
HAL Id: tel-00624380
https://theses.hal.science/tel-00624380

Submitted on 16 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

La programmation orientée service vue de l’utilisateur
final

Nassim Laga

To cite this version:
Nassim Laga. La programmation orientée service vue de l’utilisateur final. Autre [cs.OH]. Institut
National des Télécommunications, 2010. Français. �NNT : 2010TELE0024�. �tel-00624380�

https://theses.hal.science/tel-00624380
https://hal.archives-ouvertes.fr

Thèse n°

2010TELE0024

Ecole Doctorale EDITE

Thèse présentée pour l’obtention du diplôme de
Docteur de Télécom & Management SudParis

Doctorat conjoint TMSP-UPMC

Spécialité : Informatique et Télécommunications

Par Nassim LAGA

Service-Oriented Computing from the User Perspectiv e

Soutenue le 17/11/2010 devant le jury composé de :

Tiziana MARGARIA Professeur à l’université de Potsd am Rapporteur
Roch H. GLITHO Professeur à l’université de Concord ia Rapporteur
Guy PUJOLLE Professeur à Paris 6 Examinateur
Stéphane FRENOT Professeur à l’INSA Lyon Examinateur
Yvon KERMARREC Professeur à Télécom Bretagne Examinateur
Emmanuel BERTIN Docteur à Orange Labs Encadrant
Noel CRESPI Professeur à Télécom SudParis Directeur de thèse

Acknowledgments

Mes premiers remerciements vont, bien entendu, à mes encadrants : le docteur Emmanuel Bertin et le

professeur Noel Crespi. Le sujet de thèse proposé est à la fois passionnant sur le plan théorique et

précurseur d’applications industrielles, ce qui m'a offert durant ces trois années, deux axes de montée en

compétence. Je les remercie aussi de leurs encouragements incessants, de leur aide et de la veille qu'ils ont

mise en œuvre pour que cette thèse soit une réussite.

Je remercie chaleureusement le professeur Guy Pujolle, le professeur Tiziana Margaria, le

professeur Roch Glitho, le professeur Yvon Kermarrec et le professeur Stéphane Frenot d’avoir accepté de

participer à mon jury de thèse.

Je remercie très particulièrement Orange Labs de m’avoir donné l’opportunité de réaliser ce

travail, ainsi que tous les moyens nécessaires pour son bon déroulement. Je remercie Philippe Michon et

Olivier Bouillon de m’avoir fait confiance et de m’avoir permis de rejoindre le groupe. Je remercie

également Pascal Lesieur et Marc Mazoué, respectivement responsable d’unité à Orange Labs, de m’avoir

accueilli dans leurs équipes durant la thèse. Mes remerciements vont aussi à Frédéric Delmond et

Guillaume Gautier, responsables de laboratoire, qui, en plus de m’avoir donné tous les moyens nécessaires

pour la réalisation de ce travail, m’ont permis de continuer cette aventure passionnante avec Orange Labs.

Enfin, je remercie Cécile Maillot et tous les membres de ma nouvelle équipe pour leur sympathie et leur

accueil dans mes nouvelles fonctions.

Ma gratitude va aussi à tous les gens qui ont participé de près ou de loin à la réalisation de ce

travail, que ce soit de façon informelle dans les couloirs et les pauses café, ou formelle à travers notamment

les projets CCKMA, Framework de présentation, et SERVERY. Je remercie plus particulièrement Jean-

pierre Deschrevel, Julien Van Den Bossche, Maryline Gidon, Ivan Bedini, Zhenzhen Zhao, Abderahmane

Maaradji, Cuiting Huang, Sivasothy Shanmugalingam, Khalil Leghari et Mariano Belaunde pour les

nombreux échanges fructueux que nous avons eus. Je remercie également les membres de l’équipe RS2M

de l’Institut Telecom Sudparis, et des unités JTE, ASC, et NCIS d'Orange Labs. Leurs commentaires,

suggestions, ou tout simplement sympathie ont largement contribué au succès de cette thèse.

Merci enfin à mes proches : mes parents, mes frères et sœurs, ainsi que tous mes amis. Cette thèse

leur est dédiée.

Bibliography

1 International Journals

• Laga, N., Bertin, E., Crespi, N. Bringing runtime service composition to Web desktop

environments: implementation, feedback and lessons learned. To be submitted to International

Journal of Web Services Research.

• Laga, N., Bertin, E., Bedini, I., Crespi, N., Molina, B., Zhao, Z. User-centric service selection: the

concept of abstract Widget. Submitted to Springer World Wide Web Journal.

• Sethom, K., Ali-Yahiya, T., Laga, N., Pujolle, G. 2008. A QoS-aware mesh protocol for future

home networks using autonomic architecture. EURASIP Journal on Wireless Communications

and Networking. pp.1-9. January, 2008.

2 International Conferences and Workshops

• Laga, N., Bertin, E., Crespi, N. 2010. Promoting Mashup Creation through Unstructured Data

Extraction. To be submitted to the 14th International Conference Business Information Systems.

• Laga, N., Bertin, E., Crespi, N. 2010. Composition at the Frontend: the User Centric Approach.

Accepted in ICIN 2010. Berlin, Germany. October 2010.

• Laga, N., Bertin, E., Crespi, N. 2010. Business Process Personalization through Web Widgets. In

proceedings of IEEE International Conference on Web Services. ICWS 2010. pp. 551-558. Miami,

USA. July 2010.

• Laga, N., Bertin, E., Crespi, N. 2010. Widgets to facilitate service integration in a pervasive

environment. In proceedings of IEEE International Conference on Communication. ICC 2010.

vol., no., pp.1-5. Cape Town, South Africa. May 2010.

• Laga, N., Bertin, E., Crespi, N. 2009. Building a user friendly service dashboard: Automatic and

non-intrusive chaining between widgets. In proceedings of the 2009 Congress on Services – I.

SERVICES. IEEE Computer Society, Washington, DC, 484-491. Los Angeles, USA. July 2009.

• Laga, N., Bertin, E., Crespi, N. 2009. A web based framework for rapid integration of Enterprise

applications. In proceedings of ACM International Conference on Pervasive Services. ICPS 2009.

ACM, New York, NY, 189-198. London, United Kingdom. July 2009.

2

• Zhao, Z., Laga, N., Crespi, N. 2009. A Survey Of User Generated Service. In proceedings of IEEE

International Conference on Network Infrastructure and Digital Systems. IC-NIDC 2009. vol., no.,

pp.241-246. Beijing, China. Nov. 2009.

• Zhao, Z., Laga, N., Crespi, N. 2009. The Incoming Trends of End-user driven Service Creation. In

proceedings of International Conference on Digital Businesses. DigiBiz 2009. LNICST 21, pp.

98–108, 2009, Springer-Verlag. London, United Kingdom. June 2009.

• Laga, N., Bertin, E., Crespi, N. 2008. A unique interface for web and telecom services: From feeds

aggregator to services aggregator. In ICIN 2008. Bordeaux, France. October 2008.

• Laga, N., Bertin, E., Crespi, N. 2008. User-centric Services and Service Composition, a Survey. In

proceedings of the 32nd Annual IEEE Software Engineering Workshop. SEW. IEEE Computer

Society, Washington, DC, 3-9. Kassandra, Greece. October, 2008.

3 Book Chapters

• Sethom, K., Laga, N., Pujolle, G. 2008. QoS Management in Autonomic Home Networks. Home

Networking, Springer IFIP International Federation for Information Processing Series. Paris,

France. Vol.256. pp.101-110.

4 Patents

• Bedini, I., Bertin, E., Laga, N. 2009. Procédé d'exécution d'un Service Applicatif Dans Un

Environnement Web. N° INPI: 0954427.

• Bertin, E., Laga, N., Van den bosh, J. Procédé De Communication Entre Applications Exécutées

Dans Des Navigateurs Distincts. N° INPI: 0956654

• Bertin, E., Laga, N., and Deschrevel, J.P. 2008. Procédé Et Système De Communication Entre

Applications Web Distinctes. N° INPI: 0856592.

Abstract
The last decade has attracted lot of research work in Service-Oriented Computing (SOC), giving raise to

standardized architectures, protocols, and technologies that enable developers to easily expose and reuse

services. However, these technologies do not fully consider the users as potential actors in the creation of

services based on existing ones, as advocated in Web 2.0 paradigm. In this thesis, after a deep investigation

of SOC and its intrinsic SOA paradigm, we propose a new approach based on Widgets. We propose the

Widget-Oriented Architecture (WOA); a new paradigm to enable a user-centric service reuse. In addition,

we introduce new innovative mechanisms based on the WOA paradigm to overcome current limitations of

SOA in service composition and business process management fields. This new paradigm, along with the

innovative architecture and mechanisms introduced, has been validated through implementation and

testing.

Résumé
SOC, pour Service-Oriented Computing, est un paradigme d’ingénierie qui a attiré beaucoup de travaux de

recherche ces dernières années. Ces travaux ont donné lieu à des architectures, protocoles, et technologies

standards, afin de permettre à des développeurs d’exposer des services et en réutiliser d’autre publiés par

des tiers. Cependant, ces technologies sont actuellement limitées aux besoins des développeurs uniquement.

L’utilisateur final n’est malheureusement pas considéré comme un acteur potentiel dans le processus de

réutilisation de services. Ainsi, contrairement aux principes Web 2.0 qui mettent l’utilisateur final au cœur

du processus de génération de contenus et de services, les technologies actuelles de SOC se focalisent plus

sur les développeurs. Dans cette thèse, après une étude approfondie de SOC et son paradigme intrinsèque

(SOA pour Service-Oriented Architecture), nous proposons un nouveau paradigme basé sur le concept de

Widget : WOA (pour Widget-Oriented Architecture), un nouveau paradigme qui vise à permettre la

réutilisation de service centrée sur les besoins de chaque utilisateur (user-centric). Basé sur ce nouveau

paradigme, nous introduisons de nouveaux mécanismes qui répondent aux limitations des architectures

SOA dans les domaines de la composition de services et de la gestion de processus métiers (BPM pour

Business Process Management). Ce travail est validé à travers une implémentation et plusieurs

démonstrations/expérimentations.

Table of Contents

Acknowledgments .. i

Bibliography .. 1

1 International Journals.. 1

2 International Conferences and Workshops ...1

3 Book Chapters... 2

4 Patents ... 2

Abstract.. 3

Résumé... 3

Table of Contents .. 5

Figures.. 11

Tables ... 15

French Summary .. 17

Introduction... 17

1 Contexte .. 17

2 Problématiques.. 18

3 Contributions de la thèse... 19

Etat de l’art.. 21

1 SOA (Service-Oriented Architecture)... 21

1.1 La composition de service basée sur SOA..22

1.2 La gestion des processus métiers basée sur SOA..23

1.3 Conclusions ..24

2 Agrégateur de Services ... 26

3 Conclusion .. 27

Contributions... 29

1 WOA (Widget Oriented Paradigm) ..29

1.1 Les principes liés au registre de Widgets..29

6

1.2 Les principes liés au client de Widgets...30

1.3 Les principes liés aux développeurs et fournisseurs de Widgets32

2 Conception du Client de Widgets ... 33

2.1 Réutilisation basée sur une API ..34

2.2 Réutilisation automatique basée sur la sémantique...35

2.3 Réutilisation basée sur un processus...35

2.4 Réutilisation basée sur les services abstraits...36

2.5 Réutilisation basée sur des données non-structurées..36

2.6 Réutilisation multi-terminal..37

3 WOA dans les domaines d’application de SOA... 38

3.1 WOA pour la composition de services ...38

3.2 WOA pour la gestion des processus métiers...39

Implémentation et Expérimentation ... 41

1 Réutilisation basée sur une API .. 41

2 Réutilisation automatique basée sur la sémantique.. 41

3 Réutilisation basée sur un processus... 42

4 Réutilisation basée sur les services abstraits... 42

5 Réutilisation basée sur des données non-structurées .. 43

6 Réutilisation multi-terminal .. 44

Conclusion ... 47

English Thesis.. 49

Abstract.. 49

Introduction... 51

1 Problem Statement .. 53

2 Contributions... 54

2.1 Widget-Oriented Architecture (WOA) ...54

2.2 Service Composition using WOA...54

2.3 Business Process Management using WOA...55

3 Context of the Thesis .. 56

4 Manuscript Organization .. 56

7

Part I State of the art .. 57

Chapter I.1 State of the Art ... 59

1 Services ... 59

2 Service-Oriented Computing (SOC)... 61

2.1 Service-Oriented Architecture (SOA)...63

2.2 Service Composition using SOA ..70

2.3 Business Process Management using SOA...82

2.4 Conclusions ..86

3 Service Environments ... 88

3.1 Model 1...89

3.2 Model 2...89

3.3 Model 3...90

4 Widgets Related Concepts .. 92

4.1 Portlets (JSR 168/286)..93

4.2 Widgets...95

4.3 SOA vs. Portlets and Widgets...97

5 Semantic Related Technologies.. 98

5.1 The Different Approaches of Semantic in the Web..99

5.2 The Different Expressiveness Degrees of Semantic ...101

5.3 Semantic and Service Creation ...102

6 Conclusions... 103

Part II Contributions.. 105

Chapter II.1 Widget-Oriented Architecture (WOA) Par adigm............................... 107

1 Service... 107

2 Widget Oriented Architecture (WOA).. 108

2.1 Widget Registry..109

2.2 Widget Client principles ...109

2.3 Widget provider/developer principles...112

2.4 Interactions ...113

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)......................... 115

8

1 Widget... 115

2 Widget Aggregator.. 116

3 WOA Key Functionalities (Widget Combination Component).......................... 118

3.1 API-based Reuse of Widgets ..118

3.2 Semantic and Automatic Based Reuse of Widgets...120

3.3 Process-based Reuse of Widgets ..122

3.4 Abstract Service Based Reuse Extension..124

3.5 Unstructured Data Based Reuse Extension...128

3.6 Cross-Device Based Reuse Extension ..131

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields..... 135

1 Service Composition using WOA...136

1.1 Static Composition..137

1.2 Semi-automatic Composition ...139

1.3 Automatic Composition..143

2 Business Process Management using WOA... 145

2.1 Heterogeneity of business processes...145

2.2 Adaptation of business processes..148

2.3 Loose coupling between integrators and basic service providers152

2.4 Unstructured data capture ...152

3 Conclusions... 153

Part III Implementation and Validation... 155

Chapter III.1 An Implementation of WOA..157

1 Widget... 157

2 Widget aggregator... 159

3 Widget Combination Component functionalities ... 161

3.1 API..161

3.2 Communication Manager ...164

3.3 Process Manager Component ...169

3.4 Abstract Service Based Reuse Extension..172

3.5 Unstructured Data Based Reuse of Widgets ...176

3.6 Cross-Device Reuse of Widgets ...177

9

3.7 Conclusions ..182

Chapter III.2 Illustration of WOA in Different SOA Application Fields................ 185

1 Service Composition... 185

1.1 Driving Scenario...185

1.2 Static Composition..187

1.3 Semi-automatic Composition ...190

1.4 Automatic Composition..195

2 Business Process Management (BPM) ... 196

2.1 Driving Scenario...197

2.2 Heterogeneity of Business Processes..198

2.3 Adaptation of Business Processes...199

3 Conclusion .. 200

Chapter III.3 Experimentation and Dissemination ... 203

1 Experimentation by Orange Labs Staff... 203

2 Demonstration to Marketing Team of Orange.. 205

3 Integration within SERVERY Project Contributors... 206

4 Others (Orange Labs Internal Projects) ..209

5 Conclusions... 209

Conclusions and Future Research Directions ..211

References.. 217

Abbreviations .. 225

Figures
Figure 1: Basic service oriented architecture. ...64

Figure 2: OLE automation...65

Figure 3: EJB-SOA analogy..66

Figure 4: CORBA-SOA analogy...66

Figure 5: IDL file example..66

Figure 6: Web Service Architecture (WSA)-SOA analogy...68

Figure 7: Weather service description file...68

Figure 8: Weather service request and response..68

Figure 9: SWS architecture. ..69

Figure 10: REST..70

Figure 11: Architectural model for automatic service composition. ...72

Figure 12: CLM simple example...73

Figure 13: Semi-automatic service composition general model..74

Figure 14: Yahoo PIPES screenshot..76

Figure 15: Semi-automatic composition model in EZWEB..78

Figure 16: EZWEB screenshot..78

Figure 17: MASHMAKER screenshot..79

Figure 18: Composite service schema...79

Figure 19: Vacation request business process versions...83

Figure 20: Business Process Development using WSA. ...84

Figure 21: BPEL4WS Graphical Representation. ...85

Figure 22: End-to-end sequence diagram of business process modeling and development.86

Figure 23: Technology gap between users and WSA (and REST)..87

Figure 24: Model 1 overview. ...89

Figure 25: Model 2 overview. ...90

Figure 26: Model 3 overview. ...90

Figure 27: Comparison of Web OSs and Customizable portals. ...92

Figure 28: Comparison of Web OSs and Customizable portals. ...93

Figure 29: Portlet High Level View. ...93

Figure 30: Request Handling Sequence ([Stefan, 2008]). ...95

Figure 31: WSRP Basic Concepts...97

12

Figure 32: RDF graph example. ..100

Figure 33: Example of semantic concept substitution in service composition. ...102

Figure 34: Service components. ..108

Figure 35: Basic Widget-Oriented Architecture..109

Figure 36: Reusability and composition at the UI level. ...110

Figure 37: Reusability across different Widget clients..111

Figure 38: Unstructured data composition. ...111

Figure 39: Exposing applications as a set of Widgets. ..112

Figure 40: Widget design. ...116

Figure 41: Service aggregation high level architecture. ..117

Figure 42: Use case view of the Widget Combination component. ..118

Figure 43: SOA approach vs WOA approach in API-based reuse. ...119

Figure 44: API-based reuse involved components ..119

Figure 45: Semantic and Automatic Based Reuse of Widgets Summary..120

Figure 46: Communication Manager component. ...121

Figure 47: Process-based reuse of Widgets goal. ..123

Figure 48: Process Manager Component...123

Figure 49: Components involved in the abstract service based reuse extension. ..125

Figure 50: Abstract Widget related concepts. ...126

Figure 51: Service selection algorithm..127

Figure 52: Illustration of the abstract service based reuse extension...128

Figure 53: Unstructured data based composition – architectural model..130

Figure 54: Unstructured data based reuse extension...131

Figure 55: Cross-device based reuse extension goal...132

Figure 56: Cross device composition basic architecture. ..133

Figure 57: Widget composition using the Widget Combination API..137

Figure 58: Composite Service creation through Process Manager. ...140

Figure 59: Cross-device composite service creation...141

Figure 60: Unstructured data based composite service definition...142

Figure 61: NLC Failure recovery. ...144

Figure 62: Business process modelling and implementation...146

Figure 63: Business process automation proposal...147

Figure 64: Business process creation using Widget-oriented architecture. ...148

13

Figure 65: Business process adaptation using abstract Widgets..150

Figure 66: Widget aggregator configured according to a business process...150

Figure 67: Business process adaptation sequence diagram. ..151

Figure 68: Widget description file...158

Figure 69: HTML snippet for Widget Configuration. ...159

Figure 70: Basic Components of the Proposed Widget Aggregator..159

Figure 71: Widget Aggregator Illustration. ...160

Figure 72: Widget combination API Distributed mechanism. ..163

Figure 73: Illustration of Widget reuse through Widget Combination API. ...164

Figure 74: Directory Widget Execution. ...165

Figure 75: Widget initialization implementation...166

Figure 76: Automatic and semantic reuse of Widgets...167

Figure 77: Link representation through a drag & drop capability. ..167

Figure 78: Widget communication implementation. ...168

Figure 79: Widget Disconnection Phase. ..169

Figure 80: Process based linkage of Widgets..171

Figure 81: Link execution steps. ...171

Figure 82: Illustration of a Process-based reuse of Widgets. ..172

Figure 83: Rules grammar...174

Figure 84: Illustration of a Send SMS abstract service Widget...175

Figure 85: Adding of an unstructured data extraction module by a developer..176

Figure 86: Adding of an unstructured data extraction module by a user...177

Figure 87: Illustration of an unstructured data based reuse...177

Figure 88: Component view of the cross device reuse mechanism...178

Figure 89: CDCW connection phase...179

Figure 90: Ordinary Widget connection phase..180

Figure 91: Cross device communication illustration...181

Figure 92: Communication process between two Widgets loaded on two different devices.181

Figure 93: Illustration of the Widget disconnection phase. ...182

Figure 94: Code snippet of the directory Widget. ...188

Figure 95: Manual Personalization..188

Figure 96: Abstract Widget based personalization..189

Figure 97: Directory description file snippet...191

14

Figure 98: Microformats annotations. ...191

Figure 99: Semantic matching based linkage of Widgets..192

Figure 100: Composite service personalization...193

Figure 101 : Authentication Widget. ...193

Figure 102: Cross device composite service. ..194

Figure 103: Unstructured data based composition. ...195

Figure 104: Failure recovery process in automatic service composition using WOA.................................196

Figure 105: Business process implementation example..198

Figure 106: Adaptation to a new need...200

Figure 107: Users feedback about the Widget Combination capability. ...205

Figure 108: Screenshot of the demonstration to the marketing team. ...206

Figure 109: SERVERY demonstration..208

Figure 110: Contributions Summary. ..212

Tables
Table 1. Technical definitions of the term Service..60

Table 2. Quantification of semantic matching of parameters..72

Table 3. Comparison of service composition categories. ..80

Table 4. Current SOA advantages and limitations. ...87

Table 5. Portlet Interface Description [Sun, 2003]..94

Table 6. UWA JavaScript Functions. ..96

Table 7. Microformats examples...101

Table 8. Interactions of WOA model actors ...113

Table 9. Semantic matching patterns...121

Table 10. Cross Device Communication Protocol. ...133

Table 11. Limitations of Current Service Composition approaches..136

Table 12. SOA advantages and limitations regarding BPM..145

Table 13. WOA solutions to SOA limitations...154

Table 14. API. ...161

Table 15. Process Definition through a JSON format...170

Table 16. Interpreter invocation details...173

Table 17. Manual composition list of the scenario..186

Table 18. WOA impacts on service composition and BPM involved roles. ...201

Table 19. List of Widgets tested by users..203

Table 20. Abstract Widgets list. ..207

16

French Summary

Introduction

1 Contexte

Introduit par Tim O’Reilly, le Web 2.0 désigne un ensemble de principes qui caractérisent l’évolution des

pratiques, des usages, et des technologies du Web de l’ère initiale, dite statique, à l’ère actuelle. Les

principes Web 2.0 peuvent se résumer par six points :

• création de services réutilisables au lieu d’applications monolithiques ;

• la participation de l’utilisateur dans la création de contenus et de services ;

• la conception orientée utilisateur final ;

• le partage d’information ;

• l’interopérabilité ;

• et les interfaces riches.

Ces principes ont révolutionné l’ingénierie logicielle ainsi que la façon dont l’utilisateur interagit avec

l’ensemble des applications qu’il utilise. Les logiciels ne sont plus en effet packagés en applications

monolithiques. Ils sont fragmentés en un ensemble de services (Web services) qui sont ensuite publiés sur

et réutilisé à travers le Web. Cette approche permet de promouvoir d’une part le partage et la réutilisation

de services à travers le réseau Internet, et la collaboration et l’intégration de service inter-organisationnel

d’autre part. Quand aux utilisateurs, ils n’utilisent plus les applications de la même manière. Les

applications Web, qui sont disponibles sur le réseau, sont de plus en plus matures et sophistiquées, et

tendent à remplacer les applications traditionnelles que les utilisateurs installent sur leurs machines. De

plus, les applications Web 2.0 donnent un rôle très actif à l’utilisateur, en lui offrant des outils de

personnalisation et en lui permettant de générer lui-même du contenu. Les exemples typiques de ce

phénomène sont les sites Web Wikipédia1 et Youtube2, dont succès est complètement dépendant de la

qualité et la quantité du contenu généré par les utilisateurs.

Ces deux observations (la fragmentation du Web en services réutilisables, et le rôle actif de

l’utilisateur dans l’écosystème des services), ont donné lieu à de nombreux travaux de recherches, qui

1 Wikipedia, http://en.wikipedia.org/wiki/Main_Page, visité le 10 sept. 2010
2 YouTube, http://www.youtube.com/, visité le 10 sept. 2010

18

visent à tirer profit du rôle actif des utilisateurs finaux en leur permettant de créer eux même des services

combinant ceux qui existent déjà. Les deux approches émergentes pour répondre à ce besoin sont la

composition automatique, et la composition semi-automatique. La composition automatique permet à

l’utilisateur de créer des services en exprimant son besoin en langage naturel, et la composition semi-

automatique permet à l’utilisateur de créer un service composé en enchainant graphiquement des services.

Par ailleurs, les environnements de services ont évolué en parallèle avec l’évolution du Web. Nous

appelons un environnement de services tout logiciel permettant à l’utilisateur de consommer des services.

Ceci inclut les systèmes d’exploitation traditionnels (e.g. Windows et Linux), ainsi que les systèmes

d’exploitation Web (e.g. Google Chrome OS et eyeOS3), tant comme les agrégateurs de services (e.g.

iGoogle4 et Netvibes5). L’évolution vers les agrégateurs de services présente une analogie intéressante avec

l’évolution du Web 1.0 vers le Web 2.0, aussi bien que du point de vue technique que conceptuel.

Techniquement, les agrégateurs de services se basent sur le concept de Widget ; une interface utilisateur qui

permet de consommer un service unitaire accessible sur le Web. Conceptuellement, les agrégateurs de

services sont des applications Web 2.0 dans la mesure où ils permettent à l’utilisateur de personnaliser son

environnement en chargeant uniquement les services dont il a besoin.

Cependant, contrairement aux services Web (Web services) et aux architecture SOA, sur lesquelles

de nombreux travaux de recherche ont été conduits, le domaine des Widgets et des agrégateurs de Widgets

est moins étudié. Les potentialités de composition de Widget ne sont n’est en effet pas approfondies. Cette

thèse vise à répondre à cette limitation.

2 Problématiques

SOA (pour Service-Oriented Architecture) est un paradigme d’ingénierie, qui est caractérisé par la

réutilisation de services à travers un registre de service commun et une API de publication commune à tous

les fournisseurs de service. Ceci est l’aboutissement de plusieurs années de recherche dans le domaine.

WSA (pour Web Service Architecture) [Newcomer, 2002] et REST (pour Representational State Transfer)

[Fielding, 2000] sont sans doute les technologies les plus utilisées actuellement pour réaliser une

architecture SOA. Elles sont appliquées dans différents domaines tel que la composition de services et la

gestion des processus métiers. Cependant, SOA a de nombreuses limites lorsqu’on considère les principes

du Web 2.0, qui font de l’utilisateur un acteur majeur dans le processus de création de services. Plus

précisément :

3 eyeOS, http://www.eyeos.com/, accessed Dec 22, 2009
4 iGoogle, http://www.google.com/ig?hl=en, accessed Dec 22, 2009
5 Netvibes, http://www.netvibes.com, accessed Dec 22, 2009

19

• SOA n’est pas orienté utilisateur. Il est en effet conçu pour répondre aux besoins de réutilisation des

développeurs. Par conséquence, les outils de composition de service actuel ne sont pas accessibles

par l’utilisateur final.

• SOA ne traite pas l’aspect interface utilisateur des services.

• SOA ne permet pas la composition de service à base de données non structurées. Ceci est

particulièrement utile dans les services de communication, où des données significatives sont

échangées entre les utilisateurs (e.g. les numéros de téléphone, des adresses postales…etc.). Ces

données ne sont pas aujourd’hui considérées dans le paradigme SOA.

• SOA ne considère pas la prolifération des terminaux utilisateurs. Il n’est en effet pas possible

aujourd’hui à l’utilisateur final de composer deux services chargés sur deux terminaux différents.

Ceci permettrait de composer par exemple un service de mail chargé sur un mobile avec un service

de lecture vidéo chargé sur la télé, afin de lire une vidéo en pièce jointe.

• A travers la description et la publication d’interface, SOA diminue significativement le couplage

entre les intégrateurs de services et les fournisseurs de services qu’ils utilisent. Cependant, la

suppression du service, ou la modification de l’interface, entrainera forcément un disfonctionnement

dans tous les services qui l’utilisent.

3 Contributions de la thèse

A travers l’état de l’art nous montrons que le paradigme SOA répond uniquement aux besoins des

développeurs. Ceci est une importante limitation lorsqu’on considère les principes du Web 2.0 qui font de

l’utilisateur un acteur majeur dans le cycle de vie des services. D’autre part, nous montrons aussi que les

mécanismes actuels des Widgets et des agrégateurs de Widgets sont orientés utilisateur, mais ne prennent

malheureusement pas en compte la dimension création et composition de services. Notre contribution dans

cette thèse est la définition d’un nouveau paradigme qui tire le meilleur des deux domaines afin de

satisfaire les développeurs et les utilisateurs finaux. Nous introduisons ainsi WOA (pour Widget-Oriented

Architecture), que nous appliquons à deux domaines où SOA est largement utilisé aujourd’hui : la

composition de services, et la gestion des processus métiers. En se basant sur ce nouveau paradigme, nous

définissons d’une part un ensemble d’outils innovants de composition de services destinés aux utilisateurs

finaux, et nous introduisons d’autre part une nouvelle méthode de gestion et d’automatisation des processus

métiers qui vise à mieux gérer l’hétérogénéité et l’instabilité des processus métiers.

Etat de l’art

Cette thèse a comme objectif de définir une alternative à SOA qui sera plus orienté vers l’utilisateur (user-

centric). Dans ce chapitre nous allons donc étudier les différentes technologies SOA d’une part, puis les

agrégateurs de Services d’autre part.

1 SOA (Service-Oriented Architecture)

SOA est le paradigme qui fournit des facilités aux développeurs afin de promouvoir la réutilisation de

services. La figure 1 montre les différents rôles ainsi que leurs interactions.

Registre de Service

Consommateur de Service Fournisseur de Service

Publier
Rechercher

Access (use)

Description

• Message SOAP

•Critères de recherche

Service
Figure 1: SOA.

SOA se base sur un certain nombre de principes, que chaque rôle doit accomplir. Nous les

résumons comme suit :

• Le registre de services doit fournir des interfaces de publication et de découverte de

services.

• Les développeurs doivent créer des services et publier leurs descriptions dans le registre

de services.

• Les développeurs peuvent réutiliser les services existants dans la création de leurs propres

services.

Plusieurs technologies permettent la réalisation de ce pattern (e.g. CORBA, et EJB), mais WSA

(pour Web Services Architecture) est sans doute la technologie la plus utilisée actuellement. Un service

Web [W3C, 2004b] (ou Web Service en anglais) est un système conçu pour facilité les interactions entre

machines à travers un réseau. Il a une interface décrite par un format interprétable par les machines

(WSDL). Les autres systèmes interagissent avec un Web service en utilisant des messages SOAP d’une

manière prescrite par la description. Les messages SOAP sont typiquement transmis sur HTTP avec une

sérialisation XML. Cette définition résume les différentes technologies utilisées dans WSA : WSDL,

SOAP, HTTP, et SOAP. La description d’un Web service est souvent publiée dans un registre de services,

typiquement UDDI (pour Universal Description, Discovery and Integration).

22

WSDL-SOAP offre beaucoup d’avantages aux développeurs : réutilisation, composition, et

couplage faible. Cependant, ces deux technologies ne sont pas accessibles par l’utilisateur final. Il ne peut

pas en effet pas réutiliser les services existants pour la création d’un nouveau qui correspondrait à ses

propres besoins.

Pour répondre à ce problème, les approches émergentes tentent de rajouter de la sémantique dans

la description de service afin de pouvoir de composer les services automatiquement, à partir d’une

expression des besoins de l’utilisateur. Les technologies sémantiques telles-que RDF (pour Resource

Description Language), OWL (pour Web Ontology Language), et SA-WSDL (pour Semantic Annotation

WSDL) sont alors utilisées.

1.1 La composition de service basée sur SOA

Nous classifions les techniques de composition de services en trois catégories : la composition statique, la

composition semi-automatiques, et la composition automatique. Dans cette section nous allons détailler

chacune de ces catégories.

a. La composition statique

Nous appelons composition statique les mécanismes permettant à des développeurs, mais pas aux

utilisateurs, de créer des services à partir de ceux qui existent déjà. Le terme statique indique ainsi le fait

que l’utilisateur final n’a pas la main sur les services composés. Il ne peut ni créer de nouveaux services

composés ni modifier ceux qui existent déjà selon ses propres besoins. Ce type de composition est souvent

réalisé à travers des APIs de programmation conçues pour le développeur (e.g. Java SOAP client, PHP

SOAP, IBM Dojo toolkit extension, et jQuery SOAP client).

b. La composition automatique

A l’opposition de la composition statique, la composition automatique est destinée à l’utilisateur final. Elle

se base sur des outils de composition qui permettent à l’utilisateur final de créer des services composés à

partir d’une expression de besoins en langage naturel. Son pattern est illustré dans la Figure 2.

Registre de services

Automatic service
composer

Fournisseur de services

Publication
Recherche Sémantique

Description
Sémantique

• Invocation

• Transmission des
input/output

• Critères de recherche

Service
Utilisateur

Expression de besoins
en Langage Naturel

Interprétation des
besoins

Dictionnaire
Sémantiques

Développeur

Figure 2 : Composition automatique.

23

c. La composition semi-automatique

La composition semi-automatique vise actuellement une communauté d’utilisateurs qui ont un profil entre

développeur et utilisateur final. Elle offre des outils graphiques qui leur permettent de définir des

enchainements de services sans avoir des connaissances approfondies dans le développement de logiciels.

Cependant, des connaissances de base sur ce qui est un Web services, les inputs, les outputs, ainsi que le

concept d’organigramme informatique (flowchart) sont nécessaires.

Ce type de composition est essentiellement poussé par le succès des sites Web 2.0, où l’utilisateur

est souvent générateur de contenu ; l’idée étant de lui permettre d’être aussi un générateur de services. Dans

cette catégorie, nous distinguons les outils de composition basés sur les environnements de bureau. Nous

pensons que ce sont les plus proches de l’utilisateur final d’une part, et qu’ils nécessitent le moins de

connaissances en termes de développement logiciel d’autre part. Ces outils permettent à l’utilisateur final

de combiner des services directement à partir de son environnement de travail. Les exemples typiques de ce

type de composition sont Microsoft OLE (pour object linking and embedding), le copier/coller, ou le

glisser/déposer. Cependant, ces mécanismes, basés sur les systèmes d’exploitation traditionnels, sont

premièrement limités par le fait qu’ils ne considèrent pas la composition des services Web d’une part, et du

manque de mécanismes sémantique, qui permettraient d’anticiper certaines compositions, d’autre part.

1.2 La gestion des processus métiers basée sur SOA

La gestion des processus métiers consiste à chercher et à découvrir l’ensemble des processus d’une

organisation, les modéliser, les automatiser, et les faire évoluer en fonction de nouveaux besoins. Dans

cette section nous allons résumer les pratiques courantes pour réaliser ces actions.

a. Découverte et modélisation des processus métiers

La tache de découverte et de modélisation des processus métiers est actuellement réalisée soit en suivant

une méthode descendante (top-down) ou une méthode ascendante (bottom-up). La méthode descendante

consiste à modéliser une vue globale d’un processus métiers, puis le décliner en plusieurs versions en

modélisant les détails spécifiques à chaque entité, rôle, ou personne. La méthode ascendante, quand à elle,

commence par capturer les habitudes (processus) de chaque entité, rôle, ou personne, puis essayer de les

généraliser afin d’avoir un nombre limité de processus finaux.

Dans les deux méthodes, le résultat final est un compromis entre le niveau de détails automatisé et

la minimisation du nombre de processus. C’est donc un ensemble processus métiers qui est réduit mais qui

automatise les taches les plus fréquentes des utilisateurs. Les détails spécifiques à chaque utilisateur ne sont

malheureusement souvent pas automatisés. En plus d’être hétérogènes et restreints à des ensembles réduits

d’utilisateurs, ces détails sont souvent très dynamiques.

24

b. Automatisation des processus métiers

La problématique essentielle qui doit être considérée par les applications de gestion de processus métiers

est de répondre rapidement aux changements et aux évolutions. Les approches existantes tentent

d’accélérer le plus possible le temps de développement des applications pour automatiser les processus

métiers. WSA est sans doute la technologie la plus utilisé dans ce domaine (associée ou non à des outils de

composition de services comme BPEL). Les différentes tâches des processus métiers sont implémentées et

exposées en tant que services Web, puis assemblées suivant la logique d’un processus afin de l’automatiser.

Les limitations qu’on peut constater à travers ces deux points peuvent se résumer en :

• Le temps d’automatisation d’un processus métier reste long du moment que deux actions,

réalisées par deux entités différentes sont nécessaires : la découverte et la modélisation

des processus, puis le développement de l’application qui les automatise.

• Les détails sont difficilement automatisables.

• L’adaptation à de nouveaux besoins est longue.

• Le couplage entre les implémentations est fort

1.3 Conclusions

Plusieurs technologies permettent aujourd’hui de réaliser une architecture de services. Ces technologies

sont conçues essentiellement pour répondre aux besoins des développeurs en termes de réutilisation et

d’accélération du temps de développement. L’utilisateur final n’est actuellement pas considéré. Par

conséquence, la composition de service reste un domaine réservé aux développeurs. Ceci pose aussi de

sérieuses limitations concernant la gestion des processus métiers. Le Tableau 1 récapitule les avantages et

les limitations de SOA dans la composition de services et la gestion des processus métiers.

25

Tableau 1. Les avantages et les inconvénients de SOA.

 Avantages Incovénients

Composition

statique

• Couplage faible en les services

basiques.

• Création d’applications

distribuées.

• Les services crées répondent aux

besoins de l’utilisateur.

• Conçue seulement pour les

développeurs.

• Couplage fort entre les services

composés et ceux qu’ils utilisent.

Composition

Semi-

automatique

• Conçue pour les utilisateurs

avancés (Pas nécessairement des

développeurs).

• Le TTM est faible lorsque

l’utilisateur est un utilisateur avancé.

• Les services crées respondent aux

besoins de l’utilisateur.

• Les utilisateurs ordinaires ne peuvent pas

créer des services. Par conséquent, le TTM

reste important pour eux.

• Les services créés ne sont pas riches

• Impossible de créer des services

distribués sur différent terminaux de

l’utilisateur.

• Couplage fort entre les services

composés et ceux qu’ils utilisent.

C
om

po
si

tio
n

de
 S

er
vi

ce
s

Composition

automatique

• Conçue pour les utilisateurs

ordinaires.

• TTM faible.

• Les services crées ne répondent souvent

pas exactement aux besoins de l’utilisateur.

• Impossible de créer des services

distribués sur différent terminaux de

l’utilisateur.

• Couplage fort entre les différents

services en termes de sémantique.

• Couplage fort entre les services

composés et ceux qu’ils utilisent.

Gestion des

processus

métiers

• Réutilisation et implémentation

rapide (par des développeurs) de

processus métiers

• Les outils graphiques tels que

BPEL accélèrent considérablement le

développement des processus

métiers.

• Les détails de processus, qui sont

souvent spécifiques à une population

limitée, sont rarement automatisés.

• L’adaptation à de nouveau processus est

longue.

• Couplage fort entre les développeurs des

processus et les Web Service qu’ils

utilisent.

• Les données non structurés ne sont pas

capturées.

26

2 Agrégateur de Services

SOA améliore considérablement les interactions dites machine-to-machine. Cependant, comme nous

l’avons détaillé dans le point précédent, les interactions homme-machine ne sont pas prises en compte.

Dans ce domaine nous mettons l’accent sur les environnements de travail (connus aussi sous le nom de

virtual desktops) en général, et les agrégateurs de services en particulier (ou agrégateurs de Widgets). Ces

environnements se focalisent sur l’aspect interaction avec l’utilisateur final. De plus, les agrégateurs de

Widgets (e.g. Netvibes, et iGoogle), qui ont émergé avec le paradigme Web 2.0, permettent à l’utilisateur

une personnalisation accrue. Les utilisateurs peuvent personnaliser fonctionnellement leur espace de travail

en chargeant des fonctionnalités au lieu d’utiliser directement des applications packagés.

Les agrégateurs se basent sur le concept de Widget (connu aussi sous le nom de Gadget ou

Portlet). Nous distinguons trois technologies réalisant ce concept : JSR 168/286 (pour Java Specification

Request) [Sun, 2003], spécifications W3C [W3C, 2007], et UWA (pour Universal Widget API) [UWA,

2008]. JSR 168/286 est une spécification Java qui décrit une Portlet comme étant un composant Web, géré

par un container, et qui traite des requêtes et génère du contenu dynamiquement. Les Portlets sont utilisées

par des portails Web comme interfaces utilisateur qu’on peut rajouter ou supprimer dynamiquement. La

spécification JSR 168/286 se focalise sur la standardisation des interactions entre la partie serveur d’une

Portlet et le container. Le but est de permettre à la même Portlet d’être utilisée dans différents container de

différents fournisseurs.

Une Widget (terminologie utilisée par W3C ainsi que dans UWA) est conceptuellement identique

à une portlet. La différence se situe sur le plan technologique. Premièrement, elle n’est pas limité au

langage de programmation Java ; la partie serveur d’une Widget peut être implémentée suivant n’importe

quel langage (Php, Java, Python…etc). Cependant, la partie cliente est souvent limitée aux technologies

interprétables par les navigateurs Web ((X)HTML, XML, JavaScript, Flash, Java Applets…etc).

Deuxièmement, contrairement aux spécifications JSR 168/286 qui se focalisent sur les interactions entre la

partie serveur d’une Portlet et le container, les Widgets se focalisent plus sur les interactions entre la partie

client d’une Widget (UI) et l’agrégateur.

Les Widgets et Portlets présentent de sérieuses similitudes avec les services Web dans SOA.

Conceptuellement, les deux technologies permettent d’exposer des fonctionnalités d’une application.

Cependant, contrairement aux Widgets, les services Web on reçu beaucoup d’attention, ce qui a donnée

lieu à de nombreuses technologies qui permettent leurs réutilisation et compositions. Les travaux sur la

réutilisation et la composition de Widgets sont en effet rares. Nous distinguons néanmoins quelques articles

(e.g. [Díaz, 2008], [Vo, 2006], [Sire, 2009], et [Soriano, 2006]) qui encouragent ce type de composition.

27

Les auteurs de [Soriano, 2006] ont meme proposé un agrégateur de Widget (EzWeb) et une API de

développement de Widgets qui permet la composition de ces dernières lorsqu’elles sont chargées sur la

même instance de l’agrégateur. Figure 3 montre comment cette composition est définie et comment elle est

exécutée.

Figure 3 : La plateforme EzWeb.

3 Conclusion

Les conclusions les plus importantes qu’on peut tirer de cet état de l’art est le manque de prise en compte

des interactions homme-machine des technologies SOA d’une part, et le manque d’outils de réutilisations et

de compositions dans le domaine des agrégateurs de Widgets d’autre part. Les technologies SOA par leur

nature vise en effet à répondre aux besoins des développeurs. Les interfaces graphiques, qui interagissent

avec l’utilisateur final, sont en effet moins importantes. Les Widgets quand à elles présentent l’avantage

d’être conçu essentiellement pour interagir avec l’utilisateur final. Par conséquent, l’aspect interface

graphique prend toute son importance.

Cette étude des deux domaines (SOA et Widget) montre que chacun des deux a ses avantages et

ses inconvénients, ce qui révèle un nouveau challenge ; celui de prendre le meilleur de chaque domaine afin

de construire une architecture ou les développeurs comme les utilisateurs finaux puissent combiner des

services.

Contributions

La contribution la plus importante de cette thèse est la définition d’un nouveau paradigme de

programmation orientée service centré sur l’utilisateur final. Ce paradigme basé sur le concept de Widget

est nommé WOA (pour Widget-Oriented Architecture). En s’appuyant sur ce nouveau paradigme, nous

concevons un agrégateur de Widgets qui réalise l’ensemble des principes définis dans le paradigme. Nous

déclinons ensuite ce paradigme ainsi que l’agrégateur conçu dans les domaines d’application de SOA :

composition de services et la gestion des processus métiers.

1 WOA (Widget Oriented Paradigm)

Ce paradigme est basé sur le concept de Widget comme l’élément de base qui permet la réutilisation et la

composition de services. Nous définissons une Widget comme une interface utilisateur qui donne accès à

une implémentation du service offert. L’interface utilisateur est taguée sémantiquement afin de pouvoir

réutiliser les capacités de la Widget dans d’autre Widgets.

Comme illustré dans la Figure 4, le paradigme WOA est caractérisé par cinq rôles : le

développeur, le fournisseur, registre, le client, et l’utilisateur final. Le paradigme consiste en un ensemble

de principes que chaque doit suivre. Les sous-sections suivantes résument ces principes.

Registre Widget

Client de Widgets Widget provider

----------publish

Invocation

Description
de la Widget

Implémentation

Utilisateur Final

Découvrir des Widgets

Découvrir, Charger, et Composer des Widgets

Dictionnaire
Sémantique

développeur

Fournit

Figure 4 : Le paradigme WOA.

1.1 Les principes liés au registre de Widgets

Comme dans SOA, le registre de Widget de WOA doit fournir des interfaces de publications et de

découverte de Widgets. De plus, il est recommandé de fournir un mécanisme de sélection de services parmi

ceux qui sont fonctionnellement équivalents. Il important aussi que ce mécanisme soit paramétrable par

l’utilisateur final. En d’autre termes, il est important que l’utilisateur final soit capable de spécifier lui-

30

même les règles à appliquer lors de la sélection (e.g. service moins cher, celui qui correspond à sa

localisation…etc).

1.2 Les principes liés au client de Widgets

Le client est une application à travers laquelle l’utilisateur consomme une ou plusieurs Widgets. Elle doit

répondre aux principes suivants :

a. La composition de services native à l’environnement de travail

La capacité de composer des services (Widgets) doit être intégrée de façon native à l’environnement de

travail de l’utilisateur. En d’autre terme, l’utilisateur ne doit pas avoir deux environnements distincts : un

pour composer des services, et un autre pour consommer des services. Le client des Widgets doit être à la

fois un environnement de travail et un environnement de composition de services.

b. Personnalisation

Il important de fournir à l’utilisateur des outils de personnalisation de l’environnement de travail (client des

Widgets).

c. Découverte de services

Le client des Widgets doit s’interfacer avec le registre afin de découvrir les Widget existantes.

d. Réutilisation et composition au niveau de l’interface graphique

Comme dans SOA, la réutilisation et la composition de services est un principe essentiel dans WOA. Il

important que le client des Widgets fournisse des capacités de réutilisation et de composition destinées à la

fois aux développeurs et aux utilisateurs finaux. Le caractère distinctif de l’approche WOA est

d’implémenter la composition au niveau de l’interface utilisateur, dans son environnement de travail. La

figure 5 montre une composition de Widget au niveau de l’interface utilisateur.

Autre la réutilisation et la composition au niveau de l’interface utilisateur, il est recommandé que

le client des Widgets intègre d’une part des outils de composition distribués sur différent terminaux

(environnement de travail) de l’utilisateur (voir Figure 6), et d’autre part des outils de composition basés

sur des données non structurées (voir Figure 7). La composition distribuée répond à la multiplicité des

terminaux de l’utilisateur, et la composition basée sur les données non structurées considère la prolifération

du contenu généré par l’utilisateur que ce soit dans les sites web comme Wikipédia ou dans les services

conversationnels tels que la messagerie instantanée.

31

Le numéro de téléphone est tagué
sémantiquement dans le but de le
détécter et de la composer avec la

Widget de téléphonie

Composition au
niveau de l'interface

utilisateur

Figure 5 : Composition au niveau de l’interface utilisateur.

Terminal 2 Terminal 1

Widget Client 1Widget Client 2

Composition

Figure 6 : Composition multi-terminal.

Composition
Detection de données

non structurées

Figure 7 : Composition base sur des données non structures.

e. Widget avec ou sans état

Contrairement à SOA qui encourage la création de service sans état (dit aussi stateless), les services

peuvent être avec ou sans état dans le paradigme WOA. Du moment que les services embarquent aussi

32

l’interface utilisateur qui interagit avec la logique métier, l’état peut être gérer au niveau de l’interface

utilisateur sans pour autant affecter les performance au niveau du serveur.

1.3 Les principes liés aux développeurs et fournisseurs de Widgets

Les développeurs/fournisseurs de Widgets doivent suivre dans WOA quatre principes important:

a. Exposition d’application sous forme de Widget

Dans le paradigme WOA, les développeurs doivent fragmenter leurs applications en un ensemble de

Widgets. Même s’il est recommandé que chaque Widget embarque une fonctionnalité, dans certain cas elle

peut en embarquer plusieurs dans le but d’améliorer l’expérience utilisateur. La figure 8 montre des

exemples d’applications fragmentées en un ensemble de Widget réutilisables.

Map

Applications

Annuaire d'enterprise

Recherche
Contact

Ajout
Contact

Exchange

Lecture Agenda

Lecture Inbox

Telephonie

Appel

Réception appell

Lecture Email

Envoie Email

Figure 9 : Exposition d’application sous forme de Widget.

b. Description de la Widget

Il est important de décrire les Widgets en termes de fonctionnalités fournies d’une part, et en termes de

paramètres non-fonctionnels d’une autre part.

c. Annotation sémantique

La composition au niveau de l’interface utilisateur nécessite que les interfaces soient sémantiquement

taguées afin de permettre au client de récupérer des données générées par les Widgets pour les composer

avec d’autres.

d. Autonomie et couplage faible des Widgets

Comme les services dans SOA, les Widgets doivent être le plus autonome possible. Elle doivent pas

dépendre d’un système externe.

33

2 Conception du Client de Widgets

Le client de Widgets est un élément clé dans le paradigme WOA que nous proposons. Dans cette section

nous allons en détailler la conception. Mais avant d’entrer dans ces détails, il est important de spécifier

formellement le concept de Widget. La figure 10 montre les différents aspects d’une Widget dans notre

architecture. Les éléments essentiels à retenir sont : chaque Widget fournit une description fonctionnelle et

non fonctionnelle, et l’interface graphique de la Widget est taguée sémantiquement suivant le dictionnaire

défini par la plateforme qui se base sur les microformats6 [Khare, 2006].

Figure 10 : Description Formelle d’une Widget.

Le client que nous proposons est un agrégateur de Widgets. En plus de l’aspect personnalisation

que tout agrégateur de Widget fournit aux utilisateurs, celui-ci inclut les fonctionnalités résumées dans la

Figure 11 afin de répondre à tous les principes de WOA. Les sous-sections qui suivent résument les

différentes fonctionnalités et extensions.

6 Microformats, http://microformats.org/, consulté le 30 sept. 2010.

34

System

Réutilisation basée sur une API

Réutilisation automatique basée sur la sémantique

Réutilisation basée sur un processus

Réutilisation basée sur les services abstraits

Réutilisation multi-terminal

Réutilisation basée sur les données non structurées

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Figure 11: Les fonctionnalités clés de l’agrégateur de Widgets proposé.

2.1 Réutilisation basée sur une API

L’agrégateur de Widget offre une API qui permet au développeur d’une Widget d’utiliser les

fonctionnalités d’autres Widgets lorsque celles-ci sont chargées dans la même instance de l’agrégateur.

Ceci est plus orienté vers l’utilisateur final que SOA. La réutilisation de services dans SOA n’est pas

limitée aux services chargés par l’utilisateur ; en réalité, les développeurs n’ont pas l’information sur les

services utilisés par l’utilisateur. La figure 12 montre la différence entre notre approche basée sur WOA et

les approches basées sur SOA.

Service 4

Registre

Fournisseur
de services

1. Utilise

3. Réutilise

2. Découvre

Registre

Environnement de Service

Widget 4

Widget 2Widget 1

Widget 3

Les développeurs créent une
nouvelle Widget, qui découvre
et réutilise les fonctionnalités
d'autres Widgets chargées

dans le même environnement
de services (l'agrégateur).

L'approche SOA L'approche WOA

Les développeurs créent un
nouveau service, qui découvre

et réutilise des services
présents dans le registre

1. Utilise

Chaque Widget est en
charge d'interagir avec sa

partie backend

Fournisseur
de services

Figure 12 : Réutilisation basée sur une API

35

2.2 Réutilisation automatique basée sur la sémantique

La réutilisation automatique basée sur la sémantique est un mécanisme conçu pour permettre aux

utilisateurs ordinaire d’assembler des services (Widgets) en fonction de leurs besoins. Basé sur les

descriptions fonctionnelles des Widgets ainsi que les tags sémantiques rajoutés au niveau de l’interface

utilisateur, ce mécanisme détecte automatiquement les Widgets composables et les compose au fur et à

mesure que l’utilisateur les rajoute dans son environnement (agrégateur). La figure 13 montre la différence

entre ce mécanisme et la réutilisation basée sur l’API que nous définissons.

Environnement de Service

Widget 4

1. Utilise

Widget 2Widget 1

Widget 3

Les développeurs créent une nouvelle
Widget, qui découvre et réutilise les

fonctionnalités d'autres Widgets
chargées dans le même environnement

de services (l'agrégateur).

Réutilisation basée sur une API

Environnement de Service

Widget 4

1. Utilise

Widget 2Widget 1

Widget 3

Réutilisation
automatique basée sur
la sémantique

1. Les développeurs
créent les Widgets

(Service) et fournissent
leurs descriptions.

2. L'utilisateur charge les
Widgets dans l'agrégateur.

Le mécanisme les compose
automatiquement.

Figure 13 : Réutilisation automatique basée sur la sémantique.

2.3 Réutilisation basée sur un processus

La réutilisation automatique basée sur la sémantique est très intuitive, mais peut générer des combinaisons

de services non désirées et/ou non pertinentes. La réutilisation basée sur un processus fournit à l’utilisateur

la possibilité de contrôler quels sont les Widgets qui seront composées dans son environnement de services.

On se base sur la définition d’un graphe spécifiant quelles sont les Widgets composées et quelles sont les

données transmises d’une Widget à une autre. La figure 14 montre la différence entre la réutilisation

automatique et la réutilisation basée sur les processus.

Environnement de Service

Widget 4

1. Utilise

Widget 2Widget 1

Widget 3

Réutilisation
automatique basée sur
la sémantique

Environnement de Service

Widget 4

1. Utilise

Widget 2Widget 1

Widget 3

Réutilisation basée sur les processus

-Les Widgets sont combinées en fonction
du processus préalablement défini.
-L'utilisateur ne verra que les liens les
plus pertinents.

Les Widgets sont
combinées en fonction de

leurs compatibilités
sémantiques

Widget 4

Widget 1

Widget 2

Widget 3

Figure 14 : Réutilisation basée sur un processus.

36

2.4 Réutilisation basée sur les services abstraits

Avec la prolifération des services sur le Web il est fortement probable que plusieurs services fournissent les

mêmes fonctionnalités. La découverte et la sélection devient alors un challenge. Surtout lorsque les critères

de sélection diffèrent d’un utilisateur à un autre et d’une fonctionnalité à une autre. Le but de la réutilisation

basée sur les services abstraits est donc de fournir à l’utilisateur un mécanisme de sélection dynamique de

services selon des règles spécifiées par lui-même.

 Ce mécanisme de sélection orienté utilisateur est utilisé par les mécanismes décrit précédemment

afin de découpler les services composés des services qu’ils utilisent d’une part, et de fournir un mécanisme

d’adaptation dynamique à de nouveaux contextes selon des règles spécifiées par l’utilisateur final.

Ce mécanisme se base sur deux composants : la Widget abstraite, et l’Interpréteur. La Widget

abstraite est techniquement une Widget ordinaire crée par le fournisseur de l’agrégateur et qui est associée

à une fonctionnalité et un ensemble de règles applicables pour la sélection du meilleur service réalisant

cette fonctionnalité. Il est important que l’interface utilisateur de la Widget abstraite permette à l’utilisateur

final de choisir l’ensemble de règles à appliquer parmi celles applicables.

L’interpréteur est quand à lui responsable d’interpréter les règles afin de sélectionner le meilleur

service à exécuter pour une fonctionnalité donnée. La Figure 15 résume l’architecture.

Interface Utilisateur

W1 W2

Sélectionner le
meilleur service

Widget
abstraite 1

Widget
abstraite 2

Registre Widget
Plateforme tiers

Frontend

Backend

Interpréteur

Invoquer le service
sélectionné

Figure 15 : Réutilisation basée sur les services abstraits

2.5 Réutilisation basée sur des données non-structurées

L’affectation d’un paramètre de sortie d’un service à un paramètre d’entrée d’un autre est sans doute la

méthode la plus utilisée dans les outils de composition de service basés sur SOA. Cependant, avec la

multiplication des services de communication (e.g. Messagerie, Messagerie Instantanée, Réseaux sociaux)

les utilisateurs sont susceptibles d’échanger des données qui seraient pertinentes à composer avec d’autres

37

services. Les exemples typiques sont des adresses postales, des numéros de téléphone et des dates échangés

par exemple par messagerie instantanée et qui peuvent être composés avec respectivement un service de

carte géographique, un service de téléphonie, et un service d’agenda. Ce type de composition n’est

malheureusement pas possible aujourd’hui en utilisant les outils de composition de services traditionnels, y

compris avec ceux destinés aux utilisateurs avancés.

Le but du mécanisme que nous proposons dans cette section est de permettre ce type de

composition ; à base de données non structurées. La conception de ce mécanisme est caractérisée par

l’introduction d’un nouveau registre qui contient un ensemble de modules permettant l’extraction de

données non structurées. Chaque module est associé à un type de données. Ainsi, au moment de l’exécution

les utilisateurs peuvent associer un extracteur de donnée à une Widget. Par ce fait, à chaque fois que des

données du type associé sont détectées, l’agrégateur les extrait et optionnellement les compose avec

d’autres Widgets présentes dans la même instance de l’agrégateur. La figure 16 illustre ce mécanisme.

Regarder Disponibilité

Appeler

Localiser l'adresse

Figure 15 : Réutilisation basée sur des données non-structurées.

2.6 Réutilisation multi-terminal

Les mécanismes précédemment décrits supposent l’environnement de services de l’utilisateur limité à un

seul agrégateur de Widgets exécuté sur un seul terminal. Cependant, avec la prolifération des terminaux,

l’utilisateur est susceptible d’utiliser plusieurs terminaux (laptop, TV, mobile, tablette…etc.). Le

38

mécanisme proposé dans cette section vise à étendre les mécanismes de réutilisation de Widgets vers

plusieurs terminaux d’un même utilisateur. La figure 16 illustre notre objectif.

Environnement de Service

Widget 4

Widget 2Widget 1

Widget 3

Terminal 1

Environnement de Service

Widget 8

Widget 6Widget 5

Widget 7

Terminal 2

Figure 16 : Réutilisation inter-terminaux.

La conception de ce mécanisme repose sur la définition d’un protocole d’échange des

informations relatives aux capacités fournies par les Widgets. Les informations sont échangées à travers

une entité serveur qui fait le lien entre les terminaux d’un même utilisateur.

3 WOA dans les domaines d’application de SOA

Comme SOA, WOA est un paradigme qui peut s’appliquer à la composition de services et à la gestion des

processus métiers. Dans cette section, nous allons détailler comment celle-ci sont réalisables avec le

paradigme WOA.

3.1 WOA pour la composition de services

Dans l’état de l’art, nous avons classifié les outils de composition de service en trois ensembles : la

composition statique, la composition semi-automatique, et la composition automatique. Nous allons donc

voir comment ces approches sont réalisables avec le paradigme WOA.

La composition statique basée sur le paradigme WOA est réalisée en utilisant l’API offerte par

l’agrégateur de Widgets que nous avons défini. Plus précisément, les développeurs de Widget utilisent les

trois fonctions suivantes : GetWidgetList, Subscribe, et Publish. L’avantage de cette approche est que d’une

part le développeur utilise les services utilisé par l’utilisateur final afin de créer son service composé, et

d’autre part, l’utilisateur peut personnaliser un service composé en chargeant les Widgets par celles qu’ils

préfèrent. La personnalisation des services composés peut se faire aussi de manière automatique en utilisant

les Widget abstraite, dans lesquelles le service concret exécuté pour chaque fonctionnalité est

dynamiquement sélectionné suivant des règles spécifiées par l’utilisateur final.

39

La composition semi-automatique basée sur SOA est actuellement délicate pour les utilisateurs

ordinaires, sans connaissance en informatique. Le paradigme WOA en se basant sur la réutilisation

d’interface, la sémantique, et la composition directement au niveau de l’environnement de service de

l’utilisateur, permet de combler ce manque. Les utilisateurs créent un nouveau service juste en chargeant

des Widgets dans leur environnement de travail. Par ce fait, il n’est pas nécessaire de connaître le concept

d’organigramme, de paramètre d’entrée ou de paramètre de sortie d’un service.

Outre le ciblage des utilisateurs ordinaires, WOA permet aussi

• de composer des services distribués sur différent terminaux de l’utilisateur, de manière à

ce que les différentes fonctionnalités soient exécutées dans le terminal le plus approprié ;

• de composer des services à partir de données non structurées ;

• de découpler les services composés des services de bases qu’ils utilisent (en utilisant les

Widgets abstraites).

Dans l’état de l’art nous avons montré que la composition automatique dans SOA manque de

précision dans le sens ou les services créés ne correspondent pas toujours et exactement aux besoins

exprimés par l’utilisateur. Ceci est essentiellement du à l’ambiguïté du langage naturel. Le paradigme

WOA permet à l’utilisateur d’ajuster un service créé. Cette capacité se traduit par le fait que l’utilisateur

peut modifier la logique d’un service créé en chargeant et/ou en supprimant des Widget dans son

environnement de travail.

3.2 WOA pour la gestion des processus métiers

La gestion des processus métiers est l’un des domaines où le paradigme SOA est largement utilisé.

Cependant, comme nous l’avons détaillé dans l’état de l’art, SOA ne permet pas de répondre de façon

optimale à l’hétérogénéité et la dynamicité des processus métiers d’aujourd’hui. Dans cette section nous

allons définir une méthode de gestion de processus métiers basée sur WOA, afin de répondre plus

efficacement à cette problématique.

 Cette méthode consiste à définir un processus métier comme étant une union de deux partie : une

partie commune à tous les utilisateurs, et une partie spécifique à un sous ensemble réduit d’utilisateur. La

première partie est généralement stable à travers le temps, contrairement à la deuxième qui est souvent

dynamique. En se basant sur ces assertions, nous proposons que la partie commune des processus métier

soit modélisée par des entités spécifiques et développée comme une Widget réutilisable, et que la partie

spécifique soit modélisée et implémentée par les utilisateurs eux même en utilisant les mécanismes de

composition définis dans WOA. Ainsi, l’hétérogénéité est simplifiée par le fait que les entités responsables

40

de la modélisation des processus métiers ne s’occupent que des parties communes à une population

significative d’utilisateurs, et la dynamicité des processus métiers est prise en compte car cette dynamicité

concerne souvent les parties spécifiques et que celle-ci les utilisateurs finaux s’occupe eux-mêmes des

modifications et des adaptations en fonction de leurs nouveaux besoins. L’adaptation des processus peut

également se faire de façon automatique en utilisant les Widgets abstraites.

Implémentation et Expérimentation

Afin de montrer l’implémentation des concepts que nous avons définis, nous allons dans ce chapitre

parcourir l’ensemble des mécanismes et illustrer chacun d’eux. Ces mécanismes sont actuellement utilisés

dans plusieurs projets internes et externes (e.g. projet européen SERVERY, agrégateur de Widget

d’Orange).

1 Réutilisation basée sur une API

La Figure 17 montre deux Widgets (Téléphonie et Annuaire d’entreprise) composés en utilisant l’API

fournie par l’agrégateur que nous avons conçu et implémenté. Dans ce cas d’utilisation, à chaque appel

entrant dans la Widget de téléphonie, une recherche de l’appelant est effectuée dans la Widget d’annuaire

d’entreprise. Ceci est réalisé en deux étapes. Premièrement la Widget d’annuaire a préalablement déclaré

qu’elle fourni la capacité d’effectuer des recherche sur un numéro de téléphone. Deuxièmement, dans le

code de la Widget de téléphonie, le développeur à pris en compte les Widgets chargées dans l’espace

utilisateur (en utilisant la fonction JavaScript getWidgetList) et publie le numéro de l’appelant à chaque

appel entrant (il utilise pour cela la fonction publish).

Chercher
l'appelant

Figure 17 : Composition à base de l’API de l’agrégateur.

2 Réutilisation automatique basée sur la sémantique

Le but de ce mécanisme est de composer les Widgets automatiquement au fur et à mesure que l’utilisateur

les charge dans l’agrégateur. Contrairement au mécanisme précédent où les développeurs utilisent des API

JavaScript (JS) pour découvrir les Widgets chargées par l’utilisateur et publier des données, le lien est ici

fait automatiquement par l’agrégateur en se basant sur la compatibilité sémantique. Ce lien est symbolisé

42

par une icône insérée dans la Widget source de la donnée. La figure 18 montre un exemple de service

composé créé par ce mécanisme.

Figure 18 : Composition basée sur la compatibilité sémantique.

3 Réutilisation basée sur un processus

Le but de ce mécanisme est de fournir à l’utilisateur final un moyen de contrôler les liens entre Widgets qui

sont créés par le mécanisme précédent. Pour cela, nous nous basons sur une définition d’un service

composé. Ainsi, au fur et à mesure que l’utilisateur charge des Widgets dans son environnement,

• des liens sont automatiquement créés selon la compatibilité sémantique entre les Widgets,

• un processus est défini (dans sa première version, le processus contient tous les liens possibles

entre les Widgets chargées dans l’environnement de l’utilisateur),

La particularité de ce mécanisme par rapport au précédent tient au fait que l’utilisateur peut supprimer des

liens et en automatiser d’autre. La définition du service composé est alors modifiée en fonction.

4 Réutilisation basée sur les services abstraits

Le concept de service abstrait est caractérisé par les Widgets abstraites et l’Interpréteur. La figure 19

montre un exemple d’une Widget abstraite, dont la fonctionnalité est l’envoi de SMS. Elle permet à

l’utilisateur final de spécifier des règles de sélection à appliquer sur cette fonctionnalité, de fournir les

paramètres d’entrée nécessaires à l’exécution de cette fonctionnalité, et d’exécuter le service concret qui a

été sélectionné par l’Interpréteur.

Dans notre exemple de la figure 19, l’utilisateur a activé la sélection selon la localisation du

destinataire du SMS. Le service sélectionné est affiché en bas de la Widget.

43

Choisir les règles
de sélection

Voir les service
sélectionnés

Entrer les
paramètres
d'entrée

Figure 19 : La Widget abstraite.

5 Réutilisation basée sur des données non-structurées

La réutilisation de Widgets à base de données non-structurées est une architecture qui permet la définition

d’enchainements de services, où les données sources sont d’abord extraites et formatées, et ensuite

transmises comme paramètre d’entrée à la Widget de destination. Afin d’illustrer ce mécanisme, prenons le

service composé illustré dans la figure 20. L’exécution de ce service est précédemment illustrée dans la

figure 15. Ce service composé peut être créé directement par l’utilisateur final dans son environnement de

services. Pour cela, il charge d’abord les Widgets nécessaires (dans notre cas, il charge la Widget de

messagerie instantanée, la Widget de téléphonie, la Widget de carte géographique, et la Widget d’agenda).

Ensuite, il associe des extracteurs de données non structurées à des Widgets, selon la logique du service

composé qu’il veut créer (dans notre cas, on associe des extracteurs de données respectivement de type

date, de type numéro de tel, et de type adresse, à la Widget de messagerie instantanée). A l’exécution, les

extracteurs de données associés aux Widgets détectent la présence ou non des données correspondante, et

optionnellement, les composent avec d’autres Widgets présentes dans le même environnement de services

(figure 15).

44

Figure 20 : service composé à base de données non structurées.

6 Réutilisation multi-terminal

La réutilisation multi-terminal permet aux utilisateurs de définir des compositions de services distribuées

sur différents terminaux. Ce mécanisme repose sur la définition d’un protocole d’échange entre les

différents composants que nous avons défini jusque là. Ce protocole permet à chaque composant d’avoir

connaissances des Widgets chargées sur chaque terminal de l’utilisateur, et leurs capacités. Afin d’illustrer

ce mécanisme, nous proposons ici deux scenarios. Le premier consiste à connecter des Widgets chargées

sur deux agrégateurs tournant sur deux terminaux différents. Le deuxième, consiste à connecter une

application (liste de contacts) Google Android (utilisant le protocole que nous avons défini) avec les

Widgets d’un agrégateur. La Figure 21 et 22 illustrent respectivement les deux scénarios.

MobileLaptop

Localiser Restaurant

Figure 21 : Composition multi-terminal.

45

Figure 22 : Composition multi-terminal d’une application Android et des Widgets.

Conclusion

La plus importante contribution de cette thèse est la définition d’un nouveau paradigme de programmation

orientée service basé sur le concept de Widget (WOA). Du fait de sa conception orientée utilisateur final,

ce nouveau paradigme nous a permis de définir un agrégateur de Widgets qui intègre des outils de

composition accessibles par l’utilisateur final.

Le paradigme WOA est caractérisé essentiellement par deux principes : le développement de

services sous forme de Widgets (interface utilisateur, typage sémantique, et description de fonctionnalités),

et la composition au niveau de l’interface utilisateur. Basé sur ces deux principes, nous avons défini un

agrégateur de Widgets qui intègre des outils de composition au niveau de l’interface utilisateur. Nous avons

défini trois approches de composition : la composition en utilisant l’API de l’agrégateur, la composition

automatique et sémantique, et la composition basée sur un processus. De plus, nous avons défini trois

extensions à ces mécanismes afin d’être encore plus orienté vers les utilisateurs finaux : le concept de

Widget abstraite, la composition à base de données non structurées, et la composition multi-terminal. La

figure 23 montre les différents mécanismes ainsi que leurs avantages.

Mécanisme WOA

Widget abstraite

API

Réutilisation
sémantique et
automatique

Réutilisation à base
de processus

Réutilisation multi-
terminal

Réutilisation à base
des données non

structurées

Composition de
Service

Composition statique

Composition Semi-
automatique

Composition
Automatique

Utilise

Gestion des
processus métiers

hétérogénéité

dynamique

Détection des
données non
structurées

Couplage

Figure 23 : Résumé des contributions.

Il important de noter que les comparaisons de WOA et SOA faites dans ce document ne

préconisent pas un remplacement de SOA par WOA. Au contraire, notre but est de montrer que chacun des

deux paradigmes a ses avantages et ses inconvénients, et que les deux approches doivent coexister dans une

48

solution globale afin de fournir des capacités de compositions de services destinées à la fois aux

développeurs et aux utilisateurs ordinaires. L’approche que nous préconisons se résume en ce qui suit :

• Les développeurs créent des services web (SOA),

• Les développeurs créent les Widgets correspondantes (SOA et WOA),

• Les développeurs composent les services web, créent les Widgets correspondantes, et

optionnellement, utilisent la composition statique basée sur WOA (SOA et WOA)

• Les utilisateurs composent les Widgets dans leurs environnements de services (WOA).

Les différents mécanismes introduits dans cette thèse nous ouvrent de nouvelles opportunités de

recherche à approfondir. La première est l’exploitation de l’intelligence collective des utilisateurs pour

enrichir des modèles sémantiques en se basant sur l’agrégateur de Widgets. Dans cette thèse nous avons

utilisé un modèle sémantique peu expressif, les microformats. Cependant, la composition étant faite par

l’utilisateur final, dans son environnement de services, ce manque d’expressivité du modèle est dans la plus

part du temps compensé. Il est néanmoins intéressant d’approfondir cette idée pour construire des modèles

sémantiques en fonction des liens entre les services créés par l’utilisateur final.

La deuxième perspective concerne la gestion des processus métiers. La découverte de processus

reste un challenge, même en se limitant à la partie commune aux différents aux utilisateurs. En permettant

aux utilisateurs de concevoir et d’automatiser eux même la partie qui leur est spécifique, nous pouvons

facilement détecter quelles sont les pratiques les plus courantes des différentes entités d’une organisation.

Par conséquent, il serait possible de concevoir des outils pour aider les entités business à décider quand des

enchainements définis par des utilisateurs peuvent devenir des processus métiers à part entière.

Et enfin, le troisième sujet de recherche qui nous semble intéressant à approfondir est la

composition à base de données non structurées. Dans cette thèse nous nous somme limité à l’extraction de

données d’une source textuelle/HTML. Nous pensons qu’il serait encore plus intéressant d’étendre le

mécanisme à des sources multimédias (voix, photo…etc.).

English Thesis

Abstract
The last decade has attracted lot of research work in Service-Oriented Computing (SOC), giving raise to

standardized architectures, protocols, and technologies that enable developers to easily expose and reuse

services. However, these technologies do not fully consider the users as potential actors in the creation of

services based on existing ones, as advocated in Web 2.0 paradigm. In this thesis, after a deep investigation

of SOC and its intrinsic SOA paradigm, we propose a new approach based on Widgets. We propose the

Widget-Oriented Architecture (WOA); a new paradigm to enable a user-centric service reuse. In addition,

we introduce new innovative mechanisms based on the WOA paradigm to overcome current limitations of

SOA in service composition and business process management fields. This new paradigm, along with the

innovative architecture and mechanisms introduced, has been validated through implementation and

testing.

Introduction

Web 2.0, current “Web era”, is characterized by an increasing number of services, user participation in

content creation, user centred design, information sharing, interoperability through standards, and rich user

interface technologies. These characteristics have really revolutionized both software engineering methods

and users interaction with software features. Software features are no longer packaged as a independent

applications; instead, they are split into and published as Web services in order to promote cross-network

and cross-organizations sharing, collaboration, reusability, and integration. This is known as Service-

Oriented Computing (SOC) [Papazoglou, 2006] [Huhns, 2005] [Casati, 2007]. For instance, Major Internet

companies such as Yahoo, Google, and Amazon provide to their customers and to third party developers

reusable services such as Online Storage, Email, and Maps; an approach which is also adopted by telecom

operators, renaming it "telco 2.0", where functionalities such SMS, MMS, Localization, and Telephony are

exposed to third party developers on the one hand, and third party services such as Maps and social

networks are used within telecom applications on the other hand.

User interactions with software features have also changed during the transition from Web 1.0 to

Web 2.0. This is characterized by replacing traditional desktop applications by remote and on demand

applications from one hand, and providing an active role to the users in the evolution of services from

another hand. First, Web based applications are more and more complete and mature, and they

progressively replace traditional desktop applications in the user daily life. Even hardware capabilities such

as storage and computing can be sold and bought on demand through the Web. This is known as XaaS,

which refers to “Everything as a service” (Software, Infrastructure, Platform, Communication…etc.).

Second, users are no longer considered as “pure” consumers of services, but instead they play a prevailing

role in testing and evolving these services. Typical examples of this phenomenon are Wikipedia7 and

YouTube8 web sites where their success is completely dependent on the quality and the quantity of content

generated by users. User participation in content creation is definitely a success approach as for example

YouTube web site has reached in January 2009 100.9 million of U.S. viewers according to Comscore9.

These two characteristics of the current Web platform, namely software fragmentation into Web

services and user participation in content creation, have encouraged the idea of enabling the user to create

7 Wikipedia, http://en.wikipedia.org/wiki/Main_Page, accessed Dec 22, 2009
8 YouTube, http://www.youtube.com/, accessed Dec 22, 2009
9 Comscore, statistics on online videos,
http://www.comscore.com/Press_Events/Press_Releases/2009/3/YouTube_Surpasses_100_Million_US_Viewers/%28l
anguage%29/eng-US, accessed Dec 22, 2009

Introduction

52

and publish new services by composing existing ones. This is known as user service creation. The goal is to

harness the user intelligence in service creation in the same way we do it today (Web 2.0 era) in content

creation. Consequently, several approaches have been proposed. Some of them are automatic such natural

language based service composition, and others require additional investment from the user by manually

and graphically chaining services.

To access and consume services, users rely on what we call in this thesis “user service

environment”. This term covers any software application that enables the user to access, manage and

consume services. This includes traditional desktop environments (e.g. Microsoft Windows, MAC OS, and

Linux), emerging Web-based operating systems (e.g. Google Chrome OS, Wiki-OS10, Glide OS11, and

eyeOS12), and Widget aggregators (e.g. iGoogle13 and Netvibes14). Historically, there are two important

evolution phases of user service environments. The first one is characterized by evolving from CLI

(command line interfaces) into WIMP (Windows, Icons, Menus, and Pointer) interfaces, and the second

one is characterized by considering the XaaS paradigm where software applications are hosted and running

remotely in the Web. Even the user service environment is sometimes hosted remotely in the Web (e.g.

Wiki-OS, Glide OS, and Netvibes); this implies a significant simplification in term of storage and

computing capabilities of users’ devices, as well as in term of software maintenance. In addition of

adopting the XaaS paradigm, Widget aggregators attempt to replicate the technical and the conceptual

evolution from Web 1.0 to Web 2.0. Indeed, from the technical perspective, Widget aggregators follow the

Web 2.0 fragmentation into Web services. They rely on the concept of a Widget to access and use

functionalities available remotely on the Web. From the conceptual perspective, Widget aggregators follow

the user-centric design. They promote personalization by enabling users to create their own Mashup by

loading different Widgets of different providers on the same environment. However, while Web services,

SOA (Service-Oriented Architecture), and SOC have attracted much academic attention during these two

decades, Widget paradigm is not really investigated. This thesis aims to fill this gap. It aims not only to

study the impact of the Widget paradigm on existing technologies of SOC, but also to attempt to succeed

by using Widgets where SOA failed.

10 Wiki-OS, https://www.wiki-os.org/, accessed Dec 22, 2009
11 Glide-OS, https://desktop.glidesociety.com, accessed Dec 22, 2009
12 eyeOS, http://www.eyeos.com/, accessed Dec 22, 2009
13 iGoogle, http://www.google.com/ig?hl=en, accessed Dec 22, 2009
14 Netvibes, http://www.netvibes.com, accessed Dec 22, 2009

Introduction

53

1 Problem Statement

Service creation methods have significantly evolved since the beginning of computing technology. The

starting point was assembly languages; low level programming languages that enable developers to define a

sequence of instructions to be performed by a microprocessor. Then, in order to accelerate service creation

and reduce the time to market, the philosophy of reusability progressively took momentum in the evolution

of service development methods. Indeed, developers firstly have in their disposal macros and functions

which are sets of instructions that are reusable within the same program. Thereafter, the concept of object

has emerged in Object-Oriented programming OOP [Cox, 1986], which is reusable over different

applications. We also retrieve the concept of object in CORBA (common object request broker

architecture) [Vinoski, 1997] and OLE15 (Object Linking and Embedding). CORBA is cross-network and

programming language independent service architecture and OLE is a Microsoft technology that enables

applications to exchange data with each other. Finally, in SOA, reusable service and/or reusable resource

have respectively emerged in Web services architecture (WSA) [Newcomer, 2002] and REST

(Representational State Transfer) [Fielding, 2000]. SOA has attracted much attention during this last

decade, giving rise to several research and application frameworks that cover heterogeneous fields such as

Service Composition, Business Process Management, and Pervasive Applications. However, the listed

service computing technologies, as well as the emerging ones in the Web, do not fully satisfy Web 2.0 best

practices, where:

• the user is placed at the centre of service development (user centricity),

• personalization becomes more important than ever due to the heterogeneity and dynamicity of

user needs,

• user interface (UI) and user experience are important criteria in service development.

The goal of this thesis is to define a new paradigm where the listed best practices are fulfilled by:

• enabling users (without computing skills) to modify existing services, or creating new ones

through composition according to their needs, and thud promoting personalization,

• considering the UI as an important criterion while enabling the personalization and the creation of

services,

• considering the proliferation of user devices, and the need for composing services loaded on

different devices,

15 Microsoft OLE, http://msdn.microsoft.com/en-us/library/aa271010%28v=VS.60%29.aspx, accessed on July 31, 2010

Introduction

54

• considering session based services (e.g. telephony and IM), where the capabilities may change

from a state to another (e.g. the user is connected, a communication is established…etc),

• considering the proliferation of user generated data, which could be useful for composition with

other services (e.g. extracting postal addresses from an IM discussion and composing it with a

Google Map service),

• considering users own criteria in service discovery.

2 Contributions

This thesis aims to first introduce an alternative to SOA that satisfies the listed requirements; and second to

formalize and validate it by considering different SOA application fields such as Service Composition and

Business Process Management. Therefore, we first introduce a Widget-Oriented Architecture (WOA); a

new computing paradigm that aims to be more user centric (Section 2.1). Then, using this new paradigm,

we explore two SOA application fields, namely Service Composition (Section 2.2) and Business Process

Management (Section 2.3).

2.1 Widget-Oriented Architecture (WOA)

The WOA relies on Widgets in the development of software features. A Widget is a small client-side web

application for offering atomic functionalities of a software feature. A Widget includes a UI for each

operation of a software feature. Thus, when a service provider creates a service, he also associates a UI that

facilitate the user-service interaction. This enables to create rich UI and provide something more

meaningful for ordinary users, instead of reading XML files, which are addressed more for developers.

The WOA is basically characterized by a Widget developer, a Widget provider, a common Widget

registry, the user, and the Widget client which embeds the necessary mechanisms that enable the user to

combine the Widgets.

2.2 Service Composition using WOA

Service reusability and composition are the driving concepts of SOA. In this thesis we have classified them

into three categories: static service composition, automatic service composition, and semi-automatic service

composition. In summary,

• static service composition aims to provide technologies to developers to perform reusability and

composition,

• automatic service composition aims to enable users to generate services by expressing their needs

using their natural language,

Introduction

55

• and semi-automatic service composition aims to enable users to create a composite service by

graphically chaining ready-made services.

However, while SOA has succeeded in static service composition, the automatic and semi-

automatic ones still suffer from several limitations detailed in Chapter I.1 State of the Art. In this thesis, we

demonstrate the potential of the WOA paradigm regarding the static, automatic, and semi-automatic service

composition. First, we enable a user-centric static service composition using Widgets. Second, we

significantly enhance the intuitiveness of semi-automatic service composition by introducing new

approaches, centred on the users. Third, we enhance the performances of automatic service composition by

enabling users to intuitively refine a created service; which does not always mach exactly the user needs as

automatic composition still suffers from its inaccuracy. In other words, we use the user service composition

capability as a failure recovery system in automatic composition. Finally, we enrich these three

composition tools with three concepts:

• abstract service based composition in order to first decouple composite services from the basic

services they invoke; and second, take into account user context and preferences in the execution

of the composite services;

• unstructured data based composition in order to consider within the composite service definition

data that are not declared nor formatted by developers at the service publication time;

• multi-device service composition in order to take into account the proliferation of user devices,

and provide the capability of composing services loaded on different devices.

2.3 Business Process Management using WOA

SOA has significantly improved business process management and integration. However, due to developer

centricity of the SOA paradigm, business process management and integration still do not provide the

flexibility needed by users and business process managers. This is due to the complexity of business

process definition tools from one hand, and the difficulty for service developers to detect all data that might

be useful in performing a business activity. These two points are detailed in the state of the art Chapter I.1

State of the Art.

This thesis demonstrates the potential of WOA to tackle the two limitations in managing and

integrating business processes. First, by enabling the ordinary users to compose services using the Widget

paradigm, we also enable users to personalize their business processes. This tackles the heterogeneity as

well as the dynamicity of business processes. Second, we introduce the dynamic adaption of composite

services, which enables developers to implement business processes that automatically adapt their

behaviour according to a new context. Third, we propose and validate a new mechanism named

Introduction

56

“unstructured data based service composition”. This mechanism enables users and developers to chain two

services based on data that are not expected as legacy outputs of the first service. From the business analyst

perspective, this enables capturing unstructured data which circulates between employees (e.g. postal

addresses within an emails), and from the technical perspective, this alleviates service developers from

annotating and formatting data which are hardly expectable as legacy outputs of their services.

3 Context of the Thesis

This thesis is carried out mainly at Orange Labs (Business Unified Communication (BUC) laboratory), and

Telecom SudParis (Réseaux et Services Multimédia Mobiles (RS2M) department). It is supported mainly

by two projects: namely CCKMA and SERVERY. CCKMA, for Communication, Collaboration,

Knowledge, and Mobile Access, is an Orange Lab internal project which aims to study and define

innovative solutions for communication and collaboration within business organizations context. The

second project, SERVERY, for Advanced SERVice Architecture and Service DelivERY Environment, is a

Celtic European project16 that aims to build a marketplace of converged services (Telecom and Web

services), where service creation, service management, and their execution on heterogeneous platforms is

supported.

4 Manuscript Organization

This manuscript is divided into three parts. The first part reviews the SOA paradigm (including service

composition and business process management), the evolution of service environments, and the Widget and

Widget aggregator (a user environment type) paradigms. The second part of this thesis details our main

contributions. It includes a Chapter which introduces the principles of the WOA paradigm, a Chapter which

details the design of a framework (Widget aggregator) compliant to these principles, and a Chapter for

defining how WOA is applied respectively in service composition field and business process management

field. The third part of the thesis details the implementation of our contributions. It includes a Chapter for

detailing the implementation of WOA, a Chapter for illustrating how it is applied respectively in service

composition field and business process management, and a Chapter for summarizing our experimentations.

Finally, we conclude with a summary of our contributions, the advantages of WOA compared to SOA, and

some future research directions regarding this field.

16 Servery project, http://projects.celtic-initiative.org/servery/, accessed Dec 22, 2009

Part I State of the art

This part investigates the service-oriented computing and the Widgets paradigms. We highlight the

advantages and limitations of each one in order to propose, in the second part, a new architecture paradigm

that includes the best of each of them.

58

Chapter I.1 State of the Art

The general context of this thesis is halfway between service environments and service-oriented computing

(SOC). Therefore, in this state of the art Chapter, we will investigate the concepts related to these two

fields. We clarify in the first section the definition of the term Service. Then, we investigate the SOC

paradigm in section 2. This includes the study of Service Oriented Architecture (SOA) and related

technologies, and the investigation of service composition and business process management fields. In

section 3, we study current service environment approaches. We detail the Widget paradigm in section 4.

We summarize in section 5 current Web semantic technologies, as this field is omnipresent in current Web

2.0 and software engineering research. Finally, we conclude with the limitations of all these fields.

1 Services

In order to clarify the meaning of the term Service, we study in this section the different definitions that

different entities assign to this term. We start by providing the user view, and then, we study the technical

usage of the term. Literally, the term Service refers to several meanings. Followings are an enumeration of

some selected definitions from Collins dictionary17.

• An act of help or assistance,

• An organization or system that provides something needed by the public, a consumer information

service,

• the installation or maintenance of goods provided by a dealer after a sale,

• the serving of guests or customers,

The first definition is generic; it includes any act of help or assisting someone or something.

Instead, the others are more focused and define the service as a relationship between a provider and a

consumer (person). Indeed, the second definition defines a service as a relationship between an

organization, or a system, and the public. The third one defines the service as a relationship between a

dealer and a consumer (person). Finally, the fourth one defines a service as the act of serving a guest or a

customer.

In IT (Information Technology) and Telecom communities, we also find several meaning of the

term Service. Some of them differ, and some others converge. Table 1 summarizes the different definitions

of the term according to different entities (Standardization entities and European projects). We distinguish

17 http://www.collinslanguage.com/results.aspx, accessed Dec 22, 2009

Chapter I.1 State of the Art

60

two main orientations. The first one includes SPICE [Cordier, 2006], OPUCE [Yelmo, 2008], and OMA

[OMA, 2007] definitions. They define a service through its usage properties. They highlight the

relationship between a provider and a consumer. The second orientation includes the SeCSE [Sawyer,

2005] and W3C [W3C, 2004b] definitions. They define a service through its technical properties. They

highlight the fact that a service is a software entity, and it is described at least through one service

description. When aggregating both approaches, we can deduce that a service is a software entity that

performs one or more operations. It is developed by a service developer and has at least one service

description. It is made available by a provider and consumed by a consumer, who is optionally charged for.

This definition highlights three roles: the developer, the provider, and the consumer. While the developer

and the provider are obviously human entities, the consumer is ambiguous. Indeed, the consumer of a

service might be a user that invokes the service in order to consume it, or a developer who may reuse the

service to create a more innovative one. This distinction is introduced in OMA. Indeed, they distinguish

between software entities which are consumed by another software entity, and those that are consumed

directly by users. Thus, the former is named Enabler while the latter is named Service.

Table 1. Technical definitions of the term Service.

Entity Definition

SPICE [Cordier,

2006]
A service is an added value that is provided by a service provider to an end user.

OPUCE [Yelmo,

2008]

Provider-client interaction that provides value. Service properties are described

with a service specification.

SeCSE [Sawyer,

2005]

Software entity that performs one or more Operations. It is developed by a Service

Developer and has at least one Service Description.

OMA [OMA,

2007]

Enabler: A technology intended for use in the development, deployment or

operation of a Service; defined in a specification, or group of specifications,

published as a package by OMA.

Service: A selection from the portfolio of offerings made available by a service

provider, which the user may subscribe to and be optionally charged for. A service

may utilize one or more service enablers.

W3C [W3C,

2004b]

o An application that provides computational or informational resources on

request. A service may be provided by several physical servers operating as a unit.

o A service is an abstract resource that represents a capability of performing tasks

that form a coherent functionality from the point of view of providers entities and

requesters entities.

Chapter I.1 State of the Art

61

2 Service-Oriented Computing (SOC)

Service-Oriented Computing (SOC) [Papazoglou, 2006] [Huhns, 2005] [Casati, 2007], or Service-oriented

programming (SOP) [Sillitti, 2002] [Bieber, 2001] is “a new computing paradigm that utilizes services as

the basic constructs to support the development of rapid, low-cost and easy composition of distributed

applications even in heterogeneous environments” [Papazoglou, 2006]. This definition highlights well that

SOC is more a vision than a technology [Margaria, 2007]. It is characterized by two roles: service provider,

and service consumer. The former creates services and makes them available for third parties, and the latter

invokes the service when needed. However, before using a service, consumers must discover it. This might

be performed in an ad-hoc way, or using the facilities that are provided by Service-Oriented Architecture

(SOA) paradigm. SOA introduces a mediator role who is in charge of collecting available services from

providers and making them available for consumers.

As Bichler and Lin stated in [Bichler, 2006], SOC paradigm has evolved from earlier component-

based software frameworks such as Enterprise JavaBeans (EJB) [Thomas, 1998] and Common Object

Request Broker Architecture (CORBA) [Vinoski, 1997]. Currently, SOC is mainly performed using Web

Services Architecture (WSA). Firstly, because WSA is strongly supported by major software companies

such as IBM, Microsoft, Hewlett-Packard, Oracle, and SAP. Secondly, because Web Services rely on

openly available Internet protocols such as HTTP and XML; exploiting by this way the Web as a transport

media [Huhns, 2005]. Finally, because the related technologies such as SOAP, WSDL, UDDI, and BPEL,

have been standardized, as they are largely supported by major software companies.

This evolution to SOC is the result of several years of research and best practices in heterogeneous

fields [Papazoglou, 2006], namely: software engineering, telecommunication, and business process

management. Reusability, loose coupling, abstraction, and virtualization have been the driving needs in this

evolution.

In software engineering the reusability and abstraction started with the assembling languages,

when microprocessor specific directives hide the binary code, and macros and functions enable the reuse of

a sequence of instructions. Then, advanced languages (sequential or object oriented [Dahl, 1968],

[Goldberg, 1976], [Cox, 1986]) have emerged (e.g. C, Simula, smallTalk, and C++). Though they provide

advanced directives, that wrap a set of assembling language instructions, they still depend tightly on the

target hardware and operating system. The success of Java language is essentially due to its abstraction of

the target hardware and operating system. It enables the portability of applications through different

machines. In the 1990s, cross network reusability tools have emerged (e.g. CORBA and DCOM [Grimes,

1997]). The first version of CORBA specification is released in 1991, the current version is available at

Chapter I.1 State of the Art

62

[OMG, 2008a]. Finally, in the beginning of 2000s, WSA and REST architecture have emerged, and have

been largely adopted. The driving needs have always been accelerating software creation process. This is

achieved by promoting reusability and abstraction. Indeed, functions are reused in the sequential

programming. Objects are reused in OOP and CORBA. Finally services (resp. resources) are reused in

WSA (resp. REST based architecture).

In telecommunication field, the idea of abstracting the network capabilities started in the 1980s

[Magedanz, 2007] in order to decouple the creation of new telecommunication services from the network

components [Bertin, 2009]. The Intelligent Network (IN) has then emerged as the enabling architecture and

technology. The IN architecture is characterized by extracting the service intelligence from the legacy

network switches. A protocol was then defined and standardized on top of Signalling System 7 network for

this purpose: IN Application Protocol (INAP). The standard defines the way the IN entities interact. For

instance, it enables the service control point (SCP), where the service logic is implemented, and the service

switching point (SSP) to interact with each other. The service logic is implemented as a chain of

capabilities, so-called Service Independent Building Blocks (SIBs). A limited set of reference SIBs have

been defined by the ITU-T, grouped under the name of capability set (CS-1, CS-2, and CS-3). However, as

stated in [Magedanz, 2007], this limited set of SIBs limits the functional capabilities of IN. In addition,

despite the wide adoption of the INs all around the world, the envisioned open market of SIBs was not

enabled.

In the beginning of 1990s, the convergence between telecommunication and IT began to happen,

and their evolution took more or less the same path. Indeed, telecommunication started to use IT

technologies for rapid and low cost service creation. They have used for instance object oriented

programming techniques and RPC-like tools (e.g. Parlay API and Java APIs for Intelligent (Integrated)

Network (JAIN)). They have also used scripting languages (e.g. Call Processing Language (CPL) RFC

2824 and RFC 3880, SIP CGI [IETF, 2001], VoiceXML [W3C, 2004f], CCXML [W3C, 2010]) for rapid

creation of advanced telephony services from scratch (e.g. Call forward on busy/no answer and Call

Screening). The scripts can be created manually, or using graphical tools (e.g. MetaEdit+18), known as high

level service creation tools [Glitho, 2003]. The scripts are stored in the signalling servers (e.g. H323

gatekeeper, SIP proxy, SIP redirect, and SIP registrar) and associated to source/destination addresses.

When a call establishment request arrives, the signalling server detects if there is an associated CPL script,

and runs it. When Web services technology has emerged in the IT community, the telecommunication

community also adopted it by developing the Parlay X API based on Web services. Finally, current success

18 MetaEdit+, http://www.metacase.com/, accessed on October 19th, 2010

Chapter I.1 State of the Art

63

of REST APIs (thanks to its simplicity), motivated telecom operators to publish their capabilities through

REST APIs (e.g. Orange Partner19 and Deutsche Telekom Developer Garden20).

In business process management field however, the driving needs are essentially the loose

coupling between different entities, and the flexibility of business processes. The advantages brought by

SOC to this field are essentially the separation between service description, service invocation method, and

service implementation. Thus, business process integrators can easily discover and invoke a third party

service without having any knowledge about its real implementation. In addition, the reusability of existing

services makes adaptation to new requirements easier, as the implementation of a new business process is

much faster; though it is still in charge of developers. Indeed, though graphical tools such as Eclipse BPEL

designer21 for modelling business processes have emerged, they still remain understandable only by

developers as we detail in the following subsections.

In the following subsections, we first detail the Service-oriented Architecture (SOA) from the

conceptual and the technical perspectives; SOA is considered as the enabling architecture for SOC. Then,

we illustrate how service composition and business processes management research benefit from SOC.

Finally, we conclude with current unresolved issues.

2.1 Service-Oriented Architecture (SOA)

SOA is an architecture that enables SOC. SOC paradigm is characterized by two entities: service providers

who expose their services, and service integrators who reuse these services in the development of their own

service or application. For a wide adoption of SOC, discovery and publication facilities must be provided

respectively to service integrators and service providers. SOA is an architecture paradigm that provides

such facilities. It provides a centralized approach for enabling service providers to publish their services,

and service consumers to discover them. This assertion is supported by W3C definition of SOA [W3C,

2004a]: “A set of components which can be invoked, and whose interface descriptions can be published and

discovered.” As we illustrate in Figure 1, SOA is based on a common registry where service descriptions

are stored. Though this registry might be physically distributed over several platforms (such as [Du, 2006],

[Verma, 2005], and [Podesta, 2008]), it is still remain a central entity from service providers and service

consumers points of view.

19 Orange Partner, http://www.orangepartner.com, accessed on October 19th, 2010
20 Deutsche Telekom Developer Garden,
http://www.laboratories.telekom.com/ipws/English/News/Presse/2010/Pages/DeveloperGarden.aspx, accessed on
October 19th, 2010
21 Eclipse BPEL designer, http://www.eclipse.org/bpel/, accessed on July 31, 2010

Chapter I.1 State of the Art

64

Service registry

Service consumer Service provider

publishFind

Access (use)

Service
description

• Service interface invocation

• Discovery criterion

Service
Figure 1: Basic service oriented architecture.

The SOA paradigm is based a set of principles [Erl, 2007]; some of them concern the service

developers and providers, while others are related to the service registry. Thus, service developer and

provider should:

• describe their services (service contract) in term of the functionalities they provide and their non-

functional properties such as (price, Qos, SLA, version of the service,…etc),

• hide to the external world the complexity of the underlying implementation of the service logic

(service abstraction),

• reduce as much as possible the dependencies with other services (service autonomy),

• create stateless services.

The service registry should provide interfaces for publication and discovery of services.

In addition to these principles, service reusability and composition is a main principle that should

be ensured by a service oriented system.

Web Services Architecture (WSA) is currently considered as the intrinsic technology of SOA.

However, there are actually several other technologies that enable it, namely OLE, EJB, CORBA, and

REST. In addition to Web services, we detail in the following subsections these technologies. We

demonstrate and explain that current technologies are centred on the developer needs, and do not consider

users as potential creators of advanced services from existing ones..

a. OLE Automation

OLE (Object Linking and Embedding) automation is a Microsoft technology embedded natively in

Microsoft Windows desktop environment. It enables one application to discover and use capabilities of

another one. The concept follows a SOA as depicted in Figure 2.

Chapter I.1 State of the Art

65

Windows registry

Client Desktop
application

Server Desktop
application

Deploy (program name)getId (program name)

Use (programId.operation)

Service
developer

Creating a program
Figure 2: OLE automation.

When a developer creates an application, he specifies whether his application can behave as a

server (i.e. it can be accessed and controlled from other applications). Consequently, when users install this

application in their desktop environment, it registers itself in the windows registry. Thus, other developers,

who are aware about this application, its operations, and their availability at the runtime, can create an

application that requests the identifier from the registry and use the application specific operations as

depicted in Figure 2.

b. Enterprise JavaBeans (EJB)

EJB [Sun, 2001] is a Sun Microsystems Inc. architecture and technology for the development of

component-based applications. In this section we summarize the main concepts of the architecture. As we

illustrate in Figure 3, the architecture includes mainly three roles: a Bean provider, an EJB server and

container, and an application assembler. The Bean provider is the entity which exposes its software features

to third parties. It first implements the business logic of its software. Second, it defines two interfaces:

Home Interface and Remote Interface. The former enables the Application Assembler entity to create and

remove instances of the Bean, and the latter enables them to call the Bean specific methods. Third, the

Bean provider must implement the session Bean interface; an implementation which includes public

methods which will be used as entry points to access to the business logic of the software feature. Fourth,

the provider associates a name to the Bean and deploys it to an EJB server, using a deployment tool. The

deployment tool automatically generates implementations for the two (Home and Remote) interface

definitions; implementations which will be used by the Application Assembler to create instances of the

published Bean and invoke its methods.

The Application Assembler is the consumer of a Bean. It first discovers an existing Bean within an

EJB server using Java Naming and Directory Interface (JNDI) API [Sun, 1999]. Then, it uses the Home

interface to create instances, and the Remote interface to invoke methods (Home and Remote interface are

previously generated when publishing the Bean).

Chapter I.1 State of the Art

66

EJB server +
container

Application Assembler Bean Provider

publish
Find

• ejb-jar.xml

• Home interface

• Remote interface

• session bean implementation
• JNDI API

Create and access

Figure 3: EJB-SOA analogy.

EJB architecture does not really conform to service-oriented model. First, EJB is limited to Java

language and J2EE environment. Second, all invocations to a Bean go through the EJB server. This implies

that there is always a central entity which bridges between different stakeholders (provider and consumer).

While this approach may succeed within a limited environment such as a company, it is still not scalable

enough to be widely adopted within the Web platform.

c. Common Object Request Broker Architecture (CORBA)

CORBA [OMG, 2008a], Common Object Request Broker Architecture, is an Object Management Group

(OMG) standardized architecture that aims to facilitate the development of distributed applications. It

enables for instance the development of loose coupled objects which communicate with each other. It

enables a developer to invoke in his applications ready-to-use objects that are already developed by other

developers. The architecture conforms to SOA as we illustrate in Figure 4. Indeed, object (or service)

providers publish the functionalities they perform into a common registry, called “Interface Repository” in

CORBA terminology. More precisely, they publish a description of their objects, a description which is

written using the Interface Description Language (IDL). An example of an IDL file is depicted in Figure 5.

Distributed ORB

Provider

Object

publish
Find

Access (use)

Interface
description
(IDL)

stubs skeleton

CORBA APIs CORBA APIs

IIOP

Client

Interface repository

Figure 4: CORBA-SOA analogy.

interface Account {
// Operations available on the account.
void deposit(in float amount);
void withdraw(in float amount);
...

};

Figure 5: IDL file example.

Chapter I.1 State of the Art

67

IDL describes the different operations that are provided by the object, their inputs, and their

outputs. IDL files are programming language independent, but the service publication process, and service

invocation process is performed using existing APIs (JAVA API, C++ API …). Nevertheless, thanks to

Stubs and Skeletons, the client application remains completely independent from the server application.

Stubs and Skeletons are mediation objects which are automatically created from the IDL files using

CORBA IDL compiler, which are language-dependent. Still, the Object Request Broker (ORB) supports

major programming languages. Stubs mediate between the Client and the ORB in order to transform the

IDL method invoked by the client into an ORB operation, and Skeletons mediate between the ORB and the

provider of an invoked object in order to transform ORB operation into an actual method invocation of the

target object, which is programming language-dependent.

ORB component is responsible for routing a request to its target. This includes transmitting input

to the target, waiting for the response, and transmitting the output to the requestor. It hides from the service

consumer the real location of the invoked service. The Stubs and Skeletons ensure data marshal and

unmarshal. This is necessary to ensure loose coupling between the service consumer and the service

provider.

In order to support distribution over different entities, OMG has introduced IIOP; a specification

of how to implement General Inter-ORB Protocol (GIOP) over the internet. GIOP is a specification that

defines the formats of inter-ORB messages exchange. It enables two independent ORBs to communicate,

and thus, a client from an ORB A can invoke a server object registered on another ORB B.

d. Web Services Architecture (WSA)

Web Services are currently the most popular technology that enables SOC. A Web Service [W3C, 2004b]

is “a software system designed to support interoperable machine-to-machine interaction over a network. It

has an interface described in a machine-processable format (specifically WSDL). Other systems interact

with the Web service in a manner prescribed by its description using SOAP messages, typically conveyed

using HTTP with an XML serialization in conjunction with other Web-related standards.” This definition

highlights the different technologies used within Web Services Architecture (WSA): WSDL, SOAP, HTTP,

and XML. Nevertheless, the architecture comprises also facilities for publishing and discovering services.

UDDI (Universal Description, Discovery and Integration) is currently the common technology that

provides such facilities, though other Peer-to-Peer (P2P) or hybrid approaches such as [Du, 2006], [Verma,

2005], and [Podesta, 2008] exist.

As we illustrate in Figure 6, Service providers create services, describe there interfaces using

WSDL (Web Service Description Language), and publish them to a common registry using an UDDI

Chapter I.1 State of the Art

68

interface. Then, Service developers use a discovery interface to discover services within the UDDI registry,

and invoke them by creating a SOAP (Simple Object Access Protocol) message.

UDDI

Developer Service provider

publish
Discover – UDDI API

Access (use)

SOAP messaging

WSDL
----------WSDL +

service
infrmation

Figure 6: Web Service Architecture (WSA)-SOA analogy.

These standards (WSDL and SOAP) are oriented for a machine-to-machine communications.

They provide a common way to describe, publish and invoke services. Figure 7 illustrates a WSDL file

which describes a Weather service, and Figure 8 illustrates the corresponding SOAP request. Each WSDL

file may describe one or several operations of a service. Each operation contains an abstract description and

a concrete description. The former refers to the signature of the service and the latter defines how

developers invoke it. The SOAP messages are then created accordingly.

Abstract
Definition

Concrete
Definition

Figure 7: Weather service description file.

Figure 8: Weather service request and response.

Chapter I.1 State of the Art

69

Though WSDL-SOAP enable software features to automatically invoke a Web service (Create and

send the SOAP request), the developer intelligence is still required to first choose which service and which

operation respond to a specific need, and second to check whether the input parameters of the interface is

semantically conform to the data that the software feature is willing to provide. In order to tackle this

limitation, semantic technologies such ontology dictionary languages (Resource Description Framework

(RDF) and Web Ontology Language (OWL)) [W3C, 2004e], semantic Web Service description languages

(such as SA-WSDL and OWL-S), and semantic reasoning tools are associated to WSA [McIlraith, 2003].

This is known as Semantic Web Services (SWS). Figure 9 illustrates the new architecture. Service

descriptions are semantically annotated using a common dictionary, and then, the platform provides

semantic discovery tools.

Developer Service provider

publishDiscover – API

Access (use)

SOAP
messaging

SA-WSDL
----------SA-WSDL +

service
infrmation

Semantic Dictionary

Registry Semantic annotations

Figure 9: SWS architecture.

e. REST

REST architecture is coined by Roy Thomas Fielding in his Ph.D. dissertation [Fielding 2000]. It is

characterized by representing each resource as a Uniform Resource Identifier (URI) accessible through

HTTP. Thus, while WSA and CORBA are operation oriented, REST-based service architecture is resource

oriented. Each resource is accessible through a unique URI with different methods (GET, POST, PUT, and

DELETE). The GET method enables the requestor to read a resource. The POST method enables him to

update a resource. The PUT method enables him to create a resource. Finally, the DELETE method enables

him to delete a resource.

As an illustrative example, consider a contact list web service which implements three

functionalities: get contact list functionality, get contact details functionality, and add contact functionality.

In SOA, we expose these three functionalities as three operations, defined in the WSDL file, whereas in

REST based service architecture, we expose the resources with URIs as follows:

Chapter I.1 State of the Art

70

• http://contactlist.org/contactlist/: this URI is accessible by GET and POST methods. GET

method returns a document containing the whole entire contact list, and POST method adds a

contact to the contact list.

• http://contactlist.org/contactlist/contactidentifier: this URI is accessible by a GET method and

returns a document that contains the details of the contact.

REST service exposure method makes the service invocation as simple as making an HTTP

request, so there is no need for a special API to invoke a service; almost all programming languages enable

the creation of HTTP requests. However, as illustrated in Figure 10, REST in itself does not include a

registry, which is necessary to publish and discover services. Therefore, Sun Microsystems published

WADL, a Web Application Description Language, which is a WSDL-like description language format that

aims to describe resources instead of operations. Thus, WADL files can be published to and discovered in

the registry. More recently, even W3C added resource description support to the WSDL 2.0 specification.

A service registry

Developer Service provider

Resource

publishFind

Access (use)

Service description
(WADL or WSDL 2.0)

HTTP
connection
API

HTTP, inputs as parameter of the HTTP
request, outputs as an HTTP response
(formatted to XML, HTML, JPEG,…)

REST

Figure 10: REST.

2.2 Service Composition using SOA

We classify SOA based service composition into three main categories: static service composition,

automatic service composition, and semi-automatic service composition. Service composition is defined as

the process of creating a composite service; which is a combination of services or capabilities that provides

a new functionality. The following subsections detail each approach of composition and analyze the related

technologies.

a. Static Service Composition in SOA

Static service composition is a combination of two or more services performed by a developer at the design

time, using programming languages. This is the most basic approach to perform service reuse; the core

concept of SOA paradigm. The term "static" indicates that the user can no longer modify it at runtime.

WSA and REST-based architecture are currently the most used to enable the static service composition.

From the technical perspective, this type of composition is carried out by providing to the developers APIs

Chapter I.1 State of the Art

71

that enable them to easily discover and invoke services. We distinguish two types of APIs: Backend APIs

and Frontend APIs. This distinction is actually related to the programming language those API are intended

for. The Backend APIs are thus intended for developers that use server side programming languages such

as Java and PHP. We find for instance APIs such as Java SOAP client and PHP SOAP. The Frontend APIs

are intended for frontend programming languages such as JavaScript, Java applets, and Adobe flash. We

find for instance IBM Dojo toolkit extension and jQuery SOAP client.

 In both cases, the APIs facilitate the creation of SOAP messages, and the retrieving of a specific

parameter within a SOAP response of a Web Service. The most important advantage of this approach is the

richness of the created application. As it is created by a developer, services can be deeply integrated with

each other. In addition, the presentation layer of the application can be completely decoupled from the

composition logic. This implies the possibility of creating sophisticated UI to enhance the user experience.

However, the limitations of such approach consist in its difficulty, the long time to market it implies, and

the difficulty to personalize the new application according to a specific user. First, it is difficult because the

composition of services as well as their presentation to the user is performed using a programming

language. Second, it implies a long time to market because the needs are first expressed by the user, and

then processed by a developer. In addition, the request processing time includes the implementation of the

business logic by calling the different services, and the implementation of the UI. Third, once the

application is created and deployed, the user can not modify it. Each modification requires the intervention

of a developer in order to reengineer the application.

b. Automatic Service Composition in SOA

The loose coupling between services in WSA and REST, and the availability of more and more basic

services over the Web fostered the research on automatic service composition. Automatic service

composition is characterized by creating automatically a composed service from a user request. Research

work has been done extensively on semantic issues and natural language interpretation in order to build a

customized service directly from a user request. As we illustrate in Figure 11, most approaches consider the

SWS architecture (see Figure 9) and add two new components: User Request Interpretation and Automatic

Service Composer.

Chapter I.1 State of the Art

72

Semantic enabled registry

Automatic service
composer

Service provider

publishSemantic discovery

Access (use)

Semantic
Service
description

• Service interface
invocation

• input/output
transmission

• Discovery criterion

Service

Service
developer

User

Creating a Natural
Language Request

User Request
Interpretation

Semantic Dictionary

Figure 11: Architectural model for automatic service composition.

User request interpretation entity is in charge of transforming a natural language request to a

formal request [Bharati, 1995]. It essentially detects the goals of the user and the available inputs.

Automatic Service Composer entity receives a formal request that contains user desired goals,

with the available inputs, and it generates an orchestration of available services so that the user can reach

his goals starting from the available inputs. There are two main approaches to do that: a top down

approach, and bottom up approach. In the former, the algorithm starts from the goals, explores different

orchestrations that reach these goals, and selects the one which matches the available inputs. And in the

latter it starts from the available inputs, explores the available orchestrations, and selects those that reach

the user's goals. To illustrate these two approaches we consider the work of Lecue and Leger [Lécué,

2006] and [Lécué, 2007]. Their algorithms are based on a causal link matrix (CLM [Lécué, 2006]) or the

extended CLM (CLM+ [Lécué, 2007]). While CLM is a matrix that represents all matching possibilities

between inputs and outputs of services, the extended one takes into account the non-functional properties.

Computing the CLM matrix includes the quantification of the similarity of two concepts in the semantic

database (the ontology). This quantification is based on the logical relations between the concepts. Table 2

shows an example of such quantification.

Table 2. Quantification of semantic matching of parameters.

Logic meaning Signification Value

S1 ≡ S2 Semantic of S1 is exactly the same as semantic of

S2 according to an ontology Ө

1

S1 ≤ S2 S1 is a subclass of S2 2/3

S1 ≥ S2 S2 is a subclass of S1 1/3

S1 ≠ S2 S1 is different from S2 0

Chapter I.1 State of the Art

73

Figure 12 illustrates an example of a CLM matrix. Lines refer to all entries parameters of all

services and columns refer to all inputs of services and to the goals of the user request. An element in the

CLM is a set of vectors V (l, c) = (Si, Value) where Si is a service that has as input l, and Value is a

semantic matching value between an output of Si and the corresponding column parameter c (which is an

input of another service).

employe_name

person_name

manager_address

S2: global directory

Inputs: person_name

Outputs: person_address,
phone_number

S1: company directory

Inputs: employe_name

Outputs: manager_name,
work_phone_number,
email, work_address

employe_name person_name

-- { (S1, 2/3) }

--

{ (S2, 1/3) }

Cause person_address
(output of S2) is a super-

class of manager_address
(according to an ontology ?)

Cause manager_name
(output of S1) is a

subclass of
person_name (according

to an ontology ?)
Figure 12: CLM simple example.

Pa4C, which belongs to a bottom up algorithms, is a recursive algorithm that runs on the top of the

CLM. It has as input the constructed CLM, a set of available web services (WS), initial user inputs that

represent the initial knowledge base (KB), and the user goals (B). The algorithm then populates the KB

with reached parameters through available services in WS set until all user goals are reached.

Graph based algorithms follow however the inversed reasoning approach (the top down). Such as

the Pa4C algorithm, we have as inputs: the constructed CLM, a set of available web-services (WS), the user

goals (B), and the initial knowledge base (KB). A set of services N is initialized with services that have as

outputs user goals B. For each service (S) in N, the algorithm checks if user inputs include all required

parameters for its execution. If this is the case, service S is removed from the list and the algorithm

proceeds to next one until N is empty. If user inputs are not sufficient to allow the execution of the service

S, then the algorithms checks in the CLM+ if there are services that provide as outputs the necessary

parameters. If such services are found then we remove S from the list and we add the found services to N.

The composite service is constructed as the algorithm populates N.

 Automatic service composition is definitely an ideal approach for composing services as it

enables users to get dynamically a new service responding to their spontaneous needs, expressed using their

natural language. However, it still suffers from research issues that prevent it to reach a potential

industrialization. Examples of such issues are the natural language ambiguity [Cremene, 2009] and how to

Chapter I.1 State of the Art

74

provide a comprehensive dictionary of concepts that enable the description of all existing services [Pop,

2009]. These two issues give rise to the inaccuracy of the Automatic Composition (The generated

composite service does not match exactly the user needs). Furthermore, the UI part of the service created

automatically using this approach is very basic. This can be explained by the absence of the UI layer in

WSA.

c. Semi-automatic Service Composition in SOA

Semi-automatic service composition category includes any mechanism that enables the user to define a

composite service with more investment than making a natural language request. The idea is to let

developers to create basic services and users to intuitively chain them in order to create more innovative

ones. Figure 13 shows the basic architectural model of this category of service composition. We first need

to create the basic services and publish them into a registry. Then, users discover the needed services in the

registry and compose them through an “Orchestration definition graphical tool”. This will generate a script

that defines the composition logic. Finally, the created composite service can be executed using an

orchestrator (also known as execution engine), which uses the already created script that defines the

composite service.

Service registry

Service orchestrator

Service provider

publishFind

Access (use)

Service
description

• Service interface
invocation

• Discovery criterion

•Browsing existing
services

Service

Orchestration
Definition graphical

tools

Executing a created
script

End-User

Creating an
Orchestration script

1

2

uses

Figure 13: Semi-automatic service composition general model.

This model is essentially fostered by the current emerging concepts of Web 2.0, where software

applications are fragmented into web services and users are actively involved in content creation process.

Indeed, content in websites like Wikipedia, Youtube, and Flikr22 is essentially populated and maintained by

the users themselves.

After an investigation of existing tools, we have classified them into three main sub-categories:

• graph-based service composition,

• desktop environments based service composition,

• and websites-based service composition.

22 Flickr, http://www.flickr.com/, visited on January 15th, 2010

Chapter I.1 State of the Art

75

In the following parts of this section we will details these categories.

Initially, graph-based service composition tools were addressed for developers and advanced users

in order to speed-up the service creation process. Several frameworks such as JBPM [Cumberlidge, 2007],

Eclipse BPEL designer23, [Ku, 1994], and jABC (Java Application Building Center) [Margaria, 2006]

[Steffen, 2007] have emerged. These frameworks are all based on process definition languages such as

BPEL (Business Process Execution Language) [Andrews, 2003], JPDL (JBPM Process Definition

Language) [Cumberlidge, 2007], and SLG (Service Logic Graphs) in [Ku, 1994] and [Steffen, 2007]. The

creation tools are thus based on intuitive graphical interface that enable the assembling of black boxes

according to the logic of the service needed by the user. The logic is defined by chaining the black boxes by

mapping outputs and inputs. Other operations like conditions and loops could be added graphically as well.

The black boxes are referred through different names depending on the community. But, they are all

conceptually equivalents; they are reusable software features, with well defined functions and interfaces

(inputs and outputs). Thus, in JBPM we use the term task to refer to an activity realized by a human or a

software (business process community), and in jABC (telecom community) we use SIBs (Service

Independent Building Blocks) to refer to a reusable software feature.

Though these tools definitely make the creation process easier and faster, they still remain

addressed for developers and advanced users. First, they are based on IDEs (Integrated Development

Environment) which are hardly accessible by ordinary users. Second, it is necessary to understand different

computing concepts such as (flowchart, inputs, and outputs) to be able to create new services.

Other frameworks, that follow exactly the same model depicted in Figure 13, attempted to get

closer to the user by implementing the composition capability directly at the Web browser level, either as a

Web application or as a browser plugin. However, they still remain based on defining a flowchart based on

different and sometimes complex (for ordinary user) operations such as regular expressions, web services

invocation, conditions, loops…etc; concepts that are not understood by ordinary users. Consequently, we

claim in this thesis that this type of composition is addressed for advanced users. Nevertheless, as the

composition logic is defined independently of the user interface, this type of composition provides a

significant flexibility in the UI creation. They enable developers and advanced users to create sophisticated

UIs. Examples of such frameworks are: Yahoo PIPES, MARMITE [Wong, 2007], and OPENMASHUP24.

Figure 14 shows an example of a composite service in Yahoo PIPES. Boxes represent basic services and

wires represent input/output mapping between these services. In that example, we have used three services:

23 Eclipse BPEL designer, http://www.eclipse.org/bpel/, accessed on July 31, 2010
24 Open Mashup, http://www.openmashup.org/, accessed on July 31, 2010

Chapter I.1 State of the Art

76

String builder service (let the user to enter the input), translation service, and Yahoo search service. Wires

link the output of string builder service (String) with the input of the translation service (text), and the

output of the translation service (text) with the input of the Yahoo search service (String). As a result, we

have created a new service which translates a string passed as input, and search on the web for the

translated string using Yahoo search engine.

Figure 14: Yahoo PIPES screenshot.

MARMITE and OPENMASHUP follow exactly the same philosophy as Yahoo PIPES. Services

are represented through boxes and user should set up the mappings between outputs of services with inputs

of others. This approach however is suited only for advanced users; users that know what an input and an

output of a service are and how to chain them. This assertion is supported by experimentations that have

been conducted in [Wong, 2007] as well as in our own experimentations detailed in Chapter III.3

Experimentation and . Authors in [Wong, 2007] have tested their framework on a sample of six persons:

two of them are experienced in software programming, two others are experienced in spreadsheet but not

programming, and the others are not experienced in programming nor in spreadsheet. The results have

shown clearly that this type of composition is addressed for advanced users. Indeed, only three out of six

have succeeded to build a composite service. More important is that, those who have succeeded are those

who have knowledge in programming and spreadsheet. This experience demonstrates that this type of

composition framework is more addressed to advanced users than ordinary users without any computing

technology knowledge.

The second category of semi-automatic composition tools is based on the desktop environment of

the user. It includes mechanisms that involve the user in the creation and execution of composite services

within their desktop environment. he history of this type of composition have begun with traditional

desktop environments such as Microsoft Windows, MAC operating systems, and Linux that enable the

users to compose two independent desktop applications using intuitive mechanisms such as OLE clipboard,

Chapter I.1 State of the Art

77

more known under the name of copy and paste, and OLE drag & drop. However, these mechanisms still

have three limitations:

• They do not consider current Internet of services where users are no longer limited to local

applications. Users use more and more remote web services such as Map, online search, and

online purchase.

• They suffer from the late failure detection. In other words, the system does not detect compatible

applications for a copied or dragged data, and propose them automatically to the user. Instead, the

destination application of the paste or drop action is responsible for retrieving the compatible data

(data that it can handle) from the clipboard.

• The created composition is not rich as it is limited to data moving (and optionally to format

transformation) from an application to another.

In order to tackle these limitations, the emerging solutions firstly include a desktop environment

that considers Web-based services, and secondly define composition tools that enable the users to combine

services within their desktop environment. Examples of such approaches are EZWEB [Soriano, 2006] and

IBM Mashup Center25. Both require user participation to make the composition, which makes them

belonging to semi-automatic service composition. Figure 15 illustrate the corresponding model, which is

different from the traditional semi-automatic service composition illustrated in Figure 13. Service providers

create widgets and publish them into the catalogue of the framework. Users can browse that catalogue,

select the desired services, and load them into their environment. Thereafter, users can launch a “Wiring”

interface, which enables them to define sequences of widgets execution. These wires are then executed as

the user uses his environment.

Figure 16 illustrates how do users create a link between two services in EZWEB. It illustrates a

YouTube search service linked to a YouTube player service. This link is created by the user himself using a

dedicated user interface that enables the selection of an output of a service and mapping it to an input of

another. This Figure also shows the execution of the created wire.

25 IBM Mashup Center, http://www-01.ibm.com/software/info/mashup-center/, accessed on July 31, 2010

Chapter I.1 State of the Art

78

User loaded widgets

Widget Container and
wiring execution

Service provider

publishFind

Access (use)

Service
description

• Service interface
invocation

• Discovery criterion

•Browsing existing
services

Service

Wiring interface

Executing Widgets
and wires

End-User

Creating Wires

1

2

Loading widgets from
the catalogue

3

uses

EZWEB catalogue

Figure 15: Semi-automatic composition model in EZWEB.

Figure 16: EZWEB screenshot.

The last identified category of semi-automatic service composition is based on Web-sites. It

includes mechanisms that enable users to add functionalities to already existing websites. This does not

modify the website itself; instead the mechanism modifies the current instance of the website (the response

generated for a user request). MASHMAKER [Ennals, 2007a] and [Ennals, 2007b] and MARGMASH

[Díaz, 2007] are two examples of such mechanism. MASHMAKER is implemented as a Firefox plug-in.

Its most important innovation is the extraction of semi-structured data from web pages. Consequently, users

can map that data to inputs of existing services. Figure 17 for instance displays a "Yellowpages" web page

in which MASHMAKER component has extracted automatically all addresses, phones and names.

Thereafter, the user has mapped the addresses into a Map service. To do that, he has just loaded the Yahoo

Map widget.

Chapter I.1 State of the Art

79

Figure 17: MASHMAKER screenshot.

These tools enhance significantly the intuitiveness of the composition framework as the

composition script is created automatically as the user loads widgets to the website. However, the created

service can not be sophisticated because all wires must go from the Web site outputs to widgets inputs.

Thus, all created composite services follow the schema illustrated in Figure 18.

Figure 18: Composite service schema.

d. Comparison

Table 3 depicts a comparison of the different composition approaches according to identified criteria. It

takes into account both user and service developer point of view:

• Coupling between services: This criterion characterizes the dependencies between two services

that a service composition approach requires.

• Service developer investment: This criterion characterizes the additional investment, required

from a developer who wants to make his service “reusable”.

• Personalization: User needs are various, numerous, and evolving. Therefore, personalization

capability is an important characteristic for an efficient composition tool. This criterion

characterizes the ability of the user to personalize a created service to his needs.

Chapter I.1 State of the Art

80

• Distribution over user devices: This criterion characterizes the capability of creating composite

services which are distributed over the user devices; so that each atomic functionality will run in

an appropriate device.

• Richness of the created service: This item reflects what kind of and how sophisticated are the

applications that can be created by developers and users, using a composition approach? It reflects

also the richness of the UI of the composite service.

• Intuitiveness of the composition tool at the design time: The intuitiveness of composition tools is

an important requirement to attract more users and developers. Especially in the context of Web

2.0 where we expect ordinary users, without development skills, to compose their own services.

• Time to market: How to reduce the time to market of applications is a question that rises in most

companies. The TTM starts from the instant where the user needs a new service and ends when he

gets it. TTM includes the service request processing time, the development time, and the

deployment time. While static service composition tools aim to reduce essentially the development

time, automatic and semi-automatic aim to reduce all these phases.

• User needs matching: It is important to create services that match exactly the user needs.

Table 3. Comparison of service composition categories.

Semi-Automatic

 Automatic Graph-
based

Desktop
environments

based

Websites-
based

Static

Coupling between services High Medium Medium Medium Low

Personalization High Medium Medium Medium Low

Distribution over user devices No No No No Yes

Richness of the created service Medium Medium Medium Low High

Intuitiveness of the

composition tool at the design

time

High Low Low Low
Very
low

Time to market Low Medium Medium Medium High

User needs matching Low High High High
Medium

+

The most important advantages of automatic composition of services are: personalization, and the

time to market of new services. Automatic composition of services is very centred on the user; the service

creator is the user himself and the creation time is almost the execution time. This means that the user can

Chapter I.1 State of the Art

81

modify a created service easily and instantly, which makes the automatic composition of services very

customizable. Also, the automatic approach reduces significantly the time to market as the service is

created directly and automatically by the user. However, this composition category suffers from some

limitations:

• Tight coupling between several entities: automatic service composition requires a common

semantic vocabulary between several entities: service platform, different service providers, and

even the users when making their request (they should use the same vocabulary in their request as

the one defined in the service platform).

• The composite service can not be sophisticated as a developer application: Because it is done

automatically, and it is a composition of building blocs, the created service can not be as

sophisticated as a service which is created directly by a developer from scratch. In addition, the

UI these tools generate for a composite is rudimentary.

• The composite services are not distributed over the user devices.

• Difficulties to match exactly the user request: due to current limitations of semantic reasoning and

natural language processing, the created composite service does not always match the user

request. This imposes a validation step (performed by the user) before the execution. This

limitation is also due to the difficulty for the user to express their request in an efficient way (in a

vocabulary close to the platform’s one).

In static service composition, the most important advantages are: the loose coupling between

services, the richness of the created service, and the user needs matching. Services are independent from

each others because developers do not really need semantic tools to understand the functionalities of a

service. The created service can be as sophisticated as the developer can do, there are no particular

technical limits as the service invocation is done by the developer using programming languages. However,

this category of composition mechanisms suffers from the incapacity of personalization, and time to

market. It is not customizable for two reasons: the first one is that the creation time is different from the

execution time, and second, users need development skills to modify the execution sequence of services. In

addition, the time to market is very high as the entity which needs the service is not usually the entity which

develops the service. Therefore, it requires a development request processing phase and a development

phase.

The last composition category is semi-automatic. We have categorized it into: Graph-based

service composition, desktop environment based composition, and websites based service composition.

Semi-automatic service composition represents a tradeoff between the static and automatic service

Chapter I.1 State of the Art

82

composition in term of several criteria such as time to market, loose coupling between services,

intuitiveness of the composition tool, and personalization. It also excels in users needs matching criterion

compared to automatic and static composition as in semi-automatic composition the users create

themselves the composite service, which matches exactly their needs. In addition, they can modify it

whenever they want to.

2.3 Business Process Management using SOA

There are many definitions of the term business process: [Hammer, 1993], [ebXML, 2001], [Aguilar-

Savén, 2004], and [Ko, 2009]. However, an invariant seems to rise among all these definitions. Indeed, all

these definition mention that a business process is a set of coordinated activities performed to reach a

business goal.

Business Process Management (BPM) is the action of discovering, modelling, developing,

executing, and monitoring business processes that are pertinent in a given organization. It aims to provide

organizations with efficiency in performing their business activities, while ensuring their agility – the

capability of quickly adapt and modify their business processes.

In this section we review the approaches and technologies that are used to manage business

processes, and then, we figure out the advantages and limitations of current practices.

a. Discovery and modelling

The task of discovering and modelling business processes is currently performed by business analysts. The

discovery usually follows either a top-down approach or a bottom-up approach [Verner, 2004]. The top-

down approach is characterized by identifying and defining at first the high level business processes, and

then, decomposing them into lower level processes until the lowest, user or profile specific, level is

reached. This approach has the advantage of providing a high level organization insight of the processes,

and the limitation of lacking in process details and accuracy [Verner, 2004].

The bottom-up approach, in contrast to the top-down approach, starts from capturing the business

processes of the lowest, user or profile specific, level. Then, the processes are generalized and/or merged

each other to form end-to-end processes of an organization [Verner, 2004]. This approach has the

advantage of being detailed and accurate, but business analysts can hardly have a broad picture of business

processes of an organization.

In both approaches, business process discovery also suffers from finding the best trade-off

between the accuracy of the business processes and their number. Indeed, the more business analysts try to

enhance the accuracy of business processes, the more these processes are specific to a limited number of

Chapter I.1 State of the Art

83

users, which augments their number and complicates their implementation and maintenance. As an

illustrative example, let us consider a vacation request business process. The high level view can be

summarized in three activities: vacation request creation, send the vacation request to the requestor

manager, study and making decision, notifying the result to the requestor. However, as we try to get more

precise in the actions that are performed by users, additional versions of the process appear. Figure 19 for

instance, illustrates two precise processes of a team manager and purchasing and logistic responsible. After

receiving a positive response to a vacation request, the team manager updates his agenda, sends email to his

team, and sets up an automatic email response, while the purchasing and logistic responsible searches

pending purchasing orders, calls the providers, redirects the incoming calls during the vacation period, and

updates his agenda.

Figure 19: Vacation request business process versions.

After discovering an organization business process, business analysts should model it in order to

share it with other business analysts, as well as with developers to automate it using a software application.

The most common way to model business processes is using BPMN (Business Process Modelling

Notation) [OMG, 2008b]. It is a flowchart diagram very similar to activity diagram of UML (Unified

Modeling Language). BPMN is an OMG (Object Management Group) standard whose last version is

released on 2008. The most important challenge in the modelling of business processes is filling the gap

that exists between business analysts and IT teams. It is required to represent the details that developers

need.

Chapter I.1 State of the Art

84

b. Development and execution

The most important challenge in the development of business process management applications is how to

foster agility in the organization. WSA, associated to composition languages, are currently the most

promising approach that embraces this challenge. It is characterized by exposing business enterprise

applications as Web Services, and using service composition languages to combine these services to

implement a business process. The developer most important task is to associate a Web Service to a

business activity defined in the BPMN model. Figure 20 summarizes the WSA approach for implementing

business processes [Arsanjani, 2007].

Business Process Management Architecture

User layer

Back-end layer

Exposure layer

Operational Systems

B
us

in
es

s
P

ro
ce

ss

D
ev

el
op

m
en

t
S

er
vi

ce
s

A
pp

lic
at

io
ns

Web Service

Applications

U
se

r
in

te
rfa

ce
s

to

ac
ce

ss
 b

us
in

es
s

pr
oc

es
se

s

Figure 20: Business Process Development using WSA.

As we illustrate in Figure 20, the development of business processes are completely independent

from the applications that are running within the organization. Functionalities of such applications are

exposed through Web Services (WSDL/SOAP), and developers can invoke and compose these services

based on a business process definition, without any modification on the applications. The composition of

those services is either performed manually, using SOAP APIs, or semi-automatically using scripting

(XML-based) languages such as BPEL4WS, which are much easier. In addition, these languages are

usually empowered with graphical tools (e.g. Eclipse BPEL editor) that facilitate even more the

composition process. Figure 21 for instance illustrates a BPEL4WS graphical representation of a

Chapter I.1 State of the Art

85

composition of services made using Eclipse BPEL editor. It shows a News service combined to a send

Email service.

Figure 21: BPEL4WS Graphical Representation.

c. End-to-end Sequence diagrams

Figure 22 shows respectively the end-to-end process of creating and updating a business process. The first

step is the discovery a relevant business process. This can be a request from the user as illustrated on the

Figure, or a proactive action performed by the business analyst. After capturing the needs, the business

analyst models the business process and requests a development of an application. The developer then

translates the model into an executable BPEL script and creates the application. At this step, the end-user

can access and use the application. When a specific update is needed by the user or captured by the

business analyst, it is required to change the model, and send it to the developer who updates the BPEL

script as well as the UI of the application if needed.

d. Advantages and limitations

Though BPEL4WS associated to WSA provides a significant flexibility in the development of business

processes, it still has some limitations:

• First, the end-to-end process of developing business processes still remains long and difficult to

perform. It is long, because it includes the process discovery step, the process modelling step, and

the process development step. It is difficult, because of the difficulty of capturing specific user

needs at the right time.

Chapter I.1 State of the Art

86

• Second, the loop between the users, the business analysts, and the developers in the process of

updating a business process makes the adaptation to spontaneous users needs impossible.

• Third, the implementation of a business process, which is characterized mainly by the definition

of a BEPL4WS script, is tightly coupled to the invoked Web Services. This implies updating the

BPEL4WS script each time a change on the Web Service that performs a given business activity

occurs.

user Business Analysts Developer

1 : express the needs()

2 : model the process()

3 : Request the development of the process()

4 : Identify Web Services for each activity()

5 : Construct BPEL script()

6 : Developping the whole application()

7
8

9 : Use the application()

10

11 : express the needs()

12 : update an existing process model()

13 : change request()

14 : update BPEL()

15 : update application()

16
17

18 : Use the application()

19

Figure 22: End-to-end sequence diagram of business process modeling and development.

2.4 Conclusions

WSA and REST-based architecture are currently the two main alternatives that enable SOA, and

consequently enable SOC. As far as it is used by developers, they address perfectly the need of integrating

different services with each other to create a new one. However, our survey shows clearly that these

technologies are not addressed at all for users. They do not enable ordinary users to compose services

mainly due to the technology complexity. As Figure 23 illustrates, services are usually described and

Chapter I.1 State of the Art

87

invoked using XML-based format such as WSDL, WADL, and SOAP; technologies which are not

understandable by ordinary users at all.

UDDI

User Service provider

publish WSDL / WADL /
WSDL 2.0

WSDL / WADL / WSDL 2.0

SOAP

Users do not understand
WSDL, WADL,…

Users cannot create SOAP
requests

Figure 23: Technology gap between users and WSA (and REST).

Mainly due to this technology gap between what is used and what is understandable by ordinary

users, several limitations are perceived in service composition and business process management fields.

Table 4 illustrates these limitations. It also summarizes the advantages of SOA.

Table 4. Current SOA advantages and limitations.

Item Advantages Limitations

Static

service

composition

• Services are completely

independent from each other. The

created service might be as

sophisticated as an ordinary

application (No technical limitation).

• Enable the creation of distributed

applications.

• The created service matches

exactly the user needs.

• The creation process is complex. It is

conceived only for developers. As a

consequence, a long TTM for personalizing

an existing service, as well as for creating a

new service is noticed.

• The created service is tightly coupled to

the used basic services.

Semi-

automatic

service

composition

• Addressed for advanced users. It

enables personalization.

• The time to market (TTM) is low

when a user is able to create a service

(He is an advanced user).

• The created service matches

exactly the user needs.

• Not designed for ordinary users; the

tools are too complex for them. This implies

a long TTM when an ordinary user wants to

create a new service, or to personalize an

existing one.

• The created service is limited.

• The created services can not be

distributed over the user devices.

• The created service is tightly coupled to

the used basic services

S
er

vi
ce

 c
om

p
os

iti
o

n

Automatic

service

• Designed for ordinary users.

• It enables a quick creation of a

service.

• The created service can hardly match

exactly the user needs.

• The created services cannot be

Chapter I.1 State of the Art

88

composition • It is very intuitive. distributed over the user devices.

• The services are tightly coupled as they

rely on a common semantic.

• The created service is tightly coupled to

the used basic services

Business process

management

• SOA enables a seamless

integration of enterprise business

processes. It hides the

implementation aspects of enterprise

applications.

• Graphical tools such as BPEL

significantly speed up the

development of business processes

(but it still performed by developers).

• Business processes are heterogeneous,

and thus it is hard to capture and implement

all the details. In other words, business

processes are generalized for the sake of

simplicity.

• Adaptation to new processes is long as it

requires first the capturing of the need; and

second, its development (usually by a

different entity).

• The business process integrator is tightly

coupled to the Web Service they use.

• Unstructured data are not captured by

business process integrators

3 Service Environments

The machine-to-machine interaction has been massively investigated within SOC. But the human-to-

machine interaction is not. We believe that this is the main reason that makes SOA fails in user generated

services, and the related fields such as service composition and business process management. In this

section, we review the technologies that enable software to get closer to the user. We provide more details

on Web portals technology, as it is the current trend. Nevertheless, we summarize the evolution history to

this technology (Web portals).

The most common user service environment is the operating system of the user machine (such as

Linux and Microsoft Windows). Their goal is twofold: abstracting the use and the management of hardware

components, and providing the necessary infrastructure that enable users to intuitively manage and run their

applications. In this thesis we essentially focus on the second item and classify in this regard these

environments into three models.

Chapter I.1 State of the Art

89

3.1 Model 1

The first model covers both initial versions of desktop environments such as MS-DOS and UNIX, as well

as more recent ones such as Microsoft Windows and Linux. It consists either in a command-line interface

(CLI) or WIMP (Windows, Icons, Menus, and Pointer) interface. Figure 24 summarizes the model.

Service ProviderUser

Service Environment Provider

- Host and Run the Service
Environment

Figure 24: Model 1 overview.

Before getting a service running, users should first procure and install on their devices both the

service environment (e.g. UNIX or Microsoft Windows) and the desired services. Thus, at the runtime, the

user device, the provider of the user environment, as well as service providers are completely independent.

However, the user is limited to run the service at that specific device; the device in which the user

environment and the service is installed. This presents a significant constraint especially to highly mobile

users.

3.2 Model 2

The first model has been the adopted for many years. But the emergence of Web 2.0 and the increasing

number of services available on the Web have encouraged industrials to think about new models. Model 2

and 3 are examples of Web 2.0 aware service environments.

Model 2 actually refers to the approach adopted by Google in its Google Chrome operating

system. It is characterized by installing at first the user environment at the user device, and then users can

dynamically, and on demand, access and use remote services, which are mostly running at the service

provider platform as illustrated in Figure 25.

Chapter I.1 State of the Art

90

Service ProviderUser

Service Environment Provider

- Host and Run the Service
Environment

- Host and Run Services

Dynamically invokes the services

Figure 25: Model 2 overview.

The most important advantage of this approach is the adoption of the software as a service (SaaS)

paradigm [Armbrust, 2009]; the users can dynamically (on-demand) invoke software services hosted and

running remotely on the Web. However, it requires an installation of the service environment on the user

device, which, such as model 1, presents a constraint to the highly mobile users.

3.3 Model 3

Model 3 is another example of “Web 2.0-aware” service environments. It is characterized by entirely

adopting the SaaS paradigm; both software and service environments are considered as services that are

hosted and running remotely on the Web. This is also known as DaaS (Desktop as a Service) [Beaty, 2009].

Figure 26 summarizes this approach.

Service ProviderUser

Service Environment Provider

- Host and Run the Service
Environment

- Host and Run Services

Dynamically invokes the services

Figure 26: Model 3 overview.

This model includes several frameworks that we classify into two main categories: Web operating

systems (OS) category ([Weiss, 2005] and [Lawton, 2008]) such as Wiki-OS26, Glide OS27, and eyeOS28,

and Customizable Web Portals category such as [Bellas, 2004], MyServices29, iGoogle30, and Netvibes31.

26 Wiki-OS, https://www.wiki-os.org/
27 Glide-OS, https://desktop.glidesociety.com
28 eyeOS, http://www.eyeos.com/
29 Orange MyServices, http://www.espace-utilisateur.orange-business.com/index.php, accessed on July 31, 2010

Chapter I.1 State of the Art

91

The former tends to produce the same environment as traditional operating systems [Lawton, 2008]

(managing the same type of applications that package several functionalities), except that the managed

applications are hosted in the Web. Whereas the latter, in addition to managing services that are hosted in

the web, it promotes personalization by enabling users to create their own environment by loading only

functionalities they need. These functionalities are wrapped within small UIs called Widgets [W3C, 2007]

or Portlets.

Each category has its advantages and limitations. As illustrated in Figure 27.a, in Web OSs,

functionalities of an application are tightly coupled by a developer according to pre-requested users’ needs

(e.g. Microsoft Outlook contact list functionality is coupled to send email functionality). However, one

limitation of this approach is that the application is hardly customizable by the user; if users need a new

functionality to be integrated to an existing application, they must express their need to a developer who is

in charge of integrating the functionality. Furthermore, the communication between applications is limited

to what was expected by the developer during the development phase. In other words, the developer of

application A could call an application B (or a web service), if, and only if, during the development of

application A, the developer knows about the availability of application B at the runtime.

In Customizable Web Portals however, applications are split into a set of widgets in the same way

as we split applications to Web Services in SOC; each widget gives access to an independent functionality.

This method enables users to customize their environments by loading only the needed functionalities. But

the limitation of such environment stems from the fact that the developed functionalities are independent

from each others. Users can not launch a send email service from a contact list service, or a “Google Map

service” from a directory search results. Figure 27.b summarizes the characteristics of this category.

Customizable Web Portals are characterized by aggregating small user interfaces called Widgets

[W3C, 2007], Portlets [Sun, 2003] [Sun, 2008], or Gadgets. In the next section, we briefly describe the

differences between these concepts, and then we overview the OASIS initiative to standardize the

relationship between Web Services and Portlets.

30 iGoogle, http://www.google.com/ig?hl=en
31 Netvibes, http://www.netvibes.com

Chapter I.1 State of the Art

92

Web OS: Distinct providers provide
distinct packages (applications)

phone IM

SMS

Service aggregators: Each provider
provide one or several functionalities

IM

agenda

Contact list

Send email

Contact list

phone IM

SMS

IM

agenda

Contact list

Send email

Contact list

(a) (b)

Figure 27: Comparison of Web OSs and Customizable portals.

4 Widgets Related Concepts

Though there are several implementations of the Widget and Widget aggregation concept, we can

distinguish two main approaches: the Java community with JSR 168/286 specifications, and the Web

community with W3C and UWA specification. Before merging us to the details of those specifications, we

first show in Figure 28 the common characteristics between the two approaches. It is illustrated that the

model is very simple: each Widget has an implementation and a description. The implementation is

characterized by different modes, which are described and referenced in the description of the Widget. The

modes include basically: a View mode, a Configuration (or edit) mode, and a Help mode. The View mode

corresponds to the main screen of the Widget that enables the user to interact with the different

functionalities provided by the Widget. The Configuration mode corresponds to a screen that enables the

user to customize the Widget. It enables him to set configure the Widget according to his preferences and

specific parameters. These parameters are then saved and reused in further access to the Widget. Finally,

the Help mode provide users with documentation on the usage of the Widget. While the help and the

Configuration modes are optional, the View mode is mandatory as it provides the core logic of Widgets.

In addition to these basic modes, a Widget aggregator may define additional modes that Widgets

should or must provide. Typically, it is interesting to integrate a notification mode to Widget aggregators

where communication Widgets (e.g. Telephony, IM, and email) might be integrated. By notification we

refer for example to incoming calls, new message…etc. This provides a unified notification zone for

different services (e.g. at the bottom-left of the screen). The additional modes provide an additional

constraint to Widget developers, as they should implement additional UI fragments within the UI of their

functionalities. But, they also provide a deeper integration between different Widgets, and thus enhance the

user experience.

Chapter I.1 State of the Art

93

Widget

Widget Description
has

1

Widget Implementation

has

1

mode

implements
1..*

describes
1..*

Figure 28: Comparison of Web OSs and Customizable portals.

The following subsections details the different technologies and how this model is realized.

4.1 Portlets (JSR 168/286)

Java Portlet Specification [Sun, 2003] defines a Portlet as “a Java technology based web component,

managed by a portlet container, that processes requests and generates dynamic content. Portlets are used

by portals as pluggable user interface components that provide a presentation layer to Information

Systems”. This definition highlights the main characteristics of a Portlets. First, it is a Java technology.

Second, it is used by portals as pluggable UI; UI that can be added and removed from the portal by users or

portal administrators. Third, it needs a portlet container as an execution environment, and a portal as a

front-end presentation environment. Figure 29 depicts a high level overview of interactions between Web

Portals, Portlet container, and Portlets.

Portlets are initially specified in JSR 168 [Sun, 2003] – also known as Java Portlet Specification

1.0. This specification aims to standardize the interactions between Portlet Containers and Portlet

providers. The goal is to achieve interoperability so that each Portlet would be able to run on all Portlets

container complying with the specifications. JSR 286 [Stefan, 2008] (V2.0) is the second version of the

Portlet specification. It aims to overcome the limitations of 5-years experience of the first version.

Portal client side

Portlet A

Portlet B Portlet C

Portlet D

P
o

rta
l S

erve
r side

P
o

rtlet C
on

ta
in

er

Portlet A

Portlet B

Portlet C

Portlet D

Figure 29: Portlet High Level View.

From the technical perspective, a Portlet is a Java Web application that follows a specific API.

This API is characterized by a Java interface that must be implemented by the Portlet. This interface

Chapter I.1 State of the Art

94

contains a set of functions whose most important are described in Table 5. We illustrate also a typical

scenario that involves calls to these functions in Figure 30.

When an action (e.g. submitting a form) is performed on one Portlet (e.g. Portlet B), the portal

invokes the Portlet container. Then, the portlet container:

• First, invokes the processAction of the corresponding Portlet (B).

• Second, invokes the processEvent function of each Portlet which has subscribed to an

event generated by Portlet B, following the processAction function.

• Third, invokes the render function of each Portlet – this function generates the UI

fragment that will be displayed on the portal.

• Fourth, transmits each fragment to the Portal, which is in charge of generating the new

Web Page.

This scenario illustrates the limitations of JSR 286. Indeed, in addition of being limited to Java

technology, JSR 286:

• Does not really make use of AJAX (Asynchronous JavaScript And XML) capability of

Web browsers. Though it enables a Portlet to use AJAX to invoke its server side logic,

the Portal itself can not use AJAX to update a single Portlet.

• Portlets are not completely independent from each other. Indeed, each time an action is

performed on one Portlet, the Portlet Container invokes the render function of all other

Portlets and updates their UI. This implies a significant constraint for developers as they

can hardly manage different states in the UI level.

 Table 5. Portlet Interface Description [Sun, 2003].

Function Name Function Description

Init() This function is calls by the Portlet container immediately when a new instance

has been created. It can be used by the Portlet developer to initialize his variables.

processAction() This is the main function that interacts with the user. Developers can add links or

forms that users can fill and send back to the Portlet processAction method. Here,

developers can implement the business logic of their application by invoking Web

Services, or querying the data base,…etc.

render() This function is called immediately after the processAction function. It aims to

enable the developers to generate the UI fragments. The processAction and render

functions together enable developers to separate the business logic implantation

from the presentation layer. The render function is executed each time a Portlet is

updated in the Portal.

Chapter I.1 State of the Art

95

processEvent() JSR 286 specification enables Portlets to communicate events between them. This

requires from the Portlet Developers to first subscribe to an event type (in the

Portlet configuration file); and second implement the processEvent function,

which is executed each time such event is generated by other Portlets or the

Portlet container.

doView, doEdit,

doHelp

This corresponds to the different modes of the Portlet. According to the Portlet

state (View, Edit, or Help), the render function calls one of these functions

(doView, doEdit, doHelp). If for instance the portlet is on the state Edit, the render

function calls the doEdit function in which developers should prepare the HTML

form to enable users to personalize the Portlet.

destroy() This function is executed when a Portlet instance is about to be destroyed by the

Portlet container

Figure 30: Request Handling Sequence ([Stefan, 2008]).

4.2 Widgets

From the user perspective, a Widget is exactly the same as a Portlet: It is a pluggable UI component, used

by Web Portals and provides a presentation layer to Information Systems. Unlike JSR 286 which is specific

to J2EE platform, Widgets do not impose any Server side technology. Instead, it must be a Web

application, which means that the client side of the application must be based on Web technologies such as

(X) HTML, JavaScript (JS), CSS, and XML. W3C for instance defines a Widget [W3C, 2007] as “a self-

contained client side Web application for displaying and updating remote data, packaged in a way to allow

a single download and installation on a client machine or mobile device.” Universal Widget API (UWA)

Chapter I.1 State of the Art

96

[UWA, 2008] is another initiative, launched by Netvibes, to perform interoperability between different

Portals. It promises a single development and several deployment platforms paradigm. In other words,

developers create Widgets using the UWA specification, and then, the Widgets can be automatically

adapted to a specific Widget engine. Currently, all major Widgets engines (e.g. Netvibes, iGoogle,

Windows Vista, Apple Dashboard, Yahoo! Widget, iPhone, Opera, blogs, MySpace, etc.) support the UWA

format.

Unlike JSR 168/286 which mainly standardizes the interactions between the server side of the

Portlet and the Portlet Container, W3C and UWA focus on the interactions between Portals and the client

side of the Widgets. They specify how to define a Widget and what technologies to use for implementing

the client side. UWA for instance, requires XHTML as the language for presenting the content of the

Widget, XML for handling the preferences, JavaScript for adding behaviour to the Widget, UTF-8 as the

encoding format, and finally, CSS for styling the Widget. In addition, UWA compliant Widget engines

provide a set of JavaScript functions that aim from one hand to provide facilities to developers (e.g. AJAX

requests), and from another hand to limit the developer to ensure that Widgets do not interfere with each

other. Table 6 summarizes the most important JS functions.

Table 6. UWA JavaScript Functions.

UWA Function Description

widget.onLoad() This function should be rewritten by the Widget Developer. Its

content is executed when the Widget is loaded on the Portal.

widget.onRefresh() This function should be rewritten by the Widget Developer. Its

content is executed when the Widget is refreshed.

widget.setAutoRefresh(delay) Developers can use this function to automatically refresh the

Widget each delay minutes

widget.setTitle(title) Changes the title of the Widget.

widget.openURL(url) Opens a new URL on a new browser window

widget.body Provides a reference to the Widget root element.

widget.createElement Creates a DOM element.

widget.getValue(name)/

widget.setValue(name, value)

Respectively gets and sets values of preferences parameters.

UWA.Data.request(url, request

object) (Alternatives: getFeed,

getJson, getXml, and getText)

Performs an AJAX request

addContent, appendText, setText,

setHTML, setStyle

Modify the content or the style of an element.

Chapter I.1 State of the Art

97

By focusing on the client side aspects, W3C and UWA provide a significant flexibility for

developers in the implementation of the business logic from one hand, and for portal developers in the

implementation of their portal from another hand. Indeed, in JSR 168/286, both Portlet developer and

Portal developer must use Java technologies and rely on the JSR 168/286 specification in the

implementation of their server side logic. These constraints explain the growing popularity of Widgets

compared to Portlets. Indeed, Widgets do not impose any constraint in the development of the server side

logic, for both Widget developer and Portal provider.

4.3 SOA vs. Portlets and Widgets

SOA is a mature paradigm widely used among software developers. It is empowered with several

technologies which enable them to seamlessly integrate ready-to-use (third-party) services within their

software (Service or application). However, current technologies such as Web Services and REST

architecture, which enable SOA, still lack of presentation layer. They still lack of the UI that enable the

service to interact with the user and vice versa. On the other hand, Widgets and Portlets are by definition

pluggable UI fragment that respectively provide access to data and business logic of an application. But,

current Widget technologies did not deeply investigate the interoperability and integration aspects between

Widgets. In addition, the relationship between Widgets and SOA architecture is not deeply investigated.

First attempts to converge SOA and Widget/Portlet paradigm have been made by OASIS

Standardization Group, in the Web Service for Remote Portlets (WSRP) Specification ([OASIS, 2003] and

[OASIS, 2008]). WSRP aims to provide Web Service developers with an easy way to embed a pluggable

UI. This enables WSRP compliant Portals to easily integrate a Web Service. As we illustrate in Figure 31,

the standard is characterized by adding a common interface to WSDL description files. This common

interface returns the UI of the Web Service. This UI enables the user to interact with the service and vice

versa. Portal providers from the other hand should implement a generic Portlet that should invoke the

WSDL common interface which returns the UI, and render the results to the Portal.

Portal client side

Portlet A

Portlet B Portlet C

Portlet D

W
S

R
P

 C
om

p
lia

nt P
ortal

Portlet Container WSRP
Compliant Web

Service A

Generic
Portlet
Proxy

WSRP
Compliant Web

Service D

WSRP
Compliant Web

Service C

WSRP
Compliant Web

Service D

Instances of the
Generic Portlet Proxy

Described With WSDL Files,
including well defined interfaces
that enable the invocation of the

UI Fragment
Figure 31: WSRP Basic Concepts.

Chapter I.1 State of the Art

98

Though WSRP standard is limited to JSR 168/286 compliant Portals, the idea of adding a face to

Web Services is pertinent. As supported by [Díaz, 2008] and [Akram, 2005], this idea of adding a user

interface to Web Services makes Portlets in Web Portals playing the same role as Web Services in SOA,

namely enablers for application assembly. We witness even researchers advocating development methods

and the necessity of orchestration tools based on Widgets/Portlets ([Díaz, 2008], [Vo, 2006], [Sire, 2009],

and [Soriano, 2006]). In [Sire, 2009], authors proposed an API that enables developers to develop Widgets

which communicate with each other when they are loaded in the same portal. In [Soriano, 2006], authors

have proposed EzWeb platform; a Widget aggregator that enables Widgets to communicate with each

others through wires defined by the users. The EzWeb platform is illustrated in Figure 16, which is

duplicated hereafter.

Current solutions are not deeply investigated and compared to traditional SOA regarding different

domains. In this thesis, we define a comprehensive architecture that enables users and developers to

combine Widgets with each other at the Web portal level. Then, we apply this architecture to two SOA

application fields, namely service composition and business process management. We aim to to highlight

where SOA and Widgets technologies complement each other and where they do not.

5 Semantic Related Technologies

SOA might be empowered with semantic tools in order to facilitate the composition of services (static,

automatic, or semi-automatic). In this section, we summarize the current practises in adding semantic to a

service, whatever its nature (Widget, Web service, Web application…etc.).

Chapter I.1 State of the Art

99

5.1 The Different Approaches of Semantic in the Web

Such as services, semantic has a producer and a consumer. While the consumer could be a human or a

machine, the producer of semantic is inevitably a human. This is due to the definition32 of semantic itself;

an adjective of a relating to the meanings of words. The meaning can not be generated by machines.

The most common approach to add semantic to a software service is to describe it using a natural

language. This is already used in software engineering when developers create documentation of their

software, or when adding comments to their functions, in order to be understood by third party developers.

It is also used in WSDL files in the <documentation> tag. However, such description is limited to humans.

Indeed, the semantic consumer, as well as the semantic producer, are inevitably humans and not machines.

As a consequence, only static service composition is supported. Automatic and semi-automatic, in which

machines should build, and/or check the feasibility of, input/output mappings, are not supported.

In order to enable machines to consume semantic (understand the meaning of words), developers

need a new approach for defining their services; this is known as semantic Web, coined by Tim Berners-

Lee in [Berners-Lee, 1998]. For this purpose, “machine oriented” semantic technologies have emerged. We

distinguish two popular approaches: the ontology approach and the markup languages approach.

a. Ontology Approach

The term ontology has been firstly used in philosophy field. It means a theory of the nature of existence. In

computer science field, the term is used to refer to a formal model of knowledge in a specific domain. This

formal model is characterized by a set of concepts and relationships between them. It is used in artificial

intelligence to model real objects and enable automatic reasoning on their properties.

From the technical perspectives, there are many languages that enable the specification of domain

ontology. Resource Description Framework (RDF) [W3C, 2004d] is an example of such language. This

language is characterized by a set of triplets T (Subject, Predicate, Object). This form of triplets enables the

representation of a relationship (predicate; also called properties) between two concepts (Subject and

Object). Thus, a concept is defined with a tag and its relationship with other concepts. An RDF model can

be represented as a graph, where nodes refer to the different Subjects and Objects referred in the triplets,

and arrows represent the predicate (relationship). The RDF specification defines a set of properties

(subClassOf, typeOf, domain, range…etc.), but others could be added. Figure 32 is a simple example of an

RDF model.

32 Collins, http://www.collinslanguage.com/results.aspx, accessed on June 14th, 2010

Chapter I.1 State of the Art

100

IngredientOf

Apple

Fruit

subClassOf

IngredientOf

Pie subClassOfFood

subClassOf

subClassOf

ApplePie

domain

range

Figure 32: RDF graph example.

Another popular language that enables modelling ontologies is OWL [McGuinness, 2004], which

stands for Web Ontology Language. It is an RDF based language, which provides more native predicates to

enable reasoning. It has three sublanguages: OWL lite, OWL DL, and OWL Full. OWL Lite is designed for

easy implementation. It restricts the language constructs to basic RDF schema such as: class, subClassOf,

property, and relations between that classes and instances such as: equality and cardinality. In OWL-DL,

developers can express value range of parameters, union, intersections and complement; these additional

properties are those supported by description logic. Finally, OWL Full uses exactly the same constructs as

OWL DL. The differences reside in the fact that OWL DL imposes some restrictions which are not

imposed in OWL Full. An example of such restrictions is that in OWL DL classes, data types, data type

properties, object properties, annotation properties, ontology properties are separated [W3C, 2004c]. This

means for example that a class can not be an instance or a property, which is possible in OWL Full and

RDF. With the imposed restrictions, OWL-DL ensures the existence of a decidable reasoning procedure

with current reasoning tools.

b. Markup Languages Approach

The markup languages approach for adding semantic to software features is characterized by defining

standardized tag, with clear and approved semantic (meaning), to be used by developers to annotate the

information their application generates. It is mainly used in the Web, with, or in conjunction with

(X)HTML.

The most known and successful technology to add semantic to (X)HTML documents is the

microformats initiative33 [Khare, 2006]. It is characterized by the definition of a set of formats to represent

information used in Web applications. Examples of such information are: addresses, phone numbers,

33 Microformats, http://microformats.org/, accessed on June 16th, 2010.

Chapter I.1 State of the Art

101

contact cards, calendar events, and email addresses. Table 7 is a summary of two popular specifications of

microformats: hCard and hCalendar.

Table 7. Microformats examples.

Microformat tag Sub-elements tags

(Summary)

Description

hCard
- fn

- adr (type, value)

- post-office-box

- extended-address

- street-address

- locality

- region

- postal-code

- country-name

- email (type, value)

- tel (type, value)

Inspired by RFC2426, the hCard microformat aims to

provide a representation of contact cards of persons,

companies, organizations, and places. The main

properties of this microformats are the name (fn), the

postal address (adr), the email address (email), and the

phoning address (tel). Note that for each address, we

can specify its type. The type can refer for example to

“work” for a professional address, or “home” for a

personal address.

hCalendar - dtstart

- dtend

- summary

- location

- attendee

- geo

- latitude

- longitude

Inspired by RFC2445, the hCalendar aims to provide a

representation of calendar events. It contains for that

purpose mainly the starting date of the event (dtstart),

the ending date (dtend), a summary (summary), the

location (location, geo), and one or several attendees

(attendee).

These tags are used directly within the (X)HTML document, usually within class of rel attributes.

Consequently, third party developers can easily request the Web page and extract useful information.

5.2 The Different Expressiveness Degrees of Semantic

In term of expressiveness, we can easily see that microformats do not provide the same level as ontologies

created using RDF or OWL. For instance, we can not model a complete domain of knowledge (e.g.

biology, wines, painting…etc) using microformats, as it is possible using ontologies. As a consequence of

this lack of expressiveness of microformats, reasoners may detect two semantic matching between that are

actually not compatible in the considered domain. For example, let’s consider two services, one of them

expects as inputs postal addresses located in France, and another generates US addresses as outputs. When

using microformat, it is impossible to highlight the above difference in the model, as both addresses are

referred through the “adr” tag. But this is possible using ontologies.

Chapter I.1 State of the Art

102

However, more we try to be more expressive in an ontology, more the ontology is unstable, and

more the reasoning tools are heavy.

5.3 Semantic and Service Creation

As we have previously detailed, there are different approaches that enable different actors to create services

through composition: static, automatic, and semi-automatic. The Web semantic tools provide support

essentially for the automatic and semi-automatic composition approaches. In automatic composition

approaches, semantic tools enable the detection of semantic matching between outputs of services with

inputs of others. Pa4C algorithm for example, used in [Lécué, 2006], uses a semantic reasoning tool that

enables detecting if two concepts (typically an output of a service and an input of another) are semantically

close or not. In other words, the semantic reasoner detects if one concept can be substituted from another.(if

they are equivalent (usually linked with properties like subClassOf, or Is), or if one is a sub element of

another (usually linked with properties like UnionOf, or subElementOf)). Figure 33 shows an example

where we use semantic substitution to compose services. In this example, semantic reasoning tools enable

the composition framework to detect that S1 can be composed with S2 (in other words, we can substitute a

phone number information from an IT Engineer information).

S1

S2

IT Engineer

Employee

subClassOf

Person

subClassOf

Identifier contactInfo

phoneNumber
phoneNumber

subElementOfsubElementOf

subElementOf subElementOf

Service S1 generates "IT Engineer" as an output
(e.g. S1 could a be a service that enables the
search of an expert within R&D of a company)

S2 accepts as input a "phone
number" (e.g. S2 could be a

telephony service)

Ontology

Figure 33: Example of semantic concept substitution in service composition.

In semi-automatic composition, Web semantic technologies are not mandatory. Indeed, as the task

of mapping outputs and inputs of services is performed manually, by humans, it is not necessary to add

Chapter I.1 State of the Art

103

semantic technologies. However, they still remain useful to first recommend pertinent services in the

composition process; and second, to check the validity of created composite services. These two actions are

even more important when the composer of the service does not have computing skills. The former

enhances the intuitiveness of the composition process, and the latter, ensures the semantic validity of the

new service.

While in automatic composition the semantic must be highly precise and expressive, in semi-

automatic composition, we can afford lightweight semantic as the composition process involves human

intelligence.

6 Conclusions

In this Chapter, we have studied two paradigms: the Service-Oriented Architecture (SOA) paradigm and

the Widget paradigm. Our main conclusion is that the former is not user-centric and designed mainly for

developers, and the latter is addressed for users but does not consider the service (Widget) reuse (one main

principle of SOA paradigm).

The SOA is not user centric as it is based on technologies that are understandable only by

developers (e.g. XML, SOAP, and WSDL). As a consequence, user service creation is not really supported.

Besides, two additional limitations are observed in current SOA:

• First, the reusability is based on well structured and formatted inputs and outputs of services. The

unstructured data such as the exchanged addresses in an IM discussion are not considered.

Consequently, much data are unavoidably discarded by current tools.

• Composite services are tightly coupled to the basic services they use. The unavailability of one

used basic service implies the non-validity of the composite services that use it.

These limitations are not actually limited to service composition field. They impact also other fields such as

business process management.

By contrast, the Widget paradigm presents the advantage of being designed for users. From the

conceptual perspective, Widgets presents significant similarities with Web services in Web Service

Architecture (WSA), and REST resources in REST-based architecture. Both enable exposing application

functionalities; both are self-contained; and both are self-describing. The Widget aggregator is a software

application that enables the user to build a personalized service environment, where different Widgets of

different providers are displayed within the same window (e.g. Web page). However, the reuse capability

(one main principle of SOA) is not really investigated within the Widget paradigm.

Our study of the two paradigms (SOA and Widget) shows that each one has its advantages and

limitations. This raises the challenge of constructing an architecture that includes the best of each field,

Chapter I.1 State of the Art

104

namely the reusability capability of SOA and the user-centricity of Widgets. In the next Chapter, we seek to

propose to enrich the Widget paradigm in order to build such architecture; we name it the Widget-Oriented

Architecture (WOA) paradigm.

Part II Contributions

Our contribution in this thesis can be summarized in three items:

• First, we introduce the principles of the Widget-Oriented Architecture (WOA) paradigm.

• Second, we design the framework that realizes the principles of WOA paradigm.

• Third, we study and propose the application of the WOA paradigm to two SOA

application fields, namely service composition and business process management.

Thus, this contribution part is divided into three Chapters that detail respectively the three

contributions.

Chapter II.1 Widget-Oriented

Architecture (WOA) Paradigm

As we illustrated in the state of the art Chapter (Chapter I.1 State of the Art), SOA still suffers from being

developer-centric and not user-centric. In this Chapter, we introduce a Widget-Oriented Architecture

(WOA); a new user-centric paradigm that aims to overcome current SOA limitations by providing the

capability to ordinary users to create services based on the Widgets. Thus, we start by summarizing our

vision about the definition of a Service; then, we specify the different roles involved in the new

architecture; and finally, we detail the principles that must/should be fulfilled by each role.

1 Service

In this thesis, we define a Service as “a software entity that performs one or more operations. It is

developed by a service developer and has at least one service description. It is made available by a service

provider and consumed by another software entity or by a user, who is optionally charged for.” Thus,

unlike enablers which are designed to be used by other software entities, and unlike Applications which are

designed to be used directly by the users, a Service in this thesis should be designed as a component which

could be used by other software entities or by users.

These conceptual differences between Enabler, Application, and Software Service imply

significant technical choices summarized in Figure 34. Thus, such as Web Services in traditional SOA, an

Enabler (Figure 34.a) is technically described by a description file following a machine readable language

such as WSDL and WADL. It is implemented using any programming language such as Java and PHP, and

can be invoked by third parties through well defined transport and messaging protocol such as HTTP and

HTTP/SOAP. Because they are designed to be programmatically processed, the presentation aspects are not

useful in an Enabler, except if it is part of the Enabler business logic itself.

Chapter II.1 Widget-Oriented Architecture (WOA) Paradigm

108

ServiceApplicationEnabler

Business
Logic

Web
Service

REST
resource

EJB
Web

Service
REST

resource
EJB

Web
Service

REST
resource

EJB

UIAPI UIAPI

(a) (b) (c)

Exposed as
REST resources
or Web Services.

HTML, CSS,
Flash,

Silverlight…etc.

Widgets

Service
Implementation
(Business Logic)

Service
Implementation
(Business Logic)

Service
Implementation

(Business Logic)

Figure 34: Service components.

Unlike enablers, applications (Figure 34.b) are designed to be used exclusively by users.

Therefore, applications are not described in a machine readable language; instead the focus is on its

interaction with the user. As a consequence, several technologies enable today the creation of advanced UI

such as HTML/CSS, Adobe Flash, or Microsoft Silverlight. In addition to this presentation layer,

applications also include the business logic which is implemented using any programming language such as

Java and PHP.

Finally, the conceptual distinction of a Service (Figure 34.c) is its characteristic of being designed

to be used either by another (third-party) software entity, or directly by users. Therefore, it is important to

focus its technical realisation on both UI aspects and reusability capabilities. Consequently, we technically

define a Service as a software entity realizing a business operation; it is associated to a UI (Widget), which

enables the user to interact with the business operation and vice versa (see Figure 34.c); the Widget part

should be described and should include semantic annotations in order to enable machines to reuse the

associated software service. By supporting both users and machines, the Widget paradigm in this thesis fills

the existing gap between the concepts that are understandable only by the user (UI, service), and those that

are understandable only by machines (XML, HTTP…etc).

2 Widget Oriented Architecture (WOA)

Our goal in this thesis is to propose solutions to current SOA limitations. We define thus the WOA

(Widget-Orient Architecture); a new paradigm which is more user-centric than SOA. Similarly to SOA,

WOA is a new computing paradigm that utilizes Widgets as basic elements to support the development of

rapid, low-cost and easy composition of distributed applications even in heterogeneous environments. As

we previously defined, a Widget is the UI part of a service that includes semantic annotations to enable

machines to process it. Our goal is to enable the reuse of the service by both humans and machines.

Chapter II.1 Widget-Oriented Architecture (WOA) Paradigm

109

As illustrated in Figure 35, WOA includes five roles: a Widget provider, a registry, a Widget

client, a Widget developer, and a user. The Widget provider publishes Widgets to a common registry by

providing their description, annotated semantically using the platform semantic dictionary. The Widget

provider is not necessary the developer of the Widget, neither the developer of the corresponding business

logic. The user uses the Widget client to discover, load, use, and compose Widgets. All interactions

between the user and the service go through the Widget client. The Widget client interacts with the registry

and the Widget provider. It invokes Widgets through HTTP request; the response is a UI (XHTML code)

dynamically generated by the service implementation, and semantically annotated.

Widget registry

Widget Client Widget provider

----------publish

Access

Widget
description

• HTTP request
Widget Implementation

User

Discover

Consume

Semantic Dictionary

Widget developer

provides

Figure 35: Basic Widget-Oriented Architecture.

Similarly to SOA, WOA relies on a set of principles which are categorized into Widget registry

principles, Widget client principles, and Widget provider/developer principles. After reviewing in the

following subsections these principles, we summarize how the different actors involved in the WOA model

interact with each other.

2.1 Widget Registry

Such as SOA service registry, the Widget registry must provide an interface for publishing Widgets and

another for discovering Widgets. However, with the increasing number of services, it is likely to have

several Widgets fulfilling the same functional need. Therefore, it is important to provide a mechanism for

selecting services among functionally equivalent ones. This selection mechanism must be user centric; in

other words, it must be based on selection rules defined by the user himself.

2.2 Widget Client principles

The Widget client is a software application through which the user consumes Widgets. Followings are a set

of principles related to this role.

f. Service Environment as a Composition Framework

The Widget client must play a role of a user service environment and a composition framework at the same

time. In other words, in WOA paradigm, the composition framework should be the same environment as

Chapter II.1 Widget-Oriented Architecture (WOA) Paradigm

110

the daily service environment of the user. The user should not have two separate environments, one for

composing services and one for using the composition.

g. Widget Client Personalization

It is important to enable the user to personalize his service environment according to his own needs and

preferences. He should be able for instance to add and remove Widgets from his environment, and to

compose the Widgets with each others.

h. Widget Discovery

The Widget client should provide users with a UI that enables them to interact with the discovery interface

of the Widget registry. Thus, in addition to the functional based discovery, the Widget client should enable

the user to specify the rules to apply to select services among functionally equivalent ones.

i. Reusability and Composition of Widgets at the UI level

Such as in SOA, reusability and composition are main principles in the WOA. However, WOA distinguish

itself by being closer to the users. The reusability and composition must be performed at the UI level (as

illustrated in Figure 36). In other words, the intelligence that enables the composition of Widgets between

them must reside at the Widget client level. This enables the design of user-centric mechanisms as we will

show later on in this thesis.

Phone number must be
semantically annotated to

detect it and compose it with
the telephony Widget

Composition at
the UI level

Figure 36: Reusability and composition at the UI level.

In addition to the reusability and composition of Widgets within the Widget client level, it is

recommended to consider two additional issues (to enhance even more the user centricity of the WOA

paradigm): reusability cross Widget clients (see Figure 37), and reusability based on unstructured data (see

Figure 38). First, with the proliferation of devices, the users would likely want to combine services loaded

on different devices. The reusability and composition should therefore be possible even between two

Chapter II.1 Widget-Oriented Architecture (WOA) Paradigm

111

Widgets loaded on two different Widget clients (optionally on different devices of the same user as

illustrated in Figure 37).

Device 2 Device 1

Widget Client 1Widget Client 2

Composition

Figure 37: Reusability across different Widget clients.

Second, with the proliferation of communication services, much data (e.g. phone numbers, email

addresses, postal addresses…etc) are generated and exchanged between users; data that could be used as

input parameters in the invocation of other Widgets. As in the WOA we are acting at the UI level, it is

pertinent to provide tools for capturing these data and composing them with other Widgets. As illustrated in

Figure 38, this would enable for example the capturing of postal addresses within an email and locating

them using a Map Widget.

Composition
Unstructured

data detection

Figure 38: Unstructured data composition.

j. Stateless and Statefull

Unlike SOA which recommends stateless services, Widgets in WOA can be statefull. Indeed, as Widgets

embed a UI that interacts with the backend logic, they can manage different states at the UI level without

affecting the performance of the backend service implementation.

Chapter II.1 Widget-Oriented Architecture (WOA) Paradigm

112

It should ne noted that the capabilities of a Widget may differ from a state to another. For

example, a telephony Widget, in its initial state, can make and receive calls; but, the same Widget does not

have that capabilities when a call has been established. Therefore, it is important to enable Widgets to

subscribe and unsubscribe capabilities at runtime, during their lifecycle within the Widget client.

2.3 Widget provider/developer principles

a. Widget-based Development of Services

In WOA, developers expose their applications as a set of Widgets. A Widget provides access to one, and

only one, service implementation. Ideally, a service implementation embeds one functionality (a software

entity that provides an added value for users). But in some cases, it is necessary to include several

functionalities within the same service implementation to enhance the user experience. For instance,

consider a telephony service. It embeds the functionality that enables the users to make calls, and the

functionality that enables them to receive calls. From the user point of view, it is not necessary to have two

separate UIs. Thus, for the sake of the user convenience, two or more functionalities could be included

within the same UI. This is analogous to Web services which embed several operations within the same

Web service. Figure 39 summarizes how applications are exposed as a set of Widgets.

Map

Applications

Enterprise directory

Search Contact
Add Contact

Exchange

Read Agenda

Read Inbox

Telephony

Make call

Receive call

Read Email

Send Email

Figure 39: Exposing applications as a set of Widgets.

b. Contracting

Such as SOA, WOA requires from Widget providers to define their Widgets in term of the functionalities

they provide, and their non-functional parameters (including the provider, the version, the SLA, and the

Qos…etc).

c. Semantic Typing of the UI

The Widget UI enables the user to interact with the underlying business logic, which includes entering the

required inputs, invoking the needed functionality, and displaying the results for the user. In WOA, it is

Chapter II.1 Widget-Oriented Architecture (WOA) Paradigm

113

required from Widget developers to semantically annotate the results at the UI level. This is important for

reusability and composition (e.g. to use that result in the invocation of functionalities of other Widgets);

this is detailed in Chapter II.2 A Design of a Widget-Oriented Architecture (WOA) and Chapter II.3

Widget-Oriented Architecture (WOA) in SOA application fields. Figure 36 illustrates this principle.

d. Widget Autonomy and Loose Coupling

Such as services in the SOA, Widgets in the WOA must be autonomous and do not depend on an external

system. Each Widget must have its own lifecycle, and depend only on the business logic it implements. The

autonomous aspect of services and Widgets promotes reusability. However, as Widgets are designed also

for users, the Widget clients and the Widget providers must rely on the same Widget API.

2.4 Interactions

There are five interactions between the different actors involved in the WOA model. Table 8 summarizes

them.

Table 8. Interactions of WOA model actors (Figure 35)

Interaction

Name

Involved actors Description

Provide Widget developer –

Widget provider

The developer is in charge of developing the Widget

source code and providing it to the Widget provider, to

host it. It is important for the Widget provider to know the

functionalities of the Widget, in order to describe it and

publish it to the registry.

Publish Widget provider –

Widget registry

The publication phase could be performed by providing a

file compliant to the syntax and the semantic defined by

the Widget registry, or automatically by filling a form, in

which case the file will be created automatically. In both

cases, it should be provided the index URL of the Widget,

the URLs of the functionalities of the Widget, their inputs,

and their outputs.

Discover Widget client – Widget

registry

The discovery interaction aims to retrieve the Widgets

present in the registry according to a given criteria. This

implies an agreement on the format and the interface that

must be used between the two entities. From the technical

Chapter II.1 Widget-Oriented Architecture (WOA) Paradigm

114

perspective, this could be performed using for instance a

REST API. The response of the Widget registry is a list of

Widgets. Each entry of this list must contain the index

URL to invoke the Widget, and the list of functionalities

and their URLs.

Access Widget client – Widget

provider

The Widget client loads a Widget by invoking the

corresponding index URL (retrieved at the discovery

step). The response to this invocation is a UI (e.g.

HTML/CSS). When the Widget client needs to invoke a

functionality (when composing Widgets for example), it

must invoke the corresponding URL with the correct

parameters provided by the Widget provider when

publishing the Widget.

Consume User – Widget Client The user interacts with the Widget client through the

Widget client UI. This UI should provide to the user the

capability of discovering, using, and composing Widgets.

Chapter II.2 A Design of a Widget-

Oriented Architecture (WOA)

In this Chapter, we design a Widget aggregator framework which is compliant with the principles of the

WOA paradigm we defined. We first detail how we model a Widget. Second, we summarize the high level

view of the Widget aggregator we propose. Third, we detail the most important innovative mechanisms we

define.

1 Widget

As we previously specified, a Widget is basically a UI that provides access to a service implementation;

where a service implementation may provide several functionalities. The description of these functionalities

is a must in the WOA paradigm. In addition to that, their outputs, which are displayed in the UI, must be

semantically annotated. Figure 40 illustrates the Widget model we propose in our architecture. Some of the

defined elements already exist in current Widget paradigm (white part), and some others are new (grey

part) (see Figure 28 to compare).

Such as traditional Widget model, in our architecture each Widget has an implementation and a

description file (contract). The implementation part implements different modes (at least a view mode).

However, In addition of modelling and describing the different modes of a Widget, we also consider the

functional and the non-functional view of these Widgets. Each Widget may provide one or several

functionalities. These functionalities are described within the Widget description file. Each functionality

description contains an abstract description part and a concrete description part. The abstract description

part describes the goal of the functionality, the inputs it requires, and the outputs it generates. The

functionality goal, the inputs, and the outputs are described using a semantic dictionary provided by the

Widget aggregator (Widget client).

The concrete part of the description file refers to the actual implementation of the Widget. For

each functionality declared, the provider must specify the URL that provides such functionality. For each

input and output of a functionality declared, the provider must specify the corresponding tag used within

the actual implementation of the Widget. This enables decoupling Widget developers and the semantic

dictionary used within the Widget aggregator; the developers are not obliged to use the semantic dictionary

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

116

of a specific aggregator; instead, the mapping between their tags and the Widget aggregator’s ones is

performed by the Widget provider in the description file of the Widget.

The non-functional view of a Widget is described through a list of parameters and their values

(e.g. (provider, Orange)).

Another requirement of WOA is the annotation of the Widget outputs at the UI level. This is also

modelled in Figure 40, in which outputs contained within a UI include a data type (the annotation) and the

data value.

Figure 40: Widget design.

2 Widget Aggregator

The Widget aggregator plays the role of a Widget client in WOA paradigm. It is mediating between users

and Widget providers. In WOA paradigm, the Widget client must embed a set of features, namely: a user-

centric Widget discovery capability, reuse and composition of the Widgets at the UI level, supporting

Widgets reusability and composition across different Widgets clients, and finally the detection and

composition of unstructured data. In this section we provide a high level view of the architecture of the

Widget aggregator. Then, in the next section, we detail the Widget Combination component, which is our

main contribution as it enables the Widget reuse and composition at the UI level; it supports Widgets

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

117

reusability and composition across different Widgets clients; and finally, it supports unstructured data

based composition.

The Widget aggregator we propose is characterized by 6 main components: the GUI component,

the Widget Combination component, the Persistency Manager component, the Interpreter component, the

Widget Registry component, and the Semantic Dictionary component. As illustrated in Figure 41, some of

these components run at the front-end, while others run at the backend.

Figure 41: Service aggregation high level architecture.

The GUI is the visual representation of the framework. It provides access to the Widget registry

and its discovery capability; it enables the user to load a Widget and use its functionalities; and it enables

him to access to the Widget combination capability.

The Widget Combination component characterizes our main technical contribution. It provides the

reuse capability (a WOA principle) to users and developers. This component is detailed in the following

section.

The Persistency component is in charge of interacting with the Widget registry and the semantic

dictionary when needed. The Widget registry stores Widget description files and should provide a

discovery interface, which is used by the frontend components (GUI and Widget combination component).

These components (Persistency component, Widget registry, and the semantic dictionary) run at the

backend as they deal with persistency.

The Interpreter component provides runtime Widget selection mechanism. This component

provides a user centric Widget selection mechanism used to first decouple composite services from the

basic services they use; and second, it enables a dynamic adaptation of composite services according to

new contexts. This component is detailed in section 3.4 Abstract Service Based Reuse Extension.

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

118

3 WOA Key Functionalities (Widget Combination Component)

As illustrated in Figure 42, the Widget Combination Component provides three mechanisms that enable the

reuse of Widgets functionalities:

• API based (developer oriented) reuse of Widgets.

• automatic and semantic based reuse of Widgets (user oriented),

• and process based reuse of Widgets (user oriented),

In addition to these three innovative mechanisms, the WOA we propose is also extended with

three main concepts in order to enhance it and resolve SOA limitations that are still not resolved with the

basic WOA. These three mechanisms are:

• abstract service based reuse of Widgets,

• unstructured data based reuse of Widgets,

• and cross-device reuse of Widgets.

In the following subsections, we detail each mechanism and each extension.

System

API based reuse

Semantic automatic based reuse

Process-based reuse

Abstract service based reuse

Cross-device reuseUnstructured data based reuse

<<extend>> <<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Figure 42: Use case view of the Widget Combination component.

3.1 API-based Reuse of Widgets

a. Mechanism Goal

One approach for performing Widget reusability is to rely on the API-based reuse of Widgets mechanism.

This mechanism is conceived for Widget developers in order to enable them to reuse capabilities of other

Widgets loaded to the user environment. The specificity of this mechanism, compared to traditional ones

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

119

(mainly SOA APIs), is characterized by the user centricity of the reuse approach. The mechanism provides

an API that enables developers to discover and reuse capabilities of Widgets that are loaded to the user

environment at runtime; whereas in SOA, developers discover and use capabilities of services present in

the registry, which do not necessary have any relationship with the user. Figure 43 shows the difference

between the two approaches.

Service 4

Registry

Provider

1. Use

3. Reuse

2. Discover

Registry

Provider

User Service environment

Widget 4

Widget 2Widget 1

Widget 3

The developer creates a new
Widget, in which he discovers

and reuses capabilities of
Widgets that are loaded on

the user service environment
(Widget aggregator in our

case)

SOA approach WOA approach

The developer creates
a new service, in

which he discovers
and reuses services

present in the registry

1. Use

Each Widget access its
backend implementation

Figure 43: SOA approach vs WOA approach in API-based reuse.

b. Mechanism Design

This mechanism is characterized by the API component illustrated in Figure 44. This component has the

advantage of being related to the Widget aggregator instance; which provides some user context

information. It can be summarized in four main functions: GetWidgetList, Subscribe, Unsubscribe, and

Publish.

W1 W2 W4W3

List of loaded
Widgets capabilities

API

GUI Component

Widget
Combination
Component

Figure 44: API-based reuse involved components

• The GetWidgetList function provides the list of Widgets that are loaded within the

Widget aggregator instance, which is directly related to a user. The discovering step

could be done either according to the functionality that a developer needs, or according

to a given parameter type, which can be used as input parameter of the discovered

Widgets. The functionality and the parameter type are described using a tag defined in

the semantic dictionary.

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

120

• The Subscribe function enables the Widgets to declare their functionalities; this can be

performed automatically by reading the Widget description file, or explicitly by the

developer of the Widget by using the API.

• The Unsubscribe function enables the developer to declare the unavailability of a

capability previously declared. The Subscribe and Unsubscribe functions together enable

the modification of Widget capabilities at the runtime.

• Finally, the Publish function enables a Widget developer to use capabilities of other

Widgets loaded within the same user environment (Widget aggregator instance). The

generated outputs of the source Widget are thus used as input parameters of the

destination Widget(s); the outputs are explicitly specified as an argument of the Publish

function.

As illustrated in Figure 44, the GetWidgetList, Subscribe, and Unsubscribe functions enable

developers to read and write on the list of capabilities of the Widgets loaded on the Widget aggregator.

3.2 Semantic and Automatic Based Reuse of Widgets

a. Mechanism Goal

The semantic and automatic based reuse of Widgets is another approach to perform Widget reuse; one

principle of the WOA paradigm. It is designed for users and characterized by automatically discovering at

runtime the capabilities of the Widgets loaded on the user environment, and composing them if a semantic

matching is detected. The discovery and the reuse must be performed by the Widget aggregator, and not by

the developer of a specific Widget as it is the case in the API-based reuse of Widgets. Figure 45 illustrates

this mechanism.

User Service environment

Widget 4

1. Use

Widget 2Widget 1

Widget 3

The developer creates a new Widget,
in which he discovers and reuses

capabilities of Widgets that are loaded
on the user service environment
(Widget aggregator in our case)

API-based reuse of Widgets

User Service environment

Widget 4

1. Use

Widget 2Widget 1

Widget 3

Semantic and Automatic
Based Reuse of
Widgets

1. The developer creates
a Widget (Service) and
provides its description.

2. When the user loads the
Widget into his aggregator, it

is automatically composed
with other Widgets present
in the same environment

Figure 45: Semantic and Automatic Based Reuse of Widgets Summary.

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

121

b. Mechanism Design

To automatically combine Widgets, this mechanism relies on the Widgets descriptions (contracts). As

Widgets are described in term of the functionalities they provide, the type of inputs expected by each

functionality, and the type of outputs they would generate, the Widget combination component,

incorporated at the Widget aggregator level, can easily detect the semantic compatibilities between Widgets

instances that are loaded on the user environment. Then, for each semantic compatibility detected between

two Widgets, the Widget combination component creates a link between them; enabling by consequence

the user to easily combine the two Widgets. This is performed through a sub-component named

“Communication Manager” illustrated in Figure 46.

W1 W2 W4W3

List of loaded
Widgets capabilities

API

GUI Component

Widget
Combination
Component

Communication Manager

1. Read Widget
capabilities and detect

semantic matching

2. Create links between
Widgets according to

semantic matching detected

3. For each modification on
the Widget capabilities list,
communication manager is

notified for updating the links

Figure 46: Communication Manager component.

The semantic concepts are described using microformats paradigm. The semantic matching

between an output of a Widget and an input of another follows one of the three patterns illustrated in Table

9; we associate for each one a set of actions:

Table 9. Semantic matching patterns.

Pattern name Pattern description Actions

Exact

Matching

The output type (of the

source Widget) is

exactly the same as the

input type (of the

destination Widget)

The only action performed when detecting such semantic

matching is the creation of the link between the two

Widgets; when the link is executed, the output of the source

Widget is transmitted as input to the destination Widget

without any modification.

Inclusion The output type (of the A link between the source and the destination Widget is

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

122

source Widget) is a sub-

element of the input type

(of the destination

Widget)

created. At the runtime, the output of a source Widget is

transformed to the format of the input of the destination

Widget (the other elements that construct the input of the

destination Widget are empty). The result is transmitted to

the destination Widget as an input parameter when the link

is executed.

Reverse

inclusion

The input type (of the

destination Widget) is a

sub-element of the

output type (of the

source Widget)

A link between the source and the destination Widget is

created. At the runtime, the input type is extracted from the

outputs generated by the source Widget. It is transmitted to

the destination Widget as an input parameter when the link

is executed.

The usage of microformats instead of ontologies is motivated by the fact that the combination

process is performed at the presentation layer. The presentation layer enables the framework to harness the

user intelligence to make up the lack of microformats semantic expressiveness. First, the probability of

detecting wrong semantic matching is significantly reduced as the user would likely load Widgets of the

same business domain; and second, the user can check whether two detected semantic matching are really

compatible at the business level or not.

Links between Widgets are defined with a sextuplet L (Source-Widget, Output-Type, Destination-

Widget, Destination-Functionality, Input-Type, Link-Type). There are two types of links between Widgets:

automatic links and semi-automatic links. Automatic links are executed without any initiative from the

user. Each time the data and/or event that should be transmitted from the source Widget to the destination

Widget are detected, the destination Widget is automatically launched without any direct initiative from the

user. Semi-automatic links are however first displayed within the UI of the source Widget using HTML

elements (typically an icon). Then, when the user clicks on that HTML element, the corresponding data are

transmitted from the source Widget to the destination Widget.

3.3 Process-based Reuse of Widgets

a. Mechanism Goal

The Communication Manager component, introduced in the previous section, creates links between

Widgets based on semantic matching of microformats tags. One limitation of such approach is that it may

lead to an environment where some created links are intrusive and undesired by the users. This is especially

due to the lack of semantic expressiveness of microformats. However, as the reuse and composition

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

123

mechanisms are implemented at the presentation layer, it is possible to easily interact with the user and

harness his intelligence. Therefore, we propose in this section the process based reuse mechanism. First, it

aims to provide a controlled approach when reusing Widgets, by relying on a flowchart definition. Second,

it enables the user to modify that flowchart in order to delete undesired links for example. Figure 47 shows

the difference between the process based reuse of Widgets mechanism, and the semantic and automatic

reuse of Widgets mechanism.

User Service environment

Widget 4

1. Use

Widget 2Widget 1

Widget 3

Semantic and Automatic
Based Reuse of
Widgets

User Service environment

Widget 4

1. Use

Widget 2Widget 1

Widget 3

Process-based reuse of Widgets

-Widgets are combined according
to a flowchart definition

-The user will have only pertinent
links between Widgets.

Widgets are combined
according to semantic

matching

Widget 4

Widget 1

Widget 2

Widget 3

Figure 47: Process-based reuse of Widgets goal.

b. Mechanism Design

In order to provide a controlled approach when reusing Widgets, we introduce the “Process Manager”

component which relies on a flowchart (process) definition to enable the reuse of Widgets. Figure 48 shows

the Process Manager component within the architecture of the Widget aggregator. Thus, users, or service

aggregator provider, may define a process which controls the Widget combination. In other words, only

Widgets combined within the process definition are actually combined at the execution time (within the

GUI level).

Figure 48: Process Manager Component.

We define a process as a graph G <N, L>, where nodes N represent the list of Widgets that are

loaded, or must be loaded, on the user environment; and links L represents the links between the different

Widgets. There are two types of links: automatic, and semi-automatic. In an automatic link, the

communication between the two corresponding Widgets occurs each time the corresponding data are

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

124

available at the source Widget. In semi-automatic links, the communication occurs only at the user

initiative. Each link in L is defined by sextuplet L (Source-Widget, Output-Type, Destination-Widget,

Destination-Functionality, Input-Type, Link-Type), where Source-Widget – an element on N – is the source

Widget of the link; Output-Type is the type of a Source-Widget output; Destination-Widget – an element of

N – is the destination Widget; Destination-Functionality is the functionality of Destination-Widget which

should be invoked; Input-Type is the input parameter of Destination-Functionality; and finally, Link-Type

is the type of the link (automatic, or semi-automatic).

At the execution time, the Process Manager component relies on a process definition to define

which Widget is linked to another. In addition, it provides an interface that enables the modification of the

process definition at runtime. This interface should be used by the GUI by providing intuitive GUI

elements that enable the user to modify the process definition.

3.4 Abstract Service Based Reuse Extension

a. Extension Goal

The goal of this extension is to define a composition of functionalities, which are associated at the runtime

to Widgets. However, several Widgets may fulfil the same functional need. Therefore, the runtime

selection of the best Widget for a given functionality is a challenge; especially, when the selection criteria

are different from a user to another, and from a functionality to another. The abstract service based reuse is

a mechanism that aims to respond to that challenge. It extends the previously defined reuse mechanisms by

providing a runtime Widget selection mechanism. The specificity of our approach is the user centricity of

the selection process. Indeed, the selection process relies on rules that are defined by the user.

This mechanism promotes loose coupling between services (Widgets). Indeed, as compositions

refer to functionalities, they remain completely independent from the Widgets that are really invoked.

b. Extension design

The solution we propose to provide such extension relies on two main components: the abstract Widget,

and a dynamic selection mechanism. Figure 49 shows these two components within the global architecture.

The Abstract Widget is a Widget defined by the Widget aggregator provider (Widget client),

which is associated to a functionality, and a list of selection rules that could be applied on that

functionality. The selection rules define the criteria to apply in the process of selecting a Widget for

performing the associated functionality. The selection process is performed by the Interpreter component

illustrated in Figure 49. The GUI of the abstract Widget should:

• enable the user to enter the values of the inputs required by the corresponding functionality,

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

125

• enable the user to choose which selection rules to apply in the selection process,

• invoke the Interpreter component to select the best Widget,

• display the selection results of the Interpreter,

• and invoke a selected Widget and display the results.

W1 W2
GUI Component

Select the best
Widget to execute

Abstract
Widget 1

Abstract
Widget 2

Widget registry Semantic dictionary

Persistence Component

Third party platform
(Third party Widgets)

Frontend
layer

Backend
layer

Interpreter

Invoke a selected
Widget

Figure 49: Components involved in the abstract service based reuse extension.

Figure 50 shows the different concepts involved in the design of the abstract service reuse

extension. As we previously mentioned, an abstract Widget associates a functionality (e.g. Get_News) to a

set of selection rules (e.g. select the Widget according to my preferred language). A functionality is defined

with its goal concept (e.g. Get_News) – a semantic concept is a tag defined within the semantic dictionary,

and the type of inputs it expects and outputs it generates. Selection rules represent the logic followed by the

Interpreter component in the selection of the best Widget for satisfying the goal concept. We define two

types of selection rules: constraint rules and objective rules. A constraint rule is a condition that a selected

Widget must satisfy (e.g. the price does not exceed 5 Euros). An objective rule is an optimization of a given

function (e.g. minimizing the price, or minimizing a linear objective function). Each selection rule can refer

to two types of parameters: static parameters and dynamic parameters. Static parameters refer to any

parameter which does not change frequently, and whose value is stored in the Widget aggregator database

(e.g. price). Static parameters are accessible through a specific component named knowledge base.

Dynamic parameters refer to any parameter whose value is known only at runtime. This includes the user

inputs and other parameters such as the location and the presence of a user, which are generated by other

services (e.g. localization enabler). The specificity of this model is the capability of specifying rules that

refer to heterogeneous parameters. The only condition required is the ability of generating the value of that

parameter by a service present in the registry (e.g. location, and presence), or the presence of the parameter

value in the Widget aggregator database (e.g. price of a Widget).

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

126

Abstract Widget

functionality

+tag

Input Type

Output Type

Selection Rule

Objective Rule Constraint Rule

Parameter

Dynamic ParameterStatic Parameter

Concrete Service

1

0..*

0..*

0..*

0..*

+realized by

0..*

Knowledge base

+generates 0..*

+generates
0..*

Figure 50: Abstract Widget related concepts.

In order to select the best available concrete Widget that responds to an abstract Widget (realize

the functionality, satisfy the constraint rules, and optimize the objective rule), we introduce the Interpreter

component (see Figure 49). It receives as input parameter a functionality, the required functionality inputs,

and a set of selection rules that are activated by the user. It generates a list of concrete Widgets. As we

illustrate in Figure 51, the first action carried out by this component is the discovery of all available

concrete Widgets that performs the functionality of the abstract Widget. Thereafter, the discovered Widgets

are filtered according to a set of constraint rules. Each constraint rule may refer to a static or a dynamic

parameter. The dynamic parameters are computed at the runtime by invoking the corresponding services

(e.g. invocation of the localization service to get the user location parameter). Once all constraint rules are

applied and a set of concrete Widgets are selected, the Interpreter evaluates the objective rule if present.

Such as constraint rules, the objective rule may refer to static and dynamic parameters; the dynamic

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

127

parameters are computed at the runtime. At the end, a set of concrete Widgets are selected; concrete

Widgets that satisfy the constraint rules and optimize the objective rule.

Discovery Of Widgets reponding to the functionality

Constraint Rules Evaluation

Single Constraint Rule Evaluation

List of Widgets, One Constraint Rule

Functionality

List of Widgets, Constraint Rules

Objective Rule Evaluation

List of Widgets, Objective Rule

List Of Widgets

Figure 51: Service selection algorithm.

The Interpreter component is not specific to the WOA. It can be used in the traditional SOA to

perform runtime service selection.

The abstract Widget enables the users not only to enter the inputs expected by the corresponding

functionality and display its outputs, but also to choose the selection rules they want to apply in the

selection process. We define thus a user centric service selection mechanism.

The format of the Abstract Widget is exactly the same as ordinary Widgets, previously defined.

Thus, in the Edition mode, the Widget provides the UI that enables the user to choose (check and uncheck)

the selection rules they want to apply. The View mode displays the UI that enables the user to enter the

inputs expected by the corresponding functionality, it invokes the selection process (Interpreter

component), it displays the result of the selection process (Interpreter outputs), and it invokes a selected

Widget and displays the result.

In addition of providing a user centric selection mechanism, the Abstract Service based reuse

extends the previous reuse mechanisms. First, it provides a goal based reuse; and thus decouples the

Widget providers from the Widget integrators (those that combine Widgets with each other, including the

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

128

user). Second, it provides a dynamic adaptation according to users criteria. Figure 52 summarizes this

extension.

User Service environment

Concrete
Widget 4

Abstract
Widget 2

Abstract
Widget 1

Abstract
Widget 3

API-based reuse of Widgets

User Service environment

Abstract
Widget 4

Abstract
Widget 2

Abstract
Widget 1

Abstract
Widget 3

Semantic and Automatic
Based Reuse of
Widgets

User Service environment

Abstract
Widget 1

Abstract
Widget 2

Abstract
Widget 1

Abstract
Widget 3

Process-based reuse of
Widgets

The developer creates a new Widget,
discovers the other Widgets that are

loaded on the user environment (in our
case they are abstract, because user
has loaded them), and reuses their

capabilities. When invoked the abstract
Widget selects the best available

concrete Widget to execute. Best is
defined according to the user's criteria.

The user loads only abstract
Widgets, which are automatically

combined. When a given
abstract Widget is invoked, it

selects the best available
concrete Widget to execute.

Best is defined according to the
user's criteria.

Abstract Widgets are combined
according to a process definition.
When a given abstract Widget is

invoked, it selects the best available
concrete Widget to execute. Best is

defined according to the user's criteria.
In addition, the process definition is
completely independent from the
actual Widget that are invoked.

Instead, it depends on the abstract
Widgets, which are defined by the

Widget aggregator.

Figure 52: Illustration of the abstract service based reuse extension.

3.5 Unstructured Data Based Reuse Extension

a. Extension Goal

The most important reuse pattern in SOA is characterized by capturing outputs of a source service and

sending them as input parameters to a destination service. Such mapping currently requires from service

developers to declare the inputs expected by the functionalities they provide, and the outputs generated by

these functionalities. This declaration might be performed at the publication time, or at the runtime as we

previously proposed using a publish function. In both cases, it is required from the developers to know all

data that can be generated by the services they provide. In addition, developers of two composed services

must rely on a common semantic in their service descriptions.

However, services in current Web platform are likely to generate data that are not expectable by

their developers, and thus impossible to include in the service description. This is especially true when

considering Web 2.0 paradigm from one hand, and the growing number of communication services from

another hand. Indeed, Web 2.0 promotes user generated content; content which includes text-based data

(such as Wikipedia) and multimedia-based data (such as Flickr and YouTube). That data might contain

information that would be useful to reuse in other services, but hardly expectable and manageable by

service developers. In addition, people are more and more connected together. Thus, a great amount of data

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

129

is generated and exchanged between them; data that also might contain information (e.g. phone numbers,

addresses…etc.) that would be useful to reuse in other services, but not expected by service developers.

Consequently, much data are unavoidably discarded by current SOA.

The extension we propose in this section aims to tackle this limitation. Our goal is to enable

service integrators (users and developers) to first capture the useful and unstructured data; and second, to

reuse them in other services.

b. Extension design

The mechanism we propose in this section is an extension to the previously detailed reuse mechanisms,

namely API-based reuse, semantic and automatic based reuse, and the process-based reuse. This extension

is characterized by:

• The integration of a new entity to the Widget-oriented architecture. This entity is a repository that

contains data extraction modules. These modules, when invoked, are in charge of extracting

unstructured data from a specified Widget. These modules do not provide any added value for

users, but they enable service integrators to extract, and make use of, unstructured data.

• The definition of a new service reuse pattern that facilitates the reuse of unstructured data

generated by a Widget within another one.

As illustrated in Figure 53, we introduce new roles to the WOA: the provider of the data extraction

modules, and the registry of the data extraction modules. The data extraction modules provider is in charge

of creating the unstructured data extraction modules, and publishing them into the data extraction modules

registry. The unstructured data extraction modules must be defined in conformance of an API defined by

the Widget aggregator (in our case, they must be defined using JS language, and implement “extract_Data”

function). The publication process is performed by providing a description file. The description file

contains mainly a tag representing the type of data that can be extracted by the module; the tag refers to a

concept within the semantic dictionary. More precisely, it refers to a data type. It is recommended to have

one data extraction module for each data type. This enables the platform to deduce the data extraction

module to invoke according to the type of data to be extracted.

In practice, the provider and the registry of the data extraction modules can be the same entity as

the Widget Client provider.

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

130

Widget registry

Widget Client Widget provider

----------publish

Access (use)

Widget
description

• HTTP request

Widget Implementation

User

Discover Widgets

Discover, Load, and Compose Widgets

Semantic Dictionary

Semantic annotations

Widget developer

provides

Data Extraction
modules registry

Data Extraction
modules provider

publish Discover

Access

Figure 53: Unstructured data based composition – architectural model.

The first basic approach to harness the unstructured data based reuse extension is to manually use

the data extraction modules and to manually invoke the Widgets. Thus, service integrators (mainly

developers) first discover the source and the destination Widget. Second, if the inputs of the destination

Widget are different from legacy outputs of the source Widget, developers invoke a data extraction module

that enables them to extract the input needed by the destination Widget from the output generated by the

source Widget. Third, developers invoke the destination Widget using the extracted data as input

parameters. The invocation process might be performed either through the Widget Combination API

(previously detailed), or by connecting directly to the Widget provider. This process can be automated with

a service composition language. This is detailed in the next Chapter.

The unstructured data based reuse mechanism extends the API based reuse by providing

developers with a function that enables them to easily associate a data extraction module to their Widgets.

When the corresponding data is detected, a call back function (defined by the Widget developer) is

invoked. In that function, the developer can discover and invoke Widgets that are loaded in the user

environment and that can handle the extracted data. Figure 54.a shows this mechanism.

The unstructured data based reuse mechanism extends the semantic and automatic based reuse by

first detecting the inputs required by the functionalities of the Widgets loaded in the same user

environment; second, associating the corresponding data extraction modules to the different Widgets; and

third, creating links when that data are detected and extracted. This is illustrated in Figure 54.b.

The unstructured data based reuse mechanism extends the process based reuse of Widget by

providing the capability of defining processes based on unstructured data. In other words, it enables the

definition of links where the output data should first be detected within the Widget, second extracted, and

then transmitted to the destination Widget as input parameters. This is illustrated in Figure 54.c, and

detailed in the next Chapter.

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

131

User Service environment

Widget 4

Widget 2Widget 1

Widget 3

API-based reuse of Widgets

User Service environment

Widget 4

Widget 2Widget 1

Widget 3

Semantic and Automatic
Based Reuse of
Widgets

User Service environment

Widget 1

Widget 2Widget 1

Widget 3

Process-based reuse of
Widgets

The developer associates an
unstructured data extraction module to

his Widget. When the data are
detected and extracted, a call back
function is invoked, which optionally
discovers and invokes Widgets that

can handle that data

According to the inputs types of
the functionalities of the Widgets
loaded on the user environment,

the communication manager
associates the corresponding

data extraction modules to each
Widget. When that data is

extracted in a given Widget, the
communication manager is
informed and automatically

creates links with other Widgets
that can handle that data.

The process manager enables the
definition of links between two Widgets

based on unstructured data. At the
runtime, the process manager

associates a data extraction module to
the source Widget for each

unstructured data based link. When
such link is about to be executed, the

process manager first invokes the
corresponding data extraction module,

and then invoked the destination
Widget with the extracted data as

inputs.

(a) (b) (c)

Figure 54: Unstructured data based reuse extension.

The unstructured data based reuse is not exclusive to the WOA. It could be applied to current

SOA. However, the Widgets present the advantage of being visual to the users. As a consequence, we

harness the intelligence of the users in the process of extracting the unstructured data; the users can check

whether the extraction is performed successfully or not.

3.6 Cross-Device Based Reuse Extension

a. Extension Goal

So far, we have considered a user service environment as a Widget aggregator; a Web application that

enables the user to access and use several Widgets. The reusability scope is therefore limited to Widgets

that are loaded into a single instance of the Widget aggregator, running within a single device. However,

users actually have several user service environments; optionally loaded on different devices. This is

especially true when considering the proliferation of user devices (PC, laptop, tablet, mobile devices,

TV…etc); devices which are more and more sophisticated from one hand, and enable the user to access and

use several services from another hand. Current SOA solutions addressed for users do not consider this

variety of user environments. For instance, the user can not combine a web email service, loaded on his

mobile phone, and a video player service loaded on the TV (this would enables him to read attached movies

using the TV video player).

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

132

To tackle this limitation, we propose in this section to enable the user to combine Widgets loaded

on heterogeneous devices. We propose to extend the reuse scope from a single Widget aggregator into

several Widget aggregators loaded on different devices. As illustrated in Figure 55, this would enable the

user to make a Widget A communicates with a Widget B easily, even when they are loaded on different

devices. This would enable the user to easily connect a web mail service loaded on his mobile phone, with

a video player service loaded on the TV, and/or with a PDF reader service loaded on the laptop.

User Service environment

Widget 4

Widget 2Widget 1

Widget 3

Device 1

User Service environment

Widget 8

Widget 6Widget 5

Widget 7

Device 2

Figure 55: Cross-device based reuse extension goal.

b. Extension design

The solution we propose to enable the user to combine Widgets loaded on different devices is based on the

definition of a cross-device communication protocol between the different WOA components. This

protocol enables different Widget aggregators to communicate with each others to enable the combination

of their Widgets. In other words, it is not required to have the same Widget aggregator type on the different

devices to enable the Widgets to be combined with each other. The only condition is to comply with the

protocol we define. Even web or desktop applications can be combined with the Widgets as long as they

are compliant with the protocol we define. As illustrated in Figure 56, this new API represents an extension

to the different reuse approaches we have previously defined.

From the technical point of view, this extension is a module used by the three main reuse

components introduced in this thesis, namely the API component, the Communication Manager

component, and the Process Manager component. The role of this module is characterized by first

synchronizing the lists of Widgets capabilities present in the different Widget aggregators instances; and

second, when needed, invoking a Widget loaded on a different device. To do that, we define a cross device

communication protocol. This would enable different Widget aggregators to communicate with each other,

if they are compliant with this protocol. This protocol relies on the Cross Device Communication tool,

which provides a communication channel to all instances of Widget aggregators. It enables a module of a

Widget aggregator instance to transmit data to another module of another Widget aggregator instance. The

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

133

data transmitted between the Cross Device Communication modules (see Figure 56) characterize the

protocol we define. Table 10 details the meaning of that data.

List of
loaded

Widgets
capabilities

Communication Manager

Process Manager

Widget Aggregator on laptop

Widget Aggregator on TV
W1 W2

W3

W4 W5 W6

Cross device communication tool

Predefined
HTTP-based
protocol

API

Communication Manager

Process Manager

API

Cross Device Communication
module: It implements the
protocol we define

List of
loaded

Widgets
capabilities

Contains the list of
Widgets capabilities
loaded on the different
instances of the
Widget aggregator

Figure 56: Cross device composition basic architecture.

Table 10. Cross Device Communication Protocol.

Data Description

Registration This function registers the Widget aggregator instance in the Cross

device communication tools, in order to receive information from other

Widget aggregator instances loaded in different devices of the same

user. Authentication might be required.

Widget_ Subscription_Event This informs other Widget aggregator instances about the availability of

a new capability of a Widget in order to synchronize the list of

capabilities.

Publish_Data_Event This function enables the invocation of a capability of a Widget loaded

on another device.

Widget_

Unsubscription_Event

This function informs other Widget aggregator instances about the

unavailability of a capability of a Widget in order to synchronize the list

of capabilities.

Each time a new Widget capability is available in a Widget aggregator instance, the Cross Device

Communication module is invoked to transmit that information using the API

(Widget_Subscription_Event). Thus, other Cross Device Communication modules, of other Widget

aggregators of the same user, receive the information and update the list of Widgets capabilities. Each time

a Widget capability is unavailable, the corresponding Cross Device Communication module transmits the

information (using the API (Widget_Unsubscription_Event)) to the other Cross Device Communication

modules, which update the corresponding list of capabilities. These two actions enable each Widget

Chapter II.2 A Design of a Widget-Oriented Architecture (WOA)

134

aggregator instance to have a global view of Widgets that are loaded on different devices and their

capabilities.

The protocol we described enables even third party applications, loaded for example on a mobile

device, to be combined with Widgets or other applications loaded on different devices. For this purpose, it

must just implement the Cross Device Communication module, which registers the application to the Cross

Device Communication tool, and maintain a list of Widget capabilities. Then, the application should just

read that list to discover capabilities of Widgets that are loaded to the user service environments.

As we are combining Widgets loaded on different devices, it is important to consider the

pertinence of making two devices communicate with each other. For instance, it is not pertinent to combine

a web mail service loaded on a mobile, and a video player service loaded on a TV, if the two devices are

not close with each other (the localization aspect is out of the scope of this thesis). The pertinence of

making two devices communicate with each other might depend on other parameters than localization. For

example, it might be interesting to combine Widgets of two users belonging to the same social community

(group). Thus, the implementation of the mechanisms must be modular enough to easily embed the

intelligence that selects which devices should communicate.

Chapter II.3 Widget-Oriented

Architecture (WOA) in SOA application

fields

In this Chapter, we investigate different SOA application fields within the WOA paradigm. More precisely,

we first detail how service composition is performed using WOA; and second, we investigate the business

process management using WOA. This Chapter aims to show where the WOA mechanisms we defined

succeed compared to SOA, and where they fail.

• Service composition: In Service composition field, WOA is characterized by its user centricity.

First, we introduce a static service composition mechanism that enables developers to create

Widgets which communicates with other Widgets that are loaded into the same environment. This

composition mechanism provides a first and basic user-centric approach for composing services.

Second, we introduce automatic and semi-automatic service composition mechanisms using

WOA. In each composition approach, we demonstrate how we make use of the abstract service

based reuse, the unstructured data based reuse, and the cross device based reuse (mechanisms that

are previously defined). The concept of abstract service enables to decouple a composite service

(created either using static, automatic or semi-automatic composition mechanism) from the used

basic services. This is performed by dynamically binding the functional need of the requestor to a

concrete Widget. The unstructured data based reuse introduces a new composition pattern that

enables the service composer to capture data that are not declared as legacy outputs of a service,

and use them as input parameters of another service. Finally, cross device based reuse enables a

user to compose services loaded on different devices. This enables the user to create a pervasive

application where functionalities run on the most suited (preferred) device.

• Business process management: The WOA also affects the business process management field.

Here in this thesis, we highlight three implications. First, as users can create their own software

feature, it is possible for them to define and automate their own business processes. Second, the

abstract service based composition, enables a dynamic adaptation of business processes; an

adaptation which can be performed for instance according to the context the user. Third, the

unstructured data based service composition enables the definition and implementation of business

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

136

processes according to unstructured data; data that are neither declared nor formatted when

publishing the corresponding service. This is especially useful to capture the data that circulate

between employees using communication services such as email, IM, Wiki, Office

document…etc.

1 Service Composition using WOA

In the state of the art Chapter, we categorized current service composition approaches into static, semi-

automatic, and automatic. Table 11 summarizes the advantages and limitations of each approach when

using SOA technologies (details are presented in Chapter I.1 State of the Art). For each composition

approach, we study in this section the solutions that could be brought by WOA to the limitations that exist

within SOA context.

Table 11. Limitations of Current Service Composition approaches

Static

service

composition

• Services are completely

independent from each other. The

created service might be as

sophisticated as an ordinary

application (No technical limitation).

• The creation process is complex. It is

conceived only for developers. As a

consequence, a long TTM for personalizing

an existing service, as well as for creating a

new service is noticed.

• The created service is tightly coupled to

the used basic services.

Semi-

automatic

service

composition

• Designed for advanced users. It

enables personalization.

• The time to market (TTM) is low

when a user is able to create a service

(He is an advanced user).

• The created service matches

exactly the user needs.

• Not designed for ordinary users; the

tools are too complex for them. This implies

a long TTM when an ordinary user wants to

create a new service, or to personalize an

existing one.

• The created service is limited.

• The created services can not be

distributed over the user devices.

• The created service is tightly coupled to

the used basic services

S
er

vi
ce

 c
om

p
os

iti
o

n

Automatic

service

composition

• Addressed for ordinary users.

• It enables a quick creation of a

service.

• It is very intuitive.

• The created service can hardly match

exactly the user needs.

• The services are tightly coupled as they

rely on a common semantic.

• The created services cannot be

Item Advantages Limitations

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

137

distributed over the user devices.

• The created service is tightly coupled to

the used basic services

1.1 Static Composition

The main limitations of static service composition within SOA paradigm are summarized as follows:

• Users can not create new services (this is due to the definition itself of static service composition).

• Users can not personalize an existing composite service (a minor change requires a whole

development process performed by developers, which implies a long TTM).

• The created service is tightly coupled to the basic services it uses.

After specifying how static service composition is performed using the WOA, we will detail how

personalization and loose-coupling are enabled.

The method we introduce to perform static composition of services (Widgets) is characterized by

using the API provided by Widget Combination component. More precisely, we use three functions:

GetWidgetList, Subscribe, and Publish, which are proposed in the previous Chapter. Figure 57 illustrates a

typical sequence, performed by users and Widgets developers, for composing Widgets. First, the user loads

different Widgets into his environment (step 1). Second, Widgets (implicitly or explicitly) declare their

capabilities using the Subscribe function (step 2). Third, Widgets discover the capabilities of other Widgets

loaded within the same user environment (step 3). Fourth, Widgets use one or several of the discovered

capabilities (step 4 and 5).

Figure 57: Widget composition using the Widget Combination API

In addition to these three functions, the developers can use the unstructured data based reuse

extension, to automatically capture unstructured data within his Widget and publish them to other Widgets.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

138

a. Personalization

WOA provides two approaches for users to personalize a composite service created using a static

composition solution. The first approach is manual and the second one is automatic.

As static composition is performed only between Widgets that are loaded on the user environment,

users can personalize it by choosing the Widgets to load. For example, if a directory Widget generates and

publishes a contact card (which contains first name, last name, and contact information such as phone

number, email address, and postal address) to other Widgets, the user can control which Widgets will

receive the information and react accordingly. For example, they can load a Telephony Widget to receive

the phone number and make calls; and they can also load a Map Widget in order to locate the contact postal

address. This personalization approach is the manual one. The personalization scope of this approach is

limited to what is expected by the developers of the Widgets. For instance, if the developer of the directory

Widget decides to publish only a phone number of a contact, the user can not compose the Widget with a

Map Widget (because in this case the postal address is needed).

The second approach for personalizing composite services is automatic and relies on the concept

of abstract Widget. This is characterized by loading abstract Widgets into the user environment. The

developer can then discover that Widgets and invoke them. The actual Widget to be executed is selected at

runtime according to selection rules specified by the user himself. Let’s consider, for example, that the user

has loaded a “make call” abstract Widget and a directory Widget. Let’s consider also that the directory

Widget uses the API-based reuse mechanism; it first discovers the Widgets that are loaded by the user, and

then optionally reuse their capabilities. In our case, it discovers the “make call” abstract Widget. Thus,

when this Widget is invoked, the best “make call” concrete Widget is invoked. The “best” is defined

according to the user owns criteria; these criteria may refer for example to the user context such as location

and presence, the preferences, the service price…etc.

Though this personalization presents the advantage of being automatic and context aware, it

presents the limitation of being static as the user can not create compositions which are not anticipated by

the developer of the Widgets. In our example for instance, the user can not compose the directory Widget

with a Map Widget, if the developer of the directory Widget does not publish the addresses that will be

generated.

b. Loose coupling

In order to decouple composite services from the used basic services, developers discover the capabilities

of the abstract Widgets loaded by the users to his environment. The actual Widget being executed is then

selected at runtime according to the needed functionality and a set of selection rules specified by the users.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

139

Thus, instead of invoking a specific Widget in a composition, developers invoke abstract Widgets. This

mechanism ensures a complete independence between the providers of Widgets and the developers of

composite services.

1.2 Semi-automatic Composition

The main limitations of semi-automatic service composition within SOA context are summarized as follow:

• Semi-automatic service composition does not address ordinary users; the tools are too complicated

for them. This implies a long TTM when an ordinary user wants to create a new service, or to

personalize an existing one.

• The created service is limited (hardly avoidable as this composition approach tries to target users).

• The created services can not be distributed over the user devices.

• The created service is tightly coupled to the basic services it uses.

In this section, we show how we overcome the first, the third, and the fourth issue. We first show

how user service composition is enabled. Second, we show how do users create composite services that are

distributed over multiple devices. Finally, we show how a created composite service is decoupled from the

basic services it uses.

a. User service composition

To enable the users to create by themselves composite services, we combine here two WOA mechanisms:

the “Semantic and Automatic Based Reuse of Widgets” and the “Process-based Reuse of Widgets” defined

in the previous Chapter. By this combination, we seek to simplify as much as possible the process of

composing services, while providing to users a full control on the defined composite service (based on

flowchart definition).

In order to facilitate the process of defining a composite service (constructing the composite

service description), we propose to first use the “Semantic and Automatic Based Reuse of Widgets” to

construct all possible links between Widgets that are loaded by the user into his environment. This

generates a “mesh process”; a process which connects all connectable Widgets. Second, we enable the user

to delete and automate links. This is possible because each link is visually represented at the frontend by UI

element. Each UI element enables the user to activate the link (execute it); automate it, or delete it. Thus,

the process of mapping an output of a Widget to an input of another is performed automatically, and the

user still can delete undesired links, and/or automate others. The user can also delete a Widget from his

environment, in which case the corresponding links are deleted as well. The remaining links construct the

process (flow chart) on which the “Process-based Reuse of Widgets” relies during the execution of the

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

140

composite service. It is important to notice that at the runtime, the user still can change the definition.

Figure 58 is a typical sequence diagram. It illustrates the different steps and messages exchange that occur

between the components of the architecture.

The most important differentiations of this semi automatic composition using Widget compared to

SOA are:

• its implementation at the user service environment as a native functionality,

• the fact that the users do not have to understand the concepts of input, output, and

input/output mapping, to compose services,

• and the fact that it is based on the UI of a service instead of XML based formats such as

SOAP and WSDL.

Enabling users to compose services is the core differentiation of WOA from traditional SOA

technologies. This composition approach is of course implemented and validated in the next Chapter.

User GUI Communication ManagerProcess Manager Widget Provider

1 : Load Widget()
2 : Load Widget()

3 : Widget UI

4 : Widget UI and definition()
5 : Detect semantic compatibilities()

6 : Widget UI, Widget definition, Semantic compatibilities()

7 : Construct Communication Channels()

8 : Update Process Definition()

9 : Add the new Widget and create links()

10 11

12

13 : Delete/modify/add links()

14 : Delete/modify links()

15 : Update Process Definition()

16

17

Figure 58: Composite Service creation through Process Manager.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

141

b. Cross-device composition

The cross device based reuse we proposed in the previous Chapter extends semi-automatic service

composition from one device to multiple devices. Thus, each time a user loads a Widget into his device, the

Widget combination component of that device (implicitly or explicitly) captures its capabilities and

publishes them into other Widget combination components of other devices. If a semantic matching is

detected the Widget Combination component creates a link between them. This creates all possible links

between Widgets loaded on different devices of the same user. It defines a “mesh process”. The created

links can be automated or deleted by the user. This is possible because each link is visually represented at

the frontend by a UI element. Each UI element enables the user to activate the link (execute it), automate it,

or delete it. Figure 59 shows a sequence diagram that illustrates the creation of cross device composite

service. More precisely, it first shows how two Widgets loaded on two devices are connected with each

other to form a composite service; and second, how does the user personalize this composite service.

User

Device1-CommunicationManager

Device1-ProcessManager

Device2-CommunicationManager

Device2-ProcessManagerDevice1-GUI

Device2-GUILoad Widget()

Widget Loaded
DetectSemanticCompatibilities()

Widget_Connection_Event

DetectSemanticCompatibilities()

UpdateProcessDefinition()

UpdateProcessDefinition()

Update Process definition()

UpdateLinks()
UpdateLinks()

UpdateProcessDefinition()
UpdateProcessDefinition()

Process_Update_Event

Update Process definition()

Figure 59: Cross-device composite service creation.

c. Unstructured data based composition

Current service composition tools enables the chaining of services based on structured data; data that are

declared as legacy outputs of a service, and formatted according to their type. By contrast, the data that are

not declared as legacy outputs of services, and thus not formatted, can hardly be considered within the

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

142

composition. That data include for example postal addresses within emails, phone numbers exchanged

within an IM conversation, and dates within any document.

The WOA introduces a new feature to tackle this limitation: the composition based on

unstructured data. Basically, it is characterized by the introduction of a new pattern in the definition of a

composite service. A composite service is thus defined as a Graph G<N, L, U> (instead of G<N, L>);

where U is a set of unstructured data based links between services. Each link in U is defined by quintuplet c

(Source-Widget, Output-Type, Destination-Widget, Destination-Functionality, Input-Type), where Source-

Widget – an element on N – is the source Widget of the link; Output-Type is the type of the data that should

be extracted from Source-Widget (this implicitly refers to the data extraction module to use to extract that

data); Destination-Widget – an element of N – is the destination Widget; Destination-Functionality is the

functionality of Destination-Widget which should be invoked; and finally, Input-Type is the input

parameter of Destination-Functionality. Figure 60 illustrates an example of a composite service that

includes unstructured data based links.

Legacy communication channel:
it is based on a legacy output of

the directory service

Unstructured data based communication channel.
The Widget Combination component first invokes

phoneNumbers data extractor, and second, chains
the result with Telephony service

IM

Telephony

Agenda

Directory

EmailAddress

srcEmailAddress
dates

phoneNumbers

Figure 60: Unstructured data based composite service definition.

At the execution time, when an unstructured data based link is about to be executed, the

framework first invokes the corresponding data extraction module, and then invokes the destination service

with the extracted data as input parameters.

d. Loose coupling

Semi-automatic service composition in the WOA provides two approaches for performing loose coupling

between a composite service and the basic services it uses: the abstract service based reuse mechanism, and

a manual adaptation by creating a new composite service (by users).

To use the abstract service based reuse within semi-automatic service composition, performed

within WOA, we define the concept of abstract composite script; a flow chart definition that refers to

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

143

abstract Widgets instead of concrete Widgets. Thus, each time a node is invoked within the composite

service, the framework selects the best available concrete Widget to execute, leveraging the constraint and

objective rules associated to the abstract Widget (node). As a consequence, composite services are not

coupled to the basic services they use.

The second approach to decouple composite services from the used basic services is characterized

by a manual redefinition of the flowchart (composite script). Indeed, as users are now able to compose their

own services at the runtime, they can easily modify a composite service. As a consequence, when a basic

service is modified, or deleted from the registry, the user can easily replace it by another service that

provides the same functionalities, and link it to the other Widgets in order to reconstruct the initial

composite service.

1.3 Automatic Composition

As we defined in Chapter I.1 State of the Art, an automatic service composition mechanism creates

automatically a composite service description from a natural language based request. We have highlighted

the limitations of such approach, namely:

• The tight-coupling between composite services and the used basic services (This is resolved

exactly in the same way we resolved the tight coupling in the semi-automatic composition of

services within WOA).

• The tight-coupling between different service providers (they must use a common semantic; this is

hardly avoidable as it constitute the basis of the automatic composition of services).

• The created services can not be distributed over the user devices.

• The difficulty to match exactly the user needs.

Here in this section we propose to tackle the fourth limitation using the WOA. Our proposal is

characterized by using the semi-automatic composition mechanism as a failure recovery system. In other

words, from a natural language request made by the user from his service environment, the system invokes

a Natural Language Composer (NLC) – which generates a composite service definition. From this

composite service definition, the Process Manager component generates Widgets within the user service

environment; Widgets which are linked with each others. The links are created according to the composite

service definition generated by NLC. At this step, the composite service might be not conform to the user

needs, but the Process Manager component enables the user to modify it as easily as he creates a composite

service (detailed in the previous section). Figure 61 is a sequence diagram that summarizes NLC failure

recovery using Widget-oriented architecture.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

144

User GUI Widget ProviderProcess Manager NLC Widget Provider 1

1 : Natural Language Request()
2 : Natural Language Request()

3 : Composite Service Definition

4 : Composite service definition()

5 : load Widget()

6 : Widget UI

7 : Create Links()

8 : Add Widget()

9
10 : load Widget()

11 : Widget UI

12 : Create Links()

13 : Add Widget()

14

15
16

17 : Delete/modify/add links()

18 : Delete/modify/add links()

19 : Update Process Definition()

20
21

22 : Load Widget() 23 : Load Widget() 24 : Load Widget()

25 : Widget UI

26 : Create links and Update Process()

27 : Add Widget()

28

29
30

Figure 61: NLC Failure recovery.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

145

2 Business Process Management using WOA

Business Process Management is one field where SOA has succeeded. It enables exposing software

applications as Web services. As a consequence, it ensures cross network and cross organization seamless

integration. In addition, when using composition tools, professionals can easily model and automate a

business process as a sequence of activities exposed as Web services.

However, in Chapter I.1 State of the Art we have clearly demonstrated that SOA still suffers from

some limitations regarding business process management (BPM). Table 12 summaries of the advantages

and the limitations of SOA in this field:

Table 12. SOA advantages and limitations regarding BPM.

Item Advantages Limitations

Business process

management

• SOA enables a seamless

integration of enterprise business

processes. It hides the

implementation aspects of enterprise

applications.

• Graphical tools such as BPEL

significantly speed up the

development of business processes

(but it still performed by developers).

• Business processes are heterogeneous,

and thus it is hard to capture and implement

all the details. In other words, business

processes are generalized for the sake of

simplicity.

• Adaptation to new processes is long as it

requires first the capturing of the need, and

second its development (usually by a

different entity).

• The created services can not be

distributed over the user devices.

• The business process integrator is tightly

coupled to the Web Service they use.

• Unstructured data are not captured by

business process integrators

In the following subsection we detail how does the WOA tackles the listed SOA limitations in

business process management.

2.1 Heterogeneity of business processes

As in SOA business processes are specified by business entities and implemented by developers, it is

required to generalize the business processes to automate them. As a consequence, several operations are

handled manually by the users. This is illustrated in details in Chapter I.1 State of the Art.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

146

The WOA enables the users to create their own composite service, through automatic and semi-

automatic composition of Widget (see section 1 Service Composition using WOA). This enables the user to

implement himself the business processes he needs. However, in an enterprise context, some actions are

common to all users. In addition, it is common in business process modelling to define some actions that

are mandatory to achieve a business goal; actions that must be performed by all users to correctly achieve a

business goal. As a consequence, it is hardly conceivable for an enterprise to let the employees to define

themselves the business processes.

To tackle this limitation we propose in this section to define a business process as a combination

of a common part and a user-dependent part. In addition of being common to all users, the common part is

also static (does not change frequently within the enterprise). The user dependent part is however

heterogeneous (user dependent), and dynamic. For instance, consider the vacation request business process

of a team manager, and a purchasing and logistic responsible (see Chapter I.1 State of the Art). As

illustrated in Figure 62, this business process has a part which is common and mandatory to all users, and

another part which is user dependent. The former consists of the vacation request creation, the vacation

request study and decision (by the requestor manager), and the response notification. The latter is depends

on the user. The team manager for instance would update the agenda, send email to the team, and sett up an

automatic email response during the vacation period; and the purchasing and logistic responsible would

search pending purchasing orders, call product providers, redirect incoming calls during the vacation

period, and update the agenda .

End-user dependent part:
Team manager business actions

End-user dependent part:
Purchasing and logistic responsible business
actions

Common part
vacation
request

study and
decision

Vacation
request
creation

Response
notification

Update
Agenda

Set up an
automatic email

response

Send email
to the team
mailing list

Update
Agenda

Redirect
incoming calls

Search pending
purchasing

orders

Call provider

Figure 62: Business process modelling and implementation

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

147

After splitting business processes into a common part and a user-dependent part, we propose to

combine WOA and SOA to tackle the heterogeneity and dynamicity of business processes, while enabling

business process entities to define and/or force some actions to perform successfully a business goal. Our

proposal is to combine SOA composition approach and the WOA composition approach. The former is in

charge of automating the common part of processes. The common part of processes is thus designed by

business entities and implemented by developers using SOA composition technologies. The latter is in

charge of automating the user-dependent part of processes. The user-dependent part of processes is thus

designed and implemented by the users themselves; using Widget-based composition approaches

(automatic and semi-automatic) previously detailed. Figure 63 illustrates the technical aspects of how

business processes are automated using our proposal (see Figure 20 for comparison with the traditional

approach); and Figure 64 depicts a sequence diagram that illustrates the actions performed by different

entities to model and implement a business process (it is interesting to compare it with Figure 22 to see the

difference with business process adaptation using SOA technologies).

Business Process Management Architecture

User layer

Back-end layer

Exposure layer

Operational Systems

User 1 User 3

User 2

B
u

si
ne

ss
 P

ro
ce

ss

C
om

m
on

 P
a

rt

co
m

po
si

tio
n

B
u

si
ne

ss
 P

ro
ce

ss

U
se

r
D

e
pe

n
de

n
t P

a
rt

co

m
po

si
tio

n
S

er
vi

ce
s

In
te

rn
al

 A
pp

lic
a

tio
n

s

Web Service
+ Widget

Applications

Widgets are
combined
using Widget
oriented
technologies

Services are
composed
using SOA
technologies
(e.g. BPEL)

Services are
exposed as
Web services
and Widgets

Services are
implemented
(C, Java,
C++,…etc)

Figure 63: Business process automation proposal.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

148

User WidgetAggregatorBusiness Analysts Developer

1 : Express the needs()

2 : Model common part of the process()

3 : Request the development Process()

4 : Implement the Logic using for example BPEL()

5 : Create the corresponding Widget()

6
7

8 : Load the Widget of the business process()

9

10 : Load Widgets corresponding to the user dependent part()

11
12 : modify links between Widgets()

13
14 : delete undesired links()

15

Figure 64: Business process creation using Widget-oriented architecture.

This section has tackled the issue of modelling heterogeneous business processes. The next section

will deal with their dynamicity. Notice that the dynamicity is mainly occurring on the user-dependent part

of the business process.

2.2 Adaptation of business processes

In order to tackle the dynamicity of business processes, one solution would be a dynamic adaptation

mechanism. The dynamic adaptation is an adaptation which is performed when the user needs a new

configuration of his business process. Using the mechanisms we have previously defined, we propose in

this section two approaches for making such adaptation. The first one is based on the usage of composite

service creation capability provided to users, and the second one is based one the usage of the abstract

Widget based composition. The following subsections detail respectively the two approaches.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

149

a. Adaptation through abstract Widgets

The first approach we propose to enable dynamic adaptation of business processes is characterized by using

the abstract Widget concept as the basis for implementing business process activities. Thus, instead of

invoking Web services (in WSA architecture) or Widgets (in the basic Widget architecture), business

process developers invoke abstract Widgets as basic elements for performing a given business activity. Let

us not forget that an abstract Widget, without referring to any concrete implementation, refers to a

functionality associated to a set of selection rules; the selection rules enable to dynamically select the most

appropriate concrete Widget to invoke in order to perform a given functionality. The selection rules might

be forced by business process analysts, or configurable by the users themselves.

To illustrate that abstract Widget based composition enables the dynamic adaptation, let us

consider a basic vacation request business process, which is mainly composed of a vacation request

activity, and an update agenda activity. Consider also that the users in the company have a freedom of

choosing the agenda service they want to use. As a consequence, the agenda service may differ from one

user to another. The abstract Widget concept enables business process developers to implement that activity

(agenda update), without referring to any specific concrete service. Eventually, users, or the business

process analysts, select the selection rules they want to apply on that abstract Widget. As a consequence,

the activity realization is adapted according to the users’ choice and context. Figure 65 shows a sequence

diagram illustrating the different interactions.

b. Adaptation through personalization

The WOA provides the users with the capability of easily combining Widgets with each other. This

capability, associated to the business process modelling approach described in the previous section, enables

a dynamic adaptation of business processes. The adaptation is mainly concerned with the user-dependent

part of the business process, which is very dynamic.

In order to illustrate how do users use the Widget combination capability to adapt a business

process according to new activities, needs, or requirements, we rely on the vacation request business

process example. This business process is composed of a common part and a user dependent part as

previously detailed. We suppose that the common part is implemented as a single Widget, which enables

the user to create a vacation request, send it to his manager, and be notified about the decision. We suppose

also that the user dependent part is composed of the following activities: setting up call redirections during

the vacation period, updating the agenda, and setting up an automatic email response during the vacation

period. Figure 66 illustrates the Widget aggregator environment of the user populated with the

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

150

corresponding Widgets. These Widgets are linked with each others according to the user-dependent part of

the business process (as detailed in the previous section).

User WidgetAggregatorBusiness Analysts Developer

1 : Express the needs()

2 : Model common part of the process()

3 : Request the development Process()

4 : Implement the Logic using for example BPEL()

5 : Create the corresponding Widget()

6
7

8 : Load the Widget of the business process()

9

10 : Load Widgets corresponding to the user dependent part()

11

12 : modify links between Widgets()

13

14 : delete undesired links()

15

Figure 65: Business process adaptation using abstract Widgets.

Vacation
request
widget

Call transfer
widget

Edit agenda
widget

Search pending
purchase order

widget

Telephone widget

Redirect incoming calls
for the vacation period

Set up the unavailability
during the vacation period

Search for the pending purchasing orders in order
to accomplish the process before vacation

call provider to accelerate the process
before vacation

Figure 66: Widget aggregator configured according to a business process.

In order to illustrate the adaptation process, let us assume that:

• The user wants to perform a new activity before leaving (for vacations); this new activity

is characterized by sending emails to a set of colleagues to notify them about the vacation

period.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

151

• The agenda service has changed; the company has decided to use another agenda service

which is, for example, less expensive and more efficient.

 Using the Widget combination capability, users can reconfigure themselves the business process

user-dependent part, so that they automate their tasks. To configure the new activity for example (to

respond to the first assumption), they have just to load the corresponding Widget; in our case, the sending

email Widget. This action, as detailed in the semi-automatic composition, implies the automatic linkage of

that Widget with all other compatible Widgets. Optionally, the user may then delete undesired links.

Concerning the second assumption, to configure the new agenda service, the user should just

delete the Widget of the older agenda service, and replace it with the Widget of the new agenda service.

The links between the new agenda Widget with the other Widgets that are present within the user

environment are automatically created. Optionally, the user should then delete undesired links. Figure 67

depicts a typical sequence diagram that shows the adaptation process; neither business analysts nor

developers are involved within the process. It is interesting to compare it with Figure 22 (Chapter I.1 State

of the Art) to see the difference with business process adaptation using SOA technologies.

Figure 67: Business process adaptation sequence diagram.

This approach for adapting business processes has the advantage of being more general than the

abstract Widget based adaptation. Unlike abstract Widget based adaptation which enables only the

modification of the services that perform a given activity, this approach enables the modification of the

logic of the business process. It enables:

• modifying the execution sequence of activities,

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

152

• integrating new activities, and removing others,

• and changing the Widgets that perform a given activity.

However, compared to the abstract service based adaptation, this approach present the limitation

of being manual and applicable only for the user dependent part.

2.3 Loose coupling between integrators and basic service providers

One limitation of SOA technologies regarding the business process implementation is the tight-coupling

between the implementation of the business process and the basic services it uses. It is especially due to the

fact that the activities of the business processes refer to concrete and basic services. This is true even when

considering the partitioning of business processes into a common part and a user-dependent part we have

proposed.

The abstract Widget based composition enables to tackle such limitation. Indeed, the mapping of

an abstract Widget into a concrete Widget is performed dynamically, at runtime. When a composite service

(a business process implementation) is defined as a set of chained abstract Widgets (functionalities and a

set of selection rules), there are no reference to a concrete basic Widget. As a consequence, the business

process implementation is completely independent from the concrete Widgets that will be executed at

runtime to perform the basic activities of the business process.

2.4 Unstructured data capture

As previously detailed, current service composition tools consider only well structured data in the

composition flowchart. As a consequence, it is almost impossible to automate business processes that are

based on the unstructured data, except if developers do it manually. The unstructured data include for

example postal addresses within emails, phone numbers exchanged within an IM conversation, and dates

within any document. As a consequence, even though business analysts do not care about such technical

details and thus can model a business process according to the unstructured data, it is hardly conceivable

for business process developers to automate behaviours based on these data. It is hard because first

developers should develop themselves the logic that enables the extraction of those data from services such

as email and IM; and second, they must manage themselves the data extraction failure and errors.

The unstructured data based reuse mechanism we have previously defined, provides an efficient

approach for considering unstructured data within business process management tools. First, business

process integrators (developers or users) create unstructured data based composite services in the same way

as they create a traditional composite service. Second, by relying on the Widget based composition, the

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

153

unstructured data that are automatically extracted (based on the composite service definition), are visually

presented to the user so that he can check their correctness.

3 Conclusions

In this Chapter, we made use of the WOA in two SOA application fields: service composition and business

process management. Concerning service composition, our main conclusion is that SOA and WOA are

complementary. Indeed, while SOA addresses developer needs, WOA is more user centric, and focus on

personalization and simple composition addressed for users. Existing semi-automatic composition

approaches in SOA provide the advantage of being very flexible as they decouple the definition of service

logic from the UI. Consequently, advanced user interfaces could be created. However, ordinary users can

hardly use these tools. Indeed, they first still remain based on flowcharts in the definition of the service

logic; flowcharts can be hardly understood by ordinary users. Second, the UI creation is either manual in

which case ordinary users can not achieve it, or automatic, in which case the result is a basic and not user

friendly. The WOA in contrast simplifies significantly the creation of the composite services. However,

developers and advanced users can not create sophisticated interfaces using WOA based composition tools

we proposed. This is essentially due to our approach of considering the UI as part of the reusable

component. Nevertheless, from the ordinary user perspective, this enables him to create much more user

friendly interfaces than automatic or semi-automatic tools. In addition, WOA provides an interesting

infrastructure for additional functionalities such as unstructured data based composition and cross device

composition performed by users.

Concerning business process management, the main challenges are the heterogeneity and

dynamicity of business processes. In this Chapter we have first proposed to split each business process into

a common part and a user dependent part. The common part is composed of the actions that are common to

a significant population of users, and the user dependent part is specific to a given user, which makes it

heterogeneous and often dynamic. Second, the common part is automated by developers using SOA and the

user dependent part is automated by users themselves using WOA. This combination of SOA and WOA

enables business analysts of a given company to tackle the heterogeneity of business processes while

having the control on the company processes which are common to all users.

Table 13 shows in more details the solutions we proposed in this Chapter, and the SOA limitation

they respond to.

Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields

154

Table 13. WOA solutions to SOA limitations.

SOA/WOA
application field

SOA limitations Resolved
(yes/no)

WOA proposed solutions

Long TTM for
personalizing an existing
service.

Yes Widget Combination API. A
composition mechanism limited to
services loaded by users.

Long TTM for creating a
new service.

No
-

Static
service
composition

Tight coupling. Yes Abstract service based reuse (Interpreter
component).

Not addressed for
ordinary users.

Yes Widget based composition. It is
characterized by capturing (at the front
end, at the runtime) the semantic
compatibilities of Widgets, creating links
between them, and enabling the user to
personalize these links.

Limitation of created
services.

No
-

Cross device composition
of services.

Yes The cross device based reuse of Widgets.

Abstract service based reuse.

Semi-
automatic
composition

Tight coupling. Yes

Modification at runtime by users
themselves.

Matching user needs. Yes Enabling the users to modify/adjust
themselves a created service.

Cross device composition
of services.

Yes The cross device based reuse of Widgets.

Abstract service based reuse. Tight coupling. Yes
Modification at runtime by users
themselves.

S
er

vi
ce

 C
om

po
si

tio
n Automatic

composition

Shared semantic between
providers.

No
-

Business processes are
heterogeneous, and thus it
is hard to capture and
implement all the details.

Yes Splitting business processes into a user
dependent part and a common part.
Then, enabling the users to automate
themselves the user dependent part.
Modification at runtime by users
themselves.

Adaptation to dynamic
processes.

Yes

Abstract service based reuse for an
automatic adaptation.
Modification at runtime by users
themselves.

Tight coupling. Yes

Abstract service based reuse.

Business Process
Management

Unstructured data are not
captured by business
process integrators.

Yes Introduction of a new service
composition pattern based on
unstructured data.

Part III Implementation and Validation

In the previous part, we have defined the WOA principles and proposed a design of an end-to-end

architecture. In this part we will detail its implementation aspects and illustrate the result through use cases

and screenshots. The first Chapter details the implementation of the WOA, including the different reuse

mechanisms we have previously defined (API-based reuse, Semantic automatic based reuse, Process based

reuse, cross-device based reuse, abstract service based reuse, and unstructured data based reuse). The

second Chapter illustrates, through use cases and screenshots, the usage of the defined and implemented

architecture within the two considered SOA application fields, namely service composition and business

process management. Finally, the third Chapter details the experimentation and the different

demonstrations we made, along with users feedback and different projects that uses or intend to use the

WOA paradigm.

Chapter III.1 An Implementation of

WOA

This Chapter details the WOA implementation. We first detail the implementation of a Widget. Second, we

detail the implementation of the Widget aggregator, and illustrate its basic functionalities. Third, we detail

each innovative mechanism we introduced for an efficient Widget reuse.

1 Widget

Figure 40, which is duplicated here, details the different parts of a Widget in our architecture. We will

provide the implementation of each part in this section.

Basically, each Widget has a description file and an implementation. The description file is

provided by a Widget provider. It is an XML file which can be created manually by the provider of the

Widget, or generated automatically after performing a Widget publication process. The publication process

is characterized by filling a Web based form in which the Widget provider provides the required

information to describe the Widget.

Chapter III.1 An Implementation of WOA

158

The description file of a Widget contains mainly the index (main page) of the Widget, and the

description of each functionality it provides (URL of the functionality, goal, inputs types, and outputs

types). Figure 68 is an example of a Widget description file.

Functionality
declaration

Index of the Widget

Goal of the functionality

Expected
Inputs

Expected
Outputs

Functionality URL

Non-functional
parameter

Non-functionality
declaration

Figure 68: Widget description file.

Associated to this description file is the implementation of the Widget. The Widget

implementation must fulfill the following requirements:

• It must be accessible through the index URL specified in the description file.

• It must be Web based. In other words, it must use current Web standards such as XHTML,

JavaScript (JS), and CSS.

• Each functionality must be accessible through the URL, using GET or POST method, as specified

in the description file.

• The input parameters are passed as GET or POST parameters in the HTTP request, using the

parameters names specified in the description as parameters names in the request.

• The outputs of each functionality are annotated in the UI (rendered by the functionality URL),

using the name specified in the description file.

Each widget implementation includes different modes (View, Edit, and Help). The different modes

are defined within the UI of the Widget with special tags that a Widget aggregator must understand. For

example, to add a login/password configuration form to a Widget, the developer must add the following

HTML snippet (Figure 69).

Chapter III.1 An Implementation of WOA

159

Configuration
parameters
form

Figure 69: HTML snippet for Widget Configuration.

In this thesis we consider that View mode, Configuration mode, and Help mode are accepted by

all Widget aggregators. This assumption is supported by the fact that these three modes are present in

current two popular Widget standards (JSR168/268, and W3C widget specification). In addition to these

three modes, we recommend the integration of a notification mode and a reduced mode. The notification

mode enables the Widget to notify the user about the occurrence of an event (e.g. incoming call, message

reception…etc). This is especially useful for communication services. The reduced mode is a representation

of a Widget in an area that shows that it is running but not fully displayed.

2 Widget aggregator

The implementation of the Widget aggregator we propose is based on XHTML, JavaScript (JS), CSS, and

PHP. We have also used (and modified) DOJO34 JavaScript library to facilitate the management of the

Widgets and avoid cross browser issues. The Widget aggregator incorporates a set of components

illustrated in Figure 70.

AJAX client-service Component

Widget
registry

Semantic
dictionary

Persistence Component

GUI Component

Frontend
layer

Backend
layer

U
ser P

re
fe

rence
C

om
p

on
ent

A
uthen

ticatio
n C

om
po

ne
nt

Grid Container Grid Container Grid Container…

WC WC… WC WC… WC WC…

Widget
Container

User
registry

Interpreter

Unstructured
data extraction

modules
registry

Distributed Widget Combination Component

API

Communication Manager

Process Manager

Figure 70: Basic Components of the Proposed Widget Aggregator.

• The GUI component is a Web page that provides the frontend UI. It enables the authentication

of the user (through the authentication component), and the personalization of his

34 DOJO toolkit, http://dojotoolkit.org/, accessed on June 8th, 2010.

Chapter III.1 An Implementation of WOA

160

environments (by creating new tabs, loading new Widgets…etc.). Figure 71 illustrates the

Widget aggregator GUI.

• The Grid Container component creates a drag and drop area in the Web page. In this area,

users can dynamically add, remove, and move Widgets. Each tab in the GUI instantiates a

grid container object.

Authentication

Grid Container

Widget
Container

Widget Content
(response of the

index URL)
Access the
edition form

Widget
Registry

Tabs

Figure 71: Widget Aggregator Illustration.

• The Widget Container (WC) component is instantiated each time a Widget is loaded to the

GUI. Each instance is associated to a Widget. This component is in charge of invoking and

executing the Wigdet, and managing its entire lifecycle. It receives as input the Widget

description file URL. It extracts the index URL of the Widget. It invokes the Widget. It parses

the response (XHTML based) in order to detect special tags such as the configuration form.

The Widget Container is implemented as an extension to the Widget object of DOJO library

(see http://api.dojotoolkit.org/jsdoc/1.2/dijit._Widget).

• The Widget Combination component is distributed over the WC components. It implements

the different reuse mechanisms we previously defined. Its implementation is detailed in the

next subsection.

• The Authentication component is in charge of authenticating the user.

• The User Preference component is in charge of saving and loading all user related parameters

from the database such as: user preferred widgets, their place in the web page, and their

configuration parameters.

• The AJAX client-server component is a JS API based on DOJO, which facilitates the

interaction between the frontend components and the backend (server side) components. It

facilitates for example the retrieval of the list of existing Widgets (to be displayed for the user

Chapter III.1 An Implementation of WOA

161

on request), description of a specific Widget, and the user related data (e.g. list of Widgets he

loaded on the environment, their places in the environment, the list of tabs he created…etc).

• The Persistence component provides access to the database content (Widget registry, User

Registry, The semantic dictionary, and the Unstructured data extraction module registry).

• The Interpreter component is implemented as a Servlet. It is in charge of selecting the best

concrete Widget to execute according the needed functionality and a set selection rules.

3 Widget Combination Component functionalities

The Widget Combination component is the main component introduced in this thesis. It performs a user

centric combination of Widgets. The implementation of this component is realized at the frontend, except

the Interpreter component for the resolution of abstract Widgets (selection of the best available Widget

according to a functional need and a set of selection rules) which is implemented at the backend. In the

following subsections, we first detail the implementation of the three components that provide the reuse

capabilities, namely API, Communication Manager, and Process Manager; then, we detail the

implementation of the extensions we defined, namely, Abstract Widget based reuse, Unstructured data

based reuse, and cross device reuse.

3.1 API

The API component provides developers with a set of JS functions detailed in Table 14. Basically, these

functions enable developers of Widgets to discover at the runtime the Widgets that are loaded at the user

service environment, and optionally reuse their capabilities. Similarly, the API enables developers to

expose their functionalities to other Widgets that are loaded to the user service environment.

Table 14. API.

Function Name Parameters Description

subscribe dataType, Goal,

urlCallBack,

HTMLElement

This function enables Widget developers to dynamically

declare a functionality provided by the Widget. The

dataType is the type of the expected inputs. The Goal is the

functional goal description of the functionality. urlCallBack

is the invocation URL of the functionality. HTMLElement

is an HTML element (e.g. icon, or text) that enables other

Widgets to add a UI element that enables the user to launch

a functionality of another Widget.

Chapter III.1 An Implementation of WOA

162

eventType, dataType,

Goal, urlCallBack

This function enables Widget developers to dynamically

declare a functionality provided by the Widget. The

invocation of this functionality is conditioned by the

occurrence of an event of type “eventType”.

dataType, Goal,

urlCallBack

The Widget declares its incapacity to perform a previously

declared functionality. This is useful to change the Widget

capabilities according to the state of the Widget (e.g. if a

Telephony Widget is “in communication” state, it can not

make new calls).

unsubscribe

eventType, Goal,

urlCallBack

The Widget declares its incapacity to perform a previously

declared functionality (conditioned by the occurrence of an

event of type eventType).

Goal Enables Widget developers to retrieve the list of available

functionalities (on the user environment) that perform Goal.

(e.g. getWidgetList(“makeCall”)).

dataType Enables Widget developers to retrieve the list of

functionalities that are able to receive data of type

“dataType” as input.

getWidgetList

eventType Enables Widget developers to retrieve the list of

functionalities that can be invoked under the occurrence of

eventType

WidgetId,

functionality,

dataType, dataValue

Invoke the Widget functionality with dataValue as input

parameters. If WidgetId equals “*”, this function invokes all

Widgets that provide operations which perform the

specified functionality. If functionality “*” and WidgetId

equal “*”, this function invokes all functionalities that are

able to receive data of type dataType as input parameters.

publish

WidgetId,

functionality,

eventType,

eventValue

Invoke the Widget functionality with eventValue as input

parameters. If WidgetId equals “*”, this function invokes all

Widgets that provide operations which perform the

specified functionality. If functionality “*” and WidgetId

equal “*”, this function invokes all functionalities that are

Chapter III.1 An Implementation of WOA

163

invoke-able through the occurrence of event of eventType

condition.

The implementation of this API is distributed over the WC components. Each WC component

embeds a JS object, named JS_API, that provides the listed functions. Each JS_API maintains a list of the

capabilities of the Widgets loaded on the user service environment. The different JS_APIs auto-discover

each others, and exchange the information related to the capabilities of the Widgets in order to update and

synchronize their lists. Each time a function of the API is invoked by the Widget logic, this information is

transmitted to the related Widgets. For example, when a subscribe function is invoked on a Widget A, this

information is transmitted to other JS_API object of other Widgets loaded within the same environment.

Figure 72 illustrates a typical sequence of calls to JS functions. After discovering the JS_API objects

present in the user service environment (step 1), Widget 1 invokes the subscribe function to declare its

capabilities (step 2). The JS_API updates its capabilities list and transmits the information to other JS_APIs

of other Widgets present in the user service environment (step 3). Each JS_API object which receives such

information (availability of new capabilities) updates its capabilities list. When, Widget 2 invokes the

publish function (step 4), the JS_API detects which Widget is concerned with this publication and invokes

the corresponding capability (step 5 and 6).

Grid Container
Widget Container Widget Container

Widget 1 logic
(UI+JS+CSS)

Widget 2 logic
(UI+JS+CSS)

JS_API JS_API1. Auto discover

2. subscribe

3. Transmit subscription

4. publish

5. Transmit publication

6. Invoke call back
URL

Capabilities list Capabilities list

Figure 72: Widget combination API Distributed mechanism.

Figure 73 is a screenshot that shows a Telephony Widget that uses the capabilities provided by a

directory Widget (Search a contact from a phone number). When an incoming call occurs at the telephony

Widget, the Widget first discovers the Widgets that are present in the Web page and accept phone number

as input parameter (getWidgetList(tel)), and then it invokes them using publish function.

Chapter III.1 An Implementation of WOA

164

Search phone
number

Figure 73: Illustration of Widget reuse through Widget Combination API.

3.2 Communication Manager

The semantic and automatic based reuse of Widgets is a mechanism that enables the reuse of Widgets by

the users themselves. It is characterized by an automatic detection of semantic matching between

functionalities loaded at the user service environment, and an automatic creation of links between them.

From the user perspectives, loading Widgets into the same grid container (tab) is sufficient to combine

them.

From the technical perspectives, this mechanism is implemented by the Communication Manager

component; a JS object (JS_CM) distributed over the WCs. The JS_CMs exchange the different

information between them exactly in the same way as illustrated in the previous subsection. This

component manages the Widget lifecycle, and automates subscriptions and publications between

compatible Widgets (compatible Widgets are detected based on their descriptions). The Widget lifecycle

includes mainly: the Widget connection phase, the Widget running phase, and the Widget disconnection

phase. The management of the lifecycle of Widgets is important to keep the created links between them

coherent. In this subsection we will detail the actions performed by the JS_CM objects during these

different phases.

To illustrate the actions performed during the different phases (by the JS_CMs that implement the

mechanism), we suppose, as an initial state, that the user has already loaded into his environment a

directory Widget. This Widget embeds one functionality: search through contact information (e.g. first and

last name, phone number, and email address…etc.). It generates a contact card, which contains complete

contact information of a person. Figure 74 illustrates the execution of this Widget.

Chapter III.1 An Implementation of WOA

165

Figure 74: Directory Widget Execution.

a. Widget Connection Phase

To illustrate the connection phase of a Widget, let us consider that the user has requested to load a

telephony Widget. This Widget has two functionalities. First, it enables users to make calls by giving a

phone number as an input parameter. This functionality generates events such as ringing, communication

established, and hang up. Second, the Widget enables the user to receive calls. This functionality, without

inputs, generates events such as incoming call, and incoming call accepted. Associated to these events is a

phone number of the caller (event value).

Figure 75 illustrates the actions performed by different entities when the telephony Widget is

loaded to the user service environment. As illustrated, each JS_CM contains four lists: L1, L2, L3, and L4.

• L1 is a list of the functionalities provided by the Widget associated to the JS_CM object. Each

functionality is defined through a quintuplet F (Goal, URL, Inputs data type, Outputs data type,

HTML element).

• L2 is a list of the data types generated by the Widget (including all functionalities) associated to

the JS_CM object.

• L3 is a list of functionalities provided by other Widgets (Widgets that are not associated to this

JS_CM object), that match semantically (accept as input) a data type generated by the Widget

associated to this JS_CM object.

• L4 is a list of Widgets that generates data that match semantically one or several inputs of the

Widget associated to the JS_CM object.

Chapter III.1 An Implementation of WOA

166

Grid Container

Widget Container

Telephony Widget
(Definition and

Implementation)

JS_CM

L3 L4L1 L2

Widget Container

Directory Widget
(Definition and

Implementation)

JS_CM

L3 L4L1 L2

1. Auto discover

2. Get functionality
list

3. Update L1, L2

4. Transmit Functionalities

5. Update L3, L4

6. Insert New
Links

2'. Transmit Functionalities

3'. Update L3, L4

4'. Insert New Links

Figure 75: Widget initialization implementation.

When a Widget Container (WC) object is created, the embedded JS_CM object automatically

discovers other JS_CM objects embedded in other WC objects (step 1). Following the discovery step, the

JS_CM object corresponding to the new loaded Widget reads the Widget definition and gets its

functionalities (step 2). Then, in step 3, it updates L1 and L2 (adding the functionalities description to L1

and the list of generated outputs to L2). In step 4, it transmits the functionality list to all other JS_CM

objects of other WC within the same environment. Each time a JS_CM object receives a list of

functionalities provided by other Widgets, it updates its L3 and L4 lists if a semantic matching is detected

(either between the data generated by the associated Widget and the inputs of the functionalities of other

Widgets, or between the inputs of the functionalities provided by the associated Widget with the data

generated by other Widgets) (step 5). If L3 is updated with new entries (functionalities), the JS_CM object

inserts an HTML element to the associated Widget (step 6); an HTML element which enables the user to

launch a functionality of a Widget from another one (see the Widget running phase). This HTML element

could an icon through which the user launches the destination functionality, or a drag and drop capability

between the source Widget and the destination Widget (see Figure 77).

Figure 76 and Figure 77 illustrate the result of this phase; two Widgets linked through HTML

elements. It illustrates a telephony Widget combined automatically with the directory Widget. Thus, when

the user receives a call on the telephony Widget, an icon appears beside the phone number of the caller.

This icon enables the user to automatically launch a search functionality on the directory Widget.

Chapter III.1 An Implementation of WOA

167

Search the caller

Figure 76: Automatic and semantic reuse of Widgets.

Figure 77 is another representation of links between Widget (the drag & drop capability).

Drag & drop action

Figure 77: Link representation through a drag & drop capability.

Chapter III.1 An Implementation of WOA

168

b. Widget Running Phase

The Widget running phase corresponds to the step where the user can run the Widget (e.g. search a contact

on the directory). During this phase, Widgets are automatically composed at the user initiative. In our

example for instance (Figure 76), when the user receives a call on the telephony Widget, the framework

proposes automatically to search the caller on the directory through an icon (HTML Element). When the

user clicks on that icon, the directory search functionality is invoked, with the caller phone number as an

input parameter. This sequence is illustrated in Figure 78.

Grid Container
Widget Container

Telephony Widget
(Definition and

Implementation)

JS_CM

L3 L4L1 L2

Widget Container

Directory Widget
(Definition and

Implementation)

JS_CM

L3 L4L1 L2

5. Invoke functionality
AJAX request

4. Check the correctness
of the invocation

3. Transmit functionality
invocation request

2. Retrieve the functionality
required inputs values from
the generated outputs

1. User click on HTML element
(the corresponding functionality
is included as a parameter)

Figure 78: Widget communication implementation.

When the user clicks on the HTML element that has been inserted during the initialization phase,

the associated JS_CM object is notified (step 1). Following this notification, the JS_CM object retrieves the

data that are generated by the Widget and required by the invoked functionality (step 2). In step 3, the

JS_CM object transmits to the JS_CM object of the destination Widget the functionality invocation request,

which contains the functionality URL, and the required input data. The destination JS_CM object checks

whether all required inputs are provided (step 4), and invokes the functionality using AJAX requests (step

5).

c. Widget Disconnection Phase

This phase starts when the user unloads a Widget from his environment. Figure 79 shows the different steps

that are performed by the JS objects.

Chapter III.1 An Implementation of WOA

169

Grid Container
Widget Container

Telephony Widget
(Definition and

Implementation)

JS_CM

L3 L4L1 L2

Widget Container

Directory Widget
(Definition and

Implementation)

JS_CM

L3 L4L1 L2

5. Update (delete)
inserted HTML element

4. Update L3 and L4

3. Transmit Widget
disconnection information
to the detected Widget

1. Detect all Widgets that
generate data that semantically
match the inputs of a functionality
of this Widget (L4)

2. Detect all Widgets that are
subscribed to data generated by
this Widget (L3)

Figure 79: Widget Disconnection Phase.

First (step 1 and 2), the JS_CM object that corresponds to the unloaded Widget (Directory Widget

in Figure 79) retrieves from L3 and L4:

• the list of Widgets that provide functionalities those input match the data that are generated in the

unloaded Widget,

• and the list of Widgets that generate data that semantically match the inputs of one or several

functionalities provided by the unloaded Widget.

After detecting these two lists of Widgets, the JS_CM object transmits to the JS_CM objects of other

Widgets the Widget disconnection information (step 3). Each JS_CM object that receives this information

updates L3 and L4 (step 4), and optionally updates the UI of the Widget by deleting HTML elements that

corresponds to functionalities of the unloaded Widget.

3.3 Process Manager Component

The goal of the Process Manager component is to enable the composition of Widgets based on a process

(flowchart) definition. Thus, a Widget A can reuse capabilities of a Widget B, only if this combination is

defined within the process. This component is implemented as JS object named JS_PMC. The current

implementation is centralized, but it can be distributed as well. This component is instantiated with a

process definition as an input parameter. In the following parts of this section, we will first detail the format

that we use for defining a process; and second, we show how this process definition is executed. Though

this process can be created manually, in the following Chapter we will illustrate the approach we introduce

for the creation of this process; an approach which is intuitive enough to be used directly by users.

a. Process Definition

In the second part of this thesis we modelled a process through a graph G (N, L), where nodes N represent

the Widgets, and edges L represent links between them. In this section, we will show how we implement

Chapter III.1 An Implementation of WOA

170

this model. In our implementation, a process is defined using JSON format. Table 15 shows how we define

nodes and links.

Table 15. Process Definition through a JSON format.

 JSON Format Decsription

Nodes

(widget

s)

[{
 widgetName: value,
 widgetIndexUrl: value
}, …]

This is a JSON array. Each entry describes a

Widget that is, or should be, loaded on the user

environment. Ones a Widget is loaded, we also

associate to the node a Widget instance id.

Edges

(links)

[{
 linkId: value,
 sourceWidgetName: value,
 sourceOutputType: value,
 destinationFunctionalityURL: value,
 destinationInputType: value,
 linkType: value,
 HTML_Element: value
}, …]

This is a JSON array. Each entry describes a link

between two Widgets. There are two types of links

(automatic and semi-automatic), this is defined in

linkType argument. The sourceOutputType enables

the Process Manager to retrieve a specific output

of a source Widget, and the destinationInputType

enables to map the output to a specific input of the

destination functionality (to be invoked through

the destinationFunctionalityURL).

b. Process Execution

The Process Manager component (PMC) is implemented as a JS object (JS_PMC) integrated into the grid

container object. This enables the control of all Widgets that are loaded on the same grid container. When

the JS_PMC is instantiated with a process definition as an input parameter (step 1 on Figure 80), it first

creates the Widgets (Widget containers) that are involved in the process definition; and second, it creates

links between them according to the links defined within the process definition (steps 2 and 3). For each

semi-automatic link, the JS_PMC creates an HTML element within the source Widget. For each automatic

link, the PMC associates a listener to a Widget Container, which is in charge of checking the availability of

the data those type matches the sourceOutputType used within the link. If such data is detected, the link

will be executed automatically.

Chapter III.1 An Implementation of WOA

171

Grid Container

Widget Container

Directory Widget
(Definition and

Implementation)

Widget Container

Telephony Widget
(Definition and

Implementation)
…

Process Manager component (JS_PMC)

Process Definition
1. Load a Process

2. Read Process
definition

3. Create Widgets and corresponding
links between them

Figure 80: Process based linkage of Widgets

When a link (automatic and semi-automatic) is executed, a request is sent to the JS_PMC (step 1

in Figure 81). The JS_PMC checks that the link exists in the process definition, and gets the type of the

data inputs that are required to invoke the destination functionality. Then, the JS_PMC retrieves the actual

data values from the Widget (step 3), and invokes the destination functionality (step 4).

Grid Container

Widget Container

Directory Widget
(Definition and

Implementation)

Widget Container

Telephony Widget
(Definition and

Implementation)
…

Process Manager component (JS_PMC)

Process Definition

2. Check link in
Process definition

1. Invoke Functionality
3. Get required Data4. Invoke functionality

Figure 81: Link execution steps.

To illustrate the results, we show in Figure 82 two Widgets connected with each other through a

process definition. The process includes two links. The first one is a semi-automatic link from the directory

Widget to the telephony Widget. It enables calling a searched contact. The second link is an automatic link

from the telephony Widget to the directory Widget. It enables to search a contact in the directory according

to an incoming call phone number. Thus, each time a contact is displayed on the directory Widget, the

framework proposes to launch the make call functionality of the telephony Widget; and each time there is

an incoming call on the telephony Widget, the framework launches automatically the directory search

functionality using the caller phone number as an input parameter.

Chapter III.1 An Implementation of WOA

172

Search on caller
phone number

Call a searched
Contact

Figure 82: Illustration of a Process-based reuse of Widgets.

3.4 Abstract Service Based Reuse Extension

The abstract service based reuse of Widgets aims to first decouple service integrators and service providers;

and second to provide a flexible runtime service selection based on criteria specified by the user himself.

The implementation of this mechanism is performed through two components: the Interpreter

component and the abstract Widget. The Interpreter component is in charge of selecting the best Widget at

runtime according to a needed functionality, and a set of selection rules. The abstract Widget provides a UI

that enables the user to provide the inputs of the corresponding functionality, configure (choose) the

selection rules to apply, invoke the selection process (Interpreter), and execute a selected Widget. The

following subsections detail each component.

a. Interpreter

The interpreter component is implemented as Java Servlet. It is accessible through a URL using Get or Post

method. Table 16 details the parameters that must be passed in the invocation. In addition to these

parameters, the invoker may provide the available inputs (e.g. destination_Phone_Number=0123456789).

Chapter III.1 An Implementation of WOA

173

Table 16. Interpreter invocation details.

Parameter

name

Value example Description

user_id alice@host.com The identifier of the consumer of the abstract

Widget. It enables the framework to get user

specific data such as preferences and context.

format Json (or xml) This specifies the format of the output (list of

selected Widgets) of the interpreter. Current

supported formats are JSON and XML.

functionality Make_call The functionality of the abstract Widget.

constraint_rules
[“$Context(identifier:knowledge.us

erId).location.country ==

selectedService.country;”, …]

The list of constraint rules to apply during the

selection process. The format is detailed below.

objective_rule MIN(selectedService.price); The objective rule to apply during the

selection. The format is detailed below.

The interpreter component relies on a rule engine to evaluate constraint rules to true or false, and

objective rule to a quantitative value. The rules may refer to static parameters such as price, and dynamic

parameters such as location and presence status. Dynamic parameters are usually results of other services.

As a consequence, it is important to enable referring to those services within the selection rules. The

grammar of these rules we propose provides such functionality. Figure 83 is a simplified finite state

machine diagram that defines the grammar. The grey states are legacy final states. This means for example

a rule is considered as complete when we reach state S2 or S3.

Chapter III.1 An Implementation of WOA

174

Rule

Condition

S0

S1

S2

S3

"Min" or
"Max" Function

Condition

Objective rule

Constraint rule
S0

S1

S2

Comparison Logical
operator

Comparison

Comparison

S0

S1
S2

Function Comparison
operator

Function

Function

S0

S1

S2

Number / Service / Knowledge
base / input / Output Operation

Number / Service /
Knowledge base / input /
Output

(1) (2)

(3) (4)

S3

Figure 83: Rules grammar.

Figure 83.1 shows that a rule is either a constraint rule, or an objective rule. Objective rules

contains necessarily an optimization operator (e.g. Max or Min), and followed by a function to optimize. A

function (Figure 83.4) contains mainly numbers, variables, and operations. There are three types of

variables:

• those referring to a knowledge base parameter such as price,

• those referring to the inputs provided by the user,

• and those referring to other services in order to get dynamic parameters values such as presence

and location of the user.

Constraint rules (Figure 83.1) are simple conditions that are evaluated to true or false. Each

condition (Figure 83.2) includes comparison statements connected with logical operators (‘and’ and ‘or’).

Each comparison statement (Figure 83.3) starts with a function (Figure 83.4), followed by a comparison

operator (‘<’, ‘=’, ‘>’…etc.), and ends with another function.

We have used LEX35/YACC36 tools to generate a compiler and an evaluator for this grammar.

More precisely, we have used JLex37 and CUP38 Java libraries.

b. Abstract Widget

The abstract Widget (Figure 84) is characterized by a UI that enables the user to enter the inputs, choose

the rules to apply, invoke the Interpreter component to select the best available Widget according to the

corresponding functionality and the selection rules chosen by the user, and invoke the selected Widget.

35 Lex tutorial, http://dinosaur.compilertools.net/lex/index.html, accessed on June 11th, 2010
36 Yacc tutorial, http://dinosaur.compilertools.net/yacc/index.html, accessed on June 11th, 2010
37 JLex, www.cs.princeton.edu/~appel/modern/java/JLex/, accessed on June 11th, 2010
38 CUP, www.cs.princeton.edu/~appel/modern/java/CUP/, accessed on June 11th, 2010

Chapter III.1 An Implementation of WOA

175

Edition Mode: It enables
the user to choose the
rules to apply in the
selection process

View Mode: This area displays
the services that have been
selected by the interpreter
component. It is refreshed
dynamically as the user modifies
the rules and the inputs

View Mode: This area
enables the user to enter
the inputs required by
the functionality

Figure 84: Illustration of a Send SMS abstract service Widget.

The abstract Widget is defined and implemented exactly in the same way we define and

implement an ordinary Widget. It is defined using an XML format previously detailed (see Figure 68); and

it is implemented using Web standards (XHTML, JavaScript, and CSS). The abstract Widgets are however

provided by the Widget aggregator provider. It enables the Widget aggregator provider to wrap functionally

equivalent Widgets available in the registry within a single abstract Widget. The actual Widget to be

executed for a needed functionality is selected at runtime according to selection rules specified by the user

himself. Figure 84 illustrates a Send_SMS abstract Widget. It shows the Edition mode, where the user can

choose the rules to apply in the process of selecting the best Widget to execute. It shows the View mode,

where the user can enter the inputs needed by the Send_SMS functionality (message, source phone number,

and destination phone number). For each modification (in the values of the inputs or in the chosen selection

rules), the Abstract Widget invokes the Interpreter component (Using AJAX request) to select the best

available Widget according to the new parameters. The selection results (a JSON array generated by the

Interpreter component) are displayed at the bottom of the Widget, where the user can click on a Widget to

execute it and display the execution result.

Chapter III.1 An Implementation of WOA

176

3.5 Unstructured Data Based Reuse of Widgets

The unstructured data based reuse of Widgets aims to facilitate to service integrators (users and developers)

the capturing of useful and unstructured data, and the reuse of such data in other services. In this section,

we illustrate the implementation of such mechanism.

In our implementation we associate an unstructured data extraction module for each type of data

that are likely to be generated by the Widgets. As a proof of concept, we used data extraction modules

based on JS. This limits the extraction to the data that are accessible by the Web browser. In other words,

multimedia content, usually seen by the browser as a black box, and accessible only through a heavy client,

can not be considered (fetched) yet in this implementation.

Also, in our implementation, users or developers can associate a data extraction module to a

Widget. This will enable the reuse of the unstructured data extracted from this Widget as input parameters

in another Widget. For developers, they should just add a meta data in their Web page, in which they

specify the type of data they want to extract (see Figure 85). For users, they can do this directly from their

service environment at runtime (see Figure 86). In both cases, a listener is associated to the Widget UI,

which is in charge of detecting the presence of the desired unstructured data and extracting them. This

listener uses the JS module associated to the type of the data to be extracted.

The JS extraction modules must define extract_Data function. It receives as input a string

(typically a Widget DOM inner HTML), and generates as output the same text in which the extracted data

are tagged using their type tag (e.g. tel). When a JS extraction module is associated to a Widget, this

function is called each time the DOM object of the Widget is modified.

Figure 85: Adding of an unstructured data extraction module by a developer.

Chapter III.1 An Implementation of WOA

177

Different unstructured data
extractors that can be added Description appears when the

mouse is over the extractor

Figure 86: Adding of an unstructured data extraction module by a user.

Figure 87 illustrates how the extracted data could be reused as input parameters in other Widgets.

The combination of the Widgets is performed either using the Automatic and semantic reuse mechanism, or

using the Process based reuse mechanism (both are previously detailed).

Locate the
address

Figure 87: Illustration of an unstructured data based reuse.

3.6 Cross-Device Reuse of Widgets

The cross-device based reuse of Widgets aims to extend the previously defined reuse mechanisms (API-

based reuse, Automatic and semantic based reuse, and Process Based reuse) into a distributed environment,

where different instances of the Widget aggregator run over different devices. In this section, we will detail

the extension made to the Automatic and semantic based reuse mechanism.

Chapter III.1 An Implementation of WOA

178

This extension is characterized by the introduction of a new Widget, which is in charge of making

the connection with other Widgets loaded on other devices. Let’s refer to this Widget as a Cross Device

Connecting Widget (CDCW). In the current implementation, the CDCW uses an authentication component

to detect the devices of the same user. It also uses the cometD framework39 (which is an implementation of

the Bayeux AJAX push) in order to communicate between different CDCW loaded on different devices.

The cometD framework is a publish/subscribe mechanism that enables to push asynchronous events to a

client side (browser) of a Web application.

Basically, the CDCW capture the capabilities of Widgets that are loaded on the same device and

publishes them to other devices; and similarly, it receives the capabilities of other Widgets loaded on

different devices and publishes them into the Widgets loaded on the same device. Thus, CDCW uses the

JS_CM (previously detailed) to interact with Widgets loaded on the same Widget aggregator instance; and

it uses cometD framework to interact with other Widgets of other devices. Figure 88 shows a global view

of the different components involved in this mechanism.

Grid Container (On a laptop)

Widget Container

W 1

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

Grid Container (On a mobile)

Widget Container

W 3

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

…

…

Widget Container

W 2

JS_CM

L3 L4L1 L2 Authentication
component

Cometd
publish/subscribe

mechanism

Figure 88: Component view of the cross device reuse mechanism.

Such as the automatic and semantic based reuse of Widgets, previously described, this mechanism

manages different phases of the Widgets lifecycle. To describe this mechanism, we consider, as an initial

state (Figure 88), that the user has:

• two instances of a Widget aggregator loaded on two different devices (e.g. a laptop and a mobile),

• already loaded two Widgets (W1 and W2) into his laptop instance,

39 cometdD, http://cometd.org/, accessed on June 14th, 2010

Chapter III.1 An Implementation of WOA

179

• already loaded one Widget (W3) into the mobile instance.

In the following parts of this section, we first illustrate the connection phase of (CDCW), and then

we show the different states (connection, running, and disconnection) of an ordinary Widget.

a. CDCW Connection Phase

The CDCW plays the role of a bridge between the Widgets loaded on different devices. The first action

performed by this Widget is to authenticate the user (Step 1 in Figure 89). Then, it creates, or joins, a

communication channel created on the cometD publish/subscribe mechanism (Step 2). This channel is

specific to one single user, and it enables the CDCW of devices belonging to the same user to exchange

data. The channel identifier is in form of “/userkey/*”. The userkey is created after the authentication

through a hash function on the user identifier (the result of the authentication procedure).

Grid Container (On a laptop)

Widget Container

W 1

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

Grid Container (On a mobile)

Widget Container

W 3

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

…

…

Widget Container

W 2

JS_CM

L3 L4L1 L2 Authentication
component

Cometd
publish/subscribe

mechanism

1

3

2

4

5

6

7

8

9

Figure 89: CDCW connection phase.

Once the communication channel is created on cometD, the JS_CM of the CDCW retrieves the

capabilities of other Widgets loaded on the same device by exchanging with the corresponding JS_CM

(Step 3). The capabilities of other Widgets are then transmitted to CDCWs of other Widgets using the

previously joint cometD communication channel (Step 4 and 5). This transmission includes also an

identifier of the device on which the Widgets are running. In step 6, the CDCW transmits the received

capabilities to other Widgets loaded on the same device. This enables these Widgets to create links if a

semantic matching is detected. Each link is defined as an octuplet L (sourceWidget, outputDataType,

destinationWidget, destinationDevice, Functionality, inputDataType, linkType, HTMLElement). This link is

formatted using JSON as follows:

Chapter III.1 An Implementation of WOA

180

{
linkId: value,
sourceWidgetName: value,
sourceOutputType: value,
destinationDeviceId: value,
destinationFunctionalityURL: value,
destinationInputType: value,
linkType: value,
HTML_Element: value

}

As a response to the step 5, each CDCW sends back the capabilities of the Widgets that are loaded

on the corresponding device (Step 7 and 8). Then, the Widgets that correspond to the CDCW which has

just connected are notified by receiving the capabilities of the Widgets loaded on other devices (Step 9).

This enables these Widgets to create links if a semantic matching is detected.

b. Ordinary Widget Connection Phase

When a user loads a new Widget (W4 on Figure 90) to his environment, the corresponding JS_CM reads

the capabilities of this Widget and publishes them to other JS_CM of other Widgets of the same device,

including CDCW (Step 1). The JS_CM objects that receive such information checks if is there a semantic

matching, in which case they create a link. As a response to the step 1, the JS_CM of the CDCW sends

back the capabilities of the Widgets that are loaded on other devices (step 2’). Then, The JS_CM of the

CDCW transmits to other JS_CM of other devices the capabilities of the new loaded Widget (Step 2 and 3).

Finally, the Widgets of other devices are notified by receiving this capability (Step 4), and if any semantic

matching is detected a link is created between the two Widgets. The links are presented to the user through

an HTML element as illustrated in Figure 91.

Grid Container (On Device 1)

Widget Container

W 1

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

Grid Container (On Device 2)

Widget Container

W 3

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

…

…

Widget Container

W 2

JS_CM

L3 L4L1 L2

Widget Container

W 4

JS_CM

L3 L4L1 L2

Authentication
component

Cometd
publish/subscribe

mechanism

1

4

2

3

2'

Figure 90: Ordinary Widget connection phase.

Chapter III.1 An Implementation of WOA

181

Locate the
address

Figure 91: Cross device communication illustration.

c. Ordinary Widget Running Phase

When a user activates a link (by a click on the HTML element, created for example in W4 during the

initialization phase), an event is sent to the JS_CM of the corresponding Widget (Step 1). The JS_CM is

responsible of retrieving the data required for the execution of the link (Step 2) and their transmission to the

JS_CM of the destination Widget. If the destination Widget is loaded on a different device, the transmission

goes through the CDCW as illustrated in Figure 92.

Grid Container (On Device 1)

Widget Container

W 1

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

Grid Container (On Device 2)

Widget Container

W 3

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

…

…

Widget Container

W 2

JS_CM

L3 L4L1 L2

Widget Container

W 4

JS_CM

L3 L4L1 L2

Authentication
component

Cometd
publish/subscribe

mechanism

3

6

4

5

1
2

7

Figure 92: Communication process between two Widgets loaded on two different devices.

Chapter III.1 An Implementation of WOA

182

d. Ordinary Widget Disconnection Phase

As illustrated in Figure 93, when a Widget is removed from the user environment, the corresponding

JS_CM transmits the information to other Widgets loaded on the same device, including the CDCW (Step

1). Then, each ordinary Widget updates it links. The CDCW however, transmits the information to other

CDCWs loaded on other devices (Step 2 and 3). Each CDCW which receives such information broadcasts

it over the Widgets loaded on the same device (Step 4). Finally, each Widget optionally updates the links

(Step 5).

Grid Container (On Device 1)

Widget Container

W 1

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

Grid Container (On Device 2)

Widget Container

JS_CM

L3 L4L1 L2

Widget Container

Cross Device
Connecting Widget

(CDCW) logic

JS_CM

L3 L4L1 L2

…

…

Widget Container

W 2

JS_CM

L3 L4L1 L2

Widget Container

JS_CM

L3 L4L1 L2

Authentication
component

Cometd
publish/subscribe

mechanism

1

4

2

3

W 3

5

Figure 93: Illustration of the Widget disconnection phase.

3.7 Conclusions

In this Chapter we detailed the implementation of the Widget client and the different mechanisms it

embeds. In summary, all defined reuse mechanisms are implemented at the front-end level using JavaScript

language. The service selection mechanism we introduced (Interpreter) is however implemented as a Java

servlet.

The lessons learnt at this stage are fourth.

• First, the microformat semantic dictionary is not sufficient to cover all data types that could be

used in a given context. For instance, the microformat community did not standardized data types

for emails (forwarder, recipient, subject, attachments, content, CC…etc), or calls (source phone

number, destination phone number, start time, and end time). Therefore, it was necessary to define

in some cases our own data types.

• Second, it is possible to integrate the reuse mechanisms we have defined in third party Widget

aggregators, and even more, in ordinary web sites. Indeed, as the implementation of the reuse

Chapter III.1 An Implementation of WOA

183

mechanisms is distributed over the Widgets Container, the only condition needed is to embed the

necessary JavaScript objects (those integrated in the Widget Container) to the implementation of

the Widgets themselves. This could be performed by the Widget developer when creating the

Widgets (at the design time), or dynamically by a proxy (at the Widget invocation time). A proof

of concept is developed to show the feasibility of this mechanism; we have developed Widgets

that first discover each other when they are present in the same Web page (e.g. iGoogle or

Netvibes), and second, they enable the user to combine them.

• Third, the Widget combination based on a process definition remains basic compared to existing

flowchart based composition mechanisms we have detailed in Chapter I.1 State of the Art. Indeed,

in the process based Widget combination, it is not possible to define conditions and loops within

the process definition. This is rather a choice than a limitation. Indeed, it is important to simplify

as much as possible the creation of the process definition to be understandable by ordinary users.

• Fourth, the current implementation does not enable the different Widget combination mechanisms

to retrieve data from two different Widgets, and invoke a third one with that data. For example, it

does not enable retrieving a phone number from a contact list, and a string from an email, and

invoking a send SMS Widget with the phone number and the string as input parameters. To realize

this use case, first the user should execute two links (one from the contact list Widget to the send

SMS Widget, and one from the email Widget to the send SMS Widget); and second, the send SMS

Widget should save the data received in the execution of the first link and use them during the

execution of the second link.

Chapter III.1 An Implementation of WOA

184

Chapter III.2 Illustration of WOA in

Different SOA Application Fields

Following the detailed implementation of the WOA, this Chapter aims to illustrate its usage within the two

application fields we consider: service composition and business process management. In addition to

illustrating how WOA is applied to these fields, we also compare it with SOA.

1 Service Composition

Before illustrating the different approaches of service composition using WOA, we first sketch a scenario

and then detail how it is realized using the different approaches of service composition: static service

composition, semi-automatic service composition, and automatic service composition.

1.1 Driving Scenario

The scenario we rely on for demonstrating the advantages and the limitations of the WOA in service

composition field is characterized by three actors within a company: Charlie the CEO of the company,

Alice the secretary of Charlie, and Bob a team manager.

Bob wants to discuss with Charlie about a new project. First, he needs a directory Widget in order

to search the contact information of Charlie’s secretary, Alice. Second, he needs to find the best service

(Telephony, IM, email…etc) to contact Alice. The best service depends essentially on Bob’s own criteria;

though these criteria may take into account Alice’s preferences and context. A typical criterion for selecting

the best service could be formulated as follows: select the service according to the presence status of the

recipient, and if several services are candidate then select the cheapest one. For the rest of the scenario, let

us suppose that the IM service has been selected (manually or automatically) to communicate with Alice.

From Alice point of view, she needs to anticipate some actions each time she receives a

communication invitation (e.g. receive an IM, incoming calls…etc). Such actions could be the display of

the contact information of the initiator of the invitation, or the display of previous exchanges of emails with

that person.

Bob wants to schedule a physical meeting with Charlie. Therefore, several date proposals would

be exchanged between Bob and Alice in order to agree on a specific slot. Each time a new proposal is sent

and/or received, the recipient is likely to check the agenda availability. After being agreed upon a date,

Chapter III.2 Illustration of WOA in Different SOA Application Fields

186

Alice initiates an agenda invitation (proposed by the service environment) on behalf of Charlie. Charlie and

Bob accept the meeting.

Half an hour before meeting Bob, Charlie is in another important meeting, and he is afraid that it

will last longer than expected. Therefore, he wants to contact Bob in order to apologize and propose him to

shift the meeting to the lunch time at a restaurant. He first retrieves the contact information of Bob, either

from the meeting participant list (Agenda), or from the directory service. Second, Charlie selects (manually

or automatically) the communication service to use. Consider that the IM service has been selected, as Bob

is at his office and present on the IM using his laptop. After apologizing and agreeing on shifting the

meeting, and having it at the restaurant, Charlie loads the public directory service (e.g. yellow page) to his

laptop in order to search a restaurant. Charlie sends a selected restaurant address to Bob. Charlie also

displays the itinerary to go to the restaurant on a Map loaded on his mobile device. When Bob receives the

address, he likely locates it using a Map service, and loads the underground Map service in order to know

how to go there. Ideally, the Map service and the underground Map service would be displayed on the

mobile phone, as Bob will move afterward.

As illustrated in Table 17, this scenario presents several manual compositions of services. In the

next subsections, we will see the different options provided by the WOA to automate them.

Table 17. Manual composition list of the scenario.

Composition Actor Transited data Goal

Directory and IM Bob
Email address (legacy output of

Directory service)
Send an IM

Directory and

Telephony
Bob

Phone number (legacy output of

Directory service)
Make call

Directory and Email Bob
Email address (legacy output of

Directory service)
Send an Email

Directory and Send

SMS
Bob

Phone number (legacy output of

Directory service)
Send an SMS

IM and Directory Alice
Email address (legacy output of IM

service)
Search IM initiator

Telephony and

Directory
Alice

Phone number (legacy output of

Telephony service)
Search Call initiator

IM and email Inbox Alice
Email address (legacy output of

Telephony service)

Display Email exchange

history with IM initiator

Chapter III.2 Illustration of WOA in Different SOA Application Fields

187

IM and Agenda Alice
Date (not a legacy output of the IM

service)

Check Charlie’s

availability

IM and Agenda Bob
Date (not a legacy output of the IM

service)
Check his availability

Directory and IM Charlie
Email address (legacy output of

Directory service)
Send an IM

Agenda and IM Charlie
Email address (legacy output of

Directory service)
Send an IM

Public directory and

IM
Charlie

Postal address (legacy output of the

public directory service)

Send the restaurant

address

Public directory (on

laptop) and Map (on

mobile)

Charlie
Postal address (legacy output of the

public directory service)

Display the itinerary to

the restaurant address on a

map

IM and Map Bob
Postal address (not legacy output of the

IM service)

Locate the address

received in the IM

IM and Underground

Map
Bob

Postal address (not legacy output of the

IM service)

Retrieve how to go to the

address received in the IM

1.2 Static Composition

The main features highlighted in the contribution part of this thesis concerning the static service

composition are the personalization capability provided to the users and the loose coupling using the

concept of abstract Widget. To illustrate these two features let us consider the composition of the directory

service with respectively the IM service, the Telephony service, the send email service, and the send SMS

service (the four first lines of Table 17).

a. Personalization

There are two ways to create a customizable composite service using the WOA. The first method is

characterized by constructing a Widget which invokes other Widgets when present within the same

environment. The second method is characterized by relying on the concept of abstract Widgets.

In our example, in the first method developers create a directory Widget in which they first check

the presence of respectively the IM Widget, the telephony Widget, and the send email Widget in the user

environment; and second compose it with them. Figure 94 shows a code snippet of a directory Widget that

first discovers Widgets that are present in the user service environment, checks the presence of a telephony

Chapter III.2 Illustration of WOA in Different SOA Application Fields

188

Widget and a send email Widget, inserts icons if that Widgets are present, and invokes the destination

Widget when the user clicks on an inserted icon.

Figure 94: Code snippet of the directory Widget.

This approach for composing Widgets is customizable because the user still has the control on the

Widgets that could be loaded to his service environment. As a consequence, the directory Widget will not

be composed with the telephony Widget if the user does not load them into the same service environment.

Figure 95 shows how does the user personalize the composite service realized in Figure 94.

Send Email

Make Call

Personalization: The
user deletes the send

email Widget and loads
the make call Widget

Icons inserted by the
developer of the
directory Widget

Figure 95: Manual Personalization.

Chapter III.2 Illustration of WOA in Different SOA Application Fields

189

The second method for creating a customizable composite service is to rely on the concept of the

abstract Widget. Instead of creating a directory Widget which is connected to the different communication

Widgets (e.g. send SMS, send IM, send Email), the developers links the directory to the different needed

functionalities, namely send SMS, send IM, and send Email. The service environment is then in charge of

selecting the best Widget available at the runtime. This method is customizable because the user can

influence the selection process by configuring himself the criteria that define the best Widget.

From the developer point of view, the code will be exactly the same as the previous one illustrated

in Figure 94. And from the user point of view, they should first load abstract Widgets into their service

environment; and second, configure the selection rules to apply. Figure 96 illustrates the directory service

composed with the send SMS abstract Widget.

Send SMS

Configuring
service selection

rules

Icons inserted by the
developer of the
directory Widget

Figure 96: Abstract Widget based personalization.

The two personalization approaches are similar from the developer point of view. However, from

the user perspectives, the abstract Widget based personalization is automatic while the other is manual

(deleting the Widget and replacing it with another). But, the abstract Widget alone does not enable the user

to personalize the logic of the composition. In our example for instance, the send SMS abstract Widget will

never select a make call Widget to contact a person displayed on the directory. Therefore, the two

personalization approaches complement each others. Thus, the manual personalization enables the selection

of the functionalities to be composed with the directory Widget, and the abstract Widget selection

mechanism selects the best Widget (among functionally equivalent ones) to be invoked according to the

user’s own criteria.

Chapter III.2 Illustration of WOA in Different SOA Application Fields

190

b. Loose coupling

WOA enables developers to create composite services independently of the used basic services. They do

this by relying on the abstract Widget concept exactly in the same way we illustrated in Figure 96. In that

Figure, the directory Widget is completely independent from the send SMS services it uses. It is linked to

the send SMS abstract Widget, but not directly to the different send SMS Widgets such as “Orange Send

SMS” or “Telefonica send SMS”. In other words, if Orange withdraws the send SMS Widget from the

repository, the composition is still valid as the framework will automatically select, at runtime, another

Widget fulfilling the same functionality. The only condition is the availability of at least one send SMS

Widget within the registry that satisfies the selection rules defined by the user.

1.3 Semi-automatic Composition

The key features introduced by the WOA in the semi-automatic service composition field are: enabling

ordinary users to compose services, the cross-device composition by users, the unstructured data based

composition, and the loose coupling between composite services with the used basic services. To illustrate

these features, we rely on the compositions detected in our scenario (Table 17).

a. User service composition

As we specified in Chapter II.3 Widget-Oriented Architecture (WOA) in SOA application fields, the WOA

facilitates significantly the process of creating a composite service. This is performed through two steps.

The first one is the creation of links based on semantic matching, and the second one is characterized by

enabling the user to personalize the created links (delete them, or modify their type). In order to illustrate

this feature, let us consider Alice needs in the previous scenario. Let us focus on her needs of connecting

the IM Widget with the directory Widget, the telephony Widget with the directory Widget, and the IM

Widget with the email Widget.

From the developer point of view, the only requirement is developing the services as Widgets,

providing a functional and non-functional description, and annotating the outputs at the UI level. Figure 97

for instance shows the description file of the directory Widget. It shows a description of two functionalities:

searching by email address, and searching by phone numbers.

Chapter III.2 Illustration of WOA in Different SOA Application Fields

191

Functionality
declaration

Functionality
declaration

Figure 97: Directory description file snippet.

Figure 98 shows the microformats annotations used to annotate the outputs of the directory

Widget.

First and last
name

Organization

Phone number

Fax number

Email address

Postal address

Figure 98: Microformats annotations.

From the user point of view, it is necessary to load the needed Widgets into the same environment

(the same tab in the Widget aggregator we defined). The Widget combination component we detailed

Chapter III.2 Illustration of WOA in Different SOA Application Fields

192

creates automatically links between the Widgets according to their description file. This is illustrated in

Figure 99.

Onclick launch the
destination Widget
Onclick launch the
destination Widget
Onclick launch the
destination Widget
Onclick launch the
destination Widget

Figure 99: Semantic matching based linkage of Widgets.

Figure 99 illustrates also two limitations. The first one is that some links, which are not needed by

Alice, have been created (e.g. the link between the email inbox Widget to the send IM Widget is not needed

by Alice (select an email and initiate an IM session with the forwarder)). The second limitation is that the

created links are not automatic. Alice must click on the link to launch the destination Widget, though in

some cases this could be automated (e.g. for each incoming call the directory search on the caller could be

launched automatically).

The second step of user service composition we proposed using WOA aims to tackle these two

limitations. For each link, the framework adds two additional GUI elements that enable the user to delete or

automate the corresponding link. Figure 100 illustrates this feature. It shows a link between the telephony

Widget to the directory Widget, which can be modified using two icons: one for deleting the link, and

another for automating the link.

From the technical point of view, the first step creates a composite service (G<N,L>) which

connects all connectable services (based only on semantic matching), and the second step enables the user

Chapter III.2 Illustration of WOA in Different SOA Application Fields

193

to refine the composite service definition by deleting undesired links, and automating the frequently used

links.

Figure 100: Composite service personalization.

b. Cross-device composition

To illustrate this feature, let us consider the manual composition performed by Charlie when he invokes the

Map service loaded on the mobile with the restaurant address generated by the public directory service

loaded on his laptop. The WOA provides to the user the capability of automating this composition. It

enables the user to define a composite service that combines Widgets loaded on different devices.

From the developer point of, there are no additional actions to perform to enable such composition

by the user. However, the users must first load the Cross Device Connecting Widget (CDCW) on all

devices they want to connect. This Widget authenticates the user, and detects and connects all instances of

the Widget aggregator loaded on different user devices (illustrated in Figure 101).

MobileLaptop

Figure 101 : Authentication Widget.

Second, the user loads the different Widgets he needs on the different devices. As illustrated in

Figure 102, the framework connects automatically the Widgets that are semantically compatible (based on

Chapter III.2 Illustration of WOA in Different SOA Application Fields

194

their description). Third, such as the user service composition mechanism detailed in the previous

subsection, the framework enables the user to modify or delete links created during the second step.

MobileLaptop

Locate Restaurant

Figure 102: Cross device composite service.

c. Unstructured data composition

To illustrate this feature, let us consider the manual composition made by Alice or Bob when they have

composed the IM service with the agenda service; by extracting the exchanged dates and checking their

availability on the agenda. Current SOA based composition tools do not enable ordinary users to make such

composition, as they rely on connecting only legacy inputs and outputs of services. The WOA provides the

necessary infrastructure to enable users to easily combine services (Widgets) based on unstructured data

generated in different services (e.g. communication services).

The process for making such composition does not require additional actions from the developer.

The only need is the description of the different Widgets. From the user point of view, the actions to

perform can be summarized in two steps. First, the user loads the two Widgets into the same environment

(or in two different by connected instances of the environment). Second, through a GUI, the user associates

a data extraction module for the source Widget. To extract dates for instance, the user associates the date

extraction module as illustrated in Figure 103. After associating the date extraction module, the framework

automatically detects and extracts dates within the Widget. For each date detected, the framework detects

Chapter III.2 Illustration of WOA in Different SOA Application Fields

195

automatically the Widgets whose input is compatible with that data; in our case, it detects the agenda

Widget that enables the user to check his availability at a given date passed as input parameter. If a

semantic matching is detected between two Widgets, the framework creates a link that enables the user to

combine the Widgets. When, the user clicks on the link, the destination Widget (agenda) is launched

automatically.

Check availability

Different unstructured data extractors that
can be added. This list depends according
to the functionalities inputs of the Widgets

loaded in the same environment

Link to check the
agenda availability on

the corresponding date

Figure 103: Unstructured data based composition.

d. Loose coupling

As we detailed in Part II Contributions, the WOA enables a loose coupling between composite services

and the basic services they use. This loose coupling is realized either manually as users now can create their

own composite service, or automatically through the concept of abstract Widget.

The manual approach is characterized by the replacement (by the user) of a Widget by another that

offers the same functionality. The framework then first detects semantic matching between the new Widget

and the others that are loaded in the same environment, and second creates links accordingly. These two

actions reconstitute the previous composite service.

The automatic approach is characterized by relying on the concept of abstract Widget; which has

been illustrated in 1.2 Static Composition.

1.4 Automatic Composition

The main feature introduced by WOA concerning the automatic service composition is the failure recovery

system. This is pertinent as current composition tools based on natural language still lack of accuracy due

to the limitations of natural language processing tools. To illustrate this feature, let us consider the manual

composition performed by Charlie when he searches a restaurant (composition of the public directory

service with the Map service). This composite service can be created through a natural language request

(e.g. search and locate restaurant), using WOA as well as SOA. However, the WOA provides the capability

Chapter III.2 Illustration of WOA in Different SOA Application Fields

196

of modifying the created composite service to match exactly the requestor needs. In our case for example,

Charlie would likely modify the created composite service so that the Map Widget will run on his mobile

instead of the laptop, as he will need the Map as he goes to the restaurant. To do that, he has just to delete

the map widget from his laptop, and load it on the mobile; the framework will make the connection

automatically based on semantic matching. This process is illustrated in Figure 104.

Locate Restaurant

MobileLaptop

Locate Restaurant

Modify the created
service: delete Google
Map Widget from the
laptop, and load it to

the mobile.

Figure 104: Failure recovery process in automatic service composition using WOA.

2 Business Process Management (BPM)

The key features introduced by WOA to BPM are: a solution for business processes heterogeneity and

dynamicity, the capture of unstructured data, and the loose coupling between process definitions and the

used concrete services. As business processes are usually implemented as composite services, the capture

of unstructured data and the loose coupling are previously detailed in section 1.3 Semi-automatic

Composition. Therefore, the goal of this section is to illustrate only the solution brought by WOA to tackle

Chapter III.2 Illustration of WOA in Different SOA Application Fields

197

the heterogeneity and dynamicity of business processes. For this purpose, we rely on a driving scenario

detailed in the next subsection.

2.1 Driving Scenario

 As an illustrative scenario we consider the vacation request business process of two employees. It is

previously illustrated in Figure 62 which is duplicated hereafter. This Figure depicts two versions of the

vacation business process; one performed by a team manager, and another performed by a purchasing and

logistic responsible. This business process has a part which is common and mandatory to all users, and

another part which is user dependent. The former consists of the vacation request creation, the vacation

request study and decision (by the requestor manager), and the response notification. The latter consists of

updating agenda, sending email to the team, and setting up an automatic email response for the team

manager; and searching pending purchasing orders, calling product providers, redirecting incoming calls

during the vacation period, and updating agenda for the purchasing and logistic responsible.

End-user dependent part:
Team manager business actions

End-user dependent part:
Purchasing and logistic responsible business
actions

Common part
vacation
request

study and
decision

Vacation
request
creation

Response
notification

Update
Agenda

Set up an
automatic email

response

Send email
to the team
mailing list

Update
Agenda

Redirect
incoming calls

Search pending
purchasing

orders

Call provider

The user dependent part of business processes is heterogeneous and dynamic at the same time. It is

heterogeneous as it differ from a user and another, and it is dynamic as the company needs to adapt quickly

for new businesses from one hand, and the user himself could change his habits from another hand. In the

next subsection, we will see how this heterogeneity and dynamicity is tackled using the WOA.

Chapter III.2 Illustration of WOA in Different SOA Application Fields

198

2.2 Heterogeneity of Business Processes

The main feature introduced by the WOA is the service composition capability provided to ordinary users.

Relying on this capability, we proposed a method for managing the heterogeneity of business processes.

This method is characterized by splitting business processes into a common part and a user dependent part.

• Business analysts are then in charge of modelling the common part (which usually contains

mandatory activities needed for performing a given business goal).

• Developers are in charge of automating the common part as a Widget.

• Finally, users are in charge of defining and automating (using semi-automatic composition) their

own part (user dependent part).

Figure 105 illustrates how the vacation request business process is automated (including the

common part and the user dependent part) for the purchasing and logistic responsible.

Update Agenda

Set call transfer

Call item provider

Common part
implemented as

a Widget

User dependent part
implemented as links

between Widgets

Get Pending orders

Figure 105: Business process implementation example.

 The use of the WOA enables the scalability of the process of modelling and implementing

business processes from one hand; and it enables a high automation of the business processes from another

hand. Indeed, business process management in WOA is scalable because business analysts (resp.

developer) do not care about the details of the processes, which are specific to users; instead, they model

(resp. implement) only parts of business processes which are common to all users. The WOA enables a

Chapter III.2 Illustration of WOA in Different SOA Application Fields

199

high automation of business processes as the user dependent part, which can hardly be captured and

implemented by business analysts and developers, is automated by the users themselves.

In addition to these two features, the WOA provides a good infrastructure for business analysts to

capture user habits, and optionally modify the common part if common actions have been detected.

2.3 Adaptation of Business Processes

Unlike the common part of business processes, which is persistent, the user dependent part is usually very

dynamic. In order to manage such dynamicity, organizations can either rely on the semi-automatic

composition capability provided to users, or use the concept of abstract Widget. Both methods have been

previously detailed and illustrated. In summary, semi-automatic composition of services enables users to

define themselves the user dependent part of a business process. More important, it enables them to modify

it as they face new businesses, contexts, and needs in general. Though the modification is manual (adding

new activities by adding new Widgets, chaining the activities (Widgets) between them, and deleting

obsolete activities), it is performed at runtime and enables the modification of the logic of the business

process. In our example for instance, if the Purchasing and logistic responsible wants to set up an automatic

email response during his vacations, he has just to load the corresponding Widget, and personalize the links

with the other Widgets. This is illustrated in Figure 106.

The second approach for adapting a business process to new needs is to rely on the abstract

Widget concept. In other words, users will load abstract Widgets instead of ordinary Widgets. By doing so,

the platform will automatically select at the runtime the best available Widget, for performing a given

activity in the business process. Let us consider for instance the step where the purchasing and logistic

responsible call the provider of a given item. The change in the communication service (telephony service)

used by the company would oblige the user to manually change the business process implementation.

However, using the concept of abstract Widget, the platform will automatically adapt the business process

and take into account the new telephony service.

Chapter III.2 Illustration of WOA in Different SOA Application Fields

200

Set Up automatic
email response on
the vacation period

Set Up automatic
email response on
the selected date

Figure 106: Adaptation to a new need.

3 Conclusion

In this Chapter, we illustrated how the WOA paradigm and the Widget aggregator we designed and

implemented can be used by developers and users in service composition and business process

management fields. Table 18 summarizes the different challenges we addressed, the involved roles in the

solution we propose, and what should be performed by each role. Basically, in service composition, the

developer is in charge of creating the different Widgets and providing a description file for each one; and

the user is in charge of discovering the Widgets and loading them into his service environment (Widget

aggregator). In static service composition, the developer is also in charge of discovering the Widgets that

are loaded at runtime by the user, and using their capabilities.

In BPM, we have proposed to split business processes into a common part and a user specific part.

Associated to the WOA, this enables to tackle the heterogeneity and the dynamicity of business processes.

The cost of this approach is a new task for users and another one for developers. Developers should

automate the common part of a business process through a Widget; and users should model and automate

the user specific part of the business process.

Chapter III.2 Illustration of WOA in Different SOA Application Fields

201

Table 18. WOA impacts on service composition and BPM involved roles.

Field WOA advantages Developer tasks User tasks

Static

Service

Composition

- Enabling users to

personalize a

composite service.

- Loose coupling

(when using

abstract Widgets).

- Creates services as

Widgets.

- Provides a description file

for each Widget.

- Within the Widget code,

he uses the Widget

Combination API to

discover Widgets loaded

to the aggregator and to

use their capabilities.

- Discovers and loads

Widgets to the Widget

aggregator.

- Ideally, users load abstract

Widgets to the Widget

aggregator.

Semi-

automatic

Service

Composition

- Enabling users to

create composite

services

(Intuitiveness of the

composition tool).

- Loose coupling

(when using

abstract Widgets).

- Cross device

composition.

- Creates services as

Widgets.

- Provides a description file

for each Widget.

- Discovers and loads

Widgets to the Widget

aggregator (optionally on

different instances and

different devices).

- Personalize the links

(created automatically)

between Widgets.

- Ideally, users load abstract

Widgets.

Automatic

Service

Composition

- Existence of a

Failure recovery

system when a

created composite

service does not

match exactly the

user needs.

- Loose coupling.

- Creates services as

Widgets.

- Provides a description file

for each Widget.

- Makes a natural language

request.

- Refine a created composite

service by adding new

Widgets, removing others,

and optionally modifying

the links that have been

created.

Business

process

- Automation of

heterogeneous

- Implement the common

part of business processes

- Loads the Widget that

implements the common

Chapter III.2 Illustration of WOA in Different SOA Application Fields

202

Management processes.

- Rapid adaptation to

new needs.

- Unstructured data

capture.

- Loose coupling

(modelled by business

analysts) as a Widget.

- Creates other services

related to business

activities of users as

Widgets.

- Provides a description file

for each Widget.

part of a business process.

- Discovers and loads other

Widgets that are needed to

perform the user specific

part of the business

process.

- Optionally, personalizes

the links that have been

created automatically.

Chapter III.3 Experimentation and

Dissemination

The Widget aggregator we have defined and implemented was exposed to users. In this Chapter, we

summarize the experimentations/demonstrations contexts and the feedback collected on the different

mechanisms.

1 Experimentation by Orange Labs Staff

In order to get the users’ feedback about the advantages and limitations of the Widget aggregator and the

Widget Combination mechanisms, we have deployed our implementation within the Orange Labs for 184

participants. Among this population, 66% are familiar with Web 2.0 portals, and 33% discover this type of

applications for the first time. In the experimentation, we have developed some functionalities of

applications as Widgets; applications that are used inside the company. A comprehensive list of those

widgets is presented in Table 19. It is important to note that in this experimentation the links that are

created between the Widgets by the Widget Combination component are represented to the user through a

drag & drop capability between the Widgets (The drag & drop mechanism was illustrated in Figure 77).

Table 19. List of Widgets tested by users.

Widget name Widget functionality description Original application

Professional_Email_Inbox Checking and reading emails from

the professional email service

Microsoft Exchange

Send_Email Sending emails Microsoft Exchange

Contact_List Checking the contact list Microsoft Exchange

Check_Agenda Checking the events inside the

agenda

Microsoft Exchange

Add_To_Agenda Add a new event to the agenda Microsoft Exchange

Communicator_Presence See the presence status of contacts Microsoft Communicator

Communicator_IM Instant messaging Microsoft Communicator

Conference_Bridge Creating and searching a

conference call bridge

Internal application for managing

conference calls

Web_Conference_Pilot Managing the conference bridge

(Check the connected phone

numbers, put someone to mute…)

Internal application for managing

conference calls

Chapter III.3 Experimentation and Dissemination

204

Web_Phone Telephony Orange telephony REST API

Send_SMS Send SMS Orange send SMS REST API

Send_MMS Send MMS Orange send MMS REST API

Search_Directory Searching someone in the

company directory

Internal directory

Book_ Meeting _Room Book a meeting room for a specific

slot of time

Internal application that manages the

meeting rooms

Gmail_Inbox Checking and reading emails of

Gmail

Gmail

Map Locate addresses Google Map

GTalk Instant messaging Google Talk

Google_Search Use the Google search engine Google search

Translator Text translation Google translate

Public_Directory_Search Search in a public directory 118712 directory

(http://www.118712.fr/)

File_Storage A remote file storage system A remote file storage system

Video_Search Searching videos inside the

company intranet

Company search engine

Video_player Playing videos Video player

After five months of experimentation, the results show clearly the usefulness of the Widget

aggregator in the enterprise context. Indeed, 89% have used the Widget aggregator platform, 80% have

created their account and personalised their environment by loading only the needed Widgets, and 55%

have used, or intend to use, the aggregator framework as a default starting page of their Web browser. In

addition, 72% consider the aggregation platform useful and 14% consider it necessary.

The Widget aggregator we experimented embeds a Widget Combination capability. The users

feedback concerning this capability was also positive and encouraging. Indeed, as illustrated in Figure 107,

54% of the participants have used the Widget Combination capability. Users have even proposed to

implement the functionality between other widgets than those that already support it.

However, there were 17% of people that did not discover the existence of the Widget combination

mechanism, and there were 9% who were aware about it but do not use it. The explanations provided by

users could be summarized in two conclusions: first, the drag & drop representation of links is not very

intuitive as users that are not aware about its availability between two Widgets can hardly discover it;

second, it is necessary to implement much more Widgets (related to users business activities) to really

benefit from the Widget Combination capability.

Chapter III.3 Experimentation and Dissemination

205

Figure 107: Users feedback about the Widget Combination capability.

2 Demonstration to Marketing Team of Orange

The Widget Combination capability has been demonstrated to a marketing team; responsible of the Orange

Widget aggregator product (available at http://www.espace-utilisateur.orange-business.com/). Based on

Figure 108, two scenarios have been shown. In the first scenario, the user has a meeting entry on his

agenda. The Widget aggregator automatically propose to the user to locate the meeting address (using

Google Map Widget), to display the contact information of the organizer (using the Directory Widget), and

finally to book a meeting room (using the Book_Meeting_Room Widget). Let’s suppose that the user

locates the meeting address and notices that he will be late. Therefore, he decides to contact the organizer

and propose him/her to have a conference call, instead of a physical meeting. To do that, the user needs

first to get the contact information of the organizer (using the Directory Widget); second, contact him/her

using for example a send_SMS Widget; third, book a room for the conference call (using

Book_Meeting_Room Widget). The Widget aggregator has automatically linked these Widgets with each to

facilitate these actions to the user. Thus, by a simple click, the user displays the contact information of the

organizer of the meeting. Then, through a simple click the user composes the Directory Widget with the

send_SMS Widget to contact the organizer. Finally, the user can also book a meeting room on the meeting

time slot by composing the Agenda Widget with the Book_Meeting_Room Widget.

In the second scenario we have demonstrated, the user receives a call on the telephony Widget,

and the Directory Widget is automatically launched to search for the caller information.

The feedback collected during this demonstration is very positive as the marketing team decided to

include the Widget Combination capability in the next version of the Orange Widget Aggregator. In

Chapter III.3 Experimentation and Dissemination

206

addition, the same demonstration was proposed to and accepted at the Orange Labs research exhibition in

December, 2008. However, two important remarks have been raised:

• The first remark is about the automatic chaining of the telephony Widget and the

directory Widget. The attendees have reported that this automation could be intrusive for

the user. Therefore, it is important to enable him to deactivate this automation.

• The second remark is about the chaining of several Widgets (Agenda � Directory �

Send SMS), which is a kind of a process that should be performed by the user to achieve

a given goal. Therefore, it could be interesting to link this mechanism to business

processes of the user to perform more automation, without being intrusive.

These remarks motivated the process-based reuse of Widgets mechanism we have defined latter

on.

Links to launch functionalities
of other Widgets

Figure 108: Screenshot of the demonstration to the marketing team.

3 Integration within SERVERY Project Contributors

The concept of the abstract Widget has been demonstrated within the European project SERVERY (Service

Platform for Innovative Communication Environment). The project aims to build a marketplace of

converged services (Telecom and Web services), where service creation, service management, and their

execution on heterogeneous platforms is supported. The demonstration shows several abstract Widgets.

Chapter III.3 Experimentation and Dissemination

207

Each abstract Widget wraps two or three real services. Table 20 shows a comprehensive list of abstract

Widgets that are implemented, the real services which are considered, and the selection rules that could be

applied in each abstract Widget. Figure 109 is one screenshot of the demonstration.

Table 20. Abstract Widgets list.

Abstract Widgets

Functionality Rules

Considered Services (Service that are

wrapped within the abstract Widget)

SendSMS • Selection according to recipient location.

• Selection according to sender (user)

location.

• Selection according to the delivery

guaranty level.

• Selection according to the price per SMS.

• Orange Partner Send SMS API

(http://www.orangepartner.com).

• Telefonica Send SMS API

(http://open.movilforum.com)

GetCalendar - Selection according to the activity context

of the user (work/home).

- Google Calendar.

- Microsoft Exchange Calendar

(accessible only within Orange private

network)

GetEmails - Selection according to the activity context

of the user (work/home).

- Gmail.

- Microsoft Exchange emails

(accessible only within Orange private

network).

GetContacts - Selection according to the activity context

of the user (work/home).

- Gmail contacts.

- Microsoft Exchange contacts

(accessible only within Orange private

network).

GetWeather • Selection according to user preferences.

• Selection according to user location.

• Selection according to the service price.

• Meteo France

• WeatherForcast

(http://www.webservicex.net)

SearchPictures • Selection according to user preferences.

• Selection according to the user language.

• Selection according to the service price.

• Microsoft bing search engine.

• Flickr search.

• Picasa search.

Translate • Selection according to user preferences. • Google translate.

• Microsoft bing translator.

• Yahoo babel fish translator.

Chapter III.3 Experimentation and Dissemination

208

Figure 109: SERVERY demonstration.

The feedback collected is positive as first the concept was included as part of the demonstrated

mechanisms of the midterm review of project. Second, the concept was integrated to different service

composition components defined by the project, namely natural language composer, and Open Mashups

Studio40. The goal is to first decouple composite services from the basic services they use; and second

perform runtime adaptation of composite services according to rules that can refer to heterogeneous

parameters such as user context, preferences, Qos…etc. Third, the concept was proposed an accepted for

demonstration at the Orange Labs research exhibition (June 2010).

This demonstration also raised two issues to be investigated. First, it is important to link the

abstract Widget concept to the business engine of the project. The business engine is essentially in charge

of defining flexible business models for services (including prepaid, postpaid, and promotions) within the

SERVERY marketplace. Thus, the abstract Widget concept should interact with the business engine in

order to retrieve the services that could be used by the user (i.e. free services, or those the user is already

40 Open Mashups Studio, https://addons.mozilla.org/en-US/firefox/addon/7198/, accessed on March 9th, 2010.

Chapter III.3 Experimentation and Dissemination

209

subscribed to). Second, the price of a service is not usually a fixed value; instead it varies from a user and

another (subscription option), and from a period to another (promotions). Consequently, in practice, it is not

conceivable to define selection rules that refer to the service price as a fixed parameter; instead, it should be

considered as a dynamic parameter which should be computed by the business engine.

4 Others (Orange Labs Internal Projects)

Several other demonstrations related to the Widget Combination capability have been conducted within

Orange Labs. Some of them have been followed up with its integration. Thus, two projects have decided to

integrate the Widget Combination capability to their frontend framework. The first one is “IP Accueil”; an

Orange Labs internal project which is in charge of maintaining and evolving the Orange Multicanal Contact

Centre product. Sold to companies, this product is an end-to-end platform (including a network

infrastructure and software applications) for contact centres. The Widget Combination capability is used at

the frontend level of the platform; a Widget aggregator used by the contact centre agents for achieving the

business processes related to customer calls. The Widget Combination capability is then in charge of

composing the Widgets between them to automate as much as possible the business processes.

The second project where the Widget Combination capability will be used is an ongoing research

project. It aims to design and implement a unified messaging application, where users do not care about the

medium through which the message is carried out; instead, it is the application which decides the best one

to use. In this ongoing project, the team seeks to enrich the frontend framework with a draggable area,

where users can add and remove services implemented as Widgets. The draggable area integrates the

Widget Combination capability in order to enable communication between Widgets to enhance the user

experience. In addition to the Widget Combination capability, the integration of the abstract Widget

concept is under discussion. This would enable users to choose the rules to apply when selecting the best

medium to use when transmitting a message.

5 Conclusions

In this Chapter we detailed the different experimentations and demonstrations we made internally in

Orange Labs, or externally in the SERVERY European project. In addition to the positive results (the

adoption of the WOA in different operational and research projects), two lessons were learnt. First, some

users might need more integration at the UI level. While the functionalities of the Widgets are well

integrated with each other, their user interfaces remain displayed as independent blocks. For instance, when

combining the telephony Widget and the directory Widget (searching the caller on the directory), it could

be more user friendly to display the name and the picture of a caller directly within the telephony Widget;

Chapter III.3 Experimentation and Dissemination

210

instead of searching the caller in a separate UI. The approach we advocate to tackle this issue is to define a

Widget as an association of several UIs with a business logic. Each UI corresponds to a display type (e.g.

display in the menu, display in another Widget, reduced display…etc). However, this solution is not yet

investigated.

Second, additional research work is needed to use the abstract Widget concept in practice. Two

important issues need to be investigated: which business model to apply? And how different pricing models

could be integrated in the service selection process?

Conclusions and Future Research

Directions

The main contribution of this thesis is the definition of a new service-oriented paradigm based on Widgets:

the Widget Oriented Architecture (WOA) paradigm. The WOA provides integrators (developers or users)

different user centric mechanisms to reuse Widgets in the creation of more sophisticated services.

Basically, the WOA paradigm is driven by two main principles: the development of services as

Widgets (this requires the implementation of the UI, its semantic typing, and the creation of a description

file), and the composition at the UI level. Theses two principles provide more user centricity in the process

of reusing existing services.

Based on these two principles, we have designed a new Widget aggregator enriched with three

Widget reusability mechanisms: the API-based reuse of Widgets, the semantic and automatic reuse of

Widgets, and the process-based reuse of Widgets. The API-based reuse of Widgets is characterized by

providing a set of client-side functions for developers to discover and reuse Widgets functionalities at

runtime. The semantic and automatic reuse of Widgets is characterized by automatically detecting semantic

matching between Widgets, and combining them. Finally, the process-based reuse of Widgets provides the

capability of creating and executing a chaining of Widgets based on a process definition.

All these three mechanisms can be extended with three other mechanisms to enhance even more

their user centricity: the abstract service based reuse, the cross-device based reuse, and the unstructured

data based reuse. The abstract service based reuse provides the capability of invoking abstract Widgets

(functionalities and a set of selection rules), which are linked at runtime to the best real Widget to execute

according to rules specified by the user himself. The cross-device based reuse enables the extension of the

reusability scope into Widgets loaded on different devices. This enables composition mechanisms to

consider all Widgets loaded on all devices of the user. Finally, the unstructured data based reuse enables the

extension of the reuse scope into data that are not declared (resp. not formatted) by providers (resp.

developers) at the publication (resp. development) of the Widget. This is especially useful when

considering user generated content and communication services, where significant unstructured data are

generated and exchanged between users, but can not be used as input in a service composition.

Conclusions and Future Research Directions

212

In this thesis, we applied the different mechanisms in two SOA application fields, namely service

composition and business process management; Figure 110 summarizes the benefits brought by each

mechanism to each SOA application field.

WOA Functionalities

Abstract service
reuse

API-based reuse

semantic and
automatic reuse

the process-based
reuse

cross-device based
reuse

unstructured data
based reuse

Service Composition

Static Composition

Semi-automatic
Composition

Automatic
Composition

use

Business process
management

Tackling heterogeneity

Tackling dynamicity

Capturing unstructured
data

Loose coupling

Figure 110: Contributions Summary.

The mechanisms introduced by the WOA benefit both service composition and business process

management fields:

• First, the API-based reuse of Widgets provides user centricity to static service composition. It

enables developers to create composite services that are customizable by users. This is

characterized by anticipating a set of links between Widgets; links which are activated only when

those Widgets are present in the same environment. As a consequence, the user can easily

personalize the composite service by loading only the Widgets he needs/wants to the same

environment.

• Second, the semantic and automatic reuse, associated to the process-based reuse, enhances

significantly the intuitiveness of the process of composing services. In addition, it tackles the

heterogeneity and dynamicity of business processes. Regarding service composition, the two

mechanisms enable even ordinary users to create their own chaining of Widgets. This is enabled

through three steps. In the first step, the platform detects semantic matching between Widgets that

are loaded on the same environment, creates links between them, and creates the corresponding

composite service definition (flowchart). Then, through UI elements, the user can modify the

Conclusions and Future Research Directions

213

composite service definition (deleting and modifying different links). Finally, the process-based

reuse controls the execution of the new definition of the composite service. This capability of

composing services provided to users enables to tackle the heterogeneity and the dynamicity of

business processes. We have defined a new method for modelling and automating business

processes using the WOA. This is characterized by splitting a business process into two parts, a

common part and a user-dependent part. The former, modelled by business analysts and automated

by developers, includes activities that are usually mandatory in an organization and/or common to

a significant population of users. The latter, which is usually heterogeneous and dynamic (as it

depends on each user needs and habits), is automated by the users themselves using the

composition facilities provided by the WOA. This method of managing business processes

benefits both business analysts and users. Business analysts will not consider the processes details

related to specific users, and thus limit the number of processes to model and automate. And users

are able to automate the details related to their own needs and habits.

• Third, the abstract service based reuse, brings two features to service composition and business

process management: automatic adaption and loose coupling. Indeed, as service integrators (users

and developers) will define composite services (resp. business processes) based on abstract

Widgets (which are part of the platform), instead of real Widgets, modifications on the Widgets

provider level would not affect the composite services (resp. business processes).

• Fourth, the unstructured data based reuse introduces a new composition pattern to the service

composition field, and enables the automation of business processes based on the content (e.g.

information included within an email content, or IM discussion). This functionality enables users

to define composite services where unstructured data are first extracted from a source Widget; and

then composed with another Widget. This feature is pertinent especially when considering the

proliferation of user generated content and communication services, where a huge amount of data

is generated by and exchanged between users. These data are not formatted at the development of

the service and consequently not declared at its publication time. Consequently, they are not

considered in current composition tools, especially those addressed for users.

• Fifth, the cross-device based reuse introduces a new feature to user service composition field. It

enables the creation of a composition of Widgets loaded on different devices; a feature which is

not enabled in current composition tools, especially those addressed for users.

Compared to SOA, which is conceived essentially to respond to developer needs in term of

reusability, abstraction, and integration, WOA is built from the user perspective. The functionalities we

Conclusions and Future Research Directions

214

detailed are all initially built to respond to the needs of users. The API-based reuse functionality responds

to the need of personalization of a composite service; the semantic and automatic reuse, associated to the

Process-based reuse, responds to the need of creating composite services by users; the abstract service

based reuse responds to the need of service selection according to users specific rules; the unstructured data

based reuse responds to the proliferation of communication services and user generated content; finally, the

cross-device based reuse responds to the proliferation of user devices and the need to mashup services

loaded on different devices. This design methodology is inline with Web 2.0 best practice: user centred

design, user participation in content creation, user self-service, and rich user interfaces.

In this thesis, we introduced the WOA paradigm. By contrast to SOA which is conceived for

developers, the WOA is conceived for users. As a consequence, WOA and SOA are more complementary

than concurrent. For instance, WOA based composition would never be as rich as a composition made by a

developer using programming (e.g. Java) or scripting (e.g. BPEL) languages. Similarly, SOA based

composition would never be as intuitive and user centric as WOA based composition. Therefore, it is

important to use both approaches, and have SOA and WOA layers, in a given service environment. The

approach we advocate can be summarized in the following items:

• developers create web services (SOA),

• developers create the corresponding Widgets (SOA and WOA),

• developers compose web services, create the corresponding Widget, and optionally use static

composition of Widgets (SOA and WOA),

• users compose Widgets (WOA).

The mechanisms introduced in this thesis highlight new opportunities to investigate in the future,

namely semantic expressiveness and combination with the users intelligence, learning from user-dependent

parts of processes to sketch out automatically new business processes, and finally, unstructured data based

composition in the context of multimedia content.

In the semantic field, a significant research work has been conducted in conjunction with service

composition. The goal is to use highly expressive semantic and semantic reasoning to automatically

compose services to reach a given goal. In this thesis we have adopted another approach. We describe our

data using microformats, which define the format and the type of data, but not their meaning (semantic) in

the context of a given domain. As a consequence, automatic composition of Widgets loaded to the same

environment may generate links which do not have any meaning for the user. But first, the probability of

generating such link is reduced as the user would likely load only Widgets of the same business domain;

Conclusions and Future Research Directions

215

and second, even if such link has been created, the user can delete it as we previously detailed. So, the lack

of semantic reasoning has been compensated by the user intelligence. As a future direction, we believe that

it is worthwhile to go further in this idea, and design and experiment a learning mechanism where

meaningful relationships between concepts can be derived from the association of Microformats and user

intelligence. More precisely, it would be pertinent to derive the relationships between the concepts from the

links that are defined by users between Widgets.

In BPM field, the discovery of business processes of an organization remains a challenge. One

approach for doing so is to capture the users’ habits and practices. This is usually performed by analyzing

(manually or automatically) the logs of different software applications that the users use. However, while

such log includes the information about the usage of the application itself, it does not provide centralized

information about the interactions, made manually by the users, with other applications; now, such

information is pertinent in the context of a business process, which is a succession of activities, and thus

likely to be a succession of applications with data exchange between them. The WOA we proposed

captures such information. It captures the interaction between the different Widgets, when they are

automated by the user. Therefore, it should be investigated how we can make use of such information to

capture the user processes, and to link them with processes of other users in order to sketch out the

company business processes (using for example Business Process Management Notation (BPMN)).

Finally, we believe that it is worth to investigating the unstructured data based composition in the

context of multimedia content. Indeed, in this thesis we proposed an architecture and a proof of concept for

enabling users to compose services based on unstructured data, but it is currently limited to text based data.

This motivates a deeper investigation in this field, and it would be indeed interesting to consider

multimedia content (audio, video, picture…etc), to enable users to create composite services that first

capture useful data within the content, and then compose it with other services (e.g. capturing postal

addresses exchanged during a call session, and composing them with a Map service; or capturing human

faces in a souvenir movie and composing them with contact list service). The main issue is the capture of

useful data, which is much more difficult in multimedia content. In addition, it must be studied the

presentation aspect from one hand, and the privacy concerns from another hand.

References

• [Aguilar-Savén, 2004] Aguilar-Savén, R.S., 2004. Business process modelling: Review and

framework. International Journal of Production Economics. Volume 90, no2, pp129-149.

• [Akram, 2005] Akram, A., Chohan, D., Wang, X. D., Yang, X., and Allan, R., 2005. A Service

Oriented Architecture for Portals Using Portlets. In UK e-Science All Hands Conference. AHM

2005. Nottingham, UK. 2005.

• [Andrews, 2003] Andrews, T., et al. 2003. Business Process Execution Language for Web

Services. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf.

• [Armbrust, 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A.,

Lee, G., Patterson, D. A., Rabkin, A., Stoica, I., and Zaharia, M. 2009. Above the clouds: A

Berkeley view of Cloud computing. Technical report UCB/EECS-2009-28. Electrical Engineering

and Computer Sciences, University of California at Berkeley. Berkeley, USA. February 2009.

• [Arsanjani, 2007] Arsanjani, A., Zhang, L., Ellis, M., Allam, A., Channabasavaiah, K. 2007. S3: A

Service-Oriented Reference Architecture. IT Professional. Volume 9, no3, pp10-17. May-June

2007.

• [Beaty, 2009] Beaty, K., Kochut, A., Shaikh, H. 2009. Desktop to cloud transformation planning.

In proceedings of the IEEE International Symposium on Parallel & Distributed Processing. IPDPS

2009. IEEE Computer Society, Washington, DC, pp1-8. May 2009.

• [Bellas, 2004] Bellas, F. 2004. Standards for Second-Generation Portals. IEEE Internet

Computing. Volume 8, no2, pp54-60. March 2004.

• [Berners-Lee, 1998] Berners-Lee, T. 1998. Semantic web road map. Available at

http://www.w3.org/DesignIssues/Semantic.html, accessed on June 14th, 2010.

• [Bertin, 2009] Bertin, E. 2009. Architecture des services de communication dans un contexte de

convergence. PhD thesis.

• [Bharati, 1995] Bharati, A., Chaitanya, V., Sangal, R. 1995. Natural Language Processing: A

Paninian Perspective. Prentice-Hall of India 1995. Comput. Linguist. Volume 21, no3, pp419-421.

September, 1995.

• [Bichler, 2006] Bichler, M. and Lin, K. 2006. Service-Oriented Computing. Computer. Volume

39, no3, pp99-101. March 2006.

• [Bieber, 2001] Bieber, G. 2001. Introduction to Service-Oriented Programming. Online white

paper. Available at

218

http://www.openwings.org/download/specs/service%20oriented%20programming.pdf, accessed

on June 16th, 2010.

• [Casati, 2007] Casati, F. 2007. Service-oriented computing. SIGWEB Newsletter. Winter 2007.

• [Cordier, 2006] Cordier, C., Carrez, F., Van Kranenburg, H., Licciardi, C., Van der Meer , J.,

Spedalieri, A., Le Rouzic, J. P., Zoric, J. 2006. Addressing the Challenges of Beyond 3G Service

Delivery: the SPICE Service Platform. In the 6th Workshop on Applications and Services in

Wireless Networks. ASWN 2006. Berlin, 2006.

• [Cremene, 2009] Cremene, M., Tigli, J. Y., Lavirotte, S., Pop, F. C., Riveill, M., Rey, G. 2009.

Service Composition Based on Natural Language Requests. In proceedings of the 2009 IEEE

International Conference on Services Computing. SCC 2009. IEEE Computer Society,

Washington, DC, pp486-489. September 2009.

• [Cumberlidge, 2007] Cumberlidge, M. 2007. Business Process Management with J Boss jBPM.

Packt Publishing, 2007.

• [Cox, 1986] Cox, B.J. 1986. Object oriented programming: an evolutionary approach. In Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, 1986.

• [Dahl, 1968] Dahl, O. 1968 SIMULA 67 Common Base Language. Norwegian Computing Center.

Publication.

• [Díaz, 2007] Díaz, S.P., Paz, I. 2007. Providing Personalized Mashups Within the Context of

Existing Web Applications. Proceedings of the 8th international Conference on Web information

Systems Engineering. WISE 2007. Lecture Notes in Computer Science. Volume 4831, pp493-502.

• [Díaz, 2008] Díaz, O., Irastorza, A., Sánchez Cuadrado, J., and Alonso, L. M. 2008. From page-

centric to portlet-centric Web development: Easing the transition using MDD. Information and

Software Technology. Volume 50, no12, pp1210-1231. November, 2008.

• [De Deugd, 2006] de Deugd, S., Carroll, R., Kelly, K.E., Millett, B., Ricker, J. 2006. SODA:

Service Oriented Device Architecture. IEEE Pervasive Computing. Volume 5, no3, pp94-96. July-

September, 2006.

• [Du, 2006] Du, Z., Huai, J., and Liu, Y. 2006. Ad-UDDI: An active and distributed service

registry. In proceedings of the 6th VLDB International Workshop on Technologies for E-Services.

Lecture Notes in Computer Science. Volume 3811, pp58–71.

• [Ennals, 2007a] Ennals, R., Gay, D. 2007. User-friendly functional programming for web

mashups. In Proceedings of the 12th ACM SIGPLAN international Conference on Functional

Programming. ICFP '07. ACM, New York, NY, pp223-234. Freiburg, Germany. October, 2007.

219

• [Ennals, 2007b] Ennals, R. J., Garofalakis, M. N. 2007. MashMaker: mashups for the masses. In

Proceedings of the 2007 ACM SIGMOD international Conference on Management of Data

(Beijing, China, June 11 - 14, 2007). SIGMOD '07. ACM, New York, NY, pp1116-1118.

• [Erl, 2007] Erl, T. 2007. Soa: Principles of Service Design. First. Prentice Hall Press.

• [Fielding, 2000] Fielding, R.T. 2000. Architectural Styles and the Design of Network-based

Software Architectures. thesis dissertation.

• [Grimes, 1997] Grimes, R., Grimes, D. R. 1997. Professional Dcom Programming. Wrox Press

Ltd.

• [Goldberg, 1976] Goldberg A. and Kay A. 1976. SMALLTALK-72 Instruction Manual. Technical

Report SSL-76-6, Xerox Palo Alto Research Center. Palo Alto, California.

• [Hammer, 1993] Hammer, M., Champy, J. 1993. Reengineering the Corporation: A Manifesto for

Business Revolution. Harper Business, New York, NY.

• [Huhns, 2005] Huhns, M. N., Singh, M. P. 2005. Service-Oriented Computing: Key Concepts and

Principles. IEEE Internet Computing. Volume 9, no 1, pp75-81. January 2005.

• [Ibrahim, 2009] Ibrahim, N., Le Mouel, F.L. 2009. A Survey on Service Composition Middleware

in Pervasive Environments. International Journal of Computer Science Issues. Volume 1, pp1-12.

August 2009.

• [IETF, 2001] RFC 3050. 2001. Common Gateway Interface for SIP.

• [Khare, 2006] Khare, R., Çelik, T. 2006. Microformats: a pragmatic path to the semantic web. In

Proceedings of the 15th international Conference on World Wide Web. WWW '06. ACM, New

York, NY, pp865-866. Edinburgh, Scotland. May, 2006.

• [Ko, 2009] Ko, R. K. 2009. A computer scientist's introductory guide to business process

management (BPM). Crossroads. Vol.15, no.4, pp.11-18. June 2009.

• [Ku, 1994] Ku, B.S. 1994. A reuse-driven approach for rapid telephone service creation. In the

proceedings of the third International Conference on Software Reuse: Advances in Software

Reusability. vol., no., pp.64-72. November, 1994.

• [Lawton, 2008] Lawton, G. 2008. Moving the OS to the Web. Computer. vol.41, no.3, pp.16-19.

March 2008.

• [Lécué, 2006] Lécué, F., Léger, A. 2006. Semantic Web Service Composition Based on a Closed

World Assumption. In Proceedings of the European Conference on Web Services. ECOWS '06.

IEEE Computer Society, Washington, DC, pp.233-242. December 2006.

220

• [Lécué, 2007] Lécué, F., Léger, A., Pires, L.F. 2007. A Framework for Dynamic Web Services

Composition. In: 2nd ECOWS Workshop on Emerging Web Services Technology. WEWST07.

CEUR Workshop Proceedings. Halle (Saale), Germany. November, 2007.

• [Luthria, 2009] Luthria, H., Rabhi, F. 2009. Service oriented computing in practice: an agenda for

research into the factors influencing the organizational adoption of service oriented architectures.

Journal of Theoretical and Applied Electronic Commerce Research. Vol.4 no.1, pp.39-56. April

2009.

• [Magedanz, 2007] Magedanz, T., Blum, N., Dutkowski, S. 2007. Evolution of SOA Concepts in

Telecommunications. Computer Vol.40 no.11, pp. 46-50. November 2007.

• [Margaria, 2006] Margaria, T. and Steffen, B. 2006. Service Engineering: Linking Business and

IT. Computer. Vol. 39, no. 10, pp. 45-55. Oct. 2006.

• [Margaria, 2007] Margaria, T. 2007. Service Is in the Eyes of the Beholder. Computer. Vol 40 no

11, pp.33-37. Nov. 2007.

• [McIlraith, 2003] McIlraith, S.A., Martin, D.L. 2003. Bringing semantics to Web services. IEEE

Intelligent Systems. Vol.18, no.1, pp. 90- 93. Jan-Feb 2003.

• [Newcomer, 2002] Newcomer, E. 2002. Understanding Web Services: XML, Wsdl, Soap, and

UDDI. In Addison, Wesley, Boston, Mass. May 2002.

• [Nitto, 2009] Nitto, E., Sassen, A., Traverso, P., and Zwegers, A. 2009. At Your Service: Service-

Oriented Computing from an EU Perspective. The MIT Press.

• [OASIS, 2003] Kropp, A., Leue, C., Thompson, R. 2003. Web Services for Remote Portlets

Specification. OASIS Standard. Available at http://www.oasis-

open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf, accessed on

March 9th, 2010.

• [OASIS, 2008] Thompson, R. 2008. Web Services for Remote Portlets Specification v2.0. OASIS

Standard. Available at http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec-os-01.html#_Toc25,

accessed on March 9th, 2010.

• [OMA, 2007] OMA. 2007. Dictionary for OMA Specifications. Available at

http://www.openmobilealliance.org/document/OMA-ORG-Dictionary-V2_6-20070614-A.pdf,

accessed on March 9th, 2010.

• [OMG, 2008a] OMG. 2008. Common Object Request Broker Architecture (CORBA)

Specification, Version 3.1. OMG specification. Available at

http://www.omg.org/spec/CORBA/3.1/, accessed on March 9th, 2010.

221

• [OMG, 2008b] OMG. 2008. Business Process Model and Notation, V1.1. OMG specification.

Available at http://www.omg.org/spec/BPMN/1.1/PDF/, accessed March 9th, 2010.

• [Papazoglou, 2003] Papazoglou, M.P. and Georgakopoulos, D. 2003. Service-Oriented

Computing. Communications of the ACM. Vol.46, no10, pp.25-28. October 2003.

• [Papazoglou, 2006] Papazoglou, M.P., Traverso, P., Dustdar, P., and Leymann F. 2006. Service-

Oriented Computing Research Roadmap. Technical report/vision paper on Service oriented

computing European Union Information Society Technologies (IST). Available at

http://infolab.uvt.nl/pub/papazogloump-2006-96.pdf, accessed on March 9th, 2010.

• [Podesta, 2008] Podesta, R., 2008. A Lightweight Inter-node Operation for UDDI Cloud. In

Proceedings of the 2008 12th Enterprise Distributed Object Computing Conference Workshops.

EDOCW. IEEE Computer Society, Washington, DC, 397-400. September, 2008.

• [Pop, 2009] Pop, F., Cremene, M., Vaida, M., and Riveill, M. 2009. On-demand service

composition based on natural language requests. In Proceedings of the 6th international Conference

on Wireless on-Demand Network Systems and Services. IEEE Press, Piscataway, NJ, 41-44.

February, 2009.

• [Saha, 2003] Saha, D., Mukherjee, A. 2003. Pervasive computing: a paradigm for the 21st century.

Computer. Vol.36, no.3, pp. 25- 31. March, 2003

• [Sawyer, 2005] Sawyer, P. 2005. Service Specification State of the Art. SeCSE deliverable.

Available at http://www.secse-project.eu/?page_id=80, accessed on March 9th, 2010.

• [Sire, 2009] Sire, S., Paquier, M., Vagner, A., and Bogaerts, J. 2009. A messaging API for inter-

widgets communication. In Proceedings of the 18th international Conference on World Wide Web

WWW '09. ACM, New York, NY, 1115-1116. Madrid, Spain. April, 2009.

• [Sillitti, 2002] Sillitti, A., Vernazza, T., and Succi, G. 2002. Service Oriented Programming: A

New Paradigm of Software Reuse. In Proceedings of the 7th international Conference on Software

Reuse: Methods, Techniques, and Tools. C. Gacek, Ed. Lecture Notes In Computer Science, vol.

2319. Springer-Verlag, London, 269-280. April, 2002.

• [Soriano, 2006] Soriano, J., Lizcano, D., Cañas, M., Reyes, M., and Hierro, J.J. 2007. Fostering

innovation in a mashup-oriented enterprise 2.0 collaboration environment. System and

Information Science Notes, International Conference on Adaptive Business Systems 2007, Vol.1,

No.1, pp.62-69. Chengdu, China. July, 2007.

• [Stefan, 2008] Stefan, H. 2008. Java Portlet Specification Version 2.0. Java specification.

Available at http://jcp.org/aboutJava/communityprocess/edr/jsr286/, accessed on August 22nd,

2010.

222

• [Steffen, 2007] Steffen, B., Margaria, T., Nagel, R., Jörges, S., and Kubczak, C. 2007. Model-

driven development with the jABC. In Proceedings of the 2nd international Haifa Verification

Conference on Hardware and Software, Verification and Testing. Haifa, Israel. October, 2006.

• [Sun,1999] Sun Microsystems. 1999. Java Naming and Directory Interface Application

Programming Interface (JNDI API). Java specification. Available at

http://www.orionserver.com/docs/specifications/jndi.pdf, accessed on August 22nd, 2010.

• [Sun, 2003] Sun Microsystems. 2003. JSR 168: Java Portlet Specification. Version 1.0. Java

specification. Available at http://jcp.org/aboutJava/communityprocess/final/jsr168/index.html,

accessed on July 31, 2010.

• [Sun, 2006] Sun Microsystems. 2006. JSR 220: Enterprise JavaBeans, Version 3.0 EJB Core

Contracts and Requirements. Version 3.0. Java specification. Available at

http://jcp.org/en/jsr/summary?id=220, accessed on August 22nd, 2010.

• [Sun, 2008] Sun Microsystems. 2003. JSR 286: Java Portlet Specification. Version 1.0. Java

specification. Available at http://www.jcp.org/en/jsr/detail?id=286, July 31st, 2010.

• [Thomas, 1998] Thomas, A., Seybold, P. 1998. Enterprise JavaBeans Technology. Available at

http://wiki.daimi.au.dk:8000/pca/_files/ejb_white_paper.pdf, accessed on July 31st, 2010.

December 1998.

• [UWA, 2008] Borderie, X., Hodierne, F. 2008. Universal Widget API (UWA) 1.2. Netvibes

Working Draft. Available at http://netvibes.org/specs/uwa/current-work/, accessed on March 9th,

2010.

• [Verma, 2005] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., and Miller, J.

2005. METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Semantic Publication

and Discovery of Web Services. Inf. Technol. and Management. Vol.6, no.1, pp.17-39 January,

2005.

• [Verner, 2004] Verner, L. 2004. BPM: The Promise and the Challenge. Queue. Vol.2, no.1, pp.82-

91. March, 2004.

• [Vinoski, 1997] Vinoski, S. 1997. CORBA: integrating diverse applications within distributed

heterogeneous environments. IEEE Communications Magazine. Vol.35, no.2, pp.46-55. February,

1997.

• [Vo, 2006] Vo, V., Kiet, H.T., and Weinhardt, C. 2006. Corporate Portals from a Service-Oriented

Perspective The CoFiPot Implementation. In Proceedings of the 8th IEEE international

Conference on E-Commerce Technology and the 3rd IEEE international Conference on Enterprise

223

Computing, E-Commerce, and E-Services. CEC-EEE. IEEE Computer Society, Washington, DC,

32. June, 2006.

• [W3C, 2004a] Haas, H., Brown, A., 2004. Web Services Glossary. W3C Working Group Note.

Available at http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/, accessed March 9th, 2010.

• [W3C, 2004b] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.,

Orchard, D., 2004. Web Services Architecture. W3C Working Group Note. Available at

http://www.w3.org/TR/ws-arch/, accessed on March 9th, 2010.

• [W3C, 2004c] Bechhofer, S., et al. 2004. OWL Web Ontology Language Reference. OWL Web

Ontology Language Reference. W3C Recommendation. Available at http://www.w3.org/TR/owl-

ref/, accessed March 9th, 2010.

• [W3C, 2004d] Klyne, G., Carroll, J.J., McBride, B. 2004. Resource Description Framework

(RDF): Concepts and Abstract Syntax. W3C recommendation. Available at

http://www.w3.org/TR/rdf-concepts/, accessed on March 9th, 2010.

• [W3C, 2004e] McGuinness, D.L., Harmele, F.V. 2004. OWL Web Ontology Language Overview.

W3C recommendation. Available at http://www.w3.org/TR/owl-features/, accessed March 9th,

2010.

• [W3C, 2004f] McGlashan, S., et al. Voice Extensible Markup Language (VoiceXML) Version

2.0. Available at http://www.w3.org/TR/voicexml20/, accessed on October 19th, 2010.

• [W3C, 2010] Baggia, P., Scott, M. 2010. Voice Browser Call Control: CCXML Version 1.0.

Available at http://www.w3.org/TR/ccxml/, accessed on October 19th, 2010.

• [W3C, 2007] Caceres, M. 2007. Widgets 1.0 Requirements. W3C Working Draft. Available at

http://www.w3.org/TR/2007/WD-widgets-reqs-20070209/, accessed March 9th, 2010.

• [Wei, 2009] Wei, Y., Sun, Z., Chen, X., Zhang, F. 2009. A service-portlet based visual paradigm

for personalized convergence of information resources. In proceedings of the 2nd IEEE

International Conference on Computer Science and Information Technology. ICCSIT 2009. Vol.

no. pp.119-124. August, 2009.

• [Weiss, 2005] Weiss, A. 2005. WebOS: say goodbye to desktop applications. networker. Vol.9,

no.4, pp.18-26. December, 2005.

• [Wong, 2007] Wong, J. and Hong, J. I. 2007. Making mashups with marmite: towards end-user

programming for the web. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. CHI '07. ACM, New York, NY, 1435-1444. San Jose, California, USA.

April, 2007.

224

• [Yelmo, 2008] Yelmo, J.C., Del Alamo, J.M., Trapero, R., Falcarm, P., Jian Y., Cairo, B.,

Baladron, C. 2008. A user-centric service creation approach for Next Generation Networks. In

Innovations in NGN: Future Network and Services, 2008. K-INGN 2008. First ITU-T

Kaleidoscope Academic Conference. vol., no., pp.211-218. May 2008.

• [Zhang, 2007] Zhang, L.J. Zhang, J. and Cai, H. 2007. Services Computing. Springer and

Tsinghua Univ. Press, July 2007.

Abbreviations

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

BPEL Business Process Execution Language

BPEL4WS Business Process Description Language for Web Services

BPM Business Process Management

CDCW Cross Device Connecting Widget

CLI Command Line Interfaces

CLM Causal Link Matrix

CORBA Common Object Request Broker Architecture

CSS Cascading Style Sheets

DaaS Desktop as a Service

DCOM Distributed Component Object Model

EJB Enterprise JavaBean

GC Grid Container

GIOP General Inter-ORB Protocol

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IDL Interface Description Language

IM Instant Messaging

IT Information Technology

J2EE Java Enterprise Edition

JBPM Java Business Process Management

JNDI Java Naming and Directory Interface

JPDL JBPM Process Definition Language

JS JavaScript

JSR Java Specification Request

KB Knowledge Base

LASR Local Automatic and Semantic based Reuse

226

NLC Natural Language Composer

OLE Object Linking and Embedding

OMA Open Mobile Alliance

OMG Object Management Group

OOP Object-Oriented Programming

OPUCE Open Platform for User-centric service Creation and Execution

ORB Object Request Broker

OS Operating System

OWL Ontology Web Language

RDF Resource Description Framework

REST Representational State Transfer

RPC Remote Procedure Call

P2P Peer to Peer

PaaS Platform as a Service

PC Personal Computer

PMC Process Manager Component

SAAS Software as a Service

SA-WSDL Semantic Annotation Web Service Description Language

SeCSE Service Centric Systems Engineering

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOP Service-Oriented Programming

SOC Service-Oriented Computing

SWS Semantic Web Services

SPICE Service Platform for Innovative Communication Environment

TTM Time To Market

TV Television

UDDI Universal Description, Discovery and Integration

UGC User Generated Content

UI User Interface

URL Uniform Resource Locator

UWA Universal Widget API

W3C World Wide Web Consortium

227

WADL Web Application Description Language

WC Widget Container

WIMP Windows, Icons, Menus, and Pointer

WOA Widget-Oriented Architecture

WSA Web Service Architecture

WS-BPEL Web Services Business Process Description Language

WSDL Web Service Description Language

WSRP Web Service for Remote Portlets

XaaS Everything as a Service

XML eXtensible Markup Language

