
HAL Id: tel-00623170
https://theses.hal.science/tel-00623170

Submitted on 13 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstraction techniques for verification of concurrent
systems

Constantin Enea

To cite this version:
Constantin Enea. Abstraction techniques for verification of concurrent systems. Other [cs.OH]. Uni-
versité Paris-Est, 2008. English. �NNT : 2008PEST0001�. �tel-00623170�

https://theses.hal.science/tel-00623170
https://hal.archives-ouvertes.fr

Abstraction Techniques for Verification of
Concurrent Systems

–Ph.D. Thesis –

by Constantin Enea

Supervisors:

Prof.dr. Ferucio Laurentiu Tiplea
Departement of Computer Science
“Al. I. Cuza” University of Iasi
Iasi, Romania

Prof.dr. Anatol Slissenko
Laboratoire d’Algorithmique, Com-
plexite et Logique
University Paris 12, Val de Marne
Paris, France

Paris, 2007

Preface

Abstraction techniques, often based on abstract interpretation, provide a
method for symbolically executing systems using the abstract instead of the
concrete domain. In this thesis, we are concerned with abstractions for logics
under multi-valued interpretations. We provide preservation results for first-
order logic, temporal logic, and temporal logic of knowledge. As a case
study, we show how abstraction can be used to solve the safety problem for
protection systems which model access control policies.

The use of abstraction in the context of data types, is also investigated.
This technique scales well from data types to abstract data types. Here, ab-
stractions are applied to initial specifications by means of equations and they
are called equationally specified abstractions. To reason about dynamic sys-
tems, we introduce dynamic data types and extend the previous abstraction
technique to this case.

The main problem that arises when using abstraction techniques is to
find the suitable abstraction or to refine an already existing abstraction in
order to obtain a better one. In this thesis, we prove that the abstraction
techniques for data types, under Kleene’s three-valued interpretation, can be
used in a refinement procedure. Moreover, we show that the counterexample
guided abstraction refinement procedure (CEGAR) [25] works better when
used with equationally specified abstractions.

I would like to thank all the people that have contributed to this thesis in
one way or another. First of all, there is Ferucio Laurentiu Tiplea, my super-
visor from Romania, teacher, and co-author, who has always been available
to answer my questions. His broad perspective of computer science, and far
beyond, has helped me many times to make the right choices – but he has
never forced anything upon me. He started working with me even from the
undergraduate studies, making my life easier during the PhD.

My thanks should also be given to Anatol Slissenko and Catalin Dima,
my supervisors at University “Paris 12”. Their encouragement, guidance and
feedback has been particularly important.

Last but not least, I would like to thanks my family and my friends for

i

their support and encouragement during the last years. Special thanks go
to my parents to whom I owe most of what I know and what I am, and to
Cezara for her support that helped me to get through the rough times as
well as for being part of the good times.

September 15, 2007
Constantin Enea

ii

Contents

Preface i

Introduction 1

1 Multi-valued Logics 6
1.1 Truth algebras . 7
1.2 Logic systems . 13

1.2.1 First-order logic . 13
1.2.2 Temporal logic . 14
1.2.3 Temporal logic of knowledge 17

1.3 Multi-valued model checking 20
1.3.1 Reduction to 2-valued model checking 21
1.3.2 Specialized techniques 25

2 Multi-valued Abstractions 30
2.1 Interpretation policies . 30
2.2 First-Order Logic . 32

2.2.1 Abstractions and Preservation Results 32
2.2.2 Multi-valued Abstraction Through 2-valued Abstraction 43

2.3 Temporal Logic . 52
2.3.1 A Case Study: Abstractions of Protection Systems . . 52
2.3.2 Abstractions and Preservation Results 69
2.3.3 Relating abstractions 81

2.4 Temporal Logic of Knowledge 85
2.4.1 Abstractions and Preservation Results 85

3 Abstractions of Data Types 103
3.1 Preliminaries on Membership Algebra 104
3.2 Reasoning About Data Types 107
3.3 Abstractions of models . 114

3.3.1 Abstractions . 115

iii

3.3.2 Property preservation 117
3.4 Particular cases . 125

3.4.1 McMillan’s Approach 125
3.4.2 Shape Analysis . 127
3.4.3 Predicate Abstraction 129
3.4.4 Duplicating Predicate Symbols 129

3.5 Abstractions of Abstract Data Types 132
3.5.1 Abstractions of Initial Specifications 133

4 Abstraction of Dynamic Data Types 139
4.1 Dynamic Data Types . 140
4.2 Abstractions and Preservation Results 148

5 Abstraction Refinement Techniques 156
5.1 Abstraction Refinement for Data Types 156
5.2 CEGAR is Better under Equational Abstraction 158

5.2.1 Rewrite Theories . 158
5.2.2 A Motivating Example 161
5.2.3 CEGAR under Equational Abstraction 167

Index 170

Bibliography 172

iv

Introduction

As the hardware and software systems are growing continuously in scale and
functionality, the likelihood of subtle errors becomes greater. In industry,
testing has traditionally been the main debugging technique. For example,
“beta-releases” of a software are sent out to a group of people who are willing
to use it and report on errors encountered. Other programs, like microproces-
sor code implemented in hardware, are often automatically tested by feeding
them sequences of inputs and comparing the corresponding outputs to the
desired ones. The validity of the testing approach is based on the exhaustive
search for possible inputs (which can be impracticably, many) and it does
not apply to reactive systems that maintain a continuous interaction with
their environment. The reactive systems are in contrast to the old-fashioned
view of a program as something that takes some input, computes for a while,
and then produces a result and terminates.

The use of formal methods have been proposed to overcome these prob-
lems. Formal methods cover all approaches to specification and verification
based on mathematical formalisms. They contain three basic parts: a math-
ematical model of the system, a formal language for expressing the speci-
fication and a methodology to establish whether the model of the system
satisfies the specification.

Formal methods can be classified as syntactic and semantic. In syntac-
tic methods the system is described in some programming language whose
elementary constructs are expressed by axioms and the larger constructs by
inference rules in some proof system. The specification is given in some
powerful formal language and the proof of correctness reduces to a proof
within this system. In semantic methods, the model of a program consists of
a description of all its possible behaviors in a mathematical structure like a
transition system. The specification is a formula in a logic that is interpreted
over such structures (e.g. temporal logic) and the correctness is proved by
showing that the formula is satisfied by the model.

An example of a semantic formal method is the temporal logic model
checking developed independently by Clarke and Emerson [22] in the United

1

States and by Quielle and Sifakis [101] in France. In this approach, sys-
tems are modeled by Kripke structures and the specifications are expressed
in a propositional temporal logic. An efficient search procedure is used to
determine if the specification is true in the Kripke structure. The most im-
portant advantages of model checking are that it is completely automatic
and in case of “false” answers it provides a counterexample that shows why
the specification is not satisfied.

The main drawback of model checking is the state explosion problem that
can occur in systems consisting of a set of concurrent processes which run
in parallel. The set of possible behaviors of the system contains a sequence
for each possible interleaving of actions of the components and it may grow
exponentially in the number of components. The presence of data values can
also contribute to the problem. An extra bit of memory used by a program
potentially doubles the size of the state space. Many possible solutions to
the state explosion problem have been proposed. They try to improve the
representation of the full state space or to reduce the state space by ignoring
certain details. In the first category we can find symbolic model checking
[14, 85] which represents the state space by ordered binary decision diagrams
[12] and produced spectacular results [14, 24, 88], or on-the-fly model checking
[32, 50] which expands progressively the state space of the system. From
the second category, we can mention partial order techniques [56, 99, 112],
symmetry techniques [23, 43, 68], modularization [29, 58, 59], or abstraction
[33, 69, 70, 77, 67, 15, 110, 100, 26, 114, 34, 57, 103, 36, 86, 4, 113, 104].

Abstraction techniques, often based on abstract interpretation [33], pro-
vide a method for symbolically executing systems using the abstract instead
of the concrete domain. For example, the data abstraction technique from
[26] considers an abstraction mapping between the actual data values in the
system and a small set of abstract data values. This mapping is extended to
states and transitions, in order to obtain an abstract version of the system
under consideration. Shape analysis [96, 104], which is a data flow analysis
technique used mainly for complex analysis of dynamically allocated data, is
based on representing the set of possible memory states (“stores”) that arise
at a given point in the program by shape graphs. In such a graph, heap cells
are represented by shape-graph nodes and, in particular, sets of “indistin-
guishable” heap cells are represented by a single shape-graph node. Predicate
abstraction is another prominent abstraction technique [57, 36, 113, 4]. The
main idea of predicate abstraction is to map concrete objects (states of a
transition system, data of a data type etc.) to “abstract objects” according
to their evaluation under a finite set of predicates. In [6], Bidoit and Bois-
seau consider algebraic abstractions in order to verify properties of security
protocols modeled by universal algebras. Their abstraction is based on ho-

2

momorphisms, and the technique of duplicating predicate symbols [26, 35] is
used for validation and refutation.

In order that an abstraction be useful, it must be property-preserving.
The forms of property preservation which are mostly studied in the litera-
ture involve only logics under the classical two-valued interpretation. Multi-
valued logics provide an alternative to classical boolean logic for modeling
and reasoning about systems. By adding new truth values, uncertainty and
disagreement can be modeled explicitly and a variety of applications were
found in databases [53], knowledge representation [55], machine learning [93],
software and hardware verification [9, 10, 65].

Many applications of multi-valued logics have been found in hardware and
software verification. For hardware verification, simulation tools and imple-
mentations of genuinely multi-valued circuits have been proposed, dynamic
hazards have been modeled by introducing pseudo states to find overlapping
regions of competing signals [13], implementation of gates have been verified
on the basis of switch level models [64], etc. For software verification, we
need uncertainty because we may not know whether some behaviors should
be possible, we need disagreement because we may have different stakeholders
that disagree about how the systems should behave and we need to represent
relative importance because some behaviors are essential and others may or
may not be implemented. Multi-valued model checking techniques have been
proposed by many researchers [16, 72, 19, 17, 20, 60, 11, 73, 74], thus, moti-
vating, even more, the use of multi-valued logics in the verification process.

This thesis deals with abstractions that preserve properties expressed in
logics under multi-valued interpretations. Chapter 1 presents the concept
of truth algebra which is the basis of multi-valued interpretations of logics.
Then, the concept of a logical structure suitable for defining a multi-valued
first order logic to reason about systems is introduced. Multi-valued temporal
logic mv-CTL∗ interpreted over multi-valued Kripke structures and multi-
valued temporal logic of knowledge mv-KCTL∗P interpreted over multi-
agent multi-valued Kripke structures are recalled. The chapter ends with
the presentation of the multi-valued model checking techniques found in the
literature.

Chapter 2 introduces multi-valued abstractions. The abstractions are ob-
tained by applying equivalence relations and then, the predicate symbols of
the logic are re-defined to work properly on equivalence classes. As an equiv-
alence class may contain more than one element and each element leads to
a truth value for each predicate, to redefine a predicate on an equivalence
class comes down to define a policy of recombination of truth values from
some given set. Such a policy is called an interpretation policy. Abstrac-

3

tions of logical structures are then defined as pairs formed by an equivalence
relation and an interpretation policy used to redefine the predicates, and
give several preservation results for first order logic formulas. The abstrac-
tions of multi-valued Kripke structures are triples formed of an equivalence
relation and two interpretation policies, one used to redefine the transition
predicate and one used to redefine the atomic propositions. We prove their
utility by the preservation results that follow. Finally, the abstractions of
multi-agent multi-valued Kripke structures contain three interpretation poli-
cies, one being used to redefine the similarity relations. The preservation
results we give involve formulas from the temporal logic of knowledge under
Kleene’s three-valued interpretation. Before giving abstractions of multi-
valued Kripke structures, we provide a case study of using abstraction in
the context of protection systems which model access control policies [63].
We propose two notions of simulation between protection systems and define
a class of access control models that are simulated by access control mod-
els with a finite number of objects. Then, we show that several classes of
protection systems from the literature fall into this class, notably the take-
grant systems [78] and the monotonic typed access matrix systems with an
acyclic creation graph [106]. By this we also unify and clarify the proof of
decidability of the safety problem for these classes of protection systems.

Equationally specified abstractions are introduced and analyzed in Chap-
ter 3. We define abstractions of data types modeled by membership algebras
[91] and we show how to use abstractions specified by equations in the case of
abstract data types. The membership algebras are a suitable logical frame-
work in which a very wide range of total and partial equational specification
formalisms can be naturally represented [91]. The membership algebra for-
malism is quite general and expressive, supports sub-sorts and overloading,
and deals very well with errors and partiality. Moreover, membership alge-
bra specifications can be efficiently implemented in systems like Maude [30].
The preservation results we obtain involve first order logic formulas and they
are translated from the abstractions of logical structures. Moreover, the ab-
straction technique we propose generalizes and clarifies the nature of many
abstraction techniques found in the literature, such as the technique of du-
plicating predicate symbols [26, 35, 6], shape analysis [96, 104], predicate
abstraction [57, 36, 113], McMillan’s approach [86] etc. For example, it is
shown that the technique of duplicating predicate symbols, which is based
on associating two versions to each formula, one used for validation and the
other one used for refutation, consists of two abstractions based on the same
congruence: one of them is weakly preserving (used for validation), and the
other one is error preserving (used for refutation).

The approach in [92] which is also based on specifying abstractions by

4

equations, models systems by rewrite theories and the logic used to define
the properties to be checked is LTL under a 2-valued interpretation. It can
be seen that this approach is a special case of the techniques described in
this thesis.

Chapter 4 continues to apply this abstraction technique to dynamic data
types. There have been proposed several approaches for modeling dynamic
systems by universal algebras (see [2] for a survey on this topic). All the ap-
proaches are based on predicates which are added somehow to the signature,
but they work outside the algebra. In the approach we propose we also add
predicates to membership algebras, but they work inside the algebra (includ-
ing the transition predicate too). This makes the formalism algebra-logic
work unitarily. Now, the preservation results involve temporal logic formulas
and they are translated from the abstractions of multi-valued Kripke struc-
tures introduced previously. The abstractions specified by equations are used
again to define abstractions of abstract dynamic data types.

The main problem that arises when using abstraction techniques is to
find the suitable abstraction or to refine an already existing abstraction in
order to obtain a better one [76, 105, 66, 25, 87, 3, 80]. In Chapter 5, we
prove that the types of abstraction of data types for Kleene’s three-valued
interpretation from [111] can be used in a refinement procedure. Moreover,
we prove that the counterexample guided abstraction refinement procedure
[25] works better when used with equationally specified abstractions.

5

Chapter 1

Multi-valued Logics

Multi-valued logics1 provide an alternative to classical boolean logic for mod-
eling and reasoning about systems. By adding new truth values, uncertainty
and disagreement can be modeled explicitly and a variety of applications were
found in databases [53], knowledge representation [55], machine learning [93],
software and hardware verification [9, 10, 65].

A number of specific multi-valued logics have been proposed and studied.
For example, Kleene [71] introduced a three-valued logic for reasoning with
missing information, while Belnap [5] proposed a four-valued logic to handle
inconsistent assertions in database systems. The fuzzy logic, where the truth
values are all reals between 0 and 1, captures even more degrees of certainty.
Each of these logics can be generalized to allow for different levels of uncer-
tainty or disagreement. In practice, it is useful to be able to choose different
multi-valued logics for different modeling tasks.

Many applications of multi-valued logics have been found in hardware
and software verification. In the case of hardware verification, multi-valued
logics can be applied for:

• building simulation tools and implementations of genuinely multi-valued
circuits;

• modeling dynamic hazards by introducing pseudo states to find over-
lapping regions of competing signals (race detection) [13];

• test pattern generation by propagation of undefined or error values [21];

• verifying the implementation of gates on the basis of switch level models
[64].

1In the literature on logic systems the terms multiple-valued, many-valued and multi-
valued logic are used interchangeably.

6

Multi-valued logics play a crucial role to modeling and analyzing software
systems. We need uncertainty because we may not know whether some
behaviors should be possible, we need disagreement because we may have
different stakeholders that disagree about how the systems should behave
and we need to represent relative importance because some behaviors are
essential and others may or may not be implemented. Moreover, to make
model-checking practical for verification of real software systems, abstract
models of the software behavior must be constructed. When working with
abstractions, it is natural to consider three-valued logics, with the third value
used to indicate elided information in the model [9], or to indicate the result
of checking when a definite answer is not possible using the chosen abstraction
[104, 18].

The remainder of this chapter provides a formal description of multi-
valued logics. We begin, in Section 1.1, with the presentation of the struc-
tures we use for the set of truth values under which we will consider the
multi-valued logics. Then, we describe in Section 1.2 the multi-valued first
order logic and the multi-valued temporal logic with or without knowledge.
The last section will survey the most important multi-valued model checking
techniques.

1.1 Truth algebras

The set of truth values is any complete lattice together with a negation
operator and some properties for it. Recall first a few basic concepts.

A partial order on a set B is a binary relation on B such that:

• (reflexivity) for any a ∈ B, a ≤ a;

• (anti-symmetry) for any a, b ∈ B, a ≤ b and b ≤ a implies a = b;

• (transitivity) for any a, b, c ∈ B, a ≤ b and b ≤ c implies a ≤ c.

We will denote by < the relation ≤ −{(a, a)|a ∈ B} and we will say that
a ∈ B immediately precede b ∈ B, denoted a ≺ b, if a < b and there is no
c ∈ B such that a < c < b. By ≥ (>, ≻) we denote the inverse of ≤ (<, ≺).
Also, ↓ x = {y ∈ B | y ≤ x} and ↑ x = {y ∈ B | y ≥ x}.

From a partially ordered set we single out elements having special prop-
erties.

Definition 1.1 Let (B,≤) be a partial order and A ⊆ B.

1. An element b ∈ B is called a lower bound of A if b ≤ x, for any x ∈ A.

7

2. An element b ∈ B is called a greatest lower bound (glb, for short) of A
if it is a lower bound and for any other lower bound b′ of A, we have
b′ ≤ b.

3. An element b ∈ B is called an upper bound of A if x ≤ b, for any x ∈ A.

4. An element b ∈ B is called a least upper bound (lub, for short) of A if
it is an upper bound and for any other upper bound b′ of A, we have
b ≤ b′.

5. An element a ∈ A is called a least element of A if a ≤ x, for any x ∈ A.

6. An element a ∈ A is called a greatest element of A if x ≤ a, for any
x ∈ A.

Clearly, if there exists a least upper bound (greatest lower bound) for a
subset A ⊆ B then it is unique.

Definition 1.2 A partially ordered set (B,≤) is called a lattice if every
finite subset of B has a greatest lower bound and least upper bound. (B,≤)
is called a finite lattice if the set B is finite.

As usual, the least upper bound of a subset A ⊆ B is denoted by ∨A,
and the greatest lower bound of A is denoted by ∧A. When lattices will be
used as domains for truth values, ∨A (∧A) plays the role of the disjunction
(conjunction) of all elements in A. 0 and 1 denote the least and, respectively,
the greatest element of the lattice, if they exist.

Definition 1.3 A lattice (B,≤) is called complete if every subset of B has
a greatest lower bound and least upper bound.

We can easily remark that any finite lattice is also complete and any
complete lattice has a least and a greatest element.

Sometimes, for a more accurate modeling of truth values, distributivity
is to be employed.

Definition 1.4 A lattice (B,≤) is distributive if

• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and

• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

for any a, b, c ∈ B.

8

An element x ∈ B of a lattice (B,≤) is called join-irreducible if x = y or
x = z whenever x can be written in the form x = y ∨ z, for some y, z ∈ B.
The least element, if it exists, is join-irreducible. Birkhoff’s representation
theorem [37] states that every element b of a finite distributive lattice can
be represented as the least upper bound of all join-irreducible elements less
than or equal to b in the lattice.

Now, we present truth algebras, structures over which we will define in-
terpretations of multi-valued logics.

Definition 1.5 A truth algebra 2 is a tuple B = (B,∧,∨,¬), where:

1. (B,≤) is a complete lattice, where ≤ is the binary relation on B given
by a ≤ b iff a ∨ b = b, for any a, b ∈ B;

2. ∧ and ∨ are the greatest lower bound and least upper bound operators,
respectively;

3. ¬ : B → B is a bijection such that ¬0 = 1 and ¬1 = 0.

(B,≤) is called the lattice support of B. If the lattice support is finite or
distributive, the truth algebra B will be called finite or distributive, respec-
tively.

Notice that the completeness of the lattice (B,≤) ensures that ∧ and ∨
always exist and they are unique.

Example 1.1 A few examples of truth algebras are in order:

• classical 2-valued logics are based on the truth algebra whose lattice
support has only 2 elements (Figure 1.1(a)). Since the lattice has only
two elements, by the definition of a truth algebra, ¬0 = 1 and ¬1 = 0;

• Kleene’s strong 3-valued logic [71] is based on the lattice in Figure
1.1(b) (the truth value⊥means “undefined”). In this case, the negation
operator is defined by ¬⊥ = ⊥ (¬0 = 1 and ¬1 = 0 are implied by the
definition of a truth algebra);

• the lattice in Figure 1.1(c) is the support for Belnap’s 4-valued logic [5]
which has been introduced for reasoning about inconsistent databases.
The meaning of the truth values is as follows: 0 signifies that the
property is false only, 1 signifies that the property is true only, B sig-
nifies that the property is both true and false, and N signifies that the

2We have coined the terminology of a “truth algebra” as an algebraic counterpart of a
“c-complete lattice” used in [73].

9

(b) (c) (d)(a)

(e)

(f)

(g)

0

1

0

┴ B N

1

0

1

10 01

00

0110

11

00

11

0M

1M

M0

M1

MM

0

1

DC DK

0

1
k

k-1

k

1

(h)

0

1

DC DK

SH

(i)

0

1

DC1

DK
DC2

(j)

0

1

Figure 1.1: Examples of lattices of truth values

property is neither true nor false. The negation operator is defined by
¬N = N and ¬B = B;

• the lattice in Figure 1.1(d) shows a logic that can be used for reasoning
about disagreement between two knowledge sources [39]. The truth
values have two components that specify the truth value of some for-
mula from the point of view of each source. For example, 01 specifies
the fact that the first knowledge source thinks that the formula is false
and the second one thinks that it is true. The negation operator defines
¬10 = 01 and ¬01 = 10;

• the lattice in Figure 1.1(e) shows a nine-valued logic that can be used
for reasoning about the disagreement between two sources, but also
shows missing information in each source (M is used to model missing
information);

• the linear order in Figure 1.1(f) can be used to model different levels

10

of uncertainty: properties are more certain as they are interpreted to
a value more close to 1;

• the lattice from Figure 1.1(g) has the same structure as Belnap’s logic
but this one is used to model different levels of uncertainty: besides
the usual meaning for 0 and 1, DC is used for values controlled by the
environment and DK for values controlled by the system, but not yet
decided. The negation is defined by ¬DC = DC and ¬DK = DK.

• the lattices from Figure 1.1(h) and Figure 1.1(i) add new values to
the one from Figure 1.1(g). The first one adds a new value “should”
(denoted SH) to express properties that are desired but not required
(1 expresses properties that are required), and the second one replaces
DC by DC1 and DC2 because we suppose there exist two possible
environments;

• the infinite lattice from Figure 1.1(j) models a set of truth values used
in the fuzzy logic [81] (the reals between 0 and 1).

A particular case of truth algebras are quasi-boolean algebras [102, 7, 38,
17].

Definition 1.6 A quasi-boolean algebra is a truth algebra B = (B,∧,∨,¬),
where:

• its support (B,≤) is a finite distributive lattice;

• (De Morgan) ¬(a∧b) = ¬a∨¬b and ¬(a∨b) = ¬a∧¬b, for all a, b ∈ B;

• (involution) ¬¬a = a, for all a ∈ B;

• (antimonotonic) a ≤ b⇔ ¬a ≥ ¬b, for all a, b ∈ B.

In the definition of a quasi-boolean algebra we may not require “¬0 = 1”
and “¬1 = 0” because both of them can be easily obtained by using De
Morgan laws. First, we remark that a ∧ 0 = 0, for any a ∈ B. Then, using
the De Morgan laws, we obtain:

¬0 = ¬(a ∧ 0) = ¬a ∨ ¬0,

for any a ∈ B. Now, let a1 be an element of B such that ¬a1 = 1 (this
element exists because ¬ is a bijection). Then,

¬0 = 1 ∨ ¬0 = 1

which completes our proof. Analogously, we can prove that ¬1 = 0.

11

Example 1.2 All truth algebras in Figure 1.1, except for (h) and (i), are
quasi-boolean. The truth algebra in Figure 1.1(h) is not a quasi-boolean
algebra because there is no negation for SH; the truth algebra in Figure
1.1(i) is not quasi-boolean because its support is not a distributive lattice.

In [17] it was remarked that finite distributive lattices are symmetric
about their horizontal axes and this symmetry is a suitable negation operator
to form a quasi-boolean algebra.

Definition 1.7 A lattice (B,≤) is symmetric if there exists a bijective func-
tion H such that

• a ≤ b⇔ H(a) ≥ H(b), and

• H(H(a)) = a,

for any a, b ∈ B.

In some cases, truth algebras enjoy more properties such as non-contra-
diction and excluded middle.

Definition 1.8 A boolean algebra is a tuple B = (B,∧,∨,¬, 0′, 1′) such that:

• (B,≤) is a distributive lattice, where ≤ is the binary relation on B
given by a ≤ b iff a ∨ b = b, for all a, b ∈ B;

• ∧ and ∨ are the greatest lower bound and least upper bound operators,
respectively, and ¬ : B → B is a bijection;

• 0′ and 1′ are two distinguished elements such that:

– a ∨ 0′ = a and a ∧ 1′ = a, for any a ∈ B;

– (non-contradiction) a ∧ ¬a = 0′, for any a ∈ B;

– (excluded middle) a ∨ ¬a = 1′, for any a ∈ B.

A boolean algebra is called finite if B is finite.

We can remark that in the case of a boolean algebra B = (B,∧,∨,¬, 0′, 1′)
whose support (B,≤) is complete, 0′ = 0 and 1′ = 1. Hence, finite boolean
algebras are particular cases of quasi-boolean algebras.

Example 1.3 All the truth algebras in Figure 1.1 except for (a) and (d)
are not boolean algebras. Remember that the algebras in Figure 1.1(h) and
Figure 1.1(i) were not even quasi-boolean while the others do not satisfy
non-contradiction. For example, in the lattice from Figure 1.1(b) we have
⊥ ∧ ¬⊥ 6= 0.

12

1.2 Logic systems

1.2.1 First-order logic

We introduce the concept of a logical structure, suitable both for modeling
systems by membership algebras and for defining a logic for reasoning about
systems.

Let K be a non-empty set whose elements will be called kinds . A K-
kinded set is a K-indexed family of sets S = (Sk|k ∈ K). For a K-kinded set
S = (Sk|k ∈ K) and w = k1 . . . km ∈ K

+, m ≥ 1, we denote by Sw the set
Sw = Sk1 × · · · ×Skm

(K+ stands for K∗−{λ}, where K∗ is the free monoid
generated by K and λ is the unity of K∗).

A K-kinded logical signature is a pair (B,ΣL), where B is a truth algebra
and ΣL is a K+-indexed set of pairwise disjoint sets

ΣL = (ΣL,w|w ∈ K
+).

The elements k ∈ K+ are called logical types over K and the elements
p ∈ ΣL,w are called predicate or logical symbols of type w.

Definition 1.9 Let (B,ΣL) be a K-kinded logical signature. A (B,ΣL)-
logical structure is a tuple S = (S,ΣS

L), where S is a K-kinded set and ΣS
L is

a K+-indexed set of predicate interpretations

ΣS
L = (ΣS

L,w|w ∈ K
+),

where ΣS
L,w = {pS : Sw → B|p ∈ ΣL,w} is a ΣL,w-indexed set of functions

from Sw into B.

Given (B,ΣL) a K-kinded logical signature and an at most countable K-
kinded set of variables X, the set of first order formulas over (B,ΣL) and X
is defined as follows:

1. atomic formulas:

(a) p(x1, . . . , xm) is an atomic formula, for any predicate symbol p of
logical type w = k1 . . . km ∈ K

+ and xi ∈ Xki
, 1 ≤ i ≤ m;

2. formulas:

(a) every atomic formula is a formula;

(b) if φ1 and φ2 are formulas then ¬φ1, (φ1 ∨ φ2), and (φ1 ∧ φ2) are
formulas;

13

(c) if x is a variable and φ is a formula, then ((∃x)φ) and ((∀x)φ) are
formulas.

Denote by LO(ΣL, X), where O ⊆ {∧,∨,¬}, the set of first order formulas
over (B,ΣL) and X that use only operators from the set O, the quantifier ∀
if ∧ ∈ O, and the quantifier ∃ if ∨ ∈ O (when O = {∧,∨,¬}, we omit the
superscript “O” from the notation LO(ΣL, X)).

An assignment of X into S is a function γ : X → S such that γ(x) ∈ Sk,
for any x ∈ Xk. Γ(X,S) stands for the set of all assignments of X into S.

Given a (B,ΣL)-logical structure S each first order formula φ induces a
function IS(φ) from the set Γ(X,S) into B, as follows:

• IS(p(x1, . . . , xm))(γ) = pS(γ(x1), . . . , γ(xm)), for any p of logical type
w = k1 . . . km ∈ K

+ and xi ∈ Xki
, 1 ≤ i ≤ m;

• IS(φ1 ∧ φ2) = IS(φ1) ∧ IS(φ2), for any formulas φ1 and φ2;

• IS(φ1 ∨ φ2) = IS(φ1) ∨ IS(φ2), for any formulas φ1 and φ2;

• IS(¬φ1) = ¬IS(φ1), for any formula φ;

• IS((∃x)φ)(γ) =
∨

a∈Sk
IS(φ)(γ[x/a]), for any formula φ and any x ∈

Xk;

• IS((∀x)φ)(γ) =
∧

a∈Sk
IS(φ)(γ[x/a]), for any formula φ and any x ∈

Xk.

We emphasize that “
∨

a∈Sk
” and “

∧

a∈Sk
” in the definition above are the

least upper bound and the greatest lower bound of some set of truth values.
IS(φ) is called the interpretation function of φ into S. If φ is a formula,

we say that φ has the truth value b ∈ B in S, and denote this by [φ]S = b, if
IS(φ)(γ) = b, for all γ ∈ Γ(X,S).

1.2.2 Temporal logic

The temporal logic CTL∗ [27] describes sequences of transitions between
states in a reactive system which interacts with and continuously responds
to its environment. This logic uses atomic propositions and boolean operators
to build up formulas describing properties of states. Moreover, path operators
and quantifiers are introduced to describe transitions between states.

The temporal logic CTL∗ is defined over some set AP of atomic proposi-
tions and it contains two types of formulas, state and path formulas . Their
syntax is given by the following rules (p ∈ AP , ϕ is a state formula, and ψ
is a path formula):

14

• true, false and p are state formulas, for any p ∈ AP ;

• if ϕ1 and ϕ2 are state formulas, then so are ¬ϕ1, ϕ1 ∨ ϕ2, and ϕ1 ∧ ϕ2;

• if ψ is a path formula, then ∀ψ and ∃ψ are state formulas;

• each state formula is a path formula;

• if ψ1 and ψ2 are path formulas, then so are ¬ψ1, ψ1∨ψ2, ψ1∧ψ2, Xψ1,
Xψ1, ψ1 Uψ2, and ψ1 Rψ2.

We abbreviate Fψ = true U ψ and Gψ = false R ψ. The meaning
of the operators above are as follows: X and X are the strong and weak
versions of “next-time”, U is “until”, R is “releases”, F is “eventually”, G
is “always”, ∀ is “for all paths”, and ∃ is “there exists a path”.

CTL∗ is the set of all state formulas generated by the rules presented
above; CTL∗

+ is the subset of CTL∗ consisting of formulas without negation,
CTL is the subset of CTL∗ consisting of formulas in which each future time
operator is immediately preceded by a path quantifier, LTL is the subset
of CTL∗ consisting of formulas of the form ∀ψ, where ψ is a path formula
in which the only state subformulas permitted are atomic propositions, and
∀CTL∗ (∃CTL∗) is the subset of CTL∗ consisting of formulas that do not
contain ∃ (∀). In order to avoid implicit existential (universal) paths quan-
tifiers resulting from the use of negation in ∀CTL∗ (∃CTL∗) formulas, we
assume that the path quantifiers are not in the scope of a negation.

Example 1.4 A few examples of CTL∗ formulas together with their intu-
itive meaning are in order:

• ∃GF p : there exists a path that contains infinitely many states in
which p is true;

• ∃ (G (p⇒ X p)): there exists a path along which p holds continuously
from the first state in which it holds;

• ∀ (p⇒ F q): if p holds then, by any possible path, we can reach a state
in which q holds;

• ∀ FG p : along every path, there exists some state from which p will
hold forever;

• ∀G (p⇒ ∀ F q): if we reach a state satisfying p, then we will eventually
reach a state satisfying q;

15

• ∀ G (∃ F p): from any state it is possible to get to a state in which p
holds.

The third and the fourth formulas in Example 1.4 are LTL formulas while
the fifth and the sixth are CTL formulas. The fourth one has the property
that there is no equivalent CTL formula and for the sixth one there is no
equivalent LTL formula.

“Multi-valued semantics” of CTL∗ are given by means of multi-valued
Kripke structures [51, 52].

Definition 1.10 A multi-valued Kripke structure (mv-Kripke structure) over
a set of atomic propositions AP and a truth algebra B = (B,∧,∨,¬) is a
tuple M = (Q,R,L), where:

• Q is the set of states;

• R : Q×Q→ B is the (multi-valued) transition predicate;

• L : Q → (AP → B) is a function which associates to any state q the
“truth values” of the atomic propositions in state q.

Let M be an mv-Kripke structure over AP and B, and D be a subset
of B. An infinite D-sequence of states is a sequence π = q0q1 . . . such that
R(qi, qi+1) ∈ D, for all i ≥ 0. The length of π is ∞. A maximal finite D-
sequence of states is a sequence π = q0q1 . . . qn such that R(qi, qi+1) ∈ D, for
all 0 ≤ i < n, and R(qn, q) 6∈ D, for all q ∈ Q. The length of π is n + 1. A
D-path of M is either an infinite D-sequence or a maximal finite D-sequence
of states. Paths(M,D, q) stands for the set of all D-paths of M starting in
state q, Paths(M,D) stands for the set of all D-paths of M , π(i) stands for
the state qi, and πi is the suffix of π starting at qi, for any 0 ≤ i < |π|.

The truth value of a CTL∗ state formula φ in a state q of M (denoted
[φ]Mq) and the truth value of a CTL∗ path formula ψ along a D-path π in
M (denoted [ψ]Mπ) are defined as follows (p ∈ AP , ϕ, ϕ1, and ϕ2 are state
formulas, and ψ, ψ1, and ψ2 are path formulas):

[true]Mq = 1;

[false]Mq = 0;

[p]Mq = L(q)(p);

[¬ϕ]Mq = ¬[ϕ]Mq ;

[ϕ1 ∧ ϕ2]
M
q = [ϕ1]

M
q ∧ [ϕ2]

M
q ;

[ϕ1 ∨ ϕ2]
M
q = [ϕ1]

M
q ∨ [ϕ2]

M
q ;

16

[ϕ]Mπ = [ϕ]Mπ(0);

[¬ψ]Mπ = ¬[ψ]Mπ ;

[ψ1 ∧ ψ2]
M
π = [ψ1]

M
π ∧ [ψ2]

M
π ;

[ψ1 ∨ ψ2]
M
π = [ψ1]

M
π ∨ [ψ2]

M
π ;

[Xψ]Mπ = (|π| > 1) ∧R(π(0), π(1)) ∧ [ψ]Mπ1;

[Xψ]Mπ = (|π| ≤ 1) ∨ (R(π(0), π(1)) ∧ [ψ]Mπ1);

[ψ1Uψ2]
M
π = [ψ2]

M
π0 ∨

∨

0<i<|π|([ψ2]
M
πi ∧

∧

0≤j<i([ψ1]
M
πj ∧ R(π(j), π(j + 1))));

[ψ1Rψ2]
M
π = [ψ2]

M
π0 ∧

∧

0<i<|π|((R(π(i− 1), π(i)) ∧ [ψ2]
M
πi) ∨

∨

0≤j<i([ψ1]
M
πj));

[∀ψ]Mq =
∧

π∈Paths(M,D,q)[ψ]Mπ ;

[∃ψ]Mq =
∨

π∈Paths(M,D,q)[ψ]Mπ ;

(it is implicitly assumed that the values of the standard predicates <, ≤,
>, and ≥ are 0 and 1, the least and greatest element of B).

Remark 1.1 Throughout this thesis many results will involve the positive
version CTL∗

+ of CTL∗. However, if this logic is considered on quasi-boolean
algebras, this is not a restriction. On the basis of De Morgan laws, we can
suppose without loss of generality that any formula in CTL∗ is in the negation
normal form, i.e. the negation is only applied to the atomic propositions and
then, we can use a copy of the set of atomic propositions for their negations
to obtain an equivalent formula in CTL∗

+.

When the logic CTL∗ is interpreted over mv-Kripke structures it is usually
called multi-valued CTL∗ (mv-CTL∗).

1.2.3 Temporal logic of knowledge

Temporal logic of knowledge KCTL∗P [49] is suitable for reasoning about
knowledge in the context of multi-agent systems, i.e. systems consisting in
a collection of interacting agents. The modeling of knowledge is based on
“possible worlds”. The intuition is that if an agent does not have complete
knowledge about the world, he will consider a number of possible worlds
(these are given by a similarity relation). The agent is said to know a fact φ
if φ holds at all agent’s possible worlds.

Let AP be a set of atomic propositions and n the number of agents in
the system. As in the case of CTL∗, there are two types of formulas, state
and path formulas . The rules describing its syntax include the ones of CTL∗

together with rules for past time operators and knowledge operators:

• if ψ1 and ψ2 are path formulas, then so are Pr ψ1, ψ1 Sψ2 and ψ1 Bψ2;

17

• if ϕ is a state formula, then so are Ki ϕ and Pi ϕ, for any 1 ≤ i ≤ n.

We abbreviate Aψ = ψ B false and Oψ = true S ψ. The past time path
operators have the following meaning [82]: Pr is “previous”, A is “always
in the past”, O is “once”, S is “since”, and B is “back to”. The knowledge
operators have the meaning [49]: Ki is “agent i knows φ” and Pi is “agent i
thinks that φ is possible”.

KCTL∗P is the set of all state formulas generated by the rules presented
above. We denote by ∀KCTL∗P (∃KCTL∗P) the subset of KCTL∗P con-
sisting of formulas that do not contain ∃ and Pi (∀ and Ki). In order to avoid
implicit existential (universal) paths quantifiers and knowledge operators Pi

(Ki) resulting from the use of negation in ∀KCTL∗P (∃KCTL∗P) formulas,
we assume that the quantifiers and the knowledge operators are not in the
scope of a negation.

Example 1.5 A few examples of KCTL∗P formulas together with their
intuitive meaning are in order:

• P2K1p : agent 2 considers possible the fact that agent 1 knows p;

• K1(bit = 0) ∨K1(bit = 1): agent 1 knows the value of bit;

• K1∃Fp ∨K1∃F¬p : agent 1 knows that either p or ¬p will hold even-
tually, from all the states he considers possible;

• K2K1p ∧ ¬K1K2K1q : agent 2 knows that agent 1 knows p but agent
1 does not know that agent 2 knows that agent 1 knows q;

“Multi-valued semantics” of KCTL∗P are given by means of multi-agent
multi-valued Kripke structures which extend the mv modal epistemic models
[74] by the use of multi-valued similarity relations.

Definition 1.11 LetAP be a set of atomic propositions and B = (B,∧,∨,¬)
a truth algebra. A multi-agent multi-valued Kripke structure (multi-agent
mv-Kripke structure) over AP and B is a tuple M = (Q,R,L, (∼i| 1 ≤
i ≤ n)), where (Q,R,L) is an mv-Kripke structure over AP and B and
∼i: Q×Q→ B, for all 1 ≤ i ≤ n, is the similarity relation of agent i . Each
similarity relation ∼i satisfies the following properties:

• reflexivity: ∼i (x, x) = 1, for any x ∈ Q;

• symmetry: ∼i (x, y) =∼i (y, x), for any x, y ∈ Q;

• transitivity: ∼i (x, z) =∼i (x, y)∧ ∼i (y, z), for any x, y, z ∈ Q.

18

As we can remark, ∼i is a multi-valued binary relation on Q. “∼i (x, y) =
b” means that agent i associates the truth value b to the similarity of x and
y.

Given a multi-agent mv-Kripke structure M over AP and B, and given a
subset D of B, define the set of all D-paths of M starting in state q, denoted
Paths(M,D, q), exactly as for mv-Kripke structures. Again, Paths(M,D)
stands for the set of all D-paths of M . Moreover, we will call a point any
pair (π,m), where π ∈ Paths(M,D) and m ∈ N with 0 ≤ m < |π|. The set
of points of the Kripke structure M will be denoted by Points(M,D).

For any multi-agent mv-Kripke structure, we can obtain an interpreted
system by unwinding the transition predicate. The labeling function on
points is compatible with the one on the corresponding states.

Definition 1.12 Let M = (Q,R,L, (∼i| 1 ≤ i ≤ n)) be a multi-agent mv-
Kripke structure. The interpreted system corresponding to M is a triple
I = (Paths(M,D), LI , (∼Ii | 1 ≤ i ≤ n)), where

• LI : Points(M,D) → (AP → B) is the interpretation function for the
atomic propositions in M defined by LI(π,m)(p) = L(π(m))(p), for
any π ∈ Paths(M,D) and 0 ≤ m < |π|;

• ∼Ii : Points(M,D) × Points(M,D) → B, for any 1 ≤ i ≤ n, is the
similarity relation defined by ∼Ii ((π,m), (π′,m′)) =∼i (π(m), π′(m′)).

From now on we will make no distinction between L and its extension to
points LI . The same holds for the similarity relations.

We now give the semantics of KCTL∗P , which for the fragment that
includes only future time and knowledge is similar to the multi-valued se-
mantics in [74]. If φ is a formula in KCTL∗P and I = (Paths(M,D), L, (∼i|
1 ≤ i ≤ n)) is an interpreted system we define the truth value of φ in the
point (π,m), denoted by [φ]I(π,m), in the following way (p ∈ AP , ϕ, ϕ1, and

ϕ2 are state formulas, and ψ, ψ1, and ψ2 are path formulas):

[true]I(π,m) = 1;

[false]I(π,m) = 0;

[p]I(π,m) = L(π,m)(p);

[¬p]I(π,m) = ¬L(π,m)(p);

[φ1 ∧ φ2]
I
(π,m) = [φ1]

I
(π,m) ∧ [φ2]

I
(π,m);

[φ1 ∨ φ2]
I
(π,m) = [φ1]

I
(π,m) ∨ [φ2]

I
(π,m);

[Xφ]I(π,m) = |πm| > 1 ∧R(π(m), π(m+ 1)) ∧ [φ]I(π,m+1);

19

[Xφ]I(π,m) = |πm| ≤ 1 ∨ (R(π(m), π(m+ 1)) ∧ [φ]I(π,m+1));

[φ1Uφ2]
I
(π,m) = [φ2]

I
(π,m) ∨

∨

0<i<|πm|([φ2]
I
(π,m+i) ∧

∧

0≤j<i([φ1]
I
(π,m+j) ∧ R(π(m+ j), π(m+ j + 1))));

[φ1Rφ2]
I
(π,m) = [φ2]

I
(π,m) ∧

∧

0<i<|πm|((R(π(m+ i− 1), π(m+ i)) ∧ [ψ]I
πm+i)

∨
∨

0≤j<i([φ]I
πm+j));

[Pr φ]I(π,m) = m = 0 ∨ (R(π(m− 1), π(m)) ∧ [φ]I(π,m−1));

[φ1Sφ2]
I
(π,m) = [φ2]

I
(π,m) ∨

∨

0≤i<m([φ2]
I
(π,i) ∧

∧

i<j≤m([φ1]
I
(π,j) ∧ R(π(j − 1), π(j))));

[φ1Bφ2]
I
(π,m) = [φ1]

I
(π,m) ∧

∧

0≤i<m((R(π(i), π(i+ 1)) ∧ [φ1]
I
πi)

∨
∨

i<j≤m([φ2]
I
πj));

[∃φ]I(π,m) =
∨

π′[1..m]=π[1..m][φ]I(π′,m);

[∀φ]I(π,m) =
∧

π′[1..m]=π[1..m][φ]I(π′,m);

[Kiφ]I(π,m) =
∧

∼i((π,m),(π′,m′)) 6=0

(

∼i ((π,m), (π′,m′)) ∧ [φ]I(π′,m′)

)

;

[Piφ]I(π,m) =
∨

∼i((π,m),(π′,m′)) 6=0

(

∼i ((π,m), (π′,m′)) ∧ [φ]I(π′,m′)

)

;

(it is implicitly assumed that the values of the standard predicates <, ≤,
>, and ≥ are 0 and 1, the least and greatest element of B).

When the logicKCTL∗P is interpreted over multi-agent mv-Kripke struc-
tures, it is usually called multi-valued KCTL∗P (mv-KCTL∗P , for short).

1.3 Multi-valued model checking

Model checking multi-valued logics have been proposed by many researchers
[16, 72, 19, 17, 20, 60, 11, 73, 74]. Two main approaches have gained atten-
tion:

• the reduction approach [72, 60, 11, 73, 74] which transforms an instance
of the multi-valued model checking problem into a set of instances of
the 2-valued model-checking problem (in this way we can use previously
known model checking algorithms);

• the direct approach [16, 19, 17, 20, 11] which introduces specialized
algorithms for multi-valued model checking.

We can not say which of the above approaches is better. The complexity
is always the product between the size of the lattice and the complexity
of 2-valued model checking. As already mentioned in [11], the reduction

20

approach benefits from the fact that it can be implemented using already
existing model checkers but the direct approach can work in a more “on the
fly” manner. In the reduction approach, we have to construct a set of 2-
valued Kripke structures starting only from the initial mv-Kripke structure
and the truth algebra and then check the formula on all these models. In
the direct approach we can take into consideration all three inputs: the mv-
Kripke structure, the truth algebra and the formula in order to guide our
check.

1.3.1 Reduction to 2-valued model checking

The approach using Birkhoff’s representation theorem

Reduction techniques for multi-valued model checking to 2-valued model
checking are introduced in [72, 60, 11, 74]. Although the authors of [60, 11]
use µ-calculus as their supporting logic, straightforward particularizations
can be made for CTL∗. Moreover, the µ-calculus combined with knowl-
edge modalities used in [74] permits us to extract a reduction result even
for KCTL∗ on multi-agent mv-Kripke structures with 2-valued similarity
relations.

The idea of all the techniques above is the same. We define for each
mv-Kripke structure M over a quasi-boolean algebra B, a set of 2-valued
Kripke structures {Mx|x ∈ J (B)}3, where J (B) is the set of join-irreducible
elements of (B,≤). Then, we use the result of the 2-valued model checking
on each of these 2-valued Kripke structures to obtain the truth value of the
formula in the initial structure.

We proceed with the formalization of the reduction result using the ap-
proach in [72, 74]. In [72], the authors give a preliminary reduction result and
complete solutions only for three classes of quasi-boolean algebras. Later, in
[74], they extend the method for the temporal logic of knowledge and offer a
complete solution for any quasi-boolean algebra.

Let B = (B,∧,∨,¬) be a quasi-boolean algebra. The result in [72] consid-
ers a function f : B → B with f(B) 6= B which preserves arbitrary bounds,
and proves that multi-valued model checking over B can be reduced to model
checking over a quasi-boolean algebra induced by f(B) (if |f(B)| = 2 then
we deal with the standard 2-valued model checking for CTL∗).

Theorem 1.1 [72] Let B = (B,∧,∨,¬) be a quasi-boolean algebra and

3The use of µ-calculus in [60, 11, 74] complicates the construction of the Kripke struc-
tures Mx because in the semantics of µ-calculus we also need the negation of the transition
predicate.

21

f : B → B be a function with f(B) 6= B and which preserves arbitrary
bounds, i.e.

f(∧B′) =
∧

b∈B′

f(b) and f(∨B′) =
∨

b∈B′

f(b),

for any B′ ⊆ B. Further, let M = (Q,R,L) be an mv-Kripke structure over
B and some set of atomic propositions AP and let M ′ = (Q,R′, L′) be an
mv-Kripke structure over a quasi-boolean algebra induced by f(B) and AP
such that R′(q, q′) = f(R(q, q′)) and L′(q)(p) = f(L(q)(p)), for any q, q′ ∈ Q
and p ∈ AP .

Then, for any state (path) CTL∗
+ formula φ (ψ), it holds:

• [φ]Mq ∈ f
−1(b) iff [φ]M

′

q = b;

• [ψ]Mπ ∈ f
−1(b) iff [ψ]M

′

π = b,

for any q ∈ Q′ and π ∈ Paths(M,B − {0}).

In [74] this result is extended for multi-agent mv-Kripke structures with 2-
valued similarity relations and formulas expressed in the µ-calculus combined
with knowledge modalities. This extension imposes another restriction on the
function f because in the semantics of µ-calculus we also need the negation of
the transition predicate, which can be discarded when considering formulas
expressed in KCTL∗

+.
IfM = (Q,R,L) is an mv-Kripke structure as above, Theorem 1.1 permits

us to answer questions of the form “[φ]Mq ∈ f
−1(b)?” or “[ψ]Mπ ∈ f

−1(b)?”. In
order to offer the exact truth value of some formula, the following procedure
is proposed in [72]:

• define k mappings f1,. . ., fk such that:

– f1(B),. . .,fk(B) are lattices for which we already have model check-
ing algorithms;

– for any b ∈ B there exist a set of indexes {i1, . . . , ip} ⊆ {1, . . . , k}
and bij ∈ fij(B), for all 1 ≤ j ≤ p, such that:

⋂

1≤j≤p

f−1
ij

(bij) = {b}.

• if M1,. . ., Mk are the mv-Kripke structures defined as in Theorem 1.1
over f1(B),. . ., fk(B), respectively, then:

[φ]Mq = b iff
(

[φ]
Mi1
q = bi1 ∧ · · · ∧ [φ]

Mip
q = bip

)

.

22

[72] provides solutions for finding mappings like the ones above only for
linear orders, products of two linear orders, and 2 × 2 + 2. For instance,
if B with B = {0, 1

k
, . . . , k−1

k
, 1} is a linear order, we define k mappings

fk : B → {0, 1} in the following way:

• fi(x) = 0 iff x < i
k

and

• fi(x) = 1 iff x ≥ i
k
,

for any 1 ≤ i < k, and fk(x) = 1 if x = 1 and fk(x) = 0, otherwise.
Notice that all fi, 1 ≤ i ≤ k, preserve arbitrary bounds and also, for any

j
k

with 1 ≤ j ≤ k − 1, we can find the set of indexes {j, j + 1}, bj = 1 and
bj+1 = 0 such that:

j

k
= fj(1) ∩ fj+1(0).

Consequently, for any CTL∗
+ formula:

[φ]Mq =
j

k
iff [φ]Mj

q = 1 and [φ]Mj+1
q = 0.

For the truth values 0 and 1, we can easily obtain [φ]Mq = 0 iff [φ]M1
q = 0

and [φ]Mq = 1 iff [φ]Mk
q = 1.

In [74], a general method is offered, to obtain mappings like the ones
above for any quasi-boolean algebra B. The technique is based on Birkhoff’s
representation theorem.

Let B = (B,∧,∨,¬) be a quasi-boolean algebra like above. It is proved
that for any irreducible element x of (B,≤), the function fx : B → {0, 1}
defined by fx(b) = 1, for any b ≥ x and fx(b) = 0, otherwise, preserves
arbitrary bounds.

Then, by Birkhoff’s representation theorem for finite distributive lattices,
which states that every element b of such a lattice can be represented as the
least upper bound of all the join-irreducible elements less than or equal to b
in the lattice, we obtain that for any b ∈ B, there exist the set J (B) ∩ b ↓=
{i1, . . . , ip} such that i1 ↑ ∩ · · · ∩ ip ↑= {b}. Consequently, for any b ∈ B, we
can find the set of indexes {i1, . . . , ip} and bi1 = · · · = bip = 1 such that

⋂

1≤j≤p

f−1
ij

(1) = {b}.

Moreover, the set of indexes above is unique and consequently we can
derive the following result.

23

Theorem 1.2 [74] Let M = (Q,R,L) be an mv-Kripke structure over a
quasi-boolean algebra B and a set of atomic propositions AP . Then,

[φ]Mq =
∨

{x ∈ J (B)|[φ]Mx

q = 1},

for any q ∈ Q and φ a CTL∗
+ formula.

Complexity Theorem 1.2 implies that the complexity of multi-valued model
checking over a quasi-boolean lattice B is bounded by nM , where n is the
number of join-irreducible elements of (B,≤) and M is the complexity of
2-valued model-checking.

The approach using designated values

Another reduction technique from multi-valued model checking to 2-valued
model checking is the one in [73]. In this case, we start with a weaker
multi-valued model checking problem: instead of computing the exact truth
value of some formula, we are interested in finding if the truth value of some
formula is in some set of designated values.

As the authors of [73] claim, the designated values should be the coun-
terpart of truth in classical logic: a multi-valued formula is considered to be
valid if its truth value is designated.

We now proceed with the description of the reduction in [73]. If B =
(B,∧,∨,¬) is a truth algebra, a set of designated values D ⊆ B must have
the following properties:

• D is a proper non-empty subset of B;

• D is upward closed under ≤, i.e. b′ ∈ D whenever b ≤ b′ for some
b ∈ D;

• B − D is downward closed under ≤, i.e. b′ ∈ B − D whenever b′ ≤ b
for some b ∈ B −D;

• D (B−D) is closed under lub and glb, i.e. D (B−D) contains the lub
and the glb of any non-empty subset of D (B −D).

The set of designated values D will also be the set of truth values used to
define paths.

Now, for any mv-Kripke structure M = (Q,R,L) over a truth algebra B
and a set of atomic propositions AP , and any set of designated values D ⊆ B
like above, we define a new 2-valued Kripke structure MD = (Q,RD, LD)
such that:

24

• RD(q, q′) = 1 iff R(q, q′) ∈ D, for any q, q′ ∈ Q;

• LD(q)(p) = 1 iff L(q)(p) ∈ D, for any q ∈ Q.

The main result of this reduction technique says that a formula φ has a
designated truth value in M if and only if it is 1 in MD.

Theorem 1.3 [73] Let M = (Q,R,L) be an mv-Kripke structure like above
and D ⊆ B a set of designated values. Then, for any state (path) CTL∗

+

formula φ (ψ), any q ∈ Q and any path π ∈ Paths(M,D) we have:

• [φ]Mq ∈ D iff [φ]M
D

q = 1;

• [ψ]Mπ ∈ D iff [ψ]M
D

π = 1.

Complexity Clearly, the above theorem implies that the multi-valued model
checking problem which questions the membership of the truth value of some
formula to the set of designated values, has the same complexity as the 2-
valued model checking problem.

1.3.2 Specialized techniques

Symbolic multi-valued CTL model checking

In [16, 19, 17] a specialized model checking algorithm for multi-valued CTL
is proposed.

Multi-valued sets are sets for which the range of the membership function
can be any quasi-boolean algebra and not the set {0, 1} as in the classical
set theory. Formally, if B = (B,∧,∨,¬) is a quasi-boolean algebra and S
a classical set, then a B-valued set on S is a total function from S into B.
The operations on multi-valued sets are defined as follows (S and S ′ are two
B-valued sets):

(S ∩B S
′)(x) = (S(x) ∧ S ′(x)), for any x ∈ S ∪ S ′;

(S ∪B S
′)(x) = (S(x) ∨ S ′(x)), for any x ∈ S ∪ S ′;
S(x) = ¬ (S(x)), for any x ∈ S;

S ⊆B S
′ = ∀x (S(x) ≤ S ′(x));

S = S ′ = ∀x (S(x) = S ′(x)).

Straightforwardly, we can define B-valued relations over two sets S and
T as B-valued sets on S×T . If R is a B-valued relation over S and T and S

25

a B-valued set on S then we define the forward image of S under R,
−→
R(S),

as follows:
−→
R(S)(t) =

∨

s∈S

(S(s) ∧R(s, t)), for any t ∈ T .

Analogously, if R is a B-valued relation over S and T and T a B-valued

set on T then we define the backward image of T under R,
←−
R(T), as follows:

←−
R(T)(s) =

∨

t∈T

(T (t) ∧R(s, t)), for any s ∈ S.

Algorithms for multi-valued model checking are now obtained by restating
the CTL operators in the µ-calculus: usual operations on sets and relations
are replaced by the multi-valued versions provided above. Moreover, as in
classical symbolic model-checking, the authors of [16, 19, 17] use structures
like Multi-Valued Decision Diagrams [109] and Multi-Valued Binary-Terminal
Decision Diagrams [108] to efficiently manipulate multi-valued sets.

Complexity If M is the complexity of 2-valued symbolic model checking,
then the complexity of the multi-valued version is bounded by tBM , where
tB is the time needed to compute conjunctions and disjunctions of elements
in B. It is well known that this time is linear in the number of join-irreducible
elements of (B,≤) (see, for example [37]).

An automata approach to multi-valued µ-calculus model checking

In [11] a multi-valued model checking algorithm for µ-calculus using au-
tomata is proposed. As CTL∗ is expressible in µ-calculus, this algorithm can
be particularized for multi-valued CTL∗ model checking. It extends the ap-
proach for 2-valued model checking from [75] that uses alternating automata
in the following way (we suppose M is a 2-valued Kripke structure and φ a
formula to be verified):

• constructs an alternating automaton Aφ that accepts exactly the trees
that satisfy φ;

• constructs the product automaton AM,φ = M ×AD,φ;

• outputs “1” if the language of AM,φ is non-empty and “0”, otherwise.

Although the approach in [11] applies to mv-Kripke structures with 2-
valued transition predicates, this is not a restriction since any multi-valued
model checking problem can be transformed into an equivalent one that uses

26

mv-Kripke structures with 2-valued transition predicates. For µ-calculus,
this is suggested but not formally proved in [11]. In the following we will
provide a formal proof for the case of CTL∗ formulas. The main idea is that
the truth value of a transition R(q, q′) in the initial model, is recorded in the
state q′, in the new model. We emphasize that this will involve a blow-up of
size |B|, where B = (B,∧,∨,¬) is the truth algebra under consideration.

Let M = (Q,R,L) be an mv-Kripke structure over a truth algebra B =
(B,∧,∨,¬) and some set of atomic propositions AP . We define the following
structure M ′ = (Q′, R′, L′) over B and AP ∪ {r} such that R′ is 2-valued:

• Q′ = Q×B;

• R′((q, b1), (q
′, b2)) = 1 iff R(q, q′) = b2, for any q, q′ ∈ Q and b1, b2 ∈ B;

• L′((q, b))(p) = L(q)(p), for any q ∈ Q and p ∈ AP ;

• r is a new atomic proposition with L′((q, b))(r) = b, for any q ∈ Q and
b ∈ B.

The transformation above is useful when the set D of truth values used
to build paths is equal to B−{0}. In the general case, Q′ = Q×D and B is
replaced with D. Moreover, notice that the set of truth values used to build
path in M ′ is {1}.

We define a transformation T (φ), for any φ a path or state CTL∗ formula,
as follows (rules are given only for the minimal set of operators):

• T (p) = p, T (¬ϕ1) = ¬T (ϕ1) and T (ϕ1 ∧ ϕ2) = T (ϕ1) ∧ T (ϕ2), for any
p ∈ AP and ϕ1, ϕ2 state formulas;

• T (∀ψ1) = ∀T (ψ1), for any ψ1 a path formula;

• T (¬ψ1) = ¬T (ψ1), T (ψ1∧ψ2) = T (ψ1)∧T (ψ2), T (Xφ) = X(T (φ)∧r),
T (Xφ) = X(T (φ)∧ r) and T (φUψ) = (T (φ)∧Xr)UT (ψ), for any ψ1

and ψ2 path formulas;

For any path π of M starting in q, we denote by π′
b the path of M ′ starting

in (q, b), for any b ∈ B Notice that π′
b is unique and π′

b(i) = (π(i), b′), where
R(π(i− 1), π(i)) = b′, for any 0 < i < |π|.

Theorem 1.4 Let M and M ′ be as above. Then,

[φ]Mq = [T (φ)]M
′

(q,b) and [ψ]Mπ = [T (ψ)]M
′

π′
b

for any q ∈ Q, state CTL∗ formula φ, path CTL∗ formula ψ, and b ∈ B.

27

Proof We will prove the statements in the theorem by structural induction
on the formulas φ and ψ. The following cases are to be considered:

• φ = p ∈ AP . We have that [φ]Mq = L(q)(p) = L′((q, b))(p), for any

b ∈ B. Since T (p) = p we obtain [φ]Mq = [T (φ)]M
′

(q,b);

• φ = ¬φ1, where φ1 is a state formula. Then [φ]Mq = ¬[φ1]
M
q and T (φ) =

¬T (φ1). Applying the induction hypothesis we get [φ1]
M
q = [T (φ1)]

M ′

(q,b),

for any b ∈ B and consequently, [φ]Mq = [¬T (φ1)]
M ′

(q,b) = [T (φ)]M
′

(q,b);

• φ = φ1 ∧ φ2, where φ1 and φ2 are state formulas. Then [φ]Mq = [φ1]
M
q ∧

[φ1]
M
q and T (φ) = T (φ1) ∧ T (φ2). Applying the induction hypothesis

we get [φ1]
M
q = [T (φ1)]

M ′

(q,b) and [φ2]
M
q = [T (φ2)]

M ′

(q,b), for any b ∈ B.

Consequently, [φ]Mq = [T (φ1)]
M ′

(q,b) ∧ [T (φ2)]
M ′

(q,b) = [T (φ)]M
′

(q,b);

• φ = ∀ψ, where ψ is a path formula. We have

[φ]Mq =
∧

π∈Paths(M,D,q)

[ψ]Mπ .

Using T (φ) = ∀T (ψ) we obtain

[T (φ)]M
′

(q,b) =
∧

ρ∈Paths(M ′,{1},(q,b))

[T (ψ)]M
′

ρ .

By the definition of M ′, any path ρ ∈ Paths(M ′, {1}, (q, b)) is a path π′
b,

for some π ∈ Paths(M,D, q). Now, applying the induction hypothesis,
we get [ψ]Mπ = [T (ψ)]M

′

π′
b

and consequently, [φ]Mq = [T (φ)]M
′

(q,b);

• the case φ = ∃φ1, where φ1 is a path formula, is similar to the previous
one;

• the cases ψ = ¬ψ1 and ψ = ψ1∧ψ2, where ψ1 and ψ2 are path formulas,
are obtained as the similar cases involving state formulas;

• ψ = Xψ1, where ψ1 is a path formula. We have T (ψ) = X(T (ψ1) ∧ r)
and

[ψ]Mπ = (|π| > 1) ∧R(π(0), π(1)) ∧ [ψ1]
M
π1 .

Clearly, |π| > 1 iff |πb| > 1. Then,

[T (ψ)]M
′

πb
= [X(T (ψ1) ∧ r)]

M ′

πb

= (|πb| > 1) ∧R′(πb(0), πb(1)) ∧ [T (ψ1)]
M ′

π1
b

∧ [r]M
′

π1
b

.

By the definition of πb and r, we have [r]M
′

π1
b

= R(π(0), π(1)) which

proves [ψ]Mπ = [T (ψ)]M
′

πb
;

28

• the case ψ = Xψ1, where ψ1 is a path formula is similar to the previous
one;

• the case ψ = ψ1 Uψ2, where ψ1 and ψ2 are path formulas. We have
T (ψ) = (T (ψ1) ∧Xr)UT (ψ2) and

[ψ]Mπ = [ψ2]
M
π0 ∨

∨

0<i<|π|

([ψ2]
M
πi ∧

∧

0≤j<i

([ψ1]
M
πj ∧ R(π(j), π(j + 1)))).

Then,

[T (ψ)]M
′

πb
= [(T (ψ1) ∧Xr)UT (ψ2)]

M ′

πb

= [T (ψ2)]
M ′

π0
b

∨
∨

0<i<|πb|

(

[T (ψ2)]
M ′

πi
b

∧
∧

0≤j<i([T (ψ1) ∧Xr]M
′

πj
b

∧ R′(πb(j), πb(j + 1)))
)

.

In the above, we use R′(πb(j), πb(j + 1)) = 1,

[T (ψ1) ∧Xr]M
′

πj
b

= [T (ψ1)]
M ′

πj
b

∧ [r]M
′

πj+1
b

,

and [r]M
′

πj+1
b

= R(π(j), π(j + 1))) to obtain [ψ]Mπ = [T (ψ)]M
′

πb
. 2

The approach in [75] is extended to the multi-valued case by first ex-
tending the alternating automata. While in classic alternating automata, we
describe successors through boolean expressions built up from states, boolean
values, conjunction and disjunction, in extended alternating automata (EAA,
for short) we describe successors through boolean expressions built up from
states, truth values in B, conjunction and disjunction over B. Moreover, in
EAAs each accepting run has a truth value and now, we are not interested in
the non-emptiness of the language but in the truth value of each accepting
run.

The fundamental property of an EAA is that the set of truth values for
which there exists an accepting run has a maximum value. This permits an
algorithm which proceeds with minor differences as in the 2-valued case but,
in the last step the answer for the truth value of φ in M is the maximum
value of an accepting run.

Complexity As computing the maximum value of an accepting run for
the product automaton is proved to have the same complexity as checking
it’s non-emptiness, the complexity for µ-calculus model checking remains the
same even for the multi-valued case. However, in this case, the size of the
problem will also include the size of B.

29

Chapter 2

Multi-valued Abstractions

This chapter deals with abstractions that preserve properties expressed in
logics under multi-valued interpretations given by truth algebras. The ab-
stract system is obtained by applying equivalence relations and the predicate
symbols of the logic are re-defined to work properly on equivalence classes.

We define abstractions of logical structures that preserve first order logic
formulas, abstractions of multi-valued Kripke structures that preserve tempo-
ral logic formulas and abstractions of multi-agent multi-valued Kripke struc-
tures that preserve temporal logic of knowledge formulas. Moreover, we show
how multi-valued abstractions can be computed from 2-valued abstractions
provided that some requirements are satisfied.

Before giving abstractions of multi-valued Kripke structures, we provide
a case study of using abstraction in the context of protection systems which
model access control policies [63].

2.1 Interpretation policies

The abstraction techniques for multi-valued logics we introduce in this thesis
extend the ones offered for Kleene’s 3-valued logic in [111, 46, 45]. The
abstract system is obtained by applying equivalence relations. Then, the
predicate symbols of the logic are re-defined to work properly on equivalence
classes. As an equivalence class may contain more than one element and each
element leads to a truth value for each predicate, to redefine a predicate on
an equivalence class comes down to define a policy of recombination of truth
values from some given set.

Definition 2.1 Let B = (B,∧,∨,¬) be a truth algebra. An interpretation
policy over B is any function α from B into the set {∃S,∃S

′

a |S, S
′ ∈ P(B) −

30

{∅}} 1.

An interpretation policy α over B works as follows. Let A be a non-
empty set of elements, p a unary predicate symbol, and IAp : A → B an
interpretation function which gives truth values to p on each a ∈ A. Given
an arbitrary and non-empty set X ⊆ P(A)−{∅}, we want to use α to define
a new interpretation function IXp : X → B as follows. For any T ∈ X, IXp (T)
is the truth value b ∈ B if one of the following properties is satisfied:

• if α(b) = ∃S, then

(∀t ∈ T)(IAp (t) ∈ S) ∧ (∃t ∈ T)(IAp (t) = b)

• if α(b) = ∃Sa , then

(∀t ∈ T)(IAp (t) ∈ S) ∧ (∃t1, t2 ∈ T)(IAp (t1) ≤ b ≤ IAp (t2)).

It is quite clear that such a function IXp might not exists. It might happen
that no policy α(b) can be applied to T ∈ X or two distinct policies α(b)
and α(b′) can be applied to T ∈ X. When α allows to define an unique
function IXp as above, then IXp will be called the reinterpretation of IAp on
X according to α and any element IXp (T) will be called the truth value of p
on T according to α (it is also denoted by pTα).

Therefore, an interpretation policy aims to redefine already existing in-
terpretation functions. One may remark that a policy of the form α(b) = ∃{b}

says that a predicate p is reinterpreted to b on a non-empty subset T if all
the elements in T evaluate the predicate p to b. Sometimes, we will denote
this by α(b) = ∀.

Example 2.1 In [111], an abstraction based verification technique has been
proposed for abstract data types. The technique employs a first order logic
under Kleene’s 3-valued interpretation. The truth algebra is based on the
lattice (B = {0,⊥, 1},≤) with 0 ≤ ⊥ ≤ 1. Three abstraction types were
defined: ∀∀-abstractions, ∀∃-abstractions, and ∃0,1∀-abstractions.

It is easily seen that the reinterpretations of the predicate symbols for
these abstractions are driven by the following interpretation policies:

abstraction type [111] interpretation policy

∀∀ α(0) = ∃{0} α(⊥) = ∃{0,⊥,1}a α(1) = ∃{1}

∀∃ α(0) = ∃{0,⊥,1} α(⊥) = ∃{⊥,1} α(1) = ∃{1}

∃0,1∀ α(0) = ∃{0} α(⊥) = ∃{0,⊥,1} α(1) = ∃{0,1}

1The symbol ∃ in the definition of interpretation policies should not be confused with
the symbol ∃ used in the syntax of the logics. In interpretation policies this symbol will
always be accompanied by a superscript (and sometimes, a subscript).

31

As we have already said, an interpretation policy might not allow redefin-
ing an already existing interpretation function. Interestingly is that some
interpretation policies allow redefining interpretation functions no matter
what the domain of these functions is and no matter how these functions are
defined. This is the case, for instance, of the policies in Example 2.1.

When an interpretation policy leads to exactly one reinterpretation no
matter how the interpretation function is chosen, it will be called a safe
interpretation policy. They can be characterized as follows.

Theorem 2.1 An interpretation policy α : B → {∃S,∃S
′

a |S, S
′ ∈ P(B) −

{∅}} is safe if and only if for any non-empty subset ST ⊆ B there exists an
unique b ∈ B such that one of the following two statements holds true:

• if α(b) = ∃S, then b ∈ ST ⊆ S;

• if α(b) = ∃Sa , then ST ⊆ S and there are b1, b2 ∈ S such that b1 ≤ b ≤ b2.

Proof It is clear that if α is safe then there is an unique b ∈ B such that
one of the two statements holds true.

Conversely, assume that α satisfies the property in the theorem. Let
p be a predicate symbol, A be a non-empty set, and IAp : A → B be an
interpretation of p over A. Let X ⊆ P(A)− {∅}. We will show that we can
define an unique reinterpretation IXp of IAp on X according to α.

Let T ∈ X, and let ST = {IAp (t)|t ∈ T}. Clearly, ST is non-empty. Then,
there exists an unique b ∈ B such that one of the two properties in the
theorem holds true. If we define IXp (T) = b then one can easily see that this
is a consistent definition of a function and it is the unique one which satisfies
the interpretation policy α. 2

2.2 First-Order Logic

2.2.1 Abstractions and Preservation Results

Logical structures, used to model systems, assign meanings to logical signa-
tures by associating a set of data to each kind and a multi-valued predicate
to each predicate symbol. Abstractions of logical structures are captured by
using equivalences and interpretation policies. The equivalence classes repre-
sent sets of elements that are treated as a whole and the interpretation policy
is used to obtain the truth value of the predicates on equivalence classes.

If K is a non-empty set of kinds, a K-kinded binary relation on a K-
kinded set S is a K-indexed family ρ = (ρk|k ∈ K) such that ρk is a binary

32

relation on Sk. ρ is an equivalence relation on S if each ρk is an equivalence
relation on Sk.

Definition 2.2 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ a K-kinded

equivalence on S and α an interpretation policy over B. An α-abstraction of
S by ρ is a (B,ΣL)-logical structure S ′ = (S/ρ,ΣS′

L) such that:

• S/ρ = (Sk/ρk|k ∈ K);

• pS
′

([a1]ρk1
, . . . , [am]ρkm

) is the value of p over the set

{(u1, . . . , um)|ui ∈ [ai]ρki
, 1 ≤ i ≤ m}

according to α, for any predicate p of type k1 . . . km with m ≥ 1, and
ai ∈ Ski

, 1 ≤ i ≤ m.

In order to be useful, an abstraction should be property preserving with
respect to a specific set of properties. In the following we provide three types
of preservation results:

• ≥-preservation with respect to a set of properties P and two truth values
b, b′ ∈ B means that a given property φ ∈ P is evaluated to a truth
value greater than or equal to b′ in the concrete system whenever it
is evaluated to a truth value grater than or equal to b in the abstract
system;

• ≤-preservation with respect to a set of properties P and two truth values
b, b′ ∈ B means that a given property φ ∈ P is evaluated to a truth
value less than or equal to b′ in the concrete system whenever it is
evaluated to a truth value less than or equal to b in the abstract system;

• =-preservation results with respect to a set of properties P and a set of
truth values B′ means that a given property φ ∈ P is evaluated to a
truth value b ∈ B′ in the concrete system whenever it is evaluated to b
in the abstract system;

Remark 2.1 If B is the classic two-valued truth algebra, the =-preservation
include three forms of property preservation frequently found in the literature
[34, 113, 111]:

• strong-preservation: an abstraction is strongly preserving if a set of
properties with truth values true or false in the abstract system has
corresponding properties in the concrete system with the same truth
values;

33

• weak-preservation: an abstraction is weakly preserving if a set of prop-
erties true in the abstract system has corresponding properties in the
concrete system that are also true;

• error-preservation: an abstraction is error preserving if a set of prop-
erties false in the abstract system has corresponding properties in the
concrete system that are also false.

One of the advantages of Definition 2.2 is that with the same equivalence
we can prove more than one property just by changing the interpretation
policy.

We shall derive in the following, several preservation results. We begin
by two technical results. Given an equivalence ρ on S and two assignments
γ ∈ Γ(X,S ′) and γ′ ∈ Γ(X,S), we write γ′ ∈ γ whenever γ′(x) ∈ γ(x), for
all x ∈ X.

Lemma 2.1 Let S be a (B,ΣL)-logical structure like above, ρ an equivalence
on S and S ′ an α-abstraction of S by ρ, for some interpretation policy α.
Then:

(1) γ′ ∈ Γ(X,S), for any γ ∈ Γ(X,S ′) such that γ′ ∈ γ;

(2) for any γ′ ∈ Γ(X,S) there exists γ ∈ Γ(X,S ′) such that γ′ ∈ γ.

Proof (1) follows directly from definitions.
(2) Given an assignment γ′ into S, define the assignment γ into S ′ by

γ(x) = [γ′(x)], for all x. Clearly, γ′ ∈ γ. 2

Lemma 2.2 Let S, ρ, and S ′ like above, and γ be an assignment into S ′.
Then,

IS′(p(x1, . . . , xm))(γ) = pS
′

([γ1(x1)], . . . , [γm(xm)]),

for any γ1, . . . , γm ∈ γ and atomic formula p(x1, . . . , xm).

Proof Directly from the definition of IS′ . 2

We have to remark that Lemmatta 2.1 and 2.2 do not depend on the
interpretation policy. As a result they hold true for any abstraction.

Theorem 2.2 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If there exists b′ ∈ B
such that α(x) ∈ {∃T ,∃Ta ,∀ | T ⊆↑ b

′}, for all x ≥ b, then:

IS′(φ)(γ) ≥ b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) ≥ b′),

34

for any φ ∈ L{∧}(ΣL, X) and γ ∈ Γ(X,S ′). Moreover, if

∨B′ ≥ b ⇒ (∃x ∈ B′)(x ≥ b), for any B′ ⊆ B,

then
IS′(φ)(γ) ≥ b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) ≥ b′),

for any φ ∈ L{∧,∨}(ΣL, X) and γ ∈ Γ(X,S ′).

Proof To prove the first part, we proceed by structural induction on φ.
We consider the following cases:

• φ = p(x1, . . . , xm) is an atomic formula. Let γ ∈ Γ(X,S ′) such that
IS′(p(x1, . . . , xm))(γ) ≥ b. Now, let γ′ ∈ Γ(X,S) such that γ′ ∈ γ. We
apply Lemma 2.2 for γ1 = · · · = γm = γ′ and obtain

IS′(p(x1, . . . , xm))(γ) = pS
′

([γ′(x1)], . . . , [γ
′(xm)]) ≥ b,

which by the conditions on α implies pS(γ′(x1), . . . , γ
′(xm)) ≥ b′. Con-

sequently, IS(φ)(γ′) ≥ b′;

• φ = φ1 ∧ φ2. Assume that φ1 and φ2 satisfy the property and let γ ∈
Γ(X,S ′) be an assignment such that IS′(φ1 ∧ φ2)(γ) ≥ b. This implies
IS′(φ1)(γ) ≥ b and IS′(φ2)(γ) ≥ b. By the induction hypothesis, we
obtain IS(φ1)(γ

′) ≥ b′ and IS(φ2)(γ
′) ≥ b′, for any γ′ ∈ γ. Therefore,

IS(φ1 ∧ φ2)(γ
′) ≥ b′, for any γ′ ∈ γ;

• φ = (∀x)φ1 with x ∈ Xk. Assume that φ1 satisfies the property and
let γ ∈ Γ(X,S ′) be an assignment such that IS′((∀x)φ1)(γ) ≥ b.
This implies IS′(φ1)(γ[x/a]) ≥ b, for any a ∈ Sk/ρk. By the induc-
tion hypothesis, we obtain that IS(φ1)(γ

′′) ≥ b′, for any γ′′ ∈ γ[x/a].
Consequently, IS(φ1)(γ

′[x/a′]) ≥ b′, for any γ′ ∈ γ and a′ ∈ a, and,
IS((∀x)φ1)(γ

′) ≥ b′, for any γ′ ∈ γ.

For the second part, two more cases are to be added to the proof above:

• φ = φ1 ∨ φ2. Assume that φ1 and φ2 satisfy the property and let
γ ∈ Γ(X,S ′) be an assignment such that IS′(φ1 ∨ φ2)(γ) ≥ b. By
the condition on the truth algebra B, we obtain that IS′(φ1)(γ) ≥ b or
IS′(φ2)(γ) ≥ b, and by the induction hypothesis we obtain IS(φ1)(γ

′) ≥
b′, for any γ′ ∈ γ or IS(φ2)(γ

′) ≥ b′, for any γ′ ∈ γ. Thus, IS(φ1 ∨
φ2)(γ

′) ≥ b′, for any γ′ ∈ γ;

35

• φ = (∃x)φ1, with x ∈ Xk. Assume that φ1 satisfies the property
and let γ ∈ Γ(X,S ′) be an assignment such that IS′((∃x)φ1)(γ) ≥
b. By the condition on the truth algebra B, this implies that there
exists a ∈ Sk/ρk such that IS′(φ1)(γ[x/a]) ≥ b, and by the induction
hypothesis, we obtain IS(φ1)(γ

′′) ≥ b′, for any γ′′ ∈ γ[x/a]. Thus,
there exists a′ ∈ a such that IS(φ1)(γ

′[x/a′]) ≥ b′, for any γ′ ∈ γ, and,
IS((∃x)φ1)(γ

′) ≥ b′, for any γ′ ∈ γ. 2

Corollary 2.1 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If there exists b′ ∈ B
such that α(x) ∈ {∃T ,∃Ta ,∀ | T ⊆↑ b

′}, for all x ≥ b, then:

[φ]S
′

≥ b ⇒ [φ]S ≥ b′,

for any φ ∈ L{∧}(ΣL, X). Moreover, if

∨B′ ≥ b ⇒ (∃x ∈ B′)(x ≥ b), for any B′ ⊆ B,

then
[φ]S

′

≥ b ⇒ [φ]S ≥ b′,

for any φ ∈ L{∧,∨}(ΣL, X).

Proof Let φ be a formula in L{∧}(ΣL, X) such that [φ]S
′

≥ b. Then,
IS′(φ)(γ) ≥ b, for any γ ∈ Γ(X,S ′). By Lemma 2.1, for any γ′ ∈ Γ(X,S)
there exists γ ∈ Γ(X,S ′) such that γ′ ∈ γ. Consequently, we can use Theo-
rem 2.2 to obtain [φ]S ≥ b′. The second part of the theorem follows a similar
line. 2

We exemplify the use of the ≥-preservation result in Corollary 2.1.

Example 2.2 Let K be a set of kinds containing the kind nat for the set
of natural numbers and (B,ΣL) be a K-kinded logical signature where B is
the truth algebra in Figure 1.1(e), p ∈ ΣL,nat, and q ∈ ΣL,nat nat. Moreover,
consider S = (S,ΣS

L) a (B,ΣL)-logical structure such that:

• Snat = N;

• pS is defined by:

pS(x) =















1M, if x%4 = 0;
10, if x%4 = 1;
11, if x%4 = 2;
1M, if x%4 = 3;

36

• qS is defined by:

qS(x, y) =















MM, if (x+ y)%4 = 0;
M1, if (x+ y)%4 = 1;
M0, if (x+ y)%4 = 2;
MM, if (x+ y)%4 = 3;

Suppose we are interested in the truth value of the formula φ1 = p(x) ∧
p(y)∧ q(x, y). We can find a lower bound for this truth value by applying an
α-abstraction of S by the equivalence ρ given by

x ρnat y iff x and y have the same parity.

The interpretation policy α is chosen such that

Truth values 1M 10 M0 MM 11 M1

The policy α ∃{1M,11} ∃{1M,10} ∃{M0,MM} ∃{MM,M1} ∀ ∀

Let S ′ be the abstraction above. Since |Snat/ρ| = 2 we can easily prove
that [φ1]

S′

= M0. Moreover, we have α(x) ∈ {∃T ,∃Ta ,∀ | T ⊆↑ M0}, for all
x ≥M0 and, consequently, [φ1]

S ≥M0, by Corollary 2.1.

Theorem 2.3 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If there exists b′ ∈ B
such that α(x) ∈ {∃S

′

,∃S
′

a ,∀ | S
′ ⊆↓ b′}, for all x ≤ b, then:

IS′(φ)(γ) ≤ b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) ≤ b′),

for any φ ∈ L{∨}(ΣL, X) and γ ∈ Γ(X,S ′). Moreover, if

∧B′ ≤ b ⇒ (∃x ∈ B′)(x ≤ b), for any B′ ⊆ B,

then
IS′(φ)(γ) ≤ b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) ≤ b′),

for any φ ∈ L{∧,∨}(ΣL, X) and γ ∈ Γ(X,S ′).

Proof This is similar to the proof of Theorem 2.2. 2

Corollary 2.2 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If there exists b′ ∈ B
such that α(x) ∈ {∃S

′

,∃S
′

a ,∀ | S
′ ⊆↓ b′}, for all x ≤ b, then:

[φ]S
′

≤ b ⇒ [φ]S ≤ b′,

37

for any φ ∈ L{∨}(ΣL, X). Moreover, if

∧B′ ≤ b ⇒ (∃x ∈ B′)(x ≤ b), for any B′ ⊆ B,

then
[φ]S

′

≤ b ⇒ [φ]S ≤ b′,

for any φ ∈ L{∧,∨}(ΣL, X).

Proof This is similar to the proof of Corollary 2.1 (but using Theorem
2.3). 2

Example 2.3 Let K be a set of kinds containing the kind nat for the set of
natural numbers. We consider a K-kinded logical signature (B,ΣL) where B
is the truth algebra in Figure 1.1(h), p ∈ ΣL,nat, and q ∈ ΣL,nat nat. Moreover,
let S = (S,ΣS

L) be a (B,ΣL)-logical structure such that:

• Snat = N;

• pS(x) = SH if x is even and pS(x) = 1 if x is odd;

• qS(x, y) = DC if x+ y is even and qS(x, y) = SH if x+ y is odd.

Consider the formula

φ2 = (∀x)(∃y)(p(x) ∨ q(x, y)).

An upper bound for the truth value of φ2 can be found by applying an
α-abstraction of S induced by the equivalence relation ρ given by:

x ρnat y iff x and y have the same parity,

for any x, y ∈ N. The interpretation policy α can be chosen in various ways.
For example, suppose that α(DC) = α(SH) = α(1) = ∀.

If S ′ is the α-abstraction of S by ρ then the value of [φ2]
S′

can be obtained
easily because Snat/ρ = {[0]ρ, [1]ρ} has only two elements. More exactly,
[φ2]

S′

equals

(

(p([0]ρ) ∨ q([0]ρ, [0]ρ)) ∨ (p([0]ρ) ∨ q([0]ρ, [1]ρ))
)

∧
(

(p([1]ρ) ∨ q([1]ρ, [0]ρ)) ∨ (p([1]ρ) ∨ q([1]ρ, [1]ρ))
)

= SH.

Now, since α(x) = ∀, for all x ≤ SH, and

∧B′ ≤ SH ⇒ (∃x ∈ B′)(x ≤ SH),

we obtain [φ2]
S ≤ SH, by Corollary 2.2.

38

Theorem 2.4 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If α(b) = ∀ and α(x) ∈
{∃S,∀ | S ⊆↑ b∩ ↓ x}, for all x > b, then:

IS′(φ)(γ) ≥ b ⇒ (∀γ′ ∈ γ)(b ≤ IS(φ)(γ′) ≤ IS′(φ)(γ)) and

IS′(φ)(γ) = b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) = b),

for any φ ∈ L{∧}(ΣL, X) and γ ∈ Γ(X,S ′).

Proof We proceed by simultaneous structural induction on φ. The follow-
ing cases are to be discussed:

• φ = p(x1, . . . , xm) is an atomic formula. Let γ ∈ Γ(X,S ′) such that
IS′(p(x1, . . . , xm))(γ) ≥ b. Now, let γ′ ∈ Γ(X,S) such that γ′ ∈ γ. We
apply Lemma 2.2 for γ1 = · · · = γm = γ′ and obtain

IS′(p(x1, . . . , xm))(γ) = pS
′

([γ′(x1)], . . . , [γ
′(xm)]) ≥ b,

which implies b ≤ pS(γ′(x1), . . . , γ
′(xm)) ≤ pS

′

(γ(x1), . . . , γ(xm)). Con-
sequently, b ≤ IS(φ)(γ′) ≤ IS′(φ)(γ).

Now, let γ ∈ Γ(X,S ′) such that IS′(p(x1, . . . , xm))(γ) = b. We can use
in the same way Lemma 2.2 and α(b) = ∀ to obtain IS(φ)(γ′) = b, for
any γ′ ∈ γ;

• φ = φ1 ∧ φ2. Assume that φ1 and φ2 satisfy the properties and let
γ ∈ Γ(X,S ′) such that IS′(φ1 ∧ φ2)(γ) ≥ b. This implies IS′(φ1)(γ) ≥
b and IS′(φ2)(γ) ≥ b. By the induction hypothesis we obtain b ≤
IS(φ1)(γ

′) ≤ IS′(φ1)(γ) and b ≤ IS(φ1)(γ
′) ≤ IS′(φ1)(γ), for any γ′ ∈

γ, which further implies b ≤ IS(φ1 ∧ φ2)(γ
′) ≤ IS′(φ1 ∧ φ2)(γ).

Now, let γ ∈ Γ(X,S ′) such that IS′(φ1 ∧ φ2)(γ) = b. We consider two
cases:

– IS′(φ1)(γ) = b and IS′(φ2)(γ) ≥ b. By the induction hypothesis,
the first statement implies IS(φ1)(γ

′) = b, for any γ′ ∈ γ while the
latter implies IS(φ2)(γ

′) ≥ b, for any γ′ ∈ γ and, consequently,
IS(φ1 ∧ φ2)(γ

′) = b, for any γ′ ∈ γ;

– IS′(φ1)(γ) 6= b and IS′(φ2)(γ) 6= b. Again, by the induction
hypothesis, we obtain b ≤ IS(φ1)(γ

′) ≤ IS′(φ1)(γ) and b ≤
IS(φ2)(γ

′) ≤ IS′(φ2)(γ), for any γ′ ∈ γ which implies IS(φ1 ∧
φ2)(γ

′) = b, for any γ′ ∈ γ. 2

39

Corollary 2.3 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If α(b) = ∀ and α(x) ∈
{∃S,∀ | S ⊆↑ b∩ ↓ x}, for all x > b, then:

[φ]S
′

≥ b ⇒ b ≤ [φ]S ≤ [φ]S
′

and

[φ]S
′

= b ⇒ [φ]S = b,

for any φ ∈ L{∧}(ΣL, X).

Proof This is similar to the proof of Corollary 2.1 (but using Theorem
2.4). 2

Theorem 2.5 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If α(b) = ∀ and α(x) ∈
{∃S,∀ | S ⊆↑ x∩ ↓ b}, for all x < b, then:

IS′(φ)(γ) ≤ b ⇒ (∀γ′ ∈ γ)(IS′(φ)(γ) ≤ IS(φ)(γ′) ≤ b), and

IS′(φ)(γ) = b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) = b),

for any φ ∈ L{∨}(ΣL, X) and γ ∈ Γ(X,S ′).

Proof It follows the same line as the proof of Theorem 2.4. 2

Corollary 2.4 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If α(b) = ∀ and α(x) ∈
{∃S,∀ | S ⊆↑ x∩ ↓ b}, for all x < b, then:

[φ]S
′

≤ b ⇒ [φ]S
′

≤ [φ]S ≤ b and

[φ]S
′

= b ⇒ [φ]S = b,

for any φ ∈ L{∨}(ΣL, X).

Proof This is similar to the proof of Corollary 2.1 (but using Theorem
2.5). 2

Theorem 2.6 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If:

40

1. α(b) = ∀;

2. α(x) ∈ {∃S
′

,∃S
′

a ,∀ | S
′ ⊆↑ b}, for all x > b;

3. α(x) ∈ {∃S
′

,∃S
′

a ,∀ | S
′ ⊆↓ b}, for all x < b;

4. for any B′ ⊆ B, ∧B′ ≤ b implies that there exists x ∈ B′ such that
x ≤ b;

5. for any B′ ⊆ B, ∨B′ ≥ b implies that there exists x ∈ B′ such that
x ≥ b;

6. for any B′ ⊆ B, ∧B′ = b implies b ∈ B′;

7. for any B′ ⊆ B, ∨B′ = b implies b ∈ B′;

then
IS′(φ)(γ) ≥ b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) ≥ b),

IS′(φ)(γ) ≤ b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) ≤ b),

IS′(φ)(γ) = b ⇒ (∀γ′ ∈ γ)(IS(φ)(γ′) = b),

for any φ ∈ L{∧,∨}(ΣL, X) and γ ∈ Γ(X,S ′).

Proof The first and the second statement in the theorem are obtained by
taking b′ = b in Theorem 2.2 and 2.3, respectively. For the third statement,
we proceed by structural induction on φ and consider the following cases:

• φ = p(x1, . . . , xm) is an atomic formula. Let γ ∈ Γ(X,S ′) such that
IS′(p(x1, . . . , xm))(γ) = b and γ′ ∈ Γ(X,S) with γ′ ∈ γ. We apply
Lemma 2.2 for γ1 = · · · = γm = γ′ and obtain

IS′(p(x1, . . . , xm))(γ) = pS
′

([γ′(x1)], . . . , [γ
′(xm)]) = b,

which implies pS(γ′(x1), . . . , γ
′(xm)) = b, by α(b) = ∀. Consequently,

IS(φ)(γ′) = b, for any γ′ ∈ γ;

• φ = φ1 ∧ φ2. Assume that φ1 and φ2 satisfy the properties and let γ ∈
Γ(X,S ′) such that IS′(φ1 ∧ φ2)(γ) = b. By 6, we can suppose without
any loss of generality that IS′(φ1)(γ) = b and IS′(φ2)(γ) ≥ b. By the
induction hypothesis we obtain IS(φ1)(γ

′) = b and IS(φ1)(γ
′) ≥ b, for

any γ′ ∈ γ, which further implies IS(φ1 ∧ φ2)(γ
′) = b, for any γ′ ∈ γ;

• φ = φ1 ∨ φ2. This is similar to the previous case;

41

• φ = (∀x)φ1 with x ∈ Xk. Assume that φ1 satisfies the property,
and let γ ∈ Γ(X,S ′) be an assignment such that IS′((∀x)φ1)(γ) =
b. This implies IS′(φ1)(γ[x/a]) ≥ b, for any a ∈ Sk/ρk and, by 6,
IS′(φ1)(γ[x/a

′]) = b, for some a′ ∈ Sk/ρk. By the induction hy-
pothesis, we obtain that IS(φ1)(γ1) ≥ b, for any γ1 ∈ γ[x/a], and
IS(φ1)(γ2) = b, for any γ2 ∈ γ[x/a

′]. Consequently, IS(φ1)(γ
′[x/a1]) ≥

b and IS((∀x)φ1)(γ
′[x/a2]) = b, for any γ′ ∈ γ, a1 ∈ Sk and a2 ∈ a

′.
Therefore, IS((∀x)φ1)(γ

′) = b, for any γ′ ∈ γ;

• φ = (∃x)φ1. This is similar to the previous case. 2

Corollary 2.5 Let S = (S,ΣS
L) be a (B,ΣL)-logical structure, ρ an equiv-

alence on S, α an interpretation policy over B, S ′ = (S/ρ,ΣS′

L) an α-
abstraction of S by ρ, and b a truth value in B. If:

1. α(b) = ∀;

2. α(x) ∈ {∃S
′

,∃S
′

a ,∀ | S
′ ⊆↑ b}, for all x > b;

3. α(x) ∈ {∃S
′

,∃S
′

a ,∀ | S
′ ⊆↓ b}, for all x < b;

4. for any B′ ⊆ B, ∧B′ ≤ b implies that there exists x ∈ B′ such that
x ≤ b;

5. for any B′ ⊆ B, ∨B′ ≥ b implies that there exists x ∈ B′ such that
x ≥ b;

6. for any B′ ⊆ B, ∧B′ = b implies b ∈ B′;

7. for any B′ ⊆ B, ∨B′ = b implies b ∈ B′;

then
[φ]S

′

≥ b ⇒ [φ]S ≥ b,

[φ]S
′

≤ b ⇒ [φ]S ≤ b,

[φ]S
′

= b ⇒ [φ]S = b,

for any φ ∈ L{∧,∨}(ΣL, X).

Proof This is similar to the proof of Corollary 2.1 (but using Theorem
2.6). 2

All preservation results in [111] (for Kleene’s 3-valued logic) are particular
cases of Corollary 2.5.

42

Corollary 2.6 Let ≤ be the partial order on B = {0,⊥, 1} given by 0 ≤
⊥ ≤ 1 and let B = (B,∧,∨,¬) be the corresponding truth algebra. Let
S = (S,ΣS

L) be a (B,ΣL)-logical structure, ρ an equivalence on S, α an
interpretation policy over B, and S ′ = (S/ρ,ΣS′

L) an α-abstraction of S by
ρ. Then, the following properties hold:

• if α(0) = ∀, α(⊥) = ∃{0,⊥,1}, and α(1) = ∃{0,1} then

[φ]S
′

= 0 ⇒ [φ]S = 0, for any φ ∈ L{∧,∨}(ΣL, X).

That is, S ′ is error-preserving with respect to formulas in L{∧,∨}(ΣL, X);

• if α(0) = ∃{0,⊥,1}, α(⊥) = ∃{⊥,1}, and α(1) = ∀, then

[φ]S
′

= 1 ⇒ [φ]S = 1, for any φ ∈ L{∧,∨}(ΣL, X).

That is, S ′ is weak-preserving with respect to formulas in L{∧,∨}(ΣL, X);

• if α(0) = ∀, α(⊥) = ∃{0,⊥,1}a , and α(1) = ∀, then

[φ]S
′

= b ⇒ [φ]S = b, for any φ ∈ L(ΣL, X) and b ∈ {0, 1}.

That is, S ′ is strong-preserving with respect to formulas in L(ΣL, X);

2.2.2 Multi-valued Abstraction Through 2-valued Ab-
straction

In this section we show how multi-valued abstractions can be computed from
2-valued abstractions, provided that some requirements are satisfied. In order
to simplify the presentation, we will consider only 2-valued abstractions based
on the two possible safe interpretation policies α1 and α2 over B2 (B2 is the
truth algebra with two elements):

• α1(0) = ∃ and α1(1) = ∀;

• α2(0) = ∀ and α2(1) = ∃.

We may remark that α1 corresponds to the interpretation by under-
approximation (i.e. p([a]ρ) = 1 iff p(a1) = 1, for all a1 ∈ [a]ρ) and α2

corresponds to the interpretation by over-approximation (i.e. p([a]ρ) = 1 iff
p(a1) = 1, for some a1 ∈ [a]ρ).

Definition 2.3 Let S = (S,ΣS
L) be a (B2,ΣL)-logical structure and ρ a K-

kinded equivalence on S. A P-abstraction of S by ρ, where P ⊆ ΣL, is a
(B2,ΣL)-logical structure S ′ = (S/ρ,ΣS′

L) such that:

43

• S/ρ = (Sk/ρk|k ∈ K);

• pS
′

([a1]ρk1
, . . . , [am]ρkm

) is the value of p over the set

{(u1, . . . , um)|ui ∈ [ai]ρki
, 1 ≤ i ≤ m}

according to α1 if p ∈ P and according to α2 if p 6∈ P, for any predicate
p of type k1 . . . km with m ≥ 1, and ai ∈ Ski

, 1 ≤ i ≤ m.

The passing from 2-valued abstractions to multi-valued abstractions fol-
lows two steps:

• first, we represent multi-valued predicates by sets of 2-valued predicates
induced by some new partial order≤′ onB. Using this representation, a
(B2,Σ

′
L)-logical structure S≤′ is associated to any (B,ΣL)-logical struc-

ture S;

• second, if S ′
≤′ is a P-abstraction of S≤′ by some equivalence ρ, then we

extract a interpretation policy α over B such that the (B,ΣL)-logical
structure S ′ associated to S ′

≤′ is an α-abstraction of S by ρ.

Let B = (B,∧,∨,¬) be a truth algebra over the lattice (B,≤). We
consider a new partial order ≤′ on B with the following properties 2:

• (B,≤′) is an inf-complete lattice, i.e. any subset B′ ⊆ B has a greatest
lower bound. We denote by 0′ its smallest element;

• for any x ∈ B there exists a unique y ∈ B such that x ≻′ y.

a

ab

cb

bcac

0

1

a

ab

cb

bc
ac

0

1

a
ab

c

b
bc

ac

0

1

(a) (b) (c)

Figure 2.1: A lattice and two possible orders ≤′ for it.

2As usual, if ≤′ is a partial order on B, then <′=≤′ −{(a, a)|a ∈ B}, >′ is the inverse
of <′, and x ≻′ y if x >′ y and there exists no c ∈ B such that x >′ c >′ y.

44

Example 2.4 A lattice representing the inclusion order between subsets of
{a, b, c} (0 stands for the empty set and 1 for the full set {a, b, c}) is given in
Figure 2.1(a). Two possible orders ≤′ for it are represented in Figure 2.1(b)
and Figure 2.1(c).

Now, let S = (S,ΣS
L) be a K-kinded (B,ΣL)-logical structure and ≤′ a

partial order on B as above. We will associate to S a K-kinded (B2,Σ
′
L)-

logical structure S≤′ = (S,Σ
′S≤′

L) in the following way:

• for each predicate symbol p ∈ ΣL we include in Σ′
L a set of predicates

{pb | b ∈ B − {0
′}} of the same type with p;

• p
S≤′

b (~a) = 1 if pS(~a) ≥′ b, for any ~a ∈ Sw, where w is the type of p. In
words, pb is true for elements on which p gets truth values greater than
or equal to b (with respect to ≤′).

Example 2.5 Let K = {k} be a set of kinds and (B,ΣL) a logical signature,
where B is the truth algebra in Figure 2.1(a) and ΣL,k = {p}. Moreover, let
S = (S,ΣS

L) be a (B,ΣL)-logical structure such that the support of the kind
k is the language {ambncp | m,n, p ∈ N}, and pS(w) is the truth value
representing the maximal set of symbols that appear in w (the value of p
over the empty word ǫ is 0, and the value of p over the words containing all
symbols is 1). For example, pS(b7) = b, pS(a2b) = ab and pS(ab3c8) = 1.

Based on the partial order ≤′ Figure 2.1(c), we can associate to S a
(B2,Σ

′
L)-logical structure S≤′ such that Σ′

L = {pab, p1, p0, pa, pb, pbc, pc}. The
definition of the predicates in S≤′ is given as above. For example, pa(w) = 1
iff w contains only a, only b, only c or b and c.

Remark 2.2 The process of associating S≤′ to S is reversible. Having S≤′

we can obtain S. To this, we just have to remark that pS(~a) = b ∈ B − {0′}
if

p
S≤′

b (~a) = 1 and p
S≤′

x (~a) = 0, for all x ≻′ b,

for any ~a ∈ Sw, where w is the type of p. Moreover, pS(~a) = 0′ if p
S≤′

b (~a) = 0,
for all b ≻′ 0′.

We emphasize that the process above is reversible because S≤′ satisfies
the following properties:

• for any x, y ∈ B−{0′} with x ≥′ y, if p
S≤′

x ([~a]ρ) = 1, for some p ∈ ΣL,w

and ~a ∈ Sw, then p
S≤′

y ([~a]ρ) = 1;

45

• for any x, y1, y2 ∈ B − {0
′} with x ≺′ y1 and x ≺′ y2, and any pred-

icate p ∈ ΣL,w, there exists no ~a ∈ Sw such that p
S≤′

y1 ([~a]ρ) = 1 and

p
S≤′

y2 ([~a]ρ) = 1.

Unfortunately, the translation result does not work for any relation ≤′.
This partial order must satisfy some constraints with respect to the equiva-
lence relation used for abstraction.

Definition 2.4 Let S and S≤′ be as above and ρ an equivalence relation on
S. We say that ≤′ is appropriate for ρ if:

• for any x, y1, y2 ∈ B with x ≺′ y1 and x ≺′ y2, any predicate p ∈ ΣL,w,
and any ~a ∈ Sw, [~a]ρ does not contain distinct elements ~a1 and ~a2 such

that p
S≤′

y1 (~a1) = 1 and p
S≤′

y2 (~a2) = 1.

The restriction on ≤′ will be the appropriateness for the equivalence con-
sidered for abstraction. We emphasize that this restriction still permits us
to find a partial order ≤′, no matter what equivalence we choose for abstrac-
tion (we can always choose a linear order). Therefore, independently of the
equivalence ρ used for abstraction, there exist multi-valued α-abstractions of
logical structures by ρ that can be obtained by using 2-valued abstractions.

Example 2.6 Let S be the logical structure from Example 2.5. We consider
an equivalence relation ρ on Sk such that ambncp ρ am

′

bn
′

cp
′

iff:

(m = n = p = m′ = n′ = p′ = 0) or
(p = p′ = 0 ∧ (m = m′ = 0 ∨ n = n′ = 0 ∨m = n′ = 0 ∨m′ = n = 0)) or
(m > 0 ∧ n > 0 ∧m′ > 0 ∧ n′ > 0) or
(p > 0 ∧ p′ > 0 ∧ (m > 0⇒ n = 0) ∧ (n > 0⇒ m = 0) ∧ (m′ > 0⇒ n′ = 0)

∧(n′ > 0⇒ m′ = 0)).

Notice that ≤′ is appropriate for ρ because we do not have equivalence
classes containing the value 1 for pb and pbc or the value 1 for any two pred-
icates from the set {pab, p0, pa}.

Since in the multi-valued abstractions, the predicates are defined accord-
ing to the same interpretation policy we will consider P-abstractions of S≤′

for which P contains some predicate pb only if it contains all possible pb
with p ∈ ΣL. We will denote by BP the set of truth values b for which the
predicates pb are in P .

As it was the case with the partial order ≤′, we have some restrictions
even for the set P of predicates.

46

Definition 2.5 Let S≤′ be as above, ρ an equivalence relation on S, and
P ⊆ Σ′

L such that pb ∈ P iff (∀p ∈ ΣL)(pb ∈ P), for any b ∈ B − {0′}. We
say that P is appropriate for ρ if:

• for any x, y ∈ B with x ≻′ y, x 6∈ BP and y ∈ BP , any predicate
p ∈ ΣL,w and any ~a ∈ Sw, we have the following:

(∃~a1 ∈ [~a]ρ)(p
S≤′

x (~a1) = 1)⇒ (∀~a1 ∈ [~a]ρ)(p
S≤′

y (~a1) = 1)

Example 2.7 Let S and ρ be as in Example 2.6. Moreover, let P =
{pab, p1, pb, pbc} be a subset of Σ′

L. We can easily see that P is appropri-
ate for ρ because the equivalence class containing elements for which pc is 1
has the property that pbc is 1 for all its elements.

Now, we prove that the P-abstraction of S≤′ by some equivalence ρ is
a logical structure from which we can still extract a multi-valued logical
structure as in Remark 2.2, whenever ≤′ and P are appropriate for ρ.

Theorem 2.7 Let S≤′ , ρ and P be as above. If ≤′ and P are appropriate
for ρ then the P-abstraction S ′

≤′ of S≤′ by ρ satisfies the following properties:

1. for any x, y ∈ B − {0′} with x ≥′ y, any predicate p ∈ ΣL,w and any
~a ∈ Sw:

p
S′
≤′

x ([~a]ρ) = 1 ⇒ p
S′
≤′

y ([~a]ρ) = 1;

2. for any x, y1, y2 ∈ B−{0
′} with x ≺′ y1 and x ≺′ y2, and any predicate

p ∈ ΣL,w, there is no ~a ∈ Sw such that:

p
S′
≤′

y1 ([~a]ρ) = p
S′
≤′

y2 ([~a]ρ) = 1.

Proof For (1), it is sufficient to prove that

p
S′
≤′

x ([~a]ρ) = 1 ⇒ p
S′
≤′

y ([~a]ρ) = 1,

for any x, y ∈ B−{0′} with x ≻′ y, any predicate p ∈ ΣL,w, and any ~a ∈ Sw.
We consider the following cases:

• x, y 6∈ BP . By the definition of S ′
≤′ , p

S′
≤′

x ([~a]ρ) = 1 iff there exists

~a1 ∈ [~a]ρ such that p
S≤′

x (~a1) = 1 and p
S′
≤′

y ([~a]ρ) = 1 iff there exists

~a2 ∈ [~a]ρ such that p
S≤′

y (~a2) = 1, for any ~a ∈ Sw, where w is the

type of p. Since p
S≤′

x (~a1) = 1 implies p
S≤′

y (~a1) = 1 we also have that

p
S′
≤′

x ([~a]ρ) = 1 implies p
S′
≤′

y ([~a]ρ) = 1;

47

• x ∈ BP and y 6∈ BP . Suppose that p
S′
≤′

x ([~a]ρ) = 1. This implies

p
S≤′

x (~a1) = 1, for all ~a1 ∈ [~a]ρ and thus, p
S≤′

x (~a) = 1. By the definition

of S≤′ we further obtain p
S≤′

y (~a) = 1, which implies p
S≤′

y (~a) = 1, by the
fact that y 6∈ BP ;

• x 6∈ BP and y ∈ BP . Suppose that p
S′
≤′

x ([~a]ρ) = 1. This implies that

there exists ~a1 ∈ [~a]ρ such that p
S≤′

x (~a1) = 1 which, by the fact that P is

appropriate for ρ, implies p
S≤′

y (~a2) = 1, for all ~a2 ∈ [~a]ρ. Consequently,

p
S′
≤′

y ([~a]ρ) = 1;

• x, y ∈ BP . Suppose that p
S′
≤′

x ([~a]ρ) = 1. This implies p
S≤′

x (~a1) = 1, for

all ~a1 ∈ [~a]ρ and thus, by the definition of S≤′ , p
S≤′

y (~a1) = 1, for all

~a1 ∈ [~a]ρ. Therefore, p
S′
≤′

y ([~a]ρ) = 1.

To prove (2) we consider again several cases:

• y1, y2 ∈ BP . If we suppose that there exists some equivalence class [~a]ρ

such that p
S′
≤′

y1 ([~a]ρ) = p
S′
≤′

y2 ([~a]ρ) = 1, then p
S≤′

y1 (~a1) = p
S≤′

y2 (~a1) = 1,
for all ~a1 ∈ [~a]ρ. However, this can not hold because y1 and y2 are
incomparable with respect to ≤′;

• y1 ∈ BP and y2 6∈ BP . Suppose that there exists some equivalence class

[~a]ρ such that p
S′
≤′

y1 ([~a]ρ) = p
S′
≤′

y2 ([~a]ρ) = 1. Then, p
S≤′

y1 (~a1) = 1, for all

~a1 ∈ [~a]ρ and p
S≤′

y2 (~a2) = 1, for some ~a2 ∈ [~a]ρ. Again, we can use the
fact that y1 and y2 are incomparable with respect to ≤′ to obtain that
this contradicts the definition of S≤′ ;

• y1 6∈ BP y2 ∈ BP . This is similar to the previous case;

• y1, y2 6∈ BP . In order to have some equivalence class [~a]ρ with p
S′
≤′

y1 ([~a]ρ) =

p
S′
≤′

y2 ([~a]ρ) = 1, there should exist ~a1, ~a2 ∈ [~a]ρ such that p
S≤′

y1 (~a1) =

p
S≤′

y2 (~a2) = 1. However, this contradicts the fact that ≤′ is appropriate
for ρ. 2

The relationships between the logical structures we have build until now
are depicted in Figure 2.2: S≤′ is obtained from S by using the partial order
≤′, S ′

≤′ is a P-abstraction of S≤′ by some equivalence ρ, and S ′ is obtained
from S ′

≤′ by using the partial order ≤′. We will now prove the dotted arrow

48

S S
£’

S’
£’S’

£’

r,Pr a,

£’

multi-valued 2-valued

Figure 2.2: Relationships between multi-valued and 2-valued logical struc-
tures and abstractions.

by identifying the interpretation policy α that corresponds to P and ≤′, such
that S ′ is an α-abstraction of S by ρ.

Theorem 2.8 Let S = (S,ΣS
L) be a K-kinded (B,ΣL)-logical structure, ≤′

a partial order on B, ρ an equivalence relation on S, and P ⊆ ΣL such that
≤′ and P are appropriate for ρ. If S ′

≤′ is a P-abstraction of S≤′ by ρ then S ′

is an α-abstraction of S by ρ, for some interpretation policy α which satisfies
the following properties:

1. if (∀b ≻′ 0′)(b 6∈ BP) then α(0′) = ∀;

2. if (∃b ≻′ 0′)(b ∈ BP) then α(0′) = ∃T , where 0′ ∈ T and {x|x ≥′ b} ⊆ T ,
for any b ≻′ 0′ with b ∈ BP ;

3. if b 6∈ BP and (∀z ≻′ b)(z 6∈ BP) then α(b) = ∃T , where T = {x|c ≤′

x ≤′ b} and c is given by

c =

{

the least element of B such that c ≤′ b and c ∈ BP , if it exists;
0′, otherwise;

4. if b 6∈ BP and (∃z ≻′ b)(z ∈ BP) then α(b) = ∃Ta , where T = {x|x ≥′ c}
and c is given by

c =

{

the least element of B such that c ≤′ b and c ∈ BP , if it exists;
0′, otherwise;

5. if b ∈ BP and (∀z ≻′ b)(z 6∈ BP) then α(b) = ∀;

6. if b ∈ BP and (∃z ≻′ b)(z ∈ BP) then α(b) = ∃T , where b ∈ T and
{x|x ≥′ z} ⊆ T , for any z ≻′ b with z ∈ BP ;

49

7. if b ∈ BP and (∀z)(z 6≻′ b) then α(b) = ∀;

8. if b 6∈ BP and (∀z)(z 6≻′ b) then α(b) = ∃T , where T = {x|x ≥′ c} and
c is given by

c =

{

the least element of B such that c ≤′ b and c ∈ BP , if it exists;
0′, otherwise;

Proof Let p ∈ ΣL,w be a predicate and ~a ∈ Sw. To prove the first and the
second part we proceed as follows:

• if pS
′

([~a]ρ) = 0′ then p
S′
≤′

b ([~a]ρ) = 0, for all b ≻′ 0′. Since b 6∈ BP , for any

b ≻′ 0′, we have that p
S≤′

b (~a1) = 0, for all ~a1 ∈ [~a]ρ and b ≻′ 0′. Thus,
pS(~a1) = 0′, for all ~a1 ∈ [~a]ρ, which implies α(0′) = ∀. This proves (1);

• if pS
′

([~a]ρ) = 0′ then p
S′
≤′

b ([~a]ρ) = 0, for all b ≻′ 0′. Two cases are in
order:

– if b 6∈ BP then p
S≤′

b (~a1) = 0, for all ~a1 ∈ [~a]ρ;

– if b ∈ BP then p
S≤′

b (~a2) = 0, for some ~a2 ∈ [~a]ρ.

As ≤′ is appropriate for ρ, there exists a unique b ≻′ 0′ such that
pb(~x) = 1, for some ~x ∈ [~a]ρ. Consequently, there should exist ~a3 ∈ [~a]ρ

such that p
S≤′

b (~a3) = 0, for all b ≻′ 0′, which implies pS(~a3) = 0′.

Moreover, for any ~a1 ∈ [~a]ρ, we can have p
S≤′

b (~a1) = 1 only if b ∈ BP

and, consequently, the values different from 0′ of pS(~a1) are greater
than or equal to some b ≻′ 0′ with b ∈ BP . This proves (2).

Now, let b ∈ B − {0′} such that pS
′

([~a]ρ) = b. First, we consider the case
when there exists z ∈ B with z ≻′ b. We obtain that:

p
S′
≤′

b ([~a]ρ) = 1 and p
S′
≤′

x ([~a]ρ) = 0, for all x ≻′ b.

The following cases are to be discussed:

• if b 6∈ BP and (∀z ≻′ b)(z 6∈ BP) then there exists ~a1 ∈ [~a]ρ such that

p
S≤′

b (~a1) = 1 and p
S≤′

x (~a2) = 0, for all ~a2 ∈ [~a]ρ and x ≻′ b. This clearly
implies pS(~a1) = b and pS(~a2) ≤

′ b, for all ~a2 ∈ [~a]ρ.

Assume that there exists the least element c ∈ B such that c ≤′ b
and c ∈ BP . Suppose by contradiction that there exists ~a3 ∈ [~a]ρ

such that pS(~a3) <
′ c. We obtain p

S≤′

c (~a3) = 0 which, by c ∈ BP ,

50

implies p
S′
≤′

c ([~a]ρ) = 0. Further, by the construction of S ′
≤′ , we get

p
S′
≤′

b ([~a]ρ) = 0, which contradicts the hypothesis.

If no such c exists, then we can not impose any more restrictions on
the value of pS(~a1) with ~a1 ∈ [~a]ρ. This proves (3);

• if b 6∈ BP and (∃z ≻′ b)(z ∈ BP) then:

– there exists ~a1 ∈ [~a]ρ such that p
S≤′

b (~a1) = 1;

– there exists ~ax ∈ [~a]ρ such that p
S≤′

x (~ax) = 0, for all x ≻′ b with
x ∈ BP ;

– p
S≤′

x (~a2) = 0, for all ~a2 ∈ [~a]ρ and x ≻′ b with x 6∈ BP .

By the construction of S≤′ , we obtain pS(~a1) ≥
′ b and pS(~ax) ≤

′ b. The
fact that pS(~a3) ≥

′ c, for all ~a3 ∈ [~a]ρ, is obtained exactly as in the
previous case. This proves (4);

• if b ∈ BP and (∀z ≻′ b)(z 6∈ BP) then p
S≤′

b (~a1) = 1 and p
S≤′

x (~a1) = 0, for
all ~a1 ∈ [~a]ρ and x ≻′ b. Obviously, we get pS(~a1) = b, for all ~a1 ∈ [~a]ρ
and therefore, α(b) = ∀. This proves (5);

• if b ∈ BP and (∃z ≻′ b)(z ∈ BP) then:

– p
S≤′

b (~a1) = 1, for all ~a1 ∈ [~a]ρ;

– there exists ~ax ∈ [~a]ρ such that p
S≤′

x (~ax) = 0, for all x ≻′ b with
x ∈ BP ;

– p
S≤′

x (~a2) = 0, for all ~a2 ∈ [~a]ρ and x ≻′ b with x 6∈ BP .

Clearly, the first property implies pS(~a1) ≥
′ b, for all ~a1 ∈ [~a]ρ, while

the third implies that there exists no ~a2 ∈ [~a]ρ such that pS(~a2) ≥
′ x,

where x ≻′ b and x 6∈ BP . This proves (6).

Finally, let b ∈ B − {0′} such that (∀z)(z 6≻′ b) and pS
′

([~a]ρ) = b. We

obtain that p
S′
≤′

b ([~a]ρ) = 1 and we consider two cases:

• if b ∈ BP then p
S≤′

b (~a1) = 1, for all ~a1 ∈ [~a]ρ. This implies pS(~a1) = b,
for all ~a1 ∈ [~a]ρ, and therefore, α(b) = ∀. This proves (7);

• if b 6∈ BP then there exists ~a1 ∈ [~a]ρ such that p
S≤′

b (~a1) = 1 which
implies pS(~a1) = b. Moreover, as in case (3), we can obtain pS(~a2) ≥

′ c,
for all ~a2 ∈ [~a]ρ. This proves (8). 2

51

Example 2.8 Let S, S≤′ , ρ and P be as in Example 2.7 and S ′
≤′ the P-

abstraction of S≤′ by ρ. By Theorem 2.8, we can find the following interpre-
tation policy α such that S ′, the (B,ΣL)-logical structure corresponding to
S ′
≤′ , is an α-abstraction of S by ρ:

Truth values ac ab 1 0 a b bc c

The policy α ∃{ab,1,ac} ∃{ab,1} ∀ ∃ ∃a ∀ ∀ ∃{bc,c}

2.3 Temporal Logic

2.3.1 A Case Study: Abstractions of Protection Sys-
tems

Before we describe multi-valued abstractions of Kripke structures, we present
a case study of using abstraction in the context of access control models [44]
(the abstraction technique used is the simulation relation [94]).

Access control is one of the facets of the implementation of security poli-
cies. In access control models, the security policy is implemented by an
assignment of access rights to the objects composing the system and by the
rules allowing the creation and/or destruction of new objects and the modi-
fication of their access rights.

A powerful model of access control systems is the access matrix model
[63]. In this model, the protection state of the system is characterized by
the set of access rights that different entities (subjects or objects) have over
other entities and by the set of commands which may change this state, by
creating/destroying subjects or objects or by adding/removing rights. The
expressive power of this model is sufficiently large to include other models
like take-grant systems [78], SPM systems [107], ESPM systems [1], TAM
systems [106] etc.

The basic decision problem in an access matrix model is the safety prob-
lem: given two entities A and B and a right R, decide whether the system
can evolve into a state in which A has right R over B. Very early, it was
shown that this problem is undecidable [63] and remains like that even for
systems without subject/object destruction [62]. Consequently, a number of
restrictions have been proposed [63, 78, 106] for which the safety problem is
decidable.

We propose two notions of simulation between protection systems and
define a class of access control models that are simulated by access control

52

models with a finite number of objects for which the safety problem is de-
cidable. Then, we show that several classes of protection systems from the
literature fall into this class, notably the take-grant systems and the mono-
tonic typed access matrix systems with an acyclic creation graph. By this we
also unify and clarify the proof of decidability of the safety problem for these
classes of protection systems.

Protection Systems

We use protection systems modeled as in [63]. Here, the protection state of
a system is modeled by an access matrix with a row for each subject and
a column for each object. The cells hold the rights that subjects have on
objects.

A protection system is defined over a finite set of generic rights and con-
tains commands that specify how the protection state can be changed. The
commands are formed of a conditional part which tests for the presence of
rights in some cells of the access matrix and an operational part which spec-
ifies the changes made on the protection state. The changes are specified
using primitive operations for subject/object creation and destruction and
for entering/removing rights.

Definition 2.6 A protection scheme is a tuple S = (R,C), where R is a
finite set of rights and C is a finite set of commands of the following form:

command c(x1, x2, · · · , xn)
if r1 in [xs1 , xo1]

· · ·
rk in [xsk

, xok
]

then
op1

· · ·
opm

Above, c is a name, x1, x2, · · · , xn are formal parameters and each opi is
one of the following primitive operations: enter r into [xs, xo], delete r from
[xs, xo], create subject xs, create object xo, destroy subject xs, and destroy
object xo. Also, r, r1, · · · rk are rights from R and s, s1,· · · , sk, o, o1,· · · , ok
are integers between 1 and n.

We will call a command mono-operational if it contains only one primitive
operation and monotonic if it does not contain “destroy subject”, “destroy
object” and “delete” operations.

53

Definition 2.7 A configuration over R is a tuple Q = (S,O, P), where S is
the set of subjects, O the set of objects, S ⊆ O, and P : S×O → P(R) is the
access matrix. We will denote by Cf(R) the set of configurations over R.

As we can see, all subjects are also objects. This is a very natural assump-
tion since, for example, processes in a computer system may be accessed by,
or may access other processes. The objects from O − S will be called pure
objects.

Definition 2.8 A protection system is a tuple ψ = (R,C,Q0), where (R,C)
is a protection scheme and Q0 a configuration over R, called the initial con-
figuration. A protection system is mono-operational (monotonic) if all com-
mands in C are mono-operational (monotonic).

We will call the subjects (objects) from S0 (O0) initial subjects (objects).
The six primitive operations mean exactly what their name imply (for

details the reader is referred [63]). We will denote by ⇒op the application of
a primitive operation op in some configuration.

Definition 2.9 Let ψ = (R,C,Q0) be a protection system, Q and Q′ two
configurations over R and c(x1, · · · xn) ∈ C a command like in Definition 2.6.
We say that Q′ is obtained from Q in ψ, applying c with the actual arguments
o1,· · · , on, denoted by Q→c(o1,··· ,on)

ψ Q′, if:

• ri ∈ P (osi
, ooi

), for all 1 ≤ i ≤ k;

• there exist configurations Q1,· · · , Qm such that Q ⇒op′1
Q1 ⇒op′2

· · · ⇒op′m Qm and Qm = Q′ (op′i is the primitive operation obtained
after substituting x1,· · · ,xn with o1,· · · ,on).

When the command c and the actual arguments o1,· · · , on are understood
from the context, we will write only Q →ψ Q′. We consider also →∗

ψ, the
reflexive and transitive closure of→ψ. We say that a configuration Q over R
is reachable in ψ if Q0 →

∗
ψ Q.

For protection systems like above, we consider the following safety prob-
lem: given s an initial subject, o an initial object and a right r, decide if a
state in which s has right r over o is reachable. This is a less general safety
problem than the one in [63], but it is more natural and used more frequently
in the literature [1, 78, 107, 106].

Definition 2.10 Let ψ = (R,C,Q0 = (S0, O0, P0)) be a protection system,
s ∈ S0, o ∈ O0 and r ∈ R. A configuration Q = (S,O, P) over R is called
leaky for (s, o, r) if s ∈ S, o ∈ O and r ∈ P (s, o).

54

We say that ψ is leaky for (s, o, r) if there exists a reachable configuration
leaky for (s, o, r). Otherwise, ψ is called safe for (s, o, r), denoted by ψ ⊳
(s, o, r).

Now we can define the safety problem as follows:

Safety problem (SP)
Instance: A protection system ψ, s ∈ S0, o ∈ O0, r ∈ R;
Question: is ψ safe for (s, o, r)?

Simulations

The problem to decide if a protection system is safe was shown to be un-
decidable in [63], by designing a protection system that simulates a Turing
machine. The most important source of undecidability is the creation of ob-
jects, which makes the system infinite-state. Hence, techniques to reduce the
state space of the system are well suited. In this paper we will refer to an
abstraction technique, namely the simulation relation [94].

Definition 2.11 Let ψ1 = (R1, C1, Q
1
0 = (S1

0 , O
1
0, P

1
0)) and ψ2 = (R2, C2, Q

2
0 =

(S2
0 , O

2
0, P

2
0)) be two protection systems. Also, let ρo ⊆ O1

0 × O
2
0 and ρr ⊆

R1 × R2 be two relations. For any Q1 = (S1, O1, P1) ∈ Cf(R1) and Q2 =
(S2, O2, P2) ∈ Cf(R2), we say that Q2 simulates Q1 w.r.t. ρo and ρr, denoted
by Q1 ≺ρo,ρr

Q2, if:

1. ρo(S1 ∩ S
1
0) ⊆ S2 ∩ S

2
0 ;

2. ρo(O1 ∩O
1
0) ⊆ O2 ∩O

2
0;

3. for any s ∈ S1 ∩ S
1
0 , o ∈ O1 ∩O

1
0 and r ∈ R1, if r ∈ P1(s, o) then there

exist s′ ∈ ρo(s), o
′ ∈ ρo(o) and r′ ∈ ρr(r) such that r′ ∈ P2(s

′, o′).

Above, ρ(s) = {s′|ρ(s, s′)}, for any relation ρ.
The relations ρo and ρr are used to relate the “access powers” of subjects

from two different protection systems. For example, having right r over an
object o in the first system is considered to be the same as having a right
r′ ∈ ρr(r) over an object o′ ∈ ρo(o) in the second system. In this context,
a configuration Q2 from ψ2 simulates a configuration Q1 from ψ1, if every
initial subject from Q2 has at least the same “access power” as the initial
subject from Q1 to which is related by ρo.

The simulation relation we define next is more general than the one in
[94] because one transition step in the first system can be simulated by zero,
one, or more transition steps in the second system.

55

Definition 2.12 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two pro-

tection systems, and ρo, ρr relations like above. We say that H ⊆ Cf(R1)×
Cf(R2) is a simulation relation from ψ1 to ψ2 w.r.t. ρo and ρr if for any
Q1 ∈ Cf(R1) and Q2 ∈ Cf(R2), H(Q1, Q2) implies that:

1. Q1 ≺ρo,ρr
Q2;

2. for any Q′
1 ∈ Cf(R1) such that Q1 →ψ1 Q

′
1 there exists Q′

2 ∈ Cf(R2)
such that Q2 →

∗
ψ2
Q′

2 and H(Q′
1, Q

′
2).

Definition 2.13 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two pro-

tection systems, and ρo, ρr relations like above. We say that ψ2 simulates ψ1

w.r.t. ρo and ρr, denoted by ψ1 ≺ρo,ρr
ψ2, if there exists a simulation relation

H from ψ1 to ψ2 w.r.t. ρo and ρr such that H(Q1
0, Q

2
0). We write ψ1 ≺ ψ2 if

there exist ρo and ρr like above such that ψ1 ≺ρo,ρr
ψ2.

The usefulness of the simulation relation is proved by the next theorem.
We will show that solving some instances of SP in a protection system that
simulates another may lead to solving an instance of SP in the initial system.

Theorem 2.9 Let ψ1 = (R1, C1, Q0 = (S0, O0, P0)) and ψ2 = (R2, C2, Q
′
0 =

(S ′
0, O

′
0, P

′
0)) be two protection systems, and ρo, ρr two relations like above.

If ψ1 ≺ρo,ρr
ψ2, then:

[

(∀s′ ∈ ρo(s))(∀o
′ ∈ ρo(o))(∀r

′ ∈ ρr(r))(ψ2 ⊳ (s′, o′, r′))
]

⇒
[

ψ1 ⊳ (s, o, r)
]

,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof Suppose by contradiction that ψ1 is not safe for (s, o, r). Then,
there exists the following computation in ψ1:

Q0 →ψ1 Q1 →ψ1 · · · →ψ1 Ql,

such that Ql is leaky for (s, o, r).
ψ1 ≺ρo,ρr

ψ2 implies that there exists a simulation relation H from ψ1 to
ψ2 such that H(Q0, Q

′
0). Hence, we have in ψ2 the following computation:

Q′
0 →

∗
ψ2
Q′

1 →
∗
ψ2
· · · →∗

ψ2
Q′
l,

such that H(Qi, Q
′
i) for all 0 ≤ i ≤ l.

Consequently, Ql ≺ρo,ρr
Q′
l and, since r ∈ Pl(s, o), we obtain that there

exists s′ in ρo(s), o
′ in ρo(o) and r′ in ρr(r) such that r′ ∈ P ′

l (s
′, o′), where

Pl is the access matrix of Ql and P ′
l the access matrix of Q′

l. So, Q′
l is leaky

for (s′, o′, r′) and ψ2 is not safe for (s′, o′, r′), contradicting the supposition
made above. 2

56

The result above implies that ψ2 is a weak-preserving abstraction of ψ1

in the sense that only positive answers to instances of SP in ψ2 may lead to
solving instances of SP in ψ1.

We will now prove that, in some conditions, the existence of simulation
relations in both senses may transform ψ2 into a strong-preserving abstraction
of ψ1. This means that, also negative answers to instances of SP in ψ2 are
important for solving instances of SP in ψ1.

We say that a relation ρ ⊆ D1 ×D2 is injective if ρ(x1) ∩ ρ(x2) = ∅, for
any x1, x2 ∈ D1.

Corollary 2.7 Let ψ1 = (R1, C1, Q0 = (S0, O0, P0)) and ψ2 = (R2, C2, Q
′
0 =

(S ′
0, O

′
0, P

′
0)) be two protection systems, and ρo, ρr two relations like above.

If ψ1 ≺ρo,ρr
ψ2, ψ2 ≺ρ−1

o ,ρ−1
r
ψ1 and ρo, ρr are injective then:

[

(∀s′ ∈ ρo(s))(∀o
′ ∈ ρo(o))(∀r

′ ∈ ρr(r))(ψ2 ⊳ (s′, o′, r′))
]

⇔
[

ψ1 ⊳ (s, o, r)
]

,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof The result is immediate, applying Theorem 2.9 for ψ1 ≺ρo,ρr
ψ2 and

ψ2 ≺ρ−1
o ,ρ−1

r
ψ1. 2

Next, we exemplify the use of simulation relations in the analysis of pro-
tection systems. We will show that an weak-preserving abstraction of a
protection system can be obtained by adding commands or by removing the
non-monotonic primitive operations from all the commands. Then, for mono-
tonic protection systems, we prove that an abstraction can be obtained by
splitting each command into mono-operational commands.

Example 2.9 Let ψ = (R,C,Q0 = (S0, O0, P0)) and ψ′ = (R,C ′, Q0) be
two protection systems such that C ⊆ C ′.

We say that two configurations Q = (S,O, P) and Q′ = (S ′, O′, P ′) from
Cf(R) are equal up to names, denoted by Q ≈ Q′, if:

• O ∩O0=O
′ ∩O0;

• there exists a bijection φ : O → O′ such that:

– φ(o) = o, for every o ∈ O ∩O0 (φ preserves initial objects);

– φ(S) = S ′ (φ preserves subjects);

– r ∈ P (s, o)⇔ r ∈ P ′(φ(s), φ(o)), for any s ∈ S, o ∈ O and r ∈ R.

It can be easily proved that ψ ≺idO0
,idR

ψ′, considering the simulation relation
H ⊆ Cf(R)× Cf(R), given by H(Q,Q′) iff Q ≈ Q′.

57

Example 2.10 Let ψ = (R,C,Q0 = (S0, O0, P0)) be a protection system.
We suppose w.l.o.g. that the commands in C do not delete a right that they
have just entered or destroy an object that they have just created. We will
prove that ψ is simulated by its monotonic restriction, i.e., by the system
which acts like ψ but does not destroy any object and does not delete any
right.

Let ψm = (R,Cm, Q0), where Cm is the set of commands obtained from
the ones in C, by removing all non-monotonic primitive operations.

We can prove that ψ ≺idO0
,idR

ψm, considering the following relation H:
given Q = (S,O, P) and Q′ = (S ′, O′, P ′) from Cf(R), we have H(Q,Q′) if:

• O ∩O0 ⊆ O′ ∩O0;

• there exists an injection φ : O → O′, such that:

– φ(o) = o, for every o ∈ O ∩O0;

– φ(S) ⊆ S ′;

– r ∈ P (s, o)⇒ r ∈ P ′(φ(s), φ(o)), for any s ∈ S, o ∈ O and r ∈ R.

Example 2.11 Let ψ = (R,C,Q0) be a monotonic protection system. We
can prove that ψ is simulated by the mono-operational system that results
by splitting all the commands from C into mono-operational commands.

To this end, we will reuse the relation H defined by H(Q,Q′) if Q ≈ Q′

and prove that it is a simulation from ψ to ψmo w.r.t. idO0 and idR.

Quasi-bisimulations

We present another type of simulation relation between protection systems,
that resembles to a bisimulation relation [98] but does not induce an equiva-
lence relation over protection systems. That is why we will call this relation
a quasi-bisimulation. It differs from the simulation relation presented earlier
by the fact that initial subjects must have the same “access power” and we
must be able to simulate one step from a protection system with a sequence
of zero or more steps in the other system.

Definition 2.14 Let ψ1 = (R1, C1, Q
1
0 = (S1

0 , O
1
0, P

1
0)) and ψ2 = (R2, C2, Q

2
0 =

(S2
0 , O

2
0, P

2
0)) be two protection systems. Also, let ρo ⊆ O1

0 × O
2
0 and ρr ⊆

R1 × R2 be two relations. For any Q1 = (S1, O1, P1) ∈ Cf(R1) and Q2 =
(S2, O2, P2) ∈ Cf(R2), we say that Q2 is quasi-bisimilar to Q1 w.r.t. ρo and
ρr, denoted by Q1 �ρo,ρr

Q2, if:

1. ρo(S1 ∩ S
1
0) ⊆ S2 ∩ S

2
0 ;

58

2. ρo(O1 ∩O
1
0) ⊆ O2 ∩O

2
0;

3. For any s ∈ S1∩S
1
0 , o ∈ O1∩O

1
0 and r ∈ R1, r ∈ P1(s, o) iff there exist

s′ ∈ ρo(s), o
′ ∈ ρo(o) and r′ ∈ ρr(r) such that r′ ∈ P2(s

′, o′).

Definition 2.15 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two pro-

tection systems, and ρo, ρr relations like above. We say that B ⊆ Cf(R1)×
Cf(R2) is a quasi-bisimulation relation from ψ1 to ψ2 w.r.t. ρo and ρr if for
any Q1 ∈ Cf(R1) and Q2 ∈ Cf(R2), B(Q1, Q2) implies that:

1. Q1 �ρo,ρr
Q2

2. for any Q′
1 ∈ Cf(R1) such that Q1 →ψ1 Q

′
1 there exists Q′

2 ∈ Cf(R2)
such that Q2 →

∗
ψ2
Q′

2 and B(Q′
1, Q

′
2).

3. for any Q′
2 ∈ Cf(R2) such that Q2 →ψ2 Q

′
2 there exists Q′

1 ∈ Cf(R1)
such that Q1 →

∗
ψ1
Q′

1 and B(Q′
1, Q

′
2).

Definition 2.16 Let ψ1 = (R1, C1, Q
1
0) and ψ2 = (R2, C2, Q

2
0) be two pro-

tection systems, and ρo, ρr relations like above. We say that ψ2 is quasi-
bisimilar to ψ1 w.r.t. ρo and ρr, denoted by ψ1 �ρo,ρr

ψ2, if there exists
a quasi-bisimulation relation B from ψ1 to ψ2 w.r.t. ρo and ρr, such that
B(Q1

0, Q
2
0). We write ψ1 � ψ2 if there exist ρo and ρr like above such that

ψ1 �ρo,ρr
ψ2.

Next, we will prove the usefulness of the quasi-bisimulations, showing that
if we have two protection systems such that ψ1 � ψ2, solving an instance of
SP in ψ1 is equivalent with solving one or more instances of SP in ψ2. This
could still be more efficient if the state space of ψ2 is much smaller than the
one of ψ1.

Theorem 2.10 Let ψ1 = (R1, C1, Q0 = (S0, O0, P0)) and ψ2 = (R2, C2, Q
′
0 =

(S ′
0, O

′
0, P

′
0)) be two protection systems, and ρo, ρr two relations like above.

If ψ1 �ρo,ρr
ψ2, then:

[

(∀s′ ∈ ρo(s))(∀o
′ ∈ ρo(o))(∀r

′ ∈ ρr(r))(ψ2 ⊳ (s′, o′, r′))
]

⇔
[

ψ1 ⊳ (s, o, r)
]

,

for any s ∈ S0, o ∈ O0 and r ∈ R1.

Proof Similar to the proof of Theorem 2.9. 2

59

A Class of Decidable Protection Systems

Definition 2.17 A protection system ψ = (R,C,Q0) is called a finite pro-
tection system if the commands from C do not contain “create” primitive
operations.

It is well known [79] that the safety problem for finite protection systems
is decidable.

Definition 2.18 We define Dec to be the class of protection systems that
has the following properties:

• if ψ is a finite protection system then ψ ∈ Dec;

• if ψ′ ∈ Dec and ψ ≺ρo,ρr
ψ′, ψ′ ≺ρ−1

o ,ρ−1
r
ψ, for some ρo and ρr injective

relations, then ψ ∈ Dec;

• if ψ′ ∈ Dec and ψ � ψ′ then ψ ∈ Dec.

By Corollary 2.7 and Theorem 2.10, we obtain that the safety problem
for the protection systems from Dec is decidable.

We will show that it contains three other well-known classes of protection
systems for which the safety problem is decidable: MTAM systems with
acyclic creation graphs [106], mono-operational protection systems [63] and
take-grant systems [78].

By showing that these three classes of protection systems are included in
Dec, we unify their proof of decidability for the safety problem. We show
that the safety problem is decidable because these protection systems are
simulated by systems that have all the needed objects created even from the
initial configuration and no commands that can create objects afterward.

MTAM Systems with Acyclic Creation Graphs In [106], the authors
propose an extension of the a access matrix model, the typed access matrix
model (TAM, for short), that assigns a type to each object of a configuration.

Formally, a TAM system is a tuple τ = (R, T,C,Q0 = (S0, O0, t0, P0)),
where R is a finite set of rights, T a finite set of types, C a finite set of typed
commands and Q0 the initial configuration.

Configurations are tuples Q = (S,O, t, P), where S, O and P are as
before, and t : O → T is a function that assigns a type to every object.

The typed commands differ from the commands of a protection system
defined as in Sect. 2, by the fact that they test the type of each argument
and the primitive operations used to create objects are: “create subject s of
type t” and “create object o of type t”.

60

τ is called a monotonic TAM system (MTAM, for short) if the commands
from C do not contain operations that delete rights or destroy objects.

We say that an MTAM system is in canonical form if the “create” com-
mands (commands that contain at least one “create” primitive operation)
are unconditional (the conditional part is empty). In [106] was proved that
MTAM systems can always be considered to be in canonical form.

If c is a typed command like in Fig. 2.3, ti is called a child type of c if
“create subject xi of type ti” or “create object xi of type ti” appears in c.
Otherwise, ti is called a parent type of c.

The creation graph of a TAM system τ = (R, T,C,Q0) is a directed graph
with the set of vertexes T and an edge from t1 to t2 if there exists a command
c ∈ C such that t1 is a parent type of c and t2 a child type of c.

The safety problem SP can be defined analogously for TAM systems.
The main decidability result of [106] is:

Theorem
SP for MTAM systems with acyclic creation graphs is decidable.

A TAM system τ = (R, T,C,Q0 = (S0, O0, t0, P0)) can be described using a
protection system ψτ = (R ∪ T,C ′, Q′

0 = (O0, O0, P
′
0)), where:

P ′
0(s, o) =















P0(s, o), if s 6= o and s ∈ S0

P0(s, o) ∪ {t0(s)}, if s = o and s ∈ S0

{t0(s)}, if s = o and s ∈ O0 − S0

∅, otherwise.

and C ′ = {γ(c)|c ∈ C}, with γ the transformation from Fig. 2.3 (i1,· · · ,
il are integers between 1 and n such that xil does not appear in a “create”
operation).

The primitive operations of γ(c) are obtained by copying the ones from
c, excepting the case of a “create subject s of type t” or “create object s
of type t” primitive operation, when we add in γ(c) two operations: “create
subject s” or “create object s” and “enter t in [s,s]”.

From now on, when we say TAM systems, we mean protection systems
like ψτ . Hence, an MTAM system is in canonical form if in the conditional
part of every “create” command we test only rights from T .

In the following, we will obtain using quasi-bisimulations, the decidability
of the safety problem for a class of protection systems more general than the
MTAM systems with acyclic creation graphs.

If ψ = (R,C,Q0) is a protection system, denote by Tψ(X) the set of terms

61

command c(x1 : t1, x2 : t2, · · · , xn : tn) command γ(c)(x1, x2, · · · , xn)
if r1 in [xs1 , xo1]

· · ·
rk in [xsk

, xok
]

then
op1

· · ·
opm

if ti1 in [xi1 , xi1]
· · ·
til in [xil , xil]
r1 in [xs1 , xo1]
· · ·
rk in [xsk

, xok
]

then
op′1
· · ·
op′m′

Figure 2.3: The transformation γ.

defined over the set of variables X and the signature Σψ, where

Σψ = {ci of arity n | c(x1, · · · , xn) ∈ C and 1 ≤ i ≤ n}
∪{o of arity 0 | o ∈ O0} ∪ {∅ of arity 0}

By Tψ we will denote the set of ground terms.
For a command c(x1, · · · , xn) ∈ C, we say that xi, for some 1 ≤ i ≤ n, is

a child argument of c if “create subject xi” or “create object xi” appears in
c. Otherwise, xi is a parent argument of c. We define the relation ≡Q over
the objects of a configuration Q = (S,O, P) ∈ Cf(R) as follows:

o ≡Q o if o ∈ O0;
o ≡Q o′ if o and o′ were created as the i-th argument of a command c

applied with op1 , · · · , opm
as parent arguments for o

and with o′p1 , · · · , o
′
pm

as parent arguments for o′,
and opj

≡Q o
′
pj

, for all 1 ≤ j ≤ m.

(p1, · · · , pm are the indexes of the parent arguments of c)

The fact that o was created as the i-th argument of a command c applied
with op1 , · · · , opm

as parent arguments, can be memorized in a configuration
Q in many ways. For example, we can modify the system ψ by adding a
right parent and a right ci, for all c(x1, · · · , xn) ∈ C and 1 ≤ i ≤ n, and by
transforming every command c(x1, · · · , xn) ∈ C, such that after creating xi,
for some 1 ≤ i ≤ n, we enter ci in [xi, xi] and parent in [xpj

, xi] for all xpj

parent arguments of c. In the following, for the simplicity of the exposition,
we will not formalize this.

Clearly, the relation above is an equivalence and to every equivalence
class we can uniquely associate a ground term from Tψ. Consequently, we

62

will denote an equivalence class by [t]Q, where t is the corresponding term
from Tψ.

In the following, when we say equivalence relation we mean the relation
≡Q and when we say equivalence class, we mean an equivalence class of ≡Q.

Definition 2.19 Let ψ = (R,C,Q0) be a protection system. We say that a
term from Tψ is accessible if there exists Q ∈ Cf(R) such that Q0 →

∗
ψ Q and

[t]Q 6= ∅. By Acc(ψ) we will denote the set of accessible terms.

Definition 2.20 A monotonic protection system ψ = (R,C,Q0) is called
creation-independent if R can be partitioned into two disjunctive sets Rc and
Re such that:

• the “create” commands test for and enter only rights from Rc;

• the other commands (the commands that contain only “enter” opera-
tions) enter only rights from Re.

We can easily see that MTAM systems are particular cases of creation-
independent protection systems in which Rc = T , Re = R and the tests for
the rights in Rc are as in command γ(c) from Fig. 1.

If ψ = (R,C,Q0) is a protection system, we will denote by Reachψ(Q,C ′),
where Q ∈ Cf(R) and C ′ ⊆ C, the set of reachable configurations from Q
using only commands from C ′.

Now, we prove that for any creation-independent system ψ, any t ∈
Acc(ψ) and any reachable configuration Q, we can apply in Q a sequence
of “create” commands to create an object from an equivalence class repre-
sented by t.

Lemma 2.3 Let ψ = (R,C,Q0) be a creation-independent protection sys-
tem and C ′ ⊆ C the set of “create” commands. Then,

(∀t ∈ Acc(ψ))(∀Q ∈ Reachψ(Q0, C)(∃Q′ ∈ Reachψ(Q,C ′))(|[t]Q′| = |[t]Q|+1)

Proof From Definition 2.20, we can see that the application of a “create”
command is not influenced in any way by the application of a command from
C − C ′.

Because ψ is also monotonic we can easily obtain the result above. 2

Theorem 2.11 Let ψ = (R,C,Q0) be a creation-independent protection
system. If Acc(ψ) is finite then, ψ belongs to Dec.

63

Proof If ψ is a creation-independent protection system, then R can be
partitioned into Rc and Re as in Definition 2.20.

Let ψf = (R,Cf , Q
′
0 = (S ′

0, O
′
0, P

′
0)) be a protection system, where Cf ⊆

C is the set of commands that do not create objects and:

• O′
0 = {t|t ∈ Acc(ψ)}. Clearly, O0 ⊆ O′

0;

• S ′
0 is the set of subjects from O′

0;

• P ′
0 is defined such as it’s restriction to objects from O0 is P0 and in

the cells of the other objects we have the rights from Rc entered by the
corresponding “create” commands.

In other words, Q′
0 is obtained from Q0 applying “create” commands such

that we obtain objects from equivalence classes represented by all terms in
Acc(ψ).

We will prove that ψ is quasi-bisimilar to ψf w.r.t idO0 and idR.
In the following, for a configuration Q = (S,O, P), fQ : O → Acc(ψ) is a

function such that f(o) = t iff o ∈ [t]Q.
We consider the following relation B: given Q = (S,O, P) reachable in ψ

and Q′ = (S ′, O′, P ′) configuration from Cf(R), we have B(Q,Q′) if:

• O0 ⊆ O and O′ = Acc(ψ);

• r ∈ P ′(t1, t2) iff there exists s ∈ [t1]Q and o ∈ [t2]Q such that r ∈ P (s, o).

To prove that B is a quasi-bisimulation, let Q and Q′ be two configura-
tions like above such that B(Q,Q′).

Clearly, Q �idO0
,idR

Q′.
Now, let Q1 be a configuration such that Q→ψ Q1. If we apply a “create”

command then, we can find Q′
1 = Q′, such that Q′ →∗

ψf
Q′

1 and B(Q1, Q
′
1).

Otherwise, suppose we apply a command c(x1, · · · , xn) ∈ C ′, with actual
arguments o1, · · · , on. Since B(Q,Q′), we can apply c(x1, · · · , xn) with actual
arguments fQ(o1), · · · , fQ(on) in Q′ and obtain a configuration Q′

1 such that
B(Q1, Q

′
1).

For the reverse, suppose we have Q′ →ψf
Q′

1, for some configuration Q′
1.

Clearly, in this step we apply a command c(x1, · · · , xn) that contain only
“enter” primitive operations. Suppose it is applied using t1,· · · ,tn ∈ Acc(ψ)
as actual arguments.

Since ψ is monotonic and create-independent, we can reach in ψ from Q
a configuration Q such that B(Q,Q′) and the access matrix of Q includes
that of Q and has in plus one object oi for each ti above, such that oi ∈ [ti]Q
and oi has in his cells the same rights as ti in Q′ (the creation of objects

64

is possible by Lemma 2.3 and the rights can be entered in the cells of oi
because, once we have applied in ψ a command that contains only “enter”
primitive operations, we can apply it later eventually with equivalent actual
arguments).

Now, in Q we can apply c with o1,· · · ,on as actual arguments and obtain
a configuration Q1 such that B(Q1, Q

′
1).

The fact that B(Q0, Q
′
0) ends our proof. 2

Using Theorem 2.11, we will prove that MTAM systems with acyclic
creation graphs and mono-operational protection systems belong to Dec.

Corollary 2.8 MTAM systems with acyclic creation graphs belong to Dec.

Proof As stated above we suppose that MTAM systems are in canonical
form and consequently, they are creation-independent.

Since the creation graph is acyclic, we have also that the set of accessible
terms is finite and we can apply Theorem 2.11, to obtain the statement of
this corollary. 2

Mono-operational Protection Systems Mono-operational protection
systems ([63]) are protection systems with mono-operational commands. We
will show that they are included in Dec in two steps, by proving first that
the subclass of monotonic mono-operational protection systems is included
in Dec.

Theorem 2.12 Monotonic mono-operational protection systems belong to
Dec.

Proof In the following we will consider protection systems such that every
object is also a subject. This can be assumed without loss of generality by
introducing an otherwise empty row for each pure object.

Hence, let ψ = (R,C,Q0 = (O0, O0, P0) be a monotonic mono-operational
protection system such that the commands in C do not contain “create ob-
ject” primitive operations.

We prove that ψ is quasi-bisimilar to some monotonic monooperational
system ψ′ that is creation-independent and has Acc(ψ′) finite. Consequently,
by Theorem 2.11, ψ′ ∈ Dec and from the definition of Dec, ψ ∈ Dec.

Let ψ′ = (R ∪ {alive}, C ′, Q′
0 = (O0, O0, P

′
0)), where P ′

0 is defined by:

P ′
0(s, o) =

{

P0(s, o) ∪ {alive}, if s = o;
P0(s, o), otherwise.

and C ′ is obtained from C in the following way:

65

• modify each conditional part of an “enter” command (command that
contains an “enter” primitive operation) c(x1, · · · , xn) ∈ C by adding
tests of the form: alive in [xi, xi], for all 1 ≤ i ≤ n;

• add a command cs(x) that has the conditional part empty and only a
primitive operation “create subject x”.

• remove each “create” command c(x1, · · · , xn) that creates a subject xi,
for some 1 ≤ i ≤ n, and add an “enter” command with the conditional
part of c, modified as in the first case, and a primitive operation “enter
alive in [xi, xi]”.

Now, we prove that ψ �idO0
,idR

ψ′, using the following relation B: if
Q = (O,O, P) ∈ Cf(R) and Q′ = (O′, O′, P ′) ∈ Cf(R ∪ {alive}), we have
B(Q,Q′) if:

• O0 ⊆ O and O0 ⊆ O′;

• if O′
alive = {o|o ∈ O′ and alive ∈ P ′(o, o)} then, there exists a bijection

φ : O → O′
alive, such that:

– φ(o) = o, for every o ∈ O ∩O0;

– r ∈ P (o1, o2)⇔ r ∈ P ′(φ(o1), φ(o2)), for all o1, o2 ∈ S and r ∈ R.

We can easily prove that B is a quasi-bisimulation relation if we take in
consideration the following:

• applying a “create” command in ψ is equivalent with applying in ψ′

the “create” command cs and an “enter” command that gives to this
new subject the alive right to himself;

• in ψ′ we can create more subjects than in ψ, but if they do not have the
alive right to themselves, they are useless. In fact, only to commands
that enter the alive right in ψ′, we associate a “create” command in ψ.

Clearly, ψ′ is create-independent since the only “create” command does
not test or enter any right. Acc(ψ′) is finite, because all the created objects
in ψ′ are from an equivalence class represented by the same term cs(∅). 2

Theorem 2.13 Mono-operational protection systems belong to Dec.

Proof Let ψ = (R,C,Q0) be a mono-operational system.
From Example 2.10 we have that ψ ≺idO0

,idR
ψm, where ψm = (R,Cm, Q0)

is the monotonic restriction of ψ.

66

As Cm ⊆ C, from Example 2.9 we have also that ψm ≺idO0
,idR

ψ.
The fact that idO0 and idR are injective and ψm is a monotonic mono-

operational protection system, which by Theorem 2.12 belongs to Dec, con-
cludes our proof. 2

Take-grant Systems Take-grant systems ([78]) are protection systems
ψ = (R,C,Q0 = (O0, O0, P0)), where R = {t, g, c} and C is the set of
commands shown in Fig. 2.4, for all α, β, γ ∈ R. It is clear that the system
is monotonic and all objects are also subjects.

In the original paper, take-grant systems were presented as graph trans-
formation systems. A configuration Q = (O,O, P) is represented as a labeled
directed graph, using subjects as nodes and cells in the matrix as labeled arcs
(if P (o1, o2) 6= ∅, we have an arc from o1 to o2 labeled with P (o1, o2)). The
commands in Fig. 2.4 are represented as graph transformations that intro-
duce nodes and/or arcs.

We say that two nodes are connected if there exists a path between them,
independent of the directionality or labels of the arcs. The decidability of
the safety problem is obtained from the following theorem:

Theorem
Let ψ be a take-grant system. ψ is leaky for (o1, o2, r) iff in G0 (the graph
that represents Q0) o1 and o2 are connected and there exists an incoming arc
in o2 labeled with t or c if r = t or with r if r ∈ {g, c}.

We will prove that take-grant protection systems are in Dec, by showing
that they are quasi-bisimilar to a finite protection system with the same
initial configuration.

Theorem 2.14 Take-grant systems belong to Dec.

Proof If ψ = (R,C,Q0 = (O0, O0, P0)) is a take-grant protection system
like above, let ψf = (R,C ′, Q0), where C ′ contains all the commands of the
following form:

command ci,α(x, y, z, x1, · · · , xi)
if connected(x, y, x1, · · · , xi)

α in [z, y]
then

enter α in [x, y]

where 0 ≤ i ≤ |O0| − 2 and α ∈ R. connected(x, y, x1, · · · , xi) is a set of

67

command takeα(x, y, z) command grantα(x, y, z) command create(x, y)
if t in [x, y]

α in [y, z]
then

enter α in [x, z]

if g in [x, y]
α in [x, z]

then
enter α in [y, z]

create subject y
enter t in [x, y]
enter g in [x, y]
enter c in [x, y]

command callα(x, y, z, u)
if α in [x, y]

c in [x, z]
then

create subject u
enter α in [u, y]
enter t in [u, z]

command callα,β(x, y, z, u)
if α in [x, y]

β in [x, y]
c in [x, z]

then
create subject u
enter α in [u, y]
enter β in [u, y]
enter t in [u, z]

command callα,β,γ(x, y, z, u)
if α in [x, y]

β in [x, y]
γ in [x, y]
c in [x, z]

then
create subject u
enter α in [u, y]
enter β in [u, y]
enter γ in [u, y]
enter t in [u, z]

Figure 2.4: Take-grant commands.

conditions obtained from the conditions below, choosing one from each line:

β1 in [x, x1] or β1 in [x1, x]
β2 in [x1, x2] or β2 in [x2, x1]

· · ·
βi+1 in [xi, y] or βi+1 in [y, xi].

Above, βk, for 1 ≤ k ≤ i+ 1, can be any right from R.
Intuitively, connected(x, y, x1, · · · , xi) checks if in the graph that repre-

sents the configuration in which we apply ci,α, the nodes x and y are con-
nected by a path of length i+ 2 that passes through x1,· · · ,xi.

We will prove that ψ �idO0
,idR

ψf , considering the following relation B:
given Q1 = (S1, O1, P1) reachable from Q0 and Q2 = (S2, O2, P2) ∈ Cf(R),
we have B(Q1, Q2) if:

• O2 = O0;

• r ∈ P1(s, o)⇔ r ∈ P2(s, o), for any s ∈ S0, o ∈ O0 and r ∈ R.

Now, we will prove that B is a quasi-bisimulation relation between ψ and
ψf w.r.t. idO0 and idR.

Q1 �idO0
,idR

Q2 is straightforward from the definition of B.
Now suppose that Q1 →ψ Q

′
1 by a command c.

68

If c is takeα, then suppose it is applied with some actual arguments s1, s2

and s3. If all these objects are initial then, because c is also present in C ′, we
can apply it with the same actual arguments in Q2 and obtain a configuration
Q′

2 such that B(Q′
1, Q

′
2).

If not, we have two cases: whether or not s1 and s3 are both initial
objects. If they are not both initial objects then, we can find Q′

2 = Q2 such
that Q2 →

∗
ψf
Q′

2 and B(Q′
1, Q

′
2).

If s1 and s3 are both from O0 then from the main result of [78] stated
above, we have that there exists some initial objects o1,· · · ,oi, for some i
between 0 and |O0| − 2, such that connected(s1, s3, o1, · · · , oi) is true and
also, there exists some initial object o such that α ∈ P0(o, s3). Since ψ and
ψf are monotonic, these conditions are true also in Q2 and thus, we can
apply a command from C ′ to add α in [s1, s3]. Consequently, we can obtain
a configuration Q′

2 such that Q2 →
∗
ψf
Q′

2 and B(Q′
1, Q

′
2).

The case when c is grantα is similar.
If c is a create or call command then, we can find Q′

2 = Q2 such that
Q2 →

∗
ψf
Q′

2 and B(Q′
1, Q

′
2).

For the reverse, suppose that Q2 →ψf
Q′

2. Also, from the main result of
[78], we can find a configuration Q′

1 such that Q1 →
∗
ψ Q

′
1 and B(Q′

1, Q
′
2).

The fact that B(Q0, Q0) concludes our proof. 2

2.3.2 Abstractions and Preservation Results

We present abstractions of multi-valued Kripke structures and preservation
results for CTL∗ formulas as introduced in [47]. The abstract system is ob-
tained by applying equivalence relations on the state space of the concrete
system. Then, the predicate symbols of the logic are re-defined to work prop-
erly on equivalence classes using interpretation policies as we have explained
in Section 2.1.

Definition 2.21 Let M = (Q,R,L) be an mv-Kripke structure over AP
and B, ρ an equivalence relation on Q, and αR and αL two interpretation
policies over B. An mv-Kripke structure M ′ = (Q′, R′, L′) over AP and B is
called an (αR, αL)-abstraction of M by ρ if:

• Q′ = Q/ρ;

• R′ is the reinterpretation of R on Q′ ×Q′ according to αR;

• L′ is the reinterpretation of L over Q′ according to αL.

69

The abstractions for Kripke structures introduced in [46] are instances of
the Definition 2.21.

Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an equivalence ρ of
an mv-Kripke structure M1 = (Q1, R1, L1) over AP and B = (B,≤), and
D ⊆ B. We say that a path π2 ∈ Paths(M2, D) is a corresponding path to
π1 ∈ Paths(M1, D) if:

• |π2| = |π1|;

• π2(i) = [π1(i)], for any 0 ≤ i < |π2|.

We denote by CM1(π2) the set of all D-paths in M1 that have π2 as a corre-
sponding D-path in M2.

Let B = (B,∧,∨,¬) be a truth algebra and D ⊆ B. The set D is called

• (upward) closed under ≤ if b′ ∈ D whenever b ≤ b′ for some b ∈ D;

• closed under lub (glb) if D contains the lub (glb) of any non-empty
subset of elements in D;

• backward closed under lub (glb) if it includes any non-empty subset
X ⊆ B whenever it contains lub(X) (glb(X)).

It is easy to see that D is closed under lub and backward closed under glb,
whenever it is closed under ≤.

Now we are in a position to establish several preservation results. The
first one shows preservation results for subsets D of truth values.

Theorem 2.15 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and
B = (B,≤), let D ⊆ B, and φ and ψ be a state and, respectively, a path
mv-∀CTL∗

+ formula over AP . If

1. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ∈ D implies L1(q)(p) ∈ D;

3. D is closed under ≤ and glb, and backward closed under lub,

then
(∀q ∈ Q1)([φ]M2

[q] ∈ D ⇒ [φ]M1
q ∈ D)

and

(∀π2 ∈ Paths(M2, D))([ψ]M2
π2
∈ D ⇒ (∀π1 ∈ CM1(π2))([ψ]M1

π1
∈ D)).

70

Proof We will prove the statements in the theorem by simultaneous struc-
tural induction on the formulas φ and ψ. The following cases are to be
considered:

• φ = p ∈ AP . Let q ∈ Q1. If we assume that [φ]M2

[q] ∈ D, then

L2([q])(p) ∈ D and by 2 we obtain L1(q)(p) ∈ D which shows that
[φ]M1

q ∈ D;

• φ = φ1 ∧φ2, where φ1 and φ2 are state formulas. Given q ∈ Q1 assume
that [φ]M2

[q] ∈ D and both φ1 and φ2 satisfy the property in the theorem.

Then, [φ1]
M2

[q] ∧ [φ2]
M2

[q] ∈ D. As D is closed under ≤, [φ1]
M2

[q] ∧ [φ2]
M2

[q] ≤

[φ1]
M2

[q] and [φ1]
M2

[q] ∧ [φ2]
M2

[q] ≤ [φ2]
M2

[q] , both [φ1]
M2

[q] and [φ2]
M2

[q] are in D

and by the induction hypothesis we obtain [φ1]
M1
q , [φ2]

M1
q ∈ D. Now we

use the fact that D is closed under glb and we get [φ1]
M1
q ∧ [φ2]

M1
q ∈ D

which shows that [φ]M1
q ∈ D;

• the case φ = φ1 ∨ φ2, where φ1 and φ2 are state formulas, is similar to
the previous one. One has to use backward closeness of D under lub
and then closeness of D under ≤;

• φ = ∀ψ, where ψ is a path formula. Given q ∈ Q1 assume that [φ]M2

[q] ∈
D and ψ satisfies the property in the lemma. Then,

∧

π2∈Paths(M2,D,[q])

[ψ]M2
π2
∈ D

and because D is closed under ≤ we obtain [ψ]M2
π2
∈ D, for any π2 ∈

Paths(M2, D, [q]).

Let π1 be a D-path from q in M1. According to 1, there exists a cor-
responding D-path π2 from [q] in M2. As [ψ]M2

π2
∈ D, the induction

hypothesis leads to [ψ]M2
π1
∈ D and the closeness of D under glb con-

cludes the case by showing that

[φ]M1
q =

∧

π1∈Paths(M1,D,q)

[ψ]M1
π1
∈ D;

• ψ = ψ1 ∨ ψ2, where ψ1 and ψ2 are path formulas. Given π2 a D-path
in M2 starting at some state [q] assume that [ψ]M2

π2
∈ D and ψ1 and

ψ2 satisfy the property in the theorem. Then, by the fact that D is
backward closed under lub, both [ψ1]

M2
π2

and [ψ2]
M2
π2

are in D. By the
induction hypothesis, [ψ1]

M1
π1
, [ψ2]

M1
π1
∈ D, for any π1 ∈ CM1(π2). Using

the closeness of D under ≤, we obtain [ψ1]
M1
π1
∨ [ψ2]

M1
π1
∈ D, that is

[ψ]M1
π1
∈ D, for any π1 ∈ CM1(π2);

71

• the case ψ = ψ1 ∧ ψ2, where ψ1 and ψ2 are path formulas, is similar to
the previous case;

• ψ = Xψ1, where ψ1 is a path formula. Given π2 a D-path in M2

starting at some state [q] assume that [ψ]M2
π2
∈ D and ψ1 satisfies the

property in the theorem. Then, |π2| > 1 and

R2(π2(0), π2(1)) ∧ [ψ1]
M2

π1
2
∈ D,

which by the backward closeness of D under glb implies [ψ1]
M2

π1
2
∈ D.

Let π1 ∈ CM1(π2). Clearly, π1
1 ∈ CM1(π

1
2) and, therefore, [ψ1]

M1

π1
1
∈ D

by the induction hypothesis. As a conclusion, [ψ]M1
π1
∈ D;

• the case ψ = Xψ1, where ψ1 is a path formula is similar to the previous
one;

• the cases ψ = ψ1 Uψ2 and ψ = ψ1 Rψ2, where ψ1 and ψ2 are path
formulas, purports a similar discussion as those above. 2

Remark 2.3 The constraints the set D in Theorem 2.15 should satisfy are
similar to the ones in Theorem 1 in [73]. The main difference is that in
[73] there is a bisimulation between an mv-Kripke structure and a standard
Kripke structure, while Theorem 2.15 in this paper is based on a simulation
from an mv-Kripke structure to another mv-Kripke structure.

Remark 2.4 The first two conditions in Theorem 2.15 can be proved looking
only at the interpretation policies used in the abstraction. Hence, the first
condition holds if

(αR(b) = ∃S ⇒ S∩D = ∅) ∧ (αR(b) = ∃Sa ⇒ S∩D = b ↓ ∩D = b ↑ ∩D = ∅),

for any b ∈ B −D, while the second holds if

(αL(d) = ∃S ⇒ S ⊆ D) ∧ (αL(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ D),

for any d ∈ D.

Preserving punctual truth values b ∈ B is harder than preserving subsets
of truth values. We present below a suite of results along this line. As we will
see, we have to distinguish between ∀CTL∗ formulas and ∃CTL∗ formulas.

72

Theorem 2.16 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and
B = (B,≤), D ⊆ B, b ∈ B, and φ and ψ be a state and, respectively, a path
mv-∀CTL∗

+ formula over AP . If

1. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ≥ b implies L1(q)(p) ≥ b;

3. for any q, q′ ∈ Q1, R2([q], [q
′]) ≥ b implies R1(q, q

′) ≥ b;

4. for any subset B′ of B, ∨B′ ≥ b implies b′ ≥ b for some b′ ∈ B′,

then:
(∀q ∈ Q1)([φ]M2

[q] ≥ b ⇒ [φ]M1
q ≥ b)

and

(∀π2 ∈ Paths(M2, D))([ψ]M2
π2
≥ b ⇒ (∀π1 ∈ CM1(π2))([φ]M1

π1
≥ b)).

Proof We will prove the statements in the theorem by simultaneous struc-
tural induction on the formulas φ and ψ. The following cases are to be
considered:

• φ = p ∈ AP . Let q ∈ Q1. If we assume that [φ]M2

[q] ≥ b, then

L2([q])(p) ≥ b and by 2 we obtain L1(q)(p) ≥ b which shows that
[φ]M1

q ≥ b;

• φ = φ1 ∧φ2, where φ1 and φ2 are state formulas. Given q ∈ Q1 assume
that [φ]M2

[q] ≥ b and both φ1 and φ2 satisfy the property in the lemma.

Then, [φ1]
M2

[q] ∧ [φ2]
M2

[q] ≥ b which leads to [φ1]
M2

[q] ≥ b and [φ2]
M2

[q] ≥ b. By

the induction hypothesis we obtain [φ1]
M1
q , [φ2]

M1
q ≥ b. Consequently,

[φ1]
M1
q ∧ [φ2]

M1
q ≥ b which shows that [φ]M1

q ≥ b;

• φ = φ1 ∨ φ2, where φ1 and φ2 are state formulas. Given q ∈ Q1

assume that [φ]M2

[q] ≥ b and both φ1 and φ2 satisfy the property in

the lemma. Then, [φ1]
M2

[q] ∨ [φ2]
M2

[q] ≥ b and by 4 we may assume that

[φ1]
M2

[q] ≥ b. By the induction hypothesis we obtain [φ1]
M1
q ≥ b which

implies [φ]M1
q = [φ1]

M1
q ∨ [φ2]

M1
q ≥ b;

• φ = ∀ψ, where ψ is a path formula. Given q ∈ Q1 assume that [φ]M2

[q] ≥ b
and ψ satisfies the property in the lemma. Then,

∧

π2∈Paths(M2,D,[q])

[ψ]M2
π2
≥ b

73

and we obtain [ψ]M2
π2
≥ b, for all π2 ∈ Paths(M2, D, [q]).

Let π1 be a D-path from q in M1. According to 1, there exists a
corresponding D-path π2 from [q] in M2. As [ψ]M2

π2
≥ b, the induction

hypothesis leads to [ψ]M2
π1
≥ b and thus

[φ]M1
q =

∧

π1∈Paths(M1,D,q)

[ψ]M1
π1
≥ b;

• the cases ψ = ψ1 ∧ ψ2 and ψ = ψ1 ∨ ψ2, where ψ1 and ψ2 are path
formulas, can be discussed as the similar cases for state formulas;

• ψ = Xψ1, where ψ1 is a path formula. Given π2 a D-path in M2

starting at some state [q] assume that [ψ]M2
π2
≥ b and ψ1 satisfies the

property in the lemma. Then, |π2| > 1 and

R2(π2(0), π2(1)) ∧ [ψ1]
M2

π1
2
≥ b

which leads to R2(π2(0), π2(1)) ≥ b and [ψ1]
M2

π1
2
≥ b.

Let π1 ∈ CM1(π2). Clearly, π1
1 ∈ CM1(π

1
2) and, therefore, [ψ1]

M1

π1
1
≥ b

by the induction hypothesis. Combining this with R1(π1(0), π1(1)) ≥ b
which follows from 3, we obtain [ψ]M1

π1
≥ b;

• the cases ψ = Xψ1, ψ = ψ1 Uψ2, and ψ = ψ1 Rψ2, where ψ1 and ψ2

are path formulas, purport a similar discussion as those above. 2

Remark 2.5 As it was the case with the previous theorem, the first three
conditions in Theorem 2.16 can be proved looking only at the interpretation
policies used in the abstraction. Hence, the first condition holds if

(αR(b) = ∃S ⇒ S∩D = ∅) ∧ (αR(b) = ∃Sa ⇒ S∩D = b ↓ ∩D = b ↑ ∩D = ∅),

for any b ∈ B −D, while the second and the third hold if

(α(d) = ∃S ⇒ S ⊆ b ↑) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↑),

for any α ∈ {αR, αL} and d ≥ b.

The preservation results for Kripke structures over Kleene’s three-valued
interpretation (B3 denotes the corresponding truth algebra) from Lemmas 1
and 2, Section 5, in [46] can be obtained as a particular case of Theorem
2.16.

74

Corollary 2.9 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and
B3, D = {⊥, 1}, and φ be a mv-LTL+ formula over AP . If

1. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ≥ ⊥ implies L1(q)(p) ≥ ⊥,

then
(∀q ∈ Q1)([φ]M2

[q] ≥ ⊥ ⇒ [φ]M1
q ≥ ⊥).

Proof Directly from Theorem 2.16 (the third condition can be discarded
because D = {⊥, 1}). 2

Corollary 2.10 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and B3,
D = {⊥, 1}, and φ be a mv-LTL+ formula over AP . If

1. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

2. for any q, q′ ∈ Q1, R2([q], [q
′]) = 1 implies R1(q, q

′) = 1;

3. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 1 implies L1(q)(p) = 1,

then
(∀q ∈ Q1)([φ]M2

[q] = 1 ⇒ [φ]M1
q = 1).

Moreover, the result holds if the second condition is replaced by R1(q, q
′) ∈

{0, 1}, for all q, q′ ∈ Q1.

Proof The first part follows directly from Theorem 2.16 and the second
part can be proved in a similar manner. 2

The following preservation result for abstractions of Kripke structures
over Kleene’s three-valued interpretation has been introduced in [46] but it
depends too much on the particular structure of the truth algebra B3 to be
deduced from some general preservation result.

Theorem 2.17 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and B3,
D = {⊥, 1}, and φ be a mv-LTL+ formula over AP . If

1. for any π2 ∈ Paths(M2, D) there exists a D-path π1 ∈ CM1(π2);

75

2. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

3. for any q, q′ ∈ Q1, R2([q], [q
′]) = ⊥ implies R1(q, q

′) = ⊥;

4. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = ⊥ implies L1(q)(p) = ⊥,

5. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 1 implies L1(q)(p) ∈
{⊥, 1},

then
(∀q ∈ Q1)([φ]M2

[q] = ⊥ ⇒ [φ]M1
q = ⊥).

Proof By Corollary 2.9 we obtain that

[φ]M2

[q] = ⊥ ⇒ [φ]M1
q ∈ {1,⊥},

for any φ ∈ LTL+ and q ∈ Q1. What remains to be proved is that [φ]M1
q = ⊥.

According to the semantics of LTL+, the fact that

[φ]M2

[q] =
∧

π∈Path(M2,D,[q])

[φ]M2
π = ⊥

implies that there exists π2 a path in M2 starting at [q] such that [φ]M2
π2

= ⊥.
By 2, there exists a path π1 in M1 starting at q such that π1(i) ∈ π2(i),

for any 0 ≤ i < |π1|. We will prove that [φ]M2
π2

= ⊥ implies [φ]M1
π1

= ⊥, which
concludes the proof.

Similarly to the proof of Corollary 2.9, by structural induction on φ we
can easily show that [φ]M2

π2
∈ {1,⊥} implies [φ]M1

π1
∈ {1,⊥}.

Now, by structural induction on φ we show that [φ]M2
π2

= ⊥ implies [φ]M1
π1

=
⊥:

• φ = p ∈ AP . This case follows directly from 4;

• φ = ψ1 ∧ ψ2. Assume that ψ1 and ψ2 satisfy the property. Then,
[ψ1 ∧ ψ2]

M2
π2

= [ψ1]
M2
π2
∧ [ψ2]

M2
π2

= ⊥ implies [ψ1]
M2
π2
, [ψ2]

M2
π2
∈ {1,⊥}, and

[ψ1]
M2
π2

= ⊥ or [ψ2]
M2
π2

= ⊥. Then we get [ψ1]
M1
π1
, [ψ2]

M1
π1
∈ {1,⊥}, and

from the induction hypothesis it follwos [ψ1]
M1
π1

= ⊥ or [ψ2]
M1
π1

= ⊥.
Hence, [φ]M1

π1
= ⊥;

• φ = ψ1 ∨ ψ2. This is similar to the previous case;

76

• φ = Xψ. Assume that ψ satisfies the property. Then, [Xψ]M2
π2

=

|π2| > 1 ∧ [ψ]M2

π1
2
∧ R2(π2(0), π2(1)) = ⊥ implies |π2| > 1 and [ψ]M2

π1
2
∧

R2(π2(0), π2(1)) = ⊥. But then, [ψ]M1

π1
1
, R1(π1(0), π1(1)) ∈ {1,⊥}. If

[ψ]M2

π1
2

= ⊥, then, by the induction hypothesis, [ψ]M1

π1
1

= ⊥ and we are

done with this case. Otherwise, we use 3 and we are also done;

• the cases φ = Xψ, φ = ψ1Uψ2, and φ = ψ1Rψ2 are discussed similarly
and, therefore, they are omitted. 2

Theorem 2.18 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and
B = (B,≤), D ⊆ B, b ∈ B, and φ and ψ be a state and, respectively, a path
mv-∀CTL∗

+ formula over AP . If

1. for any π2 ∈ Paths(M2, D) there exists a D-path π1 ∈ CM1(π2);

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ≤ b implies L1(q)(p) ≤ b;

3. for any q, q′ ∈ Q1, R2([q], [q
′]) ≤ b implies R1(q, q

′) ≤ b;

4. for any subset B′ of B, ∧B′ ≤ b implies b′ ≤ b for some b′ ∈ B′,

then:
(∀q ∈ Q1)([φ]M2

[q] ≤ b ⇒ [φ]M1
q ≤ b)

and

(∀π2 ∈ Paths(M2, D))([ψ]M2
π2
≤ b ⇒ (∀π1 ∈ CM1(π2))([φ]M1

π1
≤ b)).

Proof Almost all cases are pretty much the same as for Theorem 2.16 and,
therefore, they are omitted. We only emphasize the following two cases:

• φ = ∀ψ, where ψ is a path formula. Given q ∈ Q1 assume that [φ]M2

[q] ≤ b
and ψ satisfies the property in the lemma. Then,

∧

π2∈Paths(M2,D,[q])

[ψ]M2
π2
≤ b

and, by 4, we obtain [ψ]M2
π2
≤ b, for some π2 ∈ Paths(M2, D, [q]).

According to 1, there exists a corresponding D-path π1 from q in M1.
As [ψ]M2

π2
≤ b, the induction hypothesis leads to [ψ]M2

π1
≤ b and thus

[φ]M1
q =

∧

π1∈Paths(M1,D,q)

[ψ]M1
π1
≤ b;

77

• the case “ψ = Xψ1” has to be split into two sub-cases: one corre-
sponding to |π2| > 1, which is handled as in the proof of Theorem 2.16,
and one corresponding to |π2| ≤ 1. The later sub-case leads easily to
[Xψ1]

M2
π2

= 0 which implies [Xψ1]
M1
π1

= 0 (see the notation in the proof
of Theorem 2.16). 2

Remark 2.6 Again, the first condition in Theorem 2.18 holds if

(αR(b) = ∃S ⇒ S ⊆ D) ∧ (αR(b) = ∃Sa ⇒ S ∪ b ↓ ∪b ↑⊆ D),

for any b ∈ D, while the second and the third hold if

(α(d) = ∃S ⇒ S ⊆ b ↓) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↓),

for any α ∈ {αR, αL} and d ≤ b.

We can obtain as a direct corollary of Theorem 2.18 the preservation
result for Kripke structures over Kleene’s three-valued interpretation from
Lemma 3, Section 5, in [46].

Corollary 2.11 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and B3,
D = {⊥, 1}, and φ be a mv-LTL+ formula over AP . If

1. for any π2 ∈ Paths(M2, D) there exists a D-path π1 ∈ CM1(π2);

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 0 implies L1(q)(p) = 0,

then
(∀q ∈ Q1)([φ]M2

[q] = 0 ⇒ [φ]M1
q = 0).

Proof Directly from Theorem 2.18 (the third condition can be discarded
because D = {⊥, 1}). 2

A similar preservation result have been obtained in [46] for LTL∞
+ , the

subset of LTL consisting of formulas without negation and X.

Corollary 2.12 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and B3,
D = {⊥, 1}, and φ be a mv-LTL∞

+ formula over AP . If

1. for any q ∈ Q1 and any path π2 in M2 starting at [q], there exists a
path π1 in M1 starting at q with |π1| ≤ |π2| and π1(i) ∈ π2(i), for any
0 ≤ i < |π1|;

78

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 0 implies L1(q)(p) = 0,

then
(∀q ∈ Q1)([φ]M2

[q] = 0 ⇒ [φ]M1
q = 0).

Theorem 2.19 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and
B = (B,≤), D ⊆ B, b ∈ B, and φ and ψ be a state and, respectively, a path
mv-∃CTL∗

+ formula over AP . If

1. for any π2 ∈ Paths(M2, D) there exists a D-path π1 ∈ CM1(π2);

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ≥ b implies L1(q)(p) ≥ b;

3. for any q, q′ ∈ Q1, R2([q], [q
′]) ≥ b implies R1(q, q

′) ≥ b;

4. for any subset B′ of B, ∨B′ ≥ b implies b′ ≥ b for some b′ ∈ B′,

then:
(∀q ∈ Q1)([φ]M2

[q] ≥ b ⇒ [φ]M1
q ≥ b)

and

(∀π2 ∈ Paths(M2, D))([ψ]M2
π2
≥ b ⇒ (∀π1 ∈ CM1(π2))([φ]M1

π1
≥ b)).

Proof Similar to the proof of Theorem 2.16. 2

Remark 2.7 Again, the first condition in Theorem 2.19 holds if

(αR(b) = ∃S ⇒ S ⊆ D) ∧ (αR(b) = ∃Sa ⇒ S ∪ b ↓ ∪b ↑⊆ D),

for any b ∈ D while the second and the third hold if

(α(d) = ∃S ⇒ S ⊆ b ↑) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↑),

for any α ∈ {αR, αL} and d ≥ b.

Theorem 2.20 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an
equivalence ρ of an mv-Kripke structure M1 = (Q1, R1, L1) over AP and
B = (B,≤), D ⊆ B, b ∈ B, and φ and ψ be a state and, respectively, a path
mv-∃CTL∗

+ formula over AP . If

1. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

2. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ≤ b implies L1(q)(p) ≤ b;

79

3. for any q, q′ ∈ Q1, R2([q], [q
′]) ≤ b implies R1(q, q

′) ≤ b;

4. for any subset B′ of B, ∧B′ ≤ b implies b′ ≤ b for some b′ ∈ B′,

then:
(∀q ∈ Q1)([φ]M2

[q] ≤ b ⇒ [φ]M1
q ≤ b)

and

(∀π2 ∈ Paths(M2, D))([ψ]M2
π2
≤ b ⇒ (∀π1 ∈ CM1(π2))([φ]M1

π1
≤ b)).

Proof Similar to the proof of Theorem 2.18. 2

Remark 2.8 Again, the first condition in Theorem 2.20 holds if

(αR(b) = ∃S ⇒ S∩D = ∅) ∧ (αR(b) = ∃Sa ⇒ S∩D = b ↓ ∩D = b ↑ ∩D = ∅),

for any b ∈ B −D while the second and the third hold if

(α(d) = ∃S ⇒ S ⊆ b ↓) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↓),

for any α ∈ {αR, αL} and d ≤ b.

Remark 2.9 Let M2 = (Q2, R2, L2) be an (αR, αL)-abstraction by an equiv-
alence ρ of an mv-Kripke structureM1 = (Q1, R1, L1) over AP and B = (B,≤
), D ⊆ B and b ∈ B. If all the conditions from Theorems 2.16, 2.18, 2.19
and 2.20 hold and also,

• for any q′ ∈ Q1 and any p ∈ AP , L2([q
′])(p) = b implies L1(q

′)(p) = b;

• for any q′, q′′ ∈ Q1, R2([q
′], [q′′]) = b implies R1(q

′, q′′) = b;

• for any subset B′ of B, ∧B′ = b implies b ∈ B′;

• for any subset B′ of B, ∨B′ = b implies b ∈ B′;

then,
(∀q ∈ Q1)([φ]M2

[q] = b ⇒ [φ]M1
q = b) and

(∀π2 ∈ Paths(M2, D))([ψ]M2
π2

= b ⇒ (∀π1 ∈ CM1(π2))([φ]M1
q = b)),

for any φ and ψ a state and, respectively, a path mv-CTL∗
+ formula over AP .

80

2.3.3 Relating abstractions

When we want to verify a system by abstraction, first we choose an equiva-
lence and then a type of abstraction (a pair of interpretation policies (αR, αL)).
The abstraction might not allow us to draw any conclusion (about the prop-
erty we want to check) and, therefore, we might try to change the abstraction:
either the equivalence, or the type of abstraction, or both of them. The sim-
plest choice is to change the type of abstraction. In such a case it would
be very helpful to know the relationships between types of abstraction in
order to avoid those types which would lead us to the same conclusions as
the previous type of abstraction.

In this section we will study the relationships between the types of ab-
straction of Kripke structures over Kleene’s three-valued interpretations ob-
tained using the following interpretation policies [46]:

• α1(0) = ∀, α1(⊥) = ∃{0,⊥,1}a and α1(1) = ∀;

• α2(0) = ∃{0,⊥,1}, α2(⊥) = ∃{⊥,1} and α2(1) = ∀;

• α3(0) = ∀, α3(⊥) = ∃{0,⊥} and α3(1) = ∃{0,⊥,1}.

Theorem 2.21 Let M1 be an mv-Kripke structure over some set of atomic
propositions AP and B3, M2 an (α2, α3)- or a (α2, α1)-abstraction of M1

based on some equivalence ρ, and M3 an (α3, α2)-abstraction of M1 based on
ρ. Then,

[φ]M2

[q] = 0⇒ [φ]M3

[q] = 0,

for any φ ∈ LTL+ and q ∈ Q1.

Proof Assume that M2 is a (α2, α3)-abstraction of M1 (the other case can
be obtained analogously). Clearly, Q2 = Q3/ρ

′, where ρ′ is the identity.
Notice that Corollary 2.11 takes place even if Q2 = Q1/ρ and M2 is not

necessarily an (αR, αL)-abstraction of M1.
We prove that the hypothesis of Corollary 2.11 hold for M3 and M2 (in

this order). Let π2 be a path in M2 starting at [q]ρ, for some q ∈ Q1.
By the definition of R2, there exists a path π1 in M1 starting at q such
that π2(i) = [π1(i)]ρ, for any 0 ≤ i < |π2|. Now, by the definition of R3,
there exists a path π3 in M3 starting at [q]ρ such that π1(i) ∈ π3(i), for any
0 ≤ i < |π1|. Since π1(i) can be in a unique abstract state with respect to
ρ, we obtain that π3(i) = π2(i), for all 0 ≤ i < |π2|. From the construction
above we also obtain |π2| = |π3|. Now, if L2([q]ρ, p) = 0, for some q ∈ Q1,
then L1(q1, p) = 0, for any q1 ∈ [q]ρ and, consequently, L3([q]ρ, p) = 0 which
concludes the proof. 2

81

Theorem 2.22 Let M1 be an mv-Kripke structure over some set of atomic
propositions AP and B3, M2 an (α3, α2)-abstraction of M1 based on some
equivalence ρ, and M3 an (α1, α2)- or an (α1, α1)-abstraction of M1 based on
ρ. Then,

1. [φ]M2

[q] = ⊥ ⇒ [φ]M3

[q] = ⊥,

2. [φ]M3

[q] = 1⇒ [φ]M2

[q] = 1,

for any φ ∈ LTL+ and q ∈ Q1. Moreover, if M3 is an (α1, α2)-abstraction
then,

3. [φ]M3

[q] = ⊥ ⇒ [φ]M2

[q] ∈ {⊥, 1},

for any φ ∈ LTL+ and q ∈ Q1.

Proof Assume that M3 is a (α1, α2)-abstraction of M1 (the other case can
be obtained analogously). Clearly, Q3 = Q2/ρ

′ and Q2 = Q3/ρ
′, where ρ′ is

the identity.
Notice that Theorem 2.17, Corollary 2.9, and Corollary 2.10 take place

even if Q2 = Q1/ρ and M2 is not necessarily an (αR, αL)-abstraction of M1.
To prove 1 we show that the hypothesis of Theorem 2.17 hold for M3 and

M2 (in this order):

• notice that R3([q]ρ, [q
′]ρ) ∈ {1,⊥} iff there exists q1 ∈ [q]ρ and q′1 ∈ [q′]ρ

such that R1(q1, q
′
1) ∈ {1,⊥} iff R2([q]ρ, [q

′]ρ) ∈ {1,⊥}. Consequently,
for any path π3 in M3 there exists a path π2 in M2 such that |π2| = |π3|
and π2(i) = π3(i), for any 0 ≤ i < |π3|, and vice-versa. Consequently,
1 and 2 in Theorem 2.17 hold for M2;

• now, if R2([q]ρ, [q
′]ρ) = ⊥, there exist q1 ∈ [q]ρ and q′1 ∈ [q′]ρ such that

R1(q1, q
′
1) = ⊥ and R1(q2, q

′
2) ∈ {⊥, 0}, for any q2 ∈ [q]ρ and q′2 ∈ [q′]ρ.

Hence, R3([q]ρ, [q
′]ρ) = ⊥, which proves 3 in Theorem 2.17;

• if L2([q]ρ, p) = ⊥, there exists q1 ∈ [q]ρ such that L1(q1, p) = ⊥ and
L1(q2, p) ∈ {⊥, 1}, for any q2 ∈ [q]ρ. Hence, L3([q]ρ, p) = ⊥, which
proves 4 in Theorem 2.17;

• finally, if L2([q]ρ, p) ∈ {⊥, 1}, L1(q1, p) ∈ {⊥, 1}, for any q1 ∈ [q]ρ.
Hence, L3([q]ρ, p) ∈ {⊥, 1}, which proves 5 in Theorem 2.17.

Therefore, from Theorem 2.17 we obtain 1.
To prove 2 we show that the hypothesis of Corollary 2.10 hold for M2 and

M3 (in this order):

82

• the first hypothesis of Corollary 2.10 follows from what we have proved
above;

• from R3([q]ρ, [q
′]ρ) = 1 it follows that R1(q1, q

′
1) = 1, for any q1 ∈ [q]ρ

and q′1 ∈ [q′]ρ, and by the definition ofR2 we obtain thatR2([q]ρ, [q
′]ρ) =

1. Now, if L3([q]ρ, p) = 1, then L1(q1, p) = 1, for any q1 ∈ [q]ρ and,
consequently, L2([q]ρ, p) = 1.

Therefore, by Corollary 2.10 we obtain 2.
To prove 3 we show that the hypothesis of Corollary 2.9 hold for M2 and

M3 (in this order):

• the first hypothesis of Corollary 2.9 follows from what we have proved
above (in fact it is the same as the first hypothesis of Corollary 2.10);

• then, M2 andM3 have the same interpretation for the labeling function,
which proves the second hypothesis of Corollary 2.9.

Therefore, we can apply Corollary 2.9 and we obtain 3. 2

Theorem 2.23 Let M1 be an mv-Kripke structure over some set of atomic
propositions and B3, M2 an (α2, α3)- or an (α2, α1)-abstraction of M1 based
on some equivalence ρ, and M3 an (α1, α3)- or a (α1, α1)-abstraction of M1

based on ρ. Then,
[φ]M2

[q] = 0⇒ [φ]M3

[q] = 0,

for any φ ∈ LTL+ and q ∈ Q1.

Proof Assume that M2 is an (α2, α3)-abstraction and M3 an (α1, α3)-
abstraction of M1 (the other cases can be obtained analogously). Clearly,
Q2 = Q3/ρ

′, where ρ′ is the identity.
We show that Corollary 2.11 can be applied to M3 and M2 (in this order).

First, from R2([q]ρ, [q
′]ρ) ∈ {1,⊥} we obtain that R1(q1, q

′
1) ∈ {1,⊥}, for

any q1 ∈ [q]ρ and q′1 ∈ [q′]ρ, which implies that R3([q]ρ, [q
′]ρ) ∈ {1,⊥}.

Consequently, for any path π2 in M2 there exists a path π3 in M3 such that
π2(i) = π3(i), for any 0 ≤ i < |π2|. Moreover, |π2| = |π3|.

If L2([q]ρ, p) = 0, then L1(q1, p) = 0, for any q1 ∈ [q]ρ. Hence, L3([q]ρ, p) =
0. 2

Theorem 2.24 Let M1 be an mv-Kripke structure over some set of atomic
propositions AP and B3, M2 an (α, α′)-abstraction of M1 based on some
equivalence ρ, and M3 an (α, α′′)-abstraction of M1 based on ρ, where α, α′,
α′′ ∈ {α1, α2, α3}. If φ ∈ LTL+ and q ∈ Q1 then:

83

1. If α′ = α3 and α′′ = α1 then:

• [φ]M3

[q] = 1⇒ [φ]M2

[q] = 1;

• [φ]M2

[q] = ⊥ ⇒ [φ]M3

[q] = ⊥;

• [φ]M2

[q] = 0⇔ [φ]M3

[q] = 0.

2. If α′ = α2 and α′′ = α1 then:

• [φ]M3

[q] = 1⇒ [φ]M2

[q] = 1;

• [φ]M2

[q] = ⊥ ⇒ [φ]M3

[q] = ⊥;

• [φ]M2

[q] = 1⇔ [φ]M3

[q] = 1.

3. If α′ = α2 and α′′ = α3 then:

• [φ]M2

[q] = 1⇒ [φ]M3

[q] = 1;

• [φ]M3

[q] = 0⇒ [φ]M2

[q] = 0;

• [φ]M2

[q] = ⊥ ⇔ [φ]M3

[q] ∈ {⊥, 1};

• [φ]M3

[q] = ⊥ ⇔ [φ]M3

[q] ∈ {⊥, 0}.

Proof Directly from definitions, Theorem 2.17 and Corollaries 2.9, 2.10,
and 2.11. 2

Concrete
model

00

0’

0
0

0’0

0

0

0

0,

0,

0

0

0

0

0,

(,)α2 3α

(,)α2 1α

(,)α1 3α

(,)α α1 1

(,)α α1 2

(,)α α3 2

Figure 2.5: Preserving 0 truth values between different types of abstractions

The results developed in this section can be pictorially represented as in
Figure 2.5 and Figure 2.6.

84

Concrete
model

1

1
1

1

11

1

1,

1,

1,

1, 1,

1, 1,

1,

1,

(,)α2 1α

(,)α2 3α

(,)α α1 1

(,)α1 3α (,)α α1 2

(,)α α3 2

Figure 2.6: Preserving 1 and ⊥ truth values between different types of ab-
stractions

Both figures show preservation results for formulas in LTL+: Figure 2.5
shows preservation results for the truth value 0, while the other figure shows
preservation results for the truth values 1 and ⊥. For example, an arrow from
(α2, α3) to (α1, α1) labelled by 0 means that a property which is evaluated
to 0 in a (α2, α3)-abstraction is also evaluated to 0 in a (α1, α1)-abstraction
(both abstractions being under the same equivalence). An arrow like the one
from (α1, α2) to (α1, α3) labelled by ⊥ and 1,⊥ (see Figure 2.6) means that
a property which is evaluated to ⊥ in a (α1, α2)-abstraction is evaluated to
1 or ⊥ in a (α1, α3)-abstraction. Arrows labeled with 0′ mean preservation
of 0 values only for formulas in LTL∞

+ .
These relationships offer some hints when choosing the type of abstraction

to prove properties of systems. For example, when trying to falsify some
property in LTL∞

+ we can choose to make a (α2, α1)-abstraction or a (α1, α1)-
abstraction of the system. Both abstractions preserve the truth value 0 from
the abstract system to the concrete one. However, the former removes more
behavior of the system and, consequently, it is easier to check while the latter
preserves more behavior and can be used to falsify more properties.

2.4 Temporal Logic of Knowledge

2.4.1 Abstractions and Preservation Results

In this section, we extend the abstractions of mv-Kripke structures from the
previous section to the multi-agent case [45]. As we have seen, the transition
predicate and the labeling function of the abstract system are obtained by
reinterpretations according to some interpretation policy. In the case of the

85

similarity relations of the abstract system, we can not always use the rein-
terpretations of the similarity relations of the concrete system according to
some interpretation policy. These reinterpretations might not satisfy reflex-
ivity, symmetry or transitivity. We will discuss the reinterpretations used
in [45] which correspond to the following safe interpretation policies on the
truth algebra corresponding to Kleene’s 3-valued interpretation, denoted B3:

• α1(0) = ∀, α1(⊥) = ∃{0,⊥,1}a and α1(1) = ∀;

• α2(0) = ∃{0,⊥,1}, α2(⊥) = ∃{⊥,1} and α2(1) = ∀;

• α3(0) = ∀, α3(⊥) = ∃{0,⊥} and α3(1) = ∃{0,⊥,1}.

The relations between the reinterpretations according to these interpretation
policies and the properties of a similarity relation are enumerated in the next
proposition.

Proposition 2.1 Let M = (Q,R,L, (∼i| 1 ≤ i ≤ n)) be a multi-agent
multi-valued Kripke structure over AP and B3, and ρ an equivalence relation
on Q. We have that:

1. the reinterpretation of ∼i according to α1 is symmetric;

2. the reinterpretation of ∼i according to α2 is symmetric and transitive;

3. the reinterpretation of ∼i according to α3 is reflexive and symmetric.

Proof Clearly, the symmetry of ∼i implies the symmetry of the reinterpre-
tation of∼i according to any interpretation policy. Moreover, α3(1) = ∃{0,⊥,1}

implies that the reinterpretation of ∼i according to α3 is reflexive.
Now, let δ : Q/ρ×Q/ρ→ {0, 1,⊥} be the reinterpretation of∼i according

to α2. To prove the transitivity of δ, the following cases are to be discussed:

1. δ([q], [q′]) = 0 and δ([q′], [q′′]) = ⊥, for some q, q′, q′′ ∈ Q1. By the
definition of δ, there exist q1 ∈ [q], q′1 ∈ [q′] such that ∼i (q1, q

′
1) = 0,

and ∼i (q′2, q
′′
1) ∈ {⊥, 1}, for any q′2 ∈ [q′] and q′′1 ∈ [q′′].

Since ∼i is a similarity relation, we have that ∼i (q1, q
′′
1) = 0, for any

q′′1 ∈ [q′′]. Hence, δ([q], [q′′]) = 0.

2. δ([q], [q′]) = ⊥ and δ([q′], [q′′]) = 0, for some q, q′, q′′ ∈ Q1. This case is
similar to the previous one.

86

3. δ([q], [q′]) = 0 and δ([q′], [q′′]) = 1, for some q, q′, q′′ ∈ Q1. By the
definition of δ, there exist q1 ∈ [q] and q′1 ∈ [q′] such that ∼i (q1, q

′
1) = 0,

and ∼i (q′2, q
′′
1) = 1, for any q′2 ∈ [q′] and q′′1 ∈ [q′′].

Again, because ∼i is a similarity relation, we obtain ∼i (q1, q
′′
1) = 0, for

any q′′1 ∈ [q′′]. Consequently, δ([q], [q′′]) = 0.

4. δ([q], [q′]) = 1 and δ([q′], [q′′]) = 0, for some q, q′, q′′ ∈ Q1. This case is
similar to the previous one.

5. δ([q], [q′]) = ⊥ and δ([q′], [q′′]) = 1, for some q, q′, q′′ ∈ Q1. The former
implies that there exist q1 ∈ [q] and q′1 ∈ [q′] such that ∼i (q1, q

′
1) = ⊥,

while the latter implies that ∼i (q′2, q
′′
1) = 1, for any q′2 ∈ [q′] and

q′′1 ∈ [q′′].

By the transitivity of ∼i, ∼i (q1, q
′′
1) = ⊥, for any q′′1 ∈ [q′′]. Moreover,

by the definition of δ, ∼i (q2, q
′
3) ∈ {⊥, 1}, for any q2 ∈ [q] and q′3 ∈ [q′],

which implies ∼i (q2, q
′′
1) ∈ {⊥, 1}, for any q2 ∈ [q] and q′′1 ∈ [q′′]. Hence,

δ([q], [q′′]) = ⊥.

6. δ([q], [q′]) = 1 and δ([q′], [q′′]) = ⊥, for some q, q′, q′′ ∈ Q1. This case is
similar to the previous one.

7. δ([q], [q′]) = ⊥ and δ([q′], [q′′]) = ⊥, for some q, q′, q′′ ∈ Q1. The first
property implies that there exist q1 ∈ [q] and q′1 ∈ [q′] such that ∼i
(q1, q

′
1) = ⊥ and the second property implies that ∼i (q′2, q

′′
1) ∈ {⊥, 1},

for any q′2 ∈ [q′] and q′′1 ∈ [q′′]. By the transitivity of ∼i, we obtain that
∼i (q1, q

′′
1) = ⊥, for any q′′1 ∈ [q′′]. Moreover, we have that ∼i (q2, q

′
3) ∈

{⊥, 1}, for any q2 ∈ [q] and q′3 ∈ [q′], which implies ∼i (q2, q
′′
1) ∈ {⊥, 1},

for any q2 ∈ [q] and q′′1 ∈ [q′′]. Hence, δ([q], [q′′]) = ⊥.

8. δ([q], [q′]) = 1 and δ([q′], [q′′]) = 1, for some q, q′, q′′ ∈ Q1. From the
former we obtain that ∼i (q1, q

′
1) = 1, for any q1 ∈ [q] and q′1 ∈ [q′] and

from the latter ∼i (q′2, q
′′
1) = 1, for any q′2 ∈ [q′] and q′′1 ∈ [q′′]. Since ∼i

is transitive, we get that ∼i (q1, q
′′
1) = 1 for any q1 ∈ [q] and q′′1 ∈ [q′′].

Consequently, δ([q], [q′′]) = 1. 2

The above proposition mentions all the properties of a similarity relation
that are always satisfied by a reinterpretation of ∼i according to α1, α2 or α3.
Consequently, when trying to redefine the similarity relations in the abstract
system we have to apply some reflexive or transitive closures.

Before we define closures, we remark that the properties of a similarity
relation ∼: A × A → {0,⊥, 1} build classes of elements that have the same

87

properties as the equivalence classes build by some equivalence relation. The
class of an element a ∈ A is

[a]∼ = {x| ∼i (a, x) 6= 0}.

The class [a]∼ has the property that∼ (x, y) =∼ (x′, y′) for any x, y, x′, y′ ∈
[a]∼ with x 6= y and x′ 6= y′. To prove this, let ∼ (x, y) = b1 and ∼ (y, x′) =
b2. By the transitivity of ∼, we obtain that ∼ (x, x′) = b1∧b2. The symmetry
of ∼ implies ∼ (x′, y) = b2 which, by ∼ (x, y) =∼ (x, x′)∧ ∼ (x′, y), further
implies b1 = b1 ∧ b2 and consequently, b1 ≤ b2. In a similar manner, we can
prove b2 ≤ b1 which concludes b1 = b2. Now, using a similar approach, we
can prove ∼ (y, x′) =∼ (x′, y′) which completes our proof.

Let σ : A×A→ {0, 1,⊥} be a three-valued relation. The reflexive closure
of σ is a three-valued relation σr : A× A→ {0, 1,⊥} defined by:

σr(x, y) =

{

1, if x = y;
σ(x, y), otherwise.

The transitive closure of a reflexive and symmetric three-valued relation
σ : A × A → {0, 1,⊥} is build as follows. For each a ∈ A, we construct the
class [a]σ by computing the sequence of sets ([a]iσ| i ≥ 0) defined by:

[a]0σ = {a};

[a]i+1
σ = {x | (∃y ∈ [a]iσ)(σ(x, y) 6= 0)},

until [a]jσ = [a]j+1
σ , for some j ≥ 0. We take [a]σ = [a]jσ and define the

transitive closure σt : A× A→ {0, 1,⊥} as follows:

• if a class [a]σ has the property σ(x, y) 6= 0, for all x, y ∈ [a]σ, then we
take σt(x, y) = σ(x, y), for all x, y ∈ [a]σ;

• otherwise, we take σt(x, x) = 1, for all x ∈ [a]σ, and σt(x, y) = ⊥, for
all x, y ∈ [a]σ with x 6= y;

• for any a1, a2 ∈ A with [a1]σ ∩ [a2]σ = ∅, we take σt(x, y) = 0, for all
x ∈ [a1]σ and y ∈ [a2]σ.

Remark 2.10 We may remark that the transitive closure of σ, σt, trans-
forms 0 and 1 values of σ into ⊥ values.

Definition 2.22 Let M = (Q,R,L, (∼i| 1 ≤ i ≤ n)) be a multi-agent multi-
valued Kripke structure over AP and B3, ρ an equivalence relation on Q, and
αR, αL, αS ∈ {α1, α2, α3} three interpretation policies over B3. A multi-agent
mv-Kripke structure M ′ = (Q′, R′, L′, (∼′

i| 1 ≤ i ≤ n)) over AP and B3 is
called an (αR, αL, αS)-abstraction of M by ρ if:

88

• Q′ = Q/ρ;

• R′ is the reinterpretation of R on Q′ ×Q′ according to αR;

• L′ is the reinterpretation of L over Q′ according to αL.

• ∼′
i is defined as follows:

– if αS = α1 then ∼′
i is the reflexive and transitive closure of the

reinterpretation of ∼i on Q′ ×Q′ according to α1;

– if αS = α2 then ∼′
i is the reflexive closure of the reinterpretation

of ∼i on Q′ ×Q′ according to α2;

– if αS = α3 then ∼′
i is the transitive closure of the reinterpretation

of ∼i on Q′ ×Q′ according to α3.

Example 2.12 Consider the system from Figure 2.7. It consists of two
agents H and L asynchronously composed (the ∧ symbol means that the
instructions are executed in one atomic transition). H continuously increases
x by 2 but, when it receives a signal from L (L sets z to 1) it increases x
only by 1. The agent L also uses y to count the number of signals it sends.

local x, y, z: integer
x := 1; y := 0; z := 0;

H ::













1. while true {
2. if z = 0 then
3. x : = x+ 2;
4. if z = 1 then
5. x : = x+ 1 ∧ z : = 0; }













‖ L ::





1. while true {
2. if z = 0 then
3. y : = y + 1 ∧ z : = 1; }





Figure 2.7: A system with two processes

Suppose that L can not read x. We would be interested in checking
whether the low-level user L can deduce something about the parity of x.

We model this system by a multi-agent mv-Kripke structure

M1 = (Q,R,L, (∼H ,∼L)),

whose states are triples (x, y, z), where x, y and z are the variables from
Figure 2.7. We consider that (x, y, z) ∼H (x′, y′, z′) if x = x′ and z = z′ and
(x, y, z) ∼L (x′, y′, z′) if y = y′ and z = z′.

An instance of the question above is the formula

φ = PL O
(

(even(y) ∧ z = 1)⇒ P ¬(even(x) S z = 1)
)

,

89

where even is a predicate that it is 1 for even numbers and 0 otherwise. If
this property is false then, the fact that y is even implies that x is even in
all the states since the last time z was 1. Consequently, if y is even L knows
the parity of x for some of the past states.

Such a property is an instance of information flow w.r.t run-based secrecy
[97]. In fact, the falsity of φ would prove also that agent H does not maintain
run-based secrecy with respect to agent L, i.e. there exists an H-local and
satisfiable formula φ such that PL Oφ is false.

We define the equivalence relation ρ on the set of states of M1 as follows:

(x, y, z) ρ (x′, y′, z′) if even(|x− x′|) ∧ even(|y − y′|) ∧ z = z′.

The (α3, α3, α3)-abstraction of M1 by ρ is depicted in Figure 2.8(a). We
have denoted the abstract states by triples, where the first two elements
specify the parity of x and y, respectively, while the third component gives
the value of z.

odd,even,0 odd,odd,1

even,odd,0even,even,1

0,3,0

0,3,0

1,3,0

2,3,0

3,3,0

4,3,0

5,3,0

0,0,0

0,1,0

0,2,0

0,1,1

0,2,1

0,3,1

(a)

(b)

Figure 2.8: (a) An (α3, α3, α3)-abstraction of M1. (b) An (α2, α2, α2)-
abstraction of M1.

We can remark that the abstract system has only 4 reachable states and
it is very easy to verify it. All we need is some preservation results in order
to transfer the truth value of φ from the abstract system into the concrete
system.

Example 2.13 The system in Figure 2.9 consists of two agents H and L (as
before, ∧ means that the instructions linked by it are executed in one atomic
transition) which run in parallel. H generates randomly a value for x and
then, according to the remainder x mod 6, it sets y. When H have set y, L
increments it and stops the system by setting z = 1.

We suppose that x is hidden to L and we want to answer the following
question: can L deduce something about the remainder x mod 6 from the
parity of y?

90

local x, y: integer
x := 0; y := 4; z := 0;

H ::

















1. if y = 4 then {
2. random(x);
3. if xmod 6 ≥ 3 then
4. y : = (xmod 6)− 3 ∧ x : = 0;
5. else
6. y : = xmod 6 ∧ x : = 0; }

















‖ L ::

[

1. if (y < 4 ∧ z = 0) then
2. y : = y + 1 ∧ z : = 1;

]

Figure 2.9: A system with two processes

The system is modeled by a multi-agent mv-Kripke structure

M2 = (Q′, R′, L′, (∼′
H ,∼

′
L)),

whose states are triples (x, y, z), where x, y and z are the variables from
Figure 2.9. We consider (x, y, z) ∼′

H (x′, y′, z′) if x = x′ and (x, y, z) ∼′
L

(x′, y′, z′) if even(|y − y′|).
The question above can be expressed by the following formulas:

φk = PL O
(

(z = 0) ∨O (x mod 6 = k)
)

, for any 0 ≤ k ≤ 5.

If all these formulas are true then we obtain a negative answer to our
question. Again, we are trying to prove properties that are related to the
notion of run-based secrecy from [97].

Now, consider the equivalence relation σ on Q′ given by:

(x, y, z) σ (x′, y′, z′) if x mod 6 = x′ mod 6 ∧ y = y′ ∧ z = z′.

The (α2, α2, α2)-abstraction of M ′ by σ is shown in Figure 2.8(b). We have
denoted abstract states by triples (a, b, c), where a = x mod 6, b = y and
c = z. Again, we have obtained a finite abstract system and it will be very
useful if we could verify properties directly on it.

Abstractions are useful when they offer preservation results with respect
to a specific set of properties. We offer three forms of property preserving,
the first two being frequently found in the literature [34]:

• weak-preservation with respect to a set of properties P : an abstraction
is weakly preserving with respect to P if for any φ ∈ P , φ is evaluated
to 1 in the abstract system implies that φ is evaluated to 1 in the
concrete system;

91

• error-preservation with respect to a set of properties P : an abstraction
is error preserving with respect to P if for any φ ∈ P , φ is evaluated to
0 in the abstract system implies that φ is evaluated to 0 in the concrete
system;

• very weak-preservation with respect to a set of properties P : an abstrac-
tion is very weak-preserving with respect to P if for any φ ∈ P , φ is
evaluated to 1 or ⊥ in the abstract system implies that φ is evaluated
to 1 or ⊥ in the concrete system.

Weak and very weak preservation results

In order to prove weak and very weak preservation results, we start by some
technical lemmas that will identify the basic conditions that must be satisfied
by the abstraction in order to be weak or very weak preserving with respect
to ∀KCTL∗P+ or ∃KCTL∗P+ formulas.

Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (αR, αL, αS)-abstraction by

an equivalence ρ of a multi-agent mv-Kripke structure M1 = (Q1, R1, L1, (∼
1
i |

1 ≤ i ≤ n)) over AP and B3. As in the case of mv-Kripke structures, we
say that a path π2 ∈ Paths(M2, {⊥, 1}) is a corresponding path to π1 ∈
Paths(M1, {⊥, 1}) if:

• |π2| = |π1|;

• π2(i) = [π1(i)], for any 0 ≤ i < |π2|.

We denote by CM1(π2) the set of all {⊥, 1}-paths in M1 that have π2 as a
corresponding {⊥, 1}-path in M2.

Lemma 2.4 Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (αR, αL, αS)-

abstraction by an equivalence ρ of a multi-agent mv-Kripke structure M1 =
(Q1, R1, L1, (∼

1
i | 1 ≤ i ≤ n)) over AP and B3, and φ a ∀KCTL∗P+ formula.

If

1. for any π1 ∈ Paths(M1, {⊥, 1}) there exists a corresponding path π2 ∈
Paths(M2, {⊥, 1});

2. for any q, q′ ∈ Q1, ∼
1
i (q, q′) ∈ {⊥, 1} implies ∼2

i ([q], [q′]) ∈ {⊥, 1};

3. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ∈ {⊥, 1} implies L1(q)(p) ∈
{⊥, 1},

92

then
([φ]I2(π2,m) ∈ {⊥, 1})⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) ∈ {⊥, 1}),

for any (π2,m) ∈ Points(M2, {⊥, 1}) (I1, I2 are the interpreted systems cor-
responding to M1 and M2, respectively).

Proof The claim can be proved by structural induction on φ. We will
present only some of the possible cases, the others being similar to these
ones:

• φ = p ∈ AP . Suppose that [φ]I2(π2,m) = L2(π2(m), p) ∈ {⊥, 1}, for some

point (π2,m) ∈ Points(M2, {⊥, 1}). Let π1 be a path of M1 such that
π1 ∈ CM1(π2), if such a path exists. By 3 and π2(m) = [π1(m)], we
obtain that L1(π1(m), p) ∈ {⊥, 1} and, therefore, [φ]I1(π1,m) ∈ {⊥, 1};

• φ = Xφ1. Assume that φ1 satisfies the property and

[Xφ1]
I2
(π2,m) = |πm2 | ≤ 1∨

(

[φ1]
I2
(π2,m+1)∧R2(π2(m), π2(m+1))

)

∈ {⊥, 1},

for some point (π2,m) ∈ Points(M2, {⊥, 1}). Also, let π1 be a path of
M1 such that π1 ∈ CM1(π2), if such a path exists. If |πm2 | ≤ 1 then
|πm1 | ≤ 1 which leads to [Xφ1]

I1
(π1,m) = 1. Otherwise, [φ1]

I2
(π2,m+1) ∧

R2(π2(m), π2(m + 1)) ∈ {⊥, 1}. By the definition of π1 we obtain
|πm1 | > 1 and R1(π1(m), π1(m + 1)) ∈ {⊥, 1}, and by the induction
hypothesis, [φ1]

I1
(π1,m+1) ∈ {⊥, 1}. Consequently, [Xφ1]

I1
(π1,m) ∈ {⊥, 1};

• φ = ∀φ1. Assume that φ1 satisfies the property and

[∀φ1]
I2
(π2,m) =

∧

π[1..m]=π2[1..m]

[φ1]
I2
(π,m) ∈ {⊥, 1},

for some point (π2,m) ∈ Points(M2, {⊥, 1}). Also, let π1 be a path
of M1 such that π1 ∈ CM1(π2), if such a path exists. This implies
[φ1]

I2
(π,m) ∈ {⊥, 1}, for all paths π such that π[1..m] = π2[1..m]. By 1,

for each path σ of M1 with σ[1..m] = π1[1..m] there exists a path σ′

of M2 such that σ′[1..m] = π2[1..m] and [φ1]
I2
(σ′,m) ∈ {⊥, 1}. Applying

the induction hypothesis we get [φ1]
I1
(σ,m) ∈ {⊥, 1}, for each path σ with

σ[1..m] = π1[1..m]. Hence, [∀φ1]
I1
(π1,m) ∈ {⊥, 1};

• φ = Kiφ1. Assume that φ1 satisfies the property and

∧

∼2
i ((π2,m),(π′′

2 ,m
′)) 6=0

∼2
i ((π2,m), (π′′

2 ,m
′)) ∧ [φ]I2(π′′

2 ,m
′) ∈ {⊥, 1}, (2.1)

93

for some point (π2,m) ∈ Points(M2, {⊥, 1}). Also, let π1 be a path of
M1 such that π1 ∈ CM1(π2), if such a path exists. We have to prove
that

∧

∼1
i ((π1,m),(π′

1,m
′′)) 6=0

∼1
i ((π1,m), (π′

1,m
′′)) ∧ [φ]I1(π′

1,m
′′) ∈ {⊥, 1}.

Let (π′
1,m

′′) be a point of M1 such that ∼1
i ((π1,m), (π′

1,m
′′)) 6= 0.

By 1, there exists a corresponding path for π′
1, denote it π′

2, such that
π′

2(m
′′) = [π′

1(m
′′)]. Moreover, by 2, ∼2

i ((π2,m), (π′
2,m

′′)) ∈ {⊥, 1}.
From property (2.1) we deduce that [φ1]

I2
(π′

2,m
′′) ∈ {⊥, 1} which, by the

induction hypothesis, implies [φ1]
I1
(π′

1,m
′′) ∈ {⊥, 1}. 2

Lemma 2.5 Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (αR, αL, αS)-

abstraction by an equivalence ρ of a multi-agent mv-Kripke structure M1 =
(Q1, R1, L1, (∼

1
i | 1 ≤ i ≤ n)) over AP and B3, and φ a ∀KCTL∗P+ formula.

If

1. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

2. for any q, q′ ∈ Q1, ∼
1
i (q, q′) ∈ {⊥, 1} implies ∼2

i ([q], [q′]) ∈ {⊥, 1};

3. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 1 implies L1(q)(p) = 1;

4. for any q, q′ ∈ Q1, R2([q], [q
′]) = 1 implies R1(q, q

′) = 1;

5. for any q, q′ ∈ Q1, ∼
2
i ([q], [q′]) = 1 and [q] 6= [q′] implies ∼1

i (q, q′) = 1,

then
([φ]I2(π2,m) = 1)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 1),

for any (π2,m) ∈ Points(M2, {⊥, 1}) (I1, I2 are the interpreted systems cor-
responding to M1 and M2, respectively). The same holds even if the require-
ments 4 and 5 are replaced by R1(q, q

′) ∈ {0, 1}, for any q, q′ ∈ Q1, and
∼1
i (q, q′) ∈ {0, 1}, for any q, q′ ∈ Q1, respectively.

Proof The proof follows the same lines as Lemma 2.4. We detail only the
following case:

• φ = Kiφ1. Assume that φ1 satisfies the property and
∧

∼2
i ((π2,m),(π′′

2 ,m
′)) 6=0

∼2
i ((π2,m), (π′′

2 ,m
′)) ∧ [φ]I2(π′′

2 ,m
′) = 1, (2.2)

94

for some point (π2,m) ∈ Points(M2, {⊥, 1}). Also, let π1 be a path of
M1 such that π1 ∈ CM1(π2), if such a path exists. We have to prove
that

∧

∼1
i ((π1,m),(π′

1,m
′′)) 6=0

∼1
i ((π1,m), (π′

1,m
′′)) ∧ [φ]I1(π′

1,m
′′) = 1.

Let (π′
1,m

′′) be a point of M1 such that ∼1
i ((π1,m), (π′

1,m
′′)) 6= 0.

If (π′
1,m

′′) = (π1,m) then ∼1
i ((π1,m), (π1,m)) = 1. Because ∼2

i is
a similarity relation, we have ∼2

i ((π2,m), (π2,m)) = 1 which implies
[φ]I2(π2,m) = 1. By the induction hypothesis, we obtain [φ]I1(π1,m) = 1.

If (π′
1,m

′′) 6= (π1,m), by 1, we obtain that there exists a corresponding
path for π′

1, denote it π′
2, such that π′

2(m
′′) = [π′

1(m
′′)]. Moreover, by

2, ∼2
i ((π2,m), (π′

2,m
′′)) ∈ {⊥, 1}. From the property (2.2), we obtain

that ∼2
i ((π2,m), (π′

2,m
′′)) = 1 and [φ1]

I2
(π′

2,m
′′) = 1 and finally, by 5

and the induction hypothesis, we get ∼1
i ((π1,m), (π′

1,m
′′)) = 1 and

[φ1]
I1
(π′

1,m
′′) = 1, which completes our proof. 2

Until now, we have proved weak and very weak preservation results in-
volving ∀KCTL∗P+ formulas. Now, we turn our attention to ∃KCTL∗P+

formulas.

Lemma 2.6 Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (αR, αL, αS)-

abstraction by an equivalence ρ of a multi-agent mv-Kripke structure M1 =
(Q1, R1, L1, (∼

1
i | 1 ≤ i ≤ n)) over AP and B3, and φ an ∃KCTL∗P+ formula.

If

1. for any π2 ∈ Paths(M2, {⊥, 1}) there exists a path π1 ∈ Paths(M1, {⊥, 1})
with π1 ∈ CM1(π2);

2. for any q, q′ ∈ Q1, ∼
2
i ([q], [q′]) ∈ {⊥, 1} implies ∼1

i (q, q′) ∈ {⊥, 1};

3. for any q, q′ ∈ Q1, R2([q], [q
′]) ∈ {⊥, 1} implies R1(q, q

′) ∈ {⊥, 1};

4. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) ∈ {⊥, 1} implies L1(q)(p) ∈
{⊥, 1},

then
([φ]I2(π2,m) ∈ {⊥, 1})⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) ∈ {⊥, 1}),

for any (π2,m) ∈ Points(M2, {⊥, 1}) (I1, I2 are the interpreted systems cor-
responding to M1 and M2, respectively).

95

Proof We can proceed by structural induction on φ as in Lemma 2.4.
Below, we give only the new cases.

• φ = ∃φ1. Assume that φ1 satisfies the property and let (π2,m) be a
point of M2 such that

[∃φ1]
I2
(π2,m) =

∨

π′
2[1..m]=π2[1..m]

[φ1]
I2
(π′

2,m) ∈ {⊥, 1}.

There exists a path π′
2 with π′

2[1..m] = π2[1..m] such that [φ1]
I2
(π′

2,m) ∈

{⊥, 1}. Let π1 be a path of M1 corresponding to π2 (by 1, we know that
it exists). Applying the induction hypothesis, we get that [φ1]

I1
(π′

1,m) ∈

{⊥, 1}, for any path π′
1 ∈ CM1(π

′
2). Because of the third condition and

π′
2[1..m] = π2[1..m], there exists π′′

1 ∈ CM1(π
′
2) such that π′′

1 [1..m] =
π1[1..m] and [φ1]

I1
(π′′

1 ,m) ∈ {⊥, 1} which implies [∃φ1]
I1
(π1,m) ∈ {⊥, 1};

• φ = Piφ1. Assume that φ1 satisfies the property and let (π2,m) be a
point of M2 such that

∨

∼2
i ((π2,m),(π′

2,m
′)) 6=0

∼2
i ((π2,m), (π′

2,m
′)) ∧ [φ]I2(π′

2,m
′) ∈ {⊥, 1}.

There exists (π′
2,m

′) a point of M2 such that ∼2
i ((π2,m), (π′

2,m
′)) ∈

{⊥, 1} and [φ]I2(π′
2,m

′) ∈ {⊥, 1}. Now, let π1 ∈ CM1(π2) and π′
1 ∈ CM1(π

′
2)

(by 1, we know that they exist). By 2, we have ∼1
i ((π1,m), (π′

1,m
′)) ∈

{⊥, 1}. Moreover, by the induction hypothesis, we obtain [φ1]
I1
(π′

1,m
′) ∈

{⊥, 1} and consequently,

[Piφ1]
I1
(π1,m) =

∨

∼1
i ((π1,m),(π′

1,m
′)) 6=0

∼1
i ((π1,m), (π′

1,m
′))∧[φ]I1(π′

1,m
′) ∈ {⊥, 1}.

2

Lemma 2.7 Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (αR, αL, αS)-

abstraction by an equivalence ρ of a multi-agent mv-Kripke structure M1 =
(Q1, R1, L1, (∼

1
i | 1 ≤ i ≤ n)) over AP and B3, and φ an ∃KCTL∗P+ formula.

If

1. for any π2 ∈ Paths(M2, {⊥, 1}) there exists a path π1 ∈ Paths(M1, {⊥, 1})
with π1 ∈ CM1(π2);

96

2. for any q, q′ ∈ Q1, ∼
2
i ([q], [q′]) = 1 implies ∼1

i (q, q′) = 1;

3. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 1 implies L1(q)(p) = 1;

4. for any q, q′ ∈ Q1, R2([q], [q
′]) = 1 implies R1(q, q

′) = 1,

then
([φ]I2(π2,m) = 1)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 1),

for any (π2,m) ∈ Points(M2, {⊥, 1}) (I1, I2 are the interpreted systems cor-
responding to M1 and M2, respectively).

Proof The proof follows the same lines as Lemma 2.6. 2

We will enumerate now the weak and very weak preservation results that
hold for all the possible types of abstraction.

Theorem 2.25 Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (α3, αL, α3)-

abstraction by an equivalence ρ of a multi-agent mv-Kripke structure M1 =
(Q1, R1, L1, (∼

1
i | 1 ≤ i ≤ n)) over AP and B3, and φ an ∀KCTL∗P+ formula.

• If αL = α2 then

([φ]I2(π2,m) ∈ {⊥, 1})⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) ∈ {⊥, 1}),

for any (π2,m) ∈ Points(M2, {⊥, 1}). Moreover, if R1(q, q
′) ∈ {0, 1}

and ∼1
i (q, q′) ∈ {0, 1}, for all q, q′ ∈ Q1 and 1 ≤ i ≤ n, then

([φ]I2(π2,m) = 1)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 1),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

• If αL = α1, R1(q, q
′) ∈ {0, 1} and ∼1

i (q, q′) ∈ {0, 1}, for all q, q′ ∈ Q1

and 1 ≤ i ≤ n, then

([φ]I2(π2,m) = 1)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 1),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

Proof Directly from Lemma 2.4 and Lemma 2.5. 2

Theorem 2.26 Let M1 = (Q1, R1, L1, (∼
1
i | 1 ≤ i ≤ n)) be a multi-agent

mv-Kripke structure over AP and B3, M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) an

(α1, αL, α1)-abstraction by an equivalence ρ, and φ an ∀KCTL∗P+ formula.

97

• If αL ∈ {α1, α2} then

([φ]I2(π2,m) = 1)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 1),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

Proof Directly from Lemma 2.5. 2

Next, we try to give a weak and a very weak preservation result for ab-
stractions of type (α2, αL, α2), for some αL ∈ {α1, α2, α3}, with respect to
∃KCTL∗P+ formulas. Since the similarity relations of the abstractions are
reflexive closures of the reinterpretations of ∼1

i according to α2, the condition
2 in Lemmas 2.6 and 2.7 might not hold. However, we will show that the
preservation results hold for equivalences relations ρ for which the reinterpre-
tation of ∼1

i according to α2 is already reflexive. If M1 and M2 are as above,
we say that ρ is compatible with ∼1

i if whenever q ρ q′ we have ∼1
i (q, q′) = 1.

Clearly, this compatibility implies that the reinterpretation of ∼1
i according

to α2 is reflexive.

Theorem 2.27 Let M1 = (Q1, R1, L1, (∼
1
i | 1 ≤ i ≤ n)) be a multi-agent

mv-Kripke structure over AP and B3, M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) an

(α2, αL, α2)-abstraction by an equivalence ρ compatible with ∼1
i , and φ an

∃KCTL∗P+ formula.

• If αL ∈ {α1, α2} then

([φ]I2(π2,m) = 1)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 1),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

• If αL = α2 then

([φ]I2(π2,m) = ⊥)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) ∈ {⊥, 1}),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

Proof Directly from Lemmas 2.6 and 2.7. 2

Example 2.14 The abstract system from Example 2.13 has only 13 reach-
able states and we can easily prove that the truth value of φk, for any
0 ≤ k ≤ 5, is 1. Moreover, since φk ∈ ∃KCTL

∗P+ we can apply the weak
preservation result from Theorem 2.27 and obtain that all formulas φk are 1
in the concrete system I1.

98

Error preservation results

To prove the error preservation results, we start again, by some technical
lemmas that identify the basic conditions that must be satisfied by an ab-
straction in order to be error-preserving.

Lemma 2.8 Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (αR, αL, αS)-

abstraction by an equivalence ρ of a multi-agent mv-Kripke structure M1 =
(Q1, R1, L1, (∼

1
i | 1 ≤ i ≤ n)) over AP and B3, and φ an ∃KCTL∗P+ formula.

If

1. for any π1 ∈ Paths(M1, D) there exists a corresponding path π2 ∈
Paths(M2, D);

2. for any q, q′ ∈ Q1, ∼
1
i (q, q′) ∈ {⊥, 1} implies ∼2

i ([q], [q′]) ∈ {⊥, 1};

3. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 0 implies L1(q)(p) = 0;

then
([φ]I2(π2,m) = 0)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 0),

for any (π2,m) ∈ Points(M2, {⊥, 1}) (I1, I2 are the interpreted systems cor-
responding to M1 and M2, respectively).

Proof The claim is proved by structural induction on φ. We will enumerate
only some of the possible cases:

• φ = ∃φ1. Assume that φ1 satisfies the property and

[∃φ1]
I2
(π2,m) =

∨

π[1..m]=π2[1..m]

[φ1]
I2
(π,m) = 0,

for some point (π2,m) ∈ Points(M2, {⊥, 1}). Also, let π1 be a path of
M1 such that π1 ∈ CM1(π2), if such a path exists. Then, [φ1]

I2
(π,m) = 0,

for all paths π such that π[1..m] = π2[1..m].

By 1, for each path σ of M1 with σ[1..m] = π1[1..m] there exists a path
σ′ of M2 such that σ′[1..m] = π2[1..m] and [φ1]

I2
(σ′,m) = 0. Applying

the induction hypothesis, we get [φ1]
I1
(σ,m) = 0, for each path σ with

σ[1..m] = π1[1..m]. Hence, [∃φ1]
I1
(π1,m) = 0

• φ = Piφ1. Assume that φ1 satisfies the property and

∨

∼2
i ((π2,m),(π′

2,m
′)) 6=0

(

∼2
i ((π2,m), (π′

2,m
′)) ∧ [φ]I2(π′

2,m
′)

)

= 0, (2.3)

99

for some point (π2,m) ∈ Points(M2, {⊥, 1}). Also, let π1 be a path of
M1 such that π1 ∈ CM1(π2), if such a path exists.

We have to prove that

∨

∼1
i ((π1,m),(π′

1,m
′′)) 6=0

∼1
i ((π1,m), (π′

1,m
′′)) ∧ [φ]I1(π′

1,m
′′) = 0.

Let (π′
1,m

′′) be a point of M1 such that ∼1
i ((π1,m), (π′

1,m
′′)) 6= 0.

By 1, there exists π′
2 ∈ Paths(M2, {⊥, 1}) a corresponding path to π′

1

and, by 2, we obtain ∼2
i ((π2,m), (π′

2,m
′′)) ∈ {⊥, 1}. Property (2.3)

implies that [φ1]
I2
(π′

2,m
′′) = 0 and by the induction hypothesis we get

[φ1]
I1
(π′

1,m
′′) = 0, which completes our proof. 2

The following lemma can be proved in a similar way to Lemma 2.8.

Lemma 2.9 Let M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) be an (αR, αL, αS)-

abstraction by an equivalence ρ of a multi-agent mv-Kripke structure M1 =
(Q1, R1, L1, (∼

1
i | 1 ≤ i ≤ n)) over AP and B3, and φ an ∀KCTL∗P+ formula.

If

1. for any π2 ∈ Paths(M2, {⊥, 1}) there exists a path π1 ∈ Paths(M1, {⊥, 1})
with π1 ∈ CM1(π2);

2. for any q, q′ ∈ Q1, ∼
2
i ([q], [q′]) ∈ {⊥, 1} implies ∼1

i (q, q′) ∈ {⊥, 1};

3. for any q, q′ ∈ Q1, R2([q], [q
′]) ∈ {⊥, 1} implies R1(q, q

′) ∈ {⊥, 1};

4. for any q ∈ Q1 and any p ∈ AP , L2([q])(p) = 0 implies L1(q)(p) = 0;

then
([φ]I2(π2,m) = 0)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 0),

for any (π2,m) ∈ Points(M2, {⊥, 1}) (I1, I2 are the interpreted systems cor-
responding to M1 and M2, respectively).

Proof Again, the proof can be done by structural induction on φ. We will
detail only the cases that do not appear in the previous lemma.

• φ = ∀φ1. Assume that φ1 satisfies the property and

[∀φ1]
I2
(π2,m) =

∧

π[1..m]=π2[1..m]

[φ1]
I2
(π,m) = 0,

100

for some point (π2,m) ∈ Points(M2, {⊥, 1}). Then, there exists a path
π′

2 with π′
2[1..m] = π2[1..m] such that [φ1]

I2
(π′

2,m) = 0. Let π1 be a path

of M1 such that π1 ∈ CM1(π2). Applying the induction hypothesis, we
get that [φ1]

I1
(π′

1,m) = 0, for any path π′
1 ∈ CM1(π

′
2). Because of the third

condition and π′
2[1..m] = π2[1..m], there exists π′′

1 ∈ CM1(π
′
2) such that

π′′
1 [1..m] = π1[1..m] and [φ1]

I1
(π′′

1 ,m) = 0 which implies [∀φ1]
I1
(π1,m) = 0;

• φ = Kiφ1. Assume that φ1 satisfies the property and
∧

∼2
i ((π2,m),(π′

2,m
′)) 6=0

∼2
i ((π2,m), (π′

2,m
′)) ∧ [φ]I2(π′

2,m
′) = 0,

for some point (π2,m) ∈ Points(M2, {⊥, 1}).

Then, there exists some point (π′
2,m

′) ∈ Points(M2, {⊥, 1}) such that
∼2
i ((π2,m), (π′

2,m
′)) ∈ {⊥, 1} and we have [φ]I2(π′

2,m
′) = 0. Let π1 ∈

CM1(π2) and π′
1 ∈ CM1(π

′
2) (by 1, we know that they exist). By 2,

we have that ∼1
i ((π1,m), (π′

1,m
′)) ∈ {⊥, 1} and by the induction hy-

pothesis, we obtain that [φ]I1(π′
1,m

′) = 0. Consequently, [Kiφ1]
I1
(π1,m) = 0.

2

In the following, we will state the error preservation results.

Theorem 2.28 Let M1 = (Q1, R1, L1, (∼
1
i | 1 ≤ i ≤ n)) be a multi-agent

mv-Kripke structure over AP and B3, M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) an

(α3, αL, α3)-abstraction by an equivalence ρ with αL ∈ {α1, α3}, and φ an
∃KCTL∗P+ formula. Then

([φ]I2(π2,m) = 0)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 0),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

Proof Directly from Lemma 2.8. 2

Next, we prove that the (α2, α, α2)-abstractions, for some α ∈ {α1, α2, α3},
are error preserving with respect to ∀KCTL∗P . Again, ρmust be compatible
with ∼1

i .

Theorem 2.29 Let M1 = (Q1, R1, L1, (∼
1
i | 1 ≤ i ≤ n)) be a multi-agent

mv-Kripke structure over AP and B3, M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) an

(α2, αL, α2)-abstraction by an equivalence ρ compatible with ∼1
i with αL ∈

{α1, α3}, and φ an ∀KCTL∗P+ formula. Then

([φ]I2(π2,m) = 0)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 0),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

101

Proof Directly from Lemma 2.9. 2

Theorem 2.30 Let M1 = (Q1, R1, L1, (∼
1
i | 1 ≤ i ≤ n)) be a multi-agent

mv-Kripke structure over AP and B3, M2 = (Q2, R2, L2, (∼
2
i | 1 ≤ i ≤ n)) an

(α1, αL, α1)-abstraction by an equivalence ρ with αL ∈ {α1, α3}, and φ an
∃KCTL∗P+ formula. Then

([φ]I2(π2,m) = 0)⇒ (∀π1 ∈ CM1(π2))([φ]I1(π1,m) = 0),

for any (π2,m) ∈ Points(M2, {⊥, 1}).

Proof Directly from Lemma 2.8. 2

Example 2.15 Using the predicate odd(x), which is 1 for odd numbers and
0 otherwise, we transform φ into an equivalent formula from ∃KCTL∗P+.
The abstract system from Example 2.12 has only 4 reachable states and we
can easily prove that the formula φ is false. Since φ ∈ ∃KCTL∗P+ we can
apply the error preservation result from Theorem 2.28 and obtain that φ is
false in the concrete system I1.

102

Chapter 3

Abstractions of Data Types

Many abstraction techniques we have found in the literature are driven by
almost the same mechanism (e.g., surjective functions) and based on similar
property preservation results, but the formalisms used by authors are quite
different. We may say that all these abstraction techniques have their roots
in Cousot’s abstract interpretation framework [33], but this framework offers
only a general methodology which, in particular cases should be comple-
mented by specific techniques. Therefore, in our opinion, the development
of specialized abstraction formalisms to allow reasonable instantiations in
practical cases, is necessary.

In this chapter, we provide a solution to this problem with respect to data
types, which extends the one in [111]. It tries to capture the essence of data
type reduction and, in order to do that (abstract) data types are modeled by
membership algebras enriched by sets of predicate symbols. This is a widely
accepted formalism for specifying data types which offers mathematical pre-
cision and, on the other side, is practical related in that that many modern
programming languages, such as C++ and Java, allow the users to define ab-
stract data types beyond the basic ones. We define an abstraction as being
a pair consisting of a congruence and an interpretation policy. The congru-
ence partitions the original data type and redefines its operations in order
to operate properly on the quotient data type. The interpretation policy in-
terprets the predicate symbols into the quotient data type. It is shown that
the interpretation policy cannot be substituted by the congruence as in the
case of the operations. Therefore, a data type abstraction should necessarily
include an interpretation policy.

The definition of an abstraction we adopted has proved to be very suitable
from many points of view. First, we were able to classify abstractions based
on the property preservation they assure. This classification shows clearly
that the property preservation an abstraction assures depends directly on

103

the interpretation policy and indirectly on the congruence. Secondly, the ab-
straction technique proposed in the paper generalizes and clarifies the nature
of many abstraction techniques found in the literature, such as the technique
of duplicating predicate symbols [26, 35, 6], shape analysis [96, 104], predi-
cate abstraction [57, 36, 113], McMillan’s approach [86] etc. For example, it
is shown that the technique of duplicating predicate symbols, which is based
on associating two versions to each formula, one used for validation and the
other one used for refutation, consists of two abstractions based on the same
congruence. One is used in conjunction with validation formulas (because
these abstractions preserve the truth value 1), and one is used in conjunction
with refutation formulas (because these abstractions preserve the truth value
0). Therefore, the nature of this technique is clearly emphasized.

The abstraction technique proposed in the paper scale well from data
types to abstract data types. Here, abstractions are applied to initial specifi-
cations by means of equations. The result of such an abstraction is a specifi-
cation of a quotient abstract data type, which is in fact a new abstract data
type. Therefore, analysis techniques specific to abstract data types can be
combined with the abstraction technique proposed in this paper and applied
in order to reason on (quotient) abstract data types.

The chapter is organized as follows. The first section recalls basic concepts
on membership algebras and the second one provides a very brief introduction
to (abstract) data types, motivates the usefulness of the membership algebra
apparatus in their study, and fixes the logic to be used in order to reason
about data types. Abstractions of data types are introduced in the third
section, where property preservation results are also provided. The compar-
isons with other abstraction techniques are the subject of the next section.
Thus, it is shown that the technique of duplicating predicate symbols, shape
analysis, predicate abstraction and McMillan’s approach are all particular
cases of our approach (from the abstraction’s point of view). The last sec-
tion extends the abstraction technique discussed in the previous sections to
abstract data types.

3.1 Preliminaries on Membership Algebra

We start the presentation of the abstraction techniques for abstract data
types by recalling a few concepts regarding membership algebra [91, 8].

Let K be a non-empty set whose elements will be called kinds. In this
framework, the word kind is used instead of the more usual word sort, that
will be reserved for another purpose. A K-kinded membership signature is
a pair Ω = (Σ, π) which consists of a (K∗ × K)-indexed family of function

104

symbols Σ = (Σw,k|(w, k) ∈ K∗ × K) such that Σw,k ∩ Σw,k′ = ∅ for any
(w, k), (w, k′) ∈ K∗×K with k 6= k′, and a function π : S → K, where S is a
non-empty set disjoint of K whose elements are called sorts . The elements
(w, s) ∈ K∗ × K are called types over K, and the elements σ ∈ Σw,k are
called function or operation symbols of type (w, k); the elements σ ∈ Σλ,k are
also called constant symbols of kind k ∈ K. Σλ,k is re-denoted by Σk, for any
k ∈ K.

Let Ω = (Σ, π) be a K-kinded membership signature. Regarding kinds as
sorts, Σ can be thought as an ordinary signature. In this context, any algebra
of signature Σ will also be called a K-kinded Σ-algebra. That is, a K-kinded
Σ-algebra is a pair A = (A,ΣA), where ΣA = (ΣA

w,k|(w, k) ∈ K∗ × K),
ΣA
w,k = {σA|σ ∈ Σw,k}, and σA is a function from Aw into Ak, for all (w, k) ∈

K∗ × K and σ ∈ Σw,k (Aw denotes {∅}, if w = λ, and Ak1 × · · · × Akn
,

if w = k1 · · · kn ∈ K+). An Ω-algebra is a triple A = (A,ΣA,ΠA), where
(A,ΣA) is K-kinded Σ-algebra and ΠA is a function which assigns to each
sort s ∈ S a subset As ⊆ Aπ(s). We will denote A = (A,ΣA) and call it the
K-kinded Σ-algebra associated to A.

An Ω-homomorphism from an Ω-algebra A to an Ω-algebra B is a Σ-ho-
momorphism h from A to B such that hπ(s)(As) ⊆ Bs, for any sort s ∈ S.
Ω-equivalences (Ω-congruences) on A are Σ-equivalences (Σ-congruences)
on A.

Given an Ω-algebra A = (A,ΣA,ΠA) and an Ω-congruence ρ = (ρk|k ∈
K), the quotient of A by ρ is the Ω-algebra A/ρ = (A/ρ,ΣA/ρ,ΠA/ρ), where
A/ρ = (A/ρ,ΣA/ρ) is the quotient of the Σ-algebra A by ρ and ΠA/ρ(s) =
{[a]ρπ(s)

|[a]ρπ(s)
∩ ΠA(s) 6= ∅}, for any sort s.

Given a K-kinded signature Σ and a disjoint family X = (Xk|k ∈ K) of
variables, disjoint of Σ as well, denote by TΣ(X)k the set of terms of kind
k over Σ and X. The K-indexed set TΣ(X) = (TΣ(X)k|k ∈ K) can be
structured as a K-kinded Σ-algebra as usual, denoted TΣ(X). When X = ∅,
we simply write TΣ instead of TΣ(∅). The elements of this algebra are called
ground terms. TΣ is an initial algebra in the class AlgΣ of all Σ-algebras,
that is, there exists a unique Σ-homomorphism evalA from TΣ into A, for
any A ∈ AlgΣ.

If Ω = (Σ, π) is a K-kinded membership signature and Π is a function
which assigns a subset of TΣ(X)π(s) to any sort s ∈ S, then TΩ(X,Π) =
(TΣ(X),ΣTΣ(X),Π) is an Ω-algebra. TΩ(Π) stands for TΩ(∅,Π).

An assignment of X into an Ω-algebra A is a K-indexed set of functions
γ = (γk|k ∈ K) such that γk is a function from Xk into Ak, for all k ∈ K.
If a ∈ Ak and x ∈ Xk, then γ[x/a] is the assignment obtained from γ by
replacing the value γk(x) by a. γ̄ denotes the unique homomorphic extension
of γ to TΣ(X), and Γ(X,A) stands for the set of all assignments of X into

105

A (γ̄ may not be a homomorphism from TΩ(X,Π) to A, for any Π as above).
In the membership equational logic over Ω = (Σ, π) and X there are two

types of atomic formulas:

• equations, which are of the form t = t′, where t, t′ ∈ TΣ(X)k for some
kind k, and

• membership assertions, which are of the form t : s, where s ∈ S and
t ∈ TΣ(X)π(s).

A sentence (formula) in the membership equational logic is a universally
quantified Horn clause on the above atomic formulas, that is, a sentence of
the form “e if C”, where e is an atomic formula and C is a finite set of atomic
formulas.

Given an Ω-algebra A, the satisfaction of atomic formulas with respect
to a given assignment γ : X → A is defined by:

• A, γ |= t = t′ iff γ̄k(t) = γ̄k(t
′);

• A, γ |= t : s iff γ̄π(s)(t) ∈ As.

Given a sentence φ = e if C, we say that A satisfies φ or A is a model of
φ, denoted A |= φ, if γ satisfies e whenever it satisfies each atomic formula
in C, for any K-kinded assignment γ : X → A. For a set Φ of sentences we
write A |= Φ iff A |= φ, for all φ ∈ Φ. The class of all Ω-algebras that are
models for a set Φ of sentences is denoted by Mod(Φ).

Given a set Φ of sentences over Ω = (Σ, π) and X, the binary relation
=Φ on TΣ(X) given by t =Φ,k t

′ iff (∀A ∈ Mod(Φ))(∀γ : X → A)(γ̄k(t) =
γ̄k(t

′)), for any kind k and terms t and t′ of kind k, is a congruence. Moreover,
if we consider the function Π : S → 2TΣ(X) given by

Π(s) = {[t] ∈ TΣ(X)π(s)/=Φ,π(s) |(∀A ∈Mod(Φ))(∀γ : X → A)(γ̄π(s)(t) ∈ As)},

for any s ∈ S, then (TΣ(X)/ =Φ,Σ
TΣ(X)/=Φ ,Π) is an Ω-algebra. As this

algebra is uniquely defined by Φ, we denote it by TΩ,Φ(X).
According to [91], TΩ,Φ(X) is a free algebra in the class Mod(Φ), i.e., for

any Ω-algebra A ∈Mod(Φ) and for each assignment γ : X → A there exists
a unique Ω-homomorphism h : TΩ,Φ(X) → A such that hk([t]=Φ,k

) = γ̄k(t),
for any kind k and any term t of kind k. Moreover, TΩ,Φ = TΩ,Φ(∅) is an
initial algebra in the class Mod(Φ), i.e., for any Ω-algebra A ∈Mod(Φ) there
exists a unique Ω-homomorphism h : TΩ,Φ → A.

The following set of deduction rules is sound and complete for the mem-
bership logic over Ω and X [91]:

106

subject reduction:
t : s, t = t′

t′ : s

membership:
t1 : s1, . . . , tn : sn, u1 = v1, . . . , un = vn

t : s
, where

t : s if t1 : s1, . . . , tn : sn, u1 = v1, . . . , un = vn ∈ Φ

reflexivity:
t = t

symmetry:
t = t′

t′ = t

transitivity:
t = t′, t′ = t′′

t = t′′

congruence:
t1 = t′1, . . . , tn = t′n

f(t1, . . . , tn) = f(t′1, . . . , t
′
n)

, where ti and t′i are

terms of kinds ki, 1 ≤ i ≤ n, and f is of type
(k1, . . . kn, k)

replacement:
t1 : s1, . . . , tn : sn, u1 = v1, . . . , un = vn

t = t′
, where

t = t′ if t1 : s1, . . . , tn : sn, u1 = v1, . . . , un = vn ∈ Φ

3.2 Reasoning About Data Types

We model data types by membership algebras, a widely accepted formalism
for specifying data types [91, 8]. To address the problem of verifying or
analyzing a particular program that uses a certain data structure, we enrich
signatures with logical symbols used to build formulas. Questions about
properties of data structures will be answered by evaluating such formulas.

(Abstract) Data Types In this section we provide a brief introduction to
(abstract) data types and motivate the usefulness of the membership algebra
apparatus, an extension of universal algebra, in their study. We follow mainly
[40, 41, 95, 91, 8].

A data type consists of one or more sets of values, such as natural numbers,
booleans, characters or strings, together with a collection of functions on
these sets. Examples of basic data types provided by most programming
languages include integer, boolean, array, record. From a mathematical point
of view, a data type is an Ω-algebra. The signature Σ associates names
to operations, while the algebra associates domains to kinds and interprets
correspondingly the operation names. The sorts are used for overloading

107

operation names or for handling errors and partiality.
Many modern programming languages, such as C++ or Java, allow the

user to define additional data types beyond the basic ones, such as stack,
queue, tree or counter. As it is usual in such cases, operations are defined
by sentences. For example, if we define a data type of stacks over arbitrary
elements (stacks are sequences of elements and the empty stack will be de-
noted λ) with the operations Push of type (kstack kelem, kstack), Pop of type
(kstack, kstack), and Top of type (kstack, kelem), and the sort stack of kind kstack
to represent valid stacks, then the following sentences specify the properties
of these operations:

1. λ : stack;

2. Push(x, y) : stack if x : element and y : stack;

3. Top(Push(x, y)) = x if y : stack;

4. Pop(Push(x, y)) = y if y : stack,

where x is a variable of kind kstack and y is a variable of kind kelem. Notice
that, by the specification of the sort stack, the term Pop(λ) of kind kstack
is not of sort stack and it will be considered an error. Such data types are
usually called abstract data types. In fact, a specification as the one above
stands for all data types of stacks over equipotent 1 sets of elements. These
data types are “similar” in that they differ only by the “nature” of their ele-
ments. From a mathematical point of view, an abstract data type is a class
of Ω-algebras closed under isomorphism (the isomorphism models the “simi-
larity” concept above). More about abstract data types and specifications is
provided in Section 3.5.

There are many advantages which follow from the utilization of the mem-
bership algebra apparatus in modeling (abstract) data types, such as:

• mathematical precision;

• using membership algebras, instead of universal algebras, we can deal
well with errors and partiality;

• independence of any particular implementation in a computer language.
Therefore, we may reason about effects of the operations, relations to
other data types etc.;

1Two sets are equipotent if there exists a bijective function from one set into the other
one.

108

• easiness in defining new operations and predicates on data types. For
example, from the axioms above, one may easily define the predicate
IsEmpty(x) by the following additional axioms:

– IsEmpty(λ) = true;

– IsEmpty(Push(x, y)) = false;

• easiness in checking program correctness. If a program using a set of
specified data types is designed so that the correctness of the program
depends only on the specification, then the primary concern of the data
type implementor is to satisfy the specification. In this way, neither
the user nor the implementor of a data type needs to worry about
additional details of the other’s program.

• membership algebra specifications can be efficiently implemented in
systems like Maude [30].

Abstract data types are central to object-oriented programming where
every “class” is an abstract data type. An “object” is a data structure
encapsulated with a set of routines, called “methods”, which operate on the
data. Operations on the data can only be performed via these methods, which
are common to all objects that are instances of a particular class. Thus the
interface to objects is well defined, and allows the code implementing the
methods to be changed as long as the interface remains the same.

A Motivating Example We consider a toy example in order to moti-
vate the concepts we are going to introduce. More developed examples are
provided later in the chapter.

Example 3.1 The set of natural numbers together with the addition oper-
ation defines a data type that can be modeled by a K-kinded Ω-algebra A,
where:

• K contains only one kind (denoted by nat) and S is empty;

• Σ contains one constant symbol of type nat for each natural number,
and one operation symbol + of type (nat nat, nat);

• Anat = N;

• the constant symbol associated to a natural number is interpreted as
the number itself, and +A is the usual addition operation on natural
numbers.

109

In this algebra, the following property trivially holds:

(ϕ1) (∀x, y ∈ Anat)(Isgrz
A(x) ∨ IsgrzA(y) ⇒ IsgrzA(x+A y)),

where Isgrz is a unary predicate symbol whose meaning is “is greater than
zero”, IsgrzA is its interpretation in A, ‘∨’ and ‘⇒’ are the usual “or” and
“implies” predicates, x and y are variables, and ‘∀’ is the universal quantifier.
These new elements do not belong to the algebra A; they are part of a meta-
language used to express properties of A.

Assume now that we are interested in distinguishing between 0 and the
other natural numbers. That is, we want to treat all the natural numbers
greater than 0 as a whole. In order to do that we define a congruence ρ by

a ρ b iff either a = b = 0 or a, b 6= 0,

for all natural numbers a and b. The equivalence classes induced by ρ are [0],
containing only the number 0, and [1], containing all the other numbers. The
addition operation on these equivalence classes is given in the table below.

+A/ρ [0] [1]
[0] [0] [1]
[1] [1] [1]

The algebra A/ρ acts as an abstraction of A with respect to the property
mentioned above (all the natural numbers greater than 0 are treated as a
whole). The predicate symbol Isgrz can be interpreted in A/ρ by

IsgrzA/ρ([a]) iff (∀a′ ∈ [a])(a′ > 0),

for any a. Now, the property ϕ1 can be rewritten as follows:

(ϕ2) (∀x, y ∈ Anat/ρ)(Isgrz
A/ρ(x) ∨ IsgrzA/ρ(y) ⇒

IsgrzA/ρ(x+A/ρ y)).

We have to remark that the validity of ϕ2 in A/ρ leads to the validity of
ϕ1 in A. Moreover, ϕ2 holds in A/ρ, and this can be easily checked out by
an automatic procedure due to the fact that A/ρ contains only two elements.
Therefore, ϕ1 holds in A. Much more, ϕ1 and ϕ2 are in fact interpretations
of the same formula ϕ (of the meta-language)

(ϕ) (∀x, y)(Isgrz(x) ∨ Isgrz(y) ⇒ Isgrz(x+ y))

in two different algebras of the same signature. We can say that the validity
of ϕ in A/ρ implies the validity of ϕ in A.

110

Our example works fine with the predicates we considered. However, for
other predicates things can be totally different. Let us consider, for instance,
the equality predicate on A. It can be interpreted in A/ρ in various ways.
One of the most natural way is to consider a new truth value ⊥ whose
meaning is “indefinite”, and to define the predicate as in the table below.

=A/ρ [0] [1]
[0] 1 0
[1] 0 ⊥

(=A/ρ ([1], [1]) is evaluated to ⊥ because two arbitrary numbers in [1] can be
equal or different). 2

Logically Extended Signatures The example in the paragraph above
leads us to the following considerations:

1. the meta-language used to express properties of data types (algebras)
should be specific to signatures and not to data types (algebras). But,
even if the elements of the meta-language are specific to signatures they
should work properly inside the algebras.

2. data type reductions can be captured by congruences. In such a case,
the operations are automatically redefined to operate on the quotient
data type (algebra), but the predicates need a special treatment (more
arguments about this are provided in Section 3.3).

We will discuss (1) in this section, and (2) in the next section.

Let K be a set of kinds. Logically extended K-kinded membership signa-
tures are adding logical symbols (predicate symbols) to ordinary membership
signatures. The logical symbols of such a signature have two roles:

– to specify basic properties satisfied by elements of an algebra;

– to build formulas defining new properties.

Definition 3.1 A logically extended K-kinded membership signature is a 4-
tuple ΩL = (B,≤′,Σ,ΣL, π), where:

• B = (B,∧,∨,¬) is a truth algebra;

• ≤′ is a partial order on B such that:

– (B,≤′) is an inf-complete lattice, i.e. any subset B′ ⊆ B has a
greatest lower bound. We denote by 0′ its smallest element;

111

– for any x ∈ B there exists a unique y ∈ B such that x ≻′ y
(<′=≤′ −{(a, a)|a ∈ B}, >′ is the inverse of <′, and x ≻′ y if
x >′ y and there exists no c ∈ B such that x >′ c >′ y).

• K ′ ⊆ K is a set of basic kinds.

• ΣL = (ΣL,w|w ∈ K
′+) is a set of predicate symbols (w is called a logical

type);

• the set of kinds K contains apart from K ′, a kind for each logical type
for which we have at least one predicate symbol in ΣL. Formally,

K = K ′ ∪ {kw|w ∈ K
′+ and ΣL,w 6= ∅};

• Σ is a K∗ × K-indexed family of function symbols such that it con-
tains a function symbol (, · · · ,) for each logical type for which
we have at least one predicate symbol in ΣL. The function symbol
(, · · · ,) associated to the logical type w = k1 · · · km ∈ K

′+ has the
arity (k1 · · · km, kw);

• the set of sorts S contains a distinguished sort sp,b, for each p ∈ ΣL and
b ∈ B − {0′}.

• π is a function from S into K such that π(sp,b) = kw, for any p ∈ ΣL,w,
b ∈ B − {0′} and w ∈ K ′+.

The kind kw, for some logical type w = k1 . . . km ∈ K ′+, represents all
possible m-tuples for which the ith element is of kind ki (by means of the
corresponding function symbol (, · · · ,)) and sp,b defines the set of all
tuples on which p gets truth values greater than or equal to b (with respect
to ≤′), for any b ∈ B − {0′}. The tuples on which p is 0′ are the ones that
do not belong to any sp,b with b ∈ B − {0′}. In fact, the representation we
have used for multi-valued predicates is obtained in two steps:

• we represent a multi-valued predicate p by a set of two-valued predicates
{pb|b ∈ B − {0

′}} such that pb is 1 for elements on which p is greater
than or equal to b (with respect to ≤′);

• each 2-valued predicate is represented by a sort that specifies it’s non-
zero values.

A logically extended membership signature should be thought as an or-
dinary membership signature that contains some distinguished kinds and

112

some distinguished sorts; the predicate symbols are just used to specify the
distinguished kinds and sorts.

Logically extended algebras are membership algebras that correspond to
logically extended membership signatures such that the meaning of the sorts
representing predicates is as above.

Definition 3.2 Let ΩL = (B,≤′,Σ,ΣL, π) be a logically extended K-kinded
signature. An ΩL-algebra is a membership algebra A = (A,ΣA,ΠA) such
that:

• ΠA(sp,b) ⊆ ΠA(sp,b′), for any p ∈ ΣL and b, b′ ∈ B − {0′} with b′ ≤′ b.

• ΠA(sp,b) ∩ ΠA(sp,b′) = ∅, for any p ∈ ΣL and b, b′ ∈ B − {0′} such that
there exists x ∈ B with x ≺′ b and x ≺′ b′.

By the representation of multi-valued predicates used in the logically
extended membership algebras, the truth value of some predicate p ∈ ΣL,w

over an element a ∈ Akw
is the maximum truth value b ∈ B − {0′}, with

respect to ≤′, for which a ∈ ΠA(sp,b), or 0′ if such a b does not exist.
Homomorphisms, equivalences, and congruences of ΩL-algebras are ho-

momorphisms, equivalences, and congruences, respectively, of membership
algebras.

Given ΩL = (B,≤′,Σ,ΣL, π) a logically extended K-kinded membership
signature and a (denumerable) set X of K-kinded variables, we define the
set of first order formulas over ΩL and X as in Section 1.2.1 but, now, the
elements of the universe are terms:

1. atomic formulas:

(a) p(t1, · · · , tm) is an atomic formula, for any logical symbol p of type
k1 · · · km and any term ti of kind ki, 1 ≤ i ≤ m;

2. formulas:

(a) every atomic formula is a formula;

(b) if α and β are formulas, then (α∨β), ¬α, and (α∧β) are formulas;

(c) if x is a variable and α is a formula, then ((∃x)α) and ((∀x)α) are
formulas.

Denote by LO(ΩL, X), where O ⊆ {∧,∨,¬}, the set of first order formulas
over ΩL and X that use only the operators from the set O, the quantifier ∀
if ∧ ∈ O and the quantifier ∃ if ∨ ∈ O.

113

Given an ΩL-algebra A, each term or first order formula ϕ induces a
function IA(ϕ) from the set Γ(X,A) (of all assignments of X into A, which
are defined as for membership algebras) into A ∪B, as follows:

• IA(x)(γ) = γ(x), for any variable x;

• IA(σ)(γ) = σA, for any constant symbol σ;

• IA(σ(t1, . . . , tm))(γ) = σA(IA(t1)(γ), · · · , IA(tm)(γ)), for any term
σ(t1, · · · , tm);

• IA(p(t1, . . . , tm))(γ), for any atomic formula p(t1, . . . , tm), is the truth
value of p over (IA(t1)(γ), · · · , IA(tm)(γ));

• IA(ψ1 ∧ ψ2) = IA(ψ1) ∧ IA(ψ2) and
IA(ψ1 ∨ ψ2) = IA(ψ1) ∨ IA(ψ2), for any formulas ψ1, ψ2;

• IA(¬ψ) = ¬IA(ψ), for any formula ψ;

• IA((∃x)ψ)(γ) =
∨

a∈Ak
IA(ψ)(γ[x/a]) and

IA((∀x)ψ)(γ) =
∧

a∈Ak
IA(ψ)(γ[x/a]), for any formula ψ and any vari-

able x of kind k.

IA(ψ) is called the interpretation function of ψ into A. If ψ is a formula,
we say that ψ has the truth value b ∈ B in A, and denote this by [ψ]A = b,
if IA(ψ)(γ) = b, for all γ ∈ Γ(X,A).

Example 3.2 The algebra in Example 3.1 can be simply transformed into
an ΩL-algebra by considering ΣL = {Isgrz}. Denote this algebra by A as
well. The function γ given by γ(x) = 0 and γ(y) = 1 is an assignment of
X into A. Under this assignment, IA(ϕ) is valuated to 1, where ϕ is the
formula in Example 3.1. 2

3.3 Abstractions of models

An algebra assigns a meaning to a signature by associating a set of data to
each sort and an operation (function) to each operation symbol. Therefore,
an algebra defines a concrete data type.

By a data type reduction/abstraction we understand to reduce types/do-
mains of large or unbounded range to small types/domains (types/domains
of small range). A few words about “small domains” are in order. First of
all, we have to say that it is very hard to quantify the difference between
large and small domains and, moreover, the difference is relative. In 1981,

114

when model checking was invented, systems with 1020 states were regarded
as large systems. Nowadays, there are techniques that can be applied to
systems with 10120 states. If for a class of systems verification techniques
can be applied in reasonable time, the systems in the class can be regarded
as small. Large systems are not necessarily infinite systems. Surely, infinite
systems pose more problems than finite ones, although there are techniques
for verifying particular infinite-state systems. As a conclusion, a system
which allows practical verification can be regarded as a small one. Here,
all the examples we are going to consider exhibit reductions to (finite) very
small domains. However, we want to emphasize that our main goal is not to
investigate abstractions leading to small domains. The main goal is twofold:
first, we classify abstractions and show that many techniques proposed in the
literature fall in one of the classes introduced in the paper, and secondly, we
propose abstractions guided by equations.

As we have already mentioned in the previous section, an elegant way
to formalize such reductions is to use congruences which are equivalence
relations compatible with data types (algebras) operations. In this way, the
operations of the original data type are automatically redefined to operate
on the abstraction of the original data type.

In this section we study abstractions of data types; the extension to ab-
stract data types will be studied in Section 3.5.

3.3.1 Abstractions

As mentioned in the previous section, congruences of logically extended al-
gebras are defined as for membership algebras by taking into consideration
the function symbols. The quotient is obtained as usual, all the sorts being
defined by over-approximation.

In order to define abstractions we have to consider also interpretation
policies and redefine the predicates according to them. Consequently, the
abstractions induced by congruences are defined as usual quotients except
for the sorts representing predicates.

Definition 3.3 Let ΩL = (B,≤′,Σ,ΣL, π) be a logically extended signa-
ture, A = (A,ΣA,ΠA) an ΩL-algebra, ρ a congruence on A and α an in-
terpretation policy over B. The α-abstraction of A by ρ is an ΩL-algebra
D = (A/ρ,ΣA/ρ,Π′) such that:

• Π′(s) = {[a]ρπ(s)
| [a]ρπ(s)

∩ ΠA(s) 6= ∅}, for any sort s not representing
some predicate;

115

• [a]ρ ∈ Π′(sp,b), for some p ∈ ΣL,w, a ∈ Akw
and b ∈ B, if there exists

b′ ∈ B such that b ≤′ b′ and b′ is the value of p over [a]ρ according to
α.

Remark 3.1 As we can see, the definition of an abstraction requires a spe-
cial treatment of the sorts representing logical symbols. Including a carrier
set for the range of the logical operations might appear as a good solution
for a uniform treatment and this is the approach adopted in [92]. However,
this may not allow to distinguish between predicate interpretations in the ab-
stract system or may lead to useless abstractions, as it was already remarked
in [111].

For example, letA be a membership algebra that models the set of natural
numbers where the set {true, false} is structured as a kind and a function
symbol |= is used with the meaning “|= (e, p) = v iff p has the truth value v
in the element e”. Also, let eq be the equality predicate defined on couples
of natural numbers as usual:

|= ((n1, n2), eq) = true iff n1 = n2.

We suppose that A contains a kind for couples of natural numbers and
(,) is a function symbol that constructs such couples.

Now, let ρ be a congruence on A such that

a ρ b iff a = b = 0 or a, b 6= 0.

If we want to abstract A using ρ we can obtain only one abstraction
because |= is a function symbol and it is automatically redefined in the
quotient system by the congruence ρ. Moreover, we obtain:

|=A/ρ ([(1, 1)], eq) = [|=A ((1, 1), eq)] = [true] and

|=A/ρ ([(1, 2)], eq) = [|=A ((1, 2), eq)] = [false]

which leads to [true] = [false]. That is, both truth values true and false
are in the same equivalence class and the abstraction is useless.

Regarding the computation of multi-valued abstractions for logically ex-
tended membership algebras we can translate the results introduced for log-
ical structures in Section 2.2.2. We can use the S ′-congruences introduced
in [46] to obtain some of the possible α-abstractions of an ΩL-algebra. The
S ′-congruences are defined on membership algebras and allow sorts to be
defined by under-approximation in the quotient algebra. If A is a set, ρ an
equivalence on A, and B a subset of A, we say that B/ρ is defined by over-
approximation if B/ρ = {[a] ∈ A/ρ|a ∈ B}, and we say that B/ρ is defined
by under-approximation if B/ρ = {[a] ∈ A/ρ|[a] ⊆ B}.

116

Definition 3.4 Let Ω = (Σ, π) be a K-kinded membership signature and
A = (A,ΣA,ΠA) be an Ω-algebra. An S ′-congruence on A is a pair (ρ, S ′)
consisting of a congruence ρ on A and a subset S ′ of the set S of sorts.
The quotient of A by (ρ, S ′) is an Ω-algebra A/(ρ, S ′) = (A/ρ,ΣA/ρ,ΠA/ρ),
where ΠA/ρ(s) is defined by under-approximation, if s ∈ S ′, and by over-
approximation, if s 6∈ S ′.

S ′-congruences can be applied as well on ΩL-algebras which are particular
cases of membership algebras. Moreover, all the notions from above remain
valid if we replace congruences by S ′-congruences.

If A is an ΩL-algebra, we will make the connection between quotients of A
relative to S ′-congruences (ρ, S ′) (which represent two-valued abstractions)
and α-abstractions of A by ρ (which represent multi-valued abstractions),
based on Theorem 2.8, in the following way:

• the set S ′ ⊆ S has a similar property to the one of P , that is, sp,b ∈ S
′

implies (∀p ∈ ΣL)(sp,b ∈ S
′). We will denote by BS′ the set of truth

values b for which the sorts sp,b are in S ′;

• we require that ≤′ and S ′ are appropriate for the congruence ρ (the
appropriateness of S ′ is defined similarly to the appropriateness of P);

• we can prove, in a similar way to Theorem 2.7, that the quotient of an
ΩL-algebra by an S ′-congruence as above is also an ΩL-algebra.

• α is obtained using the eight rules of Theorem 2.8 in which we replace
BP with BS′ .

3.3.2 Property preservation

In this section we will prove the usefulness of the abstractions above by
offering preservation results. These results will be translated from the multi-
valued abstraction technique for logical structures presented in Section 2.2.

In fact, we will reduce the problem of checking the truth value of some
formula φ in an ΩL-algebra A for some assignment γ to the checking of the
truth value of a formula Tr(φ) in a (B,Σ′

L)-logical structure SA for some
assignment Tr(γ). Moreover, we will prove that this reduction preserves
truth values, i.e.

IA(φ)(γ) = ISA
(Tr(φ))(Tr(γ)).

We start by describing the transformation that we apply on formulas. Let
φ be a formula over ΩL and some set of variables X. We say that a term t is

117

maximal in φ if it is included in the following set:

{t1, . . . , tm|p(t1, . . . , tm) a subformula of φ, for some p}.

To simplify the definition of the transformation Tr(φ) we suppose the
following:

• any two atomic formulas are build using different predicate symbols;

• the quantified variables appear only in maximal terms that do not
contain any other variable.

Clearly, if a formula does not satisfy the above we can add predicates and
obtain an equivalent form with these properties.

The main idea of the transformation is the following: as in logical struc-
tures we are not interested in how elements from the universe are obtained,
we will abstract the terms in φ by variables whose values will be the possible
values of the corresponding terms. When we encounter quantified variables
the transformation is a little bit more complicated: we will abstract all the
terms in which some quantified variable appears by the same variable whose
values will record possible values for all these terms. Obviously, to make these
changes we also need new predicate symbols of appropriate logical types.

The formal definition of the transformation Tr(φ) ∈ L(Σ′
L, X

′), for any
formula φ ∈ L(ΩL, X) with ΩL = (B,≤′,Σ,ΣL, π), is as follows:

1. for any maximal term t not containing a quantified variable, we add to
X ′ a new variable xt of a new kind kt;

2. if v is a quantified variable, suppose v1,. . ., vn are the maximal terms
that contain v. We will consider a new variable of a new kind kv,
denoted (xv1 , . . . , xvn

);

3. if p(t1, . . . , tm) is an atomic formula without quantified variables then,

Tr(p(t1, . . . , tm)) = p′(xt1 , . . . , xtm),

where p′ is a new predicate symbol of type kt1 . . . ktm .

4. if p(t1, . . . , tm) is an atomic formula such that the terms ti1 ,. . ., tip , for
some set of indexes {i1, . . . , ip} ⊆ {1, . . . ,m} contain the quantified
variable v then,

Tr(p(t1, . . . , tm)) = pv(x1, . . . , xm),

118

where

xi =

{

(xv1 , . . . , xvn
) , if i ∈ {i1, . . . , ip},

xti , otherwise.

Above, pv is a new predicate symbol of type k′1 . . . k
′
m, where

k′i =

{

kv , if i ∈ {i1, . . . , ip},
kti , otherwise.

Because of the supposition we made on formulas, an extension to the
case where more quantified variables appear in p(t1, . . . , tm) is straight-
forward.

5. Tr leaves unchanged the logical operators ¬, ∧ and ∨.

6. every quantifier ∀v (∃v) is replaced by ∀(xv1 , . . . , xvn
) (∃(xv1 , . . . , xvn

)),
where v1,. . ., vn are the maximal terms of φ that contain v.

Remark 3.2 The transformation above does not add new logical operators,
and, consequently, if φ ∈ LO(ΩL, X) then Tr(φ) ∈ LO(Σ′

L, X
′), for any

O ⊆ {∧,∨,¬}.

If K ′ is the set of kinds and Σ′
L the set of predicates obtained by the

transformation above then, to any ΩL-algebra A = (A,ΣA,ΠA) we associate
a (B,Σ′

L)-logical structure SA = (S,Σ′SA

L) such that:

• Skt
= {IA(t)(γ)|γ ∈ Γ(X,A)}, for any term t. Notice that Skt

is a
subset of Ak, where k is the kind of t;

• Skv
= {(IA(v1)(γ), . . . , IA(vn)(γ))|γ ∈ Γ(X,A)}, where v1,. . ., vn are

the maximal terms in φ that contain the quantified variable v;

• p′SA(u1, . . . , um) is the value of p over (u1, . . . , um), for any predicate p′

added in the step 3 of the definition of Tr(φ).

• pSA
v (u1, . . . , um) is the value of p over (u′1, . . . , u

′
m), for any predicate

pv added in the step 4 of the definition of Tr(φ), where u′1, . . . , u
′
m are

obtained by the following considerations:

– each ui with i ∈ {i1, . . . , ip} is a tuple (a1, . . . , an), where ai =
IA(vi)(γ), for some assignment γ. We take u′i = aj if ti = vj;

– u′i = ui if i 6∈ {i1, . . . , ip}.

Finally, each assignment γ ∈ Γ(X,A) is transformed into an assignment
Tr(γ) ∈ Γ(X ′,SA) such that Tr(γ)(xt) = IA(t)(γ) and Tr(γ)((xv1 , . . . , xvn

)) =
(IA(v1)(γ), . . . , IA(vn)(γ)).

119

Example 3.3 LetK be a set of kinds containing only one kind nat for the set
of natural numbers and ΩL = (B2,≤

′,Σ,ΣL, π) aK-kinded logically extended
signature with B2 the truth algebra containing only two values, 0 ≤′ 1,
Σ = {0, Succ,+, ·,%} and ΣL,nat nat = {p, q} (0 is the constant representing
the natural number 0, Succ is the successor operation on natural numbers,
+ is the addition, · is the multiplication and % is the modulo operation).

We take an ΩL-algebra A = (A,ΣA,ΠA) such that Anat = N, ΣA inter-
prets correspondingly the operation symbols from Σ, ΠA(sp,1) is the set of
couples (a, b) with a an even number and ΠA(sq,1) is the set of couples (a, b)
with a%3 = 1.

Moreover, consider the formula φ over ΩL and X = {x, y, z} as follows:

φ = ∀x∃y
(

(p(x%2, y) ∨ p(y + 3, z%5)) ∧ q(4 · z + 5, 9)
)

.

Above, we have used 2 instead of the term Succ(Succ(0)), 3 instead of
Succ(Succ(Succ(0))), etc.

If we denote t1 = x%2, t2 = y, t3 = y + 3, t4 = z%5, t5 = 4 · z + 5 and
t6 = 9 then:

Tr(φ) = ∀(xt1)∃(xt2 , xt3)
(

(px,y((xt1), (xt2 , xt3))∨py((xt2 , xt3), xt4))∧q
′(xt5 , xt6)

)

.

We consider a new set of kinds K ′ = {kx, ky, kt4 , kt5 , kt6} and a K ′-kinded
logical signature (B2,Σ

′
L) such that Σ′

L contains px,y of type kxky, py of type
kykt4 , and q′ of type kt5kt6 .

We will associate to the ΩL-algebra A, a (B2,Σ
′
L)-logical structure SA =

(S,Σ′SA

L) with:

• Skx
= {0, 1}, Sky

= {(a, a + 3) | a ∈ N}, Skt4
= {0, 1, 2, 3, 4}, Skt5

=
{4 · a+ 5 | a ∈ N} and Skt6

= {9};

• px,y(u, v) =

{

1 , if u is even,
0 , otherwise;

• py(u, v) =

{

1 , if u = (a, b) and b is even,
0 , otherwise;

• q′(u, v) =

{

1 , if u%3 = 1,
0 , otherwise.

Now, let γ be an assignment of X into A with γ(z) = 2. The transformed
assignment, Tr(γ), is an assignment of X ′ = {(xt1), (xt2 , xt3), xt4 , xt5 , xt6}
into SA such that Tr(γ)(xt4) = 2, Tr(γ)(xt5) = 13 and Tr(γ)(xt6) = 9.

We can easily see that the transformation above preserves the value of φ,
i.e. IA(φ)(γ) = ISA

(Tr(φ))(Tr(γ)) = 1.

120

Theorem 3.1 Let ΩL = (B,≤′,Σ,ΣL, π) be a K-kinded logically extended
signature, A = (A,ΣA,ΠA) an ΩL-algebra, φ a formula over ΩL and some
set of variables X, and γ ∈ Γ(X,A). Then,

IA(φ)(γ) = ISA
(Tr(φ))(Tr(γ)),

where SA, Tr(φ) and Tr(γ) are defined as above.

Proof We proceed by structural induction on the formula φ. The following
cases are to be discussed:

• φ = p(t1, . . . , tm). By definition, Tr(φ) = p′(xt1 , . . . , xtm). We have
that IA(φ)(γ) equals the value of p over (IA(t1)(γ), . . . , IA(tm)(γ)),
and

ISA
(Tr(φ))(Tr(γ)) = p′SA(Tr(γ)(xt1), . . . , T r(γ)(xtm))

= p′SA(IA(t1)(γ), . . . , IA(tm)(γ)),

which by the definition of p′SA implies IA(φ)(γ) = ISA
(Tr(φ))(Tr(γ)).

• φ = φ1∧φ2. Assume that φ1 and φ2 satisfy the property. We have that

IA(φ1 ∧ φ2)(γ) = IA(φ1)(γ) ∧ IA(φ2)(γ)

= ISA
(Tr(φ1))(Tr(γ)) ∧ ISA

(Tr(φ2))(Tr(γ))

= ISA
(Tr(φ1) ∧ Tr(φ2))(Tr(γ))

= ISA
(Tr(φ1 ∧ φ2))(Tr(γ)).

• φ = φ1 ∨ φ2. This is similar to the previous case.

• φ = (∀v)φ1. Assume that φ1 satisfies the property. We have that

IA((∀v)φ1)(γ) =
∧

a∈Ak
IA(φ1)(γ[v/a])

=
∧

a∈Ak
ISA

(Tr(φ1))(Tr(γ[v/a])).

Notice that in Tr(φ1) the terms v1,. . ., vn which contain v are replaced
by different variables xv1 ,. . ., xvn

. We define φ2 as Tr(φ1) but the vari-
ables xv1 ,. . ., xvn

are replaced by the same variable (xv1 , . . . , xvn
) and

the predicates p′, for some p ∈ ΣL, appearing in atomic formulas con-
taining v, are replaced by pv (similarly to the 4th step in the definition
of Tr(φ)). By the definition of the transformation of formulas and
assignments,

{Tr(γ[v/a]) | a ∈ Ak} = {Tr(γ)[(xv1 , . . . , xvn
)/(a1, . . . , an)] |

(a1, . . . , an) ∈ Skv
}

121

and consequently,

IA(φ)(γ) =
∧

(a1,...,an)∈Skv
ISA

(φ2)(Tr(γ)[(xv1 , . . . , xvn
)/(a1, . . . , an)])

= ISA
((∀(xv1 , . . . , xvn

)φ1)(Tr(γ)).

• φ = (∃v)φ1. This is similar to the previous case. 2

The theorem above permits us to restate all the preservation results from
Section 2.2 in the context of logically extended membership algebras.

Theorem 3.2 Let ΩL = (B,≤′,Σ,ΣL, π) be a K-kinded logically extended
signature, A = (A,ΣA,ΠA) an ΩL-algebra, ρ a congruence on A, α an in-
terpretation policy over B, D = (A/ρ,ΣA/ρ,Π′) an α-abstraction of A by ρ
and b a truth value in B. If there exists b′ ∈ B such that α(x) ∈ {∃T ,∃Ta ,∀ |
T ⊆↑ b′}, for all x ≥ b, then:

[φ]D ≥ b⇒ [φ]A ≥ b′

for any φ ∈ L{∧}(ΩL, X). Moreover, if we also have that for any B′ ⊆ B,

∨B′ ≥ b⇒ (∃x ∈ B′)(x ≥ b),

then
[φ]D ≥ b⇒ [φ]A ≥ b′,

for any φ ∈ L{∧,∨}(ΩL, X).

Proof Suppose that [φ]D ≥ b. This implies ID(φ)(γ) ≥ b, for any γ ∈
Γ(X,D).

Let Tr(φ) be the transformation on the formula φ defined as above, SD
the (B,Σ′

L)-logical structure associated to D, SA the (B,Σ′
L)-logical structure

associated to A and Tr(γ) ∈ Γ(X ′,SD).
Also, consider the equivalence ρ′ on SA such that

• ρ′kt
is the restriction of ρk′ to Skt

×Skt
, where k′ is the kind of a maximal

term t appearing in φ;

• if v is a quantified variable and v1,. . .,vn are the maximal terms of
φ containing v then, ρ′kv

is defined by (a1, . . . , an) ρ
′
kv

(b1, . . . , bn), if
ai ρki

bi, for any 1 ≤ i ≤ n, where ki is the kind of vi.

122

We can easily prove that SD is an α-abstraction of SA by ρ′. Consequently,

ID(φ)(γ) ≥ b ⇒ ISD
(Tr(φ))(Tr(γ)) ≥ b

⇒ (∀γ′ ∈ Tr(γ))(ISA
(Tr(φ))(γ′) ≥ b′)

⇒ (∀γ′′ ∈ γ)(IA(φ)(γ′′) ≥ b′).

Above, we have used Theorem 2.2 and

{γ′ ∈ Γ(X ′,SA)|γ′ ∈ Tr(γ)} = {Tr(γ′′)|γ′′ ∈ Γ(X,A) and γ′′ ∈ γ}.

Since we can extend Lemma 2.1 to logically extended algebras, i.e. for any
γ′′ ∈ Γ(X,A) there exists an assignment γ ∈ Γ(X,D) such that γ′′ ∈ γ, we
obtain [φ]A ≥ b′. 2

Theorem 3.3 Let ΩL = (B,≤′,Σ,ΣL, π) be a K-kinded logically extended
signature, A = (A,ΣA,ΠA) an ΩL-algebra, ρ a congruence on A, α an inter-
pretation policy over B, D = (A/ρ,ΣA/ρ,Π′) an α-abstraction of A by ρ and
b a truth value in B. If there exists b′ ∈ B such that α(x) ∈ {∃S

′

,∃S
′

a ,∀ |
S ′ ⊆↓ b′}, for all x ≤ b, then:

[φ]D ≤ b⇒ [φ]A ≤ b′,

for any φ ∈ L{∨}(ΩL, X). Moreover, if

∧B′ ≤ b⇒ (∃x ∈ B′)(x ≤ b), for any B′ ⊆ B,

then
[φ]D ≤ b⇒ [φ]A ≤ b′,

for any φ ∈ L{∧,∨}(ΩL, X).

Proof Similarly to the proof of Theorem 3.2. 2

Theorem 3.4 Let ΩL = (B,≤′,Σ,ΣL, π) be a K-kinded logically extended
signature, A = (A,ΣA,ΠA) an ΩL-algebra, ρ a congruence on A, α an inter-
pretation policy over B, D = (A/ρ,ΣA/ρ,Π′) an α-abstraction of A by ρ and
b a truth value in B. If α(b) = ∀ and α(x) ∈ {∃S,∀ | S ⊆↑ b∩ ↓ x}, for all
x > b, then:

[φ]D ≥ b⇒ b ≤ [φ]A ≤ [φ]D and

[φ]D = b⇒ [φ]A = b,

for any φ ∈ L{∧}(ΩL, X).

Proof Similarly to the proof of Theorem 3.2. 2

123

Theorem 3.5 Let ΩL = (B,≤′,Σ,ΣL, π) be a K-kinded logically extended
signature, A = (A,ΣA,ΠA) an ΩL-algebra, ρ a congruence on A, α an inter-
pretation policy over B, D = (A/ρ,ΣA/ρ,Π′) an α-abstraction of A by ρ and
b a truth value in B. If α(b) = ∀ and α(x) ∈ {∃S,∀ | S ⊆↑ x∩ ↓ b}, for all
x < b, then:

[φ]D ≤ b⇒ [φ]D ≤ [φ]A ≤ b and

[φ]D = b⇒ [φ]A = b,

for any φ ∈ L{∨}(ΩL, X).

Proof Similarly to the proof of Theorem 3.2. 2

Theorem 3.6 Let ΩL = (B,≤′,Σ,ΣL, π) be a K-kinded logically extended
signature, A = (A,ΣA,ΠA) an ΩL-algebra, ρ a congruence on A, α an inter-
pretation policy over B, D = (A/ρ,ΣA/ρ,Π′) an α-abstraction of A by ρ and
b a truth value in B. If:

1. α(b) = ∀;

2. α(x) ∈ {∃S
′

,∃S
′

a ,∀ | S
′ ⊆↑ b}, for all x > b;

3. α(x) ∈ {∃S
′

,∃S
′

a ,∀ | S
′ ⊆↓ b}, for all x < b;

4. for any B′ ⊆ B, ∧B′ ≤ b implies that there exists x ∈ B′ such that
x ≤ b;

5. for any B′ ⊆ B, ∨B′ ≥ b implies that there exists x ∈ B′ such that
x ≥ b;

6. for any B′ ⊆ B, ∧B′ = b implies b ∈ B′;

7. for any B′ ⊆ B, ∨B′ = b implies b ∈ B′;

then
[φ]D ≥ b⇒ [φ]A ≥ b,

[φ]D ≤ b⇒ [φ]A ≤ b,

[φ]D = b⇒ [φ]A = b,

for any φ ∈ L{∧,∨}(ΩL, X).

Proof Similarly to the proof of Theorem 3.2. 2

All preservation results in [111] (for Kleene’s 3-valued logic) are particular
cases of Theorem 3.6 (we denote by B3 the corresponding truth algebra).

124

Corollary 3.1 Let ΩL = (B3,≤
′,Σ,ΣL, π) be a K-kinded logically extended

signature, A = (A,ΣA,ΠA) an ΩL-algebra, ρ a congruence on A, α an inter-
pretation policy over B3, and D = (A/ρ,ΣA/ρ,Π′) an α-abstraction of A by
ρ. Then, the following properties hold:

• if α(0) = ∀, α(⊥) = ∃{0,⊥,1}, and α(1) = ∃{0,1} then

[φ]D = 0 ⇒ [φ]A = 0, for any φ ∈ L{∧,∨}(ΣL, X).

• if α(0) = ∃{0,⊥,1}, α(⊥) = ∃{⊥,1}, and α(1) = ∀, then

[φ]D = 1 ⇒ [φ]A = 1, for any φ ∈ L{∧,∨}(ΣL, X).

• if α(0) = ∀, α(⊥) = ∃{0,⊥,1}a , and α(1) = ∀, then

[φ]D = b ⇒ [φ]A = b, for any φ ∈ L(ΣL, X) and b ∈ {0, 1}.

3.4 Particular cases

Following [111] we prove that many abstraction techniques from the literature
are particular cases of ours.

3.4.1 McMillan’s Approach

In [86], McMillan has proposed a kind of data type reduction (abstraction) to
be used with the SMV system. Even though his approach was “susceptible”
to be a particular case of Cousot’s abstract interpretation (see [86]), McMillan
has preferred to develop this new formalism closer to data types and practical
applications. This is not an isolated case and it proves the necessity of an
intermediate formalism with a high degree of generality but easy to be applied
in practice.

Our approach, proposed in the previous sections, is as simply and elegant
as general it is; it can be used to handle abstractions of data types defined in
the most general way. This subsection, as well as the next three, will prove
this.

McMillan’s Approach We will use mainly the same notation as in [86].
Let U be a set of values, V a set of variables, T a set of types, and C a set
of constructors (each of them having an arity). Define the set L of formulas
as being the set of ground terms over C.

125

A structure is a triple M = (R,N ,F), where R : T → P(U) assigns
a range of values to every type, N is a set of denotations, and F is an
interpretation assigning a function F(c) : N nc → N to each constructor c
of arity nc. The denotation of a formula φ ∈ L in a structure M is defined
inductively and denoted by φM . It is assumed that each structure M admits
a pre-order ≤ on N and F(c) is a monotonic function with respect to ≤, for
all constructors c.

A homomorphism from a structure M = (R,N ,F) into a structure M ′ =
(R′,N ′,F ′) is a function h : N → N ′ satisfying

F ′(c)(h(t1), . . . , h(tn)) ≤
′ h(F(c)(t1, . . . , tn)),

for all c(t1, . . . , tn) ∈ L (≤′ is the pre-order on N ′).
By structural induction and using the monotonicity we can easily obtain

φM
′

≤′ h(φM), for all φ ∈ L and homomorphisms h from M into M ′.
Assume now that each structure M contains a distinguished denotation

true (the denotation of valid formulas). A homomorphism h from M into M ′

is truth preserving if true′ ≤′ h(x) implies x = true. If h is truth preserving,
then

(∗) φM
′

= true′ ⇒ φM = true,

for all formulas φ.

The methodology described above can be used in connection with data
type reductions as follows. Let us assume that M ′ is obtained from M by
some abstraction technique. If there is a truth preserving homomorphism h
from M into M ′, then (∗) holds true. Therefore, proving that a formula φ
holds in M can be reduced to proving that φ holds in M ′. This task could
be easier because M ′ is a reduced structure obtained from M .

The abstraction technique considered in [86] works as follows. Let M =
(R,N ,F) be a structure, where

N = {I|I : {γ|γ : V → U} → U},

and let r : T → P(U) be a function such that r(s) ⊆ R(s), for all s ∈ T .
Define

Rr(s) = {{a}|a ∈ r(s)} ∪ {R(s)− r(s)}

and Nr as N but changing U into P(U). The interpretation Fr is not defined
in the general case, but only in the case of the SMV operators, and it is asked
that every constructor c should be safe with respect to r, that is

F(c(t1, . . . , tn))(γ) ∈ Fr(c(t
′
1, . . . , t

′
n))(γ

′),

126

for all t1, t
′
1, . . . , tn, t

′
n, γ : V → U and γ′ : V → P(U) such that γ ∈ γ′ and

F(ti)(γ) ∈ Fr(t
′
i)(γ

′), for all 1 ≤ i ≤ n.
Then, hr : M →Mr given by

hr(x)(γ
′) = {x(γ)|γ ∈ γ′},

for all x ∈ N and γ′ : V → P(U), is a truth preserving homomorphism from
M into Mr. Therefore, (∗) can be applied.

A Membership Algebra Approach The approach presented above is a
particular case of the results in Section 3.3. The set of types is just a set
K of kinds and the truth algebra under consideration is the classical one
with only two values, denoted B2. The set of constructors used to define
formulas is in our case the logically extended membership signature ΩL =
(B2,≤

′,Σ,ΣL, π). The set L(ΩL, X) of formulas we consider is incomparable
much larger than the set of formulas considered by McMillan. Moreover, we
consider membership signatures as in Definition 3.1 to define concrete (and
arbitrarily complex) data types. A structure is then an ΩL-algebra A =
(A,ΣA,ΠA) which induces both assignments and formula interpretations.

A data type reduction r (in McMillan’s approach) induces a K-kinded
equivalence ρ = (ρk|k ∈ K) given by

a ρk b ⇔ (a = b ∈ r(k)) ∨ (a, b 6∈ r(k)),

for all a, b ∈ Ak.
This equivalence should be in fact a congruence (this it is not mentioned

explicitly in [86] but it can be easily seen from examples).
Since the homomorphism h fromM intoMr is truth-preserving, the struc-

ture Mr becomes now an α-abstraction of A by ρ, where α(0) = ∃ and
α(1) = ∀. The definition we consider for the α-abstraction makes safe with
respect to r all the function and logical symbols. Notice that there is no need
to consider pre-orders on algebras.

Therefore, McMillan’s approach is a particular case of our approach.

3.4.2 Shape Analysis

Shape analysis is a data flow analysis technique [96]. It is mainly used for
complex analysis of dynamically allocated data, and it is based on represent-
ing the set of possible memory states (“stores”) that arise at a given point in
the program by shape graphs. In such a graph, heap cells are represented by
shape-graph nodes and, in particular, sets of “indistinguishable” heap cells
are represented by a single shape-graph node. In the past two decades, many

127

shape-analysis algorithms have been developed [69, 70, 77, 67, 15, 110, 100,
114, 103]. The parametric framework for shape analysis introduced in [104]
covers almost all of the work mentioned above.

We show that shape analysis as described in [104] can be obtained as a
particular case of the results in Section 3.3.

Shape Analysis In [104], the authors define a first order logic with tran-
sitive closure over a finite set P = {p1, . . . , pn} of predicate symbols. A
2-valued logical structure for this logic is defined as a couple S = (US, IS),
where US is a set of individuals and IS maps each predicate symbol p of
arity k to a truth-valued function IS(p) : (US)k → {0, 1}. Replacing the set
{0, 1} by the set {0, 1,⊥} in the definition above we obtain a 3-valued logical
structure.

2-valued logical structures are used to encode concrete stores as follows.
Individuals represent memory locations in the heap, pointers from the stack
into the heap are represented by unary predicates, and pointer valued-fields
are represented by binary predicates. The property-extraction principle a-
dopted in [104] is the following: by encoding stores as logical structures,
questions about properties of stores can be answered by evaluating formulas.
3-valued logical structures are used to encode abstract stores.

The concrete store is related to the abstract store by truth-blurring em-
beddings. An embedding of a structure S = (US, IS) into a structure S ′ =
(US′

, IS
′

) is any surjective function f : US → US′

such that

IS(p)(u1, . . . , uk) ⊑ I
S′

(p)(f(u1), . . . , f(uk)),

for any k, predicate symbol p of arity k, and any u1, . . . , uk ∈ U
S, where ⊑

is the information order on {0, 1,⊥} defined by

x ⊑ y ⇔ x = y ∨ y = ⊥.

Theorem 3.7 (Embedding Theorem [104])
Let f be an embedding from a logical structure S = (US, IS) into a logical
structure S ′ = (US′

, IS
′

). Then,

IS(ϕ)(γ) ⊑ IS
′

(ϕ)(f ◦ γ),

for any formula ϕ and any complete assignment γ for ϕ.

The embedding theorem provides a systematic way to use an abstract
3-valued structure S to answer questions about properties of the concrete
2-valued structure that S represents. It ensures that it is safe to evaluate
a formula ϕ on a single 3-valued structure S instead of evaluating ϕ in all
2-valued structures that can be embedded in S.

128

A Membership Algebra Approach The approach in [104] can be eas-
ily seen as a particular case of the approach proposed in this paper. For
each logical structure S = (US, IS), US can be viewed as a uni-kinded ΩL-
algebra, where the truth algebra is the one used for Kleene’s three-valued
logic, denoted B3, ΩL = (B3,≤

′,Σ,ΣL, π) and Σ contains only the operators
(, . . . ,). IS is the interpretation function of formulas into the algebra US

(see Section 3.2).
The abstraction is driven by embeddings which are surjective functions.

As we have no real function symbols, the equivalence relation induced by such
a surjective function is a congruence. Also, the properties an embedding
satisfy give rise to α-abstractions with α(0) = α(1) = ∀ and α(⊥) = ∃a,
and the embedding theorem follows easily from the results in Section 3.3.
Moreover, in contrast to [104], the set of individuals in our approach is typed
and enriched by typed-operations; the predicate symbols are typed as well.

3.4.3 Predicate Abstraction

Predicate abstraction, also called boolean abstraction or existential abstraction
in [4], has been introduced by Graf and Saidi in [57] to provide a method for
the automatic construction of an abstract state graph of an infinite system
using the PVS theorem prover. Since then, predicate abstraction has been
studied thoroughly [36, 113].

The main idea of the predicate abstraction is to map concrete objects
(states of a transition system, data of a data type etc.) to “abstract objects”
according to their evaluation under a finite set of predicates.

Let P be a finite set of predicates over a set A. The set P induces an
equivalence relation ρP on A as follows

a ρP b ⇔ (∀p ∈ P)(p(a) iff p(b)),

for all a, b ∈ A.
The quotient set A/ρP can be taken as the abstract system induced by

P . If some operations are given on the set A (i.e., a transition relation, data
type operations etc.) then these operations should be redefined to operate
on the abstract system in a congruential way.

It is very clear that predicate abstraction is a particular case of the ap-
proach proposed in this paper.

3.4.4 Duplicating Predicate Symbols

The technique of duplicating predicate symbols is one of the intensively used
techniques in abstraction [27, 35, 6]. It is based on associating “copies” to

129

each predicate symbol. Therefore, a formula ϕ gets several versions depend-
ing on the predicate copies are used. Usually, two copies for each predicate
symbol are associated, and two versions of a formula are used: one of them
for validation, and the other one for refutation.

We describe in details the duplicating predicate symbols technique used
in [6] and we will show that it can be easily obtained as a particular case of
the abstraction methodology proposed in this paper.

In [6], Bidoit and Boisseau considered logically extended structures (we
use here logically extended membership algebras) whose predicate symbols
are valuated into {0, 1}, and associated a split signature ΩS

L = (B2,≤
′,Σ,ΣL,⊕∪

ΣL,⊖, π
′) to each logically extended signature ΩL = (B2,≤

′,Σ,ΣL, π), where
0 ≤′ 1, and ΣL,⊕ and ΣL,⊖ are obtained by indexing the predicate symbols
P ∈ ΣL by ⊕ and, respectively, by ⊖. P⊕ and P⊖ have the same type as P .

Let A = (A,ΣA,ΠA) and C = (C,ΣC ,ΠC) be two ΩL-algebras and h be
an epimorphism from A into C. The canonical ΩS

L-structure associated to A
and h is defined by Ah = (C,ΣC ,Π′

C) such that:

• (b1, . . . , bn) ∈ Π′
C(sP⊕,1) if (∀1 ≤ i ≤ n)(∀ai ∈ h

−1(bi))((a1, . . . , an) ∈
ΠA(sP,1);

• (b1, . . . , bn) ∈ Π′
C(sP⊖,1) if (∀1 ≤ i ≤ n)(∃ai ∈ h

−1(bi))((a1, . . . , an) ∈
ΠA(sP,1);

for all P ∈ ΣL of logical type k1 · · · kn and b1 ∈ Ck1 , . . . , bn ∈ Ckn
. Also,

Π′
C(s) = ΠC(s), for any sort s that does not represent a predicate.

For any formula ϕ over ΩL and X define two formulas ϕ⊕ and ϕ⊖ over
ΩS
L and X as follows:

– P (t1, . . . , tn)⊕ = P⊕(t1, . . . , tn);

– P (t1, . . . , tn)⊖ = P⊖(t1, . . . , tn);

– (ϕ1 ∨ ϕ2)⊕ = (ϕ1⊕ ∨ ϕ2⊕) and (ϕ1 ∨ ϕ2)⊖ = (ϕ1⊖ ∨ ϕ2⊖), and similar
for ∧, ∀ and ∃;

– (¬ϕ)⊕ = ¬(ϕ⊖) and (¬ϕ)⊖ = ¬(ϕ⊕).

Now, one of the main results proved in [6] states that

[ϕ⊕]A
h

= 1 ⇒ [ϕ]A = 1

and
[ϕ⊖]A

h

= 0 ⇒ [ϕ]A = 0.

130

These two implications give the correctness of the abstraction. Here, the
abstraction should be understood by the fact that an element b acts as an
abstraction for h−1(b).

In order to show that the result above is a particular case of the ab-
straction methodology proposed in this paper we have to remark first the
following:

• the predicate symbols, in the formalism above, are valuated into {0, 1};

• the kernel ker(h) of any epimorphism h defines a congruence on A
and the quotient algebra A/ker(h) is isomorphic to C. Conversely,
any congruence ρ on A leads to an epimorphism from A into A/ρ.
Therefore, we can consider congruences instead of epimorphisms in
order to design abstractions;

• any formula ϕ ∈ L(ΩL, X) can be equivalently transformed into the
negation normal form, where the negation is applied only to atomic
formulas.

Given a logically extended signature ΩL = (B2,≤
′,Σ,ΣL, π) we define a

new signature Ω′
L = (B2,≤

′,Σ,ΣL ∪ Σ′
L, π), where Σ′

L is just a copy of ΣL.
In any Ω′

L-algebra A, the predicate symbol P ′ will be interpreted as ¬P is.
For any formula ϕ ∈ L(Ω′

L, X) in the negation normal form we define a
new formula ϕ′ ∈ L{∧,∨}(Ω′

L, X) by replacing “¬P” by “P ′” and “¬Q′” by
“Q”, for any P and Q.

Directly from the above constructions we have

(∗) [ϕ]A = [ϕ′]A, for any formula ϕ ∈ L(Ω′
L, X).

Consequently,

• if D is an α1-abstraction of A by ρ, with α1(1) = ∀ and α1(0) = ∃,
then

[ϕ′]D = 1 ⇒ [ϕ]A = 1

(from Theorem 3.6 and (∗));

• if D is an α2-abstraction of A by ρ, with α2(1) = ∃ and α2(0) = ∀,
then

[ϕ′]D = 0 ⇒ [ϕ]A = 0

(from Theorem 3.6 and (∗)).

131

ϕ′ plays exactly the role of ϕ⊕ in the first case (of α1-abstractions), and it
plays exactly the role of ϕ⊖ in the second case (of α2-abstractions). In both
cases, D plays the role of Ah.

These results emphasize clearly the nature of the duplicating predicate
symbols technique. Thus, this technique consists of two abstractions based on
the same congruence. One of them is an α1-abstraction, used for validation,
and the other one is an α2-abstraction, used for refutation.

3.5 Abstractions of Abstract Data Types

In this section we generalize the results from the previous sections to abstract
data types. An abstract data type (ADT, for short) for a membership signa-
ture ΩL is a class of ΩL-algebras that is closed under isomorphism 2. An ADT
is called monomorphic if its algebras are all isomorphic to each other; other-
wise, it is called polymorphic 3. A specification may be viewed as a description
of a class of objects by means of their properties. In a formal specification
these properties are expressed as formulas in a logic. Hence, a specification
of an ADT essentially consists of a set of formulas expressing the common
properties of its algebras. Specifications are defined by a syntax and a se-
mantics. The syntax fixes the “form”, and the semantics fixes the “meaning”
of specifications. A specification is called monomorphic (polymorphic) if it
defines a monomorphic (polymorphic) ADT. Specifications can be classified
in atomic and composed. An atomic specification is essentially built up from
the scratch; it consists of a signature ΩL and a set of formulas Φ in a logic L.
Its semantics is defined as the class of all ΩL-algebras that are models of Φ.
Three basic atomic specifications are loose specification, initial specification,
and constructive specification 4. A composed specification is a specification
written in a specification language. Starting from atomic specifications the
constructs of such a language allow one to build large specifications out of
smaller ones 5.

2Informally, the closure under isomorphism corresponds to the fact that isomorphic
algebras are “similar” in that they differ only by the nature of their carriers.

3A monomorphic ADT stands for a single data type, whereas a polymorphic ADT may
correspond to an “incomplete” specification.

4Drawing up atomic specifications is sometimes called specification-in-the-small.
5Drawing up composed specifications with the help of a specification language is some-

times called specification-in-the-large.

132

3.5.1 Abstractions of Initial Specifications

An initial membership specification is a 4-tuple Sp = (Σ, π,X,E), where
Ω = (Σ, π) is a membership signature, X is a disjoint family of variables,
disjoint of Σ too, and E is a set of sentences over Ω and X.

The semantics of an initial membership specification Sp called the mo-
nomorphic abstract data type (ADT, for short) induced by Sp, is defined
by

M(Sp) = {A|A is isomorphic to TΩ,E}.

Specifications of logically extended membership algebras are simply mem-
bership specifications where sentences for predicate symbols are separately
given.

Definition 3.5 A logically extended membership specification is a tuple LSp =
(B,≤′,Σ,ΣL, π,X,E,EP), where:

1. (B,≤′,Σ,ΣL, π) is a logically extended membership signature;

2. X is a disjoint family of variables, disjoint of Σ too;

3. E is a set of sentences over X and the membership signature Ω = (Σ, π)
that does not contain the operators (, . . . ,) and the sorts sp,b;

4. EP is a set of sentences of the form:

(a) t : sp,b if C;

(b) x : sp,b1 if x : sp,b2 ,

where p ∈ ΣL,w, t is a term of kind kw over the membership signature
Ω and X, x a variable of kind kw, b, b1, b2 ∈ B − {0′}, b1 ≺

′ b2 and
C is a set of atomic formulas over Ω and X. EP contains exactly one
sentence of type (4b) for every p ∈ ΣL and b1, b2 with b1 ≺

′ b2.

Moreover, EP should satisfy the following consistency requirement: for
any predicate p ∈ ΣL and b1, b2 ∈ B−{0

′} such that there exist x ∈ B
with x ≺′ b1 and x ≺′ b2, there exist no term t with E ∪ EP ⊢ t : sp,b1
and E ∪ EP ⊢ t : sp,b2 .

Definition 3.6 Let LSp = (B,≤′,Σ,ΣL, π,X,E,EP) be a logically extended
membership specification. The initial semantics of LSp,M(LSp), is the class
of all ΩL-algebras isomorphic to TΩL,E∪EP

.

Since logically extended membership specifications are usual membership
specifications, we have:

133

Proposition 3.1 Let LSp = (B,Σ,ΣL, π,X,E,EP) be a logically extended
membership specification. Then, TΩL,E∪EP

is an initial algebra in the initial
semantics of LSp.

In the following, by the value of a predicate p over a term t we mean the
maximum truth value b ∈ B (with respect to ≤′) for which E ∪EP ⊢ t : sp,b,
or 0′, if such a b does not exist.

An abstraction of an ΩL-algebra A consists in a congruence ρ and an
interpretation policy used to redefine predicate symbols in the quotient of
A with respect to ρ. Naturally, abstractions can be applied to abstract
data typesM(LSp) by means of a representative of them, and TΩ,E∪EP

is a
suitable choice.

When an abstraction is specified by a set of equations we say that it is
an equationally specified abstraction.

Definition 3.7 Let LSp = (B,≤′,Σ,ΣL, π,X,E,EP) be a logically extended
membership specification. An abstraction of LSp is a pair ∆ = (A,α), where
A is a set of sentences over Ω and X and α is an interpretation policy over
B.

Definition 3.8 Let LSp = (B,≤′,Σ,ΣL, π,X,E,EP) be a logically extended
membership specification and ∆ = (A,α) an abstraction of it. The logi-
cally extended membership specification for the abstraction of LSp by ∆ is
LSp∆ = (B,≤′,Σ,ΣL, π,X,E ∪ A,E

∆
P), where:

• E ∪A∪E∆
P ⊢ t : sp,b iff the value of p over the set of terms {t′|E ∪A ⊢

t = t′} according to α is greater than or equal to b (with respect to ≤′).

Now, from the definition of LSp∆ we can derive the following result
which states that the initial semantics of LSp∆ contains algebras that are
α-abstractions of the algebras from the initial semantics of LSp.

Proposition 3.2 Let LSp, ∆ and LSp∆ be as above. Let ρ be the congru-
ence on TΩ,E′ defined by:

[t]=E′,k
ρk [t′]=E′,k

⇔ E ′′ ⊢ t = t′, for any t, t′ ∈ (TΩL
)k,

where E ′ = E∪EP and E ′′ = E∪A∪E∆
P . Then, TΩL,E′′ is the α-abstraction

of TΩL,E′ by ρ.

In order to extend the results regarding the computation of multi-valued
abstractions using 2-valued abstractions to the case of abstract data types,
notice that S ′-congruences, (ρ, S ′), of algebras from the semantics of a mem-
bership specification can be captured by pairs (A, S ′) where A is a set of

134

membership sentences. The specification for the quotient abstract data type
is obtained as follows.

Definition 3.9 Let LSp be as above and ∆′ = (A, S ′) an S ′-congruence of
it. The logically extended membership specification for the quotient of LSp
by ∆′ is LSp∆′ = (B,≤′,Σ,ΣL, π,X,E ∪ A,E

∆′

P), where:

• E ′′ ⊢ t : s ⇔ (∀t′)(E ′′ ⊢ t = t′ ⇒ E ′ ⊢ t′ : s), for any s ∈ S ′ and
t, t′ ∈ (TΩL,E′)π(s) (E ′ = E ∪ EP and E ′′ = E ∪ A ∪ E∆′

P).

Moreover, we can prove that the initial semantics of LSp∆′ contains alge-
bras that are quotients by an S ′-congruence of the algebras from the initial
semantics of LSp. This guarantees that we can relate α-abstractions to quo-
tients by an S ′-congruence as in Section 3.3.1.

Proposition 3.3 Let LSp, ∆′ and LSp∆′ be as above. Let ρ be the congru-
ence on TΩ,E′ defined by:

[t]=E′,k
ρk [t′]=E′,k

⇔ E ′′ ⊢ t = t′, for any t, t′ ∈ (TΩL
)k,

where E ′ = E ∪ EP and E ′′ = E ∪ A ∪ E∆′

P . Then, TΩL,E′′ is the quotient of
TΩL,E′ by (ρ, S ′).

Example 3.4 A logically extended specification of an elementary data type
of natural numbers is given, where the predicate Isgrz is like in Example 3.1
(the logic is under the 2-valued interpretation).

LSpec: Natural numbers

kinds: nat

sorts: sIsgrz,1 of kind nat

opns: 0 : → nat

Succ : nat → nat

Add : nat nat → nat

vars: x, y : nat

E: Add(x, 0) = x
Add(x, Succ(y)) = Succ(Add(x, y))

EP : Succ(x) : sIsgrz,1

135

Let us assume now that we want to prove that the property

ϕ = (∀x, y)(Isgrz(x) ∨ Isgrz(y) ⇒ Isgrz(Add(x, y)))

holds in the abstract data type defined by LSpec. We consider an abstraction
(∆, α), where ∆ consists in the equation

Succ(Succ(x)) = Succ(0),

α(0) = ∃{0,1}, and α(1) = ∀. This abstraction treats the number 0 as an
individual, and all the natural numbers greater than 0 on the whole.

The data type for the abstraction has only two elements and it is straight-
forward to prove that ϕ holds. Since the abstraction is of type α, we deduce
that ϕ holds true in the concrete data type.

Example 3.5 Consider the program Keeping-up [82] given in Figure 3.1. It

local x, y: integer where x = y = 0

P1 ::





l0 : loop forever do
[

l1 : await x < y + 1
l2 : x := x+ 1

]



 ‖ P2 ::





m0 : loop forever do
[

m1 : await y < x+ 1
m2 : y := y + 1

]





Figure 3.1: Program Keeping-up

consists of two processes P1 and P2. The process P1 repeatedly increments x,
provided that x does not exceed y + 1. Similarly, the process P2 repeatedly
increments y, provided that y does not exceed x + 1. The program satisfies
the global safety property 2(|x− y| ≤ 1) [82].

Below, an initial logically extended specification of this program is given.
Conv stands for “conversion” of boolean data to natural numbers, Leq stands
for “less than or equal to”, and Add for “addition”. We use t : sp,⊥,1 instead
of t : sp,⊥ and t : sp,1, for any predicate symbol p.

LSpec’: Keeping-up

kinds: nat, couple, bool
sorts: sR,⊥, sR,1, sGS,⊥, sGS,1 of kind couple

opns: Zero :→ nat

True :→ bool

False :→ bool

Succ : nat→ nat

Conv : bool→ nat

136

Leq : nat nat→ bool

Add : nat nat→ nat

(,) : nat nat→ couple

vars: x, y : nat

E: Conv(False) = Zero
Conv(True) = Succ(Zero)
Add(x, Zero) = x
Add(x, Succ(y)) = Succ(Add(x, y))
Leq(Zero, x) = True
Leq(Succ(x), Zero) = False
Leq(Succ(x), Succ(y)) = Leq(x, y)

EP : (0, 0) : sR,⊥,1
(Add(x,Conv(Leq(x, y))), y) : sR,⊥,1 if (x, y) : sR,⊥,1
(x,Add(y, Conv(Leq(y, x)))) : sR,⊥,1 if (x, y) : sR,⊥,1
(x, y) : sGS,⊥,1 if x = y
(x, y) : sGS,⊥,1 if x = y + Succ(0)
(x, y) : sGS,⊥,1 if x+ Succ(0) = y

Two three-valued predicates are used: R which is 1 for the couples (x, y)
reachable from (0, 0) by the program in Figure 3.1, and GS which describes
“safe” couples. They are used to model the global safety property we want
to prove. This property can be described by the formula

ϕ = (∀(x, y))
(

(x, y) reachable ⇒ (x = y ∨ x = Succ(y) ∨ y = Succ(x))
)

or, equivalently,
ϕ = (∀(x, y))(R(x, y)⇒ GS(x, y)).

By means of the equivalence

(∀x, y)(|Succ(x)− Succ(y)| ≤ 1 ⇔ |x− y| ≤ 1)

we can derive the abstraction (∆, α), where ∆ consists in the equation

(Succ(x), Succ(y)) = (x, y),

α(0) = ∀, α(⊥) = ∃{0,⊥,1}, and α(1) = ∀.
The abstraction leads to three equivalence classes on the set of all reach-

able vectors from the initial vector [(0, 0)], namely

[(0, 0)], [(Succ(0), 0)], [(0, Succ(0))].

137

Now, it is straightforward to check that ϕ holds true in the abstract
system. As the abstraction uses the interpretation policy α, by Corollary
3.1, ϕ holds true in the original system.

138

Chapter 4

Abstraction of Dynamic Data
Types

We present an abstraction technique for dynamic systems modeled by mem-
bership specifications [91] and specifications given in multi-valued CTL∗,
which extends the approach in [111]. We have used membership specifica-
tions because they provide a suitable framework in which a very wide range
of total and partial equational specification formalisms can be naturally rep-
resented. The membership algebra formalism is quite general and expres-
sive, supports sub-sorts and overloading, and deals very well with errors and
partiality. Moreover, membership algebra specifications can be efficiently
implemented in systems like Maude [30]. The temporal logic we consider
is under a multi-valued interpretation because there are many problems in
software engineering, such as modeling systems with uncertain information
or inconsistencies, for which 2-valued logic is insufficient.

The main advantages of the abstraction technique we propose in this
chapter are:

• we use equationally specified abstractions as in [92, 84, 111];

• the logic used is multi-valued CTL∗. Moreover, maximal finite paths
are allowed;

• we interpret the transition function of the abstract system and its
atomic propositions in various ways getting many property preserva-
tion results. The interpretation in [92, 84] falls in one of these cases
and, therefore, the approach in [92, 84] becomes a special case of ours;

• the preservation results were first developed on multi-valued Kripke
structures and then translated to membership specifications. This fact

139

gives independence to these results allowing them to be used with var-
ious formalisms;

• we do not represent in our specifications the set of truth values by
means of a kind as it was done in [92, 84]. The reason is that such
a representation may not allow to distinguish between predicate inter-
pretations in the abstract system or may lead to useless abstractions,
as it was already remarked in [111].

4.1 Dynamic Data Types

There have been proposed several approaches for modeling dynamic systems
by universal algebras (see [2] for a survey on this topic). All the approaches
are based on predicates which are added somehow to the signature, but they
work outside the algebra. In the approach we propose [45] we model dy-
namic systems (that can be described in terms of states and transitions)
by membership algebras, a suitable logical framework in which a very wide
range of total and partial equational specification formalisms can be natu-
rally represented [91]. The membership algebra formalism is quite general
and expressive, supports sub-sorts and overloading, and deals very well with
errors and partiality. Moreover, membership algebra specifications can be
efficiently implemented in systems like Maude [30]. We also add predicates
to membership algebras as in the approaches mentioned in [2], but they work
inside the algebra (including the transition predicate too). This makes the
formalism algebra-logic work unitarily.

In order to model dynamic systems by membership algebras we consider
logically extended algebras with a special kind state, a set of predicates of
type state (defining properties of states), and a transition predicate of type
state state.

Definition 4.1 A dynamic K-kinded signature is a K-kinded logically ex-
tended signature ΩD = (B,≤′,Σ,ΣL, π), where:

• the set of basic kinds K ′ contains one distinguished kind state;

• ΣL,w = ∅, for any w ∈ K ′+−{state, state state} and ΣL,state state =
{→}. We have only one predicate → of type state state called the
transition predicate and some predicates of type state, called atomic
propositions.

The kind associated to the logical type state state is denoted step.

140

As a dynamic signature is a particular case of logically extended signature,
it should be thought as an ordinary membership signature that contains two
distinguished kinds and some distinguished sorts; the predicate symbols are
just used to specify the distinguished sorts.

Definition 4.2 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic K-kinded signa-
ture. A dynamic ΩD-algebra A is an ΩD-logically extended membership
algebra.

Homomorphisms, equivalences, and congruences of ΩD-algebras are ho-
momorphisms, equivalences, and congruences, respectively, of membership
algebras.

Given a dynamic K-kinded signature ΩD, define the set of CTL∗ formu-
las over ΩD as being the set of all CTL∗ formulas over the set of atomic
propositions of ΩD. These formulas will be interpreted over the multi-valued
Kripke structures associated to ΩD-algebras. More precisely, given an ΩD-
algebra A = (A,ΣA,ΠA), the multi-valued Kripke structure associated to A,
denoted M(A), is the triple (Q,→A, LA), where:

• Q = Astate;

• →A (q, q′) is the value of the predicate → in A, over (q, q′);

• LA(q, p) is the value of the predicate p in A, over q.

Given a dynamic ΩD-algebra A and a CTL∗ formula φ over ΩD, define
IA(φ, π) = [φ]

M(A)
π and IA(φ, q) = [φ]

M(A)
q , for any path π and state q of

M(A).
Specifications of dynamic algebras are simply membership specifications

where sentences for atomic propositions and for the transition predicate are
separately given.

Definition 4.3 A dynamic specification is a tuple

DSp = (B,≤′,Σ,ΣL, π,X,E,EAP , E→),

where:

1. (B,≤′,Σ,ΣL, π) is a dynamic K-kinded signature;

2. X is a disjoint family of variables, disjoint of Σ too;

3. E is a set of sentences over X and the memberhip signature Ω = (Σ, π)
that does not contain the operator (,) and the sorts sp,b;

141

4. EAP is a set of sentences of the form:

(a) t : sp,b if C;

(b) x : sp,b1 if x : sp,b2 ,

where t is a term of kind state over Ω = (Σ, π) and X, x is a variable
of kind state, p is an atomic proposition, b, b1, b2 ∈ B − {0′} with
b1 ≺

′ b2, and C is a set of atomic formulas over Ω = (Σ, π) and X.
Moreover, EAP contains exactly one sentence of type (4b) for every p
and b1 ≤

′ b2;

5. E→ is a set of sentences of the form:

(a) (t, t′) : s→,b if C;

(b) x : s→,b1 if x : s→,b2 ,

where (t, t′) is a term of kind step, x is a variable of kind step, and C is
a set of atomic formulas, all of them over Ω = (Σ, π) and X. Moreover,
E→ contains exactly one sentence of type (5b) for every b1 ≤

′ b2.

The sentences defining the atomic propositions and the transition predicate
should satisfy the following consistency requirement: for any predicate p ∈ ΣL

and b1, b2 ∈ B − {0
′} such that there exist x ∈ B with x ≺′ b1 and x ≺′ b2,

there exist no term t with E∪EAP∪E→ ⊢ t : sp,b1 and E∪EAP∪E→ ⊢ t : sp,b2 .

Definition 4.4 Let DSp = (B,≤′,Σ,ΣL, π,X,E,EAP , E→) be a dynamic
specification. The initial semantics of DSp is the class M(DSp) of all ΩD-
algebras isomorphic to TΩD,E′ , where E ′ = E∪EAP ∪E→. M(DSp) is called
an abstract dynamic data type.

Since dynamic specifications are membership specifications, we have:

Proposition 4.1 Let DSp = (B,≤′,Σ,ΣL, π,X,E,EAP , E→) be a dynamic
specification. Then, TΩD,E′ , where E ′ = E ∪ EAP ∪ E→, is an initial algebra
in the initial semantics of DSp.

Example 4.1 The system in Figure 4.1 consists of three processes, P1, P2,
and P3, which share a memory cell z and run in parallel. P1 and P2 may only
write z and their access to z is mutually excluded (by a bakery-like algorithm
[111]). P1 increments z by 2 and P2 increments z by 3. P3 may only read
z and take an action according to a given value m which is a multiple of 2
and 3. It is known that all readings of values less than or equal to m of a
memory cell z are correct. If z < m, then P3 does not take any action, and

142

if z = m, then P3 definitely sets b to 1. However, if z > m, then P3 may
perform an erroneous reading. In this case, it may or may not set b to 1. To
model this situation, we use the truth value ⊥ from Kleene’s three valued
interpretation. The statement “may<statement>end may” in Figure 4.1
specifies this last case.

A counter t is incremented every time P3 reads correctly the memory
(“t :=?” in Figure 4.1 means that t is initially uninitialized). These three
processes may have different writing/reading speeds and, therefore, the num-
ber of readings performed by P3 may be arbitrarily large in comparison with
the number of writings performed by P1 and P2. As the process P3 does
not take any action for z < m, we do not know the exact number of read-
ings. For this reason, when z becomes greater or equal to m, P3 generates a
random number t (which simulates t possible readings for z < m) and then
increments it accordingly.

local x, y, z, t, b: integer
x := 0; y := 0; z := 0; b := 0: t :=?

P1 ::













1 : x := y + 1;
2 : loop forever while

y 6= 0 ∧ x > y;
3 : z := z + 2;
4 : x := 0;













‖ P2 ::













1 : y := x+ 1;
2 : loop forever while

x 6= 0 ∧ y ≥ x;
3 : z := z + 3;
4 : y := 0;













‖ P3 ::









1 : loop forever while z < m;
2 : if t =? then random(t);
3 : if z = m then b := 1; t := t+ 1;

else may b := 1; t := t+ 1 end may;









Figure 4.1: A malfunction system

We model this system by a 3-valued Kripke structure whose states are
9-dimensional vectors (x, x′, y, y′, a, z, z′, b, t) with the following meaning:

• x and y are the corresponding numbers of P1 and P2, respectively;

• x′ gives the local state of P1: x
′ is 0 if x = 0, it is 1 if x > 0 and P1 is

not writing z, and it is 2 if x > 0 and P1 is writing z. y′ has a similar
meaning;

• a is a flag whose value is 0 when x = y, 1 when x > y, and 2 when
x < y;

143

• z denotes the memory content;

• z′ is a flag whose value is 0 when z < m, 1 when z = m, and 2 when
z > m;

• b denotes the flag that it is set to 1 by P3 when z = m;

• t stands for how many times P3 reads the memory z.

A fragment of the Kripke structure associated to this system for m = 6
is represented in Figure 4.2 (R(q, q′) = 1 is represented by an arrow from q
to q′, while R(q, q′) = ⊥ is represented by an arrow from q to q′ labeled by
⊥).

(0,0,1,1,2,0,0,0,?)

(2,1,1,1,1,0,0,0,?)

(2,2,1,1,1,0,0,0,?)

(0,0,1,1,2,2,0,0,?)

(0,0,0,0,0,0,0,0,?)

(2,2,1,1,1,2,0,0,?)

(0,0,1,1,2,4,0,0,?)

(2,1,1,1,2,4,0,0,?)

(2,2,1,1,1,4,0,0,?)

(0,0,1,1,2,6,1,1,5)

(0,0,0,0,0,9,1,1,5)

(0,0,1,2,2,6,1,1,5)

(0,0,1,1,2,6,1,0,?)

(2,1,1,1,1,2,0,0,?)

(0,0,1,2,2,4,0,0,?)

(0,0,0,0,0,7,2,0,?)

(0,0,0,0,0,7,2,1,11)

Figure 4.2: A fragment of the Kripke structure in Example 4.1

We will discuss the truth value of two LTL formulas under Kleene’s three-
valued interpretation:

144

• “F(t ≥ 0) ⇒ F(b = 1)”. This formula is true on any path which starts
in (0, 0, 0, 0, 0, 0, 0, 0, ?) and passes through (0, 0, 0, 0, 0, 9, 1, 1, 5), and it
has the truth value ⊥ on any path which starts in (0, 0, 0, 0, 0, 0, 0, 0, ?)
and passes through (0, 0, 0, 0, 0, 7, 2, 1, 11);

• “F(t ≥ 0) ⇒ F(t = 1)”. This formula interprets to 0 on any
path which starts in (0, 0, 0, 0, 0, 0, 0, 0, ?) and passes through the state
(0, 0, 0, 0, 0, 7, 2, 1, 11).

A dynamic specification of the program above is given below. The truth
algebra is B3 = (B,∧,∨,¬), where B = {0,⊥, 1} is the set of truth values
from Kleene’s three-valued interpretation (as usual 0 ≤ ⊥ ≤ 1). Moreover,
we take ≤′=≤. We use two kinds, nat?, for the set N ∪ {?} (“?” stands
for “uninitialized counter”), and state, for the set of global states. The sort
nat of kind nat? will be used to represent the set of natural numbers.

Consider the following atomic propositions:

• p, which is 1 in states with t ≥ 0 and it is ⊥, otherwise;

• q, which is 1 in states with b = 1 and it is 0, otherwise;

• r, which is 1 in states with t = 1, ⊥ in states with t =?, and 0,
otherwise.

The sorts used to specify them are sp,⊥, sp,1, sq,⊥, sq,1, sr,⊥, and sr,1. The
properties above can now be restated as Fp⇒ Fq and Fp⇒ Fr.

In order to draw up a dynamic specification for this system we will make
use of the following notations:

• we write 0 instead of Zero, 1 instead of Succ(Zero) etc.;

• we use t
1
−→ t′ (t

⊥
−→ t′) instead of (t, t′) : s→,1 ((t, t′) : s→,⊥);

• we use t
1/⊥
−→ t′ if C whenever both t

1
−→ t′ if C and t

⊥
−→ t′ if C are

elements of the specification.

DSpec:A Malfunction System
kinds: nat?

state

sorts: nat of kind nat?

sp,⊥, sp,1, sq,⊥, sq,1, sr,⊥, sr,1 of kind state

opns: Succ : nat? → nat?

(, , , , , , , ,) : (nat?)9 → state

145

vars: x, x′, y, y′, z, z′, a, b, t : nat?
u : state
v : step

E: sentences for nat
EAP : (x, x′, y, y′, a, z, z′, b, t) : sp,⊥

(x, x′, y, y′, a, z, z′, 1, t) : sq,⊥
(x, x′, y, y′, a, z, z′, b, ?) : sr,⊥
(x, x′, y, y′, a, z, z′, b, t) : sr,⊥ if t = 1
(x, x′, y, y′, a, z, z′, b, t) : sp,1 if t : nat
(x, x′, y, y′, a, z, z′, 1, t) : sq,1
(x, x′, y, y′, a, z, z′, b, t) : sr,1 if t = 1
u : sp,⊥ if u : sp,1
u : sq,⊥ if u : sq,1
u : sr,⊥ if u : sr,1

E→: (0, 0, 0, 0, 0, 0, 0, 0, ?)
1/⊥
−→ (1, 1, 1, 1, 0, 0, 0, 0, ?)

(0, 0, y, y′, a, z, z′, b, t)
1/⊥
−→ (Succ(y), 1, y, y′, 1, z, z′, b, t)

(x, x′, 0, 0, a, z, z′, b, t)
1/⊥
−→ (x, x′, Succ(x), 1, 2, z, z′, b, t)

(1, 1, 1, 1, 0, 0, 0, 0, ?)
1/⊥
−→ (1, 2, 1, 1, 0, 0, 0, 0, ?)

(x, 1, y, 1, 1, z, z′, b, t)
1/⊥
−→ (x, 2, y, 1, 1, z, z′, b, t)

(x, 1, y, 1, 2, z, z′, b, t)
1/⊥
−→ (x, 1, y, 2, 2, z, z′, b, t)

(0, 0, y, 1, 2, z, z′, b, t)
1/⊥
−→ (0, 0, y, 2, 2, z, z′, b, t)

(x, 1, 0, 0, 1, z, z′, b, t)
1/⊥
−→ (x, 2, 0, 0, 1, z, z′, b, t)

(x, 2, y, y′, a, z, 0, 0, ?)
1/⊥
−→ (0, 0, y, y′, 2, Succ(Succ(z)), 0, 0, ?)

if Succ(Succ(z)) = 2, y : nat
· · ·

(x, 2, y, y′, a, z, 0, 0, ?)
1/⊥
−→ (0, 0, y, y′, 2, Succ(Succ(z)), 0, 0, ?)

if Succ(Succ(z)) = m− 1, y : nat

(x, 2, y, y′, a, z, 0, b, t)
1/⊥
−→ (0, 0, y, y′, 2, Succ(Succ(z)), 1, b, t)

if Succ(Succ(z)) = m, y : nat

(x, 2, y, y′, a, z, 0, b, t)
1/⊥
−→ (0, 0, y, y′, 2, Succ(Succ(z)), 2, b, t)

if Succ(z) = m, y : nat

(x, 2, y, y′, a, z, 1, b, t)
1/⊥
−→ (0, 0, y, y′, 2, Succ(Succ(z)), 2, b, t)

if y : nat

(x, 2, y, y′, a, z, 2, b, t)
1/⊥
−→ (0, 0, y, y′, 2, Succ(Succ(z)), 2, b, t)

if y : nat

(x, 2, 0, 0, 1, z, 0, 0, ?)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(z)), 0, 0, ?)

146

if Succ(Succ(z)) = 2
· · ·

(x, 2, 0, 0, 1, z, 0, 0, ?)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(z)), 0, 0, ?)

if Succ(Succ(z)) = m− 1

(x, 2, 0, 0, 1, z, 0, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(z)), 1, b, t)

if Succ(Succ(z)) = m

(x, 2, 0, 0, 1, z, 0, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(z)), 2, b, t)

if Succ(z) = m

(x, 2, 0, 0, 1, z, 1, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(z)), 2, b, t)

(x, 2, 0, 0, 1, z, 2, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(z)), 2, b, t)

(x, x′, y, 2, a, z, 0, 0, ?)
1/⊥
−→ (x, x′, 0, 0, 1, Succ(Succ(Succ(z))), 0, 0, ?)

if Succ(Succ(Succ(z))) = 3, x : nat
· · ·

(x, x′, y, 2, a, z, 0, 0, ?)
1/⊥
−→ (x, x′, 0, 0, 1, Succ(Succ(Succ(z))), 0, 0, ?)

if Succ(Succ(Succ(z))) = m− 1, x : nat

(x, x′, y, 2, a, z, 0, b, t)
1/⊥
−→ (x, x′, 0, 0, 1, Succ(Succ(Succ(z))), 1, b, t)

if Succ(Succ(Succ(z))) = m, x : nat

(x, x′, y, 2, a, z, 0, b, t)
1/⊥
−→ (x, x′, 0, 0, 1, Succ(Succ(Succ(z))), 2, b, t)

if Succ(Succ(z)) = m, x : nat

(x, x′, y, 2, a, z, 0, b, t)
1/⊥
−→ (x, x′, 0, 0, 1, Succ(Succ(Succ(z))), 2, b, t)

if Succ(z) = m, x : nat

(x, x′, y, 2, a, z, 1, b, t)
1/⊥
−→ (x, x′, 0, 0, 1, Succ(Succ(Succ(z))), 2, b, t)

if x : nat

(x, x′, y, 2, a, z, 2, b, t)
1/⊥
−→ (x, x′, 0, 0, 1, Succ(Succ(Succ(z))), 2, b, t)

if x : nat

(0, 0, y, 2, 2, z, 0, 0, ?)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 0, 0, ?)

if Succ(Succ(Succ(z))) = 3
· · ·

(0, 0, y, 2, 2, z, 0, 0, ?)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 0, 0, ?)

if Succ(Succ(Succ(z))) = m− 1

(0, 0, y, 2, 2, z, 0, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 1, b, t)

if Succ(Succ(Succ(z))) = m

(0, 0, y, 2, 2, z, 0, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 2, b, t)

if Succ(Succ(z)) = m

(0, 0, y, 2, 2, z, 0, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 2, b, t)

147

if Succ(z) = m

(0, 0, y, 2, 2, z, 1, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 2, b, t)

(0, 0, y, 2, 2, z, 2, b, t)
1/⊥
−→ (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 2, b, t)

(x, x′, y, y′, a, z, 1, 0, ?)
1/⊥
−→ (x, x′, y, y′, a, z, 1, 1, t)

(x, x′, y, y′, a, z, 2, 0, ?)
⊥
−→ (x, x′, y, y′, a, z, 2, 1, t)

(x, x′, y, y′, a, z, 2, 1, t)
⊥
−→ (x, x′, y, y′, a, z, 2, 1, Succ(t))

v : s→,⊥ if v : s→,1

4.2 Abstractions and Preservation Results

In the previous section, a multi-valued Kripke structure M(A) was associ-
ated to an ΩD-algebra A. If we perform an abstraction on A driven by a
congruence ρ and two interpretation policies αR and αL, then the Kripke
structure associated to the abstraction is obtained by applying ρ to M(A)
and by reinterpreting the transition predicate according to αR and the atomic
propositions according to αL. We can use the relationships between the two
Kripke structures established in Section 2.3 in order to obtain preservation
results for the corresponding dynamic data types.

Definition 4.5 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature, A =
(A,ΣA,ΠA) an ΩD-algebra, ρ a congruence on A, and αR, αL two interpre-
tation policies over B. The (αR, αL)-abstraction of A by ρ is an ΩD-algebra
B = (A/ρ,ΣA/ρ,Π′) such that:

• Π′(s) = {[a]ρπ(s)
| [a]ρπ(s)

∩ ΠA(s) 6= ∅}, for any sort s not representing
some predicate;

• [a]ρ ∈ Π′(s→,b), for some a ∈ Astep and b ∈ B, if there exists b′ ∈ B
such that b ≤′ b′ and b′ is the value of → over [a]ρ according to αR;

• [a]ρ ∈ Π′(sp,b), for some p ∈ ΣL,state, a ∈ Astate and b ∈ B, if there
exists b′ ∈ B such that b ≤′ b′ and b′ is the value of p over [a]ρ according
to αL.

Clearly, abstractions of dynamic data types correspond to abstractions of
multi-valued Kripke structures.

Theorem 4.1 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature and A =
(A,ΣA,ΠA) an ΩD-algebra. If B is an (αR, αL)-abstraction of A by ρ, then
M(B) is an (αR, αL)-abstraction of M(A) by ρ.

148

Proof Directly from Definition 2.21 and 4.5. 2

Theorem 4.1 permits us to extend all the preservation results that hold
for abstractions of multi-valued Kripke structures to abstractions of dynamic
data types.

Theorem 4.2 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature, D ⊆ B,
B an (αR, αL)-abstraction of an ΩD-algebra A by a congruence ρ, and φ and
ψ be a state and, respectively, a path mv-∀CTL∗

+ formula over ΣL,state. If

1. (αR(b) = ∃S ⇒ S ∩D = ∅) ∧ (αR(b) = ∃Sa ⇒ S ∩D = b ↓ ∩D =
b ↑ ∩D = ∅), for any b ∈ B −D;

2. (αL(d) = ∃S ⇒ S ⊆ D) ∧ (αL(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ D), for
any d ∈ D;

3. D is closed under ≤ and glb, and backward closed under lub,

then
(∀q ∈ Astate)(IB(φ, [q]) ∈ D ⇒ IA(φ, q) ∈ D)

and

(∀π2 ∈ Π(M(B), D))(IB(ψ, π2) ∈ D ⇒ (∀π1 ∈ CM(A)(π2))(IA(ψ, π1) ∈ D)).

Proof Directly from Theorem 2.15 and Remark 2.4. 2

Theorem 4.3 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature, D ⊆ B,
b ∈ B, B an (αR, αL)-abstraction of an ΩD-algebra A by a congruence ρ,
and φ and ψ be a state and, respectively, a path mv-∀CTL∗

+ formula over
ΣL,state. If

1. (αR(b) = ∃S ⇒ S ∩D = ∅) ∧ (αR(b) = ∃Sa ⇒ S ∩D = b ↓ ∩D =
b ↑ ∩D = ∅), for any b ∈ B −D;

2. (α(d) = ∃S ⇒ S ⊆ b ↑) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↑), for
any α ∈ {αR, αL} and d ≥ b;

3. for any subset B′ of B, ∨B′ ≥ b implies b′ ≥ b for some b′ ∈ B′,

then
(∀q ∈ Astate)(IB(φ, [q]) ≥ b ⇒ IA(φ, q) ≥ b)

and

(∀π2 ∈ Π(M(B), D))(IB(ψ, π2) ≥ b ⇒ (∀π1 ∈ CM(A)(π2))(IA(ψ, π1) ≥ b)).

149

Proof Directly from Theorem 2.16 and Remark 2.5. 2

The preservation results for dynamic data types over Kleene’s three-
valued interpretation (B3 denotes the corresponding truth algebra) from [46]
are obtained as particular cases. The following interpretation policies are
considered in [46]:

• α1(0) = ∀, α1(⊥) = ∃{0,⊥,1}a and α1(1) = ∀;

• α2(0) = ∃{0,⊥,1}, α2(⊥) = ∃{⊥,1} and α2(1) = ∀;

• α3(0) = ∀, α3(⊥) = ∃{0,⊥} and α3(1) = ∃{0,⊥,1}.

Corollary 4.1 Let ΩD = (B3,≤
′,Σ,ΣL, π) be a dynamic signature, D =

{⊥, 1}, B an (α3, α2)-abstraction of an ΩD-algebra A by a congruence ρ, and
φ an mv-LTL+ formula over ΣL,state. Then,

(∀q ∈ Astate)(IB(φ, [q]) ≥ ⊥ ⇒ IA(φ, q) ≥ ⊥).

Proof Directly from Theorem 4.3. The second condition must be satisfied
only for α = αL because D = {⊥, 1}. 2

Corollary 4.2 Let ΩD = (B3,≤
′,Σ,ΣL, π) be a dynamic signature, D =

{⊥, 1}, A an ΩD-algebra, and φ an mv-LTL+ formula over ΣL,state. We
have the following:

• if B is an (α3, α2)- or an (α3, α1)-abstraction of A by a congruence ρ
and M(A) does not contain any arcs labeled by ⊥, then

(∀q ∈ Astate)(IB(φ, [q]) = 1 ⇒ IA(φ, q) = 1);

• if B is an (α1, α2)- or an (α1, α1)-abstraction of A by a congruence ρ,
then

(∀q ∈ Astate)(IB(φ, [q]) = 1 ⇒ IA(φ, q) = 1);

Proof The first part follows from Corollary 2.10 and the second from
Theorem 4.3. 2

Theorem 4.4 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature, D ⊆ B,
b ∈ B, B an (αR, αL)-abstraction of an ΩD-algebra A by a congruence ρ,
and φ and ψ be a state and, respectively, a path mv-∀CTL∗

+ formula over
ΣL,state. If

1. (αR(b) = ∃S ⇒ S ⊆ D) ∧ (αR(b) = ∃Sa ⇒ S ∪ b ↓ ∪b ↑⊆ D), for
any b ∈ D;

150

2. (α(d) = ∃S ⇒ S ⊆ b ↓) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↓), for
any α ∈ {αR, αL} and d ≤ b;

3. for any subset B′ of B, ∧B′ ≤ b implies b′ ≤ b for some b′ ∈ B′,

then
(∀q ∈ Astate)(IB(φ, [q]) ≤ b ⇒ IA(φ, q) ≤ b)

and

(∀π2 ∈ Π(M(B), D))(IB(ψ, π2) ≤ b ⇒ (∀π1 ∈ CM(A)(π2))(IA(ψ, π1) ≤ b)).

Proof Directly from Theorem 2.18 and Remark 2.6. 2

In the following, we give another preservation result from [46] which can
be obtained as a particular case.

Corollary 4.3 Let ΩD = (B3,≤
′,Σ,ΣL, π) be a dynamic signature, D =

{⊥, 1}, A an ΩD-algebra, and φ an mv-LTL+ formula over ΣL,state. We
have the following:

• if B is an (α2, α3)- or an (α2, α1)-abstraction of A by a congruence ρ
then

(∀q ∈ Astate)(IB(φ, [q]) = 0 ⇒ IA(φ, q) = 0);

• if B is an (α1, α3)- or an (α1, α1)-abstraction of A by a congruence ρ
and φ ∈ LTL∞

+ then

(∀q ∈ Astate)(IB(φ, [q]) = 0 ⇒ IA(φ, q) = 0).

Proof The first part follows from Theorem 4.4 while the second from
Corollary 2.12. 2

Theorem 4.5 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature, D ⊆ B,
b ∈ B, B an (αR, αL)-abstraction of an ΩD-algebra A by a congruence ρ,
and φ and ψ be a state and, respectively, a path mv-∃CTL∗

+ formula over
ΣL,state. If

1. (αR(b) = ∃S ⇒ S ⊆ D) ∧ (αR(b) = ∃Sa ⇒ S ∪ b ↓ ∪b ↑⊆ D), for
any b ∈ D;

2. (α(d) = ∃S ⇒ S ⊆ b ↑) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↑), for
any α ∈ {αR, αL} and d ≥ b;

3. for any subset B′ of B, ∨B′ ≥ b implies b′ ≥ b for some b′ ∈ B′,

151

then
(∀q ∈ Astate)(IB(φ, [q]) ≥ b ⇒ IA(φ, q) ≥ b)

and

(∀π2 ∈ Π(M(B), D))(IB(ψ, π2) ≥ b ⇒ (∀π1 ∈ CM(A)(π2))(IA(ψ, π1) ≥ b)).

Proof Directly from Theorem 2.19 and Remark 2.7. 2

Theorem 4.6 Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature, D ⊆ B,
b ∈ B, B an (αR, αL)-abstraction of an ΩD-algebra A by a congruence ρ,
and φ and ψ be a state and, respectively, a path mv-∃CTL∗

+ formula over
ΣL,state. If

1. (αR(b) = ∃S ⇒ S ∩D = ∅) ∧ (αR(b) = ∃Sa ⇒ S ∩D = b ↓ ∩D =
b ↑ ∩D = ∅), for any b ∈ B −D;

2. (α(d) = ∃S ⇒ S ⊆ b ↓) ∧ (α(d) = ∃Sa ⇒ S ∪ d ↓ ∪d ↑⊆ b ↓), for
any α ∈ {αR, αL} and d ≤ b;

3. for any subset B′ of B, ∧B′ ≤ b implies b′ ≤ b for some b′ ∈ B′,

then
(∀q ∈ Astate)(IB(φ, [q]) ≤ b ⇒ IA(φ, q) ≤ b)

and

(∀π2 ∈ Π(M(B), D))(IB(ψ, π2) ≤ b ⇒ (∀π1 ∈ CM(A)(π2))(IA(ψ, π1) ≤ b)).

Proof Directly from Theorem 2.20 and Remark 2.8. 2

Example 4.2 We illustrate the use of abstraction on the system in Example
4.1. Assume that this system is modeled by a dynamic algebra A. We
consider ρ a congruence on A such that:

(x1, x
′
1, y1, y

′
1, a1, z1, z

′
1, b1, t1) ρstate (x2, x

′
2, y2, y

′
2, a2, z2, z

′
2, b2, t2)

if and only if

z′1 = z′2 ∧ b1 = b2 ∧ (t1 = t2 =? ∨ t1 = t2 = 0 ∨ t1 = t2 = 1 ∨ t1, t2 > 1).

Let B be the (α3, α2)-abstraction of A induced by ρ, where

• α2(0) = ∃{0,⊥,1}, α2(⊥) = ∃{⊥,1} and α2(1) = ∀;

• α3(0) = ∀, α3(⊥) = ∃{0,⊥} and α3(1) = ∃{0,⊥,1}.

152

(0,0,0,0,0,0,0,0,?)

(0,0,0,0,0,0,1,1,1) (0,0,0,0,0,0,1,1,2)

(0,0,0,0,0,0,2,0,?)

(0,0,0,0,0,0,2,1,2)(0,0,0,0,0,0,2,1,1)(0,0,0,0,0,0,2,1,0)

(0,0,0,0,0,0,1,0,?)

(0,0,0,0,0,0,1,1,0)

Figure 4.3: The Kripke structure for the abstraction in Example 4.2

Notice that M(B) contains only 24 states and hence it can be easily model
checked (Figure 4.2 depicts only the reachable states). For example, one can
easily see that the truth value of the formula Fp ⇒ Fq from Example 4.1
evaluates to ⊥ in the abstract system and, therefore, it evaluates to 1 or ⊥
in the original system A by Corollary 4.1.

Now, we show how to compute multi-valued abstractions of dynamic data
types from 2-valued abstractions of dynamic data types. The S ′-congruences
from Definition 3.4 can be applied as well on ΩD-algebras which are particular
cases of membership algebras. The quotients of dynamic algebras by S ′-
congruences can be viewed as 2-valued abstractions because the redefinitions
of the sorts in the quotient are done only by under-approximation and over-
approximation.

Let ΩD = (B,≤′,Σ,ΣL, π) be a dynamic signature, A an ΩD-algebra, and
ρ a congruence on A such that ≤′ is appropriate for ρ. Moreover, let S ′

AP

be a set of sorts representing atomic propositions such that if sp,b ∈ S
′, for

some p ∈ ΣL,state, then

(∀p ∈ ΣL,state)(sp,b ∈ S
′),

and S ′
→ a set of sorts from the set {s→,b|b ∈ B}. We require that S ′

AP and
S ′
→ are appropriate for ρ, which is defined similarly to the appropriateness of
P for ρ from Definition 2.5. We will denote by BAP,S′ the set of truth values
b for which the sorts sp,b with p ∈ ΣL,state are in S ′

AP and by B→,S′ the set
of truth values b for which the sort s→,b is in S ′.

We can prove that the quotient of A by the S ′-congruence (ρ, S ′), where
S ′ = S ′

AP ∪ S
′
→, equals the (αR, αL)-abstraction of A by ρ, where αR and αL

are obtained using the eight rules from Theorem 2.8 in which we replace BP

with B→,S′ and BAP,S′ , respectively.

153

Example 4.3 The (α2, α1)-abstraction of A by ρ equals the quotient of A
by (ρ, S ′), where

S ′ = {sp,⊥, sp,1, sq,⊥, sq,1, sr,⊥, sr,1}.

Naturally, abstractions can be applied to abstract dynamic data types
M(DSp), where DSp is a dynamic specification, by means of a represen-
tative of them, and TΩD,E∪EAP∪E→

is a suitable choice. The abstractions
are specified by equations and, consequently, they are equationally specified
abstractions.

Let DSp be a dynamic specification. The value of a predicate p over a
term t is the maximum truth value b ∈ B (with respect to ≤′) for which
E ∪ EAP ∪ E→ ⊢ t : sp,b, or 0′, if such a b does not exist.

Definition 4.6 Let DSp = (B,≤′,Σ,ΣL, π,X,E,EAP , E→) be a dynamic
membership specification. An abstraction of DSp is a triple ∆ = (A,αR, αL),
where A is a set of sentences over Ω and X, and αR and αL are interpretation
policies over B.

Definition 4.7 Let DSp = (B,≤′,Σ,ΣL, π,X,E,EAP , E→) be a dynamic
membership specification and ∆ = (A,αR, αL) an abstraction of it. The
dynamic membership specification for the abstraction of DSp by ∆ isDSp∆ =
(B,≤′,Σ,ΣL, π,X,E ∪ A,E

∆
AP , E

∆
→), where:

• E ∪A∪E∆
AP ⊢ t : sp,b iff the value of p over the set of terms {t′|E ∪A ⊢

t = t′} according to αL is greater than or equal to b (with respect to
≤′).

• E∪A∪E∆
→ ⊢ t : sp,b iff the value of→ over the set of terms {t′|E∪A ⊢

t = t′} according to αR is greater than or equal to b (with respect to
≤′).

Now, from the definition ofDSp∆ we can derive the following result which
states that the initial semantics of DSp∆ contains dynamic algebras that are
(αR, αL)-abstractions of the dynamic algebras from the initial semantics of
DSp.

Proposition 4.2 Let DSp, ∆ and DSp∆ be as above. Let ρ be the congru-
ence on TΩD,E′ , where E ′ = E ∪ EAP ∪ E→, defined by:

[t]=E′,k
ρk [t′]=E′,k

⇔ E ′′ ⊢ t = t′, for any t, t′ ∈ (TΩ)k,

where E ′′ = E ∪ A ∪ E∆
AP ∪ E

∆
→. Then, TΩ,E′′ is the (αR, αL)-abstraction of

TΩ,E′ by ρ.

154

Example 4.4 We exemplify the abstraction technique above on the abstract
dynamic data type induced by the specification DSpec from Example 4.1.

We will apply an (α2, α1)-abstraction ∆ induced by the following set A
of sentences:

A: (x1, x
′
1, y1, y

′
1, a1, z1, z

′, b, ?) = (x2, x
′
2, y2, y

′
2, a2, z2, z

′, b, ?)
(x1, x

′
1, y1, y

′
1, a1, z1, z

′, b, 0) = (x2, x
′
2, y2, y

′
2, a2, z2, z

′, b, 0)
(x1, x

′
1, y1, y

′
1, a1, z1, z

′, b, 1) = (x2, x
′
2, y2, y

′
2, a2, z2, z

′, b, 1)
(x1, x

′
1, y1, y

′
1, a1, z1, z

′, b, Succ(Succ(t))) =
(x2, x

′
2, y2, y

′
2, a2, z2, z

′, b, Succ(Succ(Succ(t))))

As we can easily see the dynamic specification for the abstraction of
DSpec by ∆ is DSpec∆ = (B3,≤

′,Σ,ΣL, π,X,E ∪ A,EAP , E→).

155

Chapter 5

Abstraction Refinement
Techniques

The main problem that arises when using abstraction techniques is to find
the suitable abstraction or to refine an already existing abstraction in order
to obtain a better one [76, 105, 66, 25, 87, 3, 80]. In this chapter, we prove
that the abstraction techniques for data types, under Kleene’s three-valued
interpretation [111], can be used in a refinement procedure. Moreover, we
prove that the counterexample guided abstraction refinement procedure [25]
works better when used with equationally specified abstractions.

5.1 Abstraction Refinement for Data Types

We present a result adapted from [111] which proves that we can define
an abstraction of a data type1 starting from another abstraction of the same
data type. This implies in fact the construction of a quotient algebra starting
from a quotient algebra and a congruence. Such a two-step reduction should
be also definable by a one-step reduction.

Let B3 be the truth algebra corresponding to Kleene’s three-valued logic
and ≤′=≤. If ΩL is a logically extended signature, A an ΩL-algebra and θ,
ρ two congruences on A, we say that θ is finer than ρ if θ ⊆ ρ.

Figure 5.1 gives a pictorial view of the property “finer than” between
congruences. One can easily prove (see also [89]) that the binary relation
ρ/θ given by

(ρ/θ)k = {([a]θk
, [b]θk

)|(a, b) ∈ ρk},

1We refer to abstractions preserving formulas in a first order logic under Kleene’s three-
valued logic.

156

θ = - - - and —

ρ = —

Figure 5.1: θ is finer than ρ

for all kinds k, is a congruence on A/θ whenever θ and ρ are congruences on
A such that θ ⊆ ρ.

The following safe interpretation policies are considered in [111]:

• α1(0) = ∀, α1(⊥) = ∃{0,⊥,1}a and α1(1) = ∀;

• α2(0) = ∃{0,⊥,1}, α2(⊥) = ∃{⊥,1} and α2(1) = ∀;

• α3(0) = ∀, α3(⊥) = ∃{0,⊥,1} and α3(1) = ∃{0,1}.

Theorem 5.1 Let ΩL = (B3,≤
′,Σ,ΣL, π) be a logically extended signature,

A = (A,ΣA,ΠA) an ΩL-algebra, α ∈ {α1, α2, α3}, B1 an α-abstraction of A
by a congruence θ, and B2 an α-abstraction of A by a congruence ρ. If θ is
finer than ρ then there exists B an α-abstraction of B1 by a congruence δ
such that B ∼= B2 and B2

∼= B.

Proof Let δ be a congruence on B1 such that δ = ρ/θ and let h : (A/θ)/δ →
A/ρ be a mapping defined by

h([[a]θ]δ) = [a]ρ,

for all a ∈ A.
Following a classical line (for example, [89]) one can easily prove that

h is a bijective homomorphism between the Σ-algebras A/ρ and (A/θ)/δ.
Therefore, the following properties remain to be proved:

• h(ΠB(sp,1)) = ΠB2(sp,1) and h(ΠB(sp,⊥)) = ΠB2(sp,⊥), for any p ∈ ΣL.

But, these properties can be easily checked for each type of abstraction.
For example, in the case of α = α1, let ([[a1]θ]δ, . . . , [[an]θ]δ) ∈ ΠB(sp,1), for

some p of type k1 · · · kn and a1 ∈ Ak1 , . . . , an ∈ Akn
. By the definition of B, we

obtain that ([b1]θ, . . . , [bn]θ) ∈ ΠB1(sp,1), for all [bi]θ ∈ [[ai]θ]δ, 1 ≤ i ≤ n, and
further, by the definition of B1, (a′1, . . . , a

′
n) ∈ ΠA(sp,1), for all a′i ∈ [[ai]θ]δ,

1 ≤ i ≤ n. Consequently, (a′1, . . . , a
′
n) ∈ ΠA(sp,1), for all a′i ∈ [ai]ρ, 1 ≤ i ≤ n

and ([a1]ρ, . . . , [an]ρ) ∈ ΠB2(sp,1).

157

The other cases follow a similar line. 2

Theorem 5.1 is an extension of the second homomorphism theorem for
classical universal algebras [89] to logically extended membership algebras.
It shows us that, in order to pass from an abstraction by a congruence θ to an
abstraction by a congruence ρ one can abstract further A/θ by a congruence
ρ/θ.

5.2 CEGAR is Better under Equational Ab-

straction

A very popular technique to discover abstractions automatically is counterex-
ample guided abstraction refinement [25] (CEGAR, for short) which starts
with an initial abstraction and then, uses counterexamples found in the veri-
fication process to refine the current abstraction. The various CEGAR tech-
niques introduced in the literature deal mainly with predicate abstraction.

In this section, we introduce a CEGAR procedure for equational abstrac-
tions of 2-valued Kripke structures. Kripke structures are represented by
rewrite theories as in [92]. However, we improve the representation of the
atomic propositions, so it will not lead, by itself, to useless abstractions.
Moreover, the semantics of the temporal logic considers infinite paths and
maximal finite paths.

The refinement procedure adds atomic formulas in the conditions of the
equations that form the abstraction. As opposed to the approach that uses
predicate abstraction, where we add at least one predicate, the number of
states of the current abstraction may not necessarily at least double. This will
imply, as proved by a consistent example, that this new refinement procedure
may build smaller abstractions.

5.2.1 Rewrite Theories

To represent systems we use rewrite theories [90] that contain membership
equational theories in which we distinguish some of the membership sen-
tences. We denote by B2 = ({0, 1},∧,∨,¬) the truth algebra with only two
elements and by ≤′ the partial order defined by 0 ≤′ 1.

Definition 5.1 Let ΩD = (B2,≤
′,Σ,ΣL, π) be a dynamic K-kinded signa-

ture. An ΩD rewrite theory over a K-kinded set of variables X, is a tuple
R = (E,EAP , E), where

158

• E is a set of sentences over X and the memberhip signature Ω = (Σ, π)
that does not contain the operator (,) and the sorts sp,b. They specify
the data type for the set of states;

• EAP is a set of sentences of the form

t : sp if C,

where t is a term of kind state over Ω and X, p ∈ ΣL is an atomic
proposition, and C is a set of atomic formulas over Ω and X. They will
specify the sorts that represent the atomic propositions;

• E is a set of conditional rewriting rules of the form:

t −→ t′ if
∧

i∈I

ui : si ∧
∧

j∈J

vj = wj ∧
∧

l∈L

tl −→ t′l,

where t, t′, tl, t
′
l, for any l ∈ L are terms of kind state, ui, for any i ∈ I,

and vj, wj, for any j ∈ J , are terms of some kind, and si, for any i ∈ I,
are sorts. They will represent the transitions of the system.

We emphasize that we do not represent the set of truth values as a kind
and the atomic propositions by means of a function symbol as it was done in
[92] because it can lead to useless abstractions as it was already mentioned
in Remark 3.1.

Given a dynamic K-kinded signature ΩD, define the set of LTL formulas
over ΩD as being the set of LTL formulas over the set of atomic proposi-
tions of ΩD. These formulas will be interpreted over the Kripke structures
associated to ΩD rewrite theories.

Given an ΩL rewrite theory R = (E,EAP , E), the Kripke structure asso-
ciated to R, denoted M(R), is the triple (Q,R,L), where:

• Q = Tstate, where TΩD,E∪EAP
= (T,ΣT ,ΠT) is the initial algebra in the

class Mod(E ∪ EAP);

• R(q, q′) iff E ∪ E ⊢1 q −→ q′, for any q, q′ ∈ Q (⊢1 is the syntactic
deduction which uses only one rewriting rule from E);

• L(q, p) = 1 if q ∈ ΠT (sp) and 0 otherwise, for any q ∈ Q and p ∈ ΣL.

Given an ΩD rewrite theory R and an LTL formula φ over ΩD, define
IR(φ, π) = [φ]

M(R)
π and IR(φ, q) = [φ]

M(R)
q , for any infinite or maximal finite

path π and any state q of M(R).
The way we obtain a Kripke structure from a rewrite theory has similar

points with the approach from [92]. However, as we consider also finite paths

159

in the semantics of an LTL formula, we do not need that the transition
relation be made total and also, we use a different representation for the
atomic propositions.

Obtaining the Kripke structure associated to some rewrite theory may be
undecidable. However, we can restrict ourselves to classes of rewrite theories
for which the extraction of the Kripke structure is decidable. For example,
we can use the class of executable rewrite theories [92].

Model Checking rewrite theories

One may argue that the construction of the Kripke structure for a rewrite
theory may have a great complexity but in fact, we will consider an “on the
fly” model-checking algorithm that may need to compute only a part of the
entire Kripke structure. This is also the approach used in the Maude LTL
model-checker [42].

We will discuss how to build an “on the fly” model checking algorithm
for LTL when considering also maximal finite paths. Remember that such a
model checking technique for LTL [54] is build upon two algorithms. The first
algorithm constructs the Buchi automaton (over the alphabet that consists
in the set of atomic propositions) that corresponds to the LTL formula, in
the sense that it accepts only infinite words which are models of this formula
while the second consists in a nested DFS search for a reachable accepting
state reachable from itself in some Buchi automaton (this automaton will be
the product between the input system and the Buchi automaton build in the
first part).

We modify the first part by considering Buchi automata which, besides
accepting states, have also final states. They accept infinite-length words
for which the corresponding run passes infinitely many times through an
accepting state or finite-length words for which the corresponding run ends
in a final state.

Remember that the nodes of the graph from which we will extract the
Buchi automaton corresponding to an LTL formula that handles only infinite
paths are labeled by three sets of formulas: New which are formulas that must
hold at the current state and have not yet been processed, Old which are
formulas that must hold in the current node and have already been processed
and Next which are formulas that must hold in all states that are immediate
successors of states satisfying the properties in Old. Initially, we have only
one node which has New = φ, where φ is the input LTL formula, and Old =
Next = ∅. At some step of the algorithm we process the current node and
we expand the graph if New 6= ∅, depending on the formula read from New (if
New = ∅ we have finished processing the node and we can consider it as a state

160

of the Buchi automaton). When φ is not of the form Xψ, for some formula ψ,
we proceed as usual. Otherwise, when φ = Xψ we mark the current node as
final and we also expand the graph as in the case φ = Xψ. The nested DFS
search from the second part of the “on the fly” model checking algorithm
consists in an usual DFS search for an accepting state followed by a second
DFS search that must find a path back to the accepting state. We modify it
by allowing that the first DFS search stops when finding a final state. The
correctness of the modified algorithm can be proved in a similar manner to
the correctness of the classical algorithm from [54].

5.2.2 A Motivating Example

Before, we formalize equational abstractions of rewrite theories and it’s cor-
responding refinement technique, we provide a motivating example that illus-
trates how CEGAR under equational abstraction produces smaller models to
be verified than CEGAR under predicate abstraction. This happens because
refining in the context of predicate abstraction means adding at least one
predicate to the abstraction function and consequently it means at least the
doubling of the state space of the system. Using equational abstractions we
may obtain finer refinements that do not necessarily double the state space.

Consider the following protocol adapted from [35] that controls the mu-
tually exclusive access to two common resources of two concurrent processes,
modeling the behavior of two mathematicians. They alternate phases of
“thinking”, “eating” and “drinking” regulated by the current values of two
natural numbers m and n: the first (second) mathematician has the right to
enjoy his meal if m is odd (even) or to enjoy his drink if n is odd (even). We
suppose that drinking and eating can not take place in the same time. After
eating or drinking, each mathematician leaves the dining room and modifies
the value of m or n in his own fashion. Also, when entering the eating (drink-
ing) phase both mathematicians modify arbitrarily the value of n (m). We
want to prove that starting from the state in which the two mathematicians
are thinking and m = n = 16, it will always be the case that at least one of
the mathematicians is thinking.

A rewrite theory for this protocol is given below (we write 1 instead of
Succ(0), 2 instead of Succ(Succ(0)), etc). We use two kinds: nat for the
set of natural numbers and state for the set of global states which are 4-
dimensional vectors of natural numbers (x, y,m, n) such that: x = 0 if the
first mathematician is thinking, x = 1 if the first mathematician is eating
and x = 2 if the first mathematician is drinking; y represents the state of the
second mathematician as x does for the first one; m, n are the numbers used
to grant the access to the shared resources. Also, we use the sort nat01 of

161

kind nat for the set {0, 1} and the sort nat02 of kind nat for the set {0, 2}.
The only atomic proposition used is p which is 1 in states with x = 0 or y = 0
(states in which at least one mathematician is thinking) and 0, otherwise.
The sort used to specify it is sp and the property above can be restated as
φ = G p. A fragment of the Kripke structure for the above system is shown
in Figure 5.2.

DRewTh: A Protocol for the Mutually Exclusive Access to Two Resources
kinds: nat

state

sorts: nat01, nat02 of kind nat

sp of kind state

opns: 0 : → nat

Succ : nat → nat

% : nat2 → nat

(, , ,) : nat4 → state

vars: x, y,m, n,m′, n′ : nat
E: sentences for nat01, nat02, Succ and %.
EAP : (x, y,m, n) : sp if x = 0

(x, y,m, n) : sp if y = 0
E→: (0, y,m, n) −→ (1, y,m, n′) if m%2 = 1, y : nat01

(1, y,m, n) −→ (0, y, Succ(3m), n)
(x, 0,m, n) −→ (x, 1,m, n′) if m%2 = 0, x : nat01
(x, 1,m, n) −→ (x, 0,m/2, n) if m%2 = 0
(0, y,m, n) −→ (2, y,m′, n) if n%2 = 1, y : nat02
(2, y,m, n) −→ (0, y,m, Succ(3n))
(x, 0,m, n) −→ (x, 2,m′, n) if n%2 = 0, x : nat02
(x, 2,m, n) −→ (x, 0,m, n/2) if n%2 = 0

0,0,16,16

0,1,16,16 0,0,8,16 0,1,8,16 0,0,4,16 0,1,4,16

0,0,2,160,1,2,160,0,1,161,0,1,16

0,2,16,16 0,0,16,8 0,2,16,8 0,0,16,4 0,2,16,4

0,0,16,20,2,16,20,0,16,12,0,16,1

Figure 5.2: A fragment from the Kripke structure of the concrete system

Intuitively, by an equational abstraction of a rewrite theory we will mean
a set of membership sentences ∆. The rewrite theory for the abstract sys-
tem will be obtained from the rewrite theory of the concrete one by adding

162

∆ to the sentences that specify the data type for the set of states and by
modifying the sentences representing atomic propositions in order to obtain
under-approximations. The CEGAR technique for equational abstraction
will proceed as the one for predicate abstraction but, instead of adding pred-
icates, we will add atomic formulas to some of the membership sentences of
the abstraction.

In the following, we will prove φ by abstraction: first, we use CEGAR
under equational abstraction and then, the classical version under predicate
abstraction. The final abstractions obtained by the two procedures will show
that the approach using equational abstraction is significantly better from
the point of view of the number of states and transitions than the one that
uses predicate abstraction.

The approach using equational abstraction

Initial step. We will start the refinement process with the abstraction that
ignores the last two elements of a state. In order to take fully advantage of
equational abstraction, we will express it using more than one sentence:

∆: (x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x = 0, y = 0
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x+ y = 1
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x = 1, y = 1
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x+ y = 2, x : nat02, y : nat02
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x = 2, y = 2

The Kripke structure for this abstraction is depicted in Figure 5.3(a)
(we have denoted the abstract states with the values of x and y). We can
easily produce a counterexample for φ, let it be the path (0, 0), (1, 0), (1, 1).
Trying to unfold the counterexample in the concrete system, we get that it
is spurious, that is, it has no correspondent in the concrete system. Then,
as in [25], we search for an abstract failure state and we extract the set D
of dead-end states (states from which we have no transition to the abstract
state that follows the failure state) and the set B of bad states (states from
which we have transitions to the abstract state that follows the failure state).
Thus, we obtain D = {(0, 0, 16, 16)} and B = {(0, 0,m, n) | m%2 = 1}. To
separate the set of dead-end states from the set of bad states, we refine using
the atomic formula “m%2 = m′%2”, that it is added only to the first sentence
above because, this is the only sentence in ∆ needed to prove that the states
from D ∪B are in the same abstraction state.

First refinement step. The Kripke structure for this abstraction is de-
picted in Figure 5.3(b). We have denoted states by couples whose elements
are the values of x and y, or by triples in which the first two elements are

163

0,0

0,1

0,2

2,2

2,0

1,0

1,1

0,1

0,2

2,2

2,0

1,0

1,1

0,0,0

0,0,1

0,1

0,2

2,2

2,0

1,0

1,1

0,0,0,1

0,0,1,1

0,0,1,0

0,0,0,0(a) (b)

(c)

Figure 5.3: The abstraction for the initial, first and second step of refinement

the same and the last represents the value of m%2. A counterexample for
the required property is (0, 0, 0), (2, 0), (2, 2). Trying to unfold this coun-
terexample in the concrete system, we get that it is spurious, and obtain
the set of dead-end states D1 = {(0, 0, 16, 16)} and the set of bad states
B1 = {(0, 0,m, n) | n%2 = 1}. Consequently, we refine using the atomic
formula “n%2 = n′%2” that it is added only to the first sentence of the
abstraction because, this is the only sentence used to prove that the states
from D1 and B1 are in the same abstraction state.

Second refinement step. The Kripke structure for this abstraction can
be visualized in Figure 5.3(c). The abstract states are represented by couples
and triples as before or by 4-tuples in which the first three elements are as
in the case of triples and the last element is n%2. Again, a counterexample
can be found: (0, 0, 0, 0), (0, 1), (1, 1). Trying to unfold this counterexample
in the concrete system, we get that it is spurious, and obtain the set of dead-
end states D2 = {(0, 1, 16, 16)} and the set of bad states B2 = {(0, 1,m, n) |
m%2 = 1}. Consequently, we refine using the atomic formula “m%2 =
m′%2” that it is added, for the same reasons, only to the second sentence of
the abstraction.

Third refinement step. The Kripke structure for this abstraction
can be visualized in Figure 5.4(a) (the abstract states are denoted as be-
fore). Again, we can find a counterexample (0, 0, 0, 0), (0, 2), (2, 2) which
by unfolding in the concrete system proves to be spurious. We obtain
the set of dead-end states D3 = {(0, 2, 16, 16)} and the set of bad states
B3 = {(0, 2,m, n) | n%2 = 1}.

Consequently, we refine using the atomic proposition “n%2 = n′%2” that
it is added only to the fourth sentence of the abstraction.

Final step. The abstraction obtained after the third refinement step
consists in the following set of sentences:

(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x = 0, y = 0,m%2 = m′%2,

164

0,2

2,2

2,0

0,0,0,1

0,0,1,1

0,0,1,0

0,0,0,0

1,0,1

0,1,0 0,0,0,1

0,0,1,1

0,0,1,0

0,0,0,0

1,0,1

0,1,00,2,-,0

2,0,-,1

(a) (b)

Figure 5.4: The abstraction for the third and fourth step of refinement

n%2 = n′%2
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x+ y = 1, m%2 = m′%2
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x = 1, y = 1
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x+ y = 2, x : nat02, y : nat02,

n%2 = n′%2
(x, y,m, n) = (x′, y′,m′, n′) if x = x′, y = y′, x = 2, y = 2

The Kripke structure for this abstraction can be visualized in Figure
5.4(b). Abstraction states are denoted as before, except for (0, 2,−, 0) and
(2, 0,−, 1) where the first two elements represent the values of x and y and
the fourth the value of n%2 (the third component just say that m%2 can
have any value).

Now, we obtain that φ is true in the current abstraction and consequently,
we obtain that φ is true in the initial model.

The approach using predicate abstraction

Initial step. We will start the refinement process with the same abstrac-
tion that ignores the last two elements of a state. For this, we use the
set of predicates B = {P 1

x , P
2
x , P

1
y , P

2
y }, where P i

v is 1 in the states with
v = i, for all v ∈ {x, y} and i ∈ {1, 2}. The Kripke structure obtained is
again, the one from Figure 5.3(a). We consider the same spurious counterex-
ample: (0, 0), (1, 0), (1, 1), for which we obtain the set of dead-end states
D = {(0, 0, 16, 16)} and the set of bad states B = {(0, 0,m, n) | m%2 = 1}.
In order to separate D and B, we should refine by adding the predicate
Q((x, y,m, n)) = m%2.

First refinement step. The Kripke structure of the abstraction that we
obtain after the initial step is the one from Figure 5.5(a). We have denoted
abstract states by triples where the first two components are the values of x
and y, respectively and the third component is the truth value of Q.

A counterexample can be found: (0, 0, 0), (0, 2, 0), (2, 2, 0) which by un-
folding in the concrete system is proved to be spurious. We find the set
of dead-end states D1 = {(0, 2, 16, 16)} and the set of bad states B1 =

165

0,0,1

0,1,0 0,0,0

1,0,1

2,0,0

2,0,1

0,2,0

0,2,1

2,2,0

2,2,1

0,0,0,1

0,0,0,0

0,0,1,0

0,0,1,1

0,1,0,0

0,1,0,1

1,0,1,0

1,0,1,1

0,2,0,0

2,0,0,1

0,2,1,0

2,0,1,1

(a) (b)

Figure 5.5: The abstraction for the first and second step of refinement

{(0, 2,m, n) | n%2 = 1}. To separate them, we should add the predicate
S((x, y,m, n)) = n%2.

Final refinement step The Kripke structure for the current abstraction
is the one from Figure 5.5(b). Now, the model checking procedure over the
current abstraction returns 1 and consequently, φ is 1 in the concrete system.

Comparison results

The first conclusion we draw when seeing the two proofs above is that CE-
GAR under equational abstraction obtained smaller models: the final model
from CEGAR under predicate abstraction has 50% more states and 40%
more transitions. The refinement using equational abstraction performed
better because of the modularity of the system (the system consists in two
modules that grant access to drink or food). When predicate abstraction
discovers one predicate it splits all the abstraction states in two, although
the predicate could have been relevant only for the abstraction states of a
single module. For example, in the approach using equational abstraction,
we didn’t split the state (0, 1, 0) in two abstraction states, as we did in the
approach using predicate abstraction, depending on the value of n because
this value does not influence the transitions involving this state (similarly for
the states (1, 0, 1), (0, 2,−, 0) and (2, 0,−, 1)).

Moreover, we can use the predicates that separate the set of dead-end
states from the set of bad states, to derive the atomic formulas added in the
case of equational abstraction. For example, from the predicate dicovered
in the initial step Q((x, y,m, n)) = m%2 we can derive the atomic formula
m%2 = m′%2 discovered in the initial step of CEGAR under equational
abstraction. This happened because the sentences of the abstraction have
the form “t = t′ if C”, where t and t′ are terms of kind state. Consequently,
for CEGAR under equational abstraction we can use the already developed
procedures that discover predicates for CEGAR under predicate abstraction.
The single drawback of the proof using our refinement technique was that
we had more refinement steps. However, this can not be proved to hold
generally and, moreover, using other refinement procedures that eliminate

166

more counterexamples at the same time, we could improve this matter.

5.2.3 CEGAR under Equational Abstraction

We dedicate this section to the formalization of the CEGAR procedure ex-
emplified in the previous section.

Definition 5.2 Let R = (E,EAP , E) be an ΩD rewrite theory over a set of
variables X. An abstraction of R is a set ∆ of sentences over ΩD and X.

The sentences from ∆ have the role to induce a congruence on the equiv-
alence classes of terms that represent states of the system. If TΩD,E =
(T,ΣT ,ΠT) is the initial algebra in the class Mod(E), then the set of states
of the abstract system will be Tstate/ρ, where ρ is the congruence defined by:

[t]=E
ρ [t′]=E

iff E ∪∆ ⊢ t = t′,

for any t, t′ terms of kind state.
Hence, to specify the abstract system induced by an abstraction as above,

we just have to add the set of sentences ∆ to E and modify the sentences
from EAP so the predicates in the abstract system under-approximate the
ones in R.

Definition 5.3 Let R and ∆ be as above. The rewrite theory for the ab-
straction of R by ∆ is R∆ = (E ∪∆, E∆

AP , E) such that for any p ∈ ΣL:

• E ∪∆ ∪ E∆
AP ⊢ t : sp iff (∀t′)(E ∪∆ ⊢ t = t′ ⇒ E ∪ EAP ⊢ t

′ : sp).

The next result is straightforward and shows that abstractions of rewrite
theories imply abstractions of corresponding Kripke structures.

Theorem 5.2 Let R, ∆ and R∆ be as above. Also, consider the initial
algebra TΩD,E = (T,ΣT ,ΠT) and the equivalence relation on Tstate given by:

[t]=E
ρ [t′]=E

iff E ∪∆ ⊢ t = t′,

for any terms t, t′ of kind state. Then, M(R∆) is the (αR, αL)-abstraction
of M(R) by ρ, where αR(0) = αL(1) = ∀ and αR(1) = αL(0) = ∃{0,1}.

The theorem above also implies that the truth of LTL+ formulas is pre-
served from the abstract system to the concrete one.

Corollary 5.1 Let R, ∆ and R∆ be as above. Then, IR(φ, [q]) = 1 ⇒
IR(φ, q) = 1, for any q state of R.

167

The meaning of refinement in the context of equational abstraction can
be formalized as follows.

Definition 5.4 Let R = (E,EAP , E) be a rewrite theory and ∆, ∆′ two
abstractions of it. We say that ∆′ refines ∆ if

E ∪∆′ ⊢ t = t′ ⇒ E ∪∆ ⊢ t = t′,

for any terms t, t′ of kind state.

As we expected refinement implies that an abstract state of M(R∆) may
contain more abstract states of M(R′

∆). One of the advantages when using
equational abstractions is that we have many alternatives in refining them:
we can remove sentences, we can add atomic formulas to the conditions of
the sentences or we can replace atomic formulas with stronger ones.

We present now the CEGAR procedure for equational abstractions of
rewrite theories. The interesting part is the one that refines the abstraction,
where instead of adding predicates, as in the case of CEGAR under predicate
abstraction, we add atomic formulas to the conditions of the sentences that
represent the current abstraction. We will remind CEGAR [25] and detail
on the refinement part.

begin

let R be a rewrite theory and q a state in M(R);
let ∆ be the initial abstraction;

let φ be some property in LTL+ we want to prove;

while true do

x := modelcheck(R,∆, φ, q);
if x = 1 then

return IR(φ, q) = 1;
else

if isConcrete(counterexample(R,∆, φ, q)) then

return IR(φ, q) = 0;
else

∆ := refine(∆,counterexample(R,∆, φ, q));
end

Above, modelcheck(R,∆, φ, q) does model checking on M(R∆) to verify
φ in state [q]. If the output is 0, then counterexample(R,∆, φ, q) returns a
counterexample for φ in the abstraction. The function isConcrete checks if
this counterexample is also a counterexample for φ in the concrete system.
If not, the counterexample is called spurious and we have to refine the ab-
straction. This is done in the procedure refine, where we modify the set

168

of sentences ∆ in order to remove from the abstraction the spurious coun-
terexample. As we have already discussed, we adopt the approach from [25],
and we search for the set D of dead-end states and the set B of bad states.
Then, we discover atomic formulas that separate B from D and add them
only to the conditions of the sentences from ∆ that are necessary to prove
that B ∪D are in the same abstract state.

Now, we intend to give a formal idea about the fact that the procedure
above constructs smaller models to be verified than CEGAR under predicate
abstraction.

Predicate abstraction can be viewed as a particular case of equational
abstraction. We suppose that the predicates used for abstraction are given
by terms with possible values 0 and 1. A predicate abstraction induced by the
set of predicates {p1, . . . , pm} can be expressed by an equational abstraction
∆P = {s1, . . . , sn} such that si has the form

ti = t′i if pi,1 = p′i,1, . . . , pi,m = p′i,m,

for any 1 ≤ i ≤ n, where ti, t
′
i are terms of kind state, pi,j is a version of the

term representing pj that uses variables from ti and, for any term v, v′ is a
term obtained from v by replacing each variable x with the primed version
x′.

The refinement step in CEGAR under predicate abstraction will add
a new predicate to the abstraction, which in the reformulation of the ab-
straction using membership sentences, means adding a new atomic formula
pi,m+1 = p′i,m+1 to each sentence si. The refinement step in the CEGAR un-
der equational abstraction may add the same atomic formula pi,m+1 = p′i,m+1

but, only to some of the sentences expressing the current abstraction. There-
fore, if ∆′

P is the abstraction obtained in the first case and ∆′′
P the abstraction

obtained in the second case, we have that

E ∪∆′′
P |= t = t′ implies E ∪∆′

P |= t = t′,

for any t, t′ terms of kind state (E is the set of membership sentences that
specify the data type for the set of states of the concrete system). The fact
that in the abstract system obtained using ∆′′

P we may have more equations
t = t′ that hold, means that we may have fewer abstract states and the
abstraction may be smaller.

169

Index

(αR, αL)-abstraction, 69, 148
(αR, αL, αS)-abstraction, 88
=-preservation, 33
CTL, 15
CTL∗ path formula, 14
CTL∗ state formula, 14
CTL∗

+, 15
D-path, 16, 19
K-kinded Σ-algebra, 105
K-kinded binary relation, 32
K-kinded logical signature, 13
K-kinded membership signature, 104
K-kinded set, 13
KCTL∗P path formula, 17
KCTL∗P state formula, 17
LTL, 15
S ′-congruence, 117
ΩD rewrite theory, 158
α-abstraction, 33, 49, 115
P-abstraction, 43, 49
∃CTL∗, 15
∃KCTL∗P , 18
∀CTL∗, 15
∀KCTL∗P , 18
≥-preservation, 33
≤-preservation, 33

abstract data type, 108, 132
abstractions of rewrite theories, 167

Belnap’s 4-valued logic, 9
Birkhoff’s representation theorem, 9
boolean algebra, 12

data type, 107

dynamic ΩD-algebra, 141
dynamic K-kinded signature, 140
dynamic specification, 141

equationally specified abstraction, 134,
154

error-preservation, 34

first order formula, 113
first-order formula, 13
function symbol, 105
fuzzy logic, 11

greatest element, 8
greatest lower bound, 8

immediately precede, 7
infinite D-sequence, 16
interpretation policy, 30

safe, 32
interpreted system, 19

join-irreducible, 9

kind, 13
Kleene’s strong 3-valued logic, 9

lattice, 8
c-complete, 9
complete, 8
distributive, 8
finite, 8
inf-complete, 44
symmetric, 12

least element, 8
least upper bound, 8

170

linear order, 10
logical structure, 13
logical type, 13
logically extended ΩL-algebra, 113
logically extendedK-kinded member-

ship signature, 111
logically extended membership speci-

fication, 133
lower bound, 7

maximal finite D-sequence, 16
membership Ω-algebra, 105
membership algebra

initial, 105
membership congruence, 105
membership equational logic, 106
membership equivalence, 105
membership homomorphism, 105
Mono-operational protection systems,

65
MTAM systems with acyclic creation

graphs, 60
multi-agent multi-valued Kripke struc-

ture, 18
multi-valued CTL∗, 17
multi-valued KCTL∗P , 20
multi-valued Kripke structure, 16

over-approximation, 43

partial order, 7
point, 19
predicate symbol, 13
protection scheme, 53
protection system, 54

configuration, 54
quasi-bisimulation relation, 59
safety problem, 55
simulation relation, 56

quasi-boolean algebra, 11
quotient, 105

sentence, 106
similarity relation, 18
sort, 105
strong-preservation, 33

take-grant systems, 67
term, 105

ground, 105
truth algebra, 9
type, 105

under-approximation, 43
upper bound, 8

very weak-preservation, 92

weak-preservation, 34

171

Bibliography

[1] P. E. Ammann and R. Sandhu. Extending the creation operation in the
schematic protection model. In Proceedings of the 6th Annual Computer
Security Applications Conference, pages 304–348, 1990.

[2] E. Astesiano, M. Broy, and G. Reggio. Algebraic specification of con-
current systems. In E. Astesiano, B. Krieg-Bruckner, and H.-J. Kre-
owski, editors, IFIP WG 1.3 Book on Algebraic Foundations of System
Specification. Springer Verlag, 1999.

[3] T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations
in software predicate abstraction. In K. Jensen and A. Podelski, editors,
TACAS, volume 2988 of Lecture Notes in Computer Science, pages
388–403. Springer, 2004.

[4] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian ab-
straction for model checking C programs. In Margaria and Yi [83],
pages 268–283.

[5] N. Belnap. A useful four-valued logic. In Donn and Epstein, editors,
Modern Uses of Multiple-Valued Logic, pages 30–56. Reidel, 1977.

[6] M. Bidoit and A. Boisseau. Algebraic abstractions. In M. Cerioli and
G. Reggio, editors, WADT, volume 2267 of Lecture Notes in Computer
Science, pages 21–47. Springer, 2001.

[7] L. Bolc and P. Borowik. Many-valued Logics. Springer-Verlag, 1992.

[8] A. Bouhoula, J. P. Jouannaud, and J. Meseguer. Specification and
proof in membership equational logic. Theoretical Computer Science,
236(1-2):35–132, 2000.

[9] G. Bruns and P. Godefroid. Model checking partial state spaces with
3-valued temporal logics. In Halbwachs and Peled [61], pages 274–287.

172

[10] G. Bruns and P. Godefroid. Temporal logic query checking. In LICS,
pages 409–417, 2001.

[11] G. Bruns and P. Godefroid. Model checking with multi-valued logics. In
J. Dı́az, J. Karhumäki, A. Lepistö, and D. Sannella, editors, ICALP,
volume 3142 of Lecture Notes in Computer Science, pages 281–293.
Springer, 2004.

[12] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677–691, 1986.

[13] J. A. Brzozowski and C. J. H. Seger. A unified framework for race
analysis of asynchronous networks. Journal of the ACM, 36(1):20–45,
1989.

[14] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142–170, 1992.

[15] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers
and structures. In PLDI, pages 296–310, 1990.

[16] M. Chechik, B.Devereux, and S. M. Easterbrook. Implementing a
multi-valued symbolic model checker. In Margaria and Yi [83], pages
404–419.

[17] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel. Multi-
valued symbolic model-checking. ACM Transactions on Software En-
gineering Methodologies., 12(4):371–408, 2003.

[18] M. Chechik and W. Ding. Lightweight reasoning about program cor-
rectness. Information Systems Frontiers, 4(4):363–377, 2002.

[19] M. Chechik, A. Gurfinkel, and B. Devereux. χ-check: A multi-valued
model-checker. In E. Brinksma and K. G. Larsen, editors, CAV, volume
2404 of Lecture Notes in Computer Science, pages 505–509. Springer,
2002.

[20] M. Chechik and W. MacCaull. CTL model-checking over logics with
non-classical negations. In ISMVL, pages 293–. IEEE Computer Soci-
ety, 2003.

[21] K. Cho and R. E. Bryant. Test pattern generation for sequential mos
circuits by symbolic fault simulation. In DAC, pages 418–423, 1989.

173

[22] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In D. Kozen,
editor, Logic of Programs, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981.

[23] E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. In Courcoubetis [31], pages 450–462.

[24] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L.
McMillan, and L. A. Ness. Verification of the Futurebus+ cache co-
herence protocol. In D. Agnew, L. J. M. Claesen, and R. Camposano,
editors, CHDL, volume A-32 of IFIP Transactions, pages 15–30. North-
Holland, 1993.

[25] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. Journal of the ACM, 50(5):752–794, 2003.

[26] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and ab-
straction. ACM Transactions on Programming Languages and Systems,
16(5):1512–1542, 1994.

[27] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 2000.

[28] E. M. Clarke and R. P. Kurshan, editors. Computer Aided Verifi-
cation, 2nd International Workshop, CAV ’90, New Brunswick, NJ,
USA, June 18-21, 1990, Proceedings, volume 531 of Lecture Notes in
Computer Science. Springer, 1991.

[29] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model
checking. In LICS, pages 353–362. IEEE Computer Society, 1989.

[30] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. F. Quesada. Maude: specification and programming in rewriting
logic. Theoretical Computer Science, 285(2):187–243, 2002.

[31] C. Courcoubetis, editor. Computer Aided Verification, 5th Inter-
national Conference, CAV ’93, Elounda, Greece, June 28 - July 1,
1993, Proceedings, volume 697 of Lecture Notes in Computer Science.
Springer, 1993.

[32] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. In Clarke
and Kurshan [28], pages 233–242.

174

[33] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM Symposium on Principles
of Programming Languages, pages 238–252, 1977.

[34] D. Dams. Abstract Interpretation and Partial Refinement for Model
Checking. PhD thesis, Technische Universitat Eindhoven, 1996.

[35] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of
reactive systems. ACM Transaction on Programming Languages and
Systems, 19(2):253–291, 1997.

[36] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction.
In Halbwachs and Peled [61], pages 160–171.

[37] B. Davey and H. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

[38] J. Dunn. A comparative study of various model-theoretic treatments of
negation: a history of formal negation. In D. Gabbay and H. Wansing,
editors, What is Negation. Kluwer Academic Publishers, 1999.

[39] S. M. Easterbrook and M. Chechik. A framework for multi-valued
reasoning over inconsistent viewpoints. In ICSE, pages 411–420. IEEE
Computer Society, 2001.

[40] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics. Springer-Verlag, 1985.

[41] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Module Specifications and Constraints. Springer-Verlag, 1990.

[42] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL

model checker. Electronic Notes in Theoretical Computer Science, 71,
2002.

[43] E. A. Emerson and A. P. Sistla. Symmetry and model checking. In
Courcoubetis [31], pages 463–478.

[44] C. Enea. Unifying decidability results on protection systems using
simulations. In T. Dimitrakos, F. Martinelli, P. Y. A. Ryan, and S. A.
Schneider, editors, Formal Aspects in Security and Trust, volume 3866
of Lecture Notes in Computer Science, pages 96–111. Springer, 2005.

175

[45] C. Enea and C. Dima. Abstractions of multi-agent systems. In H. D.
Burkhard, G. Lindemann, R. Verbrugge, and L. Zsolt Varga, editors,
CEEMAS, volume 4696 of Lecture Notes in Computer Science, pages
11–21. Springer, 2007.

[46] C. Enea and F. L. Tiplea. Abstractions of dynamic data types. Acta
Informatica. submitted.

[47] C. Enea and F. L. Tiplea. Multi-valued abstractions. Acta Informatica.
submitted.

[48] DeMillo et al., editor. Foundations of Secure Computation. Academic
Press, 1978.

[49] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

[50] J. C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly
verification techniques for the generation of test suites. In R. Alur
and T. A. Henzinger, editors, CAV, volume 1102 of Lecture Notes in
Computer Science, pages 348–359. Springer, 1996.

[51] M. Fitting. Many-valued modal logics I. Fundamenta Informaticae,
15(3-4):235–254, 1991.

[52] M. Fitting. Many-valued modal logics II. Fundamenta Informaticae,
17(1-2):55–73, 1992.

[53] B. R. Gaines. Logical foundations for database systems. International
Journal of Man-Machine Studies, 11(4):481–500, 1979.

[54] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly au-
tomatic verification of linear temporal logic. In Protocol, Specification,
Testing and Verification, pages 3–18, 1995.

[55] M. Ginsberg. Multivalued logics. a uniform approach to inference in
artificial intelligence. Computational Intelligence, 4:265–316, 1988.

[56] P. Godefroid and D. Pirottin. Refining dependencies improves partial-
order verification methods (extended abstract). In Courcoubetis [31],
pages 438–449.

[57] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS.
In O. Grumberg, editor, CAV, volume 1254 of Lecture Notes in Com-
puter Science, pages 72–83. Springer, 1997.

176

[58] S. Graf and B. Steffen. Compositional minimization of finite state
systems. In Clarke and Kurshan [28], pages 186–196.

[59] O. Grumberg and D. E. Long. Model checking and modular verifi-
cation. ACM Transactions on Programming Languages and Systems,
16(3):843–871, 1994.

[60] A. Gurfinkel and M. Chechik. Multi-valued model checking via classical
model checking. In R. M. Amadio and D. Lugiez, editors, CONCUR,
volume 2761 of Lecture Notes in Computer Science, pages 263–277.
Springer, 2003.

[61] N. Halbwachs and D. Peled, editors. Computer Aided Verification,
11th International Conference, CAV ’99, Trento, Italy, July 6-10,
1999, Proceedings, volume 1633 of Lecture Notes in Computer Science.
Springer, 1999.

[62] M. A. Harrison and W. L. Ruzzo. Monotonic protection systems. In
et al. [48].

[63] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating
systems. Communications of ACM, 19(8):461–471, 1976.

[64] J. P. Hayes. Pseudo-boolean logic circuits. IEEE Transactions on
Computers, 35(7):602–612, 1986.

[65] S. Hazelhurst. Compositional Model Checking of Partially Ordered
State Spaces. PhD thesis, University of British Columbia, 1996.

[66] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstrac-
tion. In POPL, pages 58–70, 2002.

[67] S. Horwitz, P. Pfeiffer, and T. W. Reps. Dependence analysis for
pointer variables. In PLDI, pages 28–40, 1989.

[68] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal
Methods in System Design, 9(1/2):41–75, 1996.

[69] N. D. Jones and S. Muchnick. Flow analysis and optimization of LISP-
like structures. In S. Muchnick and N. D. Jones, editors, Program Flow
Analysis: Theory and Applications, pages 102–131. Prentice-Hall, 1981.

[70] N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural
data flow analysis and programs with recursive data structures. In
POPL, pages 66–74, 1982.

177

[71] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, New
York, 1952.

[72] B. Konikowska and W. Penczek. Reducing model checking from multi-
valued CTL∗ to CTL∗. In Proceedings of the 13th International Con-
ference on Concurrency Theory (CONCUR2002), volume LNCS 2421,
pages 226–239, 2002.

[73] B. Konikowska and W. Penczek. On designated values in multi-valued
CTL∗ model checking. Fundamenta Informaticae, 60(1-4):211–224,
2004.

[74] B. Konikowska and W. Penczek. Model checking for multivalued logic
of knowledge and time. In H. Nakashima, M. P. Wellman, G. Weiss,
and P. Stone, editors, AAMAS, pages 169–176. ACM, 2006.

[75] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. Journal of the ACM,
47(2):312–360, 2000.

[76] R. P. Kurshan. Computer-Aided Verification of Coordinating Processes.
Princeton University Press, 1994.

[77] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure
accesses. In PLDI, pages 21–34, 1988.

[78] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject
security. Journal of the ACM, 24(3):455–464, 1977.

[79] R. J. Lipton and L. Snyder. On synchronization and security. In et al.
[48].

[80] A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via induc-
tive learning. In Proceedings of the 17th International Conference on
Computer Aided Verification (CAV’05), LNCS 3576, pages 519–533,
Edinburgh, Scotland, UK, 2005.

[81] Z. Lotfi. Fuzzy sets. Information and Control, 8:338–353, 1965.

[82] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concur-
rent Systems. Specification. Springer-Verlag, 1992.

[83] T. Margaria and W. Yi, editors. Tools and Algorithms for the Construc-
tion and Analysis of Systems, 7th International Conference, TACAS
2001 Held as Part of the Joint European Conferences on Theory and

178

Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Pro-
ceedings, volume 2031 of Lecture Notes in Computer Science. Springer,
2001.

[84] N. Marti-Oliet, J. Meseguer, and M. Palomino. Algebraic simulations.
2005. manuscript: http://maude.cs.uiuc.edu/papers/.

[85] K. L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[86] K. L. McMillan. Verification of infinite state systems by compositional
model checking. In L. Pierre and T. Kropf, editors, CHARME, volume
1703 of Lecture Notes in Computer Science, pages 219–234. Springer,
1999.

[87] K. L. McMillan and N. Amla. Automatic abstraction without coun-
terexamples. In Proceedings of the 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), LNCS 2619, pages 2–17, Warsaw, Poland, 2003.

[88] K. L. McMillan and J. Schwalbe. Formal verification of the Gigamax
cache consistency protocol. In N. Suzuki, editor, Shared Memory Mul-
tiprocessing. The MIT Press, 1992.

[89] K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky,
D. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science vol. 1, pages 189–411. Oxford University Press, 1993.

[90] J. Meseguer. Conditioned rewriting logic as a united model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992.

[91] J. Meseguer. Membership algebra as a logical framework for equational
specification. In Proceedings of WADT 97, volume LNCS 1376, pages
18–61, 1998.

[92] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstrac-
tions. In Proceedings of CADE 03, volume LNCS 1376, pages 2–16,
2003.

[93] R. S. Michalski. Variable-valued logic and its applications to pattern
recognition and machine learning. In D. C. Rine, editor, Computer Sci-
ence and Multiple-Valued Logic: Theory and Applications, page 506534,
1977.

179

[94] R. Milner. An algebraic definition of simulation between programs.
In Proceedings of the 2nd International Joint Conference on Artificial
Intelligence, pages 481–489, 1971.

[95] J. Mitchell. Foundations of Programming Languages. The MIT Press,
1996.

[96] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Anal-
ysis. Springer-Verlag, 1999.

[97] K. R. O’Neill and J. Y. Halpern. Secrecy in multiagent systems. CoRR,
cs.CR/0307057, 2003.

[98] D. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, Theoretical Computer Science, volume 104 of Lec-
ture Notes in Computer Science, pages 167–183. Springer, 1981.

[99] D. Peled. Combining partial order reductions with on-the-fly model-
checking. In D. L. Dill, editor, CAV, volume 818 of Lecture Notes in
Computer Science, pages 377–390. Springer, 1994.

[100] J. Plevyak, A. A. Chien, and V. Karamcheti. Analysis of dynamic
structures for efficient parallel execution. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. A. Padua, editors, LCPC, volume 768 of Lecture
Notes in Computer Science, pages 37–56. Springer, 1993.

[101] J. P. Queille and J. Sifakis. Specification and verification of concur-
rent systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari,
editors, Symposium on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337–351. Springer, 1982.

[102] H. Rasiowa. An Algebraic Approach to Non-Classical Logics. Studies in
Logic and the Foundations of Mathematics. Amsterdam:North Holland,
1978.

[103] S. Sagiv, T. W. Reps, and R. Wilhelm. Solving shape-analysis prob-
lems in languages with destructive updating. ACM Transactions on
Programming Languages and Systems, 20(1):1–50, 1998.

[104] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Transactions on Programming Languages and
Systems, 24(3):217–298, 2002.

180

[105] H. Saidi and N. Shankar. Abstract and model check while you prove. In
Proceedings of the 11th International Conference on Computer-Aided
Verification (CAV’99), pages 443–454, Trento, Italy, 1999.

[106] R. Sandhu. The typed access matrix model. In Proceedings of the 13th
IEEE Symposium on Research in Security and Privacy, pages 122–136,
1992.

[107] R. S. Sandhu. The schematic protection model: its definition and analy-
sis for acyclic attenuating schemes. Journal of the ACM, 35(2):404–432,
1988.

[108] T. Sasao and J. T. Butler. A method to represent multiple-output
switching functions by using multi-valued decision diagrams. In Pro-
ceedings of the IEEE International Symposium on Multiple-Valued
Logic, pages 248–254, 1996.

[109] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for
discrete function manipulation. In Proceedings of the IEEE Interna-
tional Conference on Computer-Aided Design, pages 92–95, 1990.

[110] J. Stransky. A lattice for abstract interpretation of dynamic LISP-like
structures. Information and Computation, 101(1):70–102, 1992.

[111] F. L. Tiplea and C. Enea. Abstractions of data types. Acta Informatica,
42(8-9):639–671, 2006.

[112] A. Valmari. A stubborn attack on state explosion. In Clarke and
Kurshan [28], pages 156–165.

[113] W. Visser, S. Park, and J. Penix. Using predicate abstraction to reduce
object-oriented programs for model checking. In M. P. E. Heimdahl,
editor, FMSP, pages 3–182. ACM, 2000.

[114] E. Y. B. Wang. Analysis of Recursive Types in an Imperative Language.
PhD thesis, University of California, Berkeley, 1994.

181

