N

N

La programmation orientée service vue de I’'utilisateur
final

Nassim Laga

» To cite this version:

Nassim Laga. La programmation orientée service vue de l'utilisateur final. Autre [cs.OH]. Institut
National des Télécommunications, 2010. Francais. NNT: 2010TELE0024 . tel-00624380

HAL Id: tel-00624380
https://theses.hal.science/tel-00624380

Submitted on 16 Sep 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00624380
https://hal.archives-ouvertes.fr

TELECOM b

Management

| & ¥ BEN
SudParis - 8 ¢80
imRid PARIS

Ecole Doctorale EDITE

Thése présentée pour I'obtention du diplome de
Docteur de Telécom & Management SudParis

Soutenue le

Tiziana MARGARIA
Roch H. GLITHO
Guy PUJOLLE
Stéphane FRENOT
Yvon KERMARREC
Emmanuel BERTIN
Noel CRESPI

Doctorat conjoint TMSP-UPMC

Spécialité : Informatique et Télécommunications

Par Nassim LAGA

Service-Oriented Computing from the User Perspectiv. e

17/11/2010 devant le jury composé de :

Professeur a l'université de Potsd
Professeur a l'université de Concord
Professeur a Paris 6

Professeur a I'INSA Lyon
Professeur a Télécom Bretagne
Docteur a Orange Labs

Professeur a Télécom SudParis

am

ia

Rapporteur
Rapporteur
Examinateur
Examinateur
Examinateur
Encadrant
Directeur de thése

These n°

2010TELEOO024

Acknowledgments

Mes premiers remerciements vont, bien entendu, & eneadrants : le docteur Emmanuel Bertin et le
professeur Noel Crespi. Le sujet de thése propssé da fois passionnant sur le plan théorique et
précurseur d'applications industrielles, ce qua wffert durant ces trois années, deux axes deéa@m
compétence. Je les remercie aussi de leurs emmnents incessants, de leur aide et de la veilils gut

mise en ceuvre pour que cette thése soit une réussit

Je remercie chaleureusement le professeur Guy I®ujel professeur Tiziana Margaria, le
professeur Roch Glitho, le professeur Yvon Kermagtele professeur Stéphane Frenot d’avoir acadpté

participer a mon jury de thése.

Je remercie trés particulierement Orange Labs devoir’ donné I'opportunité de réaliser ce
travail, ainsi que tous les moyens nécessaires gmurtbon déroulement. Je remercie Philippe Michon e
Olivier Bouillon de m’avoir fait confiance et de avoir permis de rejoindre le groupe. Je remercie
également Pascal Lesieur et Marc Mazoué, respentiveresponsable d’'unité & Orange Labs, de nravoi
accueilli dans leurs équipes durant la thése. Maserciements vont aussi a Frédéric Delmond et
Guillaume Gautier, responsables de laboratoire,equplus de m’avoir donné tous les moyens néaessai
pour la réalisation de ce travail, m'ont permis cdetinuer cette aventure passionnante avec Orzalge
Enfin, je remercie Cécile Maillot et tous les mertde ma nouvelle équipe pour leur sympathie et leu

accueil dans mes nouvelles fonctions.

Ma gratitude va aussi a tous les gens qui ontgiadtide prés ou de loin & la réalisation de ce
travail, que ce soit de fagon informelle dans legairs et les pauses café, ou formelle a travetamment
les projets CCKMA, Framework de présentation, eR8ERY. Je remercie plus particulierement Jean-
pierre Deschrevel, Julien Van Den Bossche, Marytiidon, Ivan Bedini, Zhenzhen Zhao, Abderahmane
Maaradji, Cuiting Huang, Sivasothy Shanmugalingathalil Leghari et Mariano Belaunde pour les
nombreux échanges fructueux que nous avons eusmicie également les membres de I'équipe RS2M
de l'Institut Telecom Sudparis, et des unités JABC, et NCIS d'Orange Labs. Leurs commentaires,

suggestions, ou tout simplement sympathie ont faege contribué au succes de cette thése.

Merci enfin & mes proches : mes parents, mes fegreseurs, ainsi que tous mes amis. Cette these

leur est dédiée.

Bibliography

1

International Journals

Laga, N., Bertin, E., Crespi, N. Bringing runtimengce composition to Web desktop

environments: implementation, feedback and lesseasied. To be submitted to International
Journal of Web Services Research.

Laga, N., Bertin, E., Bedini, I., Crespi, N., MdinB., Zhao, Z. User-centric service selection: the
concept of abstract Widget. Submitted to Springerld/Wide Web Journal.

Sethom, K., Ali-Yahiya, T., Laga, N., Pujolle, GO@B. A QoS-aware mesh protocol for future
home networks using autonomic architecture. EURA%Brnal on Wireless Communications

and Networking. pp.1-9. January, 2008.

International Conferences and Workshops

Laga, N., Bertin, E., Crespi, N. 2010. Promotingskilap Creation through Unstructured Data
Extraction. To be submitted to the 14th InternaicDonference Business Information Systems.
Laga, N., Bertin, E., Crespi, N. 2010. Compositairthe Frontend: the User Centric Approach.
Accepted in ICIN 2010. Berlin, Germany. October @01

Laga, N., Bertin, E., Crespi, N. 2010. BusinesscBss Personalization through Web Widgets. In
proceedings of IEEE International Conference on \Wetvices. ICWS 2010. pp. 551-558. Miami,
USA. July 2010.

Laga, N., Bertin, E., Crespi, N. 2010. Widgets #&zilitate service integration in a pervasive
environment. In proceedings of IEEE Internationanfeérence on Communication. ICC 2010.
vol., no., pp.1-5. Cape Town, South Africa. May @01

Laga, N., Bertin, E., Crespi, N. 2009. Building seu friendly service dashboard: Automatic and
non-intrusive chaining between widgets. In procegsliof the 2009 Congress on Services — I.
SERVICES. IEEE Computer Society, Washington, DG-481. Los Angeles, USA. July 2009.
Laga, N., Bertin, E., Crespi, N. 2009. A web baBadhework for rapid integration of Enterprise
applications. In proceedings of ACM Internationan@rence on Pervasive Services. ICPS 2009.

ACM, New York, NY, 189-198. London, United Kingdoguly 2009.

Zhao, Z., Laga, N., Crespi, N. 2009. A Survey O&tJGenerated Service. In proceedings of IEEE
International Conference on Network Infrastructanel Digital Systems. IC-NIDC 2009. vol., no.,
pp.241-246. Beijing, China. Nov. 2009.

Zhao, Z., Laga, N., Crespi, N. 2009. The Incomimgntls of End-user driven Service Creation. In
proceedings of International Conference on DigBabkinesses. DigiBiz 2009. LNICST 21, pp.
98-108, 2009, Springer-Verlag. London, United Kiogd June 2009.

Laga, N., Bertin, E., Crespi, N. 2008. A uniquesifhce for web and telecom services: From feeds
aggregator to services aggregator. In ICIN 2008dBaux, France. October 2008.

Laga, N., Bertin, E., Crespi, N. 2008. User-cenB&vices and Service Composition, a Survey. In
proceedings of the 32nd Annual IEEE Software Ergyiimg Workshop. SEW. IEEE Computer
Society, Washington, DC, 3-9. Kassandra, Greectl@c, 2008.

Book Chapters

Sethom, K., Laga, N., Pujolle, G. 2008. QoS Manag@nmn Autonomic Home Networks. Home
Networking, Springer IFIP International Federatifor Information Processing Series. Paris,

France. Vol.256. pp.101-110.

Patents

Bedini, I., Bertin, E., Laga, N. 2009. Procédé dmxion d'un Service Applicatif Dans Un
Environnement Web. N° INPI: 0954427.

Bertin, E., Laga, N., Van den bosh, J. Procédé DenrBunication Entre Applications Exécutées
Dans Des Navigateurs Distincts. N° INPI: 0956654

Bertin, E., Laga, N., and Deschrevel, J.P. 2008c&1é Et Systtme De Communication Entre
Applications Web Distinctes. N° INPI: 0856592.

Abstract

The last decade has attracted lot of research wo8ervice-Oriented Computing (SOC), giving raise t
standardized architectures, protocols, and tecigiesdathat enable developers to easily expose amskre
services. However, these technologies do not ftdlysider the users as potential actors in the ioreaf
services based on existing ones, as advocated In2/@eparadigm. In this thesis, after a deep ingason

of SOC and its intrinsic SOA paradigm, we proposeew approach based on Widgets. We propose the
Widget-Oriented Architecture (WOA); a new paraditprenable a user-centric service reuse. In addition
we introduce new innovative mechanisms based oMMB& paradigm to overcome current limitations of
SOA in service composition and business processaganent fields. This new paradigm, along with the
innovative architecture and mechanisms introdudeas been validated through implementation and

testing.

Résumeé

SOC, pourService-Oriented Computingst un paradigme d’ingénierie qui a attiré beapate travaux de
recherche ces derniéres années. Ces travaux oné dien a des architectures, protocoles, et tecignes
standards, afin de permettre a des développeuxpaber des services et en réutiliser d’autre psikpir
des tiers. Cependant, ces technologies sont aatuetit limitées aux besoins des développeurs uniguiem
L'utilisateur final n'est malheureusement pas cdégé comme un acteur potentiel dans le processus de
réutilisation de services. Ainsi, contrairement auxcipes Web 2.0 qui mettent I'utilisateur fireal coeur

du processus de génération de contenus et deegriés technologies actuelles de SOC se focaligest
sur les développeurs. Dans cette thése, apréstude @pprofondie de SOC et son paradigme intrirséqu
(SOA pourService-Oriented Architecturenous proposons un nouveau paradigme basé sontept de
Widget : WOA (pourWidget-Oriented Architectuye un nouveau paradigme qui vise a permettre la
réutilisation de service centrée sur les besoinstdgue utilisateuruger-centrig. Basé sur ce nouveau
paradigme, nous introduisons de nouveaux mécanigmesépondent aux limitations des architectures
SOA dans les domaines de la composition de serdtee la gestion de processus métiers (BPM pour
Business Process Managemen€Ce travail est validé a travers une implémeotatiet plusieurs

démonstrations/expérimentations.

Table of Contents

ACKNOWIEAGMENLS ...ttt seeenee e e e e eeeeeeeeeeees [
=11][ToTe | £=T o] 0|V PP PP PPPPPPPPPPP 1
1 International JOUIN@AIS..........ueeiiiiiii e 1
2 International Conferences and WOrkShopsScccc.vvvviviiiviiiiiiieiiiiiiiiiiiiininnnns 1.
I = 1010 QO =T o] =] (= ST 2
L (<] 01 £ PP 2
Y 0L i = Tt SRR PP PPPPPPPPPP 3
RESUME ...t e e ettt e e e e e e e e e e e e e e e 3
TabIE Of CONLENTS ...oeiiiiiiii ittt e e e e e e e s e e e e eens 5
U S oo ——————rntttbrnrbrbrnrarnrnn 11
TADIES .t e et e e e e 15
FrenCh SUMMATY ..ot rn e e e e e e e eeeeeees 17
[TaTgeTe [N Tox 1 0] o 1R TP PP PTPPPPPPPPPRI 17
i O] 01 () (TSP TPRPUPPPPPTIN 17
2 ProblematiQUES.......ccoooiiii e ——————————- 18
3 Contributions de 1a th@SE.........eeiiiiii e 19
ez o [1 T AP PP TPUPPPPPR 21
1 SOA (Service-Oriented ArchiteCture).........oeuveeviieiiiiiiiiiiiiiiiiiiiieieeiieieeienees 21
1.1 La composition de service basée SUr SOA.......cccvee oot 22
1.2 La gestion des processus métiers basée sur SOA........cccocvveeieeeeeeiiniccccieeeeeeean, 23
1.3 CONCIUSIONS ...ttt me ettt e et e e e ettt e e e e bbb e e e e nnbe e e e e s nbnneeeeaaaes 24
2 AQrégateur dE SEIVICESuuuiiiiiieeiiiiiiireeeeee e e s e s s e e e e e e s e re e e e e annes 26
3 CONCIUSION ...ttt sttt e ettt e e e e s smnr e e e e e e e 27
(0] 011] o011 [o] 4 KT APPSO TPPPPPTPPPRPPPR 29
1 WOA (Widget Oriented Paradigm)eeeoeeneneieaeeaae e 29

1.1 Les principes liés au registre de WidgetS...cccceviveeiee e 29

1.2 Les principes liés au client de WIAQELS... .. cummmrrrrrrrieieieeeeiiiiiiiiiireeeeeeeeeeeeeessssneeens 30
1.3 Les principes liés aux développeurs et fournissdard/idgets.............cccccveveeeeeenininns 32
2 Conception du Client de WIAQELSo eeeeieieieieeeeeeee e eeeeen 33
21 Réutilisation basée sur Une APl e 34
2.2 Réutilisation automatique basée sur la SEmantiQUe..........ccceeeeeeeeeeeiiiiiiiieveeeeenn. 35
2.3 Réutilisation Das€ée SUr UN PrOCESSUS.......cccccccmieieiiiiirieiieeeeeeeeeeeeesirersreeeeaeesasannns 35
2.4 Réutilisation basée sur les Services abStrailS ooovervieeriieiiie e 36
25 Réutilisation basée sur des données NON-StrUCLUIEES.c.eevivveeerieeeiieeeniienaes 36
2.6 Réutilisation MUIt-EIrMINAL...........cuiii i 37
3 WOA dans les domaines d’application de SOA ... 38
3.1 WOA pour 1a COMPOSItION @ SEIVICESmmmmmreeeeeeeeeisiiiiriirerereeaeeessssasnneeeneeees 38
3.2 WOA pour la gestion des proCesSUS MELIEIS. ... cceeieeeeieeeiiicciiirieeee e 39
Implémentation et EXPErimentationuueeiieiiiiiiieiieeeeee e 41
1 Reéutilisation basée sur une APlcoiiiiiiiiiii e 41
2 Réutilisation automatique basée sur la sémantique..............euevvveniieeenienninnnns 41
3 Rédutilisation basée SUr UN ProCESSUS.... . rernnnniiiiiniiasnssnssnsssesnsessnnnns 42
4 Réutilisation basée sur les services abStraitS.ccuvveeiriiiieeriiiiieee e 42
5 Rédtilisation basée sur des données NON-SIr@SIULE.evveeeriirieeeerinnnne. 43
6 Reutilisation MuUlti-terminal........... ... eeeeiieiie e 44
CONCIUSION ...ttt ettt ettt e e e e e e r e e e e e e s e e as a7
[g | 1S T I TS 1P 49
Y 4511 = (o PSP P TP PUPPR 49
INEOTUCTION ...ttt e e e e e e e e e e s 51
1 Problem Statement.........ccoviiiiiiiiie e 53
2 CONEIDULIONS. ...ttt e e e snmnr e e e e e 54
21 Widget-Oriented ArchiteCture (WOA)cvi e 54
2.2 Service Composition USING WOA........uuiiiiicieeiee ettt e s e e e e e aaeaeseee e eeeaeeeenn 54
2.3 Business Process Management uSing WOA ... creeiereeniieenseeenieessreeenn s DD
3 Context of the ThESIS ... 56

4 ManuscCript OrganiZationeueeeiceeeeee e ee et ee s 56

Part | State Of the art...........ccviiiiiie e 57
Chapter .1 State Of the Art ... 59
L SBIVICES .ottt 59
2 Service-Oriented CompuUting (SOC).........icommmmmerrererererereieninrnenrnrnrnrnnen 61
2.1 Service-Oriented ArchiteCture (SOA).......c i ceeeeeeieeeiee e 63
2.2 Service Composition USING SOAiii i e e e e e e e e e e e e v e eeeeaeereenn 70
2.3 Business Process Management using SOA.........ccocoriiiiiieiriiieee e eieeeeeee e 82
2.4 CONCIUSIONS ...ttt mmeeee ettt r et e st e et e e es 86
3 ServiCe ENVIFONMENTSuuiiiiiiiiie i immmmm ettt mnnnee e 88
3.1 Y[To 1= T PP TP P TP TOPPP 89
3.2 Y[To 1] IO PP TP PP TOPPO 89
3.3 1Y oo 1= e PSP RO RRTRR 90
4 Widgets Related CONCEPLSc.eviiiiiiiiieeeeeeeii e 92
4.1 POrtlIets (JSR 168/286)cuuueueeeeeescmmmseeeeeaeeeesessasasnnseseeareeeeeessseasassssereraeeeeeas 93
4.2 RTAT e To = USSR 95
4.3 SOA VS. Portlets and WIAQEeLS.coeee i s e enieveeeeeeeeesesassntntaneeeesenasesennnnnnnnes 97
5 Semantic Related Technologies........... o eeeeiiiiiiiiiiiiiiiiiiiiieeeeeeeeees 98
5.1 The Different Approaches of Semantic in the Webh............cccccooviiiiiie e, Q9
5.2 The Different Expressiveness Degrees of SEMantiC............oovvvvvviiiiniiinniennnenn. 101
5.3 Semantic and Service Creationcccceeecceriiriiies i 102
6 CONCIUSIONS....cciiiiiiiiitite et nnrne e e e 103
Part 11 CONtrIDULIONS ...t 105
Chapter I1.1 Widget-Oriented Architecture (WOA) Par adigm..........cccccvvvvvvevennnnn. 107
L SBIVICE.. ittt 107
2 Widget Oriented Architecture (WOA)........uumueeeeeieeieeiieieeeeeeeeeeee e 810
2.1 RTAY AT Lo T A =T] 1 Y 2SR 109
2.2 Widget Client PrinCiPlESooiiie e s 109
2.3 Widget provider/developer PrinCIPIES. ceeercveeeee i eree e 112
2.4 INEEIACLIONS ...ttt e et r e e s e s s e 113

Chapter 1.2 A Design of a Widget-Oriented Architedure (WOA).........ceevvveveenneee. 115

VLV T [1 PRSPPI 115
2 WiIdget AQQrEgator.uuuueuieuieniiiiemmmmmm s s e e e e e e e s e e e e e s e e e e e s e e e e aaaaaeaaeeeeaaaeaennnas 116
3 WOA Key Functionalities (Widget Combination Comgat).......................... 118
3.1 APIl-based ReUSe Of WIQELScouvviiiiiiiiiii i 118
3.2 Semantic and Automatic Based Reuse of WidgetS . .oocovviiiiiiirieeeeeiiiiiiiinns 120
3.3 Process-based Reuse Of WIQELScommmmmmmerrrmriniiinianeieeeeesesssssessessiessnaninnne. 122
3.4 Abstract Service Based Reuse EXIENSION.....cccueeeciiiiiiiiiiiiiiice e 124
35 Unstructured Data Based Reuse EXtENSION... .mmmnereeerceieriiiieniieniieennnee e 128
3.6 Cross-Device Based ReUSE EXIENSIONceccmmereiieiiiiriinee e eireen e 131
Chapter I1.3 Widget-Oriented Architecture (WOA) in SOA application fields..... 135
1 Service Composition USING WOAuuuuiiuiriiiiriierieieriennrirreeeneas 136
1.1 StatiC COMPOSILION.....ceiiii ittt e e e e e e e e e e s st eeereeaeaes e s s ssnrererereeeeaesenas 137
1.2 Semi-automatic COMPOSITIONccoeeiiiiii e s 139
1.3 AUtomMAatiC COMPOSILIONciiiiieiie e eeeceee e e et e 143
2 Business Process Management USing WOAcceeeeiiiiiiiiiiieeieeieeeeeveeveeieee 145
2.1 Heterogeneity Of DUSINESS PrOCESSES....... e ereerrrereeeiaiinsisinreenrereeeesenaansennens 145
2.2 Adaptation of BUSINESS PrOCESSES......uuiiiiieieeeee e 148
2.3 Loose coupling between integrators and basic SEPMIOVIAErScceeeeieiiiiiiiennnee. 152
2.4 Unstructured data CapLUIec.cviveeeiei et e e e e e e e e e e e e e senreaeeees 152
3 CONCIUSIONS.....ciiiiiiiiit et e s nnrre e e e 153
Part Il Implementation and Validation..................uuui e 155
Chapter I11.1 An Implementation Of WOAouiiiiiiiiiiiiiiiiiieiiieiaees 157
YV To [0 1] PP PTTT PP UPTUTPU 157
P 1Y o (o =y =Yoo £ F= L (o] PP PP 159
3 Widget Combination Component functionalities..............c.ccccvvvvvvviviiinennnnnee. 161
3.1 AP s 161
3.2 (0] 0] 00 18T g o= U1 To] TN 1Y F= 1 T= Vo T P 164
3.3 Process Manager COMPONENTooiiiiiiiiieeeeieeiitia s e e e e e e eeeeeeeeeeererereereanes 169
3.4 Abstract Service Based Reuse EXIENSION.....cccureeciiiiiiiiiiiiiice e 172
3.5 Unstructured Data Based Reuse of WidgetS....cccoeeevvveeeeer i 176

3.6 Cross-Device Reuse Of WIAQELSuuriiiiiieieeie it e e ee e e e e 177

3.7 CONCIUSIONS ...ttt me e et e e e s et e e s s e e e s serne e e e 182
Chapter I11.2 lllustration of WOA in Different SOA Application Fields................ 185
1 Service COMPOSITION......uuiiiiiiiiiiiiieiittietaeeeereeeeeareeeeaeesrereereebenrrerreernrenaeeees 185
1.1 [NV To IS Yot =T o - T PR 185

1.2 StAtiC COMPOSITION.....eiiiiittiiiitie e s s et e s e e s e e e e aeaaaaeeeeeeeeseeeeeeeseessassennnnnnn 187

1.3 Semi-automatic COMPOSILIONuuuiiiiriii e ccecree e e e e e ee s 190

1.4 AUtomMatic COMPOSItION......ciii it rrerer e e e e e r e e e e e e e s e s e aaarar e eeeeeeees 195

2 Business Process Management (BPM)couummmmeeeereienmnnrmnnnmmnnnnnnnnnnnnennnnn. 196

2.1 [g1V oo B Yot =T o F= o o PSP 197
2.2 Heterogeneity Of BUSINESS PrOCESSES.......comummmmreeereermrimmiinniinnianiesnaaassasasansenees 198
2.3 Adaptation Of BUSINESS PrOCESSES........ciiieieciiiiiiiiiiie e e e et e e e e e e ensenenees 199
3 CONCIUSION ...ttt e e e e e e e e 200
Chapter I11.3 Experimentation and DiSSeminationeueuveeeiuiiieeeeeeeinennnnnn. 203
1 Experimentation by Orange Labs Staff.......ccccceoviiii o
2 Demonstration to Marketing Team of Orange...............euvvvveveueverininenennnnnenn. 205
3 Integration within SERVERY Project Contributors...........ooeeeeeeiieeieneneeenn. 206
4 Others (Orange Labs Internal Projects) ... ceeeeeeieieiiiiiiiiiiiineinenee....209
5 CONCIUSIONSttt eeeene e e e eee e 209
Conclusions and Future Research DIFeCHONSccceuuuueiviuimimiiiiiiiiiniiiiieiiinieninneens 211
REIEIENCES ... 217

YN o] o] (VA E= 1 10] o K TR 225

Figures

Figure 1: Basic service oriented arChitECIUN...........cooiiiiiciiieee e e e e e e e 64
FIgure 2: OLE @UEOMAtION.cii it ceeee sttt ee e e e e e e e e s s ettt eeaaaess s snase e e eneaeaeaeseeennnnnerennnees 65
FIigure 3: EIB-SOA @NaAlOQY. ...uuuutuuuiieiieisieeii et e ettt et as e s sse s ae s s e e e e e e e aaaeeaeteeesaeseenrennannnnn s 66
Figure 4: CORBA-SOA AN@IOQY.cettiiieeesisccmmmetitieeeereeaeeeesassassteeaeeeeaeaeassassssasseaeeeeaeeeessssnnannresnnees 66
FIQUIE 5: IDL fil@ @XaMPIE. .oiiiiii e eeeer ettt et e e e e e s e s e e e e ee e e s e s s s st a e reeeeeaeeeeeaeaaanns 66
Figure 6: Web Service Architecture (WSA)-SOA aN@LOG...........cccvuriiiiiiieie e e eeeeinier e e ae e e e e 68
Figure 7: Weather service descCription fil€. ... 68
Figure 8: Weather service reqUest and rESPONS uuuuuru i it eeeeeetee e ee e e eere e aaaaes 68
FIgure 9: SWS @rChit@CIUIE.uviiiiiie i s e e e e e e et e e e e e s s as s s te e e aeaeeesesesnnnnnennnnees 69
FIGUIE L0: REST .. ittt ettt e ettt ettt et e e e e e e e o e o a bbbt be e et eeae e o sbab bt be e e e eeeeaeeeeeeeaannnnbnbneeas 70

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:

Architectural model for automatic SEeVBDMPOSILION.ccovviiiiiiiiiiiiiiii e e ae e 72
CLM SIMPIE @XAMIPIE.. ...ttt e e et ee e e e e e e s e s e st e e e eaaes s s s sntnreeareraeaeeesesannnnnnnes 73
Semi-automatic service composition gaRIMBIDAEL..............evuviiiieeieiniii e 74
Yahoo PIPES SCre@NSNOL.........o et 76
Semi-automatic composition model iN EZBVE...........cccooveeiiiiiiiciiieee e 78
EZWEB SCIEENSNOL. ...ttt e ettt e st e st e e e nanneeeeenaes 78
MASHMAKER SCrEENSNOL........eiiiiceeee ettt e 79
COMPOSItE SEIVICE SCREMAL s 79
Vacation request bUSINESS PrOCESS VETSIO.......uuururriuuiniiiesieeieeeeeeess e eeeassasssessssesssnnnne 83
Business Process Development USING WSA ee e e e e e s senenens 84
BPEL4AWS Graphical REPreSENTAtION. mmmmm.ceeiiiiiieeeiiiieiiiiiiiiissaes e s seeseaeseeeesaesaeesseeeaesnnne 85
End-to-end sequence diagram of busimegess modeling and development..................86

Technology gap between users and WSAREST)..........cuuuriiieieeeriniiienreeee s eeeveeeeees 87

FIQUre 24: MOEl 1 OVEIVIEW.uuuuuiiieie i vmmmms s e e e e e e e ee et et e eevastees s s ssasae s s e e e aaeaaeaeaaeeeeeseesesesennennnnan s 89

Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

MOEI 2 OVEIVIEBW. ...t ettt ettt ettt sb e st e e e e st e e e 90
MOOEI 3 OVEIVIEW. ..ot sttt st e e e e nnre e nenee e nnne s 90
Comparison of Web OSs and Customizadi@ls.cccovvviiiiiieeee e cccceeeeeeieeeee e 92
Comparison of Web OSs and Customizadi@ls.ccccvvriiiiiieeee e eeeeeieeeee e 93
Portlet High LEVEI VIEW.coviiiceeee ittt e e e e e et e e e e e e e as 93
Request Handling Sequence ([Stefan,J2A08...........ooveiiiieeiiiiiiir e 95

Figure 31: WSRP BaSIiC CONCEPLS. . .eiiieeieiicccememiiiiiittieieeeteeesesesasssstntateereaaesessassssssranaraeeeeasesesanssnsnnes 97

Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

12

RDF graph @XamPIe.oooi oot e et e e e a e e 100
Example of semantic concept substituticservice cComposition.ccccvvvcmemacveeeeenn. 102
SY=T Vi ot oo] 1 4] o o T =T o1 £ PSS 108
Basic Widget-Oriented ArChitE@CIUIE..........oevvviiiiiiiicices e 109
Reusability and composition at the WEIE.............coovvveiiiiiiii e 110
Reusability across different Widget e,coeviriiiciiiiiiiiir e v e e 111
Unstructured data COMPOSILION. ...ccceeeeiiiieiiiii e e e e ereaeeees 111
Exposing applications as a set of WBIGEL.........oviiiiiiii e e 112
RVAV Ao [o = o [T o | o PSSR 116
Service aggregation high level architBEL...............oovoviiiiiiiiiiiiee e 117
Use case view of the Widget CombinatiompONent.cueeeeiiieaiiiiiiiiiiiieeiieeeeeeeenn 118
SOA approach vs WOA approach in API-Has@se. ..., 119
API-based reuse invoIved COMPONENTS.........uuuiiiiiiireeeeeeieeiieiiierer e e e eese e ereeaeeeeeeas 119

Semantic and Automatic Based Reuse d@{s Summary............cccccceeeeeeeeeees s 120

Communication Manager COMPONENT. s vrrrurrunnnnsiaesaeeeeaeeerereerererrrerreeroo 121
Process-based reuse of Widgets g0@l........cooooiiiiiiiiiiiiiiiiec et 123
Process Manager COMPONENT.......uuuueeemteetieeiiiitiitiiieiietietiiie s sssasassseeeeeesaeaseeeeeeeseersenes 123
Components involved in the abstractisevased reuse extension.ccccvceeeeeeeeenen.. 125
Abstract Widget related CONCEPLS. .uuuuurriiriiiiii i e e e 126
Service selection algorithm. ... 127
lllustration of the abstract servicedzhBeuse eXtENSION.........covvviiiiiiiiiieeee e 128
Unstructured data based compositiorthit@ctural model..........cccooeoiiiiiiiiiii e 130
Unstructured data based reuse eXteNSION..........oooiiiiiiiiiiiiiieee e 131
Cross-device based reuse extension.gOal..........ccccceeeeeiiiiiiiiieie e 132
Cross device composition DasIiC arChITECE...........uuiiiiiiiiiieiieece e 133
Widget composition using the Widget Carabon APIL................oovviviiiiiiiiiimmmmm e 137
Composite Service creation through FI®OAaNager.ccocceveiiieiiiii e 140
Cross-device COMPOSItEe SEIVICE CrEALION.. ... uuuuuireiieeee ettt e e ettt er e e e ee e s s e ereeaeeeaenas 141
Unstructured data based composite Sed@fnition.ccevvivivieeee i ceeeee e 142
NLC FAIlUIE FBCOVETY. .uuvtueit s ettt tettitttt s e s s as s e e e aeeaeaetaaesaaeeaeeeseesesssestens i saeaeeaaaaes 144
Business process modelling and impleatiEIMLcoooieeiiiiiiiir e ceerer e e e 146
Business process automation ProOPOSAL.ue .. ueueieeeeeieiiiiiriieieiereeesessessereearerreeeeeseseennnens 147
Business process creation using Widgetited architecture.cccooiviiiiiiieniiieneeen, 148

Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:

Figure 72

Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:

Figure 79

Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:

Business process adaptation using @ibSUEIQELS.uvuiiiiiiiiiiii e 150
Widget aggregator configured accordng business ProCesS.........coevvvvvvvvicvemecaceeeennens 150
Business process adaptation SEqQUENGEATHALuuvirieieeeririiiieerieee s e eeeeeeereeeeeeens 151
Widget desCription fil.......coci i ————————— 158
HTML snippet for Widget Configuration............coooieoiiiiiiiiiieie e 159
Basic Components of the Proposed WIAGEEEgator.coovveiiiieviiieeeree e eeaaeeees 159
Widget Aggregator HUSFAtION. .. .ccccceeeieieeee e e s e e e e s 160
: Widget combination API Distributed megisa.ooovvvviiiiiiiiiiie v 163
lllustration of Widget reuse through \gftl Combination API.coooiiiviiiiismememeeenennnn 164
Directory Widget EXECULION.cceeemeeeieieees s ee ittt e e e e e e e e s s s s s saneeee e e e e e e s e s s s nnnnennaeeenees 165
Widget initialization implemMentatioN......... ..o 166
Automatic and semantic reuse of WidgetS.........coooiiiiiiiiiiiiiiiic i 167
Link representation through a drag &pdecapability.coooeeiiiiiiiii e, 167
Widget communication implementation. cuuu.......cooeiii i e 168
: Widget DISCONNECHION PRASE.uieeieeeeiiieiieieii s e e e e s 169
Process based linkage Of WIdQetS.......cioi oo e e 171
LiNK ©XECULION SEEPS. ..uuviiiiiiiiececeie ettt e e ee s ee sttt e e e e e e e e e e e s st e e e e aeeeeeees s snnnnaneaeeeeaeees 171
lllustration of a Process-based reus#idhets. ... 172
RUIES GFAMMIAtttttties e s 221t e e s s e e e e e e e e e aeaeeee et aeseeeeeaeesesesnsssnsan e anasseeesaeaaaeaaaneenes 174
lllustration of a Send SMS abstract BErWIdget..........cuvevivieeeiiiiiiieeee e 175

Adding of an unstructured data extractioodule by a developer............cccceee s commmnn e e 176

Adding of an unstructured data extractitodule by a USEr.............cccevevvevvvv o vevvvennnnnn 177

lllustration of an unstructured datagiBISRUSE.eeiiiiiiiiiiiee e 177
Component view of the cross device ressehnaniSM.cccvvviieiiieieeee s e e e e e 178

CDCW CONNECHON PRASE. ..uiuiiiiiiiieiiis ittt e e e e e e e e e e e aeaaaaaaens 179
Ordinary Widget CONNECLION PRASE. ...uuuuiiiiiiiiii i 180
Cross device communication ilIUSTFratiQN.ceieiiiiiiiii e 181

Communication process between two Willgetded on two different devices.181

lllustration of the Widget diSCONNECHBMASE.cuvvviiiiiieee e e e 182
Code snippet of the direCtory Widget. v .. .ceeiiiriieiieiiecic e 188
Manual PersonaliZatioN. ...« eeerireeeieee et e e sree e arre e ee e e 188
Abstract Widget based personalization..............cooivieiiiiiiiiiieieee e e 189

Directory description fil@ SNIPPEL .. ier i 191

14

Figure 98: Microformats annOtatiONS.uueieiiiiiieie e e e e e a e e e e aaeaaaeeeeeeanes 191

Figure 99: Semantic matching based linkage of WBIQgEe...........cooiiiiiiiiieeee e 192

Figure 100:

Figure 101

Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:

S AULheNtiCatioN WIAQEL.o e eee et et teeeeeeitiat s s s e s e e e e e e ae e e e e e e e aeeeeeeaeaereerennannnnn s 193

Cross deviCe COMPOSITE SEIVICE. ceeeeeeaeieeiiiiiiiitiiiiiitete e e e e e es s e e ee e e e e e e s s snarreareneaeees 194
Unstructured data based COMPOSIHION..........ciiieeii it e e 195
Failure recovery process in automativise composition using WOA................. coummn.... 196
Business process implementation eXample.............cooviiiiiiiiiiiiiii e 198
Adaptation t0 @ NEW NEEM.uuu e e e e e e e aaeaaaeaaeeeanes 200
Users feedback about the Widget Contibim@apability.ccccceveveiiiiiiiiceeeeeee e, 205
Screenshot of the demonstration tartagketing team.cccceveeiiiniiiiieieeeeeceviviiins 206
SERVERY 0@MONSIIALION........... e eeeee ettt et e e iebe e ee e e e e e e sab e e seeeaaaaeas 208

CONtHDULIONS SUMMAIY. ...vviiiiiieeeemee e e e e e s see e ee e e ee e e e e s e e et berrrre e e e e e s s s e ssnnsebeanreraeaeeeseens 212

Tables

Table 1. Technical definitions of the term SEerVICe. ... 60
Table 2. Quantification of semantic matching ofgraeters. ... 72
Table 3. Comparison of service COmMpPOSItioN CAt@IPONI..........c.vuuuiurrirniiiirieeie e e e s e eeaeveeereennen 80
Table 4. Current SOA advantages and lIMitatiONSuverriereieer e e e e e 87
Table 5. Portlet Interface Description [SUN, 2003]........uuuiirieeeeeie i ree e e esse e ereeeeeeeeseesnnnens 94
Table 6. UWA JavaSCripPt FUNCHONS.uiii oottt s e e e e e e s ss st eeeeaes e s s s snsnnsnananeeeaeeesssannnns 96
Table 7. Microformats @XAMPIES.uuuiiieemmemee et ettt e ae e e e e e e e e e e e e e aeeeeeeaeasaas s 101
Table 8. Interactions of WOA MOAEl ACLOIS ...eceoo ittt ee e e 113
Table 9. Semantic MAtChING PALLEINS. ... commmmererererirrerereeeeeessiei e ereeaeesaanerrrerarereeaeaesesannnnees 121
Table 10. Cross Device Communication ProtOCOL...........coouiiiiiiiiiiiiieee e 133
Table 11. Limitations of Current Service Compositapproaches...........ccccceiiiiviiivviviceeeeee e 136
Table 12. SOA advantages and limitations regarBiRAl. ..o 145
Table 13. WOA solutions to SOA IIMItAtIONS. ...coueeuiiiiiiiiiiie et 154
I Lo L= I SRR 161
Table 15. Process Definition through a JSON format.........ccceveiiiiiieeeeniniiieee e 170
Table 16. Interpreter iNVOCation detailS.cccceeeiii i e e e e e e neees 173
Table 17. Manual composition list Of the SCENAKIO..........ccoviiiiiiic e 186
Table 18. WOA impacts on service composition an®/iBRvolved roles.ccccvvvvviiviviiiiieneeiennnnn, 201
Table 19. List of Widgets tested DY USEIS.......coouviiiiiiiiiiiiiis et 203
Table 20. ADSIract WIAQELS liSt.uueiiiceecc e ee e et r e e e e e e e s er e e e e e e e e s s s nar e an e aeeeeeeeenaannns 207

16

French Summary

Introduction

1 Contexte

Introduit par Tim O'Reilly, le Web 2.0 désigne unsemble de principes qui caractérisent I'évoluties
pratiques, des usages, et des technologies du Wdleré initiale, dite statique, a I'ére actuellees
principes Web 2.0 peuvent se résumer par six points

» création de services réutilisables au lieu d’agpions monolithiques ;

« la participation de I'utilisateur dans la créatita contenus et de services ;

» la conception orientée utilisateur final ;

¢ le partage d’information ;

e linteropérabilité ;

» etles interfaces riches.
Ces principes ont révolutionné l'ingénierie logilgeainsi que la facon dont l'utilisateur interagitec
'ensemble des applications qu'il utilise. Les lkdgis ne sont plus en effet packagés en application
monolithiques. lls sont fragmentés en un ensemélsetvices\Web servicésqui sont ensuite publiés sur
et réutilisé a travers le Web. Cette approche pedagromouvoir d’'une part le partage et la réation
de services a travers le réseau Internet, et labmhtion et I'intégration de service inter-orgaationnel
d’'autre part. Quand aux utilisateurs, ils n'utiiseplus les applications de la méme maniere. Les
applications Web, qui sont disponibles sur le réssant de plus en plus matures et sophistiquées, e
tendent a remplacer les applications traditionsetjge les utilisateurs installent sur leurs machirize
plus, les applications Web 2.0 donnent un rdle @eésf a I'utilisateur, en lui offrant des outilsed
personnalisation et en lui permettant de généreméme du contenu. Les exemples typiques de ce
phénomeéne sont les sites Web Wikipédia Youtubé dont succés est complétement dépendant de la

qualité et la quantité du contenu généré par léisateurs.

Ces deux observations (la fragmentation du Web esvices réutilisables, et le role actif de

I'utilisateur dans I'écosysteme des services), dminé lieu a de nombreux travaux de recherches, qui

! Wikipedia, http://en.wikipedia.org/wiki/Main_Pagsisité le 10 sept. 2010
2 YouTube http://www.youtube.comhisité le 10 sept. 2010

18

visent a tirer profit du role actif des utilisatedimaux en leur permettant de créer eux méme elesces
combinant ceux qui existent déja. Les deux appmdraergentes pour répondre a ce besoin sont la
composition automatique, et la composition semdianattique. La composition automatique permet a
l'utilisateur de créer des services en exprimam bBesoin en langage naturel, et la composition semi

automatique permet a I'utilisateur de créer unisergomposé en enchainant graphiquement des service

Par ailleurs, les environnements de services amtié\en paralléle avec I'évolution du Web. Nous
appelons un environnement de services tout logm@emettant a 'utilisateur de consommer des sesvic
Ceci inclut les systemes d’exploitation traditiolsnée.g. Windows et Linux), ainsi que les systémes
d’exploitation Web (e.g. Google Chrome OS et eydD&nt comme les agrégateurs de services (e.g.
iGooglée' et Netvibe¥. L’évolution vers les agrégateurs de servicesgmée une analogie intéressante avec
I'évolution du Web 1.0 vers le Web 2.0, aussi bmre du point de vue technique que conceptuel.
Techniquement, les agrégateurs de services setlsasda concept de Widget ; une interface utisatyui
permet de consommer un service unitaire accessiblde Web. Conceptuellement, les agrégateurs de
services sont des applications Web 2.0 dans lammesuils permettent a I'utilisateur de personmalson

environnement en chargeant uniquement les serdmgsil a besoin.

Cependant, contrairement aux services Wbl servicdset aux architecture SOA, sur lesquelles
de nombreux travaux de recherche ont été condeittomaine des Widgets et des agrégateurs de Vidget
est moins étudié. Les potentialités de composiii@Widget ne sont n'est en effet pas approfon@este

these vise a répondre a cette limitation.

2 Problématiques

SOA (pour Service-Oriented Architectureest un paradigme d'ingénierie, qui est caradépsr la
réutilisation de services a travers un registreat®ice commun et une API de publication commutaua

les fournisseurs de service. Ceci est I'aboutisg¢rde plusieurs années de recherche dans le domaine
WSA (pourWeb Service Architectur@Newcomer, 2002] et REST (poRepresentational State Trangfer
[Fielding, 2000] sont sans doute les technologies plus utilisées actuellement pour réaliser une
architecture SOA. Elles sont appliquées dans diffisr domaines tel que la composition de servicés et
gestion des processus métiers. Cependant, SOAnardbreuses limites lorsqu’on consideére les prirgipe
du Web 2.0, qui font de I'utilisateur un acteur enaj dans le processus de création de services. Plus

précisément :

s eyeOShttp://www.eyeos.com/accessed Dec 22, 2009
4 iGoogle,http://www.google.com/ig?hl=egraccessed Dec 22, 2009
5 Netvibes http://www.netvibes.comaccessed Dec 22, 2009

19

e SOA n’'est pas orienté utilisateur. Il est en eff@icu pour répondre aux besoins de réutilisatien de
développeurs. Par conséquence, les outils de cdtimpode service actuel ne sont pas accessibles
par I'utilisateur final.

« SOA ne traite pas I'aspect interface utilisatels slervices.

e SOA ne permet pas la composition de service a hbieselonnées non structurées. Ceci est
particulierement utile dans les services de comaoatinin, ol des données significatives sont
échangées entre les utilisateurs (e.g. les nundgogléphone, des adresses postales...etc.). Ces
données ne sont pas aujourd’hui considérées dgrsddigme SOA.

e SOA ne considére pas la prolifération des terminatilisateurs. Il n'est en effet pas possible
aujourd’hui a l'utilisateur final de composer deservices chargés sur deux terminaux différents.
Ceci permettrait de composer par exemple un sedéceail chargé sur un mobile avec un service
de lecture vidéo chargé sur la télé, afin de lire vidéo en piéce jointe.

« A travers la description et la publication d'ineeré, SOA diminue significativement le couplage
entre les intégrateurs de services et les founmissde services qu'ils utilisent. Cependant, la
suppression du service, ou la modification dediifdce, entrainera forcément un disfonctionnement

dans tous les services qui I'utilisent.

3 Contributions de la thése

A travers |'état de I'art nous montrons que le pagme SOA répond uniquement aux besoins des
développeurs. Ceci est une importante limitatiosda’on considéere les principes du Web 2.0 qui ftent
I'utilisateur un acteur majeur dans le cycle de dés services. D’autre part, nous montrons aussileg
mécanismes actuels des Widgets et des agrégaeMBddets sont orientés utilisateur, mais ne prehne
malheureusement pas en compte la dimension créattiommposition de services. Notre contributionsdan
cette thése est la définition d’'un nouveau paradigmai tire le meilleur des deux domaines afin de
satisfaire les développeurs et les utilisateurauiia Nous introduisons ainsi WOA (powfidget-Oriented
Architecturg, que nous appliquons a deux domaines ou SOA agerhent utilisé aujourd’hui: la
composition de services, et la gestion des prosasstiers. En se basant sur ce nouveau paradigme, n
définissons d’'une part un ensemble d’outils innesa® composition de services destinés aux utlisat
finaux, et nous introduisons d’autre part une ndavaéthode de gestion et d’automatisation desga®ics

métiers qui vise a mieux gérer I'hétérogénéitéimsthbilité des processus métiers.

Etat de I'art

Cette thése a comme objectif de définir une altarma SOA qui sera plus orienté vers l'utilisatéuser-
centrig. Dans ce chapitre nous allons donc étudier [#érdntes technologies SOA d’'une part, puis les

agrégateurs de Services d’autre part.

1 SOA (Service-Oriented Architecture)

SOA est le paradigme qui fournit des facilités aléveloppeurs afin de promouvoir la réutilisation de

services. La figure 1 montre les différents rolesiagque leurs interactions.

Registre de Service

«Cpit€res de recherche

Rechercher,

Access (use) |
* Message SOAP

Consommateur de Service

Figure 1: SOA.

SOA se base sur un certain nombre de principescluggue role doit accomplir. Nous les
résumons comme suit :
« Le registre de services doit fournir des interfadespublication et de découverte de
services.
» Les développeurs doivent créer des services etguublrs descriptions dans le registre
de services.
» Les développeurs peuvent réutiliser les servicetants dans la création de leurs propres

services.

Plusieurs technologies permettent la réalisatiocel@attern (e.g. CORBA, et EJB), mais WSA
(pour Web Services Architectyrest sans doute la technologie la plus utiliséaedlement. Un service
Web [W3C, 2004b] (oWeb Serviceen anglais) estin systéeme concu pour facilité les interactionseent
machines a travers un réseau. Il a une interfacerithé par un format interprétable par les machines
(WSDL). Les autres systéemes interagissent avec elm 3&tvice en utilisant des messages SOAP d’'une
maniére prescrite par la description. Les mess&g@#\P sont typiquement transmis sur HTTP avec une
sérialisation XML Cette définition résume les différentes techni@equtilisées dans WSA : WSDL,
SOAP, HTTP, et SOAP. La description d'un Web seargst souvent publiée dans un registre de services,

typiqguement UDDI (poubJniversal Description, Discovery and Integratjon

22

WSDL-SOAP offre beaucoup d’'avantages aux dévelapeuéutilisation, composition, et
couplage faible. Cependant, ces deux technologiesont pas accessibles par I'utilisateur finahdlpeut
pas en effet pas réutiliser les services existpotg la création d’'un nouveau qui correspondraitea

propres besoins.

Pour répondre a ce probleme, les approches émeggtmttent de rajouter de la sémantique dans
la description de service afin de pouvoir de comepdes services automatiquement, a partir d’'une
expression des besoins de l'utilisateur. Les teldyies sémantiques telles-que RDF (pdesource
Description Language OWL (pourWeb Ontology Languagyleet SA-WSDL (pourSemantic Annotation

WSDL) sont alors utilisées.

1.1 La composition de service basée sur SOA

Nous classifions les techniques de compositioredaces en trois catégories : la composition stietjda
composition semi-automatiques, et la compositidnraatique. Dans cette section nous allons détailler
chacune de ces catégories.

a. La composition statigue

Nous appelons composition statique les mécanisneemgitant a des développeurs, mais pas aux
utilisateurs, de créer des services a partir de geil existent déja. Le terme statique indique idimgait

que l'utilisateur final n'a pas la main sur les\sees composés. Il ne peut ni créer de nouveauwicssr
composés ni modifier ceux qui existent déja seemmopres besoins. Ce type de composition esesbuv
réalisé a travers des APIs de programmation congaas le développeur (e.dava SOAP clientPHP
SOAR IBM Dojo toolkit extensionetjQuery SOAP client

b. La composition automatigue

A l'opposition de la composition statique, la comiion automatique est destinée a I'utilisateualffirtlle
se base sur des outils de composition qui pernteiténtilisateur final de créer des services cosgsa

partir d'une expression de besoins en langageelaton pattern est illustré dans la Figure 2.

Dictionnaire
Sémantiques
s

Registre de services

Recherche Sémantique

Publication Description

Sémantique

« Critéres defrecherche

Automatic service

Fournisseur de services
T

composer « Invocation m v
Utilisateur Transmission des %
input/output
% ‘‘‘‘‘‘‘ Développeur
Expression de besol besoins

en Langage Naturel

Figure 2 : Composition automatique.

23

c. La composition semi-automatique

La composition semi-automatique vise actuellemet communauté d’utilisateurs qui ont un profil entr
développeur et utilisateur final. Elle offre destilsugraphiques qui leur permettent de définir des
enchainements de services sans avoir des connegssapprofondies dans le développement de logiciels
Cependant, des connaissances de base sur ce gui ¥&tb services, les inputs, les outputs, ainsilgu

concept d'organigramme informatiqu(vchar) sont nécessaires.

Ce type de composition est essentiellement pousske gucces des sites Web 2.0, ou I'utilisateur
est souvent générateur de contenu ; I'idée étahti geermettre d’étre aussi un générateur de sesvibans
cette catégorie, nous distinguons les outils depomition basés sur les environnements de bureaus No
pensons que ce sont les plus proches de l'utilisdtaal d’'une part, et qu’ils nécessitent le moites
connaissances en termes de développement logiaigiel part. Ces outils permettent a I'utilisaténal
de combiner des services directement a partir deesgironnement de travail. Les exemples typiquesed
type de composition sont Microsoft OLE (poabject linking and embeddihgle copier/coller, ou le
glisser/déposer. Cependant, ces mécanismes, basdesssystemes d’exploitation traditionnels, sont
premierement limités par le fait qu'ils ne consgtérpas la composition des services Web d’une gt

manque de mécanismes sémantique, qui permetthariiciper certaines compositions, d’autre part.

1.2 La gestion des processus métiers basée sur SOA

La gestion des processus meétiers consiste a chmeetha découvrir I'ensemble des processus d'une
organisation, les modéliser, les automatiser, ®tfdre évoluer en fonction de nouveaux besoinsisDa
cette section nous allons résumer les pratiquesantes pour réaliser ces actions.

a. Découverte et modélisation des processus métiers

La tache de découverte et de modélisation des ggosamétiers est actuellement réalisée soit emrsuiv
une méthode descendanteptdowr) ou une méthode ascendanbt®tfom-up. La méthode descendante
consiste a modéliser une vue globale d’'un processétgers, puis le décliner en plusieurs versions en
modélisant les détails spécifiques a chaque enfité, ou personne. La méthode ascendante, quatid, a
commence par capturer les habitudes (processushatgie entité, réle, ou personne, puis essayeede |

généraliser afin d’avoir un nombre limité de prauesfinaux.

Dans les deux méthodes, le résultat final est umpcomis entre le niveau de détails automatisé et
la minimisation du nombre de processus. C’est donensemble processus métiers qui est réduit roais q
automatise les taches les plus fréquentes desatiilirs. Les détails spécifiques a chaque utilisate sont
malheureusement souvent pas automatisés. En pitre thétérogenes et restreints a des ensembldtsrédu

d'utilisateurs, ces détails sont souvent trés dygaes.

24

b. Automatisation des processus métiers

La problématique essentielle qui doit étre congidgrar les applications de gestion de processusrmét
est de répondre rapidement aux changements et waoixitions. Les approches existantes tentent
d’accélérer le plus possible le temps de dévelogmérdes applications pour automatiser les processus
métiers. WSA est sans doute la technologie la piilisé dans ce domaine (associée ou non a dds deti
composition de services comme BPEL). Les différemdehes des processus métiers sont implémentées et

exposées en tant que services Web, puis assenshigast la logique d’un processus afin de l'autaseat

Les limitations qu’on peut constater a traversamsx points peuvent se résumer en :

* Le temps d’automatisation d’'un processus métigeresg du moment que deux actions,
réalisées par deux entités différentes sont néicessda découverte et la modélisation
des processus, puis le développement de I'apmitafiii les automatise.

* Les détails sont difficilement automatisables.

» L’adaptation a de nouveaux besoins est longue.

e Le couplage entre les implémentations est fort

1.3 Conclusions

Plusieurs technologies permettent aujourd’hui ddigér une architecture de services. Ces techredogi
sont congues essentiellement pour répondre auxnsedes développeurs en termes de réutilisation et
d’accélération du temps de développement. L'utdisa final n'est actuellement pas considéré. Par
conséquence, la composition de service reste ureideméserveé aux développeurs. Ceci pose aussi de
sérieuses limitations concernant la gestion desgssus métiers. Le Tableau 1 récapitule les avesitelg

les limitations de SOA dans la composition de smwiet la gestion des processus métiers.

Tableau 1. Les avantages et les inconvénients de SO

25

has
M

Nt

Jr.

Avantages Incovénients
¢ Couplage faible en les services | « Concue seulement pour les
basiques. développeurs.
Composition| « création d’applications » Couplage fort entre les services
statique distribuées. composés et ceux qu'ils utilisent.
» Les services crées répondent aux
besoins de I'utilisateur.
« Congue pour les utilisateurs ¢ Les utilisateurs ordinaires ne peuvent |
avancés (Pas nécessairement des | créer des services. Par conséquent, le TT
développeurs). reste important pour eux.
_é Composition| . | e TTM est faible lorsque + Les services créés ne sont pas riches
§ Semi- l'utilisateur est un utilisateur avancél « Impossible de créer des services
3 | automatique | * Les services crées respondent augistribués sur différent terminaux de
.§ besoins de I'utilisateur. I'utilisateur.
§ « Couplage fort entre les services
§ composeés et ceux qu'ils utilisent.
« Congue pour les utilisateurs « Les services crées ne répondent souve
ordinaires. pas exactement aux besoins de l'utilisate
« TTM faible. » Impossible de créer des services
Composition distribués sur différent terminaux de
] I'utilisateur.
automatique
» Couplage fort entre les différents
services en termes de sémantique.
¢ Couplage fort entre les services
composés et ceux qu'ils utilisent.
» Réuitilisation et implémentation | ¢ Les détails de processus, qui sont
rapide (par des développeurs) de | souvent spécifiques a une population
processus métiers limitée, sont rarement automatisés.
Gestion des « Les outils graphiques tels que | ¢ L’adaptation a de nouveau processus ¢
BPEL accélerent considérablement|ldongue.
processus
etiers développement des processus « Couplage fort entre les développeurs d

métiers.

processus et les Web Service gu'ils
utilisent.
» Les données non structurés ne sont pa

capturées.

BSt

es

\S

26

2 Agrégateur de Services

SOA améliore considérablement les interactionssdit@chine-to-machineCependant, comme nous
'avons détaillé dans le point précédent, les atBons homme-machine ne sont pas prises en compte.
Dans ce domaine nous mettons I'accent sur les am@ments de travail (connus aussi sous le hom de
virtual desktopsen général, et les agrégateurs de services @nybar (ou agrégateurs de Widgets). Ces
environnements se focalisent sur I'aspect intevactivec I'utilisateur final. De plus, les agrégasede
Widgets (e.g. Netvibes, et iGoogle), qui ont émeagéc le paradigme Web 2.0, permettent a I'utidisat

une personnalisation accrue. Les utilisateurs pgywersonnaliser fonctionnellement leur espacealail

en chargeant des fonctionnalités au lieu d'utildieectement des applications packagés.

Les agrégateurs se basent sur le concept de W{dgehu aussi sous le nom de Gadget ou
Portlet). Nous distinguons trois technologies ezalt ce concept : JSR 168/286 (pdava Specification
Request[Sun, 2003], spécifications W3C [W3C, 2007], etV (pour Universal Widget ABI[UWA,
2008]. JSR 168/286 est une spécification Java éaiitdune Portlet comme étant un composant Weld, gér
par un container, et qui traite des requétes etrgédu contenu dynamiquement. Les Portlets sdigées
par des portails Web comme interfaces utilisatauorg peut rajouter ou supprimer dynamiguement. La
spécification JSR 168/286 se focalise sur la stalisktion des interactions entre la partie serndBune
Portlet et le container. Le but est de permettileraéme Portlet d’étre utilisée dans différentstamer de

différents fournisseurs.

Une Widget (terminologie utilisée par W3C ainsi glasms UWA) est conceptuellement identique
a une portlet. La différence se situe sur le pkechmologique. Premiérement, elle n'est pas limité a
langage de programmation Java ; la partie servemedVidget peut étre implémentée suivant n‘importe
quel langage (Php, Java, Python...etc). Cependapari#e cliente est souvent limitée aux technolegie
interprétables par les navigateurs Web ((X)HTML, XMJavaScript, Flash, Java Applets...etc).
Deuxiémement, contrairement aux spécifications 168286 qui se focalisent sur les interactionseelatr
partie serveur d’'une Portlet et le container, ladgbts se focalisent plus sur les interactionseelatipartie

client d’'une Widget (Ul) et I'agrégateur.

Les Widgets et Portlets présentent de sérieuseiitstes avec les services Web dans SOA.
Conceptuellement, les deux technologies permettexposer des fonctionnalités d'une application.
Cependant, contrairement aux Widgets, les serWi¢eb on recu beaucoup d’attention, ce qui a donnée
lieu a de nombreuses technologies qui permettems Igutilisation et compositions. Les travaux kur
réutilisation et la composition de Widgets soneéfet rares. Nous distinguons néanmoins quelquesdesr

(e.g. [Diaz, 2008], [Vo, 2006], [Sire, 2009], etof&no, 2006]) qui encouragent ce type de compmositi

27

Les auteurs de [Soriano, 2006] ont meme propos@grégateur de Widget (EzWeb) et une API de
développement de Widgets qui permet la compositierces derniéres lorsqu’elles sont chargées sur la

méme instance de I'agrégateur. Figure 3 montre cemhicette composition est définie et comment dte e

exécutée.
[T2 W 3
1 I Tty wire:
2| Events Channels Slots
e lanre_z =) .
tube_iptv_ssarch Rrepraductor_Woutube >W|rlng
youtube .
bt p I AKIPL2 P youdube ot interface
r i
T it
I phace
S
_ Input/Output
mapping
86 ElS]
You [T} [Peficuts=s =1 —_— .
» Execution
interface
r

\Chck and play

Figure 3 : La plateforme EzWeb.

3 Conclusion

Les conclusions les plus importantes qu’on peet tile cet état de I'art est le manque de priseoempte
des interactions homme-machine des technologies @@# part, et le manque d’outils de réutilisasian

de compositions dans le domaine des agrégateWdidigets d’autre part. Les technologies SOA par leur
nature vise en effet a répondre aux besoins deslafpeurs. Les interfaces graphiques, qui intesagis
avec l'utilisateur final, sont en effet moins imfaontes. Les Widgets quand a elles présentent ltagan
d’étre congu essentiellement pour interagir avedilisateur final. Par conséquent, I'aspect integfa

graphique prend toute son importance.

Cette étude des deux domaines (SOA et Widget) mante chacun des deux a ses avantages et
ses inconvénients, ce qui révele un nouveau chlyglenelui de prendre le meilleur de chaque domaiime
de construire une architecture ou les développeoamsme les utilisateurs finaux puissent combiner des

services.

Contributions

La contribution la plus importante de cette thést k définition d'un nouveau paradigme de
programmation orientée service centré sur I'utiisia final. Ce paradigme basé sur le concept deg¥id
est nommé WOA (pouwidget-Oriented Architectuye En s’appuyant sur ce nouveau paradigme, nous
concevons un agrégateur de Widgets qui réalisedmble des principes définis dans le paradigmesNou
déclinons ensuite ce paradigme ainsi que l'agréigatencu dans les domaines d'application de SOA :

composition de services et la gestion des processtisrs.

1 WOA (Widget Oriented Paradigm)

Ce paradigme est basé sur le concept de Widget eddiément de base qui permet la réutilisatiotaet
composition de services. Nous définissons une Widgmme une interface utilisateur qui donne acces a
une implémentation du service offert. L'interfacilisateur est taguée sémantiquement afin de pouvoi

réutiliser les capacités de la Widget dans d’autiggets.

Comme llustré dans la Figure 4, le paradigme WOgt earactérisé par cinq roles: le
développeur, le fournisseur, registre, le cliebt,wilisateur final. Le paradigme consiste en emsemble

de principes que chaque doit suivre. Les sousesectuivantes résument ces principes.

- - R Dictionnaire
Registre Widget vt Sémantique

Description
de la Widget

Découvrir des Widget

Client de Widgets Invocation »>

A

Widget provider

Implémentation
Fournit
développeur

Découvrir, Chafger, et Composer des Widgets

Utilisateur Final

Figure 4 : Le paradigme WOA.

1.1 Les principes liés au registre de Widgets

Comme dans SOA, le registre de Widget de WOA daitrifir des interfaces de publications et de
découverte de Widgets. De plus, il est recommared®winir un mécanisme de sélection de servicemipar
ceux qui sont fonctionnellement équivalents. Il artpnt aussi que ce mécanisme soit paramétrable par

l'utilisateur final. En d’autre termes, il est impant que l'utilisateur final soit capable de sfiécilui-

30

méme les regles a appliquer lors de la sélectiog. @rvice moins cher, celui qui correspond a sa

localisation...etc).

1.2 Les principes liés au client de Widgets

Le client est une application a travers laquellélisateur consomme une ou plusieurs Widgets. ddié

répondre aux principes suivants :

a. La composition de services native a |'environnengentravail

La capacité de composer des services (Widgets)édi@tintégrée de fagon native a I'environnement de
travail de I'utilisateur. En d’autre terme, 'uiiteur ne doit pas avoir deux environnements distinun
pour composer des services, et un autre pour cansomes services. Le client des Widgets doit élee a

fois un environnement de travail et un environnenglencomposition de services.

b. Personnalisation
Il important de fournir a I'utilisateur des outil® personnalisation de I'environnement de tradigiit des

Widgets).

c. Découverte de services

Le client des Widgets doit s’interfacer avec leistrg afin de découvrir les Widget existantes.

d. Réutilisation et composition au niveau de I'intedagraphique

Comme dans SOA, la réutilisation et la compositienservices est un principe essentiel dans WOA. Il
important que le client des Widgets fournisse dgmcités de réutilisation et de composition destiriéla
fois aux développeurs et aux utilisateurs finawe taractére distinctif de I'approche WOA est
d’'implémenter la composition au niveau de l'intedautilisateur, dans son environnement de tralail.

figure 5 montre une composition de Widget au niveauiinterface utilisateur.

Autre la réutilisation et la composition au nivedail'interface utilisateur, il est recommandé que
le client des Widgets integre d'une part des outiés composition distribués sur différent terminaux
(environnement de travail) de I'utilisateur (voiigkre 6), et d'autre part des outils de compositi@asés
sur des données non structurées (voir Figure 7)cdmposition distribuée répond a la multiplicitésde
terminaux de l'utilisateur, et la composition baséeles données non structurées considére |d¢padlon
du contenu généré par I'utilisateur que ce soitsdas sites web comme Wikipédia ou dans les sexvice

conversationnels tels que la messagerie instantanée

31

Le numéro de téléphone est tagué
sémantiquement dans le but de le

détécter et de la composer avec la) Comzosll't]on :u
Widget de téléphonie niveau de llinterface
utilisateur
& corpos ry Edition X
New Search
lirfor mation
Nassim Lage #& Orange phone =
Pheto
Semice: FTn /RDEIZZFhRCE 4 Unregister
Senn s en Ligne A Annuaires pour
les ent. :prises e G o Call
Phone 02 3175 90 0! J J ’
Fax: 0231726628 b
nassim.laga@orange-ftaroup.com > “ @ e
Address - RD CAEN 5 = =
42 rue des Coutures BP 5243 0 a @
14058 @ @ @
CAEN “ 0 . '
- i + hide the kevboard
Manager: M. Philippe bichon
Secretary | Mme Michelle Harel
Figure 5 : Composition au niveau de l'interfacdisdieur.
Composition
Terminal 2 Terminal 1
Widget Client 2 Widget Client 1
\
T—
i]
@
D4
PO
ALLLJ

Figure 6 : Composition multi-terminal.

Detection de données »
non structurées Composition
@ Orange Email Reader DMap by Googl

De: emmanuel be 'range-ftoroup.com
Sujet: workshop
Attaché /KEOWOBCFP 1

|4354?F won York Ave Lancaster Gl

=

o g
W c-l M.\p: Satflme Hyhrid

2 o
During my vacation | will be at WW\E\ m
|Avenue Queens Village MY 114 But I'm

Dear reader, =

2
currently until 12/23/2008) in Jeres C, artinson E 2
43847 Heaton Vork Ave Lancaster town Mew =
Nork 93834

Heaton Tork Ave Lancaster town New Tork 9353?

| ancaster & =
oogle = € Lancas|
G 8 Flap dats @2010 Google - T=%ns 01 s

Best regards,
Massim Laga
Tel: 01 23 4667 83

Figure 7 : Composition base sur des données nocistes.

e. Widget avec ou sans état

Contrairement & SOA qui encourage la création deicge sans état (dit ausstatelesy les services

peuvent étre avec ou sans état dans le paradigma.\B@® moment que les services embarquent aussi

32

l'interface utilisateur qui interagit avec la logig] métier, I'état peut étre gérer au niveau dedifiace
utilisateur sans pour autant affecter les perfoaaau niveau du serveur.
1.3 Les principes liés aux développeurs et fournisseude Widgets

Les développeurs/fournisseurs de Widgets doivemtesdans WOA quatre principes important:

a. Exposition d’'application sous forme de Widget

Dans le paradigme WOA, les développeurs doivergniienter leurs applications en un ensemble de
Widgets. Méme s'il est recommandé que chaque Wiedtarque une fonctionnalité, dans certain cas elle
peut en embarquer plusieurs dans le but d’amélibegpérience utilisateur. La figure 8 montre des

exemples d’applications fragmentées en un ensedebi&idget réutilisables.

__: Telephonie Annuaire d'enterprise
1
1
|
‘

\
1
A | :
ppe 1
1 Recherche
Réception appell " Contact ontac

1 1
1C__Lecture Inbox_2
1 1
: Lecture Email_>1

1

Lecture Agenda j

Figure 9 : Exposition d’application sous formeW&get.

b. Description de la Widget

Il est important de décrire les Widgets en termedahctionnalités fournies d'une part, et en termes

parameétres non-fonctionnels d’une autre part.

c. Annotation sémantigue

La composition au niveau de linterface utilisatevdcessite que les interfaces soient sémantiquement

taguées afin de permettre au client de récupéeddenées générées par les Widgets pour les compose

avec d’autres.

d. Autonomie et couplage faible des Widgets

Comme les services dans SOA, les Widgets doivest Iét plus autonome possible. Elle doivent pas

dépendre d’'un systéme externe.

2 Conception du ClI

Le client de Widgets est un élément clé dans lagigme WOA que nous proposons. Dans cette section
nous allons en détailler la conception. Mais aw#iahtrer dans ces détails, il est important de ifipéc

formellement le concept de Widget. La figure 10 immedes différents aspects d’'une Widget dans notre

ient de Widgets

33

architecture. Les éléments essentiels a retenir: straque Widget fournit une description fonctieta et

non fonctionnelle, et I'interface graphique de lidgét est taguée sémantiquement suivant le diciioan

défini par la plateforme qui se base sumesroformat§ [Khare, 2006].

VWidget

1%

non-functional parameter | 0.

Widget Description

VN

\Q\
1

k
1

Widget Implementation

1
LA

parameter tag parameter value

inchude

index Implementation

functinality description| referste

1L provide a}K\LI*
1.

functionality implementation

generates

1
uses

semantic dictionary

1

input

|:| Mouveaux Concepts
D Concepts Existants

has has
1 1

outpukt

Functionality UI

1

expect nerates _
0. contains
D“* o
D“*

associated to

eventType

7
1 1

input¥alue

inputType

output¥alue

outputType

describes

describes

Figure 10 : Description Formelle d’'une Widget.

Le client que nous proposons est un agrégateuridgafé. En plus de I'aspect personnalisation

0.1

que tout agrégateur de Widget fournit aux utilisegecelui-ci inclut les fonctionnalités résuméasslla

Figure 11 afin de répondre a tous les principed/@A. Les sous-sections qui suivent résument les

différentes fonctionnalités et extensions.

6 Microformats,http://microformats.org/consulté le 30 sept. 2010.

<<extend>> ..

..z <extendz>

Réutilisation automatique basée sur la sémantique

4
<<extend>>.. o,
Réutilisation basée sur les données non structurées <<extend>>}nb

<<extend>>

£ <“Zextend>>
Réutilisation basée sur un processus

<<extend>> Lo) .
= Réutilisation basée sur une API G Réutilisation multi-terminal

) ;. <<extend>>

Réutilisation basée sur les services abstraits

System

<<extend>>

Figure 11: Les fonctionnalités clés de I'agrégatiiiVidgets proposé.

2.1 Réutilisation basée sur une API

L'agrégateur de Widget offre une APl qui permet développeur d'une Widget d'utiliser les

fonctionnalités d’autres Widgets lorsque cellesant chargées dans la méme instance de l'agrégateur

Ceci est plus orienté vers I'utilisateur final g8&A. La réutilisation de services dans SOA n'est pa

limitée aux services chargés par l'utilisateur ;réalité, les développeurs n’'ont pas l'informatsur les

services utilisés par I'utilisateur. La figure 12mntre la différence entre notre approche baség\VsA et

les approches basées sur SOA.

L'approche SOA L'approche WOA

<>

(Registh Chague Widget est en
IR

partie backend

1. Utlise
Les développeurs créent une
@ nouvelle Widget, qui découvre
et réutilise les fonctionnalités
—— d'autres Widgets chargées
dans le méme environnement

de services (I'agrégateur).

Les développeurs créent un
nouveau service, qui découvre
et réutilise des services

présents dans le reagistre
Figure 12 : Réutilisation basée sur une API

charge d'interagir avec sa

2. Découvr Environnement de Service
R Widget 1 S~ .
?ourmsseur\) g -W
_geservices < | | S _____--=v “3- ¥de services
e ; - Widget 3 T
— WIGRTA |+ Vidge 3 |
3. Réutilise

35

2.2 Réutilisation automatique basée sur la sémantique

La réutilisation automatique basée sur la sémaatiget un mécanisme congu pour permettre aux
utilisateurs ordinaire d’assembler des servicesd{iats) en fonction de leurs besoins. Basé sur les
descriptions fonctionnelles des Widgets ainsi qegethgs sémantiques rajoutés au niveau de l'icerfa
utilisateur, ce mécanisme détecte automatiquenesniMlidgets composables et les compose au fur et a
mesure que I'utilisateur les rajoute dans son enviement (agrégateur). La figure 13 montre la difiée
entre ce mécanisme et la réutilisation basée At jue nous définissons.

Réutilisation

automatique basée sur

Réutilisation basée sur une API la sémantique

Environnement de Service
Widget 1

Environnement de Service
Widget 1

1. UtiI%

Les développeurs créent une nouvelle
Widget, qui découvre et réutilise les

Widget 2

Widget 2

! Widget 3

2. L'utilisateur charge les
Widgets dans l'agrégateur.
Le mécanisme les compose

automatiqguement.

1. Utilis

fonctionnalités d'autres Widgets
chargées dans le méme environnement

de services (I'agréqateur).

1. Les développeurs
créent les Widgets
(Service) et fournissent

leurs descriptions.

Figure 13 : Réutilisation automatique basée sgétaantique.

2.3 Réutilisation basée sur un processus

La réutilisation automatique basée sur la sémaatest trés intuitive, mais peut générer des congnna
de services non désirées et/ou non pertinenteutdisation basée sur un processus fournit diateur

la possibilité de contrdler quels sont les Widgptsseront composées dans son environnement deesrv
On se base sur la définition d’'un graphe spécifiprglles sont les Widgets composées et quelleslasnt
données transmises d’'une Widget a une autre. Laefig4 montre la différence entre la réutilisation
automatique et la réutilisation basée sur les [Eee

Réutilisation

automatique basée sur
la sémantique

Réutilisation basée sur les processus

Environnement de Service /’]r""\ Environnement de Service
- (Widget 4/ -
Widget 1 ’ Widget 2 \"‘X/ . Widget 1 Widget 2
Widget 4 ‘ Widget 3 (Widget}\v Widget 4 Widget 3
1. Utilis A L U“ﬁl
L.es’Widgets sont (Nidget 2)
combinées en fonction de z‘ ¥ -Les Widgets sont combinées en fonction
leurs compatibilités Pl du processus préalablement défini.
semantiques (/Widget 3) -L'utilisateur ne verra que les liens les
2

plus pertinents.
Figure 14 : Réutilisation basée sur un processus.

36

2.4 Réutilisation basée sur les services abstraits

Avec la prolifération des services sur le Web ilfestement probable que plusieurs services foaarisles
mémes fonctionnalités. La découverte et la séleat@vient alors un challenge. Surtout lorsque titéres
de sélection différent d’un utilisateur a un awrel’une fonctionnalité a une autre. Le but déél#ilisation
basée sur les services abstraits est donc de fauthitilisateur un mécanisme de sélection dynamide

services selon des regles spécifiées par lui-méme.

Ce mécanisme de sélection orienté utilisateuntdié par les mécanismes décrit précédemment
afin de découpler les services composés des semyicis utilisent d’'une part, et de fournir un raésme

d’adaptation dynamique a de nouveaux contextes slele régles spécifiées par I'utilisateur final.

Ce mécanisme se base sur deux composants : la Mabgtaite, et I'Interpréteur. La Widget
abstraite est techniguement une Widget ordinaige par le fournisseur de I'agrégateur et qui est@se
a une fonctionnalité et un ensemble de régles egigks pour la sélection du meilleur service réalis
cette fonctionnalité. Il est important que I'int@ee utilisateur de la Widget abstraite permettataisateur

final de choisir 'ensemble de régles a appliquemnp celles applicables.

L'interpréteur est quand a lui responsable d’intétgr les regles afin de sélectionner le meilleur

service a exécuter pour une fonctionnalité donbéd=igure 15 résume l'architecture.

Interface Utilisateur Invoquer le service

sélectionné
Widget
abstraite 1
Frontend @ @ \\/

Sélectionner le
meilleur service

A 4

Interpréteur

Backend /

. Plateforme tiers
Registre Widget

Figure 15 : Réutilisation basée sur les servicegraits

2.5 Réutilisation basée sur des données non-structurées

L'affectation d’'un parameétre de sortie d'un servicein paramétre d'entrée d’'un autre est sans daute
méthode la plus utilisée dans les outils de contipnside service basés sur SOA. Cependant, avec la
multiplication des services de communication (&lgssagerie, Messagerie Instantanée, Réseaux spciaux

les utilisateurs sont susceptibles d’échanger deséks qui seraient pertinentes a composer avatrea

37

services. Les exemples typiques sont des adresstalgs, des numéros de téléphone et des datesggésha
par exemple par messagerie instantanée et qui peétre composés avec respectivement un service de
carte géographique, un service de téléphonie, esamice d’agenda. Ce type de composition n’est
malheureusement pas possible aujourd’hui en utilies outils de composition de services traditeany

compris avec ceux destinés aux utilisateurs avancés

Le but du mécanisme que nous proposons dans cettors est de permettre ce type de
composition ; a base de données non structuréesoheeption de ce mécanisme est caractérisée par
lintroduction d’un nouveau registre qui contiemd @nsemble de modules permettant I'extraction de
données non structurées. Chaque module est assonié/pe de données. Ainsi, au moment de 'exéauti
les utilisateurs peuvent associer un extractewlatmée a une Widget. Par ce fait, a chaque foisdgae
données du type associé sont détectées, I'agrégi®uextrait et optionnellement les compose avec

d’autres Widgets présentes dans la méme instankagiégateur. La figure 16 illustre ce mécanisme.

::ﬂ Agenda Edition Xl & oOrange phone Xl
P March, 25th 3 3 Unregister
* 10:00-11:00 Presentation Framework Meeting s Ccall
* 11:00-1200 Service compesition demo

&2 Instant Messaging

X
Regarder Disponibilité

nassim.laga@orange-ftgroup.com

% hide the keyhoard
Massim >3 Are you available at BMarch, 25th for 34

meeting? A

ysical

Appeler
m Locate

4 i Al
Me == e Edition (=]

MNassim =2 Toucan also invite Alice at +33 635353526

4 I Gal
Me 3 Great! let's have the meeting in my office, at 42 Fue des
coutures, 14000 Casn =
lel } | Map | Satellite
Palo Alto .\.‘.Iﬂ‘l
5o} Ave it
.q"’fa - B
.CCQ
%ﬁ%’
i 4
3 e !
oa : R'rf?fda Eﬁ&a‘c

[

Stanford

Figure 15 : Réutilisation basée sur des donnéestanturées.

2.6 Réutilisation multi-terminal

Les mécanismes précédemment décrits supposentréanement de services de I'utilisateur limité a un
seul agrégateur de Widgets exécuté sur un seulnainCependant, avec la prolifération des ternxnau

I'utilisateur est susceptible d'utiliser plusieuterminaux (laptop, TV, mobile, tablette...etc.). Le

38

mécanisme proposé dans cette section vise a étérminmécanismes de réutilisation de Widgets vers

plusieurs terminaux d’'un méme utilisateur. La figae illustre notre objectif.

Terminal 1 Terminal 2
Environnement de Service Environnement de Service
-
Widget 1 Widget 2 Widget 5 Widget 6
T / \\ |
Nl
Widget 4 — Widget 3 Widget 8 [+ Widget 7
A

Figure 16 : Réutilisation inter-terminaux.

La conception de ce mécanisme repose sur la définit’'un protocole d'échange des
informations relatives aux capacités fournies jgar\Widgets. Les informations sont échangées argave

une entité serveur qui fait le lien entre les teamix d’'un méme utilisateur.

3 WOA dans les domaines d’application de SOA

Comme SOA, WOA est un paradigme qui peut s’appliguiea composition de services et a la gestion des
processus métiers. Dans cette section, nous allétaller comment celle-ci sont réalisables avec le

paradigme WOA.

3.1 WOA pour la composition de services

Dans I'état de I'art, nous avons classifié les lsutle composition de service en trois ensembles : |
composition statique, la composition semi-automegjcet la composition automatique. Nous allons donc

voir comment ces approches sont réalisables avearésligme WOA.

La composition statique basée sur le paradigme V¢&Aréalisée en utilisant I'API offerte par
I'agrégateur de Widgets que nous avons défini. plésisément, les développeurs de Widget utilitent
trois fonctions suivantesGetWidgetListSubscribeetPublish L’avantage de cette approche est que d’une
part le développeur utilise les services utilisé lpgilisateur final afin de créer son service quusé, et
d’autre part, I'utilisateur peut personnaliser @nvice composé en chargeant les Widgets par aglids
préférent. La personnalisation des services consgosét se faire aussi de maniére automatique ksanti
les Widget abstraite, dans lesquelles le servicacred exécuté pour chaque fonctionnalité est

dynamiguement sélectionné suivant des régles spegipar I'utilisateur final.

39

La composition semi-automatique basée sur SOA astllement délicate pour les utilisateurs
ordinaires, sans connaissance en informatique. dradigme WOA en se basant sur la réutilisation
d’interface, la sémantique, et la composition dgetent au niveau de I'environnement de service de
l'utilisateur, permet de combler ce manque. LeBsatieurs créent un nouveau service juste en chatge
des Widgets dans leur environnement de travail. cBdait, il n'est pas nécessaire de connaitrefeept

d’organigramme, de paramétre d’entrée ou de parardétsortie d’un service.

Outre le ciblage des utilisateurs ordinaires, W@#npet aussi
» de composer des services distribués sur difféentihaux de I'utilisateur, de maniére a
ce que les différentes fonctionnalités soient etézidans le terminal le plus approprié ;
« de composer des services a partir de données mmtusées ;
« de découpler les services composés des serviceasags qu’ils utilisent (en utilisant les

Widgets abstraites).

Dans I'état de 'art nous avons montré que la caitipm automatigue dans SOA manque de
précision dans le sens ou les services créés mespondent pas toujours et exactement aux besoins
exprimés par Il'utilisateur. Ceci est essentiellemém a I'ambiguité du langage naturel. Le paradigme
WOA permet a l'utilisateur d’ajuster un service &r€ette capacité se traduit par le fait que lagtleur
peut modifier la logique d'un service créé en ckarg et/ou en supprimant des Widget dans son

environnement de travail.

3.2 WOA pour la gestion des processus métiers

La gestion des processus métiers est I'un des ad@madl le paradigme SOA est largement utilisé.
Cependant, comme nous l'avons détaillé dans l'deat'art, SOA ne permet pas de répondre de fagon
optimale a I'hétérogénéité et la dynamicité descpssus métiers d’aujourd’hui. Dans cette sectiams no

allons définir une méthode de gestion de processéters basée sur WOA, afin de répondre plus

efficacement a cette problématique.

Cette méthode consiste a définir un processuenmeEimme étant une union de deux partie : une
partie commune a tous les utilisateurs, et unéepapécifique a un sous ensemble réduit d'utilizatea
premiére partie est généralement stable a traeetsnhps, contrairement a la deuxiéme qui est sduven
dynamique. En se basant sur ces assertions, nopsgans que la partie commune des processus métier
soit modélisée par des entités spécifiques et dppée comme une Widget réutilisable, et que lagart
spécifique soit modélisée et implémentée par ldsateurs eux méme en utilisant les mécanismes de

composition définis dans WOA.. Ainsi, I'hétérogéiéitst simplifiée par le fait que les entités respbies

40

de la modélisation des processus métiers ne s'eatugue des parties communes a une population
significative d’utilisateurs, et la dynamicité daocessus métiers est prise en compte car cettardgite
concerne souvent les parties spécifiqgues et que-deles utilisateurs finaux s'occupe eux-mémes de
modifications et des adaptations en fonction deslewwuveaux besoins. L'adaptation des processus peu

également se faire de fagon automatique en utilleanVidgets abstraites.

Implémentation et Expérimentation

Afin de montrer I'implémentation des concepts qums avons définis, nous allons dans ce chapitre
parcourir 'ensemble des mécanismes et illustraccoh d’eux. Ces mécanismes sont actuellementéstilis
dans plusieurs projets internes et externes (ergjetpeuropéen SERVERY, agrégateur de Widget

d’Orange).

1 Réutilisation basée sur une API

La Figure 17 montre deux Widgets (Téléphonie et Wsire d’entreprise) composés en utilisant I'API
fournie par I'agrégateur que nous avons congcu etémenté. Dans ce cas d'utilisation, a chaque appel
entrant dans la Widget de téléphonie, une rechatehi&appelant est effectuée dans la Widget d’aimaua
d’entreprise. Ceci est réalisé en deux étapes.iBrement la Widget d’annuaire a préalablement décla
gu’elle fourni la capacité d'effectuer des rechercur un numéro de téléphone. Deuxiemement, dans le
code de la Widget de téléphonie, le développeuriagn compte les Widgets chargées dans I'espace
utilisateur (en utilisant la fonction JavaScrgstWidgetList et publie le numéro de 'appelant a chaque

appel entrant (il utilise pour cela la fonctipablish.

d Corporate directory Edition 2| & Orange phone Edition %]
Wew Search Chercher :
irfar mation I'appelant Incoming call
Hassim Laga <+ |
Phota . A, ' "‘ |
Serice : FTMEMBEDEIE T PSS s -—_.
Services en Ligne et Annuaires pour ” # w
laz entreprises 4 5 [
Phone : 0231759005 d L 4 d
F::;;sim Iag:@2 il::gseﬁf?tagroug com J : - -
A | 4 et -
Address : RD CAEN @ a d

42 rue des Coutures BP G243 e

3 hitle the kevboard
14066

CAEN

Manager: M. Philippe Michon
Secretary : hime hiichelle Harel

Figure 17 : Composition a base de I'API de I'agtéga

2 Réutilisation automatique basée sur la sémantique

Le but de ce mécanisme est de composer les Widgaimatiquement au fur et & mesure que I'utilisateu
les charge dans I'agrégateur. Contrairement au migroa précédent ou les développeurs utilisent dds A
JavaScript (JS) pour découvrir les Widgets chargéed'utilisateur et publier des données, le It ici

fait automatiquement par I'agrégateur en se basanta compatibilité sémantique. Ce lien est syiisiol

42

par une icéne insérée dans la Widget source derdaé&b. La figure 18 montre un exemple de service

composé créé par ce mécanisme.

= agens |I‘!I.'£ CDI‘If = “rdiion 53— "M web conferencing 2 4§ corporate direstory Edition =]
-
e I et e
Folwyar 24th 2009 - - participants
’ - =
el . s
! A 70es & W BT s e
i P Search W { atienion. i Init 1M
. Web Ko “__organizer EISIXE 4 o 4 bt #n Ligna at Annuaives pour
ELREE R st 3 org; — i -
= el I — Phone ') 05
15001550 ‘r"'::’;f o 4 i Init 1M P 023173l s
1 L 8 Felition & Addraze)?DCAEN..--
[I' nassimlaga-or ||||;--I|-|r---|:'.- o = '"'Sﬂ":“‘-""'“EPa:‘u
B o =
Share a]
CAEMN
document .o :Helis X
] socurnent sharing Editiog- e ¢ Why did you join the conference call
" Y - Manager Pt
Dacument 0T _ Biwe | me:? Secretary: M
Attendee m = —
Attendee list [:'o'ali

[ok]
T —— T T

Figure 18 : Composition basée sur la compatibéiitdantique.

3 Réutilisation basée sur un processus

Le but de ce mécanisme est de fournir a I'utilisafanal un moyen de contrdler les liens entre Veéidgui
sont créés par le mécanisme précédent. Pour cels mous basons sur une définition d’'un service
composé. Ainsi, au fur et & mesure que I'utilisaharge des Widgets dans son environnement,
» des liens sont automatiquement créés selon la diitip@ sémantique entre les Widgets,
e un processus est défini (dans sa premiére verBoprocessus contient tous les liens possibles
entre les Widgets chargées dans I'environnemehtitlesateur),
La particularité de ce mécanisme par rapport acéoient tient au fait que I'utilisateur peut supmimdes

liens et en automatiser d'autre. La définition dovice composé est alors modifiée en fonction.

4 Réutilisation basée sur les services abstraits

Le concept de service abstrait est caractérisélgzaWidgets abstraites et I'Interpréteur. La figu/@
montre un exemple d’'une Widget abstraite, dontdacfionnalité est I'’envoi de SMS. Elle permet a
I'utilisateur final de spécifier des regles de st a appliquer sur cette fonctionnalité, de futes
parameétres d’entrée nécessaires a I'exécution ttke fomctionnalité, et d’exécuter le service cohgua a
été sélectionné par I'Interpréteur.

Dans notre exemple de la figure 19, l'utilisateuncivé la sélection selon la localisation du

destinataire du SMS. Le service sélectionné esthdffen bas de la Widget.

43

~ Send SMS - Abstract service @ x

[T Sélectionner le service selon ma lacalisation

¥ sélectionner le service selon la localisation du
destinataire

Chaisir les regles o o
de Sélection < [T Limiter le prix &

12

" Minimiser le prix

\
[Motre text ...
Entrer les Message
parameétres
d'entrée Wotre N° Tel. | +336123456789
Me Tel, de
destination I +32412245678%9

Voir les service
sélectionnés

Telefomica

S

Figure 19 : La Widget abstraite.

5 Réutilisation basée sur des données non-structurées

La réutilisation de Widgets a base de données trantgrées est une architecture qui permet la tiéfm
d’enchainements de services, ou les données sosmdsd’abord extraites et formatées, et ensuite
transmises comme paramétre d’entrée a la Widgdestnation. Afin d’illustrer ce mécanisme, prentms
service composé illustré dans la figure 20. L'exicude ce service est précédemment illustrée tans
figure 15. Ce service composé peut étre créé eimsamnt par I'utilisateur final dans son environnetroin
services. Pour cela, il charge d'abord les Widgeisessaires (dans notre cas, il charge la Widget de
messagerie instantanée, la Widget de téléphonWjdget de carte géographique, et la Widget d’aggnd
Ensuite, il associe des extracteurs de donnéestnocturées a des Widgets, selon la logique duicgerv
composé qu'il veut créer (dans notre cas, on asstes extracteurs de données respectivement de type
date de typenuméro de telet de typeadressea la Widget de messagerie instantanée). A I'ei@aules
extracteurs de données associés aux Widgets détégtprésence ou non des données correspondante, e
optionnellement, les composent avec d’autres Wlgedsentes dans le méme environnement de services

(figure 15).

————N°Tel

44

______ Telephony
— -Adresse postale- —
|l _ Date— — — — — — — »|Agenda

Figure 20 : service composé a base de donnéegmiotusées.

6

Réutilisation multi-terminal

La réutilisation multi-terminal permet aux utilisats de définir des compositions de services Hisdes

sur différents terminaux. Ce mécanisme repose audéfinition d’'un protocole d'échange entre les

différents composants que nous avons défini jusgu€e protocole permet a chaque composant d’avoir

connaissances des Widgets chargées sur chaquaakduil'utilisateur, et leurs capacités. Afin lligtrer

ce mécanisme, nous proposons ici deux scenarioprdmier consiste a connecter des Widgets chargées

sur deux agrégateurs tournant sur deux terminaffgreits. Le deuxiéme, consiste a connecter une

application (liste de contacts) Google Android I{sdint le protocole que nous avons défini) avec les

Widgets d’un agrégateur. La Figure 21 et 22 illeistrespectivement les deux scénarios.

[u] = 8 =
Connected Connected
o =) tocaliser votre correspondant Edition I
La Petite Auberge Accueil : 02 31 66 43 30 des prairies Styilles, 14000 caen| Gol
+ tig coordonnges:
— T T TR T
Localiser Restaurant [tap] sateiite | rvtria
e 5 ant
T PRrETRR : 13 Rue des prairics St-gilles, 14000 cacn
restacrants s1e
=
mn
La Poterne
restaurarts
it - Frangsis
La Prairie erbe.
restaurants o
La Rive Droite
i AT
ogle ¥
Goigle 3
La Taverne de Maitre Kanter H21 5
1, Bvenue su §-duin
Laptop Mobile

Figure 21 : Composition multi-terminal.

Add To Mobile
contact List

& Corporato directory

::ow» Laga (i

Tamii

Emmanuel Bertin [

Maryline Gidon
Search In
Directory

- N

O send

Eadition 5

V/ Y
Mobile phone Laptop web browser

Figure 22 : Composition multi-terminal d’'une applion Android et des Widgets.

45

Conclusion

La plus importante contribution de cette thesdaesdgfinition d’'un nouveau paradigme de programamati
orientée service basé sur le concept de Widget (YWOA fait de sa conception orientée utilisatenal
ce nouveau paradigme nous a permis de définir wagateur de Widgets qui intéegre des outils de

composition accessibles par l'utilisateur final.

Le paradigme WOA est caractérisé essentiellementdpax principes : le développement de

services sous forme de Widgets (interface utilisateypage sémantique, et description de fonctibitdsy,

et la composition au niveau de l'interface utilmat Basé sur ces deux principes, nous avons défini
agrégateur de Widgets qui intégre des outils deposition au niveau de l'interface utilisateur. Naw®ns
défini trois approches de composition : la compasien utilisant I'’API de I'agrégateur, la compasit
automatique et sémantique, et la composition baséain processus. De plus, nous avons défini trois
extensions a ces mécanismes afin d’étre encorequlasté vers les utilisateurs finaux : le concdpt
Widget abstraite, la composition & base de donnéasstructurées, et la composition multi-termina.

figure 23 montre les différents mécanismes ainsilgurs avantages.

(Mécanisme WOA \

4 AP
/—\ Réutilisation B Crasion 6s
Composition de sémantique et o
Service automatique L processus métiers
-~ .

Composition statique hétérogénéité

\

. 2 Ve
4 L . N N, <~d
Réutilisation a base o
s ~
R - de processus ~

Composition Semi- |-t~ P) ‘{ dynamique]
automatique
[}’ ------------- F== Widget abstraite U “[]
S ‘"‘_ Réutilisation & base Détection des
T *[des données non T B données non
s structurées structurées

AN
Ny PR .

Réutilisation multi

terminal

Composition
Automatique

Couplage

---------- » Utilise
Figure 23 : Résumé des contributions.
Il important de noter que les comparaisons de WQAS@A faites dans ce document ne

préconisent pas un remplacement de SOA par WOAcohtraire, notre but est de montrer que chacun des

deux paradigmes a ses avantages et ses incongmeqtie les deux approches doivent coexister utans

48

solution globale afin de fournir des capacités denmositions de services destinées a la fois aux

développeurs et aux utilisateurs ordinaires. L'appe que nous préconisons se résume en ce qui suit
» Les développeurs créent des services web (SOA),
« Les développeurs créent les Widgets correspondébea et WOA),

» Les développeurs composent les services web, cléenwidgets correspondantes, et

optionnellement, utilisent la composition statiduesée sur WOA (SOA et WOA)
« Les utilisateurs composent les Widgets dans lewsanements de services (WOA).

Les différents mécanismes introduits dans cettseti®us ouvrent de nouvelles opportunités de
recherche a approfondir. La premiére est I'exptimita de I'intelligence collective des utilisateupsur
enrichir des modéles sémantiques en se basantagutdateur de Widgets. Dans cette thése nous avons
utilisé un modéle sémantique peu expressif, legafiomats. Cependant, la composition étant faite pa
I'utilisateur final, dans son environnement de 8@y, ce manque d’expressivité du modéle est dapkis
part du temps compensé. Il est néanmoins intéredsgprofondir cette idée pour construire des neslé

sémantiques en fonction des liens entre les searcigds par l'utilisateur final.

La deuxieme perspective concerne la gestion desepsaos métiers. La découverte de processus
reste un challenge, méme en se limitant a la pestiemune aux différents aux utilisateurs. En petanét
aux utilisateurs de concevoir et d’automatiser méme la partie qui leur est spécifique, nous posivon
facilement détecter quelles sont les pratiqueplies courantes des différentes entités d’une osgéion.

Par conséquent, il serait possible de concevoiodts pour aider les entités business a décidand des

enchainements définis par des utilisateurs pew@renir des processus métiers a part entiere.

Et enfin, le troisieme sujet de recherche qui ngemble intéressant a approfondir est la
composition a base de données non structurées. dattiesthése nous nous somme limité a I'extraati®n
données d’'une source textuelle/HTML. Nous pensanig gerait encore plus intéressant d’étendre le

mécanisme a des sources multimédias (voix, photo.)..et

English Thesis
Abstract

The last decade has attracted lot of research wo8ervice-Oriented Computing (SOC), giving raiee t
standardized architectures, protocols, and teclgiegothat enable developers to easily expose amgk re
services. However, these technologies do not fidlysider the users as potential actors in the ioreaf
services based on existing ones, as advocated in2/@eparadigm. In this thesis, after a deep ingason

of SOC and its intrinsic SOA paradigm, we proposeea approach based on Widgets. We propose the
Widget-Oriented Architecture (WOA); a new paraditprenable a user-centric service reuse. In addition
we introduce new innovative mechanisms based oMMB& paradigm to overcome current limitations of
SOA in service composition and business processaaganent fields. This new paradigm, along with the
innovative architecture and mechanisms introdudeas been validated through implementation and

testing.

Introduction

Web 2.0, current “Web era”, is characterized byirmreasing number of services, user participation i
content creation, user centred design, informagiwering, interoperability through standards, ant tiser
interface technologies. These characteristics heakity revolutionized both software engineering moeis
and users interaction with software features. Smiéwfeatures are no longer packaged as a independen
applications; instead, they are split into and jsltdd as Web services in order to promote crossentkt
and cross-organizations sharing, collaborationsability, and integration. This is known as Service
Oriented Computing (SOC) [Papazoglou, 2006] [Hul2@§5] [Casati, 2007]. For instance, Major Internet
companies such as Yahoo, Google, and Amazon prawideeir customers and to third party developers
reusable services such as Online Storage, EmailMaps; an approach which is also adopted by teteco
operators, renaming it "telco 2.0", where functigies such SMS, MMS, Localization, and Telephong a
exposed to third party developers on the one hand, third party services such as Maps and social

networks are used within telecom applications @dther hand.

User interactions with software features have atenged during the transition from Web 1.0 to
Web 2.0. This is characterized by replacing tradii desktop applications by remote and on demand
applications from one hand, and providing an actle to the users in the evolution of servicesrfro
another hand. First, Web based applications areenmzord more complete and mature, and they
progressively replace traditional desktop applaadiin the user daily life. Even hardware capaédisuch
as storage and computing can be sold and boughtewrand through the Web. This is known as XaaS,
which refers to “Everything as a service” (Softwatefrastructure, Platform, Communication...etc.).
Second, users are no longer considered as “puresucoers of services, but instead they play a piegai
role in testing and evolving these services. Tylpeeamples of this phenomenon are Wikipédiad
YouTubé& web sites where their success is completely degrgrmh the quality and the quantity of content
generated by users. User patrticipation in contegdition is definitely a success approach as fompia

YouTube web site has reached in January 2009 16illién of U.S. viewers according to Comscbre

These two characteristics of the current Web platfmamely software fragmentation into Web

services and user participation in content creati@mve encouraged the idea of enabling the useretate

" Wikipedia, http://en.wikipedia.org/wiki/Main_Pageaccessed Dec 22, 2009

8 YouTube http://www.youtube.com/accessed Dec 22, 2009

9 Comscore, statistics on online videos,

http://www.comscore.com/Press_Events/Press_Rel2888¢3/YouTube Surpasses_100_Million_US_Viewer&Ps2
anguage%29/eng-U&ccessed Dec 22, 2009

Introduction 52

and publish new services by composing existing ofkis is known as user service creation. The ol
harness the user intelligence in service creatiotihé same way we do it today (Web 2.0 era) inemunt
creation. Consequently, several approaches have greposed. Some of them are automatic such natural
language based service composition, and othersreegdditional investment from the user by manually
and graphically chaining services.

To access and consume services, users rely on whatall in this thesis “user service
environment”. This term covers any software appiicathat enables the user to access, manage and
consume services. This includes traditional desktogronments (e.g. Microsoft Windows, MAC OS, and
Linux), emerging Web-based operating systems @apgle Chrome OS, Wiki-34 Glide 0S*, and
eye0$?), and Widget aggregators (e.g. iGodgland Netvibe¥). Historically, there are two important
evolution phases of user service environments. flisé one is characterized by evolving from CLI
(command line interfaces) into WIMP (Windows, IcoMenus, and Pointer) interfaces, and the second
one is characterized by considering the XaaS pgmadihere software applications are hosted and ngnni
remotely in the Web. Even the user service envirgmnis sometimes hosted remotely in the Web (e.qg.
Wiki-OS, Glide OS, and Netvibes); this implies agrsficant simplification in term of storage and
computing capabilities of users’ devices, as wallim term of software maintenance. In addition of
adopting the XaaS paradigm, Widget aggregatorsnatteéo replicate the technical and the conceptual
evolution from Web 1.0 to Web 2.0. Indeed, from tbehnical perspective, Widget aggregators follbe t
Web 2.0 fragmentation into Web services. They mfythe concept of a Widget to access and use
functionalities available remotely on the Web. Frthra conceptual perspective, Widget aggregatohswol
the user-centric design. They promote personatigalty enabling users to create their own Mashup by
loading different Widgets of different providers tire same environment. However, while Web services,
SOA (Service-Oriented Architecture), and SOC haweeted much academic attention during these two
decades, Widget paradigm is not really investigaldds thesis aims to fill this gap. It aims notlyto
study the impact of the Widget paradigm on existeghnologies of SOC, but also to attempt to sutcee

by using Widgets where SOA failed.

10 Wiki-OS, https://www.wiki-0s.org/ accessed Dec 22, 2009

11 Glide-OS https://desktop.glidesociety.comccessed Dec 22, 2009
12 eyeOShttp://www.eyeos.comaccessed Dec 22, 2009

1BiGoogle http://www.google.com/ig?hl=ermccessed Dec 22, 2009
14 Netvibes http://www.netvibes.comaccessed Dec 22, 2009

Introduction 53

1 Problem Statement

Service creation methods have significantly evolgette the beginning of computing technology. The
starting point was assembly languages; low leveymmming languages that enable developers toalafin
sequence of instructions to be performed by a micrmessor. Then, in order to accelerate servicatiore
and reduce the time to market, the philosophy o$ability progressively took momentum in the eviolut
of service development methods. Indeed, develofiestly have in their disposal macros and functions
which are sets of instructions that are reusabthivthe same program. Thereafter, the concepbjecd
has emerged in Object-Oriented programming OOP [Ci®86], which is reusable over different
applications. We also retrieve the concept of dbjec CORBA (common object request broker
architecture) [Vinoski, 1997] and OLE(Object Linking and Embedding). CORBA is crosswmk and
programming language independent service archite@nd OLE is a Microsoft technology that enables
applications to exchange data with each other.lliyina SOA, reusable service and/or reusable resou
have respectively emerged in Web services architecf{WSA) [Newcomer, 2002] and REST
(Representational State Transfer) [Fielding, 20QA has attracted much attention during this last
decade, giving rise to several research and apiplickameworks that cover heterogeneous field$ s
Service Composition, Business Process Managemadt,Parvasive Applications. However, the listed
service computing technologies, as well as the gimgrones in the Web, do not fully satisfy Web Bdst
practices, where:

e the useris placed at the centre of service dewatop (user centricity),

e personalization becomes more important than evertduthe heterogeneity and dynamicity of

user needs,

e userinterface (Ul) and user experience are impbdateria in service development.

The goal of this thesis is to define a new paradigmare the listed best practices are fulfilled by:

e enabling users (without computing skills) to mod#yisting services, or creating new ones
through composition according to their needs, &nd fpromoting personalization,

< considering the Ul as an important criterion wiafeabling the personalization and the creation of
services,

« considering the proliferation of user devices, #he need for composing services loaded on

different devices,

15 Microsoft OLE,http://msdn.microsoft.com/en-us/library/aa271010%285.60%29.aspxaccessed on July 31, 2010

Introduction 54

e considering session based services (e.g. telepandylM), where the capabilities may change
from a state to another (e.g. the user is conngatedmmunication is established...etc),

« considering the proliferation of user generatecidahich could be useful for composition with
other services (e.g. extracting postal addresses &n IM discussion and composing it with a
Google Map service),

e considering users own criteria in service discovery

2 Contributions

This thesis aims to first introduce an alternatwvé&OA that satisfies the listed requirements; sexbnd to
formalize and validate it by considering differ&®A application fields such as Service Compositiod
Business Process Management. Therefore, we fimgidimce a Widget-Oriented Architecture (WOA); a
new computing paradigm that aims to be more usetrice(Section 2.1). Then, using this new paradigm,
we explore two SOA application fields, namely SeeviComposition (Section 2.2) and Business Process

Management (Section 2.3).

2.1 Widget-Oriented Architecture (WOA)

The WOA relies on Widgets in the development ofwafe features. A Widget is a small client-side web
application for offering atomic functionalities af software feature. A Widget includes a Ul for each
operation of a software feature. Thus, when a semprovider creates a service, he also associdiéshet

facilitate the user-service interaction. This epabto create rich Ul and provide something more

meaningful for ordinary users, instead of readimMgLiles, which are addressed more for developers.

The WOA is basically characterized by a Widget digver, a Widget provider, a common Widget
registry, the user, and the Widget client which edwbthe necessary mechanisms that enable theauser t

combine the Widgets.

2.2 Service Composition using VDA

Service reusability and composition are the drivingcepts of SOA. In this thesis we have classitfen
into three categories: static service compositioriomatic service composition, and semi-automaticise
composition. In summary,
» static service composition aims to provide techgige to developers to perform reusability and
composition,
e automatic service composition aims to enable usegenerate services by expressing their needs

using their natural language,

Introduction 55

* and semi-automatic service composition aims to lenabers to create a composite service by

graphically chaining ready-made services.

However, while SOA has succeeded in static sercmeposition, the automatic and semi-
automatic ones still suffer from several limitasoetailed inChapter I.1 State of the Aitin this thesis, we
demonstrate the potential of the WOA paradigm rdiggrthe static, automatic, and semi-automaticiserv
composition. First, we enable a user-centric staticvice composition using Widgets. Second, we
significantly enhance the intuitiveness of semieaudtic service composition by introducing new
approaches, centred on the users. Third, we enlihaqeerformances of automatic service composhipn
enabling users to intuitively refine a created Eexywhich does not always mach exactly the usedsas
automatic composition still suffers from its inacacy. In other words, we use the user service caitipn
capability as a failure recovery system in automatomposition. Finally, we enrich these three
composition tools with three concepts:

« abstract service based composition in order ta flecouple composite services from the basic
services they invoke; and second, take into accoset context and preferences in the execution
of the composite services;

e unstructured data based composition in order teiden within the composite service definition
data that are not declared nor formatted by deeetogt the service publication time;

« multi-device service composition in order to takéoiaccount the proliferation of user devices,

and provide the capability of composing servicesltd on different devices.

2.3 Business Process Management using WOA

SOA has significantly improved business processagament and integration. However, due to developer
centricity of the SOA paradigm, business processagament and integration still do not provide the
flexibility needed by users and business processagexs. This is due to the complexity of business
process definition tools from one hand, and thiatlilty for service developers to detect all ddtattmight
be useful in performing a business activity. Thizee points are detailed in the state of theGirapter 1.1
State of the Art

This thesis demonstrates the potential of WOA tkl&athe two limitations in managing and
integrating business processes. First, by enaltfiegrdinary users to compose services using thoggyi
paradigm, we also enable users to personalize llusiness processes. This tackles the heterogeaity
well as the dynamicity of business processes. Skoee introduce the dynamic adaption of composite
services, which enables developers to implemeninbss processes that automatically adapt their

behaviour according to a new context. Third, weppse and validate a new mechanism named

Introduction 56

“unstructured data based service composition”. Tilshanism enables users and developers to chain tw
services based on data that are not expected asylegtputs of the first service. From the busirsesayst
perspective, this enables capturing unstructuregd ediich circulates between employees (e.g. postal
addresses within an emails), and from the techrpeaspective, this alleviates service developersfr

annotating and formatting data which are hardlyeetable as legacy outputs of their services.

3 Context of the Thesis

This thesis is carried out mainly at Orange Lahss{Bess Unified Communication (BUC) laboratory)dan
Telecom SudParis (Réseaux et Services Multimédibilel® (RS2M) department). It is supported mainly
by two projects: namely CCKMA and SERVERY. CCKMAgrf Communication,_G@Gllaboration,
Knowledge, and Mbile Access is an Orange Lab internal project which aims tadg and define
innovative solutions for communication and colladdmn within business organizations context. The
second project, SERVERY, fékdvanced SER®e Architecture and Service DelivEREYivironmentis a
Celtic European projett that aims to build a marketplace of converged isesv(Telecom and Web
services), where service creation, service manageraad their execution on heterogeneous platfasms

supported.

4 Manuscript Organization

This manuscript is divided into three parts. Thstfpart reviews the SOA paradigm (including sezvic
composition and business process management)ysdhigion of service environments, and the Widget an
Widget aggregator (a user environment type) paragigirhe second part of this thesis details our main
contributions. It includes a Chapter which introésithe principles of the WOA paradigm, a Chapteciwh
details the design of a framework (Widget aggregatompliant to these principles, and a Chapter for
defining how WOA is applied respectively in servimanposition field and business process management
field. The third part of the thesis details the lempentation of our contributions. It includes a Qtea for
detailing the implementation of WOA, a Chapter ilarstrating how it is applied respectively in siee
composition field and business process manageraedta Chapter for summarizing our experimentations.
Finally, we conclude with a summary of our conttibos, the advantages of WOA compared to SOA, and

some future research directions regarding thid fiel

16 Servery projectattp:/projects.celtic-initiative.org/serverygccessed Dec 22, 2009

Part | State of the art

This part investigates the service-oriented commgutand the Widgets paradigms. We highlight the
advantages and limitations of each one in ord@répose, in the second part, a new architecturadgmn

that includes the best of each of them.

58

Chapter I.1 State of the Art

The general context of this thesis is halfway betwegervice environments and service-oriented commgput
(SOC). Therefore, in this state of the art Chapter,will investigate the concepts related to thise
fields. We clarify in the first section the defioit of the term Service. Then, we investigate ti@CS
paradigm in section 2. This includes the study efvige Oriented Architecture (SOA) and related
technologies, and the investigation of service amsitippn and business process management fields. In
section 3, we study current service environment@gghes. We detail the Widget paradigm in section 4
We summarize in section 5 current Web semantiai@olgies, as this field is omnipresent in currergbV

2.0 and software engineering research. Finallycerelude with the limitations of all these fields.

1 Services

In order to clarify the meaning of the te@ervice we study in this section the different definitothat
different entities assign to this term. We startpbgviding the user view, and then, we study tlubtécal
usage of the term. Literally, the term Service nefe several meanings. Followings are an enunoerai
some selected definitions from Collins dictiorfdry

* An act of help or assistance,

* An organization or system that provides somethiegded by the public, a consumer information

service,

» the installation or maintenance of goods providgdldealer after a sale,

» the serving of guests or customers,

The first definition is generic; it includes anytaaf help or assisting someone or something.
Instead, the others are more focused and defineséhgce as a relationship between a provider and a
consumer (person). Indeed, the second definitiofinele a service as a relationship between an
organization, or a system, and the public. Thedtbine defines the service as a relationship between
dealer and a consumer (person). Finally, the foonth defines a service as the act of serving at guies
customer.

In IT (Information Technology) and Telecom commiegst we also find several meaning of the
term Service. Some of them differ, and some othenverge. Table 1 summarizes the different defingi

of the term according to different entities (Stamlifzation entities and European projects). We wligtish

17 http:/Avww.collinslanguage.com/results.asggessed Dec 22, 2009

Chapter 1.1 State of the Art 60

two main orientations. The first one includes SPI[C&rdier, 2006], OPUCE [Yelmo, 2008], and OMA
[OMA, 2007] definitions. They define a service thgh its usage properties. They highlight the
relationship between a provider and a consumer. Sdo®nd orientation includes the SeCSE [Sawyer,
2005] and W3C [W3C, 2004b] definitions. They defimeservice through its technical properties. They
highlight the fact that a service is a softwareitgnand it is described at least through one servi
description. When aggregating both approaches, amededuce that a service is a software entity that
performs one or more operations. It is developedabservice developer and has at least one service
description. It is made available by a provider andsumed by a consumer, who is optionally chafged
This definition highlights three roles: the devedopthe provider, and the consumer. While the dpe

and the provider are obviously human entities, dcbesumer is ambiguous. Indeed, the consumer of a
service might be a user that invokes the servicerdier to consume it, or a developer who may réhse
service to create a more innovative one. Thisrdititn is introduced in OMA. Indeed, they distingjui
between software entities which are consumed byhansoftware entity, and those that are consumed

directly by users. Thus, the former is nankgtablerwhile the latter is name8ervice

Table 1. Technical definitions of the term Service.

Entity Definition
SPICE [Cordier,

2006]

A service is an added value that is provided bgraise provider to an end user.

OPUCE [Yelmo,| Provider-client interaction that provides value.r8ee properties are described

2008] with a service specification.

SeCSE [Sawyer,| Software entity that performs one or more Operatidhis developed by a Service

2005] Developer and has at least one Service Description.

Enabler. A technology intended for use in the developmeeplogment on
operation of a Service; defined in a specificatiar, group of specificationg,
OMA [OMA, published as a package by OMA.

2007] Service: A selection from the portfolio of offerings madeaitable by a service

provider, which the user may subscribe to and k#ooplly charged for. A servic

D

may utilize one or more service enablers.

0 An application that provides computational or infaational resources on

request. A service may be provided by several palyservers operating as a unit.
W3C [W3C,

2004b]

0 A service is an abstract resource that representagability of performing task|

o

that form a coherent functionality from the poirituiew of providers entities and

requesters entities.

Chapter 1.1 State of the Art 61

2 Service-Oriented Computing (SOC)

Service-Oriented Computing (SOC) [Papazoglou, 2QB6hns, 2005] [Casati, 2007], or Service-oriented
programming (SOP) [Sillitti, 2002] [Bieber, 200F fa new computing paradigm that utilizes services as
the basic constructs to support the developmerapid, low-cost and easy composition of distributed
applications even in heterogeneous environnig®apazoglou, 2006]. This definition highlights MWinat
SOC is more a vision than a technology [Margar@®73. It is characterized by two roles: servicevidter,
and service consumer. The former creates servimbsnakes them available for third parties, anddtter
invokes the service when needed. However, befareyasservice, consumers must discover it. Thishinig
be performed in an ad-hoc way, or using the faedithat are provided by Service-Oriented Architest
(SOA) paradigm. SOA introduces a mediator role whon charge of collecting available services from
providers and making them available for consumers.

As Bichler and Lin stated in [Bichler, 2006], SO&radigm has evolved from earlier component-
based software frameworks such as Enterprise JavaB@EJIB) [Thomas, 1998] and Common Object
Request Broker Architecture (CORBA) [Vinoski, 199Qurrently, SOC is mainly performed using Web
Services Architecture (WSA). Firstly, because WSAsirongly supported by major software companies
such aslBM, Microsoft, Hewlett-Packard Oracle, and SARP Secondly, because Web Services rely on
openly available Internet protocols such as HTT& ¥NIL; exploiting by this way the Web as a trangpor
media [Huhns, 2005]. Finally, because the relagetiiologies such as SOAP, WSDL, UDDI, and BPEL,
have been standardized, as they are largely siggpbytmajor software companies.

This evolution to SOC is the result of several geatresearch and best practices in heterogeneous
fields [Papazoglou, 2006], namely: software engimge telecommunication, and business process
management. Reusability, loose coupling, abstractiad virtualization have been the driving needthis

evolution.

In software engineering the reusability and absivacstarted with the assembling languages,
when microprocessor specific directives hide theahyj code, and macros and functions enable the r@us
a sequence of instructions. Then, advanced languégequential or object oriented [Dahl, 1968],
[Goldberg, 1976], [Cox, 1986]) have emerged (e.gSinula, smallTalk, and C++). Though they provide
advanced directives, that wrap a set of assemidinguage instructions, they still depend tightly tbe
target hardware and operating system. The sucéels/a language is essentially due to its abstraaif
the target hardware and operating system. It emaftle portability of applications through different
machines. In the 1990s, cross network reusabiitysthave emerged (e.g. CORBA and DCOM [Grimes,

1997]). The first version of CORBA specificationrsleased in 1991, the current version is availale

Chapter 1.1 State of the Art 62

[OMG, 2008a]. Finally, in the beginning of 2000sSW and REST architecture have emerged, and have
been largely adopted. The driving needs have allbags accelerating software creation process. i$his

achieved by promoting reusability and abstractibmdeed, functions are reused in the sequential
programming. Objects are reused in OOP and CORB#allly services (resp. resources) are reused in

WSA (resp. REST based architecture).

In telecommunication field, the idea of abstractthg network capabilities started in the 1980s
[Magedanz, 2007] in order to decouple the creatibnew telecommunication services from the network
components [Bertin, 2009]. The Intelligent Netwdiid) has then emerged as the enabling architectode
technology. The IN architecture is characterizedeltracting the service intelligence from the lggac
network switches. A protocol was then defined aladdardized on top of Signalling System 7 netwank f
this purpose: IN Application Protocol (INAP). Theasdard defines the way the IN entities interact. F
instance, it enables the service control point (S@Mere the service logic is implemented, andstrwice
switching point (SSP) to interact with each oth&he service logic is implemented as a chain of
capabilities, so-called Service Independent BugdBiocks (SIBs). A limited set of reference SIBs/da
been defined by the ITU-T, grouped under the nahwapability set (CS-1, CS-2, and CS-3). However, a
stated in [Magedanz, 2007], this limited set of SIBnits the functional capabilities of IN. In atidin,
despite the wide adoption of the INs all around wweld, the envisioned open market of SIBs was not

enabled.

In the beginning of 1990s, the convergence betwel@zommunication and IT began to happen,
and their evolution took more or less the same .phibeed, telecommunication started to use IT
technologies for rapid and low cost service creatibhey have used for instance object oriented
programming techniques and RPC-like tools (e.glayafhPIl and Java APIs for Intelligent (Integrated)
Network (JAIN)). They have also used scripting laages (e.g. Call Processing Language (CPL) RFC
2824 and RFC 3880, SIP CGI [IETF, 2001], VoiceXMN3C, 2004f], CCXML [W3C, 2010]) for rapid
creation of advanced telephony services from skréécg. Call forward on busy/no answer and Call
Screening). The scripts can be created manuallysiog graphical tools (e.g. MetaEdit) known as high
level service creation tools [Glitho, 2003]. Theigts are stored in the signalling servers (e.g2#3
gatekeeper, SIP proxy, SIP redirect, and SIP magjstnd associated to source/destination addresses
When a call establishment request arrives, thealligg server detects if there is an associated €¢?ipt,
and runs it. When Web services technology has esdeng the IT community, the telecommunication

community also adopted it by developing the PaXaAfI| based on Web services. Finally, current sasce

18 MetaEdit+,http://www.metacase.copdccessed on October.2010

Chapter 1.1 State of the Art 63

of REST APIs (thanks to its simplicity), motivateglecom operators to publish their capabilitie®tigh
REST APIs (e.g. Orange Parttieand Deutsche Telekom Developer Gaffen

In business process management field however, théngl needs are essentially the loose
coupling between different entities, and the flditip of business processes. The advantages bromght
SOC to this field are essentially the separatiawéen service description, service invocation mettamd
service implementation. Thus, business procesgraters can easily discover and invoke a thirdypart
service without having any knowledge about its regllementation. In addition, the reusability ofsting
services makes adaptation to new requirementsreasi¢he implementation of a new business proeess
much faster; though it is still in charge of deyaes. Indeed, though graphical tools such as EcHIREL
designef* for modelling business processes have emergeg, stik remain understandable only by

developers as we detail in the following subsestion

In the following subsections, we first detail ther@ce-oriented Architecture (SOA) from the
conceptual and the technical perspectives; SOMmsidered as the enabling architecture for SOCn;The
we illustrate how service composition and businesxesses management research benefit from SOC.

Finally, we conclude with current unresolved issues

2.1 Service-Oriented Architecture (SOA)

SOA is an architecture that enables SOC. SOC paraii characterized by two entities: service prexsd
who expose their services, and service integratbsreuse these services in the development af dhei
service or application. For a wide adoption of S@iScovery and publication facilities must be pded
respectively to service integrators and servicevigars. SOA is an architecture paradigm that presid
such facilities. It provides a centralized approémhenabling service providers to publish theirvases,
and service consumers to discover them. This @&seg supported by W3C definition of SOA [W3C,

2004a]: ‘A set of components which can be invoked, and whteséace descriptions can be published and

discovered As we illustrate in Figure 1, SOA is based onaanmon registry where service descriptions
are stored. Though this registry might be physyodistributed over several platforms (such as [BQQ6],
[Verma, 2005], and [Podesta, 2008]), it is stilinagn a central entity from service providers andrise

consumers points of view.

19 Orange Partnehttp://www.orangepartner.caraccessed on October 19th, 2010

20 peutsche Telekom Developer Garden,
http://www.laboratories.telekom.com/ipws/Englishiié#Presse/2010/Pages/DeveloperGarden, agmessed on
October 19th, 2010

2L Eclipse BPEL designehttp://www.eclipse.ora/bpelaccessed on July 31, 2010

Chapter 1.1 State of the Art 64

Service registry

Find

Service
description

jgCovery criterion

Access (use) .
» Service interface invocatio

Service consumer

Service provider

Figure 1: Basic service oriented architecture.

The SOA paradigm is based a set of principles [ED7]; some of them concern the service
developers and providers, while others are relébethe service registry. Thus, service developet an
provider should:

» describe their services (service contract) in tefrthe functionalities they provide and their non-
functional properties such as (price, Qos, SLAsi@T of the service,...etc),
* hide to the external world the complexity of thedarlying implementation of the service logic

(service abstraction),

* reduce as much as possible the dependencies \Wwith sgrvices (service autonomy),

» create stateless services.
The service registry should provide interfacespiailication and discovery of services.

In addition to these principles, service reusabdihd composition is a main principle that should

be ensured by a service oriented system.

Web Services Architecture (WSA) is currently comsétl as the intrinsic technology of SOA.
However, there are actually several other technefothat enable it, namely OLE, EJB, CORBA, and
REST. In addition to Web services, we detail in fodowing subsections these technologies. We
demonstrate and explain that current technologiesentred on the developer needs, and do notdmmsi

users as potential creators of advanced servioas éKisting ones..

a. OLE Automation
OLE (Object Linking and Embedding) automation isMicrosoft technology embedded natively in
Microsoft Windows desktop environment. It enable® @pplication to discover and use capabilities of

another one. The concept follows a SOA as depiat&igure 2.

Chapter 1.1 State of the Art 65

Windows registry

getld (program-tame)

program name)
) Server Desktop
> application

When a developer creates an application, he specifihether his application can behave as a

Service
developer

Use (programld.operatio

Client Desktop
application

Figure 2: OLE automation.

server (i.e. it can be accessed and controlled ttbrar applications). Consequently, when usersilinstis
application in their desktop environment, it registitself in the windows registry. Thus, other elepers,
who are aware about this application, its operati@nd their availability at the runtime, can ceeah
application that requests the identifier from tlgistry and use the application specific operatiass

depicted in Figure 2.

b. Enterprise JavaBeans (EJB)

EJB [Sun, 2001] is &un Microsystems Incarchitecture and technology for the development of
component-based applications. In this section wensarize the main concepts of the architecture. As w
illustrate in Figure 3, the architecture includeaimly three roles: a Bean provider, an EJB servat a
container, and an application assembler. The Beavider is the entity which exposes its softwaradees

to third parties. It first implements the busindsgic of its software. Second, it defines two ifaees:
Home Interface and Remote Interface. The formeblesahe Application Assembler entity to create and
remove instances of the Bean, and the latter emabkm to call the Bean specific methods. Thire, th
Bean provider must implement the session Beanfater an implementation which includes public
methods which will be used as entry points to axteshe business logic of the software featureurtho
the provider associates a hame to the Bean andydejlto an EJB server, using a deployment tobe T
deployment tool automatically generates impleménat for the two (Home and Remote) interface
definitions; implementations which will be used the Application Assembler to create instances ef th

published Bean and invoke its methods.

The Application Assembler is the consumer of a Béidiirst discovers an existing Bean within an
EJB server using Java Naming and Directory InterfadNDI) API [Sun, 1999]. Then, it uses the Home
interface to create instances, and the Remotefacteto invoke methods (Home and Remote interfage a

previously generated when publishing the Bean).

Chapter 1.1 State of the Art 66

EJB server +
container
. sess_i%n bean implementation

Create and access publis

Application Assembler

Figure 3: EJB-SOA analogy.
EJB architecture does not really conform to sereidented model. First, EJB is limited to Java

« ejb-jar.xml

¢ Home interface

" * Remote interface

language and J2EE environment. Second, all invaestio a Bean go through the EJB server. This aapli
that there is always a central entity which bridgesveen different stakeholders (provider and comwsi
While this approach may succeed within a limitediemment such as a company, it is still not scalab

enough to be widely adopted within the Web platform

c. Common Object Request Broker Architecture (CORBA)

CORBA [OMG, 2008a], Common Object Request Brokechitecture, is an Object Management Group
(OMG) standardized architecture that aims to featéi the development of distributed applicatiors. |
enables for instance the development of loose edupbjects which communicate with each other. It
enables a developer to invoke in his applicati@sly-to-use objects that are already developedhsr o
developers. The architecture conforms to SOA aslwstrate in Figure 4. Indeed, object (or service)
providers publish the functionalities they perfoimto a common registry, called “Interface Repositon
CORBA terminology. More precisely, they publish esdription of their objects, a description which is

written using the Interface Description Languadeljl An example of an IDL file is depicted in Figub.

Interface
description
(IDL)

Distributed ORB

Access (use)

stubs

Figure 4: CORBA-SOA analogy.

I1OP

interface Account {
/I Operations available on the account.
void deposit(in float amount);
void withdraw(in float amount);

h
Figure 5: IDL file example.

Chapter 1.1 State of the Art 67

IDL describes the different operations that arevigeed by the object, their inputs, and their
outputs. IDL files are programming language indejgen, but the service publication process, andicerv
invocation process is performed using existing ABKBVA API, C++ API ...). Nevertheless, thanks to
Stubs and Skeletons, the client application remaorapletely independent from the server application
Stubs and Skeletons are mediation objects whichaatematically created from the IDL files using
CORBA IDL compiler, which are language-dependettitl, $he Object Request Broker (ORB) supports
major programming languages. Stubs mediate betweeClient and the ORB in order to transform the
IDL method invoked by the client into an ORB op&rat and Skeletons mediate between the ORB and the
provider of an invoked object in order to transfd@RB operation into an actual method invocatiomhef

target object, which is programming language-depahd

ORB component is responsible for routing a reque#s target. This includes transmitting input
to the target, waiting for the response, and tréttisrg the output to the requestor. It hides frdre service
consumer the real location of the invoked servitke Stubs and Skeletons ensure data marshal and
unmarshal. This is necessary to ensure loose caufdetween the service consumer and the service

provider.

In order to support distribution over differentiies, OMG has introduced 1IOP; a specification
of how to implement General Inter-ORB Protocol (B)ver the internet. GIOP is a specification that
defines the formats of inter-ORB messages exchdhgaables two independent ORBs to communicate,

and thus, a client from an ORBcan invoke a server object registered on anotiiB B

d. Web Services Architecture (WSA)

Web Services are currently the most popular tedygythat enables SOC. A Web Service [W3C, 2004b]
is “a software system designed to support interopenatalehine-to-machine interaction over a network. It
has an interface described in a machine-processéiimat (specifically WSDL). Other systems interact
with the Web service in a manner prescribed byl@scription using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunctiaith other Web-related standarti§.his definition
highlights the different technologies used withirMServices Architecture (WSA): WSDL, SOAP, HTTP,
and XML. Nevertheless, the architecture comprises facilities for publishing and discovering sees.
UDDI (Universal Description, Discovery and Integoa is currently the common technology that
provides such facilities, though other Peer-to-KFB@P) or hybrid approaches such as [Du, 2006]iiée
2005], and [Podesta, 2008] exist.

As we illustrate in Figure 6, Service providersateeservices, describe there interfaces using

WSDL (Web Service Description Language), and phbtilsem to a common registry using an UDDI

Chapter 1.1 State of the Art 68

interface. Then, Service developers use a discaagface to discover services within the UDDlistyy,

and invoke them by creating a SOAP (Simple Objexte&s Protocol) message.

. "

Discover — UDDI API ’W*S’DL + publish
_-~ service
infrmation

SDL

Access (use)

Developer

- Service provider
SOAP messaging

Figure 6: Web Service Architecture (WSA)-SOA anglog

These standards (WSDL and SOAP) are oriented foraehine-to-machine communications.
They provide a common way to describe, publish imvdke services. Figure 7 illustrates a WSDL file
which describes a Weather service, and Figureu8titites the corresponding SOAP request. Each WSDL
file may describe one or several operations ofreice Each operation contains an abstract desmmigind
a concrete description. The former refers to tlgnatiure of the service and the latter defines how

developers invoke it. The SOAP messages are tleatect accordingly.

“wzdlitypess
=s:element nawe="GetWeatherByPlaceNans"»
“gicomplexTypes
<s:sequencer
“stelement minlcours="0" maxlcocurs="1" name="PlaceName" type="s:string"/=
</s:sequencer
“fs:complexTyper
“fs-elementk
=fwsdlitypess
“wzdlimessage nene="GetWeatherByPlaceNaneSoapIn'=
=wsdl:part nawe="parameters" element="tns:GetWeatherEByPlaceNane" />
“fuzdlinessager

<wsdl:portType naue="TeatherForecastSoap"s

<wsdl:operation neme="GetWeatherByPlaceName"= Abst ract
<wsdl:documentaticonsCet ome week weather forecast for a place name (USA) < wsdl:dooun Definiti
“wzdl:input message="tns:GetleatherByPlaceNaneSoapIn' /= enniuon

<wzdl:output message="tns:FetWeatherByPlaceNaneSoapiut" />
=fuwsdl:operation>
<jfusdl:port Typar

swsdl:hinding nane="eathsrForecastSoapl2" types"tns:TeatherForscastSoap's t
<wsdl:operation neme="GetWeatherEyPlaceNane "> oncrete

“zoapli:operation soaplction="http: /. webservicex.net/GetWeatherEyPlaceNane” styles Deflnltlon

</w=sdl:operation>
=fwsdl:bindings=

Figure 7: Weather service description file.

POST fWeatherForecast.aswmx HTTPS1.1

Host: wmny.webservicex_ net

Content-Type: text//xml; charset=utf-2

Content—-Length: length

SO0APAction: "http: /f wma webhservicex net fGetlleatherByPlaceNams"

=“?xm]l wersion="1_.0" encoding="ucf-5"7=
=soap:Envelope xmlhns:xsi="http: fimmnr w3 org 2001 XMLEchena-instance” ..
“soap:Body=
=FetlleatherByPlacelane zmlns="http: /fuww. webservicex. net">
“<PlaceName=>string=/PlacelNamnea>
=/ GetWeatherByPlacelNans =
=/zoap:Body=
=/=oap: Envelope:

Figure 8: Weather service request and response.

Chapter 1.1 State of the Art 69

Though WSDL-SOAP enable software features to autically invoke a Web service (Create and
send the SOAP request), the developer intelligéneéll required to first choose which service amich
operation respond to a specific need, and secostidok whether the input parameters of the interfac
semantically conform to the data that the softwiaaure is willing to provide. In order to tackleig
limitation, semantic technologies such ontologytiditary languages (Resource Description Framework
(RDF) and Web Ontology Language (OWL)) [W3C, 2004gJmantic Web Service description languages
(such as SA-WSDL and OWL-S), and semantic reasottialy are associated to WSA [Mcllraith, 2003].
This is known as Semantic Web Services (SWS). Eidrillustrates the new architecture. Service
descriptions are semantically annotated using armsomdictionary, and then, the platform provides

semantic discovery tools.

Semantic Dictionary

Discover — API ,’S’A’—WSDL . publish
’

. service
infrmation

Access (use)

Developer Service provider

SOAP
messaging

Figure 9: SWS architecture.
e. REST

REST architecture is coined by Roy Thomas Fieldimchis Ph.D. dissertation [Fielding 2000]. It is
characterized by representing each resource asifartdnResource Identifier (URI) accessible through
HTTP. Thus, while WSA and CORBA are operation deen REST-based service architecture is resource
oriented. Each resource is accessible throughquarnlRI with different methods (GET, POST, PUT, and
DELETE). The GET method enables the requestor @d eeresource. The POST method enables him to
update a resource. The PUT method enables hinesteca resource. Finally, the DELETE method enables

him to delete a resource.

As an illustrative example, consider a contact heeb service which implements three
functionalities: get contact list functionality, tgeontact details functionality, and add contacictionality.
In SOA, we expose these three functionalities asetloperations, defined in the WSDL file, whereas i

REST based service architecture, we expose thenasowith URIs as follows:

Chapter 1.1 State of the Art 70

. http://contactlist.org/contactlist/: this URI is assible by GET and POST methods. GET
method returns a document containing the wholeetntact list, and POST method adds a

contact to the contact list.

» http://contactlist.org/contactlist/contactidentifi¢his URI is accessible by a GET method and

returns a document that contains the details oftmgact.

REST service exposure method makes the servicecatiom as simple as making an HTTP
request, so there is no need for a special ARivokie a service; almost all programming languageble
the creation of HTTP requests. However, as illtettan Figure 10, REST in itself does not include a
registry, which is necessary to publish and discaervices. Therefore, Sun Microsystems published
WADL, a Web Application Description Language, whisha WSDL-like description language format that
aims to describe resources instead of operatidmss, WADL files can be published to and discovared

the registry. More recently, even W3C added resdsescription support to the WSDL 2.0 specification

vice description

WADL or WSDL 2.0)

A service reqgi

/Ind publish
@op% Access (use)

Service provider

HTTP HTTP, inputs as parameter of the HTTP -

connection request, outputs as an HTTP response

API (formatted to XML, HTML, JPEG,...)
REST

Figure 10: REST.

2.2 Service Composition using SOA

We classify SOA based service composition into éhreain categories: static service composition,
automatic service composition, and semi-automatigcise composition. Service composition is defiaed
the process of creating a composite service; wisighcombination of services or capabilities thalvles
a new functionality. The following subsections detach approach of composition and analyze treged|

technologies.

a. Static Service Composition in SOA

Static service composition is a combination of twwanore services performed by a developer at tsegde
time, using programming languages. This is the rbasic approach to perform service reuse; the core
concept of SOA paradigm. The term "static" indisatieat the user can no longer modify it at runtime.
WSA and REST-based architecture are currently tbetmsed to enable the static service composition.

From the technical perspective, this type of cortjsis carried out by providing to the develop&ils

Chapter 1.1 State of the Art 71

that enable them to easily discover and invokeisesv We distinguish two types of APIs: Backend #\PI
and Frontend APIs. This distinction is actuallyatet to the programming language those API arediee

for. The Backend APIs are thus intended for dewaigpghat use server side programming languages such
as Java and PHP. We find for instance APIs suclaes SOAP client and PHP SOAP. The Frontend APIs
are intended for frontend programming language$ siscJavaScript, Java applets, and Adobe flash. We

find for instance IBM Dojo toolkit extension andyéry SOAP client.

In both cases, the APIs facilitate the creatiols®AP messages, and the retrieving of a specific
parameter within a SOAP response of a Web SerVioe.most important advantage of this approaches th
richness of the created application. As it is @daiy a developer, services can be deeply intedyrait
each other. In addition, the presentation layethef application can be completely decoupled from th
composition logic. This implies the possibility afeating sophisticated Ul to enhance the user eses.
However, the limitations of such approach consists difficulty, the long time to market it impBe and
the difficulty to personalize the new applicatiarcarding to a specific user. First, it is difficbiécause the
composition of services as well as their presemtato the user is performed using a programming
language. Second, it implies a long time to mabextause the needs are first expressed by thearskr,
then processed by a developer. In addition, theegigprocessing time includes the implementatiothef
business logic by calling the different servicead ahe implementation of the Ul. Third, once the
application is created and deployed, the user camodify it. Each modification requires the intention

of a developer in order to reengineer the appbeati

b. Automatic Service Composition in SOA

The loose coupling between services in WSA and REBIO the availability of more and more basic
services over the Web fostered the research onmatito service composition. Automatic service
composition is characterized by creating automByieGacomposed service from a user request. Relsearc
work has been done extensively on semantic issugsatural language interpretation in order todail
customized service directly from a user requestwAsllustrate in Figure 11, most approaches cardide
SWS architecture (see Figure 9) and add two newpooents: User Request Interpretation and Automatic

Service Composer.

Chapter 1.1 State of the Art 72

Semantic Dictionary

Semantic enabled registry

Semantic discovery publish

Semantic
Service
description

Access (use)

* Service interface
invocation

Automatic service

Service provider
composer P

Service &

developer

* input/output
User Request transmission

Interpretation

Creating a Natural
Language Request

Figure 11: Architectural model for automatic seevammposition.
User request interpretation entity is in chargetrahsforming a natural language request to a

formal request [Bharati, 1995]. It essentially détehe goals of the user and the available inputs.

Automatic Service Composer entity receives a fornegluest that contains user desired goals,
with the available inputs, and it generates an estrhation of available services so that the userreach
his goals starting from the available inputs. Thare two main approaches to do that: a top down
approach, and bottom up approach. In the former,atgorithm starts from the goals, explores diffiere
orchestrations that reach these goals, and sdheetene which matches the available inputs. Anthen
latter it starts from the available inputs, exptothe available orchestrations, and selects theseréach
the user's goals. To illustrate these two appresehe consider the work of Lecue and Leger [Lécué,
2006] and [Lécué, 2007]. Their algorithms are basmed causal link matrix (CLM [Lécué, 2006]) or the
extended CLM (CLM+ [Lécué, 2007]). While CLM is aatrix that represents all matching possibilities
between inputs and outputs of services, the extende takes into account the non-functional pragert
Computing the CLM matrix includes the quantificatiof the similarity of two concepts in the semantic
database (the ontology). This quantification isellagn the logical relations between the concepbler2

shows an example of such quantification.

Table 2. Quantification of semantic matching ofgraeters.

Logic meaning Signification Value

S1=S82 Semantic of S1 is exactly the same as senint|cl

S2 according to an ontolog®

S1<S2 S1is a subclass of S2 2/3

S1>8S2 S2 is a subclass of S1 1/3

S1 +£S2 S1 is different from S2 0

Chapter 1.1 State of the Art 73

Figure 12 illustrates an example of a CLM matrixnds refer to all entries parameters of all
services and columns refer to all inputs of sewvi@ed to the goals of the user request. An elemethie
CLM is a set of vector¥ (I, ¢) = (S, Value)where§S is a service that has as ingutandValueis a
semantic matching value between an outpuf @nd the corresponding column parameté@vhich is an

input of another service).

S1: company directory S2: global directory

Inputs: employe_name Inputs: person_name

Outputs: manager_name, Outputs: person_address,
work_phone_number, phone_number

email, work_address

employe_name person_name manager_address
-- S1, 2/3 -
employe_name {«)}
person_name -- -- {(52,113) }
Cause manager_name Cause person_address
(output of S1) is a (output of S2) is a super-
subclass of ‘ class of manager_address
person_name (according (according to an ontology ?)

to an ontology ?)
Figure 12: CLM simple example.
Pa4C, which belongs to a bottom up algorithms,riscarsive algorithm that runs on the top of the
CLM. It has as input the constructed CLM, a setwdilable web services (WS), initial user inputatth
represent the initial knowledge base (KB), and uker goals (B). The algorithm then populates the KB

with reached parameters through available servic@S set until all user goals are reached.

Graph based algorithms follow however the invensaboning approach (the top down). Such as
the Pa4C algorithm, we have as inputs: the constiu€CLM, a set of available web-services (WS),uber
goals (B), and the initial knowledge base (KB). &t of services N is initialized with services tihaive as
outputs user goals B. For each service (S) in H,algorithm checks if user inputs include all regdi
parameters for its execution. If this is the casmyice S is removed from the list and the algarith
proceeds to next one until N is empty. If user ispare not sufficient to allow the execution of gesvice
S, then the algorithms checks in the CLM+ if thare services that provide as outputs the necessary
parameters. If such services are found then we verSofrom the list and we add the found servicel.to

The composite service is constructed as the algorfiopulates N.

Automatic service composition is definitely area approach for composing services as it
enables users to get dynamically a new serviceorelpg to their spontaneous needs, expressed tsirg
natural language. However, it still suffers fronsearch issues that prevent it to reach a potential

industrialization. Examples of such issues arentteiral language ambiguity [Cremene, 2009] and twow

Chapter 1.1 State of the Art 74

provide a comprehensive dictionary of concepts #mable the description of all existing servicesgP
2009]. These two issues give rise to the inaccurafcyhe Automatic Composition (The generated
composite service does not match exactly the useds). Furthermore, the Ul part of the serviceterba
automatically using this approach is very basidsTdan be explained by the absence of the Ul layer

WSA.

c. Semi-automatic Service Composition in SOA

Semi-automatic service composition category incdudey mechanism that enables the user to define a
composite service with more investment than malkdngatural language request. The idea is to let
developers to create basic services and userguitivaly chain them in order to create more inrbxe
ones. Figure 13 shows the basic architectural moididis category of service composition. We finsed
to create the basic services and publish themamemistry. Then, users discover the needed sarincine
registry and compose them through an “Orchestratifmition graphical tool”. This will generate aript
that defines the composition logic. Finally, theeated composite service can be executed using an
orchestrator (also known as execution engine), lwhises the already created script that defines the

composite service.

semiceregory >

Find

« Discovery criterion

Service
description

Service provider

*Browsing existing

Orchestration
Definition graphical

Creating an ke

Orchestratigr stript Access (usé)
- N
/0 uses.
- N « Service interface
TR > yocation
End-User Executing a created™ =~~~ =~==l Service orchestrator
script

Figure 13: Semi-automatic service composition ganaodel.

This model is essentially fostered by the currenemging concepts of Web 2.0, where software
applications are fragmented into web services amisuare actively involved in content creation pesc
Indeed, content in websites like Wikipedia, Youtuéed Flikf? is essentially populated and maintained by

the users themselves.

After an investigation of existing tools, we havassified them into three main sub-categories:
« graph-based service composition,
« desktop environments based service composition,

e and websites-based service composition.

22 Flickr, http://www.flickr.com/, visited on Januatyth, 2010

Chapter 1.1 State of the Art 75

In the following parts of this section we will désathese categories.

Initially, graph-based service composition toolgevaddressed for developers and advanced users
in order to speed-up the service creation procgsgeral frameworks such as JBPM [Cumberlidge, 2007]
Eclipse BPEL design&t [Ku, 1994], and JABC (Java Application Buildinge6ter) [Margaria, 2006]
[Steffen, 2007] have emerged. These frameworksalirbased on process definition languages such as
BPEL (Business Process Execution Language) [Andre2@©3], JPDL (JBPM Process Definition
Language) [Cumberlidge, 2007], and SLG (Serviceit.@graphs) in [Ku, 1994] and [Steffen, 2007]. The
creation tools are thus based on intuitive graphit®rface that enable the assembling of blackelsox
according to the logic of the service needed byudes. The logic is defined by chaining the blaokés by
mapping outputs and inputs. Other operations likadiions and loops could be added graphically el w
The black boxes are referred through different ramiepending on the community. But, they are all
conceptually equivalents; they are reusable so&weatures, with well defined functions and inteefa
(inputs and outputs). Thus, in JBPM we use the tasskto refer to an activity realized by a human or a
software (business process community), and in jAB&€ecom community) we use SIBs (Service

Independent Building Blocks) to refer to a reusauftware feature.

Though these tools definitely make the creationcess easier and faster, they still remain
addressed for developers and advanced users. fhiest,are based on IDEs (Integrated Development
Environment) which are hardly accessible by ordinegers. Second, it is necessary to understanereliff

computing concepts such as (flowchart, inputs,@aitguts) to be able to create new services.

Other frameworks, that follow exactly the same nhatbpicted in Figure 13, attempted to get
closer to the user by implementing the compositiapability directly at the Web browser level, eiths a
Web application or as a browser plugin. Howeveeytsitill remain based on defining a flowchart based
different and sometimes complex (for ordinary usgr@rations such as regular expressions, web ssrvic
invocation, conditions, loops...etc; concepts that mot understood by ordinary users. Consequently, w
claim in this thesis that this type of compositishaddressed for advanced users. Neverthelesseas t
composition logic is defined independently of theewuinterface, this type of composition provides a
significant flexibility in the Ul creation. They able developers and advanced users to create Soated
Uls. Examples of such frameworks are: Yahoo PIRESRMITE [Wong, 2007], and OPENMASHU®
Figure 14 shows an example of a composite sermicéahoo PIPES. Boxes represent basic services and

wires represent input/output mapping between teesédces. In that example, we have used threecgsvi

Z Eclipse BPEL designer, http://www.eclipse.org/bpatcessed on July 31, 2010
24 Open Mashuphttp://www.openmashup.orgiccessed on July 31, 2010

Chapter 1.1 State of the Art 76

String builder service (let the user to enter thyaut), translation service, and Yahoo search ser¥ires
link the output of string builder service (Stringjth the input of the translation service (textpdathe
output of the translation service (text) with tiheut of the Yahoo search service (String). As altese
have created a new service which translates agsprassed as input, and search on the web for the

translated string using Yahoo search engine.

| Eiring Bullder
‘ & String

& composition de sel

[Translate 2=k
‘ Translate iFrenchm English j |

[vahoo! Search HEX]

1
| Bearch for {2 pdred]
‘ 2 Gite restriction

w
[Pipe dutout

Figure 14: Yahoo PIPES screenshot.

MARMITE and OPENMASHUP follow exactly the same misibphy as Yahoo PIPES. Services
are represented through boxes and user shoulgh $beunappings between outputs of services withtgp
of others. This approach however is suited onlyafdvanced users; users that know what an inputand
output of a service are and how to chain them. &biertion is supported by experimentations the¢ ha
been conducted in [Wong, 2007] as well as in oun cexperimentations detailed i@hapter 1.3
Experimentation and Authors in [Wong, 2007] have tested their framegwon a sample of six persons:
two of them are experienced in software programmmtwg others are experienced in spreadsheet but not
programming, and the others are not experiencegragramming nor in spreadsheet. The results have
shown clearly that this type of composition is @&dded for advanced users. Indeed, only three osik of
have succeeded to build a composite service. Mopmitant is that, those who have succeeded are thos
who have knowledge in programming and spreadsfdes. experience demonstrates that this type of
composition framework is more addressed to advamseds than ordinary users without any computing

technology knowledge.

The second category of semi-automatic compositoistis based on the desktop environment of
the user. It includes mechanisms that involve ther in the creation and execution of compositeisesv
within their desktop environment. he history ofsthiype of composition have begun with traditional
desktop environments such as Microsoft Windows, Mdyerating systems, and Linux that enable the

users to compose two independent desktop applitsatising intuitive mechanisms such as OLE clipboard

Chapter 1.1 State of the Art 77

more known under the name afpy and pasteand OLE drag & drop. However, these mechanisiiis st

have three limitations:

e« They do not consider current Internet of servicdeng users are no longer limited to local
applications. Users use more and more remote welicee such as Map, online search, and

online purchase.

» They suffer from the late failure detection. Inathvords, the system does not detect compatible
applications for a copied or dragged data, andgsephem automatically to the user. Instead, the
destination application of the paste or drop actsoresponsible for retrieving the compatible data

(data that it can handle) from the clipboard.

 The created composition is not rich as it is limite® data moving (and optionally to format

transformation) from an application to another.

In order to tackle these limitations, the emergsotutions firstly include a desktop environment
that considers Web-based services, and secondhyedsdmposition tools that enable the users to coenb
services within their desktop environment. Exammiesuch approaches are EZWEB [Soriano, 2006] and
IBM Mashup Centér. Both require user participation to make the cositfun, which makes them
belonging to semi-automatic service compositiomuFé 15 illustrate the corresponding model, whigh i
different from the traditional semi-automatic see/composition illustrated in Figure 13. Serviceviders
create widgets and publish them into the catalogfuthe framework. Users can browse that catalogue,
select the desired services, and load them into émeironment. Thereafter, users can launch a ityir
interface, which enables them to define sequentesdgets execution. These wires are then execased

the user uses his environment.

Figure 16 illustrates how do users create a lintkvben two services in EZWEB. It illustrates a
YouTube search service linked to a YouTube plagerise. This link is created by the user himseihgs
dedicated user interface that enables the seleofi@m output of a service and mapping it to arutng

another. This Figure also shows the execution®ttieated wire.

25 |BM Mashup Center, http://iwww-01.ibm.com/softwanés/mashup-center/, accessed on July 31, 2010

Chapter 1.1 State of the Art 78

o it ettt B L L L LT LR >

’
Loading wid /5 from bi o X User loaded widgets EZWEB catalogue
—q—qL[he cataloqu iscovery criterion Find publish

B *Browsing existing
services

Service
description

Wiring interface

, 9 ‘C" K - \ Service provider
p 8- reating Wires \\ Access (use)
'_'_ ———— uses™
- N ervice interface
---------------------- b3 Mvoeation
End-User e Executing Widgéfs ~~~==-~-- > Widget Container and

and wires wiring execution

Figure 15: Semi-automatic composition model in EBVE

B3 VA= S)
I I I My Wire:
Ei]Events Channels Slots
Mew l;ireJ \.;' .
tube_inty_search Feprocuctor_voutube >W”-Ing
voutube .
Pt % 345 2FE 2P yougulpe ¢ interface
I-;]D\
I tite
l_place
S
_ _ Input/Cutput
— mapping
=[® BE 3
You[TTE [=tcuias = Fagine: 1 —| =
» Execution
interface
b 1 3

= \c J
lick and play

Figure 16: EZWEB screenshot.

The last identified category of semi-automatic gervcomposition is based on Web-sites. It
includes mechanisms that enable users to add furatities to already existing websites. This does n
modify the website itself; instead the mechanisndifies the current instance of the website (th@oese
generated for a user request). MASHMAKER [Ennal3)7&] and [Ennals, 2007b] and MARGMASH
[Diaz, 2007] are two examples of such mechanismSMRIAKER is implemented as a Firefox plug-in.
Its most important innovation is the extractiorsemi-structured data from web pages. Consequerstys
can map that data to inputs of existing servicaguré 17 for instance displays a "Yellowpages" \pebe
in which MASHMAKER component has extracted autocwdty all addresses, phones and names.

Thereafter, the user has mapped the addresses Map service. To do that, he has just loaded g0y

Map widget.

Chapter 1.1 State of the Art 79

[R AT :)
Intel Mash Maker X || L Pageslounes - Résultats de la re... £}
‘Widgets | Mashugs: | My Profie | Extractor | Gabery | 4 2] * Google Maps

Auttvo
Double click a widget to add it
[

[cooners
G Find Address

Catalogue

flérouville-Saint-Claw Colombelles

LIp 2one Porvises 'sea e

o Harousba) |l SN g

0813

ag rked Dota
i Tatle

Ue Pateos | Giberville

ba7s - BretiEvilsur-000n

\ Louvigny

g, Charts EI Fleury-sur-Crme
illy Bar Chart - Google Charts Resioir, Eierve
53] photo Tie Cegle o

L

: nach| Address ||| @ sos Médecins calvados
& Comred TPl Jean Hourille 14000 CAEN

Te skt 233015851
[Annotation
(] image
) Look Forwerd
[Timeline:
- Local Product Avalabiity
[T Math
CAC = location
2 Scatter Plot - Google Charts
fa P Chart - Google Charts
4 Clock & Date - Google Gadget
59 Current Moon Phase - Goople Gadpat (@] Guyot Bernard
[30 Westher globs - Googhe Gadgat ol Ushar
o3 SLERSHY OharSRRS =l o0

Figure 17: MASHMAKER scree'nshot.

SOs
Médecins
Calvados

0231934494

These tools enhance significantly the intuitivenegsthe composition framework as the
composition script is created automatically asuber loads widgets to the website. However, thateck
service can not be sophisticated because all winest go from the Web site outputs to widgets inputs

Thus, all created composite services follow theesghillustrated in Figure 18.

Widget 1
Web site - Widget 2
— Widget n

Figure 18: Composite service schema.

d. Comparison

Table 3 depicts a comparison of the different cositppnm approaches according to identified critetta.
takes into account both user and service develogat of view:
» Coupling between services: This criterion charéobsrthe dependencies between two services
that a service composition approach requires.
» Service developer investment: This criterion chidzes the additional investment, required
from a developer who wants to make his servicesabie”.
* Personalization: User needs are various, numerand, evolving. Therefore, personalization
capability is an important characteristic for arficgnt composition tool. This criterion

characterizes the ability of the user to persoraizreated service to his needs.

Chapter 1.1 State of the Art 80

« Distribution over user devices: This criterion derizes the capability of creating composite
services which are distributed over the user deyise that each atomic functionality will run in
an appropriate device.

* Richness of the created service: This item refledtat kind of and how sophisticated are the
applications that can be created by developersiaats, using a composition approach? It reflects
also the richness of the Ul of the composite servic

» Intuitiveness of the composition tool at the dedigme: The intuitiveness of composition tools is
an important requirement to attract more usersdevlopers. Especially in the context of Web
2.0 where we expect ordinary users, without devakaqt skills, to compose their own services.

» Time to market: How to reduce the time to markeapplications is a question that rises in most
companies. The TTM starts from the instant wheeeuber needs a new service and ends when he
gets it. TTM includes the service request procesdime, the development time, and the
deployment time. While static service compositioal$ aim to reduce essentially the development
time, automatic and semi-automatic aim to redukthate phases.

» User needs matching: It is important to createisesithat match exactly the user needs.

Table 3. Comparison of service composition categori

Semi-Automatic
Automatic Graph_ DeSktOp Websites- Static
environments
based based
based
Coupling between services High Medium Medium Medium Low
Personalization High Medium Medium Medium Low
Distribution over user deviceg No No No No Yes
Richness of the created service \1adium Medium Medium Low High
Intuitiveness of the
composition tool at the design High Low Low Low Very
low
time
Time to market Low Medium Medium Medium High
User needs matching : : - Medium
Low High High High +

The most important advantages of automatic compaositf services are: personalization, and the
time to market of new services. Automatic compositbf services is very centred on the user; theicer

creator is the user himself and the creation tisnalinost the execution time. This means that tlee cen

Chapter 1.1 State of the Art 81

modify a created service easily and instantly, Wwhicakes the automatic composition of services very
customizable. Also, the automatic approach redwigsificantly the time to market as the service is
created directly and automatically by the user. By, this composition category suffers from some
limitations:

e Tight coupling between several entities: automatirvice composition requires a common
semantic vocabulary between several entities: aerplatform, different service providers, and
even the users when making their request (theyldhme the same vocabulary in their request as
the one defined in the service platform).

* The composite service can not be sophisticated @sveloper application: Because it is done
automatically, and it is a composition of buildiffocs, the created service can not be as
sophisticated as a service which is created dirdutla developer from scratch. In addition, the
Ul these tools generate for a composite is rudiargnt

* The composite services are not distributed oveusiee devices.

< Difficulties to match exactly the user request: tlueurrent limitations of semantic reasoning and
natural language processing, the created compesitgce does not always match the user
request. This imposes a validation step (perforrhgdthe user) before the execution. This
limitation is also due to the difficulty for the ersto express their request in an efficient waya(in

vocabulary close to the platform’s one).

In static service composition, the most importadvamtages are: the loose coupling between
services, the richness of the created service tlamdiser needs matching. Services are independent f
each others because developers do not really rexedrsic tools to understand the functionalitiesaof
service. The created service can be as sophistiGaethe developer can do, there are no particular
technical limits as the service invocation is dbgghe developer using programming languages. Hewev
this category of composition mechanisms suffersnfrine incapacity of personalization, and time to
market. It is not customizable for two reasons: fitet one is that the creation time is differerdrh the
execution time, and second, users need develoskiistto modify the execution sequence of servites
addition, the time to market is very high as thetgmvhich needs the service is not usually thetgmthich
develops the service. Therefore, it requires a ldpwmeent request processing phase and a development

phase.

The last composition category is semi-automatic. Wéwe categorized it into: Graph-based
service composition, desktop environment based ositipn, and websites based service composition.

Semi-automatic service composition represents detifd between the static and automatic service

Chapter 1.1 State of the Art 82

composition in term of several criteria such asetito market, loose coupling between services,
intuitiveness of the composition tool, and persizadion. It also excels in users needs matchinigrion

compared to automatic and static composition asseémi-automatic composition the users create
themselves the composite service, which matchestlgxtheir needs. In addition, they can modify it

whenever they want to.

2.3 Business Process Management using SOA

There are many definitions of the term businessgse. [Hammer, 1993], [ebXML, 2001], [Aguilar-
Savén, 2004], and [Ko, 2009]. However, an invareggms to rise among all these definitions. Indekd,
these definition mention that a business process $gt of coordinated activities performed to reach
business goal.

Business Process Management (BPM) is the actiorisdovering, modelling, developing,
executing, and monitoring business processes tkgbextinent in a given organization. It aims toypde
organizations with efficiency in performing theiudiness activities, while ensuring their agilitythe
capability of quickly adapt and modify their busisgprocesses.

In this section we review the approaches and tdogies that are used to manage business

processes, and then, we figure out the advantagkeknaitations of current practices.

a. Discovery and modelling

The task of discovering and modelling business ggses is currently performed by business analyhts.
discovery usually follows either a top-down apptoa@c a bottom-up approach [Verner, 2004]. The top-
down approach is characterized by identifying agfinihg at first the high level business processes|
then, decomposing them into lower level processa# the lowest, user or profile specific, level is
reached. This approach has the advantage of pngvalihigh level organization insight of the proesss

and the limitation of lacking in process detailsl @atcuracy [Verner, 2004].

The bottom-up approach, in contrast to the top-depproach, starts from capturing the business
processes of the lowest, user or profile spediéieel. Then, the processes are generalized and?ogead
each other to form end-to-end processes of an wasn [Verner, 2004]. This approach has the
advantage of being detailed and accurate, but éssianalysts can hardly have a broad picture ofidss

processes of an organization.

In both approaches, business process discovery salffers from finding the best trade-off
between the accuracy of the business processeheanciumber. Indeed, the more business analysts tr

enhance the accuracy of business processes, thlethese processes are specific to a limited number

Chapter 1.1 State of the Art 83

users, which augments their number and complicies implementation and maintenance. As an
illustrative example, let us consider a vacatioguest business process. The high level view can be
summarized in three activities: vacation requestation, send the vacation request to the requestor
manager, study and making decision, notifying #sult to the requestor. However, as we try to gatem
precise in the actions that are performed by uselditional versions of the process appear. FidQréor
instance, illustrates two precise processes o tmanager and purchasing and logistic respongiftier.
receiving a positive response to a vacation reqtlesteam manager updates his agenda, sendsterhil
team, and sets up an automatic email responseg W purchasing and logistic responsible searches
pending purchasing orders, calls the providerdreets the incoming calls during the vacation periand

updates his agenda.

team Manager Manager Purchasing and logistic responsible Manager

Yacation Request Creation Vacation Request Creation
—]
T
Study and Decision
Study and Decision

|: Update Agenda :, Search Pending Orders

Redirect Incaming Calls
Call Provider

Response Reception
Agenda Update

Send email ko team
Set up automatic email response

Figure 19: Vacation request business process vexsio

After discovering an organization business prockasiness analysts should model it in order to
share it with other business analysts, as wellitts developers to automate it using a softwareiegbn.
The most common way to model business processesiigy BPMN (Business Process Modelling
Notation) [OMG, 2008b]. It is a flowchart diagranery similar to activity diagram of UML (Unified
Modeling Language). BPMN is an OMG (Object Managem@roup) standard whose last version is
released on 2008. The most important challenglenntodelling of business processes is filling thp g
that exists between business analysts and IT telirissrequired to represent the details that dgvels

need.

Chapter 1.1 State of the Art 84

b. Development and execution

The most important challenge in the developmeniusiness process management applications is how to
foster agility in the organization. WSA, associatied composition languages, are currently the most
promising approach that embraces this challengés ktharacterized by exposing business enterprise
applications as Web Services, and using serviceposition languages to combine these services to
implement a business process. The developer mgsbriemt task is to associate a Web Service to a
business activity defined in the BPMN model. Fige@esummarizes the WSA approach for implementing

business processes [Arsanjani, 2007].

ﬂSusiness Process Management Architecture \
£ 2 User layer N
8c 9
£32
[T}
Eg2o
289
- ° N\ %

/Back-pnd layer

Business Process
Development

~
~ o

o

1
7 1
| h ! Y
(Exgosure layer ! VN I
1 O 1 \ \ Web Service
a \
g S 7o \ C o o
3 O : ©
G o o o
’N . e
,I \‘ ’/' e
/Operational Systems % o s I
1%} 7 4
é 9 y e Applications
8
2
<

> =

Figure 20: Business Process Development using WSA.

As we illustrate in Figure 20, the development o$ibhess processes are completely independent
from the applications that are running within thegamization. Functionalities of such applicatioms a
exposed through Web Services (WSDL/SOAP), and deeets can invoke and compose these services
based on a business process definition, withoutraogification on the applications. The compositafn
those services is either performed manually, uS&QAP APIs, or semi-automatically using scripting
(XML-based) languages such as BPEL4AWS, which arehmeasier. In addition, these languages are
usually empowered with graphical tools (e.g. EdipBPEL editor) that facilitate even more the

composition process. Figure 21 for instance ilatsts a BPEL4AWS graphical representation of a

Chapter 1.1 State of the Art 85

composition of services made using Eclipse BPEltoedit shows a News service combined to a send

Email service.

= main

Preparing | receivelnput
the input

= #fssign2

& Gethews } Invocation of a MNews Service

Adapting the output of the .
Mews service to the input of { = Assign

the mailing service . o .
& sendEmail } Invocation of a Mailing Service

Preparing = Assignl
the output
2| rephyOutput
®

Figure 21: BPEL4WS Graphical Representation.

c. End-to-end Sequence diagrams

Figure 22 shows respectively the end-to-end prooésseating and updating a business process. if$te f
step is the discovery a relevant business prodéss.can be a request from the user as illustratethe
Figure, or a proactive action performed by the hess analyst. After capturing the needs, the basine
analyst models the business process and requaltsedopment of an application. The developer then
translates the model into an executable BPEL sarigt creates the application. At this step, theeset

can access and use the application. When a spegifiate is needed by the user or captured by the
business analyst, it is required to change the imatel send it to the developer who updates thelBPE

script as well as the Ul of the application if nedd

d. Advantages and limitations

Though BPEL4WS associated to WSA provides a siggnifi flexibility in the development of business
processes, it still has some limitations:
« First, the end-to-end process of developing busipescesses still remains long and difficult to
perform. It is long, because it includes the predatiscovery step, the process modelling step, and
the process development step. It is difficult, hiseaof the difficulty of capturing specific user

needs at the right time.

Chapter 1.1 State of the Art 86

e« Second, the loop between the users, the businedgsts; and the developers in the process of
updating a business process makes the adaptatspotbaneous users needs impossible.

e Third, the implementation of a business processctwis characterized mainly by the definition
of a BEPL4AWS script, is tightly coupled to the iked Web Services. This implies updating the
BPEL4WS script each time a change on the Web Sethiat performs a given business activity

occurs.

user Business Analysts Developer

1 : express the needs()

del the process()

3 : Request the development of the process()

u
4 : Identify Web Sel’vices for each activity()
<

5 ks

7
9 : Use the application()

10

1 : express the needs()

12 : updatq an existing process model()
[13 : change request()

—

14 up]jate BPEL()

«

T 164 uédaﬂe application()

16

17

18 : Use the application()

19 rld

Figure 22: End-to-end sequence diagram of busimex®ss modeling and development.

2.4 Conclusions

WSA and REST-based architecture are currently the main alternatives that enable SOA, and
consequently enable SOC. As far as it is used bgldpers, they address perfectly the need of iategy
different services with each other to create a mew. However, our survey shows clearly that these
technologies are not addressed at all for userey @o not enable ordinary users to compose services

mainly due to the technology complexity. As Fig® illustrates, services are usually described and

Chapter 1.1 State of the Art

87

invoked using XML-based format such as WSDL, WADdnd SOAP; technologies which are not

understandable by ordinary users at all.

WSDL / WADL / WSDL 2.0

Users do not understand

WSDL, WADL,...

A

WSDL / WADL /
WSDL 2.0

Users cannot create SOAP
requests

SOAP

Figure 23: Technology gap between users and WSA REST).

Mainly due to this technology gap between whatseduand what is understandable by ordinary

users, several limitations are perceived in sercmeposition and business process management.fields

Table 4 illustrates these limitations. It also susnizes the advantages of SOA.

Table 4. Current SOA advantages and limitations.

Item Advantages Limitations
* Services are completelys The creation process is complex. It|is
independent from each other. Theonceived only for developers. As |a
created service might be agonsequence, along TTM for personalizing
Static sophisticated as an ordinanan existing service, as well as for creating a
service application (No technical limitation).| new service is noticed.
composition| « Enable the creation of distributecd The created service is tightly coupled|to
applications. the used basic services.
« The created service matches
- exactly the user needs.
3*% e Addressed for advanced users| k Not designed for ordinary users; the
é— enables personalization. tools are too complex for them. This implies
S « The time to market (TTM) is low a long TTM when an ordinary user wants|to
'g Semi- when a user is able to create a seryicgeate a new service, or to personalize| an
& | automatic (He is an advanced user). existing one.
service « The created service matches The created service is limited.
composition | exactly the user needs. e The created services can not |be
distributed over the user devices.
« The created service is tightly coupled|to
the used basic services
Automatic | ° Designed for ordinary users. « The created service can hardly majch
i < It enables a quick creation of |axactly the user needs.
service
service. e The created services cannot |be

Chapter 1.1 State of the Art 88

composition | « It is very intuitive. distributed over the user devices.
e The services are tightly coupled as they

rely on a common semantic.

—

« The created service is tightly coupled|to

the used basic services

« SOA enables a seamless Business processes are heterogeneous,
integration of enterprise businessnd thus it is hard to capture and implement
processes. It hides theall the details. In other words, busingss

implementation aspects of enterprisprocesses are generalized for the sake of
applications. simplicity.
. e Graphical tools such as BPELs Adaptation to new processes is long as it
Business process
significantly speed up therequires first the capturing of the need; and
management _)

development of business processegcond, its development (usually by| a

(but it still performed by developers). different entity).

* The business process integrator is tightly
coupled to the Web Service they use.
e Unstructured data are not captured |by

business process integrators

3 Service Environments

The machine-to-machine interaction has been mdgsiugestigated within SOC. But the human-to-
machine interaction is not. We believe that thithis main reason that makes SOA fails in user geeer
services, and the related fields such as servioeposition and business process management. In this
section, we review the technologies that enablevsoé to get closer to the user. We provide motailde
on Web portals technology, as it is the curremidréNevertheless, we summarize the evolution hidtmr
this technology (Web portals).

The most common user service environment is theatipg system of the user machine (such as
Linux and Microsoft Windows). Their goal is twofoldbstracting the use and the management of haedwar
components, and providing the necessary infrastra¢hat enable users to intuitively manage andhain
applications. In this thesis we essentially focus tbe second item and classify in this regard these

environments into three models.

Chapter 1.1 State of the Art 89

3.1 Model 1

The first model covers both initial versions of kkep environments such as MS-DOS and UNIX, as well
as more recent ones such as Microsoft Windows amalxL It consists either in a command-line integfac

(CLI) or WIMP (Windows, Icons, Menus, and Pointeterface. Figure 24 summarizes the model.

<Sivice Environment Provider

 user) < Service Provider
- Host and Run the Service e
Environment

Figure 24: Model 1 overview.

Before getting a service running, users should firscure and install on their devices both the
service environment (e.g. UNIX or Microsoft Winddgvend the desired services. Thus, at the runtihee, t
user device, the provider of the user environmastywell as service providers are completely inddpen
However, the user is limited to run the servicettait specific device; the device in which the user
environment and the service is installed. This gmées a significant constraint especially to higtgbile

users.

3.2 Model 2

The first model has been the adopted for many yd&arsthe emergence of Web 2.0 and the increasing
number of services available on the Web have elagear industrials to think about new models. Model 2
and 3 are examples of Web 2.0 aware service enviats.

Model 2 actually refers to the approach adoptedGmpgle in its Google Chrome operating
system. It is characterized by installing at fife¢ user environment at the user device, and teersican
dynamically, and on demand, access and use rereotees, which are mostly running at the service

provider platform as illustrated in Figure 25.

Chapter 1.1 State of the Art 90

Service Environment Provider

User

Service Provider

Dynamically invokes the services

- Host and Run the Service
Environment

Figure 25: Model 2 overview.

- Host and Run Services

The most important advantage of this approachdésattoption of the software as a service (SaaS)
paradigm [Armbrust, 2009]; the users can dynamyc@h-demand) invoke software services hosted and
running remotely on the Web. However, it requirasirsstallation of the service environment on therus

device, which, such as model 1, presents a constoathe highly mobile users.

3.3 Model 3

Model 3 is another example of “Web 2.0-aware” sagvenvironments. It is characterized by entirely
adopting the SaaS paradigm; both software andceeemvironments are considered as services that are
hosted and running remotely on the Web. This is kiown as DaaS (Desktop as a Service) [Beaty,]2009
Figure 26 summarizes this approach.

Service Environment Provider

Service Provider

Dynamically invokes the services

- Host and Run the Service

. - Host and Run Services
Environment

Figure 26: Model 3 overview.

This model includes several frameworks that wesifg$nto two main categories: Web operating
systems (OS) category ([Weiss, 2005] and [Lawt@®82) such as Wiki-O%, Glide 0$’, and eyeO%,
and Customizable Web Portals category such asd8ef004], MyServicéd iGoogle®, and Netvibet.

28 Wiki-OS, https://www.wiki-0s.org/

27 Glide-0S, https://desktop.glidesociety.com

28 eyeOS, http://www.eyeos.com/

2 Orange MyServices, http://www.espace-utilisateange-business.com/index.php, accessed on JuB030,

Chapter 1.1 State of the Art 91

The former tends to produce the same environmentraational operating systems [Lawton, 2008]
(managing the same type of applications that paclsmyeral functionalities), except that the managed
applications are hosted in the Web. Whereas tter lan addition to managing services that aredwh
the web, it promotes personalization by enablingraigo create their own environment by loading only
functionalities they need. These functionalities wrapped within small Uls called Widgets [W3C, 2P0
or Portlets.

Each category has its advantages and limitatiossillAstrated in Figure 27.a, in Web OSs,
functionalities of an application are tightly coaglby a developer according to pre-requested useesis
(e.g. Microsoft Outlook contact list functionality coupled to send email functionality). Howevengo
limitation of this approach is that the applicatignhardly customizable by the user; if users naetw
functionality to be integrated to an existing apation, they must express their need to a develaperis
in charge of integrating the functionality. Furthnare, the communication between applications igtdith
to what was expected by the developer during theldpment phase. In other words, the developer of
application A could call an application B (or a weérvice), if, and only if, during the developmaerfit
application A, the developer knows about the atdits of application B at the runtime.

In Customizable Web Portals however, applicaticassalit into a set of widgets in the same way
as we split applications to Web Services in SOChegidget gives access to an independent funcitgnal
This method enables users to customize their emviemts by loading only the needed functionalitizst
the limitation of such environment stems from thetfthat the developed functionalities are indepand
from each others. Users can not launch a send egmilce from a contact list service, or a “Gooigflap
service” from a directory search results. FigurdoZlimmarizes the characteristics of this category.

Customizable Web Portals are characterized by ggtirey small user interfaces called Widgets
[W3C, 2007], Portlets [Sun, 2003] [Sun, 2008], aed@ets. In the next section, we briefly describe th
differences between these concepts, and then weviewe the OASIS initiative to standardize the

relationship between Web Services and Portlets.

%0iGoogle, http://www.google.com/ig?hl=en
31 Netvibes, http://iww.netvibes.com

Chapter 1.1 State of the Art 92

Coone) C_M D
Coms) Conacti)

T

|

|

|

1

|

|

1

|

|

|

1

|
|

| Cm D
|

: Send emai
|

|

1

|

|

|

agenda

Web OS: Distinct providers provide Service aggregators: Each provider
distinct packages (applications) provide one or several functionalities

(@) (b)

Figure 27: Comparison of Web OSs and Customizatitais.

4 Widgets Related Concepts

Though there are several implementations of the gétidand Widget aggregation concept, we can
distinguish two main approaches: the Java communitii JSR 168/286 specifications, and the Web
community with W3C and UWA specification. Before mgieg us to the details of those specifications, we
first show in Figure 28 the common characterisbieswveen the two approaches. It is illustrated that
model is very simple: each Widget has an implentemtaand a description. The implementation is
characterized by different modes, which are desdréind referenced in the description of the Widgee
modes include basically: a View mode, a Configoraifor edit) mode, and a Help mode. The View mode
corresponds to the main screen of the Widget tmables the user to interact with the different
functionalities provided by the Widget. The Configtion mode corresponds to a screen that enaldes th
user to customize the Widget. It enables him toceefigure the Widget according to his prefereramed
specific parameters. These parameters are thed sawkreused in further access to the Widget. Final
the Help mode provide users with documentation han usage of the Widget. While the help and the

Configuration modes are optional, the View modm&datory as it provides the core logic of Widgets.

In addition to these basic modes, a Widget aggoegaty define additional modes that Widgets
should or must provide. Typically, it is interegfito integrate a notification mode to Widget aggtegs
where communication Widgets (e.g. Telephony, IMd @mail) might be integrated. By notification we
refer for example to incoming calls, new message...€his provides a unified notification zone for
different services (e.g. at the bottom-left of tbereen). The additional modes provide an additional
constraint to Widget developers, as they shouldeémpnt additional Ul fragments within the Ul of the
functionalities. But, they also provide a deepé¢egnation between different Widgets, and thus ecéahe

user experience.

Chapter 1.1 State of the Art 93

describes
Widget 1.%

1 has]
has \ implements =

. - . T
Widget Description Widget Implementation

Figure 28: Comparison of Web OSs and Customizadtials.

The following subsections details the differenthteaogies and how this model is realized.

4.1 Portlets (JSR 168/286)

Java Portlet Specification [Sun, 2003] defines atl€®oas ‘a Java technology based web component,
managed by a portlet container, that processes estpuand generates dynamic content. Portlets agd us
by portals as pluggable user interface componehtt provide a presentation layer to Information
Systenis This definition highlights the main characteigst of a Portlets. First, it is a Java technology.
Second, it is used by portals as pluggable Ul;hHat tan be added and removed from the portal ng use
portal administrators. Third, it needs a portlehtainer as an execution environment, and a posga a
front-end presentation environment. Figure 29 depachigh level overview of interactions betweenbWe
Portals, Portlet container, and Portlets.

Portlets are initially specified in JSR 168 [Sufi02] — also known a%ava Portlet Specification
1.0. This specification aims to standardize the irtBoas between Portlet Containers and Portlet
providers. The goal is to achieve interoperab#itythat each Portlet would be able to run on attl€s
container complying with the specifications. JSF 28tefan, 2008] (V2.0) is the second version @& th

Portlet specification. It aims to overcome the tations of 5-years experience of the first version.

Portal client side Portlet A

Portlet A Portlet B

Portlet B Portlet C
Portlet C

apls JanIas [elod
Jaurejuo) 18od

Portlet D
Portlet D

Figure 29: Portlet High Level View.
From the technical perspective, a Portlet is a J&ed application that follows a specific API.

This API is characterized by a Java interface thast be implemented by the Portlet. This interface

Chapter 1.1 State of the Art 94

contains a set of functions whose most importaatdescribed in Table 5. We illustrate also a typica

scenario that involves calls to these functionBigure 30.

When an action (e.g. submitting a form) is perfadnom one Portlet (e.g. Portlet B), the portal

invokes the Portlet container. Then, the portlettamer:

First, invokes th@rocessActiorf the corresponding Portlet (B).

Second, invokes thprocessEvenfunction of each Portlet which has subscribedrio a
event generated by Portlet B, following fiv®cessActioriunction.

Third, invokes therender function of each Portlet — this function generates Ul
fragment that will be displayed on the portal.

Fourth, transmits each fragment to the Portal, Wiécin charge of generating the new

Web Page.

This scenario illustrates the limitations of JSF62Bdeed, in addition of being limited to Java

technology, JSR 286:

Does not really make use of AJAX (Asynchronous $avipt And XML) capability of
Web browsers. Though it enables a Portlet to usEXAtd invoke its server side logic,
the Portal itself can not use AJAX to update alsifprtlet.

Portlets are not completely independent from eahkrolIndeed, each time an action is
performed on one Portlet, the Portlet Containeokes therenderfunction of all other
Portlets and updates their Ul. This implies a digant constraint for developers as they

can hardly manage different states in the Ul level.

Table 5. Portlet Interface Description [Sun, 2003]

Function Name Function Description

Init()

This function is calls by the Portlet container iedrately when a new instance

has been created. It can be used by the Portletafear to initialize his variables

processAction() This is the main function that interacts with treeu Developers can add links |or

forms that users can fill and send back to thel>ocessActiormethod. Here
developers can implement the business logic of gqgilication by invoking Wek

Services, or querying the data base,...etc.

render()

This function is called immediately after tipeocessActiorfunction. It aims to
enable the developers to generate the Ul fragm&htsprocessActiorandrender

functions together enable developers to separatdtisiness logic implantatia

>

from the presentation layer. Thenderfunction is executed each time a Portlef is

updated in the Portal.

Chapter 1.1 State of the Art o5
processEvent() JSR 286 specification enables Portlets to commtmieaents between them. This
requires from the Portlet Developers to first suitbecto an event type (in the
Portlet configuration file); and second implemehe processEventunction,
which is executed each time such event is generayedther Portlets or the
Portlet container.
doView, doEdit, This corresponds to the different modes of thel@orAccording to the Portlet
doHelp state (View, Edit, or Help), theender function calls one of these functions
(doView, doEdit, doHe)p If for instance the portlet is on the sté&idit, the render
function calls thedoEdit function in which developers should prepare theViliT
form to enable users to personalize the Portlet.
destroy() This function is executed when a Portlet instascakiout to be destroyed by the
Portlet container
. Portlet Portlets
container A B C
| 1
g ActiononB 4 |
1 | o processAction _
1 i The Action
" B " Resp(event(X)) Phase must
" Wire po-mmmmm—- be finished
I between B bocmecnnn o processEvent(X) before the
j andA 1 render phase
| exists I starts
L e
1
1 render Render
1 requests are
1 fired in no
1 specific order.
1 They may be
1 fired ouejafre:'
11 r* the other or in
1 parallel.

------ Not defined by the Java Portlet Specification

Figure 30: Request Handling Sequence ([Stefan,]2008

4.2

Widgets

From the user perspective, a Widget is exactlystmae as a Portlet: It is a pluggable Ul compongsgd

by Web Portals and provides a presentation layarftomation Systems. Unlike JSR 286 which is sfieci

to J2EE platform, Widgets do not impose any Sersigdle technology. Instead, it must be a Web

application, which means that the client side efajpplication must be based on Web technologids asic

(X) HTML, JavaScript (JS), CSS, and XML. W3C fosiance defines a Widget [W3C, 2007] asself-

contained client side Web application for displayand updating remote data, packaged in a way ltwal

a single download and installation on a client miaehor mobile devicé.Universal Widget APl (UWA)

Chapter 1.1 State of the Art 96

[UWA, 2008] is another initiative, launched by Nites, to perform interoperability between different
Portals. It promises a single development and séw@ployment platforms paradigm. In other words,
developers create Widgets using the UWA specificatiand then, the Widgets can be automatically
adapted to a specific Widget engine. Currently, raljor Widgets engines (e.g. Netvibes, iGoogle,
Windows Vista, Apple Dashboard, Yahoo! Widget, iRboOpera, blogs, MySpace, etc.) support the UWA
format.

Unlike JSR 168/286 which mainly standardizes theractions between the server side of the
Portlet and the Portlet Container, W3C and UWA fou the interactions between Portals and thetclien
side of the Widgets. They specify how to define al§®t and what technologies to use for implementing
the client side. UWA for instance, requires XHTME the language for presenting the content of the
Widget, XML for handling the preferences, JavaSchip adding behaviour to the Widget, UTF-8 as the
encoding format, and finally, CSS for styling thedgét. In addition, UWA compliant Widget engines
provide a set of JavaScript functions that aim fimme hand to provide facilities to developers (AZAX
requests), and from another hand to limit the dge to ensure that Widgets do not interfere wibhe

other. Table 6 summarizes the most important J&tifms.

Table 6. UWA JavaScript Functions.

UWA Function Description

widget.onLoad() This function should be rewrittgntbe Widget Developer. Its

content is executed when the Widget is loaded erPtrtal.

widget.onRefresh() This function should be rewnithy the Widget Developer. Its

content is executed when the Widget is refreshed.

widget.setAutoRefresh(delay) Developers can useftimiction to automatically refresh the

Widget eachdelayminutes

widget.setTitle(title) Changes the title of the \yéd.

widget.openURL(url) Opens a new URL on a new brawgadow

widget.body Provides a reference to the Widget eternent.
widget.createElement Creates a DOM element.

widget.getValue(name)/ Respectively gets and sets values of preferencesngters.

widget.setValue(nhame, value)

UWA .Data.request(url, request Performs an AJAX request
object) (Alternatives: getFeed,

getJsongetXml, and getText)

addContent, appendText, setText, | Modify the content or the style of an element.
setHTML, setStyle

Chapter 1.1 State of the Art 97

By focusing on the client side aspects, W3C and UWAvide a significant flexibility for
developers in the implementation of the businegiclérom one hand, and for portal developers in the
implementation of their portal from another handdded, in JSR 168/286, both Portlet developer and
Portal developer must use Java technologies angl oml the JSR 168/286 specification in the
implementation of their server side logic. Thesastmints explain the growing popularity of Widgets
compared to Portlets. Indeed, Widgets do not immwgeconstraint in the development of the servée si

logic, for both Widget developer and Portal provide

4.3 SOA vs. Portlets and Widgets

SOA is a mature paradigm widely used among softwdeeelopers. It is empowered with several
technologies which enable them to seamlessly iategready-to-use (third-party) services within thei
software (Service or application). However, curréethnologies such as Web Services and REST
architecture, which enable SOA, still lack of pras¢ion layer. They still lack of the Ul that enalihe
service to interact with the user and vice versatt@ other hand, Widgets and Portlets are by itiefin
pluggable Ul fragment that respectively provideemscto data and business logic of an application, B
current Widget technologies did not deeply investiigthe interoperability and integration aspectsveen
Widgets. In addition, the relationship between Widgand SOA architecture is not deeply investigated
First attempts to converge SOA and Widget/Portlatagigm have been made by OASIS
Standardization Group, in the Web Service for Renirtlets (WSRP) Specification (JOASIS, 2003] and
[OASIS, 2008]). WSRP aims to provide Web Serviceetigpers with an easy way to embed a pluggable
Ul. This enables WSRP compliant Portals to easitggrate a Web Service. As we illustrate in Figte
the standard is characterized by adding a commtarface to WSDL description files. This common
interface returns the Ul of the Web Service. Thisebables the user to interact with the service doe
versa. Portal providers from the other hand shawiplement a generic Portlet that should invoke the

WSDL common interface which returns the Ul, andderthe results to the Portal.

. . . WSRP
Portal client side Portlet Container Compliant Web
Service A
é /
byl WSRP
Portlet A) '// Compliant Web
é’ Generic | Service D
1 1l Portlet .y
Portlet B| |Portlet C =1 N WSRP
5 Proxy N Compliant Web
2 Service C
o
Portlet D =
v WSRP
4 Compliant Web
Service D
Described With WSDL Files,
including well defined interfaces
Instances of the that enable the invocation of the
Generic Portlet Proxy Ul Fragment

Figure 31: WSRP Basic Concepts.

Chapter 1.1 State of the Art 98

Though WSRP standard is limited to JSR 168/286 tiamipPortals, the idea of adding a face to
Web Services is pertinent. As supported by [Di&@08 and [Akram, 2005], this idea of adding a user
interface to Web Services makes Portlets in WeltaPoplaying the same role as Web Services in SOA,
namely enablers for application assembly. We wiregen researchers advocating development methods
and the necessity of orchestration tools based wlydts/Portlets ([Diaz, 2008], [Vo, 2006], [Sir€(®],
and [Soriano, 2006]). In [Sire, 2009], authors mwgd an API that enables developers to develop &8dg
which communicate with each other when they areddan the same portal. In [Soriano, 2006], authors
have proposed EzWeb platform; a Widget aggregdtar énables Widgets to communicate with each
others through wires defined by the users. The Hr\Matform is illustrated in Figure 16, which is

duplicated hereafter.

F"Yﬂ"=l. A
1 1 1T my wire
EzlEvents Channels Slots
N e F\reJ _) .
ube_ipty_search FReproguctor_Youtube >W|r|r'|g
—l"_ rsslv youtuss \
Pitp %348 BF %2 Fawrw youdube.of interface
l- ol
I tite
I ptace
4
- _ InputfCutput
mapping
EEE EE
You[ILL) [Peticutas =] Pagine: 1 1 =
p Execution
interface
L »

\Chck and play

Current solutions are not deeply investigated amdpared to traditional SOA regarding different
domains. In this thesis, we define a comprehenaighitecture that enables users and developers to
combine Widgets with each other at the Web posgwéll Then, we apply this architecture to two SOA
application fields, namely service composition dudiness process management. We aim to to highlight

where SOA and Widgets technologies complement eti@r and where they do not.

5 Semantic Related Technologies

SOA might be empowered with semantic tools in orefacilitate the composition of services (static,
automatic, or semi-automatic). In this section,suenmarize the current practises in adding semémtic

service, whatever its nature (Widget, Web serw¢éeb application...etc.).

Chapter 1.1 State of the Art 99

5.1 The Different Approaches of Semantic in the Web

Such as services, semantic has a producer andsarnen While the consumer could be a human or a
machine, the producer of semantic is inevitablyeéan. This is due to the definititfrof semantic itself;

an adjective of a relating to the meanings of wofidemeaningcan not be generated by machines.

The most common approach to add semantic to a ataervice is to describe it using a natural
language. This is already used in software engingerhen developers create documentation of their
software, or when adding comments to their fun&tjon order to be understood by third party devetsp
It is also used in WSDL files in thalocumentation> tag. However, such description is limited to husan
Indeed, the semantic consumer, as well as the senpaiaducer, are inevitably humans and not machine
As a consequence, only static service composisosupported. Automatic and semi-automatic, in which

machines should build, and/or check the feasibiftyinput/output mappings, are not supported.

In order to enable machines to consume semantie(stand the meaning of words), developers
need a new approach for defining their services;ithknown as semantic Web, coined Tiyn Berners-
Lee in [Berners-Lee, 1998]. For this purpose, “niaeloriented” semantic technologies have emergeal. W

distinguish two popular approaches: the ontologyreach and the markup languages approach.

a. Ontology Approach

The term ontology has been firstly used in phildsofield. It meansa theory of the nature of existende
computer science field, the term is used to refex formal model of knowledge in a specific domdihis
formal model is characterized by a set of concepts$ relationships between them. It is used inicigif

intelligence to model real objects and enable aata@measoning on their properties.

From the technical perspectives, there are margukages that enable the specification of domain
ontology. Resource Description Framework (RDF) [W2004d] is an example of such language. This
language is characterized by a set of triple{Subject, Predicate, Objeci)his form of triplets enables the
representation of a relationship (predicate; alalbed properties) between two concepts (Subject and
Object). Thus, a concept is defined with a tag i delationship with other concepts. An RDF modh
be represented as a graph, where nodes refer wiffaeent Subjects and Objects referred in thglets,
and arrows represent the predicate (relationshipe RDF specification defines a set of properties
(subClassOf, typeOf, domain, range...etc.), but atlteuld be added. Figure 32 is a simple exampénof
RDF model.

32 Collins, http://www.collinslanguage.com/results.asprcessed on June'1.£2010

Chapter I.1 State of the Art 100

IngredientOf

subClassOf
subClassOf

Figure 32: RDF graph example.

Another popular language that enables modellinglogtes is OWL [McGuinness, 2004], which
stands for Web Ontology Language. It is an RDF tdéseguage, which provides more native predicates t
enable reasoning. It has three sublanguages: OM/LOMWL DL, and OWL Full. OWL Lite is designed for
easy implementation. It restricts the language ttoos to basic RDF schema such as: class, suliflass
property, and relations between that classes astdrines such as: equality and cardinality. In OWL-D
developers can express value range of parametam, lintersections and complement; these additiona
properties are those supported by description Idgitally, OWL Full uses exactly the same conssuag
OWL DL. The differences reside in the fact that OMIL imposes some restrictions which are not
imposed in OWL Full. An example of such restricBon that in OWL DLclasses, data types, data type
properties, object properties, annotation propertimtology properties are separated [W3C, 200duk
means for example that a class can not be an oestana property, which is possible in OWL Full and
RDF. With the imposed restrictions, OWL-DL ensutle existence of a decidable reasoning procedure

with current reasoning tools.

b. Markup Languages Approach

The markup languages approach for adding semamtenttware features is characterized by defining
standardized tag, with clear and approved sem#@miéaning), to be used by developers to annotate the
information their application generates. It is nhainised in the Web, with, or in conjunction with

(X)HTML.

The most known and successful technology to addasgmto (X)HTML documents is the
microformatsinitiative®® [Khare, 2006]. It is characterized by the defimitiof a set of formats to represent

information used in Web applications. Examples o€hs information are: addresses, phone numbers,

33 Microformats http://microformats.org/accessed on June',@010.

Chapter I.1 State of the Art 101

contact cards, calendar events, and email addreBskle 7 is a summary of two popular specification

microformats: hCard and hCalendar.

Table 7. Microformats examples.

Microformat tag| Sub-elements tagPescription

(Summary)

- f . . :
hCard : Inspired by RFC2426, the hCard microformat aims to

- adr (type, value) _ _
- post-office-box provide a representation of contact cards of pexgon

- extended-address companies, organizations, and places. The main

- street-address) _ _

locality properties of this microformats are the narfig, (the

- region postal addressaflr), the email addres®ifail), and the

- postal-code
- country-name

phoning addresstd]). Note that for each address, we
- email (type, value) can specify its type. The type can refer for exantpl
- tel (type, value) “work” for a professional address, or “home” for| a

personal address.

hCalendar - dtstart Inspired by RFC2445, the hCalendar aims to proside
- dtend representation of calendar events. It containsttiat
- summary . .
) purpose mainly the starting date of the eveltstar),
- location
- attendee the ending datedfend, a summary ummary, the
- geo location (ocation geg, and one or several attendees
- latitude (attende¢.
- longitude

These tags are used directly within the (X)HTML dioent, usually withirclassof rel attributes.

Consequently, third party developers can easilyestithe Web page and extract useful information.

5.2 The Different Expressiveness Degrees of Semantic

In term of expressiveness, we can easily see tlmbformats do not provide the same level as ogie®
created using RDF or OWL. For instance, we canmotlel a complete domain of knowledge (e.qg.
biology, wines, painting...etc) using microformats,itis possible using ontologies. As a consequeifice
this lack of expressiveness of microformats, reesbomay detect two semantic matching between tieat a
actually not compatible in the considered domaior. €&le, let's consider two services, one ofrthe
expects as inputs postal addresses located in&rand another generates US addresses as outphes. W
using microformat, it is impossible to highlightettabove difference in the model, as both addresses

referred through the “adr” tag. But this is possibking ontologies.

Chapter I.1 State of the Art 102

However, more we try to be more expressive in a@ology, more the ontology is unstable, and

more the reasoning tools are heavy.

5.3 Semantic and Service Creation

As we have previously detailed, there are diffesggroaches that enable different actors to creatéces
through composition: static, automatic, and semd@atic. The Web semantic tools provide support
essentially for the automatic and semi-automatimmmsition approaches. In automatic composition
approaches, semantic tools enable the detecti@emfntic matching between outputs of services with
inputs of others. Pa4C algorithm for example, useflLécué, 2006], uses a semantic reasoning taal th
enables detecting if two concepts (typically arpotibf a service and an input of another) are séinwly
close or not. In other words, the semantic reasdetscts if one concept can be substituted fronthangif
they are equivalent (usually linked with propertige subClassOf, or Is), or if one is a sub eletnehn
another (usually linked with properties like Unidin@r subElementOf)). Figure 33 shows an example
where we use semantic substitution to composecgsvin this example, semantic reasoning toolslenab
the composition framework to detect that S1 caondrmeposed with S2 (in other words, we can substdute

phone number information from an IT Engineer infation).

Service S1 generates "IT Engineer" as an output
(e.g. S1 could a be a service that enables the

search of an expert within R&D of a company) P
— - ntology
|
\ \

subClassOf

y <

Employee

subClassOf

subElementOf

S2 accepts as input a "phone
number” (e.g. S2 could be a
telephony service)

Figure 33: Example of semantic concept substituticservice composition.

In semi-automatic composition, Web semantic teabgiek are not mandatory. Indeed, as the task

of mapping outputs and inputs of services is pertt manually, by humans, it is not necessary to add

Chapter I.1 State of the Art 103

semantic technologies. However, they still remageful to first recommend pertinent services in the
composition process; and second, to check theityatificreated composite services. These two astae
even more important when the composer of the serdimes not have computing skills. The former
enhances the intuitiveness of the composition ®icand the latter, ensures the semantic validithe

new service.

While in automatic composition the semantic musthighly precise and expressive, in semi-
automatic composition, we can afford lightweighinsatic as the composition process involves human

intelligence.

6 Conclusions

In this Chapter, we have studied two paradigms:Sbevice-Oriented Architecture (SOA) paradigm and
the Widget paradigm. Our main conclusion is that fitrmer is not user-centric and designed mainty fo
developers, and the latter is addressed for usgrddes not consider the service (Widget) reuse (oain
principle of SOA paradigm).

The SOA is not user centric as it is based on teldges that are understandable only by
developers (e.g. XML, SOAP, and WSDL). As a consege, user service creation is not really supported
Besides, two additional limitations are observedurrent SOA:

» First, the reusability is based on well structuasd formatted inputs and outputs of services. The
unstructured data such as the exchanged addrassas IM discussion are not considered.
Consequently, much data are unavoidably discargeditvent tools.

« Composite services are tightly coupled to the basiwices they use. The unavailability of one
used basic service implies the non-validity of tbenposite services that use it.

These limitations are not actually limited to seevcomposition field. They impact also other fietdeh as
business process management.

By contrast, the Widget paradigm presents the adganof being designed for users. From the
conceptual perspective, Widgets presents significamilarities with Web services in Web Service
Architecture (WSA), and REST resources in REST-lamehitecture. Both enable exposing application
functionalities; both are self-contained; and bath self-describing. The Widget aggregator is ansok
application that enables the user to build a peised service environment, where different Widgefts
different providers are displayed within the samedow (e.g. Web page). However, the reuse capgbilit
(one main principle of SOA) is not really investiga within the Widget paradigm.

Our study of the two paradigms (SOA and Widget)wahthat each one has its advantages and

limitations. This raises the challenge of consingtan architecture that includes the best of dast,

Chapter I.1 State of the Art 104

namely the reusability capability of SOA and themusentricity of Widgets. In the next Chapter, welsto
propose to enrich the Widget paradigm in orderditdbsuch architecture; we name it the Widget-Cugen
Architecture (WOA) paradigm.

Part Il Contributions

Our contribution in this thesis can be summarizethiee items:
» First, we introduce the principles of the Widgeigbted Architecture (WOA) paradigm.
» Second, we design the framework that realizes tineiples of WOA paradigm.
e Third, we study and propose the application of WWEOA paradigm to two SOA
application fields, namely service composition &odiness process management.

Thus, this contribution part is divided into thr&hapters that detail respectively the three

contributions.

Chapter 1.1 Widget-Oriented
Architecture (WOA) Paradigm

As we illustrated in the state of the art Chap€napter 1.1 State of the ArtSOA still suffers from being

developer-centric and not user-centric. In this g we introduce a Widget-Oriented Architecture
(WOA); a new user-centric paradigm that aims torowme current SOA limitations by providing the
capability to ordinary users to create serviceetham the Widgets. Thus, we start by summarizing ou
vision about the definition of a Service; then, specify the different roles involved in the new

architecture; and finally, we detail the principthat must/should be fulfilled by each role.

1 Service

In this thesis, we define a Service as Software entity that performs one or more operai It is
developed by a service developer and has at leg@sservice description. It is made available bye/ice
provider andconsumed by another software entity or by a user, who is optionally charged fdérThus,
unlike enablers which are designed to be used ligr aioftware entities, and unlike Applications whare
designed to be used directly by the users, a Semithis thesis should be designed as a compaovigoh

could be used by other software entities or bysiser

These conceptual differences between Enabler, éqtin, and Software Service imply
significant technical choices summarized in Figde Thus, such as Web Services in traditional S&A,
Enabler (Figure 34.a) is technically described ldeacription file following a machine readable laage
such as WSDL and WADL. It is implemented using prggramming language such as Java and PHP, and
can be invoked by third parties through well definensport and messaging protocol such as HTTP and
HTTP/SOAP. Because they are designed to be progadicaily processed, the presentation aspects are no

useful in an Enabler, except if it is part of thealBler business logic itself.

Chapter I1.1 Widget-Oriented Architecture (WOA) Bdigm 108

= Exposed as —————— HTML, CSS, I — Widgets
Enabler REST resources Application Flash, Service
or Web Services. Silverlight...etc. —_————c-—=--== -
1
AP ul I ul I
1
I ----- ﬂ ------ -l
Service Service Service
Implementation Implementation Implementation
(Business Logic) (Business Logic) (Business Logic)
4 T ~ P Ll ~ h T ~

- ~ ~ -
- ~ - - <
z 1 ~ P 1 ~ 1

Wep REST EJB Wep REST EIB We_b REST EJB
Service resource Service resource Service resource
N =/ >/ 4
(a) (b) (©)

Figure 34: Service components.

Unlike enablers, applications (Figure 34.b) areigiesd to be used exclusively by users.
Therefore, applications are not described in a mnacheadable language; instead the focus is on its
interaction with the user. As a consequence, sktexhnologies enable today the creation of advénde
such as HTML/CSS, Adobe Flash, or Microsoft Siligdt. In addition to this presentation layer,
applications also include the business logic wiisdmplemented using any programming language ssch

Java and PHP.

Finally, the conceptual distinction of a Servicég(Fe 34.c) is its characteristic of being designed
to be used either by another (third-party) softwemtty, or directly by users. Therefore, it is ion@nt to
focus its technical realisation on both Ul aspeetd reusability capabilities. Consequently, we mécdlly
define a Service as a software entity realizingisiriess operation; it is associated to a Ul (Wiggetich
enables the user to interact with the businessatiparand vice versa (see Figure 34.c); the Wigget
should be described and should include semantiotations in order to enable machines to reuse the
associated software service. By supporting bothsused machines, the Widget paradigm in this tHéks
the existing gap between the concepts that arerstaahelable only by the user (Ul, service), and ¢htbst
are understandable only by machines (XML, HTTP...etc)

2 Widget Oriented Architecture (WOA)

Our goal in this thesis is to propose solutionsctorent SOA limitations. We define thus the WOA
(Widget-Orient Architecture); a new paradigm whishmore user-centric than SOA. Similarly to SOA,
WOA is a new computing paradigm that utilizes Witdgas basic elements to support the development of
rapid, low-cost and easy composition of distribudggblications even in heterogeneous environmergs. A
we previously defined, a Widget is the Ul part ofexvice that includes semantic annotations to lenab

machines to process it. Our goal is to enableghee of the service by both humans and machines.

Chapter I1.1 Widget-Oriented Architecture (WOA) Bdigm 109

As illustrated in Figure 35, WOA includes five relea Widget provider, a registry, a Widget
client, a Widget developer, and a user. The Wiggetider publishes Widgets to a common registry by
providing their description, annotated semanticalbing the platform semantic dictionary. The Widget
provider is not necessary the developer of the \&fidgeither the developer of the correspondingriass
logic. The user uses the Widget client to discovead, use, and compose Widgets. All interactions
between the user and the service go through thg&Vidient. The Widget client interacts with thegistry
and the Widget provider. It invokes Widgets throddjiTP request; the response is a Ul (XHTML code)

dynamically generated by the service implementatol semantically annotated.

e —
Widget registry _,,‘—“' Semantic Dictionary

Widget
description

Discover

Access N

Widget Client P Widget provider
* HTTP request - -
q Widget Implementation
Consume provides

Widget developer

C User >

Figure 35: Basic Widget-Oriented Architecture.

Similarly to SOA, WOA relies on a set of principledich are categorized into Widget registry
principles, Widget client principles, and Widgetopider/developer principles. After reviewing in the
following subsections these principles, we sumneahiaw the different actors involved in the WOA miode

interact with each other.

2.1 Widget Registry

Such as SOA service registry, the Widget registostprovide an interface for publishing Widgets and
another for discovering Widgets. However, with thereasing number of services, it is likely to have
several Widgets fulfilling the same functional neg&tierefore, it is important to provide a mechanfem
selecting services among functionally equivalergsorhis selection mechanism must be user ceiric;

other words, it must be based on selection ruléaetby the user himself.

2.2 Widget Client principles

The Widget client is a software application throwghich the user consumes Widgets. Followings aeta

of principles related to this role.

f. Service Environment as a Composition Framework

The Widget client must play a role of a user serdavironment and a composition framework at timesa

time. In other words, in WOA paradigm, the comgositframework should be the same environment as

Chapter 11.1 Widget-Oriented Architecture (WOA) Bdigm 110

the daily service environment of the user. The wbeuld not have two separate environments, one for

composing services and one for using the compasitio

g. Widget Client Personalization

It is important to enable the user to personaliseskrvice environment according to his own neadbs a
preferences. He should be able for instance toamttremove Widgets from his environment, and to

compose the Widgets with each others.

h. Widget Discovery

The Widget client should provide users with a Wttenables them to interact with the discoveryrfate
of the Widget registry. Thus, in addition to thadtional based discovery, the Widget client sharidble

the user to specify the rules to apply to seleatises among functionally equivalent ones.

i. Reusability and Composition of Widgets at the U&le

Such as in SOA, reusability and composition arennpainciples in the WOA. However, WOA distinguish
itself by being closer to the users. The reusgbélitd composition must be performed at the Ul I€asl
illustrated in Figure 36). In other words, the Iligeence that enables the composition of Widgetsvben
them must reside at the Widget client level. Thialdes the design of user-centric mechanisms agillve

show later on in this thesis.

Phone number must be
semantically annotated to
detect it and compose it with
the telephony Widget

Composition at
the Ul level

& corporat v Edition X
wew Search
I rmiation
Hassim Laga #& Orange phone

Phata
Semice: FTA ROEIIPMECE # Unredister

Seniic s en Ligne M Annuaites pour "

les ent, :prises \eamial | o can
Phane 02 31 75 90 0 - \)Q

Fax: 02317356 26

nassim.laga@orange-ftgroup.com <

Address RD CAEN
42 e des Coutures BF G243

LT
Qo
19086 0 ‘:’
CAEN “ a

% hidehe kevaard
Manager: M. Philippe Michon
Secretary © wime Michelle Harel

Figure 36: Reusability and composition at the Wele

In addition to the reusability and composition ofdgets within the Widget client level, it is
recommended to consider two additional issues rfttaece even more the user centricity of the WOA
paradigm): reusability cross Widget clients (seguFé 37), and reusability based on unstructured ¢zte
Figure 38). First, with the proliferation of deviceahe users would likely want to combine servioesied

on different devices. The reusability and compogitshould therefore be possible even between two

Chapter 11.1 Widget-Oriented Architecture (WOA) Bdigm 111

Widgets loaded on two different Widget clients {opally on different devices of the same user as

illustrated in Figure 37).

Composition
Device 2 Device 1
Widget Client 2 Widget Client 1
\

T
s
oo
o33
280

Figure 37: Reusability across different Widget mige

Second, with the proliferation of communicationvéegs, much data (e.g. phone numbers, email
addresses, postal addresses...etc) are generatezketmehged between users; data that could be used as
input parameters in the invocation of other Widgéts in the WOA we are acting at the Ul level,st i
pertinent to provide tools for capturing these datd composing them with other Widgets. As illustdain

Figure 38, this would enable for example the captuof postal addresses within an email and logatin

them using a Map Widget.

Unstructured

data detection Composition
[£] orange Email Reader E)rap by Gooalr
De: emmanuel berting ige-ftaroup com
Sujet: workshop [43847 F .onVork Ave Lancaster Gaol
Attache KEOWOSCEP. pdf
2 =] o
Fiar s 5 R | ol Map_ i Satellte | Hyorig |

)
During my wvacation | will be at 1W i
|avenue Guesns WVilage MY 114 ZBut I'm
currently (until 12/23/2008) in Jere C, artinson B

43847 Heaton Vork Awve Lancaster town Mew
Yark 93534

I AEUSEUD

Heaton York Ave Lancaster town Mew York 9353?

S = L L
CGoogle ' 2 € larcay

g data ©2010 Google - 1ns oi s

Best regards,
Massim Laga
Tel: 01 23 45 67 89

Figure 38: Unstructured data composition.

j- Stateless and Statefull

Unlike SOA which recommends stateless services gétglin WOA can be statefull. Indeed, as Widgets
embed a Ul that interacts with the backend lodieytcan manage different states at the Ul leveiauit

affecting the performance of the backend serviqgadeémentation.

Chapter 11.1 Widget-Oriented Architecture (WOA) Bdigm 112

It should ne noted that the capabilities of a Widgwy differ from a state to another. For
example, a telephony Widget, in its initial statan make and receive calls; but, the same Widgest dot
have that capabilities when a call has been estadli Therefore, it is important to enable Widdets

subscribe and unsubscribe capabilities at runtitagng their lifecycle within the Widget client.

2.3 Widget provider/developer principles

a. Widget-based Development of Services

In WOA, developers expose their applications asteo Widgets. A Widget provides access to one, and
only one, service implementation. Ideally, a seniimplementation embeds one functionality (a saftwa
entity that provides an added value for users). Busome cases, it is necessary to include several
functionalities within the same service implemebotatto enhance the user experience. For instance,
consider a telephony service. It embeds the funatity that enables the users to make calls, aed th
functionality that enables them to receive call®ni the user point of view, it is not necessarhaoe two
separate Uls. Thus, for the sake of the user caenee, two or more functionalities could be incldde
within the same Ul. This is analogous to Web se&wiwhich embed several operations within the same

Web service. Figure 39 summarizes how applicattsasexposed as a set of Widgets.

\

L ' Enterprise directory

I ‘ME@'. i

1 1 Add Contact

. \)
— - -

1

1 Read Inbox :

1 1

: Read Email 1
1

Read Agenda

Figure 39: Exposing applications as a set of Wislget

b. Contracting
Such as SOA, WOA requires from Widget providersiéfine their Widgets in term of the functionalities
they provide, and their non-functional parametansl{ding the provider, the version, the SLA, ahé t

Qos...etc).

c. Semantic Typing of the Ul

The Widget Ul enables the user to interact withuahderlying business logic, which includes entetimg

required inputs, invoking the needed functionalapd displaying the results for the user. In WQAsi

Chapter 11.1 Widget-Oriented Architecture (WOA) Bdigm 113

required from Widget developers to semanticallyadate the results at the Ul level. This is impotrtzm
reusability and composition (e.g. to use that tesuthe invocation of functionalities of other Vgielts);
this is detailed inChapter 11.2 A Design of a Widget-Oriented Architee (WOA)and Chapter 1.3
Widget-Oriented Architecture (WOA) in SOA applicatfields Figure 36 illustrates this principle.

d. Widget Autonomy and Loose Coupling

Such as services in the SOA, Widgets in the WOAtrhasautonomous and do not depend on an external
system. Each Widget must have its own lifecycle depend only on the business logic it implemenie
autonomous aspect of services and Widgets prometessbility. However, as Widgets are designed also

for users, the Widget clients and the Widget prexsdnust rely on the same Widget API.

2.4 Interactions
There are five interactions between the differatbis involved in the WOA model. Table 8 summarizes

them.

Table 8. Interactions of WOA model actors (Figus 3

Interaction Involved actors Description

Name

Provide Widget developer +The developer is in charge of developing the Widget
Widget provider source code and providing it to the Widget provider

host it. It is important for the Widget providerkoow the
functionalities of the Widget, in order to descriibeand

publish it to the registry.

Publish Widget provider <+ The publication phase could be performed by praongch
Widget registry file compliant to the syntax and the semantic d=firby
the Widget registry, or automatically by fillingfarm, in
which case the file will be created automaticalty.both
cases, it should be provided the index URL of theg#t,
the URLSs of the functionalities of the Widget, thigiputs,

and their outputs.

Discover Widget client — Widget The discovery interaction aims to retrieve the Veidg
registry present in the registry according to a given dsaterhis
implies an agreement on the format and the interthat

must be used between the two entities. From tHenieal

Chapter 11.1 Widget-Oriented Architecture (WOA) Bdigm

114

perspective, this could be performed using foranse a

REST API. The response of the Widget registry listeof
Widgets. Each entry of this list must contain tinelex
URL to invoke the Widget, and the list of functiditias
and their URLs.

Access

Widget client — Widge

provider

tThe Widget client loads a Widget by invoking the

corresponding index URL (retrieved at the discovery

step). The response to this invocation is a Ul .(e.g

HTML/CSS). When the Widget client needs to invok

functionality (when composing Widgets for examplie)

P a

must invoke the corresponding URL with the correct

parameters provided by the Widget provider when

publishing the Widget.

Consume

User — Widget Client

The user interact white Widget client through th

Widget client Ul. This Ul should provide to the ushe

capability of discovering, using, and composing Yéits.

[¢)

Chapter 1.2 A Design of a Widget-
Oriented Architecture (WOA)

In this Chapter, we design a Widget aggregator ésmark which is compliant with the principles of the
WOA paradigm we defined. We first detail how we rabd Widget. Second, we summarize the high level
view of the Widget aggregator we propose. Third,d&tail the most important innovative mechanisms we

define.

1 Widget

As we previously specified, a Widget is basicallikathat provides access to a service implementatio
where a service implementation may provide sevaraltionalities. The description of these functilities

is a must in the WOA paradigm. In addition to thhgir outputs, which are displayed in the Ul, minst
semantically annotated. Figure 40 illustrates thdg&t model we propose in our architecture. Sonthef
defined elements already exist in current Widgetgigm (white part), and some others are new (grey

part) (see Figure 28 to compare).

Such as traditional Widget model, in our architeetaach Widget has an implementation and a
description file (contract). The implementation tpimnplements different modes (at least a view mode)
However, In addition of modelling and describing ttifferent modes of a Widget, we also consider the
functional and the non-functional view of these Wéts. Each Widget may provide one or several
functionalities. These functionalities are desdtilvgthin the Widget description file. Each functadity
description contains an abstract description padt @ concrete description part. The abstract desumi
part describes the goal of the functionality, timuts it requires, and the outputs it generate® Th
functionality goal, the inputs, and the outputs described using a semantic dictionary providedhsy

Widget aggregator (Widget client).

The concrete part of the description file referghte actual implementation of the Widget. For
each functionality declared, the provider must gpebe URL that provides such functionality. Faaoh
input and output of a functionality declared, threyider must specify the corresponding tag usedhiwit
the actual implementation of the Widget. This eaahbilecoupling Widget developers and the semantic

dictionary used within the Widget aggregator; tegalopers are not obliged to use the semanticodiatyy

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 116

of a specific aggregator; instead, the mapping betwtheir tags and the Widget aggregator’'s ones is

performed by the Widget provider in the descripfiita of the Widget.

The non-functional view of a Widget is describedotigh a list of parameters and their values

(e.g. (provider, Orange)).

Another requirement of WOA is the annotation of Walget outputs at the Ul level. This is also

modelled in Figure 40, in which outputs containdthin a Ul include a data type (the annotation) &l

data value.
Widget
has
L has .
non-functional parameter | 0..* |Widget Description Widget Implementation
efer to
1
!)) has
index Impl tati
parameter tag parameter value include I A n ey has
" provide acc .
1. 1.
1.
functinality description refers to functionality implementation generates Functionality UI
1 1
1 expect: nerates
uses o contains
* o
semantic dictionary ; 0. 0,.*
input output associated to eventType
0.1
has has
has has

1 1 1 1

input¥alue inputType output¥alue outputType

I:‘ Added concepts describes W‘
|:| Existing concepts describes

Figure 40: Widget design.

2 Widget Aggregator

The Widget aggregator plays the role of a Widgentlin WOA paradigm. It is mediating between users
and Widget providers. In WOA paradigm, the Widgétrd must embed a set of features, namely: a user-
centric Widget discovery capability, reuse and cosifion of the Widgets at the Ul level, supporting
Widgets reusability and composition across differgvidgets clients, and finally the detection and
composition of unstructured data. In this sectiaa provide a high level view of the architecturetioé
Widget aggregator. Then, in the next section, waiblthe Widget Combination component, which is our

main contribution as it enables the Widget reuseé emmposition at the Ul level; it supports Widgets

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 117

reusability and composition across different Widgelients; and finally, it supports unstructuredada

based composition.

The Widget aggregator we propose is characteriye@ imain components: the GUI component,
the Widget Combination component, the Persistenepa@er component, the Interpreter component, the
Widget Registry component, and the Semantic Dietiprtomponent. As illustrated in Figure 41, some of

these components run at the front-end, while otherst the backend.

0

GU| Component ‘

Frontend ‘
layer

‘ Widget Combination Component ‘

‘Persistence Com ponent‘ ‘ Interpreter

Backend — _— — -
latyer — S . I

Third party platform
]) o (Third party Widgets)
Widget registry Semantic dictionary

Figure 41: Service aggregation high level architet
The GUI is the visual representation of the framewt provides access to the Widget registry

and its discovery capability; it enables the useload a Widget and use its functionalities; andniables

him to access to the Widget combination capability.

The Widget Combination component characterizeswmin technical contribution. It provides the
reuse capability (a WOA principle) to users andedepers. This component is detailed in the follayvin

section.

The Persistency component is in charge of intergatiith the Widget registry and the semantic
dictionary when needed. The Widget registry stovésiget description files and should provide a
discovery interface, which is used by the frontenthponents (GUI and Widget combination component).
These components (Persistency component, Widgéstnggand the semantic dictionary) run at the

backend as they deal with persistency.

The Interpreter component provides runtime Widgetedion mechanism. This component
provides a user centric Widget selection mechanised to first decouple composite services from the
basic services they use; and second, it enablg;mandc adaptation of composite services according t

new contexts. This component is detailed in se@idnAbstract Service Based Reuse Extension

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 118

3 WOA Key Functionalities (Widget Combination Componaent)

As illustrated in Figure 42, the Widget Combinati@omponent provides three mechanisms that enable th
reuse of Widgets functionalities:

« APl based (developer oriented) reuse of Widgets.

e automatic and semantic based reuse of Widgets @uiserted),

e and process based reuse of Widgets (user oriented),

In addition to these three innovative mechanisis, WOA we propose is also extended with
three main concepts in order to enhance it andwes0A limitations that are still not resolved Wwithe
basic WOA. These three mechanisms are:

« abstract service based reuse of Widgets,
e unstructured data based reuse of Widgets,
e and cross-device reuse of Widgets.

In the following subsections, we detail each me@rarand each extension.

System
Unstructured data based reuse
] e "’<'<.e>ft_end>> =
<<_g¥.tend>> API based reuse o
e _v_.<’<extend>>
‘"-s<extend>> .

Semantic automatic based rguée wgextend>>
<<extends>-...

Abstract service based reuse
Process-based reuse

Figure 42: Use case view of the Widget Combinatiomponent.

3.1 APl-based Reuse of Widgets

a. Mechanism Goal

One approach for performing Widget reusabilitydsely on theAPI-based reuse of Widgetsechanism.
This mechanism is conceived for Widget developersrider to enable them to reuse capabilities oéroth

Widgets loaded to the user environment. The spdgifof this mechanism, compared to traditional one

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 119

(mainly SOA APIs), is characterized by the usertieity of the reuse approach. The mechanism pesid
an API that enables developers to discover andereapabilities of Widgets that are loaded to ther us
environment at runtime; whereas in SOA, develogigssover and use capabilities of services pregent i
the registry, which do not necessary have anyiogisip with the user. Figure 43 shows the diffeen

between the two approaches.

SOA approach WOA approach
(: Registry ‘

> K
(Registry) Each Widget access its
0 B backend implementation
2. Discover, User Service environment

(Provider) _ Provider

3. Reuse

® The developer creates a new
@ @ Widget, in which he discovers
The developer creates v?l%d r?ustﬁstcapalblhttjlez of -
a new service, in th ldgets that are joace ont
which he discovers e user service environmen

] Widget aggregator in our
and reuses services =
present in the registry (e

Figure 43: SOA approach vs WOA approach in API-tdasese.

b. Mechanism Design

This mechanism is characterized by the APl compbitiestrated in Figure 44. This component has the
advantage of being related to the Widget aggregatetance; which provides some user context
information. It can be summarized in four main fumes: GetWidgetList Subscribe Unsubscribe and

Publish

GUI Component > Cw2) Cws S CwaS

Widget ‘ API ‘

Combination B

Component *Listof loaded
Widgets capabilities

Figure 44: API-based reuse involved components
* The GetWidgetListfunction provides the list of Widgets that areded within the
Widget aggregator instance, which is directly mdiato a user. The discovering step
could be done either according to the functiondliigt a developer needs, or according
to a given parameter type, which can be used ast ipprameter of the discovered
Widgets. The functionality and the parameter type described using a tag defined in

the semantic dictionary.

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 120

e The Subscribefunction enables the Widgets to declare their fiomalities; this can be
performed automatically by reading the Widget dgsion file, or explicitly by the
developer of the Widget by using the API.

¢ The Unsubscribefunction enables the developer to declare the aifebility of a
capability previously declared. TI8ibscribeandUnsubscribegunctions together enable
the modification of Widget capabilities at the riom.

< Finally, the Publish function enables a Widget developer to use caitiabilof other
Widgets loaded within the same user environmentd(&ti aggregator instance). The
generated outputs of the source Widget are thusdl aseinput parameters of the
destination Widget(s); the outputs are explicithesified as an argument of tReiblish

function.

As illustrated in Figure 44, th&etWidgetList Subscribe and Unsubscribefunctions enable

developers to read and write on the list of cajtaslof the Widgets loaded on the Widget aggregato

3.2 Semantic and Automatic Based Reuse of Widgets
a. Mechanism Goal

The semantic and automatic based reuse of Widgessdther approach to perform Widget reuse; one
principle of the WOA paradigm. It is designed faetws and characterized by automatically discoveaing
runtime the capabilities of the Widgets loaded loa tiser environment, and composing them if a semant
matching is detected. The discovery and the reusst bre performed by the Widget aggregator, andyot
the developer of a specific Widget as it is theedasthe API-based reuse of Widgets. Figure 45titates
this mechanism.

Semantic and Automatic

) Based Reuse of
API-based reuse of Widgets Widgets

User Service environment
Widget 1

User Service environment
Widget 1

1. Use!

Widget 2

Widget 2

| Widget 3

Widget 4 2. When the user loads the

Widget into his aggregator, it
is automatically composed
with other Widgets present

The developer creates a new Widget,
in which he discovers and reuses

capabilities of Widgets that are loaded

on the user service environment
(Widget aggregator in our case)

in the same environment

1. The developer creates
a Widget (Service) and
provides its description.

Figure 45: Semantic and Automatic Based Reuse db@{s Summary.

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 121

b. Mechanism Design

To automatically combine Widgets, this mechanistieseon the Widgets descriptions (contracts). As
Widgets are described in term of the functionaitteey provide, the type of inputs expected by each
functionality, and the type of outputs they woul@ngrate, the Widget combination component,
incorporated at the Widget aggregator level, cailyedetect the semantic compatibilities betweenl yéis
instances that are loaded on the user environriien, for each semantic compatibility detected leetw
two Widgets, the Widget combination component @eat link between them; enabling by consequence
the user to easily combine the two Widgets. Thisp&formed through a sub-component named
“Communication Manager” illustrated in Figure 46.

2. Create links between
Widgets according to
semantic matching detected

3. For each modification on

the Widget capabilities list,

communication manager is

notified for updating the links

GUI Component
P Cwiy Cw2) (Cwsy wiy

\\ //

Widget ‘ Communication Manager | ‘ API ‘
Combination ,,,74,,,,,
Component ~Listof loaded
. Widgets capabilities |
1. Read Widget

capabilities and detect
semantic matching

Figure 46: Communication Manager component.

The semantic concepts are described usigroformats paradigm. The semantic matching
between an output of a Widget and an input of adibilows one of the three patterns illustrated able

9; we associate for each one a set of actions:

Table 9. Semantic matching patterns.

Pattern name| Pattern description Actions
Exact The output type (of theé The only action performed when detecting such séiman
Matching source Widget) is matching is the creation of the link between theo tw

exactly the same as theWidgets; when the link is executed, the outputhef source
input type (of thel Widget is transmitted as input to the destinatiomn et

destination Widget) without any modification.

Inclusion The output type (of the A link betweerethource and the destination Widget is

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 122

source Widget) is a sub-created. At the runtime, the output of a source gbids
element of the input type transformed to the format of the input of the desibn
(of the destinationn Widget (the other elements that construct the irgfuthe
Widget) destination Widget are empty). The result is tratteah to

the destination Widget as an input parameter wherink

is executed.
Reverse The input type (of the A link between the source and the destination Widge
inclusion destination Widget) is a created. At the runtime, the input type is extrddtem the

sub-element of the outputs generated by the source Widget. It is tréttasd to
output type (of the the destination Widget as an input parameter wherink

source Widget) is executed.

The usage of microformats instead of ontologiemdtivated by the fact that the combination
process is performed at the presentation layer.pFégentation layer enables the framework to harties
user intelligence to make up the lack of microfolsnsemantic expressiveness. First, the probakufity
detecting wrong semantic matching is significamtguced as the user would likely load Widgets ef th
same business domain; and second, the user cak whether two detected semantic matching are really

compatible at the business level or not.

Links between Widgets are defined with a sextublésource-Widget, Output-Type, Destination-
Widget, Destination-Functionality, Input-Type, Liliigpe) There are two types of links between Widgets:
automatic links and semi-automatic links. Automdiiks are executed without any initiative from the
user. Each time the data and/or event that shaulgamsmitted from the source Widget to the detina
Widget are detected, the destination Widget israat@ally launched without any direct initiativeoin the
user. Semi-automatic links are however first digpthwithin the Ul of the source Widget using HTML
elements (typically an icon). Then, when the usieks on that HTML element, the corresponding da&

transmitted from the source Widget to the destimatVidget.

3.3 Process-based Reuse of Widgets
a. Mechanism Goal

The Communication Manager component, introducedhie previous section, creates links between
Widgets based on semantic matching of microforrteds. One limitation of such approach is that iyma
lead to an environment where some created linkintmgsive and undesired by the users. This is@alhe

due to the lack of semantic expressiveness of fiior@mts. However, as the reuse and composition

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 123

mechanisms are implemented at the presentatiom, layis possible to easily interact with the used
harness his intelligence. Therefore, we propodbigmsection th@rocess based reuseechanism. First, it
aims to provide a controlled approach when reugitidgets, by relying on a flowchart definition. Sedp
it enables the user to modify that flowchart inertb delete undesired links for example. Figuresd@ws

the difference between the process based reuseidget® mechanism, and the semantic and automatic

reuse of Widgets mechanism.

Semantic and Automatic Process-based reuse of Widgets
Based Reuse of
Widgets

User Service environment

Widget 1 ’ Widget 2

\

/ﬁ
(Widget 1

User Service environment

Widget 1

Widget 2

=

Widget 3

Widget /

1. Use 1. USV
Widgets are combined WQet 2>
according to semantic ,Z/ ¥ _Widgets are combined according
matching P to a flowchart definition
(Widget\3/ -The user will have only pertinent
~___ links between Widgets.

Figure 47: Process-based reuse of Widgets goal.

b. Mechanism Design

In order to provide a controlled approach when ireudVidgets, we introduce the “Process Manager
component which relies on a flowchart (processinitedn to enable the reuse of Widgets. Figure Héves

the Process Manager component within the architeatithe Widget aggregator. Thus, users, or servic
aggregator provider, may define a process whichrolsnthe Widget combination. In other words, only
Widgets combined within the process definition aotually combined at the execution time (within the

GUI level).

Creates/Updates links

betwsen Widgsts according
0 the process definition

GUI Componet.

Modifying the
process definition

Qrus S e
N\ = }
Widget | dofnmunication Manager |¢—< AP ‘
Combination : \ _ _I,_
Component mﬂf;; e Listof loaded

definition Widgets capahbilities

Figure 48: Process Manager Component.

We define a process as a graphsN, L>, where noded represent the list of Widgets that are
loaded, or must be loaded, on the user environnaemt;linksL represents the links between the different
Widgets. There are two types of links: automatiod ssemi-automatic. In an automatic link, the

communication between the two corresponding Widgetsurs each time the corresponding data are

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 124

available at the source Widget. In semi-automaiti&s, the communication occurs only at the user
initiative. Each link inL is defined by sextuplet (Source-Widget, Output-Type, Destination-Widget,
Destination-Functionality, Input-Type, Link-Typ@hereSource-Widget an element oN — is the source
Widget of the link;Output-Typds the type of &ource-Widgebutput; Destination-Widget an element of

N — is the destination WidgeBestination-Functionalityis the functionality oDestination-Widgetvhich
should be invokedinput-Typeis the input parameter @estination-Functionalityand finally, Link-Type

is the type of the link (automatic, or semi-autoigjat

At the execution time, the Process Manager comporedies on a process definition to define
which Widget is linked to another. In additionpibvides an interface that enables the modificatibthe
process definition at runtime. This interface sdobke used by the GUI by providing intuitive GUI

elements that enable the user to modify the prodefisition.

3.4 Abstract Service Based Reuse Extension
a. Extension Goal

The goal of this extension is to define a compositf functionalities, which are associated atri@ime

to Widgets. However, several Widgets may fulfil tekeme functional need. Therefore, the runtime
selection of the best Widget for a given functidiyalk a challenge; especially, when the selectioteria
are different from a user to another, and fromrectionality to another. The abstract service basede is

a mechanism that aims to respond to that challdhg&tends the previously defined reuse mechanksyns
providing a runtime Widget selection mechanism. $pecificity of our approach is the user centricfy

the selection process. Indeed, the selection psaetiss on rules that are defined by the user.

This mechanism promotes loose coupling betweenicesr(Widgets). Indeed, as compositions

refer to functionalities, they remain completelg@pendent from the Widgets that are really invoked.

b. Extension design

The solution we propose to provide such extensaies on two main components: the abstract Widget,

and a dynamic selection mechanism. Figure 49 slioege two components within the global architecture

The Abstract Widget is a Widget defined by the Véidgggregator provider (Widget client),
which is associated to a functionality, and a lidt selection rules that could be applied on that
functionality. The selection rules define the cideto apply in the process of selecting a Widgat f
performing the associated functionality. The sédecprocess is performed by the Interpreter compbne
illustrated in Figure 49. The GUI of the abstradtigét should:

« enable the user to enter the values of the ingufsired by the corresponding functionality,

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 125

« enable the user to choose which selection ruleppdy in the selection process,
« invoke the Interpreter component to select the Wédpet,
- display the selection results of the Interpreter,

« and invoke a selected Widget and display the result

S:Ied i Pes Invoke a selected
Widget to execute Widget

Abstract
GUI Component et Widget 2
Widget 1 9
o N

Frontend
layer

‘Persistence ComponentH Interpreter ‘

Backend
layer

Third party platform
(Third party Widgets)

Widget registry r

Semantic dictionary

Figure 49: éoﬁpﬁﬁénfé involved in the abstractiserbased reuse extension.

Figure 50 shows the different concepts involvedthie design of the abstract service reuse
extension. As we previously mentioned, an abst¥idget associates a functionality (e@et_Newsto a
set of selection rules (e.g. select the Widget rling to my preferred language). A functionalitydisfined
with its goal concept (e.gset_News— a semantic concept is a tag defined withinstraantic dictionary,
and the type of inputs it expects and outputsriegates. Selection rules represent the logic fatbly the
Interpreter component in the selection of the Mg&tget for satisfying the goal concept. We define t
types of selection rules: constraint rules and ahje rules. A constraint rule is a condition thaselected
Widget must satisfy (e.g. the price does not ex&Edros). An objective rule is an optimizationao§iven
function (e.g. minimizing the price, or minimizirglinear objective function). Each selection rud@ cefer
to two types of parameters: static parameters amdhrdic parameters. Static parameters refer to any
parameter which does not change frequently, andsevlvalue is stored in the Widget aggregator databas
(e.g. price). Static parameters are accessibleugiiroa specific component named knowledge base.
Dynamic parameters refer to any parameter whoseevialknown only at runtime. This includes the user
inputs and other parameters such as the locatidrttenpresence of a user, which are generatedhay ot
services (e.g. localization enabler). The spetjfiof this model is the capability of specifyingles that
refer to heterogeneous parameters. The only condiéquired is the ability of generating the vabfiehat
parameter by a service present in the registry (@cgtion, and presence), or the presence of ahenmeter

value in the Widget aggregator database (e.g. pfieeWidget).

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 126

Input Type
0..*
\ functionality +realized by
0..* +tag
Output Type /
Abstract Widget Concrete Service
0. . %
Selection Rule Parameter
0. . %
Objective Rule Constraint Rule Static Parameter Dynamic Parameter
0..% +generates 0..%
+generate
Knowledge base

Figure 50: Abstract Widget related concepts.

In order to select the best available concrete tidigat responds to an abstract Widget (realize
the functionality, satisfy the constraint rulesdaptimize the objective rule), we introduce theetpreter
component (see Figure 49). It receives as inpumpater a functionality, the required functionalitputs,
and a set of selection rules that are activatethbyuser. It generates a list of concrete Widgksswe
illustrate in Figure 51, the first action carriedtdy this component is the discovery of all avalia
concrete Widgets that performs the functionalitytef abstract Widget. Thereafter, the discoveredgéfis
are filtered according to a set of constraint ruegch constraint rule may refer to a static oymadhic
parameter. The dynamic parameters are computdteauntime by invoking the corresponding services
(e.g. invocation of the localization service to get user location parameter). Once all constrailets are
applied and a set of concrete Widgets are selethiedinterpreter evaluates the objective rule dsent.

Such as constraint rules, the objective rule mdgrreo static and dynamic parameters; the dynamic

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 127

parameters are computed at the runtime. At the anskt of concrete Widgets are selected; concrete

Widgets that satisfy the constraint rules and ojzénthe objective rule.

Functionality

C)iscovery Of Widgets reponding to the functionalitD

List of Widgets, Constraint Rules

Constraint Rules Evaluation

Single Constraint Rule Evaluation
o©

| List of Widgets,|One Constraint Rule

List of Widgets, Objective Rule

Objective Rule Evaluation

List Of Widgets

Figure 51: Service selection algorithm.

The Interpreter component is not specific to the AV@ can be used in the traditional SOA to

perform runtime service selection.

The abstract Widget enables the users not oniytier éhe inputs expected by the corresponding
functionality and display its outputs, but also deoose the selection rules they want to apply @ th

selection process. We define thus a user centriicgeselection mechanism.

The format of the Abstract Widget is exactly thensaas ordinary Widgets, previously defined.
Thus, in the Edition mode, the Widget provides thehat enables the user to choose (check and gkghe
the selection rules they want to apply. The Viewdmdlisplays the Ul that enables the user to ehter t
inputs expected by the corresponding functionality,invokes the selection process (Interpreter
component), it displays the result of the selecpoocess (Interpreter outputs), and it invokeslacsed

Widget and displays the result.

In addition of providing a user centric selectiorahanism, the Abstract Service based reuse
extends the previous reuse mechanisms. First,oiigles a goal based reuse; and thus decouples the

Widget providers from the Widget integrators (thdsat combine Widgets with each other, including th

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 128

user). Second, it provides a dynamic adaptatiomordany to users criteria. Figure 52 summarizes this

extension.
Semantic and Automatic Process-based reuse of
. Based Reuse of Widgets
API|-based reuse of Widgets Widgets
User Service environment User Service environment User Service environment
Al?stract Abstract Apstract || Abstract Abstract || Abstract
Widget 1 Widget 2 Widget 1 Widget 2 Widget 1 Widget 2
T / A
Concrete | Abstract Abstract }‘_ Abstract Abstract | Abstract
Widget 4 Widget 3 Widget 4 Widget 3 Widget 1 Widget 3
The developer creates a new Widget, The user loads only abstract Abstract Widgets are combined
discovers the other Widgets that are Widgets, which are automatically according to a process definition.
loaded on the user environment (in our combined. When a given ~ When a given abstract Widget is
case they are abstract, because user abstract Widget is invoked, it invoked, it selects_the best available
has loaded them), and reuses their selects the best available SOIGIETS Wldget llp) Ercianis, Be:st 15
capabiliies. When invoked the abstract concrete Widget to execute. definediaccordinalo thellisers chteria
Widget selects the best available Best is defined according to the In addition, the process definition is
concrete Widget to execute. Best is user's criteria. completely independent from the

actual Widget that are invoked.
Instead, it depends on the abstract
Widgets, which are defined by the
Widget aggregator.

defined according to the user's criteria.

Figure 52: lllustration of the abstract servicedtheeuse extension.

35 Unstructured Data Based Reuse Extension
a. Extension Goal

The most important reuse pattern in SOA is charaeté by capturing outputs of a source service and
sending them as input parameters to a destinaiorice. Such mapping currently requires from servic
developers to declare the inputs expected by thetifanalities they provide, and the outputs gerestdty
these functionalities. This declaration might befgrened at the publication time, or at the runtiaeewe
previously proposed usingpablishfunction. In both cases, it is required from tlevelopers to know all
data that can be generated by the services theydprdn addition, developers of two composed s&vi

must rely on a common semantic in their servicegsons.

However, services in current Web platform are likiel generate data that are not expectable by
their developers, and thus impossible to includ¢him service description. This is especially trusew
considering Web 2.0 paradigm from one hand, andjtbeving number of communication services from
another hand. Indeed, Web 2.0 promotes user gedecantent; content which includes text-based data
(such as Wikipedia) and multimedia-based data (acklickr and YouTube). That data might contain
information that would be useful to reuse in otkervices, but hardly expectable and manageable by

service developers. In addition, people are moderaare connected together. Thus, a great amoudsteaf

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 129

is generated and exchanged between them; datalitatmight contain information (e.g. phone numbers,
addresses...etc.) that would be useful to reusehiaratervices, but not expected by service devedoper

Consequently, much data are unavoidably discargeditsent SOA.

The extension we propose in this section aims t&lé¢athis limitation. Our goal is to enable
service integrators (users and developers) to dapture the useful and unstructured data; andhsedo

reuse them in other services.

b. Extension design

The mechanism we propose in this section is anneiir to the previously detailed reuse mechanisms,
namely APIl-based reuse, semantic and automatiadlrasise, and the process-based reuse. This exiensio
is characterized by:

* The integration of a new entity to the Widget-otezharchitecture. This entity is a repository that
contains data extraction modules. These modulegnwhvoked, are in charge of extracting
unstructured data from a specified Widget. Theselutes do not provide any added value for
users, but they enable service integrators to exxtaad make use of, unstructured data.

« The definition of a new service reuse pattern taailitates the reuse of unstructured data

generated by a Widget within another one.

As illustrated in Figure 53, we introduce new rdi@she WOA: the provider of the data extraction
modules, and the registry of the data extractiodutes. The data extraction modules provider ishiarge
of creating the unstructured data extraction majuded publishing them into the data extraction nhesl
registry. The unstructured data extraction modutest be defined in conformance of an API defined by
the Widget aggregator (in our case, they must fieetb using JS language, and implemesxtfact_Datd
function). The publication process is performed grpviding a description file. The description file
contains mainly a tag representing the type of tsdican be extracted by the module; the tagsdten
concept within the semantic dictionary. More prelyisit refers to a data type. It is recommendetdee
one data extraction module for each data type. €h&bles the platform to deduce the data extraction

module to invoke according to the type of datagaktracted.

In practice, the provider and the registry of tlaadextraction modules can be the same entity as

the Widget Client provider.

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 130

e
Data Extraction Semantic Dictionary
modules registry 7

/’éemantic annotations
publish

Data Extraction Widget Client Access (use) N
modules provider y * HTTP request

Discover, Load|and Compose Widgets

Figure 53: Unstructured data based compositiorchitectural model.

Widget registry

Widget provider

Widget Implementation

provides

Widget developer

The first basic approach to harness the unstruttdata based reuse extension is to manually use

the data extraction modules and to manually invidke Widgets. Thus, service integrators (mainly
developers) first discover the source and the wiastin Widget. Second, if the inputs of the desiima
Widget are different from legacy outputs of therseuwidget, developers invoke a data extractionuted
that enables them to extract the input needed &éyd#stination Widget from the output generatedhay t
source Widget. Third, developers invoke the desitnaWidget using the extracted data as input
parameters. The invocation process might be peddrmither through the Widget Combination API
(previously detailed), or by connecting directlythe Widget provider. This process can be automaitid

a service composition language. This is detailettiénnext Chapter.

The unstructured data based reuse mechanism extbed#\Pl based reuse by providing
developers with a function that enables them tdyeassociate a data extraction module to their §#id.
When the corresponding data is detected, a calk liacction (defined by the Widget developer) is
invoked. In that function, the developer can disroand invoke Widgets that are loaded in the user

environment and that can handle the extracted Bajare 54.a shows this mechanism.

The unstructured data based reuse mechanism extendsemantic and automatic based reuse by
first detecting the inputs required by the funcéiities of the Widgets loaded in the same user
environment; second, associating the correspondiitg extraction modules to the different Widgetyj a

third, creating links when that data are detectetiextracted. This is illustrated in Figure 54.b.

The unstructured data based reuse mechanism extieadsrocess based reuse of Widget by
providing the capability of defining processes lohsa unstructured data. In other words, it enatites
definition of links where the output data shouldtfibe detected within the Widget, second extracied
then transmitted to the destination Widget as inpatameters. This is illustrated in Figure 54.cd an

detailed in the next Chapter.

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 131

Semantic and Automatic Process-based reuse of
. Based Reuse of Widgets
APIl-based reuse of Widgets Widgets
User Service environment User Service environment User Service environment
[R] i
Widget 1 Widget 2 Widget |]:| Widget ?: Widget 1 Widget 2
] T
Widge'[lé_LI I Widget 3 Widge'[l_A_hI Widgetl%I Wic%'et 1 ‘ ‘ Widget 3 ‘
The developer associates an According to the inputs types of The process manager enables the
unstructured data extraction module to the functionalities of the Widgets definition of links between two Widgets
his Widget. When the data are loaded on the user environment, based on unstructured data. At the
detected and extracted, a call back the communication manager ru_ntlme, the process ‘manager
function is invoked, which optionally associates the corresponding associates a data extraction module to
discovers and invokes Widgets that data extraction modules to each the source Widget for each
can handle that data Widget. When that data is unstructured data based link. When

such link is about to be executed, the
process manager first invokes the

corresponding data extraction module,
and then invoked the destination

extracted in a given Widget, the
communication manager is
informed and automatically

creates links with other Widgets

that can handle that data. Widget with the extracted data as
inputs.
@) (b) (c)

Figure 54: Unstructured data based reuse extension.

The unstructured data based reuse is not exclisitke WOA. It could be applied to current
SOA. However, the Widgets present the advantageeofg visual to the users. As a consequence, we
harness the intelligence of the users in the psoégxtracting the unstructured data; the usemscback

whether the extraction is performed successfullyair

3.6 Cross-Device Based Reuse Extension
a. Extension Goal

So far, we have considered a user service envirohiaee a Widget aggregator; a Web application that
enables the user to access and use several Widdetgeusability scope is therefore limited to Wty
that are loaded into a single instance of the Widggregator, running within a single device. Hoarev
users actually have several user service enviroten@ptionally loaded on different devices. This is
especially true when considering the proliferatauser devices (PC, laptop, tablet, mobile devices
TV...etc); devices which are more and more sophisttc&rom one hand, and enable the user to access an
use several services from another hand. Current S@uétions addressed for users do not consider this
variety of user environments. For instance, the aa@ not combine a web email service, loaded an hi
mobile phone, and a video player service loadetheTV (this would enables him to read attachedigsv

using the TV video player).

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 132

To tackle this limitation, we propose in this sentto enable the user to combine Widgets loaded
on heterogeneous devices. We propose to extencetise scope from a single Widget aggregator into
several Widget aggregators loaded on differentadesviAs illustrated in Figure 55, this would enathie
user to make a Widg&t communicates with a Widg®& easily, even when they are loaded on different
devices. This would enable the user to easily conaaveb mail service loaded on his mobile phorith w

a video player service loaded on the TV, and/ohw&iPDF reader service loaded on the laptop.

Device 1 Device 2
User Service environment User Service environment
L
Widget 1 Widget 2 Widget 5 Widget 6
T / \\ |
Al
Widget 4 [Widget 3 Widget 8 [*—| Widget 7
[| A

Figure 55: Cross-device based reuse extension goal.

b. Extension design

The solution we propose to enable the user to coenWidgets loaded on different devices is basethen
definition of a cross-device communication protodmtween the different WOA components. This
protocol enables different Widget aggregators tmmainicate with each others to enable the combinatio
of their Widgets. In other words, it is not requit® have the same Widget aggregator type on ffereiit
devices to enable the Widgets to be combined wattheother. The only condition is to comply with the
protocol we define. Even web or desktop applicatioan be combined with the Widgets as long as they
are compliant with the protocol we define. As ithased in Figure 56, this new API represents arresibn

to the different reuse approaches we have previalefined.

From the technical point of view, this extensionaismodule used by the three main reuse
components introduced in this thesis, namely thel A&Bmponent, the Communication Manager
component, and the Process Manager component. dleeof this module is characterized by first
synchronizing the lists of Widgets capabilities ganet in the different Widget aggregators instaneest
second, when needed, invoking a Widget loaded different device. To do that, we define a crossiaev
communication protocol. This would enable differ@vidget aggregators to communicate with each other,
if they are compliant with this protocol. This pwobl relies on the Cross Device Communication tool,
which provides a communication channel to all ins&s of Widget aggregators. It enables a moduke of

Widget aggregator instance to transmit data toteranodule of another Widget aggregator instanbe. T

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 133

data transmitted between the Cross Device Commitimicanodules (see Figure 56) characterize the

protocol we define. Table 10 details the meaninthaf data.

,"'Widget Aggregator on TV

,r"'Widget Aggregator on laptop

w2 TS

| API B CWs) |
!
‘ Communication Manager * ‘- API ‘
‘ Process Manager! '\ _.%- Communication Manager ‘
N W G B ;
\\ \ '~.=. I- Process Manager ‘
Cross Device Communication Predefined \'\\ T P —
module: Itimplements the HTTP-based \\ _’ ll Contains the list of
protocol we define) | W \\\ i / Widgets capabilities
Cross device corimunjcation tool loaded on the different
= instances of the
Widget aggregator
Figure 56: Cross device composition basic architect
Table 10. Cross Device Communication Protocol.
Data Description
Registration This function registers the Widget aggregator ins¢ain the Cross

device communication tools, in order to receiveinfation from othe

D

Widget aggregator instances loaded in differentiasyv of the same

user. Authentication might be required.

Widget_ Subscription_Event This informs other Widget aggregator instancesutitite availability of
a new capability of a Widget in order to synchrenithe list of

capabilities.

Publish_Data_Event This function enables the invocation of a capapbiit a Widget loadeq

on another device.

Widget_ This function informs other Widget aggregator instes about the
Unsubscription_Event unavailability of a capability of a Widget in ordir synchronize the list

of capabilities.

Each time a new Widget capability is available iWmlget aggregator instance, the Cross Device
Communication module is invoked to transmit that foimation using the API
(Widget_Subscription_Event Thus, other Cross Device Communication modulefs,other Widget
aggregators of the same user, receive the infoomatind update the list of Widgets capabilities.lBame
a Widget capability is unavailable, the correspagdCross Device Communication module transmits the
information (using the APIWidget Unsubscription_Evéhtto the other Cross Device Communication

modules, which update the corresponding list ofabdjties. These two actions enable each Widget

Chapter 11.2 A Design of a Widget-Oriented Architee (WOA) 134

aggregator instance to have a global view of Wislgbat are loaded on different devices and their

capabilities.

The protocol we described enables even third pgplications, loaded for example on a mobile
device, to be combined with Widgets or other agions loaded on different devices. For this puepds
must just implement the Cross Device Communicati@aule, which registers the application to the €ros
Device Communication tool, and maintain a list oidgét capabilities. Then, the application shoulst ju

read that list to discover capabilities of Widgiitat are loaded to the user service environments.

As we are combining Widgets loaded on differenticks; it is important to consider the
pertinence of making two devices communicate wabheother. For instance, it is not pertinent to b
a web mail service loaded on a mobile, and a viglager service loaded on a TV, if the two devices a
not close with each other (the localization aspesabut of the scope of this thesis). The pertineaote
making two devices communicate with each other milgipend on other parameters than localization. For
example, it might be interesting to combine Widg#tswo users belonging to the same social commaunit
(group). Thus, the implementation of the mechanismsst be modular enough to easily embed the

intelligence that selects which devices should comicate.

Chapter 11.3 Widget-Oriented

Architecture (WOA) in SOA application
fields

In this Chapter, we investigate different SOA agpgiion fields within the WOA paradigm. More predjse

we first detail how service composition is perfodnesing WOA; and second, we investigate the busines

process management using WOA. This Chapter ainshowv where the WOA mechanisms we defined

succeed compared to SOA, and where they fail.

Service composition: In Service composition fiellQOA is characterized by its user centricity.
First, we introduce a static service compositioncihamism that enables developers to create
Widgets which communicates with other Widgets Hratloaded into the same environment. This
composition mechanism provides a first and basér-aentric approach for composing services.
Second, we introduce automatic and semi-automativice composition mechanisms using
WOA. In each composition approach, we demonstrate Wwe make use of the abstract service
based reuse, the unstructured data based reustheaoss device based reuse (mechanisms that
are previously defined). The concept of abstrantise enables to decouple a composite service
(created either using static, automatic or semiaatic composition mechanism) from the used
basic services. This is performed by dynamicalhdbig the functional need of the requestor to a
concrete Widget. The unstructured data based netisEluces a new composition pattern that
enables the service composer to capture data thatch declared as legacy outputs of a service,
and use them as input parameters of another sefiically, cross device based reuse enables a
user to compose services loaded on different dsvitlis enables the user to create a pervasive
application where functionalities run on the mastexd (preferred) device.

Business process management. The WOA also affeetbusiness process management field.
Here in this thesis, we highlight three implicagorfirst, as users can create their own software
feature, it is possible for them to define and enste their own business processes. Second, the
abstract service based composition, enables a dgnadaptation of business processes; an
adaptation which can be performed for instance raog to the context the user. Third, the

unstructured data based service composition enttidedefinition and implementation of business

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 136

processes according to unstructured data; dataateatneither declared nor formatted when

publishing the corresponding service. This is esplgcuseful to capture the data that circulate

between employees using communication services sash email,

document...etc.

1

Service Composition using WOA

IM, Wiki,

Office

In the state of the art Chapter, we categorizedeatirservice composition approaches into statimise

automatic, and automatic. Table 11 summarizes tivardages and limitations of each approach when

using SOA technologies (details are presente€hiapter 1.1 State of the ArtFor each composition

approach, we study in this section the solutiolas tiould be brought by WOA to the limitations tleaist

within SOA context.

Table 11. Limitations of Current Service Compositapproaches

Item Advantages Limitations
e Services are completelye The creation process is complex. lIt|is
independent from each other. Theonceived only for developers. As |a
Static created service might be agonsequence, along TTM for personalizing
service sophisticated as an ordinanan existing service, as well as for creating a
composition | application (No technical limitation).| new service is noticed.
« The created service is tightly coupled|to
the used basic services.
e Designed for advanced users.| kK Not designed for ordinary users; the
- enables personalization. tools are too complex for them. This implies
% « The time to market (TTM) is low a long TTM when an ordinary user wants|to
é— Semi- when a user is able to create a seryiogeate a new service, or to personalize| an
8 | automatic (He is an advanced user). existing one.
-g service + The created service matches The created service is limited.
% composition | exactly the user needs. e The created services can not |be
distributed over the user devices.
« The created service is tightly coupled|to
the used basic services
« Addressed for ordinary users. e The created service can hardly majch
Automatic |, |t enables a quick creation of |axactly the user needs.
service service. e The services are tightly coupled as they
composition| ¢ Itis very intuitive. rely on a common semantic.
« The created services cannot |be

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 137

distributed over the user devices.

—

e The created service is tightly coupled|to

the used basic services

1.1 Static Composition

The main limitations of static service compositigithin SOA paradigm are summarized as follows:
» Users can not create new services (this is dueetdefinition itself of static service composition)
» Users can not personalize an existing compositécgefa minor change requires a whole
development process performed by developers, whiplies a long TTM).

» The created service is tightly coupled to the basiwices it uses.

After specifying how static service compositiompirformed using the WOA, we will detail how

personalization and loose-coupling are enabled.

The method we introduce to perform static compwositf services (Widgets) is characterized by
using the API provided by Widget Combination comgmin More precisely, we use three functions:
GetWidgetListSubscribe andPublish which are proposed in the previous Chapter. [Eidt illustrates a
typical sequence, performed by users and Widgetsldgers, for composing Widgets. First, the usadf
different Widgets into his environment (step 1)c&@wmd, Widgets (implicitly or explicitly) declare ¢h
capabilities using th8ubscribeunction (step 2). Third, Widgets discover the aaifities of other Widgets
loaded within the same user environment (step 8yrth, Widgets use one or several of the discovered

capabilities (step 4 and 5).

Load Widgets

/ YWidget Aggregator Instance \

Widget Combination component

Loaded Widgets List
Invoke
Suhsc : Functionality

Figure 57: Widget composition using the Widget Corabon API

In addition to these three functions, the develspman use the unstructured data based reuse

extension, to automatically capture unstructurgd dathin his Widget and publish them to other W&ty

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 138

a. Personalization
WOA provides two approaches for users to persomadizcomposite service created using a static

composition solution. The first approach is mararal the second one is automatic.

As static composition is performed only between §¢id that are loaded on the user environment,
users can personalize it by choosing the Widgelsad. For example, if a directory Widget generated
publishes a contact card (which contains first nalagt name, and contact information such as phone
number, email address, and postal address) to dthégets, the user can control which Widgets will
receive the information and react accordingly. Example, they can load a Telephony Widget to receiv
the phone number and make calls; and they canadsloa Map Widget in order to locate the contactalo
address. This personalization approach is the nhame The personalization scope of this approach i
limited to what is expected by the developers efWidgets. For instance, if the developer of threaory
Widget decides to publish only a phone number ob@tact, the user can not compose the Widget with a

Map Widget (because in this case the postal adisesseded).

The second approach for personalizing compositécasr is automatic and relies on the concept
of abstract Widget. This is characterized by logdabstract Widgets into the user environment. The
developer can then discover that Widgets and intb&en. The actual Widget to be executed is seleated
runtime according to selection rules specifiedi®y tiser himself. Let’s consider, for example, thatuser
has loaded a “make call” abstract Widget and actbrg Widget. Let's consider also that the diregtor
Widget uses the API-based reuse mechanism; itdissovers the Widgets that are loaded by the aset,
then optionally reuse their capabilities. In ousesait discovers the “make call” abstract Widgetug,
when this Widget is invoked, the best “make calihcrete Widget is invoked. The “best” is defined
according to the user owns criteria; these criteréy refer for example to the user context sudioation

and presence, the preferences, the service price...et

Though this personalization presents the advantdgleeing automatic and context aware, it
presents the limitation of being static as the wser not create compositions which are not antiegphéy
the developer of the Widgets. In our example fatance, the user can not compose the directory &Vidg
with a Map Widget, if the developer of the diregtdWidget does not publish the addresses that will b

generated.

b. Loose coupling

In order to decouple composite services from thed usasic services, developers discover the capedili
of the abstract Widgets loaded by the users teimisronment. The actual Widget being executed és th

selected at runtime according to the needed fumality and a set of selection rules specified ke tkers.

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 139

Thus, instead of invoking a specific Widget in anpmsition, developers invoke abstract Widgets. This
mechanism ensures a complete independence betWeeprdviders of Widgets and the developers of

composite services.

1.2 Semi-automatic Composition

The main limitations of semi-automatic service cosifjon within SOA context are summarized as follow
e Semi-automatic service composition does not addnefinary users; the tools are too complicated
for them. This implies a long TTM when an ordinarser wants to create a new service, or to
personalize an existing one.
» The created service is limited (hardly avoidabléhés composition approach tries to target users).
* The created services can not be distributed oweusler devices.

* The created service is tightly coupled to the basiwices it uses.

In this section, we show how we overcome the fifst, third, and the fourth issue. We first show
how user service composition is enabled. Secondheg how do users create composite services that a
distributed over multiple devices. Finally, we shbaw a created composite service is decoupled frem

basic services it uses.

a. User service composition

To enable the users to create by themselves cotemmivices, we combine here two WOA mechanisms:
the“Semantic and Automatic Based Reuse of Widgatsl the Process-based Reuse of Widgedgfined

in the previous Chapter. By this combination, weksé simplify as much as possible the process of
composing services, while providing to users a éalhtrol on the defined composite service (based on

flowchart definition).

In order to facilitate the process of defining anpwsite service (constructing the composite
service description), we propose to first use ‘tBemantic and Automatic Based Reuse of Widgtds”
construct all possible links between Widgets thieg Baded by the user into his environment. This
generates a “mesh process”; a process which canakt@onnectable Widgets. Second, we enable the us
to delete and automate links. This is possible bez@ach link is visually represented at the frochtey Ul
element. Each Ul element enables the user to &etihe link (execute it); automate it, or deleteTtus,
the process of mapping an output of a Widget tanpot of another is performed automatically, and th
user still can delete undesired links, and/or aatenothers. The user can also delete a Widget figm
environment, in which case the corresponding liates deleted as well. The remaining links constthet

process (flow chart) on which théfocess-based Reuse of Widgetslies during the execution of the

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 140

composite service. It is important to notice thathe runtime, the user still can change the didimi
Figure 58 is a typical sequence diagram. It illatsts the different steps and messages exchangecthat

between the components of the architecture.

The most important differentiations of this semicanatic composition using Widget compared to

SOA are:
* its implementation at the user service environnasra. native functionality,

» the fact that the users do not have to understhadconcepts of input, output, and

input/output mapping, to compose services,

* and the fact that it is based on the Ul of a seriistead of XML based formats such as

SOAP and WSDL.

Enabling users to compose services is the corerdiftiation of WOA from traditional SOA

technologies. This composition approach is of ceumgplemented and validated in the next Chapter.

User GUI Process Manager Communication Manager Widget Provider
: Load Widg t(—§- 2 : Load Widget()

3 : Widget UI

: Detect semantic compatibilities()
4 : Widget U1 and definition()

6 : Widget UL_Widget definition, Semantic compptibilities()
<

7 : Const

8:U

9: dF the new Widget and create [ink
<

<
,|.|J)
12

13 : Délete/modify/add Iinks()
pdaté Pl'ocess Definition()

14 : Delete/modify links(

15:

o=

17

Figure 58: Composite Service creation through Predéanager.

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 141

b. Cross-device composition

The cross device based reuse we proposed in théopseChapter extends semi-automatic service
composition from one device to multiple devicesu3heach time a user loads a Widget into his dethee
Widget combination component of that device (imiglicor explicitly) captures its capabilities and
publishes them into other Widget combination congmis of other devices. If a semantic matching is
detected the Widget Combination component creatésketween them. This creates all possible links
between Widgets loaded on different devices ofdtume user. It defines a “mesh process”. The created
links can be automated or deleted by the user. iShpessible because each link is visually represeat

the frontend by a Ul element. Each Ul element ezwatiie user to activate the link (execute it), euatie it,

or delete it. Figure 59 shows a sequence diagraniltbstrates the creation of cross device comntposi
service. More precisely, it first shows how two \§kds loaded on two devices are connected with each

other to form a composite service; and second, dmse the user personalize this composite service.

User Device1-GUI Devicel-ProcessManager Device2-ProcessManager
. i = Il i il - i i .
Load Widget() Devicel-CommunicationManager || Device2-CommunicationManager Device2-GUI

Widget Laaded

DetectSemanticCompatibilities()

Widget_Connection_Event

UpdatgProcessDefinition()

DetectS erran}icConpatibil‘rties()

UpdateProcessDefinitionf)

late Processidefinition()

@

..Updatelinks()] UpdateLinks()

UpdateProcessDefinjti
P i)' dateProcessDefinition(

L] Update Pro]:ess definition()

Figure 59: Cross-device composite service creation.

Process_Update_Event

c. Unstructured data based composition

Current service composition tools enables the dhginf services based on structured data; dataatteat
declared as legacy outputs of a service, and feeshaccording to their type. By contrast, the diata are

not declared as legacy outputs of services, and timt formatted, can hardly be considered withia th

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 142

composition. That data include for example postidrasses within emails, phone numbers exchanged

within an IM conversation, and dates within anywoent.

The WOA introduces a new feature to tackle thisithtion: the composition based on
unstructured data. Basically, it is characterizgdhe introduction of a new pattern in the defmitiof a
composite service. A composite service is thusnaeffias a GrapfB<N, L, U> (instead ofG<N, L>);
whereU is a set of unstructured data based links betweerices. Each link ik is defined by quintuplet
(Source-Widget, Output-Type, Destination-WidgetstiDation-Functionality, Input-TypewhereSource-
Widget— an element oN — is the source Widget of the lin®utput-Typds the type of the data that should
be extracted fronsource-Widgefthis implicitly refers to the data extraction mdeltio use to extract that
data); Destination-Widget- an element oN — is the destination WidgeDestination-Functionalityis the
functionality of Destination-Widgetwhich should be invoked; and finallynput-Typeis the input
parameter ofDestination-Functionality Figure 60 illustrates an example of a composégevise that

includes unstructured data based links.

The Widget Combination component first invokes
phoneNumbers data extractor, and second, chains
the result with Telephony service

— —phoneNumbers = =— Telephon

Unstructured data based communication channel.

Legacy communication channel:
it is based on a legacy output of

the directory service
EmailAddress—p; IM

- |
Directory I
[:
dates == == = Aagen
srcEmailAddress genda

Figure 60: Unstructured data based composite sedefinition.

At the execution time, when an unstructured datsedalink is about to be executed, the
framework first invokes the corresponding dataaotion module, and then invokes the destinatiovicer

with the extracted data as input parameters.

d. Loose coupling

Semi-automatic service composition in the WOA pdesi two approaches for performing loose coupling
between a composite service and the basic seritiaess: the abstract service based reuse mechamisin

a manual adaptation by creating a new compositécgefby users).

To use the abstract service based reuse within-getomatic service composition, performed

within WOA, we define the concept of abstract cosifoscript; a flow chart definition that refers to

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 143

abstract Widgets instead of concrete Widgets. Thash time a node is invoked within the composite
service, the framework selects the best availabferete Widget to execute, leveraging the congteaid
objective rules associated to the abstract Widgetl€). As a consequence, composite services are not

coupled to the basic services they use.

The second approach to decouple composite serfvimesthe used basic services is characterized
by a manual redefinition of the flowchart (compestript). Indeed, as users are now able to contpese
own services at the runtime, they can easily modifsomposite service. As a consequence, when a basi
service is modified, or deleted from the registitye user can easily replace it by another senheg t
provides the same functionalities, and link it te tother Widgets in order to reconstruct the ihitia

composite service.

1.3 Automatic Composition

As we defined inChapter I.1 State of the Artan automatic service composition mechanism cseate
automatically a composite service description flamatural language based request. We have higatight
the limitations of such approach, namely:

e The tight-coupling between composite services dral used basic services (This is resolved
exactly in the same way we resolved the tight dagpin the semi-automatic composition of
services within WOA).

* The tight-coupling between different service previl(they must use a common semantic; this is
hardly avoidable as it constitute the basis ofahi®matic composition of services).

* The created services can not be distributed oweusier devices.

* The difficulty to match exactly the user needs.

Here in this section we propose to tackle the folirhitation using the WOA. Our proposal is
characterized by using the semi-automatic compusitiechanism as a failure recovery system. In other
words, from a natural language request made bysbkefrom his service environment, the system iegok
a Natural Language Composer (NLC) — which generatesomposite service definition. From this
composite service definition, the Process Managenponent generates Widgets within the user service
environment; Widgets which are linked with eacheo¢h The links are created according to the corntgosi
service definition generated by NLC. At this st composite service might be not conform to theru
needs, but the Process Manager component enablesehto modify it as easily as he creates a csitgpo
service (detailed in the previous section). Figbteis a sequence diagram that summarizes NLC é&ailur

recovery using Widget-oriented architecture.

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 144

User GUI Process Manager NLC Widget Provider || Widget Provider 1

1: Natgral Language Request()

2 : Natural Language Request()

3...Compasite. Service. Definition| J
4 : Gomposite service definition()

5 : load Widget()

6 : Widget UL _J

V : Create Links()

8 : Add Widget()
-

9
[S 10 : lbad Widget()

11§ Widget UI

2 : Create Links()

: Add Widget(
-
14

—'\ 15 T

16

17 : Delete/godify/add links() :
18| Delete/modify/add lirjks()

9 : Update Process Definition()

20
21 T
22 : Load Widget(): 23 : Load Widget() 24 : Load Widget()
25 : Widget UL
26 : Crepte links and Update Process()
27 : Add Widget()
)
-
29 L
30

Figure 61: NLC Failure recovery.

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 145

2 Business Process Management using WOA

Business Process Management is one field where 8&A succeeded. It enables exposing software
applications as Web services. As a consequeneasitres cross network and cross organization seamle
integration. In addition, when using compositioml$) professionals can easily model and automate a

business process as a sequence of activities ekpss&eb services.

However, inChapter |.1 State of the Avte have clearly demonstrated that SOA still ssffeom
some limitations regarding business process managie(BPM). Table 12 summaries of the advantages

and the limitations of SOA in this field:

Table 12. SOA advantages and limitations regar8intyl.

Item Advantages Limitations

« SOA enables a seamless Business processes are heterogeneous,
integration of enterprise businessnd thus it is hard to capture and implement
processes. It hides theall the details. In other words, busingss

implementation aspects of enterprisprocesses are generalized for the sake of
applications. simplicity.
e Graphical tools such as BPELs Adaptation to new processes is long as it
significantly speed up therequires first the capturing of the need, and

Business process
development of business processagcond its development (usually by | a
management o .)
(but it still performed by developers). different entity).
e The created services can not |be

distributed over the user devices.

e The business process integrator is tightly
coupled to the Web Service they use.
e Unstructured data are not captured |by

business process integrators

In the following subsection we detail how does WOA tackles the listed SOA limitations in

business process management.

2.1 Heterogeneity of business processes

As in SOA business processes are specified by essientities and implemented by developers, it is
required to generalize the business processestémate them. As a consequence, several operatiens a

handled manually by the users. This is illustratedetails inChapter I.1 State of the Art

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 146

The WOA enables the users to create their own ceitgeervice, through automatic and semi-
automatic composition of Widget (see sectlo8ervice Composition using WAhis enables the user to
implement himself the business processes he nékgever, in an enterprise context, some actions are
common to all users. In addition, it is common irsiness process modelling to define some acticats th
are mandatory to achieve a business goal; actimisitust be performed by all users to correctlyeeha
business goal. As a consequence, it is hardly ¢estgie for an enterprise to let the employees tiinde

themselves the business processes.

To tackle this limitation we propose in this sentio define a business process as a combination
of a common part and a user-dependent part. Itiaddif being common to all users, the common art
also static (does not change frequently within #mgerprise). The user dependent part is however
heterogeneous (user dependent), and dynamic. §tanice, consider the vacation request businesgeggoc
of a team manager, and a purchasing and logisiporsible (seeChapter 1.1 State of the ArtAs
illustrated in Figure 62, this business processapart which is common and mandatory to all usznd,
another part which is user dependent. The formesists of the vacation request creation, the vacati
request study and decision (by the requestor mayagel the response notification. The latter ipetals
on the user. The team manager for instance wouldtepthe agenda, send email to the team, andgsett u
automatic email response during the vacation pe@od the purchasing and logistic responsible would
search pending purchasing orders, call productigeos, redirect incoming calls during the vacation

period, and update the agenda .

Common part Vacation
request vacation
creation request
study and

Response
notification

decision

Search pending
purchasing
orders

Send email
to the team
mailing list

Redirect
incoming calls

Set up an
automatic email Call provider
response
End-user dependent part: End-user dependent part: :
. - Purchasing and logistic responsible business
Team manager business actions actions

Figure 62: Business process modelling and impleatiemt

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 147

After splitting business processes into a comman @ad a user-dependent part, we propose to
combine WOA and SOA to tackle the heterogeneity @yrtamicity of business processes, while enabling
business process entities to define and/or forogesactions to perform successfully a business goa.
proposal is to combine SOA composition approachtardVOA composition approach. The former is in
charge of automating the common part of procesBas.common part of processes is thus designed by
business entities and implemented by developersguSDA composition technologies. The latter is in
charge of automating the user-dependent part afesses. The user-dependent part of processessis thu
designed and implemented by the users themselveislg uVidget-based composition approaches
(automatic and semi-automatic) previously detailedjure 63 illustrates the technical aspects of how
business processes are automated using our profsesaligure 20 for comparison with the traditional
approach); and Figure 64 depicts a sequence diatiramllustrates the actions performed by différen
entities to model and implement a business pro@essinteresting to compare it with Figure 22see the

difference with business process adaptation usibg &chnologies).

Business Process Management Architecture

5 User layer
©
2 e y User 1 User 3]
Widgets are SE 5
combined aS%G User 2]
using Widget 238 O] u []
oriented 2ok
technologies 25° B »]
o @
=]
9 Back-end | y r
Services are 85 c .
composed ga 2
using SOA R
technologies $ E 5
(e.g. BPEL) s 58
&]
1 \ Y
1 \ \
1 LY \
\
Exp sure I ! LY ™
Services are ! I ' \g Web Service
8 \
exposed as kst éb [@D \ @ + Widget 8
Web services = 1
and Widgets n @ @ CB
2 4 Operational Systems Applicaﬁons\
Services are E
implemented =
(C, Java, Z
C++,...etc) g
k E
nill AN

7

Figure 63: Business process automation proposal.

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 148

User Business Analysts Developer WidgetAggregator

1 : Express the needs“
23 EAodel Lonmon part of the process(
-

Request the development Process()

[*Y)

4 : Implement th eLogil: using for exarmple BPEL()
.

5 : Createlthe frr%spondlng Widget()

«

6 ul

8 : Load the Widget of the business process()

10 : Load Widggts corresponding to the user dependent part()

11
12 : modify links between Widgets()

14 : delete u%?éesired links()

15 -

Figure 64: Business process creation using Widgetied architecture.

This section has tackled the issue of modellingfogteneous business processes. The next section
will deal with their dynamicity. Notice that the mymicity is mainly occurring on the user-dependusart

of the business process.

2.2 Adaptation of business processes

In order to tackle the dynamicity of business psses, one solution would be a dynamic adaptation
mechanism. The dynamic adaptation is an adaptatigich is performed when the user needs a new
configuration of his business process. Using thehaeisms we have previously defined, we propose in
this section two approaches for making such adaptathe first one is based on the usage of congosi

service creation capability provided to users, #rel second one is based one the usage of the cbstra

Widget based composition. The following subsectidetsil respectively the two approaches.

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 149

a. Adaptation through abstract Widgets

The first approach we propose to enable dynamiptatlan of business processes is characterizedibg u
the abstract Widget concept as the basis for impigimg business process activities. Thus, instdad o
invoking Web services (in WSA architecture) or Watly (in the basic Widget architecture), business
process developers invoke abstract Widgets as bbsitents for performing a given business activibt.

us not forget that an abstract Widget, without mifg to any concrete implementation, refers to a
functionality associated to a set of selectionguthe selection rules enable to dynamically seleetmost
appropriate concrete Widget to invoke in order éofgrm a given functionality. The selection rulegyim

be forced by business process analysts, or comafigiby the users themselves.

To illustrate that abstract Widget based compasitemables the dynamic adaptation, let us
consider a basic vacation request business proegdssh is mainly composed of a vacation request
activity, and an update agenda activity. Consideo #hat the users in the company have a freedom of
choosing the agenda service they want to use. éansequence, the agenda service may differ from one
user to another. The abstract Widget concept esdioisiness process developers to implement thaityct
(agenda update), without referring to any speadifimicrete service. Eventually, users, or the busines
process analysts, select the selection rules tteay W apply on that abstract Widget. As a consecgie
the activity realization is adapted according te tisers’ choice and context. Figure 65 shows aesegu
diagram illustrating the different interactions.

b. Adaptation through personalization

The WOA provides the users with the capability afily combining Widgets with each other. This
capability, associated to the business process limapapproach described in the previous sectioapées
a dynamic adaptation of business processes. Thaadidea is mainly concerned with the user-dependent

part of the business process, which is very dynamic

In order to illustrate how do users use the Widg@hbination capability to adapt a business
process according to new activities, needs, orirements, we rely on the vacation request business
process example. This business process is compafsadcommon part and a user dependent part as
previously detailed. We suppose that the commohipamplemented as a single Widget, which enables
the user to create a vacation request, send istmanager, and be notified about the decisions\Wxpose
also that the user dependent part is composecedbtlowing activities: setting up call redirectsduring
the vacation period, updating the agenda, anchgetip an automatic email response during the atati

period. Figure 66 illustrates the Widget aggregasémvironment of the user populated with the

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 150

corresponding Widgets. These Widgets are linkedtl wétch others according to the user-dependentpart

the business process (as detailed in the previemt®os).

User Business Analysts Developer WidgetAggregator
1 : Express the needs
Z'f;"@del I:om'non part of the process(
-
3 1 Request the development Process()
4 : Implement t using for example BPEL()
5 : Create|the corr¢sponding Widget()
6
7
8 :iLoad the Widget of the business process()

0 " [

10 : Load Widgets corresponding to the user dependent part()

" ﬁj

12 : modify links between Widgets¢)

5 7]

14 : delete undesired links()

15 =||J

Figure 65: Business process adaptation using abstfagets.

Vacation
request
widget

Redirect incoming calls
for the i eriod

Set up the Linavailability

during the \lacation period
Search pending Call transfer
purchase order) widget
widget Edit agenda
; widget
call provider fo accelerate the process

before vacatipn

Telephone widget

Figure 66: Widget aggregator configured accordang business process.

In order to illustrate the adaptation processyuseassume that:
e The user wants to perform a new activity beforeileg (for vacations); this new activity
is characterized by sending emails to a set oéaglles to notify them about the vacation

period.

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 151

* The agenda service has changed; the company haledec use another agenda service

which is, for example, less expensive and moreiefit.

Using the Widget combination capability, users oaegonfigure themselves the business process
user-dependent part, so that they automate thgkstaro configure the new activity for example (to
respond to the first assumption), they have judbvanl the corresponding Widget; in our case, thelisg
email Widget. This action, as detailed in the santbmatic composition, implies the automatic lindayd

that Widget with all other compatible Widgets. @pilly, the user may then delete undesired links.

Concerning the second assumption, to configurenthe agenda service, the user should just
delete the Widget of the older agenda service,rapthce it with the Widget of the new agenda servic
The links between the new agenda Widget with tHeerotWidgets that are present within the user
environment are automatically created. Optiondlhg user should then delete undesired links. Figure
depicts a typical sequence diagram that shows ttagptation process; neither business analysts nor
developers are involved within the process. lnigfiesting to compare it with Figure Z2h@apter 1.1 State

of the Ar) to see the difference with business process atlaptusing SOA technologies.

ser Developer Busdness Analysts WidgetAggregator

1: Load the new Widlget the corresponds t!:] needed activity()

; 2 : Integrate a new

3 1 delete § updars links(] __T activity
P A I
: i 4 ' L |
E 1N u:laelete obsolete Widgetsll[]l - -
P AP
; 71 Load a new Widget(): L Change the
: : : h service that
P GG EEEEE LR EEEEEEES I T EEECLEELEEE R L > petforms a
: q ;‘delete 1 update Iinks(‘j o given activity
A e S

Figure 67: Business process adaptation sequengedia

This approach for adapting business processeshbaadvantage of being more general than the
abstract Widget based adaptation. Unlike abstradg#f based adaptation which enables only the
modification of the services that perform a giventivity, this approach enables the modificationtioé
logic of the business process. It enables:

« modifying the execution sequence of activities,

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 152

e integrating new activities, and removing others,

< and changing the Widgets that perform a given #gtiv

However, compared to the abstract service baseptatttn, this approach present the limitation

of being manual and applicable only for the usgretelent part.

2.3 Loose coupling between integrators and basic sené@groviders

One limitation of SOA technologies regarding thesihess process implementation is the tight-coupling
between the implementation of the business promeddhe basic services it uses. It is especialgytduthe
fact that the activities of the business processfes to concrete and basic services. This isemen when
considering the partitioning of business processtsa common part and a user-dependent part we hav

proposed.

The abstract Widget based composition enablesctdetauch limitation. Indeed, the mapping of
an abstract Widget into a concrete Widget is peréat dynamically, at runtime. When a composite servi
(a business process implementation) is defined set af chained abstract Widgets (functionalitied a
set of selection rules), there are no referenca ¢oncrete basic Widget. As a consequence, thedznssi
process implementation is completely independeminfthe concrete Widgets that will be executed at

runtime to perform the basic activities of the Inesis process.

2.4 Unstructured data capture

As previously detailed, current service compositimols consider only well structured data in the
composition flowchart. As a consequence, it is @mmpossible to automate business processes rthat a
based on the unstructured data, except if devedogerit manually. The unstructured data include for
example postal addresses within emails, phone ntmmée&hanged within an IM conversation, and dates
within any document. As a consequence, even thduginess analysts do not care about such technical
details and thus can model a business processdirtgdo the unstructured data, it is hardly conable

for business process developers to automate belravimased on these data. It is hard because first
developers should develop themselves the logicathables the extraction of those data from sensoeb

as email and IM; and second, they must manage #leessthe data extraction failure and errors.

The unstructured data based reuse mechanism wephewieusly defined, provides an efficient
approach for considering unstructured data withiisitiess process management tools. First, business
process integrators (developers or users) createustured data based composite services in the sam

as they create a traditional composite serviceoiskcby relying on the Widget based compositioe, th

Chapter 11.3 Widget-Oriented Architecture (WOAXOA application fields 153

unstructured data that are automatically extra@beded on the composite service definition), aseally

presented to the user so that he can check theeatoess.

3 Conclusions

In this Chapter, we made use of the WOA in two Sipflication fields: service composition and busines
process management. Concerning service composiiignmain conclusion is that SOA and WOA are
complementary. Indeed, while SOA addresses develogeds, WOA is more user centric, and focus on
personalization and simple composition addressed ufgers. Existing semi-automatic composition
approaches in SOA provide the advantage of being flexible as they decouple the definition of Seev
logic from the Ul. Consequently, advanced userrfates could be created. However, ordinary usems ca
hardly use these tools. Indeed, they first stithagn based on flowcharts in the definition of tleevice
logic; flowcharts can be hardly understood by oadynusers. Second, the Ul creation is either maimual
which case ordinary users can not achieve it, tyraatic, in which case the result is a basic artduser
friendly. The WOA in contrast simplifies significy the creation of the composite services. Howgver
developers and advanced users can not create ogtieid interfaces using WOA based compositionstool
we proposed. This is essentially due to our approafc considering the Ul as part of the reusable
component. Nevertheless, from the ordinary usespsative, this enables him to create much more user
friendly interfaces than automatic or semi-automatiols. In addition, WOA provides an interesting
infrastructure for additional functionalities suah unstructured data based composition and cragsede
composition performed by users.

Concerning business process management, the mailergpes are the heterogeneity and
dynamicity of business processes. In this Chapeehawe first proposed to split each business psacés
a common part and a user dependent part. The corparbis composed of the actions that are common to
a significant population of users, and the usereddpnt part is specific to a given user, which reake
heterogeneous and often dynamic. Second, the corparbis automated by developers using SOA and the
user dependent part is automated by users therssesiieg WOA. This combination of SOA and WOA
enables business analysts of a given company tdetdloe heterogeneity of business processes while
having the control on the company processes whielt@mmon to all users.

Table 13 shows in more details the solutions we@sed in this Chapter, and the SOA limitation

they respond to.

Chapter 11.3 Widget-Oriented Architecture (WOAXS®A application fields 154
Table 13. WOA solutions to SOA limitations.
SOA/WOA SOA limitations Resolved WOA proposed solutions
application field (yes/no)
Static Long TT™ for | Yes Widget Combination API. A
service personalizing an existing composition mechanism limited fo
composition | service. services loaded by users.
Long TTM for creating @ No
new service. i
Tight coupling. Yes Abstract service based reuste(preter
component).
Semi- Not addressed for Yes Widget based composition. It |is
automatic ordinary users. characterized by capturing (at the frant
composition end, at the runtime) the semantic
compatibilities of Widgets, creating links
between them, and enabling the user to
personalize these links.
Limitation of created No
services. i
Cross device compositionYes The cross device based reuse of Widgets.
of services.
Tight coupling. Yes Abstract service based reuse.
Modification at runtime by users
themselves.
< | Automatic Matching user needs. Yes Enabling the wusers to fyladjust
S | composition themselves a created service.
2 Cross device compositionYes The cross device based reuse of Widgets.
g of services.
S Tight coupling. Yes Abstract service based reuse.
g Modification at runtime by users
g themselves.
o Shared semantic betweerNo
n providers. i
Business Process | Business processes ar&es Splitting business processes into a uyser
Management heterogeneous, and thus it dependent part and a common part.
is hard to capture and Then, enabling the users to autompate
implement all the details. themselves the user dependent part.
Adaptation to dynami¢ Yes Modification at runtime by users
processes. themselves.
Abstract service based reuse for |an
automatic adaptation.
Tight coupling. Yes Modification at runtime by users
themselves.
Abstract service based reuse.
Unstructured data are nptYes Introduction of a new servige
captured by businegs composition pattern based on
process integrators. unstructured data.

Part Ill Implementation and Validation

In the previous part, we have defined the WOA pples and proposed a design of an end-to-end
architecture. In this part we will detail its impientation aspects and illustrate the result thraugghcases

and screenshots. The first Chapter details theamehtation of the WOA, including the different reus
mechanisms we have previously defined (API-basade,eSemantic automatic based reuse, Process based
reuse, cross-device based reuse, abstract seragsx lreuse, and unstructured data based reuse). The
second Chapter illustrates, through use cases @edrshots, the usage of the defined and implemhente
architecture within the two considered SOA applaratfields, namely service composition and business
process management. Finally, the third Chapter ildetdne experimentation and the different
demonstrations we made, along with users feedbadkdiferent projects that uses or intend to use th

WOA paradigm.

Chapter Ill.1 An Implementation of

WOA

This Chapter details the WOA implementation. Wetfitetail the implementation of a Widget. Secone, w
detail the implementation of the Widget aggregadémd illustrate its basic functionalities. Thirde wetail

each innovative mechanism we introduced for arciefit Widget reuse.

1 Widget

Figure 40, which is duplicated here, details thifedént parts of a Widget in our architecture. W#l w

provide the implementation of each part in thigisec

Widget
has
L has .
non-functional parameter | 0..* |Widget Description Widget Implementation

efer to
1
! has
1 1

index Implementation
parameter tag parameter value include b has

L provide 6}5\1..*
1.

functinality description refers to functionality implementation generates
1

Functionality UI

1

1 expect rerates
uses N o contains
semantic dictionary ; 0. 0. P
input output associated to eventType
0.1
has has
has has
1 1 1 1
input¥alue inputType output¥alue outputType

I:‘ Added concepts describes W‘
I:‘ Existing concepts describes

Basically, each Widget has a description file amdimplementation. The description file is
provided by a Widget provider. It is an XML file wadh can be created manually by the provider of the
Widget, or generated automatically after performeng/idget publication process. The publication pssc
is characterized by filing a Web based form in ethithe Widget provider provides the required

information to describe the Widget.

Chapter Ill.1 An Implementation of WOA 158

The description file of a Widget contains mainlg tindex (main page) of the Widget, and the
description of each functionality it provides (URIf the functionality, goal, inputs types, and ougpu

types). Figure 68 is an example of a Widget detorifile.

Index of the Widget

Functionality URL

<module name="directoryFT" indexUrl="http://../services/directo

/— <functionality name="searchContact™

actionlrl="http://../services/directory/dir.php™
lahel="search FTRD"
goal="readDbirectory"
iconUrl="http://. ./ img oo
overvienURL="http://../directory. ipg
Functionality cinputas Goal of the functionality j
declaration_< <data nsme="PhonelNumber™ type="Ttel™ />
<data nsmwe="pontactFirstName" type="given-name™ />
<data nsmwe="gontactlastNamwe"” type="family-name™ /> EXpeCtEd
<data name="emwailiddress" type="email"™ /> InPUts
</ inputss
<OouULputs:
<data namwe="contactInformation™ type="hCard" .-"’>} EXpeCtEd
</outputss Outputs

\ </functionalitys

<non-functional-parameters Non-functional
Non—functionality <parameter-name>provider</ parsmeter-namss>
declaration <parameter-valuerprovider</parameter-valus> parameter

</non-functional-parsmeters
Z/modules
Figure 68: Widget description file.
Associated to this description file is the impletation of the Widget. The Widget
implementation must fulfill the following requiremis:
* It must be accessible through the index URL spetifin the description file.
e It must be Web based. In other words, it must useeot Web standards such as XHTML,
JavaScript (JS), and CSS.
< Each functionality must be accessible through tRdWsing GET or POST method, as specified
in the description file.
e« The input parameters are passed as GET or POSetas in the HTTP request, using the
parameters names specified in the description i@ ers names in the request.
« The outputs of each functionality are annotatedhi Ul (rendered by the functionality URL),

using the name specified in the description file.

Each widget implementation includes different mo@&sw, Edit, and Help). The different modes
are defined within the Ul of the Widget with spédi@gs that a Widget aggregator must understand. Fo
example, to add a login/password configuration faeoma Widget, the developer must add the following

HTML snippet (Figure 69).

Chapter Ill.1 An Implementation of WOA 159

<form class="configuration”>

form <label>password</label> <input type="password” name="password"/>
</p>
</ form>

Figure 69: HTML snippet for Widget Configuration.

Configuration[<p>
parameters <label>login</label> <input type="text" name="lcgin" value=""/>

In this thesis we consider that View mode, Configion mode, and Help mode are accepted by
all Widget aggregators. This assumption is suppol the fact that these three modes are present in
current two popular Widget standards (JSR168/268, \W3C widget specification). In addition to these
three modes, we recommend the integration of dication mode and a reduced mode. The notification
mode enables the Widget to notify the user abaeitoitturrence of an event (e.g. incoming call, ngEssa
reception...etc). This is especially useful for conmication services. The reduced mode is a represamta

of a Widget in an area that shows that it is rugrbaot not fully displayed.

2 Widget aggregator

The implementation of the Widget aggregator we psepis based on XHTML, JavaScript (JS), CSS, and
PHP. We have also used (and modified) D&J@wvaScript library to facilitate the managementhef

Widgets and avoid cross browser issues. The Widggfregator incorporates a set of components

&

‘ GUI Component ‘

illustrated in Figure 70.

Widget
Container

\ Grid Container H Grid Container H Grid Container \
WC|\wC| - WC |WC - wcC
B = B =]

AJAX client-service Component ‘

Frontend
layer

jusuodwo)d
9oualajald 18sn

=

Distributed Widget Combination Component

uauodwo) uoiesnuayINy

\ API |
| Communication Manager |
\

Process Manager |

‘Persistence Component‘ ‘ Interpreter

Backend

Unstructured
layer

Widget Semantic data extraction User
registry dictionary modules registry

registry
Figure 70: Basic Components of the PropasethiAggfegatoir'. o

» The GUI component is a Web page that providesritrgdnd Ul. It enables the authentication

of the user (through the authentication componeat)d the personalization of his

34 DOJO toolkit http://dojotoolkit.org/ accessed on Juné,2010.

Chapter I1l.1 An Implementation of WOA 160

Welcome fo the user space

environments (by creating new tabs, loading new gafig...etc.). Figure 71 illustrates the
Widget aggregator GUI.

The Grid Container component creates a drag anp drea in the Web page. In this area,
users can dynamically add, remove, and move Widdssh tab in the GUI instantiates a

grid container object.

Authentication

Tabs X 5
Grid Container
Add corntent X
Gadget mb1 WX | fapa tap 3 = New tal
e MG afiol
& directory Edition (X [7 Reom booking edition B [Locate Edition]
First namet —— . EEEE—
E3 FTRD mailbox _9.Du
‘ Last e:
de Coonnet + Boak a meeting room & ~ai, #
=1 Orange mailkox — F1he villows
™ cmail * Check booked meeting rooms F g i
|Gl oTalk g E A 01
& FOF mailbox Email: | S Crescent
ark
Geard Search | Cancel B agonaa Edition %] o e
S Tools oy St Franes
© Rss. eds « March 20th, 2010 > e UWW"%
@ add! Sfeed) Vocal Message Eiikion 08 e m& South PaloAlto: Tpie €l o
add your n?wnnule = - § 5%, ~
i : No meeting 5 7, &,
& % S
A, &,
Message; =5 = Sianford RS & QV"/%
by University o5 s By
Escondic
- ﬁ?@ﬁ; ihge gt
Widget o Doirises carttldfiniques @a0{n Googe - ConndfhEl?
Registry
send Widget Content CWul:lg_et
#) (response of the Gl Access the
index URL) edition form

Figure 71: Widget Aggregator lllustration.

The Widget Container (WC) component is instantisgadh time a Widget is loaded to the
GUI. Each instance is associated to a Widget. €bimponent is in charge of invoking and
executing the Wigdet, and managing its entire Jifée. It receives as input the Widget
description file URL. It extracts the index URL thie Widget. It invokes the Widget. It parses
the response (XHTML based) in order to detect sppeaps such as the configuration form.
The Widget Container is implemented as an extengsidhe Widget object of DOJO library
(see http://api.dojotoolkit.org/jsdoc/1.2/dijit._@dget).

The Widget Combination component is distributedrabe WC components. It implements
the different reuse mechanisms we previously ddfifts implementation is detailed in the
next subsection.

The Authentication component is in charge of autibating the user.

The User Preference component is in charge of gaaad loading all user related parameters
from the database such as: user preferred widgeds, place in the web page, and their
configuration parameters.

The AJAX client-server component is a JS APl basedDOJO, which facilitates the
interaction between the frontend components andottekend (server side) components. It

facilitates for example the retrieval of the litexisting Widgets (to be displayed for the user

Chapter Ill.1 An Implementation of WOA 161

on request), description of a specific Widget, #reluser related data (e.qg. list of Widgets he
loaded on the environment, their places in therenment, the list of tabs he created...etc).

» The Persistence component provides access to thbad® content (Widget registry, User
Registry, The semantic dictionary, and the Unstmazt data extraction module registry).

* The Interpreter component is implemented as a &erllis in charge of selecting the best

concrete Widget to execute according the needettiimality and a set selection rules.

3 Widget Combination Component functionalities

The Widget Combination component is the main corepbintroduced in this thesis. It performs a user
centric combination of Widgets. The implementatadrthis component is realized at the frontend, pkce
the Interpreter component for the resolution ofti@zs Widgets (selection of the best available Widg
according to a functional need and a set of seleatiles) which is implemented at the backend.hin t
following subsections, we first detail the implertetion of the three components that provide theseeu
capabilities, namely API, Communication Manager,d aRrocess Manager; then, we detail the
implementation of the extensions we defined, namalystract Widget based reuse, Unstructured data

based reuse, and cross device reuse.

3.1 API

The API component provides developers with a setS®functions detailed in Table 14. Basically, ¢hes
functions enable developers of Widgets to discatehe runtime the Widgets that are loaded at ge u
service environment, and optionally reuse theiratdjties. Similarly, the API enables developers to

expose their functionalities to other Widgets thia loaded to the user service environment.

Table 14. API.
Function Name Parameters Description
subscribe dataType, Goal, This function enables Widget developers to dynalyica
urlCallBack, declare a functionality provided by the Widget. The
HTMLElement dataTypes the type of the expected inputs. Theal is the

functional goal description of the functionalityrlCallBack
is the invocation URL of the functionalitdf TMLElement
is an HTML element (e.g. icon, or text) that enabd¢her
Widgets to add a Ul element that enables the wskunch

a functionality of another Widget.

Chapter Ill.1 An Implementation of WOA

162

eventType, dataType
Goal, urlCallBack

, This function enables Widget developers to dynahyic
declare a functionality provided by the Widget. T
invocation of this functionality is conditioned bthe

occurrence of an event of typeventTypé

unsubscribe

dataType, Goal,
urlCallBack

The Widget declares its incapacity to perform avimesly
declared functionality. This is useful to change Widget
capabilities according to the state of the Widgeg.(if a
Telephony Widget is “in communication” state, ithcaot

make new calls).

eventType, Goal,

The Widget declares its incapacity to perform avimesly

equal “*", this function invokes all functionalitsethat are|

D

urlCallBack declared functionality (conditioned by the occuoef an

event of typeeventType
getWidgetList Goal Enables Widget developers to retrieve the list \ailable

functionalities (on the user environment) that perfGoal.
(e.g.getWidgetList(“makeCall”).

dataType Enables Widget developers to retrieve the list| of
functionalities that are able to receive data opety
“dataTypé as input.

eventType Enables Widget developers to retrieve the list | of
functionalities that can be invoked under the ommnure of
eventType

publish Widgetld, Invoke the Widget functionality witldataValueas input

functionality, parameters. IWidgetldequals “*”, this function invokes all

dataType, dataValue| Widgets that provide operations which perform the
specified functionality. Iffunctionality “*" and Widgetld
equal “*", this function invokes all functionalitiethat are
able to receive data of typlataTypeas input parameters.

Widgetld, Invoke the Widget functionality witleventValueas input

functionality, parameters. IWidgetldequals “*”, this function invokes all

eventType, Widgets that provide operations which perform the

eventValue specified functionality. Iffunctionality “*" and Widgetld

Chapter I1l.1 An Implementation of WOA 163

invoke-able through the occurrence of evenewéntType

condition.

The implementation of this API is distributed oibe WC components. Each WC component
embeds a JS object, nam#_AP] that provides the listed functions. Eat® APImaintains a list of the
capabilities of the Widgets loaded on the useriserenvironment. The differedS_APIsauto-discover
each others, and exchange the information relateket capabilities of the Widgets in order to updand
synchronize their lists. Each time a function af #P| is invoked by the Widget logic, this infornat is
transmitted to the related Widgets. For examplesmwasubscribefunction is invoked on a Widgeé, this
information is transmitted to othdS_APIlobject of other Widgets loaded within the sameiremment.
Figure 72 illustrates a typical sequence of callsJ§ functions. After discovering thks_APIobjects
present in the user service environment (step 1)lg@éf 1 invokes the subscribe function to declase i
capabilities (step 2). ThiS_APlupdates its capabilities list and transmits tHerimation to othedS_APIs
of other Widgets present in the user service ennirent (step 3). EaclS_APlobject which receives such
information (availability of new capabilities) upgda its capabilities list. When, Widget 2 invokée t
publish function (step 4), th&S_APIldetects which Widget is concerned with this pudilan and invokes
the corresponding capability (step 5 and 6).

Grid Container
Widget Container Widget Container

J S_APl . 1. Auto discover JS_APl

3. Transmit subscription
Capabilities Iisﬂ P 5. Transmit publication Capabilities Iisﬂ

I 6. Invoke] call back 1

2. subscribe URL 4. publish
Widget 1 logic Widget 2 logic
(UI+JS+CSS) (UI+JS+CSS)

Figure 72: Widget combination API Distributed meaisan.

Figure 73 is a screenshot that shows a Telephomg#®Yithat uses the capabilities provided by a
directory Widget (Search a contact from a phonelmenn When an incoming call occurs at the telephony
Widget, the Widget first discovers the Widgets theg present in the Web page and accept phone mumbe

as input parametegétWidgetList(te}) and then it invokes them usipgblishfunction.

Chapter I1l.1 An Implementation of WOA 164

d, Corporate directory Edition = #& Orange phone Edlition
wew Search Search phone 3 it
Ire an number Incoming ca
Nassim Laga < |
Photo \J Ay, I "1 |
Senice : FTMSMBELVEIZ DPMHISLA & P —
Services en Ligne et Annuaires pour ” w "
les entreprises 1 == =
Phone : 0231759005 'ﬁ’ <D "-"
F::;sim Iag:@2 i:::gf‘ea-stagroug com A - L
Address . RD CAEN - @ O &

42 e des Coutures BP G242 L

+ hide the i;éx"l;oard

14066
CAEN

Manager: . FPhilippe Michon
Secretary : Wime Michele Harel

Figure 73: lllustration of Widget reuse through \g&d Combination API.

3.2 Communication Manager

The semantic and automatic based reuse of Widgetsnechanism that enables the reuse of Widgets by
the users themselves. It is characterized by aonmtic detection of semantic matching between
functionalities loaded at the user service envirentnand an automatic creation of links betweemthe
From the user perspectives, loading Widgets intoghme grid container (tab) is sufficient to corabin

them.

From the technical perspectives, this mechanisimgemented by the Communication Manager
component; a JS objectI§ CN distributed over the WCs. ThdS_CMs exchange the different
information between them exactly in the same wayillastrated in the previous subsection. This
component manages the Widget lifecycle, and autesnaubscriptions and publications between
compatible Widgets (compatible Widgets are detebti@skd on their descriptions). The Widget lifecycle
includes mainly: the Widget connection phase, thddat running phase, and the Widget disconnection
phase. The management of the lifecycle of Widgetsnportant to keep the created links between them
coherent. In this subsection we will detail thei@tt performed by thdS_CM objectgduring these

different phases.

To illustrate the actions performed during theelidint phases (by thiES_CMshat implement the
mechanism), we suppose, as an initial state, tiatuser has already loaded into his environment a
directory Widget. This Widget embeds one functiggakearch through contact information (e.g. fasd
last name, phone number, and email address...dtgg¢nkerates a contact card, which contains complete

contact information of a person. Figure 74 illusgsathe execution of this Widget.

Chapter Ill.1 An Implementation of WOA 165

& Corporate directory Edition 12
Wew Search
lirfor mation
& directory Edition X Hassim Laga
Phato
First name: I -] Sendece : FTMSMEIVELE ZPAASL A
) Senrices an Ligne et Annuaires pour
. I— laz antreprises
Last name: Phone 1 0231759005
R I— Fax: 0231735626
Service: nassim.laga@orange-figroup.com
Phone: | Address ¢ RD CAEM
0231759005 42 rue des Coutures BF 6242
Email: | PR
Search I Cancel I CAEN

Manager: M. Philippe Michon
Secretary : Wme hichelle Harel

Figure 74: Directory Widget Execution.

a. Widget Connection Phase

To illustrate the connection phase of a Widget,Ustconsider that the user has requested to load a
telephony Widget. This Widget has two functionalti First, it enables users to make calls by gidng
phone number as an input parameter. This funcityngénerates events such rasging, communication
establishedandhang up Second, the Widget enables the user to receile Ghis functionality, without
inputs, generates events suchre®ming cal] andincoming call acceptedAssociated to these events is a

phone number of the caller (event value).

Figure 75 illustrates the actions performed byeddéht entities when the telephony Widget is
loaded to the user service environment. As illisttaecacldS _CMcontains four listst.1, L2, L3, andL4.
 L1lis a list of the functionalities provided by theidyyet associated to th&S_CMobject. Each
functionality is defined through a quintuplet(Goal, URL, Inputs data type, Outputs data type,
HTML element)

 L2is alist of the data types generated by the Widigeluding all functionalities) associated to
the JS_CMobject.

« L3is a list of functionalities provided by other Wiets (Widgets that are not associated to this
JS_CMobject), that match semantically (accept as inputiata type generated by the Widget
associated to thi3S_CMobiject.

L4 is a list of Widgets that generates data that matmmantically one or several inputs of the

Widget associated to tlk&S _CMobject.

Chapter I1l.1 An Implementation of WOA 166

Grid Container

Widget Container Widget Container

JS_CM JS_CM

1. Auto discover

4. Transmit Functionalities

2'. Transmit Functionalities|

B. Update L1, L2 3'. Update U

w

L4 5. Update LB, L4

i i H _ 16. InsertNew
ﬁs.,tc &t functltj:]allty ;4'. Insert New Links *'Links
Directory Widget Telephony Widget
(Definition and (Definition and
Implementation) Implementation)

Figure 75: Widget initialization implementation.

When a Widget Container (WC) object is created, éhtbedded]S_CMobject automatically
discovers othedS_CMobjects embedded in other WC objects (step 1)ofitlg the discovery step, the
JS_CM object corresponding to the new loaded Widget retids Widget definition and gets its
functionalities (step 2). Then, in step 3, it upddtl andL2 (adding the functionalities description lta
and the list of generated outputslid). In step 4, it transmits the functionality list &ll otherJS_CM
objects of other WC within the same environmentchtEdime aJS_CM object receives a list of
functionalities provided by other Widgets, it upekitsL3 andL4 lists if a semantic matching is detected
(either between the data generated by the assddidigget and the inputs of the functionalities tfiey
Widgets, or between the inputs of the functionaditprovided by the associated Widget with the data
generated by other Widgets) (step 5).3fis updated with new entries (functionalities), #8& CMobject
inserts an HTML element to the associated Widgefp(§); an HTML element which enables the user to
launch a functionality of a Widget from another deee the Widget running phase). This HTML element
could an icon through which the user launches #wstimiation functionality, or a drag and drop caligbi

between the source Widget and the destination Wigge Figure 77).

Figure 76 and Figure 77 illustrate the result a$ fphase; two Widgets linked through HTML
elements. It illustrates a telephony Widget comtbinatomatically with the directory Widget. Thus, evh
the user receives a call on the telephony Widgetican appears beside the phone number of thercalle

This icon enables the user to automatically laumskarch functionality on the directory Widget.

Chapter Ill.1 An Implementation of WOA 167

Search the caller

& directory Edition = & orange phone Edition

First name: 1 » & Incoming call
Last name: |
Service: I

w
Phone: | @
Email: | e
Search l Cancel I ‘3

& Corporate directory Edition (2 Edlit

wew Search
lIrfor rmation

Hassim Laga
Photo
Senice ! FTMSMADVBIE ZPSL L
Services en Ligne et Annuaires pour
las entraprises

Phone : 0231 75 90 05
Fax: 02317358626
nassim.lagaf@orange-ftaroup.com -1
Address ¢ RD' CAEN
42 rue des Coutures BP G242
14066
CAEN

hlanager: . Philipoe Michon
Secretary @ Mme Michels Harel

Figure 76: Automatic and semantic reuse of Widgets.

Figure 77 is another representation of links betwagédget (the drag & drop capability).

Drag & drop action

& directory Edition (X & orange phone Edition X

02 314§ 90 05

First name: .

Last name: |
Service: I

Incoming call

o

W @
& A& a5

Phone: T
Email: & Cotpomie dichftory Edition [X] & Orange phone Edit
wew Search

ﬂlﬂ irfar mation 33

Hassim Laga
Phota
Senice T 1y Tl 0
Services en Ligne et Annuaires pour
les entreprises

Incoming call 8;

Phane 023175 90 05
Faw: 02321 7256 26
nassim.laga@orange-figroup.com -
Address RO CAEN

42 rue des Coutures BP 6242

106G
CAEN

Manager: . Philippe Michon
Secretary : hme Michels Harel

Figure 77: Link representation through a drag &udcapability.

Chapter I1l.1 An Implementation of WOA 168

b. Widget Running Phase

The Widget running phase corresponds to the stegenthe user can run the Widget (e.g. search aciont

on the directory). During this phase, Widgets antomatically composed at the user initiative. Irr ou

example for instance (Figure 76), when the usegives a call on the telephony Widget, the framework
proposes automatically to search the caller onditextory through an icon (HTML Element). When the
user clicks on that icon, the directory search fiomality is invoked, with the caller phone numlaer an

input parameter. This sequence is illustrated gufd 78.

Grid Container
Widget Container Widget Container

JS CM JS CM

3. Transmit functionality
invocation request

A

4. Check the correctness

of the invoc;li.gn
T [T S [T
5. InvoKel functiorfality 2. R(_atrie_/e the functionality 1. User glick on _HTML e',eme_m
AJAX reéduest required inputs values from (the corfesponding functionality
- - the genergteg-otiptt: —isncjuded as a parameter)
Directory Widget Telephony Widget
(Definition and (Definition and
Implementation) Implementation)

Figure 78: Widget communication implementation.

When the user clicks on the HTML element that hesnbinserted during the initialization phase,
the associatedS_CMobiject is notified (step 1). Following this notiition, thelS_CMobject retrieves the
data that are generated by the Widget and reqgliyethe invoked functionality (step 2). In step Bet
JS_CMobject transmits to théS_CMobiject of the destination Widget the functionalityocation request,
which contains the functionality URL, and the reediinput data. The destinatid®_ CMobject checks
whether all required inputs are provided (stepaéj] invokes the functionality using AJAX requesie)

5).

c. Widget Disconnection Phase

This phase starts when the user unloads a Widget iis environment. Figure 79 shows the differéeps

that are performed by the JS objects.

Chapter I1l.1 An Implementation of WOA 169

Grid Container
Widget Container Widget Container

JS_CM

3. Transmit Widget
[| disconnection nformation
to the detected Widget

1. Detect all Widgets that
generate data that semanti
match the inputs of a funct|
of this Widget (L4)

2. Detect all Widgets that e
subscribed to data generategl
this Widget (L3)

v

4. Update LB gnd L4
[T a—] A
. Update (delete)
inserted HTML elggent

irectory Widg Telephony Widget
(Definition and (Definition and
Implementation) Implementation)

Figure 79: Widget Disconnection Phase.

o

First (step 1 and 2), th&5_CMobject that corresponds to the unloaded Widgeate@@ory Widget
in Figure 79) retrieves from3 andL4:
« the list of Widgets that provide functionalitie®#e input match the data that are generated in the
unloaded Widget,
« and the list of Widgets that generate data thatastically match the inputs of one or several
functionalities provided by the unloaded Widget.
After detecting these two lists of Widgets, th® CMobject transmits to thdS_CM objects of other
Widgets the Widget disconnection information (sBpEachJS_CMobject that receives this information
updated.3 andL4 (step 4), and optionally updates the Ul of the §eidby deleting HTML elements that

corresponds to functionalities of the unloaded Widg

3.3 Process Manager Component

The goal of the Process Manager component is tblenhe composition of Widgets based on a process
(flowchart) definition. Thus, a Widgeék can reuse capabilities of a Widd&tonly if this combination is
defined within the process. This component is imm@Eeted as JS object namé8_PMC The current
implementation is centralized, but it can be dttéed as well. This component is instantiated veith
process definition as an input parameter. In tlleviang parts of this section, we will first detaile format
that we use for defining a process; and secondshwe how this process definition is executed. Tioug
this process can be created manually, in the falguWChapter we will illustrate the approach we ddince

for the creation of this process; an approach wisiéhtuitive enough to be used directly by users.

a. Process Definition

In the second part of this thesis we modelled @gss through a gragh (N, L) where nodedl represent

the Widgets, and edgésrepresent links between them. In this sectionwileshow how we implement

Chapter Ill.1 An Implementation of WOA 170

this model. In our implementation, a process isngef using JSON format. Table 15 shows how we defin

nodes and links.

Table 15. Process Definition through a JSON format.

JSON Format Decsription
Nodes It widgetNamevalue This is a JSON array. Each entry describes a
(widget } Wi]dgetlndeerI.vaIue Widget that is, or should be, loaded on the User
s) ’ environment. Ones a Widget is loaded, we also

associate to the node a Widget instance id.

Edges It linkld: value This is a JSON array. Each entry describes a |link

(links) sourceWidgetNamealue, between two Widgets. There are two types of links
sourceOutputTyperalue
destinationFunctionalityURLvalue, | (automatic and semi-automatic), this is defined in
destinationinputTypezalue
linkType:value

HTML_Elementvalue the Process Manager to retrieve a specific output

1o

linkTypeargument. TheourceOutputTypenables

of a source Widget, and thiestinationinputType
enables to map the output to a specific input ef|th
destination functionality (to be invoked through

thedestinationFunctionalityURL

b. Process Execution

The Process Manager component (PMC) is implemesdesl JS objec§_PMQ integrated into the grid
container object. This enables the control of aitiyféts that are loaded on the same grid contailiben
the JS_PMCis instantiated with a process definition as goutrparameter (step 1 on Figure 80), it first
creates the Widgets (Widget containers) that arelved in the process definition; and second, éates
links between them according to the links definathiw the process definition (steps 2 and 3). Fache
semi-automatic link, th8S_PMCcreates an HTML element within the source Widget. each automatic
link, the PMC associates a listener to a Widgett@iaer, which is in charge of checking the availgbof
the data those type matches ttmairceOutputTypesed within the link. If such data is detected; kink

will be executed automatically.

Chapter Ill.1 An Implementation of WOA 171

Process Definition

Grid Container /

1. Load a Process

Process Manager component (JS_PMC)

2. Read Process p—
definition

3. Create Widgets and corresponding
links between them ¥

A 4

Widget Container

Telephony Widget
(Definition and
Implementation)

Widget Container

Directory Widget
(Definition and
Implementation)

Figure 80: Process based linkage of Widgets

When a link (automatic and semi-automatic) is etetua request is sent to th8 PMC(step 1
in Figure 81). ThelS_PMCchecks that the link exists in the process définjtand gets the type of the
data inputs that are required to invoke the deitindunctionality. Then, thdS_PMCretrieves the actual

data values from the Widget (step 3), and invokesdestination functionality (step 4).

QProcess Definition

Grid Container

Process Manager component (JS_PMC)

2. Check link in
Process definition
4

4. Invoke functionality 3. Get required Data 1. Invoke Functionality

A 4

Widget Container Wi?get Container
Telephony Widget Di'rectory Widget
(Definition and (Definition and
Implementation) Implementation)

Figure 81: Link execution steps.

To illustrate the results, we show in Figure 82 tWalgets connected with each other through a
process definition. The process includes two liflkee first one is a semi-automatic link from theedtory
Widget to the telephony Widget. It enables callingearched contact. The second link is an autortirakic
from the telephony Widget to the directory Widdéenables to search a contact in the directorpmting
to an incoming call phone number. Thus, each tint®rgact is displayed on the directory Widget, the
framework proposes to launch the make call funetionof the telephony Widget; and each time thisre
an incoming call on the telephony Widget, the framek launches automatically the directory search

functionality using the caller phone number asrgout parameter.

Chapter Ill.1 An Implementation of WOA 172

&Comorate directory Edition ¥ & oOrange phone Edition (%]

Hew Search) =
lirfr mation Search on caller Incoming ca

Nassim Laga phone number
Phota < ﬂ
Fepiioa: ETNSWMRDBIZT PIEISLA .u

Senvices en Ligne et Annuaires pour “ @ “
lez entreprizes o
Fhone 1 02317590 05 0 @ o
F::;;sim Iag:@2 il::gsjf?tﬁgroug com [- -
A = = (25 3 =
Scdress © RD GAEN 0 ‘1..’ 0

42 rue des Coutures BP 6242 L 1

hide the kevhoard
14066

CAEN

Manager: W Philippe | Cor o i | iti]
porate directory Edition 2 Edition 2
Secretary @ hme biche & f-Orange phone
Hew Search Call a searched » B . i
irterination Contact 3 g ncoming cal

Hassim Laga [#— 1 1
Pheto - ‘-\')‘ & Ié
Sendce : ETMSMRIVEIE Z P IS 2 E

Semices en Ligne et Annuaires pour " @ w
les entreprizes "I'D " ="’ " ;D
Phione : 62317590 05 - .
Fax: 02317356 26 7 W5 WO
nassim.laga@orange-ftgroup.com =4 3 =
Address @ RD CAEN “ !‘.” “

42 rue des Coutures BP 6242 L 1

¥ hide the kevhoard
14066

CAEN

Manager: M. Philippe Michon
Secretary © mMme Michelle Harel

Figure 82: lllustration of a Process-based reud#/idets.

3.4 Abstract Service Based Reuse Extension

The abstract service based reuse of Widgets aifirstaecouple service integrators and serviceipis;

and second to provide a flexible runtime servidect®n based on criteria specified by the usersiiin

The implementation of this mechanism is performeaugh two components: the Interpreter
component and the abstract Widget. The Interpstponent is in charge of selecting the best Widget
runtime according to a needed functionality, arsgtaof selection rules. The abstract Widget proviadJ|
that enables the user to provide the inputs of dbeesponding functionality, configure (choose) the
selection rules to apply, invoke the selection pssc(Interpreter), and execute a selected Widdet. T

following subsections detail each component.

a. Interpreter
The interpreter component is implemented as Jamdedelt is accessible through a URL using GePost
method. Table 16 details the parameters that mespassed in the invocation. In addition to these

parameters, the invoker may provide the availaipets (e.gdestination_Phone_Number=0123456Y.89

Chapter Ill.1 An Implementation of WOA

173

Table 16. Interpreter invocation details.

act

5er

Parameter Value example Description

name

user_id alice@host.com The identifier of the consumer of the abstr
Widget. It enables the framework to get u
specific data such as preferences and conte

format Json (or xml) This specifies the format of the output (list

selected Widgets) of the interpreter. Curr

supported formats are JSON and XML.

functionality Make_call

The functionality of the abstract Widget.

constraint_rules
erld).location.country ==

selectedService.country;”,

[“$Context(identifier:knowledge.us

]

The list of constraint rules to apply during t

selection process. The format is detailed bel

DW.

objective_rule

MIN(selectedService.price);

The objective

selection. The format is detailed below.

rule to apply during th

The interpreter component relies on a rule enginevaluate constraint rules to true or false, and

objective rule to a quantitative value. The rulesymefer to static parameters such as price, andrdic

parameters such as location and presence statnanidy parameters are usually results of other cesvi

As a consequence, it is important to enable refgrto those services within the selection rulese Th

grammar of these rules we propose provides suchtifunality. Figure 83 is a simplified finite state

machine diagram that defines the grammar. The gpates are legacy final states. This means for pkeam

arule is considered as complete when we reach Stabr S3.

Chapter I1l.1 An Implementation of WOA 174

Rule

Objective rule

"Min" or
Jrax

Condition

Comparison

Logical
operaro

(fompaﬂson : :

(1 2

Condition

Comparison Function

Number / Service / Knowledge
Comparison base / input / Output @

Number / Service /

Knowledge base / input /
Output

(3) (4)
Figure 83: Rules grammar.

Function Operation

Function

Figure 83.1 shows that a rule is either a condtmile, or an objective rule. Objective rules
contains necessarily an optimization operator (dax or Min), and followed by a function to optineizA
function (Figure 83.4) contains mainly numbers,ialales, and operations. There are three types of
variables:

» those referring to a knowledge base parameter asighice,

» those referring to the inputs provided by the user,

« and those referring to other services in ordergbdynamic parameters values such as presence
and location of the user.

Constraint rules (Figure 83.1) are simple condgtidhat are evaluated to true or false. Each
condition (Figure 83.2) includes comparison stat@seonnected with logical operators (‘and’ and):or
Each comparison statement (Figure 83.3) starts avitbinction (Figure 83.4), followed by a comparison
operator (‘<’, ‘=, *>'...etc.), and ends with anothiinction.

We have used LEX/YACC?® tools to generate a compiler and an evaluatorttisr grammar.

More precisely, we have used JEeand CUB® Java libraries.

b. Abstract Widget
The abstract Widget (Figure 84) is characterizec i that enables the user to enter the inputsosh

the rules to apply, invoke the Interpreter componerselect the best available Widget accordingh®

corresponding functionality and the selection ralessen by the user, and invoke the selected Widget

35 Lex tutorial,http://dinosaur.compilertools.net/lex/index.htmtcessed on June™ 2010

% yacc tutorialhttp://dinosaur.compilertools.net/yacc/index.htedcessed on June® 2010
37 JLex,www.cs.princeton.edu/~appel/modern/java/Jl.extessed on June™ 2010

38 CUP,www.cs.princeton.edu/~appel/modern/java/Cléetessed on June™ 2010

Chapter Ill.1 An Implementation of WOA 175

r Send SMS - Abstract service 2 X

- Select a zervice according to your localization

. v Select a service according to the recipient localization
Edition Mode: It enables

the user to choose the < I Frice

rules to apply in the

selection process 10 12
\ o Minimizing the price

Hello Morld
View Mode: This area
enables the user to enter Message
the inputs required by
the functionality Your Phone Num. | +336123456789
Destination Phone I +34123456789

Murn,

View Mode: This area displays
the services that have been
selected by the interpreter

component. Itis refreshed Jelefomica
dynamically as the user modifies SIS

the rules and the inputs

Figure 84: lllustration of a Send SMS abstract iserWidget.

The abstract Widget is defined and implemented texdn the same way we define and
implement an ordinary Widget. It is defined usimgXML format previously detailed (see Figure 6&)da
it is implemented using Web standards (XHTML, Jarg®, and CSS). The abstract Widgets are however
provided by the Widget aggregator provider. It daalthe Widget aggregator provider to wrap funclyn
equivalent Widgets available in the registry witldnsingle abstract Widget. The actual Widget to be
executed for a needed functionality is selectediatime according to selection rules specified Hy tiser
himself. Figure 84 illustrates $end_SMSabstract Widget. It shows the Edition mode, whbeeuser can
choose the rules to apply in the process of selgdtie best Widget to execute. It shows the Vievdeno
where the user can enter the inputs needed b$ehd_SM3unctionality (message, source phone number,
and destination phone number). For each modifingiiothe values of the inputs or in the choseecin
rules), the Abstract Widget invokes the Interpratemponent (Using AJAX request) to select the best
available Widget according to the new parameteh® Jelection results (a JSON array generated by the
Interpreter component) are displayed at the botbthe Widget, where the user can click on a Widget

execute it and display the execution result.

Chapter Ill.1 An Implementation of WOA 176

3.5 Unstructured Data Based Reuse of Widgets

The unstructured data based reuse of Widgets aifiesilitate to service integrators (users and bpers)
the capturing of useful and unstructured data, thedreuse of such data in other services. In tisian,

we illustrate the implementation of such mechanism.

In our implementation we associate an unstructdiagd extraction module for each type of data
that are likely to be generated by the Widgets.aAgroof of concept, we used data extraction modules
based on JS. This limits the extraction to the tlaéih are accessible by the Web browser. In otloedsy
multimedia content, usually seen by the browsex Back box, and accessible only through a hedewtsl

can not be considered (fetched) yet in this impletateon.

Also, in our implementation, users or developers easociate a data extraction module to a
Widget. This will enable the reuse of the unstruemtiudata extracted from this Widget as input patarse
in another Widget. For developers, they should pdd a meta data in their Web page, in which they
specify the type of data they want to extract (Sgere 85). For users, they can do this direcityrfrtheir
service environment at runtime (see Figure 86)odth cases, a listener is associated to the Widget
which is in charge of detecting the presence ofdésired unstructured data and extracting thems Thi

listener uses the JS module associated to theofyibe data to be extracted.

The JS extraction modules must defiegtract_Datafunction. It receives as input a string
(typically a Widget DOM inner HTML), and generat&s output the same text in which the extracted data
are tagged using their type tag (e€)). When a JS extraction module is associated toidg#¥, this

function is called each time the DOM object of Welget is modified.

<meta action="TnstructuredbataExtraction™ id="Email3ervice" datalvpe="tel" f»
<meta action="TUnstructuredbataExtraction”™ id="EwailService” dataType="Taddress" f>

Figure 85: Adding of an unstructured data extractioodule by a developer.

Chapter Ill.1 An Implementation of WOA

177

[] orange Email Reader

e Map by Google

From: emmanuel bertin@orange-ftgroup.com
‘Subject: workshop [Gal
Attached: /KEOVWOBCEP pdf
@ Lirnork nf ©
S Thewilows | Map | Satelite | Hybrid i
Dear reader, S
Fsifv Ave Palo Alto.
During my vacation | will be at 10 Jamaica & Cress Municipal
i > resent Golf Couvrse
|A\renue Queens Village MY 11428 But I'm Park Y
‘currently {until 12/23/2009) in Jeremy Martinson EI 4, et
43847 Heaton York Awe Lancaster town Mew 3 %‘w &4 Francis)
York 93534, s : s
(=] UI'%I:;'E{'S_:[)' e Triple EI %‘-%’
5 South)
Best regards, 2L ; Palo Alto Manor y
Massim Laga P2 Y %
Tel: 01 23 4567 89 H = g@g
N A o Y,
i G b o,
Sl_an:or(l e,% %’F
|;.., - = s University gg = o Palo Ve

Extract all email addresses from the widget
e.g. duponti@domain. com

Different unstructured data
extractors that can be added

Description appears when the
mouse is over the extractor

Figure 86: Adding of an unstructured data extractiiodule by a user.

Figure 87 illustrates how the extracted data cda@deused as input parameters in other Widgets.
The combination of the Widgets is performed eitling the Automatic and semantic reuse mechanism, o

using the Process based reuse mechanism (bothesieysly detailed).

(] orange Email Reader EJ Map by Google
emmanuel bertin@orange-figroup.com

From:
Subject: workshop 43847 Heaton York Ave Lancaster _Gal

attached: /KROWDGCFPpyr Locate the
address = o "
G e = wawd__Map_ | Satelite | Hybrid |
During rmy wacation | will be at 10 fJamaica) g
lavenue Queens Willace NY 114 Eut I'm H
-currently until 12/23/2009) in Jere! tingon]
2

43847 Heaton York Ave Lancaster [own Mew

York 93534
Heaton York Ave Lancaster town New Tork 9353§|

FaOMERED T

Google

Best regards,
Massim Laga
Tel: 01 23 45 67 89

=\l

Langaster B8 g
- ELancast
Fhap data @2010 Googls - Tefns of Lss

Figure 87: lllustration of an unstructured datacubeuse.

3.6 Cross-Device Reuse of Widgets

The cross-device based reuse of Widgets aims tndxhe previously defined reuse mechanisms (API-
based reuse, Automatic and semantic based reus®raoess Based reuse) into a distributed envirahme
where different instances of the Widget aggregatorover different devices. In this section, wel wétail

the extension made to the Automatic and semansiedeeuse mechanism.

Chapter Ill.1 An Implementation of WOA 178

This extension is characterized by the introductba new Widget, which is in charge of making
the connection with other Widgets loaded on othariaks. Let's refer to this Widget as a Cross Devic
Connecting Widget (CDCW). In the current implemdiota the CDCW uses an authentication component
to detect the devices of the same user. It alss thgecometD framewotk(which is an implementation of
the Bayeux AJAX push) in order to communicate betwdifferent CDCW loaded on different devices.
The cometD framework is a publish/subscribe medamrthat enables to push asynchronous events to a

client side (browser) of a Web application.

Basically, the CDCW capture the capabilities of @éts that are loaded on the same device and
publishes them to other devices; and similarlyreiteives the capabilities of other Widgets loaded o
different devices and publishes them into the Wisldeaded on the same device. Thus, CDCW uses the
JS_CM(previously detailed) to interact with Widgetsdea on the same Widget aggregator instance; and
it uses cometD framework to interact with other @éts of other devices. Figure 88 shows a global vie

of the different components involved in this medban

Grid Container (On a laptop)

Widget Container Widget Container Widget Container
Js_cM JS_cMm Js_cM
= == ==
Authentication
- component
W2 W1 Cross Device
Connecting Widget N .§
(CDCW) logic { ‘.\§

Grid Container (On a mobile)

Widget Container Widget Container Cometd
publish/subscribe
Js_cMm JS_CM mechanism
P P R ey P P B Y
W 3 Cross Device
Connecting Widget
(CDCW) logic

Figure 88: Component view of the cross device rensehanism.

Such as the automatic and semantic based reusé&dgeW, previously described, this mechanism
manages different phases of the Widgets lifecyttedescribe this mechanism, we consider, as aialinit
state (Figure 88), that the user has:

« two instances of a Widget aggregator loaded ondifferent devices (e.g. a laptop and a mobile),

e already loaded two Widgets (W1 and W2) into higdagnstance,

39 cometdD http://cometd.org/accessed on June™,£2010

Chapter Ill.1 An Implementation of WOA 179

« already loaded one Widget (W3) into the mobileanst.

In the following parts of this section, we firduitrate the connection phase of (CDCW), and then

we show the different states (connection, runnémgl disconnection) of an ordinary Widget.

a. CDCW Connection Phase

The CDCW plays the role of a bridge between the g&fisl loaded on different devices. The first action
performed by this Widget is to authenticate ther {Step 1 in Figure 89). Then, it creates, or jpias
communication channel created on the cometD publibiscribe mechanism (Step 2). This channel is
specific to one single user, and it enables the WD& devices belonging to the same user to exchange
data. The channel identifier is in form ofuSerkey/*. The userkeyis created after the authentication
through a hash function on the user identifier (dsult of the authentication procedure).

Grid Container (On a laptop)

Widget Container Widget Container Widget Container
Js_cm JS_CM JS_CM
e e —r e e e
Authentication
8 . component
w2 w1 Cross Pevice .§
Connecti gWiFIge(Fo N
(CDCW) logic ‘::_o_»‘:\%
A\
\\

Grid Container (On a mobile) \K

Widget Container Widget Container

ometd
publish/subscribe
JS_CM JS_CM echanism
pa
EE
[
W3 Crols Device
Connecting Widget ¥
(cDC! ic

Figure 89: CDCW connection phase.

Once the communication channel is created on conteS_CMof the CDCW retrieves the
capabilities of other Widgets loaded on the samécdeby exchanging with the correspondiag§_CM
(Step 3). The capabilities of other Widgets arenttransmitted to CDCWs of other Widgets using the
previously joint cometD communication channel (Stepand 5). This transmission includes also an
identifier of the device on which the Widgets ammning. In step 6, the CDCW transmits the received
capabilities to other Widgets loaded on the samécde This enables these Widgets to create linkes if
semantic matching is detected. Each link is defiasdan octuplet (sourceWidget, outputDataType,
destinationWidget, destinationDevice, FunctionalityputDataType, linkType, HTMLElementhis link is

formatted using JSON as follows:

Chapter I1l.1 An Implementation of WOA 180

linkld: value,

sourceWidgetName: value,
sourceOutputType: value,
destinationDeviceld: value,
destinationFunctionalityURL: value,
destinationInputType: value,
linkType: value,

HTML_Element: value

As a response to the step 5, each CDCW sends hadapabilities of the Widgets that are loaded
on the corresponding device (Step 7 and 8). THenWidgets that correspond to the CDCW which has
just connected are notified by receiving the cdjisds of the Widgets loaded on other devices (Sgp

This enables these Widgets to create links if aaswimmatching is detected.

b. Ordinary Widget Connection Phase

When a user loads a new Widget (W4 on Figure 90jiseenvironment, the correspondid§_CMreads
the capabilities of this Widget and publishes thenotherJS_CMof other Widgets of the same device,
including CDCW (Step 1). Th@S_CMobjects that receive such information checks there a semantic
matching, in which case they create a link. As spoaise to the step 1, ti8 CMof the CDCW sends
back the capabilities of the Widgets that are ldade other devices (step 2’). Then, Td& _CMof the
CDCW transmits to othelS_CMof other devices the capabilities of the new labdédget (Step 2 and 3).
Finally, the Widgets of other devices are notiflgdreceiving this capability (Step 4), and if amyrs&ntic
matching is detected a link is created betweenvtioeWidgets. The links are presented to the useutih

an HTML element as illustrated in Figure 91.

Grid Container (On Device 1)

Widget Container Widget Container | | Widget Container
Js_CcMm JS_CM Js_cM
O EE\EE utenicaton

- component
W2 W1 Cross De\ice
Connecting WNdget X \
(CDCW) logit
e]

SR
L @
Grid Container (On Device 2) \i

Widget Container Widget Container | | Widget Container Cometd
publish/subscribe
Js_cm JSCM is_cMm mechanism
haiEs
g U

w4 w3 Cros§ Device

e Connecting-¥fdget
(CDCW) logic

Figure 90: Ordinary Widget connection phase.

Chapter Ill.1 An Implementation of WOA 181

B Locate Edition (X
| — Gol
B Il vy £ of S
& Thewiions_Plan_| Satelite | Wixte |
3 +
i = 2
Sty dye Palo Al
Locate the el [l Muiicipal
address saA] Pk bl
A Duveneck/
B P, 81 Francis
% R
. Universty Lelant /e
- South Manor A \
> Palo Alto Mane
& corporgte directory Edlition X £ & a %9‘%
i &
R 1 3
&/ £ %
S e
ghlazoué rrien T %%
4 Universiy % = 3 e
Phets ik
Senvies: FTRDRDBIZZBUCATE Efmﬁr Escondido
el 7
— Jeignabilité et Télephenie sur IP en Entreprise g%f%as :an\n@?&ﬁhiques a0l Gmglé%&,ﬂ
Maobile
Fax:
m
Address RD CAEN @7 sms Edition
42 rue des Coutures
14000 Tel: |
CAEN i -
Pice: NA 1128 Message: 2|
==
Manager: M. Frécéric Demond |
Secretary: Wine tichele Harel | =l
Send

Shee A LW /
VT e

Widgets loaded on Widgets loaded on

device 1 device 2
Figure 91: Cross device communication illustration.

c. Ordinary Widget Running Phase

When a user activates a link (by a click on the HT®ement, created for example in W4 during the
initialization phase), an event is sent to & CMof the corresponding Widget (Step 1). TI& CMis
responsible of retrieving the data required fore¢kecution of the link (Step 2) and their transiisgo the
JS_CMof the destination Widget. If the destination Watlgs loaded on a different device, the transmissio

goes through the CDCW as illustrated in Figure 92.

Grid Container (On Device 1)

Widget Container Widget Container | | Widget Container
JS_CM JS_CM Js_cMm
e e e = ‘G sy e
\\ Authentication

component

w2 W1 Cross De\ce \
v o Connecting Wdget * ;\.A'§

(CDCW) logh ;\s

Grid Container (On Device 2)

Widget Container Widget Container | | Widget Container Cometd

publish/subscribe

Js_cM Js_CM JS_CM mechanism
e O e =TT s

EiE) %

\Xl4 W 3 Cros§ Device
e Connectin get
(CDCW) logic

Figure 92: Communication process between two Willpetded on two different devices.

Chapter I1l.1 An Implementation of WOA 182

d. Ordinary Widget Disconnection Phase

As illustrated in Figure 93, when a Widget is remdvfrom the user environment, the corresponding
JS_CMtransmits the information to other Widgets loadedthe same device, including the CDCW (Step
1). Then, each ordinary Widget updates it linkse WDCW however, transmits the information to other
CDCWs loaded on other devices (Step 2 and 3). E&BW which receives such information broadcasts

it over the Widgets loaded on the same device (8jepinally, each Widget optionally updates thes

(Step 5).
Grid Container (On Device 1)
Widget Container Widget Container Widget Container
JS_CM JS_CM JS_CM
G5 [0 oE\eE

2 1 Cross De\jce comporlem
Connecting WNdget N §
b (CDCW) logi ‘;‘s

Grid Container (On Device 2)

idget Contain Widget Container Widget Container Cometd
publish/subscribe

Js_cm Js_cMm JS_CM mechanism
ANV | g | pu i (S
wE,
W 3 Crosg Device
Connectini dget
(CDCW) logic

Figure 93: lllustration of the Widget disconnectjgmase.

3.7 Conclusions

In this Chapter we detailed the implementation o Widget client and the different mechanisms it
embeds. In summary, all defined reuse mechanisensrgalemented at the front-end level using JavaScri
language. The service selection mechanism we inted (Interpreter) is however implemented as a Java
servlet.

The lessons learnt at this stage are fourth.

» First, the microformat semantic dictionary is naffigient to cover all data types that could be
used in a given context. For instance, the micrafdrcommunity did not standardized data types
for emails (forwarder, recipient, subject, attachteg content, CC...etc), or calls (source phone
number, destination phone number, start time, addtiene). Therefore, it was necessary to define
in some cases our own data types.

e Second, it is possible to integrate the reuse meshs we have defined in third party Widget

aggregators, and even more, in ordinary web siteieed, as the implementation of the reuse

Chapter I1l.1 An Implementation of WOA 183

mechanisms is distributed over the Widgets Contaihe only condition needed is to embed the
necessary JavaScript objects (those integratelgeitidget Container) to the implementation of
the Widgets themselves. This could be performedhigyWidget developer when creating the
Widgets (at the design time), or dynamically byraxy (at the Widget invocation time). A proof
of concept is developed to show the feasibilitytli6 mechanism; we have developed Widgets
that first discover each other when they are presenhe same Web page (e.g. iGoogle or
Netvibes), and second, they enable the user to icenttsem.

« Third, the Widget combination based on a proceéisitien remains basic compared to existing
flowchart based composition mechanisms we haveleéta Chapter I.1 State of the Art. Indeed,
in the process based Widget combination, it ispussible to define conditions and loops within
the process definition. This is rather a choicenthdimitation. Indeed, it is important to simplify
as much as possible the creation of the processti®f to be understandable by ordinary users.

* Fourth, the current implementation does not entifg@edifferent Widget combination mechanisms
to retrieve data from two different Widgets, anddke a third one with that data. For example, it
does not enable retrieving a phone number fromraaco list, and a string from an email, and
invoking a send SMS Widget with the phone numberthe string as input parameters. To realize
this use case, first the user should execute mks I{one from the contact list Widget to the send
SMS Widget, and one from the email Widget to theds8MS Widget); and second, the send SMS
Widget should save the data received in the exatuwf the first link and use them during the

execution of the second link.

Chapter I1l.1 An Implementation of WOA 184

Chapter 1Il.2 lllustration of WOA In
Different SOA Application Fields

Following the detailed implementation of the WOMRist Chapter aims to illustrate its usage withinttie
application fields we consider: service compositemmd business process management. In addition to

illustrating how WOA is applied to these fields, also compare it with SOA.

1 Service Composition

Before illustrating the different approaches ofvemr composition using WOA, we first sketch a scana
and then detail how it is realized using the déferapproaches of service composition: static servi

composition, semi-automatic service compositiom, amomatic service composition.

1.1 Driving Scenario

The scenario we rely on for demonstrating the athges and the limitations of the WOA in service
composition field is characterized by three actoithin a company: Charlie the CEO of the company,
Alice the secretary of Charlie, and Bob a team rgana

Bob wants to discuss with Charlie about a new gtojéirst, he needs a directory Widget in order
to search the contact information of Charlie’s stamy, Alice. Second, he needs to find the besticer
(Telephony, IM, email...etc) to contact Alice. Thesbeervice depends essentially on Bob’s own caiteri
though these criteria may take into account Aliggsferences and context. A typical criterion felesting
the best service could be formulated as followkecteghe service according to the presence stdttiseo
recipient, and if several services are candidata gelect the cheapest one. For the rest of theasoelet
us suppose that the IM service has been selectmau@ily or automatically) to communicate with Alice

From Alice point of view, she needs to anticipatame actions each time she receives a
communication invitation (e.g. receive an IM, indomcalls...etc). Such actions could be the display o
the contact information of the initiator of the itation, or the display of previous exchanges o&isnwith
that person.

Bob wants to schedule a physical meeting with Ghaflherefore, several date proposals would
be exchanged between Bob and Alice in order toeagnea specific slot. Each time a new proposatig s

and/or received, the recipient is likely to chebk tagenda availability. After being agreed uporated

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 186

Alice initiates an agenda invitation (proposed g service environment) on behalf of Charlie. Ghahd
Bob accept the meeting.

Half an hour before meeting Bob, Charlie is in &motimportant meeting, and he is afraid that it
will last longer than expected. Therefore, he wamtsontact Bob in order to apologize and propaseth
shift the meeting to the lunch time at a restaurdetfirst retrieves the contact information of Belither
from the meeting participant list (Agenda), or fraime directory service. Second, Charlie selects(ratly
or automatically) the communication service to @ensider that the IM service has been selecteBphs
is at his office and present on the IM using histda. After apologizing and agreeing on shifting th
meeting, and having it at the restaurant, Chaolél$ the public directory service (e.g. yellow pagehis
laptop in order to search a restaurant. Charlielsen selected restaurant address to Bob. Chadéee al
displays the itinerary to go to the restaurant dviag loaded on his mobile device. When Bob receilies
address, he likely locates it using a Map senaee, loads the underground Map service in ordentmwk
how to go there. Ideally, the Map service and thdeuground Map service would be displayed on the
mobile phone, as Bob will move afterward.

As illustrated in Table 17, this scenario presesgtgeral manual compositions of services. In the

next subsections, we will see the different optipravided by the WOA to automate them.

Table 17. Manual composition list of the scenario.

Composition Actor Transited data Goal

Email address (legacy output of
Directory and IM Bob Send an IM
Directory service)

Directory and Phone number (legacy output of
Bob Make call
Telephony Directory service)

Email address (legacy output of
Directory and Email Bob Send an Email
Directory service)

Directory and Send Phone number (legacy output of
Bob Send an SMS
SMS Directory service)
Email address (legacy output of IM
IM and Directory Alice Search IM initiator
service)
Telephony and Phone number (legacy output of
Alice Search Call initiator
Directory Telephony service)
Email address (legacy output of Display Email exchange

IM and email Inbox Alice
Telephony service) history with IM initiator

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 187

Date (not a legacy output of the IM Check Charlie’s
IM and Agenda Alice
service) availability

Date (not a legacy output of the IM
IM and Agenda Bob Check his availability
service)

Email address (legacy output of
Directory and IM Charlig Send an IM
Directory service)

Email address (legacy output of
Agenda and IM Charlie Send an IM
Directory service)

Public directory and Postal address (legacy output of the | Send the restaurant
Charlie

IM public directory service) address

Public directory (on Display the itinerary to
Postal address (legacy output of the

laptop) and Map (on| Charlie the restaurant address on a
public directory service)

mobile) map
Postal address (not legacy output of thelLocate the address

IM and Map Bob
IM service) received in the IM

IM and Underground Postal address (not legacy output of the Retrieve how to go to the

Bob
Map IM service) address received in the IM

1.2 Static Composition

The main features highlighted in the contributioartpof this thesis concerning the static service
composition are the personalization capability pted to the users and the loose coupling using the
concept of abstract Widget. To illustrate these teaiures let us consider the composition of theatbry
service with respectively the IM service, the Télepy service, the send email service, and the Séh8

service (the four first lines of Table 17).
a. Personalization

There are two ways to create a customizable congpasirvice using the WOA. The first method is
characterized by constructing a Widget which inwlaher Widgets when present within the same

environment. The second method is characterizeglging on the concept of abstract Widgets.

In our example, in the first method developers ter@adirectory Widget in which they first check
the presence of respectively the IM Widget, theghbny Widget, and the send email Widget in the use
environment; and second compose it with them. [Ei@4r shows a code snippet of a directory Widget tha

first discovers Widgets that are present in the asevice environment, checks the presence ofepltehy

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 188

Widget and a send email Widget, inserts icons dt ¥Widgets are present, and invokes the destination

Widget when the user clicks on an inserted icon.

rar WidgetlList = Widgetcombination.API.getWidgetList():
forijvar i = 0; i < WidgetList.length: i++){
if (WidgetList[i].goal = "Make coall™){
var div = document.getElementById("actions™);

div.innerHTHL = div.innerHTML + "<imgy src='http://... /makeCall.ico' "+

fonelick= "invokeWidgertFunctionalicy (' m+i4")4 "irr:
telse{
if (WidgetlList[i] .name = "ZJend email™){
var div = document.getElementById|"actions™);

div.innerHTHML = div.innerHTHML + "<img sro='http://... ZendEwail.ico’ "+

"onclick=% "invokeWidgetFunctionality (' "+i4™')" ="
relse

if (VidgetList[i] .name = "Send SM3"){
var div = document.getElementById(Mactions"™);
div.innerHTHML = div.innerHTHML + "<img src='http://.../send3M3.ico' "+

"onolicksh "invokeWidgetFunctionalicy (' "+i+™ 1"

+

function invokeWidgetFunctionality(index){
Widgetcombination. APT.publishi(WidgetList[index] .WidgetId, WidgetList[index] .functionalitcy, "tel™,

docurent .getElementEyId ("tel™) . innerHTHL)
¥

Iii.giure 94: Code snippet of the directory Widget.

This approach for composing Widgets is customizakeleause the user still has the control on the
Widgets that could be loaded to his service enwvivent. As a consequence, the directory Widget vatl n
be composed with the telephony Widget if the usersdnot load them into the same service environment

Figure 95 shows how does the user personalizeotimpasite service realized in Figure 94.

Q.J. annuaire é"dvE m_i' itidiffusion - Email Edition | Personalization: The
Houve en mal dressels) emal |
e e - Bd user deletes the send
M. Marc Mazou suet [email Widget and loads

the make call Widget
contenu du message Votre message

s " brRoRe izzBUCUTE A zoounive BRI | | 8. Ot phons =
ervice : \ZZBUCHTE
Joignabil et TEléphenie sur Make Call .
Entreprist lifors 3l £
Fhone - 012345 19 M. Marc Mazou
Mobila 012345 9 o call
Fax (012345 9 -
com
Address RD CAEN
42 rue de tures |
14000 Semicw ETARDADEIZIELICHTE
CAEN Joignabilité et Tél&phonie surIP en
Pidce : NA 1128 Entreprise & &
(=3 c 23456789 =
ICampl &ments shile : 4123456789 ¥ hice the keyboard
i ;0123456
banager: i, Fréder d >) “—l'% — s
e T m
RRRRRRERERE ol Address © RD CAEN
42 rue des Coutures
14000
CAEN
Piéce NA 1128
e rerts
Icons inserted by the Manager: . Frédéric Delmond

Secrétaire : hime hiichele Harel
Nouwelle recherche

developer of the
directory Widget

Figure 95: Manual Personalization.

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields

189

The second method for creating a customizable csitgservice is to rely on the concept of the

abstract Widget. Instead of creating a directorgl§fét which is connected to the different commuinicat

Widgets (e.g. send SMS, send IM, send Email), #heskbpers links the directory to the different resbd

functionalities, namely send SMS, send IM, and denmaiil. The service environment is then in charfe o

selecting the best Widget available at the runtiféis method is customizable because the user can

influence the selection process by configuring e criteria that define the best Widget.

From the developer point of view, the code willdb&ctly the same as the previous one illustrated
in Figure 94. And from the user point of view, th&yould first load abstract Widgets into their $sgv

environment; and second, configure the selectitesrto apply. Figure 96 illustrates the directoeyvice

composed with the send SMS abstract Widget.

Configuring
service selection
rules

N

Helle Warld Send SMS ; cal
Pigce : HA
Hlassans [Complémerts

Send SMS - Abstract service & annuaire Edition X
Mouwelle recherﬁg

I Select a service scoording to your acalization Hictarmaians aunfmies

M. Marc Mazoué
r Select a service according to the recipient localization
I price

»

10 12 joe FLROET IZZBUCLITE

nab i et Téléphanie surlP en

Entrepri

.I—_

 Winimizing the price

Phone 101239 789
Mobile : 0125 739
Fax 10123 189

Address * RD ©
¥ 42 n Cautures

Manager: b Delmond
Sewiétaire ; I lle Harel
Nouwelle recherche

“four Phone Murmn.

i h
Destination Phone [1,34123455789
Icons inserted by the

developer of the
directory Widget

Figure 96: Abstract Widget based personalization.

The two personalization approaches are similar ftioendeveloper point of view

. However, from

the user perspectives, the abstract Widget basesbiedization is automatic while the other is mdnua

(deleting the Widget and replacing it with anoth@&ut, the abstract Widget alone does not enalaeifer

to personalize the logic of the composition. In example for instance, the send SMS abstract Widdlet

never select a make call Widget to contact a pedisplayed on the directory. Therefore, the two

personalization approaches complement each offieus, the manual personalization enables the smhect
of the functionalities to be composed with the cioey Widget, and the abstract Widget selection

mechanism selects the best Widget (among functioegjuivalent ones) to be invoked according to the

user’'s own criteria.

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 190

b. Loose coupling

WOA enables developers to create composite senickpendently of the used basic services. They do
this by relying on the abstract Widget concept #yan the same way we illustrated in Figure 96 that
Figure, the directory Widget is completely indepemidfrom the send SMS services it uses. It is linte

the send SMS abstract Widget, but not directlynt different send SMS Widgets such as “Orange Send
SMS” or “Telefonica send SMS”. In other words, ifadge withdraws the send SMS Widget from the
repository, the composition is still valid as tlrarhework will automatically select, at runtime, trer
Widget fulfilling the same functionality. The ontondition is the availability of at least one se®iIS

Widget within the registry that satisfies the sétatrules defined by the user.

1.3 Semi-automatic Composition

The key features introduced by the WOA in the seutematic service composition field are: enabling
ordinary users to compose services, the cross-eleomposition by users, the unstructured data based
composition, and the loose coupling between congasrvices with the used basic services. To ittt

these features, we rely on the compositions detenteur scenario (Table 17).

a. User service composition

As we specified irChapter I1.3 Widget-Oriented Architecture (WOA)IO®A application fieldsthe WOA
facilitates significantly the process of creatinganposite service. This is performed through tteps.
The first one is the creation of links based on a®in matching, and the second one is characteliyed
enabling the user to personalize the created ld&kete them, or modify their type). In order tistrate
this feature, let us consider Alice needs in thevious scenario. Let us focus on her needs of atimge
the IM Widget with the directory Widget, the telepty Widget with the directory Widget, and the IM
Widget with the email Widget.

From the developer point of view, the only requiesinis developing the services as Widgets,
providing a functional and non-functional descopti and annotating the outputs at the Ul levelule@®7
for instance shows the description file of the clioey Widget. It shows a description of two funciidities:

searching by email address, and searching by pmoméers.

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 191

<module name="directoryFT" indexUrl="http://.. /services/directory/ ">

//'7<functionality name="zearchContact"”

actionlrl="http://s. . services/directory/dir. php"
lahel="zearch FTRD"
goal="readbirectory"
iconUrl="htep:// ../ img/person. ico®
Functionality overviewURL="http:// . . /directory. jpg™s
declaration‘< <inputs>
<data name="PhoneNurbher ™ Lype="tel"” [
</ inputcs:
<outputs:
<data nawe="contactInformation™ type="hCard" />
</outputss
\\‘7<Ifunctionality>
//ﬁ <functionality name="searchContact™
actionlrl="http:// .. /services/directory/dir. php"
label="zearch FTRD"
goal="readbirectory"
iconUrl="http:// ../ img/person.ica™
Functionality overviewlURL="http://../directory. jpg">
declaration< “inputs>
<data nawme="emailldddresz=" type="email™ />
</ inputas
<outputs:
<data nawe="contactInformation™ cype="hCard" />
</ outputs:

\\\7<Kfunctionality>

</modules

Figure 97: Directory description file snippet.

Figure 98 shows the microformats annotations usednnotate the outputs of the directory

Widget.

<div class="voard": |
First and last
name

“gpan class="fn'"s
<gpan clazs="given-name">Nassime/ span>
Laga
</ span>

<div class="org">FT/RD/RD/BIZZ/BUC/JITE; Joignabhilité et T&léphonie sur IP en Entreprise</dive

<sSpan class="telf» Organization
<span class="type"swork</spans

<gpan class="value">02 31 75 90 05</ap

anx
</ span> Phone number

<zpan class="tel">

<span class="type"rfax

<gpan olass="walue">02 31 73 56 FE<isnan
</ span>

<& class="email" href="mailto:nassim.lagaforange-ftgroup.com™>nassim. lagalorange-ftgroup.com

<gpan class="adr":> E 1 dd
<gpan class="strest-address">42 rus des Coutures mail a ress

<Zpan class="postal-code">14000</ Span>
<span class="locality"»Caen</spans>
<gpan o©lass="country-name":>fr</spans
</ span>
</ divs

Figure 98: Microformats annotations.

Postal address

From the user point of view, it is necessary talltdae needed Widgets into the same environment

(the same tab in the Widget aggregator we defin€dg Widget combination component we detailed

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 192

creates automatically links between the Widgetuating to their description file. This is illustet in

Figure 99.
& Orange phone] &- directory Edition]
3 Unredister First name: .
. @ Call Last name: |
“ @ @ Service: [
/ = = Phone:]
222 B
6
@ a 0 Search | Cancel

* Hae the keyhioard) m
'__',1 Emiail Inbaox Fin édition X

$=,I|| stant Messaging Edition 29 nassim.laga@orange-ftgroup.com - demal 773
(05052008 15:47)

nas ‘m.laga@orange-ftgroup.com | & agnes.foucher@orange-ftgroup.com - Invitation workshop
(050572005 15:47)

Bob > Hidlce emmanuel.bertingiorange-ftgroup.com - warkshop
(05052005 15:47)

emmanuel.bertini@orange-ftgroup.com - warkshop

I ﬂ [OSMS2005 15:47)

emmanuel.bertind@orange-ftgroup.com - workshop
(050352005 15:47)

agnesfoucheri@orange-ftgroup.com - Invitstion workshop
(050352005 15:47)

Onclick launch the emmanusLbertinddorange-ftgroup.com - workshop

destination Widget iusmsrziua 15:47)

Figure 99: Semantic matching based linkage of Wilge

Figure 99 illustrates also two limitations. Thesfione is that some links, which are not needed by
Alice, have been created (e.g. the link betweerethail inbox Widget to the send IM Widget is noeded
by Alice (select an email and initiate an IM seasidgth the forwarder)). The second limitation istthe
created links are not automatic. Alice must clicktbe link to launch the destination Widget, though
some cases this could be automated (e.g. for e@oming call the directory search on the callerdde

launched automatically).

The second step of user service composition wegsexp using WOA aims to tackle these two
limitations. For each link, the framework adds taduitional GUI elements that enable the user tetdeir
automate the corresponding link. Figure 100 illatgts this feature. It shows a link between theptelay
Widget to the directory Widget, which can be maatifiusing two icons: one for deleting the link, and

another for automating the link.

From the technical point of view, the first steaties a composite servic<{N,L>) which

connects all connectable services (based only mraisiic matching), and the second step enablesstie u

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields

193

to refine the composite service definition by delgtundesired links, and automating the frequeuntigd

links.

& Orange phone

% Unregister

{2) Make the wire
as automatic

{1) Delete the wire

@ Call

= & directory Edition (X
First name:

Last name:

Service;
Phone:

Email:

Search I Cancel I

e & e

Figure 100: Composite service personalization.

b. Cross-device composition

To illustrate this feature, let us consider the oarmrromposition performed by Charlie when he inwolte

Map service loaded on the mobile with the restaueaiiress generated by the public directory service

loaded on his laptop. The WOA provides to the uber capability of automating this composition. It

enables the user to define a composite servicetmbines Widgets loaded on different devices.

From the developer point of, there are no additiastions to perform to enable such composition

by the user. However, the users must first load Ghess Device Connecting WidgeéEDCW) on all

devices they want to connect. This Widget authatef the user, and detects and connects all irstaric

the Widget aggregator loaded on different useradsv{illustrated in Figure 101).

B terminals synchronization Fin édition X1

Titee: [
couew (]
Connected
- /
V
Laptop

Figure 101 : Authentication Widget.

ﬂ terminals Synchronization Fin édition X

Titre:

Caouleur l:”:“:‘

alider

Connected

~
Mobile

Second, the user loads the different Widgets hel:mea the different devices. As illustrated in

Figure 102, the framework connects automaticaley\tfidgets that are semantically compatible (based o

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 194

their description). Third, such as the user servicenposition mechanism detailed in the previous

subsection, the framework enables the user to modiflelete links created during the second step.

B X B =

Connected Connected

0 = m localiser votre correspondant Edition]

} cles prairies Stgilles, 14000 caen| Gol |

/ PRy Sy
Mard - prageay Spnpe .

Locate Restaurant [map J'] satellite | Hybrid
ﬁﬂlﬂﬁ Casn 5 3int

La Planche’A 13 Rue des praries St-gilles, 14000 caen
restaurants B8

=
g 14}

La Poterne
restaurants
be

Restaurart : Frangais

3, Rue E:
4 aEr s
2 3 25 00 D54
9
5 1o Yaucelles = Ca

14000 Caen

elx
. o 7 3
La Rive Droite 02 31 70 #4 27 3;\ = m
restaurants FOMIRIBET @ £ Colre Montaivel -
H % - g
ugle 3 % i
] 2 Map tlsta @2010 Tele Alas - Termaf Lise
La Taverne de Maitre Kanter 0231 50 02 22
1, Avenue duB-Juin
14000 Caen
Laptop Mobile

Figure 102: Cross device composite service.

c. Unstructured data composition

To illustrate this feature, let us consider the aarcomposition made by Alice or Bob when they have
composed the IM service with the agenda servicegxisacting the exchanged dates and checking their
availability on the agenda. Current SOA based caitipo tools do not enable ordinary users to maian s
composition, as they rely on connecting only legaputs and outputs of services. The WOA providies t
necessary infrastructure to enable users to eesitybine services (Widgets) based on unstructuréa da

generated in different services (e.g. communicaemices).

The process for making such composition does rptire additional actions from the developer.
The only need is the description of the differentdyéts. From the user point of view, the actions to
perform can be summarized in two steps. Firstusder loads the two Widgets into the same envirommen
(or in two different by connected instances oféhgironment). Second, through a GUI, the user &si&sc
a data extraction module for the source WidgeteXwact dates for instance, the user associatedatee
extraction module as illustrated in Figure 103.eAfassociating the date extraction module, the draonk

automatically detects and extracts dates withinvihidget. For each date detected, the frameworkctete

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 195

automatically the Widgets whose input is compatibieh that data; in our case, it detects the agenda
Widget that enables the user to check his avaitphit a given date passed as input parameter. If a
semantic matching is detected between two Widdgk¢sframework creates a link that enables the teser

combine the Widgets. When, the user clicks on thk, Ithe destination Widget (agenda) is launched

automatically.

Check availability
& Instant Messaging pdition =] _:-:jAtjen(Ia Edition X

< March, 25th >

nassim.laga@orange-ftgroup.com

alice > Are you availble at Mach, 2 * 1000 - 11:00 Presentation Framework Meeting

* 11:00-1200

Service composition demo

agenda availability on
the corresponding date

D atE Link to check the j

Different unstructured data extractors that
can be added. This list depends according
to the functionalities inputs of the Widgets
loaded in the same environment

Figure 103: Unstructured data based composition.

d. Loose coupling

As we detailed irPart Il Contributions the WOA enables a loose coupling between compastvices
and the basic services they use. This loose cauirealized either manually as users now cartetbair

own composite service, or automatically throughdbecept of abstract Widget.

The manual approach is characterized by the replect(by the user) of a Widget by another that
offers the same functionality. The framework thigst fdetects semantic matching between the new &Yidg
and the others that are loaded in the same envenhrand second creates links accordingly. These tw

actions reconstitute the previous composite service

The automatic approach is characterized by relgimghe concept of abstract Widget; which has

been illustrated in.2 Static Compaosition

1.4 Automatic Composition

The main feature introduced by WOA concerning thmatic service composition is the failure recgver
system. This is pertinent as current compositiamistbased on natural language still lack of acquche

to the limitations of natural language processimgd. To illustrate this feature, let us consider tmanual
composition performed by Charlie when he searchesstaurant (composition of the public directory
service with the Map service). This composite sergan be created through a natural language reques

(e.g. search and locate restaurant), using WOAedsas SOA. However, the WOA provides the capapilit

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 196

of modifying the created composite service to maixactly the requestor needs. In our case for el@gmp
Charlie would likely modify the created composigz\sce so that the Map Widget will run on his mebil
instead of the laptop, as he will need the Mapeagdes to the restaurant. To do that, he hasquitlete
the map widget from his laptop, and load it on thebile; the framework will make the connection

automatically based on semantic matching. Thisgs®gs illustrated in Figure 104.

|search and locate restaurant envoyer

Modify the created
service: delete Google
Map Widget from the
laptop, and load it to

‘ tab 1 B8 ‘

(3]

P — the mobile.
Accueil ; 02 31 86 d
Locate Restaurant i
1rrrnnrs: ES ?b Caballitn

(5] 3] %
La Planche A
restaurarts Connected Connected

0 = B localiser votre correspondant Edition X
Restaurant : Frangaiz .
La Prairie }i}"”"ﬂ L e e I des praifies Stgilles, 14000 caen| Gal |
restaurants i 7

e s e SENETE
hlord F\a:eaul

Locate Restaurant Map | Satelite [Hybrid |

La Rive Droite /wduuu Caen

restaurants g
La Planche’A 0231934552
restadrants
31 des Prairie I
14000 C;

La Poterne
¢ £

EL

X
12 Rue des prairies St-gilles, 14000 caen

515

0§
=
35 Ca

|
Emﬂﬂgﬂ

art : Frangais

Ely
La Rive Droite 2 ﬁs; [rio14
FasREAT POMRIBEE T @ i Cours Montavel__—=>
Google 3 s T
4 = Map tiata @2070 Tele Atlas - Tenm ot Lise
La Taverne de Maitre Kanter 02 31 50 02 22
1, Avenus duB-Juin
14000 Caen
Laptop Mobile

Figure 104: Failure recovery process in automaigise composition using WOA.

2 Business Process Management (BPM)

The key features introduced by WOA to BPM are: lutgan for business processes heterogeneity and
dynamicity, the capture of unstructured data, drelbose coupling between process definitions &ed t
used concrete services. As business processesuyumplemented as composite services, the oaptu

of unstructured data and the loose coupling areviguely detailed in sectiori.3 Semi-automatic

CompositionTherefore, the goal of this section is to illastronly the solution brought by WOA to tackle

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 197

the heterogeneity and dynamicity of business pgesesFor this purpose, we rely on a driving scenari

detailed in the next subsection.

2.1 Driving Scenario

As an illustrative scenario we consider the vacatiequest business process of two employees. It is
previously illustrated in Figure 62 which is dugplied hereafter. This Figure depicts two versionghef
vacation business process; one performed by a teanager, and another performed by a purchasing and
logistic responsible. This business process haartawhich is common and mandatory to all users, and
another part which is user dependent. The formesists of the vacation request creation, the vacati
request study and decision (by the requestor ma)agel the response natification. The latter cstssdf
updating agenda, sending email to the team, anthgatp an automatic email response for the team
manager; and searching pending purchasing ordelig)gcproduct providers, redirecting incoming sall

during the vacation period, and updating agend#i®purchasing and logistic responsible.

Common part Vacation
request vacation
creation request
study and
decision

Response
notification

g ~—

Redirect
incoming calls

Search pending
purchasing
orders

Send email
to the team
mailing list

Set up an
automatic email Call provider
response
End-user dependent part: End-user dependent part: _
. . Purchasing and logistic responsible business
Team manager business actions actions

The user dependent part of business processeemf@eneous and dynamic at the same time. It is
heterogeneous as it differ from a user and ano#imet jt is dynamic as the company needs to adagklgu
for new businesses from one hand, and the usereliocmuld change his habits from another handhin t

next subsection, we will see how this heterogeraity dynamicity is tackled using the WOA.

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 198

2.2 Heterogeneity of Business Processes

The main feature introduced by the WOA is the smrdomposition capability provided to ordinary sser
Relying on this capability, we proposed a methodmfanaging the heterogeneity of business processes.
This method is characterized by splitting busin@ssesses into a common part and a user depenaent p
* Business analysts are then in charge of modellig dommon part (which usually contains
mandatory activities needed for performing a gikasiness goal).
» Developers are in charge of automating the comnaohgs a Widget.
» Finally, users are in charge of defining and autimga(using semi-automatic composition) their

own part (user dependent part).

Figure 105 illustrates how the vacation requestirness process is automated (including the

common part and the user dependent part) for thehpsing and logistic responsible.

Common part
implemented as
a Widget

Vacation Request Mgnt 2] Emails Env. 14 Iig

Pending orders

L
Order day Ordered product Provider

Get Pending orders [N I | __

+33 123456789
9
04/01/2009 100 notepads p2@prov2.com

state

260/1/2008 accepred @ \

Agenda & #8 Orange phong
Create Event » Unregister

Call item provider

Set call transfer .
thil ransfer % S M T
phone Number contact Name =
Al 5 &6 7
12 13 14
19 20 21
[EnmmE Update Agenda 26 27 28
Oate m 30 = 1
ime feo0
ouemion - [Uwask
ok

User dependent part
implemented as links
between Widgets

Figure 105: Business process implementation example

The use of the WOA enables the scalability of gnecess of modelling and implementing
business processes from one hand; and it enabiigdh automation of the business processes fromhanot
hand. Indeed, business process management in WO#cdkble because business analysts (resp.
developer) do not care about the details of thegs®es, which are specific to users; instead, riiajel

(resp. implement) only parts of business procesgagsh are common to all users. The WOA enables a

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 199

high automation of business processes as the wg®ndent part, which can hardly be captured and

implemented by business analysts and developesstisnated by the users themselves.

In addition to these two features, the WOA providegood infrastructure for business analysts to

capture user habits, and optionally modify the camrpart if common actions have been detected.

2.3 Adaptation of Business Processes

Unlike the common part of business processes, wikigersistent, the user dependent part is usuaty
dynamic. In order to manage such dynamicity, orgations can either rely on the semi-automatic
composition capability provided to users, or use ¢bncept of abstract Widget. Both methods have bee
previously detailed and illustrated. In summarynsautomatic composition of services enables ugers
define themselves the user dependent part of adssiprocess. More important, it enables them wifno

it as they face new businesses, contexts, and meagseral. Though the modification is manual (add
new activities by adding new Widgets, chaining tmtivities (Widgets) between them, and deleting
obsolete activities), it is performed at runtimed aanables the modification of the logic of the bess
process. In our example for instance, if the Pwicttaand logistic responsible wants to set up daonaatic
email response during his vacations, he has jusaibthe corresponding Widget, and personalizdititie

with the other Widgets. This is illustrated in FigulL06.

The second approach for adapting a business pracessw needs is to rely on the abstract
Widget concept. In other words, users will loadtedasg Widgets instead of ordinary Widgets. By dosay
the platform will automatically select at the rumé the best available Widget, for performing a give
activity in the business process. Let us considerirfstance the step where the purchasing andtiogis
responsible call the provider of a given item. Thange in the communication service (telephonyiseyv
used by the company would oblige the user to manudlange the business process implementation.
However, using the concept of abstract Widget,plagform will automatically adapt the business s

and take into account the new telephony service.

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields 200

Vacation Request Mgnt " Emails Env, E'EI

¥acation request Pending orders
Begin:” [—
: Order day Ordered product Provider
End: ..D_K_!

433 123456789
pZ@provzZ.com

uesits list
04/01/2009 100 notepads

request date state

2&/11/2008 accepred @

Agenda % # Orange phone

Cieate Event FLIresler

“ April 2009 »
Call ransfer & SOM CTW GBS
4

1 2 3
5 6 7 &8 9 piif11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 1

phone Number contact Name

o [t Set Up automatic

ok email response on
auto E{ the selected date
Crate lMaY -i 13 =

Set Up automatic Time / [E0

email response on Duratifn [{vesk

i H ﬁgssa e I t at
the vacation period ge I arn not at my
office ...

LK

Figure 106: Adaptation to a new need.

3 Conclusion

In this Chapter, we illustrated how the WOA paradignd the Widget aggregator we designed and
implemented can be used by developers and usersefivice composition and business process
management fields. Table 18 summarizes the diffarballenges we addressed, the involved rolesén th
solution we propose, and what should be performeédzh role. Basically, in service composition, the
developer is in charge of creating the differentgéits and providing a description file for each;careal

the user is in charge of discovering the Widgetd laading them into his service environment (Widget
aggregator). In static service composition, theetlaper is also in charge of discovering the Widgbgt

are loaded at runtime by the user, and using tagabilities.

In BPM, we have proposed to split business proseisge a common part and a user specific part.
Associated to the WOA, this enables to tackle theiogeneity and the dynamicity of business prasess
The cost of this approach is a new task for users another one for developers. Developers should
automate the common part of a business processgira@ Widget; and users should model and automate

the user specific part of the business process.

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields

201

Table 18. WOA impacts on service composition antiBRvolved roles.

t

t

¢

Field WOA advantages Developer tasks User tasks
Enabling usersto | - Creates services as - Discovers and loads
personalize a Widgets. Widgets to the Widget
composite service. | - Provides a description filg aggregator.

_ Loose coupling for each Widget. - ldeally, users load abstrac

Statie (when using - Within the Widget code, Widgets to the Widget

Service
abstract Widgets). he uses the Widget aggregator.
Composition
Combination API to
discover Widgets loaded
to the aggregator and to
use their capabilities.
Enabling usersto | - Creates services as - Discovers and loads
create composite Widgets. Widgets to the Widget
services - Provides a description fil¢ aggregator (optionally on
Semi- (Intuitiveness of the for each Widget. different instances and
automatic composition tool). different devices).
Service Loose coupling - Personalize the links
Composition (when using (created automatically)
abstract Widgets). between Widgets.
Cross device - ldeally, users load abstrac
composition. Widgets.
Existence of a - Creates services as - Makes a natural language
Failure recovery Widgets. request.
system when a - Provides a description file - Refine a created composit
Automatic created composite for each Widget. service by adding new
Service service does not Widgets, removing others,
Composition match exactly the and optionally modifying
user needs. the links that have been
Loose coupling. created.
Business Automation of - Implement the common | - Loads the Widget that

process

heterogeneous

part of business processes

implements the common

Chapter I11.2 Illustration of WOA in Different SO¥pplication Fields

202

Management

processes.
Rapid adaptation to
new needs.
Unstructured data
capture.

Loose coupling

(modelled by business
analysts) as a Widget.
Creates other services
related to business
activities of users as
Widgets.

Provides a description fil¢

for each Widget.

D

part of a business process|
Discovers and loads other
Widgets that are needed to
perform the user specific
part of the business
process.

Optionally, personalizes
the links that have been

created automatically.

Chapter 1ll.3 Experimentation and

Dissemination

The Widget aggregator we have defined and impleetemtas exposed to users. In this Chapter, we
summarize the experimentations/demonstrations gtmtend the feedback collected on the different

mechanisms.

1 Experimentation by Orange Labs Staff

In order to get the users’ feedback about the adgas and limitations of the Widget aggregator #ed
Widget Combination mechanisms, we have deployedroptementation within the Orange Labs for 184
participants. Among this population, 66% are faanilivith Web 2.0 portals, and 33% discover this tgpe
applications for the first time. In the experimdita, we have developed some functionalities of
applications as Widgets; applications that are ussitle the company. A comprehensive list of those
widgets is presented in Table 19. It is importantnbte that in this experimentation the links that
created between the Widgets by the Widget Comhlunatomponent are represented to the user through a
drag & drop capability between the Widgets (Thegdadrop mechanism was illustrated in Figure 77).
Table 19. List of Widgets tested by users.

Widget functionality description
Checking and reading esfedim

the professional email service

Widget name Origirmpplication

Professional_Email_Inbox Microsoft Exchange

Send_Email Sending emails Microsoft Exchange

Contact_List Checking the contact list MicrosofttBange

Check_Agenda

Checking the events inside the | Microsoft Exchange

agenda

Add_To_Agenda Add a new event to the agenda Midté&sahange

Microsoft Communicator

Communicator_Presence See the presence statustattso

Communicator_IM Instant messaging Microsoft Commator

Conference_Bridge

Creating and searching a

conference call bridge

Internal application for managing

conference calls

Web_Conference_Pilot

Managing the conference bridg
(Check the connected phone

numbers, put someone to mute..

elnternal application for managing

conference calls

)

Chapter 111.3 Experimentation and Dissemination 204

Web_Phone Telephony Orange telephony REST API
Send_SMS Send SMS Orange send SMS REST API
Send_MMS Send MMS Orange send MMS REST API
Search_Directory Searching someone in the Internal directory
company directory
Book_ Meeting _Room Book a meeting room for a djpe¢ilnternal application that manages the
slot of time meeting rooms
Gmail_Inbox Checking and reading emails of | Gmaill
Gmail
Map Locate addresses Google Map
GTalk Instant messaging Google Talk
Google_Search Use the Google search engine Goegflers
Translator Text translation Google translate
Public_Directory_Search| Search in a public dirgctor 118712 directory
(http://www.118712.fr/)
File_Storage A remote file storage system A rerfitdestorage system
Video_Search Searching videos inside the Company search engine
company intranet
Video_player Playing videos Video player

After five months of experimentation, the resulteow clearly the usefulness of the Widget
aggregator in the enterprise context. Indeed, 88%e lused the Widget aggregator platform, 80% have
created their account and personalised their emviemt by loading only the needed Widgets, and 55%
have used, or intend to use, the aggregator frameasa default starting page of their Web browber.

addition, 72% consider the aggregation platfornfulsend 14% consider it necessary.

The Widget aggregator we experimented embeds a aVi@gmbination capability. The users
feedback concerning this capability was also pgsigind encouraging. Indeed, as illustrated in EduQ7,
54% of the participants have used the Widget Coatliin capability. Users have even proposed to

implement the functionality between other widgétsnt those that already support it.

However, there were 17% of people that did notaliec the existence of the Widget combination
mechanism, and there were 9% who were aware abbut do not use it. The explanations provided by
users could be summarized in two conclusions;, fitet drag & drop representation of links is notyve
intuitive as users that are not aware about itslahiity between two Widgets can hardly discover i
second, it is necessary to implement much more ¥&@elated to users business activities) to yeall

benefit from the Widget Combination capability.

Chapter 111.3 Experimentation and Dissemination 205

Are you using the Widget Combination capability?

904
20%

mithout response
mYes
O Mot aware about the availakility of

such functionality
oMo

54%

Figure 107: Users feedback about the Widget Contibimaapability.

2 Demonstration to Marketing Team of Orange

The Widget Combination capability has been dematestirto a marketing team; responsible of the Orange

Widget aggregator product (available latp://www.espace-utilisateur.orange-business.yomased on

Figure 108, two scenarios have been shown. In itBe dcenario, the user has a meeting entry on his
agenda. The Widget aggregator automatically proposeéne user to locate the meeting address (using
Google MapWidget), to display the contact information of thrganizer (using thBirectory Widget), and
finally to book a meeting room (using tlBook Meeting RoondVidget). Let's suppose that the user
locates the meeting address and notices that héeviate. Therefore, he decides to contact tharorgr
and propose him/her to have a conference calleaasbf a physical meeting. To do that, the usedsiee
first to get the contact information of the orgaifusing theDirectory Widget); second, contact him/her
using for example asend SMSWidget; third, book a room for the conference céllsing
Book_Meeting_Roowidget). The Widget aggregator has automaticatliydd these Widgets with each to
facilitate these actions to the user. Thus, byrgka click, the user displays the contact informatdf the
organizer of the meeting. Then, through a simpiekdhe user composes tiErectory Widget with the
send_SM3Vidget to contact the organizer. Finally, the usam also book a meeting room on the meeting
time slot by composing thegendaWidget with theBook Meeting_ RooMW/idget.

In the second scenario we have demonstrated, dreerseives a call on the telephony Widget,

and the Directory Widget is automatically launchedearch for the caller information.

The feedback collected during this demonstratiorery positive as the marketing team decided to

include the Widget Combination capability in thexneersion of the Orange Widget Aggregator. In

Chapter 111.3 Experimentation and Dissemination 206

addition, the same demonstration was proposeddaacepted at the Orange Labs research exhibition i
December, 2008. However, two important remarks Heen raised:
 The first remark is about the automatic chainingtloé telephony Widget and the

directory Widget. The attendees have reportedtthatautomation could be intrusive for

the user. Therefore, it is important to enable tordeactivate this automation.

» The second remark is about the chaining of sewtidhbets (Agenda> Directory >
Send SMS), which is a kind of a process that shbaelgerformed by the user to achieve
a given goal. Therefore, it could be interestinglittk this mechanism to business

processes of the user to perform more automatighout being intrusive.

These remarks motivated the process-based reudédgiets mechanism we have defined latter

on.
& directory Edit [poom booking Edit X @2 sms Edit &
vew Search . . FUP B Recewer:.m
limternation
» Book a Room I will be late to the
M. Marc Mazoué meeting you have
pate R0 s /2070 de [renoo =] & [ienan =] | erganized today. But I
MESsaG8 | will be able to attend

by conf call

Object [Thesis Dema

Rechercher
e ETRDRDBIZZBUCHTE sonin; | Nedls e =1 Reserver| send]

Feries : EURDRDEIZZBEUCHTE ek e e

Joignabilité et Téléphonie surlP en
Phong 01234567 89
Mobile :0123456789 |
Fax 0173456789 8 Orange phone o

fii B Locate Edit X1 P
Inredister

Address RD CAEN FLEIsEr

42 nue des Coutures

| 42 Rue des coutures, 14000, C=_ Gol | J » Call

14000
CAEN

[wmap | satelite | Hybrid o

zia 42 Rue des coutures, 14000, Caenﬁl
Chemin

-5 .
int-Germain- \w
poy 4 Ca

E Bayalry

&
?‘0

Manager: b Frédéric Delmond
Secretary: dine Mchelle Harel

Lo 4
L6
<D
b

¢eeCe
@@&@

hide the kevboard

=4

:ﬁ Agenda Edit (X]

< August 20th, 2010 3

a -
1ro0-4ran Ut
linkinon
- "
1go0-1g30 Tnesis
Demo

aC de la
nde Plaine

o Albiert Sag,

G E2010 Tele Atlas - Taiine oflize

Links to launch functionalities
of other Widgets

Figure 108: Screenshot of the demonstration tartheketing team.

3 Integration within SERVERY Project Contributors

The concept of the abstract Widget has been denadvedtwithin the European project SERVERY (Service
Platform for Innovative Communication Environmenifjhe project aims to build a marketplace of
converged services (Telecom and Web services), evbervice creation, service management, and their

execution on heterogeneous platforms is suppoitbd. demonstration shows several abstract Widgets.

Chapter 111.3 Experimentation and Dissemination 207

Each abstract Widget wraps two or three real sesvidable 20 shows a comprehensive list of abstract
Widgets that are implemented, the real serviceghvhre considered, and the selection rules thdd dm

applied in each abstract Widget. Figure 109 issmreenshot of the demonstration.

Table 20. Abstract Widgets list.

Abstract Widgets Considered Services (Service that afe
Functionality Rules wrapped within the abstract Widget
SendSMS « Selection according to recipient location, « Orange Partner Send SMS API

» Selection according to sender (userfhttp://www.orangepartner.com

location. Telefonica Send SMS ARI

* Selection according to the delivefy(http://open.movilforum.comn
guaranty level.

« Selection according to the price per SMSE.

GetCalendar - Selection according to the activigitext | - Google Calendar.
of the user (work/home). - Microsoft Exchange Calendar

(accessible only within Orange private

network)
GetEmails - Selection according to the activity teath | - Gmail.
of the user (work/home). - Microsoft Exchange emails

(accessible only within Orange private

network).
GetContacts - Selection according to the actividgtext | - Gmail contacts.
of the user (work/home). - Microsoft Exchange contacts

(accessible only within Orange private

network).

GetWeather | « Selection according to user preferences. « Meteo France
« Selection according to user location. ¢ WeatherForcast

« Selection according to the service price| (http://www.webservicex.net)

SearchPictures « Selection according to user preferences. « Microsoft bing search engine.
 Selection according to the user languages Flickr search.

 Selection according to the service price| « Picasa search.

Translate Selection according to user preferences. « Google translate.
« Microsoft bing translator.

* Yahoo babel fish translator.

Chapter 111.3 Experimentation and Dissemination 208

Send SMS - Abstract service Get Contacts - Abstract service Translate - Abstract service @ x
r))
Selact a semvice according to your localization I Select asenvice according to your sontext Blease enter yaur Laxl
I Select aservice to the recipient oK Enteryourtexttﬁ;g
I Frice < 3 | _ 3
Enter the destination language
10 12 Mo Input is required for this abstract senvice,
| Jease validate your choice
n a v Enter the source language

" Minimizing the price

oK H T
AT , ©a Coodle YiHoO!
oA 5004
: e BABEL FISH
Hello ¥Waorld
Message Get Weather - Abstract service Get Agenda - Abstract service
“Your Phone Murm, +336123456789 [~ preterences
. Mo fnout is required far this abstract service,
ﬁs;ﬂnatlnn Phone +341234567589 I™ Select asemice ascording to your language < please validate your cholce 2|

™ Frice

& 15
€ 3| E/) a
ok e -

Location :
Date :

L

Search Pictures - Abstract service

. Search criteria o
Mo Tt is required for this abstract service
< please validate your choice 2|
"i METEQ Kcn
\

FRANCE Weather
GM | 3
T, Exchunge Server s

Get Emails - Abstract service

Podcast

w_
Picosa

blng dir‘l;a‘
ve

Figure 109: SERVERY demonstration.

The feedback collected is positive as first thecemt was included as part of the demonstrated
mechanisms of the midterm review of project. Se¢dhd concept was integrated to different service
composition components defined by the project, mamatural language composer, and Open Mashups
Studid®. The goal is to first decouple composite serviftesn the basic services they use; and second
perform runtime adaptation of composite servicesoating to rules that can refer to heterogeneous
parameters such as user context, preferences, QosThérd, the concept was proposed an accepted for
demonstration at the Orange Labs research exhilfdiene 2010).

This demonstration also raised two issues to besiiyated. First, it is important to link the
abstract Widget concept to the business enginbeoptoject. The business engine is essentialljharge
of defining flexible business models for servicexl(ding prepaid, postpaid, and promotions) witttie
SERVERY marketplace. Thus, the abstract Widget epnhshould interact with the business engine in

order to retrieve the services that could be usethé user (i.e. free services, or those the wsaiready

40 Open Mashups Studibttps:/addons.mozilla.org/en-US/firefox/addon/7/1 @8cessed on Marct{'92010.

Chapter 111.3 Experimentation and Dissemination 209

subscribed to). Second, the price of a serviceiusually a fixed value; instead it varies fromnser and
another (subscription option), and from a periodrother (promotions). Consequently, in practicis, mot
conceivable to define selection rules that refehtoservice price as a fixed parameter; insteathauld be

considered as a dynamic parameter which shouldigpuated by the business engine.

4 Others (Orange Labs Internal Projects)

Several other demonstrations related to the Wid@mhbination capability have been conducted within
Orange Labs. Some of them have been followed up itgitintegration. Thus, two projects have decitied
integrate the Widget Combination capability to tHfedntend framework. The first one is “IP Accueifin
Orange Labs internal project which is in chargenaintaining and evolving the Orange Multicanal Gant
Centre product. Sold to companies, this productaiis end-to-end platform (including a network
infrastructure and software applications) for cohtzentres. The Widget Combination capability isdist
the frontend level of the platform; a Widget aggtey used by the contact centre agents for achievia
business processes related to customer calls. TidgetVCombination capability is then in charge of

composing the Widgets between them to automateuah as possible the business processes.

The second project where the Widget Combinatioralogipy will be used is an ongoing research
project. It aims to design and implement a unifieessaging application, where users do not caret daheu
medium through which the message is carried ostead, it is the application which decides the best
to use. In this ongoing project, the team seeksniach the frontend framework with a draggable area
where users can add and remove services implemastéd/idgets. The draggable area integrates the
Widget Combination capability in order to enablencounication between Widgets to enhance the user
experience. In addition to the Widget Combinatiapability, the integration of the abstract Widget
concept is under discussion. This would enablesusechoose the rules to apply when selecting #s b

medium to use when transmitting a message.

5 Conclusions

In this Chapter we detailed the different experitabons and demonstrations we made internally in
Orange Labs, or externally in the SERVERY Europpagject. In addition to the positive results (the
adoption of the WOA in different operational andearch projects), two lessons were learnt. Ficstes
users might need more integration at the Ul leVhile the functionalities of the Widgets are well
integrated with each other, their user interfaeesain displayed as independent blocks. For instamoen
combining the telephony Widget and the directorydyét (searching the caller on the directory), iildo

be more user friendly to display the name and tbeuge of a caller directly within the telephony dlget;

Chapter 111.3 Experimentation and Dissemination 210

instead of searching the caller in a separate bk dpproach we advocate to tackle this issue defioe a
Widget as an association of several Uls with armss logic. Each Ul corresponds to a display tge. (
display in the menu, display in another Widget,utl display.etc). However, this solution is not yet

investigated.

Second, additional research work is needed to hselbstract Widget concept in practice. Two
important issues need to be investigated: whiclmiess model to apply? And how different pricing ralsd

could be integrated in the service selection prezes

Conclusions and Future Research

Directions

The main contribution of this thesis is the defomtof a new service-oriented paradigm based ongétii
the Widget Oriented Architecture (WOA) paradigmeTWOA provides integrators (developers or users)

different user centric mechanisms to reuse Widigetise creation of more sophisticated services.

Basically, the WOA paradigm is driven by two mainnpiples: the development of services as
Widgets (this requires the implementation of the itdl semantic typing, and the creation of a desiom
file), and the composition at the Ul level. Thesgs principles provide more user centricity in fhrecess

of reusing existing services.

Based on these two principles, we have designeewaWidget aggregator enriched with three
Widget reusability mechanisms: the API-based reafsgVidgets, the semantic and automatic reuse of
Widgets, and the process-based reuse of Widgets.ARi-based reuse of Widgets is characterized by
providing a set of client-side functions for deymos to discover and reuse Widgets functionalities
runtime. The semantic and automatic reuse of Wedigetharacterized by automatically detecting seiman
matching between Widgets, and combining them. Rintde process-based reuse of Widgets provides the

capability of creating and executing a chaining\i€igets based on a process definition.

All these three mechanisms can be extended witketbther mechanisms to enhance even more
their user centricity: the abstract service basrae, the cross-device based reuse, and the unsdic
data based reuse. The abstract service based pemgdes the capability of invoking abstract Widget
(functionalities and a set of selection rules), akhare linked at runtime to the best real Widgetxecute
according to rules specified by the user himsdife €ross-device based reuse enables the exterfdioa o
reusability scope into Widgets loaded on differeetvices. This enables composition mechanisms to
consider all Widgets loaded on all devices of theruFinally, the unstructured data based reusalenthe
extension of the reuse scope into data that aredactared (resp. not formatted) by providers (resp.
developers) at the publication (resp. developmarit)the Widget. This is especially useful when
considering user generated content and communicagovices, where significant unstructured data are

generated and exchanged between users, but cae nsed as input in a service composition.

Conclusions and Future Research Directions 212

In this thesis, we applied the different mechanigmsvo SOA application fields, namely service

composition and business process management; Figi@esummarizes the benefits brought by each

mechanism to each SOA application field.

[WOA Functionalities

-

APIl-based reuse

Service Composition

Static Composition

.
,

B
.
semantic and
automatic reuse

- reuse

the process-based

[Business process

management

N ~

Tackling heterogeneity

Tackling dynamicity

Automatic
Composition

Semi-automatic A ’
Composition

Abstract service] L
reuse

.
/ \.

Capturing unstructured
data

)
)
)

S “-a | unstructured data feolomeacoanaaa- -
~ based reuse

,
.
¥
/
/
/
/_.ﬁ ‘o \ (4 N [\

~ cross-device based
reuse

N —

Figure 110: Contributions Summary.

The mechanisms introduced by the WOA benefit betlvise composition and business process

management fields:

First, the API-based reuse of Widgets provides wusetricity to static service composition. It
enables developers to create composite services dlea customizable by users. This is
characterized by anticipating a set of links betwd#édgets; links which are activated only when
those Widgets are present in the same environnfsita consequence, the user can easily
personalize the composite service by loading ohly Widgets he needs/wants to the same

environment.

Second, the semantic and automatic reuse, assbdatehe process-based reuse, enhances
significantly the intuitiveness of the process ofnposing services. In addition, it tackles the
heterogeneity and dynamicity of business procesRegarding service composition, the two
mechanisms enable even ordinary users to createotlve chaining of Widgets. This is enabled
through three steps. In the first step, the platfdetects semantic matching between Widgets that
are loaded on the same environment, creates liakgeen them, and creates the corresponding

composite service definition (flowchart). Then,abgh Ul elements, the user can modify the

Conclusions and Future Research Directions 213

composite service definition (deleting and modifyidifferent links). Finally, the process-based
reuse controls the execution of the new definitddrthe composite service. This capability of
composing services provided to users enables tdetdloe heterogeneity and the dynamicity of
business processes. We have defined a new methothddelling and automating business
processes using the WOA. This is characterizedpliftisg a business process into two parts, a
common part and a user-dependent part. The formeaelled by business analysts and automated
by developers, includes activities that are usual@ndatory in an organization and/or common to
a significant population of users. The latter, whis usually heterogeneous and dynamic (as it
depends on each user needs and habits), is autbrbstehe users themselves using the
composition facilities provided by the WOA. This tmed of managing business processes
benefits both business analysts and users. Busimadgsts will not consider the processes details
related to specific users, and thus limit the nundfgrocesses to model and automate. And users

are able to automate the details related to thveir meeds and habits.

» Third, the abstract service based reuse, bringsféatures to service composition and business
process management: automatic adaption and loag#ing. Indeed, as service integrators (users
and developers) will define composite services pirdsusiness processes) based on abstract
Widgets (which are part of the platform), insteddeal Widgets, modifications on the Widgets

provider level would not affect the composite seegi (resp. business processes).

» Fourth, the unstructured data based reuse intredaceew composition pattern to the service
composition field, and enables the automation cfifmess processes based on the content (e.g.
information included within an email content, or lditcussion). This functionality enables users
to define composite services where unstructured @i first extracted from a source Widget; and
then composed with another Widget. This featurpdadinent especially when considering the
proliferation of user generated content and compatign services, where a huge amount of data
is generated by and exchanged between users. @iatsare not formatted at the development of
the service and consequently not declared at itSigation time. Consequently, they are not

considered in current composition tools, especialbse addressed for users.

» Fifth, the cross-device based reuse introducesnafeature to user service composition field. It
enables the creation of a composition of Widgetslénl on different devices; a feature which is

not enabled in current composition tools, especthlbse addressed for users.

Compared to SOA, which is conceived essentiallyaspond to developer needs in term of

reusability, abstraction, and integration, WOA islbfrom the user perspective. The functionalities

Conclusions and Future Research Directions 214

detailed are all initially built to respond to theeds of users. The API-based reuse functionagpands

to the need of personalization of a composite senthe semantic and automatic reuse, associatia to
Process-based reuse, responds to the need ofngreatinposite services by users; the abstract servic
based reuse responds to the need of service selecitording to users specific rules; the unstrectaata
based reuse responds to the proliferation of conation services and user generated content; finté
cross-device based reuse responds to the proidfieraf user devices and the need to mashup services
loaded on different devices. This design methodplisginline with Web 2.0 best practice: user ceshtre

design, user participation in content creationy se#f-service, and rich user interfaces.

In this thesis, we introduced the WOA paradigm. @ntrast to SOA which is conceived for
developers, the WOA is conceived for users. Asrssequence, WOA and SOA are more complementary
than concurrent. For instance, WOA based compasitiould never be as rich as a composition made by a
developer using programming (e.g. Java) or scigpfie.g. BPEL) languages. Similarly, SOA based
composition would never be as intuitive and usertrie as WOA based composition. Therefore, it is
important to use both approaches, and have SOAMDA layers, in a given service environment. The

approach we advocate can be summarized in theviolpitems:
» developers create web services (SOA),
» developers create the corresponding Widgets (SQAMOA),

» developers compose web services, create the conmdisiy Widget, and optionally use static

composition of Widgets (SOA and WOA),
» users compose Widgets (WOA).

The mechanisms introduced in this thesis highliggw opportunities to investigate in the future,
namely semantic expressiveness and combinationthétlisers intelligence, learning from user-depende
parts of processes to sketch out automatically Inesiness processes, and finally, unstructured lzkad

composition in the context of multimedia content.

In the semantic field, a significant research woas been conducted in conjunction with service
composition. The goal is to use highly expressigenantic and semantic reasoning to automatically
compose services to reach a given goal. In thisishge have adopted another approach. We desanibe o
data using microformats, which define the formad #re type of data, but not their meaning (semaittic
the context of a given domain. As a consequendenaatic composition of Widgets loaded to the same
environment may generate links which do not haweraaaning for the user. But first, the probability

generating such link is reduced as the user wokidyl load only Widgets of the same business domain

Conclusions and Future Research Directions 215

and second, even if such link has been createdjstiecan delete it as we previously detailed ti8o|ack
of semantic reasoning has been compensated byénéntelligence. As a future direction, we beli¢ghat
it is worthwhile to go further in this idea, andstg and experiment a learning mechanism where
meaningful relationships between concepts can bigedefrom the association of Microformats and user
intelligence. More precisely, it would be pertinémtderive the relationships between the concepts the

links that are defined by users between Widgets.

In BPM field, the discovery of business processkaroorganization remains a challenge. One
approach for doing so is to capture the users’tbalid practices. This is usually performed by yaiady
(manually or automatically) the logs of differemtftsvare applications that the users use. Howevailew
such log includes the information about the usdgh® application itself, it does not provide ceatitred
information about the interactions, made manualytbe users, with other applications; now, such
information is pertinent in the context of a busim@rocess, which is a succession of activitied,thns
likely to be a succession of applications with datechange between them. The WOA we proposed
captures such information. It captures the intéwvacbetween the different Widgets, when they are
automated by the user. Therefore, it should besiiyated how we can make use of such information to
capture the user processes, and to link them witlcgsses of other users in order to sketch out the

company business processes (using for example &sProcess Management Notation (BPMN)).

Finally, we believe that it is worth to investigadithe unstructured data based composition in the
context of multimedia content. Indeed, in this thege proposed an architecture and a proof of qutrfce
enabling users to compose services based on uns&dalata, but it is currently limited to text bedslata.
This motivates a deeper investigation in this fietthd it would be indeed interesting to consider
multimedia content (audio, video, picture...etc),eioable users to create composite services that firs
capture useful data within the content, and thempmse it with other services (e.g. capturing postal
addresses exchanged during a call session, andosomgpthem with a Map service; or capturing human
faces in a souvenir movie and composing them watltact list service). The main issue is the captdre
useful data, which is much more difficult in mulgdia content. In addition, it must be studied the

presentation aspect from one hand, and the privasgerns from another hand.

References

e [Aguilar-Savén, 2004] Aguilar-Savén, R.S., 2004.sBess process modelling: Review and
framework. International Journal of Production Emaics. Volume 90, no2, pp129-149.

» [Akram, 2005] Akram, A., Chohan, D., Wang, X. D.ang, X., and Allan, R., 2005. A Service
Oriented Architecture for Portals Using Portlets.UK e-Science All Hands Conference. AHM
2005. Nottingham, UK. 2005.

¢« [Andrews, 2003] Andrews, T., et al. 2003. Businéd®cess Execution Language for Web

Serviceshttp://download.boulder.ibm.com/ibmdl/pub/softwahe/specs/ws-bpel/ws-bpel.pdf

» [Armbrust, 2009] Armbrust, M., Fox, A., Griffith, RJoseph, A. D., Katz, R. H., Konwinski, A.,
Lee, G., Patterson, D. A., Rabkin, A., Stoica,and Zaharia, M. 2009. Above the clouds: A
Berkeley view of Cloud computing. Technical repd@B/EECS-2009-28. Electrical Engineering
and Computer Sciences, University of Californi®Betkeley. Berkeley, USA. February 2009.

» [Arsanjani, 2007] Arsanjani, A., Zhang, L., Ellig,, Allam, A., Channabasavaiah, K. 2007. S3: A
Service-Oriented Reference Architecture. IT Pratesd. Volume 9, no3, ppl0-17. May-June
2007.

» [Beaty, 2009] Beaty, K., Kochut, A., Shaikh, H. 20@esktop to cloud transformation planning.
In proceedings of the IEEE International SymposaumnParallel & Distributed Processing. IPDPS
2009. IEEE Computer Society, Washington, DC, ppli48y 2009.

* [Bellas, 2004] Bellas, F. 2004. Standards for SdeBeneration Portals. IEEE Internet
Computing. Volume 8, no2, pp54-60. March 2004.

» [Berners-Lee, 1998] Berners-Lee, T. 1998. Semantieb road map. Available at

http://www.w3.org/Designlssues/Semantic.htadcessed on June“l&OlO.

e [Bertin, 2009] Bertin, E. 2009. Architecture desvéees de communication dans un contexte de
convergence. PhD thesis.

» [Bharati, 1995] Bharati, A., Chaitanya, V., Sandal, 1995. Natural Language Processing: A
Paninian Perspective. Prentice-Hall of India 198&mput. Linguist. Volume 21, no3, pp419-421.
September, 1995.

» [Bichler, 2006] Bichler, M. and Lin, K. 2006. Sece-Oriented Computing. Computer. Volume
39, no3, pp99-101. March 2006.

» [Bieber, 2001] Bieber, G. 2001. Introduction to \Bee-Oriented Programming. Online white

paper. Available at

218

http://www.openwings.org/download/specs/service%idbwed%20programming.pdf accessed

on June 18, 2010.

[Casati, 2007] Casati, F. 2007. Service-orientedmating. SIGWEB Newsletter. Winter 2007.
[Cordier, 2006] Cordier, C., Carrez, F., Van Krapery, H., Licciardi, C., Van der Meer , J.,
Spedalieri, A., Le Rouzic, J. P., Zoric, J. 200@dfessing the Challenges of Beyond 3G Service
Delivery: the SPICE Service Platform. In th8 ®vorkshop on Applications and Services in
Wireless Networks. ASWN 2006. Berlin, 2006.

[Cremene, 2009] Cremene, M., Tigli, J. Y., LavieptS., Pop, F. C., Riveill, M., Rey, G. 2009.
Service Composition Based on Natural Language Rstguén proceedings of the 2009 IEEE
International Conference on Services Computing. S@@9. IEEE Computer Society,
Washington, DC, pp486-489. September 2009.

[Cumberlidge, 2007] Cumberlidge, M. 2007. BusinBsscess Management with J Boss jBPM.
Packt Publishing, 2007.

[Cox, 1986] Cox, B.J. 1986. Object oriented progmang: an evolutionary approach. In Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, 698

[Dahl, 1968] Dahl, O. 1968 SIMULA 67 Common Basagaage. Norwegian Computing Center.
Publication.

[Diaz, 2007] Diaz, S.P., Paz, |. 2007. ProvidingsBralized Mashups Within the Context of
Existing Web Applications. Proceedings of the 8tteinational Conference on Web information
Systems Engineering. WISE 2007. Lecture Notes im@ger Science. Volume 4831, pp493-502.
[Diaz, 2008] Diaz, O., Irastorza, A., Sanchez Caddr J., and Alonso, L. M. 2008. From page-
centric to portlet-centric Web development: Easihg transition using MDD. Information and
Software Technology. Volume 50, nol12, pp1210-128ivember, 2008.

[De Deugd, 2006] de Deugd, S., Carroll, R., KelyE., Millett, B., Ricker, J. 2006. SODA.:
Service Oriented Device Architecture. IEEE Pervasdomputing. Volume 5, no3, pp94-96. July-
September, 2006.

[Du, 2006] Du, Z., Huai, J., and Liu, Y. 2006. ADDI: An active and distributed service
registry. In proceedings of the 6th VLDB Internatid Workshop on Technologies for E-Services.
Lecture Notes in Computer Science. Volume 38118p3a.

[Ennals, 2007a] Ennals, R., Gay, D. 2007. Usenftig functional programming for web
mashups. In Proceedings of the 12th ACM SIGPLAMerimational Conference on Functional
Programming. ICFP '07. ACM, New York, NY, pp223-284eiburg, Germany. October, 2007.

219

[Ennals, 2007b] Ennals, R. J., Garofalakis, M. NO2 MashMaker: mashups for the masses. In
Proceedings of the 2007 ACM SIGMOD internationalnféoence on Management of Data
(Beijing, China, June 11 - 14, 2007). SIGMOD '0TCM, New York, NY, pp1116-1118.

[Erl, 2007] Erl, T. 2007. Soa: Principles of SereviDesign. First. Prentice Hall Press.

[Fielding, 2000] Fielding, R.T. 2000. Architectur&tyles and the Design of Network-based
Software Architectures. thesis dissertation.

[Grimes, 1997] Grimes, R., Grimes, D. R. 1997. Bssfonal Dcom Programming. Wrox Press
Ltd.

[Goldberg, 1976] Goldberg A. and Kay A. 1976. SMALALK-72 Instruction Manual. Technical
Report SSL-76-6, Xerox Palo Alto Research Centalo RIto, California.

[Hammer, 1993] Hammer, M., Champy, J. 1993. Reargging the Corporation: A Manifesto for
Business Revolution. Harper Business, New York, NY.

[Huhns, 2005] Huhns, M. N., Singh, M. P. 2005. S$aOriented Computing: Key Concepts and
Principles. IEEE Internet Computing. Volume 9, n@f75-81. January 2005.

[Ibrahim, 2009] Ibrahim, N., Le Mouel, F.L. 2009.2urvey on Service Composition Middleware
in Pervasive Environments. International JournaCofnputer Science Issues. Volume 1, ppl-12.
August 2009.

[IETF, 2001] RFC 3050. 2001. Common Gateway Int=fior SIP.

[Khare, 2006] Khare, R., Celik, T. 2006. Microforteiaa pragmatic path to the semantic web. In
Proceedings of the 15th international ConferencéMmnld Wide Web. WWW '06. ACM, New
York, NY, pp865-866. Edinburgh, Scotland. May, 2006

[Ko, 2009] Ko, R. K. 2009. A computer scientististroductory guide to business process
management (BPM). Crossroads. Vol.15, no.4, pp8.1kine 2009.

[Ku, 1994] Ku, B.S. 1994. A reuse-driven approaoh rfapid telephone service creation. In the
proceedings of the third International Conference Software Reuse: Advances in Software
Reusability. vol., no., pp.64-72. November, 1994.

[Lawton, 2008] Lawton, G. 2008. Moving the OS te Web. Computer. vol.41, no.3, pp.16-19.
March 2008.

[Lécué, 2006] Lécué, F., Léger, A. 2006. SemantiebVBervice Composition Based on a Closed
World Assumption. In Proceedings of the Europeanf@@nce on Web Services. ECOWS '06.
IEEE Computer Society, Washington, DC, pp.233-Z2&cember 2006.

220

[Lécué, 2007] Lécué, F., Léger, A., Pires, L.F. 208 Framework for Dynamic Web Services
Composition. In: 2nd ECOWS Workshop on Emerging V&avices Technology. WEWSTO07.
CEUR Workshop Proceedings. Halle (Saale), Germidnyember, 2007.

[Luthria, 2009] Luthria, H., Rabhi, F. 2009. Servioriented computing in practice: an agenda for
research into the factors influencing the orgaina adoption of service oriented architectures.
Journal of Theoretical and Applied Electronic ComeeeResearch. Vol.4 no.1, pp.39-56. April
2009.

[Magedanz, 2007] Magedanz, T., Blum, N., Dutkowski,2007. Evolution of SOA Concepts in
Telecommunications. Computer Vol.40 no.11, pp. 86Movember 2007.

[Margaria, 2006] Margaria, T. and Steffen, B. 208@rvice Engineering: Linking Business and
IT. Computer. Vol. 39, no. 10, pp. 45-55. Oct. 2006

[Margaria, 2007] Margaria, T. 2007. Service Istie Eyes of the Beholder. Computer. Vol 40 no
11, pp.33-37. Nov. 2007.

[Mcllraith, 2003] Mcllraith, S.A., Martin, D.L. 208. Bringing semantics to Web services. IEEE
Intelligent Systems. Vol.18, no.1, pp. 90- 93. Fadp- 2003.

[Newcomer, 2002] Newcomer, E. 2002. UnderstandingbV&ervices: XML, Wsdl, Soap, and
UDDI. In Addison, Wesley, Boston, Mass. May 2002.

[Nitto, 2009] Nitto, E., Sassen, A., Traverso, &d Zwegers, A. 2009. At Your Service: Service-
Oriented Computing from an EU Perspective. The Ht&ss.

[OASIS, 2003] Kropp, A., Leue, C., Thompson, R. 200Veb Services for Remote Portlets
Specification. OASIS Standard. Available at http://www.oasis-

open.org/committees/download.php/3343/oasis-200&)4-specification-1.0.pdf accessed on

March &", 2010.
[OASIS, 2008] Thompson, R. 2008. Web Services femBte Portlets Specification v2.0. OASIS

Standard. Available athttp://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spe6hitml# Toc25

accessed on Marcf'92010.
[OMA, 2007] OMA. 2007. Dictionary for OMA Specifitians. Available at
http://www.openmobilealliance.org/document/fOMA-ORBstionary-V2 6-20070614-A.pdf

accessed on March'92010.

[OMG, 2008a] OMG. 2008. Common Object Request Brokerchitecture (CORBA)
Specification, Version 3.1 OMG specification. Avzdile at
http://www.omg.org/spec/CORBA/3,ldccessed on Marct'92010.

221

[OMG, 2008b] OMG. 2008. Business Process Model Hothtion, V1.1. OMG specification.
Available athttp://www.omg.org/spec/BPMN/1.1/PDRiccessed MarcH'92010.

[Papazoglou, 2003] Papazoglou, M.P. and GeorgakoppuD. 2003. Service-Oriented

Computing. Communications of the ACM. Vol.46, nopp,25-28. October 2003.

[Papazoglou, 2006] Papazoglou, M.P., TraversopDBstdar, P., and Leymann F. 2006. Service-
Oriented Computing Research Roadmap. Technicalrtfgj{son paper on Service oriented
computing European Union Information Society Tedbg®s (IST). Available at

http://infolab.uvt.nl/pub/papazogloump-2006-96 paticessed on Marct'92010.

[Podesta, 2008] Podesta, R., 2008. A Lightweigherbnode Operation for UDDI Cloud. In
Proceedings of the 2008 12th Enterprise Distribuddgect Computing Conference Workshops.
EDOCW. IEEE Computer Society, Washington, DC, 390-45eptember, 2008.

[Pop, 2009] Pop, F., Cremene, M., Vaida, M., andelRi M. 2009. On-demand service
composition based on natural language requesBrdeeedings of the'8nternational Conference
on Wireless on-Demand Network Systems and ServigeSE Press, Piscataway, NJ, 41-44.
February, 2009.

[Saha, 2003] Saha, D., Mukherjee, A. 2003. Pergasbmputing: a paradigm for the 21st century.
Computer. Vol.36, no.3, pp. 25- 31. March, 2003

[Sawyer, 2005] Sawyer, P. 2005. Service Specificatbtate of the Art. SeCSE deliverable.

Available athttp://www.secse-project.eu/?page_id=86cessed on Marct{'92010.

[Sire, 2009] Sire, S., Paquier, M., Vagner, A., &ahaerts, J. 2009. A messaging API for inter-
widgets communication. In Proceedings of the 18tarhational Conference on World Wide Web
WWW '09. ACM, New York, NY, 1115-1116. Madrid, SpaiApril, 2009.

[Sillitti, 2002] Sillitti, A., Vernazza, T., and $gi, G. 2002. Service Oriented Programming: A
New Paradigm of Software Reuse. In Proceedingbeo¥th international Conference on Software
Reuse: Methods, Techniques, and Tools. C. Gaceki.&mure Notes In Computer Science, vol.
2319. Springer-Verlag, London, 269-280. April, 2002

[Soriano, 2006] Soriano, J., Lizcano, D., Cafas, Reyes, M., and Hierro, J.J. 2007. Fostering
innovation in a mashup-oriented enterprise 2.0 aboltation environment. System and
Information Science Notes, International ConfereaneAdaptive Business Systems 2007, Vol.1,
No.1, pp.62-69. Chengdu, China. July, 2007.

[Stefan, 2008] Stefan, H. 2008. Java Portlet Spetibn Version 2.0.Java specification.

Available at http://jcp.org/aboutJava/communityprocess/edr/igt2&ccessed on August 92

2010.

222

[Steffen, 2007] Steffen, B., Margaria, T., Nagel, Borges, S., and Kubczak, C. 2007. Model-
driven development with the JABC. In Proceedingstlod 2nd international Haifa Verification
Conference on Hardware and Software, Verificatiot @esting. Haifa, Israel. October, 2006.
[Sun,1999] Sun Microsystems. 1999. Java Naming &ickctory Interface Application
Programming Interface (JNDI API). Java specificatio Available at

http://www.orionserver.com/docs/specifications/jpdf, accessed on August"$22010.

[Sun, 2003] Sun Microsystems. 2003. JSR 168: Jawde®P Specification. Version 1.0. Java

specification. Available athttp://jcp.org/aboutJava/communityprocess/finalf8/index.htm|

accessed on July 31, 2010.
[Sun, 2006] Sun Microsystems. 2006. JSR 220: ErismrplavaBeans, Version 3.0 EJB Core
Contracts and Requirements. Version 3.0. Java famdmn. Available at

http://icp.org/en/jsr/summary?id=228éccessed on August™22010.

[Sun, 2008] Sun Microsystems. 2003. JSR 286: JawdeP Specification. Version 1.0. Java

specification. Available atttp://www.jcp.org/en/jsr/detail?id=288uly 3F', 2010.
[Thomas, 1998] Thomas, A., Seybold, P. 1998. EniszplavaBeans Technology. Available at
http://wiki.daimi.au.dk:8000/pca/_files/ejb_whiteager.pdf accessed on July %31 2010.

December 1998.
[UWA, 2008] Borderie, X., Hodierne, F. 2008. Unisal Widget APl (UWA) 1.2. Netvibes

Working Draft. Available ahttp:/netvibes.org/specs/uwa/current-woratcessed on MarcH'9

2010.

[Verma, 2005] Verma, K., Sivashanmugam, K., ShathpPatil, A., Oundhakar, S., and Miller, J.

2005. METEOR-S WSDI: A Scalable P2P InfrastructafeRegistries for Semantic Publication

and Discovery of Web Services. Inf. Technol. andhitgement. Vol.6, no.1, pp.17-39 January,
2005.

[Verner, 2004] Verner, L. 2004. BPM: The Promisd &me Challenge. Queue. Vol.2, no.1, pp.82-
91. March, 2004.

[Vinoski, 1997] Vinoski, S. 1997. CORBA: integratirdiverse applications within distributed

heterogeneous environments. IEEE Communicationsallag. Vol.35, no.2, pp.46-55. February,
1997.

[Vo, 2006] Vo, V., Kiet, H.T., and Weinhardt, C.@& Corporate Portals from a Service-Oriented
Perspective The CoFiPot Implementation. In Procegiof the 8th IEEE international

Conference on E-Commerce Technology and the 3ré liBEernational Conference on Enterprise

223

Computing, E-Commerce, and E-Services. CEC-EEEEIEBmputer Society, Washington, DC,
32. June, 2006.

[W3C, 2004a] Haas, H., Brown, A., 2004. Web Sersi@ossary. W3C Working Group Note.
Available athttp://www.w3.0rg/TR/2004/NOTE-ws-gloss-2004021d¢cessed March 9th, 2010.

[W3C, 2004b] Booth, D., Haas, H., McCabe, F., Nemeo, E., Champion, M., Ferris, C.,
Orchard, D., 2004. Web Services Architecture. W3@rkthg Group Note. Available at
http://www.w3.org/TR/ws-archiaccessed on Marct'92010.

[W3C, 2004c] Bechhofer, S., et al. 2004. OWL Wektdogy Language Reference. OWL Web

Ontology Language Reference. W3C Recommendationil#@le athttp://www.w3.org/TR/owl-

ref/, accessed MarchH"92010.

[W3C, 2004d] Klyne, G., Carroll, J.J., McBride, B004. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C recommigona Available at
http://www.w3.0rg/TR/rdf-conceptsaccessed on Marct'92010.

[W3C, 2004€e] McGuinness, D.L., Harmele, F.V. 200%/L Web Ontology Language Overview.

W3C recommendation. Available attp://www.w3.org/TR/owl-features/ accessed March™9

2010.
[W3C, 2004f] McGlashan, S., et al. Voice ExtensiMarkup Language (VoiceXML) Version

2.0. Available ahttp://www.w3.org/TR/voicexml2Q/accessed on October”192010.

[W3C, 2010] Baggia, P., Scott, M. 2010. Voice Brew<all Control: CCXML Version 1.0.

Available athttp://www.w3.0rg/TR/ccxml/accessed on October™ 2010.

[W3C, 2007] Caceres, M. 2007. Widgets 1.0 RequirgmeW3C Working Draft. Available at
http://www.w3.0rg/TR/2007/WD-widgets-reqs-20070208cessed March'92010.

[Wei, 2009] Wei, Y., Sun, Z., Chen, X., Zhang, B02. A service-portlet based visual paradigm
for personalized convergence of information resesrcin proceedings of the 2nd IEEE
International Conference on Computer Science afatriration Technology. ICCSIT 2009. Vol.
no. pp.119-124. August, 2009.

[Weiss, 2005] Weiss, A. 2005. WebOS: say goodbydesktop applications. networker. Vol.9,
no.4, pp.18-26. December, 2005.

[Wong, 2007] Wong, J. and Hong, J. I. 2007. Makmgshups with marmite: towards end-user
programming for the web. In Proceedings of the SHGConference on Human Factors in
Computing Systems. CHI '07. ACM, New York, NY, 14B%44. San Jose, California, USA.
April, 2007.

224

[Yelmo, 2008] Yelmo, J.C., Del Alamo, J.M., Trapetd., Falcarm, P., Jian Y., Cairo, B.,
Baladron, C. 2008. A user-centric service creatipproach for Next Generation Networks. In
Innovations in NGN: Future Network and Services, 020 K-INGN 2008. First ITU-T
Kaleidoscope Academic Conference. vol., no., pp-218. May 2008.

[Zhang, 2007] Zhang, L.J. Zhang, J. and Cai, H.7208ervices Computing. Springer and
Tsinghua Univ. Press, July 2007.

Abbreviations

AJAX Asynchronous JavaScript And XML
API Application Programming Interface
BPEL Business Process Execution Language
BPEL4WS Business Process Description Languag@/gdy Services
BPM Business Process Management
CDCW Cross Device Connecting Widget

CLl Command Line Interfaces

CLM Causal Link Matrix

CORBA Common Object Request Broker Architecture
CSS Cascading Style Sheets

DaaS Desktop as a Service

DCOM Distributed Component Object Model
EJB Enterprise JavaBean

GC Grid Container

GIOP General Inter-ORB Protocol

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

laaS Infrastructure as a Service

IDE Integrated Development Environment
IDL Interface Description Language

IM Instant Messaging

IT Information Technology

J2EE Java Enterprise Edition

JBPM Java Business Process Management
JNDI Java Naming and Directory Interface
JPDL JBPM Process Definition Language

JS JavaScript

JSR Java Specification Request

KB Knowledge Base

LASR Local Automatic and Semantic based Reuse

NLC
OLE
OMA
OMG
OOP
OPUCE
ORB
oS
OowL
RDF
REST
RPC
P2P
PaaS
PC
PMC
SAAS
SA-WSDL
SeCSE
SOA
SOAP
SOP
SOC
SWS
SPICE
TT™M
TV
uDDI
UGC
ul
URL
UWA
W3C

226

Natural Language Composer
Obiject Linking and Embedding
Open Mobile Alliance
Object Management Group
Object-Oriented Programming
Open Platform for User-centric serviceafiom and Execution
Object Request Broker
Operating System
Ontology Web Language
Resource Description Framework
Representational State Transfer
Remote Procedure Call
Peer to Peer
Platform as a Service
Personal Computer
Process Manager Component
Software as a Service
Semantic Annotation Web Service Desconiptianguage
Service Centric Systems Engineering
Service-Oriented Architecture
Simple Object Access Protocol
Service-Oriented Programming
Service-Oriented Computing
Semantic Web Services
Service Platform for Innovative Commuri@matEnvironment
Time To Market
Television
Universal Description, Discovery and Intation
User Generated Content
User Interface
Uniform Resource Locator
Universal Widget API
World Wide Web Consortium

WADL
wcC
WIMP
WOA
WSA
WS-BPEL
WSDL
WSRP
XaaS
XML

Web Application Description Language

Widget Container

Windows, Icons, Menus, and Pointer
Widget-Oriented Architecture

Web Service Architecture

Web Services Business Process Descripioguage
Web Service Description Language

Web Service for Remote Portlets

Everything as a Service

eXtensible Markup Language

227

