm for maximum likelihood estimation
in Gaussian mixture models.

// INITIALIZATION

Initialize α0
q , µ0

q , Σ
0
q , ∀q

αnew
q ← α0

q , ∀q
µnew

q ← µ0
q , ∀q

Σ
new
q ← Σ

0
q , ∀q

// OPTIMIZATION

repeat

αold
q ← αnew

q , ∀q
µold

q ← µnew
q , ∀q

Σ
old
q ← Σ

new
q , ∀q

// E-step

τiq ←
αold

q N (xi ; µold
q ,Σold

q )

∑
Q
l=1 αold

l N (xi ; µold
l ,Σold

l )
, ∀i, q

// M-step

αnew
q ←

∑
N
i=1 τiq

N , ∀q

µnew
q ←

∑
N
i=1 τiq xi

∑
N
i=1 τiq

, ∀q

Σ
new
q ←

∑
N
i=1(xi − µnew

q )(xi − µnew
q )⊺

∑
N
i=1 τiq

, ∀q

until (αq, µq, Σq), ∀q converges

given by (1.14) become:

τiq =
αq exp

(

− 1
2σ2 || xi− µq ||

2
)

∑
Q
l=1 αl exp

(
− 1

2σ2 || xi− µl ||
2
) . (1.20)

If we now consider the limit σ2 → 0 in (1.20), the smallest term || xi− µl ||
2

in the denominator will go to zero most slowly. Therefore, the probabili-
ties τiq for observation xi will all go to zero except for the corresponding
τil which will go to unity. Thus, when the variance parameter of the com-
ponents tends to zero, the EM algorithm leads to a hard assignment of the
data as in kmeans, and each observation is assigned to the class having the
nearest mean vector. The expectation QML(θ, θold) in (1.15) then becomes:

lim
σ2→0
QML(θ, θold) = lim

σ2→0
−

1
2σ2

N

∑
i=1

Q

∑
q=1

τiq|| xi− µq ||
2 + const. (1.21)

Since the observations are hard assigned to the classes, we can denote
τiq = Ziq as in kmeans and therefore maximizing (1.21) is equivalent to
minimizing the kmeans objective function (1.1).

1.1.4 Model selection

For a fixed number Q of classes, we have seen how the EM algorithm
could be used for both the estimation of mixture model parameters and
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the classification of observations in a data set. We now describe some of
the existing model selection criteria which aim at estimating Q from the
data. For an extensive discussion on model selection in mixture models,
we refer to McLachlan and Peel (2000). In this section, θ̂ either denotes
the maximum likelihood (θML) or the MAP estimate (θMAP) as described
in Section 1.1.3.

Given a set of values of Q, the goal is to select Q∗ such that a given
criterion is maximized. Because all the criteria described in this section
rely on θ̂, the mixture model parameters have to be estimated for each
value of Q in the set.

Akaike’s information criterion

Let us consider an observed data set X and a fixed number Q of classes.
We also denote by Y any data set of the same size of X. If the observa-
tions are assumed to be drawn from a mixture model with parameter θ,
we have seen that the EM algorithm can be used to maximize log p(X | θ)
or log p(θ |X). This leads to an estimate θ̂ of θ. In practice, the value of Q
considered might not be the most appropriate to model the data. More-
over, the EM algorithm can converge to local rather than global maximum.
In any case, the distribution p(Y |θ̂) can only be seen as an approximation
of the true distribution p(Y) which generated X.

Model selection can then be approached in terms of the Kullback-
Leibler (KL) divergence between p(Y) and p(Y |θ̂):

KL
(

p(·)||p
(
· |θ̂(X)

))
= −

∫

p(Y) log

{

p
(
Y |θ̂(X)

)

p(Y)

}

d Y

=
∫

p(Y) log p(Y)d Y−
∫

p(Y) log p
(
Y |θ̂(X)

)
d Y,

(1.22)
where we have denoted θ̂ = θ̂(X) to emphasize that θ̂ is estimated from
X. In information theory, (1.22) is seen as the information which is lost by
approximating the true model p(Y) with a fitted model p(Y |θ̂). The goal
is then to select the model for which the corresponding information loss
is minimum. As the first term on the right hand side of (1.22) does not
depend on the fitted model, only the second term is relevant. It can be
expressed as:

η(X) =
∫

p(Y) log p
(
Y |θ̂(X)

)
d Y

= EY[log p
(
Y |θ̂(X)

)
],

(1.23)

where the expectation is taken according to p(Y). Unfortunately, because
p(Y) is unknown, (1.23) cannot be computed analytically. However, if we
take the expectation of η(X) over every possible data set X, we obtain:

EX[η(X)] = EX,Y[log p
(
Y |θ̂(X)

)
], (1.24)

which can be estimated (McLachlan and Peel 2000). In practice, only a
single data set X is given and Akaike (1973; 1974) showed that (1.24) is
asymptotically equal to:

log p(X |θ̂)− K, (1.25)
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where K is the total number of parameters in the model. The approxima-
tion (1.25) corresponds to the Akaike’s Information Criterion (AIC).

The AIC criterion has been widely used to assess the order of a mix-
ture model (Bozdogan and Sclove 1984, Sclove 1987). However, many
authors observed that AIC is order inconsistent and tends to overfit mod-
els (Koehler and Murphee 1988, Soromenho 1993, Celeux and Soromenho
1996). In other words, AIC tends to overestimate the number of compo-
nents in the mixture context.

Bayesian information criterion

The Bayesian Information Criterion (BIC) relies on an asymptotic approx-
imation of the marginal log-likelihood, also called integrated observed-
data log-likelihood, given by:

log p(X) = log
{∫

p(X, θ)d θ

}

= log
{∫

p(X | θ)p(θ)d θ

}

,
(1.26)

where p(θ) is a prior distribution over the mixture model parameters.
Since (1.26) involves integrating over all possible values of θ, it is gener-
ally not tractable. To approximate the integral, the integrand is expanded
using a second order Taylor series about the point θ = θ̂:

log p(X, θ) ≈ log p(X, θ̂) +▽θ=θ̂ log p(X, θ)⊺(θ−θ̂)−
1
2
(θ−θ̂)⊺H(θ−θ̂),

where H is the negative hessian matrix of log p(X, θ) at θ̂. Note that this
approximation is relevant if the integrand is highly concentrated around
θ̂. If we set θ̂ = θMAP, we have:

▽θ=θMAP log p(X, θ) = ▽θ=θMAP log (p(θ |X)p(X))

= ▽θ=θMAP log p(θ |X) +▽θ=θMAP log p(X)

= ▽θ=θMAP log p(θ |X)

= 0,

since θMAP maximizes log p(θ |X) and log p(X) does not depend on θ.
Therefore:

log p(X, θ) ≈ log p(X, θ̂)−
1
2
(θ−θ̂)⊺H(θ−θ̂)

≈ log p(X |θ̂) + log p(θ̂)−
1
2
(θ−θ̂)⊺H(θ−θ̂).

(1.27)

Using (1.27) in (1.26) leads to:

log p(X) ≈ log
{∫

p(X |θ̂)p(θ̂) exp
(

−
1
2
(θ−θ̂)⊺H(θ−θ̂)

)

d θ

}

≈ log p(X |θ̂) + log p(θ̂) + log







∫

exp
(

−
1
2
(θ−θ̂)⊺H(θ−θ̂)

)

︸ ︷︷ ︸

Gaussian functional form

d θ







.

(1.28)
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The functional form of the integrand in (1.28) corresponds to a Gaussian
distribution with mean vector θ̂ and covariance matrix H−1. Thus, the
integral takes a simple form:

∫

exp
(

−
1
2
(θ−θ̂)⊺H(θ−θ̂)

)

d θ = (2π)d/2|H|−
1
2 ,

and

log p(X) ≈ log p(X |θ̂) + log p(θ̂) +
d
2

log(2π)−
1
2

log |H|
︸ ︷︷ ︸

Occam factor

. (1.29)

This approximation is known as Laplace’s method for integral. The second
part of the right hand side of (1.29) penalizes the model complexity and is
sometimes called Occam factor. As shown in Kass and Raftery (1995) and
Raftery (1995), for large samples, θML ≈ θMAP and H ≈ J, where J is the
expected Fisher information matrix of the observed data. This leads to:

log p(X) ≈ log p(X |θ̂) + log p(θ̂) +
d
2

log(2π)−
1
2

log |J|. (1.30)

This strong approximation assumes that the prior is very flat such that its
effect can be ignored (Ripley 1996). Finally, the BIC criterion, sometimes
called Schwarz criterion (Schwarz 1978), is obtained by ignoring the terms
in O(1) in (1.30) and noting that:

|J| = O(NK),

to give

log p(X) ≈ log p(X |θ̂)−
K
2

log N.

Leroux (1992) showed that BIC does not underestimate the true number
of classes, asymptotically. Moreover, simulation studies as well as exper-
iments on real data have been carried out to assess the performances of
BIC and they have reported encouraging results (Roeder and Wasserman
1997, Campbell et al. 1997, Dasgupta and Raftery 1998).

For log N > 2, that is N > 8, it can be easily verified that BIC penalizes
the model complexity more heavily than AIC. Therefore, it reduces the
tendency of AIC to fit too many components. On the other hand, Celeux
and Soromenho (1996) showed that BIC fits too few components when the
sample size is limited and the model for the component densities is valid.
Conversely, if the model for the component densities is not valid, then
Biernacki et al. (2000) found that BIC tends to fit too many components.

Finally, as mentioned by McLachlan and Peel (2000), we emphasize
that not only BIC can be used to estimate Q, but it can also help deciding
which model to adopt for the component densities (Biernacki et al. 1999).

Classification likelihood criterion

The complete-data log-likelihood, also called classification log-likelihood,
is given by:

log p(X, Z | θ) = log p(X | θ) + log p(Z |X, θ). (1.31)
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For many mixture models (see for instance Section 1.1.3), the posterior
distribution over the latent variables can be factorized and computed an-
alytically. The functional form of the prior is conserved and we obtain a
product of multinomial distributions:

p(Z |X, θ) =
n

∏
i=1
M(Zi; 1, τi)

=
n

∏
i=1

Q

∏
q=1

τ
Ziq

iq ,
(1.32)

where τiq is the posterior probability that observation i belongs to class q.
As mentioned by Hathaway (1986), using (1.32) in (1.31) leads to:

log p(X, Z | θ) = log p(X | θ) +
n

∑
i=1

Q

∑
q=1

Ziq log τiq. (1.33)

If we now set Z = τ and θ = θ̂ in (1.33), we obtain:

log p(X, τ |θ̂) = log p(X |θ̂)− EN(τ), (1.34)

where

EN(τ) = −
n

∑
i=1

Q

∑
q=1

τiq log τiq,

is the entropy of the fuzzy classification matrix. If the mixture compo-
nents are well separated, it will be close to zero. Otherwise, it will have
a large value. Biernacki and Govaert (1997) originally proposed (1.34) as
a model selection criterion for Gaussian mixture models although it has a
broader applicability. Indeed, it only requires that the posterior distribu-
tion over the latent variables takes the factorized form (1.32). This criterion
is referred as the Classification Likelihood Criterion (CLC). Biernacki and
Govaert (1997) suggested to use the EM algorithm to estimate both τ and
θ̂ from the data. According to Biernacki et al. (1999), CLC works well
when the class proportions are restricted to being equal. On the other
hand, if they are different, because CLC does not penalize the number K
of mixture model parameters, it tends to overestimate the correct number
of classes.

Integrated classification likelihood criterion

The Integrated Classification Likelihood (ICL) criterion was introduced
by Biernacki et al. (2000). It relies on an asymptotic approximation of
the integrated complete-data log-likelihood log p(X, Z). So far, to keep
the notations uncluttered, we have denoted θ the set of all the mixture
model parameters. However, to sketch the development of ICL, we now
need to go back to the notations used in Section 1.1.2. Thus, κ denotes
all the parameters which describe the component densities (i.e. the mean
vectors and covariance matrices in Gaussian mixture models) and α the
class proportions. If the prior p(θ) is factorized such that:

p(θ) = p(κ)p(α),
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then using (Appendix A.1), log p(X, Z) is given by:

log p(X, Z) = log p(X |Z) + log p(Z). (1.35)

A BIC-like approximation (see Section 1.1.4) applied on the first term of
the right hand side of (1.35) leads to:

log p(X |Z) ≈ log p(X |Z, κ̂)−
K1

2
log N, (1.36)

where K1 is the number of parameters in κ and κ̂ is a maximum likelihood
or MAP estimate of κ. Using a Jeffreys non informative prior distribution
for the class proportions α, Biernacki et al. (2000) obtained an analytical
expression for log p(Z):

log p(Z) = log Γ(
Q
2
) +

Q

∑
q=1

log Γ(
1
2
+ nq)−Q log Γ(

1
2
)− log Γ(N +

Q
2
),

(1.37)
where nq = ∑

N
i Ziq, ∀q and Γ(·) is the Gamma function. For more de-

tails, see (Appendix A.2). Assuming that N and the nqs take large values
(namely the αqs are far from 0), Biernacki et al. (2000) relied on the Stirling
formulae (Appendix A.3) to obtain an approximation of (1.37):

log p(Z) ≈ log p(Z |α̂)−
Q− 1

2
log N, (1.38)

where α̂ = maxα log p(Z | α). Finally, using (1.36) and (1.38) in (1.35) leads
to:

log p(X, Z) ≈ log p(X |Z, κ̂)−
K1

2
log N + log p(Z |α̂)−

Q− 1
2

log N

= log p(X, Z |θ̂)−
K1 + Q− 1

2
log N.

Therefore, if we fix Z = τ as in Section 1.1.4, an (asymptotic) ICL criterion
is given by:

ICL = log p(X, τ |θ̂)−
K1 + Q− 1

2
log N

= log p(X |θ̂)− EN(τ)−
K1 + Q− 1

2
log N

= CLC−
K1 + Q− 1

2
log N

= CLC−
K
2

log N,

(1.39)

since K, the total number of unknown parameters in θ, is given by K =
K1 + Q− 1. The ICL criterion was proposed in order to favor models with
well separated components (as in CLC) as well as penalizing the model
complexity by the number of unknown mixture model parameters (as in
BIC).
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1.2 Variational Inference

In this section, we introduce some variational techniques which lie at the
core of the main inference strategies for networks developed in this thesis.
We first describe the variational EM algorithm which generalizes EM. We
then go to a more general framework, called variational Bayes EM, which
is used in Chapters 2 and 4 to obtain an approximation of the full posterior
distribution over the model parameters and latent variables. This will
naturally lead to two new model selection criteria to estimate the number
of classes in networks.

1.2.1 Variational EM

As mentioned in Section 1.1.3, the EM algorithm can be used to find max-
imum likelihood estimates for models with latent variables. Here, we
give a variational treatment of EM which will prove that the algorithm
is guaranteed to maximize the observed-data log-likelihood (Csiszar and
Tusnady 1984, Hathaway 1986, Neal and Hinton 1998).

Let us consider a data set X and the corresponding classification matrix
Z. We aim at maximizing the observed-data log-likelihood:

log p(X | θ) = log

(

∑
Z

p(X, Z | θ)

)

. (1.40)

Note that (1.40) involves a summation over every possible matrix Z be-
cause we consider discrete mixture models. However, this analysis goes
through unchanged if the latent variables are continuous, simply by re-
placing the summation with an integration. For any distribution q(Z)
over the latent variables, the following decomposition holds:

log p(X | θ) = LML(q; θ) + KL (q(·) || p(·|X, θ)) ,

where

LML(q; θ) = ∑
Z

q(Z) log{
p(X, Z | θ)

q(Z)
}, (1.41)

and

KL (q(·) || p(·|X, θ)) = −∑
Z

q(Z) log{
p(Z |X, θ)

q(Z)
}. (1.42)

Note that LML(q; θ) in (1.41) is a functional of the distribution q(Z) as well
as a function of the parameter θ. In (1.42), KL denotes the Kullback-Leibler
divergence between q(Z) and p(Z |X, θ). It satisfies

KL (q(·) || p(·|X, θ)) ≥ 0,

with equality if, and only if, q(Z) = p(Z |X, θ). Therefore, LML is a lower
bound of log p(X | θ):

log p(X | θ) ≥ LML(q; θ).

Suppose that the current value of the parameters is θold. During the E
step, LML(q; θold) is maximized with respect to q(Z). The solution to this
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optimization step occurs when the KL divergence vanishes that is when
q(Z) = p(Z |X, θold). The observed-data log-likelihood is then equal to its
lower bound given by:

LML(q; θ) = ∑
Z

p(Z |X, θold) log p(X, Z | θ)−∑
Z

p(Z |X, θold) log p(Z |X, θold)

= ∑
Z

p(Z |X, θold) log p(X, Z | θ) + const,

(1.43)
where all the terms that do not depend on θ have been absorbed into
the constant. Note that the first term on the right hand side of (1.43)
is the expectation QML(θ, θold) of the complete-data log-likelihood (see
Section 1.1.3). During the M step, q(Z) is held fixed while LML(q; θ) is
maximized with respect to θ to obtain a new estimate θnew. This causes the
lower bound to increase which will necessarily cause the corresponding
observed-data log-likelihood to increase.

As already mentioned, the EM algorithm can also be used to find MAP
estimates when the goal is to maximize log p(θ |X). The corresponding
variational decomposition is given by:

log p(θ |X) = LMAP(q; θ) + KL (q(·) || p(·|X, θ)) ,

where

LMAP(q; θ) = ∑
Z

q(Z) log{
p(θ, Z |X)

q(Z)
},

and KL is again the Kullback-Leibler divergence between q(Z) and
p(Z |X, θ).

So far, we have assumed that the posterior distribution p(Z |X, θ)
could be computed analytically. However, for some mixture models it is
not tractable and therefore variational approximations are required. This
gives rise to the Variational EM (VEM) algorithm (Algorithm 4). During
the variational E step, the lower bound L(q; θold) is maximized with re-
spect to q(Z), where L either denotes LML or LMAP. This maximization in-
duces a minimization of the KL divergence between q(Z) and p(Z |X, θold).
To obtain a tractable algorithm, it is often assumed that q(Z) can be fac-
torized such that:

q(Z) =
N

∏
i=1

q(Zi).

The solution to this optimization procedure is an approximation q(Z) of
p(Z |X, θold). During the variational M step, this approximation is used to
compute the lower bound L(q; θ) which is then maximized with respect
to θ. These two step are repeated until convergence.

1.2.2 Variational Bayes EM

In the previous sections, we have seen how EM strategies could be used
to obtain point estimates of mixture model parameters. Moreover, we mo-
tivated the use of a Bayesian treatment of the data in order to deal with
the singularities of Gaussian mixture models which arise in the maximum
likelihood setting. However, the Bayesian framework brings much more
powerful features. Indeed, rather than looking for point estimates of the
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Algorithm 4: Variational EM algorithm for mixture models. L either
denotes LML or LMAP.

// INITIALIZATION

Initialize θ0
θnew ← θ0

// OPTIMIZATION

repeat

θold ← θnew

// Variational E-step

Find q(Z) = argmaxq(Z)L(q; θold)
// Variational M-step

Find θnew = argmaxθL(q; θ)
until θ converges

model parameters, we are now going to see how an approximation of the
full posterior distribution over the model parameters and latent variables
can be obtained. Such approximation is particularly relevant when study-
ing the variability of the MAP estimates. This also gives rise to new model
selection criteria.

In a Bayesian framework, all the model parameters are regarded as
random variables drawn from a prior distribution p(θ). If we denote X an
observed data set and Z the corresponding classification matrix, the goal is
to estimate p(Z, θ |X). The marginal log-likelihood, also called integrated
observed-data log-likelihood, is given by:

log p(X) = log
{∫

p(X, θ)d θ

}

= log

{

∑
Z

∫

p(X, Z, θ)d θ

}

.
(1.44)

For any distribution q(Z, θ), the following decomposition holds:

log p(X) = L(q) + KL (q(·) || p(·|X)) ,

where

L(q) = ∑
Z

∫

q(Z, θ) log{
p(X, Z, θ)

q(Z, θ)
}d θ, (1.45)

and

KL (q(·) || p(·|X)) = −∑
Z

∫

q(Z, θ) log{
p(Z, θ |X)

q(Z, θ)
}d θ .

The functional L defined in (1.45) is a lower bound of the marginal log-
likelihood, that is log p(X) ≥ L(q), with equality iff q(Z, θ) = p(Z, θ |X).
However, we shall suppose that working with the true posterior distribu-
tion is intractable. To obtain an approximation of the posterior, we restrict
our search to a family of factorized distributions. In practice, it is often
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assumed that:
q(Z, θ) = q(Z)q(θ)

= q(θ)
N

∏
i=1

q(Zi).
(1.46)

More generally, the hidden variables (Z, θ) can be classified into P disjoint
groups {g1, . . . , gP} of a partition G such that:

q(Z, θ) = q(G) =
P

∏
i=1

qi(gi). (1.47)

In the following, we denote G\j all the groups of G except gj. Using (1.47)
in (1.45), the lower bound becomes:

L(q) =
∫

q(G) log
p(X, G)

q(G)
d G

=
∫

∏
i

qi(gi)

(

log p(X, G)−∑
i

log qi(gi)

)

d G

=
∫

∏
i

qi(gi) log p(X, G) d G−
∫

∏
i

qi(gi)∑
i

log qi(gi) d G

=
∫

qj(gj)

(
∫

∏
i 6=j

qi(gi) log p(X, G) d G\j

)

d gj−
∫

∏
i

qi(gi) log qj(gj) d G

−
∫

∏
i

qi(gi)∑
i 6=j

log qi(gi) d G

=
∫

qj(gj)EG\j [log p(X, G)] d gj−
∫

qj(gj) log qj(gj) d gj

−∑
i 6=j

∫

qi(gi) log qi(gi) d gi

=
∫

qj(gj)
(

log p̂(X, gj)− const
)

d gj−
∫

qj(gj) log qj(gj) d gj

+ ∑
i 6=j

H[gi]

= −KL
(
qj(·)|| p̂(·)

)
+ ∑

i 6=j

H[gi]− const,

(1.48)
where

log p̂(X, gj) = E
G\j [log p(X, G)] + const

=
∫

∏
i 6=j

qi(gi) log p(X, G) d G\j,

and H[bgi] = −
∫

qi(gi) log qi(gi)d gi is the entropy of gi(·). To simplify
the notations, we have used some integrations in formulating the lower
bound. In fact, we emphasize that the latent variables we consider are
discrete and therefore, depending on the groups of G, some integrations
should be replaced by summations as required. If the factors in (1.47)
are assumed to be fixed except the distribution qj(gj), then according to
(1.48), maximizing L(q) with respect to qj(gj) is equivalent to minimizing
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the Kullback-Leibler divergence between qj(gj) and p̂(X, gi). Therefore,
the optimal approximation for the j-th factor is:

log qj(gj) = log p̂(X, gj) = E
G\j [log p(X, G)]) + const,

where the constant can be determined by normalizing qj(gj). Thus, we
have obtained a set of P coupled equations. Indeed, each of the factor is
optimized by computing an expectation with respect to all the other fac-
tors. As a consequence, the factors are first initialized and then by cycling
through the equations and replacing each factor with its new approxi-
mation, we obtain a consistent solution for the variational optimization
procedure. Convergence is guaranteed because the lower bound is convex
with respect to each factor.

Algorithm 5: Variational Bayes EM algorithm for mixture models.

// INITIALIZATION

Initialize q0
i (gi), ∀i

qnew
i (gi)← q0

i (gi), ∀i

// OPTIMIZATION

repeat

qold
i (gi)← qnew

i (gi), ∀i

qnew
i (gi)← exp

(∫

∏j 6=i qold
j (gj) log p(X, G) d G\i

)

, ∀i

Normalize qnew
i (gi), ∀i

until L(q) converges

For the factorization (1.46), some optimization equations involve the
distributions q(Zi) over the latent variables while others focus on the factor
q(θ). These two steps are related to the E and M steps of EM strategies.
Therefore, the optimization algorithm described in this section is usually
referred as the Variational Bayes EM (VBEM) algorithm (Algorithm 5). It
can be seen that VEM is a limiting case of VBEM in which the distribution
over the model parameters q(θ) is collapsed to point estimates at the mode
of the distribution (Hofman and Wiggins 2008).

1.3 Graph clustering

In the previous sections, we introduced mixture models and described
numerous EM strategies for estimation and clustering purposes. We now
concentrate on the classification of vertices in networks depending on their
connection profiles. There has been a wealth of literature on the topic
which goes back to the earlier work of Moreno (1934). As shown in New-
man and Leicht (2007), it appears that available methods can be grouped
into three significant categories. First, some models look for community
structure, also called assortative mixing (Newman 2003, Danon et al. 2005),
where vertices are partitioned into classes such that vertices of a class are
mostly connected to vertices of the same class. They are particularly suit-
able for the analysis of affiliation networks. Other models look for disas-
sortative mixing in which vertices mostly connect to vertices of different
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classes. They are commonly used to analyze bipartite networks (Estrada
and Rodriguez-Velazquez 2005). These models are not considered in this
thesis. Finally, a few procedures look for heterogeneous structure where
vertices can have different types of connection profiles. In particular, they
can be used to uncover both community structure and disassortative mix-
ing.

In this section, we first review some basic definitions of graph theory
and give some examples of real networks. We then describe some of the
most widely used graph clustering methods. Note that many model free
approaches exist (Fortunato 2010). However, except for the algorithmic
approach presented in Section 1.3.2, we concentrate in the following on
methods which rely on statistical models only, as in Goldenberg et al.
(2010).

1.3.1 Graph theory and real networks

Networks are used in many scientific fields to represent the interactions
between objects of interest. For instance, in Biology, regulatory networks
can describe the regulation of genes with transcriptional factors (Milo et al.
2002), while metabolic networks focus on representing pathways of bio-
chemical reactions (Lacroix et al. 2006). Besides, the binding procedures of
proteins are often described as protein-protein interaction networks (Al-
bert and Barabási 2002, Barabási and Oltvai 2004). In social sciences, net-
works are widely used to represent relational ties between actors (Snijders
and Nowicki 1997, Nowicki and Snijders 2001, Palla et al. 2007). Other
examples of networks are powergrids (Watts and Strogatz 1998) and the
Internet (Zanghi et al. 2008).

A network is commonly represented by a graph G = (V , E) where V
is a set of N vertices and E is a set of edges between pairs of vertices.
The graph is said to be directed (Figure 1.1) if the pairs (u, v) in E are
ordered. Conversely, unordered pairs form an undirected graph (Figures
1.2 and 1.3). Note that the edges can be weighted by a function w : E → F

for any set F. However, in this thesis, we will concentrate only on binary
graphs, that is F = {0, 1}. The size of G is then given through the edge
count m = |E |. The graph is said to be dense if m is close to the maximal
number M of edges whereas a low value of m leads to a sparse graph. To
characterize the density of G, a criterion δ(G) is often used. It is defined as
the ratio of the number m of existing edges over the number M of potential
edges:

δ(G) =
m
M

.

For a directed graph, M = N2 while M = N(N + 1)/2 otherwise. If G
does not contain any self loop, that is an edge from a vertex to itself, then
M = N(N − 1) for a directed graph and M = N(N − 1)/2 otherwise.

The neighbourhood NG(u) of vertex u is defined as the set of all the
vertices connected to u. Its degree d(u) is equal to its number of incident
edges. Finally, a path from a vertex u to a vertex v is a sequence of edges
in E starting at vertex v0 = u and ending at vertex vk+1 = v:

{u, v1}, {v1, v2}, . . . , {vk, v}.
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If there exists at least one path between every pair of vertices then the
graph is said to be connected. For instance, the graph in Figure 1.1 is
connected contrary to the graphs in Figures 1.2 and 1.3 which have some
isolated vertices.

So far, we have denoted X a data matrix whose ith row represents ob-
servation xi. Because we considered N observations in R

d, X was in R
N×d.

The matrix X is now an adjacency matrix which describes the presence or
absence of an edge in a graph. As mentioned already, we focus on binary
graphs and therefore X is in {0, 1}N×N . Thus, if there exists an edge from
vertex i to vertex j then Xij equals 1 and 0 otherwise. At this point, it is
crucial to emphasize that N, which denotes the number of vertices, is no
longer the number of observations in the data. Indeed, when considering
graphs, the information about the data distribution comes from the pres-
ence or absence of edges. Therefore, the total number of observations is
in O(N2). As we shall see shortly, for many graph clustering models, the
edges are not independent and so approximation techniques are required
for estimation and classification purposes.

Properties of real networks

Very interestingly, most real networks have been shown to share some
properties (Albert et al. 1999, Broder et al. 2000, Dorogovtsev et al. 2000,
Amaral et al. 2000, Strogatz 2001) that we briefly recall in the following.

• Sparsity: The number of edges is linear in the number of vertices.

• Existence of a giant component: Connected subgraph that contains
a majority of the vertices.

• Heterogeneity: A few vertices have a lot of connections while most
of the vertices have very few links. The degrees of the vertices are
sometimes characterized using a scale free distribution (for instance
see Barabasi and Albert 1999).

• Preferential attachment: New vertices can associate to any vertices,
but “prefer” to associate to vertices which already have many con-
nections.

• Small world: The shortest path from one vertex to another is gener-
ally rather small.
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Figure 1.1 – Subset of the yeast transcriptional regulatory network (Milo et al. 2002).
Nodes of the directed network correspond to genes, and two genes are linked if one gene
encodes a transcriptional factor that directly regulates the other gene.
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Figure 1.2 – The metabolic network of bacteria Escherichia coli (Lacroix et al. 2006).
Nodes of the undirected network correspond to biochemical reactions, and two reactions
are connected if a compound produced by the first one is a part of the second one (or
vice-versa).



34 Chapter 1. Context

Figure 1.3 – Subset of the french political blogosphere network. The data consists of
a single day snapshot of political blogs automatically extracted on 14th october 2006

and manually classified by the “Observatoire Présidentielle project” (Zanghi et al. 2008).
Nodes correspond to hostnames and there is an edge between two nodes if there is a known
hyperlink from one hostname to another (or vice-versa).
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1.3.2 Community structure

Many graph clustering methods aim at detecting community structure,
also called assortative mixing, meaning the appearance of densely con-
nected groups of vertices, with only sparser connections between groups
(Figure 1.4). Most of them rely on the modularity score of Newman and
Girvan (2004). However, we point out the recent work of Bickel and Chen
(2009) who showed that these algorithms are (asymptotically) biased and
that using modularity scores could lead to the discovery of an incorrect
community structure, even for large graphs.

Figure 1.4 – Example of an undirected affiliation network with 50 vertices. The network
is made of three communities represented in red, blue, and green. Vertices connect mainly
to vertices of the same community.

Modularity score

Girvan and Newman (2002), Newman and Girvan (2004) proposed sev-
eral intuitive community detection algorithms which involve iterative re-
moval of edges from the network to split it into communities. Edges to
be removed are identified using one of a number of possible betweenness
measures. All of them are based on the same idea. If two communities are
joined by only a few inter community edges, then all paths from vertices
in one community to vertices in the other must pass along one of those
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few edges. Therefore, given a suitable set of paths, we expect the number
of paths that go along an edge to be largest for inter community edges.

First, they introduced the edge betweenness which is a generalization
to edges of the (vertex) betweenness measure of Freeman (1977). The edge
betweenness of an edge is defined as the number of shortest paths between
all pairs of vertices in the network that run along that edge. Second, they
considered the random walk betweenness. The expected number of times
a random walk between a particular pair of vertices will pass down a par-
ticular edge is calculated. This expected value is then summed over all
pairs of vertices to obtain the random walk betweenness of the edge. As
shown in Newman and Girvan (2004), other scores can obviously be con-
sidered to obtain algorithms that may be more appropriate for some ap-
plications. However, it appears that the choice of measure does not highly
influence the result of the algorithms. On the other hand, the recalculation
step after each edge removal is crucial (see Algorithm 6).

All these algorithms produce a dendrogram (Figure 1.5) which rep-
resents an entirely nested hierarchy of possible community divisions for
the network. In order to select one of these divisions, Newman and Gir-
van (2004) proposed a modularity criterion. Consider a particular divi-
sion with Q communities and let us denote eql the fraction of all edges in
the network that link vertices in community q to vertices in community
l. Moreover, consider the fraction aq = ∑

Q
l=1 eql of edges that connect to

vertices of community q. The modularity criterion is then given by:

mod =
Q

∑
q=1

(eqq − a2
q). (1.49)

The criterion is computed for all the divisions, and a division is chosen
such that the modularity is maximized.

A limiting factor of these community detection algorithms is their poor
scaling with the number m of edges and the number N of vertices in the
network. For instance calculating the shortest paths between a particu-
lar pair of vertices can be done in O(m) (Ahuja et al. 1993, Cormen et al.
2001). Because they are O(N2) vertex pairs, the computational cost to
compute all the edge betweenness scores is in O(mN2). This complexity
was improved independently by Newman (2001) and Brandes (2001) find-
ing all betweennesses in O(mN). Since this calculation has to be repeated
for the removal of each edge, the entire algorithm runs in worst-case time
O(m2N). In other words, for dense networks, where m is in O(N2), it runs
in O(N5) while it scales in O(N3) for sparse networks, where m is linear
in N.

Algorithm 6: Example of a community structure detection algorithm
with a betweenness score.

repeat
Calculate betweenness scores for all edges
Remove the edge with the highest score

until No edges remain
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Figure 1.5 – Dendrogram of a network with 50 vertices for the community detection
algorithm with edge betweenness. It should be read from top to bottom. The algorithm
starts with a single community which contains all the vertices. Edges with the highest
edge betweenness are then removed iteratively splitting the network into several commu-
nities. After convergence, each vertex, represented by a leaf of the tree, is a sole member
of one of the 50 communities.
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Rather than building the complete dendrogram (with edge removals)
and then choosing the optimal division using the modularity criterion,
Newman (2004) suggested to focus directly on the optimization of the
modularity. Thus, he proposed an algorithm which falls in the general
category of agglomerative hierarchical clustering methods (Everitt 1974,
Scott 2000). Starting with a configuration in which each vertex is the sole
member of one of N communities, the communities are iteratively joined
together in pairs, choosing at each step the join that results in the great-
est increase (or smallest decrease) in mod (1.49). Again, this leads to a
dendrogram for which the best cut is chosen by looking for the maximal
value of the modularity. The computational cost of the entire algorithm
is in O ((m + N)N), or O(N3) for dense networks and O(N2) for sparse
networks. It was shown to be capable of handling a collaboration network
with 50000 vertices in Newman (2004).

All the algorithms described in this section are implemented in the R
package “igraph” which is available on the CRAN:
http://cran.r-project.org/web/packages/igraph

Latent position cluster model

An alternative approach for community detection in networks is the La-
tent Position Cluster Model (LPCM) of Handcock et al. (2007). Consider
a N × N binary adjacency matrix X such that Xij equals 1 if there is an
edge from vertex i to vertex j, and 0 otherwise. Moreover, let us define Y

a covariate information where Yij denotes some observed characteristics
about the pair (i, j) of vertices. This might represent for instance the traffic
information of users from blog i to blog j in a blogosphere network (see
Figure 1.3). Several characteristics can possibly be observed for each pair
of vertices and therefore Yij can be vector valued. Note that a few other
random graph models have been proposed in the literature to take covari-
ates into account (see for instance Zanghi et al. 2010, Mariadassou et al.
2010). They will not be considered in this thesis where the goal is to cluster
the vertices by using the network topology only. Here, we describe LPCM
in a general setting, as in Handcock et al. (2007), and emphasize that the
algorithm can also be used if Y is not available, simply by removing the
terms in Yij in the following expressions.

LPCM assumes that the network does not contain any self loop while
both directed and undirected relations can be analyzed. It is assumed
that each vertex, usually called actor in social sciences, has an unobserved
position in a d dimensional Euclidean latent space as in Hoff et al. (2002).
Given the latent positions and the covariate information, the edges are
assumed to be drawn from a Bernoulli distribution:

Xij|Zi, Zj, Yij ∼ B
(

g(aZi ,Zj ,Yij)
)

.

The function g(x) = 1/(1+ e−x) is the logistic sigmoid function. Moreover
aZi ,Zj ,Yij is given by:

aZi ,Zj ,Yij = Y⊺

ij β0−β1|Zi−Zj |, (1.50)

where β0 as the same dimensionality as Yij and β1 is a scalar. Both β0 and
β1 are unknown parameters to be estimated. To represent clustering, the

http://cran.r-project.org/web/packages/igraph
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positions are assumed to be drawn from a finite mixture of Q multivariate
normal distributions (see Section 1.1.2), each one representing a different
class of vertices. Each multivariate distribution has its own mean vector
as well as spherical covariance matrix:

Zi ∼
Q

∑
q=1

αqN (µq, σ2
q I),

and α denotes a vector of class proportions which satisfies αq > 0, ∀q and

∑
Q
q=1 αq = 1. Finally, according to LPCM, the latent positions Z1, . . . , ZN

are iid and given this latent structure, all the edges are supposed to be
independent. Consider now the second term on the right hand side of
(1.50). By construction, if β1 is positive, we expect the L1 distance |Zi−Zj |
to be smaller if vertices i and j are in the same class. In other words, the
probability g(aZi ,Zj ,Yij) of an edge between i and j is supposed to be higher
for vertices sharing the same class. Note that this corresponds exactly to
the definition of a community.

Handcock et al. (2007) proposed a two-stage maximum likelihood ap-
proach and a Bayesian algorithm, as well as a BIC criterion to estimate the
number of latent classes. The two-stage maximum likelihood approach
first maps the vertices in the latent space and then uses a mixture model
to cluster the resulting positions. In practice, this procedure converges
more quickly but looses some information by not estimating the positions
and the cluster model at the same time. Conversely, the Bayesian algo-
rithm (see Figure 1.6), based on Markov Chain Monte Carlo, estimates
both the latent positions and the mixture model parameters simultane-
ously. It gives better results but is time consuming. Both the maximum
likelihood and the Bayesian approach are limited in the sense that they
can handle networks with a few hundreds of vertices only. They are im-
plemented in the R package “latentnet” (Krivitsky and Handcock 2009)
which is available on the CRAN:
http://cran.r-project.org/web/packages/latentnet

http://cran.r-project.org/web/packages/latentnet
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Figure 1.6 – Directed network of social relations between 18 monks in an isolated Amer-
ican monastery (Sampson 1969, White et al. 1976). Sampson collected sociometric in-
formation using interviews, experiments, and observations. This network focus on the
relation of “liking”. A monk is said to have a social relation of “like” to another monk
if he ranked that monk in the top three monks for positive affection in any of the three
interviews given. The positions of the vertices in the two data dimensional latent space
have been calculated using the Bayesian approach for LPCM. The position of the three
class centers found are indicated as well as circles with radius equal to the square root of
the class variances estimated.
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1.3.3 Heterogeneous structure

So far, we have seen some algorithms to uncover communities. We now
present some other approaches which can look for heterogeneous struc-
ture in networks where vertices can have different types of connection
profiles.

Hofman and Wiggins

Let us consider a binary adjacency matrix X representing a network G.
The model of Hofman and Wiggins (2008) associates to each vertex of the
network a latent variable Zi drawn from a multinomial distribution:

Zi ∼M (1, α = (α1, . . . , αQ)) . (1.51)

As in other standard mixture models (see Section 1.1.2), the vector Zi has
all its components set to zero except one such that Ziq equals 1 if vertex
i belong to class q. The edges are then assumed to be drawn from a
Bernoulli distribution:

Xij ∼ B(λ),

if vertices i and j are in the same class, that is Zi = Zj, and

Xij ∼ B(ǫ),

otherwise. Thus, the model can take both community structure (λ > ǫ)
(Figure 1.4) and disassortative mixing (λ < ǫ) (Figure 1.7) into account. As
in the previous section, given the latent variables Z1, . . . , ZN , all the edges
are supposed to be independent. In order to estimate the posterior dis-
tribution p(Z, α, λ, ǫ|X) over the latent variables and model parameters,
Hofman and Wiggins (2008) used a variational Bayes EM algorithm (see
Section 1.2.2) with a factorized distribution:

q(Z, α, λ, ǫ) = q(α)q(λ)q(ǫ)
N

∏
i=1

q(Zi).

Moreover, they proposed a model selection criterion to estimate the num-
ber of latent classes in networks. It relies on a variational approximation
of the marginal log-likelihood log p(X) and has shown promising results.
This criterion is experimented in Chapter 2.

The computational cost of the variational Bayes algorithm is O(N2Q)
such that the algorithm can deal with networks with thousands of vertices.
It is implemented in a Matlab package “VBMOD” available at:
http://vbmod.sourceforge.net

http://vbmod.sourceforge.net
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Figure 1.7 – Example of an undirected network with 20 vertices. The connection probabil-
ities between the two classes in red and green are higher than the intra class probabilities.
Vertices connect mainly to vertices of a different class.
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Stochastic block models

Originally developed in social sciences, the Stochastic Block Model (SBM)
is a probabilistic generalization (Fienberg and Wasserman 1981, Holland
et al. 1983) of the method described in White et al. (1976). Given a network,
it assumes that each vertex belongs to a hidden class among Q classes, and
uses a matrix Π to describe the intra and inter connection probabilities
(Frank and Harary 1982). No assumption is made on the form of the
connectivity matrix such that very different structures can be taken into
account. In particular, SBM can characterize the presence of hubs which
make networks locally dense (Daudin et al. 2008). Moreover and to some
extent, it generalizes many of the existing graph clustering techniques, as
shown in Newman and Leicht (2007). For instance, the model of Hofman
and Wiggins (2008) can be seen as a constrained SBM where the diagonal
of Π is set to λ and all the other elements to ǫ.

Formally, SBM considers a latent variable Zi, drawn from a multino-
mial distribution (1.51), for each vertex in the network. Thus, each vertex
belongs to a single class, and that class is q if Ziq equals 1. The edges are
then assumed to be drawn from a Bernoulli distribution:

Xij|ZiqZjl = 1 ∼ B(πql),

where Π is a Q×Q matrix of connection probabilities. Again, given all the
latent variables, the edges are supposed to be independent. Note that SBM
was originally described in a more general setting (Nowicki and Snijders
2001), allowing any discrete relational data. However, as explained in
Section 1.3.1, we concentrate in the following on binary edges only.

SBM is related to the infinite block model of Kemp et al. (2004) al-
though the number Q of classes is fixed. Moreover, contrary to the mixed
membership stochastic block model of Airoldi et al. (2008) which captures
partial membership and allows each vertex to have a distribution over a
set of classes, SBM assumes that each vertex of a network belongs to a
single class. The identifiability of the parameters in SBM was studied by
Allman et al. (2009; 2010), who showed that the model is generically iden-
tifiable up to a permutation of the classes. In other words, except in a
set of parameters which has a null Lebesgue’s measure, two parameters
imply the same random graph model if and only if they differ only by
the ordering of the classes. Many inference strategies as well as a model
selection criterion have been proposed for SBM. They will be described in
Chapter 2.

SBM is the starting point of this thesis. A new Bayesian inference
procedure is proposed for this model in Chapter 2. It is then extended to
allow overlapping clusters in Chapters 3 and 4.

1.4 Phase transition in stochastic block models

Contrary to all the previous sections of this chapter where we described
existing work, we now present some new properties that we found which
bring some insights into the SBM model. The goal is to show that, for a
specific choice of connectivity matrix, the model can be seen as an instance
of the inhomogeneous random graph model. We then use the results of
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Bollobás et al. (2005) to characterize the critical point of phase transition
in SBM, where a giant component appears. This work was done in collab-
oration with C. Matias.

Let us start by considering a SBM model with Q classes and a kernel2

κ(x, y) on a finite metric space S = {1, . . . , Q}. We denote α = (α1, . . . , αQ)
the vector of class proportions and introduce a probability measure µ on
S such that µ(q) = αq, ∀q ∈ S. Moreover, let us define a Q× Q matrix Π

of connection probabilities which depend on the number N of vertices:

πql =
κ(q, l)

N
, ∀(q, l) ∈ S× S.

If an undirected graph without self loop is considered, the expected num-
ber of edges e(N, κ) is given by:

E[e(N, κ)] = E[∑
i<j

Xij]

= ∑
i<j

E[Xij]

= ∑
i<j

p(Xij = 1| α, Π)

= ∑
i<j

∑
Zi

∑
Zj

p(Xij = 1|Zi, Zj, Π)p(Zi | α)p(Zj | α)

= ∑
i<j

∑
q,l

αqαlπql

=
N(N − 1)

2 ∑
q,l

αqαl
κ(q, l)

N

=
N − 1

2 ∑
q,l

αqαlκ(q, l).

(1.52)

Thus, E[e(N, κ)] is linear in N. Obviously, this is also the case if the net-
work contains self loops and/or it is directed. Following Bollobás et al.
(2005), the model considered is an inhomogeneous random graph model
if the kernel κ is graphical, that is:

Q

∑
q=1

Q

∑
l=1

αqαk|κ(q, l)| < ∞,

and

lim
N→∞

1
N

E[e(N, κ)] =
1
2

Q

∑
q,l

αqαlκ(q, l).

The kernel is bounded and using (1.52), these two properties are verified.

1.4.1 The phase transition

In order to study the phase transition, also called percolation transition,
we use the operator introduced by Bollobás:

(Tκ v)(q) =
Q

∑
l=1

κ(q, l)v(l)αl , ∀q. (1.53)

2Here we define a kernel as a symmetric non-negative function
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Note that both the input v and the output Tκ v of the operator are Q
dimensional vectors. Consider now the norms given by:

|| u ||2 =

(
Q

∑
q=1

αqu2
q

) 1
2

,

for any Q dimensional vector u and

||Tκ|| = sup{||Tκ v ||2 : vq ≥ 0, ∀q, || v ||2 ≤ 1} < ∞.

The kernel κ is said to be subcritical if ||Tκ|| < 1, critical if ||Tκ|| = 1, and
supercritical if ||Tκ|| > 1. If ||Tκ|| < 1, the size of the biggest connected
component is C1(G) = O(log N), whereas C1(G) = O(N) if ||Tκ|| > 1.
In our case, we aim at characterizing the connectivity matrix Π for which
||Tκ|| = 1. Using matrix notations, (1.53) can be written:

Tκ v = K diag(α1, . . . , αQ) v,

where K is a Q× Q matrix such that (K)ql = κ(q, l) and diag(α1, . . . , αQ)
is a diagonal matrix with diagonal equal to the vector α. If the vec-
tor v is now decomposed on the basis {e1, . . . , eQ} of eigenvectors of
K diag(α1, . . . , αQ), we obtain:

v =
Q

∑
q=1

vqeq,

and

Tκ v = K diag(α1, . . . , αQ)
Q

∑
q=1

vqeq =
Q

∑
q=1

vkλqeq,

where {λ1, . . . , λQ} are the corresponding eigenvalues of {e1, . . . , eQ}.
Thus

||Tκ v ||22 =
Q

∑
q=1

αqv2
qλ2

q ≤ (max
q

λ2
q)

Q

∑
q=1

αqv2
q = (max

q
λ2

q)|| v ||
2
2.

Subject to the constraint || v ||2 ≤ 1, the maximum maxq |λq| of ||Tκ v ||2 is
reached when || v ||2 = 1. Therefore, ||Tκ|| = maxq |λq|. In other words,
given the matrices K and diag(α1, . . . , αq), a giant component appears in
the graph, that is C1 = O(N), if maxq |λq| ≥ 1.

1.4.2 Experiments

In this section, some experiments are carried out to verify the properties
found previously. A SBM model is considered with a connectivity matrix
Π such that πql =

κ(q,l)
N and

K =









a b . . . b

b a
...

...
. . . b

b . . . b a









,
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to limit the number of free parameters.
We start by fixing the number of classes Q = 2, the corresponding

proportions {α1 = 0.6, α2 = 0.4}, and the number of vertices N = 5000.
We then generate some graphs by changing the values of a and b. The
parameter b is set to a/8 and a varies from 0.5 to 50. For each pair (a, b),
both the proportion N∗ of vertices in the biggest connected component
and the highest eigenvalue maxq |λq| of K diag(α1, . . . , αQ) are computed.
In order to obtain smoother results, each experiment is repeated 30 times
and the resulting proportions N∗ are averaged. The results are presented
in Figure 1.8.

0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

Figure 1.8 – Several graphs with 5000 vertices are generated using SBM with various
connectivity matrices. The x axis represents the values of maxq |λq| while the proportions
N∗ of vertices in the biggest connected component are given in the y axis. The critical
point of phase transition occurs when maxq |λq| ≥ 1.

We verify that the phase transition occurs when the highest eigenvalue
maxk |λk| is equal to 1. Indeed, when maxq |λq| < 1, the proportion N∗

of vertices in the biggest connected component is close to zero whereas it
converges to 1 when maxq |λq| ≥ 1.
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Conclusion

In this chapter, we reviewed mixture models as well as inference tech-
niques such as the EM algorithm and the variational EM algorithm. We
also focused on some model selection criteria to estimate the number of
components from the data. Finally, we described some of the most widely
graph clustering algorithms and concentrated mainly on model based ap-
proaches.
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The clustering of vertices as well as the estimation of the Stochastic Block
Model (SBM) parameters have been subject to previous work and nu-

merous inference strategies such as variational Expectation Maximization
(EM) and classification EM have been proposed. However, SBM still suf-
fers from a lack of criteria to estimate the number of components in the
mixture. To our knowledge, only one model based criterion, ICL, has been
derived for SBM in the literature. It relies on an asymptotic approxima-
tion of the Integrated Complete-data Likelihood and recent studies have
shown that it tends to be too conservative in the case of small networks.
To tackle this issue, we propose a new criterion that we call ILvb, based
on a non asymptotic approximation of the marginal likelihood. We de-
scribe how the criterion can be computed through a variational Bayes EM
algorithm.
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2.1 Introduction

Many methods have been proposed in the literature to jointly estimate
SBM model parameters and cluster the vertices of a network. They all face
the same difficulty. Indeed, contrary to many mixture models, the con-
ditional distribution of all the latent variables Z and model parameters,
given the observed data X, can not be factorized due to conditional de-
pendency (for more details, see Daudin et al. 2008). Therefore, optimiza-
tion techniques such as the EM algorithm can not be used directly. In the
case of SBM, Nowicki and Snijders (2001) proposed a Bayesian probabilis-
tic approach. They introduced some prior Dirichlet distributions for the
model parameters and used Gibbs sampling to approximate the posterior
distribution over the model parameters and posterior predictive distribu-
tion. Their algorithm is implemented in the software BLOCKS, which is
part of the package StoCNET (Boer et al. 2006). It gives accurate a poste-
riori estimates but can not handle networks with more than 200 vertices.
Daudin et al. (2008) proposed a frequentist variational EM approach for
SBM which can handle much larger networks. Online strategies have also
been developed (Zanghi et al. 2008).

While many inference strategies have been proposed for estimation
and clustering purpose, SBM still suffers from a lack of criteria to esti-
mate the number of classes in networks. Indeed, many criteria, such as
the Bayesian Information Criterion (BIC) or the Akaike Information Cri-
terion (AIC) (Burnham and Anderson 2004) are based on the likelihood
p(X | α, Π) of the observed data X, which is intractable here. To tackle
this issue, Mariadassou et al. (2010) and Daudin et al. (2008) used a cri-
terion, so-called ICL, based on an asymptotic approximation of the inte-
grated complete-data likelihood. This criterion relies on the joint distribu-
tion p(X, Z | α, Π) rather than p(X | α, Π) and can be easily computed, even
in the case of SBM. ICL was originally proposed by Biernacki et al. (2000)
for model selection in Gaussian mixture models, and is known to be par-
ticularly suitable for cluster analysis view since it favors well separated
clusters. However, because it relies on an asymptotic approximation, Bier-
nacki et al. (2010) showed, in the case of mixtures of multivariate multino-
mial distributions, that it may fail to detect interesting structures present
in the data, for small sample sizes. Mariadassou et al. (2010) obtained sim-
ilar results when analyzing networks generated using SBM. They found
that this asymptotic criterion tends to underestimate the number of classes
when dealing with small networks. We emphasize that, to our knowledge,
ICL is currently the only model based criterion developed for SBM.

Our main concern in this chapter is to propose a new criterion for SBM,
based on the marginal likelihood p(X), also called integrated observed-
data likelihood. The marginal likelihood is known to focus on density
estimation view and is expected to provide a consistent estimation of the
distribution of the data. For a more detailed overview of the differences
between integrated complete-data likelihood and integrated observed-data
likelihood, we refer to Biernacki et al. (2010). In the case of SBM, the
marginal likelihood is not tractable and we describe in this chapter how
a non asymptotic approximation can be obtained through a variational
Bayes EM algorithm.
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In Section 2.2, we describe SBM and we introduce some non informa-
tive conjugate prior distributions for the model parameters. The varia-
tional Bayes EM algorithm is then presented in Section 2.3. We show in
Section 2.4 how it naturally leads to a new model selection criterion that
we call ILvb. Finally, in Section 2.5, we carry out some experiments using
simulated data sets and the metabolic network of Escherichia coli, to assess
ILvb.
The R package “mixer” implementing this work is available from the
following web site: http://cran.r-project.org/web/packages/

mixer

2.2 A mixture model for graphs

The data we model consists of a N × N binary matrix X, with entries Xij
describing the presence or absence of an edge from vertex i to vertex j.
Both directed and undirected relations can be analyzed but in the follow-
ing, we focus on undirected relations. Therefore X is symmetric.

2.2.1 Model and notations

As mentioned in Section 1.3.3, the Stochastic Block Model (SBM) intro-
duced by Nowicki and Snijders (2001) associates to each vertex of a net-
work a latent variable Zi drawn from a multinomial distribution, such that
Ziq = 1 if vertex i belongs to class q:

Zi ∼M
(

1, α = (α1, α2, . . . , αQ)
)

.

The vector α denotes the vector of class proportions. The edges are then
drawn from a Bernoulli distribution:

Xij|{ZiqZjl = 1} ∼ B(πql),

where Π is a Q× Q matrix of connection probabilities. According to this
model, the latent variables Z1, . . . , ZN are iid and given this latent struc-
ture, all the edges are supposed to be independent.

http://cran.r-project.org/web/packages/mixer
http://cran.r-project.org/web/packages/mixer
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Thus, when considering an undirected graph without self loops, this
leads to:

p(Z | α) =
N

∏
i=1
M(Zi; 1, α) =

N

∏
i=1

Q

∏
q=1

α
Ziq
q ,

and
p(X |Z, Π) = ∏

i<j
p(Xij|Zi, Zj, Π)

= ∏
i<j

∏
q,l
B(Xij|πql)

ZiqZjl

= ∏
i<j

∏
q,l

(

π
Xij

ql (1− πql)
1−Xij

)ZiqZjl
.

In the case of a directed graph, the products over i < j must be replaced
by products over i 6= j. The edges Xii must also be taken into account if
the graph contains self-loops.

2.2.2 A Bayesian Stochastic Block Model

SBM can be described in a full Bayesian framework where it can be con-
sidered as a generalisation of the affiliation model proposed by Hofman
and Wiggins (2008). Indeed, the Bayesian model of Hofman and Wig-
gins (2008) considers a simple structure where vertices of the same class
connect with probability λ and with probability ǫ otherwise (see Section
1.3.3). Therefore, it can be seen as a constrained SBM where the diagonal
of Π is set to λ and all the other elements to ǫ.

To extend the SBM frequentist model, we first specify some non in-
formative conjugate priors for the model parameters. Since p(Zi | α) is a
multinomial distribution, we consider a Dirichlet distribution for the mix-
ing coefficients:

p
(

α | n0 = {n0
1, . . . , n0

Q}
)

= Dir(α; n0),

where n0
q = 1/2, ∀q. This Dirichlet distribution corresponds to a non-

informative Jeffreys prior distribution which is known to be proper (Jef-
freys 1946). It is also possible to consider a uniform distribution on the
Q− 1 dimensional simplex by fixing n0

q = 1, ∀q.
Since p(Xij|Zi, Zj, Π) is a Bernoulli distribution, we use independent

Beta priors to model the connectivity matrix Π:

p
(

Π | η0 = (η0
ql), ζ0 = (ζ0

ql)
)

= ∏
q≤l

Beta(πql ; η0
ql , ζ0

ql),

with η0
ql = ζ0

ql = 1/2, ∀q. This corresponds to a product of non-informative
Jeffreys prior distributions. Note that if the graph is directed, the products
over q ≤ l, must be replaced by products over q, l since Π is no longer
symmetric.

Thus, the model parameters are now seen as random variables (see
Figure 2.1) whose distributions depend on the hyperparameters n0, η0,
and ζ0. In the following, since these hyperparameters are fixed and in
order to keep the notations simple, they will not be shown explicitly in
the conditional distributions.
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α

Zi Zj

Xij
π

Figure 2.1 – Directed acyclic graph representing the Bayesian view of SBM. Nodes rep-
resent random variables, which are shaded when they are observed and edges represent
conditional dependencies.

2.3 Estimation

In this section, we first describe the variational EM algorithm used by
Daudin et al. (2008) to jointly estimate SBM model parameters and clus-
ter the vertices of a network. We then propose a new variational Bayes
EM algorithm for SBM which approximates the full posterior distribution
of the model parameters and latent variables, given the observed data X.
This procedure relies on a lower bound which will be later used, in Sec-
tion 2.4, as a non asymptotic approximation of the marginal log-likelihood
log p(X).

2.3.1 Variational EM

The likelihood p(X | α, Π) of the observed data X can be obtained through
the marginalization p(X | α, Π) = ∑Z p(X, Z | α, Π). This summation in-
volves QN terms and quickly becomes intractable. To tackle such prob-
lem, the well known EM algorithm (see Section 1.1.3) has been applied
with success on a large variety of mixture models. As shown in Section
1.2.1, this two stage estimation approach (Hathaway 1986, Neal and Hin-
ton 1998) can be described in a variational inference framework. Unfortu-
nately, EM relies on the distribution p(Z |X, α, Π) which is not tractable in
the case of SBM and therefore variational approximations are required.

Thus, given a distribution q(Z) over the latent variables, the log-
likelihood of the observed data is decomposed into two terms:

log p(X | α, Π) = LML(q; α, Π) + KL (q(·) || p(·|X, α, Π)) , (2.1)

where

LML(q; α, Π) = ∑
Z

q(Z) log
{

p(X, Z | α, Π)

q(Z)

}

, (2.2)



2.3. Estimation 55

and

KL (q(·) || p(·|X, α, Π)) = −∑
Z

q(Z) log
{

p(Z |X, α, Π)

q(Z)

}

. (2.3)

In (2.1) and (2.3), KL denotes the Kullback-Leibler divergence between the
distribution q(Z) and the distribution p(Z |X, α, Π). It can be easily veri-
fied that minimizing (2.3) with respect to q(Z) is equivalent to maximizing
the lower bound (2.2) of (2.1) with respect to q(Z). To obtain a tractable
algorithm, Daudin et al. (2008) assumed that the distribution q(Z) can be
factorized such that:

q(Z) =
N

∏
i=1

q(Zi) =
N

∏
i=1
M(Zi; 1, τi),

where τiq is a variational parameter denoting the probability of node i to
belong to class q. This gives rise to a so-called variational EM procedure.
During the variational E-step, the model parameters are fixed and, by
maximizing (2.2) with respect to q(Z), the algorithm looks for an approx-
imation of the conditional distribution of the latent variables. Conversely,
during the variational M-step, the approximation q(Z) is fixed and the
lower bound is maximized with respect to the model parameters. This
procedure is repeated until convergence and was proposed by Daudin
et al. (2008) for SBM.

2.3.2 Variational Bayes EM

In the context of mixture models, the conditional distribution p(Z |X, α, Π)
can generally be computed and therefore Bayesian inference strategies fo-
cus on estimating the posterior distribution p(α, Π |X). The distribution
p(Z, α, Π |X) is then simply given by a byproduct. However, when consid-
ering SBM, the distribution p(Z |X, α, Π) is intractable and so we propose
to approximate the full distribution p(Z, α, Π |X). We follow the work of
Attias (1999), Corduneanu and Bishop (2001), Svensén and Bishop (2004)
on Bayesian mixture modelling and Bayesian model selection. Thus, the
marginal log-likelihood, also called integrated observed-data log-likelihood,
can be decomposed into two terms:

log p(X) = L (q(·)) + KL (q(·) || p(·|X)) , (2.4)

where

L(q) = ∑
Z

∫ ∫

q(Z, α, Π) log
{

p(X, Z, α, Π)

q(Z, α, Π)

}

d α d Π, (2.5)

and

KL (q(·) || p(·|X))

= −∑
Z

∫ ∫

q(Z, α, Π) log
{

p(Z, α, Π |X)

q(Z, α, Π)

}

d α d Π . (2.6)

Again, as for the variational EM approach (Section 2.3.1), minimizing (2.6)
with respect to q(Z, α, Π) is equivalent to maximizing the lower bound
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(2.5) of (2.4) with respect to q(Z, α, Π). However, we now have a full varia-
tional optimization problem since the model parameters are random vari-
ables and we are looking for an approximation q(Z, α, Π) of p(Z, α, Π |X).
To obtain a tractable algorithm, we assume that the distribution q(Z, α, Π)
can be factorized such that:

q(Z, α, Π) = q(α)q(Π)q(Z) = q(α)q(Π)
N

∏
i=1

q(Zi).

In the following, we use a variational Bayes EM algorithm (see Section
1.2.2). We call variational Bayes E-step, the optimization of each distri-
bution q(Zi) and variational Bayes M-step, the approximations of the re-
maining distributions q(α) and q(Π). All the optimization equations, the
lower bound, as well as proofs are given in the appendix.

We first initialize a matrix τold with a hierarchical algorithm based on
the classical Ward distance. The distance between vertices which is con-
sidered is simply the Euclidean distance d(i, j) = ∑

N
k=1(Xik − Xjk)

2 which
takes the number of discordances between i and j into account. Given a
number of classes Q, each vertex is assigned (hard assignment) to its near-
est group. Second, the algorithm uses (B.4) and (B.6) to estimate the varia-
tional distributions over the model parameters α as well as Π. Finally, the
variational distribution over the latent variables is estimated using (B.1).
The algorithm cycles though the E and M steps until the absolute distance
between two successive values of the lower bound (B.8) is smaller than a
threshold eps. In the experiment section, we set eps = 1e− 6. In practice,
smaller values slow the convergence of the algorithm and do not lead to
better estimates.

The computational costs of the frequentist approach of Daudin et al.
(2008) and our variational Bayes algorithm are both equal to O(Q2N2).
Analyzing a sparse network takes about a second for N = 200 nodes and
about a minute for N = 1000.

2.4 Model selection

So far, we have seen that the variational Bayes EM algorithm leads to an
approximation of the posterior distribution of all the model parameters
and latent variables, given the observed data. However, the problem of
estimating the number Q of classes in the mixture has not been addressed
yet. Given a set of values of Q, we aim at selecting Q∗ which maximizes
the marginal log-likelihood log p(X |Q), also called integrated observed-
data log-likelihood. The marginal likelihood is known to focus on density
estimation view and is expected to provide a consistent estimation of the
distribution of the data (Biernacki et al. 2010). Unfortunately, this quantity
is not tractable, since for each value of Q, it involves integrating over all
the model parameters and latent variables:

log p(X |Q) = log

{

∑
Z

∫ ∫

p(X, Z, α, Π |Q) d α d Π

}

.

To tackle this issue, we propose to replace the marginal log-likelihood
with its variational Bayes approximation. Thus, given a value of Q, the al-
gorithm introduced in Section 2.3.2 is used to maximize the lower bound
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(2.5) with respect to q(.). We recall that this maximization implies a min-
imization of the KL divergence (2.6) between q(.) and the unknown pos-
terior distribution. After convergence of the algorithm, according to (2.4),
if the KL divergence is small, then the lower bound L (q(.)) approximates
the marginal log-likelihood. Obviously, this assumption can not be veri-
fied in practice since (2.6) can not be computed analytically. Moreover, we
emphasize that there is no solid reason to believe that the KL divergence
is close to zero and does not depend on the model complexity. Never-
theless, in order to obtain a tractable model selection criterion we rely on
this approximation. After convergence of the algorithm, the lower bound
takes a simple form and leads to a new criterion for SBM that we call ILvb

ILvb = log







Γ(∑
Q
q=1 n0

q)∏
Q
q=1 Γ(nq)

Γ(∑
Q
q=1 nq)∏

Q
q=1 Γ(n0

q)







+
Q

∑
q≤l

log

{
Γ(η0

ql + ζ0
ql)Γ(ηql)Γ(ζql)

Γ(ηql + ζql)Γ(η
0
ql)Γ(ζ

0
ql)

}

−
N

∑
i=1

Q

∑
q=1

τiq log τiq,

where τiq is the estimated probability of vertex i to belong to class q and
(nq)q, (ηql)ql , (ζql)ql are parameters given in the appendix. The gamma
function is denoted by Γ(·). Contrary to the criterion proposed by Daudin
et al. (2008), ILvb does not rely on an asymptotic approximation, some-
times called BIC-like approximation. In practice, given a network, the
variational Bayes EM algorithm is run for the different values of Q consid-
ered and Q∗ is chosen such that ILvb is maximized.

2.5 Experiments

We present some results of the experiments we carried out to assess the
criterion we proposed in Section 2.4. Throughout our experiments, we
chose to compare our approach to the work of Daudin et al. (2008) and
Hofman and Wiggins (2008). Indeed, contrary to many other model based
techniques, the corresponding algorithms can analyze networks with hun-
dred of nodes in a reasonable amount of time (a few minutes on a dual
core). We recall that Daudin et al. (2008) proposed a frequentist maximum
likelihood approach (see Section 2.3.1) for SBM as well as an ICL crite-
rion. On the other hand, Hofman and Wiggins (2008) presented a model
for community structure detection and a Bayesian criterion that we will
denote VBMOD. Thus, by using both synthetic data and the metabolic
network of bacteria Escherichia coli, our aim is twofold. First, we illustrate
the overall capacity of SBM to retrieve interesting structures in a large va-
riety of networks. Second, we concentrate on comparing the two criteria
ICL and ILvb developed for SBM.

2.5.1 Comparison of the criteria

In these experiments, we consider two types of networks. In Section 2.5.1,
we generate affiliation networks, made of community structures, using
the generative model of Hofman and Wiggins (2008). Therefore, vertices



58

Chapter 2. Variational Bayesian inference and complexity control for stochastic block
models

of the same class connect with probability λ and with probability ǫ oth-
erwise. This corresponds to a constrained SBM where the diagonal of the
connectivity matrix is set to λ and all the other elements to ǫ:

Π =









λ ǫ . . . ǫ

ǫ λ
...

...
. . . ǫ

ǫ . . . ǫ λ









.

In Section 2.5.1, we then draw networks with more complex topologies,
made of both community structures and a class of hubs. The correspond-
ing model is given by the connectivity matrix:

Π =









λ ǫ . . . ǫ λ

ǫ λ
...

...
. . .

...
λ . . . . . . . . . λ









,

where hubs connect with probability λ to any vertices in the network.
Following Mariadassou et al. (2010) who showed that ICL tends to un-

derestimate the number of classes in the case of small graphs, we consider
networks with only N = 50 vertices to analyze the robustness of our cri-
terion. We set (λ = 0.9, ǫ = 0.1) and for each value of QTrue in the set
{3, . . . , 7}, we then generate 100 networks with classes mixed in the same
proportions α1 = · · · = αQTrue = 1/QTrue.

In order to estimate the number of classes in the latent structures, we
applied the methods of Hofman and Wiggins (2008), Daudin et al. (2008),
and our algorithm (Section 2.3.2) on each network, for various numbers of
classes Q ∈ {1, . . . , 7}. Note that, we choose n0

q = 1/2, ∀q ∈ {1, . . . , Q} for
the Dirichlet prior and η0

ql = ζ0
ql = 1/2, ∀(q, l) ∈ {1, . . . , Q}2 for the Beta

priors. We recall that such distributions correspond to non informative
prior distributions. Like any optimization technique, the clustering meth-
ods we consider depend on the initialization. Thus, for each simulated
network and each number of classes Q, we use five different initializations
of τ. Finally, we select the best learnt models for which the corresponding
criteria VBMOD, ICL, or ILvb were maximized.

Before comparing ICL and ILvb, it is crucial to recall that these two
criteria were not conceived for the same purpose. ICL approximates the
integrated complete-data likelihood and is known to focus on cluster anal-
ysis view since it favors well separated clusters. It realizes a compromise
between the estimation of the data density and the evidence of data parti-
tioning. Conversely, ILvb approximates the marginal likelihood which is
known to focus on density estimation only. In the following experiments,
since networks are generated using SBM, and because we evaluate the cri-
teria through their capacity to retrieve the true number of classes, ILvb is
expected to lead to better results. However, in other situations (which are
not considered in this chapter), where the focus would be on the clustering
of vertices, ICL might be of possible interest.
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Affiliation networks

In Table 2.1, we observe that VBMOD outperforms both ICL and ILvb.
For instance, when QTrue = 5, VBMOD correctly estimates the number of
classes of the 100 generated networks, while ICL and ILvb have respec-
tively a percentage of accuracy of 77 and 99. These differences increase
when QTrue = 6 and QTrue = 7. Indeed, the higher QTrue is, the less ver-
tices the classes contain, and therefore, the more difficult it is to retrieve
and distinguish the community structures. Thus, when QTrue = 7, each
class only contains on average QTrue/N ≈ 7.1 vertices. VBMOD appears
to be a very stable criterion for community structure detection. It has a
percentage of accuracy of 84 while ICL never estimates the true number
of classes.

All the affiliation networks were generated using the model of Hof-
man and Wiggins (2008) which explains the results of VBMOD presented
above. Indeed, the corresponding model for community structure detec-
tion only estimates the parameters λ and ǫ whereas the frequentist and
Bayesian approaches for SBM look for a full Q× Q matrix Π of connec-
tion probabilities. They are capable of handling networks with complex
topologies, as shown in the following section, but they might miss some
structures if the number of vertices is too limited.

We observe that ILvb leads to a better estimates of the true number of
classes in networks than ICL. Thus, when QTrue = 5 and QTrue = 6, ILvb
estimates correctly the number of classes of 99 and 73 networks while ICL
has respectively a percentage of accuracy of 77 and 12.
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2 3 4 5 6 7

3 0 100 0 0 0 0

4 0 0 100 0 0 0

5 0 0 0 100 0 0

6 0 0 0 0 97 3

7 0 0 0 2 14 84

(a) QTrue\QVBMOD

2 3 4 5 6 7

3 0 100 0 0 0 0

4 0 0 100 0 0 0

5 0 0 23 77 0 0

6 0 1 28 59 12 0

7 0 8 49 42 1 0

(b) QTrue\QICL

2 3 4 5 6 7

3 0 100 0 0 0 0

4 0 0 100 0 0 0

5 0 0 0 99 1 0

6 0 0 4 23 73 0

7 0 2 14 44 27 13

(c) QTrue\QILvb

Table 2.1 – Confusion matrices for VBMOD, ICL and ILvb. λ = 0.9, ǫ = 0.1 and
QTrue ∈ {3, . . . , 7}. Affiliation networks.

Networks with community structures and hubs

Table 2.2 displays the results of the experiments on networks exhibiting
community structures and hubs. The presence of hubs is a central prop-
erty of so-called real real networks (Albert and Barabási 2002).

This slightly more complex and more realistic situation does heavily
perturb the estimation of VBMOD. Most of the time, VBMOD fails to de-
tect the class of hub and henceforth underestimates the number of classes.
For example, when QTrue = 3 or QTrue = 4, VBMOD always misses a class.
When the number of true classes grows over four, VBMOD’s behaviour
becomes more variable but keep the same heavy tendency to underesti-
mate.

In this context, ICL and ILvb behaves more consistently than VBMOD.
When QTrue is less or equal than four both strategies are comparable. But
when the number of true classes increases, the performance of ICL dra-
matically deteriorates, whereas ILvb remains more stable.

In the context of small graph, when the focus is on the estimation of
the data density, ILvb clearly provides a more reliable estimation of the
number of classes than ICL. It also shows better performances that VB-
MOD when networks are made of classes with more complex topologies
than communities.
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2 3 4 5 6 7

3 95 0 3 0 0 2

4 1 95 4 0 0 0

5 0 0 94 6 0 0

6 0 0 1 83 16 0

7 0 0 2 15 78 5

(a) QTrue\QVBMOD

2 3 4 5 6 7

3 0 100 0 0 0 0

4 0 0 100 0 0 0

5 0 0 12 88 0 0

6 0 0 19 59 22 0

7 0 3 29 56 12 0

(b) QTrue\QICL

2 3 4 5 6 7

3 0 100 0 0 0 0

4 0 0 100 0 0 0

5 0 0 2 98 0 0

6 0 0 1 29 70 0

7 0 0 3 34 45 18

(c) QTrue\QILvb

Table 2.2 – Confusion matrices for VBMOD, ICL and ILvb. λ = 0.9, ǫ = 0.1 and
QTrue ∈ {3, . . . , 7}. Affiliation networks and a class of hubs.

2.5.2 The metabolic network of Escherichia coli

We apply the methodology described in this chapter to the metabolic net-
work of bacteria Escherichia coli (Lacroix et al. 2006) which was analyzed
by Daudin et al. (2008) using SBM. In this network, there are 605 vertices
which represent chemical reactions and a total number of 1782 edges. Two
reactions are connected if a compound produced by the first one is a part
of the second one (or vice-versa). As in the previous section, we consider
non informative priors: we fixed n0

q = 1/2, ∀q ∈ {1, . . . , Q} for the Dirich-
let prior and η0

ql = ζ0
ql = 1/2, ∀(q, l) ∈ {1, . . . , Q}2 for the Beta priors.

Thus, for Q ∈ {1, . . . , 40}, we apply the methods of Hofman and Wig-
gins (2008) as well as our approach on this network. We compute the
corresponding criteria and we repeat such procedure 60 times, for differ-
ent initializations of τ. Indeed, to speed up the initialization, we first run a
kmeans algorithm with 40 classes and random initial centers. We then use
the corresponding partitions as inputs of the hierarchical algorithm de-
scribed in Section 2.3.2. The results for ILvb are presented as boxplots in
Figure 2.2. The criterion finds its maximum for QILvb = 22 classes, while
Daudin et al. (2008) found QICL = 21. Thus, for this particular large data
set, both ILvb and ICL lead to almost the same estimates of the number of
latent classes.

We also compared the learnt partitions in the Bayesian and in the fre-
quentist approach. Figure 2.3 is a dot plot representation of the metabolic
network after having applied the Bayesian algorithm for QVB = 22. Each
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Figure 2.2 – Boxplot representation (over 60 experiments) of ILvb for Q ∈ {1, . . . , 40}.
The maximum is reached at QILvb

= 22.
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Figure 2.3 – Dot plot representation of the metabolic network after classification of the
vertices into QVB = 22 classes. The x-axis and y-axis correspond to the list of vertices
in the network, from 1 to 605. Edges between pairs of vertices are represented by shaded
dots.
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vertex i is classified into the class for which τiq is maximal (Maximum A
Posteriori estimate). We observed very similar patterns in the frequen-
tist approach. Among the classes, eight of them are cliques πqq = 1 and
six have within probability connectivity greater than 0.5. As shown by
Daudin et al. (2008), these cliques or pseudo-cliques gather reactions in-
volving a same compound. Thus, chorismate, pyruvate, L-aspartate, L-
glutamate, D-glyceraldehyde-3-phosphate and ATP are all responsible for
cliques. Moreover, as observed in Daudin et al. (2008), since the connec-
tion probability between class 1 and 17 is 1, they correspond to a single
clique which is associated to pyruvate. However that clique is split into
two sub-cliques because of their different connectivities with reactions of
classes 7 and 10. The approach of Hofman and Wiggins (2008) can not
retrieve such complex topologies, as shown in Section 2.5.1, and many
classes such as class 1 and 17 were merged. We found QVBMOD = 14.

Conclusion

In this chapter, we showed how the Stochastic Block Model (SBM) could
be described in a full Bayesian framework. We introduced some non in-
formative conjugate priors over the model parameters and we described a
variational Bayes EM algorithm which approximates the posterior distri-
bution of all the latent variables and model parameters, given the observed
data. Using this framework, we derived a non asymptotic model selection
criterion, so-called ILvb, which approximates the marginal likelihood. By
considering networks generated using SBM, we showed that ILvb focus
on the estimation of the data density and provides a relevant estimation
of the number of latent classes. We also illustrated the capacity of SBM to
retrieve interesting structures in a large variety of networks.
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Given a network, almost all graph clustering algorithms partition the
vertices into disjoint clusters, according to their connection profile.

However, recent studies have shown that these techniques were too restric-
tive and that most of the existing networks contained overlapping clusters.
To tackle this issue, we present in this chapter the Overlapping Stochas-
tic Block Model. Our approach allows the vertices to belong to multiple
clusters, and, to some extent, generalizes the well known Stochastic Block
Model (Nowicki and Snijders 2001). We show that the model is generically
identifiable within classes of equivalence and we propose an approximate
inference procedure, based on global and local variational techniques. Us-
ing toy data sets as well as the French Political Blogosphere network and
the transcriptional network of Saccharomyces cerevisiae, we compare our
work with other approaches.
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3.1 Introduction

A drawback of existing graph clustering techniques is that they all parti-
tion the vertices into disjoint clusters, while lots of objects in real world
applications typically belong to multiple groups or communities. For in-
stance, many proteins, so-called moonlighting proteins, are known to have
several functions in the cells (Jeffery 1999), and actors might belong to
several groups of interests (Palla et al. 2005). Thus, a graph clustering
method should be able to uncover overlapping clusters. This issue has
received growing attention in the last few years, starting with an algo-
rithmic approach based on small complete sub-graphs developed by Palla
et al. (2005) and implemented in the software CFinder (Palla et al. 2006).
They defined a k-clique community as a union of all k-cliques (complete
sub-graphs of size k) that can be reached from each other through a series
of adjacent1 k-cliques. Given a network, their algorithm first locates all
cliques and then identifies the communities using a clique-clique overlap
matrix (Everett and Borgatti 1998). By construction, the resulting commu-
nities can overlap. In order to select the optimal value of k, the authors
suggested a global criterion which looks for a community structure as
highly connected as possible. Small values of k leads to a giant commu-
nity which smears the details of a network by merging small communities.
Conversely, when k increases, the communities tend to become smaller,
more disintegrated, but also more cohesive. Therefore, they proposed a
heuristic which consists in running their algorithm for various values of k
and then to select the lowest value such that no giant community appears.

More recent work (Airoldi et al. 2008) proposed the Mixed Member-
ship Stochastic Block model (MMSB) which has been used with success
to analyze networks in many applications (Airoldi et al. 2007; 2006). They
used variational techniques to estimate the model parameters and pro-
posed a criterion to select the number of classes. As detailed in Heller
et al. (2008), mixed membership models, as Latent Dirichlet Allocation
(Blei et al. 2003), are flexible models which can capture partial member-
ship (Griffiths and Ghahramani 2005, Heller and Ghahramani 2007), in the
form of attribute-specific mixtures. In MMSB, a mixing weight vector πi
is drawn from a Dirichlet distribution for each vertex in the network, πiq
being the probability of vertex i to belong to class q. The edge probability
from vertex i to vertex j is then given by pij = Z⊺

i→j B Zi←j, where B is a
Q× Q matrix of connection probabilities similar to the Π matrix in SBM.
The vector Zi→j is sampled from a multinomial distributionM(1, πi) and
describes the class membership of vertex i in its relation towards vertex j.
By symmetry, the vector Zi←j is drawn from a multinomial distribution
M(1, π j) and represents the class membership of vertex j in its relation
towards vertex i. Thus, depending on its relations with other vertices, each
vertex can belong to different classes and therefore MMSB can be viewed
as allowing overlapping clusters. However, the limit of MMSB is that it
does not produce edges which are themselves influenced by the fact that
some vertices belong to multiple clusters. Indeed, for every pair (i, j) of
vertices, only a single draw of Zi→j and Zi←j determines the probability pij
of an edge, all the other class memberships of vertex i and j towards other

1Two k-cliques are adjacent if they share k− 1 vertices
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vertices in the network do not play a part. In this chapter, we present a
complementary approach which tackles this issue.

In Fu and Banerjee (2008), Fu and Banerjee model overlapping clusters
on Q components by characterizing each individual i by a latent {0, 1}
vector Zi of length Q drawn from independent Bernoulli distributions.
The ith row of the data matrix then only depends on Zi. In the underlying
clustering structure, i belongs to the components corresponding to a 1
in Zi. Nevertheless, the proposed model needs Q parameters for each
individual and supposes independence between rows and columns of the
data matrix, which is not the case when looking for network structures.

In this chapter, we propose a new model for generating networks, de-
pending on (Q + 1)2 + Q parameters, where Q is the number of compo-
nents in the mixture. A latent {0, 1}-vector of length Q is assigned to each
vertex, drawn from products of Bernoulli distributions whose parameters
are not vertex-dependent. Each vertex may then belong to several compo-
nents, allowing overlapping clusters, and each edge probability depends
only on the components of its endpoints.

In Section 3.2, we recall the two constraints that the stochastic block
model satisfies. In Section 3.3, we present the overlapping stochastic block
model and we show in Section 3.4 that the model is identifiable within
classes of equivalence. In Section 3.5, we propose an EM-like algorithm to
infer the parameters of the model. Finally, in Section 3.6, we compare our
work with other approaches using simulated data and two real networks.
We show the efficiency of our model to detect overlapping clusters in
networks.

3.2 The stochastic block model

In this chapter, we consider a directed binary random graph G represented
by an N × N binary adjacency matrix X. Each entry Xij describes the
presence or absence of an edge from vertex i to vertex j. We assume that
G does not have any self loop, and therefore, the variables Xii will not
be taken into account. The Stochastic Block Model (SBM) associates to
each vertex of a network a latent variable Zi drawn from a multinomial
distribution:

Zi ∼M
(

1, α = (α1, α2, . . . , αQ)
)

,

where α denotes the vector of class proportions. As in other standard
mixture models, the vector Zi sees all its components set to zero except
one such that Ziq = 1 if vertex i belongs to class q. The model then verifies:

Q

∑
q=1

Ziq = 1, ∀i ∈ {1, . . . , N}, (3.1)

and
Q

∑
q=1

αq = 1. (3.2)
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3.3 The overlapping stochastic block model

In order to allow each vertex to belong to multiple classes, we relax the
constraints (3.1) and (3.2). Thus, for each vertex i of the network, we
introduce a latent vector Zi, of Q independent Boolean variables Ziq ∈
{0, 1}, drawn from a multivariate Bernoulli distribution:

Zi ∼
Q

∏
q=1
B(Ziq; αq) =

Q

∏
q=1

α
Ziq
q (1− αq)

1−Ziq . (3.3)

We point out that Zi can also have all its components set to zero which is a
useful feature in practice as described in Sections 3.3.2 and 3.6. The edge
probabilities are then given by:

Xij|Zi, Zj ∼ B
(
Xij; g(aZi ,Zj)

)
= eXijaZi ,Zj g(−aZi ,Zj),

where
aZi ,Zj = Z⊺

i W Zj +Z⊺

i U+V⊺ Zj +W∗, (3.4)

and g(x) = (1 + e−x)−1 is the logistic sigmoid function. W is a Q × Q
real matrix whereas U and V are Q-dimensional real vectors. The first
term in the right-hand side of (3.4) describes the interactions between the
vertices i and j. If i belongs only to class q and j only to class l, then only
one interaction term remains (Z⊺

i W Zj = Wql). However, as illustrated in
table 3.1, the model can take more complex interactions into account if
one or both of these two vertices belong to multiple classes (Figure 3.1).
Note that the second term in (3.4) does not depend on Zj. It models the
overall capacity of vertex i to connect to other vertices. By symmetry, the
third term represents the global tendency of vertex j to receive an edge.
These two parameters U and V are related to the sender/receiver effects δi
and γj in the Latent Cluster Random Effects Model (LCREM) of Krivitsky
et al. (2009). However, contrary to LCREM, δi = Z⊺

i U and γj = V⊺ Zj
depend on the classes. In other words, two different vertices sharing the
same classes, will have exactly the same sender/receiver effects, which is
not the case in LCREM. Finally, we use the scalar W∗ as a bias, to model
sparsity.

(0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) W∗ V1 + W∗ V2 + W∗ V1 + V2 + W∗

(1, 0) U1 + W∗
W11 + U1 + V1

+W∗
W12 + U1 + V2

+W∗
W11 + W12 + U1
+V1 + V2 + W∗

(0, 1) U2 + W∗
W21 + U2 + V1

+W∗
W22 + U2 + V2

+W∗
W21 + W22 + U2
+V1 + V2 + W∗

(1, 1) U1 + U2 + W∗
W11 + W21 + U1
+U2 + V1 + W∗

W12 + W22 + U1
+U2 + V2 + W∗

W11 + W12 + W21
+W22 + U1 + U2
+V1 + V2 + W∗

Table 3.1 – The values of aZi ,Zj in functions of Zi (rows) and Zj (columns) for an
overlapping stochastic block model with Q = 2.

If we associate to each latent variable Zi a vector Z̃i =
(

Zi, 1
)⊺, then

(3.4) can be written:
aZi ,Zj = Z̃i

⊺
W̃Z̃j, (3.5)
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where

W̃ =

(
W U

V⊺ W∗

)

.

The Z̃i(Q+1)s can be seen as random variables drawn from a Bernoulli
distribution with probability αQ+1 = 1. Thus, one way to think about the
model is to consider that all the vertices in the graph belong to a (Q + 1)-
th cluster which is overlapped by all the other clusters. In the following,
we will use (3.5) to simplify the notations.

Figure 3.1 – Example of a directed graph with three overlapping clusters.

Finally, given the latent structure Z = {Z1, . . . , ZN}, all the edges are
supposed to be independent. Thus, when considering directed graphs
without self-loop, the Overlapping Stochastic Block Model (OSBM) is de-
fined through the following distributions:

p(Z | α) =
N

∏
i=1

Q

∏
q=1

α
Ziq
q (1− αq)

1−Ziq , (3.6)

and

p(X |Z, W̃) =
N

∏
i 6=j

eXijaZi ,Zj g(−aZi ,Zj).

The graphical model of OSBM is given in Figure 3.2.

3.3.1 Modeling sparsity

As explained in Airoldi et al. (2008), real networks are often sparse2 and it
is crucial to distinguish the two sources of non-interaction. Sparsity might
be the result of the rarity of interactions in general but it might also in-
dicate that some class (intra or inter) connection probabilities are close to
zero. For instance, social networks (see Section 3.6.2) are often made of
communities where vertices are mostly connected to vertices of the same

2the corresponding adjacency matrices contain mainly zeros
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Figure 3.2 – Directed acyclic graph representing the frequentist view of the overlapping
stochastic block model. Nodes represent random variables, which are shaded when they
are observed and edges represent conditional dependencies.

community. This corresponds to classes with high intra connection prob-
abilities and low inter connection probabilities. In (3.4), we can notice that
W∗ appears in aZi ,Zj for every pair of vertices. Therefore, W∗ is a conve-
nient parameter to model the two sources of sparsity. Indeed, low values
of W∗ result from the rarity of interactions in general, whereas high values
signify that sparsity comes from the classes (parameters in W, U and V).

3.3.2 Modeling outliers

When applied on real networks, graph clustering methods often lead to
giant classes of vertices having low output and input degrees (Daudin
et al. 2008, Latouche et al. 2009). These classes are usually discarded and
the analysis of networks focus on more highly structured classes to extract
useful information. The product of Bernoulli distributions (3.6) provides
a natural way to encode these “outliers”. Indeed, rather than using giant
classes, OSBM uses the null component such that Zi = 0 if vertex i is an
outlier and should not be classified in any class.

3.4 Identifiability

Before looking for an optimization procedure to estimate the model pa-
rameters, given a sample of observations (a network), it is crucial to verify
whether OSBM is identifiable. A theorem of Allman et al. (2009) lies at the
core of the results presented in this section.

If we denote, F (Θ) = {Pθ, θ ∈ Θ}, a family of models we are inter-
ested in, the classical definition of identifiability requires that for any two
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different values θ 6= θ′, the corresponding probability distributions Pθ and
Pθ′ are different.

3.4.1 Correspondence with (non overlapping) stochastic block models

Let ΘOSBM be the parameter space of the family of OSBMs with Q classes:

ΘOSBM = {(α, W̃) ∈ [0, 1]Q ×R
(Q+1)2

}.

Each θ in ΘOSBM corresponds to a random graph model which is defined
by the distribution p(X | α, W̃). The aim of this section is to characterize
whether there exists any relation between two different parameters θ and
θ′ in ΘOSBM, leading to the same random graph model.

We consider the (non overlapping) Stochastic Block Model (SBM) in-
troduced by Nowicki and Snijders (2001). The model is defined by a
set of classes C, a vector of class proportions γ = {γC}C∈C verifying
∑C∈C γC = 1, and a matrix of connection probabilities Π =

(
ΠC,D

)

C,D∈C2 .
Note that they are an infinite number of ways to represent and encode the
classes. For simplicity, a common choice is to set C = {1, . . . , Q} and pos-

sibly C =
{

C ∈ {0, 1}Q, ∑
Q
q=1 Cq = 1

}

, for a model with Q classes. The
random graphs are drawn as follows. First, the class of each vertex is
sampled from a multinomial distribution with parameters (1, γ). Thus,
each vertex i belongs only to one class, and that class is C with probabil-
ity γC. Second, the edges are drawn independently from each other from
Bernoulli distributions, the probability of an edge (i, j) being ΠC,D, if i
belongs to class C and j to class D.

Let ΘSBM be the parameter space of the family of SBMs with 2Q classes:

ΘSBM = {(γ, Π) ∈ [0, 1]2
Q
× [0, 1]2

2Q
, ∑

C∈C

γC = 1}.

Considering that each possible value of the vectors Zis in an OSBM with
Q classes encodes a class in a SBM with 2Q classes (i.e. C = {0, 1}Q), yields
a natural function:

φ :
ΘOSBM → ΘSBM

(α, W̃) → (γ, Π)
,

where

γC =
Q

∏
q=1

α
Cq
q (1− αq)

1−Cq , ∀C ∈ {0, 1}Q,

and

ΠC,D = g(C⊺ W D+C⊺ U+V⊺ D+W∗), ∀(C, D) ∈ {0, 1}Q × {0, 1}Q.

Let GN denote the set of probability measures on the graphs of N
vertices. The OSBM of parameter θ in ΘOSBM and the SBM of parame-
ter φ(θ) in ΘSBM clearly induce the same measure µ in GN . Thus, de-
noting by ψ(γ, Π) the probability measure in GN induced by the SBM
of parameter (γ, Π), the problem of identifiability is to characterize the
relations between parameters θ ∈ ΘOSBM and θ′ ∈ ΘOSBM such that
ψ(φ(θ)) = ψ(φ(θ′)).
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ΘOSBM → ΘSBM → GN

θ = (α, W̃)
φ
−→ (γ, Π)

ψ
−→ µ

.

The identifiability of SBM was studied by Allman et al. (2009), who
showed that the model is generically identifiable up to a permutation of
the classes. In other words, except in a set of parameters which has a null
Lebesgue’s measure, two parameters imply the same random graph model
if and only if they differ only by the ordering of the classes. Therefore, the
main theorem of Allman et al. (2009) implies the following result:

Théorème 3.1 There exists a set Θbad
SBM ⊂ ΘSBM of null Lebesgue’s measure such that, for every

(γ, Π) and (γ′, Π
′) not in Θbad

SBM, ψ(γ, Π) = ψ(γ′, Π
′) if and only if there

exists a function Pν such that (γ′, Π
′) = Pν

(
(γ, Π)

)
, where:

• ν is a permutation on {0, 1}Q,

• γ′C = γν(C), ∀C ∈ {0, 1}Q,

• Π
′
C,D = Πν(C),ν(D), ∀(C, D) ∈ {0, 1}Q × {0, 1}Q.

Thus, studying the generical identifiability of the OSBM is equivalent
to characterizing the parameters of ΘOSBM verifying φ(θ′) = Pν(φ(θ)) for
some permutation ν on {0, 1}Q.

3.4.2 Permutations and inversions

As in the case of the SBM, reordering the Q classes of the OSBM and doing
the corresponding modification in α and W̃ does not change the generative
random graph model. Indeed, let σ be a permutation on {1, . . . , Q} and let
Pσ denote the function corresponding to the permutation σ of the classes.
Then, (α′, W̃

′
) = Pσ(α, W̃) is defined by:

α′q = ασ(q), ∀q ∈ {1, . . . , Q},

and
W̃
′
q,l = W̃σ(q),σ(l), ∀(q, l) ∈ {1, . . . , Q + 1}2.

Now, let ν be the permutation of {0, 1}Q defined by:

ν(C) = (Cσ(1), . . . , Cσ(Q)), ∀C ∈ {0, 1}Q.

It is then straightforward to see that, for every parameter θ in ΘOSBM

and every permutation σ, φ(Pσ(θ)) = Pν(φ(θ)), where Pν is defined in
Theorem 3.1.

There is another family of operations in ΘOSBM which does not change
the generative random graph model, which we call inversions. They cor-
respond to exchanging the labels 0 to 1 and vice versa on some of the coor-
dinates of the Zi’s. To give an intuition, consider a parameter θ = (α, W̃)
in ΘOSBM. Let us generate graphs under the probability measure in GN

induced by θ and consider only the first coordinate of the Zi’s. If we de-
note by “cluster 1” the vertices whose Zi’s have a 1 as first coordinate,
the graph sampling procedure consists in sampling the set “cluster 1” and
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then drawing the edges conditionally on that information. Note that it
would be equivalent to sample the vertices which are not in “cluster 1”
and to draw the edges conditionally on that information. Thus there ex-
ists an equivalent reparametrization where the 1’s in the first coordinate
correspond to the vertices which are not in “cluster 1”. This is the param-
eter θ′ obtained from θ by an inversion of the first coordinate.

Let A be any vector of {0, 1}Q. We define the A-inversion IA as follows:

IA :
ΘOSBM → ΘOSBM

(α, W̃) → (α′, W̃
′
)

,

where

α′j =

{
1− αj if Aj = 1

αj otherwise
, ∀j ∈ {1, . . . , Q},

and
W̃
′
= M⊺

A W̃ MA .

The matrix MA is defined by:

MA =

(
I − 2diag(A) A

0 . . . 0 1

)

,

with diag(A) being the Q×Q diagonal matrix whose diagonal is the vec-
tor A.

Proposition 3.1 For every A ∈ {0, 1}Q, let ν be the permutation of {0, 1}Q defined by:

∀C ∈ {0, 1}Q, ν(C)i =

{
1− Ci if Ai = 1

Ci otherwise
.

Then, for every θ in ΘOSBM:

φ(IA(θ)) = Pν(φ(θ)),

where Pν is defined in theorem 3.1.

Proof. Consider θ ∈ ΘOSBM and A ∈ {0, 1}Q and define (γ, Π) = φ(θ)
and (γ′, Π

′) = φ(IA(θ)). It is straightforward to verify that:

γ′C = γν(C), ∀C ∈ {0, 1}Q.

Moreover, since MA

(
C
1

)
=
(

ν(C)
1

)

, it follows that:

Π
′
C,D = g

((
C⊺ 1

)
M⊺

A W̃ MA

(
D
1

))

= g
((

ν(C)⊺ 1
)
W̃
(

ν(D)
1

))

= Πν(C),ν(D) .

Therefore, φ(IA(θ)) = Pν(φ(θ)) .
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3.4.3 Identifiability

Let us define the following equivalence relation:

θ ∼ θ′ if ∃σ, A | θ′ = IA(Pσ(θ)).

To be convinced that it is an equivalence relation, note that:

IA ◦ Pσ = Pσ ◦ Iσ−1(A).

Consider the set of equivalence classes for the relation ∼. It follows
that:

• Two parameters in the same equivalence class induce the same mea-
sure in GN ,

• Each equivalence class contains a parameter θ = (α, W̃) such that
α1 ≤ α2 ≤ . . . ≤ αQ ≤

1
2 . Moreover, if the αis are all distinct and

strictly lower than 1
2 , there is a unique such parameter in the equiv-

alence class.

We are now able to state our main theorem about identifiability, that is
that the model is generically identifiable up to the equivalence relation ∼:

Théorème 3.2 For every α ∈]0, 1[Q, let β ∈ R
Q be the vector defined by βk = − log( αk

1−αk
), for

every k.
Define Θbad

OSBM as the set of parameters (α, W̃) such that one of the following
conditions holds:

• there exists 1 ≤ k ≤ Q such that αk = 0 or αk = 1 or αk =
1
2 ,

• there exist 1 ≤ k, l ≤ Q such that αk = αl ,

• there exist C, D ∈ {0, 1}Q × {0, 1}Q such that ∑k βkCk = ∑k βkDk,

• φ(α, W̃) ∈ Θbad
SBM, set of null measure given by Theorem 3.1.

Then Θbad
OSBM has a null Lebesgue’s measure on ΘOSBM and:

∀ θ, θ′ ∈ (ΘOSBM \Θbad
OSBM)2, φ(θ) = φ(θ′)⇔ θ ∼ θ′ .

Proof. Θbad
OSBM is the union of a finite number of hyperplanes or spaces

which are isomorphic to hyperplanes. Therefore, µ(Θbad
OSBM) = 0.

Let θ = (α, W̃), θ′ = (α′, W̃
′
), φ(θ) = (γ, Π), and φ(θ′) = (γ′, Π

′). As
φ is constant on each equivalence class and as θ and θ′ are not in Θbad

OSBM,
we can assume that 0 < α1 < . . . < αk <

1
2 and 0 < α′1 < . . . < α′k <

1
2 .

Proving the theorem is then equivalent to prove that θ = θ′.

As φ(θ) = φ(θ′), Theorem 3.1 ensures that there exists a permutation
ν : {0, 1}Q → {0, 1}Q such that:

{
γ′C = γν(C) ∀C

Π′C,D = Πψ(C),ψ(D) ∀C, D
.
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Then, in particular:
{

∏
k

αCk
k (1− αk)

1−Ck , C ∈ {0, 1}Q} =
{

∏
k

(α′k)
Ck(1− α′k)

1−Ck , C ∈ {0, 1}Q}.

(3.7)
The minima of those two sets as well as the second lowest values are equal,
that is:

∏
k

αk = ∏
k

α′k and ( ∏
k≤Q−1

αk)(1− αQ) = ( ∏
k≤Q−1

α′k)(1− α′Q).

Dividing those equations term by term yields αQ
1−αQ

=
α′Q

1−α′Q
and finally

αQ = α′Q. Dividing all terms by α
CQ
Q (1− αQ)

1−CQ in 3.7, by induction it
follows that:

α = α′. (3.8)

Now, for any C ∈ {0, 1}Q, the fact that γ′C = γν(C) can be written as:

∏
k

αCk
k (1− αk)

1−Ck = ∏
k

α
ν(C)k
k (1− αk)

1−ν(C)k

∑
k

Ck log(
αk

1− αk
) + ∑

k

log(1− αk) = ∑
k

ν(Ck) log(
αk

1− αk
) + ∑

k

log(1− αk)

∑
k

βkCk = ∑
k

βkν(C)k.

Since θ /∈ Θbad
OSBM, this implies that ν(C) = C. As it is true for every C, ν is

in fact the identity function.

Therefore, for every C, D, ΠC,D = Π′C,D, that is

∑
q,l

wqlcqdl + ∑
q

uqcq + ∑
l

vldl + w∗ = ∑
q,l

w′qlcqdl + ∑
q

u′qcq + ∑
l

v′ldl + w
′∗.

Applying it for C = D = 0 implies W∗ = W
′∗.

Applying it for D = 0 and C = δq, where δq is the vector having a 1 on
the qth coordinate and 0’s elsewhere yields uq + W∗ = u′q + W

′∗ and thus
uq = u′q.

By symmetry, C = 0 and D = δl implies vl = v′l .
Finally, C = δq and D = δl gives Wql = W ′ql .
Thus

W̃ = W̃
′. (3.9)

By Equations 3.8 and 3.9, we have θ = θ′.

3.5 Statistical inference

Given a network, our aim in this section is to estimate the OSBM parame-
ters.

The log-likelihood of the observed data set is defined through the
marginalization: p(X | α, W̃) = ∑Z p(X, Z |α, W̃). This summation in-
volves 2NQ terms and quickly becomes intractable. To tackle this issue,
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the Expectation-Maximization (EM) algorithm has been applied on many
mixture models. However, the E-step requires the calculation of the pos-
terior distribution p(Z |X, α, W̃) which cannot be factorized in the case of
networks (see Daudin et al. 2008, for more details). In order to obtain a
tractable procedure, we present some approximations based on global and
local variational techniques.

3.5.1 The q-transformation

Given a distribution q(Z), the log-likelihood of the observed data set can
be decomposed using the Kullback-Leibler divergence KL(· || ·):

log p(X | α, W̃) = LML(q; α, W̃) + KL
(
q(·) || p(·|X, α, W̃)

)
, (3.10)

where

LML(q; α, W̃) = ∑
Z

q(Z) log
{

p(X, Z | α, W̃)

q(Z)

}

, (3.11)

and

KL
(
q(·) || p(·|X, α, W̃)

)
= −∑

Z

q(Z) log
{

p(Z |X, α, W̃)

q(Z)

}

. (3.12)

The maximum log p(X | α, W̃) of the lower bound LML (3.11) is reached
when q(Z) = p(Z |X, α, W̃). Thus, if the posterior distribution
p(Z |X, α, W̃) was tractable, the optimizations of LML and log p(X | α, W̃),
with respect to α and W̃, would be equivalent. However, in the case of
networks, p(Z |X, α, W̃) cannot be calculated and LML cannot be opti-
mized over the entire space of q(Z) distributions. Thus, we restrict our
search to the class of distributions which satisfy:

q(Z) =
N

∏
i=1

q(Zi), (3.13)

with

q(Zi) =
Q

∏
q=1
B(Ziq; τiq)

=
Q

∏
q=1

τ
Ziq

iq (1− τiq)
1−Ziq .

Each τiq is a variational parameter which corresponds to the posterior
probability of node i to belong to class q. As for the vector α, the vectors
τi = {τi1, . . . , τiQ} are not constrained to lie in the Q − 1 dimensional
simplex.

Proposition 3.2 (Proof in Appendix C.1) The lower bound of the observed data log-likelihood is
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given by:

LML(q; α, W̃) =
N

∑
i 6=j

{

Xijτ̃i
⊺W̃τ̃ j + EZi ,Zj [log g(−aij)]

}

+
N

∑
i=1

Q

∑
q=1

{
τiq log αq + (1− τiq) log(1− αq)

}

−
N

∑
i=1

Q

∑
q=1

{
τiq log τiq + (1− τiq) log(1− τiq)

}
.

(3.14)

Unfortunately, since the logistic sigmoid function is non linear,
EZi ,Zj [log g(−aZi ,Zj)] in (3.14) cannot be computed analytically. Thus, we
need a second level of approximation to optimize the lower bound of the
observed data set.

3.5.2 The ξ-transformation

Proposition 3.3 (Proof in Appendix C.2) Given a variational parameter ξij, EZi ,Zj [log g(−aZi ,Zj)]
satisfies:

EZi ,Zj [log g(−aij)] ≥ log g(ξij)−
(τ̃i

⊺W̃τ̃ j + ξij)

2
−λ(ξij)

(

EZi ,Zj [(Z̃i
⊺
W̃Z̃j)

2]− ξ2
ij

)

.

(3.15)

Eventually, a lower bound of the first lower bound can be computed:

log p(X | α, W̃) ≥ LML(q; α, W̃) ≥ LML(q; α, W̃, ξ), (3.16)

where

LML(q; α, W̃, ξ) =
N

∑
i 6=j

{

(
Xij −

1
2

)
τ̃⊺

i W̃τ̃ j + log g(ξij)−
ξij

2

− λ(ξij)

(

Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃⊺

j W̃
⊺
ẼiW̃τ̃ j − ξ2

ij

)}

+
N

∑
i=1

Q

∑
q=1

{
τiq log αq + (1− τiq) log(1− αq)

}

−
N

∑
i=1

Q

∑
q=1

{
τiq log τiq + (1− τiq) log(1− τiq)

}
.

The resulting variational EM algorithm (see Algorithm 7) alternatively
computes the posterior probabilities τi and the parameters α and W̃ max-
imizing

max
ξ
LML(q; α, W̃, ξ).

The computational cost of the algorithm is equal to O(N2Q4). For
comparison the computational cost of the methods proposed by Daudin
et al. (2008) and Latouche et al. (2009) for (non-overlapping) SBM is equal
to O(N2Q2). Analyzing a sparse network with 100 nodes takes about ten
seconds on a dual core, and about a minute for dense networks.
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Algorithm 7: Overlapping stochastic block model for directed
graphs without self loop.

// INITIALIZATION

Initialize τ with an Ascendant Hierarchical Classification algorithm
Sample W̃ from a zero mean σ2 spherical Gaussian distribution

// OPTIMIZATION

repeat
// ξ-transformation

ξij ←

√

Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃ j
⊺W̃

⊺
ẼiW̃τ̃ j, ∀i 6= j

// M-step

αq ←
∑

N
i=1 τiq

N , ∀q
Optimize LML

(
q; α, W̃, ξ

)
with respect to W̃, with a gradient

based optimization algorithm (e.g. quasi-Newton method of
Broyden et al. 1970)
// E-step

repeat

for i=1:N do
Optimize LML

(
q; α, W̃, ξ

)
with respect to τi, with a box

constrained (τiq ∈ [0, 1]) gradient based optimization
algorithm (e.g. Byrd method Byrd et al. 1995)

end

until τ converges
until LML

(
q; α, W̃, ξ

)
converges
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For all the experiments we present in the following section, set σ2 = 0.5
and we used the Ascendant Hierarchical Classification algorithm imple-
mented in the R package “mixer” which is available at: http://cran.
r-project.org/web/packages/mixer.

3.6 Experiments

We present some results of the experiments we carried out to assess
OSBM. Throughout our experiments, we compared our approach to SBM
(the non-overlapping version of OSBM), the Mixed Membership Stochastic
Block model (MMSB) of Airoldi et al. (2008), and the work of Palla et al.
(2005), implemented in the software (Version 2.0.1) CFinder (Palla et al.
2006).

In order to perform inference in SBM, we used the variational Bayes
algorithm of Latouche et al. (2009) which approximates the posterior dis-
tribution over the latent variables and model parameters, given the edges.
We computed the Maximum A Posteriori (MAP) estimates and obtained
the class membership vectors Zi. We recall that SBM assumes that each
vertex belongs to a single class and therefore each vector Zi has all its
components set to zero except one, such that Ziq = 1 if vertex i is clas-
sified into class q. For OSBM, we relied on the variational approximate
inference procedure described in Section 3.5 and computed the MAP esti-
mates. Contrary to SBM, each vertex can belong to multiple clusters and
therefore the vectors Zi can have multiple components set to one. As de-
scribed in Section 3.1, MMSB can also be viewed as allowing overlapping
clusters. For more details, we refer to Airoldi et al. (2008). In order to es-
timate the MMSB mixing weight vectors πi, we used the collapsed Gibbs
sampling approach implemented in the R package lda (Chang 2010). We
then converted each vector πi into a binary membership vector Zi using
a threshold t. Thus, for πiq ≥ t, we set Ziq = 1 and Ziq = 0 otherwise.
In all the experiments we carried out, we defined t = 1/Q and we found
that for higher values MMSB tended to behave like SBM. Finally, we con-
sidered CFinder which is a widely used algorithmic approach to uncover
overlapping communities. As described in Section 3.1, CFinder looks for
k-clique communities where each k-clique community is a union of all
k-cliques (complete sub-graphs of size k) that can be reached from each
other through a series of adjacent k-cliques. The algorithm first locates all
cliques and then identifies the communities and overlaps between com-
munities using a clique-clique overlap matrix (Everett and Borgatti 1998).
Vertices that do not belong to any k-clique are seen as outliers and not
classified.

Contrary to OSBM (and CFinder), SBM and MMSB cannot deal with
outliers. Therefore, to obtain fair comparisons between the approaches,
when OSBM was run with Q classes, SBM and MMSB were run with Q+ 1
classes and we identified the class of outliers. In practice, this can easily
been done since this class contains most of the vertices of the network
having low output and input degrees.

http://cran.r-project.org/web/packages/mixer
http://cran.r-project.org/web/packages/mixer
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3.6.1 Simulations

In this set of experiments, we generated two types of networks using the
OSBM generative model. In Section 3.6.1, we sampled networks with com-
munity structures (Figure 3.3), where vertices of a community are mostly
connected to vertices of the same community. To limit the number of free
parameters, we considered the Q×Q real matrix W:

W =









λ −ǫ . . . −ǫ

−ǫ λ
...

...
. . . −ǫ

−ǫ . . . −ǫ λ









.

In Section 3.6.1, we generated networks with more complex topologies,
using the matrix W:

W =


















λ λ −ǫ . . . . . . . . . −ǫ

−ǫ −λ −ǫ . . . . . . . . .
...

... −ǫ λ λ −ǫ . . .
...

...
... −ǫ −λ −ǫ . . .

...
...

...
... −ǫ

. . . −ǫ −ǫ
...

...
...

... −ǫ λ λ

−ǫ . . . . . . . . . . . . −ǫ −λ


















.

In these networks, if class i is a community and has therefore a high intra
connection probability, then its vertices also highly connect to vertices of
class i + 1 which itself has a low intra connection probability. Such star
patterns (Figure 3.4) often appear in transcription networks, as shown in
Section 3.6.3, and protein-protein interaction networks.

For these two sets of experiments, we used the Q-dimensional real
vectors U and V:

U = V =
(
ǫ . . . ǫ

)
,

and we set Q = 4, λ = 4, ǫ = 1, W∗ = −5.5. Moreover, for the vector α

of class probabilities, we set αq = 0.25, ∀q ∈ {1, . . . , Q}. We generated 100
networks with N = 100 vertices and for each of these networks, we clus-
tered the vertices using CFinder, SBM, MMSB, and OSBM. Finally, we used
a criterion similar to the one proposed by Heller and Ghahramani (2007),
Heller et al. (2008) to compare the true Z and the estimated Ẑ clustering
matrices. Thus, for each network and each method, we computed the L2
distance d(P, P̂) where P = Z Z⊺ and P̂ = ẐẐ

⊺
. These two N× N matrices

are invariant to column permutations of Z and Ẑ and compute the number
of shared clusters between each pair of vertices of a network. Therefore,
d(P, P̂) is a good measure to determine how well the underlying cluster
assignment structure has been discovered. Since CFinder depends on a
parameter k (size of the cliques), for each simulated network, we ran the
software for various values of k and selected k̂ for which the L2 distance
was minimized. Note that this choice of k tends to overestimate the perfor-
mances of CFinder compared to the other approaches. Indeed, in practice,
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when analyzing a real network, k needs to be estimated (see Section 3.6.2)
while P is unknown. OSBM was run with Q classes whereas SBM and
MMSB were run with Q + 1 classes. For both SBM and MMSB, and each
generated network, after having identified the class of outliers, we set the
latent vectors of the corresponding vertices to zero (null component). The
L2 distance d(P, P̂) was then computed exactly as described previously.

Figure 3.3 – Example of a network with community structures. Overlaps are represented
in black and outliers in gray.

Networks with community structures

The results that we obtained are presented in Table 3.2 and in Figure 3.5.
We can observe that CFinder, MMSB, and OSBM lead to very accurate
estimates Ẑ of the true clustering matrix Z. For most networks, they re-
trieve the clusters and overlaps perfectly although CFinder and MMSB
appear to be slightly biased. Indeed, while the median of the L2 distance
d(P, P̂) over the 100 samples is null for OSBM, it is equal to 22 for CFinder
and 27.5 for MMSB. Since CFinder is an algorithmic approach, and not a
probabilistic model, it does not classify a vertex vi if it does not belong to
any k-cliques of a k-clique community. Conversely, OSBM is more flexible
and can take the random nature of the network into account. Indeed, the
edges are assumed to be drawn randomly, and, given each pair of vertices,
OSBM deciphers whether or not they are likely to belong to the same class,
depending on their connection profiles. Therefore, OSBM can predict that
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Figure 3.4 – Example of a network with community structures and stars. Overlaps are
represented in black and outliers in gray.
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vi belongs to a class q although it does not belong to any k-cliques. Over-
all, we found that MMSB retrieves the clusters well but often misclassifies
some of the overlaps. Thus, if a given vertex belongs to several clusters, it
tends to be classified by MMSB into only one of them. Nevertheless, the
results clearly illustrate that MMSB improves over SBM, which cannot re-
trieve any of the overlapping clusters. It should also be noted that CFinder
has fewer outliers (Figure 3.5) than MMSB and OSBM and appears to be
slightly more stable when looking for overlapping community structures
in networks.
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CFinder SBM MMSB OSBM

Figure 3.5 – L2 distance d(P, P̂) over the 100 samples of networks with community
structures, for CFinder and OSBM. Measures how well the underlying cluster assign-
ment structure has been retrieved.

Mean Median Min Max
CFinder 43.53 22 0 203

SBM 116.46 103.3 0 321

MMSB 53.76 27.5 0 293

OSBM 41.83 0 0 258

Table 3.2 – Comparison of CFinder, SBM, and OSBM in terms of the L2 distance d(P, P̂)
over the 100 samples of networks with community structures.
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Networks with community structures and stars

In this set of experiments, we considered networks with more complex
topologies. As shown, in Table 3.3 and in Figure 3.6, the results of CFinder
dramatically degrade while those of OSBM remain more stable. Indeed,
the median of the L2 distances d(P, P̂) over the 100 samples is equal to
43 for OSBM, while it is equal to 354.5 for CFinder. This can be easily
explained since CFinder only looks for community structures of adjacent
k-cliques, and can not retrieve classes with low intra connection probabil-
ities. Conversely, OSBM uses a Q×Q real matrix W and two real vectors
U and V of size Q to model the intra and inter connection probabilities.
No assumption is made on these matrix and vectors such that OSBM can
take heterogeneous and complex topologies into account. As for CFinder,
the results of MMSB degrades although they remain better than SBM. As
for the previous section, MMSB retrieves the clusters well but misclassifies
the overlaps more frequently when considering networks with community
structures and stars.
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Figure 3.6 – L2 distance d(P, P̂) over the 100 samples of networks with community
structures and stars, for CFinder and OSBM. Measures how well the underlying cluster
assignment structure has been retrieved.
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Mean Median Min Max
CFinder 362.07 354.5 181 567

SBM 134.68 118.87 15.14 352.09

MMSB 119.01 98.5 0 367

OSBM 77 43 0 328

Table 3.3 – Comparison of CFinder, SBM, and OSBM in terms of the L2 distance d(P, P̂)
over the 100 samples of networks with community structures and stars.

3.6.2 French political blogosphere

We consider the French political blogosphere network and we focus on a
subset of 196 vertices connected by 2864 edges. The data consists of a sin-
gle day snapshot of political blogs automatically extracted on 14th october
2006 and manually classified by the “Observatoire Présidentielle project”
(Zanghi et al. 2008). Nodes correspond to hostnames and there is an edge
between two nodes if there is a known hyperlink from one hostname to
another. The four main political parties which are present in the data set
are the UMP (french “republican”), UDF (“moderate” party), liberal party
(supporters of economic-liberalism), and PS (french “democrat”). There-
fore, we applied our algorithm with Q = 4 clusters and we obtained the
results presented in Figure 3.7 and in Table 3.4.

First, we notice that the clusters we found are highly homogeneous and
correspond to the well known political parties. Thus, cluster 1 contains 35

blogs among which 33 are associated to UMP while cluster 2 contains 39

blogs among which 30 are related to UDF. Similarly, it follows that cluster
3 corresponds to the liberal party and cluster 4 to PS. We found nine
overlaps. Thus, three blogs associated to UMP belong to both cluster 1

(UMP) and 2 (UDF). This is a result we expected since these two political
parties are known to have some relational ties. Moreover, a blog associated
to UDF belongs to both cluster 1 (UMP) and 4 (PS) while another UDF blog
belongs to cluster 2 (UDF) and 4 (PS). This can be easily understood since
UDF is a moderate party. Therefore, it is not surprising to find UDF blogs
with links with the two biggest political parties in France, representing
the left and right wings. Very interestingly, among the nine overlaps we
found, four of them correspond to blogs of political analysts. Thus, a blog
overlaps cluster 1 (UMP) and 4 (PS). Another one overlaps cluster 2 (UDF),
3 (liberal party), and 4 (PS). Finally, the two last blogs of political analysts
overlap cluster 2 (UDF) and 4 (PS).

We ran CFinder and we used the criterion (Palla et al. 2005) they pro-
posed to select k (see Section 3.1). Thus, we ran the software for various
values of k and we found k̂ = 7. Lower values lead to giant components
which smear the details of the network. Conversely, for higher values,
the communities start disintegrating. Using k̂, we uncovered 11 clusters
which correspond to sub-clusters of the clusters we found using OSBM.
For instance, cluster 3 (liberal party) was split into two clusters, whereas
cluster 4 (PS) was split into three. Indeed, while OSBM predicted that the
connection profiles of these sub-clusters were very similar and therefore
should be merged, CFinder could not uncover any k-clique community,
that is a union of fully connected sub-graphs of size k, containing these
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sub-clusters. Note that using CFinder, we retrieved the overlaps uncov-
ered by our algorithm. CFinder did not classify 95 blogs.

We also clustered the blogs of the network using MMSB and SBM. As
previously, for both models, we used Q + 1 clusters and we identified the
class of outliers. The results of MMSB are presented in Figure 3.8. Over-
all, we can notice that MMSB lead to similar clusters as OSBM, although
cluster 4 is less homogeneous in MMSB than in OSBM. We found eight
overlaps using MMSB and we emphasize that five of them correspond ex-
actly to the one found with our approach. Thus, the model retrieved two
among the three UMP blogs overlapping cluster 1 (UMP) and 2 (UDF).
Moreover, MMSB uncovered the UDF blog overlapping cluster 1 (UMP)
and 4 (PS), as well as the blog of political analysts overlapping cluster 2

(UDF), 3 (liberal party), and 4 (PS). It also retrieved the blog of political an-
alysts overlapping cluster 1 (UMP) and 4 (PS). Finally, the results of SBM
are presented in Figure 3.9. Again, the clusters found by this approach
are very similar to the one uncovered by OSBM. However, because SBM
does not allow each vertex to belong to multiple clusters, it misses a lot of
information in the network. In particular, while some of the blogs of polit-
ical analysts are viewed as overlaps by OSBM, because of their relational
ties with the different political parties, they are all classified into a single
cluster by SBM.

3.89 0.17 0.54 -0.70 -0.70

0.17 2.47 -0.40 -0.84 0.40

0.55 -0.40 4.43 -0.85 -0.38

-0.70 -0.84 -0.85 1.66 0.87

-0.70 0.40 -0.38 0.87 -3.60

Table 3.4 – The estimated W̃ matrix for the classification of the blogs into Q = 4 clusters
using OSBM. The 4× 4 matrix on the top left hand side represents the W matrix while
the vectors on the top right hand side and bottom left hand side represent the vectors U
and V⊺ respectively. The remaining term corresponds to the bias. The diagonal of W
indicates that blogs have a heavy tendency to connect to blogs of the same class. Blogs
of cluster 1 (UMP) have also a positive tendency to connect to blogs of clusters 2 (UDF)
and 3 (liberal party). Conversely, blogs of cluster 4 (PS), representing the left wing, are
more isolated in the network.
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cluster 1

cluster 2

cluster 3

cluster 4

outliers

 UMP

30 + 3

2 + 3

0

0

5

 UDF

0 + 1

29 + 1

0

0 + 2

1

 liberal

0

0

24

0

1

 PS

0

0

0

40

17

analysts

0 + 1

1 + 3

1 + 1

0 + 4

5

 others

0

0

0

1

30

Figure 3.7 – Classification of the blogs into Q = 4 clusters using OSBM. The entry
(i, j) of the matrix describes the number of blogs associated to the j-th political party
(column) and classified into cluster i (row). Each entry distinguishes blogs which belong
to a unique cluster from overlaps (single membership blogs + overlaps). The last row
corresponds to the null component.
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cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

 UMP

27 + 2

2 + 2

0

0

9

 UDF

0 + 2

29 + 1

0

0 + 1

1

 liberal

0

0

25

0

0

 PS

0

0 + 1

0

30 + 1

26

 analysts

1 + 1

3 + 2

1 + 2

0 + 2

3

 others

0

0

0

1

30

Figure 3.8 – Classification of the blogs into Q = 5 clusters using MMSB. The entry (i, j)
of the matrix describes the number of blogs associated to the j-th political party (column)
and classified into cluster i (row). Each entry distinguishes blogs which belong to a unique
cluster from overlaps (single membership blogs + overlaps). Cluster 5 corresponds to the
class of outliers.
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cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

 UMP

37

1

0

0

2

 UDF

0

31

0

0

1

 liberal

1

0

24

0

0

 PS

0

0

0

26

31

 analysts

0

1

1

0

9

 others

2

0

0

0

29

Figure 3.9 – Classification of the blogs into Q = 5 clusters using SBM. The entry (i, j)
of the matrix describes the number of blogs associated to the j-th political party (column)
and classified into cluster i (row). Cluster 5 corresponds to the class of outliers.
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3.6.3 Saccharomyces cerevisiae transcription network

We consider the yeast transcriptional regulatory network described in Milo
et al. (2002) and we focus on a subset of 197 vertices connected by 303

edges. Nodes of the network correspond to operons, and two operons are
linked if one operon encodes a transcriptional factor that directly regulates
the other operon. The network is made of three regulation patterns, each
one of them having its own regulators and regulated operons. Therefore,
using Q = 6 clusters, we applied our algorithm and we obtained the
results in Table 3.5.

First, we notice that clusters 1, 3, and 5 contain only two operons each.
These operons correspond to hubs which regulate respectively the nodes
of clusters 2, 4, and 6, all having a very low intra connection probability.
To analyze our results, we used GOToolBox (Martin et al. 2004) on each
cluster. This software aims at identifying statistically over-represented
terms of the Gene Ontology (GO) in a gene data set. We found that the
clusters correspond to well known biological functions. Thus, the nodes
of cluster 2 are regulated by STE12 and TEC1 which are both involved
in the response to glucose limitation, nitrogen limitation and abundant
fermentable carbon source. Similarly, MSN4 and MSN2 regulate the nodes
of cluster 4 in response to different stress such as freezing, hydrostatic
pressure, and heat acclimation. Finally, the nodes of cluster 6 are regulated
by YAP1 and SKN7 in the presence of oxygen stimulus. Our algorithm
was able to uncover two overlapping clusters (operons in bold in Table.
3.5). Interestingly, contrary to the other operons of clusters 2, 4, and 6,
which are all regulated by operons of a single cluster (cluster 1, 3, or 5),
these overlaps correspond to co-regulated operons. Thus, SSA4 and TKL2

belong to cluster 2 and 4 since they are co-regulated by (STE12, TEC1) and
(MSN4 and MSN2). Moreover, HSP78, CTT1, and PGM2 belong to cluster
4 and 6 since they are co-regulated by (MSN4, MSN2) and (YAP1, SKN7).
It should also be noted that OSBM did not classify 112 operons which all
have very low output and input degrees.

Because the network is sparse, we obtained very poor results with
CFinder. Indeed, the network contains only one 3-clique and no k-clique
for k > 3. Therefore, for k = 2, all the operons were classified into a single
cluster and no biological information could be retrieved. For k = 3, only
three operons were classified into a single class and for k > 3 no operon
was classified.

As previously, we ran MMSB and SMB with Q + 1 clusters and we
identified the class of outliers. Both approaches retrieved the six clusters
found by OSBM. However, we emphasize that contrary to the political
blogoshpere network, MMSB did not uncover any overlap in the yeast
transcriptional regulatory network.

As in Section 3.6.1, these results clearly illustrate the capacity of OSBM
to retrieve overlapping clusters in networks with complex topological
structures. In particular, in situations were networks are not made of
community structures, while the results of CFinder dramatically degrade
or cannot even be interpreted, OSBM seems particularly promising.
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cluster size operons
1 2 STE12 TEC1

2 33

YBR070C MID2 YEL033W SRD1 TSL1 RTS2 PRM5 YNL051W PST1
YJL142C SSA4 YGR149W SPO12 YNL159C SFP1 YHR156C YPS1
YPL114W HTB2 MPT5 SRL1 DHH1 TKL2 PGU1 YHL021C RTA1

WSC2 GAT4 YJL017W TOS11 YLR414C BNI5 YDL222C
3 2 MSN4 MSN2

4 32

CPH1 TKL2 HSP12 SPS100 MDJ1 GRX1 SSA3 ALD2 GDH3
GRE3 HOR2 ALD3 SOD2 ARA1 HSP42 YNL077W HSP78 GLK1

DOG2 HXK1 RAS2 CTT1 HSP26 TPS1 TTR1 HSP104 GLO1
SSA4 PNC1 MTC2 YGR086C PGM2

5 2 YAP1 SKN7

6 19
YMR318C CTT1 TSA1 CYS3 ZWF1 HSP82 TRX2 GRE2 SOD1
AHP1 YNL134C HSP78 CCP1 TAL1 DAK1 YDR453C TRR1

LYS20 PGM2

Table 3.5 – Classification of the operons into Q = 6 clusters. Operons in bold belong to
multiple clusters.

Conclusion

In this chapter, we proposed a new random graph model, the Overlapping
Stochastic Block Model, which can be used to retrieve overlapping clusters
in networks. We used global and local variational techniques to obtain a
tractable lower bound of the observed log-likelihood and we defined an
EM like procedure which optimizes the model parameters in turn. We
showed that the model is identifiable within classes of equivalence and
we illustrated the efficiency of our approach compared to other methods,
using simulated data and real networks. Since no assumption is made on
the matrix W and vectors U and V used to characterize the connection
probabilities, the model can take very different topological structures into
account and seems particularly promising for the analysis of networks.
In the experiment section, we set the number Q of classes using a priori
information we had about the networks. However, we believe it is crucial
to develop a model selection criterion to estimate the number of classes
automatically from the topology.
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In the previous chapter, we introduced the Overlapping Stochastic
Block Model (OSBM), a new random graph model which allows the ver-
tices of a network to belong to multiple classes. A variational EM algo-
rithm was considered for estimation as well as clustering purposes and
the model was shown to be able to take very different topological struc-
tures into account. However, no model selection criterion is yet available
to estimate the number of components from the data. To tackle this issue,
we consider a Bayesian framework as in Chapter 2. We then propose a
criterion, that we call ILosbm, based on a non asymptotic approximation
of the marginal log-likelihood. We describe how ILosbm can be computed
through a variational Bayes EM algorithm. Finally, experiments are car-
ried out to assess the criterion using simulated data and the transcriptional
regulatory network of Saccharomyces cerevisiae.
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4.1 A Bayesian Overlapping Stochastic Block Model

The data we model consists of a N × N binary matrix X with entries Xij
describing the presence or absence of an edge from vertex i to vertex j.
Both directed and undirected relations can be analyzed but in the follow-
ing, we concentrate on directed relations. Moreover, we assume that the
graph we consider does not contain any self loop. Therefore, the variables
Xii will not be taken into account.

As shown in the previous chapter, the Overlapping Stochastic Block
Model (OSBM) associates to each vertex of a network a latent variable Zi
drawn from a multivariate Bernoulli distribution:

Zi ∼
Q

∏
q=1

α
Ziq
q (1− αq)

1−Ziq ,

where Q denotes the number of classes considered. The edges are then
assumed to be drawn from a Bernoulli distribution:

Xij|Zi, Zj ∼ B
(
Xij; g(aZi ,Zj)

)
= eXijaZi ,Zj g(−aZi ,Zj),

where
aZi ,Zj = Z⊺

i W Zj +Z⊺

i U+V⊺ Zj +W∗,

and g(x) = (1 + e−x)−1 is the logistic sigmoid function. According to
OSBM, the latent variables Z1, . . . , ZN are iid and given this latent struc-
tures, all the edges are supposed to be independent.

Thus, when considering a directed graph without self loop, we recall
that:

p(Z | α) =
N

∏
i=1

Q

∏
q=1

α
Ziq
q (1− αq)

1−Ziq ,

and

p(X |Z, W̃) =
N

∏
i 6=j

p(Xij|Zi, Zj, W̃)

=
N

∏
i 6=j

eXijaZi ,Zj g(−aZi ,Zj).

(4.1)

Finally, to keep the notations uncluttered, we will use the notations of the
previous chapter, that is Z̃i =

(
Zi, 1

)⊺, ∀i and:

W̃ =

(
W U

V⊺ W∗

)

.

As the (non overlapping) Stochastic Block Model (SBM), OSBM can
be described in a full Bayesian framework by introducing some conjugate
prior distributions for the model parameters. Since p(Zi | α) is a multivari-
ate Bernoulli distribution, we consider independent Beta distributions for
the class probabilities:

p(α) =
Q

∏
q=1

Beta(αq; η0
q , ζ0

q),
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where η0
q = ζ0

q = 1/2, ∀q. As mentioned already, this corresponds to a
product of non-informative Jeffreys prior distributions. A uniform distri-
bution can also be chosen simply by fixing η0

q = ζ0
q = 1, ∀q.

In order to model the (Q + 1) × (Q + 1) real matrix W̃, we consider
the vec operator which stacks the columns of a matrix into a vector. Thus,
if A is a 2× 2 matrix such that:

A =

(
A11 A12
A21 A22

)

,

then

Avec =







A11
A21
A12
A22







.

Following the work of Jaakkola and Jordan (2000) on Bayesian logistic
regression, where a Gaussian distribution is used for the weight vector β,
we model the vector W̃

vec using a multivariate Gaussian prior distribution
with mean vector W̃

vec
0 and covariance matrix S0:

p(W̃vec
) = N (W̃

vec; W̃
vec
0 , S0).

The inference procedure introduced in this chapter is described in a gen-
eral setting, allowing any covariance matrix S0. In practice, we have used
S0 = σ2 I in all the experiments that we carried out, where I denotes the
identity matrix.

4.2 Estimation

In this section, we propose a Variational Bayes EM (VBEM) algorithm,
based on global and local variational techniques, which leads to an ap-
proximation of the full posterior distribution over the model parameters
and latent variables, given the observed data X. As for the VBEM al-
gorithm described in Chapter 2, this procedure relies on a lower bound
which will be later used as non asymptotic approximation of the marginal
log-likelihood log p(X).

4.2.1 The q-transformation

The posterior distribution p(Z, α, W̃ |X) is intractable and so we propose
to rely on variational approximations. Following the VBEM algorithm we
introduced in Chapter 2, the marginal likelihood can be decomposed into
two terms:

log p(X) = L(q) + KL ((q(·)||p(·|X)) ,

where

L(q) = ∑
Z

∫ ∫

q(Z, α, W̃) log
{

p(X, Z, α, W̃)

q(Z, α, W̃)

}

d α d W̃, (4.2)
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and

KL(q(·)||p(·|X)) = −∑
Z

∫ ∫

q(Z, α, W̃) log
{

p(Z, α, W̃ |X)

q(Z, α, W̃)

}

d α d W̃ .

(4.3)
L is a lower bound of log p(X) and KL(·||·) denotes the Kullback-
Leibler divergence between the distribution q(Z, α, W̃) and the distri-
bution p(Z, α, W̃ |X). To obtain a tractable algorithm, we assume that
q(Z, α, W̃) can be factorized such that:

q(Z, α, W̃) = q(α)q(W̃)q(Z) = q(α)q(W̃)
( N

∏
i=1

Q

∏
q=1

q(Ziq)
)
.

This factorization should be compared with (2.3.2). Indeed, contrary to
SBM where we assumed that q(Z) = ∏

N
i=1 q(Zi), we now consider a fac-

torization over all the vertices and classes, that is q(Z) = ∏
N
i=1 ∏

Q
q=1 q(Ziq).

Only with this later assumption did we obtain analytical expressions, as
shown in Section 4.2.3.

At this point, the lower bound is still intractable due to the logistic
function in the distribution p(X |Z, α, W̃) (see 4.1 and 4.2). Therefore, a
second level of approximation is required.

4.2.2 The ξ-transformation

As noted in Proposition 4.1, a tractable lower bound can be obtained using
the work of Jaakkola and Jordan (2000).

Proposition 4.1 (Proof in Appendix D.1) Given any N × N positive real matrix ξ, a lower bound
of the first lower bound is given by:

log p(X) ≥ L(q) ≥ L(q; ξ),

where

L(q; ξ) = ∑
Z

∫ ∫

q(Z, α, W̃) log
(h(Z, W̃, ξ)p(Z | α)p(α)p(W̃)

q(Z, α, W̃)

)
d α d W̃,

and

log h(Z, W̃, ξ) =
N

∑
i 6=j

{

(Xij −
1
2
)aZi ,Zj −

ξij

2
+ log g(ξij)− λ(ξij)(a2

Zi ,Zj
− ξ2

ij)

}

.

For now, ξ is held fixed but we will see in Section 4.2.4 how it can be
estimated from the data.

4.2.3 Variational Bayes EM

In order to approximate the posterior distribution p(Z, α, W̃ |X) with a
distribution q(Z, α, W̃), a VBEM algorithm is applied on the lower bound
L(q; ξ). For a general description of the VBEM algorithm, we refer to
Section 1.2.2. The algorithm starts with a matrix τ initialized using a
hierarchical classification algorithm, as in Chapter 3. Given a matrix ξ, the
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Propositions 4.2,4.3, and 4.4 are then used to maximize the lower bound
L(q; ξ) with respect to q(Z, α, W̃). We call variational Bayes E step the
optimization of the distributions q(Ziq) and variational Bayes M-step the
optimization of the remaining factors.

Proposition 4.2 (Proof in Appendix D.2) VBEM leads to a distribution q(α) which takes the same
functional form as the prior p(α):

q(α) =
Q

∏
q=1

Beta(αq; ηN
q , ζN

q ),

where

ηN
q = η0

q +
N

∑
i=1

τiq,

and

ζN
q = ζ0

q + N −
N

∑
i=1

τiq.

Proposition 4.3 (Proof in Appendix D.3) VBEM leads to a distribution q(W̃) which takes the
same functional form as the prior p(W̃):

q(W̃vec
) = N (W̃

vec; W̃
vec
N , SN),

with

S−1
N = S−1

0 +2
N

∑
i 6=j

λ(ξij)(Ẽj⊗ Ẽi),

and

W̃
vec
N = SN

{

S−1
0 W̃

vec
0 +

N

∑
i 6=j

(Xij −
1
2
) τ̃ j⊗ τ̃i

}

.

The symbol ⊗ denotes the Kronecker product. Moreover, each (Q + 1)× (Q + 1)
probability matrix Ẽi satisfies:

Ẽi = EZi [Z̃i Z̃
⊺

i ]

=










τi1 τi1τi2 . . . τi1τiQ τi1
τi2τi1 τi2 . . . τi2τiQ τi2

...
...

τiQτi1 τiQτi2 . . . τiQ τiQ
τi1 τi2 . . . τiQ 1










.

Proposition 4.4 (Proof in Appendix D.4) VBEM leads to a distribution q(Ziq) with the same
functional form as the prior:

q(Ziq) = B(Ziq; τiq),

where

τiq = g
{

ψ(ηN
q )− ψ(ζN

q ) +
N

∑
j 6=i

(Xij −
1
2
) τ̃⊺

j (W̃
⊺

N)·q +
N

∑
j 6=i

(Xji −
1
2
) τ̃⊺

j (W̃N)·q

− Tr
((

Σ
′

qq +2
Q+1

∑
l 6=q

τ̃il Σ
′

ql

)( N

∑
j 6=i

λ(ξij) Ẽj
)
+
(

Σqq +2
Q+1

∑
l 6=q

τ̃il Σql
)( N

∑
j 6=i

λ(ξ ji) Ẽj
))
}

,

and Σql = EW̃q ,W̃l
[W̃·q W̃

⊺

·l ], Σ
′

ql = EW̃q· ,W̃l·
[W̃

⊺

q· W̃l·].
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4.2.4 Optimization of ξ

So far, we have seen how a VBEM algorithm could be used to obtain an ap-
proximation of the posterior distribution p(Z, α, W̃ |X) for a given matrix
ξ. However, we have not addressed yet how ξ could be estimated from the
data. We follow the work of Bishop and Svensén (2003) on Bayesian hierar-
chical mixture of experts. Thus, given a distribution q(Z, α, W̃), the lower
bound L(q; ξ) is maximized with respect to each variable ξij in order to
obtain the tightest lower bound L(q; ξ) of L(q). As shown in Proposition
4.5 and Appendix D.5, this optimization leads to estimates ξ̂ij of ξij.

Proposition 4.5 (Proof in Appendix D.5) An estimate ξ̂ij of ξij is given by:

ξ̂ij =

√

Tr
((

SN + W̃
vec
N (W̃

vec
N )⊺

)
(Ẽj⊗ Ẽi)

)

.

This gives rise to a three step optimization algorithm. Given a matrix
ξ, the variational Bayes E and M steps are used to approximate the pos-
terior distribution over the model parameters and latent variables. The
distribution q(Z, α, W̃) is then held fixed while the lower bound L(q; ξ) is
maximized with respect to ξ. These three stages are repeated until con-
vergence of the lower bound (see Algorithm 8).

For all the experiments that we carried out, we set S0 = σ2 I with
σ2 = 1 and ξij = 0.001, ∀i 6= j. As the VEM algorithm proposed in Chapter
3, the computational cost of the algorithm is equal to O(N2Q4). Note that
a R package called “OSBM” will be soon available on the CRAN. For now,
the code is available upon request.
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Algorithm 8: Variational Bayes inference for overlapping stochastic
block model when applied on a directed graph without self loop.

// INITIALIZATION

Initialize τ with an Ascendant Hierarchical Classification algorithm
Initialize ξij, ∀i 6= j

// OPTIMIZATION

repeat

Ẽi ← EZi [Z̃i Z̃
⊺

i ], ∀i
// M-step

ηN
q ← η0

q + ∑
N
i=1 τiq, ∀q

ζN
q ← ζ0

q + N −∑
N
i=1 τiq, ∀q

S−1
N ← S−1

0 +2 ∑
N
i 6=j λ(ξij)(Ẽj⊗ Ẽi)

W̃
vec
N ← SN

{

S−1
0 W̃

vec
0 +∑

N
i 6=j(Xij −

1
2 ) τ̃ j⊗ τ̃i

}

// Optimization of ξ

ξij ←

√

Tr
((

SN + W̃
vec
N (W̃

vec
N )⊺

)
(Ẽj⊗ Ẽi)

)

, ∀i 6= j

// E-step

repeat
Compute τiq, ∀(i, q) using Proposition 4.4

until τ converges
until L(q; ξ) converges

4.3 Model Selection

Given a set of values of Q, we aim at selecting Q∗ which maximizes the
marginal log-likelihood log p(X |Q), also called integrated observed-data
log-likelihood. Unfortunately, this quantity is not tractable since for each
value of Q, it involves integrating over all possible model parameters and
latent variables:

log p(X |Q) = log

{

∑
Z

∫ ∫

p(X, Z, α, W̃ |Q)d α d W̃

}

.

As in Chapter 2, we propose to replace the marginal log-likelihood with
its variational approximation. Thus, for each value of Q considered, Al-
gorithm 8 is applied in order to maximize L(q; ξ) with respect to q(·) and
ξ. After convergence, the lower bound is then used as an estimation of
log p(X |Q). Obviously, this approximation cannot be verified analytically
because neither L(q) in (4.2) nor the Kullback-Leibler divergence in (4.3)
are tractable. Nevertheless, we rely on this approximation to propose a
tractable model selection criterion. After convergence of the algorithm,
the lower bound takes a simple form and leads to the first criterion for
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OSBM that we call ILosbm (Proof in Appendix D.6):

ILosbm =
N

∑
i 6=j

{

log g(ξij)−
ξij

2
+ λ(ξij)ξ

2
ij

}

+
Q

∑
q=1

log
{

Γ(η0
q + ζ0

q)Γ(η
N
q )Γ(ζN

q )

Γ(η0
q)Γ(ζ

0
q)Γ(η

N
q + ζN

q )

}

−
1
2

log |
S0

SN
| −

1
2
(W̃

vec
0 )⊺ S−1

0 W̃
vec
0 +

1
2
(W̃

vec
N )⊺ S−1

N W̃
⊺

N

−
N

∑
i=1

Q

∑
q=1

{

τiq log τiq + (1− τiq) log(1− τiq)

}

.

4.4 Experiment

We consider simulated data and the transcriptional regulatory network
of yeast in order to assess the Bayesian inference procedure introduced in
Section 4.2.4 as well as the model selection criterion ILosbm.

4.4.1 Simulated data

OSBM is used in this set of experiments to generate networks with com-
munity structure, where vertices of a community are mostly connected
to vertices of the same community. The networks are made of overlaps
and therefore if we rely on a criterion for (non overlapping) SBM as ILvb
(see Chapter 2), the number of classes is highly overestimated. Indeed,
such criterion uses many extra components to characterize the overlaps
between classes. As in Section 3.6.1, to limit the number of free parame-
ters, we consider the Q×Q real matrix W:

W =









λ −ǫ . . . −ǫ

−ǫ λ
...

...
. . . −ǫ

−ǫ . . . −ǫ λ









,

and the Q-dimensional real vectors U and V:

U = V =
(
ǫ . . . ǫ

)
,

such that λ = 6, ǫ = 1, and W∗ = −5.5. For each value QTrue in the
set {3, . . . , 7}, we generate 100 networks (see an example in Figure 4.1)
with N = 100 vertices and classes mixed in the same proportions , that
is α1 = · · · = αQTrue = 1/QTrue. The VBEM algorithm is then applied on
each network for various numbers of classes Q ∈ {2, . . . , 8}. Note that
we choose n0

q = 1/2, ∀q and S0 = σ2 I with σ2 = 1. Like any optimiza-
tion method, the overlapping clustering algorithm we propose depends
on the initialization. Thus, for each simulated network and each number
of classes Q, we consider 20 initializations of τ. Finally, we select the best
learnt model for which the criterion ILosbm is maximized.

The results presented in Table 4.1 clearly illustrate that ILosbm is a rel-
evant criterion to estimate the number of overlapping classes in networks.
For instance, when QTrue = 3 or QTrue = 4, ILosbm correctly estimates the
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2 3 4 5 6 7 8

3 0 99 1 0 0 0 0

4 0 0 99 1 0 0 0

5 0 0 0 93 5 2 0

6 0 0 0 7 64 22 7

7 0 0 0 0 16 47 37

Table 4.1 – Confusion matrix for ILosbm. λ = 6, ǫ = 1, W∗ = −5.5, QTrue ∈ {3, . . . , 7}
and QILosbm

∈ {2, . . . , 8}.

number of overlapping classes of 99 of the 100 networks generated. As Q
increases, the performances of the criterion remain quite stable.

We now consider networks generated by changing the value of λ to
λ = 4 which causes the intra class probabilities to decrease. The results
are presented in Table 4.2. It appears that ILosbm has a tendency to over-
estimate the number of components. Indeed, we found that the more
difficult it is to distinguish the communities, the more the criterion tends
to use extra classes to model the overlaps between classes.

2 3 4 5 6 7 8

3 0 99 1 0 0 0 0

4 0 0 85 9 5 0 1

5 0 0 4 53 26 9 8

6 0 0 0 18 34 27 21

7 0 0 0 4 18 30 48

Table 4.2 – Confusion matrix for ILosbm. λ = 4, ǫ = 1, W∗ = −5.5, QTrue ∈ {3, . . . , 7}
and QILosbm

∈ {2, . . . , 8}.
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Figure 4.1 – Figure produced by the R “OSBM” package. Example of a network gener-
ated using OSBM, with λ = 6, ǫ = 1, W∗ = −5.5, and Q = 5 classes. Overlaps are
represented using pies and outliers are in white.
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4.4.2 Saccharomyces cerevisiae transcription network

Let us consider the yeast transcriptional regulatory network described
in Chapter 4. The network is made of 197 vertices connected by 303
edges. We apply the VBEM algorithm for various number of classes
Q ∈ {2, . . . , 8}. Moreover, for each value of Q, we consider 10 initial-
izations of the matrix τ and we select the best learnt model. The results
of ILosbm are presented in Figure 4.2. The criterion finds its maximum for
QILosbm = 6 as expected. It retrieves the three regulations patterns (see Sec-
tion 3.6.3) where each regulation pattern is made of a group of regulators
and a group of regulated operons.

2 3 4 5 6 7 8

−
1
6
6
0

−
1
6
4
0

−
1
6
2
0

−
1
6
0
0

−
1
5
8
0

−
1
5
6
0

Figure 4.2 – The ILosbm criterion for Q ∈ {2, . . . , 8}. The maximum is reached at
QILosbm

= 6.

Conclusion

In this chapter, we first introduced some conjugate prior distributions for
the parameters of the overlapping stochastic block model. We then pro-
posed a variational Bayes EM algorithm, based on global and local varia-
tional techniques. The algorithm can be used to approximate the posterior
distribution over the model parameters and latent variables, given the ob-
served data. In this framework, we derived a model selection criterion,
so called ILosbm, which is based on a non asymptotic approximation of
the marginal log-likelihood. Using simulated data and a real network, we
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showed that ILosbm provides a relevant estimation of the number of over-
lapping clusters. In future work, we will assess the Bayesian confidence
intervals of the posterior distributions found by the variational Bayes EM
algorithm. Moreover, we are also interested in developing a method in
order to be able to learn from a network whether the parameters U, V, W

and W∗ are zero or not.





Conclusion

As more and more network structured data sets are available, the
statistical analysis of graphs has become common place. In this thesis,
we considered unsupervised methods which aim at clustering vertices
depending on their connection profiles. There is a long history of re-
search on the topic, which goes back to the earlier work of Moreno in
1934, and many graph clustering algorithms have been proposed. We
presented model based techniques and focused mainly on the Stochastic
Block Model (SBM).

SBM is a mixture model which assumes that the vertices of a network
are spread into different classes, so that the probability of an edge between
two vertices only depends on the classes they belong to. No assumption is
made on these probabilities such that very different topological structures
can be taken into account. In particular, the model can characterize the
presence of hubs which make networks locally dense. SBM was shown
to generalize many of the existing graph clustering algorithms and so we
considered it as the starting point of the thesis.

The clustering of vertices as well as the estimation of SBM parameters
had been subject to previous work and numerous inference strategies had
been proposed. However, the model still suffered from a lack of criteria to
estimate the number of components in the mixture. Only one model based
criterion had been derived for SBM in the literature. However, it tended
to be too conservative in the case of small networks. In order to tackle
this issue, we first illustrated how SBM could be described in a Bayesian
framework. A new inference procedure was then proposed to estimate
the posterior distribution over the model parameters and latent variables,
given the observed data. In this framework, we derived a new model se-
lection criterion, so-called ILvb, based on a non asymptotic approximation
of the marginal likelihood. By considering networks generated using SBM
as well as a real network, we showed that ILvb focus on the estimation
of the data density and provides a relevant estimation of the number of
latent classes.

Besides, almost all graph clustering models, such as SBM, partition the
vertices into disjoint clusters. However, most real networks are known
to be made of overlapping clusters. For instance, many proteins, so-
called moonlighting proteins, are known to have several functions in the
cells, and actors might belong to several groups of interest. Therefore,
we introduced a new random graph model, the Overlapping Stochastic
Block Model (OSBM). It allows the vertices to belong to multiple classes
and can take very different topological structures into account. We pro-
posed a variational EM algorithm, based on global and local variational
techniques, to cluster the vertices of a network and estimate the model pa-
rameters. Using simulated data, the french political blogosphere network,
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as well as the yeast transcriptional regulatory network, we showed that
this procedure outperformed existing graph clustering algorithms.

Finally, we illustrated how OSBM could be described in a Bayesian
framework by introducing some conjugate prior distribution for the model
parameters. Then, we proposed an inference procedure to approximate
the posterior distribution over the model parameters and latent variables,
given the observed data. In this framework, we obtained the first model
selection criterion for OSBM that we called ILosbm. It is based on a non
asymptotic approximation of the marginal likelihood and has shown en-
couraging results.

Perspectives

In future work, we will investigate Markov chain Monte Carlo techniques
as alternative approaches to estimate the posterior distribution of OSBM.
These methods have already been considered for the (non overlapping)
SBM model and have shown some interesting features. In particular, they
appear to be less dependent on the initialization of the τ matrix than varia-
tional approaches. Some other experiments on more challenging networks
are also of interest in order to assess the ILosbm criterion. Similarly, we be-
lieve it is crucial to investigate the Bayesian confidence intervals of the
posterior distributions found by the variational Bayes EM algorithm. For
now, we have only used the algorithm for model selection purposes and
the posterior distributions should be better exploited. As mentioned al-
ready, it would be particularly relevant to develop a procedure to be able
to learn from a network whether the parameters U, V, W, and W∗ are
zero or not. Finally, recent studies have extended existing random graph
models in order to take covariate information about the edges or vertices
into account. Others have focused on modelling the dynamic of networks,
that is the appearence of edges through time. We will investigate possible
extensions of OSBM in order to take these features into account.



A
Mixture models

A.1 Factorization of the integrated complete-data

likelihood

If the prior over the model parameters can be factorized, such that p(θ) =
p(α)p(κ), then:

p(X, Z) = p(X |Z)p(Z).

Proof:

p(X, Z) =
∫

p(X, Z | θ)p(θ)d θ

=
∫

p(X |Z, θ)p(Z | θ)p(θ)d θ

=
∫

p(X |Z, κ)p(Z | α)p(α)p(κ)d α d κ

=

(∫

p(X |Z, κ)p(κ)d κ

)(∫

p(Z | α)p(α)d α

)

= p(X |Z)p(Z).

A.2 Exact expression of log p(Z)

Using a Jeffreys non informative prior distribution for the class propor-
tions α, Biernacki et al. (2000) showed that log p(Z) is given by:

log p(Z) = log Γ(
Q
2
) +

Q

∑
q=1

log Γ(
1
2
+ nq)−Q log Γ(

1
2
)− log Γ(N +

Q
2
),

(A.1)
where nq = ∑

N
i Ziq, ∀q.

Proof: Let us first consider a Dirichlet prior distribution for the class
proportions:

p(α) = Dir(α; n0)

= D(n 0)
Q

∏
q=1

α
nq−1
q ,

with

D(n0) =
Γ(∑Q

q n0
q)

∏
Q
q=1 Γ(n0

q)
.
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It leads to:

log p(Z) = log
(∫

p(Z | α)p(α)d α

)

= log

(
∫ n

∏
i=1

Q

∏
q=1

α
Ziq
q D(n0)

Q

∏
q=1

α
n0

q−1
q d α

)

= log

(

D(n0)
∫ Q

∏
q=1

α
∑

n
i=1 Ziq

q

Q

∏
q=1

α
n0

q−1
q d α

)

= log

(

D(n0)
∫ Q

∏
q=1

α
n0

q+nq−1
q d α

)

.

Therefore

log p(Z) = log

(

D(n0)
∫ Q

∏
q=1

α
nnew−1

q
q d α

)

= log

(

D(n0)

D(nnew)

∫

D(nnew)
Q

∏
q=1

α
nnew−1

q
q d α

)

= log







D(n0)

D(nnew)

∫

Dir(α; nnew)d α
︸ ︷︷ ︸

1







= log
D(n0)

D(nnew)

= log Γ(
Q

∑
q=1

n0
q) +

Q

∑
q=1

log Γ(n0
q + nq)−

Q

∑
q=1

log Γ(n0
q)

− log Γ

(
Q

∑
q=1

(n0
q + nq)

)

,

(A.2)

where nq = ∑
n
i=1 Ziq, ∀q. In (A.2), nnew denotes the Q dimensional vector

such that nnew
q = n0

q + nq, ∀q. If we now consider a Jeffreys non infor-
mative prior distribution (Robert 1994) which corresponds to a Dirichlet
distribution with n0

q = 1/2, ∀q, we obtain (A.1).

A.3 Asymptotic approximation of log p(Z) using Stir-
ling formulae

Assuming that N and the nqs have large values (namely the αq are far
from 0), Biernacki et al. (2000) relied on the Stirling formulae to obtain an
approximation of log p(Z):

log p(Z) ≈ max
α

log p(Z | α)−
Q− 1

2
log N

=
Q

∑
q=1

nq log
nq

N
−

Q− 1
2

log N,

where nq = 1/2, ∀q.
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Proof: For large values of s, the Stirling formula approximates the
Gamma function:

Γ(s + 1) ≈ (2π)
1
2 ss+ 1

2 exp(−s). (A.3)

Thus, using (A.3) in (A.1) and removing the terms in O(1) (assuming
Q = O(N)) leads to:

log p(Z) ≈
Q

∑
q=1

log
(

(2π)
1
2 (nq −

1
2
)nq exp(−nq +

1
2
)

)

− log
(

(2π)
1
2 (N +

Q
2
− 1)N+ Q

2 −
1
2 exp(−N −

Q
2
+

1
2
)

)

≈
Q

∑
q=1

(
nq log nq − nq)

)
− N log N −

Q− 1
2

log N + N

=
Q

∑
q=1

nq log nq − N log N −
Q− 1

2
log N

=
Q

∑
q=1

nq log
nq

N
−

Q− 1
2

log N

= max
α

log p(Z | α)−
Q− 1

2
log N.

Indeed, it is straightforward to see that the maximum of log p(Z | α) is
reached when αq =

nq

N , ∀q. Therefore:

max
α

log p(Z | α) =
N

∑
i=1

Q

∑
q=1

Ziq log
nq

N

=
Q

∑
q=1

nq log
nq

N
.





B
SBM

B.1 Optimization of q(Zi)

The optimal approximation at vertex i is:

q(Zi) =M(Zi; 1, τi = {τi1, . . . , τiQ}), (B.1)

where τiq is the probability (responsability) of node i to belong to class q.
It satisfies the relation:

τiq ∝ eψ(nq)−ψ(∑
Q
l=1 nl)

N

∏
j 6=i

Q

∏
l=1

e
τjl

(

ψ(ζql)−ψ(ηql+ζql)+Xij

(

ψ(ηql)−ψ(ζql)

)
)

, (B.2)

where ψ(.) is the digamma function. In order to optimize the distribution
q(Z), we rely on a fixed point algorithm. Thus, given a matrix τold, the
algorithm builds a new matrix τnew where each rows satisfies (B.2). After
normalization, it then uses τnew to build a new matrix and so on. The
algorithm stops when ∑

N
i=1 ∑

Q
q=1 |τ

old
iq − τnew

iq | < eps. In the experiment
section, we set eps = 1e− 6.

Proof: According to variational Bayes, the optimal distribution q(Zi)
is given by:

log q(Zi) = E
Z\i ,α,Π[log p(X, Z, α, Π)] + const

= E
Z\i ,Π[log p(X |Z, π)] + E

Z\i ,α[log p(Z |α)] + const

= E
Z\i ,Π[∑

i′<j
∑
q,l

Zi′qZjl

(

Xi′ j log πql + (1− Xi′ j) log(1− πql)
)

]

+ E
Z\i ,α[

N

∑
i′=1

Q

∑
q=1

Zi′q log αq] + const

=
Q

∑
q=1

Ziq

(

Eαq [log αq] +
N

∑
j 6=i

Q

∑
l=1

τjl

(

Xij
(
Eπql [log πql ]− Eπql [log(1− πql)]

)

+ Eπql [log(1− πql)]
)
)

+ const

=
Q

∑
q=1

Ziq

(

ψ(nq)− ψ(
N

∑
l=1

nl) +
N

∑
j 6=i

Q

∑
l=1

τjl

(

Xij
(
ψ(ηql)− ψ(ζql)

)

+ ψ(ζql)− ψ(ηql + ζql)
)
)

+ const,

(B.3)
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where Z\i denotes the class of all nodes except node i. We have used
Ey[log y] = ψ(a)− ψ(a + b) when y ∼ Beta(y; a, b). Moreover, to simplify
the calculations, the terms that do not depend on Zi have been absorbed
into the constant. Taking the exponential of (B.3) and after normalization,
we obtain the multinomial distribution (B.1).

B.2 Optimization of q(α)

The optimization of the lower bound with respect to q(α) produces a dis-
tribution with the same functional form as the prior p(α):

q(α) = Dir(α; n), (B.4)

where

nq = n0
q +

N

∑
i=1

τiq.

Proof: According to variational Bayes, the optimal distribution q(α) is
given by:

log q(α) = EZ,Π[log p(X, Z, α, Π)] + const

= EZ[log p(Z | α)] + log p(α) + const

=
N

∑
i=1

Q

∑
q=1

τiq log αq +
Q

∑
q=1

(n0
q − 1) log αq + const

=
Q

∑
q=1

(

n0
q − 1 +

N

∑
i=1

τiq

)

log αq + const.

(B.5)

Taking the exponential of (B.5) and after normalization, we obtain the
Dirichlet distribution (B.4).

B.3 Optimization of q(Π)

Again, the functional form of the prior p(Π) is conserved through the
variational optimization:

q(Π) =
Q

∏
q≤l

Beta(πql ; ηql , ζql), (B.6)

For q 6= l, the hyperparameter ηql is given by:

ηql = η0
ql +

N

∑
i 6=j

Xijτiqτjl ,

and ∀q

ηqq = η0
qq +

N

∑
i<j

Xijτiqτjq.

Moreover, for q 6= l, the hyperparameter ζql is given by:

ζql = ζ0
ql +

N

∑
i 6=j

(1− Xij)τiqτjl ,
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and ∀q

ζqq = ζ0
qq +

N

∑
i<j

(1− Xij)τiqτjq.

Proof : According to variational Bayes, the optimal distribution q(Π)
is given by:

log q(Π) = EZ,α[log p(X, Z, α, Π)] + const

= EZ[log p(X |Z, Π)] + log p(Π) + const

=
N

∑
i<j

Q

∑
q,l

τiqτjl

(

Xij log πql + (1− Xij) log(1− πql)
)

+
Q

∑
q≤l

(

(η0
ql − 1) log πql + (ζ0

ql − 1) log(1− πql)
)

+ const

=
Q

∑
q<l

N

∑
i 6=j

τiqτjl

(

Xij log πql + (1− Xij) log(1− πql)
)

+
Q

∑
q=1

N

∑
i<j

τiqτjq

(

Xij log πqq + (1− Xij) log(1− πqq)
)

+
Q

∑
q≤l

(

(η0
ql − 1) log πql + (ζ0

ql − 1) log(1− πql)
)

+ const

=
Q

∑
q<l

(
(

η0
ql − 1 +

N

∑
i 6=j

τiqτjlXij

)

log πql +
(

ζ0
ql − 1 +

N

∑
i 6=j

τiqτjl(1− Xij)
)

log(1− πql)

)

+
Q

∑
q=1

(
(

η0
qq − 1 +

N

∑
i<j

τiqτjqXij

)

log πqq +
(

ζ0
qq − 1 +

N

∑
i<j

τiqτjq(1− Xij)
)

log(1− πqq)

)

.

(B.7)
Taking the exponential of (B.7) and after normalization, we obtain the
product of Beta distribution (B.6).

B.4 Lower bound

The lower bound takes a simple form after the variational Bayes M-step.
Indeed, it only depends on the posterior probabilities τiq as well as the
normalizing constants of the Dirichlet and Beta distributions:

L(q) = log







Γ(∑
Q
q=1 n0

q)∏
Q
q=1 Γ(nq)

Γ(∑
Q
q=1 nq)∏

Q
q=1 Γ(n0

q)






+

Q

∑
q≤l

log

{
Γ(η0

ql + ζ0
ql)Γ(ηql)Γ(ζql)

Γ(ηql + ζql)Γ(η
0
ql)Γ(ζ

0
ql)

}

−
N

∑
i=1

Q

∑
q=1

τiq log τiq.
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Proof : The lower bound is given by:

L(q) = ∑
Z

∫ ∫

q(Z, α, Π) log{
p(X, Z, α, Π)

q(Z, α, Π)
}d α d π

= EZ,α,Π[log p(X, Z, α, Π)]− EZ,α,Π[log q(Z, α, Π)]

= EZ,Π[log p(X |Z, Π)] + EZ,α[log p(Z | α)] + Eα[log p(α)] + EΠ[log p(Π)]

−
N

∑
i=1

EZi [log q(Zi)]− Eα[log q(α)]− EΠ[log q(π)]

=
N

∑
i<j

Q

∑
q,l

τiqτjl

(

Xij

(

ψ(ηql)− ψ(ζql)
)

+ ψ(ζql)− ψ(ηql + ζql)

)

+
N

∑
i=1

Q

∑
q=1

τiq

(

ψ(nq)− ψ(
Q

∑
l=1

nl)
)

+ log Γ(
Q

∑
q=1

n0
q)−

Q

∑
q=1

log Γ(n0
q)

+
Q

∑
q=1

(

n0
q − 1

)(

ψ(nq)− ψ(
Q

∑
l=1

nl)
)

+
Q

∑
q≤l

(

log Γ(η0
ql + ζ0

ql)

− log Γ(η0
ql)− log Γ(ζ0

ql) + (η0
ql − 1)

(

ψ(ηql)− ψ(ηql + ζql)
)

+ (ζ0
ql − 1)

(

ψ(ζql)− ψ(ηql + ζql)
)
)

−
N

∑
i=1

Q

∑
q=1

τiq log τiq

− log Γ(
Q

∑
q=1

nq) +
Q

∑
q=1

log Γ(nq)−
Q

∑
q=1

(

nq − 1
)(

ψ(nq)− ψ(
Q

∑
l=1

nl)
)

−
Q

∑
q≤l

(

log Γ(ηql + ζql)− log Γ(ηql)− log Γ(ζql)

+ (ηql − 1)
(

ψ(ηql)− ψ(ηql + ζql)
)

+ (ζql − 1)
(

ψ(ζql)− ψ(ηql + ζql)
)
)

=
Q

∑
q<l

(
(

η0
ql − ηql +

N

∑
i 6=j

τiqτjlXij

)(

ψ(ηql)− ψ(ηql + ζql)
)

+
(

ζ0
ql − ζql +

N

∑
i 6=j

τiqτjl(1− Xij)
)(

ψ(ζql)− ψ(ηql + ζql)
)
)

+
Q

∑
q=1

(
(

η0
qq − ηqq +

N

∑
i<j

τiqτjqXij

)(

ψ(ηqq)− ψ(ηqq + ζqq)
)

+
(

ζ0
qq − ζqq +

N

∑
i<j

τiqτjq(1− Xij)
)(

ψ(ζqq)− ψ(ηqq + ζqq)
)
)

+
Q

∑
q=1

(

n0
q − nq +

N

∑
i=1

τiq

)(

ψ(nq)− ψ(
Q

∑
l=1

nl)
)

+ log{
Γ(∑

Q
q=1 n0

q)∏
Q
q=1 Γ(nq)

Γ(∑
Q
q=1 nq)∏

Q
q=1 Γ(n0

q)
}+

Q

∑
q≤l

log{
Γ(η0

ql + ζ0
ql)Γ(ηql)Γ(ζql)

Γ(ηql) + ζqlΓ(η
0
ql)Γ(ζ

0
ql)
}

−
N

∑
i=1

Q

∑
q=1

τiq log τiq.

(B.8)
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After the variational Bayes M-step, most of the terms in the lower bound
vanish since:

• ∀q : nq = n0
q + ∑

N
i=1 τiq.

• ∀q 6= l : ηql = η0
ql + ∑

N
i 6=j Xijτiqτjl ,

• ∀q : ηqq = η0
qq + ∑

N
i<j Xijτiqτjq.

• ∀q 6= l : ζql = ζ0
ql + ∑

N
i 6=j(1− Xij)τiqτjl ,

• ∀q : ζqq = ζ0
qq + ∑

N
i<j(1− Xij)τiqτjq.

Only the terms depending on the probabilities τiq and the normalizing
constants of the Dirichlet and Beta distributions remain.





C
OSBM

C.1 First lower bound

The lower bound defined in (3.11) can be written:

LML(q; α, W̃) =
N

∑
i 6=j

{

Xijτ̃i
⊺W̃τ̃ j + EZi ,Zj [log g(−aij)]

}

+
N

∑
i=1

Q

∑
q=1

{
τiq log αq + (1− τiq) log(1− αq)

}

−
N

∑
i=1

Q

∑
q=1

{
τiq log τiq + (1− τiq) log(1− τiq)

}
.

Proof: The lower bound can be decoposed into:

LML(q; α, W̃) = ∑
Z

q(Z) log p(X, Z | α, W̃)−∑
Z

q(Z) log q(Z)

= EZ[log p(X, Z | α, W̃)]− EZ[log q(Z)]

= EZ[log p(X |Z, W̃)] + EZ[log p(Z | α)]− EZ[log q(Z)],
(C.1)

where the expectations are taken according to the distribution q(Z) and
the last term of (C.1) is an entropy term. Using (3.13), we obtain:

LML(q; α, W̃) =
N

∑
i 6=j

{

XijEZi ,Zj [aij] + EZi ,Zj [log g(−aij)]
}

+
N

∑
i=1

Q

∑
q=1

{

EZiq [Ziq] log αq + (1− EZiq [Ziq]) log(1− αq)
}

−
N

∑
i=1

Q

∑
q=1

{

EZiq [Ziq] log τiq + (1− EZiq [Ziq]) log(1− τiq)
}

=
N

∑
i 6=j

{

Xijτ̃i
⊺W̃τ̃ j + EZi ,Zj [log g(−aij)]

}

+
N

∑
i=1

Q

∑
q=1

{
τiq log αq + (1− τiq) log(1− αq)

}

−
N

∑
i=1

Q

∑
q=1

{
τiq log τiq + (1− τiq) log(1− τiq)

}
.

(C.2)
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C.2 Second lower bound

Using local variational approximations, a tractable lower bound can be
obtained:

LML(q; α, W̃, ξ) =
N

∑
i 6=j

{

(
Xij −

1
2

)
τ̃⊺

i W̃τ̃ j + log g(ξij)−
ξij

2

− λ(ξij)

(

Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃⊺

j W̃
⊺
ẼiW̃τ̃ j − ξ2

ij

)}

+
N

∑
i=1

Q

∑
q=1

{
τiq log αq + (1− τiq) log(1− αq)

}

−
N

∑
i=1

Q

∑
q=1

{
τiq log τiq + (1− τiq) log(1− τiq)

}
,

where Ẽi = EZi [Z̃iZ̃i
⊺
] = Σi +τ̃iτ̃i

⊺ and:

Σi =

(
var(Zi) 0

0 0

)

, ∀i.

Proof: As noticed in Section 3.5 the first lower bound is a function of
the expectations EZi ,Zj [log g(−aij)] which are untractable. In order to com-
pute a second tractable lower bound, we consider the bound log g(x, ξ) on
the log-logistic function:

log g(x) ≥ log g(x, ξ) = log g(ξ) +
(x− ξ)

2
− λ(ξ)(x2 − ξ2), ∀x, ξ ∈ R,

(C.3)
where λ(ξ) = 1

4ξ tanh( ξ
2 ) = 1

2ξ

{
g(ξ)− 1

2

}
and ξ is a variational parame-

ter. This bound was first introduced by Jaakkola and Jordan (2000), in the
framework of Bayesian logistic regression, to obtain a tractable approxi-
mation of the marginal likelihood. It is based on symmetrization of the
log-logistic function and a Taylor expansion in the variable x2. It leads to:

log g(−aij) = log g(−Z̃i
⊺
W̃Z̃j) ≥ log g(−Z̃i

⊺
W̃Z̃j, ξij),

where

log g(−Z̃i
⊺
W̃Z̃j, ξij) = log g(ξij)−

(Z̃i
⊺
W̃Z̃j + ξij)

2
−λ(ξij)

(

(Z̃i
⊺
W̃Z̃j)

2− ξ2
ij

)

.

Therefore, we have:

EZi ,Zj [log g(−aij)] = ∑
Zi ,Zj∈{0,1}Q

log g(−aij)q(Zi)q(Zj)

≥ ∑
Zi ,Zj∈{0,1}Q

{

log g(ξij)−
(Z̃i

⊺
W̃Z̃j + ξij)

2
− λ(ξij)

(

(Z̃i
⊺
W̃Z̃j)

2

− ξ2
ij

)}

q(Zi)q(Zj)

≥ log g(ξij)−
(τ̃i

⊺W̃τ̃ j + ξij)

2
− λ(ξij)

(

EZi ,Zj [(Z̃i
⊺
W̃Z̃j)

2]− ξ2
ij

)

.
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The expectation terms are now tractable:

EZi ,Zj [(Z̃i
⊺
W̃Z̃j)

2] = EZi ,Zj [Z̃i
⊺
W̃Z̃jZ̃i

⊺
W̃Z̃j]

= EZi ,Zj [Z̃j
⊺
W̃

⊺
Z̃iZ̃i

⊺
W̃Z̃j]

= EZj [Z̃j
⊺
W̃

⊺EZi [Z̃iZ̃i
⊺
]W̃Z̃j]

= EZj [Z̃j
⊺
W̃

⊺(
Σi +τ̃iτ̃i

⊺
)
W̃Z̃j]

= Tr
(

W̃
⊺(

Σi +τ̃iτ̃i
⊺
)
W̃ Σj

)

+ τ̃ j
⊺W̃

⊺(
Σi +τ̃iτ̃i

⊺
)
W̃τ̃ j,

where

Σi =

(
var(Zi) 0

0 0

)

, ∀i.

We have used the property that ∀A a matrix,

E[Z̃j
⊺

A Z̃j] = Tr
(

A var(Z̃j)
)
+ E[Z̃j]

⊺ A E[Z̃j].

In the following, and in order to simplify the notations, we denote:

Ẽi = EZi [Z̃iZ̃i
⊺
] = Σi +τ̃iτ̃i

⊺.

Thus:
EZi ,Zj [(Z̃i

⊺
W̃Z̃j)

2] = Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃ j
⊺W̃

⊺
ẼiW̃τ̃ j.

We eventually get the expression of a tractable second lower bound:

LML(q; α, W̃, ξ) =
N

∑
i 6=j

{

(
Xij −

1
2

)
τ̃⊺

i W̃τ̃ j + log g(ξij)−
ξij

2

− λ(ξij)

(

Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃⊺

j W̃
⊺
ẼiW̃τ̃ j − ξ2

ij

)}

+
N

∑
i=1

Q

∑
q=1

{
τiq log αq + (1− τiq) log(1− αq)

}

−
N

∑
i=1

Q

∑
q=1

{
τiq log τiq + (1− τiq) log(1− τiq)

}
.

with
log p(X | α, W̃) ≥ LML(q; α, W̃) ≥ LML(q; α, W̃, ξ).

C.3 Optimization of ξij

An estimate of ξij is given by:

ξ̂ij =

√
(

Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃ j
⊺W̃

⊺
ẼiW̃τ̃ j

)

.
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Proof: The partial derivative of the lower bound, with respect to ξij, is
given by:

∂LML

∂ξij
(q; α, W̃, ξ) = g(−ξij)−

1
2
− λ

′
(ξij)

(

Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃ j
⊺W̃

⊺
ẼiW̃τ̃ j − ξ2

ij

)

+ 2ξijλ(ξij)

= −λ
′
(ξij)

(

Tr
(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃ j
⊺W̃

⊺
ẼiW̃τ̃ j − ξ2

ij

)

,

(C.4)
where we have used the property that (log g)

′
(ξij) = g(−ξij) and g(ξij) +

g(−ξij) = 1. Since each bound log g(−aij, ξij) is an even function with
respect to ξij, we can consider only positive values of ξij without loss of
generality. Therefore, we have λ

′
(ξij) 6= 0 since λ(ξij) is a strictly decreas-

ing function on this domain. Finally, if we set the derivative (C.4) of the
lower bound to zero, we obtain:

ξ̂ij
2
= Tr

(

W̃
⊺
ẼiW̃ Σj

)

+ τ̃ j
⊺W̃

⊺
ẼiW̃τ̃ j.

C.4 Optimization of αq

An estimate of αq is given by:

α̂q =
∑

N
i=1 τiq

N
.

Proof: If we set the partial derivative of the lower bound, with respect
to αq, to zero, we obtain:

∂LML

∂αq
(q; α, W̃, ξ) =

N

∑
i=1
{

τiq

αq
− (

1− τiq

1− αq
)} = 0.

Thus,

(1− αq)
N

∑
i=1

τiq = αq

N

∑
i=1

(1− τiq).

This leads to
N

∑
i=1

τiq = αqN,

and

α̂q =
∑

N
i=1 τiq

N
.

C.5 Optimization of W̃

An estimate of vec(W̃) is given by:

vec(W̃) =

{

2
N

∑
i 6=j

λ(ξij)
(
Ẽj ⊗ Ẽi

)

}−1{
N

∑
i 6=j

(Xij −
1
2
)
(
τ̃ j ⊗ τ̃i

)

}

,



C.5. Optimization of W̃ 123

where vec denotes an operator which stacks the columns of a matrix into
a vector.

Proof: The gradient of the lower bound with respect to the matrix W̃

is given by:

∇W̃LML(q; α, W̃, ξ) =
N

∑
i 6=j

{

(Xij−
1
2
)τ̃iτ̃ j

⊺− 2λ(ξij)

(

ẼiW̃ Σj +ẼiW̃τ̃ jτ̃ j
⊺

)}

,

since ∀B, C symmetric matrices:

∇W̃Tr(W̃⊺
B W̃ C) = B W̃ C+B⊺ W̃ C⊺ = 2 B W̃ C,

and ∀ b a vector:

∇W̃ b⊺ W̃
⊺

B W̃ b = B⊺ W̃ b b⊺+B W̃ b b⊺ = 2 B W̃ b b⊺ .

Finally, we obtain:

∇W̃LML(q; α, W̃, ξ) =
N

∑
i 6=j

{

(Xij −
1
2
)τ̃iτ̃ j

⊺ − 2λ(ξij)ẼiW̃Ẽj

}

.

Therefore, the matrix W̃ which maximizes the lower bound satisfies:

2
N

∑
i 6=j

{

λ(ξij)ẼiW̃Ẽj

}

=
N

∑
i 6=j

{

(Xij −
1
2
)τ̃iτ̃ j

⊺

}

.

This implies:

vec
{

2
N

∑
i 6=j

λ(ξij)ẼiW̃Ẽj

}

= vec
{ N

∑
i 6=j

(Xij −
1
2
)τ̃iτ̃ j

⊺

}

,

and

2
N

∑
i 6=j

λ(ξij)vec
(
ẼiW̃Ẽj

)
=

N

∑
i 6=j

(Xij −
1
2
)vec(τ̃iτ̃ j

⊺). (C.5)

From (C.5), we obtain:

2
N

∑
i 6=j

λ(ξij)
(
Ẽj ⊗ Ẽi

)
vec(W̃) =

N

∑
i 6=j

(Xij −
1
2
)
(
τ̃ j ⊗ τ̃i

)
,

since Ẽj is a symmetric matrix and ∀B, C two matrices:

vec
(

B W̃ C
)
=
(

C⊺⊗B
)
vec(W̃).

Moreover ∀ b, c two vectors:

vec
(

c b⊺
)
= b⊗ c .

Therefore an estimate of vec(W̃) is given by:

vec(W̃) =

{

2
N

∑
i 6=j

λ(ξij)
(
Ẽj ⊗ Ẽi

)

}−1{
N

∑
i 6=j

(Xij −
1
2
)
(
τ̃ j ⊗ τ̃i

)

}

.





D
Bayesian OSBM

D.1 Lower Bound

Given a N × N positive real matrix ξ, a lower bound of the first lower
bound can be computed:

log p(X) ≥ L(q) ≥ L(q; ξ),

where

L(q; ξ) = ∑
Z

∫ ∫

q(Z, α, W̃) log
(h(Z, W̃, ξ)p(Z | α)p(α)p(W̃)

q(Z, α, W̃)

)
d α d W̃,

and

log h(Z, W̃, ξ) =
N

∑
i 6=j

{

(Xij −
1
2
)aZi ,Zj −

ξij

2
+ log g(ξij)− λ(ξij)(a2

Zi ,Zj
− ξ2

ij)

}

.

Proof: Let us start by showing that:

log p(X |Z, W̃) ≥ log h(Z, W̃, ξ),

where ξ is an N × N positive real matrix. We use the bound on the log-
logistic function introduced by Jaakkola and Jordan (2000):

log g(x) ≥ log g(ξ) +
x− ξ

2
− λ(ξ)(x2 − ξ2), ∀(x, ξ) ∈ R×R

+, (D.1)

where λ(ξ) = (g(ξ) − 1/2)/(2ξ). Note that (D.1) is an even function
and therefore we can consider only positive values of x without loss of
generality. Since

log p(Xij|Zi, Zj, W̃) = XijaZi ,Zj + log g(−aZi ,Zj),

then

log p(Xij|Zi, Zj, W̃) ≥ XijaZi ,Zj + log g(ξij)−
aZi ,Zj + ξij

2
− λ(ξij)(a2

Zi ,Zj
− ξ2

ij)

= (Xij −
1
2
)aZi ,Zj −

ξij

2
+ log g(ξij)− λ(ξij)(a2

Zi ,Zj
− ξ2

ij).

(D.2)
Following (4.1):

log p(X |Z, W̃) =
N

∑
i 6=j

log p(Xij |Zi, Zj, W̃).
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Therefore
log p(X |Z, W̃) ≥ log h(Z, W̃, ξ).

We recall that the lower bound L(q) is given by:

L(q) = ∑
Z

∫ ∫

q(Z, α, W̃) log
{

p(X, Z, α, W̃)

q(Z, α, W̃)

}

= ∑
Z

∫ ∫

q(Z, α, W̃) log p(X |Z, W̃) + ∑
Z

∫ ∫

q(Z, α, W̃) log
(

p(Z | α)p(α)p(W̃)
)

− q(Z, α, W̃) log q(Z, α, W̃)

≥∑
Z

∫ ∫

q(Z, α, W̃) log h(Z, W̃, ξ) + ∑
Z

∫ ∫

q(Z, α, W̃) log
(

p(Z | α)p(α)p(W̃)
)

− q(Z, α, W̃) log q(Z, α, W̃)

= ∑
Z

∫ ∫

q(Z, α, W̃) log
(h(Z, W̃, ξ)p(Z | α)p(α)p(W̃)

q(Z, α, W̃)

)
d α d W̃

= L(q; ξ).

Finally
log p(X) ≥ L(q) ≥ L(q; ξ).

D.2 Optimization of q(α)

The optimization of the lower bound with respect to q(α) produces a dis-
tribution with the same functional form as the prior p(α):

q(α) =
Q

∏
q=1

Beta(αq; ηN
q , ζN

q ),

where

ηN
q = η0

q +
N

∑
i=1

τiq,

and

ζN
q = ζ0

q + N −
N

∑
i=1

τiq.

Proof: According to variational Bayes, the optimal distribution q(α) is
given by:

log q(α) = EZ,W̃[log
(
h(Z, W̃, ξ)p(Z | α)p(α)p(W̃)] + const

= EZ[log p(Z | α)] + log p(α) + const

=
N

∑
i=1

{
τiq log αq + (1− τiq) log(1− αq)

}
+

Q

∑
q=1

{
(ηq − 1) log αq + (ζq − 1) log(1− αq)

}

+ const

=
Q

∑
q=1

{

(η0
q +

N

∑
i=1

τiq − 1) log αq + (ζ0
q + N −

N

∑
i=1

τiq − 1) log(1− αq)

}

+ const.

(D.3)
The functional form of (D.3) corresponds to the logarithm of a product of
Beta distributions.
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D.3 Optimization of q(W̃)

The optimization of the lower bound with respect to q(W̃) produces a
distribution with the same functional form as the prior p(W̃):

q(W̃vec
) = N (W̃

vec; W̃
vec
N , SN),

with

S−1
N = S−1

0 +2
N

∑
i 6=j

λ(ξij)(Ẽj⊗ Ẽi),

and

W̃
vec
N = SN

{

S−1
0 W̃

vec
0 +

N

∑
i 6=j

(Xij −
1
2
) τ̃ j⊗ τ̃i

}

.

Each (Q + 1)× (Q + 1) probability matrix Ẽi satisfies:

Ẽi = EZi [Z̃i Z̃
⊺

i ]

=










τi1 τi1τi2 . . . τi1τiQ τi1
τi2τi1 τi2 . . . τi2τiQ τi2

...
...

τiQτi1 τiQτi2 . . . τiQ τiQ
τi1 τi2 . . . τiQ 1










.

Proof: According to variational Bayes, the optimal distribution q(W̃)
is given by:

log q(W̃vec
) = EZ,α[log

(
h(Z, W̃, ξ)p(Z | α)p(α)p(W̃)

)
] + const

= EZ[log h(Z, W̃, ξ)] + log p(W̃vec
) + const

=
N

∑
i 6=j

{

(Xij −
1
2
)EZi ,Zj [aZi ,Zj ]− λ(ξij)EZi ,Zj [a

2
Zi ,Zj

]

}

+ (W̃
vec

)⊺ S−1
0 W̃

vec
0 −

1
2
(W̃

vec
)⊺ S−1

0 W̃
vec

+const.

(D.4)

EZi ,Zj [aZi ,Zj ] is given by:

EZi ,Zj [aZi ,Zj ] = EZi ,Zj [Z̃
⊺

i W̃ Z̃j]

= τ̃⊺

i W̃ τ̃ j

= (τ̃ j⊗ τ̃i)
⊺ W̃

vec

= (W̃
vec

)⊺(τ̃ j⊗ τ̃i).

(D.5)

EZi ,Zj [a
2
Zi ,Zj

] is given by:

EZi ,Zj [a
2
Zi ,Zj

] = EZi ,Zj [(Z̃
⊺

i W̃ Z̃j)
2]

= EZi ,Zj [
(
(Z̃j⊗ Z̃i)

⊺ W̃
vec )2

]

= EZi ,Zj [(Z̃j⊗ Z̃i)
⊺ W̃

vec
(Z̃j⊗ Z̃i)

⊺ W̃
vec

]

= EZi ,Zj [(W̃
vec

)⊺(Z̃j⊗ Z̃i)(Z̃j⊗ Z̃i)
⊺ W̃

vec
]

= EZi ,Zj [(W̃
vec

)⊺
(
(Z̃j Z̃

⊺

j )⊗ (Z̃i Z̃
⊺

i )
)

W̃
vec

]

= (W̃
vec

)⊺
(

Ẽj⊗ Ẽi
)

W̃
vec .

(D.6)
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Using (D.5) and (D.6) in (D.4), we obtain:

log q(W̃vec
) = (Wvec)⊺

{

S−1
0 W̃

vec
0 +

N

∑
i 6=j

(Xij −
1
2
)(τ̃ j⊗ τ̃i)

}

− (W̃
vec

)⊺
{

1
2

S−1
0 +

N

∑
i 6=j

λ(ξij)
(

Ẽj⊗ Ẽi
)

}

W̃
vec

+const.

(D.7)
The fonctional form of (D.7) corresponds to the logarithm of a Gaussian
distribution with mean W̃

vec
N and covariance matrix SN .

D.4 Optimization of q(Ziq)

The optimization of the lower bound with respect to q(Ziq) produces a
distribution with the same functional form as the prior p(Ziq| α):

q(Ziq) = B(Ziq; τiq),

where

τiq = g
{

ψ(ηN
q )− ψ(ζN

q ) +
N

∑
j 6=i

(Xij −
1
2
) τ̃⊺

j (W̃
⊺

N)·q +
N

∑
j 6=i

(Xji −
1
2
) τ̃⊺

j (W̃N)·q

− Tr
((

Σ
′

qq +2
Q+1

∑
l 6=q

τ̃il Σ
′

ql

)( N

∑
j 6=i

λ(ξij) Ẽj
)
+
(

Σqq +2
Q+1

∑
l 6=q

τ̃il Σql
)( N

∑
j 6=i

λ(ξ ji) Ẽj
))
}

,

and Σql = EW̃q ,W̃l
[W̃·q W̃

⊺

·l ], Σ
′

ql = EW̃q· ,W̃l·
[W̃

⊺

q· W̃l·].
Proof: According to variational Bayes, the optimal distribution q(Ziq)

is given by:

log q(Zbc) = E
Z\bc ,α,W̃[log

(
h(Z, W̃, ξ)p(Z | α)p(α)p(W̃)

)
] + const,

where Z\bc is the set of all class memberships except Zbc.

log q(Zbc) = E
Z\bc ,W̃[log h(Z, W̃, ξ)] + E

Z\bc ,α[log p(Z | α)] + const.

E
Z\bc ,α[log p(Z | α)] is given by:

E
Z\bc ,α[log p(Z | α)] = ZbcEαc [log αc] + (1− Zbc)Eαc [log(1− αc)] + const

= Zbc
(
ψ(ηN

c )− ψ(ηN
c + ζN

c )
)
+ (1− Zbc)

(
ψ(ζN

c )− ψ(ηN
c + ζN

c )
)
+ const

= Zbc
(
ψ(ηN

c )− ψ(ζN
c )
)
+ const,

where ψ(·) is the digamma function (the logarithmic derivative of the
gamma function Γ(·) which appears in the normalizaing constants of the
Beta distributions).
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E
Z\bc ,W̃[log h(Z, W̃, ξ)] =

N

∑
i 6=j

{

(Xij −
1
2
)E

Z\bc ,W̃[aZi ,Zj ]− λ(ξij)EZ\bc ,W̃[a2
Zi ,Zj

]

}

+ const

=
N

∑
j 6=b

{

(Xbj −
1
2
)E

Z
\c
b ,Zj ,W̃

[aZb ,Zj ]− λ(ξbj)EZ
\c
b ,Zj ,W̃

[a2
Zb ,Zj

]

}

+
N

∑
i 6=b

{

(Xib −
1
2
)E

Z
\c
b ,Zi ,W̃

[aZi ,Zb ]− λ(ξib)EZ
\c
b ,Zi ,W̃

[a2
Zi ,Zb

]

}

+ const

=
N

∑
j 6=b

{

(Xbj −
1
2
)E

Z
\c
b ,Zj ,W̃

[aZb ,Zj ] + (Xjb −
1
2
)E

Z
\c
b ,Zj ,W̃

[aZj ,Zb ]

− λ(ξbj)EZ
\c
b ,Zj ,W̃

[a2
Zb ,Zj

]− λ(ξ jb)EZ
\c
b ,Zj ,W̃

[a2
Zj ,Zb

]
}

+ const.

E
Z
\c
b ,Zj ,W̃

[aZb ,Zj ] = E
Z
\c
b ,Zj ,W̃

[
Q+1

∑
q,l

Z̃bq W̃ql Z̃jl ]

= Zbc

Q+1

∑
l=1

EW̃cl
[W̃cl ]τ̃jl + const

= Zbc τ̃⊺

j (W̃
⊺

N)·c + const.

E
Z
\c
b ,Zj ,W̃

[aZj ,Zb ] = E
Z
\c
b ,Zj ,W̃

[
Q+1

∑
q,l

Z̃jq W̃ql Z̃bl ]

= Zbc

Q+1

∑
l=1

EW̃lc
[W̃lc]τ̃jl + const

= Zbc τ̃⊺

j (W̃N)·c + const.
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E
Z
\c
b ,Zj ,W̃

[a2
Zj ,Zb

] = E
Z
\c
b ,Zj ,W̃

[
( Q+1

∑
q,l

Z̃jq W̃ql Z̃bl
)( Q+1

∑
q,l

Z̃jq W̃ql Z̃bl
)
]

= E
Z
\c
b ,Zj ,W̃

[
Q+1

∑
q,q′ ,l,l′

Z̃bl Z̃bl′ Z̃jq W̃ql W̃q′ l′ Z̃jq′ ]

= E
Z
\c
b ,Zj ,W̃

[Zbc

Q+1

∑
q,q′

Z̃jq W̃qc W̃q′ c Z̃jq′ +2Zbc

Q+1

∑
q,q′ ,l 6=c

Z̃bl Z̃jq W̃qc W̃q′ l Z̃jq′ ] + const

= Zbc

{

EZj ,W̃·c [W̃
⊺

·c Z̃j Z̃
⊺

j W̃·c] + 2
Q+1

∑
l 6=c

τ̃blEZj ,W̃·c ,W̃·l [W̃
⊺

·c Z̃j Z̃
⊺

j W̃·l ]

}

+ const

= Zbc

{

EW̃·,c
[W̃

⊺

·c Ẽj W̃·c] + 2
Q+1

∑
l 6=c

τ̃blEW̃·c ,W̃·l [W̃
⊺

·c Ẽj W̃·l ]

}

+ const

= Zbc

{

EW̃·c
[(W̃·c⊗ W̃·c)

⊺] Ẽ
vec
j +2

Q+1

∑
l 6=c

τ̃blEW̃·c ,W̃·l [(W̃·l ⊗ W̃·c)
⊺] Ẽ

vec
j

}

+ const

= Zbc

{

EW̃·c
[((W̃·c W̃

⊺

·c)
vec)⊺] Ẽ

vec
j +2

Q+1

∑
l 6=c

τ̃blEW̃·c ,W̃·l [((W̃·c W̃
⊺

·l)
vec)⊺] Ẽ

vec
j

}

+ const

= Zbc

{

(Σvec
cc )⊺ Ẽ

vec
j +2

Q+1

∑
l 6=c

τ̃bl(Σ
vec
cl )⊺ Ẽ

vec
j

}

+ const

= ZbcTr
((

Σcc +2
Q+1

∑
l 6=c

τ̃bl Σcl
)

Ẽj

)

+ const,

where Σql = EW̃q ,W̃l
[W̃·q W̃

⊺

·l ]. Similarly, we have:

E
Z
\c
b ,Zj ,W̃

[a2
Zb ,Zj

] = ZbcTr
((

Σ
′

cc +2
Q+1

∑
l 6=c

τ̃bl Σ
′

cl

)
Ẽj

)

+ const,

where Σ
′

ql = EW̃q· ,W̃l·
[W̃

⊺

q· W̃l·]. Finally, we obtain:

log q(Zbc) = Zbc

{

ψ(ηN
c )− ψ(ζN

c ) +
N

∑
j 6=b

(Xbj −
1
2
) τ̃⊺

j (W̃
⊺

N)·c +
N

∑
j 6=b

(Xjb −
1
2
) τ̃⊺

j (W̃N)·c

− Tr
((

Σ
′

cc +2
Q+1

∑
l 6=c

τ̃bl Σ
′

cl

)( N

∑
j 6=b

λ(ξbj) Ẽj
)
+
(

Σcc +2
Q+1

∑
l 6=c

τ̃bl Σcl
)( N

∑
j 6=b

λ(ξ jb) Ẽj
))
}

+ const.
(D.8)

The fonctional form of (D.8) corresponds to the logarithm of a Bernoulli
distribution with parameter τbc. Indeed:

logB(Zbc; τbc) = Zbc log τbc + (1− Zbc) log(1− τbc)

= Zbc log(
τbc

1− τbc
) + const.

If we denote p = log
(
τbc/(1− τbc)

)
, then τbc = g(p).
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D.5 Optimization of ξ

Setting the partial derivative of the lower bound with respect to ξij, to
zero, leads to an estimate ξ̂ij of ξij:

ξ̂ij =

√

Tr
((

SN + W̃
vec
N (W̃

vec
N )⊺

)
(Ẽj⊗ Ẽi)

)

.

Proof: The partial derivative of the lower bound with respect to ξij is
given by:

∂L

∂ξij
(q; ξ) = −

1
2
+ g(−ξij)− λ

′
(ξij)

(
EZi ,Zj ,W̃[a2

Zi ,Zj
]− ξ2

ij

)
+ 2ξijλ(ξij).

According to (D.6),

EZi ,Zj [a
2
Zi ,Zj

] = (W̃
vec

)⊺
(

Ẽj⊗ Ẽi
)

W̃
vec,

therefore

EZi ,Zj ,W̃[a2
Zi ,Zj

] = EW̃[(W̃
vec

)⊺(Ẽj⊗ Ẽi) W̃
vec

]

= EW̃

[

[Tr
(

W̃
vec

(W̃
vec

)⊺(Ẽj⊗ Ẽi)
)]

= Tr
(

EW̃

[
W̃

vec
(W̃

vec
)⊺
]
(Ẽj⊗ Ẽi)

)

= Tr
((

SN + W̃
vec
N (W̃

vec
N )⊺

)
(Ẽj⊗ Ẽi)

)

.

(D.9)

Moreover (log g)
′
(ξij) = g(−ξij) and g(ξ j) + g(−ξij) = 1. We obtain:

∂L

∂ξij
(q; ξ) = −λ

′
(ξij)

{

Tr
((

SN + W̃
vec
N (W̃

vec
N )⊺

)
(Ẽj⊗ Ẽi)

)

− ξ2
ij

}

.

Finally, λ(ξij) is a strictly decreasing function for positive values of ξij.
Thus, λ

′
(ξij) 6= 0 and if we set the derivative of (D.5) to zero, it leads to:

ξ2
ij = Tr

((
SN + W̃

vec
N (W̃

vec
N )⊺

)
(Ẽj⊗ Ẽi)

)

.

D.6 Lower bound

After the variational Bayes M-step, most of the terms in the lower bound
vanish:

L(q; ξ) =
N

∑
i 6=j

{

log g(ξij)−
ξij

2
+ λ(ξij)ξ

2
ij

}

+
Q

∑
q=1

log
{

Γ(η0
q + ζ0

q)Γ(η
N
q )Γ(ζN

q )

Γ(η0
q)Γ(ζ

0
q)Γ(η

N
q + ζN

q )

}

−
1
2

log |
S0

SN
| −

1
2
(W̃

vec
0 )⊺ S−1

0 W̃
vec
0 +

1
2
(W̃

vec
N )⊺ S−1

N W̃
⊺

N

−
N

∑
i=1

Q

∑
q=1

{

τiq log τiq + (1− τiq) log(1− τiq)

}

. (D.10)
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Proof:

L(q; ξ) = ∑
Z

∫ ∫

q(Z, α, W̃) log
(h(Z, W̃, ξ)p(Z | α)p(α)p(W̃)

q(Z, α, W̃)
d α d W̃

= EZ,W̃[log h(Z, W̃, ξ)] + EZ,α[log p(Z | α)] + Eα[log p(α)] + EW̃[log p(W̃)]

− EZ[log q(Z)]− Eα[log q(α)]− EW̃[log q(W̃)]

=
N

∑
i 6=j

{

(Xij −
1
2
)EZi ,Zj ,W̃[aZi ,Zj ]−

ξij

2
+ log g(ξij)− λ(ξij)

(
EZi ,Zj ,W̃[a2

Zi ,Zj
]− ξ2

ij

)
}

+
N

∑
i=1

Q

∑
q=1

{

τiq
(
ψ(ηN

q )− ψ(ηN
q + ζN

q )
)
+ (1− τiq)

(
ψ(ζN

q )− ψ(ηN
q + ζN

q )
)
}

+
Q

∑
q=1

{

log(
Γ(η0

q + ζ0
q)

Γ(η0
q)Γ(ζ

0
q)
) + (η0

q − 1)
(
ψ(ηN

q )− ψ(ηN
q + ζN

q )
)

+ (ζ0
q − 1)

(
ψ(ζN

q )− ψ(ηN
q + ζN

q )
)
}

+ EW̃[log p(W̃)]−
N

∑
i=1

Q

∑
q=1

{

τiq log τiq + (1− τiq) log(1− τiq)

}

−
Q

∑
q=1

{

log(
Γ(ηN

q + ζN
q )

Γ(ηN
q )Γ(ζN

q )
)(ηN

q − 1)
(
ψ(ηN

q )− ψ(ηN
q + ζN

q )
)

+ (ζN
q − 1)

(
ψ(ζN

q )− ψ(ηN
q + ζN

q )
)
}

− EW̃[log q(W̃)].
(D.11)

EZi ,Zj ,W̃[aZi ,Zj ] is given by:

EZi ,Zj ,W̃[aZi ,Zj ] = EZi ,Zj ,W̃[Z̃
⊺

i W̃ Z̃j]

= EW̃[τ̃⊺

i W̃ τ̃ j]

= EW̃[(τ̃ j⊗ τ̃i)
⊺ W̃

vec
]

= EW̃[(W̃
vec

)⊺(τ̃ j⊗ τ̃i)]

= (W̃
vec
N )⊺(τ̃ j⊗ τ̃i).

(D.12)

EZi ,Zj ,W̃[a2
Zi ,Zj

] is given by (D.9)
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EW̃[log p(W̃)] is given by:

EW̃[log p(W̃)] = EW̃[−
1
2
(W̃

vec
− W̃

vec
0 )⊺ S−1

0 (W̃
vec
− W̃

vec
0 )]−

1
2
(Q + 1)2 log(2π)−

1
2

log | S0 |

= −
1
2

EW̃[(W̃
vec

)⊺ S−1
0 W̃

vec
] + EW̃[(W̃

vec
)⊺ S−1

0 W̃
vec
0 ]−

1
2
(W̃

vec
0 )⊺ S−1

0 W̃
vec
0

−
1
2
(Q + 1)2 log(2π)−

1
2

log | S0 |

= −
1
2

EW̃[(W̃
vec

)⊺ S−1
0 W̃

vec
] + (W̃

vec
N )⊺ S−1

0 W̃
vec
0 −

1
2
(W̃

vec
0 )⊺ S−1

0 W̃
vec
0

−
1
2
(Q + 1)2 log(2π)−

1
2

log | S0 |

= −
1
2

Tr
(

EW̃

[
(W̃

vec
)⊺ W̃

vec ]
S−1

0

)

+ (W̃
vec
N )⊺ S−1

0 W̃
vec
0 −

1
2
(W̃

vec
0 )⊺ S−1

0 W̃
vec
0

−
1
2
(Q + 1)2 log(2π)−

1
2

log | S0 |

= −
1
2

Tr
((

SN +(W̃
vec
N )⊺ W̃

vec
N
)

S−1
0

)

+ (W̃
vec
N )⊺ S−1

0 W̃
vec
0 −

1
2
(W̃

vec
0 )⊺ S−1

0 W̃
vec
0

−
1
2
(Q + 1)2 log(2π)−

1
2

log | S0 |.

(D.13)
Similary, we have:

EW̃[log q(W̃)] = −
1
2

Tr
((

SN +(W̃
vec
N )⊺ W̃

vec
N
)

S−1
N

)

+ (W̃
vec
N )⊺ S−1

N W̃
vec
N −

1
2
(W̃

vec
N )⊺ S−1

N W̃
vec
N

−
1
2
(Q + 1)2 log(2π)−

1
2

log | SN |.

(D.14)
After rearranging the terms in (D.11) and using (D.9), (D.12), (D.13), as

well as (D.14), we obtain:

L(q; ξ) =
N

∑
i 6=j

{

log g(ξij)−
ξij

2
+ λ(ξij)ξ

2
ij

}

+
Q

∑
q=1

log
{

Γ(η0
q + ζ0

q)Γ(η
N
q )Γ(ζN

q )

Γ(η0
q)Γ(ζ

0
q)Γ(η

N
q + ζN

q )

}

Q

∑
q=1

{
(
η0

q +
N

∑
i 6=j

τiq− ηN
q
)(

ψ(ηN
q )−ψ(ηN

q + ζN
q )
)
+
(
ζ0

q + N−
N

∑
i=1

τiq− ζN
q
)(

ψ(ζN
q )−ψ(ηN

q + ζN
q )
)
}

−
1
2

Tr
((

SN +(W̃
vec
N )⊺ W̃

vec
N
)(

S−1
0 +

N

∑
i 6=j

2λ(ξij)(Ẽj⊗ Ẽi)− S−1
N

))

+ (W̃
vec
N )⊺

(

S−1
0 W̃

vec
0 +

N

∑
i 6=j

(Xij −
1
2
)(τ̃ j⊗ τ̃i)− S−1

N W̃
vec
N

)

−
1
2

log |
S0

SN
| −

1
2
(W̃

vec
0 )⊺ S−1

0 W̃
vec
0 +

1
2
(W̃

vec
N )⊺ S−1

N W̃
⊺

N

−

{

τiq log τiq + (1− τiq log(1− τiq)

}

. (D.15)
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