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Abstract

The present dissertation has two independent parts.

Viscosity solutions theory for nonlinear Integro-Differential Equations

We consider nonlinear elliptic and parabolic Partial Integro-Differential Equations (PIDES),
where the nonlocal terms are associated to jump Lévy processes. The present work is motivated
by the study of the Long Time Behavior of Viscosity Solutions for Nonlocal PDEs, in the periodic
setting. The typical result states that the solution u(·, t ) of the initial value problem for parabolic
PIDEs behaves like λt + v(x) + o(1) as t → ∞, where v is a solution of the stationary ergodic
problem corresponding to the unique ergodic constant λ. In general, the study of the asymp-
totic behavior relies on two main ingredients: regularity of solutions and the strong maximum
principle.

We first establish Strong Maximum Principle results for semi-continuous viscosity solutions of
fully nonlinear PIDEs. This will be used to derive Strong Comparison results of viscosity sub
and super-solutions, which ensure the up to constants uniqueness of solutions of the ergodic
problem, and subsequently, the convergence result. Moreover, for super-quadratic equations the
strong maximum principle and accordingly the large time behavior require Lipschitz regularity.

We then give Lipschitz estimates of viscosity solutions for a large class of nonlocal equations, by
the classical Ishii-Lions’s method. Regularity results help in addition solving the ergodic problem
and are used to provide existence of periodic solutions of PIDEs.

In both cases, we deal with a new class of nonlocal equations that we term mixed integro-
differential equations. These equations are particularly interesting, as they are degenerate both
in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interac-
tion, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffu-
sion in the complementary one.

Image Visualization and Restoration by Curvature Motions

The role of curvatures in visual perception goes back to 1954 and is due to Attneave. It can be
argued on neurological grounds that the human brain could not possible use all the information
provided by states of simulation. But actually human brain registers regions where color changes
abruptly (contours), and furthermore angles and peaks of curvature. Yet, a direct computation of
curvatures on a raw image is impossible. We show how curvatures can be accurately estimated,
at subpixel resolution, by a direct computation on level lines after their independent smoothing.

To perform this programme, we build an image processing algorithm, termed Level Lines (Affine)
Shortening, simulating a sub-pixel evolution of an image by mean curvature motion or by affine
curvature motion. Both in the analytical and numerical framework, LL(A)S first extracts all the
level lines of an image, then independently and simultaneously smooths all of its level lines by
curve shortening (CS) (respectively affine shortening (AS)) and eventually reconstructs, at each
time, a new image from the evolved level lines.

We justify that the Level Lines Shortening computes explicitly a viscosity solution for the Mean
Curvature Motion and hence is equivalent with the clasical, geometric Curve Shortening.

Based on simultaneous level lines shortening, we provide an accurate visualization tool of image
curvatures, that we call an Image Curvature Microscope. As an application we give some illustra-
tive examples of image visualization and restoration: noise, JPEG artifacts, and aliasing will be
shown to be nicely smoothed out by the subpixel curvature motion.





Résumé

Le manuscrit est constitué de deux parties indépendantes.

Propriétés des Solutions de Viscosité des Equations Integro-Différentielles.

Nous considérons des équations intégro-différentielles elliptiques et paraboliques non-linéaires (EID), où
les termes non-locaux sont associés à des processus de Lévy. Ce travail est motivé par l’étude du Comporte-
ment en temps long des solutions de viscosité des EID, dans le cas périodique. Le résultat classique nous dit
que la solution u(·, t ) du problème de Dirichlet pour EID se comporte comme λt +v(x)+o(1) quand t →∞,
où v est la solution du problème ergodique stationaire qui correspond à une unique constante ergodique λ.
En général, l’étude du comportement asymptotique est basé sur deux arguments: la régularité de solutions
et le principe de maximum fort.

Dans un premier temps, nous étudions le Principe de Maximum Fort pour les solutions de viscosité semi-
continues des équations intégro-différentielles non-linéaires. Nous l’utilisons ensuite pour déduire un ré-
sultat de comparaison fort entre sous et sur-solutions des équations intégro-différentielles, qui va assurer
l’unicité des solutions du problème ergodique à une constante additive près. De plus, pour des équations
super-quadratiques le principe de maximum fort et en conséquence le comportement en temps grand ex-
ige la régularité Lipschitzienne.

Dans une deuxieme partie, nous établissons de nouvelles estimations Hölderiennes et Lipschitziennes pour
les solutions de viscosité d’une large classe d’équations intégro-différentielles non-linéaires, par la méthode
classique de Ishii-Lions. Les résultats de régularité aident de plus à la résolution du problème ergodique et
sont utilisés pour fournir existence des solutions périodiques des EID.

Nos résultats s’appliquent à une nouvelle classe d’équations non-locales que nous appelons équations
intégro-différentielles mixtes. Ces équations sont particulièrement intéressantes, car elles sont dégénérées à
la fois dans le terme local et non-local, mais leur comportement global est conduit par l’interaction locale -
non-locale, par example la diffusion fractionnaire peut donner l’ellipticité dans une direction et la diffusion
classique dans la direction orthogonale.

Visualisation et Restauration d’Images par Mouvements de Courbure

Le rôle de la courbure dans la perception visuelle remonte à 1954, et on le doit à Attneave. Des arguments
neurologiques expliquent que le cerveau humain ne pourrait pas possiblement utiliser toutes les informa-
tions fournies par des états de simulation. Mais en réalité on enregistre des régions où la couleur change
brusquement (des contours) et en outre les angles et les extremas de courbure. Pourtant, un calcul direct de
courbures sur une image est impossible. Nous montrons comment les courbures peuvent être précisément
évaluées, à résolution sous-pixelique par un calcul sur les lignes de niveau après leur lissage indépendant.

Pour cela, nous construisons un algorithme que nous appelons Level Lines (Affine) Shortening, simulant
une évolution sous-pixelique d’une image par mouvement de courbure moyenne ou affine. Aussi bien dans
le cadre analytique que numérique, LLS (respectivement LLAS) extrait toutes les lignes de niveau d’une
image, lisse indépendamment et simultanément toutes ces lignes de niveau par Curve Shortening(CS) (re-
spectivement Affine Shortening (AS)) et reconstruit une nouvelle image. Nous montrons que LL(A)S calcule
explicitement une solution de viscosité pour le le Mouvement de Courbure Moyenne (respectivement Mou-
vement par Courbure Affine), ce qui donne une équivalence avec le mouvement géométrique.

Basé sur le raccourcissement de lignes de niveau simultané, nous fournissons un outil de visualisation pré-
cis des courbures d’une image, que nous appellons un Microscope de Courbure d’Image. En tant que appli-
cation, nous donnons quelques exemples explicatifs de visualisation et restauration d’image: du bruit, des
artefacts JPEG, de l’aliasing seront atténués par un mouvement de courbure sous-pixelique.
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CHAPTER 1

Introduction

If I have been able to see further, it was only because I stood on the shoulders of giants.

Isaac Newton (1643 - 1727)

Abstract: This chapter provides a detailed outline of the manuscript. We briefly describe the
main contributions of the present disertation. The thesis has two independent parts: viscos-
ity solutions theory for nonlinear integro-differential equations and image visualization and
restoration by curvature motions. We present each in turn.12

Résumé : Ce chapitre est un sommaire détaillé du manuscrit, où nous présentons les princi-
pales contributions. Le manuscrit est constitué de deux parties indépendantes : la premiere
porte sur sur la théorie de solutions de viscosité pour des équations integro-différentielles
non-linéaires et la seconde traite de l’utilisation des mouvements par courbure pour la vi-
sualisation et la restauration des images numériques. Nous présentons chacune à son tour.

Keywords: nonlinear integro-differential equations, Strong Maximum Principle, Hölder
and Lipschitz regularity, viscosity solutions, Lévy processes; mean curvature motion, affine
curvature motion, curve shortening, affine shortening, level lines, topographic maps.

1For the sake of clarity, the contributions of the thesis are listed dryly. Rigouros assumptions, bibliographic
notes and comparisons will be extensively given in the following chapters.

2Paragraphs herein will be largely used for the introductions of the corresponding chapters.
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1.1 Viscosity Solutions Theory for Integro-Differential Equations

Nonlocal equations occur in the theory of Lévy jump-diffusion processes and have an exten-
sive range of applications (e.g. physics, engineering, ecology and economics). Throughout this
work, we mainly refer to equations of the type

ut +F (x, t ,Du,D2u,I [x, t ,u]) = 0 in Ω× (0,T ) (1.1)

and their stationary variant, where I [x, t ,u] is a nonlocal operator

I [x, t ,u] =
∫
Rd

(u(x + z, t )−u(x, t )−Du(x, t ) · z1B (z))µx (d z), (1.2)

1B (z) denotes the indicator function of the unit ball B and {µx }x∈Ω a family of Lévy measures,
or a Lévy-Itô operator of the form

J [x, t ,u] =
∫
Rd

(u(x + j (x, z), t )−u(x, t )−Du(x, t ) · j (x, z)1B (z))µ(d z) (1.3)

with µ a Lévy measure and j (x, z) the size of the jumps at x.

The theory of viscosity solutions has been extended for a rather long time to Partial Integro-
Differential Equations (PIDEs). Some of the first papers are due to Soner [Son86a], [Son86b],
in the context of stochastic control jump diffusion processes. Following his work, existence
and comparison results of solutions for first order PIDEs were given by Sayah in [Say91a] and
[Say91b]. When these equations involve bounded integral operators, general existence and
comparison results for semi-continuous and unbounded viscosity solutions were found by
Alvarez and Tourin [AT96].

Jakobsen and Karlsen in [JK06] used the original approach due to Jensen [Jen88], Ishii
[Ish89], Ishii and Lions [IL90], Crandall and Ishii [CI90] and Crandall, Ishii and Lions [CIL92]
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for proving comparison results for viscosity solutions of nonlinear degenerate elliptic integro-
partial differential equations with second order nonlocal operators. Parabolic versions of their
main results were given in [JK05]. They give an analogous of Jensen-Ishii’s Lemma, a keystone
for many comparison principles, but they are restricted to sub-quadratic solutions.

The viscosity theory for general PIDEs has been recently revisited and extended to solutions
with arbitrary growth at infinity by Barles and Imbert [BI08]. The authors provided as well a
variant of Jensen-Ishii’s Lemma for general integro-differential equations. We refer in our work
to viscosity solutions as they were defined by Barles and Imbert [BI08].

Motivation: Long Time Behavior of Viscosity Solutions3

Our work on regularity of viscosity solutions and the strong maximum principle for (mixed)
nonlocal equations was motivated by the study of long time behavior of viscosity solutions.

Recast shortly, the asymptotic behavior as t → ∞ of periodic solutions of integro-
differential equations is this. Under suitable assumptions on the nonlinearity F , it is possible
to show that the solution of the initial value problem{

ut +F (x,Du,D2u,I [x, t ,u]) = 0, in Rd × (0,+∞)

u(x,0) = u0(x), in Rd
(1.4)

with u0 ∈C 0,α(Rd ) / Li p(Rd ) and periodic, satisfies

u(x, t )−λt − v(x)−m → 0, as t →∞, uniformly in x, (1.5)

where v is a periodic solution of the stationary ergodic problem with ergodicity constant λ

F (x,Dv,D2v,I [x, v])+λ= 0, in Rd (1.6)

and m is a constant. This type of behavior has been established in a series of papers in the
local case. The closest approach to our work is the one described by Barles and Souganidis in
[BS01] for space-time periodic solutions of quasilinear parabolic equations. However, similar
results for parabolic equations were developed with other techniques, such as degree theory
(see for example [NR97]).

There are two types of results to be proved when studying the long time behavior of solutions.

1. The existence of a unique λ and of a C 0,α or Li pschi t z periodic solution of the station-
ary ergodic problem (1.6).

Theorem 1.1.1. There exists a unique λ such that the cell problem (1.6) has a periodic
viscosity solution v ∈ C 0,α(Rd ) / Li p(Rd ). In addition, when v ∈ Li p(Rd ), the solution is
unique up to constants.

The ergodic problem does not have in general a unique solution even up to an addi-
tive constant. Instead, when v ∈ Li p(Rd ), applying Strong Maximum Principle for the
linearized equation, we get uniqueness up to constants.

3work in progress, out of scope of this PhD thesis.
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For proving the uniqueness and existence of λ and the existence of v one uses the clas-
sical argument introduced by Lions, Papanicolau and Varadhan in [LV] and considers
small perturbations of the equation, of the form F +εu. Therefore it shall be necessary
at some point to show the compactness of the approximate solutions. This requires in
particular regularity of solutions and if/when possible uniform gradient bounds.

2. The convergence as t →∞ of the solution u(x, t ) of (1.4 ), whose proof relies heavily on
the strong maximum principle.

Theorem 1.1.2. For every initial data u0 ∈ Li p(Rd ), Zd - periodic in x, there exists a
unique solution u ∈ Li p(Rd × [0,∞)) of (1.4), Zd - periodic in x. In addition

u(x, t )−λt − v(x)−m → 0, as t →∞ (1.7)

where v ∈ Li p(Rd ) is a bounded Zd -periodic viscosity solution of the stationary ergodic
problem (1.6) with ergodic constant λ, and m is a constant.

We give below a brief insight into the proof, in order to see how we employ Strong Maxi-
mum Principle. Remark that u(x, t ) and v(x)+λt are both solutions in Rd × (0,∞) of the
evolution equation (1.4). By standard comparison arguments we would have

m(t ) = max
x∈Π

(
u(x, t )−λt − v(x)

)↘ m as t →∞. (1.8)

It is possible to show that for the of Zd -periodic functions w(x, t ) = u(x, t )−λt there exist
a sequence (w(·, ·+ tn))n≥0 converging uniformly to a function in C (Rd × [0,∞))

w(x, t + tn) → w(x, t ), as tn →∞.

The limit w is, by the stability properties of the viscosity solutions, a Zd -periodic viscos-
ity solution of{

w t +F (x,Dw ,D2w ,I [x, t , w])+λ= 0, in Rd × (0,+∞)

w(x,0) = v(x), in Rd .
(1.9)

Passing to the limit for tn →∞ in m(t + tn) = maxx∈Π
(
w(x, t + tn)− v(x)

)
and using the

uniform convergence of the sequence (w(·, ·+ tn))tn we obtain that

m = max
x∈Π

(
w(x, t )− v(x)

)
,∀t > 0.

At his point we use Strong Maximum Principle to get that w(x, t ) = v(x)+m. We then
show that the whole sequence converges to the same limit.

All in all, the study of the asymptotic behavior relies on two key ingredients: regularity results
and the strong maximum principle.
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1.1.1 Lévy Processes and Integro-Differential Equations (Chapter 2)

We give a brief overview of Lévy processes and and present their connection with integro-
differential operators. In the second part we present some recent developments for Partial
Integro-Differential Equations involving nonlocal terms associated to Lévy processes.

1.1.2 Strong Maximum Principle (Chapter 3)

Our study began with an investigation of the Strong Maximum Principle for viscosity solutions
of second-order non-linear parabolic integro-differential equations [Cio]. It is worth mention-
ing that Strong Maximum Principle for linear elliptic equations goes back to Hopf in the 20s
and to Nirenberg in 1953.

We study separately the propagation of maxima in the horizontal component of the do-
main and the local vertical propagation in simply connected sets of the domain. For horizon-
tal propagation of maxima we give two types of results: one coming from the structure of the
nonlocal operator and the other as the natural extension of the classical results of local propa-
gation of maxima. We point out that we do not restrict ourselves to the periodic setting.

To be more precise, by the Strong Maximum Principle for equation (1.1) in an open set
Ω× (0,T ) we mean the following.

SMaxP: Any u ∈ U SC (Rd × [0,T ]) viscosity subsolution of (1.1) that attains a maximum at
(x0, t0) ∈Ω× (0,T ) is constant in Ω× [0, t0].

Figure 1.1: Strong Maximum Principle follows from the horizontal and vertical propagation of maxima.

Similar to smooth solutions of parabolic PDEs, Strong Maximum Principle consists of

• horizontal propagation of maxima: if the maximum is attained at some point (x0, t0)
then the function becomes constant in the connected component C (P0) of the domain
Ω× {t0} which contains the point (x0, t0) , and

• local vertical propagation: if the maximum is attained at some point (x0, t0) then at any
time t < t0 one can find another point (x, t ) where the maximum is attained.

The propagation of maxima in Ω× (0, t0) then follows by standard covering arguments.
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The horizontal propagation of maxima requires two different perspectives.

Translations of measure supports. Using the structure of the nonlocal operator, we show
that Strong Maximum Principle holds whenever the whole domain (not necessarily con-
nected) can be covered by translations of measure supports, starting from a maximum
point. Under quite general assumptions on the nonlinearity F , we show that

Theorem 1.1.3. If u attains a global maximum at (x0, t0) ∈Rd × (0,T ), then u is constant
on

∪
n≥0 An × {t0} with

A0 = {x0}, An+1 =
∪

x∈An

(x + supp(µx )). (1.10)

Figure 1.2: Horizontal propagation of maxima by translations of measure supports.

This is the case for example of a pure nonlocal diffusion

ut −I [x, t ,u] = 0 in Rd × (0,T ) (1.11)

where I is an isotropic Lévy operator of form (1.2), integrated against the Lévy measure
associated with the fractional Laplacian (−∆)β/2:

µ(d z) = d z

|z|d+β .

Nevertheless, there are equations for which maxima do not propagate just by translating
measure supports, such as pure nonlocal equations with nonlocal terms associated with
the fractional Laplacian, but whose measure supports are defined only on half space.

Non-degeneracy assumptions. However, we manage to show that the propagation of maxima
holds, under suitable non-degeneracy and scaling assumptions on the nonlinearity F .

We deal with non-degenerate Levy measures, in the sense given by following assumption

(N ) For any x ∈Ω there exist 1 < β< 2, 0 ≤ η< 1 and a constant Cµ(η) > 0 such that the
following holds on Cη,γ(p) = {z; (1−η)|z||p| ≤ |p · z| ≤ 1/γ}, with p ∈Rd , 0 < |p| < R∫

Cη,γ(p)
|z|2µx (d z) ≥Cµ(η)γβ−2,∀γ≥ 1
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Theorem 1.1.4. If a viscosity subsolution u attains a maximum at P0 = (x0, t0), then u
is constant (equal to the maximum value) in the horizontal component of the domain,
passing through point P0.

This applies for example to a pure nonlocal diffusion (1.11) where I is an isotropic Lévy
operator of form (1.2), integrated against the Lévy measure associated with the fractional
Laplacian (−∆)β/2, and with support in half hyperplane

µ(d z) = 1{z1≥0}
d z

|z|d+β .

Figure 1.3: Non-degeneracy: measures charge cones C = {z; (1−η)|z||p| ≤ |p · z| ≤ 1/γ}.

Mixed integro-differential equations

ut −Ix1 [u]− ∂2u

∂x2
2

= 0 in R2 × (0,T ) (1.12)

i.e. equations for which local diffusions occur only in certain directions and nonlocal
diffusions on the orthogonal ones cannot be handled by simple techniques.

This is particularly interesting since the equations are degenerate both in the local and
nonlocal term, but the overall behavior is driven by their interaction (the two diffusions
cannot cancel simultaneously). We recall that the diffusion term gives the ellipticity in
the direction of x2, while the nonlocal term gives it in the direction of x1

Ix1 [u] =
∫
R

(u(x1 + z1, x2)−u(x)− ∂u

∂x1
(x) · z11[−1,1](z1))µx1 (d z1).

In this case, the non-degeneracy argument applies with respect to the variable x1, which
is shown to be a sufficient condition for the mixed equation above to satisfy the Strong
Maximum Principle.
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Local vertical propagation of maxima occurs under softer assumptions on the non-
degeneracy and scaling conditions. We establish the following result, under some specific
assumptions on F .

Theorem 1.1.5. Let u ∈U SC (Rd × [0,T ]) be a viscosity subsolution of (1.1) that attains a maxi-
mum at P0 = (x0, t0) ∈QT . Then any rectangle R0(x0, t0) = {(x, t )||xi − xi

0| ≤ ai , t0 −a0 ≤ t ≤ t0}
contains a point P 6= P0 such that u(P ) = u(P0).

As an application, we use the Strong Maximum Principle to prove a Strong Comparison
Result of viscosity sub and supersolution for integro-differential equations of the form (1.1)
with the Dirichlet boundary condition

u =ϕ on Ωc × [0,T ] (1.13)

where ϕ is a continuous function. Namely, for certain nonlinearities we have the sequel result.

Theorem 1.1.6 (Strong Comparison Principle). Assume the Lévy measure µ satisfies assump-
tion (N ) with β> 1. Let u ∈U SC (Rd × [0,T ]) be a viscosity subsolution and v ∈ LSC (Rd × [0,T ])
a viscosity supersolution of (1.1), with the Dirichlet boundary condition (1.13). If u−v attains a
maximum at P0 = (x0, t0) ∈Ω× (0,T ), then u − v is constant in C (P0).

Each of these results hold under suitable assumptions on the nonlinearity F , that we make
precise in each chapter. We mention that they extend to parabolic integro-differential equa-
tions the results obtained by Da Lio in [DL04] for fully nonlinear degenerate elliptic equations,
as well as the maximum principle for nonlocal operators generated by nonnegative kernels
obtained by Coville in [Cov08].

1.1.3 Regularity of Solutions (Chapter 4)

There are two approaches for proving the Hölder regularity of viscosity solutions of integro-
differential equations:

• either by Harnack inequalities (see Silvestre [Sil06] Caffarelli and Silvestre [CS09])
• or by Ishii-Lions’s method [IL90] (see Barles, Chasseigne and Imbert [BCI11]).

Recently there have been many papers dealing with C 0,α estimates and regularity of solutions
(not necessarily in the viscosity setting) for fully nonlinear PIDEs and the literature has been
considerably enriched. We give an overview of the existent results in the ongoing chapter, but
send the reader to Chapter 2 for further details on the references.

The two above methods do not cover the same class of equations and each of it has its
own advantages. The powerful Harnack approach for strictly elliptic fully nonlinear equations
leads in general to further regularity such as C 1,α, but requires some integrability condition of
the measure at infinity. On the other hand, viscosity methods apply under weaker ellipticity
assumptions and therefore deal with a large class of degenerate, fully nonlinear equations, in
particular with super-linear gradient growth, allow measures which are only bounded at infin-
ity, but do not seem to yield further regularity.
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We refer in the sequel to the direct viscosity method, introduced by Ishii and Lions in [IL90].
According to it, in order to establish Lipschitz or Hölder regularity of the solution u, we shift the
function u and show that the corresponding difference can be uniformly controlled by some
radial function φ(|z|) = L|z|α, for α ∈ (0,1].

Figure 1.4: Uniformly controlling the shift of u by φ(|x − y |) = L|x − y |α, for all α ∈ (0,1] .

This simple method, closely related to classical viscosity solutions theory, was recently ex-
plored by Barles, Chasseigne and Imbert in [BCI11] in order to prove C 0,α estimates of solutions
of PIDEs. They were able to deal with a large class of integro-differential equations as well as a
general class of nonlocal operators, satisfying proper assumptions. The authors prove that the
solution is α-Hölder continuous for any α< min(β,1), where β characterizes the singularity of
the measure associated with the integral operator. However, in the case β ≥ 1 the ad-literam
estimates do not yield Lipschitz regularity.

In addition, they assume the equation is elliptic in a generalized sense, i.e. at each point
of the domain, the ellipticity comes either from the second order term, or from the nonlocal
term. We realized when studying the Strong Maximum Principle that another type of ellipticity
might arise: at each point, the nonlinearity is degenerate individually in the second-order term,
and in the nonlocal term, but the combination of the local and the nonlocal diffusions ren-
ders the nonlinearity uniformly elliptic. We recall that we termed this type of equations mixed
integro-differential equations since for example the diffusion term might give the ellipticity in
one direction, whereas the nonlocal term in the complementary direction. For this type of
non-degeneracy, the assumptions in [BCI11] are not satisfied and we provide new Hölder and
Lipschitz regularity results in this framework.
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The simplest example of mixed integro-differential equations is given by

−∆x1 u + (−∆x2 u)β/2 = f (x).

In this case local diffusions occur only in x1-direction and nonlocal diffusions in x2-direction.

Figure 1.5: Mixed integro-differential equation: classical diffusion occurs in x1 direction and
fractional diffusion in the complementary direction x2.

Using Ishii-Lions’s viscosity method, we are able to establish both Hölder and Lipschitz
regularity results of viscosity solutions for a general class of mixed integro-differential equations
of the type

F0(u(x),Du,D2u,I [x,u])+ (1.14)

F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Ix2 [x,u]) = f (x)

where we employ directional integro-differential operators

Jx2 [x,u] =
∫
Rd2

(u(x1, x2 + j (x2, z))−u(x1, x2)−Dx2 u(x) · j (x2, z)1B (z))µ(d z).

The three nonlinearities must satisfy suitable strict ellipticity and growth conditions, that we
omit here for the sake of simplicity, but can be illustrated on the following example:

−a1(x1)∆x1 u−a2(x2)Ix2 [x,u]−I [x,u]+b1(x1)|Dx1 u1|k1+b2(x2)|Dx2 u|k2 +|Du|n +cu = f (x)

where the nonlocal term Ix2 [x,u] is non-degenerate (satisfying (N)), of fractional exponent
β ∈ (0,2) and ai (xi ) > 0, for i = 1,2.

When β > 1, we show that the solution is Lipschitz continuous for mixed equations with
gradient terms bi (xi )|Dxi u|ki having a natural growth ki ≤ β if bi bounded. If in addition bi

are τ-Hölder continuous, then the solution remains Lipschitz for gradient terms up to growth
ki ≤ τ+β. When β≤ 1, the solution is α-Hölder continuous for any α<β. An open problem is
the Lipschitz continuity of solutions in the critical case β= 1.
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In particular, for the advection fractional diffusion equation

ut + (−∆u)β/2 +b(x) ·Du = f

we obtain that the solution is Lipschitz continuous in the subcritical case β > 1, with b
bounded and is Hölder continuous in the supercritical case β≤ 1, whenever b is C 1−β+τ, where
τ > 0. Recently, Silvestre obtained similar results to ours by Harnack techniques [Sila]. In ad-
dition to our results, he showed [Silb] that in the supercritical case the solution becomes C 1,τ,
with τ as before.

With this type of nonlinearities in mind, we establish Lipschitz and Hölder regularity re-
sults at several stages. For the sake of precision, we illustrate them on the previous general
example.

Partial regularity. We first give regularity estimates of the solution with respect to each of its
variables, in which case we use classical regularity arguments in one set of variables, and
uniqueness type arguments in the other variables. Then the following holds.

Theorem 1.1.7. Any periodic continuous viscosity solution u

(a) is Lipschitz continuous in the x2 variable, if β> 1 and k2 ≤β, k1 = 1, n ≥ 0;

(b) is C 0,α continuous with α< β−k2

1−k2
, if β≤ 1 and k2 <β, k1 = 1, n ≥ 0.

The Lipschitz/Hölder constant depends on ||u||∞, on the dimension of the space d and
only on the constants associated to the Lévy measures and on the functions a2 and b2.

If we want to extend the regularity result with respect to all its variables, the unique-
ness requirements seem rather restrictive, as gradient terms are restrained to sublinear
growth.

A priori estimates. Nevertheless, the regularity results can be extended to superlinear cases,
by a gradient cut-off argument. Roughly speaking, one should look at the approximated
equations with |Du| replaced by |Du| ∧R, for R > 0 and remark that their solutions are
Lipschitz continuous, with the Lipschitz norm independent of R, thus the solution ob-
tained by this approximation is Lipschitz continuous.

Global regularity then follows by interchanging the roles of x1 and x2. Subsequently, we can
deal with gradient growths of orders respectively k1 = 2, k2 ≤β.

Theorem 1.1.8. Any periodic continuous viscosity solution u of (1.14)

(a) is Lipschitz continuous, if β> 1 and k2 ≤βi , k1 ≤ 2, n ≥ 0;

(b) is C 0,α continuous with α< β2−k2

1−k2
, if β≤ 1 and k2 <βi , k1 ≤ 2, n ≥ 0.

We provide the detailed proof of the regularity result for periodic viscosity solutions of el-
liptic integro-differential equations. In a separate section, we give the extensions to the non-
periodic setting, parabolic case as well as fully nonlinear Bellman - Isaacs equations, pointing
out each time the main differences that occur in the proof.
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1.1.4 Work in Progress and Future Plans

Long time Behavior of Viscosity Solutions, in the Periodic Setting4

The arguments are classical up to the point of solving the stationary ergodic problem. To
prove the uniqueness and existence of λ and v we use the classical argument introduced
by Lions, Papanicolau and Varadhan in [LV] and consider the approximated equations

F (x,Dvε,D2vε,I [x, vε])+εvε = 0, in RN . (1.15)

and pass to the limit as ε → 0. Therefore it is necessary to show some compactness
for this family of functions and this requires in particular equicontinuity, if posible uni-
form C 0,α estimates. The inconvenient is that the gradient bound depends in general
on the L∞ norm of the solution. Sometimes, it is possible to establish gradient bounds
independent of the L∞ norm of the solution (see for example the work of Barles and
Souganidis [BS01]). In the nonlocal case, we show that the renormalized functions
ṽε(x) = vε(x)− vε(0) are uniformly bounded, thus they are equicontinuous. We argue
by contradiction and combine Hölder estimates and the Strong Maximum Principle for
the equations satisfied by the renormalized functions wε = ṽε

||ṽε||∞ . The proof is different
though for the superlinear and sublinear case. So far, the sublinear case is completed.

Almost Periodic Framework

We would like to consider in near future the stationary ergodic problem in almost pe-
riodic domains. There have been some recent developments [Sch] and [GS] in this di-
rection but to the best of our knowledge, their study concerns only a particular family of
nonlinear equations and nonlocal operators.The ergodic problem is related both to the
homogenization and to the long time behavior of solutions. The case of fully nonlinear
degenerate second-order PDEs in almost periodic environment has been studied by Li-
ons and Souganidis in [LS05], where they assume the ellipticity has the same order as
the space oscillation. We would like to investigate if similar techniques can be adapted
to nonlocal equations.

Regularity Theory for Fully Mixed Jump Diffusion Equations

An interesting problem would be the extension of the regularity results to the more gen-
eral case of Mixed Jump Diffusion Equations

−a(x)∆x1 u +b(x)(−∆)α/2
x2

u = 0. (1.16)

We have been already working on the approach given by classical viscosity methods,
where we have obtained partial regularity of solutions: the problematic case seems to be
when the gradient forms a π/4 angle with the xi -axis. At the same time, we are interested
in the approach given by Harnack inequalities and ABP estimates, when a(x) and b(x)
are bounded above and below but not necessarily continuous. We expect that similar
estimates to those given by Caffarelli and Silvestre in [CS09] can be obtained.

4work in progress with Guy Barles, Emmanuel Chasseigne and Cyril Imbert
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1.2 Image Restoration and Visualization by Curvature Motions

The role of curvatures in visual perception goes back to the 50s and one of the first important
contributions is due to Attneave [Att54]. Attneave argued on neurological grounds that the
human brain could not possible use all the information provided by states of simulation, and
showed that the important information, that stimulated the retina, is located at regions where
color changes abruptly (contours), and furthermore at angles and peaks of curvature.

This explains why, in one of the first serious attempts to cope with this numerical chal-
lenge, Asada and Brady [AB86] introduced the concept of multiscale curvature. This paper led
to increasingly sophisticated attempts to analyze planar shapes by their curvatures.

The subject has required a fairly elaborate series of mathematical contributions, among
which image smoothing by geometric curvature motions, such as the Mean Curvature Motion

∂u

∂t
= |Du|curv(u) (MCM)

or its affine variant the Affine Curvature Motion

∂u

∂t
= |Du|curv(u)1/3. (ACM)

These equations are of great interest in image processing since they can be axiomatically ob-
tained from the image multiscale theories, as the partial differential equations satisfying some
invariance properties: causality, locality, isometry and contrast invariance, and in the case of
(ACM) affine invariance as well. This characterization was given in ’93 by Alvarez, Guichard,
Lions and Morel in [AGLM93].

The PDEs above describe the evolution of a hypersurface (curve in 2D) moving according
to its mean curvature. Osher-Sethian defined and studied in [OS88] the level set method for the
motion of fronts by (mean) curvature, for which Chen-Giga-Goto [CGG91] and Evans-Spruck
[ES91] provided rigorous justifications. Their arguments are based on the notion of viscosity
solution of Crandall and Lions [CL83], that allows one to give a suitable meaning to the (MCM)
and (ACM) equations, in the class of uniformly continuous functions. The undertaking is an-
alytically subtle principally because the mean curvature evolution equation is nonlinear, de-
generate, and even undefined at points where Du = 0. Their approach, recast slightly, is this.
Given the initial curve Σ0 as above, select some function u0 such that

Σ0 = {x; u0(x) = 0}.

Solve then the Dirichlet problem for the parabolic (MCM) or (ACM) with initial condition u0,
which gives the solution u(x, t ) and define the evolution of Σ0 as

Σt = {x; u(x, t ) = 0}.

The evolution is shown to be geometric, in the sense that it is uniquely defined and indepen-
dent of the choice of the initial function u0 ∈ BUC (Ω). However, for semi-continuous initial
data, may be more than one solution of the initial value problem as pointed out by Soner in
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[Son93]. In fact, this is the case whenever the level set develops a nonempty interior or be-
comes ‘fat’. This difficulty was explained by Barles, Soner and Souganidis in [BSS93].

(a)

(b)

Figure 1.6: Checkerboard image (upper-left corner) evolving by mean curvature motion. (a) For
bounded uniformly continuous initial data, the level set is uniquely defined. (b) For semi-continuous
functions, the fattening phenomena discards uniqueness of solutions.

On the other hand, these geometric evolutions have been long studied using paramet-
ric methods of differential geometry. Curve smoothing by intrinsic heat equation, also called
Curve Shortening

∂x

∂t
= κ(x). (CS)

was one of the first versions of curve analysis proposed by Mackworth and Mokhtarian in
[MM86]. Rigorous proofs were given by Gage and Hamilton for convex Jordan curves [GH86]
and later extended to embedded curves by Grayson [Gra87]. The Affine Shortening equation

∂x

∂t
= (|κ|−2/3κ

)
(x) (AS)

is a surprising variant of curve shortening introduced by Sapiro and Tannenbaum [ST93a].
A remarkably fast and geometric algorithm for affine shortening was given by Moisan in
[Moi98]. It was used for shape identification algorithms in the works of Cao, Lisani, Musé,
Sur, [CLM+08]. Following the works of Mackworth and Mokhtarian [MM86] on curve smooth-
ing and shape extraction, Caselles et al. realized the potential of using directly the image level
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lines instead of its edges. They proposed to perform contrast invariant image analysis directly
on the set of level lines, or topographic map [CCM96]. A fast algorithm computing the topo-
graphic map was developed by Monasse and Guichard in [MG98].

1.2.1 Algorithms for Curvature Motions (Chapter 5)

All sound shape smoothing algorithms in the computer vision literature perform curve short-
ening or affine curve shortening. But the numerical variety of the underlying numerical algo-
rithms is worth noticing. In the first part, we present a review, analysis and comparison of the
main classes of curvature algorithms. We discuss their history, implementation, advantages
and drawbacks. There are three kinds of initial data for the algorithms: digital curves, digital
sets, or digital images. We shall examine each in turn.

1.2.2 From Curve Shortening to Image Curvature Motion (Chapter 6)

We were first intrigued to find out if an explicit connection can be given between the geometric
approach for Curve/Affine Shortening and the viscosity approach for the Mean/Affine Curvature
Motion. This lead us to set forth in [CMM10] a new image processing numerical chain, that we
termed Level Lines (Affine) Shortening. This image processing pipeline yields in practice sub-
pixel evolutions of images by mean, respectively affine curvature, but it also gives an accurate
curvature estimate, based on a direct computation on the level lines. It, hopefully, advances
Attneave’s program and proves that computer vision can get close enough to human vision.
This was one reason ahead to rigorously justify that the Level Lines Shortening, and its Affine
variant, computes explicitly a viscosity solution for the Mean Curvature Motion, respectively
Affine Curvature Motion.

Evans and Spruck checked in [ES91] the consistency of the level set approach with the clas-
sical motion by mean curvature. More precisely, they showed that the mean curvature motion
agrees with the classical motion, if and as long as the latter exists. The result applies for a
smooth hypersurface, given as the connected boundary of a bounded open set. Their argu-
ments are based on comparison techniques with lower barriers for the approximated mean
curvature motion and strongly use the fact that the hypersurface is the zero level set of its
(signed) distance function. However, the result does not describe the complete behavior of all
the level lines of a Lipschitz function. Namely, if we are given a Lipschitz function u0 which
evolves by mean curvature in the viscosity sense, are all of its level lines evolving indepen-
dently by curve shortening? For dimension n ≥ 3 the result is not true, since hypersurfaces can
develop singularities and possible change topology. Thanks to Grayson’s theorem, the 2D case
has a very peculiar structure which we will take advantage of and show that evolving indepen-
dently and simultaneously by curve shortening all the level lines of a function is equivalent to
applying directly a mean curvature motion to the functions itself.

The Level Lines Shortening (LLS) builds on the previous mentioned contributions and
connects explicitly the geometric approach for curve shortening evolutions and the viscos-
ity framework for curvature motions. Both in the continuous and the discrete case, Level Lines
(Affine) Shortening is defined as an operator which first extracts all the level lines of an image,
then it independently and simultaneously smooths all of its level lines by curve shortening
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(CS) (respectively affine shortening (AS)) and eventually reconstructs, at each step, a new im-
age from the evolved level lines. The chain is based on a topological structure, the inclusion
tree of level lines as a full and non-redundant representation of an image [CM10a], and on a
topological property, the monotonicity of curve shortening with respect to inclusion. There-
fore, the hierarchy of the level lines is maintained while performing the smoothing. Thus, the
chain realizes the commutative diagram:

u0(·)
MC M/AC M=LLS/LL AS

��

level l i nes extr acti on // {Σλ,i
0 }λ,i

C S/AS
��

u(·, t ) {Σλ,i
t }λ,i .

r econstr ucti onoo

We prove that the image reconstructed from the evolved level lines is a viscosity solution of the
mean curvature motion (MCM) (resp. affine curvature motion (ACM)) provided that the level
lines at almost all levels evolve by curve shortening (resp. affine shortening).

Theorem 1.2.1. Let u0 ∈ V S (Ω). Then the Level Lines Shortening evolution of the function u0,

u(x, t ) = LLS(t )u0(x),∀x ∈R2,∀t ∈ [0,∞)

is a viscosity solution for the mean curvature PDE, with the initial data u0{
ut = curv(u)|Du|, in R2 × [0,∞)
u(·,0) = u0, on R2.

(MCM)

A similar result holds for LLAS and the affine curvature PDE with initial condition u0.

The initial image will be considered as an element of a particular space of functions V S (Ω)
that we term space of very simple functions and is related to fattening phenomena for Lips-
chitz continuous functions. This class corresponds to bilinearly interpolated images defined
on a rectangle Ω whose topographic maps contain only Jordan curves. The set of very simple
functions arises naturally in image processing, since level lines corresponding to noncritical
levels are sufficient to grant an exact reconstruction of the digital image.

In this way, the described chain corresponds exactly to its numerical implementation
[CMMM] and has the advantage of satisfying both numerically and analytically all the invari-
ance properties required by the scale space in question. Then, by stability properties of viscos-
ity solutions and density arguments, the result is immediately extended to Lipschitz functions.

1.2.3 Level Lines Shortening Algorithm (Chapter 7)

The next chapter describes the discrete Level Lines Shortening (LLS) Algorithm and its variant
the Level Lines Affine Shortening (LLAS).

Digital images are given in discrete sampled forms on a rectangle Ω. The underlying sub-
stratum is assumed to be continuous and interpolated as such on Ω. Among the possible inter-
polations, the bilinear interpolation presents two advantages: it is the most local of continuous
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(a) (b)

(c) (d)

Figure 1.7: Illustration of the LL(A)S numerical chain. (a) Original image. (b) Bilinear level lines
extraction. (d) Simultaneous and independent smoothing of level lines by affine shortening.
(c) Image reconstructed from shortened level lines.

interpolations, and it preserves the order between the gray levels of the image. For this reason,
we deal with level lines in bilinearly interpolated images.

Level Lines Shortening. The discrete algorithm is performed in three steps

1. it first extracts all the bilinear level lines of a digital image, with a number of levels
sufficient to grant an exact reconstruction of the initial image

2. then it independently and simultaneously smooths all of its level lines by discrete
curve shortening (CS) (resp. affine shortening (AS)).

3. the evolved image is eventually reconstructed from its evolved level lines.

One of the difficulties in image processing was until recently the extraction of the con-
tours at subpixel accuracy. In ’98, Monasse and Guichard gave a fast algorithm [MG98]
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(a) (b)

(c) (d)

Figure 1.8: The four pairs present various implementations of the mean curvature motion on a
checkerboard image (left column) and zooms at an X-junction, with its level lines overprinted on the
image (right). From top to bottom : (a). original image (the zoom is by bilinear interpolation), (b).
Level lines shortening, (c). Finite difference scheme, (d) FDS stack filter. Only LLS does not create new
extrema.

for computing the tree of shapes of an image and accordingly, the topographic map.
Caselles and Monasse describe in their recent work [CM10a] a direct extraction algo-
rithm for the tree of bilinear level lines. But surprisingly, no algorithm for the inverse
reconstruction at subpixel accuracy was given. We complete their work with a fast algo-
rithm of image reconstruction from an arbitrary family of Jordan curves given at subpixel
resolution, provided it is embedded in a tree structure.

Accurate evolution. The order preserving property or inclusion principle is the main structural
requirement of LL(A)S algorithm. It basically prevents the crossing of two different level
curves and therefore permits the construction of a unique image having a prescribed set
of level lines. Some level lines may present multiple crossings at saddle points, in which
case the level lines shortening develops a non-empty interior. Performing classical Fi-
nite Difference Schemes (FDSs) for mean curvature spurious diffusions occur around
the image extrema and at T-junctions or X-junctions. At saddle points FDSs algorithms
create new extrema, and therefore spurious level lines. Only LLS resolves this issue, by
separately evolving the level lines and then reconstructing the image.

An Image Curvature Microscope. Furthermore, we show that Level Lines Shortening yield
accurate curvature estimates, based on direct computation on the level lines. Most of
curvature algorithms have a common drawback: they are based on finite difference
schemes (FDS) for the second order differential operator curv(u). In this case, the cur-
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vature depends on the gray values of the neighbor pixels and consequently, high os-
cillations along transverse level lines appear. Noise and aliasing effects render direct
methods of curvature computation on a raw image practically impossible.

However, whenever we talk about curvatures in a digital image, we actually refer to the
curvatures of the level lines associated to the image. Therefore, the curvature must be
computed as a 1D differential operator, directly on level lines. After short time smooth-
ing the pixelized level lines become accurate and we deal with curves, having sub-pixel
control points, whose curvature can be faithfully computed. The striking difference be-
tween an FDS result and an LLS result is displayed in Figure 7.11.

(a) Original image (b) Curvatures by FDS (c) Curvatures by LLS

Figure 1.9: The curvature color display rule. Zero curvatures are displayed in yellow, positive curva-
tures are shown in a gradation from yellow to red, and negatives from yellow to green. The initial image
(a) had its curvatures computed in two different ways: by a FDS (b), and by LLS (c). In the first case the
curvature presents oscillations, whereas the second result is coherent with our perception.

Range of Applications. In the last part we give a wide range of illustrative examples of image
restoration and visualization.For example, in Fig.7.25 we display bacterial morphologies
and the corresponding curvature map. In this case, the curvature is an intrinsic geomet-
rical descriptor, useful for shape discrimination. An accurate curvature filter permits to
make curvature statistics.

Figure 1.10: (a). Original image (b). Curvature Map
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The algorithm can be tested on line and many examples of all kinds are provided.5

1.2.4 Work in Progress and Future Plans

Simultaneous Erosion and Dilation6

The Level Lines Shortening approach remains true for any increasing function of the
curvature. When the power of the curvature goes to zero, we obtain the so called erosion-
dilation filter, which is described by the following equation

∂x

∂t
= |κ|−1κ(x(t )). (GCS)

This equation solves the famous problem never fixed in Mathematical Morphology: si-
multaneous erosion and dilation. Erosions correspond to the minus sign (the case where
κ points towards the interior of the curve) in the above equation, and dilation to the
plus sign in the above equation. Therefore the above equation solves the long dilemma
unsatisfactorily replaced by the so called alternate filters, which perform alternate tiny
erosions followed by tiny dilations, and iterate to attain a final joint “erosion-dilation”.

Variational Framework7

We analyze the previous evolution, written in the form

∂u

∂t
= sgn(curv(u))|Du| (GCS)

as a limit in the viscosity sense of an iterative time-discrete perimeter minimization
problem. We address the same question to more general cases.

In a first phase we look for class of convex functions F such that the iterative minimiza-
tion of energy functional

F (E ;E n
h ) =

∫
Ω
|∇χE |+

∫
E∆E n

h

(∂F )∗(
1

h
dist(·,E n

h )) (1.17)

has good compactness and regularity properties, using techniques similar to those in
[ATW93], [Cha04] and [CN08]. We then prove that the discrete evolutions converge to a
viscosity solution of the differential inclusion

ut ∈ |Du|∂F∗(div(
Du

|Du| )). (1.18)

The arguments are similar up to some point to those explored by Caffarelli and Cordoba
in [CC93], Caffarelli, Roquejoffre and Savin in [CRS10]for flatness properties of minimal
surfaces.

5http://www.ipol.im/pub/algo/cmmm_image_curvature_microscope/
6work in progress with Sira Ferradans and Rachel Saffar
7work in progress with Antonin Chambolle and Gilles Thouroude
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Levy Processes.
Integro-Differential Equations

Employ your time in improving yourself by other mens’ writings, so that you shall gain easily what

others have labored hard for.

Sōkrátēs (470-399 B.C.E)

Abstract: We give a brief introduction to the class of Lévy processes and and present their
connection with integro-differential operators. In the second part we present some recent
developments for partial integro-differential equations involving nonlocal terms associated to
Lévy processes. 1

Résumé : Nous introduisons les processus de Lévy et nous présentons leur rapport avec des
opérateurs intégro-différentiels. Dans la deuxième partie nous présentons quelques résultats
récents sur les équations integro-différentielles, impliquant des termes nonlocaux associés
aux processus de Lévy.

Keywords: Lévy processes, integro-differential equations, comparison principles, regular-
ity of solutions

1This chapter is State of the Art on Lévy processes and on Partial Integro-Differential Equations.
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2.1 Introduction

Throughout this work we refer to nonlocal equations that occur in the theory of Lévy jump-
diffusion processes. Recently, there has been a great revival of interest in these processes, due
to novel applications in mathematical finance and quantum field theory. Viscosity solutions
approach has been extended for the last twenty years to Partial Integro-Differential Equations.

2.2 Lévy processes 2

The basic theory of stochastic processes was extensively established in the last century.
Intuitively, a stochastic process aims to model the interaction of chance with time. The tools
with which this was made precise were provided by Kolmogorov in the 1930s, who realized
that probability can be rigorously founded on measure theory. Stochastic processes are not
only mathematically rich objects, but they also have an extensive range of applications, e.g.
physics, engineering, ecology and enconomics.

There is a limited amount that can be said about the general concept and much of both
theory and applications focuses on specific classes of stochastic processes, that are endowed
with additional structures, such as random walks, Markov chains, Lévy processes, semimartin-
gales, measure-valued diffusions.

Lévy processes were first studied by Lévy in the 30s and are the simpliest class of processes
whose paths consist of continuous motion interspersed with jump discontinuities of random
size, apearing at random times. Their structure was understood in the 40s and much is due to
Lévy, Khintchine and Itô.

2Section entirely based on D. Appelbaum’s book Lévy Processes and Stochastic Calculus [App09] and survey
article Lévy Processes - From Probability to Finance and Quantum Groups [App04].
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2.2.1 The Structure of Lévy processes. Lévy-Khintchine Formula

A stochastic process is a family of fandom vairables (X (t ))t≥0 defined on a probability space
(Ω,F ,P ) and taking values in a measurable space, here Rd .

Definition 2.2.1. A Lévy processes X = (
X (t )

)
t≥0 is a stochastic process satisfying

(1) X has independent and stationary increments;
(2) X (0) = 0 (a.s.);
(3) X is stochasticly continuous, i.e. for all ε> 0 and for all s ≥ 0

lim
t→s

P (|X (t )−X (s)| > ε) = 0.

Of these axioms, the first one is the most important. It refers to the increments{
X (t )−X (s); 0 ≤ s ≤ t <∞}

.

Stationarity means that the distribution of X (t )−X (s) is invariant undeer shifts

P
(
X (t )−X (s) ∈ A

)= P
(
X (t − s)−X (0) ∈ A

)
,∀A Borel sets.

Independence means that given any finite ordered sequence of times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn <∞,
the random variables

X (t1)−X (0), X (t2)−X (t1), ..., X (tn)−X (tn−1)

are independent. The second axiom is a convenient renormalization. The continuity is a tech-
nical, but important assumption that enables to perform rigorous analysis.

The structure of a generic Lévy processes can be understood by means of Fourier analysis.
The key formula from which many results flow, is the Lévy-Khintchine formula, which says
that any Lévy process has a specific form of its characteristic function. More precisely, for the
characteristic function of X (t ), i.e. the mapping φt : Rd →C defined by

φt (ξ) = E(e iξ·X (t )) =
∫
Rd

e iξ·z pt (d z)

where pt is the distribution of X (t )and E denotes the expectation, the following holds.

Theorem 2.2.1 (Lévy Khintchine formula). If X = (
X (t )

)
t≥0 is a Lévy process, then φt (ξ) =

e tη(ξ),∀t ≥ 0,∀x ∈Rd where

η(ξ) = i b ·ξ− 1

2
ξ · Aξ+

∫
Rd∗

(
e iξ·z −1− iξ · z1B (z)

)
µ(d z) (2.1)

for some b ∈Rd , A a nonnegative definite symmetric d ×d matrix, µ a Borel measure for which∫
Rd∗

min(1, |z|2)µ(d z) <∞.

Conversely, given a mapping η of the form (2.1) we can always construct a Lévy process X for
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Figure 2.1: Standard Brownian motion. The path is continuous but nowhere differentiable.

which φt (ξ) = e tη(ξ). The mapping η : Rd → C is called the characteristic exponent of X . The
tripe (b, A,µ) is called the characteristic of X . The measures µ are called Lévy measures.

2.2.2 Examples of Lévy Processes

2.2.2.1 Brownian motion and Gaussian processes

A Brownian motion3 in Rd is a Lévy process B = (
B A(t ), t ≥ 0

)
with characteristics (0, A,0).

Thus it has mean zero and covariance A. If A is positive definite, then each B A(t ) has a normal
distribution with density

f (x) = 1

(2π)
d
2 det(A)

1
2

e−
1

2t x A−1x .

Standard Brownian motion was rigorously constructed by N. Wiener in the 1920s as a family
of functionals on the space C =C0([0,∞),R) of real valued continuous functions on [0,∞) that
vanish at zero. In so doing, he equipped the infinite dimensional space C with a Gaussian mea-
sure that is now called Wiener measure (in his honor). It follows that the paths t 7→ B A(t )(ω),
where ω ∈ C are continuous. In the 1930s Wiener, together with Paley and Zygmund showed
that the paths are nowhere differentiable (w.p.1).

2.2.2.2 Brownian motion with drift

A Brownian motion with drift is a Lévy process C = (
Cb,A(t ), t ≥ 0

)
with characteristics (b, A,0).

Each Cb,A(t ) is a Gaussian random variable having mean vector tb and covariance matrix t A.

3Brownian motion is named after the botanist R. Brown who first observed in 1820s the irregular motion of
pollen grains immersed in water. By the end of nineteenth century the phenomenon was understood by means of
kinetic theory as a result of molecular bombardement. In 1905 A. Einstein predicted its existence from purely theo-
retical considerations. Five years later, L. Bachelier had employed it to model the stock market, where the analogue
of the molecular bombardement is the interplay of the myriad of individual market decisions that determine the
market price.
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In fact the process can be writen as

Cb,A(t ) = tb +B A(t ).

A Lévy process has continuous sample paths (w.p.1) iff is a Brownian motion with drift.

2.2.2.3 The Poisson Process

A Poisson process N = (
Nλ(t ), t ≥ 0

)
with intensity λ is a Lévy process with characteristics

(0,0,λδ1) where δ1 is a Dirac mass concentrated at 1. N takes non-negative integer values and
we have the Poisson distribution

P (Nλ(t ) = n) = e−λt (λt )n

n!

The paths of N are piecewise constant on finite intervals, with jumps of size 1 at each of the
random times tn = inf

{
t ≥ 0, Nλ(t ) = n

}
.

2.2.2.4 The Compound Poisson Process

Let
(
Yn

)
n≥0 be a sequence of independent identically distributed random variables with com-

mon law ν and let Nλ be an independent Poisson process. The compound Poisson process4 is
the Lévy process

Zλ(t ) =
Nλ(t )∑
j=1

Y j .

It has characteristic exponent

η(ξ) =
∫
Rd

(
e iξ·z −1

)
λν(d z).

The sample paths of Z are piecewise constant on finite intervals with jump discontinuities at
the random times

(
tn

)
n≥0, only this time the size of the jumps is itself random, and the jump

at tn can take any value in the range of the random variable Yn .

2.2.2.5 Interlacing processes

Given a Browninan motion with drift Cb,A and a compound Lévy process Zλ, de can define an
interlacing process by

X (t ) =Cb,A(t )+Zλ(t )

provided the two summands are independent. It has characteristic exponent

η(ξ) = i b ·ξ− 1

2
ξ · Aξ+

∫
Rd

(
e iξ·z −1

)
λν(d z). (2.2)

The paths are piecewise continuous on finite intervals, interlaced with random jumps occur-
ing at random times. The form if the characteristic exponent (2.2) is quite close to the general

4Poisson process (with d = 1) can be used to model the takings at a till in a supermarket, where Nλ(t ) is the
number of customers in the queue at time t and Y j is the amount paid by the j -th customer.
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Figure 2.2: Stable Lévy process. Jump discontinuities are represented by vertical lines. This process is
self similar: the path has a fractal nature.

form (2.1). It was actually proposed as the most general form for η by B. de Finetti in the 1920s.
His error was in failing to appreciate that the finite measure λν can be replaced by a σ− finite
measure µ. But if we do this, e iξ·z −1 may not be µ-integrable and hence we must adjust the
integrand. Probabilistically, this corresponds to a lack of convergence of a countable number
of ”small jumps”. Although (2.2) is incorrect, the most general characteristic exponent can be
obtained as a pointwise limit of terms of similar type, i.e.

η(ξ) = lim
δ→0

ηδ(ξ),

where each

ηδ(ξ) = i b ·ξ− 1

2
ξ · Aξ+

∫
δ<|z|≤1

z ·ξµ(d z)+
∫
|z|≥1

(
e iξ·z −1

)
λν(d z)+

From the above examples, one may think that a Lévy process is nothing but the interplay of
Gaussian and Poisson measures. However, the Gaussian and Poisson measures are just ex-
tremes of all characteristic exponents; there are some interesting processes in between.

2.2.2.6 Stable Lévy processes

Stable random variables are those whose laws are stable. They are characterized by the prop-
erty that if X1 and X2 are independent copies of a stable random variable X , then for each
c1,c2 > 0, there exists c0 > 0 and c ∈ Rd such that c X + c0 has the same law as c1X1 + c2X2. A
Lévy process is stable if each X (t ) is stable in this sense. The characteristics of a stable Lévy
process are either of the form (b, A,0) (so it is a Brownian motion with drift) or (b,0,µ) where

µ(d z) =C
d z

|z|d+β , with β ∈ (0,2), and C > 0.



2.2. Lévy processes 31

β is called the index of stability. With the sole exception of the Brownian motions with drift,
the random variables of a stable Lévy process all have infinite variance, and if β≤ 1, they also
have infinite mean. One example of interest (in the case d = 1) for which β = 1 is the Cauchy
process, which has the density

ft (x) = t

π(x2 + t 2)
.

Figure 2.2 presents a simulation of its paths in which jump discontinuities are represented by
vertical lines. When X is rotationally invariant, i.e. P (X (t ) ∈ O A) = P (X (t ) ∈ A), ∀O ∈ O (d),
t ≥ 0 and Borel sets A, we obtain

η(ξ) =−σβ|ξ|β

Rotationally invariant stable processes are an important class of self-similar processes, i.e.
(X (ct ), t ≥ 0) and (c

1
α X (t ), t ≥ 0) have the same finite dimensional distributions (for each c > 0),

and this is one reason why such processes are important in applications. Another reason,
applying to general stable random variables X , is that they have “heavy tails”, i.e. P (X > y)
behaves asymptotically like y−α as y →∞ as opposed to the exponential decay found in the
Gaussian case. Such behavior has been found in models of telecommunications traffic on the
Internet.

2.2.2.7 Relativistic processes

In 1905 Einstein gave a quantum mechanical explanation of the photoelectric effect ( which
broght him the Nobel prize) and developed the special theory of relativity. According to it, a
particle of rest mass m moving with momentum p has kinetic energy

E(p) =
√

m2c4 +c2|p|2 −mc2,

where c is the speed of light. If we define η(p) =−E(p), then η is the characteristic exponent of
a Lévy processes.

2.2.3 The Lévy-Itô Decomposition

Given a characteristic exponent, we can always associate to it a Lévy process whose paths are
right continuous with left limits (w.p.1). It follows that this process X can only have jump
discontinuities, and there are, at most, a countable number of these on each closed interval.
We formally write

X (t ) = Xc (t )+ ∑
0≤s≤t

∆X (s)

where Xc has continuous paths (w.p.1) and ∆X (s) = X (s)−X (x−) is the “jump“ at time s where
X (s−) is the left limit. We can describe Xc quite easily. It is a Brownian motion with drift

Xc (t ) = bt +B A(t )

(although this is by no means easy to prove). The second term is more problematic: in particu-
lar, the sum may not converge. Instead of dealing directly with the jumps, it is more convenient
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to count the jumps up to time t that are in a given Borel set A and to introduce

N (t , A) = #{0 ≤ s ≤ t ;∆X (s) ∈ A}.

In any finite time, X can have only a finite number of jumps of size greater than 1. We can write
this finite sum of jumps as

∫
|z|>1 zN (t ,d z). Similarly, the sum of all the jumps of size greater

than 1
n but less than 1 is

∫
1
n <|z|<1 zN (t ,d z). However, the limit may not converge as n → ∞.

Lévy argued that the accumulation of a large number of very small jumps may be difficult to
distinguish from bursts of deterministic motion, so one should consider

Mn(t ) =
∫

1
n <|z|<1

z(N (t ,d z)− tµ(d z))

which is a sequence of square-integrable, mean zero martingales. The sequence converges in
mean square to a martingale

M(t ) =
∫

0<|z|<1
zÑ (t ,d z).

where Ñ (t ,d z) = (N (t ,d z)− tµ(d z)) is called a compensated Poisson random measure. Lévy’s
intuition was made precise by K. Itô, to whom we owe the decomposition of sample paths of a
Lévy process:

X (t ) = bt +B A(t )+
∫
|z|<1

zÑ (t ,d z)+
∫
|z|≥1

zN (t ,d z).

2.2.4 Integro-Differential Operators

Lévy processes are in particular Markov processes, thus their past and their future are inde-
pendent at the present. More precisely, if we denote by Ft the smallest sub σ-algebra of F

with respect to which all
(
X (s)

)
0≤s≤t are measurable, then the following must hold

E
(
u(X (t + s)|Ft )

)= E
(
u(X (t + s)|X (t ))

)
, ∀t , s ≥ 0, ∀u ∈ Bb(Rd )

where Bb(Rd ) is the Banach space, with respect to the supremum norm, of all bounded
measurable functions on Rd . One can define a two-parameter family of linear contractions(
Ts,t

)
0≤s≤t<∞ on Bb(Rd ) by

(Ts,t u)(x) := E
(
u(X (t )|X (s) = x

)= ∫
Rd

u(x + z)pt (d z).

The Markov property implies that the family is an evolution, i.e. Tr,sTs,t = Tr,t , for all r ≤ s ≤ t .

Lévy processes have two additional structural properties, which makes them a nice sub-
class of Markov processes. They are time-homogenenous Ts,t = T0,t−s for all 0 ≤ s ≤ t . Thus,
the one-parameter family Tt = T0,t forms a semigroup TsTt = Ts+t . In addition, they are Feller
processes, i.e. preserves the Banach space C0(Rd ) of continuous functions, vanishing at infin-
ity Tt : C0(Rd ) 7→C0(Rd ) and

lim
t→0

||Tt u −u|| = 0.

Therefore,
(
Tt

)
t≥0 forms a contraction semigroup on C0(Rd ), which is strongly continuous,
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and by the general theory of semigroup operators, Tt admits a generator

Au = lim
t→0

Tt u −u

t

for all u in some linear space dense in C0(Rd ).

2.2.4.1 The Structure of the Generator

The structure is then completely determined by the Lévy Khintchine formula and reads

Au(x) =
d∑

i=1
bi

∂u

∂xi︸ ︷︷ ︸
dr i f t

+ 1

2

d∑
i , j=1

ai j
∂2u

∂xi∂x j︸ ︷︷ ︸
di f f usi on

+
∫
Rd

(
u(x + z)−u(x)−

d∑
i=1

zi
∂u

∂xi
1B (z)

)
µ(d z)︸ ︷︷ ︸

j umps

.

In particular

• Brownian motions are generated by half-Laplacian A = 1
2∆;

• Rotationally invariant β-stable processes by fractional Laplacian A =−(−∆)
β

2 ;
• Relativistic processes by the Schrödinger operator −A =

p
m2c4 −c2∆−mc2.

More generaly, this structure can be given for a wider class of Markov processes, when the
generator is of the Courrège form

Au(x) = c(x)u(x)+
d∑

i=1
bi (x)

∂u

∂xi︸ ︷︷ ︸
dr i f t

+ 1

2

d∑
i , j=1

ai j (x)
∂2u

∂xi∂x j︸ ︷︷ ︸
di f f usi on

+

∫
Rd

(
u(z)−u(x)−

d∑
i=1

(zi −xi )
∂u

∂xi
K (x, z)

)
µx (d z)︸ ︷︷ ︸

j umps

.

Note that the drift, diffusion and jumps are no longer fixed, but change from point to point.
There is an additional term c, that corresponds to killling. The function K is a smoothed ver-
sion of the indicator function that effects the cut-off between large and small jumps.

2.2.4.2 Types of Integro-Differential Operators

For each point x ∈ Rd , the Lévy measure µx (d z) on Rd∗ = Rd \ {0} determines the integro-
differential operator. Depending on the assumptions on the singularity at the origin of the
Lévy measure, we may classify these integro-differential operators. To fix ideas, we refer to
general nonlocal operators, of the form

I [x, t ,u] =
∫
Rd

(u(x + z, t )−u(x, t )−Du(x, t ) · z1B (z))µx (d z). (2.3)
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Integro-differential operators or order 0 (or bounded) have the expression

I [x,u] =
∫
Rd∗

(
u(x + z)−u(x)

)
µx (d z) with

∫
Rd∗

µx (d z) <∞.

since they make sense for bounded functions.

Integro-differential operators or order 1 have the expression

I [x,u] =
∫
|z|<1

(
u(x + z)−u(x)

)
µx (d z) with

∫
|z|<1

|z|µx (d z) <∞

since they make sense for bounded continuously differentiable functions.

Integro-differential operators or order 2 have the expression

I [x,u] =
∫
|z|<1

(
u(x + z)−u(x)−Du · z1B (z)

)
µx (d z) with

∫
|z|<1

|z|2µx (d z) <∞

since they make sense for bounded twice-continuously differentiable functions.

For operators of order 1 or 2 the interesting part is the singularity of the measures at the
origin, thus the small jumps. The region of integration {|z| < 1} can be replaced by any region
of the form {|z| < ε}, with ε > 0. On the other hand, for operators of order 0 the interest is
on the integrability at infinity, thus large jumps. Similarly, one could replace the domain of
integration by {|z| ≥ ε}, with ε > 0. For operators of form (2.5) both large and small jumps are
comprised, and they will be often writen as

I [x,u] =I 1
δ [x,u]+I 2

δ [x,u]

with

I 1
δ [x,u] =

∫
|z|<δ

(
u(x + z)−u(x)−Du · z1B (z)

)
µx (d z)

I 2
δ [x,u] =

∫
|z|≥δ

(
u(x + z)−u(x)−Du · z1B (z)

)
µx (d z).

2.3 Integro-Differential Equations

Prior to viscosity solutions theory there was the classical theory for second order, uniformly el-
liptic integro-differential equations. We will not discuss it here, but it is worth mentioning that
a priori estimates, weak and strong maximum principles, existence and uniqueness results
have been extended from elliptic partial differential equations to elliptic integro-differential
equations. For results in the framework of Green functions and classical regular solutions we
send the reader to the up-to-date book of Garroni and Menaldi [GM02] and the references
therein.

Lately, there has been a great interest in extending viscosity solutions theory to Partial
Integro-Differential Equations (PIDEs). The advantage of this theory is that is allows merely
continuous functions to be solutions of fully nonlinear equations and it has a great flexibility
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for passages to limits under quite general conditions. Moreover, general existence and unique-
ness results can be provided, as well as regularity results. Many interesting developments were
recently established for partial integro-differential equations and would be hard to cover them
all. We will focus only on the main contributions that brought the theory of viscosity solutions
for PIDEs at its present stage.

The theory of viscosity solutions applies today [BI08] to a wide class of integro-differential
equations of the form

F (x,u,Du,D2u,I [x,u]) = 0 in Ω. (2.4)

where the nonlinearity F satisfies a fundamental monotonicity condition, known in the litera-
ture as degenerate ellipticity condition, i.e.

F (..., X , l ) ≤ F (...,Y , l ′) if X ≥ Y , l ≥ l ′,

for all X ,Y ∈Sdi and l , l ′ ∈R.

The integro-differential operator I [x,u] is either general nonlocal operator of the type

I [x,u] =
∫
Rd

(u(x + z)−u(x)−Du(x) · z1B (z))µx (d z), (2.5)

where 1B (z) denotes the indicator function of the unit ball B and
(
µx

)
x∈Ω a family of Lévy

measures, i.e. non-negative, possibly singular, Borel measures on Ω such that

sup
x∈Ω

∫
Rd

min(|z|2,1)µx (d z) <∞.

or a Lévy-Itô operator of the form

J [x,u] =
∫
Rd

(u(x + j (x, z))−u(x, t )−Du(x) · j (x, z)1B (z))µ(d z) (2.6)

with µ a Lévy measure and j (x, z) the size of the jumps at x.

Although the nonlocal operator I is defined on the whole space, we consider equations on
a bounded domain Ω. Therefore, we assume that the function u = u(x) is a priori defined out-
side the domain Ω. The choice corresponds to prescribing the solution in Ωc , as for example
in the case of Dirichlet boundary conditions.

There are several definitions for viscosity solutions, among which the closest to the PDE
framework is the following.

Definition 2.3.1 (Viscosity solutions). An usc function u : Rd →R is a subsolution of (3.1) if for
any φ ∈C 2(Rd ) such that u −φ attains a global maximum at x ∈Ω

F (x,φ(x),Dφ(x),D2φ(x),I [x,φ]) ≤ 0.

A lsc function u : Rd → R is a supersolution of (3.1) if for any test function φ ∈C 2(Rd ) such that
u −φ attains a global minimum at x ∈Ω

F (x,φ(x),Dφ(x),D2φ(x),I [x,φ]) ≥ 0.
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One of the first papers is due to Soner [Son86b], where the author is interested in the opti-
mal control of jump processes with a state-space constraint. The deterministic counterpart of
this problem is studied in [Son86a], and generalizations to a certain class of jump processes,
namely piecewise deterministic processes is given in [Son86b]. Yet, the theory of viscosity solu-
tions has required fairly elaborated works on the topic.

2.3.1 Existence and Comparison Results

Roughly speaking, uniqueness and comparisons principles in the viscosity solutions theory
refer to one of the two statements below.

Comparison Principle on Ω = Rd . If u is a bounded usc subsolution of (2.4) and v is a lsc
supersolution of (2.4) then u ≤ v in Rd .

Comparison Principle on Ω bounded. If u is a bounded usc subsolution of (2.4), v is a lsc
supersolution of (2.4) and u ≤ v on ∂Ω then u ≤ v in Ω.

Following Soner’s work, existence and comparison results of solutions for first order PIDEs
were given by Sayah in [Say91a] and [Say91b]. The author studies the existence and uniqueness
of viscosity solutions of the fully nonlinear first-order, integro-differential equation

F (x,u,Du,I [x,u]) = 0 in Rd

where the integral term I [x,u] depends on a family Lévy measures
(
µx

)
x sufficiently regular

with respect to x, and F is continuous in all its variables and increasing with respect to u.
Comparison results between bounded uniformly continuous, as well as semicontinuous, re-
spectively unbounded subsolutions and supersolutions were given.

Second-order degenerate PIDEs are more complex and required careful studies, according
to the nature of the integral operator (often reflected in the singularity of the Lévy measure
against which they are integrated). When these equations involve bounded integral operators,
general existence (by Perron’s method) and comparison results for semi-continuous and un-
bounded viscosity solutions were found by Alvarez and Tourin [AT96]. They deal with Cauchy
problems for nonlinear equations of the type

−ut +F (x, t ,u,Du,D2u)−
∫
Rd

K
(
u(x + z, t ),u(x, t )

)
µx,t (d z) = 0 on Rd × (0,T )

where F is continuous,
(
µx,t

)
x,t is a bounded positive measure and K is continuous, nonde-

creasing with respect to the first variable. Amadori extended the existence and uniqueness
results for a class of Cauchy problems for integro-differential equations, starting with initial
data with exponential growth at infinity [Ama03] and proved a local Lipschitz regularity result.

Barles, Buckdahn and Pardoux deal in [BBP97] with systems of parabolic, second order
integro-differential equations

−ui
t −

1

2
tr

(
σ(x)σ∗(x)D2ui )−b(x)Dui −J [x,ui ]− f i (x, t ,u,Duiσ,Bi [x,ui ]) = 0
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where J [x,u] is a second order nonlocal operator

J [x,u] =
∫

E

(
u(x + j (x, z)−u(x)−Du · j (x, z))

)
µ(d z)

and
Bi [x,u] =

∫
E

(
u(x + j (x, z)−u(x))

)
γi (x, z)µ(d z).

These systems were connected to backwards stochastic differential equations

d Xs = b(Xs)d s +σ(Xs)dWs +
∫

E
j (Xs , z)µ̃(d s,d z)

and existence and comparison results were established.

Pham connected the optimal stopping time problem in a finite horizon of a controlled
jump diffusion process with a parabolic PIDE in [Pha98] and proved existence and compari-
son principles of uniformly continuous solutions. Existence and comparison results were also
provided by Benth, Karlsen and Reikvam in [BKR01] where a singular stochastic control prob-
lem is associated to a nonlinear second-order degenerate elliptic integro-differential equation
subject to gradient and state constraints, as its corresponding Hamilton-Jacobi-Bellman equa-
tion.

Jakobsen and Karlsen in [JK06] used the original approach due to Jensen [Jen88], Ishii
[Ish89], Ishii and Lions [IL90], Crandall and Ishii [CI90] and Crandall, Ishii and Lions [CIL92]
for proving comparison results for viscosity solutions of nonlinear degenerate elliptic integro-
partial differential equations

F (x,Du,D2u,I [x,u]) = 0 in Rd (2.7)

with second order nonlocal operators

J [x,u] =
∫
Rd

(u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z))µ(d z)

where µ is a Lévy measure and j (x, z) is the size of the jumps at x. Parabolic versions of their
main results were given in [JK05]. They give an analogous of Jensen-Ishii’s Lemma, a keystone
for many comparison principles, but they are restricted to subquadratic solutions

|u(x)| ≤C (1+|x|2).

The viscosity theory for general PIDEs has been recently revisited by Barles and Imbert [BI08]
and extended to solutions with arbitrary growth at infinity

|u(x)| ≤C (1+R(x))

for any given R, upper semicontinuous function.

The notion of viscosity solution in [BI08] generalizes the one introduced by Imbert in
[Imb05] for first-order Hamilton Jacobi equations in the whole space and Arisawa in [Ari06],
[Ari07] for degenerate integro-differential equations on bounded domains. It consists of re-
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placing the solution by the test-function only around the singularity of the measure, in the
nonlocal term.

Definition 2.3.2 (Viscosity subsolution). An usc function u : Rd → R is a subsolution of (2.7) if
for any φ ∈C 2(Rd ) such that u −φ attains a global maximum at x

F (x,Dφ(x),D2φ(x),I 1
δ [x,φ]+I 2

δ [x,Dφ(x),u]) ≤ 0.

Similar definitions of viscosity sub(super)solutions were given by Caffarelli and Silvestre
in [CS09]. They test the nonlocal operators in C 1,1 functions that touch the function u either
from above or from below, and are only defined locally in a neighborhood of the touching
point, their tails being completed by u itself.

Barles and Imbert provided as well a variant of nonlocal Jensen Ishii’s Lemma for general
integro-differential equations [Imb05]. A direct consequence is the following corollary, which
is an extremely useful tool in uniqueness proofs (and shall be used in Chapters 3 and 4).

Theorem 2.3.1 (Corollary of Nonlocal Jensen Ishii’s Lemma). Let u be an usc subsolution of
(2.7), v be a lsc viscosity supersolution of (2.7) and ϕ ∈ C (R2d ). If (x̄, ȳ) is a global maximum
point of u(x)−u(y)−ϕ(x, y), then for any δ> 0 there exists ᾱ such that for 0 <α< ᾱ

F (x̄,u(x̄), p, X α,I 1,δ[x̄,ϕ(·, ȳ)]+I 2,δ[x̄, p,u]+oα(1)) ≤ 0

F (ȳ ,u(ȳ), q,Y α,I 2,δ[x̄,−ϕ(x̄, ·)]+I 2,δ[ȳ , q,u]+oα(1)) ≥ 0

where p = Dxϕ(x̄, ȳ), q =−D yϕ(x̄, ȳ) and

− 1

α
I ≤

[
X α 0
0 −Y α

]
≤ D2ϕ(x̄, ȳ)+oα(1).

2.3.2 Regularity Theory for Fully Nonlinear Integro-Differential Equations

Regularity theory for nonlocal evolution equations of variational type with measurable kernels
can be developed using the original ideas of De Giorgi [DG57] and Nash [Nas58] from the cal-
culus of variations. In this setting, Caffarelli, Chan and Vaseur [CCV] show that solutions with
initial data in L2 become instantaneously bounded and Hölder continuous. Their arguments
are closely related to the work of Kassmann [Kas09], Kassmann and Bass [BK05a], where the
Moser approach for the stationary case is fully developed. Some results about Hölder estimates
using probabilistic techniques can be found in [BL02] and [BK05b].

In the setting of viscosity solutions, there are essentially two approaches for proving Hölder
or Lipschitz regularity of viscosity solutions: by ABP - Harnack inequalities and by Ishii-Lions’s
viscosity method.

Regularity theory of viscosity solutions for fully nonlinear integro-differential equations by
ABP - Harnack inequalities was recently developed by Caffarelli and Silvestre in [CS09]. Under
suitable assumptions that we discuss below, the authors show that the solution is C 0,α and give
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the following Hölder estimates of solutions

||u||C 0,α(B1/2) ≤C (sup
Rd

|u|+C0).

Moreover, using the above estimates for the incremental quotients of the solution, they estab-
lish C 1,α regularity results

||u||C 1,α(B1/2) ≤C (sup
Rd

|u|+C0).

In their paper, the authors focus on equations obtained from purely jump processes (with-
out diffusions or drifts), e.g.

inf
γ

sup
δ

J γ,δ[x,u] = 0

with J γ,δ comparable with the fractional Laplacian of exponent β ∈ (0,2) and provide esti-
mates that remain uniform as the degree of the equation approaches 2 (i.e. β→ 2), therefore
the theory reaches naturally the second-order case. They intend to extend to the nonlocal case
the existing theory for fully nonlinear second-order elliptic equations (see the self-contained
notes by Cabré and Caffarelli [CC95] and the references therein).

Similar to second-order differential operators, they use extremal Pucci operators to define
a replacement to the concept of uniform ellipticity. Thus, an elliptic operator I with respect
to a class L of linear integro-differential operators must satisfy

M−
L [x, v] ≤I [x,u + v]−I [x,u] ≤ M+

L [x, v]

where M−
L

and M+
L

are the maximal and minimal operators with respect to the class L

M−
L [x,u] = inf

L∈L
Lu(x)

M+
L [x,u] = sup

L∈L
Lu(x).

Regularity results are given for the class L0 of operators of the form

L0u(x) =
∫
Rd

(u(x + z)−u(x − z)−2u(x))K (y)d y

with

(2−β)
λ

|y |d+β ≤ K (y) ≤ (2−β)
Λ

|y |d+β ,β ∈ (0,2)

In this way, they can deal with fully nonlinear operators (and accordingly fully nonlinear equa-
tions), defined as the supr emum or as an i n f sup over a collection of linear operators. In
addition, the extremal operators allow to define solutions to equations with bounded, measur-
able coefficients.

The Lévy measure µ is given by a positive, symmetric kernel satisfying the integrability
assumption ∫

Rd

|z|2
1+|z|2 K (z)d z <∞.
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Hölder regularity results for viscosity solutions of fully nonlinear integro-differential equa-
tions were also provided by Barles, Chasseigne and Imbert [BCI11], using a direct viscosity
method, initially introduced by Ishii and Lions in [IL90]. This method gives explicit C 0,α esti-
mates

|u(x)−u(y)| ≤ L|x − y |α, if |x − y | ≤ δ

in terms of the nonlinearity F and the singular measure(s) µx appearing in the nonlocal term
(L depends only on the constants and functions associated with F and µx ). In addition, they
can identify the critical Hölder exponent α and show that the solution is α-Hölder continuous,
for any α< β, where β characterizes the singularity of the measure associated to the nonlocal
operator. Their results are given for a general class of nonlocal equations satisfying suitable
ellipticity and growth assumptions. The results hold for a wide class of integro-differential
operators, whose singular measures depend on x and are only bounded at infinity, uniformly
with respect to x

sup
x∈Rd

∫
Rd

min(|z|2,1)µx (d z) <∞.

Unlike the Harnack approach, the viscosity method requires regularity of the coefficients.

The authors deal with equations having both local and nonlocal terms, which are strictly
elliptic in a generalized sense: for each point, the equation is either uniformly elliptic in the
classical sense and (possibly) degenerate with respect to the nonlocal term, or conversely. In
the example below

−tr(σ(x)σ∗(x)D2u)− c(x)I [x,u]+H(x,Du) = 0

classical ellipticity in the second-order differential term means that σ(x)σ∗(x) is positive def-
inite and c(x) might be zero. Precise computations show that we just need ellipticity in the
gradient direction. When it comes to the nonlocal term, one has to translate in a proper way
the ellipticity in the gradient direction. And this is reflected in a suitable nondegeneracy con-
dition with respect to the the family of Lévy measures. Roughly speaking, the measures have to
charge cones Cη,δ(p) in a ball of radius δ, with axis in the gradient direction p and aperture η,
i.e. ∫

Cη,δ(p)
|z|2µx (d z) ≥C (η)δ2−β

where β characterizes the singularity of the measure.

The growth condition allows to consider equations with superlinear growth of the gradient

−c(x)I [x,u]+b(x)|Du|k +|Du|r = f (x),

in which case solutions are Hölder continuous for k =β+τ, r =β and b ∈C 0,τ.

Moreover, solutions of Bellman-Isaacs equations

cu + sup
λ∈Λ

inf
γ∈Γ

{
− 1

2
Tr(σλ,γ(x)σ∗

λ,γ(x)D2u)−bλ,γ(x) ·Du −I
λ,γ

LI [x,u]− fλ,γ(x)
}
= 0 (2.8)
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are Hölder continuous, if all the nonlocal operators have fractional exponents βλ,γ ≥β> 0 and
the coefficients are Hölder continuous, uniformly with respect to λ,γ.

2.4 Discussion

Although many comparison results were given, to the best of our knowledge, no strong max-
imum principle of viscosity solutions for integro-differential equations associated to jump-
diffusion processes exists. We present some of our recent results in Chapter 3 This will be used
to derive a strong comparison result between viscosity sub and supersolution.

Strong Comparison Principle on Ω open and bounded. If u is a bounded usc subsolution of
(2.4), v is a lsc supersolution of (2.4) such that u(x0) = v(x0) for some x0 ∈Ω then u ≡ v in Ω.

As far as the regularity is concerned, the above methods do not cover the same class of
equations and each of it has its own advantages. The powerful Harnack approach applies for
uniformly elliptic fully nonlinear equations, with rough coefficients and leads in general to fur-
ther regularity such as C 1,α, but requires some integrability condition of the measure at in-
finity. On the other hand, viscosity methods apply under weaker ellipticity assumptions and
therefore deal with a large class of degenerate, fully nonlinear equations, in particular with
super-linear gradient growth, allow measures which are only bounded at infinity, but require
Hölder continuous coefficients and do not seem to yield further regularity.

In Chapter 4 we extend to Lipschitz regularity the Hölder regularity results recently ob-
tained by Barles, Chasseigne and Imbert. In addition, we deal with a new class of nonlocal
equations that we term mixed integro-differential equations. In near future, we would like to
address the Harnack approach for this type of equations. It would be also interesting to inves-
tigate the possibility of obtaining C 1,α estimates by direct viscosity methods.





CHAPTER 3

Strong Maximum Principle for
Integro-differential Equations

All truths are easy to understand once they are discovered; the point is to discover them.

Galileo Galilei (1564 - 1642)

Abstract: This chapter is concerned with the study of the Strong Maximum Principle for semi-
continuous viscosity solutions of fully nonlinear, second-order parabolic integro - differential
equations. We study separately the propagation of maxima in the horizontal component of
the domain and the local vertical propagation in simply connected sets of the domain. We give
two types of results for horizontal propagation of maxima: one is the natural extension of the
classical results of local propagation of maxima and the other comes from the structure of the
nonlocal operator. As an application, we use the Strong Maximum Principle to prove a Strong
Comparison Result of viscosity sub and supersolution for integro-differential equations.1

Résumé: Ce chapitre est dédié au Principe de Maximum Fort pour les solutions de viscosité
semi-continues des équations intégro-différentielles nonlinéaires de second ordre. Nous étu-
dions séparément la propagation horizontale de maxima, ainsi que la propagation verticale
dans les domaines simplement connexes. En ce qui concerne la propagation horizontale
de maxima, nous présentons deux types des résultats: une extension naturelle des résultats
classiques de propagation locale de maxima et un résultat simple qui est donné par la struc-
ture de l’ opérateur nonlocal. Dans la dernière partie, nous utilisons le Principe de Maximum
Fort pour déduire un Résultat de Comparaison Fort entre sous et sur-solutions des équations
intégro-différentielles.

Keywords: nonlinear parabolic integro-differential equations, strong maximum principle,
viscosity solutions

1This work represents the article On the Strong Maximum Principle for Second Order Nonlinear Parabolic
Integro-Differential Equations, submitted.
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3.1 Introduction

We investigate the Strong Maximum Principle for viscosity solutions of second-order non-
linear parabolic integro-differential equations of the form

ut +F (x, t ,Du,D2u,I [x, t ,u]) = 0 in Ω× (0,T ) (3.1)

where Ω ⊂ RN is an open bounded set, T > 0 and u is a real-valued function defined on RN ×
[0,T ]. The symbols ut , Du, D2u stand for the derivative with respect to time, respectively the
gradient and the Hessian matrix with respect to x. I [x, t ,u] is an integro-differential operator,
taken on the whole space RN . Although the nonlocal operator is defined on the whole space,
we consider equations on a bounded domain Ω. Therefore, we assume that the function u =
u(x, t ) is a priori defined outside the domain Ω. The choice corresponds to prescribing the
solution in Ωc × (0,T ), as for example in the case of Dirichlet boundary conditions.

The nonlinearity F is a real-valued, continuous function in Ω× [0,T ]×RN ×SN ×R, (SN

being the set of real symmetric N ×N matrices) and degenerate elliptic, i.e.

F (x, t , p, X , l1) ≤ F (x, t , p,Y , l2) if X ≥ Y , l1 ≥ l2, (3.2)

for all (x, t ) ∈Ω× [0,T ], p ∈RN \ {0}, X ,Y ∈SN and l1, l2 ∈R.

Throughout this work, we consider integro-differential operators of the type

I [x, t ,u] =
∫
RN

(u(x + z, t )−u(x, t )−Du(x, t ) · z1B (z))µx (d z) (3.3)
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where 1B (z) denotes the indicator function of the unit ball B and {µx }x∈Ω is a family of Lévy
measures, i.e. non-negative, possibly singular, Borel measures on Ω such that

sup
x∈Ω

∫
RN

min(|z|2,1)µx (d z) <∞.

In particular, Lévy-Itô operators are important special cases of nonlocal operators and are de-
fined as follows

J [x, t ,u] =
∫
RN

(u(x + j (x, z), t )−u(x, t )−Du(x, t ) · j (x, z)1B (z))µ(d z) (3.4)

where µ is a Lévy measure and j (x, z) is the size of the jumps at x satisfying

| j (x, z)| ≤C0|z|, ∀x ∈Ω,∀z ∈RN

with C0 a positive constant.

We denote by U SC (RN ×[0,T ]) and LSC (RN ×[0,T ]) the set of respectively upper and lower
semi-continuous functions in RN × [0,T ]. By Strong Maximum for equation (3.1) in an open
set Ω× (0,T ) we mean the following.

SMaxP: any u ∈ U SC (RN × [0,T ]) viscosity subsolution of (3.1) that attains a maximum at
(x0, t0) ∈Ω× (0,T ) is constant in Ω× [0, t0].

The Strong Maximum Principle follows from the horizontal and vertical propagation of
maxima, that we study separately. By horizontal propagation of maxima we mean the follow-
ing: if the maximum is attained at some point (x0, t0) then the function becomes constant in
the connected component of the domain Ω× {t0} which contains the point (x0, t0). By local
vertical propagation we understand that if the maximum is attained at some point (x0, t0) then
at any time t < t0 one can find another point (x, t ) where the maximum is attained. This will
further imply the propagation of maxima in the region Ω× (0, t0).

Figure 3.1: Strong Maximum Principle follows from the horizontal and vertical propagation of maxima.

We set QT =Ω× (0,T ] and for any point P0 = (x0, t0) ∈QT , we denote by S(P0) the set of all
points Q ∈QT which can be connected to P0 by a simple continuous curve in QT and by C (P0)
we denote the connected component of Ω× {t0} which contains P0.
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The horizontal propagation of maxima in C (P0) requires two different perspectives. An
almost immediate result follows from the structure of the nonlocal operator. More precisely,
we show that Strong Maximum Principle holds for PIDEs involving nonlocal operators in the
form (3.3) whenever the whole domain (not necessarily connected) can be covered by transla-
tions of measure supports, starting from a maximum point. This is the case for example of a
pure nonlocal diffusion

ut −I [x, t ,u] = 0 in RN × (0,T ) (3.5)

where I is an isotropic Lévy operator of form (3.3), integrated against the Lévy measure asso-
ciated with the fractional Laplacian (−∆)β/2:

µ(d z) = d z

|z|N+β .

The result is the natural extension to PIDEs of the maximum principle for nonlocal operators
generated by nonnegative kernels obtained by Coville in [Cov08].

Nevertheless, there are equations for which maxima do not propagate just by translat-
ing measure supports, such as pure nonlocal equations with nonlocal terms associated with
the fractional Laplacian, but whose measure supports are defined only on half space. Mixed
integro-differential equations, i.e. equations for which local diffusions occur only in certain
directions and nonlocal diffusions on the orthogonal ones cannot be handled by simple tech-
niques, as they might be degenerate in both local or nonlocal terms but the overall behavior
might be driven by their interaction (the two diffusions cannot cancel simultaneously). We
have in mind equations of the type

ut −Ix1 [u]− ∂2u

∂x2
2

= 0 in R2 × (0,T ) (3.6)

for x = (x1, x2) ∈ R2. The diffusion term gives the ellipticity in the direction of x2, while the
nonlocal term gives it in the direction of x1

Ix1 [u] =
∫
R

(u(x1 + z1, x2)−u(x)− ∂u

∂x1
(x) · z11[−1,1](z1))µx1 (d z1)

where {µx1 }x1 is a family of Lévy measures. However, we manage to show that under some
nondegeneracy and scaling assumptions on the nonlinearity F , if a viscosity subsolution at-
tains a maximum at P0 = (x0, t0) ∈QT , then u is constant (equal to the maximum value) in the
horizontal component C (P0).

We then prove the local propagation of maxima in the cylindrical region Ω×(0,T ] and thus
extend to parabolic integro-differential equations the results obtained by Da Lio in [DL04] and
Bardi and Da Lio in [BDL01] and [BDL03] for fully nonlinear degenerate elliptic convex and
concave Hamilton Jacobi operators. For helpful details of Strong Maximum Principle results
for Hamilton Jacobi equations we refer to [Bar94]. Yet, it is worth mentioning that Strong Max-
imum Principle for linear elliptic equations goes back to Hopf in the 20s and to Nirenberg, for
parabolic equations [Nir53].
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In the last part we use Strong Maximum Principle to prove a Strong Comparison Result
of viscosity sub and supersolution for integro-differential equations of the form (3.1) with the
Dirichlet boundary condition

u =ϕ on Ωc × [0,T ] (3.7)

where ϕ is a continuous function.

Nonlocal equations find many applications in mathematical finance and occur in the the-
ory of Lévy jump-diffusion processes. The theory of viscosity solutions has been extended for
a rather long time to Partial Integro-Differential Equations (PIDEs). Some of the first papers
are due to Soner [Son86a], [Son86b], in the context of stochastic control jump diffusion pro-
cesses. Following his work, existence and comparison results of solutions for first order PIDEs
were given by Sayah in [Say91a] and [Say91b].

Second-order degenerate PIDEs are more complex and required careful studies, according
to the nature of the integral operator (often reflected in the singularity of the Lévy measure
against which they are integrated). When these equations involve bounded integral operators,
general existence and comparison results for semi-continuous and unbounded viscosity solu-
tions were found by Alvarez and Tourin [AT96]. Amadori extended the existence and unique-
ness results for a class of Cauchy problems for integro-differential equations, starting with ini-
tial data with exponential growth at infinity [Ama03] and proved a local Lipschitz regularity
result.

Jakobsen and Karlsen in [JK06] used the original approach due to Jensen [Jen88], Ishii
[Ish89], Ishii and Lions [IL90], Crandall and Ishii [CI90] and Crandall, Ishii and Lions [CIL92]
for proving comparison results for viscosity solutions of nonlinear degenerate elliptic integro-
partial differential equations with second order nonlocal operators. Parabolic versions of their
main results were given in [JK05]. They give an analogous of Jensen-Ishii’s Lemma, a keystone
for many comparison principles, but they are restricted to subquadratic solutions.

The viscosity theory for general PIDEs has been recently revisited and extended to solu-
tions with arbitrary growth at infinity by Barles and Imbert [BI08]. The authors provided as
well a variant of Jensen Ishii’s Lemma for general integro-differential equations. The notion of
viscosity solution generalizes the one introduced by Imbert in [Imb05] for first-order Hamil-
ton Jacobi equations in the whole space and Arisawa in [Ari06], [Ari07] for degenerate integro-
differential equations on bounded domains.

The chapter is organized as follows. In section §3.2 we study separately the propagation
of maxima in C (P0) and in the region Ω× (0, t0). In section §3.3 similar results are given for
Lévy Itô operators. Examples are provided in section §3.4. In section §3.5 we prove a Strong
Comparison Result for the Dirichlet Problem, based on the Strong Maximum Principle for the
linearized equation.

3.2 Strong Maximum Principle - General Nonlocal Operators

The aim of this section is to prove the local propagation of maxima of viscosity solutions of (3.1)
in the cylindrical region QT . As announced, we study separately the propagation of maxima in
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the horizontal domains Ω× {t0} and the local vertical propagation in regions Ω× (0, t0). Each
case requires different sets of assumptions.

In the sequel, we refer to integro-differential equations of the form (3.1) where the function
u is a priori given outside Ω. Assume that F satisfies

(E) F is continuous in Ω× [0,T ]×RN ×SN ×R and degenerate elliptic.

Results are presented for general nonlocal operators

I [x, t ,u] =
∫
RN

(u(x + z, t )−u(x, t )−Du(x, t ) · z1B (z))µx (d z)

where {µx }x∈Ω is a family of Lévy measures. We assume it satisfies assumption

(M) there exists a constant C̃µ > 0 such that, for any x ∈Ω,∫
B
|z|2µx (d z)+

∫
RN \B

µx (d z) ≤ C̃µ.

To overcome the difficulties imposed by the behavior at infinity of the measures (µx )x , we
often need to split the nonlocal term into

I 1
δ [x, t ,u] =

∫
|z|≤δ

(u(x + z, t )−u(x, t )−Du(x, t ) · z1B (z))µx (d z)

I 2
δ [x, t , p,u] =

∫
|z|>δ

(u(x + z, t )−u(x, t )−p · z1B (z))µx (d z)

with 0 < δ< 1 and p ∈RN .

There are several equivalent definitions of viscosity solutions, but we will mainly refer to
the following one.

Definition 3.2.1 (Viscosity solutions). An usc function u : RN × [0,T ] → R is a subsolution of
(3.1) if for any φ ∈C 2(RN × [0,T ]) such that u−φ attains a global maximum at (x, t ) ∈Ω× (0,T )

φt (x, t )+F (x, t ,φ(x, t ),Dφ(x, t ),D2φ(x, t ),I 1
δ [x, t ,φ]+I 2

δ [x, t ,Dφ(x, t ),u]) ≤ 0.

A lsc function u : RN × [0,T ] → R is a supersolution of (3.1) if for any test function φ ∈C 2(RN ×
[0,T ]) such that u −φ attains a global minimum at (x, t ) ∈Ω× (0,T )

φt (x, t )+F (x, t ,φ(x, t ),Dφ(x, t ),D2φ(x, t ),I 1
δ [x, t ,φ]+I 2

δ [x, t ,Dφ(x, t ),u]) ≥ 0.

3.2.1 Horizontal Propagation of Maxima by Translations of Measure Supports

Maximum principle results for nonlocal operators generated by nonnegative kernels defined
on topological groups acting continuously on a Hausdorff space were settled out by Coville in
[Cov08]. In the following, we present similar results for integro-differential operators in the
setting of viscosity solutions.
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It can be shown that Maximum Principle holds for nonlocal operators given by (3.3) when-
ever the whole domain can be covered by translations of measure supports, starting from a
maximum point, as suggested in Figure 3.2.2.

An additional assumption is required with respect to the nonlinearity F . More precisely we
require that

(E ′) F is continuous, degenerate elliptic and for x, p ∈RN and l ∈R

F (x, t ,0,O, l ) ≤ 0 ⇒ l ≥ 0.

For the sake of precision, the following result is given for integro-differential equations
defined in RN . We explain in Remark 3.2.2 what happens when we restrict to some open set Ω.

Theorem 3.2.1. Assume the family of measures {µx }x∈Ω satisfies assumption (M). Let F satisfy
(E ′) in RN × [0,T ] and u ∈ U SC (RN × [0,T ]) be a viscosity solution of (3.1) in RN × (0,T ). If u
attains a global maximum at (x0, t0) ∈RN × (0,T ), then u(·, t0) is constant on

∪
n≥0 An , with

A0 = {x0}, An+1 =
∪

x∈An

(x + supp(µx )). (3.8)

Proof. Assume that u is a viscosity subsolution for the given equation. Consider the test-
function ψ≡ 0 and write the viscosity inequality at point (x0, t0)

F (x0, t0,0,O,I 1
δ [x0, t0,ψ]+I 2

δ [x0, t0,Dψ(x0, t0),u]) ≤ 0.

This implies according to assumption (E ′), that

I 2
δ [x0, t0,u] =

∫
|z|≥δ

(u(x0 + z, t0)−u(x0, t0))µx0 (d z) ≥ 0.

But u attains its maximum at (x0, t0) and thus u(x0 + z, t0)−u(x0, t0)) ≤ 0. Letting δ go to zero
we have

u(z, t0) = u(x0, t0), for all z ∈ x0 + supp(µx0 ).

Arguing by induction, we obtain

u(z, t0) = u(x0, t0),∀z ∈ ∪
n≥0

An .

Take now z0 ∈∪
n≥0 An . Then, there exists a sequence of points (zn)n ⊂∪

n≥0 An converging to
z0. Since u is upper semicontinuous, we have

u(z0, t0) ≥ limsup
zn→z0

u(zn , t0) = u(x0, t0).

But (x0, t0) is a maximum point and the converse inequality holds. Therefore

u(z, t0) = u(x0, t0),∀z ∈ ∪
n≥0

An .



50 Chapter 3. Strong Maximum Principle

Figure 3.2: Horizontal propagation of maxima by translations of measure supports.

Remark 3.2.1. In particular when supp(µx ) = supp(µ) = B, with µ being a Lévy measure and B
the unit ball, RN can be covered by translations of supp(µ) starting at x0

RN = x0 +
∪

n≥0

(
supp(µ)+ ...+ supp(µ)︸ ︷︷ ︸

n

)
.

and thus u(·, t0) is constant in RN .

Remark 3.2.2. Whenever the equation is restricted to Ω, with the corresponding Dirichlet con-
dition outside the domain, then iterations must be taken for all the points in Ω, i.e.

An+1 =
∪

x∈Ω∩An

(x + supp(µx ))

In particular, if Ω⊂∪
n≥0 An , then u(·, t0) is constant in Ω.

Remark 3.2.3. The domain Ω may not necessarily be connected and still maxima might prop-
agate, since jumps from one connected component to another might occur when measure sup-
ports overlap two or more connected components.

The previous result has an immediate corollary. If all measure supports have nonempty
(topological) interior and contain the origin, strong maximum principle holds.

Corollary 3.2.1. Let Ω be connected, F be as before and u ∈ U SC (RN × [0,T ]) be a viscosity
subsolution of (3.1) in Ω× (0,T ). Assume that {µx }x∈Ω satisfies (M) and in addition that the
origin belongs to the topological interiors of all measure supports

0 ∈ á̊supp(µx ),∀x ∈Ω. (3.9)

If the solution u attains a global maximum at (x0, t0) ∈Ω× (0,T ), then u(·, t0) is constant in the
whole domain Ω.

Proof. Consider the iso-level

Γx0 = {x ∈Ω;u(x, t0) = u(x0, t0)}.
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Then the set is simultaneously open since 0 ∈ á̊supp(µx ) implies, by Theorem 3.2.1, together
with Remark 3.2.2 that for any x ∈ Γx0 we have

(
x + á̊supp(µx )

)∩Ω⊂ Γx0

and closed because for any x ∈ Γ̄x0 we have by the upper-semicontinuity of u

u(x, t0) ≥ limsup
y→x, y∈Γx0

u(y, t0) = max
y∈Ω

u(y, t0)

thus u(x, t0) = u(x0, t0). Therefore, Γx0 =Ω since Ω is connected and this completes the proof.

3.2.2 Horizontal Propagation of Maxima under Nondegeneracy Conditions

There are cases when conditions (3.8) and (3.9) fail, such as measures whose supports are con-
tained in half space or nonlocal terms acting in one direction, as we shall see in section §3.4.

However, we manage to show that, if a viscosity subsolution attains a maximum at P0 =
(x0, t0) ∈ QT , then the maximum propagates in the horizontal component C (P0), as shown
in Figure 3.2.2. This result is based on nondegeneracy (N ) and scaling (S) properties on the
nonlinearity F :

(N ) For any x̄ ∈Ω and 0 < t0 < T there exist R0 > 0 small enough and 0 ≤ η < 1 such that for
any 0 < R < R0 and c > 0

F (x, t , p, I −γp ⊗p,C̃µ−cγ
∫
Cη,γ(p)

|p · z|2µx (d z)) →+∞ as γ→+∞

uniformly for |x − x̄| ≤ R and |t − t0| ≤ R, R/2 ≤ |p| ≤ R, where

Cη,γ(p) = {z; (1−η)|z||p| ≤ |p · z| ≤ 1/γ}

and C̃µ appears in (M).

(S) There exist some constants R0 > 0, ε0 > 0 and γ0 > 0 s.t. for all 0 < R < R0,ε< ε0 and γ≥
γ0 the following condition holds for all |x − x̄| ≤ R and |t − t0| ≤ R and R/2 ≤ |p| ≤ R

F (x, t ,εp,ε(I −γp ⊗p),εl ) ≥ εF (x, t , p, I −γp ⊗p, l ).

As we shall see in §3.4 the assumption (M) which states that the measure µx is bounded
at infinity, uniformly with respect to x and the possible singularity at the origin is of order
|z|2 is not sufficient to ensure condition (N ). The following assumption is in general needed,
provided that the nonlinearity F is nondegenerate in the nonlocal term.

(M c ) For any x ∈ Ω there exist 1 < β < 2, 0 ≤ η < 1 and a constant Cµ(η) > 0 such that the
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Figure 3.3: Horizontal propagation of maxima: if the maximum is attained at some point P0 = (x0, t0)
then the function becomes constant in the connected component C (P0) of the domain Ω× {t0} which
contains the point (x0, t0).

following holds with Cη,γ(p) as before∫
Cη,γ(p)

|z|2µx (d z) ≥Cµ(η)γβ−2,∀γ≥ 1.

As pointed out in section §3.4, (M c ) holds for a wide class of Lévy measures as well as (N )− (S)
for a class of nonlinearities F .

Theorem 3.2.2. Assume the family of measures {µx }x∈Ω satisfies assumptions (M). Let u ∈
U SC (RN × [0,T ]) be a viscosity subsolution of (3.1) that attains a global maximum at P0 =
(x0, t0) ∈QT . If F satisfies (E), (N ), and (S) then u is constant in C (P0).

Proof. We proceed as for locally uniformly parabolic equations and argue by contradiction.

1. Suppose there exists a point P1 = (x1, t0) such that u(P1) < u(P0). The solution u be-
ing upper semi-continuous, by classical arguments we can construct for fixed t0 a ball B(x̄,R)
where

u(x, t0) < M = max
RN

(u(·, t0)),∀x ∈ B(x̄,R).

In addition there exists x∗ ∈ ∂B(x̄,R) such that u(x∗, t0) = M . Translating if necessary the cen-
ter x̄ in the direction x∗− x̄, we can choose R < R0, with R0 given by condition (N ).

Moreover we can extend the ball to an ellipsoid

ER (x̄, t0) := {(x, t ); |x − x̄|2 +λ|t − t0|2 < R2}

with λ large enough the function u satisfies

u(x, t ) < M , for (x, t ) ∈ ER (x̄, t0) s.t. |x − x̄| ≤ R/2.

Remark that (x∗, t0) ∈ ∂ER (x̄, t0) with u(x∗, t0) = M .
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Figure 3.4: Construction of the ellipsoid ER (x̄, t0) := {(x, t ); |x − x̄|2 +λ|t − t0|2 < R2} and of the corre-
sponding auxiliary function v such that inside the dashed area, v is a strict supersolution of the integro-
differential equation.

2. Introduce the auxiliary function

v(x, t ) = e−γR2 −e−γ(|x−x̄|2+λ|t−t0|2)

where γ> 0 is a large positive constant, yet to be determined. Note that v = 0 on ∂ER (x̄, t0) and
−1 < v < 0, in ER (x̄, t0). Denote d(x, t ) = |x − x̄|2 +λ|t − t0|2. Direct computations give

vt (x, t ) = 2γe−γd(x,t )λ(t − t0)

Dv(x, t ) = 2γe−γd(x,t )(x − x̄)

D2v(x, t ) = 2γe−γd(x,t )(I −2γ(x − x̄)⊗ (x − x̄)).

In upcoming Proposition 3.2.1 we show there exist two positive constants c = c(η,R) and γ0 > 0
such that for γ≥ γ0, the following estimate of the nonlocal term holds

I [x, t , v] ≤ 2γe−γd(x,t ){C̃µ−cγ
∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
}

in the subdomain DR (x̄, t0) := {(x, t ) ∈ ER (x̄, t0); |x − x̄| > R/2}.

3. From the nondegeneracy condition (N ) and scaling assumption (S) we get that v is a
strict supersolution at points (x, t ) in DR (x̄, t0). Indeed, for γ large enough

F
(
x, t , x − x̄, I −2γ(x − x̄)⊗ (x − x̄),C̃µ−cγ

∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
))> 0

On the other hand

vt (x, t )+F (x, t ,Dv(x, t ),D2v(x, t ),I [x, t , v])

= 2γe−γd(x,t )λ(t − t0)+F
(
x, t ,2γe−γd(x,t )(x − x̄),

...,2γe−γd(x,t )(I −2γ(x − x̄)⊗ (x − x̄)
)
,

...,2γe−γd(x,t ){C̃µ−cγ
∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
}
)
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This further implies that

vt (x, t )+F (x, t ,Dv(x, t ),D2v(x, t ),I [x, t , v])

≥ 2γe−γd(x,t )(λ(t − t0)+F
(
x, t , x − x̄, I −2γ(x − x̄)⊗ (x − x̄),

...,C̃µ−cγ
∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
))> 0.

Furthermore, the scaling assumption (S) ensures the existence of a constant ε0 > 0 such
that for all ε< ε0, εv is a strict supersolution of (3.1) in DR (x̄, t0). Indeed we have

εvt (x, t )+F (x, t ,εDv(x, t ),εD2v(x, t ),εI [x, t , v])

≥ ε
(
vt (x, t )+F (x, t ,Dv(x, t ),D2v(x, t ),I [x, t , v])

)> 0.

4. Remark that

v ≥ 0 in E c
R (x̄, t0)

u < M in ER (x̄, t0) \DR (x̄, t0).

Therefore, there exists some ε0 > 0 such that for all ε< ε0 outside the domain DR (x̄, t0)

u(x, t ) ≤ u(x∗, t0)+εv(x, t ).

Then we claim that the inequality holds inside DR (x̄, t0). Indeed, if u ≤ u(x∗, t0)+εv does not
hold, then maxRN (u − M − εv) > 0 would be attained in DR (x̄, t0) at say, (x ′, t ′). Since u is a
viscosity subsolution the following would hold

εvt (x ′, t ′)+F (x ′, t ′,εDv(x ′, t ′),εD2v(x ′, t ′),I [x ′, t ′,εv]) ≤ 0

arriving thus to a contradiction with the fact that M +εv is a strict supersolution of (3.1).

5. The function u(x, t )− εv(x, t ) has therefore a global maximum at (x∗, t0). Since u is a
viscosity subsolution of (3.1), we have

εvt (x∗, t0)+F (x∗, t0,εDv(x∗, t0),εD2v(x∗, t0),I [x∗, t0,εv]) ≤ 0.

As before, we arrived at a contradiction because εv is a strict supersolution and thus the con-
verse inequality holds at (x∗, t0). Consequently, the assumption made is false and u is constant
in the horizontal component of P0.

In the following we give the estimate for the nonlocal operator acting on the auxiliary func-
tion. We use the same notations as before.

Proposition 3.2.1. Let R > 0, λ> 0,γ> 0 and consider the smooth function

v(x, t ) = e−γR2 −e−γd(x,t )

d(x, t ) = |x − x̄|2 +λ|t − t0|2

Then there exist two constants c = c(η,R) and γ0 > 0 such that for γ≥ γ0 the nonlocal operator
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satisfies

I [x, t , v] ≤ 2γe−γd(x,t ){C̃µ− cγ
∫

{(1−η)|z||x−x̄|≤|(x−x̄)·z|≤1/γ}
|(x − x̄) · z|2µx (d z)

}
for all R/2 < |x − x̄| < R.

Proof. In order to estimate the nonlocal term I [x, t , v], we split the domain of integration into
three pieces and take the integrals on each of these domains. Namely we part the unit ball into
the subset

Cη,γ(x − x̄) = {z; (1−η)|z||x − x̄| ≤ |(x − x̄) · z| ≤ 1/γ}

and its complementary. Indeed Cη,γ(x − x̄) lies inside the unit ball, as for |x − x̄| ≥ R/2 and for
γ large enough

|z| ≤ 1

γ(1−η)|x − x̄| ≤
2

γ(1−η)R
≤ 1. (3.10)

Thus we write the nonlocal term as the sum

I [x, t , v] =T 1[x, t , v]+T 2[x, t , v]+T 3[x, t , v]

with

T 1[x, t , v] =
∫
|z|≥1

(v(x + z, t )− v(x, t ))µx (d z)

T 2[x, t , v] =
∫

B\Cη,γ(x−x̄)
(v(x + z, t )− v(x, t )−Dv(x, t ) · z)µx (d z)

T 3[x, t , v] =
∫
Cη,γ(x−x̄)

(v(x + z, t )− v(x, t )−Dv(x, t ) · z)µx (d z).

In the sequel, we show that each integral term is controlled from above by an exponential
term of the form γe−γd(x,t ). In addition, the last integral is driven by a nonpositive quadratic
nonlocal term.

Lemma 3.2.1. We have

T 1[x, t , v] ≤ e−γd(x,t )
∫
|z|≥1

µx (d z),∀(x, t ) ∈Ω× [0,T ].

Proof. The estimate is due to the uniform bound of the measures µx away from the origin.
Namely

T 1[x, t , v] =
∫
|z|≥1

(−e−γd(x+z,t ) +e−γd(x,t ))µx (d z)

≤
∫
|z|≥1

e−γd(x,t )µx (d z) = e−γd(x,t )
∫
|z|≥1

µx (d z) ≤ e−γd(x,t )C̃µ.
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Lemma 3.2.2. We have

T 2[x, t , v] ≤ γe−γd(x,t )
∫

B
|z|2µx (d z),∀(x, t ) ∈Ω× [0,T ].

Proof. Note that T 2[x, t , v] =−T 2[x, t ,e−γd ]. From Lemma 3.6.1 in Appendix

T 2[x, t ,e−γd ] ≥ e−γd(x,t )T 2[x, t ,−γd ] =−γe−γd(x,t )T 2[x, t ,d ].

Taking into account the expression for d(x, t ), we get that

T 2[x, t , v] ≤ γe−γd(x,t )
∫

B\Cη,γ(x−x̄)
(d(x + z, t )−d(x, t )−Dd(x, t ) · z)µx (d z)

= γe−γd(x,t )
∫

B\Cη,γ(x−x̄)
|z|2µx (d z)

≤ γe−γd(x,t )
∫

B
|z|2µx (d z) ≤ γe−γd(x,t )C̃µ. (3.11)

Lemma 3.2.3. There exist two positive constants c = c(η,R) and γ0 > 0 such that for γ≥ γ0

T 3[x, t , v] ≤ e−γd(x,t )(γ∫
B
|z|2µx (d z)−2cγ2

∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
)
.

for all (x, t ) ∈DR .

Proof. Rewrite equivalently the integral as

T 3[x, t , v] =T 3[x, t , v −e−γR2
] =−T 3[x, t ,e−γd ].

We apply then Lemma 3.6.2 in Appendix to the function e−γd and get that for all δ > 0 there
exists c = c(η,R) > 0 such that

T 3[x, t ,e−γd ] ≥ e−γd(x,t )(T 3[x, t ,−γd ]+2cγ2
∫
Cη,γ(x−x̄)

(
d(x + z, t )−d(x, t )

)2
µx (d z)

)
= −γe−γd(x,t )(T 3[x, t ,d ]−2cγ

∫
Cη,γ(x−x̄)

(
d(x + z, t )−d(x, t )

)2
µx (d z)

)
.

Remark that Cη,γ(x − x̄) ⊆ Dδ for δ= 2+ 2
(1−η)R , with

Dδ = {z; γ
(
d(x + z, t )−d(x, t )

)≤ δ} = {z; γ(2(x − x̄) · z +|z|2) ≤ δ}.

We have thus

T 3[x, t , v] ≤ γe−γd(x,t )(T 3[x, t ,d ]−2cγ
∫
Cη,γ(x−x̄)

(
d(x + z, t )−d(x, t )

)2
µx (d z)

)
.
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Taking into account the expression of d(x, t ), direct computations give

T 3[x, t ,d ] =
∫
Cη,γ(x−x̄)

(
d(x + z, t )−d(x, t )−Dd(x, t ) · z

)
µx (d z)

=
∫
Cη,γ(x−x̄)

|z|2µx (d z) ≤
∫

B
|z|2µx (d z),

while the quadratic term is bounded from below by∫
Cη,γ(x−x̄)

(
d(x + z, t )−d(x, t )

)2
µx (d z) =

∫
Cη,γ(x−x̄)

|2(x − x̄) · z +|z|2|2µx (d z)

≥
∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z).

Indeed, recall that |x − x̄| ≥ R/2 and see that for all z ∈Cη,γ(x − x̄)

(1−η)|x − x̄||z| ≤ 1/γ ⇒ |z| ≤ 2

γR(1−η)

(1−η)|x − x̄||z| ≤ |(x − x̄) · z| ⇒ |z| ≤ 2|(x − x̄) · z|
R(1−η)

Then for γ0 = 4/R2(1−η)2 and γ≥ γ0 we have the estimate

|2(x − x̄) · z +|z|2| ≥ 2|(x − x̄) · z|− |z|2 ≥ 2|(x − x̄) · z|− 4|(x − x̄) · z|
γR2(1−η)2

= |(x − x̄) · z|(2− 4

γR2(1−η)2

)≥ |(x − x̄) · z|.

Therefore, we obtain the upper bound for the integral term

T 3[x, t , v] ≤ γe−γd(x,t )(∫
Cη,γ(x−x̄)

|z|2µx (d z)−2cγ
∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
)
.

From the three lemmas estimating the integral terms we deduce that

I [x, t , v] ≤ e−γd(x,t )
{∫

|z|≥1
µx (d z)+2γ

∫
B
|z|2µx (d z)−2cγ2

∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
}

≤ 2γe−γd(x,t ){C̃µ− cγ
∫
Cη,γ(x−x̄)

|(x − x̄) · z|2µx (d z)
}
.

3.2.3 Local Vertical Propagation of Maxima

We show that if u ∈U SC (RN×[0,T ]) is a viscosity subsolution of (3.1) which attains a maximum
at P0 = (x0, t0) ∈QT , then the maximum propagates locally in rectangles, say,

R(x0, t0) = {(x, t )||xi −xi
0| ≤ ai , t0 −a0 ≤ t ≤ t0}
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Figure 3.5: Vertical propagation of maxima: if the maximum is attained at some time t0 then
at any time t < t0 one can find another point taking the maximum value.

where we have denoted x = (x1, x2, ..., xN ). Denote by R0(x0, t0) the rectangle R(x0, t0) less the
top face {t = t0}.

Local vertical propagation of maxima occurs under softer assumptions on the nondegen-
eracy and scaling conditions. More precisely, we suppose the following holds:

(N ′) For any (x0, t0) ∈QT there exists λ> 0 such that

λ+F (x0, t0,0, I ,C̃µ) > 0

where C̃µ is given by assumption (M).

(S′) There exist two constants r0 > 0, ε0 > 0 such that for all ε< ε0 and 0 < r < r0 the following
condition holds for all (x, t ) ∈ B((x0, t0),r ), |p| ≤ r , l ≤ C̃µ

F (x, t ,εp,εI ,εl ) ≥ εF (x, t , p, I , l ).

Theorem 3.2.3. Let u ∈U SC (RN × [0,T ]) be a viscosity subsolution of (3.1) that attains a max-
imum at P0 = (x0, t0) ∈ QT . If F satisfies (E), (N ′) and (S′) then for any rectangle R(x0, t0),
R0(x0, t0) contains a point P 6= P0 such that u(P ) = u(P0).

Proof. Similarly to the horizontal propagation of maxima, we argue by contradiction.

1. Suppose there exists a rectangle R(x0, t0) on which u(x, t ) < M = u(x0, t0), with
R0(x0, t0) ⊆ Ω× [0, t0). Denote h(x, t ) = 1

2 |x − x0|2 +λ(t − t0) with λ > 0 a constant yet to be
determined. Consider the auxiliary function

v(x, t ) = 1−e−h(x,t ).
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Direct calculations give

vt (x, t ) =λe−h(x,t )

Dv(x, t ) = e−h(x,t )(x −x0)
D2v(x, t ) = e−h(x,t )(I − (x − x0)⊗ (x − x0)),

Note that

v(x0, t0) = 0 vt (x0, t0) =λ

Dv(x0, t0) = 0 D2v(x0, t0) = I .

The nonlocal term is written as the sum of two integral operators:

I [x, t , v] =T 1[x, t , v]+T 2[x, t , v],

where

T 1[x, t , v] =
∫
|z|≥1

(v(x + z, t )− v(x, t ))µx (d z)

T 2[x, t , v] =
∫

B
(v(x + z, t )− v(x, t )−Dv(x, t ) · z)µx (d z).

Similarly to Lemma 3.2.1 we obtain the estimate:

Lemma 3.2.4. We have

T 1[x, t , v] ≤ e−h(x,t )
∫
|z|≥1

µx (d z),∀(x, t ) ∈Ω× [0,T ].

On the other hand, the estimate obtained for the second integral term is softer than the
estimate obtained in the case of the horizontal propagation of maxima.

Lemma 3.2.5. We have

T 2[x, t , v] ≤ e−h(x,t )
∫

B
|z|2µx (d z),∀(x, t ) ∈Ω× [0,T ].

Proof. 1. From Lemma 3.6.1 we have

T 2[x, t , v] =−T 2[x, t ,e−h] ≤ e−h(x,t )T 2[x, t ,h].

We then use a second-order Taylor expansion for h and get

T 2[x, t ,h] = 1

2

∫
B

sup
θ∈(−1,1)

(
D2h(x +θz, t )z · z

)
µx (d z)

= 1

2

∫
B
|z|2µx (d z) ≤ 1

2

∫
B
|z|2µx (d z),

from where the conclusion.



60 Chapter 3. Strong Maximum Principle

We now go back to the proof of the theorem and see that

I [x, t , v] ≤ e−h(x,t )C̃µ.

In particular I [x0, t0, v] ≤ C̃µ.

2. From the nondegeneracy assumption (N ′) we have that there exists λ> 0 such that

vt (x0, t0)+F (x0, t0,Dv(x0, t0),D2v(x0, t0),I [x0, t0, v])

≥ vt (x0, t0)+F (x0, t0,Dv(x0, t0),D2v(x0, t0),C̃µ)

=λ+F (x0, t0,0, I ,C̃µ) > 0.

Hence v is a strict supersolution of (3.1) at (x0, t0). By the continuity of F , there exists r < r0

such that ∀(x, t ) ∈ B((x0, t0),r ) ⊆QT

vt (x, t )+F (x, t ,Dv(x, t ),D2v(x, t ),I [x, t , v]) ≥C > 0.

Consider then the set
S = B((x0, t0),r )∩ {(x, t )|v(x, t ) < 0}.

By (S′) there exists ε0 > 0 such that ∀ε< ε0, εv is a strict supersolution of (3.1) in S. Indeed

εvt (x, t )+F (x, t ,εDv(x, t ),εD2v(x, t ),εI [x, t , v]) ≥
ε
(
vt (x, t )+F (x, t ,Dv(x, t ),D2v(x, t ),I [x, t , v])

)> 0

3. Let ε0 be sufficiently small such that

u(x, t )−u(x0, t0) ≤ εv(x, t ), ∀(x, t ) ∈ ∂S.

Then, arguing as in the case of horizontal propagation of maxima we get

u(x, t )−u(x0, t0) ≤ εv(x, t ), ∀(x, t ) ∈ S.

Thus (x0, t0) is a maximum of u −εv with Dv(x0, t0) =λ> 0. Since u is a subsolution, we have

εvt (x0, t0)+F (x0, t0,εv(x0, t0),εDv(x0, t0),εD2v(x0, t0),I [x0, t0,εv]) ≤ 0.

We arrived at a contradiction with the fact that εv is a strict supersolution. Thus, the supposi-
tion is false and the rectangle contains a point P 6= P0 such that u(P ) = u(P0).

Example 3.2.1. Non-local first order Hamilton Jacobi equations describing the dislocation dy-
namics

ut = (c(x)+M [u])|Du| (3.12)

where M is a zero order nonlocal operator defined by

M [u](x, t ) =
∫
RN

(
u(x + z, t )−u(x, t ))µ(d z)
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with

µ(d z) = g (
z

|z| )
d z

|z|N+1

have vertical propagation of maxima.

Indeed, they do not satisfy any of the sets of assumptions required by Theorems 3.2.1 and
3.2.2. Particularly nondegeneracy condition (N )

−(
c(x)+ C̃µ

)|p| > 0

fails for example if c(x) ≥ 0, and holds whenever c(x) <−C̃µ. Hence, one cannot conclude on
horizontal propagation of maxima.

On the other hand we have local vertical propagation of maxima, since (N ′) is immediate
and (S′) is satisfied by F̃ =−c(x)|p|, the linear approximation of the nonlinearity

−(
c(x)+εl )|εp| = −εc(x)|p|+o(ε2).

3.2.4 Strong Maximum Principle

When both horizontal and local vertical propagation of maxima occur for a viscosity subsolu-
tion of (3.1) which attains a global maximum at an interior point, the function is constant in
any rectangle contained in the domain Ω× [0, t0] passing through the maximum point.

Proposition 3.2.2. Let u ∈ U SC (RN × [0,T ]) be a viscosity subsolution of (3.1) that attains a
global maximum at P0 = (x0, t0) ∈ QT . If F satisfies (E), (N )− (N ′), and (S)− (S′), then u is
constant in any rectangle R(x0, t0) ⊆Ω× [0, t0].

From the horizontal and local vertical propagation of maxima one can derive the Strong
Maximum Principle. The proof is based on geometric arguments and is identical to that for
fully nonlinear second order partial differential equations.

Theorem 3.2.4 (Strong Maximum Principle). Assume the family of measures {µx }x∈Ω satisfies
assumption (M). Let u ∈U SC (RN ×[0,T ]) be a viscosity subsolution of (3.1) that attains a global
maximum at P0 = (x0, t0) ∈QT . If F satisfies (E), (S)− (S′), and (N )− (N ′), then u is constant in
S(P0).

Proof. Suppose that u 6≡ u(P0) in S(P0). Then there exists a point Q ∈ S(P0) such that u(Q) <
u(P0). Then, we can connect Q to P0 by a simple continuous curve γ lying in S(P0) such that
the temporal coordinate t us nondecreasing from Q to P0. On the curve γ there exists a point
P1 take takes the maximum value u(P1) = u(P0) and at the same time, for all the points P on γ

between Q and P1 we have u(P ) < u(P0). We construct a rectangle

x1
i −a ≤ xi ≤ x1

i +a, i = 1,n, t 1 −a < t < t1

where (x1
i , t 1) are the coordinates of P1 and a sufficiently small such that the rectangle does not

exceed the domain Ω. Applying the vertical propagation of maxima we deduce that u ≡ u(P0)
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in this rectangle. Thus, the function is constant on the arc of the curve lying in this rectangle.
But this contradicts the definition of P1.

Similarly the following holds.

Theorem 3.2.5 (Strong Maximum Principle). Let u ∈U SC (RN×[0,T ]) be a viscosity subsolution
of (3.1) inRN×(0,T ) that attains a global maximum at (x0, t0) ∈RN×(0,T ]. Assume the family of
measures {µx }x∈Ω satisfies assumption (M) and F satisfies (E ′), (S′) and (N ′). Then u is constant
in

∪
n≥0 An × [0, t0] with {An}n given by (3.8).

3.3 Strong Maximum Principle for Lévy-Itô operators

The results established for general nonlocal operators remain true for Lévy-Itô operators. We
translate herein the corresponding assumptions and theorems on the Strong Maximum Prin-
ciple for second order integro-differential equations associated to Lévy-Itô operators

J [x, t ,u] =
∫
RN

(u(x + j (x, z), t )−u(x, t )−Du(x, t ) · j (x, z)1B (z))µ(d z),

where µ is a Lévy measure. In the sequel we assume that F respects the scaling assumption (S)
and the nondegeneracy condition

(NLI ) For any x̄ ∈Ω and 0 < t0 < T there exist R0 > 0 small enough and 0 < η < 1 such that for
any 0 < R < R0 and c > 0

F (x, t , p, I −γp ⊗p,C̃µ− cγ
∫
Cη,γ(p)

|p · j (x, z)|2µ(d z)) →∞ as γ→∞

uniformly for |x − x̄| ≤ R and |t − t0| ≤ R, R/2 ≤ |p| ≤ R, where

Cη,γ(p) = {z; (1−η)| j (x, z)||p| ≤ |p · j (x, z)| ≤ 1/γ}.

and that the Lévy measure µ satisfies assumptions

(MLI ) there exists a constant C̃µ > 0 such that for any x ∈Ω,∫
B
| j (x, z)|2µ(d z)+

∫
RN \B

µ(d z) ≤ C̃µ;

(M c
LI ) For any x ∈ Ω there exist 1 < β < 2, 0 ≤ η < 1 and a constant Cµ(η) > 0 such that the

following holds ∫
Cη,γ(p)

| j (x, z)|2µ(d z) ≥Cµ(η)γβ−2,∀γ≥ 1.

Theorem 3.2.1 holds for Lévy-Itô operators, since Lévy Itô measures can be written as push-
forwards of some Lévy measure µ̃

µx = ( j (x, ·)∗(µ̃))
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defined for measurable functions φ as∫
RN

φ(x)µx (d z) =
∫
RN

φ( j (x, z))µ̃(d z).

Hence it is sufficient to replace supp(µx ) = j (x, supp(µ̃)) in order to get the result.

Theorem 3.3.1. Assume the L’evy measure µ satisfies assumption (MLI ). Let u ∈ U SC (RN ×
[0,T ]) be a viscosity subsolution of (3.1) that attains a maximum at P0 = (x0, t0) ∈ QT . If F
satisfies (E), (S), and (NLI ) then u is constant in C (P0).

Proof. Since the proof is technically the same, we just point out the main differences, namely
the estimate of the nonlocal term. Consider as before the smooth function

v(x, t ) = e−γR2 −e−γd(x,t )

where d(x, t ) = |x− x̄|2+λ|t−t0|2, for large γ> γ0. Write similarly the nonlocal term as the sum

J [x, t , v] =T 1[x, t , v]+T 2[x, t , v]+T 3[x, t , v]

where

T 1[x, t , v] =
∫
|z|≥1

(v(x + j (x, z), t )− v(x, t ))µ(d z)

T 2[x, t , v] =
∫

B\Cη,γ(x−x̄)
(v(x + j (x, z), t )− v(x, t )−Dv(x, t ) · j (x, z))µ(d z)

T 3[x, t , v] =
∫
Cη,γ(x−x̄)

(v(x + j (x, z), t )− v(x, t )−Dv(x, t ) · j (x, z))µ(d z)

with
Cη,γ(x − x̄) = {(1−η)| j (x, z)||x − x̄| ≤ |(x − x̄) · j (x, z)| ≤ 1/γ}.

Then the nonlocal operator satisfies for all (x, t ) ∈DR

T 1[x, t , v] ≤ e−γd(x,t )
∫
|z|≥1

µ(d z).

T 2[x, t , v] ≤ γe−γd(x,t )
∫

B
| j (x, z)|2µ(d z).

T 3[x, t , v] ≤ e−γd(x,t )[γ∫
B
| j (x, z)|2µ(d z)−2cγ2

∫
Cη,γ (x−x̄)

|(x − x̄) · j (x, z)|2µ(d z)
]
.

from where we get the global estimation

J [x, t , v] ≤ e−γd(x,t )[∫
B
µ(d z)+2γ

∫
B
| j (x, z)|2µ(d z)

−2cγ2
∫
Cη,γ (x−x̄)

|(x − x̄) · j (x, z)|2µ(d z)
]

≤ 2γe−γd(x,t )[C̃µ− cγ
∫
Cη,γ(x−x̄)

|(x − x̄) · j (x, z)|2µ(d z)
]
.
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Vertical propagation of maxima holds under the same conditions. Strong Maximum Prin-
ciple can thus be formulated for Lévy-Itô operators.

Theorem 3.3.2 (Strong Maximum Principle - Lévy Itô). Assume the measure µ satisfies assump-
tion (MLI ). Let u ∈U SC (RN ×[0,T ]) be a viscosity subsolution of (3.1) that attains a global max-
imum at P0 = (x0, t0) ∈ QT . If F satisfies (E), (S)− (S′), and (NLI )− (N ′), then u is constant in
S(P0).

Theorem 3.3.3 (Strong Maximum Principle - Lévy Itô). Let u ∈U SC (RN × [0,T ]) be a viscosity
subsolution of (3.1) in RN ×(0,T ) that attains a global maximum at (x0, t0) ∈RN ×(0,T ]. Assume
the measure µ satisfies assumption (MLI ) and F satisfies (E0), (S′) and (N ′). Then u is constant
in

∪
n≥0 An × [0, t0] with {An}n given by (3.8).

3.4 Examples

In this section we discuss the validity of the Strong Maximum Principle on several representa-
tive examples.

3.4.1 Horizontal Propagation of Maxima by Translations of Measure Supports

As pointed out in section 3.2, translations of measure supports starting at any maximum point
x0 lead to horizontal propagation of maxima. In particular, Theorem 3.2.1 holds for nonlocal
terms integrated against Lévy measures whose supports are the whole space.

Example 3.4.1. Consider a pure nonlocal diffusion

ut −I [x, t ,u] = 0 in RN × (0,T ) (3.13)

where I is the Lévy operator integrated against the Lévy measure associated with the fractional
Laplacian (−∆)β/2:

µ(d z) = d z

|z|N+β .

Then the support of the measure is the whole space and thus horizontal propagation of max-
ima holds for equation (3.13) by Theorem 3.2.1.

Example 3.4.2. Let N = 2 and consider equation (3.13) with {µx }x a family of Lévy measures
charging two axis meeting at the origin

µx (d z) = 1{z1=±αz2}νx (d z),

with α > 0 and supp(νx ) = R2, for all x ∈ R2. Even though zero is not an interior point of the
support, translations of measure supports starting at any point x0 cover the whole space, prop-
agating thus maxima all over R2.
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Similarly, horizontal propagation of maxima holds if measures charge cones

µx (d z) = 1{|z1|>α|z2|}νx (d z),

with α> 0 and supp(νx ) =R2.

3.4.2 Strong Maximum Principle driven by the Nonlocal Term under Nondegener-
acy Conditions.

There are equations for which propagation of maxima does not propagate just by translating
measure supports, but cases when it requires a different set of assumptions. Nondegeneracy
and scaling conditions of the nonlinearity F need to be satisfied in order to have a Strong Max-
imum Principle. But to ensure condition (N ), one has to assume (M c ).

Example 3.4.3. Consider as before equation (3.13) and let µ be the Lévy measure associated to
the fractional Laplacian but restricted to half space

µ(d z) = 1{z1≥0}(z)
d z

|z|N+β ,β ∈ (1,2).

where z = (z1, z ′) ∈R×RN−1. Then RN can not be covered by translations of the measure support
and therefore one cannot conclude the function u is constant on the whole domain, except for
particular cases like the periodic case. However, C 0,α regularity results hold (cf. [BCI11]) and we
expect to have Strong Maximum Principle.

We show that the nondegeneracy and scaling assumptions are satisfied in the case of Ex-
ample 3.4.3. Before proceeding to the computations, remark that

Cη,γ(p) = {z; (1−η)|p||z| ≤ |p · z| ≤ 1/γ} (3.14)

= {z; (1−η)|p||γz| ≤ |p ·γz| ≤ 1} = γ−1Cη,1(p) (3.15)

γ

∫
Cη,γ(p)∩{z1≥0}

|p · z|2 d z

|z|N+β = γ−1
∫
Cη,1(p)∩{z1≥0}

γβ|p · z|2 d z

|z|N+β

≥ γβ−1|p|2(1−η)2
∫
Cη,1(p)∩{z1≥0}

|z|2 d z

|z|N+β

= C (η)γβ−1|p|2

where C (η) = (1−η)2
∫
Cη,1(p)∩{z1≥0} |z|2d z/|z|N+β is a positive constant.

This further implies nondegeneracy condition (N). Indeed, there exist R0 > 0 small enough
and 0 ≤ η< 1 such that for any 0 < R < R0 and for all R/2 < |p| < R

−C̃µ+cγ
∫
Cη,γ(p)∩{z1≥0}

|p · z|2 d z

|z|N+β ≥−C̃µ+ C̃ (η)γβ−1|p|2 →∞ as γ→∞

as long as β> 1. The rest of assumptions follow immediately.
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Similar results hold for the following PIDE arising in the context of growing interfaces
[Woy01]:

ut + 1

2
|Du|2 −I [x, t ,u] = 0, in RN × (0,T ) (3.16)

with I is a general nonlocal operator of form (3.3).

Remark 3.4.1. For integro-differential equations of the type

ut +b(x, t )|Du|m −I [x, t ,u] = 0 in RN × (0,T ) (3.17)

with b a continuous function and µ as in Example 3.4.3. Strong Maximum Principle holds for
m ≥ 1, and for m < 1 if b(·) ≥ 0.

3.4.3 Strong Maximum Principle coming from Local Diffusion Terms

Theorem 3.2.4 applies to integro-differential equations uniformly elliptic with respect to the
diffusion term and linear in the nonlocal operator.

Example 3.4.4. Quasilinear parabolic integro-differential equations of the form

ut − tr(A(x, t )D2u)−I [x, t ,u] = 0 in RN × (0,T ) (3.18)

with A(x, t ) such that

a0(x, t )I ≤ A(x, t ) ≤ a1(x, t )I , a1(x, t ) ≥ a0(x, t ) > 0

satisfy Strong Maximum Principle.

We check the nondegeneracy and scaling conditions for this equation.

(N ) −trace(A(x, t )(I −γp ⊗p))− C̃µ+cγ
∫
Cγ

|p · z|2µx (d z) =

−trace(A(x, t ))+γtrace(A(x, t )p ⊗p))− C̃µ+ cγ
∫
Cγ

|p · z|2µx (d z) ≥

−a1(x, t )N +a0(x, t )γ|p|2 − C̃µ︸ ︷︷ ︸
À0, for γ large

+cγ
∫
Cγ

|p · z|2µx (d z)︸ ︷︷ ︸
≥0

.

(N ′) λ− trace(A(x, t ))− C̃µ ≥λ−a1(x, t )N − C̃µ > 0.

The scaling properties are immediate since the nonlinearity is 1-homogeneous.

Remark 3.4.2. More generally, one can consider equations of the form

ut +F (x, t ,Du,D2u)−I [x, t ,u] = 0 (3.19)

for which the corresponding differential operator F satisfies the nondegeneracy and scaling as-
sumptions. The nonlocal term is driven by the second order derivatives and thus Strong Maxi-
mum Principle holds.
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3.4.4 Strong Maximum Principle for Mixed Differential-Nonlocal terms

We consider mixed integro-differential equations, i.e. equations for which local diffusions oc-
cur only in certain directions and nonlocal diffusions on the orthogonal ones, and show they
satisfy Strong Maximum Principle. This is quite interesting, as the equations might be degen-
erate in both local or nonlocal terms, but the overall behavior is driven by their interaction (the
two diffusions cannot cancel simultaneously).

Example 3.4.5. Consider the following equation where local and nonlocal diffusions are mixed
up

ut −Ix1 [u]−∆x2 u = 0 in RN × (0,T ) (3.20)

for x = (x1, x2) ∈ Rd ×RN−d . The diffusion term gives the ellipticity in the direction of x2, while
the nonlocal term gives it in the direction of x1

Ix1 [u] =
∫
Rd

(u(x1 + z1, x2)−u(x)−Dx1 u(x) · z11B (z1))µx1 (d z1)

where µx1 is a Lévy measure satisfying (M) with C̃ 1
µ. The payoff for the Strong Maximum Princi-

ple to hold is assumption (M c ), with β> 1; then Theorem 3.2.4 applies.

Indeed the nondegeneracy conditions (N ) and (N ′) hold, because when γ is large enough
and β> 1 the following holds

(N ) −IN−d +γp2 ⊗p2 − C̃ 1
µ+ cγ

∫
C 1

η,γ(p1)
|p1 · z1|2µx1 (d z1) ≥

−(N −d)+γ|p1|2 − C̃ 1
µ+cγ(1−η)2|p1|2

∫
C 1

η,γ(p1)
|z1|2µx1 (d z1) ≥

−(N −d + C̃ 1
µ)+γ|p1|2 +C̃ 1(η)γβ−1|p1|2 ≥−c0 +c1γ

β−1(|p1|2 +|p2|2
)

where C̃ 1(η), c0 and c1 are positive constants and

C 1
η,γ(p1) = {z1 ∈Rd ; (1−η)|p1||z1| ≤ |p1 · z1| ≤ 1/γ}.

As far as the scaling assumptions are concerned it is sufficient to see that the nonlinearity is
1-homogeneous.

Remark 3.4.3. In general, linear integro-differential equations of the form

ut −a(x)Ix1 [u]− c(x)∆x2 u = 0 in RN × (0,T ) (3.21)

or
ut −a(x)Ix1 [u]−c(x)Ix2 [u] = 0 in RN × (0,T ) (3.22)

satisfy Strong Maximum Principle if the corresponding Lévy measure(s) verify (M) and (M c ),
with β> 1 and if a,c ≥ ζ> 0 in RN .
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Indeed, F is 1-homogeneous and (N) holds:

c(x)
(− IN−d +γp2 ⊗p2

)+a(x)
(−C̃ 1

µ+cγ
∫
Cη,γ(p1)

|p1 · z1|2µx1 (d z1)
)≥

≥−c0(a(x)+c(x))+c1γ
β−1(a(x)|p1|2 +c(x)|p2|2

)
respectively

a(x)
(− C̃ 1

µ+ cγ
∫
Cη,γ(p1)

|p1 · z1|2µx1 (d z1)
)+

c(x)
(− C̃ 2

µ+ cγ
∫
Cη,γ(p2)

|p2 · z2|2µx2 (d z2)
)≥

≥−c0(a(x)+c(x))+c1γ
β−1(a(x)|p1|2 +c(x)|p2|2

)
.

where Cη,γ(pi ) = {zi ; |pi · zi | ≤ 1/γ}, for i = 1,2.

3.5 Strong Comparison Principle

Let Ω ⊂ RN be a bounded, connected domain. In this section, we use Strong Maximum Prin-
ciple to prove a Strong Comparison Result of viscosity sub and supersolution for integro-
differential equations of the form (3.1)

ut +F (x, t ,Du,D2u,J [x, t ,u]) = 0, in Ω× (0,T ) (3.23)

with the Dirichlet boundary condition

u =ϕ on Ωc × [0,T ] (3.24)

where ϕ is a continuous function.

Let µ be a Lévy measure satisfying (MLI ). Assume that the function j appearing in the
definition of J has the following property: there exists C0 > 0 such that for all x, y ∈ Ω and
|z| ≤ δ

| j (x, z)| ≤C0|z|
| j (x, z)− j (y, z)| ≤C0|z||x − y |.

We will need some additional assumptions on the equation, that we state in the following.
Suppose the nonlinearity F is Lipschitz continuous with respect to the variables p, X and l
and for each 0 < R <∞ there exist a function ωR (r ) → 0, as r → 0, cR a positive constant and
0 ≤λR <ΛR such that

(H) F (y, s, q,Y , l2)−F (x, t , p, X , l1) ≤
ωR (|(x, t )− (y, s)|)+ cR |p −q |+M+

R (X −Y )+cR (l1 − l2),
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for all x, y ∈Ω, t , s ∈ [0,T ], X ,Y ∈SN (Ω) satisfying for some ε> 0[
X 0
0 −Y

]
≤ 1

ε

[
I −I
−I I

]
+

[
Z 0
0 0

]
, with Z ∈SN (Ω).

and |p|, |q | ≤ R and l1, l2 ∈R, where M+
R is Pucci’s maximal operator:

M+
R (X ) =ΛR

∑
λ j>0

λ j +λR
∑
λ j<0

λ j

with λ j being the eigenvalues of X .

Theorem 3.5.1 (Strong Comparison Principle). Assume the Lévy measure µ satisfies assump-
tion (Mc ) with β> 1. Let u ∈U SC (RN ×[0,T ]) be a viscosity subsolution and v ∈ LSC (RN ×[0,T ])
a viscosity supersolution of (3.1), with the Dirichlet boundary condition (3.24). Suppose one of
the following conditions holds:

(a) F satisfies (H) with wR and cR independent of R or
(b) u(·, t ), v(·, t ) ∈ Li p(Ω), ∀t ∈ [0,T ) and F satisfies (H).

If u − v attains a maximum at P0 = (x0, t0) ∈Ω× (0,T ), then u − v is constant in C (P0).

Proof. The proof relies on finding the equation for which w = u − v ∈ U SC (RN × [0,T ]) is a
viscosity subsolution and applying strong maximum principle results for the latter. However,
the conclusion is not immediate as linearizion does not go hand in hand with the viscosity
solution theory approach and difficulties imposed by the behavior of the measure near the
singularity might appear.

1. Let w = u − v and consider φ a smooth test-function such that w −φ has a strict global
maximum at (x0, t0). We penalize the test function around the maximum point, by doubling
the variables, i.e. we consider the auxiliary function

Ψε,η(x, y, t , s) = u(x, t )− v(y, s)− |x − y |2
ε2 − (t − s)2

η2 −φ(x, t ).

Then there exist a sequence of global maximum points (xε, yε, tη, sη) of function Ψε,η with the
properties

(xε, tη), (yε, sη) → (x0, t0) as η,ε→ 0

|xε− yε|2
ε2 → ε as ε→ 0

(tη− sη)2

η2 → 0 as η→ 0

and the test-function ϕ being continuous

lim
η,ε→0

(u(xε, tη)− v(yε, sη)) = u(x0, t0)− v(x0, t0). (3.25)
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In addition, there exist Xε,Yε ∈SN such that

(aη+φt (xε, tη), pε+Dφ(xε, tη), Xε+D2φ(xε, tη)) ∈D
2,+

u(xε, tη)

(aη, pε,Yε) ∈D
2,−

v(yε, sη)[
Xε+Dφ(xε, tη) 0

0 −Yε

]
≤ 4

ε2

[
I −I
−I I

]
+

[
Dφ(xε, tη) 0

0 0

]
and pε, aη are defined by

pε := 2
xε− yε
ε2 and aη := 2

tη− sη
η2 .

Consider the test function

φ1
ε,η(x, t ) = v(yε, sη)+ |x − yε|2

ε2 + (t − sη)2

η2 +φ(x, t ).

Then u−φ1
ε,η has a global maximum at (xε, tη). But u is a subsolution of (3.1) and thus for δ> 0

the following holds

φt (xε, tη)+aη+F
(
xε, tη,Dφ(xε, tη)+pε,D2φ(xε, tη)+Xε, ...

...,J 1
δ [xε, tη,φ+ |x − yε|2

ε2 ]+J 2
δ [xε, tη,Dφ(xε, tη)+pε,u]

)≤ 0.

Similarly, consider the test function

φ2
ε,η(y, s) = u(xε, tη)− |xε− y |2

ε2 − (tη− s)2

η2 −φ(xε, tη).

Then v −φ2
ε,η has a global minimum at (yε, sη). But v is a supersolution of (3.1) and thus:

aη+F
(
yε, sη, pε,Yε,J 1

δ [yε, sη,
|xε− y |2

ε2 ]+J 2
δ [yε, sη, pε, v]

)≥ 0.

Subtracting the two inequalities and taking into account (H) we get that for all δ> 0

φt (xε, tη) − ω(|(xε, tη)− (yε, sη)|)−c|Dφ(xε, tη)|−M+(D2φ(xε, tη)+Xε−Yε)

− c(J 1
δ [xε, tη,φ+ |x − yε|2

ε2 ]+J 2
δ [xε, tη,Dφ(xε, tη)+pε,u])

− c(J 1
δ [yε, sη,−|xε− y |2

ε2 ]−J 2
δ [yε, sη, pε, v]) ≤ 0.

Taking into account the matrix inequality and the sublinearity of Pucci’s operator, we deduce
that

M+(D2φ(xε, tη)+Xε−Yε) ≤M+(D2φ(xε, tη)).
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On the other hand, we seek to estimate the integral terms. For this purpose denote

lu(z) := u(xε+ j (xε, z), tη)−u(xε, tη)− (pε+Dφ(xε, tη)) · j (xε, z)

lv (z) := v(yε+ j (yε, z), sη)− v(yε, sη)−pε · j (yε, z)

lφ(z) :=φ(xε+ j (xε, z), tη)−φ(xε, tη)−Dφ(xε, tη) · j (xε, z).

Fix δ′ À δ and split the integrals into:

J 2
δ [xε, tη, pε+Dφ(xε, tη),u] = J 2

δ′ [xε, tη, pε+Dφ(xε, tη),u]+
∫
δ<|z|<δ′

lu(z)µ(d z)

J 2
δ [yε, sη, pε, v] = J 2

δ′ [yε, sη, pε, v]+
∫
δ<|z|<δ′

lv (z)µ(d z).

Since (xε, yε, tη, sη) is a maximum of Ψε,η we have

u(xε+ j (xε, z), tη)− v(yε+ j (yε, z), sη)− |xε+ j (xε, z)− yε− j (yε, z)|2
ε2 −

−φ(xε+ j (xε, z), tη) ≤ u(xε, tη)− v(yε, sη)− |xε− yε|2
ε2 −φ(xε, tη)

from where we get

lu(z)− lv (z) ≤ lφ(z)+ | j (xε, z)− j (yε, z)|2
ε2

≤ lφ(z)+C 2
0
|xε− yε|2

ε2 |z|2.

This leads us to∫
δ<|z|<δ′

lu(z)µ(d z)−
∫
δ<|z|<δ′

lv (z)µ(d z) ≤
∫
δ<|z|<δ′

lφ(z)µ(d z)+O(
|xε− yε|2

ε2 ).

Letting first δ go to zero, we get

limsup
δ→0

(
J 2

δ [xε, tη, pε+Dφ(xε, tη),u]−J 2
δ [yε, sη, pε, v]

)≤
≤J 2

δ′[xε, tη, pε+Dφ(xε, tη),u]−J 2
δ′ [yε, sη, pε, v]

+J 1
δ′ [xε, tη,φ]+O(

|xε− yε|2
ε2 )

whereas close to the origin

J 1
δ [xε, tη,

|x − yε|2
ε2 ]−J 1

δ [yε, sη,−|xε− y |2
ε2 ] = 2

ε2

∫
|z|≤δ

| j (xε, z)|2µ(d z) → 0

J 1
δ [xε, tη,φ] ≤

∫
|z|≤δ

(
sup
|θ|<1

D2φ(xε+θ j (xε, z), tη) j (xε, z) · j (xε, z)
)
µ(d z) → 0.

Furthermore, employing (3.25) and the regularity of the test function φ, as well as the upper
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semicontinuity of u − v and the continuity of the jump function j , we have

limsup
η,ε→0

(
J 2

δ′ [xε, tη, pε+Dφ(xε, tη),u]−J 2
δ′[yε, sη, pε, v]

)
≤

∫
|z|≥δ′

limsup
η,ε→0

(
(u(xε+ j (xε, z), tη)− v(yε+ j (yε, z), sη))

−(u(xε, tη)− v(yε, sη))

−(Dφ(xε, tη) · j (xε, z)+pε · ( j (xε, z)− j (yε, z)))1B (z)
)
µ(d z)

≤
∫
|z|≥δ′

(
limsup
η,ε→0

(u(xε+ j (xε, z), tη)− v(yε+ j (yε, z), sη))

− lim
η,ε→0

(u(xε, tη)− v(yε, sη))

− lim
η,ε→0

Dφ(xε, tη) · j (xε, z)1B (z)
)
µ(d z)

≤
∫
|z|≥δ′

(
(u(x0 + j (x0, z), tη)− v(x0 + j (x0, z), t0))

−(u(x0, t0)− v(x0, t0))

−Dφ(x0, t0) · j (x0, z)
)
µ(d z) =J 2

δ′[x0, t0,Dϕ(x0, t0), w].

Passing to the limits in the viscosity inequality we get, for all δ′ > 0 that

φt (x0, t0)− c|Dφ(x0, t0)|−M+(D2φ(x0, t0))−
c(J 1

δ′ [x0, t0,φ]+J 2
δ′[x0, t0,Dϕ(x0, t0), w]) ≤ 0.

Hence, w is a viscosity subsolution of the equation

wt − c|Dw |−M+(D2w)−cJ [x, t , w] = 0 in Ω× (0,T ).

In case the sub and super-solutions are Lipschitz we take R∗ = max{||Du||∞, ||Dv ||∞} and de-
note by c = cR∗ and w = wR∗ .

2. The equation satisfies the strong maximum principle since the nonlinearity is positively
1-homogeneous and the nondegeneracy conditions (N ) and (N ′) are satisfied.

(N ) −c|p|−M+(I −γp ⊗p)−cC̃µ+cγ
∫
Cη,γ

|p · j (x, z)|2µ(d z) ≥

−c|p|−M+(I )+γM−(p ⊗p)− cC̃µ+cγ
∫
Cη,γ

|p · j (x, z)|2µ(d z) ≥

−c|p|−ΛN +λγ|p|2 − cC̃µ+C (η)γβ−1|p|2 > 0, for γ large .

Therefore, SMaxP applies and we conclude that if u − v attains a maximum inside the domain
Ω× (0,T ) at some point (x0, t0) then u − v is constant in Ω× [0, t0].

Remark 3.5.1. If Pucci’s operator M+ appearing in hypothesis (H) is nondegenerate, i.e. λR > 0,
then one can consider any Lévy measure µ, not necessarily satisfying (Mc ).
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Example 3.5.1. The linear PIDE

ut −a(x)∆u −I [x, t ,u] = f (x) in Ω

with a(x) ≥ 0, satisfies Strong Comparison, as (H) holds for the corresponding nonlinearity.

Example 3.5.2. On the other hand, for the equation

ut +|Du|m −I [u] = f (x) in Ω

with m ≥ 2 condition (H) holds if the sub and super-solutions are Lipschitz continuous in space.

Indeed, for u subsolution and v supersolution

(u − v)t +|Du|m −|Dv |m −I [u − v]

≥ (u − v)t +m|Dv |m−2(Du −Dv)−I [u − v]

≥ (u − v)t −cD(u − v)−I [u − v].

3.6 Appendix

We present in the following some useful properties of the nonlocal terms. For a given function
v defined on RN × [0,T ], consider the integral operators

I [x, t , v] =
∫
D

(v(x + z, t )− v(x, t )−Dv(x, t ) · z1B (z))µx (d z),

and
J [x, t , v] =

∫
D

(v(x + j (x, z), t )− v(x, t )−Dv(x, t ) · j (x, z)1B (z))µ(d z),

where the integral is taken over a domain D ⊆RN .

Lemma 3.6.1. Any smooth function

v(x, t ) = eϕ(x,t )

satisfies the integral inequality

I [x, t , v] ≥ v ·I [x, t ,ϕ],∀(x, t ) ∈RN × [0,T ]

Proof. The inequality is immediate from e y −1 ≥ y , ∀y ∈R. More precisely

I [x, t , v] =
∫
D

(
eϕ(x+z,t ) −eϕ(x,t ) −eϕ(x,t )Dϕ(x, t ) · z1B (z)

)
µx (d z)

= eϕ(x,t )
∫
D

(
eϕ(x+z,t )−ϕ(x,t ) −1−Dϕ(x, t ) · z1B (z)

)
µx (d z)

≥ eϕ(x,t )
∫
D

(
ϕ(x + z, t )−ϕ(x, t )−Dϕ(x, t ) · z1B (z)

)
µx (d z).
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We straighten the convex inequality to the following:

Lemma 3.6.2. Let v be a smooth function of the form

v(x, t ) = eϕ(x,t ).

Then for any δ≥ 0 there exists a constant c = 1
2 e−δ such that v satisfies

I [x, t , v] ≥ eϕ(x,t ) · [I [x, t ,ϕ]+ c
∫
D

(ϕ(x + z, t )−ϕ(x, t ))2µx (d z)],

for all (x, t ) ∈RN × [0,T ], where the integral is taken over the domain D = {ϕ(x+z)−ϕ(x) ≥−δ}.

Proof. The proof is direct application of the exponential inequality

e y −1 ≥ y + c y2,∀y ≥−δ.

We now insert the previous inequality with y = ϕ(x + z, t )−ϕ(x, t ) in the nonlocal term and
obtain

I [x, t ,eϕ] = eϕ(x,t )
∫
D

(
eϕ(x+z,t )−ϕ(x,t ) −1−Dϕ(x, t ) · z1B (z)

)
µx (d z)

≥ eϕ(x,t )[
∫
D

(
ϕ(x + z, t )−ϕ(x, t )−Dϕ(x, t ) · z1B (z)

)
µx (d z)

+c
∫
D

(
(ϕ(x + z, t )−ϕ(x, t )

)2
µx (d z)].

Similar results hold for Lévy-Itô operators.

Lemma 3.6.3. The function v(x, t ) = eϕ(x,t ), satisfies the integral inequality

J [x, t , v] ≥ v ·J [x, t ,ϕ],∀(x, t ) ∈RN × [0,T ].

Lemma 3.6.4. For any δ≥ 0 there exists a constant c = 1
2 e−δ such that v = eϕ satisfies

J [x, t , v] ≥ eϕ(x,t ) · [J [x, t ,ϕ]+c
∫
D

(ϕ(x + j (x, z), t )−ϕ(x, t ))2µ(d z)],

for all (x, t ) ∈RN × [0,T ], where the integral is taken over D = {ϕ(x + j (x, z))−ϕ(x) ≥−δ}.

3.7 Conclusion

We established in this chaper Strong Maximum Principle results for Nonlinear Integro-
Differential Equations. The ‘strong’ principle states that a solution attaining a maximum at
an interior point becomes constant. This comes separately from horizontal and vertical prop-
agation of maxima. In particular, horizontal propagation of maxima can happen either by
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translations of measure supports or it can come from the ellipticity of the equation with re-
spect to the nonlocal term.

Furthermore, we introduced a new class of equations, termed mixed integro-differential
equations, that are degenerate both in the local and nonlocal term, but nondegenerate in the
local-nonlocal interaction.

We address in the following chapter regularity questions for this type of equations. In near
future, we would like to investigate possible extensions of the Strong Maximum Principle for
convex and concave Hamilton-Jacobi equations, and to Bellman-Isaacs equations.





CHAPTER 4

Lipschitz Regularity of Solutions for
Mixed Integro-Differential Equations

On ne comprend jamais les maths, on s’y habitue.
Pierre Louis Lions, Collège de France, Paris

6 Novembre, 2009

Abstract: We establish new Hölder and Lipschitz estimates for viscosity solutions of a large
class of nonlinear integro-differential equations, by the classical Ishii-Lions’s method. We thus
extend the Hölder regularity results recently obtained by Barles, Chasseigne and Imbert. In ad-
dition, we deal with a new class of nonlocal equations that we term mixed integro-differential
equations. These equations are particularly interesting, as they are degenerate both in the lo-
cal and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction,
e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion
in the complementary one.1

Résumé: Nous établissons de nouvelles estimations Hölderiennes et Lipschitziennes pour les
solutions de viscosité d’une large classe d’équations intégro-différentielles non-linéaires, par
la méthode classique de Ishii-Lions. Nous étendons ainsi les résultats de régularité récem-
ment obtenus par Barles, Chasseigne et Imbert. De plus, nos résultats s’appliquent à une
nouvelle classe d’équations non-locales que nous appelons équations intégro-différentielles
mixtes. Ces équations sont particulièrement intéressantes, car elles sont dégénérées à la fois
dans le terme local et nonlocal, mais leur comportement global est conduit par l’interaction
locale-nonlocale, par example la diffusion fractionnaire peut donner l’ellipticité dans une di-
rection et la diffusion classique dans la direction complémentaire.

Keywords: nonlinear integro-differential equations, Lipschitz regularity, viscosity solu-
tions, Lévy processes

1This work represents the article Lipschitz Regularity of Viscosity Solutions for Mixed Integro-Differential Equa-
tions, in preparation.
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4.1 Introduction

Ishii and Lions introduced in [IL90] a simple method to prove C 0,α regularity of viscosity so-
lutions of fully nonlinear, possibly degenerate, elliptic partial differential equations, which in
addition has the great advantage of providing explicit C 0,α estimates.

This simple method, closely related to classical viscosity solutions theory, was recently ex-
plored by Barles, Chasseigne and Imbert in [BCI11] for second order, fully nonlinear elliptic
partial integro-differential equations, dealing with a large class of integro-differential opera-
tors, whose singular measures depend on x. The authors prove that the solution is α-Hölder
continuous for any α< min(β,1), where β characterizes the singularity of the measure associ-
ated with the integral operator. However, in the case β≥ 1 the respective ad-literam estimates
do not yield Lipschitz regularity. Using slightly different techniques and within a more general
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framework that we make clear in the following, we extend their Hölder regularity results to Lip-
schitz regularity. In addition, we establish both Hölder and Lipschitz estimates for a new class,
of mixed integro-differential equations, which we introduce in the sequel.

In order to treat a large class of nonlinear equations, they assume the nonlinearity satisfies
a suitable ellipticity growth assumption. Roughly speaking, this assumption gives a suitable
meaning to a generalized ellipticity of the equation in the sense that at each point of the do-
main, the ellipticity comes either from the second order term (the equation is strictly elliptic in
the classical fully nonlinear sense), or from the nonlocal term (the equation is strictly elliptic
in a nonlocal nonlinear sense).

In a recent study of the strong maximum principle for integro-differential equation [Cio],
one can see that another type of mixed ellipticity might arise: at each point, the nonlinearity
is degenerate in the second-order term, and in the nonlocal term, but the combination of the
local and the nonlocal diffusions renders the nonlinearity uniformly elliptic. We term this type
of equations mixed integro-differential equations since the diffusion term might give the ellip-
ticity in one direction, whereas the nonlocal term in the complementary direction. For this
type of nondegenerate equations, the assumptions in [BCI11] are not satisfied and we provide
new Hölder and Lipschitz regularity results in this framework.

The simplest example of mixed integro-differential equations is given by

−∆x1 u + (−∆x2 u)β/2 = f (x1, x2)

where (−∆x2 u)β/2 denotes the fractional Laplacian with respect to x2-variable

(−∆x2 u)β/2 =−
∫
Rd2

(
u(x1, x2 + z2)−u(x1, x2)−Dx2 u(x1, x2) · z21B (z2)

) d z2

|z2|d2+β .

In this case local diffusions occur only in x1-direction and fractional diffusions in x2-direction.

Using Ishii-Lions’s viscosity method, we give both Hölder and Lipschitz regularity results of
viscosity solutions for a general class of mixed elliptic integro-differential equations of the type

F0(u(x),Du,D2u,I [x,u])+ (4.1)

F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Ix2 [x,u]) = f (x)

as well as evolution equations

ut +F0(u(x),Du,D2u,I [x,u])+ (4.2)

F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Ix2 [x,u]) = 0.

A point in x ∈ Rd is written as x = (x1, x2) ∈ Rd1 ×Rd2 , with d = d1 + d2. The symbols
ut , Du, D2u stand for the derivative with respect to time, respectively the gradient and the
Hessian matrix with respect to x. Subsequently, we write the gradient on components as
Du = (Dx1 u,Dx2 u) and the Hessian matrix D2u ∈ Sd (with Sd the set of real symmetric d ×d
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matrices) as a block matrix of the form

D2u =
[

D2
x1x1

u D2
x1x2

u
D2

x2x1
u D2

x2x2
u

]
.

I [x,u] is an integro-differential operator, taken on the whole space Rd , associated to Lévy
processes

I [x,u] =
∫
Rd

(u(x + z)−u(x)−Du(x) · z1B (z))µx (d z)

where 1B (z) denotes the indicator function of the unit ball B and
(
µx

)
x∈Rd is a family of Lévy

measures, i.e. nonnegative, possibly singular, Borel measures on Rd such that

sup
x∈Rd

∫
Rd

min(|z|2,1)µx (d z) <∞.

Accordingly, one has the directional integro-differential operators

Ix1 [x,u] =
∫
Rd1

(u(x1 + z, x2)−u(x1, x2)−Dx1 u(x) · z1B (z))µ1
x1

(d z)

Ix2 [x,u] =
∫
Rd2

(u(x1, x2 + z)−u(x1, x2)−Dx2 u(x) · z1B (z))µ2
x2

(d z).

We consider as well the special class of Lévy-Itô operators, defined as follows

J [x,u] =
∫
Rd

(u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z))µ(d z)

where µ is a Lévy measure and j (x, z) is the size of the jumps at x satisfying

sup
x∈Rd

∫
Rd

min(| j (x, z)|2,1)µ(d z) <∞.

Similarly, we deal with directional Lévy-Itô integro-differential operators

Jx1 [x,u] =
∫
Rd1

(u(x1 + j (x1, z), x2)−u(x1, x2)−Dx1 u(x) · j (x1, z)1B (z))µ1(d z)

Jx2 [x,u] =
∫
Rd2

(u(x1, x2 + j (x2, z))−u(x1, x2)−Dx2 u(x) · j (x2, z)1B (z))µ2(d z).

We assume the nonlinearities are continuous and degenerate elliptic, i.e.

Fi (..., X , l ) ≤ Fi (...,Y , l ′) if X ≥ Y , l ≥ l ′,

for all X ,Y ∈Sdi and l , l ′ ∈R, i = 0,1,2.

In addition, we suppose that the three nonlinearities satisfy suitable strict ellipticity and
growth conditions, that we omit here for the sake of simplicity, but will be made precise in
the following section. These structural growth conditions can be illustrated on the following
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example:

−a1(x1)∆x1 u−a2(x2)Ix2 [x,u]−I [x,u]+b1(x1)|Dx1 u1|k1+b2(x2)|Dx2 u|k2 +|Du|n + cu = f (x)

where the nonlocal term Ix2 [x,u] has fractional exponent β ∈ (0,2) and ai (xi ) > 0, for i = 1,2.

When β > 1, we show that the solution is Lipschitz continuous for mixed equations with
gradient terms bi (xi )|Dxi u|ki having a natural growth ki ≤ β if bi bounded. If in addition bi

are τ-Hölder continuous, then the solution remains Lipschitz for gradient terms up to growth
ki ≤ τ+β. When β ≤ 1, the solution is α-Hölder continuous for any α < β. The critical case
β= 1 is left open.

Recently there have been many papers dealing with C 0,α estimates and regularity of solu-
tions (not necessarily in the viscosity setting) for fully nonlinear PIDEs and the literature has
been considerably enriched.

As far as the viscosity solutions are concerned, there are essentially two approaches for
proving Hölder or Lipschitz regularity: Ishii-Lions’s method mentioned above, and by ABP es-
timates and Krylov - Safonov type Harnack inequalities (see Silvestre [Sil06], Caffarelli and Sil-
vestre [CS09] and the references therein). The two above methods do not cover the same class
of equations and each of it has its own advantages. The powerful Harnack approach applies
for uniformly elliptic fully nonlinear equations, with rough coefficients and leads in general to
further regularity such as C 1,α, but requires some integrability condition of the measure at in-
finity. On the other hand, viscosity methods apply under weaker ellipticity assumptions and
therefore deal with a large class of degenerate, fully nonlinear equations, in particular with
super-linear gradient growth, allow measures which are only bounded at infinity, but require
Hölder continuous coefficients and do not seem to yield further regularity.

Regularity theory for nonlocal evolution equations of variational type with measurable ker-
nels can be developed using the original ideas of De Giorgi [DG57] and Nash [Nas58] from the
calculus of variations. In this setting, Caffarelli, Chan and Vaseur [CCV] show that solutions
with initial data in L2 become instantaneously bounded and Hölder continuous. Their ar-
guments are closely related to the work of Kassmann [Kas09], Kassmann and Bass [BK05a],
where the Moser approach for the stationary case is fully developed. Within the variational
framework, Caffarelli, Roquejoffre an Savin [CRS10] establish geometric properties, existence
and regularity of nonlocal minimal surfaces.

This chapter is organized as follows. In Section §4.2 we give the appropriate definition of
viscosity solution, make precise the ellipticity growth conditions to be satisfied by the nonlin-
earities and list the assumptions on the nonlocal terms. Section §4.3 is devoted to the main
results, which for the sake of clarity are given in the periodic setting. We state partial regularity
results, provide the complete proof, and then present the global regularity result. In the next
Section §4.4 we consider several significant examples and discuss the main assumptions re-
quired by the regularity results and their implications. Extensions to the nonperiodic setting,
parabolic versions of the equations, Bellman-Isaacs equations and multiple nonlinearities are
recounted in Section §4.5. At last we detail in Section §4.6 the technical Lipschitz and Hölder
estimates for the general nonlocal operators and Lévy-Itô operators, which are essentially the
backbone of the main results.
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4.2 Notations and Assumptions

4.2.1 Viscosity Solutions for Integro-Differential Equations

To overcome the difficulties imposed by behavior at infinity of the measures (µx )x , as well as
the singularity at the origin, we often need to split the nonlocal terms into

I 1
δ [x,u] =

∫
|z|≤δ

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
µx (d z)

I 2
δ [x, p,u] =

∫
|z|>δ

(
u(x + z)−u(x)−p · z1B (z)

)
µx (d z)

respectively

J 1
δ [x,u] =

∫
|z|≤δ

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
µ(d z)

J 2
δ [x, p,u] =

∫
|z|>δ

(
u(x + j (x, z))−u(x)−p · j (x, z)1B (z)

)
µ(d z)

with 0 < δ< 1 and p ∈Rd̃ .

There are several equivalent definitions of viscosity solutions [BI08], but we will mainly
refer to the following one.

Definition 4.2.1 (Viscosity solutions). An upper semi-continuous ( in short usc) function u :
Rd →R is a subsolution of (4.1) if for any φ ∈C 2(Rd ) such that u−φ attains a global maximum
at x ∈Rd

F0(u(x),Dφ(x),D2φ(x),I 1
δ [x, t ,φ]+I 2

δ [x, t ,Dφ(x, t ),u])+
F1(x1,Dx1φ(x),D2

x1x1
φ(x),I 1

x1,δ[x, t ,φ]+I 2
x1,δ[x, t ,Dφ(x, t ),u])+

F2(x2,Dx2φ(x),D2
x2x2

φ(x),I 1
x2,δ[x, t ,φ]+I 2

x1,δ[x, t ,Dφ(x, t ),u]) ≤ f (x).

A lower semi-continuous (in short lsc) function u : Rd → R is a subsolution of (4.1) if for any
φ ∈C 2(Rd ) such that u −φ attains a global minimum at x ∈Rd

F0(u(x),Dφ(x),D2φ(x),I 1
δ [x, t ,φ]+I 2

δ [x, t ,Dφ(x, t ),u])+
F1(x1,Dx1φ(x),D2

x1x1
φ(x),I 1

x1,δ[x, t ,φ]+I 2
x1,δ[x, t ,Dφ(x, t ),u])+

F2(x2,Dx2φ(x),D2
x2x2

φ(x),I 1
x2,δ[x, t ,φ]+I 2

x1,δ[x, t ,Dφ(x, t ),u]) ≥ f (x).

4.2.2 Ellipticity Growth Conditions

We assume that the nonlinearities Fi , with i = 0,1,2 satisfy (one or more of) the next assump-
tions. The precise selection for each of the nonlinearities shall be given later on, when the
regularity result is stated. Further examples and comments upon the restrictions of these non-
linearities are provided in section §4.4.

(H0) There exists γ̃ ∈R such that for any u, v ∈R, p ∈Rd̃ , X ∈Sd̃ and l ∈R

F (u, p, X , l )−F (v, p, X , l ) ≥ γ̃(u − v) when u ≥ v.
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(H1) There exist two functions Λ1,Λ2 : Rd̃ → [0,∞) such that Λ1(x)+Λ1(x) ≥ Λ0 > 0 and for
each 0 < R <∞ there exist some constants k ≥ 0, τ ∈ (0,1] θ, θ̃ ∈ (0,1] such that for any
x, y ∈Rd̃ , p ∈Rd̃ , l ≤ l ′ and any ε> 0

F (y, p,Y , l ′)−F (x, p, X , l ) ≤

Λ1(x)
(
(l − l ′)+ |x − y |2θ

ε
+|x − y |τ|p|k+τ+C 1|p|k)+

Λ2(x)
(
tr(X −Y )+ |x − y |2θ̃

ε
+|x − y |τ|p|2+τ+C 2|p|2)

if X ,Y ∈Sd̃ satisfy, the inequality

− 1

ε

[
I 0
0 I

]
≤

[
X 0
0 −Y

]
≤ 1

ε

[
Z −Z
−Z Z

]
, (4.3)

with Z = I − ω̄â ⊗ â, for some â ∈Rd̃ unit vector, and ω̄≥ 1.

(H2) F (·, l ) is Lipschitz continuous, uniformly with respect to all the other variables.

(H3) For any R > 0 there exists a modulus of continuity ωF such that for any ε> 0

F (y,
x − y

ε
,Y , l )−F (x,

x − y

ε
, X , l ) ≤ωF

( |x − y |2
ε

+|x − y |
)

for all x, y ∈ Rd̃ , X ,Y ∈ Sd̃ , with |X |, |Y | ≤ R, satisfying the matrix inequality (4.3) with
Z = I and l ∈R.

4.2.3 Lévy Measures for General Nonlocal Operators

We recall that in this case, the nonlocal term I [x,u] is an integro differential operator defined
by

I [x,u] =
∫
Rd̃

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
µx (d z) (4.4)

where 1B denotes the indicator function of the unit ball and
(
µx

)
x is a family of Lévy measures.

We need to make a series of assumptions for family of Lévy measures that we state below.

(M1) There exists a constant C̃µ > 0 such that

sup
x∈Rd̃

(∫
B
|z|2µx (d z)+

∫
Rd̃ \B

µx (d z)
)≤ C̃µ.

(M2) There exists β ∈ (0,2) such that for every a ∈Rd̃ there exist 0 < η< 1 and a constant Cµ > 0

such that the following holds for any x ∈Rd̃

∫
Cη,δ

|z|2µx (d z) ≥Cµ η
d̃−1

2 δ2−β,∀δ> 0

with Cη,δ := {z ∈ Bδ; (1−η)|z||a| ≤ |a · z|}.
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(M3) There exist β ∈ (0,2), γ ∈ (0,1) and a constant Cµ > 0 such that for any x, y ∈Rd̃

∫
Bδ

|z|2|µx −µy |(d z) ≤Cµ|x − y |γ δ2−β

and ∫
B\Bδ

|z||µx −µy |(d z) ≤
{

Cµ|x − y |γ δ1−β if β 6= 1
Cµ|x − y |γ | ln(δ)| if β= 1.

At the same time, we assume that the directional Lévy measures satisfy similar assumptions.

Remark 4.2.1. To make precise the form of (M2) we consider the fractional Laplacian with
exponent β and compute in R2

∫
Cη,δ

|z|2µ(d z) = vol(Cη,δ)

vol(Bδ)

∫
Bδ

|z|2µ(d z) = vol(Cη,1)

vol(B1)

∫
Bδ

|z|2µ(d z)

= δ2−β vol(Cη,1)

vol(B1)

∫
B1

|z|2µ(d z) = δ2−β θ
π

∫
B1

|z|2µ(d z),

where θ denotes the angle giving the aperture of the cone. Taking into account the definition
of Cη,1 we have for small angles θ

η= 1−cos(θ) =−θ2

2
+o(θ2)

and hence θ 'p
η, from where we deduce (M2).

In higher dimension d ≥ 3, the volume of the cone is given in spherical coordinates, with
normal direction a = (0,0, ...,1) and polar angle φ1, by the formula

vol(Cη,1) =
∫ θ

0
sind−2(φ1)dφ1...

∫ π

0
sin(φd−2)dφd−2

∫ 2π

0
dφd−1

∫ 1

0
r d−1dr.

For small angles θ the volume can be approximated by

vol(Cη,1) ≈ θd−1

d −1

∫ π

0
sind−3(φ2)dφ2...

∫ π

0
sin(φd−2)dφd−2

∫ 2π

0
dφd−1

∫ 1

0
r d−1dr.

Therefore there exists a positive constant C > 0 such that

vol(Cη,1)

vol(B1)
≥Cθd−1 =Cη

d−1
2

and hence, denoting by Cµ =C
∫

B1
|z|2µ(d z), we have (M2)∫

Cη,δ

|z|2µ(d z) ≥Cη
d−1

2 δ2−β
∫

B1

|z|2µ(d z) =Cµη
d−1

2 δ2−β.
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4.2.4 Lévy Measures for Lévy-Itô Operators

Lévy-Itô operators are defined by

J [x,u] =
∫
Rd̃∗

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
µ(d z). (4.5)

In the sequel, we assume that the jump function satisfies the following conditions.

(J1) There exists a constant C̃µ > 0 such that

sup
x∈Rd̃

∫
B
| j (x, z)|2µ(d z)+

∫
Rd̃ \B

µ(d z) ≤ C̃µ.

(J2) There exists β ∈ (0,2) such that for every a ∈Rd̃ there exist 0 < η< 1 and a constant Cµ > 0

such that the following holds for any x ∈Rd̃

∫
Cη,δ

| j (x, z)|2µ(d z) ≥Cµ η
d−1

2 δ2−β,∀δ> 0

with Cη,δ := {z; | j (x, z)| ≤ δ, (1−η)| j (x, z)||a| ≤ |a · z|}.

(J3) There exist γ ∈ (0,1] and two constants c0,C0 > 0 such that for any x ∈Rd̃ and z ∈Rd̃

c0|z| ≤ | j (x, z)| ≤C0|z|

and for all z ∈ B and x, y ∈Rd̃

| j (x, z)− j (y, z)| ≤C0|z||x − y |γ.

(J4) There exists β ∈ (0,2) such that for δ> 0 small enough

∫
B\Bδ

|z|µ(d z) ≤
{

C̃µδ
1−β, if β 6= 1

C̃µ| ln(δ)| if β= 1.

(J5) There exists a constant C̃µ > 0 such that∫
Rd̃ \B

|z|µ(d z) ≤ C̃µ.

In case several assumptions hold simultaneously, the constants denoted similarly are consid-
ered to be the same (e.g. β, Cµ, C̃µ).



86 Chapter 4. Lipschitz Regularity Mixed PIDES

4.3 Lipschitz Continuity of Viscosity Solutions

In order to establish Lipschitz or Hölder regularity results for the solution u, we shift the func-
tion and show that the corresponding difference can be uniformly controlled by

φ(t ) = Ltα, for all α ∈ (0,1].

Figure 4.1: Uniformly controlling the shift of u by φ(|x − y |) = L|x − y |α, for all α ∈ (0,1] .

Remark 4.3.1. Roughly speaking, one has to look at the maximum of the function

(x, y) 7→ u(x)−u(y)−φ(|x − y |)

and, in the case of elliptic PDEs, follow the uniqueness proof with a careful analysis of the ma-
trix inequality given by Jensen-Ishii’s lemma. Precise computations show that we just need el-
lipticity of the equation in the gradient direction. In the case of nonlocal diffusions, one has
to translate in a proper way the ellipticity in the gradient direction. And this is reflected in the
nondegeneracy conditions (M2), respectively (J2) required by the family of Lévy measures.

For the sake of simplicity, we give the proof in the periodic setting. This yields C 0,α regu-
larity instead of local regularity. At the same time it allows us to avoid the localization terms,
meant to overcome the behavior at infinity of the solutions, which is related to the integrability
of the singular measure away from the origin.
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4.3.1 Partial Regularity Results

Theorem 4.3.1 (Partial regularity for periodic, mixed PIDEs - general nonlocal operators).
Let f be a continuous, periodic function. Assume the nonlinearities Fi , i = 0,1,2 are degenerate
elliptic and that they satisfy the following:

• F0 is Zd -periodic and satisfies assumptions (H0), (H2) with d̃ = d and some constant γ̃;
• F1 is Zd1 -periodic and satisfies (H1) with d̃ = d1, for some functions Λ1 , Λ2 and some

parameters Λ0, k ≥ 0, τ,θ, θ̃ ∈ (0,1];
• F2 is Zd2 -periodic and satisfies (H2), (H3) with d̃ = d2.

Let µ0,
(
µ1

x1

)
x1

and µ2 be Lévy measures on Rd , Rd1 , Rd2 respectively associated to the integro-
differential operators I [x,u], Ix1 [x,u] and Jx2 [x,u]. Suppose

•
(
µ1

x1

)
x1

satisfies (M1)− (M3) for some Cµ1 , C̃µ1 , β and γ, with

{
k ≤β, β> 1
k <β, β≤ 1;

• the jump function j (x2, z) satisfies (J1), (J3) and (J5) for some Cµ2 , C̃µ2 , and γ= 1.

Then any periodic continuous viscosity solution u of

F0(u(x),Du,D2u,I [x,u])+ (4.6)

F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u]) = f (x)

(a) is locally Lipschitz continuous in the x1 variable if β> 1;

(b) is C 0,α continuous in the x1 variable with α< β−k
1−k , if β≤ 1.

The Lipschitz/ Hölder constant L depends on ||u||∞, the dimension of the space d, the constants
associated to the Lévy measures as well as the constants required by the growth condition (H1).

Remark 4.3.2. In particular, when d1 = d and F0 ≡ 0,F2 ≡ 0 we extend to Lipschitz the Hölder
regularity result, recently obtained by Barles, Chasseigne and Imbert in [BCI11].

Proof. The proof of the regularity of u consists of two steps: we first show that the solution u
is C 0,α continuous for all α ∈ (0,1), then we check that in the subcritical case β> 1 this implies
the Lipschitz continuity. We use the viscosity method introduced by Ishii and Lions in [IL90].

STEP 1. We introduce the auxiliary function

ψ(x1, y1, x2) = u(x1, x2)−u(y1, x2)−φ(x1 − y1)

where φ is a radial function of the form

φ(z) =ϕ(|z|)

with a suitable choice of a smooth increasing concave function ϕ : R+ →R+ satisfying ϕ(0) = 0
and ϕ(t0) ≥ 2||u||∞ for some t0 > 0. Our aim is to show that

ψ(x1, y1, x2) ≤ 0, if |x1 − y1| < t0,∀x2 ∈Rd2 .
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This yields the desired regularity result, for a proper choice of ϕ. Namely, ϕ= Ltα will give the
Hölder partial regularity of the solution

|u(x1, x2)−u(y1, x2)| ≤ L|x1 − y1|α, if |x1 − y1| < t0

and ϕ= L(t −ρt 1+α) the Lipschitz partial regularity

|u(x1, x2)−u(y1, x2)| ≤ L|x1 − y1|, if |x1 − y1| < t0.

STEP 2. To this end, we argue by contradiction and assume that ψ(x1, y1, x2) has a positive
strict maximum at some point (x̄1, ȳ1, x̄2)

M =ψ(x̄1, ȳ1, x̄2) = max
x1,y2∈Rd1 ,x2∈Rd2

ψ(x1, y1, x2) > 0.

Denote by x̄ = (x̄1, x̄2) and by ȳ = (ȳ1, x̄2). Then

ϕ(|x̄ − ȳ |) ≤ u(x̄)−u(ȳ) ≤ ωu(|x̄ − ȳ |) (4.7)

ϕ(|x̄ − ȳ |) ≤ u(x̄)−u(ȳ) ≤ 2||u||∞. (4.8)

To be able to extract some valuable information hereafter, we need to construct test func-
tions defined on the whole space Rd . For this reason, we penalize ψ around the maximum by
doubling the variables, staying at the same time as close as possible to the maximum point.
Therefore, we consider the auxiliary function

ψε(x, y) = u(x1, x2)−u(y1, y2)−φ(x1 − y1)− |x2 − y2|2
ε2

whose maximum is attained, say at (xε, yε). Denote its maximum value by

Mε =ψε(xε, yε) = max
x,y∈Rd

ψε(x, y).

Then the following holds.

Lemma 4.3.1. Up to a subsequence, the sequences of maximum points
(
(xε, yε)

)
ε and of maxi-

mum values (Mε)ε satisfy as ε→ 0

Mε → M ,
|xε

2 − yε
2 |2

ε2 → 0, (xε, yε) → (x̄, ȳ).

STEP 3. Let ā = (ā1, ā2) = x̄ − ȳ , p = (p1, p2) = (Dφ(ā1),0) and denote by

aε = (aε
1, aε

2) = xε− yε, âε = aε

|aε| , pε = (pε
1, pε

2) = (Dφ(aε
1),2

xε
2 − yε

2

ε2 ).

Since xε
1 6= yε

1 , for ε small enough the function φ is smooth and we can apply the Jensen-Ishii’s
lemma for integro-differential equations [BI08]. This yields the existence, for each ε> 0 of two
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sequences of matrices (X ε,ζ)ζ, (Y ε,ζ)ζ ⊂Sd of the form

X ε,ζ =
[

X ε,ζ
1 0

0 X ε,ζ
2

]
and Y ε,ζ =

[
Y ε,ζ

1 0

0 Y ε,ζ
2

]
, (4.9)

which correspond to the sub and superjets of u at the points xε and yε. In addition the block
diagonal matrix satisfies

− 1

ζ

[
Id 0
0 Id

]
≤

[
X ε,ζ 0

0 −Y ε,ζ

]
≤

[
Z −Z
−Z Z

]
+oζ(1), (4.10)

with Z a block matrix of the form (4.9), with blocks

Z1 = D2φ(aε
1) = ϕ′(|aε

1|)
|aε

1|
Id1 +

(
ϕ′′(|aε

1|)−
ϕ′(|aε

1|)
|aε

1|
)

âε
1 ⊗ âε

1

Z2 = 2

ε2
Id2 .

By Lemma 4.7.1 the triplets of block matrices (X ε,ζ
i ,Y ε,ζ

i , Zi ) for i = 1,2 satisfy bound (4.10).
Then, by sup and inf matrix convolution (see Lemmas 4.7.2 and 4.7.3 in Appendix) we build
matrices, that we still denote by X ε,ζ and Y ε,ζ, for which the corresponding blocks X ε,ζ

i and

Y ε,ζ
i for i = 1,2 satisfy double bounds

− 4

ε̄

[
Id1 0
0 Id1

]
≤

[
X ε,ζ

1 0

0 −Y ε,ζ
1

]
≤

[
Z̃1 −Z̃1

−Z̃1 Z̃1

]
+oζ(1) (4.11)

− 4

ε2

[
Id2 0
0 Id2

]
≤

[
X ε,ζ

2 0

0 −Y ε,ζ
2

]
≤ 4

ε2

[
Id2 0
0 Id2

]
+oζ(1) (4.12)

with Z̃1 = Z
ε̄
2

1 , where

ε̄= |aε
1|

ϕ′(|aε
1|)

.

In addition, from the monotonicity of the sup and inf convolution (4.31) the new block matri-
ces X ε,ζ and Y ε,ζ are still sub and superjets of u at xε, respectively yε

(pε, X ε,ζ) ∈J 2,+(u(xε))

(pε,Y ε,ζ) ∈J 2,−(u(yε)).

Since the bounds in (4.11) and (4.12) are uniform with respect to ζ, we can let ζ→ 0 and ob-
tain two matrices X ε and Y ε satisfying the double inequality required by the ellipticity growth
condition (H1), which are still sub and superjets of u at xε, respectively yε. Hence, they satisfy
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the viscosity inequalities

F0(u(xε), pε, X ε,I [xε, pε,u])+ ∑
i=1,2

Fi (x̄ε
i , pε

i , X ε
i ,Ixi [xε, pε

i ,u]) ≤ f (xε)

F0(u(yε), pε,Y ε,I [yε, pε,u])+ ∑
i=1,2

Fi (ȳε
i , pε

i ,Y ε
i ,Iyi [yε, pε

i ,u]) ≥ f (yε).

Subtracting the above inequalities and denoting

E0(xε, yε,u) = F0
(
u(yε), pε,Y ε,I [yε, pε,u]

)−F0
(
u(xε), pε, X ε,I [xε, pε,u]

)+ f (xε)− f (yε)

Ei (x̄ε
i , ȳε

i ,u) = Fi
(
ȳε

i , pε
i ,Y ε

i ,Iyi [yε, pε
i ,u]

)−Fi
(
x̄ε

i , pε
i , X ε

i ,Ixi [xε, pε
i ,u]

)
, i = 1,2,

we get that
0 ≤ E0(xε, yε,u)+E1(xε

1, yε
1 ,u)+E2(xε

2, yε
2 ,u). (4.13)

STEP 4. In the following we estimate each of these terms as ε→ 0, bringing into play the
ellipticity growth assumptions satisfied by each nonlinearity.

Since u(yε) ≤ u(xε), X ε ≤ Y ε, the monotonicity assumption (H0), the ellipticity (E) with
respect to the second order term and the nonlocal term and the Lipschitz continuity (H2) of
F0 with respect to the nonlocal term yield

E0(xε, yε,u) ≤ γ̃
(
u(yε)−u(xε)

)+LF0

(
I [xε, pε,u]−I [yε, pε,u]

)
++ f (xε)− f (yε).

When the Lévy-Itô measures corresponding to the nonlinearity F0 do not depend on x, we
immediately deduce from the maximum condition that

u(xε+ z)− v(yε+ z) ≤ u(xε)− v(yε)

which renders nonpositive the difference of the nonlocal terms

I [xε, pε,u]−I [yε, pε,u] ≤ 0.

Therefore, passing to the limits as ε→ 0 and employing Lemma 4.3.1 we have

limsup
ε→0

E0(xε, yε,u) ≤−γ̃M . (4.14)

The estimate of E2 does not depend on the choice of ϕ and is given by the growth condition
(H3) and the Lipschitz continuity of F2(·, l ), uniformly with respect to all the other variables

E2(xε
2, yε

2 ,u) ≤ ωF2 (
|aε

2|2
ε2 +|aε

2|)+LF2

(
Ix2 [xε, pε

2,u]−Iy2 [yε, pε
2,u]

)
+

where LF2 is the Lipschitz constant of F2(·, l ). From Proposition 4.6.3 the quadratic estimates
for Lévy-Itô operators hold

Ix2 [xε, pε
2,u]−Iy2 [yε, pε

2,u] ≤

C
1

ε2

∫
|z2|≤δ

|z2|2µ2(d z2)+C
|aε

2|2
ε2

∫
|z2|≥δ

|z2|2µ2(d z2)+C
|aε

2|2
ε2

∫
|z2|≥1

|z2|µ2(d z2)
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for some positive constant C . As δ→ 0, the estimate reads

Ix2 [xε, pε
2,u]−Iy2 [yε, pε

2,u] ≤CC̃µ2

|aε
2|2
ε2 .

Letting now ε→ 0 and using Lemma 4.3.1 which ensures that
|aε

2|2
ε2 → 0 we are finally lead to

limsup
ε→0

E2(xε
2, yε

2 ,u) ≤ 0. (4.15)

For the estimate of E1, we use the ellipticity growth condition (H1)

E1(xε
1, yε

1 ,u) ≤ Λ1(xε
1)

((
Ix1 [xε, pε

1,u]−Iy1 [yε, pε
1,u]

)+ |aε
1|2θ
ε̄

+|aε
1|τ|pε

1|k+τ+C 1
1 |pε

1|k
)

Λ2(xε
1)

(
tr(X ε

1 −Y ε
1 )+ ωF1 (|aε

1|)
ε̄

+|aε
1|τ|pε

1|2+τ+C 2
1 |pε

1|2
)

where we recall that pε
1 = Dφ(aε

1) = Lϕ′(|aε
1|)âε

1. The goal is show that, for each choice of ϕ
(measuring either the Hölder or the Lipschitz continuity), the right hand side quantity is neg-
ative, arriving thus to a contradiction.

STEP 5.1. Hölder continuity. In order to establish the Hölder regularity of solutions, we
consider the auxiliary function

ϕ= Ltα, with α< min(1,β).

In this case, we apply Corollary 4.6.2, to the functions u(·, x2) and u(·, y2), which yields the
following Hölder estimate for the difference of the nonlocal terms

Ix1 [xε, pε
1,u]−Iy1 [yε, pε

1,u] ≤−L|aε
1|α−β

{
C (α,µ1)−o|aε

1|(1)
}
+O(1).

Lemma 4.7.4 applies with Z̃1 = Z
ε̄
2

1 , ε̄= (
Lα|aε

1|α−2
)−1, ω= 2−α and hence the trace is bounded

by
trace(X ε

1 −Y ε
1 ) ≤−8ω̄

(
Lα|aε

1|α−2) (4.16)

where ω̄= ω−1
ω+1 is a constant in (0, 1

3 ). We plug these estimates into the inequality for E1. Letting
ε go to zero and employing Lemma 4.3.1 we obtain the following bound

limsup
ε→0

E1(xε
1, yε

1 ,u) ≤Λ0 E 1(|ā|)+Λ0 E 2(|ā|)+O(1)

where for C (α,µ1) =αC0 and 2θ+β> 2

E 1(|ā|) = −L|ā|α−β (
αC0 −o|ā|(1)

)+|ā|2θ(Lα|ā|α−2)+|ā|τ (
Lα|ā|α−1)k+τ+C 1

1

(
Lα|ā|α−1)k

= −L|ā|α−β
{
αC0 −o|ā|(1)−αk+τ|ā|β−k (

L|ā|α)k+τ−1 −C 1
1α

k |ā|β−k (
L|ā|α)k−1

}
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and

E 2(|ā|) = −8ω̄
(
Lα|ā|α−2)+|ā|2θ̃(Lα|ā|α−2)+|ā|τ (

Lα|ā|α−1)2+τ+C 2
1

(
Lα|ā|α−1)2

= −L|ā|α−2
{
α

(
8ω̄−|ā|2θ̃)−α2+τ (

L|ā|α)1+τ−C 2
1α

2L|ā|α
}

.

Using the fact that L|ā|α ≤ 2||u||∞ we have

E 2(|ā|) ≤ −L|ā|α−2
{
α

(
8ω̄−|ā|2θ̃)−α2+τ (2||u||∞)1+τ−C 2

1α
2 (2||u||∞)

}
.

As far as E 1 is concerned, we further argue differently for the subcritical and supercritical case,
with respect to the Lévy exponent β, and accordingly with respect to k and τ. Namely

(a) if 1 < k ≤β, in which case k +τ−1 > 0, k −1 > 0, we have

E 1(|ā|) ≤ −L|ā|α−β
{
αC0 −o|ā|(1)−αk+τ|ā|β−k (2||u||∞)k+τ−1

−C 1
1α

k |ā|β−k (2||u||∞)k−1
}

.

(b) if k < min(1,β), then

(b.1) for 0 < k < 1−τ and β−k +α(k +τ−1) > 0

E 1(|ā|) ≤ −L|ā|α−β
{
αC0 −o|ā|(1)−αk+τ|ā|β−k+α(k+τ−1)Lk+τ−1

−C 1
1α

k |ā|β−k+α(k−1)Lk−1
}

= −L|ā|α−β
(
αC0 −o|ā|(1)

)
.

(b.2) for 1−τ< k ≤ 1 and β−k +α(k +τ−1) > 0

E 1(|ā|) ≤ −L|ā|α−β
{
αC0 −o|ā|(1)−αk+τ (2||u||∞)k+τ−1

−C 1
1α

k |ā|β−k+α(k−1)Lk−1
}

= −L|ā|α−β
{
αC0 −o|ā|(1)−αk+τ (2||u||∞)k+τ−1

}
.

This implies that for α small enough the two terms become (large) negative

lim
L→∞

E 1(|ā|) =−∞ and lim
L→∞

E 2(|ā|) =−∞.

Hence
lim

L→∞
limsup

ε→0
E1(xε

1, yε
1 ,u) =−∞. (4.17)

We now turn back to inequality (4.13), let first ε→ 0 and then L →∞. Plugging in the estimates
(4.14) - (4.17) we arrive to a contradiction. Therefore, we have proved up to this point the
C 0,α regularity of the solution, for α small enough. Note that the exponent α only depends on
||u||∞, k and τ.

We further use this first step to provide the C 0,α regularity for all α ∈ (0,1). To this end, we
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estimate L|ā|α with the modulus of continuity of u and get

E 2(|ā|) ≤ −L|ā|α−2
{
α

(
8ω̄−|ā|2θ̃)−α2+τ (ωu(|ā|))1+τ−C 2

1α
2ωu(|ā|)

}
.

Taking into account that ωu(|ā|) ≤ L̄|ā|ᾱ for some ᾱ small, we come back to the original es-
timates in case k > 1 and to the estimates given in (b.1) when k ∈ (0,1−τ), respectively (b.2)
when k ∈ (1−τ,1), where α is everywhere replaced with ᾱ. By similar arguments we obtain

E 1(|ā|) ≤ −L|ā|α−β
(
αC0 −o|ā|(1)

)
E 2(|ā|) ≤ −L|ā|α−2

(
αC0 −o|ā|(1)

)
.

This yields (4.17) for L sufficiently large, and therefore completes the C 0,α regularity result.

STEP 5.2. Lipschitz continuity. In the case β > 1, we establish the Lipschitz regularity of
solutions. Therefore, we consider the auxiliary function

ϕ(t ) =
{

L
(
t −%t 1+α)

, t ∈ [0, t0]
ϕ(t0), t > t0

where α ∈ (0,1) will be chosen small enough and t0 = α

√
1

ρ(1+α) . We remind that α is connected

to the aperture of the cone corresponding to η∼ |ā|2α. In order to estimate the difference of the
nonlocal terms, we apply Corollary 4.6.1, to the same choice of functions u(·, x2) and u(·, y2):

Ix1 [xε, pε
1,u]−Iy1 [yε, pε

1,u] ≤−L|aε
1|(1−β)+α(d1+2−β)

{
Θ(%,α,µ1)−o|aε

1|(1)
}
+O(1).

At this point, we fix ρ such that the constant Θ(%,α,µ) is positive. We then apply Lemma 4.7.4

with Z̃1 = Z
ε̄
2

1 , where this time

ε̄= |aε
1|ϕ′(|aε

1|) =
(
L|aε

1|−1 −Lρ(1+α)|aε
1|α−1)−1

.

Indeed, for t small enough, the function L(t − ρt 1+α) is concave and subsequently ω = 1−
ϕ′′(|aε

1|)ε̄> 1. Thus

trace(X ε
1 −Y ε

1 ) ≤ −8

ε̄

ω−1

ω+1
= 8ϕ′′(|aε

1|)
2−ϕ′′(|aε

1|)ε̄
.

Note that in this case ω−1
ω+1 depends on |aε

1|. However there exists a positive constant ω̄ such
that for |ā| small

8ϕ′′(|aε
1|)

2−ϕ′′(|aε
1|)ε̄

≤ 8ω̄ϕ′′(|aε
1|).

Thus, denoting by c0 = ρ(1+α), second order terms are bounded by

trace(X ε
1 −Y ε

1 ) ≤ −8c0ω̄
(
Lα|aε

1|α−1) .
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We plug these estimates into the inequality for E1. Letting ε go to zero and employing Lemma
4.3.1 we arrive as before to

limsup
ε→0

E1(xε
1, yε

1 ,u) ≤Λ0 E 1(|ā|)+Λ0 E 2(|ā|)+O(1),

where denoting by C0 =Θ(%,α,µ1) the terms E 1, E 2 are given by

E 1(|ā|) = −L|ā|(1−β)+α(d1+2−β) (C0 −o|ā|(1)
)+|ā|2θ

(
L|ā|−1(1−c0|ā|α

))
+ |ā|τ

(
L
(
1− c0|ā|α

))β+τ +C 1
1

(
L
(
1− c0|ā|α

))β
E 2(|ā|) = −8 c0 ω̄

(
Lα|ā|α−1

)
+|ā|2θ̃

(
L|ā|−1(1− c0|ā|α

))
+ |ā|τ

(
L
(
1− c0|ā|α

))2+τ + C 2
(
L
(
1− c0|ā|α

))2
.

Whenever α(d1 +3−β) < 2θ−2−β the second term in E 1 behaves like o
(|ā|(1−β)+α(d1+2−β)

)
.

Taking L|ā|(1−β)+α(d1+2−β) as a commune multiplier and using that 1−c0|ā|α ≤ 1 we have

E 1(|ā|) ≤ −L|ā|(1−β)+α(d1+2−β)
{

C0 −o|ā|(1)

−|ā|−α(d1+2−β)
(
L|ā|− c0L|ā|α+1

)β+τ−1

−C 1
1 |ā|−α(d1+2−β)

(
L|ā|− c0L|ā|α+1

)β−1}
≤ −L|ā|(1−β)+α(d1+2−β)

{
C0 −o|ā|(1)

−2|ā|−α(d1+2−β)
(
ϕ(|ā|)

)β+τ−1

−2C 1
1 |ā|−α(d1+2−β)

(
ϕ(|ā|)

)β−1}
.

On the other hand, similar techniques give us an estimate for E 2 :

E 2(|ā|) ≤ −L|ā|α−1
{

8c0αω̄−|ā|2θ̃|ā|−α

−|ā|−α
(
L|ā|− c0L|ā|α+1

)1+τ

−C 2
1 |ā|−α

(
L|ā|− c0L|ā|α+1

)}
≤ −L|ā|α−1

{
8c0αω̄−|ā|2θ̃|ā|−α

−2|ā|−α
(
ϕ(|ā|)

)1+τ

−2C 2
1 |ā|−α

(
ϕ(|ā|)

)}
.

When α is small enough we have |ā|2θ̃|ā|−α = o|ā|(1). Then

E 2(|ā|) ≤ −L|ā|α−1
{

C1 −o|ā|(1)−2|ā|−α
(
ϕ(|ā|)

)1+τ−2C 2
1 |ā|−α

(
ϕ(|ā|)

)}
.
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Since we have just seen that u is Hölder continuous for any α̃ ∈ (0,1), we have

ϕ(|ā|)|ā|−α̃ → 0, as L →∞.

Using this relation in the previous inequalities estimating E 1 and E 2 we get that, for L large
enough

E 1(|ā|) ≤ −L|ā|(1−β)+α(d1+2−β)
(
C0 −o|ā|(1)

)
E 2(|ā|) ≤ −L|ā|α−1

(
C0 −o|ā|(1)

)
.

Hence (4.17) holds and this further yields the desired contradiction.

Remark 4.3.3. When k = β = 1, the solution is α-Hölder continuous, with α small enough.
Unfortunately in this case we cannot characterize the Hölder exponent α.

Remark 4.3.4. When β< 1, if C 1
1 = 0 in (H1) and β(k +τ) > k, then the solution is exactly C 0,β.

Since the concave estimates for Lévy-Itô operators are of the same order as those for gen-
eral nonlocal operators, similar regularity results hold. Namely, we have the following.

Theorem 4.3.2 (Partial regularity for periodic, mixed PIDEs - Lévy-Itô operators). Let f be
continuous and periodic. Assume the nonlinearities Fi , i = 0,1,2 are degenerate elliptic and that

• F0 is Zd -periodic and satisfies assumptions (H0), (H2) with d̃ = d and some constant γ̃;
• F1 is Zd1 -periodic and satisfies (H1) with d̃ = d1, for some functions Λ1 , Λ2 and some

parameters Λ0, k ≥ 0, τ,θ, θ̃ ∈ (0,1];
• F2 is Zd2 -periodic and satisfies (H2), (H3) with d̃ = d2.

Let µ0, µ1 and µ2 be Lévy measures on Rd , Rd1 and Rd2 , respectively associated to the integro-
differential operators I [x,u], Jx1 [x,u] and Jx2 [x,u]. Suppose

• the jump function j 1(x1, z) satisfies assumptions (J1) - (J4), for some parameters β, Cµ1 ,

C̃µ1 , and γ ∈ (1−β/2,1], and in addition

{
k ≤β, β> 1
k <β, β≤ 1;

• the jump function j 2(x2, z) satisfies assumptions (J1), (J3) with γ= 1, and (J5), for some
parameters Cµ2 , C̃µ2 .

Then any bounded, continuous viscosity solution u of

F0(u(x),Du,D2u,I [x,u])+ (4.18)

F1(x1,Dx1 u,D2
x1x1

u,Jx1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u]) = f (x)

(a) is Lipschitz continuous in the x1 variable, if β> 1;

(b) is C 0,α continuous in the x1 variable with α< β−k
1−k , if β≤ 1.

The Lipschitz/ Hölder constant L depends on ||u||∞, the dimension of the space d, the constants
associated to the Lévy measures as well as the constants required by the growth condition (H1).



96 Chapter 4. Lipschitz Regularity Mixed PIDES

4.3.2 Global Regularity

It follows immediately from the previous results that as long as both nonlinearities F1 and F2

satisfy assumptions (H1)− (H3), the solution is global Lipschitz or Hölder continuous.

Corollary 4.3.1 (Global regularity for periodic, mixed PIDEs). Let the nonlinearities Fi , i =
0,1,2 be degenerate elliptic, continuous and periodic, f continuous and periodic. Assume the
following:

• F0 satisfies assumptions (H0), (H2) with d̃ = d and some constant γ̃> 0;
• Fi with i = 1,2 satisfy assumptions (H1)−(H3) with d̃ = di , for some functions Λ1

i , Λ2
i and

some constants ki ≥ 0, τi ∈ [0,1],θi , θ̃i ∈ (0,1].

Let µ0, µi , with i = 1,2 be Lévy measures on Rd , Rdi respectively associated to the integro-
differential operators I [x,u], Jxi [x,u] and suppose the corresponding jump functions j i (xi , zi )
satisfy assumptions (J1)− (J5) for some constants βi , Cµi , C̃µi , with γ= 1 in (J3). Then any peri-
odic continuous viscosity solution u of

F0(u(x),Du,D2u,I [x,u])+ (4.19)

F1(x1,Dx1 u,D2
x1x1

u,Jx1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u]) = f (x)

(a) is Lipschitz continuous, if βi > 1 and ki ≤βi for i = 1,2;

(b) is C 0,α continuous with α< min(β1−k1

1−k1
, β2−k2

1−k2
), if β≤ 1 and ki <βi for i = 1,2.

The Lipschitz/Hölder constant depends on ||u||∞, on the dimension of the space d and only on
the constants associated to the Lévy measures and on the constants required by the growth con-
dition (H1).

At first glance, the fact that (H1) and (H3) must hold simultaneously seems to exclude
a large class of nonlinear equations dealing with directional gradient or drift terms such as
|Dxi u|r or |b(xi )|Dxi u|k+τ, r,k > 0. Indeed, taking in the ellipticity growth condition (H1) l = l ′,
p = x−y

ε and θ̃ = θ we get

F (y,
x − y

ε
,Y , l )−F (x,

x − y

ε
, X , l ) ≤Λ(x)

(
tr(X −Y )+ |x − y |2θ

ε
+ |x − y |k+2τ

εk+τ + |x − y |r
εr

)
.

Hence (H3) would hold whenever k = r = 0, θ = 1. In this case (H1) and (H3) could be joined
together in assumption

(H) There exist two functions Λ1,Λ2 : Rd̃ → [0,∞) such that Λ1(x)+Λ1(x) ≥ Λ0 > 0 and for
each 0 < R <∞ there exists a modulus of continuity ωF (r ) → 0, as r → 0 such that for any
x, y ∈Rd̃ , p ∈Rd̃ , l ≤ l ′ and any ε> 0

F (y, p,Y , l ′)−F (x, p, X , l ) ≤

Λ1(x)(l − l ′)+Λ2(x)tr(X −Y )+ωF (|x − y |(1+|p|)+ |x − y |2
ε

)

if X ,Y ∈Sd̃ satisfy inequality (4.3) with Z = I − ω̄ẑ ⊗ ẑ, for z ∈Rd̃ and ω̄≥ 1.



4.4. Examples and Discussion on Assumptions 97

Nevertheless, one can argue under weaker growth assumptions, by a cut-off gradients ar-
gument for equations of the type:

F0(u(x),Du,D2u,I [x,u])+ (4.20)

F1(x1,Dx1 u,D2
x1x1

u,Jx1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u]) = f (x)

where Fi , for i = 1,2 satisfy assumptions (H1)− (H2) and F0 satisfies (H2) and (H0) with γ̃> 0.

Roughly speaking, one should look at the approximated equation with |Du| replaced by
|Du| ∧R, for R > 0 and remark that its solutions are Lipschitz continuous, with the Lipschitz
norm independent of R, thus the solution of the original problem is also Lipschitz continuous.
This is made precise by defining, for each i = 0,1,2 the following functions

F R
i (·, p, X , l ) =

{
Fi (·, p, X , l ), if |p| ≤ R
Fi (·,R p

|p| , X , l ), if |p| ≥ R.

Consider then the approximated problem

F R
0 (uR (x),DuR ,D2uR ,I [x,uR ])+ (4.21)

F R
1 (x1,Dx1 uR ,D2

x1x1
uR ,Jx1 [x,uR ])+F R

2 (x2,Dx2 uR ,D2
x2x2

uR ,Jx2 [x,uR ]) = f (x)

and remark that (H3) holds. Thus the approximated problem (4.21) has a Lipschitz/Hölder
viscosity solution, whose continuity constant depends on ||uR ||∞ the constants required by
the Lévy measures and those appearing in the ellipticity growth assumption (H1).

Let
M := |F1(0,0,0,0)|+ ||F1(x1,0,0,0)||∞+||F2(x2,0,0,0)||∞+|| f ||∞.

Since M(γ̃)−1 and −M(γ̃)−1 are respectively a supersolution and a subsolution of the approxi-
mated problem (4.21), by a comparison result between sub and super-solutions we have due
to (H0)

||uR ||∞ ≤ M

γ̃
.

Therefore, the Lipschitz constant of uR is independent of R. Observing that for R large enough
the solution uR of the approximated problem is as well a solution of the original, we conclude.

4.4 Examples and Discussion on Assumptions

4.4.1 Classical Nonlinearities

By Theorem 4.3.1 we extend the Hölder regularity result in [BCI11] to Lipschitz regularity when
the nonlocal exponent β > 1. As already presented in the introduction, this result applies for
equations that are strictly elliptic in a generalized sense: at each point, the nonlinearity is either
non degenerate in the second-order term, or is nondegenerate in the nonlocal term.
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4.4.1.1 Model Equation

A model equation for such nondegenerate equations is

− tr(A(x)D2u)− c(x)I [x,u]+b(x)|Du|k +|Du|r = 0 in Rd , (4.22)

where A and c are continuous functions, b ∈C 0,τ(Rd ), with 0 ≤ τ≤ 1, k,r,∈ (0,2+τ). I [x,u] is
a non-local term of type (4.4) or (4.5) of exponent β ∈ (0,2). We comment in the following the
ellipticity growth assumption (H1) and make precise the role of each term.

• One has to assume that equation (4.22) is strictly elliptic in the sense that

A(x) ≥Λ1(x)I and c(x) ≥Λ2(x) in Rd (4.23)

with
Λ1(x)+Λ2(x) ≥Λ0 > 0.

Thus the equation may be degenerate in the local or the nonlocal term as for all x ∈ Rd ,
A(x) ≥ 0 and c(x) ≥ 0. However, at each point either A(x) is a positive definite matrix
and the equation is strictly elliptic in the classical sense, or c(x) > 0 and I [x,u] satisfies
suitable nondegeneracy assumptions (that we discuss below) and the equation is strictly
elliptic with respect to the integro-differential term.

• A =σT σwithσ a bounded, uniformly continuous function which mapsRd into the space
of N ×p-matrices for some p ≤ N . It can be checked that

−(
tr(A(x)X )− tr(A(y)Y )

)≤ d
ω2
σ(|x − y |)

ε

for any X ,Y ∈Sd satisfying inequality (4.3).

• The nonlocal term can be writen as a general nonlocal operator

c(x)I [x,u] = c(x)
∫
Rd

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
µx (d z)

=
∫
Rd

(
u(x + z)−u(x)−Du(x) · z1B (z)

)
c(x)µx (d z)

where
(
µx

)
x is a family of Lévy measures, satisfying assumptions (M1)− (M3). When c :

Rd → R is γ-Hölder continuous the results for general nonlocal operators literally apply
for the new family of operators associated to the Lévy measures µ̃x = c(x)µx .

For a Lévy-Itô type operator, the nonlocal term can be writen as

c(x)I [x,u] = c(x)
∫
Rd

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
µ(d z)

=
∫
Rd

(
u(x + j (x, z))−u(x)−Du(x) · j (x, z)1B (z)

)
c(x)µ(d z)

where the jump function j (x, z) satisfies assumptions (J1)− (J5). In this case, the results
for general nonlocal operators do not apply ad-literam! Otherwise we could have con-
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sidered Lévy-Itô operators as a particular case of general integro-differential operators.
However, when c is γ-Hölder continuous, combining estimates arguments (see Section
§4.6) used for Lévy-Itô operators with those for general nonlocal operators, we arrive to
the same conclusion.

• b : Rd →R is a τ-Hölder continuous function, or just a bounded continuous function. The
growth conditions k,r on the gradient are related to the regularity of coefficients of b.

When β> 1, the solution is Lipschitz continuous for gradient terms b(x)|Du|k with nat-
ural growth k ≤β and b bounded. If in addition b is τ-Hölder continuous, then the solu-
tion remains Lipschitz for gradient terms with growth k ≤ τ+β. Similarly, the solution is
Lipschitz for any term gradient term |Du|r with r ≤β.

4.4.1.2 Advection Fractional Diffusion Equation

Several recent papers deal with the regularity of solutions for the advection fractional diffusion
equation

ut + (−∆x2 u)β/2 +b(x) ·Du = f .

One distinguishes three cases, according to the order of fractional diffusion. The case β <
1 is known as the supercritical case, since the fractional diffusion is of lower order than the
advection; conversely, β> 1 is the subcritical case. In between we have the critical value β= 1,
when the drift and the diffusion are of the same order.

As we shall see in the following section §4.5, the regularity results apply as well for parabolic
PIDEs and in the non-periodic setting. We obtain that the solution is Lipschitz continuous in
the subcritical case β > 1 with b bounded; hence the fractional diffusion is stronger than the
advection and prescribes the regularity of the solution. In the supercritical case β ≤ 1, the
solution is β Hölder continuous whenever b is C 1−β+τ, where τ> 0.

Recently, Silvestre obtained similar results by Harnack techniques [Sila]. In addition to our
results, he showed [Silb] that when β≥ 1 and the vector field b is C 1−β+τ the solution becomes
C 1,τ. Hölder regularity results were shown by Caffarelli and Vasseur [CV10] using De Giorgi’s
approach, for divergence free vector fields b belonging to the class BMO. A similar approach is
given by Kiselev and Nazarov in [KN10].

4.4.2 A Toy-Model for the Mixed Case

As discussed before, there is another interesting type of mixed ellipticity: at each point, the
nonlinearity is degenerate both in the second-order term, and in the nonlocal term, but the
combination of the local and the nonlocal diffusions renders the nonlinearity uniformly elliptic.
The simplest example of this kind of equations is given by

−∆x1 u + (−∆x2 u)β/2 = f (x1, x2)

where (−∆x2 u)β/2 denotes the fractional Laplacian with respect to the x2-variable

(−∆x2 u)β/2 =−
∫
Rd2

(
u(x1, x2 + z2)−u(x1, x2)−Dx2 u(x1, x2) · z21B (z2)

) d z2

|z2|d2+β .
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Figure 4.2: Local diffusions occur only in x1-directions and fractional diffusions in x2-directions.

It is clear that the equation is degenerate both with respect to the local and the nonlocal
term, as both the Laplacian and the fractional Laplacian are incomplete. Indeed, the direc-
tional classical Laplacian has all the eigenvalues corresponding to the x2 variable zero and
therefore the nonlinearity F is degenerate with respect to the second order term D2u. On the
other hand, the degeneracy with respect to the nonlocal term comes from the fact that

µ(d z2) = d z2

|z2|d2+β

could be viewed as the restriction of the fractional Laplacian to the subspace {z1 = 0}

ν(d z) = 1{z1=0}(d z1)µ(d z2).

Therefore, for a cone in the direction a orthogonal to x2 we have∫
C d

η,δ

|z|2ν(d z) =
∫
C

d2
η,δ

|z2|2µ(d z2) = 0

where C
d2

η,δ = {z2 ∈ B d2

δ
; (1−η)|z2||a| ≤ |a2 · z2|}. Thus, (M2) and (J2) fail.

Remark 4.4.1. If we try to argue directly in Rd and apply the regularity result as if we had only
one nonlinearity defined on the whole space, then the best result we can get is Hölder regularity
of the solution, except for the diagonal direction, i.e. for all ε ∈ (0,1] the following holds for all
α ∈ (0,ε)

u(x)−u(y) ≤C |x − y |α,∀x, y,∈Rd s.t. max
i=1,2

|xi − yi |
|x − y | ≥

√
1

2−ε
.

In addition, the further we go from the diagonal, the better the regularity of the solution is.

Let us check that when the gradient direction is the diagonal between x1 and x2 there is not
possible to retrieve Hölder continuity directly. For this purpose, consider X ,Y matrices satisfy-
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ing inequality (4.3), with Z = Dφ(a), where φ(z) = L|z|α. Let a = (a1, a2) = x̄− ȳ be the gradient
direction. The matrix inequality can be rewritten as follows

X z · z −Y z ′ · z ′ ≤ D2φ(a)(z − z ′) · (z − z ′). (4.24)

Estimate of the diffusion terms. Applying (4.24) to z =−z ′ = e1 = 1
|a1| (a1,0) and to z = z ′ = (e,0)

for any unit vector e orthogonal to e1 we obtain

tr
(
X1 −Y1

)≤ 4D2φ(a)e1 ·e1.

Therefore taking into account the expression for D2φ(a) =ϕ′(|a|) 1
|a| (I − â ⊗ â)+ϕ′′(|a|)â ⊗ â,

tr
(
X1 −Y1

)≤ 4
ϕ′(|a|)
|a| (1− |a1|2

|a|2 )+4ϕ′′(|a|) |a1|2
|a|2 .

Using that φ(z) = L|z|α with α ∈ (0,ε) and L > 0 the previous inequality reads

tr
(
X1 −Y1

)≤ 4Lα|a|α−2(1+ (α−2)
|a1|2
|a|2 ). (4.25)

This expression is negative only if
|a1|2
|a|2 > 1

2−ε
.

Hence, when the gradient direction is "closer“ to the x1-axis, the classical diffusion gains and
the regularity is driven by the classical Laplacian.

Estimate of the nonlocal terms. As already made precise, the ellipticity of the equation comes
in this case from the nondegeneracy assumption (M2) with respect to the Lévy measures. Ac-
cordingly, the estimate that renders the nonlocal difference negative comes from the evalua-
tion on the cone in the gradient direction. In view of (M2) we have by rough approximations,
for e2 = 1

|a2| (0, a2)

Ix2 [x̄,u]−Ix2 [ȳ ,u] ≤
∫
Cη,δ

sup
|s|<1

(
D2

a2a2
φ(a + s(0, z2))z2 · z2

)
µ(d z2)

=
∫
Cη,δ

sup
|s|<1

(
(1− η̃2)

ϕ′(|a + s(0, z2)|)
|a + s(0, z2)| + η̃2ϕ′′(|a + s(0, z2)|))|z2|2µ(d z)

. c
(
(1− η̃2)

ϕ′(|a|)
|a| (1− |a2|2

|a|2 )+ η̃2ϕ′′(|a|) |a2|2
|a|2

)
= cLα|a|α−2

(
1+ η̃2(α−2)

|a2|2
|a|2

)
.

This expression is negative only if
|a1|2
|a|2 > 1

η̃2(2−ε)
.

Similarly, when the gradient direction is "closer“ to the x2-axis, the fractional diffusion gains
and the regularity is driven by the (directional) fractional Laplacian.
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4.4.3 Mixed Integro-Differential Equations with First-Order Terms

Partial and global, Hölder and Lipschitz regularity results apply for a general class of mixed
integro-differential equations. As pointed out in the previous theorems, the three nonlineari-
ties must satisfy suitable strict ellipticity and growth conditions. The typical examples one can
solve under those assumptions can be summed up by the following equation

−a1(x1)∆x1 u−a2(x2)Ix2 [x,u]−I [x,u]+b1(x1)|Dx1 u1|k1+b2(x2)|Dx2 u|k2 +|Du|n +cu = f (x)

where for i = 1,2 ai (xi ) ≥ 0 and ai ∈C 0,γ(Rdi ), bi ∈C 0,τ(Rdi ) with 0 ≤ τ≤ 1, ki ∈ (0,2+τ), n ≥ 0
and c > 0. We have thus considered

F0(u(x),Du,D2u,I [x,u]) = −I [x,u]+|Du|n + cu

F1(x1,Dx1 u,D2
x1x1

u,Jx1 [x,u]) = −a1(x1)∆x1 u +b1(x1)|Dx1 u1|k1

F2(x2,Dx2 u,D2
x2x2

u,Jx2 [x,u]) = −a2(x2)Ix2 [x,u]+b2(x2)|Dx2 u|k2 .

Let us examine each of these terms and see the requirements they have to satisfy, in order to
ensure partial or global regularity of solutions. To fix ideas, suppose the nonlocal term Ix2 [x,u]
is an integro-differential operator of fractional exponent β ∈ (0,2).

In both situations, the nonlocal term I [x,u] can either be a general nonlocal operator
associated to some Lévy measure µ0, or a Lévy-Itô operator. We emphasize on the fact that the
associated Lévy measure has no x-dependency. This explains as well the lack of any coefficient
a0(x) in front of the nonlocal term I [x,u]. The gradient term |Du|n is allowed to have any
possible growth n ≥ 0.

As far as we are interested in partial regularity results, the constant c may be any real num-
ber, since we just need cu to be bounded. Yet, when combining the partial regularity results to
obtain global regularity, F1 and F2 are submitted to rather restrictive assumptions, due to the
uniqueness requirements. Thus, when b1 and b2 depend explicitly on x1, respectively x2 the
corresponding gradient terms are restrained to sublinear growth. To turn around this difficulty
and obtain regularity of solutions in superlinear cases, one can argue by approximation, trun-
cating the gradient terms and using Corollary 4.3.1 for obtaining uniform gradient bounds. To
perform this program, c must be positive: c > 0.

We first discuss the partial regularity of the solution with respect to each of its variables.
To this end, we need classical regularity assumptions in one set of variables, and uniqueness
type assumptions in the other variables.

• Partial regularity in x2-variable requires ellipticity of the equation in x2 direction:

a1(x1) ≥ 0 and a2(x2) > 0, ∀x1 ∈Rd1 , x2 ∈Rd2 .

To ensure the uniqueness argument in x1-variable, we must take a1(x) =σ1(x)2 with σ1

a Lipschitz continuous function.

The nonlocal term Ix2 [x,u] is either a general integro-differential operator or a Lévy-Itô
operator. To ensure nondegeneracy, (M1)− (M3), respectively (J1)− (J4) must hold.
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When β> 1, the solution is Lipschitz continuous in the x2 variable for directional gradi-
ent terms b2(x2)|Dx2 u|k2 having a natural growth k2 ≤β if b2 is bounded and directional
gradient terms b1(x1)|Dx1 u|k1 with linear growth k1 = 1 if b1 is Lipschitz (or sublinear
growth k1 < 1 if b1 ∈C 0,k1 (Rd1 )). If in addition b2 is τ-Hölder continuous, then the solu-
tion remains Lipschitz for gradient terms up to growth k2 ≤ τ+β.

When β≤ 1, the solution is α-Hölder continuous for any α< β−k2

1−k2
.

• Partial regularity in x1-variable requires nondegeneracy of the equation in x1 direction

a1(x1) > 0, ∀x1 ∈Rd1 .

In this case, in the x2 variable, we can only deal with nonlocal operators of Lévy-Itô type
Ix2 [x,u] = Jx2 [x,u], for which the jump function is Lipschitz continuous and satisfies
the structural conditions (J1), (J3) and (J5). The uniqueness constraint with respect to
x2 does not allow any x2-dependence of the Lévy-measure associated to the nonlocal
term, and hence a2(x2) should be a constant function. Then the solution is Lipschitz
in the x1 variable, for directional gradient terms b1(x1)|Dx1 u|k1 having a natural growth
k1 ≤ 2+τ with b1 ∈C 0,τ(Rd1 ), 0 ≤ τ≤ 1.

Once again, the uniqueness hypothesis forces directional gradient terms b2(x2)|Dx2 u|k2

to have growth k2 = 1 and b2 is Lipschitz continuous.

Global regularity holds under slightly weaker assumptions than the partial regularity. It follows
by interchanging the roles of x1 and x2.

Accordingly, the equation must be strongly elliptic both in the local and nonlocal term

a1(x1) > 0 and a2(x2) > 0 ∀x1 ∈Rd1 , x2 ∈Rd2 .

The nonlocal term Ix2 [x,u] is necessarily a Lévy-Itô operator, satisfying the nondegen-
eracy assumption (J2), as well as the rest of structural conditions (J1)− (J5).

a1(x1) =σ1(x1)2 > 0, with σ1 Lipschitz continuous and a2(x) ≡ a2 > 0 constant function.

Joining the partial Lipschitz regularity results, we get Lipschitz continuity of the solu-
tion whenever b1 and b2 are Lipschitz continuous for linear, directional gradient terms
b1(x1)|Dx1 u| and b2(x2)|Dx2 u|. The linear growth is constraint by the uniqueness argu-
ment.

However, looking at the approximated equations with |Du| replaced by |Du|∧R, for R > 0
and noting that the solutions are Lipschitz continuous, with the Lipschitz norm inde-
pendent of R when c > 0, we obtain Lipschitz continuous viscosity solutions for general
equations, dealing with gradient terms of growth k1 ≤ 2,k2 ≤ τ+β, when b2 ∈C 0,τ(Rd2 ).

Similarly, we get α-Hölder continuous solutions, for any α< β−k2

1−k2
≤ 1.
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4.5 Some Extensions of the Regularity Results

4.5.1 Non-periodic Setting

Theorem 4.5.1. Let f be continuous and periodic, the nonlinearities Fi , i = 0,1,2 be degenerate
elliptic, continuous and periodic, such that F0 satisfies (H0) and (H2) and that both Fi , for
i = 1,2 satisfy assumptions (H2) and (H1′), with d̃ = di , for some functions Λ1

i , Λ2
i and some

constants ki ≥ 0, τi ,θi , θ̃i ∈ (0,1], where

(H1′) There exist two functions Λ1,Λ2 : Rd̃ → [0,∞) such that Λ1(x)+Λ1(x) ≥ Λ0 > 0 and for
each 0 < R <∞ there exist some constants k ≥ 0, τ,θ, θ̃ ∈ (0,1] such that for any x, y ∈ Rd̃ ,
p, q ∈Rd̃ , |q | < R, l ≤ l ′ and any ε> 0

F (y, p,Y , l ′)−F (x, p+q , X , l ) ≤

Λ1(x)
(
(l − l ′)+ |x − y |2θ

ε
+|x − y |τ|p|k+τ+C 1|p|k)+

Λ2(x)
(
tr(X −Y )+ |x − y |2θ̃

ε
+|x − y |τ|p|2+τ+C 2|p|2)+O(K ,R)

if X ,Y ∈Sd̃ satisfy, inequality

−1

ε

[
I 0
0 I

]
≤

[
X 0
0 −Y

]
≤ 1

ε

[
Z −Z
−Z Z

]
+K

[
I 0
−0 0

]
,

for some Z = I − ω̄â ⊗ â, with â ∈Rd a unit vector;

Let µ0, µi , with i = 1,2 and j i (xi , zi ) satisfy assumptions (J1)− (J5) for some constants βi , Cµi ,
C̃µi , with γ= 1 in (J3). Then any bounded continuous viscosity solution u of (4.20) is

(a) locally Lipschitz continuous, if βi > 1 and ki ≤βi for i = 1,2, and

(b) locally C 0,α continuous with α< min(β1−k1

1−k1
, β2−k2

1−k2
), if β≤ 1 and ki <βi for i = 1,2.

The Lipschitz/Hölder constant depends on ||u||∞, on the dimension of the space d and only on
the constants associated to the Lévy measures and on the constants required by the growth con-
dition (H1).

Proof. The fact that the solution is not periodic anymore, requires a localization term when
measuring the shift of the solution. Thus, in order to prove the local continuity of the solution,
either if it refers to Hölder or Lipschitz, we need to show that for each x0 in the domain, there
exists a constant K , depending on x0, such that for a proper choice of α (both in the Hölder
in the Lipschitz case) there exists a constant L, depending on x0, large enough such that the
auxiliary function

ψ(x1, y1, x2) = u(x1, x2)−u(y1, x2)−Lϕ(|x1 − y1|)− K

2
|(x1, x2)− (x0

1 , x0
2)|2
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attains a nonpositive maximum. The proof is technically the same, except that here there will
be an additional contribution in the estimate of the nonlocal terms, coming from the localiza-
tion term. The point is to show that this contribution is of order O(K ).

4.5.2 Parabolic Integro-Differential Equations

The techniques developed herein apply literally to parabolic integro-differential equations.

Corollary 4.5.1. Let f , the nonlinearities Fi and the jump functions j i (xi , zi ) satisfy the as-
sumptions of Corollary 4.3.1. Then any x-periodic continuous viscosity solution u of

ut+F0(u(x),Du,D2u,I [x,u])+ (4.26)

F1(x1,Dx1 u,D2
x1x1

u,Ix1 [x,u])+F2(x2,Dx2 u,D2
x2x2

u,Ix2 [x,u]) = f (x).

(a) is Lipschitz continuous on [0,T ], if βi > 1 and ki ≤βi for i = 1,2;

(b) is C 0,α continuous on [0,T ], with α< min(β1−k1

1−k1
, β2−k2

1−k2
), if β≤ 1 and ki <βi for i = 1,2.

The Lipschitz/Hölder constant depends on ||u||∞, on the dimension of the space d and only on
the constants associated to the Lévy measures and on the constants required by the growth con-
dition (H1).

Proof. The key difference with the previous proof consists in considering the space-time aux-
iliary function

ψ(t , x1, y1, x2) = u(t , x1, x2)−u(t , y1, x2)−φ(x1 − y1)

and show that maxt ,x1,x2,y2 ψ(t , x1, y1, x2) < 0. By small space-time perturbations

ψε,ς(x, y, s, t ) = u(t , x1, x2)−u(s, y1, y2)−φ(x1 − y1)− |x2 − y2|2
ε2

− (t − s)2

ς2
,

this leads to considering in the nonlocal Jensen-Ishii’s lemma the parabolic sub and superjets

(r ε,ς, pε,ς, X ε,ς) ∈J 2,+
p (u(xε,ς))

(r ε,ς, pε,ς,Y ε,ς) ∈J 2,−
p (u(yε,ς))

with r ε,ς = 2 t−s
ς2 . Writing down the viscosity inequalities, note that the r ε,ς is the commune

term corresponding to the first order time-derivative, and hence it vanishes by subtraction.
Therefore, when passing to the limits in inequality (4.13), we can first let ς go to zero. The rest
of the proof is literally the same.

4.5.3 Bellman-Isaacs Equations

These results can be extended to fully nonlinear equations, that arise naturally in stochastic
control problems for jump-diffusion processes. The following Bellman-Isaacs type equation
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arises

sup
γ∈Γ

inf
δ∈∆

(
Fγ,δ

0 (...,J γ,δ[x,u])+Fγ,δ
1 (...,J γ,δ

x1
[x,u])+Fγ,δ

2 (...,J γ,δ
x2

[x,u])− f γ,δ(x)
)
= 0

where J γ,δ[x,u] is a family of Lévy-Itô operators associated with a common Lévy measure
µ0 and a family of jump functions jγ,δ

0 (x, z), respectively J
γ,δ
xi

[x,u] are families of Lévy-Itô

operators associated with the Lévy measures µi and the families of jump functions jγ,δ
i (xi , z),

for i = 1,2.

A typical (and practical) example is

Fγ,δ
0 = cu − 1

2
tr(Aγ,δ(x)D2u)−J γ,δ[x,u]−bγ,δ(x) ·Du

Fγ,δ
i = −1

2
tr(aγ,δ

i (xi )D2
xi xi

u)−J
γ,δ
xi

[x,u]−bγ,δ
i (x) ·Dxi u.

Similar techniques to the previous yield the Hölder and Lipschitz continuity of solutions of
Bellman-Isaacs equations, provided that the structure condition (H1) is uniformly satisfied by
Fγ,δ

i , for i = 1,2, as well as the assumptions (J1)−(J5) by the family of jump functions jγ,δ
i (xi , z).

In occurrence, the constants and functions appearing therein must be independent of γ and
δ. For the above example, it is sufficient that Aγ,δ(x), aγ,δ

i (x),bγ,δ
i (x), f γ,δ(x) are bounded in

W 1,∞, uniformly in γ and δ.

The proof is based on the classical inequality

sup
γ

inf
δ

(· · · )− sup
γ

inf
δ

(· · · ) ≤ sup
γ,δ

(· · ·− · · · ).

4.5.4 Multiple Nonlinearities

The problem can be easily generalized to multiple nonlinearities

F0(u(x),Du,D2u,I [x,u])+
∑
i∈I

Fi (xi ,Dxi u,D2
xi xi

u,Jxi [x,u]) = f (x). (4.27)

The proof can be resumed to the previous one, by grouping all the variables for which we em-
ploy uniqueness type arguments.

4.6 Estimates for Integro - Differential Operators

All these results are based on a series of estimates for the nonlocal terms, that me make precise
in the following. The reader not interested in technical details may skip this section.

4.6.1 General Nonlocal Operators

Proposition 4.6.1 (Concave estimates - general nonlocal operators). Assume condition (M1)
holds. Let u, v be two bounded functions and ϕ : [0,∞) → R be a smooth increasing concave
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function. Define
ψ(x, y) = u(x)− v(y)−ϕ(|x − y |)

and assume the maximum of ψ is positive and attained at (x̄, ȳ), with x̄ 6= ȳ . Let a = x̄ − ȳ , â =
a/|a|, p =ϕ′(|a|)â. Then the following holds

I [x̄, p,u]−I [ȳ , p, v] ≤ 2C̃µ max(||u||∞, ||v ||∞)+∫
Cη,δ

sup
|s|<1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz| + η̃2ϕ′′(|a + sz|))|z|2 µx̄ +µȳ

2
(d z)+

2ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z)+
∫

Bδ\Cη,δ

sup
|s|<1

ϕ′(|a + sz|)
|a + sz| |z|2|µx̄ −µȳ |(d z),

where
Cη,δ = {z ∈ Bδ; (1−η)|z||a| ≤ |a · z|}

and δ= |a|δ0 > 0, η̃= 1−η−δ0

1+δ0
> 0 with δ0 ∈ (0,1), η ∈ (0,1) small enough.

Remark 4.6.1. The aperture of the cone is given by η and changes accordingly to |a|. In order to
ensure Lipschitz continuity of solutions, η must be chosen to behave like a power of |a|, i.e. η∼
|a|α, and thus is diminishing as the modulus of the gradient approaches zero: lim|a|→0η(|a|) = 0.
Remark that as |a|→ 0, Cη,δ degenerates to the line whose direction is given by the gradient.

Proof. We split the domain of integration into three pieces and take the integrals on each of
these domains. Namely we part the ball of radius δ into the subset Cη,δ and its complementary,
with η= η(|a|) and δ= δ(|a|). Let

φ(z) =ϕ(|z|).

Then p = Dφ(a). We write thus the difference of the nonlocal terms, evaluated at the maximum
point (x̄, ȳ), as the sum

I [x̄, p,u]−I [ȳ , p, v] =T 1(x̄, ȳ)+T 2(x̄, ȳ)+T 3(x̄, ȳ)

where

T 1(x̄, ȳ) =
∫
|z|≥1

(
u(x̄ + z)−u(x̄)

)
µx̄ (d z)−

∫
|z|≥1

(
v(ȳ + z)− v(ȳ)

)
µȳ (d z)

T 2(x̄, ȳ) =
∫
Cη,δ

(
u(x̄ + z)−u(x̄)−p · z

)
µx̄ (d z)

−
∫
Cη,δ

(
v(ȳ + z)− v(ȳ)−p · z

)
µȳ (d z)

T 3(x̄, ȳ) =
∫

B\Cη,δ

(
u(x̄ + z)−u(x̄)−p · z

)
µx̄ (d z)

−
∫

B\Cη,δ

(
v(ȳ + z)− v(ȳ)−p · z

)
µȳ (d z).

In the following, we give estimates for each of these integral terms, that are based on the con-
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sequence of the maximum condition:

u(x̄ + z)−u(x̄)−p · z ≤ v(ȳ + z ′)− v(ȳ)−p · z +
φ(x̄ − ȳ + z − z ′)−φ(x̄ − ȳ)−Dφ(a) · (z − z ′). (4.28)

Lemma 4.6.1. T 1(x̄, ȳ) is uniformly bounded with respect to all the parameters. More precisely

T 1(x̄, ȳ) ≤ 2max(||u||∞, ||v ||∞) sup
x∈Rd

µx (Rd \ B).

Proof. Since the functions u and v are bounded, we immediately deduce that

T 1(x̄, ȳ) ≤ 2||u||∞
∫
|z|≥1

µx̄ (d z)+2||v ||∞
∫
|z|≥1

µȳ (d z).

We conclude by recalling that the measures µx are uniformly bounded away from the origin,
by assumption (M1).

Lemma 4.6.2. Let δ= |a|δ0 with δ0 ∈ (0,1) small, η be small enough such that 1−η−δ0 > 0 and

η̃= 1−η−δ0

1+δ0
.

Then the nonlocal term T 2 satisfies

T 2(x̄, ȳ) ≤ 1

2

∫
Cη,δ

sup
|s|<1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz| + η̃2ϕ′′(|a + sz|))|z|2(µx̄ +µȳ )(d z).

Remark 4.6.2. The previous notations have been introduced to simplify the form of the esti-
mates. It is important to note however that the coefficients appearing in the convex combination
of the derivatives of ϕ depend explicitly on η̃ and not on the aperture of the cone, given in terms
of η. We eventually set η ∼ |a|2α and δ0 ∼ |a|α, thus we expect to have η̃ ' 1. Consequently, the
second derivative of ϕ would dominate the nonlocal difference and would render T 2(x̄, ȳ) as
negative as possible.

Proof. Taking z ′ = 0, respectively z = 0 in inequality (4.28) we have

u(x̄ + z)−u(x̄)−p · z ≤ φ(a + z)−φ(a)−Dφ(a) · z

−(
v(ȳ + z ′)− v(ȳ)−p · z ′) ≤ φ(a − z ′)−φ(a)+Dφ(a) · z ′.

Therefore

T 2(x̄, ȳ) ≤
∫
Cη,δ

(
φ(a + z)−φ(a)−Dφ(a) · z

)
µx̄ (d z)

+
∫
Cη,δ

(
φ(a − z ′)−φ(a)+Dφ(a) · z ′)µȳ (d z).
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The integral terms corresponding to φ can be rewritten as∫ 1

0
(1− s)d s

∫
Cη,δ

(
D2φ(a + sz)z · z

)
µx̄ (d z)+∫ 0

−1
(1+ s)d s

∫
Cη,δ

(
D2φ(a − sz)z · z

)
µȳ (d z).

Remark that the first and second derivatives of φ(z) =ϕ(|z|) are given by the formulas

Dφ(z) = ϕ′(|z|)ẑ

D2φ(z) = ϕ′(|z|) 1

|z| (I − ẑ ⊗ ẑ)+ϕ′′(|z|)ẑ ⊗ ẑ,

and in particular

D2φ(a + sz)z · z = ϕ′(|a + sz|)
|a + sz|

(|z|2 −|á(a + sz) · z|2)+ϕ′′(|a + sz|)|á(a + sz) · z|2.

On the set Cη,δ we have the following upper and lower bounds

|(a + sz)| ≥ |a|− |s||z| ≥ |a|−δ= |a|(1−δ0)

|(a + sz)| ≤ |a|+ |s||z| ≤ |a|+δ= |a|(1+δ0) (4.29)

|(a + sz) · z| ≥ |a · z|− s|z|2 ≥ |a · z|−δ|z| ≥ (1−η−δ0)|z||a|.

Hence we deduce that for all s ∈ (−1,1)

|á(a + sz) · z| ≥ η̃|z|, with η̃= 1−η−δ0

1+δ0
.

Recalling that ϕ is increasing and concave, we get

D2φ(a + sz)z · z ≤ (1− η̃2)ϕ′(|a + sz|) 1

|a + sz| |z|
2 + η̃2ϕ′′(|a + sz|)|z|2.

This implies that the integral terms corresponding to φ are bounded by

1

2

∫
Cη,δ

sup
|s|<1

(
(1− η̃2)

ϕ′(|a + sz|)
|a + sz| + η̃2ϕ′′(|a + sz|))|z|2(µx̄ +µȳ )(d z).

Lemma 4.6.3. The following estimate holds

T 3(x̄, ȳ) ≤
∫

Bδ\Cη,δ

sup
|s|<1

ϕ′(|a + sz|)
|a + sz| |z|2|µx̄ −µȳ |(d z)+2ϕ′(|a|)

∫
B\Bδ

|z||µx̄ −µȳ |(d z).

Proof. When estimating the nonlocal term outside the cone, one has to keep it as small as
possible, though it remains positive. Therefore we consider, as for proving Hölder continuity
of solutions, the signed measure µ = µx̄ −µȳ . Consider its Jordan decomposition µ = µ+−µ−
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and denote by |µ| the corresponding total variation measure. Then, if K is the support of the
positive variation µ+, one can define the minimum of the two measures as

µ∗ = 1K µȳ + (1−1K )µx̄ .

But then, the measures µx̄ and µȳ can be rewritten as the

µx̄ =µ∗+µ+ and µȳ =µ∗+µ−.

With these notations in mind, we rewrite the nonlocal term T 3 as

T 3(x̄, ȳ) =
∫

B\Cη,δ

(u(x̄ + z)−u(x̄)−p · z − (v(ȳ + z)− v(ȳ)−p · z))µ∗(d z)+∫
B\Cη,δ

(u(x̄ + z)−u(x̄)−p · z)µ+(d z)−∫
B\Cη,δ

(v(ȳ + z)− v(ȳ)−p · z)µ−(d z).

Choosing successively z ′ = z, z ′ = 0 and z = 0 in (4.28) and noting that

u(x̄ + z)−u(x̄)−p · z ≤ v(ȳ + z ′)− v(ȳ)−p · z

we deduce that

T 3(x̄, ȳ) ≤
∫

B\Cη,δ

(
φ(a + z)−φ(a)−Dφ(a) · z

)
µ+(d z)

+
∫

B\Cη,δ

(
φ(a − z)−φ(a)+Dφ(a) · z

)
µ−(d z).

For estimating the integral terms corresponding to φ, we split the domain of integration into
B \ Bδ and Bδ \Cη,δ. On the first set, from the concavity and monotonicity of ϕ we have

φ(a + z)−φ(a)−Dφ(a) · z ≤ϕ(|a|+ |z|)−ϕ(|a|)−ϕ′(|a|)â · z ≤ 2ϕ′(|a|)|z|

whereas on Bδ \Cη,δ we use a second order Taylor expansion and we take into account that ϕ
is smooth, ϕ′ ≥ 0 and ϕ′′ ≤ 0 to obtain the upper bound

sup
|s|<1

(
φ(|a + sz|)−φ(|a|)−Dφ(a) · z

)≤ sup
|s|<1

D2φ(a + sz)z · z ≤ sup
|s|<1

ϕ′(|a + sz|)
|a + sz| |z|2.

Therefore we get the estimate

T 3(x̄, ȳ) ≤ 2ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z)+
∫

Bδ\Cη,δ

sup
|s|<1

ϕ′(|a + sz|)
|a + sz| |z|2|µx̄ −µȳ |(d z).

Form the three above lemmas, we obtain the final estimate for the nonlocal term.
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Corollary 4.6.1 (Lipschitz estimates). Let (M1)−(M3) hold, with β> 1. Under the assumptions
of Proposition 4.6.1 with

ϕ(t ) =
{

L
(
t −%t 1+α)

, t ∈ [0,θ]
ϕ(θ), t > θ

where α ∈
(
0,min( γ

d+1 , β−1
d+2−β )

)
, % is a positive large constant such that %α2α−1 > 1,

θ = max
t

(t −%t 1+α) = α

√
1

ρ(1+α)
and L > ||u||∞+||v ||∞

ϕ(θ)

the following holds: there exists a positive constant C = C (µ) such that for Θ(%,α,µ) =
C

(
ρα2α−1 −1

)
we have

I [x̄, p,u]−I [ȳ , p, v] ≤−L|a|(1−β)+α(d+2−β) {Θ(%,α,µ)−o|a|(1)
}+O(C̃µ).

Proof. Remark that |a| < θ. Indeed, since the maximum of ψ is positive we have, due to the
lower bound on L that

ϕ(|a|) < ||u||∞+||v ||∞
L

≤ϕ(θ)

which by the strict monotonicity of ϕ implies the desired inequality. We first evaluate the esti-
mate that renders the integral difference negative, namely:

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|))
= L sup

|s|<1

(
(1− η̃2)

1−%(1+α)|a + sz|α
|a + sz| − η̃2%α(1+α)|a + sz|α−1)

≤ sup
|s|<1

( 1− η̃2

|a + sz| −%(1+α)(1− η̃2 +αη̃2)|a + sz|α−1)
≤ L sup

|s|<1

( 1− η̃2

|a + sz| −%α|a + sz|α−1).

But this quantity has to be integrated over the cone Cη,δ, in which case |a + sz| satisfies

|a|(1−δ0) ≤ |a + sz| ≤ |a|(1+δ0).

Thus, observing that 1− η̃2 ≤ 2(1− η̃), the previous inequality takes the form

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|))
≤ L

( 2(1− η̃)

|a|(1−δ0)
−%α(1+δ0)α−1|a|α−1).

Let η̃ be of the form
1− η̃= |a|αη̃0
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with small η̃0 < 1
4 . Choose accordingly δ0 and η of the form

δ0 = c1|a|α1 η= c2|a|α2 .

Recalling that η̃= 1−δ0−η
1+δ0

and plugging in the previous, we get that c1,c2,α1 and α2 must satisfy

2c1|a|α1 −|a|αη̃0 = c1η̃0|a|α+α1 − c2|a|α2 .

Identifying the coefficients we obtain

δ0 = 1

2
|a|αη̃0, and η= 1

2
|a|2αη̃2

0.

Subsequently, this choice of parameters gives us

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|))≤−L
(
%α2α−1 −4η̃0

)|a|α−1

which leads to a negative upper bound of the integral term taken over the cone Cη,δ∫
Cη,δ

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|))|z|2µx̄ (d z)

≤−L
(
%α2α−1 −1

)|a|α−1
∫
Cη,δ

|z|2µx̄ (d z).

Let Θ% = %α2α−1 −1 > 0 and employ (M2) and the fact that δ= |a|δ0 to finally get∫
Cη,δ

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|))|z|2µx̄ (d z)

≤−LΘ%|a|α−1Cµη
d−1

2 δ2−β

=−LΘ%C 1
µ|a|α−1|a|α(d−1)|a|(1+α)(2−β).

Less technical estimates give similar upper bounds for the other two integrals. More precisely,
we have in view of assumption (M3)

ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z) ≤ LCµ|a|γδ1−β

= LC 2
µ|a|γ|a|(1+α)(1−β)

and ∫
Bδ\Cη,δ

sup
|s|<1

ϕ′(|a + sz|)
|a + sz| |z|2|µx̄ −µȳ |(d z) ≤ L

Cµ|a|γδ2−β

|a|(1−δ0)

≤ LC 3
µ|a|γ−1|a|(1+α)(2−β).
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For β> 1 and α> 0 such that γ>α(d+1) the difference of the nonlocal term becomes negative

I [x̄, p,u]−I [ȳ , p, v] ≤
≤−L|a|1−β

{
C 1
µΘ%|a|α(d+2−β) −C 2

µ|a|γ+α(1−β) −C 3
µ|a|γ+α(2−β)

}
+O(C̃µ)

=−L|a|(1−β)+α(d+2−β)
{

C 1
µΘ%−o|a|(1)

}
+O(C̃µ).

Corollary 4.6.2 (Hölder estimates). Let (M1)− (M3) hold, with β ∈ (0,2). Under the assump-
tions of Proposition 4.6.1 with

ϕ(t ) = Ltα,

where α ∈ (0,min(β,1)) and L is a large positive constant, the following holds: there exists a
positive constant C (α,µ) =αC (µ) such that

I [x̄, p,u]−I [ȳ , p, v] ≤−L|a|α−β {
C (α,µ)−o|a|(1)

}+O(C̃µ).

Proof. Estimating the integrand of the nonlocal difference T 2 we get

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|)
)

= Lα
(
1− (2−α)η̃2) sup

|s|<1

(|a + sz|α−2)
≤−Lα

(
(2−α)η̃2 −1

)
(1+δ0)α−2|a|α−2.

Choosing η and δ0 sufficiently small such that

(2−α)η̃2 = (2−α)

(
1−η−δ0

1+δ0

)2

> 1+ 1−α

2

we obtain a negative bound of the integral term over the cone Cη,δ, for δ= |a|δ0∫
Cη,δ

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|))|z|2µx̄ (d z)

≤−Lα
1−α

2
(1+δ0)α−2|a|α−2

∫
Cη,δ

|z|2µx̄ (d z)

≤−LC (α,µ)|a|α−β,

with C (α,µ) = αC 1
µ = α

(
Cµ2−3η

d−1
2 δ

2−β
0

)
. In addition, we have the estimates of the other two

integral terms, when β 6= 1

ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z) ≤ Lα|a|α−1Cµ|a|γδ1−β = LαC 2
µ|a|γ|a|α−β



114 Chapter 4. Lipschitz Regularity Mixed PIDES

with C 2
µ =Cµδ

1−β
0 , and for β= 1

ϕ′(|a|)
∫

B\Bδ

|z||µx̄ −µȳ |(d z) ≤ LαC 2
µ|a|γ| ln(|a|δ0)||a|α−β.

Similarly ∫
Bδ\Cη,δ

sup
|s|<1

ϕ′(|a + sz|)
|a + sz| |z|2|µx̄ −µȳ |(d z)

≤ Lα(|a|(1−δ0))α−2
∫

Bδ\Cη,δ

|z|2|µx̄ −µȳ |(d z) ≤ LαC 3
µ|a|γ|a|α−β

with C 3
µ = Cµδ

2−β
0 . Therefore the difference of the nonlocal term becomes negative, as

bounded from above by

I [x̄, p,u]−I [ȳ , p, v] ≤−L|a|α−β (
C (α,µ)−o|a|(1)

)
.

4.6.2 Lévy-Itô Operators

Proposition 4.6.2 (Concave estimates - Lévy-Itô operators). Assume conditions (J1) and (J3)
hold. Let u, v be two bounded functions, ϕ : [0,∞) →R be a smooth increasing concave function
and define

ψ(x, y) = u(x)− v(y)−ϕ(|x − y |).

Assume that ψ attains a positive maximum at (x̄, ȳ), with x̄ 6= ȳ . Let a = x̄ − ȳ , â = a/|a| and
p =ϕ′(|a|)â. Then the following holds

J [x̄, p,u]−J [ȳ , p, v] ≤ 2C̃µ max(||u||∞, ||v ||∞)+∫
C

sup
|s|<1

x=x̄,ȳ

((
(1− η̃2)

ϕ′(|a + s j (x, z)|)
|a + s j (x, z)| + η̃2ϕ′′(|a + s j (x, z)|))| j (x, z)|2

)
µ(d z)

2ϕ′(|a|)
∫

B\C
|∆(z)|≥δ

|∆(z)|µ(d z)+
∫

B\C
|∆(z)|≤δ

sup
|s|<1

ϕ′(|a + s(∆(z))|)
|a + s(∆(z))| |∆(z)|2µ(d z)

where ∆(z) = j (x̄, z)− j (ȳ , z),

C = {z; | j (
x̄ + ȳ

2
, z)| ≤ δ

2
and | j (

x̄ + ȳ

2
, z) · â| ≥ (1− η

2
)| j (

x̄ + ȳ

2
, z)|)}

( |a|
2

)γ ≤ c0

C0

η

4−η
, δ= |a|δ0 > 0, η̃= 1−η−δ0

1+δ0
> 0

with δ0 ∈ (0,1) and η ∈ (0,1) both sufficiently small.
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Figure 4.3: The middle cone Cδ/2,η/2
( x̄+ȳ

2

)⊂Cδ,η(x̄)∩Cδ,η(ȳ).

Proof. In this case, the difference of the nonlocal terms reads

J [x̄, p,u]−J [ȳ , p, v] =
∫
Rd∗

(
u(x̄ + j (x̄, z)−u(x̄)−p · j (x̄, z)1B (z))

)
µ(d z)−∫

Rd∗

(
v(ȳ + j (ȳ , z)− v(ȳ)−p · j (ȳ , z)1B (z))

)
µ(d z).

Similarly to general nonlocal operators we split the domain of integration into a cone C , its
complementary in the unit ball B \C and the region away from the origin Rd \ B . Remark that
the cone has the property

Cδ/2,η/2
( x̄ + ȳ

2

)⊂Cδ,η(x̄)∩Cδ,η(ȳ).

Indeed, for |a| sufficiently small, such that
( |a|

2

)γ ≤ c0
C0

, we have

| j (x̄, z)| ≤ | j (
x̄ + ȳ

2
, z)− j (x̄, z)|+ | j (

x̄ + ȳ

2
, z)|

≤ C0|z|
( |a|

2

)γ+ δ

2
≤ δ

2

C0

c0

( |a|
2

)γ+ δ

2
≤ δ.

At the same time, due to
( |a|

2

)γ ≤ c0
C0

η
4−η , we have

| j (x̄, z) · â| ≥ | j (
x̄ + ȳ

2
, z) · â|− | j (

x̄ + ȳ

2
, z)− j (x̄, z)|

≥ (1− η

2
)| j (

x̄ + ȳ

2
, z)|− | j (

x̄ + ȳ

2
, z)− j (x̄, z)|

≥ (1− η

2
)| j (x̄, z)|− (2− η

2
)| j (

x̄ + ȳ

2
, z)− j (x̄, z)|)

≥ (1− η

2
)| j (x̄, z)|− (2− η

2
)C0|z|

( |a|
2

)γ
≥ (1− η

2
)| j (x̄, z)|− (2− η

2
)
C0

c0
| j (x̄, z)|( |a|

2

)γ ≥ (1−η)| j (x̄, z)|.
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Let φ(z) =ϕ(|z|). Then p = Dφ(a). Accordingly, we write the previous difference as the sum

J [x̄, p,u]−J [ȳ , p, v] =T 1(x̄, ȳ)+T 2(x̄, ȳ)+T 3(x̄, ȳ),

where

T 1(x̄, ȳ) =
∫
|z|≥1

(
u(x̄ + j (x̄, z))−u(x̄)

)
µ(d z)

−
∫
|z|≥1

(
v(ȳ + j (ȳ , z))− v(ȳ)

)
µ(d z)

T 2(x̄, ȳ) =
∫
C

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)
µ(d z)

−
∫
C

(
v(ȳ + j (ȳ , z))− v(ȳ)−p · j (ȳ , z)

)
µ(d z)

T 3(x̄, ȳ) =
∫

B\C

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)
µ(d z)

−
∫

B\C

(
v(ȳ + j (ȳ , z))− v(ȳ)−p · j (ȳ , z)

)
µ(d z).

As before, we seek to estimate each of these integral terms.

Lemma 4.6.4. T 1(x̄, ȳ) is uniformly bounded with respect to all the parameters, namely

T 1(x̄, ȳ) ≤ 2max(||u||∞, ||v ||∞) sup
x∈Rd

µx (Rd \ B).

Lemma 4.6.5. Let δ= |a|δ0 and η small such that 1−η−δ0 ≥ 0. We have

T 2(x̄, ȳ) ≤
∫
C

sup
|s|<1,
x=x̄,ȳ

(
(1− η̃2)

ϕ′(|a + s j (x, z)|)
|a + s j (x, z)| + η̃2ϕ′′(|a + s j (x, z)|)| j (x, z)|2)(d z)

where η̃= (1−η−δ0)(1+δ0)−1.

Proof. Writing the maximum inequality at points x̄, ȳ for z ′ = 0 and z = j (x̄, z), respectively
z = 0, z ′ = j (ȳ , z) we have

u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z) ≤ φ(a + j (x̄, z))−φ(a)−Dφ(a) · j (x̄, z)

−(
v(ȳ + j (ȳ , z))− v(ȳ)−p · j (ȳ , z)

) ≤ φ(a − j (ȳ , z))−φ(a)+Dφ(a) · j (ȳ , z).

Therefore

T 2(x̄, ȳ) ≤
∫
C

(
φ(a + j (x̄, z))−φ(a)−Dφ(a) · j (x̄, z)

)
µ(d z)

+
∫
C

(
φ(a − j (ȳ , z))−φ(a)+Dφ(a) · j (ȳ , z)

)
µ(d z).

Taking into account that the set C is included in both Cη,δ(x̄) and Cη,δ(ȳ) we have the following
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upper and lower bounds for the jumps,

|a|(1+δ0) ≥ |(a + s j (x̄, z))| ≥ |a|(1−δ0)

| á(a + s j (x, z)) · z| ≥ η̃| j (x̄, z)|

and we obtain the conclusion in a similar manner as we did for general nonlocal operators.

Lemma 4.6.6. Denote by ∆(z) = j (x̄, z)− j (ȳ , z). Then

T 3(x̄, ȳ) ≤ 2ϕ′(|a|)
∫

B\C ; |∆(z)|≥δ
|∆(z)|µ(d z)+∫

B\C ; |∆(z)|≤δ
sup
|s|<1

ϕ′(|a + s∆(z)|)
|a + s∆(z)| |∆(z)|2µ(d z).

Proof. We use again the maximum conditions to obtain the bound(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)− (
v(ȳ + j (ȳ , z))− v(ȳ)−p · j (ȳ , z)

)≤
φ(a + j (x̄, z)− j (ȳ , z))−φ(a)−Dφ(a) · ( j (x̄, z)− j (ȳ , z)

which in particular implies

T 3(x̄, ȳ) ≤
∫

B\C

(
φ(a + j (x̄, z)− j (ȳ , z))−φ(a)−Dφ(a) · ( j (x̄, z)− j (ȳ , z))

)
µ(d z).

In order to estimate the integral terms corresponding to φ, we split the integral in two parts, as
follows ∫

B\C ; |∆(z)|≥δ
(
φ(a +∆(z))−φ(a)−Dφ(a) ·∆(z)

)
µ(d z)+∫

B\C ; |∆(z)|≤δ
(
φ(a +∆(z))−φ(a)−Dφ(a) ·∆(z)

)
µ(d z).

On the first set we use the concavity and monotonicity of ϕ and deduce that

φ(a +∆(z))−φ(a)−Dφ(a) ·∆(z) ≤ 2ϕ′(|a|)|∆(z)|.

On B \C ; |∆(z)| ≤ δ we use a second order Taylor expansion and we take into account that ϕ is
a smooth increasing function with ϕ′′ ≤ 0 to obtain the upper bound

sup
|s|<1

(
φ(|a + s∆(z)|)−φ(|a|)−Dφ(a) ·∆(z)

) ≤ sup
|s|<1

D2φ(a + s∆(z))∆(z) ·∆(z)

≤ sup
|s|<1

ϕ′(|a + s∆(z)|)
|a + s∆(z)| |∆(z)|2.

Therefore we get the desired estimate.
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Corollary 4.6.3 (Lipschitz estimates). Let β > 2(1−γ) and assume conditions (J1)− (J4) hold.
Under the assumptions of Proposition 4.6.2 with

ϕ(t ) =
{

L
(
t −%t 1+α)

, t ∈ [0,θ]
ϕ(θ), t > θ

where α ∈
(
0,min

(
γβ

d+1 , 2γ−2+β
d+2−β

))
, % is a large positive constant such that %α2α−1 > 1,

θ = α

√
1

ρ(1+α)
and L > ||u||∞+||v ||∞

ϕ(θ)

the following holds: there exists a positive constant C = C (µ) such that for Θ(%,α,µ) =
C

(
ρα2α−1 −1

)
we have

J [x̄, p,u]−J [ȳ , p, v] ≤−L|a|(1−β)+α(d+2−β) {Θ(%,α,µ)−o|a|(1)
}+O(C̃µ).

Remark 4.6.3. The condition β> 2(1−γ) connects the singularity of the measure with the reg-
ularity of the jumps. It basically states that the more singular the measure is, the less regular the
jumps can be.

Proof. We first evaluate, as for general nonlocal operators, the expression

sup
|s|≤1

(
(1− η̃2)ϕ′(|a + s j (x, z)|) 1

|a + s j (x, z)| + η̃2ϕ′′(|a + s j (x, z)|))
≤ L

( 2(1− η̃)

|a|(1−δ0)
−%α(1+δ0)α−1|a|α−1).

For η̃= 1−|a|αη̃0 with sufficiently small η̃0 < 1
4 , consider as before the constant Θ% = %α2α−1−

4η̃0 > 0. Then, using assumption (J2) we have∫
C

sup
|s|<1

(
(1− η̃2)ϕ′(|a + sz|) 1

|a + sz| + η̃2ϕ′′(|a + sz|))| j (x̄, z)|2µ(d z)

≤−LΘ%|a|α−1
∫
C
| j (x̄, z)|2µ(d z)

≤−LΘ(%,µ)|a|(1−β)+α(d+2−β).

Similarly, taking into account assumptions (J3)− (J4) and that δ= |a|δ0 ∼ |a|α+1 we obtain

ϕ′(|a|)
∫

B\C ; |∆(z)|≥δ
|∆(z)|µ(d z) ≤ LC0|a|γ

∫
B\C ; |z|≥δ|a|−γ

|z|µ(d z)

≤ LC 2
µ|a|γ|a|(1+α−γ)(1−β)

and ∫
B\C ; |∆(z)|≤δ

sup
|s|<1

ϕ′(|a + s∆(z)|)
|a + s∆(z)| |∆(z)|2µ(d z) ≤ L

|a|(1−δ0)

∫
B\C ; |∆(z)|≤δ

|∆(z)|2µ(d z)

≤ LC 3
µ|a|2γ−1.
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Since β> 2(1−γ), γβ>α(d +1) and 2γ−2+β>α(d +2−β) the difference of the nonlocal term
is negative, being bounded by

J [x̄, p,u]−J [ȳ , p, v]

≤−L|a|1−β
{
Θ(%,µ)|a|α(d+2−β) −C 2

µ|a|γ+(α−γ)(1−β) −C 3
µ|a|2γ−2+β

}
+O(C̃µ)

=−L|a|(1−β)+α(d+2−β) {Θ(%,µ)−o|a|(1)
}+O(C̃µ).

Corollary 4.6.4 (Hölder estimates). Let β > 2(1−γ) and assume conditions (J1)− (J4) hold.
Under the assumptions of Proposition 4.6.1 with

ϕ(t ) = Ltα,

where α ∈ (0,min(1,β)) and L is a positive large constant, the following holds: there exists a
positive constant C (α,µ) =αC (µ) such that

J [x̄, p,u]−J [ȳ , p, v] ≤−L|a|α−β {
C (α,µ)−o|a|(1)

}+O(C̃µ).

Proof. Similarly to general nonlocal operators, taking into account (J2) we have∫
C

sup
|s|≤1

(
(1− η̃2)ϕ′(|a + s j (x, z)|) 1

|a + s j (x, z)| + η̃2ϕ′′(|a + s j (x, z)|))| j (x̄, z)|2µ(d z)

≤−Lα(1−α)2α−3|a|α−2
∫
C
|z|2µ(d z)

≤−LC (α,µ)|a|α−β,

with C (α,µ) =α2−3C0η
d−1

2 δ
2−β
0 . In addition, we have the estimates

ϕ′(|a|)
∫

B\C ; |∆(z)|≥δ
|∆(z)|µ(d z) ≤ Lα|a|α−1C0|a|γ

∫
B\C ; |z|≥δ|a|−γ

|z|µ(d z)

≤ LαC 2
µ|a|α−β+γβ

with C 2(µ,δ0) =C0δ
1−β
0 if β 6= 1, respectively

ϕ′(|a|)
∫

B\C ; |∆(z)|≥δ
|∆(z)|µ(d z) ≤ LαC 2

µ|a|α−β|a|γ ln(|a|δ0)

for β= 1. Finally,∫
B\C ; |∆(z)|≤δ

sup
|s|<1

ϕ′(|a + s∆(z)|)
|a + s∆(z)| |∆(z)|2µ(d z)

≤ Lα(|a|(1−δ0))α−2
∫

B\C ; |∆(z)|≤δ
|∆(z)|2µ(d z)

≤ LαC 3
µ|a|2γ−2+β|a|α−β
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with C 3
µ = (1−δ0)α−2C 2

0Cµ. For α sufficiently small we have

J [x̄, p,u]−J [ȳ , p, v] ≤−L|a|α−β (
C (α,µ)−o|a|(1)

)
.

Proposition 4.6.3 (Quadratic estimates - Lévy-Itô operators). Let (J1) (J3) and (J4) hold. Let
u, v be two bounded functions and assume the auxiliary function

ψε(x, y) = u(x)− v(y)− |x − y |2
ε2

attains a positive maximum at (x̄, ȳ), with x̄ 6= ȳ . Denote by a = x̄− ȳ and by p = 2 x̄−ȳ
ε2 . Then the

following holds

J [x̄, p,u]−J [ȳ , p,u] ≤

2C 2
0

1

ε2

∫
Bδ

|z|2µ(d z)+C 2
0
|a|2γ
ε2

∫
|z|≥δ

|z|2µ(d z)+2C0
|a|1+γ
ε2

∫
|z|≥1

|z|µ(d z).

Proof. By definition, we have

u(x̄ + j (x̄, z))− v(ȳ + j (ȳ , z ′))− |x̄ + j (x̄, z)− ȳ − j (ȳ , z ′)|2
ε2 ≤ u(x̄)− v(ȳ)− |x̄ − ȳ |2

ε2 .

We split the difference of the integral terms into

J [x̄, p,u]−J [ȳ , p,u] =T 1
q (x̄, ȳ)+T 2

q (x̄, ȳ)+T 3
q (x̄, ȳ)

where this time the integrals are taken over the ball Bδ = B(0,δ), the circular crown B \ Bδ and
the exterior of the unit ball Rd \ B :

T 1
q (x̄, ȳ) =

∫
Bδ

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)
µ(d z)

−
∫

Bδ

(
v(ȳ + j (ȳ , z))− v(ȳ)−p · j (ȳ , z)

)
µ(d z)

T 2
q (x̄, ȳ) =

∫
B\Bδ

(
u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)

)
µ(d z)

−
∫

B\Bδ

(
v(ȳ + j (ȳ , z))− v(ȳ)−p · j (ȳ , z)

)
µ(d z)

T 3
q (x̄, ȳ) =

∫
|z|≥1

(
u(x̄ + j (x̄, z))−u(x̄)

)
µ(d z)

−
∫
|z|≥1

(
v(ȳ + j (ȳ , z))− v(ȳ)

)
µ(d z).

Lemma 4.6.7. The following estimate holds

T 1
q (x̄, ȳ) ≤ 2

ε2

∫
Bδ

| j (x̄, z)|2µ(d z).
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Proof. Taking in (4.6.2) z ′ = 0 and z = 0, we have respectively j (ȳ , z ′) = 0, j (x̄, z) = 0. Hence

u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z) ≤
|x̄ + j (x̄, z)− ȳ |2

ε2 − |x̄ − ȳ |2
ε2 −p · j (x̄, z) = | j (x̄, z)|2

ε2

−(
v(ȳ + j (ȳ , z ′))− v(ȳ)−p · j (ȳ , z ′)

)≤
|x̄ − ȳ − j (ȳ , z ′)|2

ε2 − |x̄ − ȳ |2
ε2 +p · j (ȳ , z ′) = | j (ȳ , z)|2

ε2 .

Integrating on Bδ we have

T 1
q (x̄, ȳ) ≤ 2

∫
Bδ

| j (x̄, z)|2
ε2 µ(d z).

Lemma 4.6.8. The following estimate holds

T 2
q (x̄, ȳ) ≤ 1

ε2

∫
B\Bδ

| j (x̄, z)− j (ȳ , z)|2µ(d z).

Proof. Taking z = z ′ in inequality (4.6.2) and subtracting the corresponding gradients we ob-
tain the inequality(

u(x̄ + j (x̄, z))−u(x̄)−p · j (x̄, z)
)− (

v(ȳ + j (ȳ , z))− v(ȳ)−p · j (ȳ , z)
)≤

|x̄ + j (x̄, z)− ȳ − j (ȳ , z)|2
ε2 − |x̄ − ȳ |2

ε2 −p · ( j (x̄, z)− j (ȳ , z)).

Integrating on the circular crown B \ Bδ and computing the quadratic form on the right hand
side, we get the estimate

T 2
q (x̄, ȳ) ≤

∫
B\Bδ

| j (x̄, z)− j (ȳ , z)|2
ε2 µ(d z).

Lemma 4.6.9. The following estimate holds

T 3
q (x̄, ȳ) ≤ 1

ε2

∫
|z|≥1

| j (x̄, z)− j (ȳ , z)|2µ(d z)+|p|
∫
|z|≥1

| j (x̄, z)− j (ȳ , z)|µ(d z).

Proof. Once again, for z = z ′ in inequality (4.6.2) we obtain the inequality(
u(x̄ + j (x̄, z))−u(x̄)

)− (
v(ȳ + j (ȳ , z))− v(ȳ)

)≤
|x̄ + j (x̄, z)− ȳ − j (ȳ , z)|2

ε2 − |x̄ − ȳ |2
ε2 .
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Integrating on Rd \ B and computing the right hand side we get

T 3
q (x̄, ȳ) ≤

∫
|z|≥1

(
p · ( j (x̄, z)− j (ȳ , z))+ | j (x̄, z)− j (ȳ , z)|2

ε2

)
µ(d z).

From the three above lemmas we deduce that

J [x̄, p,u]−J [ȳ , p,u] ≤ 2

ε2

∫
Bδ

| j (x̄, z)|2µ(d z)+
1

ε2

∫
|z|≥δ

| j (x̄, z)− j (ȳ , z)|2µ(d z)+

2
|a|
ε2

∫
|z|≥1

| j (x̄, z)− j (ȳ , z)|µ(d z).

Taking into account (J3) we further arrive to the estimate

J [x̄, p,u]−J [ȳ , p,u] ≤

2C 2
0

1

ε2

∫
Bδ

|z|2µ(d z)+C 2
0
|a|2γ
ε2

∫
|z|≥δ

|z|2µ(d z)+2C0
|a|1+γ
ε2

∫
|z|≥1

|z|µ(d z).

4.7 Appendix

Lemma 4.7.1. Let X , Y and Z be block matrices of the form

X =
[

X1 0
0 X2

]

such that they satisfy the inequality[
X 0
0 −Y

]
≤

[
Z −Z
−Z Z

]
(4.30)

Then the block matrices Xi , Yi satisfy inequality (4.30) with Zi , for i = 1,2.

Proof. The previous matrix inequality can be rewritten in the form

X z · z −Y z ′ · z ′ ≤ Z (z − z ′) · (z − z ′).

Due to the form of the block matrices, namely the secondary diagonal null, we can write the
inequality on components, for z = (z1, z2), z ′ = (z ′

1, z ′
2)∑

i=1,2

(
Xi zi · zi −Yi z ′

i · z ′
i

)≤ ∑
i=1,2

(
Zi (zi − z ′

i ) · (zi − z ′
i )

)
.
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Thus, taking z = (z1,0) and z ′ = (z ′
1,0), respectively z = (0, z2) and z ′ = (0, z ′

2) we get the corre-
sponding inequality for the block matrices Xi ,Yi , Zi .

Lemma 4.7.2. Let X , Y and Z be symmetric matrices satisfying inequality (4.30). Consider the
sup and inf convolutions, defined by

X εz · z = sup
ξ∈Rd

{
X ξ ·ξ− |z −ξ|2

ε

}
and Yεz · z = inf

ξ∈Rd

{
Y ξ ·ξ+ |z −ξ|2

ε

}
.

Then X ε, Yε and Z ε satisfy aswell inequality (4.30). In addition we have

− 1

ε
I , X ≤ X ε and Yε ≤ Y ,

1

ε
I . (4.31)

Proof. Evaluating (4.30) at (ξ,−ξ) and using the triangular inequality we have(
X ξ ·ξ− |z −ξ|2

ε

)
−

(
Y ξ ·ξ+ |z ′+ξ|2

ε

)
≤ 4Zξ ·ξ− |z − z ′−2ξ|2

ε
.

Taking the supremum over all ξ we get that

sup
ξ

(
X ξ ·ξ− |z −ξ|2

ε

)
− inf

ξ

(
Y ξ ·ξ+ |z ′−ξ|2

ε

)
≤ sup

ξ

(
Zξ ·ξ− |z − z ′−ξ|2

ε

)
that is exactly

X εz · z −Yεz ′ · z ′ ≤ Z ε(z − z ′) · (z − z ′).

Moreover, considering the particular values ξ = 0, respectively ξ = z we have from the defini-
tion of sup and inf matrix convolutions the desired inequalities.

Lemma 4.7.3. Let Z = 1
α (I −ωâ⊗ â), where â ∈Sd−1, α> 0 and ω≥ 0. Then the following holds

Z
α
2 = 2

α

(
I − 2ω

1+ω
â ⊗ â

)
. (4.32)

Proof. By definition

Z
α
2 z · z = sup

ξ

{
Zξ ·ξ−2

|z −ξ|2
α

}
and the supremum is attained at points ξ̄ satisfying Z ξ̄= 2

α (ξ̄− z), or equivalently

(I −ωâ ⊗ â)ξ̄= 2(ξ̄− z).

Taking the inner product with â in this identity, we have

ξ̄ · â = 2

1+ω
z · â.
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Taking now the inner product with z in the same identity, we have

ξ̄ · z = 2|z|2 −ω(z · â)(ξ̄ · â) = 2|z|2 − 2ω

1+ω
(z · â)2.

Therefore

Z
α
2 z · z = 2

α

(
(ξ̄− z) · ξ̄−|z − ξ̄|2)

= 2

α

(
(ξ̄− z) · z

)
= 2

α

(
|z|2 − 2ω

1+ω
(z · â)2

)
.

Lemma 4.7.4. Let X ,Y , Z satisfy the block inequality (4.30), with Z
α
2 given by equation (4.32),

for some ω≥ 1. Then the following holds:

tr(X −Y ) ≤− 8(ω−1)

α(1+ω)
.

Proof. Rewrite the matrix inequality in the form

X z · z −Y z ′ · z ′ ≤ Z
α
2 (z − z ′) · (z − z ′).

Taking z =−z ′ = â we have
X â · â −Y â · â ≤ 4Z

α
2 â · â

whereas for any vector z orthogonal to â

X z · z −Y z · z ≤ 0.

Therefore

trace(X −Y ) ≤ 8

α

(
|a|2 − 2ω

1+ω
|a|2

)
=− 8(ω−1)

α(ω+1)
.

4.8 Conclusion

We established in this chapter Lipschitz and Hölder regularity results for viscosity solutions
of integro-differential equations within a new framework, of mixed integro-differential equa-
tions. In particular, for directional Lévy-Itô operators of fractional exponent β, we showed that
the solution is Lipschitz continuous in the subcritical case β> 1 and Hölder continuous in the
critical and supercritical case β ≤ 1. The Lipschitz continuity for the critical case β = 1 is left
open and we would like to investigate it in near future.
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At the same time, we would like to consider the Harnack ABP approach for mixed integro-
differential equations and inquire regularity of solutions for equations with bounded, measur-
able coefficients.

Last but not least, this work was motivated by the study of long time behavior of periodic
viscosity solutions for integro-differential equations, that we are considering for the moment
in a companion paper.





Part II

Image Restoration and Visualization by
Curvature Motions





CHAPTER 5

Curves and Curvatures.
State of the art

A youth who had begun to read geometry with Euclid, when he had learnt the first proposition,

inquired, "What do I get by learning these things?" So Euclid called a slave and said "Give him

three pence, since he must make a gain out of what he learns."

Euclid of Alexandria (325-265 B.C.E)

Abstract: This chapter presents a review, analysis and comparison of numerical methods
implementing the curvature motion and the affine curvature motion for 2D images, shapes,
and curves. These curvature scale spaces lead, in principle, to a multiscale curvature estimator
in digital images. 1

Résumé : Ce chapitre présente une analyse et comparaison de méthodes numériques associés
à l’équation par courbure moyenne et sa variante affine, à la fois pour les images, pour les
ensembles et pour les courbes. Ces espaces échelles permettent a priori de faire des estimations
des courbures dans les images.

Keywords: curvature scale space, mean curvature motion, affine curvature motion, curve
shortening, affine shortening, level lines, topographic maps, finite difference scheme, stack
filter

1This chapter is a brief State of the Art on Curvature Motions and corresponding Algorithms.
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5.1 Introduction

Attneave’s founding 1954 paper [Att54] on image perception anticipated the numerical anal-
ysis of digital pictures. He argued on neurological grounds that the human brain could not
possible use all the information provided by states of simulation. But actually, the brain reg-
isters regions where color changes abruptly (contours), and furthermore angles and peaks of
curvature.

As mentioned in the introduction, our final goal is to implement this idea and show that
computers can register the same information as the human brain, with the hope that further
post-processing algorithms can take advantage of it. We show in Chapter 7 how curvatures
can be accurately estimated by a direct computation on level lines, after their independent
smoothing (as illustrated in Fig. 5.1).

Figure 5.1: Attneave’s figure illustrating the prominent role of curvature peaks in image perception and
its curvature map computed by level lines shortening.

At present, because of noise and aliasing artifacts (as illustrated in Fig. 7.27), the direct
computation of curvatures on a raw image is impossible This explains why, in one of the first
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Figure 5.2: Top: Piece of map with roads, its corresponding level lines and non-filtered curvature map.
Bottom: smoothed image, by affine curvature, smoothed level lines and curvature map after filtering.

serious attempts to cope with this numerical challenge, Asada and Brady [AB86] introduced
the concept of multiscale curvature. They suggested to approximate contours by splines and to
smooth them by a 1D heat equation. Their explicit goal was to implement Attneave’s idea that
shapes must be represented by curvature extrema. This paper led to increasingly sophisticated
attempts to analyze planar shapes by their curvatures. A first difficulty is that, at fine scale,
contours have high curvatures everywhere. Another problematic issue is the extraction of the
contours on which the curvature could be computed. Contours obtained by “edge detection”
are broken and plagued with spurious branches, which hinder the computation of any reliable
curvature.

Clarifying the subject has required a fairly elaborate series of mathematical contributions.
Grayson [Gra87] proved that the intrinsic heat equation smooths Jordan curves and preserves
their topology. The Osher-Sethian level set method [OS88] implements the motion by mean
curvature of an embedded manifold by applying the mean curvature PDE to its signed distance
function. Chen-Giga-Goto [CGG91] and Evans-Spruck [ES91] elaborated a viscosity solution
theory for the scalar mean curvature motion. A mathematical link between the median filter
and the motion by mean curvature was conjectured by Merriman, Bence and Osher [MBO92]
and later proved by several authors [BG95], [Eva93], [Ish95].

In parallel, Mackworth and Moktharian [MM86] proposed a fast numerical scheme to
smooth a curve by the intrinsic heat equation. But their shape extraction algorithm was un-
convincing. Caselles et al. realized the potential of using directly the image level lines instead
of its edges. They proposed to perform contrast invariant image analysis directly on the set
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of level lines, or topographic map [CCM96]. A fast algorithm computing the topographic map
was developed by Monasse and Guichard in [MG98].

Sapiro and Tannenbaum [ST93a] discovered the affine curve shortening and Alvarez et al.
[AGLM93] the affine invariant and contrast invariant image smoothing. A remarkably fast and
simple geometric algorithm for affine shortening was given by Moisan in [Moi98].

The work developed in the following chapters builds on the above mentioned contribu-
tions and describes a complete image processing numerical chain starting from a digital image
and ending with an accurate computation and visualization tool of its curvatures and curva-
ture evolutions. It, hopefully, advances Attneave’s program and yields what we shall term an
image curvature microscope.

The present chapter starts with a review of the main classes of curvature algorithms, fo-
cusing on isotropic curvature equations and on the two curvature powers that are relevant for
image analysis, namely 1 and 1/3. There are several definitions of curvature and of multiscale
curvature, and we shall detail them before entering into the discussion of how to compute
them. The next two sections review and compare the various types of numerical analysis for
curvature motion, and clarify the links between them.

5.2 Curvature Scale Spaces

5.2.1 Curvatures

Digital images are given in discrete sampled forms on a rectangle Ω but the underlying contin-
uous substratum is assumed to be C∞ and interpolated as such on Ω. By Sard’s theorem and
by the implicit function theorem for almost every level λ, the iso-level set u(−1)(λ) is a finite
union of disjoint smooth Jordan curves. These Jordan curves are called the level lines of u and
coincide with the topological boundaries of upper and lower level sets.

Assume in the following that u is at least C 2 in a neighborhood of a point x0 ∈Ω and that its
gradient is not null, Du(x0) 6= 0. Then the scalar curvature of u at x0, denoted by curv(u)(x0), is
the real number defined by

curv(u)(x0) =
uxx u2

y −2ux y ux uy +uy y u2
x

(u2
x +u2

y )3/2
(x0). (5.1)

This scalar curvature at x0 is linked to the vectorial curvature of the level line passing by x0. The
vectorial curvature of a C 2 curve x(s) parameterized by a length parameter s (so that |x′(s)| = 1)
is defined by

κ(x) := x′′(s).

The link between the vectorial curvature of an image level line κ(x) and the scalar curvature
curv(u)(x) at nonsingular points is given by the next formula. Denote by x = x(s) the level line
of u passing by x0. Then

κ(x0) =−curv(u)(x0).
Du

|Du| (x0). (5.2)

This relation already suggests that the curvature can be computed in two quite different
ways: either as the curvature of a level line extracted from the image and parameterized by
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Figure 5.3: Curve evolution by Curve Shortening, or the intrinsic heat equation. By this (nonlinear)
evolution a curve instantly becomes smooth and shrinks asymptotically to a circle.

length, or as a 2D differential operator. In both cases, a previous smoothing (of the level line,
of the level sets) is necessary, which introduces a new parameter, the smoothing scale. Hence
the notion of curvature scale space which will be associated with curve or image evolutions.

5.2.2 Curve Evolutions

5.2.2.1 Curve Shortening

Curve smoothing by the heat equation was one of the first versions of curve analysis proposed
by Mackworth and Mokhtarian in [MM86]. Smoothing a curve by separately smoothing the
coordinate functions seems reasonable, yet the evolved curve may develop self-crossings and
singularities. This model error was corrected in [MM92] by the same authors. Instead of apply-
ing the heat equation for relatively long times, they proposed an evolution by Curve Shortening
(also called intrinsic heat equation)

∂x

∂t
= κ(x). (CS)

By this (nonlinear) evolution a curve instantly becomes smooth, shrinks asymptotically to
a circle and develops no singularities or self-crossings. The proofs of these properties were
given by Gage and Hamilton for convex Jordan curves [GH86] and later extended to embedded
curves by Grayson [Gra87].

Theorem 5.2.1 (Grayson, ’87). Let x0 be a C 2 Jordan curve. By using the intrinsic heat equation,
it is possible to evolve x0 into a family of Jordan curves x(t , s) such that x(0, s) = x0(s) and such
that for every t > 0, x(t , s) is C∞ (actually analytical) and satisfies the equation (CS). Further-
more, for every t > 0, x(t , s) has only a finite number of inflection points and curvature extrema,
and the number of these points does not increase with t . For every initial curve, there is a scale
t0 such that the curve x(t , s) is convex for t ≥ t0 and there is a scale t1 such that the curve x(t , s)
is a single point for t ≥ t1.
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5.2.2.2 Affine Shortening.

The Affine Shortening equation (AS)

∂x

∂t
= |κ|− 2

3 κ(x)

is a surprising variant of curve shortening introduced by Sapiro and Tannenbaum in [ST93a],
[ST93b]. Angenent, Sapiro and Tannenbaum [ST94] gave the existence and uniqueness proofs
for affine shortening and showed a result similar to Grayson’s theorem.

Theorem 5.2.2 (Angenent, Sapiro, Tannenbaum, ’94). Let x0 be a C 2 Jordan curve. Then there
is a unique classical solution x(t ) of (AS). The curve eventually becomes convex and thereafter
evolves towards an ellipse before collapsing.

In computer vision the above equations are referred to as curve scale spaces or shape scale
spaces. The term designates any process that smooths a Jordan curve and depends on a real
parameter t , the scale. A shape scale space associates with an initial Jordan curve x(0, s) = x0(s)
a family of smooth curves x(t , s). Curve shortening and affine shortening eliminate spuri-
ous details of the initial shape and retain simpler, more reliable versions of the shape. These
smoothed shapes have finite codes in the sense of Attneave, since they have finitely many
curvature extrema. A scale space is causal in the terminology of vision theory if it does not
introduce new features. (New feature here means: a new extremum for some image differen-
tial operator). Thus, curve shortening and affine curve shortening define causal scale spaces.
Indeed, the number of curvature extrema and inflexion points decreases by their application.

5.2.3 Image Evolutions

Alvarez et al. [AGLM93] characterized axiomatically all image multiscale theories, and gave
explicit formulae for the partial differential equations generated by scale spaces. They showed
that causal, local scale spaces are governed by PDEs and that under sound stability conditions
for the scale space, the PDE’s have unique viscosity solutions. In particular all causal, local,
isometric and contrast invariant scale spaces are given by curvature evolution equations:

∂u

∂t
= |Du|G(curv(u), t ).

5.2.3.1 Mean Curvature Motion

The simplest equation in this class for which existence and uniqueness of viscosity solutions
can be proved [CGG91],[ES91] is the mean curvature equation

∂u

∂t
= |Du|curv(u) (MCM)

We refer to the ‘user’s guide’ of Crandall, Ishii and Lions [CIL92] for further details about vis-
cosity solutions. In this setting, the initial curve Σ0 is considered as the zero level set of some
function u0 and its evolution is defined as the zero level set of the evolved function

Σt = {x;u(x, t ) = 0},
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Figure 5.4: From left to right we display the original image and its evolution by mean curvature motion.
In this case, MCM restorates homogeneous parts, acting as a grain filter: small damaged areas vanish
by short time smoothing.

shown to be purely geometrical.

Theorem 5.2.3 (Chen-Giga-Goto ’91, Evans-Spruck ’91). Let u0 ∈ BUC (Ω). Then there exists a
unique viscosity solution in BUC (Ω× [0,∞)) of the mean curvature equation with initial data
u0. In addition, the iso-level set Σt does not depend upon the particular choice of the initial
function u0.

5.2.3.2 Affine Curvature Motion

Planar shape recognition algorithms should ideally be projective invariant, namely invariant
to all planar homographies. The affine curvature evolution

∂u

∂t
= |Du|curv(u)1/3 (ACM)

has a more restrictive form of projective invariance: it commutes with all planar affine maps
with determinant 1. It is therefore preferable to the scalar curvature motion, and is definitely
the most invariant image smoothing algorithm ever. Like the curvature motion, it is invariant
to any continuous increasing contrast change u → g (u).

5.2.4 Connection

A consequence of the contrast invariance for both mentioned equations is that, at least for-
mally, an image evolves by scalar mean curvature motion (resp. affine curvature motion) if
and only if its level lines evolve by curvature shortening (resp. affine shortening). This fact can
be checked by elementary differential calculus under the assumption that the scalar solution
u(t ,x) is smooth. Yet, precisely, the curvature evolution does not yield a C 2 function in time
and space. Thus, the above equivalence is a bit trickier and is proved in Chapter 6.
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5.3 Curvature algorithms

All sound shape smoothing algorithms in the computer vision literature perform curve short-
ening or affine curve shortening. But the numerical variety of the underlying numerical algo-
rithms is worth noticing. This section discusses their history, implementation, advantages and
drawbacks. There are three kinds of initial data for the algorithm: digital curves, digital sets, or
digital images. We shall examine each in turn.

5.3.1 Algorithms on Curves

5.3.1.1 Discrete Curve Shortening or Dynamic Curve Evolution

As mentioned before, Mackworth and Mokhtarian proposed [MM92] an algorithm consistent
with curve shortening (CS). Instead of applying the linear heat equation for relatively long
times, it applies to a plane curve the non-linear heat equation, by successively convolving the
arc length parameterization x(·, t ) at time n with a Gaussian kernel Gh of standard deviation
proportional to h

1
2 . The consistency of Algorithm 1 with (CS) is given by Theorem 5.3.1.

Algorithm 1: Discrete Curve Shortening (CS)

Input: Polygon Σ0, gaussian signal G
Output: Evolved polygon Σn , after n iterations
for all i = 0,n do1

sample uniformly curve Σi ;2

convolve curve Σi with G .3

Theorem 5.3.1. Let x be a C 2 curve parameterized by its length parameter s ∈ [0,L]. Then

Gh ∗x(s)−x(s) = chκ(x(s))+o(h). (5.3)

where c is a positive constant.

5.3.1.2 Affine Plane Curve Evolution

Several attempts to define an affine-invariant analysis for polygons are described by Sapiro,
Cohen and Bruckstein in [SCB97]. The 1/3 power law of planar motion perception and gener-
ation was related to affine invariance by Pollick and Sapiro in [PS97].

Moisan [Moi98] discovered an extremely fast and fully affine invariant geometric curve
evolution consistent with affine shortening, which we summarize below. In the mathematical
morphology terminology, this algorithm is an alternate filter, alternating an affine erosion and
an affine dilation.

The consistency of Algorithm 3 with affine shortening (AS) is given in Theorem 5.3.2.

Theorem 5.3.2. Let x be a C 2 curve parameterized by its length parameter s ∈ [0,L] and σ> 0. To
each point of x(s), we associate xσ(s), defined as the middle point of the chord (x(s−δ),x(s+δ)),
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Algorithm 2: Discrete Affine Shortening (AS)

Input: Polygon Σ0,
Output: Evolved polygon Σσ, at scale σ2/3

break the curve into convex and concave parts ;1

for every convex/concave component do2

replace each component by the sequence of the middle points of each σ-chord such3

that one endpoint is a vertex of the polygonal curve;

concatenate the pieces of curves previously obtained.4

where δ> 0 is chosen in order that the area of the region enclosed by this chord and the piece of
curve x|(s−δ,s+δ) be equal to δ. Then

xσ(s)−x(s) = cσ2/3|κ(x)|−2/3κ(x)+o(σ2/3) as σ→ 0

where c is a positive constant.

Lisani and al. [LMMM00] and later Musé and al. [MSC+06] have used the affine curve
evolution scheme for shape recognition and image comparison algorithms. We have limited
ourselves to numerical schemes that are extremely fast, being linear or, in the case of Moisan’s
scheme, super-linear in time and unconditionally stable.

5.3.1.3 Backward Euler Method for Nonlinear Diffusions

There is, however, a rich literature on numerical schemes for anisotropic curvature motions
occurring (e.g.) in crystalline formation. These motions can depend on other powers of
the curvature than the relevant ones for image processing (1 and 1/3) and have a spatial
anisotropy.

Mikula and Ševčovič have given theoretical and numerical methods for such more general
curvature motions [MŠ99], [MŠ01]. They use implicit methods for curve evolution, which are
very accurate but too slow to be performed on all image level lines. Their schemes are able to
cope with almost arbitrarily high or low powers of the curvature, and they display an accurate
asymptotic behavior.

Algorithm 3: Backward Euler Method for nonlinear diffusions

Input: Polygon Σ0,
Output: Evolved polygon Σσ, parametrized by xi at time ti = iτ
for each i = 0,n do1

find xi+1 by a semi-implicit finite difference scheme of the type2

xi+1 −xi

τ
= fi (ki , xi+1)

with fi a nonlinearity depending on the curvature ki of the curve xi and the natural
parameterization of the curve itself.
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Cao and Moisan [CM02] have also proposed “morphological” schemes for the motion of
curves by arbitrary powers of the curvature. They are described in detail in the book by Frédéric
Cao [Cao03], which also contains a thorough numerical and mathematical analysis. For more
general image PDE’s performing nonlinear diffusion, finite volume methods have been pro-
posed with remarkable results in [KM02].

5.3.2 Algorithms on Sets

Koenderink and van Doorn defined a shape in RN as any closed subset X of RN [KvD86]. They
proposed to simulate the shape multiscale perception by applying the heat equation to the
characteristic function of the shape, or, in other terms, to convolve it with Gaussians with in-
creasing variance. Of course, the solution Gt ∗1X is not a characteristic function and therefore
the authors defined the evolved shape at scale t to be

X t = {x | u(t ,x) ≥ 1/2}.

Similar to the heat equation for curve evolution, the method presents two inconveniences: the
possible fusion of shapes which are too close, and the development of new singularities, which
occur precisely at the times where two disjoint shapes coalesce.

The improvement of dynamic shape analysis is due to Merriman, Bence, and Osher who
discovered and heuristically argued in [MBO92] that the convolution of the indicator function
of a shape with a Gaussian followed by a threshold at 1/2 simulated the mean-curvature mo-
tion.

Algorithm 4: Merriman-Bence-Osher Algorithm (threshold dynamic shape)

Input: initial shape X0

Output: Evolved shape Xn at scale nh
for i=0,n-1 do1

convolve the characteristic function of the shape Xi with Gh , where h is small;2

define Xi+1 = {x |Gh ∗1Xi ≥ 1/2}.3

The consistency of their arguments was checked by Barles and Georgelin [BG95] and Evans
[Eva93]. In addition they showed that iterated median filters converge asymptotically to the
Mean Curvature Motion

ut = |Du|curv(u). (MCM)

An extension of this result to all iterated weighted median filters was given by Ishii in [Ish95].

Algorithm 4 of Merriman, Bence and Osher is nothing but an iterated median filter applied
to a binary image. The main problem of discrete median filters is their grid dependence which
make them blind to small curvatures. For instance a black disk with radius 9 does not move if
the discrete gaussian has a 2 pixels standard deviation. It is observed that the iterated process
stops after a few iterations, making it an inaccurate scheme for MCM.
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5.3.3 Algorithms on Images

5.3.3.1 Median Filters and Threshold Dynamics

Weighted median filters are defined by

Medk u(x) = inf
B∈B

sup
y∈x+B

u(y). (5.4)

where k is a radial density distribution and B = {B | ∫B k(x)dx = 1/2
∫

k(x)dx}, B being formed
of measurable sets. The discrete implementation of the median filter is almost trivial.

Algorithm 5: Iterated Median Filter Algorithm

Input: initial image u(x)
Output: evolved image Medk u(x)
for every point x do1

consider the points y in a discrete neighborhood of x;2

compute the weight of y as the integral of k over the pixel of center y;3

take the weighted median value of the discrete neighborhood.4

Algorithm 5 is fast but, like the dynamic shape, it is blind to small curvatures. Indeed,
this algorithm applied on binary images is nothing but the dynamic shape, with the kernel k
instead of a Gaussian [GM00]. The link with the curvature motion is obtained by scaling the
convolution, exactly as in the Merriman-Bence-Osher dynamic shape algorithm. The result
was shown by Guichard and Morel in [GM00]. Define the scaled median by (Medk )h = Medkh ,
where kh(x) := 1

h2 k( x
h ). Then:

Theorem 5.3.3 (Guichard, Morel). If u : R2 →R is C 2, then there is a constant ck depending only
on the kernel k such that

1. on every compact set K ⊂ {x | Du(x) 6= 0},

Medkh u(x)−u(x) = ck |Du(x)|curv(u)(x)h2 +O(x,h3),

where |O(x,h3)| ≤CK h3 for some constant CK that depends only on u, k and K ;

2. on every compact set K in R2,

|Medkh u(x)−u(x)| ≤CK h2

where the constant CK depends only on u, k and K .

In short, by the above theorem the iterated median filter is in theory an implementation of the
mean curvature motion but, when applied on a digital image, it stops prematurely because of
the blindness of the grid to small curvatures.

Adam Oberman’s work [Obe06] is intimately related to median filters and to the threshold
dynamics. The novelty of his paper consists in the radial lattice displacement of the neighbor-
hood points, as well as its 3D variant. Accordingly, he gives a clever consistency proof. The
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scheme is obviously monotone and therefore the convergence is guaranteed by the general
approximation results for viscosity solutions given by Barles and Souganidis in [BS91].

5.3.3.2 Finite Difference Schemes

There are antecedent papers proposing robust schemes for the mean curvature motion or
(more rarely) for the affine curvature motion. But, to the best of our knowledge, these pa-
pers do not attempt to compute the curvatures of the image. The present work defends the
thesis that the curvature is a 1D operator, computable only on the level lines themselves, and
only after the adequate smoothing has been applied to each level line.

FDSs either create oscillations or, if they are adequately regularized to avoid oscillations,
cause a strong and spurious diffusion. As illustrated later on, even the tiniest diffusion or os-
cillation created by an FDS brings up spurious curvatures with erratic value and sign. To em-
phasize this diffusion-sharpness dilemma, we shall make a comparison between Guichard’s
scheme, which attempts to be the least diffusive and the most isotropic, the Crandall-Lions
scheme [CL96], which is monotone but diffusive, and subsequently the standard finite differ-
ence scheme that discretizes formula (1).

Alvarez-Guichard-Morel’s Finite Difference Scheme

An efficient finite difference scheme (FDS) implementation of the scalar curvature motions
was proposed by Alvarez and Guichard and is described in [GM97] and [AM99]. Together with
Marco Mondelli, we give in [MC10] a thorough analysis of this finite difference scheme for
the mean curvature motions and its affine variant, also called the affine morphological scale
space, in the image processing framework. This analysis brings in a series of parameters that
allow us to compute an accurate discrete evolution of curvature motions. The choice of these
parameters is based on intrinsic geometric properties of the evolution equations for linear,
radial and elliptical functions. A detailed explanatory report, the ANSI C implementations
and an on-line demo can be found in [CM10b].

The numerical scheme takes advantage of the diffusive interpretation of the equation,
which can be expressed as the second derivative of u in the direction orthogonal to the gra-
dient

|Du|curv(u) = uξξ,

where ξ= Du⊥/|Du|. The derivative is evaluated on a 3×3 stencil, as a linear combination of
the corresponding values.

Denote the discrete samples of a continuous image u on a grid by ui , j = u(i∆x, j∆y). When
Du 6= 0 the second derivative in the ξ direction can be expressed as

(uξξ)i , j = 1

∆x2

(−4λ0ui , j +λ1(ui+1, j +ui−1, j )+λ2(ui , j+1 +ui , j−1)+
+λ3(ui+1, j+1 +ui−1, j−1)+λ4(ui+1, j−1 +ui−1, j+1)

)
and thus the iterative sequence is defined by

un+1
i , j = un

i , j +∆t · (un
ξξ)i , j . (5.5)
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Instead, if |Du| = 0, MCM is not well defined. Moreover when the gradient is small, its di-
rection becomes substantially random, as it is driven by rounding and approximation errors,
inevitable when dealing with a discrete scheme. Thus, when |Du| < Tg , we diffuse by half
Laplacian, which is the expectation of uξξ for a uniformly distributed ξ,

un+1
i , j = un

i , j +
1

2
∆t · (∆un)i , j , (5.6)

with (∆u)i , j = ui+1, j +ui−1, j +ui , j+1 +ui , j−1 −4ui , j .

A straightforward variant of the FDS applies to the affine curvature motion. The FDS is
optimized to be as isotropic as possible and as close as possible to satisfy the maximum prin-
ciple. It improves on the dynamic shape by computing correctly small curvatures, but it cannot
properly handle the contrast invariance of the curvature equation. As shown in Fig. 5.5, the
FDS creates new grey levels and blurs edges, spurious diffusions occur around image extrema
and curves with thin boundary break and eventually collapse.

(a) R = 0 (b) R = 2 (c) R = 4

(d) R = 6 (e) R = 8 (f) R = 10

Figure 5.5: Mean curvature evolution of an image by a finite difference scheme. Each R represents the
renormalized scale, i.e. a circle with radius R will disappear.

Crandall-Lions’s Finite Difference Scheme

The finite difference scheme described by Crandall and Lions in [CL96] is monotone, con-
sistent and stable; therefore its convergence is guaranteed by general approximation results
(Barles and Souganidis [BS91]). Denote by un the discrete approximation of the solution at
iteration n. Then the Crandall-Lions discrete curvature flow V is defined by

V un+1(ρz) = un(x)+

d t
N∑

i=1

un(ρz +ha(Dun(ρz))ei )+un(ρz −ha(Dun(ρz))ei )−2un(ρz)

h2

for all z ∈ZN , where {e i }i=1,N is the standard basis of RN and

a(p) = I − p ⊗p

|p|2 .
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There are for this scheme three delicate issues.

1. The above formula does not fully discretize on a fixed grid Gρ because a((Dun)(ρz))ei

is not a displacement on the grid. Thus, this is an adaptive stencil. One must involve
for every grid function un its continuous piecewise linear interpolation ũn . Hence, the
previous formula must be updated as

V un+1(ρz) = ũn(x)+

d t
N∑

i=1

ũn(ρz +ha(Dun(ρz))ei )+ ũn(ρz −ha(Dun(ρz))ei )−2un(ρz)

h2

Note that in a second part of the paper the authors show that the comparison principle
cannot be guaranteed for finite difference schemes with a fixed stencil, even for the linear
case, when the matrix a has constant coefficients. This means that a centered differences
approximation dealing with fixed stencils can create spurious oscillations and therefore
parasitic curvatures. The scheme introduced by Guichard is a sort of intermediate so-
lution: it estimates the gradient direction ξ by evaluating numerically uξξ = curv(u)|Du|
with a quasi-linear scheme, based on a 3×3 stencil. The scheme is quasi-linear because
the coefficients of the linear combination are functions of the angle θ that the gradient
direction makes with the horizontal axis.

2. The (updated) discretization scheme is not monotone. To ensure monotonicity one has
to add a diffusion term. Thus the discretization scheme becomes

Tun =V un +α∆un ,

where

∆un = d t
N∑

i=1

un(ρz +ρei )+un(ρz +ρei )−2un(ρz)

ρ2

Even though asymptotically we still have consistency of this monotone scheme, numer-
ically this scheme introduces a 2D diffusion.

3. The projection a(p) has two unpleasant features: it is degenerate (in the sense that aaT

has zero eigenvalues) and has a singularity at p = 0. The first drawback can be easily han-
dled by the choice of parameters such that the approximation scheme produces bounds
on the perimeter. For the second one, one should replace a(p) by

aε(p) = I − p ⊗p

|p|2 +ε
.

However, when the gradient is small, its direction becomes substantially random, being
driven by rounding errors and noise. This is why Guichard et al. suggest to replace in
this case the mean curvature diffusion by a half Laplacian, instead of using aε(p).

Accordingly, several relations must be satisfied among the parameters to ensure conver-
gence of the scheme to the continuous solution when d t → 0. There is no convergence result
for Guichard’s scheme. Again, a small perturbation with a linear diffusion term should handle
the problem, but would also render the scheme very diffusive in practice.
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One can devise an FDS for the curvature motion which is monotone and consistent. How-
ever, all such schemes cause, even after few iterations, a non asked diffusion that creates new
levels and spurious curvatures. As illustrated by Figure 5.6 and their comments, computing a
curvature by FDS is simply disastrous, even on an image smoothed by LLS.

Figure 5.6: From left to right we display: original image sampled on a thin grid (using a bilinear zoom),
curvatures computed with a finite difference scheme on the original image, curvatures computed with
a finite difference scheme on the affine curvature evolution of the image.

Semi-Implicit Finite Difference Schemes

A different approach was given by Peter Smereka in [Sme03], where he uses semi-implicit
methods to derive fast implementation of the level set evolution PDEs for curvature motions.
The semi-implicit algorithm for the mean curvature flow is based on the formula

curv(u)|Du| =∆u −N (u)

where u is parameterized so that it remains close to the distance function (thus N (u) is small
and |Du| ≈ 1). The discretization takes one step of forward Euler on the nonlinear term fol-
lowed by one step of backward Euler on the linear term.

5.3.3.3 Level Set Extension, Superposition Principle, Stack Filters

FDSs for image curvature motions do not commute with increasing contrast changes. Yet, a
full contrast invariance can be restored on any numerical scheme by coupling two techniques:
the superposition principle, and the Osher-Sethian level set extension. The idea of the level set
extension [OS88] is to treat a given curve as the zero level line of a signed distance to the curve.
More generally a set, understood as a shape, is identified with its characteristic function. After
applying the FDS to this function the evolved set can be obtained as the 1/2 upper level set of
the evolved function. Thus, the level set extension is a generalization of the threshold dynamic.

By the level set extension, a curve evolution is made in two steps: a) apply the FDS to the
characteristic function of the shape bounded by the curve; b) take the 1/2 level line of the
result.

Since the image level lines are boundaries of the image upper level sets, it is natural to ap-
ply directly the level set extension to all upper level sets. This processes implicitly all level lines
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of each level. After evolution of all upper level sets, an image is reconstructed by superposition
principle. The superposition principle and its link to the contrast invariance property come
from mathematical morphology [Ser82], [MS87]. If all upper level sets of a given image have
been processed independently by an inclusion preserving scheme, then there is a single image
having for level sets the evolved level sets. Any process that decomposes the image into the
stack of its level sets and then reconstructs the processed image from the stack of its processed
level sets is called a stack filter. The only requirement to make a stack filter with any numerical
scheme is its monotonicity. Indeed, the inclusion of upper level sets in each other must be pre-
served. Every stack filter is contrast invariant. Indeed, the image upper (resp. lower) level sets
Xλu0 := {x,u0(x) ≥λ} (resp. ≤λ) of an image u0 are invariant to increasing contrast changes.

In short a stack filter consists of:

a. extracting all image upper level sets,
b. processing each of them by a (monotonic) set operator (e.g. the FDS) and
c. reconstructing the evolved image by “superposition”.

Thus Algorithm 6 is a contrast invariant curvature evolution. For example (see [GM97])
the image median filter is the stack filter of the threshold dynamics. It makes sense to apply
the superposition principle strategy to FDSs because they are not contrast invariant, being
diffusive and creating spurious level lines.

Algorithm 6: Stack Filter

Input: initial image u(x)
Output: evolved image u(t ,x)
for each λ ∈ [0,255], in increasing order do1

let vλ(x) be the characteristic function of Xλu0 := {x,u0(x) ≥λ};2

apply to vλ an FDS-scheme until scale t ; this yields the images wλ(t , .);3

set u(t ,x) = max{λ | wλ(t ,x) ≥ 1/2} at each point (t ,x).4

5.4 Discussion

One can devise an FDS for the curvature motion which is monotone and consistent. The not
excessive complexity of our Finite Difference Schemes makes them an easy to implement and
fast to run alternative for the operations of preprocessing common to almost all kinds of fur-
ther numerical image analysis. On the other hand, FDSs lack some of the structural properties
that characterize curvature motions, namely:

• monotonicity, since the FDSs always lead to slightly oscillatory solutions;

• contrast invariance, since they create new gray levels and blur edges;

• Euclidean or affine invariance, since they are grid dependent.

The first two problems could be overcomed by level set methods and stack filters. This
means to apply the previous FDSs not directly to the input image, but to the characteristic
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functions of its level sets and eventually to reconstruct the output image by superposition prin-
ciple. However, stack filters are much slower than FDSs. In addition, they are still pixel-based
and thus by evolving sets sampled on a fixed grid boundaries either jump by a positive integer
number of pixels or do not move at all. It follows that these numerical motions are quantized
and therefore blind to small curvatures. As we shall see in the experiments, they fall short of
matching the human perception precision.

A more accurate procedure should sample all image level lines at a sub-pixel fine resolution
and smooth them separately. A continuous, grid independent evolution of a digital image by
curvature motion, that can jump over the hurdles listed above, is described in the following
chapters. The Level Lines Shortening (LLS) algorithm extracts a sufficient number of level lines
from the input image u0, applies to each of them the geometric curvature motions and uses
these evolved level lines to reconstruct the output evolved image.





CHAPTER 6

From Level Lines Shortening
to Image Curvature Motion

It is through science that we prove, but through intuition that we discover.

Henri Poincare (1854 - 1912)

Abstract: In this chapter we define the continuous Level Lines Shortening (LLS) evolution of a
two-dimensional image as the Curve Shortening operator acting simultaneously and indepen-
dently on all the level lines of the initial data, and show that it computes a viscosity solution
for the mean curvature motion. This provides an exact analytical framework for its numerical
implementation, which runs online on any image at http://www.ipol.im/. Analogous results
hold for its affine variant version, the Level Lines Affine Shortening. 1

Résumé : Nous définissons dans ce chapitre l’évolution continue d’une image par Level Lines
Shortening (LLS) comme l’ opérateur de Curve Shortening qui agit simultanément et indépen-
damment sur chaque ligne de niveau de l’image de départ. On démontre que LLS donne de
manière explicite une solution de viscosité pour le mouvement par courbure moyenne. Ceci
correspond précisément à l’implémentation numérique, qui peut être testé en ligne sur tout
image sur http://www.ipol.im/. Des résultats similaires sont montrés pour le mouvement par
courbure affine.

Keywords: mean curvature motion, affine curvature motion, curve shortening, affine
shortening, level lines, topographic maps

1This represents the articleA proof of equivalence between level lines shortening and curvature motion in image
processing, submitted to SIAM Journal on Mathematical Analysis, joint work with J.M. Morel. [CM]
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6.1 Introduction

Geometric evolution equations, like the Curve Shortening problem

∂x

∂t
= k(x). (CS)

have been studied in great detail using parametric methods from differential geometry. Many
interesting results have been obtained in the past twenty five years. It is impossible to present
them all, but we will focus on some results which our work is based on. It all goes back to
’83, when Michael Gage proved an isoperimetric inequality for convex curves [Gag83]. This
turned out to have an important application to curve shortening: namely a curve deformed
along its normal vector field at a rate proportional to its curvature will have a decreasing ratio
of L2/A. One year later, Gage showed [Gag84] that the isoperimetric ratio L2/A of the convex
curve approaches 4π as the enclosed area approaches zero. Furthermore, if the one parameter
family of curves x(·, t ) is normalized by homotetic expansion such that each curve encloses
area π, then the normalized flow converges to the unit circle. In a subsequent paper, Gage and
Hamilton [GH86] showed that the evolving convex curves will not develop singularities and
the evolution continues until the area inside the curve is zero. Grayson added in [Gra87] the
fact that embedded curves become convex without developing singularities, closing thus the
conjecture that curve shortening shrinks embedded plane curves smoothly (with convergence
in the C∞ topology) to points, with round limiting shape.

These results were extended to smooth curves embedded in a smooth Riemannian surface
which is convex at infinity by Grayson [Gra89] and to arbitrary closed immersed curves on
complete surfaces of bounded curvature by Gage [Gag90].
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Motivated by finding affine invariant flows in computer vision and image processing
[ST93a], [ST93b] Sapiro and Tannenbaum defined an affine invariant curve evolution in [ST94]

∂x

∂t
= |k|−2/3k(x). (AS)

They proved an affine version of the classical isoperimetric inequality. Similarly to curve short-
ening, this inequality is used to show that in the case of convex plane curves, the affine isoperi-
metric ratio is a non-decreasing function of time. The authors showed that this affine isoperi-
metric ratio converges to the value for the ellipse 8π2 and that the evolving curve converges, in
the Hausdorff metric, to an ellipse. In a subsequent paper they extended the affine shortening
flow to non-convex curves [AST98] and showed that any simple closed curve shrinks to a point
under (AS) flow.

However, if the curves are immersed in the plane but not embedded they will surely de-
velop singularities, though they stay smooth until the curvature blows up. If one considers for
example the Limaçon of Pascal (given in polar coordinates by r = 1+2cos(θ)), then the little
loop will shrink faster than the big loop and eventually turns into a cusp. In the higher di-
mensional case, G. Huisken has shown [Hui84] that a convex hypersurface shrinks to a point.
Nevertheless, embedded surfaces in space can develop singularities if they are not convex. For
example, a dumbbell will pinch off and pop, changing the topological type of surface.

It is thus difficult to track the evolution of the curve (or the hypersurface) across singular-
ities, by parametric methods. To overcome the problems generated in the classical geometric
approach, some alternative descriptions were given. There have been two different under-
takings: in the setting of varifold theory from geometric measure theory [Bra78], and in the
setting of level set methods [OS88] and accordingly, of viscosity solutions as in Crandall and
Lions [CL83], Crandall, Evans and Lions [CEL84], Jensen, Lions and Souganidis [JLS88], Ishii
[Ish89] and C randall, Ishii and Lions [CIL92]. In the following we make precise the latter.

The curve, or more generally the hypersurface, is given as the zero level set of some con-
tinuous function u0

Σ0 = {x;u0(x) = 0}.

One considers then the Cauchy problem for the parabolic PDE

∂u

∂t
= |Du|curv(u), (MCM)

with initial data u0, and defines the evolution of Σ0 at time t as the zero level set of u(·, t )

Σt = {x;u(x, t ) = 0}

Osher and Sethian [OS88] and Sethian [Set99] used various techniques to study the (MCM)
flow and related PDEs numerically, whereas the theoretical justification was given by Chen-
Giga-Goto in [CGG91] and Evans and Spruck in [ES91]. They showed there exists a unique
bounded, uniformly continuous viscosity solution of (MCM) and that the definition of the gen-
eralized motion by mean curvature does not depend on the choice of the initial function. The
work of Chen, Giga and Goto [CGG91], Giga and Goto [GG92] included as well generalizations
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to a large class of geometric problems, covering in particular the affine curvature motion

∂u

∂t
= |Du|(curv(u)

)1/3. (ACM)

However, for semi-continuous initial data, there is in general, more than one solution of the
initial value problem as pointed out by Soner in [Son93]. In fact, this is the case whenever the
level set develops a nonempty interior or becomes ‘fat’. This difficulty was explained by Barles,
Soner and Souganidis in [BSS93].

(a)

(b)

Figure 6.1: Checkerboard image evolving by mean curvature motion. (a) The fattening phenomena
discards uniqueness of solutions for semi-continuous functions. (b) For bounded uniformly continu-
ous initial data, the level set is uniquely defined.

The Level Lines Shortening (LLS) builds on the previous mentioned contributions and
connects explicitly the geometric approach for curve shortening evolutions and the viscos-
ity framework for curvature motions. More precisely, LLS is an operator that first extracts all
the level lines of an image, then independently and simultaneously smooths all of its level lines
by curve shortening (CS) (respectively affine shortening (AS)) and eventually reconstructs, at
each step, a new image from the evolved level lines. The chain is based on a topological struc-
ture, the inclusion tree of level lines as a full and non-redundant representation of an image
[CM10a], and on a topological property, the monotonicity of curve shortening with respect
to inclusion. Therefore, the hierarchy of the level lines is maintained while performing the
smoothing.

The aim of this chapter is to rigorously justify that the Level Lines Shortening computes
explicitly a viscosity solution for the Mean Curvature Motion respectively that the Level Lines
Affine Shortening provides a viscosity solution for the Affine Curvature Motion. Evans and
Spruck checked in [ES91] the consistency of the level set approach with the classical motion
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by mean curvature. More precisely, they showed that the mean curvature motion agrees with
the classical motion, if and as long as the latter exists. The results applies for a smooth hy-
persurface, given as the connected boundary of a bounded open set. Their arguments are
based on comparison techniques with lower barriers for the approximated mean curvature
motion and strongly use the fact that the hypersurface is the zero level set of its (signed) dis-
tance function. However, the result does not describe the complete behavior of all the level
lines of a Lipschitz function. Namely, if we are given a Lipschitz function u0 which evolves by
mean curvature in the viscosity sense, are all of its level lines evolving independently by curve
shortening? For dimension n ≥ 3 the result is not true, since hypersurfaces can develop singu-
larities and can change topology. Thanks to Grayson’s theorem, the 2D case has a very peculiar
structure which we will take advantage of. We will show that evolving independently and si-
multaneously by curve shortening all the level lines of a function is equivalent to applying
directly a mean curvature motion to the functions itself.

The initial image will be considered as an element of a particular space of functions VS (Ω)
that we term space of very simple functions and is related to fattening phenomena for Lips-
chitz continuous functions. This class corresponds to bilinearly interpolated images defined
on a rectangle Ω whose topographic maps contain only Jordan curves. The set of very simple
functions arises naturally in image processing, since level lines corresponding to noncritical
levels are sufficient to grant an exact reconstruction of the digital image (see Chapter 7).

In this way, the described chain corresponds exactly to its numerical implementation
[CMMM] and has the advantage of satisfying both numerically and analytically all the in-
variance properties required by the scale space in question. The discrete LLS overcomes all
the hurdles arising with numerical methods based on pixel approximation. In addition, this
scheme leads to an accurate curvature estimate, based on a direct computation on all its level
lines.

The chapter is organized as follows. In section §6.2 we define the class of very simple func-
tions as approximations for Lipschitz functions. Section §6.3 is devoted to the definition of the
Level Lines Shortening evolution, as an operator acting both on crowns of Jordan curves and
flat areas, and on very simple functions. In the last section §6.4 we give the equivalence result.

6.2 Modeling Level Lines Shortening

6.2.1 Crowns of Jordan Curves

A Jordan curve is a one to one continuous map from the unit circle S1 into R2. A Jordan curve
Σ splits the plane in two connected components. We denote by Int (Σ) the open bounded
component and by E xt (Σ) the open unbounded component.

Definition 6.2.1. Let Σ1 and Σ2 be two Jordan curves. We say that Σ1 surrounds (strictly) Σ2

and we write Σ1 ¹Σ2 (Σ1 ≺Σ2) if Int (Σ1) ⊆ Int (Σ2) (respectively Int (Σ1) ⊂ Int (Σ2)).

This defines a partial order on the set of planar Jordan curves.

1http://www.ipol.im/pub/algo/cmmm_image_curvature_microscope/
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Definition 6.2.2. We say that a Jordan Σ curve is piecewise C 1, or in C 0,1
p (S1) if it has finite

length l (Σ) ≥ 0, any length parametrization is piecewise C 1 and if at each discontinuity point
for the tangent there are left and right tangent vectors, which are not collinear.

Definition 6.2.3. We say that a sequence of curvesΣn converges in C 0,1
p (S1) to a curveΣ if, denot-

ing by s ∈ [0, l (Σ)] → x(s) a length parameterization of Σ, there are Lipschitz parameterizations
s ∈ [0, l (Σ)] → xn(s) for Σn such that xn(s) tends uniformly to x(s), and the left and right unit
tangent vectors of xn(s) tend uniformly to the left and right tangent vectors of x(s).

Remark 6.2.1. When l (Σ) = 0, these conditions are reduced to the uniform convergence of
xn(s) toward x(s). This convergence can be defined by a family of neighborhoods around each
element of C 0,1

p (S1), which therefore is a topological space.

Definition 6.2.4. A crown Σ : (λ,µ) → C 0,1
p (S1) is a continuous and monotone map Σ from the

interval (λ,µ) into C 0,1
p (S1). If the map is defined on the closed/open interval we talk about

closed/open crown.

Definition 6.2.5. When the crown is closed and increasing, Σ(λ) =Σλ is called the interior curve
of the crown and Σ(µ) = Σµ its exterior curve of the crown. If the crown is decreasing, these
names exchange. The range of the open/closed crown is denoted by Σ(]λ,µ[), Σ([λ,µ]), respec-
tively. The crown itself as an ordered family of curves will also be denoted by Σ[λ,µ] or (Σν)ν∈(λ,µ).

Remark 6.2.2. It is known [Bou66] that given two linearly ordered sets X and Y endowed with
the topologies τ(X ) and τ(Y ) respectively, then φ is a homeomorphism of X onto φ(X ) if and
only if φ is continuous and strictly monotone. Therefore, a crown Σ as defined above is a
homeomorphism from (λ,µ) onto Σ(λ,µ).

Definition 6.2.6. Let A ⊂ Ω be a bounded, connected set, whose boundary consists of a finite
number of disjoint Jordan curves. We call exterior curve of A the unique Jordan curve Σe whose
interior contains A and interior curve(s) the other Jordan curves Σi , i ∈ I .

6.2.2 The Class of Very Simple Functions

A digital image is usually known by its samples
{
u(i , j )

}
0≤i≤M ,0≤ j≤N . on a rectangular grid of

Ω = [0, M ]× [0, N ], We assume that the underlying image 0 ≤ u(x) ≤ 1 whose samples are the
u(i , j ) is a Lipschitz function defined on Ω, the continuous image domain. We shall always
assume that u(x) = 0 on the boundary of the domain ∂Ω and that u(x) > 0 in the interior of Ω.

The bilinear interpolation in Ω is the simplest continuous interpolation from the discrete
samples u(i , j ). This interpolate, still denoted u, is defined as the unique function coinciding
with the digital image u on the samples which is bilinear in each dual pixel. This means that u
has the form

u(x1, x2) =αx1 +βx2 +γx1x2 +δ

on each square with vertices (i , j ), (i +1, j ), (i , j +1), (i +1, j +1). This bilinear interpolation
is therefore positive on the interior of the domain and zero on ∂Ω. The set of bilinear interpo-
lates of digital images on Ω will be denoted by BL (Ω). The next result is a sane consistency
property of the bilinear interpolation.
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(a) (b) (c)

Figure 6.2: Topological structure of the family of level lines, for a bilinear interpolated image. For every
level 0 ≤ λ ≤ 1, except for a finite set, the iso-level sets {u = λ} are made of a finite set of piecewise C 1

Jordan curves. At critical levels λk , they can have a rather complicated form: they can have T-junctions
or reduce to segments (a), contain square pixels (thus being flat areas) or have self-crossings at saddle
points (b). However, by fattening the iso-level sets corresponding to the critical levels, the topology of
level sets becomes very simple: only Jordan curves or flat sets (c).

Proposition 6.2.1. If u defined on Ω is Lipschitz and only known by its samples, its bilinear
interpolate converges uniformly to u when the grid mesh tends to zero.

The references [LMR01], [LMMM00], [CM10a] show that the bilinear interpolation brings
a long list of numerically useful topological properties.

Proposition 6.2.2. (Properties of level lines of bilinear interpolates)

(L1) For every level 0 ≤ λ ≤ 1 except for a finite set of levels λ1, . . . ,λn called critical, the iso-
level set {u = λ} is the disjoint union of a finite set of piecewise-C 1 Jordan curves, denoted
by (Σλ,i )i∈Iλ where Iλ is a finite set of indices;

(L2) The open set Ω \ u−1({λ1, . . . ,λn}) has a finite number of connected components. Each
connected component is the range of an open crown Σ]µ,ν[ where µ,ν ∈ {λ1, . . . ,λn}. As
a consequence, Ω is partitioned in open crowns and in the closed iso-level sets {u = λi }
corresponding to the critical levels.

Sketch of proof. A dual pixel will contain a critical level either if it is flat, or if it contains a saddle
point. In both cases there is only one critical level in the pixel. Since there is a finite number
of pixels, there is a finite number of critical levels. At any other level, the restriction of an iso-
level set to a given pixel is either empty, or is a single piece of hyperbola. since the bilinear
interpolate is continuous, these pieces of hyperbolae concatenate at each pixel boundary to
form one or several disjoint Jordan curves.

The above structure is quite simple, but it does not describe the structure of level lines
at the critical levels λk , which can take a rather complicated form as illustrated in Figure 7.2.
To define a curvature evolution for these sets would be cumbersome. We shall overcome this
drawback, both numerically and analytically, by building a still simpler approximation. This
approximation of the image is obtained by fattening all critical iso-level sets into open sets
whose boundary is a finite set of Jordan level curves. Their curvature evolution will simply be
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defined by the curvature evolution of their boundary. Thus, we define a still simpler approxi-
mation for Lipschitz functions, deduced from the bilinear interpolation.

Definition 6.2.7. We say that a Lipschitz function u on Ω is very simple and we denote by
u ∈ VS (Ω) if it satisfies properties (L1), (L2) and

(L3) Each crown Σ]µ,ν[ can be completed into a closed crown by adding its interior and exterior
curves Σµ and Σν, which are limits in the C 0,1

p (S1) topology of the level lines of the crown.

Remark 6.2.3. As a consequence, for very simple functions, Ω is the disjoint union of the
ranges of a finite number of compact crowns, and of a finite number of flat open connected
components, each belonging to some critical level λk ,

Ω=
( ∪

k∈K
Σ[µk ,νk ],k

)
∪

 ∪
j∈{1,··· ,n},

l∈J j

Fλ j ,l

 (6.1)

where K is the finite set of all crown indexes, µk ,νk ∈ {λ1, · · · ,λn} are critical levels, and J j is the
finite set of indexes of open connected components of the iso-level set of u at λ j .

Definition 6.2.8. We call flat regions of u0 ∈ VS (Ω) the open sets Fλ j ,l , whose boundaries are
unions of a finite number of piecewise-C 1 Jordan level curves, and on which the function is
constant:

u(x) =λ j , ∀x ∈ Fλ j ,l , l ∈ J j .

Lemma 6.2.1. Every Lipschitz function can be approximated uniformly by a sequence of very
simple functions.

Proof. For all u ∈ Li p(Ω) and ε> 0 we build a function v ∈ VS (Ω) such that

sup
x∈Ω

|u(x)− v(x)| < ε.

By Proposition 6.2.1, we can assume that u ∈BL (Ω). We can order the set of its critical levels
λ1 < λ2 < ... < λn . Then define, for 0 < ε < 1

2 min j |λ j+1 −λ j |, the function v(x) = fε(u(x)),
where f is the 1-Lipschitz nondecreasing function

fε(t ) =


t , t ≤λ1 −ε

λk −kε λk −ε≤ t ≤λk +ε, k = 1,n
t −kε λk +ε≤ t ≤λk ′ −ε, k = 1,n −1
t −nε, t ≥λn +ε

(6.2)

We have | f (t )− t | ≤ nε, thus maxΩ |u − v | ≤ nε which proves the convergence claim.
It remains to check that the function v ∈ VS (Ω). The critical levels of v are inherited from

u and consist of {λk −kε}k=1,...,n . By construction, all the level lines of v at noncritical levels are
level lines of u at noncritical levels and hence Jordan level curves, grouped in crowns. Consider
now the flat regions of v , which are the open connected components of the sets

{λk −ε< u <λk +ε}, k = 1,n.
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Since ε< 1
2 mink (λk+1 −λk ), the boundary of each one of these flat regions is contained in the

union of the level sets {u =λk −ε} and u = {λk +ε} which are a finite number of Jordan curves.
Each one of these Jordan curves belongs to a crown Σ]λk ,λk′ [ of u which is truncated into a
crown Σ]λk−kε,λk′−k ′ε[ of v .

6.3 Level Lines Shortening Operator

6.3.1 LLS Semigroup Operator

Given a very simple function u0 ∈ VS (Ω), its Level Lines Shortening evolution consists in
evolving independently and simultaneously by Curve Shortening each of its level lines, de-
noted by Σλ,i

0 , and eventually reconstructing, for each time t > 0, a new function u(·, t ) whose
level lines are the evolutions Σλ,i

t , where the subscript t denotes the time t . This definition,
will have to be proven consistent. Our goal is therefore to prove the commutative diagram:

u0(·)
MC M/LLS

��

level l i nes extr acti on // {Σλ,i
0 }λ,i

C S
��

u(·, t ) {Σλ,i
t }λ,i .

r econstr ucti onoo

To this end, we shall use several fine properties of curve shortening evolution [Gra87], [GH86],
which is given in terms of a nonlinear geometric partial differential equation

∂x

∂t
(s, t ) = k(s, t ) (6.3)

where x(s, t ) is a family of smooth Jordan curves parameterized for each t by a length parame-
ter. The vector k is the acceleration which is normal to the curve, points towards its concavity,
and whose norm is the radius of the osculatory circle.

Theorem 6.3.1. The curve shortening evolution has the following properties:

(P1) For any Jordan C 0,1(S1) curve Σ0, there exists a collapsing time T (Σ0) > 0 such that the
Cauchy problem (6.3) has a unique solution Σt in

C 0,1 (
S1 × [0,T (Σ0))

)∩C∞ (
S1 × (0,T (Σ0))

)
which still is a Jordan curve. We set Σt =; for t > T (Σ0).

(P2) The map Σ0 7→Σt is continuous for the C 0,1
p (S1) topology of Definition 6.2.2. For t = T (Σ0)

the curve collapses to a point x(Σ0).

(P3) Before collapsing at time T (Σ0), the curve Σt - rescaled at constant area equal to π - con-
verges in the C 0,1

p (S1) topology to the unit circle centered at the collapsing point x(Σ0).

(P4) Inclusion Principle:
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• if Σ1 ¹Σ2, then Σ1
t ¹Σ2

t for all t > 0.

• if Σ1 ≺Σ2, then Σ1
t ≺Σ2

t for all t > 0.

(P5) The min-distance of any two disjoint curves increases with time until one of the curve
collapses

dist(Σ1
s ,Σ2

s ) < dist(Σ1
t ,Σ2

t ),∀s ≤ t .

(P6) Convex curves remain convex and shrink in time: Σt ¹Σ0.

Theorem 6.3.2. Properties (P1)− (P6) hold for affine shortening:

∂x

∂t
(s, t ) = |k|−2/3k(s, t ) (6.4)

except for (P3) which is replaced by

(P3)′ Before collapsing at time T (Σ0), the curve Σt converges in the C 0,1
p (S1) topology to an el-

lipse centered at the collapsing point x(Σ0).

Let u0 ∈ VS (Ω) be a very simple function and {Σλ,i
0 }λ,i∈Iλ its level lines. Denote by Σλ,i

t the
evolution of Σλ,i

0 at time t

Σλ,i
0

C S−−→Σλ,i
t .

Our first purpose is to show that the family of smooth Jordan curves {Σλ,i
t }λ,i∈Iλ is actually the

set of level lines of a very simple image u(·, t ).

Definition 6.3.1. Let Σ[ζ,µ]
0 = (

Σλ
0

)
λ∈[ζ,µ] be a closed crown. We call level lines shortening of the

crown Σ
[ζ,µ]
0 the family of curves

LLS(t )
(
Σ

[ζ,µ]
0

)
:= (Σλ

t )λ∈[ζ,µ].

where Σλ
t are the curve (affine) shortening evolutions of Σλ

0 for all λ ∈ [ζ,µ].

To fix ideas we refer in the following to increasing crowns. Analogous results hold for de-
creasing crowns.

Proposition 6.3.1. Consider a closed increasing crown Σ[ζ,µ]. Then the collapsing time T (λ) =
T (Σλ) of the curves of the crown is a continuous increasing function of λ ∈ [ζ,µ]. The level lines
shortening at time t < T (Σµ) transforms Σ[ζ,µ] into a closed crown

LLS(t )
(
Σ

[ζ,µ]
0

)
=Σ

[max(ζ,T −1(t )),µ]
t .

Proof. Since the composition of two continuous maps is continuous, and the composition of
two strictly monotone maps is strictly monotone, this is an immediate consequence of The-
orem 6.3.1 and of the definition of crowns. By property (P1) level lines shortening preserves
space-time continuity, whereas by (P4) it preserves strict monotonicity.
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In short, a crown remains a crown by level lines shortening, and is made of all curves of the
initial crown which have not collapsed yet. It is convenient to also define the evolution of a flat
region.

Definition 6.3.2. Let F
λ j ,l
0 , l ∈ J j be a flat region of u0 ∈ VS (Ω) at level λ j , of exterior curve Σe

0

and interior curves Σm
0 , m ∈ M. We call the level lines shortening of the flat region F

λ j ,l
0 , l ∈ J j

the set defined by

LLS(t )(F
λ j ,l
0 ) = F

λ j ,l
t := Int (Σe

t )∩
(∩

m
E xt (Σm

t )

)
, ∀t < T (Σe )

where Σe
t and Σm

t , m ∈ M are the curve shortening evolutions of Σe
0 and Σm

0 , m ∈ M.

The initial flat region remains a region whose boundary is made of all Jordan curves of its
initial boundary which have not collapsed. By the inclusion principle the last curve to disap-
pear is the external boundary. When it collapses, the region disappears.

Theorem 6.3.3 (Definition of LLS for very simple functions). Let u0 be a very simple Lipschitz
function, with critical levels {λk }k=1,··· ,n , Jordan curves Σλ,i

0 indexed by their level λ and i ∈ Iλ,

and of flat regions F
λ j ,l
0 at critical levels λ j , indexed by l ∈ J j . The level lines shortening evolu-

tion of the function u0 is the function LLS(t )(u0) = u(·, t ) defined by

u(x, t ) =


λ, if x ∈Σλ,i

t

λ j , if x ∈ F
λ j ,l
t

0, if x ∈Ω\Ωt

(6.5)

where Ωt is the domain surrounded by the curve shortening evolution (∂Ω)t of the domain
boundary ∂Ω0 (which is the only zero-level curve of u0). Then this definition is complete, con-
sistent, the evolved function is a very simple function u(·, t ) ∈ VS (Ω) whose Lipschitz constant is
smaller than or equal to the initial one.

Proof. The initial domain Ω is partitioned in crowns and flat regions whose boundaries are
either interior or exterior curves of crowns, or ∂Ω. By the min-distance property (P5) in The-
orem 6.3.1, when time increases the evolved level curves of u0 fall apart from each other and
so do the boundary curves of the flat regions. Thus, by Proposition 6.3.1 and Definition 6.3.2
the crowns never meet and the flat regions are at all times the connected components of the
complementary in Ωt of the union of crowns. In other terms the evolved crowns and evolved
flat regions form a partition of Ωt given by

Ωt =
( ∪

k∈K
Σ

[µk ,νk ],k
t

)
∪

 ∪
j∈{1,··· ,n},

l∈J j

F
λ j ,l
t

 (6.6)

On the other hand, the boundary of Ω is convex and remains convex by curve shortening
(property (P6) in Theorem 6.3.1). Hence if points x initially belonging to Ω have been crossed
by the evolving boundary, we have u(x, t ) = 0. This renders the definition complete and con-
sistent.
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(a) Image associated to a very simple function and its corresponding level lines.

(b) The LLS operator maps very simple functions onto very simple functions.

Figure 6.3: The Level Lines Shortening (LLS) numerical chain: from the original image (top-left), the
family of all its simple level lines is extracted at quantized non-degenerate levels (top-right). Simultane-
ously and independently, each level line is evolved (bottom-right) and the evolved image having these
level lines is reconstructed (bottom-left). Both the images and their families of level lines satisfy the
topological properties (L1), (L2), (L3). Performing the LLS evolution, digitization artifacts due to noise,
compression and under-sampling are attenuated.
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Let us show that u(·, t ) is Lipschitz. A function is L-Lipschitz if and only if the min-distance
between any two of its level sets with levels λ and µ is larger than |λ−µ|

L . More precisely, since
the min distance between a flat region and another, or between a flat region and a level line, is
always attained on the level lines which bound the flat regions, we have

Li p(u0) = max{
|ζ−µ|

dist(Σζ
0,Σµ

0 )
}.

Since all min-distances between level lines increase (property (P5), Theorem 6.3.1), we have

|ζ−µ|
dist(Σζ

0,Σµ
0 )

≥ |ζ−µ|
dist(Σζ

t ,Σµ
t )

.

Thus the Lipschitz constant of u(·, t ) is smaller than or equal to the Lipschitz constant of u0.

Definition 6.3.3. We call Level Lines Shortening operator, shortly LLS, the above operator act-
ing on the class of very simple functions,

LLS(t ) : VS (Ω) 7→ VS (Ω)

u0 7→ u(·, t ).

Since the curve shortening itself is a semigroup, LLS(t ) also is a semigroup, namely

LLS(t + s)u0 = LLS(t )(LLS(s)u0).

Corollary 6.3.1. The level lines affine shortening evolution of a very simple function

LL AS(t )(u0)(x) :=


λ, if x ∈Σλ,i

t

λ j , if x ∈ F
λ j ,l
t

0, if x ∈Ω\Ωt

(6.7)

where Σλ,i
t and F

λ j ,l
t are the affine shortening evolutions of the initial level lines, respectively flat

areas, is well defined and maps VS (Ω) onto itself, preserving the semigroup property.

Proof. This comes immediately from Theorem 6.3.2, which ensures that all the topological
properties of curve shortening hold as well for affine shortening.

6.3.2 Properties of Level Lines Shortening

Lemma 6.3.1. Let φ0 a radial increasing function centered at x0, i.e. φ0(x) = ϕ(|x|) with ϕ

increasing. Then its level lines shortening evolution is given by

φ(x, t ) =ϕ

(√
|x|2 +2(t − t0)

)
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and its affine shortening evolution is given by

φ(x, t ) =ϕ

(
4
3

√
|x| 4

3 + 4

3
(t − t0)

)
.

Lemma 6.3.2 (Local comparison). Let u0 be a very simple function, φ0 a radial increasing func-
tion centered at x0, and denote by u(·, t ) and φ(·, t ) their LLS/LLAS evolutions. If in a local neigh-
borhood N (x0) of x0 the following holds

u0(x) ≤φ0(x),∀x ∈N (x0)

then there exists a short time t0 > 0 such that

u(x0, t ) ≤ϕ(x0, t ),∀0 < t < t0.

Proof. We argue for LLS, the case LLAS being analogue. The level set {φ0 < λ} is the open disk
with radius φ−1

0 (λ) and satisfies the inclusion

{x ∈N (x0);φ0(x) <λ} ⊂ {x ∈N (x0);u0(x) <λ}

Then every level line Σλ,φ0 of φ0 surrounds no point belonging to a level set of the same level of
u0. By the inclusion principle and the topological structure of the level lines for a very simple
image, this property is preserved for all t ≤ t0 where t0 is the vanishing time for the largest level
line of φ in the neighborhood N (x0). Indeed if the level set of u(x, t ) is a flat part bounded
by Jordan curves, by the min-distance property (P5) these Jordan curves never cross in their
evolution the circles corresponding to the level set for φ(x, t ). If the level set of u(x, t0) is a finite
set of level lines, in the same way the evolved level lines of u(x, t ) never cross the circular level
line of φ(x, t ).

On the other hand x0 belongs to all the level lines of φ(·, t ), for all times t < t0. Hence the
value of u(·, t ) at x0 must necessarily be less than the minimum level of φ(·, t ), which is attained
exactly at x0. Consequently

u(x0, t ) ≤φ(x0, t ),∀t < t0.

Proposition 6.3.2 (Space-Time Continuity). Let u0 ∈ VS (Ω) be L-Lipschitz continuous and
consider its level lines (affine) shortening evolution u(·, t ) = LL(A)S(t )(u0), for all t ∈ (0,∞).
Then u ∈C 0(Ω× [0,∞)).

Proof. We want to find a Lipschitz type estimate for the function u and we argue separately in
space and time:

|u(x, t )−u(x0, t0)| ≤ |u(x, t )−u(x0, t )|+ |u(x0, t )−u(x0, t0)|.

By Theorem 6.3.3 the LLS evolution u(·, t ) at any time t > 0 of the initial function u0 remains
L−Li pschi t z continuous and hence

|u(x, t )−u(x0, t )| ≤ L|x −x0|.
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The time-continuity follows from comparisons with shrinking cones. More precisely, the
Lipschitz continuity at time t0 tells us there exists φ(·, t0) a L-Lipschitz radial upper barrier
u(x, t0) ≤φ(x, t0), touching u at point x0,given by

φ(x, t0) = u(x0, t0)+L|x −x0|.

By Lemma 6.3.1, its LLS evolution is

φ(x, t ) = u(x0, t0)+L
√
|x −x0|2 +2(t − t0).

It follows from the local comparison with radial functions given in Lemma 6.3.2 that

u(x0, t ) ≤φ(x0, t ) = u(x0, t0)+L
√

2(t − t0).

Consequently

|u(x, t )−u(x0, t0)| ≤ L
(
|x −x0|+

√
2(t − t0)

)
.

This proves that u(x, t ) is uniformly continuous in t and x. Similar results hold for LLAS.

The structure of very simple functions implies that there is only a finite number of pos-
sible collapsing times, namely times t k∗ > 0 where some crown collapses to a point. At these
times t 1∗ < t 2∗ · · · < t m∗ there is one (or several) collapse pairs (t k∗ ,Σλk ,ik ). The next lemma gives a
stability property for flat regions.

Lemma 6.3.3 (Flatness). Let u0 be a very simple functions and u(·, t ) its LL(A)S evolution at
time t . Let x0 be a point in a flat region of u(·, t0) and suppose that it is not a collapsing point.
Then there exists δ0 > 0 such that x0 stays in a flat region of u(·, t ), for all |t − t0| < δ0.

Proof. Since x0 belongs to a flat area of u(·, t0) there exists a small ball B(x0,r0) centered at x0

meeting no other level line of u(·, t0):

Σλ,i
t0

∩B(x0,r0) =;. (6.8)

The number of collapsing points being finite, we can also choose r0 small enough, so that
B(x0,r0) contains no collapsing point of the evolution of u. Let ∂B(x0,r (t )) be the circle cen-
tered at x0 and evolving by Curve Shortening such that r (t0) = r0.

1. Fix δ1 = r 2
0 /4 such that ∂B(x0,r (t )) has not collapsed at time t = t0 +δ1. Then it follows

from (6.8) and from the inclusion principle that for all t < t0 +δ1 no level line of u(·, t ) meets
the ball B(x0,r (t ))

Σλ,i
t ∩B(x0,r (t )) =;,

where r (t ) =
√

r 2
0 −2(t − t0).

2. We now prove that there exists a time δ2 and a radius ρ > 0 such that for all t ∈ (t0−δ2, t0)
no level curve of u(·, t ) meets B(x0,ρ). Assume by contradiction that there exist t j , x j and

curves Σ
λ j

t j
of LLS evolution of u such that

t j → t0, x j → x0 with x j ∈Σ
λ j

t j
. (6.9)
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Consider the corresponding initial curves Σ
λ j

0 . Since the ball B(x0,r0) contains no collapsing

points of u, the evolutions Σ
λ j

t will have uniformly bounded curvature, and thus stay uniformly
bounded in the C 0,1

p (S1) topology. It is then possible to extract a converging subsequence to

Σλ
0 . By the continuity property (P2) in Theorem 6.3.1, it follows that Σλ0

t0
contains x0, which

contradicts our initial assumption.

6.4 Equivalence with the Curvature Motions

We start with a formal derivation of this equivalence. For this purpose, assume that u is a
smooth function, whose gradient does not vanish in the neighborhood N (x0) of some point
x0, where x0 ∈ Σt := {x;u(x, t ) = 0}. Let ν(·, t ) be a smooth unit vector field to Σt and x(t ) ∈
Σt ∩N (x0). Differentiating the relation u(t , x(t )) = 0 with respect to t we get

ut +Du
∂x

∂t
= 0. (6.10)

Choose in the neighborhood N (x0), ν = Du
|Du| . Then the scalar curvature with respect to this

choice of the normal satisfies k = −curv(u). Multiplying equation (6.10) by the vector Du we
see that (MCM) is satisfied at point (x0, t0) if and only if ∂x

∂t is collinear with Du and (CS) holds.

6.4.1 Mean Curvature Motion

We rewrite the geometric curve shortening in the form

∂x

∂t
= kν, (CS)

where k denotes the scalar curvature and ν the unit normal to the curve, with ν continuous
and the sign of k guaranteeing that kν points towards the interior of the domain surrounded
by the curve at convex points and towards the exterior at concave points. We are interested in
its equivalence with {

ut = |Du|curv(u), in R2 × [0,∞)

u(·,0) = u0, on R2.
(MCM)

where

|Du|curv(u) = |Du|di v(
Du

|Du| ) =
2∑

i , j=1
(δi j −

uxi ux j

|Du|2 )uxi x j .

We refer to a viscosity solution for the parabolic PDE, which is defined in terms of point-wise
behavior with respect to a smooth test function. We use herein the definition presented by
Morel and Guichard in [GM00], which was proven by Barles and Georgelin [BG95] to be equiv-
alent with the viscosity solutions given by Evans and Spruck in [ES91] and Chen, Giga and Goto
in [CGG91].
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Definition 6.4.1. A function u ∈ C (R2 × [0,∞))∩L∞(R2 × [0,∞)) is a viscosity sub-solution of
(MCM) iff for each φ ∈C∞(R2 × [0,∞)) such that u −φ has a local maximum at (x0, t0) we have

φt (x0, t0) ≤ |Dφ|curv(φ)(x0, t0) if Dφ(x0, t0) 6= 0

φt (x0, t0) ≤ 0 if Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0.

A function u ∈C (R2×[0,∞))∩L∞(R2×[0,∞)) is a viscosity super-solution of (MCM) iff for each
φ ∈C∞(R2 × [0,∞)) such that u −φ has a local minimum at (x0, t0) we have

φt (x0, t0) ≤ |Dφ|curv(φ)(x0, t0) if Dφ(x0, t0) 6= 0

φt (x0, t0) ≤ 0 if Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0.

Remark 6.4.1. The above definition can be further simplified [GM00]: replacing “local max-
imum (minimum)“ with ”strict local maximum (minimum)“ one obtains an equivalent defi-
nition of viscosity solutions. Furthermore, it is enough to consider test functions of the form
φ(x, t ) = f (x)+ g (t ).

Theorem 6.4.1. Let u0 ∈F (Ω). Then the Level Lines Shortening evolution of the function u0,

u(x, t ) = LLS(t )u0(x),∀x ∈R2,∀t ∈ [0,∞)

is a viscosity solution for (MCM) with initial data u0,

Proof. It is sufficient to check that u(x, t ) is a viscosity sub-solution. Analogous assertions hold
for viscosity super-solutions. Let φ ∈C∞(R2×[0,∞)) such that u−φ has a strict local maximum
at (x0, t0). Adding if necessary a constant, suppose that{

u(x0, t0) =φ(x0, t0) =λ

u(x, t ) <φ(x, t ),∀(x, t ) ∈V
(6.11)

where V is a small neighborhood of (x0, t0). The proof is completed by the next three lemmas,
where we distinguish two situations: either the point x0 is inside a flat region of u(·, t0) (lemma
6.4.1), or it belongs to some level line, singular or not of this function (lemma 6.4.3 in the case
where Dφ(t0, x0) = 0, and lemma 6.4.2 when the gradient is not zero).

Lemma 6.4.1. Let x0 be a point in a flat area of u(·, t0). Then

Dφ(x0, t0) = 0 and φt (x0, t0) = 0.

Proof. By Lemma 6.3.3, the function u is constant in a small neighborhood N (x0, t0). From
the local maximum condition we deduce that the point (x0, t0) is a local minimum for the test
function φ ∈C∞, which yields the conclusion.

We consider now the case when x0 belongs to a level line Σλ,u
t0

of the function u(·, t0). By the
construction of LLS(t )u0 this level line is following the classical curve shortening.



164 Chapter 6. Equivalence LLS - MCM

Lemma 6.4.2. Let x0 belong to a level line Σλ,u
t0

of the function u(·, t0). Let φ be a smooth test
function such that at the maximum point (x0, t0) of u −φ

Dφ(x0, t0) 6= 0.

Then φ satisfies

φt ≤ |Dφ|di v(
Dφ

|Dφ| ) at (x0, t0).

Proof. 1. The non-degeneracy condition Dφ(x0, t0) 6= 0 and the regularity of the test function
φ imply by the implicit function theorem that the iso-level set

Σ
λ,φ
t0

= {x ∈Ω;φ(x, t0) =λ}

is a smooth graph in a neighborhood of x0. A unit normal vector of Σλ,φ
t0

at point x0 is

νφ(x0, t0) = Dφ

|Dφ| (x0, t0).

On the other hand, x0 belongs to the smooth Jordan level line Σλ,u
t0

of u. By the local maximum

condition at point (x0, t0) the two graphs Σλ,φ
t0

and Σλ,u
t0

are tangent at x0 and do not intersect in
a small neighborhood of the point. Therefore, the unit normal vectors of these curves coincide
up to their sign. We set

νu(x0, t0) = Dφ

|Dφ| (x0, t0).

Furthermore, for short times t ∈ (t0 −δ, t0 +δ) with δ> 0 small enough, the λ level set of φ(·, t )
denoted by

Σ
λ,φ
t = {x ∈Ωt ;φ(x, t ) =λ}

remains a smooth graph in a neighborhood of x0. By the maximum condition (6.11), Σλ,φ
t stays

on the same side of Σλ,u
t (see Figure 6.4.1).

To fix ideas, suppose that for points x close enough to Σλ,u
t0

, u(x) >λ in the interior domain

bounded by the level line Σλ,u
t0

. Then the λ−level line of the test function Σ
λ,φ
t0

lies locally out-
side the same domain. In addition, the normal vectors νu(x0, t0) and νφ(x0, t0) point inwards
the interior domain bounded by the level line Σλ,u

t0
.

2. We consider now the backwards locations x(t ) on the curves Σλ,u
t of the point x0 ∈Σλ,u

t0
,

curves which represent the curve shortening evolutions of some level line Σλ,u
0 . Let ν(x(t ), t )

be the unit inward vector at point x0 of the level line ∈Σλ,u
t0

. The vector points in the direction
of x0 − x(t ) and hence there exists d(x(t ), t ) such that

x(t ) = x0 −d(x(t ), t )ν(x(t ), t ) (6.12)

By the smoothness property (P1) of Theorem 6.3.1,

lim
t↗t0

ν(x(t ), t ) = νu(x0, t0).
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Figure 6.4: The level lineΣ
λ,φ
t (in red) stays on the same side of the level lineΣλ,u

t (in blue). For t < t0, we

consider the backwards locations x(t ) of the point x0 on the level lines Σλ,u
t as well as the intersections

y(t ) of the normal direction with the level lines Σλ,φ
t of the test function.

Let y(t ) be the intersection point of the outward normal direction −ν(x(t ), t ) (we take here into
account that we have considered upper level sets, i.e. νφ points inwards) with the level curve
Σ
λ,φ
t (situated outside Σλ,u

t0
). Then there exists d(y(t ), t ) such that

y(t ) = x0 −d(y(t ), t )ν(x(t ), t ) (6.13)

and Dφ(y(t ), t ) 6= 0, since Σ
λ,ϕ
t remains a local graph for short times. From the implicit func-

tion theorem we deduce that y(t ) is uniquely defined and varies smoothly in time. Thus the
following limit exists:

lim
t↗t0

y(t )− x0

t − t0
= ∂y

∂t
(t0).

Furthermore, since Σ
λ,φ
t stays on the same side of Σλ,u

t we have

d(x(t ), t ) ≤ d(y(t ), t ).

Taking the inner product with ν(x(t , )t ) in equations (6.12) and (6.13) and dividing by t < t0,
the previous inequality implies that

〈x(t )− x0

t − t0
,ν(x(t ), t )〉 ≤ 〈 y(t )−x0

t − t0
,ν(x(t ), t )〉.

Passing to the limits as t → t0 we have

〈∂x

∂t
(t0),νu(x0, t0)〉 ≤ 〈∂y

∂t
(t0),νu(x0, t0)〉 (6.14)

and taking into account that (CS) gives

〈∂x

∂t
(t0),νu(x0, t0)〉 = ku(x0, t0) (6.15)
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we get

ku ≤ 〈∂y

∂t
(t0),νu(x0, t0)〉.

But Σu
t0

and Σ
φ
t0

are ordered by inclusion and meet at point x0. Thus, their curvatures at x0 are
ordered

kφ(x0, t0) ≤ ku(x0, t0).

On the other hand, from the regularity of the test function and the fact that Dφ(x0, t0) 6= 0 the
curvature at x0 can be expressed as

kφ(x0, t0) =−div(
Dφ

|Dφ| )(x0, t0)

Consequently

−div(
Dφ

|Dφ| )(x0, t0) ≤ 〈∂y

∂t
(t0),νu(x0, t0)〉. (6.16)

3. The sequence of points y(t ) found before belongs to the λ−level set of the test function,
thus we have

φ(y(t ), t ) =λ, for t ∈ (t0 −δ, t0].

Differentiating this identity with respect to t one gets for t = t0

〈∂y

∂t
(t0),Dφ(x0, t0)〉+φt (x0, t0) = 0.

But at the touching point x0 the normal vector to Σ
λ,φ
t0

can be expressed as

Dφ

|Dφ| (x0, t0) = νu(x0, t0).

Consequently the equality above at point (x0, t0) becomes

φt (x0, t0) =−|Dφ|(x0, t0)〈∂y

∂t
(x0, t0),νu(x0, t0)〉

which by inequality (6.16) implies

φt (x0, t0) ≤ |Dφ|div(
Dφ

|Dφ| )(x0, t0)〉.

Remark 6.4.2. If a point x0 is a collapsing point at time t0, then

u(x, t ) =λ,∀t ∈ [t0, t0 +δ)

Therefore the test function ϕ satisfies Dφ(x0, t0) = 0.

Lemma 6.4.3. Let x0 belong to a level line Σλ,u
t0

of the function u(·, t0). Let φ be a test function
such that Dφ(x0, t0) = 0, D2φ(x0, t0) = 0. Then φ satisfies φt (x0, t0) ≤ 0.
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Proof. By Remark 6.4.1 we can assume that the test function has the form φ(x, t ) = f (x)+g (t ).
By assumption, for every (x, t ) in a neighborhood of (t0, x0) we have

u(x, t )− f (x)− g (t ) ≤ u(x0, t0)− f (x0)− g (t0). (6.17)

1. Assume first that Σλ,u
t0

is not reduced to a point and say it is the curve shortening evo-

lution of the original level line Σλ,u
0 . Denote by Σλ,u

t the intermediate evolutions for 0 < t < t0.
Consider, as before, for short times t ∈ (t0 −δ, t0] the points x(t ) belonging to Σλ,u

t such that
x(t ) → x0 as t → t0. Since u(x(t ), t ) = u(x0, t0) from inequality (6.17) we get

g (t0)− g (t ) ≤ f (x(t ))− f (x0). (6.18)

However, since the level line evolves by curve shortening, we also have

x(t ) = x0 + (t − t0)k(x0, t0)ν(x0, t0)+o(t − t0). (6.19)

Substituting this asymptotic expansion in (6.18) and recalling that D f (x0, t0) = 0 yields

g ′(t0)(t0 − t ) ≤ o(t0 − t ),

which implies g ′(t0) ≤ 0. Since g ′(t0) =φt (x0, t0), this proves the announced statement.

2. The only case not treated by the above argument is when x0 is the collapsing point of
some level line Σλ,u

t . Accordingly, t0 is its collapsing time. In this case, the level line does not
have a normal direction at (x0, t0) and consequently equation (6.19) is not valid anymore.

Nevertheless, by Theorem 6.3.1, property (P3), for short times t ∈ (t0−δ, t0) the points x(t )
lie approximatively on a circle of radius R(t ) respectively, with R(t0) = 0. Thus

|x(t )−x0| '
√

2(t0 − t ). (6.20)

Substituting this asymptotic expansion in (6.18) and taking into account that D f (x0, t0) =
0 and D2 f (x0, t0) = 0 we obtain

g ′(t0)(t0 − t ) ≤ o(t0 − t ),

which implies again g ′(t0) ≤ 0.

The Level Lines Shortening can be extended by density to an operator acting on the class
of Lipschitz functions.

Corollary 6.4.1. For each u ∈ Li p(Ω) consider a uniform approximation by very simple func-
tions un

0 ∈ VS (Ω) and define its LLS evolution by

LLS(t )u0(x) = lim
n→∞

(
LLS(t )un

0 (x)
)

,

Then the limit is well defined and is a solution of (MC M) with initial data u0.

Proof. From the previous theorem we know that the LLS evolutions of the very simple func-
tions un

0
un(·, t ) = LLS(t )un

0
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are solutions of the mean curvature equation. By the comparison principle we know that

max
x∈Ω

(un(x, t )−um(x, t )) ≤ max
x∈Ω

(un
0 (x)−um

0 (x)).

Since the sequence of very simple functions is uniformly convergent, we deduce that for each
t > 0, the family {LLS(t )un

0 }n ⊂ VS (Ω) is a Cauchy sequence in the || · ||∞ norm. By the stability
properties of viscosity solutions, the limit function

u(x, t ) = lim
n→∞un(x, t )

is also a viscosity solution of (MC M) and hence satisfies Li p(u(·, t )) ≤ Li p(u0).

6.4.2 Affine Curvature Motion

Similarly, one can connect the affine shortening

∂x

∂t
= k1/3ν, (AS)

where ν(·, t ) is the inner unit normal vector of the curve x(·, t ) and k(·, t ) the signed scalar
curvature corresponding the choice of ν(·, t ), with the affine curvature motion ut = |Du|(curv(u)

)1/3, in R2 × [0,∞)

u(·,0) = u0, on R2.
(ACM)

In the definition of these nonlinear evolutions, for x ∈R, x1/3 stands for sgn(x)|x|1/3.

Theorem 6.4.2. Let u0 ∈F (Ω). Its Level Lines Affine Shortening evolution

u(x, t ) = LL AS(t )u0(x),∀x ∈R2,∀t ∈ [0,∞)

is a viscosity solution for (ACM) with initial data u0.

Proof. The proof of Theorem 6.4.1 is purely geometric, thus the same arguments apply for level
lines affine shortening.

1. When Dφ(x0, t0) 6= 0 we need to estimate from above the right hand side of

φt (x0, t0) =−|Dφ|(x0, t0)〈∂y

∂t
(x0, t0),νu(x0, t0)〉.

The proof is literally the same up to inequality (6.14)

〈∂x

∂t
(t0),νu(x0, t0)〉 ≤ 〈∂y

∂t
(t0),νu(x0, t0)〉.

The only difference it makes with the previous proof is when (AS) comes into play. More pre-
cisely the evolution equation (6.15) at the maximum point (x0, t0) should be replaced by an
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affine shortening evolution

〈∂x

∂t
(t0),νu(x0, t0)〉 = (

ku(x0, t0)
)1/3 (6.21)

On the other hand kφ(x0, t0) ≤ ku(x0, t0) which implies(
kφ(x0, t0)

)1/3 = sgn(kφ)|kφ(x0, t0)|1/3 ≤ sgn(ku)|ku(x0, t0)|1/3 = (
ku(x0, t0)

)1/3

But for the test function φ, kφ(x0, t0) =−curv(φ)(x0, t0). Hence

−(curv(φ))1/3 ≤ 〈∂y

∂t
(t0),νu(x0, t0)〉.

from where we deduce the desired viscosity inequality.

2. For the case Dφ(x0, t0) = 0 and D2φ(x0, t0) = 0 it is sufficient to replace the asymptotic
expansions (6.19) by

x(t ) = x0 + (t − t0)
(
k(x0, t0)

)1/3
ν(x0, t0)+o(t − t0). (6.22)

respectively (6.20) by

|x(t )− x0| '
4
3

√
4

3
(t0 − t ). (6.23)

This concludes the proof.

6.5 Conclusion

We have defined in this chapter the continuous Level Lines Shortening, as the Curve Shorten-
ing operator acting simultaneously and independently on all the level lines of a bilinear inter-
polated image. Furthermore, this operator has been extended to flat areas and functions with
a special topological structure, that we termed very simple functions. The Level Lines (Affine)
Shortening evolution of a very simple function turns out to be a viscosity solution of the mean
curvature motion (MCM), respectively affine curvature motion (ACM), setting thus forth an
explicit connection between the geometric curve evolution and the analytical PDE evolution.

The method does not apply for 3D hypersurfaces, principally because of the topological
changes interfeering during the evolution. It is however readable from the proof that the re-
sults remain true for any increasing function of the curvature. We would therefore like to use
the result for monotonous powers of curvature in order to arrive asymptotically to the simoul-
tanoeus erosion-dilation, which has been an open problem for the last twenty years.

We describe in the next chapter the discrete Level Lines Shortening Algorithm and show it
performs accurate sub-pixel evolution by mean curvature motion. The main goal of the im-
plementation is to obtain and move level lines with arbitrarily high sub-pixel precision, over-
coming thus all the drawbacks of finite difference schemes based on pixel approximations.





CHAPTER 7

Level Lines Shortening Algorithm.
Accurate Curvature Estimates

It is interesting thus to follow the intellectual truths of analysis in the phenomena of nature. This

correspondence [...] makes one of the greatest charms attached to mathematicall speculations.

Pierre-Simon Laplace (1749-1827)

Abstract: This chapter describes the discrete Level Lines Shortening (LLS) Algorithm and its
variant the Level Lines Affine Shortening (LLAS). The numerical chain starts from a digital im-
age, proceeds to the level lines extraction and to their independent evolution by discrete Curve
Shortening or Affine shortening and ends up with an image reconstruction from the evolved
level lines. Following [CM10a], a fast numerical method for extracting the topographic map is
presented. We complete here their work with a fast inverse algorithm, of image reconstruction
from a family of l evel lines (at arbitrary resolution), provided it is embedded in a tree struc-
ture. We show that LL(A)S provides an accurate visualization tool of image curvatures that we
term an Image Curvature Microscope. As an application we present some illustrative example
of image restoration and visualization. Noise, JPEG artifacts, and aliasing will be shown to be
nicely smoothed out by the subpixel curvature motion. 1

Résumé : Ce chapitre présente l’algorithme discret de Level Lines Shortening (LLS) et sa vari-
ante Level Lines Affine Shortening (LLAS). Le schéma numérique part d’une image pour laque-
lle on extrait toutes ses lignes de niveau, applique un Curve Shortening ou Affine Shortening
discret, indépendamment pour chaque ligne de niveau, et reconstruit une nouvelle image à
partir des ces évolutions. Suivant [CM10a], nous présentons une méthode numérique rapide
pour extraire la carte topographique. Nous complétons leur travail avec un algorithme inverse,
de reconstruction d’une image à partir d’une famille arbitraires de lignes de niveau, organisées
dans une structure d’arbre. Nous montrons que LL(A)S fourni un outil précis de visualisation
des courbures, que nous appelons un Microscope des Courbures d’une Image. Comme applica-
tion, nous montrons quelques exemples significatifs de restauration et visualisation d’images.
Notamment, l’évolution sous-pixélienne peut servir pour réduire le bruit, les artefacts JPEG et
l’aliasing dans les images.

1This corresponds to the article An Image Curvature Microscope, to appear in SIAM Multiscale Modeling and
Simulation, joint work with Pascal Monasse and Jean-Michel Morel. [CMM11]
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7.1 Introduction

Caselles, Coll and Morel [CCM96] discussed the physical generation process of images as a
combination of occlusions, transparencies and contrast changes. Subsequently, they defined
[CCM99] a contrast invariant representation of digital images in terms of a topographic map,
proposed several vizualization strategies and established some stability results of the topo-
graphic map under digitization. The main objects of their analysis were the level lines of an
image, as the boundaries of its level sets.
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A study by Kronrod in 1950 shows that if the function u is continuous, then the isolevels sets
{u = λ} are endowed with a tree structure when ordered by inclusion. These isolevel sets are
not necessarily curves; they are curves, however, if u has continuous first derivatives. Monasse
et al. [CCM03] extended Kronrod’s result for lower semicontinuous and upper semicontinuous
functions and proved that the rees of upper and lower level sets can be merged into a single
one, called the tree of shapes.

This representation is well suited for shape analysis and recognition, since it is based on the
geometrical information of images. In particular, for block and bilinear image interpolations
the level lines have the following properties: they are composed of a finite number of rectifiable
Jordan curves, and they are nested. However, since the level lines of digital images (zero order
interpolates) suffer from pixelization effect, shapes cannot be accurately described and thus
bilinear level lines are prefered.

Based on this image representation, we describe an Euclidian and affine invariant evolu-
tion of an image by mean curvature and affine curvature, operating directly on level lines. The
discrete Level Lines Shortening algorithm starts from a digital image, proceeds to the level lines
extraction and to their independent evolution by discrete curve shortening or affine shorten-
ing and ends up with an image reconstruction from the evolved level lines. In addition, it pro-
vides an accurate visualization tool of image curvatures computed on the smoothed level lines.
This, hopefully, advances Attneave’s program and yields what we shall term a curvature image
microscope, since level lines have floating coordinates and the image can be reconstructed
from them at any precision. The above described numerical chain was outlined in [KM99] and
also in [LMMM03] where shape recognition algorithms were explored. The chain will be com-
pleted here with a subpixel image reconstruction from an arbitrary tree of level lines, which
results in a powerful visualization tool.

There is something slightly paradoxical in smoothing an image to see it better. Never-
theless, noise, JPEG artifacts, and aliasing (pixelization effects) will be shown to be nicely
smoothed out by the subpixel curvature motion. As anticipated by Attneave, the level line
evolution eliminates the erratic curvatures and yields a curvature more conform to our mul-
tiscale contour perception. Finally the level line visualization (after smoothing) reveals many
hidden image details which can be zoomed in, thanks to the grid independent representation
of the image by its level lines. The resulting algorithm is fast and can be tested on line1 2.

This chapter describes in detail the discrete Level Lines Shortening (LLS) Algorithm and its
variant the Level Lines Affine Shortening (LLAS). In particular, the bilinear interpolation of gray
level images is described. Then, following [CM10a], a fast numerical method for extracting the
topographic map is presented. We complete here the work with a fast inverse algorithm, of im-
age reconstruction from a family of level lines (at arbitrary resolution), provided it is embedded
in a tree structure. The Image Curvature Microscope is described in section §7.4 where many
numerical comparisons are performed. Section §7.5 is devoted to illustrative experiments on
a choice of image parts containing contours, shapes and textures.

21http://www.ipol.im/pub/algo/cmmm_image_curvature_microscope/
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7.2 The Level Lines Shortening Algorithm

We set forth a grid independent evolution of a digital image by curvature motion, which cor-
responds precisely to the analytical framework presented in Chapter 6. This image processing
algorithm, Level Lines Shortening (LLS) or Level Lines Affine Shortening (LLAS), first extracts
all level lines of a digital image, with a number of levels sufficient to grant an exact recon-
struction of the initial image. Then the algorithm simulates an image evolution by moving
independently and simultaneously all of its level lines by curve shortening (CS) (resp. affine
curve shortening (AS)). The evolved image is eventually reconstructed from its evolved level
lines. We have just seen in Chapter 6 that the image reconstructed from the evolved level lines
is a viscosity solution of the mean curvature motion (MCM) (resp. affine curvature motion
(ACM)) provided that the level lines at almost all levels evolve by curve shortening (resp. affine
shortening).

The level lines (affine) shortening chain LL(A)S, described in Algorithm 7, is based on a
topological structure, the inclusion tree of level lines as a full and non-redundant represen-
tation of an image, and on a topological property, the monotonicity of curve shortening with
respect to inclusion. The hierarchy of the level lines is therefore maintained while performing
the smoothing. Thus, the reconstruction can start with the largest level line, namely the frame
of the image, and continue by filling from top to bottom in this inclusion the interior of each
level line. At each step the lamina bounded by the current level line is filled in with its own
level, and these levels are updated when passing to its descendants.

Algorithm 7: Level Lines Shortening (LL(A)S) Algorithm

Input: Original Image u0.
Output: The LL(A)S evolution of u0 at scale t : u(·, t ).
Extract the tree of level lines {Σλ,i

0 }i∈Fλ,λ;1

for Level line Σλ,i
0 do2

Σλ,i
t = Discrete Curve/Affine Shortening of (Σλ,i

0 );3

for Evolved Level line Σλ,i
t do4

fill the interior of level line Σλ,i
t .5

LLAS is illustrated in Figure 7.1. From left to right we perform each step of the numeri-
cal chain. The level lines were extracted at half-integer gray values and were chosen with a
quantization step q = 4. The Moisan affine plane curve evolution [Moi98] is then applied in-
dependently to all level lines, at renormalized scale s = 4. This scale is chosen so that a circle
with radius r = 4 (where the unit is given by the length of a pixel edge) disappears at scale s = 4.
This normalization by the result is numerically important for comparing numerical schemes
with very different settings. A new image which has exactly these curves as level lines is finally
reconstructed. The result is by Theorem 6.4.1 an affine invariant curvature motion (ACM) of
the original image. The rest of this section is devoted to several crucial details of LL(A)S regard-
ing the level lines extraction, their evolution, and the reconstruction algorithm.
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(a) (b)

(c) (d)

Figure 7.1: Illustration of the LL(A)S numerical chain. (a) Original image. (b) Bilinear level lines
extraction. (d) Simultaneous and independent smoothing of level lines by affine shortening.
(c) Image reconstructed from shortened level lines.
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Figure 7.2: Gray levels for a piecewise bilinearly interpolated image. Three different sets of level lines
were computed. Left: gray levels from 10 to 100 with step 10. Observe how some of the level lines (the
ones at gray level 70) follow the dual edges, producing an effect similar to pixelization. Middle: level
lines were computed at gray levels different from those of the original image but we get 90o crossings
between level lines due to the presence of a saddle point. Nevertheless, these saddle points will always
appear inside the dual pixels and the curves never go along the grid of the digital image. Right: gray
level 11 to gray level 91 with quantization step 10. Pixelization effect no longer arises since level lines
are computed at gray levels different from those of the original image.

7.2.1 Bilinear Interpolation

The simplest image interpolation that preserves its continuity is the bilinear interpolation on
the dual pixels. (A dual pixel is any square whose vertices are centers of contiguous pixels).
The bilinear interpolation in the dual pixel is written in the form

u0(x, y) = ax y +bx +c y +d

where the parameters a,b,c,d are computed from the values taken at the four vertices of the
dual pixel, which are normal pixel values. The bilinear interpolated image is the concatenation
of the bilinear interpolations on all dual pixels; it is continuous, but its gradient may present
discontinuities.

7.2.1.1 Bilinear Level Lines

The equation for a level line at level λ of the bilinear interpolated image inside a dual pixel can
be written

a(x −xs)(y − ys)+ (λs −λ) = 0

or
bx + c y + (d −λ) = 0.

In the first case, level lines are pieces of hyperbola, of asymptotes x = xs , y = ys . When λ =
λs the level line consists of two orthogonal straight lines crossing at the saddle point (xs , ys),
provided this point is inside the dual pixel. In the second case, level lines are straight lines. This
may lead to visual pixelization effects, for instance when level lines pass through the center of
a pixel and follow a dual-edge (see Figure 7.2). This phenomenon will be attenuated by taking
for λ only half-integer values (given that the digital image has integer values).
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7.2.1.2 The Inclusion Tree

One can decompose an interpolated image into its level lines at predefined levels. A fast al-
gorithm, the Fast Level Set Transform (FLST) performing the decomposition into a tree of
shapes, is described in [CM10a] and [MG98]. The image is parsed into a set of parametric
Jordan curves. This set is ordered in a tree structure, induced by the geometrical inclusion.

We say that a curve Σλ1 is a child of the curve Σλ2 and we denote

Σλ1 ≺Σλ2

if its interior is included in the interior of the latter. In addition, each curve has an assigned
tag ±1 according to whether it is the boundary of a connected component of a lower level set
(sgn(Σλ) =−1) or upper level set (sgn(Σλ) =+1).

Figure 7.3: Tree of bilinear level lines.

For each gray level λ ∈N+1/2 there corresponds a finite set Fλ of level lines {Σλ,i
0 }i∈Fλ . Each

level line Σλ,i
0 is stored as a set of ordered points leaving the level line interior on the left hand

side. Thus, the tree of level lines is given by a finite set of tagged polygonal lines, indexed by
half-integer gray values

T0 = {Σλ,i
0 ; i ∈ Fλ,λ ∈N+1/2}. (7.1)

An inclusion tree of bilinear level lines is displayed in Figure 7.3.

7.2.2 Direct Extraction Algorithm of Bilinear Level Lines

We describe a simple algorithm for the extraction of level lines of a bilinear interpolated image,
alternative to the Fast Level Set Transform. This algorithm requires a quantization avoiding
initial levels of the image. The algorithm is in two phases: it first extracts the bilinear level lines
then it orders them in a tree.

2This section is taken from [CM10a] and it was added here for the reader’s convenience.
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7.2.2.1 Extraction

The extraction of a level line relies on these observations:

1. the level line is not a regional extremum, so that an orientation can be chosen, for exam-
ple leaving the interior of the level line on the left hand-side;

2. the level line meets dual edges at non endpoints, so that when we ’enter’ a dual pixel by
a dual edge, we can compute from which other dual edge to ’exit’.

Considering we get into the dual pixel through some dual edge, the exit dual edge is in front, on
the left or on the right depending on the value of λ with respect to levels at both other corners
of the dual pixel. We may store for the line only its list of intersections with dual edges.

To avoid extracting several times the same level line, we put markers at all intersection
points of extracted level lines with dual edges. The algorithm starts by considering all dual
edges at the boundary of the image. If a level of interest λ is between the levels at endpoints of
the dual edge, we follow the level line, marking intersection points with dual edges. We then
close the level line by the shortest path along the image boundary. Finally we do the same for
interior dual edges. For them, we detect closure by checking the marker at exit dual edges.

7.2.2.2 Ordering the Level Lines in a Tree

To build the tree structure of the extracted level lines, we consider all intersection points of
level lines with vertical edgels and order them. While scanning a column of dual edges, we are
in the interior domain of a level line if we have crossed it an odd number of times. If we meet
a level line that has no parent yet, its parent has to be the last level line we are in. For the root,
we add the boundary of the image as a level line to the list L at the beginning.

Let L be the list of level lines. To describe the intersection y of a level curve Σi d , having
index i d in the list L, with dual edge at column i+0.5, we use the triplet (i , y, i d). The main idea
used in the ordering algorithm is to look for the innermost shapes that we denote generically
by Σ. The arrow Σ← Σ̃ shorlty says that we set the curve Σ to be now Σ̃. And finally, we denote
the parent of a level line by Par ent (Σ).

Algorithm 8: Ordering the level lines in a tree.

Input: List L of bilinear level lines Σ
Output: Fill tree structure
Collect all (i, y, id) in array V;1

Order V lexicographically by key (i, y);2

Σ←;;3

for all (i , y, i d) ∈V do if Σ=Σi d then4

Σ← Par ent (Σ);5

else if Σ 6= ; and Par ent (Σi d ) =; then6

set Σi d as a child of Σ;7

Σ←Σi d .8
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This algorithm relies on the fact that the quantization is chosen so that each level line
crosses dual edges, but does not contain any. For this, it is sufficient that it avoids the lev-
els at the centers of pixels (the initial data). In particular, regional extrema of the image cannot
be extracted by the algorithm.

7.2.3 Independent Evolution of All Level Lines

As already described, the affine shortening is numerically defined as an alternate filter of affine
erosion and affine dilation. Up to re-sampling issues, the scheme is monotonous with respect
to geometrical inclusion and therefore the tree structure of the level lines is preserved. It con-
sists of a finite set of Jordan curves, denoted by

Tn = {Σλ,i
n ; i ∈ Fλ,λ ∈N+1/2}. (7.2)

Figure 7.1.(c) displays the affine evolution, using Moisan’s robust algorithm [Moi98], of the
level lines appearing in Figure 7.1.(b). As can be observed, the curves become smoother,
oscillations due to the grid reduce, and curves with small perimeter vanish. The inclusion
tree structure is clearly preserved under the affine shortening evolution. The same chain ap-
plies to the curve shortening by the Mackworth-Mokhtarian scheme [MM92]. With a fine
enough curve sampling it is consistent with the curve shortening and therefore also numer-
ically monotone.

7.2.3.1 The Fattening Effect

Bilinear level lines can present self-intersections at image saddle points. In that case, LLS de-
velops a non-empty interior, meaning that two distinct touching curves instantly tear apart,
and that the space liberated becomes a flat region with a grey level equal to the level line value.
Thus the level line “fattens”. This effect is easily explained by considering the classic evolution
of the level curves just above and just below the saddle curve.

Figure 7.4: Fattening effect. From left to right: the original image and its extracted level lines with
quantization step s = 16, their independent evolution by affine shortening at renormalized scale l = 8
and the image reconstructed from the evolved level lines. Observe that distinct, touching level lines
tear apart and non-empty interiors appear at the saddle points. At these points four squares, two black,
two white, meet initially by their corners. After evolution, fattened grey regions are liberated by the
retraction of the square level lines surrounding the black and the white squares.

Let Σµ be a level line passing through a saddle point (see Figure 7.4). Assume that the
curve is the limit of level lines from above and from below. More precisely, suppose (e.g.) that
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for slightly higher levels λ the interiors of level lines Σλ include the interior of Σµ and that for
smaller levels each connected component of the interior of Σµ contains the interiors of Σλ (this
is always the case if u0 is a bilinear interpolation). Then the exterior curve will evolve as the
limit of the level lines surrounding it from the outside and simultaneously all interior (touch-
ing) Jordan curves will evolve as the monotone limits of interior level lines. Consequently, they
will tear apart from the exterior curves, thus liberating a flat region.

7.2.4 Image Reconstruction from a Tree of Level Lines

The algorithm described in this section performs an exact image reconstruction from a topo-
graphic map, i.e. from an arbitrary family of Jordan curves organized in a tree structure with
respect to geometrical inclusion.

The reconstruction starts from a topographic map, namely a family of discrete level lines
(typically obtained after (affine) curve shortening) {Σλ,i }i∈Fλ,λ∈Λ organized in an inclusion tree
structure. This tree is walked down (parent before children) and the interior of the current
level line is filled in with its level λ. Using that order, each level line interior is painted before
its descendants, ensuring that its private pixels are at the correct level while non-private pixels
get painted over by the children. This yields an exact reconstruction for any digital image ud

from its level lines at half-integer levels.

Theorem 7.2.1. Let T = {Σλ,i ; i ∈ Fλ,λ ∈N+1/2} be the tree of bilinear level lines associated to
ud . For every x let λ be such that x ∈ Int(Σλ) and ∀Σλ̃ ≺Σλ, x 6∈ Int(Σλ̃) and define

ũd (x) =
{

λ−1/2, if sg n(Σλ) =−1
λ+1/2, if sg n(Σλ) =+1

Then ud ≡ ũd .

A closed curve Σ is stored as a set of ordered points {Pk (xk , yk )}1≤k≤N with N depending
on Σ. The real numbers xk and yk are the floating point coordinates of the vertex number k of
the polygon Σ. We need to fill in all pixels with integral coordinates ( j , i ) inside the polygon.
To avoid any ambiguity, the algorithm secures that yk is never an integer by translating when
necessary Σ by a tiny amount ε vertically or horizontally, at the price of a minor numerical
uncertainty in the reconstructed image. The filling in of each curve is performed by a fast ray
casting algorithm described below.

7.2.4.1 Polygon Intersections with the Grid

The goal of Algorithm 9, which is a preliminary to the filling algorithm, is to find the intersec-
tions of the polygonal level line with all horizontal lines y = i . For any given i the intersection
is in fact the intersection of a segment [Pk Pk+1] of the polygon with the line y = i . These in-
tersections are ordered by their abscissas so that xi

1 ≤ xi
2 ≤ ·· · ≤ xi

p , where p is even because Σ

is a closed curve. This gives a simple and fast decision rule: a pixel ( j , i ) is surrounded by the
polygon if and only if j is within an odd interval [xi

2k+1, xi
2k+2].



7.2. The Level Lines Shortening Algorithm 181

Algorithm 9: Intersections of a polygon Σ with the grid

Input: Vertices Pk (xk , yk ) of polygon Σ

Output: For each i , the ordered list Li of points of Σ on the line of equation y = i
for all i do Li ←;;1

for all segments [Pk Pk+1] do2

for i ∈ [yk , yk+1]∩N do3

(x, i ) ← [Pk Pk+1]∩ {y = i };4

Insert x in Li ;5

for all i do sort list Li6

7.2.4.2 Filling the Interior

Line by line all odd intervals on Li are enumerated and filled in with level λ±1/2 at all pixels
with ordinate i whose abscissa is inside such an interval, as shown in Algorithm 10.

Algorithm 10: Filling polygon Σ

Input: Sorted lists Li of intersections of Σ with lines {y = i }, level λ
Output: Pixels inside polygon Σ are at level λ±1/2, pixels outside unchanged
for all i do1

for all xi
2k+1 ∈ Li do2

for j ∈N∩ [xi
2k+1, xi

2k+2] do3

pixel ( j , i ) ←λ±1/24

Due to the inclusion principle it is possible to go from the 2D topology of the level lines to
the 1D topology on a dual edge and conversely. Suppose that two or more level lines belonging
to different gray levels intersect a dual edge, leaving the same data points outside and inside:
denote them Pi n and Pout (Figure 7.5(a)). Then the restored gray value at Pout is the gray value
associated to the largest shape ordered by inclusion which leaves the pixel outside, whereas
Pi n belongs to the smallest shape that includes the pixel. If curves with different orientation
cross the same dual edge it is enough to update the gray value at Pi n . This conforms to our
choice of filling the interiors of the lines in the order given by the level line inclusion tree.

Figure 7.5: The level line topology is reflected in the 1D ordering of their intersections with dual edges.

Numerical examples of image reconstruction from the tree of evolved level lines are dis-
played in Figure 7.1 and Figure 7.4.
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7.3 Numerical Properties of the LLS Numerical Chain

7.3.1 Fixed Point Property

The filling algorithm itself is a stand alone image reconstruction method, working for every
family of curves endowed with levels and a tree inclusion structure. To check its consistency,
it is enough to take any digital image u0, to extract its level lines at quantized gray levels, with
quantization step s = 1 but without applying any evolution. Then the digital image is recon-
structed exactly from its level line tree by the filling algorithm.

7.3.2 Local Comparison Principle and Regularity

The order preserving property or inclusion principle is the main structural requirement of a
level line evolution algorithm. It basically prevents the crossing of two different level curves
and therefore permits the construction of a unique image having a prescribed set of level lines.
Some level lines may present multiple crossings at saddle points, in which case the level lines
shortening develops a non-empty interior. The phenomenon is due to an instantaneous tear-
ing apart of two distinct, touching curves. Any level curve with self-contact points develops a
non-empty interior by CS (curve shortening), which implies the formation of a flat area (see
Figure 7.6.).

We compare in the following the LLS algorithms with the FDSs for mean curvature given
by Guichard et al. in [GM97]. The finite difference schemes (FDS) tested here have been op-
timized by its authors It creates new grey levels and blurs out the edges. It is true that the full
contrast invariance of an FDS is restored by its stack filter. Nevertheless, spurious diffusions
occur around the image extrema and at T-junctions or X-junctions. At saddle points both algo-
rithms create new extrema, and therefore spurious level lines. Only LLS resolves this issue, by
separately evolving the level lines and then reconstructing the image.

Figure 7.6 compares various implementations of the mean curvature motion on a checker-
board image (a) with calibration of the numerical scales. The left images of each pair show the
evolutions of the image by the various implementations of mean curvature motion, while the
right ones display a zoom at the X-junction and the corresponding level lines. The iterated me-
dian filter (a) instantaneously stops and leaves the checkerboard invariant. This may look fine,
but it is not consistent with curvature motion. LLS (b) is performed with a 1D gaussian kernel
of standard deviation σ= 2. The level lines are encoded with a p = 5 points per pixel precision
and displayed with a s = 4 quantization step, starting at an offset o = 96 . The figure next shows
the effect of FDS (c) at normalized scale l = 3, the FDS stack filter (d) at normalized scale l = 3,
and finally the LLS evolution with the same normalized scale. At X − j uncti ons, both FDS and
the FDS stack filter create spurious diffusions, while LLS doesn’t. With LLS a grey region de-
velops at the junction, because level lines corresponding to different gray levels instantly tear
apart. This is not necessarily gratifying perceptually, but it is mathematically consistent.

Figures 7.7 and 7.8 on a binary fingerprint put in evidence the failures of FDSs. Up to
some critical scale, FDS stack filters restore the correct topology, but in case of fast diffusions
they break off as well. Oscillating ridges with high gradient amplitudes make it difficult to
keep separated the various connected components during the smoothing process. A visual
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(a)

(b)

(c)

(d)

Figure 7.6: The four pairs present various implementations of the mean curvature motion on a
checkerboard image (left column) and zooms at an X-junction, with its level lines overprinted on the
image (right). From top to bottom : (a). original image (the zoom is by bilinear interpolation), (b).
Level lines shortening, (c). Finite difference scheme, (d) FDS stack filter. Only LLS does not create new
extrema.
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Figure 7.7: Various implementations of the affine curvature motion. the original image is displayed
alone in the left column. In the other columns, from left to right: LLAS, FDS and FDS-stack filter at
renormalized scales l = 4 (top) and l = 8 (bottom). In the case of the affine curvature scale space, the
gradient amplitude keeps down ridge diffusion, unlike the mean curvature scale space. In general the
affine smoothing performs better than the curvature motion (compare with Figure 7.8).

Figure 7.8: Various implementations of the mean curvature motion. Are compared (from left to right):
LLS, FDS, the FDS-stack filter and the median filter at renormalized scales l = 4 (top) and l = 8 (bottom).
Up to some critical scale, the stack filters restore the correct topology, but in case of fast diffusions
they break off as well. Observe that spurious diffusion mixing the ridges occurs in all cases except LLS,
which tears apart ridges and emphasizes crossovers. A comparison with Figure 7.7 shows that the affine
curvature schemes perform all better than their analogous curvature schemes.
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comparison of these two figures proves abundantly that the affine curvature is a much better
shape preserver than the curvature motion.

7.3.3 JPEG Artifacts Reduction on Color Images

The prevailing JPEG 1992 image coding format aims at compressing images while maintain-
ing acceptable image quality. This is achieved by dividing the image in 8×8 pixels blocs and
applying a discrete cosine transform (DCT) on the partitioned image. The resulting coeffi-
cients are quantized. In particular the less significant coefficients are set to zero. This process
causes several types of artifacts such as Gibbs oscillations, staircase noise along curving edges,
and checkerboard patterns (which are nothing but cosine functions). The phenomenon is il-
lustrated in Figure 7.9. LLS seems to be a useful postprocessing technique for JPEG artifact
reduction. In color images LLS is applied independently to each color channels.

(a) (b)

Figure 7.9: (a). Original image, suffering of JPEG artifacts such as Gibbs oscillations, staircase noise
along curving edges and checkerboarding. (b). LLAS is applied separately to each RGB channel. Al-
though diffusions occur at junctions, LLAS considerably reduces these artifacts.

7.3.4 Accurate Mean Curvature Evolution

The main goal of the implementation is to obtain and move level lines with arbitrarily high
sub-pixel precision. Indeed, level lines are encoded as polygons whose vertices have double
precision coordinates. Moving simultaneously level lines extracted with high sample precision
allows straight level lines with high gradient to stand still with LLS, whereas they are diffused
by FDS, even in its stack variant.

The phenomenon is shown in Figure 7.10 on a photograph of one of Botticelli’s paintings.
Are displayed the original detail (left column) and the differences in absolute value between
the original and its evolutions by LLS (middle column) and by the FDS stack filter (right col-
umn). The FDS stack filter was applied at normalized scale l = 2 and the LLS evolution at an
equivalent normalized scale. For FDS the level lines were quantized at half integer levels with
a step s = 1 and extracted with p = 5 points per pixel. Zooms of the highlighted regions in the
original image show fast diffusions of shapes for stack FDS, even though the curvature is zero.
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(a)

(b)

(c)

(d)

Figure 7.10: Zooms on three highlighted details in the painting “Three miracles of St. Zeno-
bius” by Sandro Botticelli (Left). Middle column: the differences in absolute value between the
original image and the evolutions by level line shortening. Right: same result, after applying
the FDS stack filter. Even though the curvature is zero, the FDS stack filter lets level lines with
high gradient evolve, while with LLS straight lines stand still.
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See for example the window frames (b) the trees in the background (c) or the finely textured
bricks (d).

7.4 An Image Curvature Microscope

Whenever we talk about curvatures in a digital image, we actually refer to the curvatures of
the level lines associated to the image. Yet, most curvature computation algorithms are based
on finite difference schemes (FDS) with formula (5.1). But with FDSs, the curvature depends
on the gray values of a whole neighborhood. Consequently, high oscillations along transverse
level lines do appear.

For the sake of precision, curvatures should be computed directly on level lines and not on
a discrete grid. A polygonal line approximation followed by uniform and fine sampling allows
one to compute reliable curvatures, but only after level line smoothing. This smoothing is
necessary because the initial level lines present oscillations due to the initial aliasing and to the
interpolation itself. Thus curvatures wouldn’t correspond to our visual perception. But, more
fundamentally, the perception of curvature is and must be multiscale. The striking difference
between an FDS result and an LLS result is displayed in Figure 7.11. With LLS, the curvature is

(a) (b) (c)

Figure 7.11: The curvature color display rule. Zero curvatures are displayed in yellow, positive cur-
vatures are shown in a gradation from yellow to red, and negatives from yellow to green. The initial
image (a) had its curvatures computed in two different ways: by an FDS by formula (5.1) (b), and by LLS
(c). In the first case the curvature presents oscillations, whereas the second result is coherent with our
perception.

computed at each vertex of each level line. A curvature image is then created by associating to
each dual pixel an average of all curvatures computed in it.

7.4.1 Discrete curvature for a polygonal line

We recall that each level line is stored as a set of ordered points

Σ= {Pi (xi , yi )}i=0..n , with P0 = Pn .
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(a) (b) (c) (d)

Figure 7.12: The curvature map numerical chain: (a) original image, (b) level lines, uniformly sampled,
(c) evolved level lines, (d) curvature image.

The simplest discrete scalar curvature ki computed at each vertex Pi is obtained by taking the
triple (Pi−1,Pi ,Pi+1) and computing ki as the inverse of the circumscribed radius Ri of this
triangle. Set −→ui = (u1

i ,u2
i ) = −−−−−→

Pi−1Pi and its length ui = |−−−−−→Pi−1Pi |, respectively −→vi = (v1
i , v2

i ) =
−−−−−−→
Pi−1Pi+1, with the corresponding length vi = |−−−−−−→Pi−1Pi+1|. Then

Lemma 7.4.1. The curvature at vertex Pi is given by

ki = 2
u1

i u2
i+1 −u2

i u1
i+1

ui ui+1vi
. (7.3)

7.4.2 Curvature map

The algorithm computing the curvature map of any digital image is based on LLS. The image
level lines at given quantization levels are first extracted, then uniformly sampled with fine
sub-pixel step, and smoothed by affine or curve shortening. Curvatures are then computed at
each vertex of each level curve and associated to the dual pixels containing the vertex. A curva-
ture image is eventually created by attributing to each dual pixel the average of all curvatures
computed in it.

Algorithm 11: Curvature map

Input: Original Image u0.
Output: Curvatures u0 at scale t : u(·, t ).
Extract the tree of level lines {Σλ,i

0 }i∈Fλ;λ;1

Sample uniformly each level line Σλ,i
02

for Level line Σλ,i
0 do3

Σλ,i
t = Curve Shortening Flow (Σλ,i

0 );4

for Σλ,i
t = {Pi (xi , yi )}i=0..n do5

ki = 1/Ri ;6

for each dual pixel do7

k = mean(ki1 ,ki2 , ...,kim ).8

Topological curvatures and scalar curvatures can be computed as well. Indeed, the infor-
mation encoded in the tree enables the computation of signed curvatures, where the sign is
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either given by the gradient ascent, or by the topological orientation of the curve. In the first
case, the curvature changes sign when the grey scale is reverted. Indeed, curv(−u) =−curv(u).
Thus, a black disk and a white disk on grey background have opposite curvatures. The topo-
logical curvature is instead invariant to contrast changes. But it is nonlocal, since its sign de-
pends on the global curve topology and not on the local curve shape. Figure 7.13 illustrates
the difference on a famous Julesz texture discrimination experiment. On the left image, a pre-
attentively undiscriminate texture pair. The “10” in random orientations surround a square
made of “S”. The middle image shows the scalar curvature defined by formula (5.1). This cur-
vature is identical for both shapes. The topological curvature (right) changes because the “0”
have an interior circle missing in the “S”. This proves that our perception does not compute
the topological curvature. If it did, we would discriminate the two textures.

(a) (b) (c)

Figure 7.13: (a) Original image, Julesz pair of undiscriminate textures (b). Signed curvatures, no dis-
crimination (c). Topological curvatures: probably not computed in our perception, it would discrimi-
nate the texture pair.

7.4.3 Comparison with FDSes

One could object that the above shortcomings of FDSs can be fixed by interpolating the image
on a very thin grid. All schemes being consistent eventually should give similar results. The
comparison would be fair because the LLS method actually starts with a subpixel level line
description, equivalent to sampling on a finer grid. Nevertheless, curvature computation by
FDS wouldn’t work satisfactorily, even after a finer interpolation, and even if the smoothing
has been done by LLS, which has the advantage of being less diffusive.

To prove this, we run an FDS and LLS on a very simple geometric image, as displayed in
Figure 7.14. The FDS was the scheme implemented in [17], which creates minimal smoothing.
The LLS was the affine level line motion, whose algorithm can now be tested online. The Level
Lines Affine Shortening Algorithm was applied to the original image at the normalized scale
l = 2. In Figure 7.14 the curvature map is estimated by a direct computation on the shortened
level lines and compared to the curvature map computed on the smoothed image by the FDS
(approximating the directional derivative uξξ with a 3×3 scheme). On the other hand an FDS
with grid refinement was tested in Figure 7.15. The image was zoomed in by a factor Z = 2
using bilinear interpolation. The finite difference scheme for the affine curvature motion was
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run and the curvatures computed by FDS, before and after smoothing.

Figure 7.14: From top to bottom and left to right: the original image and its filtering by LLAS at nor-
malized scale l = 2; the curvature map estimated by a direct computation on the shortened level lines,
as well as the curvature map computed on the LLAS image by FDS.

Figure 7.15: From top to bottom and left to right: the original image sampled on a thinner grid using
a bilinear zoom by a factor Z = 2 and its filtering by FDS for affine curvature motion at renormalized
scale l = 4; the corresponding curvature maps of the images (before and after FDS filtering), computed
with a 3×3 stencil, as before.
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As can be seen by comparing Figures 7.14 and 7.15, the difference between both smoothed
images can be perceived by the human eye as a slight blur with the FDS, due to the diffusion
term in the FDS. Note however (by comparing the lower -right images in both figures) that a
large diffusion occurs after several iterations of the finite differences scheme. Of more concern,
however, is the fact that wrong curvatures appear everywhere with the FDS: see how red and
green color alternate on all boundaries. With LLS, in contrast, the computed curvatures are
coherent with the geometry.

7.4.4 Curvature Microscope

By performing a scaled zoom on the considered image one can expect to have one level line
passing through each dual pixel, and thus to observe more and more exactly the curvatures
at microscopic scale. The fact that all level lines are polygons with real coordinates allows one
to zoom in the image at an arbitrary resolution. This is necessary to explore visually the intri-
cacy of the local image structure. Hence the name of curvature microscope given to the final
visualization.

Since the curve shortening is only defined for closed curves, a rule is needed for the level
lines finishing on the image border. One could close these lines by joining their endpoints by
(e.g.) a geodesic on the image boundary. But such junctions would create strong curvatures
at the meeting points of the level lines with the image frame. To avoid this phenomenon a
standard extrapolation is performed by flipping the image left and right, up and down and
extending it in that way by a wide band.

For better rendering, the curvature map is printed over the smoothed image and the latter
is attenuated (its gray values are concentrated around 128). Curvature values shade from red
to green as follows: positive curvatures scale from red down to yellow; negative ones go down
from yellow to green. Thus yellow means a small curvature. The image curvature microscope
is a complex visualization tool dealing with three scale space parameters

1. the zooming factor;
2. the quantization step of the level lines;
3. the renormalized smoothing scale (the scale l at which a circle of radius r = l vanishes).

These parameters vary according to the total variation and the gradient amplitude of the image
and therefore cannot be a priori fixed for any type of image. However, the zooming factor is
proportional to the renormalized smoothing scale. The quantization step can be fixed once
for all.
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(a)

(b)

(c)

Figure 7.16: Image curvature microscope. (a) the original image, 2X zoom and 4X zoom of the
up-right corner; (b) curvature map computed on the original level lines with a quantization
step s = 36; (c) curvature map computed on shortened level lines at normalized scales l = 1,
l = 2, and l = 4 (the zoom factor must be equal to the normalized smoothing scale). The left
column permits to observe the curvature densities. A zoom is necessary to observe the single
curvatures. The middle column and right column focus more and more on shape and texture
details.
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7.5 Image Restoration and Vizualization

After processing the pixelized level lines become accurate curves with sub-pixel control points,
whose curvature can be faithfully computed. Thus the whole chain can be viewed as a numer-
ical preprocessing before further numerical analysis and feature extraction. But there is also
a strong interest in the direct visualization of the level lines and of the microscopic curvature
map of an image. The following gallery on a variety of image details illustrates the recovery of
shapes freed from their aliasing, JPEG, and noise artifacts.

7.5.1 Founding Example: Attneave’s cat

Short time smoothing reveals useful invariant features (curvature extrema, inflection points,
angles and junctions). Therefore, as pointed out by Attneave, objects are represented with
great economy and striking fidelity by marking the points at which their contours change di-
rection maximally. In Figure 7.17, the head of the Attneave cat is scanned and processed by
LLAS. Before filtering, the curvature values reflect essentially the pixel staircases: positive and
negative curvatures in red and green alternate along contours. A visual inspection shows that,
after LLAS, the level curves can be easily segmented into concave and convex parts, separated
by flat parts (in yellow).

Figure 7.17: Part of Attneave cat, its corresponding level lines and curvatures. LLAS evolution,
smoothed level lines and curvature map after filtering.
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7.5.2 Geometric Shapes

The same improvements can be demonstrated on the geometric drawings of Figures 7.18, 7.19
and 7.20. A straight oblique line appears serrated because of its pixel representation. Thus the
right angle that it forms with another line is simply lost in clutter: there are locally right angles
everywhere.

Figure 7.18: Image and corresponding curvatures, smoothed level lines and curvatures after LLAS fil-
tering.

When a curve stops onto another curve, T-junctions or Y-junctions are created. In such
cases, our perception tends to interpret the interrupted curve as the boundary of some object
undergoing occlusion. In the image on the left of Figure 7.19, which is a typical Kanizsa experi-
ment demonstrating our layered perception, one tends to see a grey rectangle on top of a black
polygon. The T-junctions creating this layered illusion can be detected by their adjacent pos-
itive and negative curvatures. Note that a short time smoothing is necessary to extract these
meaningful curvatures from the clutter of oscillating curvatures due to the staircase effect.

Figure 7.19: Original image, non-filtered curvatures, smoothed level lines by LLAS and curvature map.

Another series of typical experiments was dedicated by Kanizsa to the transparency illu-
sion, by which, in presence of X-junctions, our perceptions infers the presence of two objects
on top of each other, the upper one being transparent. For instance the left image of Figure
7.20 is spontaneously described by viewers as a grey transparent disk in front of a black wedge.
Kanizsa [Kan79] pointed out the paradox of such a description, which sees two objects where
there are in fact four regions with different grey levels. The local configuration responsible for
the transparency illusion is the X-junction, seen as the apparent crossing of the boundaries of
the disk and of the black wedge. As illustrated after applying LLAS to the figure, X junctions can
be detected as a particular configuration of adjacent negative, positive, and zero curvatures.
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Figure 7.20: Original image and extracted bilinear level lines, smoothed level lines and curvature map.

7.5.3 Graphics and Aliasing

Aliasing due to pixelization is common in scanned documents. As illustrated by all experi-
ments, LLAS can be used for a graphic quality improvement smoothing contours. This is actu-
ally done at the cost of smoothing out corners and junctions, but this smoothing is necessary
to single them out as the stable peaks of curvature. All in all, in most zoomed-in figures the
improvement is manifest, starting with the laughing mouse of Figure 7.21.

Figure 7.21: Top: original image, its corresponding level lines and curvatures. Bottom: LLAS evolution,
smoothed level lines and curvature map after filtering.

A decent recovery is possible even with badly pixelized shapes such as the one reproduced
in Figure 7.22. This drawing is not perfectly restored because of the fattening effect at junc-
tions, but it definitely improves on the original, and opens the way to a geometric analysis that
would be impossible on the original.

But the example in Figure 7.23 demands the impossible. Although some undulating curves
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Figure 7.22: Original image and its corresponding curvatures. LLAS evolution and curvature map after
filtering.

still may be figured out by an intelligent viewer, the figure locally is nothing but a checkerboard
at pixel size. Thus the curvature motion removes all squares, black and white, and creates a
huge fattening effect.

Figure 7.23: Top: original image, its corresponding bilinear level lines and curvatures. Bottom: LLAS
evolution, smoothed level lines and curvature map after filtering.

7.5.4 Pre-attentively Undiscriminable Textons

Julesz conjectured in his second texture perception theory [Jul81] that two different textures
cannot be pre-attentively discriminated if they have the same texton density. For instance
the Julesz patterns in Figure 7.24 are different, but have the same “texton densities”, namely
the same number of bars, corners, and terminators. After filtering, the microscopic curvature
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map will permit to compute a density of positive, negative and zero curvatures.

Figure 7.24: Top: original image, its corresponding level lines and curvatures. Bottom: LLAS evolution,
smoothed level lines and curvature map after filtering.

7.5.5 Bacteria Morphologies

Bacteria shapes are determined by the bacterial cell wall and cytoskeleton. The curvature is an
intrinsic geometrical descriptor, useful for shape discrimination. In Figure 7.25 we display bac-
terial morphologies and the corresponding curvature map. Bacteria porosities are character-
ized by strong curvature oscillations, whereas the borders of bacterial shapes present smooth
curvature variations. In microbiology, many tasks involve the counting of geometrically simple
objets. An accurate curvature filter permits to make curvature statistics.

(a) (b)

Figure 7.25: (a). Original image (b). Curvature Map



198 Chapter 7. LLS algorithm and Curvature Estimates

7.5.6 Topography

Digital elevation models represent ground surface topography. Gray levels indicate ground el-
evation (lightest shades for highest elevations) and therefore the image level lines are true level
lines. As can be seen in Figure 7.26, the set of level lines of a digital image is a natural represen-
tation of the shape contents, because it provides topological information invariant to contrast
changes. The bilinear interpolation is the most local of continuous interpolations preserving
the order between the gray levels of the image. Because the interpolation is continuous, level
lines with different gray levels never touch. However, they are concatenations of pieces of hy-
perbolae and straight segments and hence present oscillations along transverse contours. A
short time smoothing reduces the oscillations and straightens up the edges. The remaining
curvature extrema after filtering become relevant as geometric shape descriptors.

Figure 7.26: Top: digital elevation map, its corresponding level lines (for once a real topographic map)
and non-filtered curvature map. Bottom: smoothed image, affine smoothed level lines and filtered
curvature map.

The fragment of scanned map in Figure 7.27 is exemplary, in its amount of ringing, alias-
ing, and JPEG artifacts. Such graphic images are satisfactorily restored with short time affine
smoothing. The essential ingredient in restoring graphic image, is to remove the lines distor-
tion without creating new level lines. This requirement is respected to the letter by LL(A)S,
which only smooths out existing level lines.
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Figure 7.27: Top: Piece of map with roads and its corresponding level lines and curvature map before
filtering; smoothed image, shortened level lines and curvature map after filtering.

7.5.7 Textures

Figures 7.28 and 7.29 illustrate the potential use of LLAS to restore the image micro-geometry
and to facilitate the identification of smoothly varying shapes in a texture.

Figure 7.28: Original image, extracted level lines, smoothed level lines and curvature map.

Figure 7.29: Original image and its curvature map, filterd image and its curvature map.
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7.5.8 Paintings

Even on details of paintings, this geometric analysis can be relevant. As already mentioned,
the LLAS evolution can be used for noise reduction and picture restoration. In Figure 7.30 the
desaliasing successfully restores the paint strokes and improves for example the perception of
the pearls and of their shadows.

Figure 7.30: Original photo-painting, LLAS evolution and curvature map after filtering.

Leonardo’s portrait of Mona Lisa is remarkable for its sfumato technique of soft shaded
modeling. The stylistic motifs are reflected in the fact that level lines fall widely apart like if it
were a very blurry image. The experiment of Figure 7.31 demonstrates the amazing sparsity of
visual information in the Mona Lisa.

Figure 7.31: Extraction with zoom of Mona Lisa photograph, its corresponding level lines and curva-
tures. LLAS evolution, affine smoothed level lines and curvature map after filtering.
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7.5.9 Text Processing

The same good effects are observable with pixelized written text. After the application of LLAS
the image in Figure 7.32 retrieve a curvature signature that is obviously usable for handwriting
recognition. To that aim the causality of the process is essential: no creation of new levels and
no creation of new curvatures.

Figure 7.32: Original image, LLAS evolution, smoothed level lines and curvature map after filtering.

7.5.10 Fingerprints Restoration and Discrimination

Minutiae such as cores, bifurcations and ridge endings characterize uniquely fingerprints.
Their detection requires a careful smoothing, particularly to avoid a spurious diffusion mix-
ing the ridges. The main objective of smoothing is to sieve the curvature extrema. Indeed,
many are present everywhere on the ridge borders before smoothing. The main objective of
smoothing is to sieve the curvature extrema, which allow the fingerprint discrimination. LLAS

Figure 7.33: Original fingerprint, Level Lines Affine Shortening and its Curvature map.

removes these ridge border oscillations and provides a smooth version of the fingerprint on
which the curvature map locates its characteristic points. Observe in Figure 7.33 that the sub-
pixel smoothing tears apart ridges and emphasizes crossovers, unlike pixel evolutions, when
ridge endings shrink fast, and islands and crossovers diffuse.
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7.6 Conclusion

Full contrast invariance can be restored by the stack filters based on finite difference schemes
but they are not sufficient at any scale. Numerical motions based on pixel approximation are
quantized, and in particular blind to small curvatures. This drawback was overcome by evolv-
ing independently the level curves of the image and by reconstructing from them a new image
which has exactly these level lines.

The first outcome of the Level lines Shortening algorithm is the evolved image, which
presents some sort of denoising, simplification, and desaliasing. But the main outcome is an
accurate curvature estimate on all level lines. As a visualization tool, the fact that all level lines
are polygons with real coordinates allows to zoom in the image at an arbitrary resolution. This
is necessary to explore visually the intricacy of the local image structure. Hence the name of
curvature microscope given to the final visualization.

There is no chance whatsoever of extending the approach proposed here to 3D images. In
3D the level surfaces evolving by curvature motion can generate singularities. They cannot be
efficiently parameterized. The state of the art is therefore to use the Osher-Sethian level set
method. Thanks to Grayson’s theorem, the 2D case has a very peculiar structure which has
been taken advantage of.
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[Woy01] Wojbor A. Woyczyński. Lévy processes in the physical sciences. In Lévy processes,
pages 241–266. Birkhäuser Boston, Boston, MA, 2001. 66











Vita

Adina Giorgiana Ciomaga was born in Huşi, Romania, on March 24th 1983. She
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